IARIA

ICSEA 2015

The Tenth International Conference on Software Engineering Advances

ISBN: 978-1-61208-438-1

November 15 - 20, 2015

Barcelona, Spain

ICSEA 2015 Editors

Roy Oberhauser, Aalen University, Germany
Luigi Lavazza, Universita dell'Insubria - Varese, Italy
Herwig Mannaert, University of Antwerp, Belgium

Stephen Clyde, Utah State University, USA

ICSEA 2015

Forward

The Tenth International Conference on Software Engineering Advances (ICSEA 2015), held on

November 15 - 20, 2015 in Barcelona, Spain, continued a series of events covering a broad spectrum of
software-related topics.

The conference covered fundamentals on designing, implementing, testing, validating and

maintaining various kinds of software. The tracks treated the topics from theory to practice, in terms of
methodologies, design, implementation, testing, use cases, tools, and lessons learnt. The conference
topics covered classical and advanced methodologies, open source, agile software, as well as software
deployment and software economics and education.

The conference had the following tracks:

Advances in fundamentals for software development
Advanced mechanisms for software development
Advanced design tools for developing software

Software engineering for service computing (SOA and Cloud)
Advanced facilities for accessing software

Software performance

Software security, privacy, safeness

Advances in software testing

Specialized software advanced applications

Web Accessibility

Open source software

Agile and Lean approaches in software engineering
Software deployment and maintenance

Software engineering techniques, metrics, and formalisms
Software economics, adoption, and education

Business technology

Improving productivity in research on software engineering

Similar to the previous edition, this event continued to be very competitive in its selection process
and very well perceived by the international software engineering community. As such, it is attracting
excellent contributions and active participation from all over the world. We were very pleased to receive
a large amount of top quality contributions.

We take here the opportunity to warmly thank all the members of the ICSEA 2015 technical program
committee as well as the numerous reviewers. The creation of such a broad and high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
that dedicated much of their time and efforts to contribute to the ICSEA 2015. We truly believe that
thanks to all these efforts, the final conference program consists of top quality contributions.

This event could also not have been a reality without the support of many individuals, organizations
and sponsors. We also gratefully thank the members of the ICSEA 2015 organizing committee for their
help in handling the logistics and for their work that is making this professional meeting a success.

We hope the ICSEA 2015 was a successful international forum for the exchange of ideas and results
between academia and industry and to promote further progress in software engineering research. We
also hope Barcelona provided a pleasant environment during the conference and everyone saved some
time for exploring this beautiful city.

ICSEA 2015 Advisory Chairs

Herwig Mannaert, University of Antwerp, Belgium

Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden
Luigi Lavazza, Universita dell'Insubria - Varese, Italy

Roy Oberhauser, Aalen University, Germany

Elena Troubitsyna, Abo Akademi University, Finland

Davide Tosi, Universita dell'Insubria - Como, Italy

Luis Fernandez-Sanz, Universidad de Alcala, Spain

Michael Gebhart, iterate GmbH, Germany

ICSEA 2015 Research Institute Liaison Chairs

Oleksandr Panchenko, Hasso Plattner Institute for Software Systems Engineering - Potsdam, Germany
Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland

Osamu Takaki, Gunma University, Japan

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

ICSEA 2015 Industry/Research Chairs

Herman Hartmann, University of Groningen, The Netherlands
Hongyu Pei Breivold, ABB Corporate Research, Sweden

ICSEA 2015 Special Area Chairs

Formal Methods
Paul J. Gibson, Telecom & Management SudParis, France

Testing and Validation
Florian Barth, University of Mannheim, Germany

Web Accessibility
Adriana Martin, National University of Austral Patagonia (UNPA), Argentina

Software engineering for service computing
Muthu Ramachandran, Leeds Beckett University, UK

ICSEA 2015 Publicity Chairs

Sébastien Salva, University of Auvergne, Clermont-Ferrand, France

ICSEA 2015

Committee
ICSEA Advisory Chairs

Herwig Mannaert, University of Antwerp, Belgium

Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden
Luigi Lavazza, Universita dell'lnsubria - Varese, Italy

Roy Oberhauser, Aalen University, Germany

Elena Troubitsyna, Abo Akademi University, Finland

Davide Tosi, Universita dell'Insubria - Como, Italy

Luis Fernandez-Sanz, Universidad de Alcala, Spain

Michael Gebhart, iteratec GmbH, Germany

ICSEA 2015 Research Institute Liaison Chairs

Oleksandr Panchenko, Hasso Plattner Institute for Software Systems Engineering - Potsdam, Germany
Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland

Osamu Takaki, Gunma University, Japan

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

ICSEA 2015 Industry/Research Chairs

Herman Hartmann, University of Groningen, The Netherlands
Hongyu Pei Breivold, ABB Corporate Research, Sweden

ICSEA 2015 Special Area Chairs

Formal Methods
Paul J. Gibson, Telecom & Management SudParis, France

Testing and Validation
Florian Barth, University of Mannheim, Germany

Web Accessibility
Adriana Martin, National University of Austral Patagonia (UNPA), Argentina

Software engineering for service computing
Muthu Ramachandran, Leeds Beckett University, UK

ICSEA 2015 Publicity Chairs

Sébastien Salva, University of Auvergne, Clermont-Ferrand, France

ICSEA 2015 Technical Program Committee

Shahliza Abd Halim, Universiti of Technologi Malaysia (UTM) - Skudai, Malaysia
Mohammad Abdallah, Al-Zaytoonah University of Jordan, Jordan

Adla Abdelkader, University of Oran, Algeria

Muhammad Ovais Ahmad, University of Oulu, Finland

Moataz A. Ahmed, King Fahd University of Petroleum & Minerals — Dhahran, Saudi Arabia
Syed Nadeem Ahsan, TU-Graz, Austria

Mehmet Aksit, University of Twente, Netherlands

Ahmed Al-Moayed, Hochschule Furtwangen University, Germany

Azadeh Alebrahim, University of Duisburg-Essen, Germany

Mamdouh Alenezi, Prince Sultan University - Riyadh, Saudi Arabia

Basem Y. Alkazemi, Umm Al-Qura University, Saudi Arabia

Mohammad Alshayeb, King Fahd University of Petroleum and Minerals, Saudi Arabia
Zakarya A. Alzamil, King Saud University, Saudi Arabia

Vincenzo Ambriola, Universita di Pisa, Italy

Jose Andre Dorigan, State University of Maringa, Brazil

Buzzi Andreas, Credit Suisse AG — Zirich, Switzerland

Andreas S. Andreou, Cyprus University of Technology - Limassol, Cyprus

Maria Anjum, Durham University, UK

Paulo Asterio de Castro Guerra, Tapijara Programacdo de Sistemas Ltda. - Lambari, Brazil
Colin Atkinson, University of Mannheim, Germany

Marco Autili, University of L'Aquila, Italy

Robert Azarbod, Oracle Corporation, USA

Thomas Baar, Hochschule fiir Technik und Wirtschaft (HTW) Berlin, Germany

Gilbert Babin, HEC Montréal, Canada

Muneera Bano, International Islamic University - Islamabad, Pakistan

Fernando Sérgio Barbosa, Escola Superior de Tecnologia do Instituto Politécnico de Castelo Branco,
Portugal

Jorge Barreiros, CITI/UNL: Center of Informatics and Information Technology - UNL | | ISEC/IPC: ISEC -
Polytechnic Institute of Coimbra, Portugal

Florian Barth, University of Mannheim, Germany

Gabriele Bavota, University of Salerno, Italy

Noureddine Belkhatir, University of Grenoble, France

Simona Bernardi, Centro Universitario de la Defensa / Academia General Militar - Zaragoza, Spain
Jorge Bernardino, Polytechnic Institute of Coimbra - ISEC-CISUC, Portugal

Ateet Bhalla, Independent Consultant, India

Celestina Bianco, Systelab Technologies - Barcelona, Spain

Christian Bird, University of California, USA

Kenneth Boness, Reading University, UK

Mina Bostrom Nakicenovic, Sungard Front Arena, Stockholm, Sweden

M. Boukala-loualalen, University of Science and Technology Houari Boumediene, Algeria
Fernando Brito e Abreu, Instituto Universitario de Lisboa (ISCTE-IUL), Portugal

Hongyu Pei Breivold, ABB Corporate Research, Sweden

Manfred Broy, Technische Universitat Miinchen, Germany

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

Thomas Buchmann, Universitat Bayreuth, Germany

Lucas Bueno Ruas de Oliveira, University of Sdo Paulo (ICMC/USP), Brazil

Luigi Buglione, ETS Montréal / Engineering.IT S.p.A., Canada

Christian Bunse, University of Applied Sciences Stralsund, Germany
Stefan Burger, Allianz Deutschland AG, Germany

David W. Bustard, University of Ulster - Coleraine, UK

Haipeng Cai, University of Notre Dame, USA

Fabio Calefato, University of Bari, Italy

Vinicius Cardoso Garcia, Centro de Informatica (Cln) - Universidade Federal de Pernambuco (UFPE),
Brazil

José Carlos Metrélho, Polytechnic Institute of Castelo Branco, Portugal
Bengt Carlsson, Blekinge Institute of Technology — Karlskrona, Sweden
Rocio Castafio Mayo, Universidad de Oviedo, Spain

Everton Cavalcante, Federal University of Rio Grande do Norte, Brazil / IRISA-UMR CNRS-Université de
Bretagne-Sud, France

Alexandros Chatzigeorgiou, University of Macedonia, Greece

Antonin Chazalet, IT&Labs, France

Yoonsik Cheon, The University of Texas at El Paso, USA

Federico Ciccozzi, Malardalen University, Sweden

Vanea Chiprianov, University of Pau, France

Morakot Choetkiertikul, Mahidol University, Thailand

Antonio Cicchetti, Malardalen University, Sweden

Federico Ciccozzi, Malardalen University, Sweden

Marta Cimitile, Unitelma Sapienza University, Italy

Tony Clark, Middlesex University, UK

Stephen Clyde, Utah State University, USA

Methanias Colago Junior, Federal University of Sergipe, Brazil

Rebeca Cortazar, University of Deusto - Bilbao, Spain

Oliver Creighton, Siemens AG, Germany

Carlos E. Cuesta, Rey Juan Carlos University - Madrid, Spain

Beata Czarnacka-Chrobot, Warsaw School of Economics, Poland

Zhen Ru Dai, Hamburg University of Applied Science, Germany

Darren Dalcher, Hertfordshire Business School, UK

Peter De Bruyn, University of Antwerp, Belgium

Claudio de la Riva, Universidad de Oviedo - Gijon, Spain

Peter De Bruyn, University of Antwerp, Belgium

Diego Dermeval Medeiros da Cunha Matos, Federal University of Campina Grande (UFCG), Brazil
Onur Demirors, Middle East Technical University, Turkey

Steven A. Demurjian, The University of Connecticut - Storrs, USA
Vincenzo Deufemia, University of Salerno, Italy

Antinisca Di Marco, University of L'Aquila - Coppito (AQ), Italy
Themistoklis Diamantopoulos, Aristotle University of Thessaloniki, Greece
Tadashi Dohi, Hiroshima University, Japan

José André Dorigan, State University of Londrina, Brazil

Lydie du Bousquet, J. Fourier-Grenoble | University, LIG labs, France
Roland Ducournau, LIRMM - CNRS & Université Montpellier 2, France
Juan Carlos Duefias Lopez, Universidad Politécnica de Madrid, Spain
Slawomir Duszynski, Fraunhofer Institute for Experimental Software Engineering, Germany
Christof Ebert, Vector Consulting Services, Germany

Holger Eichelberger, University of Hildesheim, Germany

Youneés El Amrani, Université Mohammed V - Agdal, Morocco
Mohamed El-Attar, King Fahd University of Petroleum and Minerals - Al Dhahran, Kingdom of Saudi
Arabia

Vladimir Estivill-Castro, Griffith University - Nathan, Australia

Kleinner Farias, University of Vale do Rio dos Sinos (Unisinos), Brazil
Fausto Fasano, University of Molise - Pesche, Italy

Feipre Ferraz, CESAR / CIN-UFPE, Brazil

Martin Filipsky, Czech Technical University in Prague, Czech Republic
Derek Flood, Dundalk Institute of Technology (DKIT), Ireland

Diego Fontdevila, Universidad Nacional de Tres de Febrero, Argentina
Rita Francese, University of Salerno, Italy

Terrill L. Frantz, Peking University HSBC Business School, China

Jicheng Fu, University of Central Oklahoma, USA

Felipe Furtado, Recife Center of Advanced Studies and Systems / Federal University of Pernambuco,
Brazil

Cristina Gacek, City University London, UK

Matthias Galster, University of Canterbury, New Zealand

G.R. Gangadharan, IDRBT, India

Stoyan Garbatov, OutSystems, Portugal

José Garcia-Alonso, University of Extremadura, Spain

Kiev Gama, UFPE, Brazil

Antonio Javier Garcia Sanchez, Technical University of Cartagena, Spain
José Garcia-Fanjul, University of Oviedo, Spain

Michael Gebhart, iteratec GmbH, Germany

Sébastien Gérard, CEA LIST, France

Paul Gibson, Telecom SudParis, France

Yossi Gil, Technion - Israel Institute of Technology, Israel

Ignacio Gonzdlez Alonso, Infobdtica RG University of Oviedo, Spain
Oleg Gorbik, Accenture - Riga Delivery Centre, Latvia

Mohamed Graiet, ISIMS, MIRACL, Monastir, Tunisia

Gregor Grambow, University of Ulm, Germany

Carmine Gravino, Universita degli Studi di Salerno, Italy

George A. Gravvanis, Democritus University of Thrace, Greece

Jeff Gray, University of Alabama, USA

Sam Guinea, Politecnico di Milano, Italy

Bidyut Gupta, Southern lllinois University, USA

Ensar Gul, Marmara University - Istanbul, Turkey

Zhensheng Guo, Siemens AG - Erlangen, Germany

Nahla Haddar, University of Sfax, Tunisia

Wagqas Haider Khan Bangyal, IUIl Islamabad, Pakistan

Imed Hammouda, University of Gothenburg, Sweden

Jameleddine Hassine, King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia
Shinpei Hayashi, Tokyo Institute of Technology, Japan

José R. Hilera, University of Alcala, Spain

Zeljko Hocenski, University Josip Juraj Strossmayer of Osijek, Croatia
Bernhard Hollunder, Furtwangen University of Applied Sciences, Germany
Siv Hilde Houmb, Secure-NOK AS / Gjgvik University College, Norway
LiGuo Huang, Southern Methodist University Huang, USA

Noraini Ibrahim, University of Technology Malaysia (UTM), Malaysia

Milan Ignjatovic, ProSoftwarica, Switzerland

Jun lio, Faculty of Letters - Chuo University, Japan

Naveed lkram, Riphah International University — Islamabad, Pakistan

Gustavo lllescas, Universidad Nacional del Centro-Tandil-Bs.As., Argentina
Claire Ingram, Newcastle University, UK

Emilio Insfran, Universitat Politécnica de Valéncia, Spain

Shareeful Islam, University of East London, U.K.

Slinger Jansen (Roijackers), Utrecht University, The Netherlands

Marko Jantti, University of Eastern Finland, Finland

Kashif Javed, Abo Akademi University, Finland

Hermann Kaindl, TU-Wien, Austria

Mira Kajko-Mattsson, Stockholm University and Royal Institute of Technology, Sweden
Ahmed Kamel, Concordia College - Moorhead, USA

Dariusz W. Kaminski, The Open University, UK

Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland

Lucia Kapova, Karlsruhe Institute of Technology, Germany

Tatjana Kapus, University of Maribor, Slovenia

Krishna M. Kavi, University of North Texas, USA

Carlos Kavka, ESTECO SpA, ltaly

Markus Kelanti, University of Oulu, Finland

Abeer Khalid, International Islamic University Islamabad, Pakistan

Foutse Khomh, Ecole Polytechnique de Montréal, Canada

Holger Kienle, Freier Informatiker, Germany

Reinhard Klemm, Avaya Labs Research, USA

Mourad Kmimech, I'Institut Supérieur d’informatique de Mahdia (ISIMA), Tunisia
Jens Knodel, Fraunhofer IESE, Germany

William Knottenbelt, Imperial College London, UK

Takashi Kobayashi, Tokyo Institute of Technology, Japan

Radek Koci, Brno University of Technology, Czech Republic

Christian Kop, Alpen-Adria-Universitat Klagenfur, Austria

Georges Edouard Kouamou, National Advanced School of Engineering - Yaoundé, Cameroon
Segla Kpodjedo, Ecole de Technologie Supérieure - Montreal, Canada

Natalia Kryvinska, University of Vienna, Austria

Tan Hee Beng Kuan, Nanyang Technological University, Singapore

Vinay Kulkarni, Tata Consultancy Services, India

Sukhamay Kundu, Louisiana State University - Baton Rouge, USA

Eugenijus Kurilovas, Vilnius University and Vilnius Gediminas Technical University, Lithuania
Rob Kusters, Open University/Eindhoven University of Technology, Netherlands
Alla Lake, Linfo Systems, LLC - Greenbelt, USA

Einar Landre, Statiol ASA, Norway

Kevin Lano, King's College London, UK

Casper Lassenius, MIT, USA

Jannik Laval, University Bordeaux 1, France

Luigi Lavazza, Universita dell'lnsubria - Varese, Italy

Luka Lednicki, ABB Corporate Research, Sweden

Plinio Sa Leitdo-Junior, Federal University of Goias, Brazil

Maurizio Leotta, University of Genova, Italy

Valentina Lenarduzzi, Universita degli Studi dell'Insubria, Italy

Jorg Liebig, University of Passau, Germany

Maria Teresa Llano Rodriguez, Goldsmiths/University of London, UK

Klaus Lochmann, Technische Universitat Miinchen, Germany

Sérgio F. Lopes, University of Minho, Portugal

Juan Pablo Lépez-Grao, University of Zaragoza, Spain

Ivan Machado, Universidade Federal da Bahia, Brazil

Ricardo J. Machado, University of Minho, Portugal

Sajjad Mahmood, King Fahd University of Petroleum and Minerals, Saudi Arabia
Charif Mahmoudi, LACL - Paris 12 University, France

Nicos Malevris, Athens University of Economics and Business, Greece

Herwig Mannaert, University of Antwerp, Belgium

Cristiano Marcal Toniolo, Faculdade Anhanguera, Brazil

Eda Marchetti, ISTI-CNR - Pisa Italy

Alexandre Marcos Lins de Vasconcelos, Federal University of Pernambuco, Brazil
Daniela Marghitu, Auburn University, USA

Adriana Martin, National University of Austral Patagonia (UNPA), Argentina

Luiz Eduardo Galvao Martins, Federal University of Sdo Paulo, Brazil

Miriam Martinez Mufioz, Universidad de Alcala de Henares, Spain

Jose Antonio Mateo, Aalborg University, Denmark

Fuensanta Medina-Dominguez, Universidad Carlos Il Madrid, Spain

Karl Meinke, KTH Royal Institute of Technology, Sweden

Igor Melatti, Sapienza Universita di Roma, ltaly

Andreas Menychtas, National Technical University of Athens, Greece

Jose Merseguer, Universidad de Zaragoza, Spain

Apinporn Methawachananont, National Electronics and Computer Technology Center (NECTEC),
Thailand

Markus Meyer, University of Applied Sciences Ingolstadt, Germany

Jodo Miguel Fernandes, Universidade do Minho - Braga, Portugal

Amir H. Moin, fortiss, An-Institut Technische Universitat Miinchen, Germany
Hassan Mountassir, University of Besangon, France

Henry Muccini, University of L'Aquila, Italy

Aitor Murguzur, IK4-lkerlan Research Center, Spain

Elena Navarro, University of Castilla-La Mancha, Spain

Mahmood Niazi, King Fahd University of Petroleum and Minerals, Saudi Arabia
Oksana Nikiforova, Riga Technical University, Latvia

Natalja Nikitina, KTH Royal Institute of Technology - Stockholm, Sweden

Mara Nikolaidou, Harokopio University of Athens, Greece

Marcellin Julius Nkenlifack, Univeristé de Dschang - Bandjoun, Cameroun
Tetsuo Noda, Shimane University, Japan

Marc Novakouski, Software Engineering Institute/Carnegie Mellon University, USA
Nicole Novielli, University of Bari, Italy

Bo Ngrregaard Jgrgensen, Centre for Energy Informatics - University of Southern Denmark, Denmark
Roy Oberhauser, Aalen University, Germany

Pablo Oliveira Antonino de Assis, Fraunhofer Institute for Experimental Software Engineering - IESE,
Germany

Flavio Oquendo, IRISA - University of South Brittany, France

Baris Ozkan, Atilim University - Ankara, Turkey

Claus Pahl, Dublin City University, Ireland

Marcos Palacios, University of Oviedo, Spain

Fabio Palomba, University of Salerno, Italy

Paivi Parviainen, VTT, Software Technologies Center, Finland

Aljosa Pasic, ATOS Research, Spain

Fabrizio Pastore, University of Milano - Bicocca, Italy

Asier Perallos, University of Deusto, Spain

Oscar Pereira, University of Aveiro, Portugal

Beatriz Pérez Valle, University of La Rioja, Spain

David Pheanis, Arizona State University, USA

Pasqualina Potena, University of Alcala, Spain

Christian Prehofer, Kompetenzfeldleiter Adaptive Kommunikationssysteme / Fraunhofer-Einrichtung fir
Systeme der Kommunikationstechnik ESK — Miinchen, Germnay
Abdallah Qusef, University of Salerno, Italy

Salman Rafiqg, Fraunhofer Institute for Embedded Systems and Communication Technologies, Germany
Claudia Raibulet, Universita degli Studi di Milano-Bicocca, Italy
Muthu Ramachandran, Leeds Beckett University, UK

Amar Ramdane-Cherif, University of Versailles, France

Raman Ramsin, Sharif University of Technology, Iran

Gianna Reggio, DIBRIS - Universita di Genova, Italy

Zhilei Ren, Dalian University of Technology, China

Hassan Reza, University of North Dakota - School of Aerospace, USA
Samir Ribic, University of Sarajevo, Bosnia and Herzegovina

Elvinia Riccobene, University of Milan, Italy

Daniel Riesco, National University of San Luis, Argentina

Michele Risi, University of Salerno, Italy

Gabriela Robiolo, Universidad Austral, Argentina

Oliveto Rocco, University of Molise, Italy

Rodrigo G. C. Rocha, Federal Rural University of Pernambuco, Brazil
Daniel Rodriguez, University of Alcala, Madrid, Spain

Maria Luisa Rodriguez Almendros, Universidad de Granada, Spain
Siegfried Rouvrais, Institut Mines Telecom Bretagne, France

Suman Roychoudhury, Tata Consultancy Services, India

Mercedes Ruiz Carreira, Universidad de Cadiz, Spain

Alessandra Russo, Imperial College London, UK

Mehrdad Saadatmand, Malardalen University / Alten AB, Sweden
Krzysztof Sacha, Warsaw University of Technology, Poland
Francesca Saglietti, University of Erlangen-Nuremberg, Germany
Sébastien Salva, LIMOS-CNRS / Auvergne University / IUT d'Aubiere, France
Maria-lsabel Sanchez-Segura, Carlos Il University of Madrid, Spain
Luca Santillo, Agile Metrics, Italy

Gaetana Sapienza, ABB Corporate Research, Sweden

Federica Sarro, University College London, UK

Patrizia Scandurra, University of Bergamo - Dalmine, Italy

Giuseppe Scanniello, Universita degli Studi della Basilicata - Potenza, Italy
Christelle Scharff, Pace University, USA

Klaus Schmid, University of Hildesheim, Germany

Felix Schwagerl, University of Bayreuth, Germany

Bran Selic, Malina Software, Canada

Fereidoon Shams, Shahid Beheshti University, Iran

Fernando Selleri Silva, Mato Grosso State University (UNEMAT), Brazil
Istvan Siket, University of Szeged, Hungary

Abu Bakar Md Sultan, Universiti Putra Malaysia, Malaysia

Sidra Sultana, National University of Sciences and Technology, Pakistan
Lijian Sun, Chinese Academy of Surveying & Mapping, China

Mahbubur R. Syed, Minnesota State University — Mankato, USA

Davide Taibi, Free University of Bozen, Italy

Osamu Takaki, Gunma University, Japan

Giordano Tamburrelli, Universita della Svizzera Italiana (USI), Swizterland
Wasif Tanveer, University of Engineering and Technology - Lahore, Pakistan
Nebojsa Tausan, University of Oulu, Finland

Pierre Tiako, Langston University, USA

Maarit Tihinen, VTT Technical Research Centre of Finland - Oulu, Finland
Massimo Tivoli, University of L'Aquila, Italy

Maria Tortorella, University of Sannnio - Benevento Italy

Davide Tosi, Universita degli studi dell'Insubria - Varese, Italy

Peter Trapp, Ingolstadt, Germany

Elena Troubitsyna, Abo Akademi University, Finland

Mariusz Trzaska, Polish-Japanese Academy of Information Technology, Poland
George A. Tsihrintzis, University of Piraeus, Greece

Masateru Tsunoda, Kinki University, Japan

Henry Tufo, University of Colorado at Boulder, USA

Javier Tuya, Universidad de Oviedo - Gijén, Spain

Andreas Ulrich, Siemens AG, Germany

Christelle Urtado, LGI2P / Ecole des Mines d'Alés - Nimes, France

Dieter Van Nuffel, University of Antwerp, Belgium

Timo Vepsalainen, Tampere University of Technology, Finland

Laszlo Vidacs, Hungarian Academy of Sciences, Hungary

Tanja Vos, Universidad Politécnica de Valencia, Spain

Stefan Wagner, University of Stuttgart, Germany

Hironori Washizaki, Waseda University, Japan

Stefan Wendler, limenau University of Technology, Germany

Agnes Werner-Stark, University of Pannonia, Hungary

Norman Wilde, University of West Florida, USA

Andreas Winter, Carl von Ossietzky University, Germany

Victor Winter, University of Nebraska-Omaha, USA

Martin Wojtczyk, Technische Universitat Miinchen, Germany & Cubotix, USA
Haibo Yu, Shanghai Jiao Tong University, China

Elisa Yumi Nakagawa, University of Sdo Paulo (USP), Brazil

Saad Zafar, Riphah International University - Islamabad, Pakistan

Amir Zeid, American University of Kuwait, Kuwait

Michal Zemlicka, University of Finance and Administration, Czech Republic
Gefei Zhang, Celonis GmbH, Germany

Qiang Zhu, The University of Michigan - Dearborn, USA

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the
dissemination of the published material. This allows IARIA to give articles increased visibility via
distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that | represent the authors of this article in
the copyright release matters. If this work has been done as work-for-hire, | have obtained all necessary
clearances to execute a copyright release. | hereby irrevocably transfer exclusive copyright for this
material to IARIA. | give IARIA permission or reproduce the work in any media format such as, but not
limited to, print, digital, or electronic. | give IARIA permission to distribute the materials without
restriction to any institutions or individuals. | give IARIA permission to submit the work for inclusion in
article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or
otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and
any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above
provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any
individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of
manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without
limitation, negligence), pre-contract or other representations (other than fraudulent
misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that
case, copyright to the material remains with the said government. The rightful owners (authors and
government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and
IARIA's partners to further distribute the work.

Table of Contents

Patterns for Specifying Bidirectional Transformationsin UML-RSDS
Sobhan Yassipour-Tehrani, Shekoufeh Kolahdouz-Rahimi, and Kevin Lano

Towards a Framework for Software Product Maturity M easurement
Mohammad Alshayeb, Ahmad Abdellatif, Sami Zahran, and Mahmood Niaz

An Exploratory Study on the Influence of Developersin Code Smell Introduction
Leandro Alves, Ricardo Choren, and Eduardo Alves

The Object Oriented Petri Net Component Model
Radek Koci and Vladimir Janousek

“Free” Innovation Environments: Lessons learned from the Software Factory Initiatives

Davide Taibi, Valentina Lenarduzzi, Muhammad Ovais Ahmad, Kari Liukkunen, Ilaria Lunesu, Martina Matta,
Fabian Fagerholm, Ju?rgen Mu?nch, Sami Pietinen, Markku Tukiainen, Carlos Ferna?ndez-Sa?nchez, Juan
Garbajosa, and Kari Systa?

Performance Exploring Using Model Checking A Case Study of Hard Disk Drive Cache Function
Takehiko Nagano, Kazuyoshi Serizawa, Nobukazu Yoshioka, Yasuyuki Tahara, and Akihiko Ohsuga

Towards a Better Understanding of Static Code Attributes for Defect Prediction
Muhammed Maruf Ozturk and Ahmet Zengin

Communication and Coordination Challenges Mitigation in Offshore Software Devel opment Outsourcing
Relationships: Findings from Systematic Literature Review
Rafiq Ahmad Khan, Sffat Ullah Khan, and Mahmood Niazi

Adapting Heterogeneous ADL s for Software Architecture Reconstruction Tools
Dung Le, Ana Nicolaescu, and Horst Lichter

Verifying and Constructing Abstract TLA Specifications: Application to the Verification of C programs
Amira Methni, Matthieu Lemerre, Belgacem Ben Hedia, Serge Haddad, and Kamel Barkaoui

Revisiting The Package-level Cohesion Approaches
Waleed Albattah and Suliman Alsuhibany

Towards a Technical Debt Management Framework based on Cost-Benefit Analysis
Muhammad Firdaus Bin Harun and Horst Lichter

Design and Implementation of Business Logic Layer Object-Oriented Design versus Relational Design
Ali Alharthy

12

18

25

31

40

52

56

62

70

74

Pymoult : On-Line Updates for Python Programs
Sebastien Martinez, Fabien Dagnat, and Jeremy Buisson

Aiming Towards Modernization: Visualization to Assist Structural Understanding of Oracle Forms Applications
Kelly Garces, Edgar Sandoval, Rubby Casallas, Camilo Alvarez, Algjandro Salamanca, Sandra Pinto, and Fabian
Melo

Effects of Recency and Commits Aggregation on Change Guide Method Based on Change History Analysis
Tatsuya Mori, Anders Hagward, and Takashi Kobayashi

Towards Flexible Business Software
Ahmed Elfatatry

EBGSD: Emergence-Based Generative Software Development
Mahdi Mostafazadeh, Mohammad Reza Besharati, and Raman Ramsin

A GPU-aware Component Model Extension for Heterogeneous Embedded Systems
Gabriel Campeanu, Jan Carlson, and Severine Sentilles

Soft System Stakeholder Analysis M ethodol ogy
Markus Kelanti, Jarkko Hyysalo, Jari Lehto, Samuli Saukkonen, Markku Oivo, and Pasi Kuvaja

Publish/Subscribe Cloud Middleware for Real-Time Disease Surveillance
Slvino Neto, Marcia Valeria, Plinio Manoel, and Felipe Ferraz

Requirement’s Variability in Model Generation from a Standard Document in Natural Language
Juliana Greghi, Eliane Martins, and Ariadne Carvalho

An Approach to Compare UML Class Diagrams Based on Semantical Features of Their Elements
Oksana Nikiforova, Konstantins Gusarovs, Ludmila Kozacenko, Dace Ahilcenoka, and Dainis Ungurs

Model-Based Evaluation and Simulation of Software Architecture Evolution
Peter Alexander, Ana Nicolaescu, and Horst Lichter

Towards Time-triggered Component-based System Models
Hela Guesmi, Belgacem Ben Hedia, Smon Bliudze, Saddek Bensalem, and Jacques Combaz

A User-App Interaction Reference Model for Mobility Requirements Analysis
Xiaozhou Li and Zheying Zhang

Design and Implementation of a Tool to Collect Data of a Smart City Through the TV
Glaydstone Teixeira and Felipe Ferraz

80

86

96

102

108

115

122

131

139

147

153

157

170

178

Comparison of Educational Project Management Tools
Rafael Goncalves and Christiane Wangenheim

Model-Driven Engineering of Software Solutions for QoS Management in Real-Time DBMS
Salwa M'barek, Leila Baccouche, and Henda Ben Ghezala

An Approach for Reusing Software Process Elements based on Reusable Asset Specification: a Software Product

Line Case Study
Karen D. R. Pacini and Rosana T. V. Braga

An Extensible Platform for the Treatment of Heterogeneous Datain Smart Cities
Cicero A. Slva and Gibeon S. A. Junior

Improving the Application of Agile Model-based Development: Experiences from Case Studies
Kevin Lano, Hessa Alfraihi, Sobhan Yassipour-Tehrani, and Howard Haughton

Metrics Framework for Cycle-Time Reduction in Software Va ue Creation - Adapting Lean Startup for
Established SaaS Feature Developers
Pasi Tyrvainen, Matti Saarikallio, Timo Aho, Timo Lehtonen, and Rauno Paukeri

A Context-Driven Approach for Guiding Agile Adoption: The AMQuICk Framework
Hajer Ayed, Benoit Vanderose, and Naji Habra

Kanban in Industrial Engineering and Software Engineering: A Systematic Literature Review
Muhammad Ovais Ahmad, Jouni Markkula, Markku Oivo, and Bolaji Adeyemi

Efficient ETL+Q for Automatic Scalability in Big or Small Data Scenarios
Pedro Martins, Maryam Abbasi, and Pedro Furtado

The Role of People and Sensors in the Development of Smart Cities: A Systematic Literature Review
Italberto Figueira Dantas and Felipe Slva Ferraz

A Knowledge Base for Electric Vehiclesin Inner-City Logistics
Volkmar Schau, Johannes Kretzschmar, Thomas Prinz, and Paul Hempel

Building a Service Manager For a Smart City Archicture
Gutemberg Cavalcante, Felipe Ferraz, and Guilherme Medeiros

Intersection of MPS.BR-E and SPICE Models Focused on Projects for the Automotive Industry
Vanessa Matias Leite, Jandira Guenka Palma, and Emmanuel da C. Gallo

Quality-Based Score-level Fusion for Secure and Robust Multimodal Biometrics-based Authentication on
Consumer Mabile Devices

184

192

200

207

213

220

228

234

242

248

257

261

268

274

Mikhail Gofman, Snjini Mitra, Kevin Cheng, and Nicholas Smith

An Approach for Sensor Placement to Achieve Complete Coverage and Connectivity in Sensor Networks
Monia Techini, Ridha Ejbali, and Mourad Zaied

Dynamic Symbolic Execution using Eclipse CDT
Andreas Ibing

Evaluating the Usability of Mobile Instant Messaging Apps on iOS Devices

Sergio Caro-Alvaro, Antonio Garcia-Cabot, Eva Garcia-Lopez, Luis de-Marcos, and Jose-Javier Martinez-

Herraiz

Multi-Criteria Test Case Prioritization Using Fuzzy Analytic Hierarchy Process
Sahar Tahvili, Mehrdad Saadatmand, and Markus Bohlin

Analysis of Optimization Requirement of Mobile Application Testing Procedure
Manish Kumar, Kapil Kant Kamal, Bharat Varyani, and Meghana Kale

Property Based Verification of Evolving Petri Nets
Yasir Imtiaz Khan and Ehab Al-Shaer

Dynamic Evolution of Source Code Topics
Khaled Almustafa and Mamdouh Alenezi

Model Transformation Applications from Reguirements Engineering Perspective
Sobhan Yassipour Tehrani and Kevin Lano

Analyzing the Evolvability of Modular Structures: a Longitudinal Normalized Systems Case Study
Philip Huysmans, Peter De Bruyn, Gilles Oorts, Jan Verelst, Dirk van der Linden, and Herwig Mannaert

Applying SO 9126 Metricsto MDD Projects
Ricardo Alonso Munoz Riesle, Beatriz Marin, and Lidia Lopez

Evaluation of a Security Service Level Agreement
Chen-Yu Lee and Krishna M. Kavi

Towards Systematic Safety System Development with a Tool Supported Pattern Language
Jari Rauhamaki, Timo Vepsalainen, and Seppo Kuikka

An Analysis of sSven Concepts and Design Flaws in I dentity Management Systems
Joao Jose Calixto das Chagas and Felipe Ferraz

ATM Security: A Case Study of aLogical Risk Assessment

277

280

286

290

297

301

307

313

319

326

333

341

349

355

Johannes Braeuer, Bernadette Gmeiner, and Johannes Sametinger

Applications of Security Reference Architecturesin Distributed Systems: Initial Findings of Systematic Mapping
Study
Sajjad Mahmood, Muhammad Jalal Khan, and Sajid Anwer

Cif: A Static Decentralized Label Model (DLM) Analyzer to Assure Correct Information Flow in C
Kevin Muller, Sascha Uhrig, Michael Paulitsch, and Georg Sgl

Minimizing Attack Graph Data Structures
Peter Mell and Richard Harang

Reliability-Aware Design Specification for Allowing Reuse-Based Reliability Level Increment
Patricia Lopez, Leire Etxeberria, and Xabier Elkorobarrutia

Best Practices for the Design of RESTful Web Services
Pascal Giessler, Michael Gebhart, Dmitrij Sarancin, Roland Steinegger, and Sebastian Abeck

Criteria of Evaluation for Systems Using Sensor as a Service
Anderson Brito and Felipe Ferraz

Middleware Applied to Digital Preservation: A Literature Review
Eriko Brito, Paulo Cesar Abrantes, and Bruno de Freitas Barros

Middleware For Heterogeneous Healthcare Data Exchange: A Survey
Carlos Bezerra, Andre Araujo, Bruno Rocha, Vagner Pereira, and Felipe Ferraz

Teaching Robotics and Mechanisms
Daniela Marghitu and Dan . Marghitu

Case of Enterprise Architecture in Manufacturing Firm
Alicia Valdez, Griselda Cortes, Sergio Castaneda, Gerardo Haces, and Jose Medina

An Empirical Investigation on the Mativations for the Adoption of Open Source Software
Davide Taibi

Gamifying and Conveying Software Engineering Concepts for Secondary Education: An Edutainment Approach
Roy Oberhauser

Using Cloud Services To Improve Software Engineering Education for Distributed A pplication Development
Jorge Edison Lascano and Stephen W. Clyde

Controlled Variability Management for Business Process Model Constraints

363

369

376

386

392

398

409

415

419

426

432

438

445

Neel Mani and Claus Pahl

Severa Issues on the Model Interchange Between Model-Driven Software Development Tools
Una leva Zusane, Oksana Nikiforova, and Konstantins Gusarovs

Testing Smart Cities Through an Extensible Testbed
Guilherme Medeiros, Felipe Ferraz, and Gutemberg Caval cante

Implementing the Observer Design Pattern as an Expressive L anguage Construct
Taher Ghaleb, Khalid Aljasser, and Musab Al-Turki

Supporting Tools for Managing Software Product Lines: a Systematic Mapping
Karen D. R. Pacini and Rosana T. V. Braga

Recovering Lost Software Design with the Help of Aspect-based Abstractions
Kiev Gama and Didier Donsez

Networking-based Personalized Research Environment : NePRE
Heeseok Choi, Jiyoung Park, Hyoungseop Shim, and Beomjong You

Decision Making and Service Oriented Architecture for Recruitment Process Using the New Standard Decision
Model and Notation (DMN)
Fatima Boumahdi, Houssem Eddine Boulefrakh, and Rachid Chalal

451

457

463

470

477

489

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Patterns for Specifying Bidirectional Transformations in UML-RSDS

K. Lano,

S. Yassipour-Tehrani
Dept. of Informatics
King’s College London
London, UK
Email: kevin.lano@kcl.ac.uk,
s.yassipour-tehrani @kcl.ac.uk

Abstract—In this paper, we identify model transformation spec-
ification and design patterns, which support the property of
transformation bidirectionality: the ability of a single specification
to be applied either as a source-to-target transformation or as
a target-to-source transformation. In contrast to previous work
on bidirectional transformations (bx), we identify the important
role of transformation invariants in the derivation of reverse
transformations, and show how patterns and invariants can be
used to give a practical means of defining bx in the UML-RSDS
transformation language.

Keywords — Bidirectional transformations; transformation
design patterns; UML-RSDS

I. INTRODUCTION

Bidirectional transformations (bx) are considered important
in a number of transformation scenarios:

e Maintaining consistency between two models which
may both change, for example, if a UML class dia-
gram and corresponding synthesised Java code both
need to be maintained consistently with each other, in
order to implement round-trip engineering for model-
driven development.

e Where a mapping between two languages may need to
be operated in either direction for different purposes,
for example, to represent behavioural models as either
Petri Nets or as state machines [12].

e Where inter-conversion between two different repre-
sentations is needed, such as two alternative formats
of electronic health record [3].

Design patterns have become an important tool in software
engineering, providing a catalogue of ‘best practice’ solutions
to design problems in software [7]. Patterns for model transfor-
mations have also been identified [14], but patterns specifically
for bx have not been defined.

In this paper, we show how bx patterns can be used to
obtain a practical approach for bx using the UML-RSDS
language [11].

Section II defines the concept of a bx. Section V de-
scribes related work. Section III describes UML-RSDS and
transformation specification in UML-RSDS. Section IV gives
a catalogue of bx patterns for UML-RSDS, with examples.
Section VI gives a conclusion.

II. CRITERIA FOR BIDIRECTIONALITY

Bidirectional transformations are characterised by a binary
relation R : SL <> TL between a source language (metamodel)

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

S. Kolahdouz-Rahimi
Dept of Software Engineering
University of Isfahan
Isfahan, Iran
Email: sh.rahimi@eng.ui.ac.ir

SL and a target language TL. R(m,n) holds for a pair of
models m of SL and n of TL when the models consist of
data which corresponds under R. It should be possible to
automatically derive from the definition of R both forward and
reverse transformations

R7:SLxTL—TL RT™:SLxTL— SL

which aim to establish R between their first (respectively
second) and their result target (respectively source) models,
given both existing source and target models.

Stevens [16] has identified two key conditions which bidi-
rectional model transformations should satisfy:

1) Correctness: the forward and reverse transforma-
tions derived from a relation R do establish R:
R(m,R~(m,n)) and R(R* (m,n),n) for each
m:SL,n:TL.

2) Hippocraticness: if source and target models already
satisfy R then the forward and reverse transformations
do not modify the models:

R(m,n) = R7(m,n)=n
R(m,n) = R (m,n)=m

for each m : SL, n : TL.

The concept of a lens is a special case of a bx satisfying these
properties [16].

III. BX SPECIFICATION IN UML-RSDS

UML-RSDS is a hybrid model transformation language,
with a formal semantics [10] and an established toolset [11].
Model transformations are specified in UML-RSDS as UML
use cases, defined declaratively by three main predicates,
expressed in a subset of OCL:

1) Assumptions Asm, which define when the transfor-
mation is applicable.

2) Postconditions Post, which define the intended effect
of the transformation at its termination. These are an
ordered conjunction of OCL constraints (also termed
rules in the following) and also serve to define a
procedural implementation of the transformation.

3) Invariants /nv, which define expected invariant prop-
erties which should hold during the transformation
execution. These may be derived from Post, or spec-
ified explicitly by the developer.

From a declarative viewpoint, Post defines the conditions
which should be established by a transformation. From an

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

implementation perspective, the constraints of Post also define
intended computation steps of the transformation: each com-
putation step is an application of a postcondition constraint to
a specific source model element or to a tuple of elements.

For example, an elementary transformation specification
Ta2p ON the languages S consisting of entity type A and T
consisting of entity type B (Figure 1) could be:

(Asm) :

B—forAll(b | b.y > 0)
(Post) :

A—forAll(a | B—exists(b | b.y = a.x—sqr()))
(Inv) :

B—forAll(b | A—exists(a | a.x = b.y—sqri()))

The computation steps « of 7,9, are applications of
B—exists(b | b.y = a.x—sqr()) to individual a : A. These
consist of creation of a new b : B instance and setting its y
value to a.x * a.x. These steps preserve Inv: Inv = [a]lnv.

A
¥int
E_
yoint

Figure 1. A to B Transformation 7,9,

This example shows a typical situation, where the invariant
is a dual to the postcondition, and expresses a form of min-
imality condition on the target model: that the only elements
of this model should be those derived from source elements
by the transformation. In terms of the framework of [16],
the source-target relation R, associated with a UML-RSDS
transformation 7 is Post and Inv. As in the above example,
R is not necessarily bijective. The forward direction of 7 is
normally computed as staf(Post): the UML activity derived
from Post when interpreted procedurally [10]. However, in
order to achieve the correctness and hippocraticness properties,
Inv must also be considered: before stat(Post) is applied to the
source model m, the target model n must be cleared of elements
which fail to satisfy Inv.

In the a2b example, the transformation 7,5, with postcon-
dition constraints:

(CleanTargetl) :
B—forAll(b | not(b.y > 0) implies
b—sisDeleted())
(CleanTarget2) :

B—forAll(b | not(A—exists(a | a.x = b.y—sqri()))
implies b—isDeleted|))

is applied before 7,9, to remove all B elements which fail to
be in R,o;, with some a : A, or which fail to satisfy Asm.

This is an example of the Cleanup before Construct pattern
(Section IV). Additionally, the E—exists(e | P) quantifier in
rule succedents should be procedurally interpreted as “create a
new e : E and establish P for e, unless there already exists an

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

e : E satisfying P”. That is, the Unique Instantiation pattern
[14] should be used to implement ‘check before enforce’ se-
mantics. The forward transformation 77 is then the sequential
composition 7%; 7 of the cleanup transformation and the
standard transformation (enhanced by Unique Instantiation).

In the reverse direction, the roles of Post and Inv are
interchanged: elements of the source model which fail to
satisfy Asm, or to satisfy Post with respect to some element
of the target model should be deleted:

(CleanSource?) :
A—forAll(a | not(B—exists(b | b.y = a.x—sqr()))
implies a—isDeleted())

This cleanup transformation is denoted 7.5, It is followed by
an application of the normal inverse transformation 77, which
has postcondition constraints /nv ordered in the corresponding
order to Post. Again, Unique Instantiation is used for source
model element creation. The overall reverse transformation is

~

denoted by 7¢ and is defined as 77; 7.

In the case of separate-models transformations with type 1
postconditions (Constraints whose write frame is disjoint from
their read frame), Inv can be derived automatically from Post
by syntactic transformation, the CleanTarget and CleanSource
constraints can also be derived from Post, and from Asm. This
is an example of a higher-order transformation (HOT) and is
implemented in the UML-RSDS tools.

In general, in the following UML-RSDS examples, 7
is a separate-models transformation with source language S
and target language T, and postcondition Post as an ordered
conjunction of constraints of the form:

(Cn):
Si—forAll(s | SCond(s) implies
Ti—exists(t | TCond(t) and P;j(s,t)))

and Inv is a conjunction of dual constraints of the form

(Cn™) :
Ti—forAll(t | TCond(t) implies
Si—vexists(s | SCond(s) and P7i(s,1)))

where the predicates P; (s, t) define the features of ¢ from those
of s, and are invertible: an equivalent form P;(s,#) should
exist, which expresses the features of s in terms of those of ¢,
and such that

Si—forAll(s | T—forAll(t | Pij(s,t) = P;:,-(s, 1))

under the assumptions Asm. Table I shows some examples
of inverses P~ of predicates P. The computation of these
inverses are all implemented in the UML-RSDS tools (the
reverse option for use cases). More cases are given in [11].
The transformation developer can also specify inverses for
particular Cn by defining a suitable Cn™ constraint in Inv,
for example, to express that a predicate 7.z = s.x + s.y should
be inverted as s.x = t.z — s.y.

Each CleanTarget constraint based on Post then has the
form:

(Cn™) :
Ti—forAll(t | TCond(t) and
not(S;—exists(s | SCond(s) and P;(s,t))) implies
t—isDeleted())

Similarly for CleanSource.

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

TABLE 1. EXAMPLES OF PREDICATE INVERSES

P(s,t)

P~ (s,1)

Condition

tg=-sf sf=tg

Assignable features f, g

r.g = s.f—sqrt()

s.f = t.g—sqr()

f, g non-negative attributes

tg=Kxsf+L
Numeric constants K,L, K # 0

sf=(tg—L)/K

f, g numeric attributes

t.rr = s.ar—including(s.p)
t.rr = s.r—append(s.p)

s.r = t.rr—front() and
s.p = t.rr—last()

rr, r ordered association ends
p 1-multiplicity end

t.rr = s.r—sort()
t.rr = s.r—asSequence()

s.r = t.rr—asSet()

r set-valued, rr ordered

R(s,t) and Q(s,1)

R~ (s,t) and O~ (s,1)

t.rr = TRef[s.r.idS]
idS primary key of SRef,
idT primary key of TRef

s.r = SRef[t.rr.idT]

rr association end with
element type TRef,
r association end with
element type SRef

t.g = s.r.idS
Attribute g

s.r = SReft.g]

idS primary key of SRef,
r association end with
element type SRef

T;[s.idS].rr = TRefTs.r.idSRef]
r has element type SRef,
rr has element type TRef

Si[t.idT).r = SRef|t.rr.idTRef]

idS, idSRef primary
keys of S;, SRef
idT , idTRef primary
keys of Tj, TRef

IV. PATTERNS FOR BX

In this section, we give a patterns catalogue for bx, and
give pattern examples in UML-RSDS.

A. Auxiliary Correspondence Model

This pattern defines auxiliary entity types and associations
which link corresponding source and target elements. These
are used to record the mappings performed by a bx, and to
propagate modifications from source to related target elements
or vice-versa, when one model changes.

Figure 2 shows a typical schematic structure of the pattern.

Source language Correspondence Target language

S2T

i S NI

Figure 2. Auxiliary Correspondence Model pattern

Benefits: The pattern is a significant aid in change-
propagation between models, and helps to ensure the correct-
ness of a bx. Feature value changes to a source element s can
be propagated to changes to its corresponding target element,
and vice-versa, via the links. Deletion of an element may imply
deletion of its corresponding element.

Disadvantages: The correspondence metamodel must be
maintained (by the transformation engineer) together with the

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

source and target languages, and the necessary actions in creat-
ing and accessing correspondence elements adds complexity to
the transformation and adds to its execution time and memory
requirements.

Related Patterns: This pattern is a specialisation of the
Auxiliary Metamodel pattern of [14].

Examples: This mechanism is a key facility of Triple
Graph Grammars (TGG) [1][2], and correspondence traces are
maintained explicitly or implicitly by other MT languages such
as QVT-R [15].

In UML-RSDS, the pattern is applied by introducing aux-
iliary attributes into source and target language entity types.
These attributes are primary key/identity attributes for the
entity types, and are used to record source-target element corre-
spondences. Target element ¢ : 7; is considered to correspond
to source element(s) s1 : S1, ..., S, : S, if they all have the
same primary key values: t.idT; = s1.idS1, etc. The identity
attributes are String-valued in this paper. The correspondence
between a source entity S; and a target entity 7; induced by
equality of identity attribute values defines a language mapping
or interpretation x of S; by T; in the sense of [13]:

S['—)Tj

with S;—collect(idS;) = Tj—collect(idT;).

The existence of identity attributes facilitates element
lookup by using the Object Indexing pattern [14], which
defines maps from String to each entity type, permitting
elements to be retrieved by the value of their identity attribute:
T;lv] denotes the T; instance ¢ with r.idT; = v if v is a
single String value, or the collection of 7; instances ¢ with
v—includes(t.idT}) if v is a collection. The last three cases in
Table I show inverse predicates derived using this approach to
correspondence models. Note that T;[x.idTj| = x for x : T;.

The pattern can be used to define source-target propaga-
tion and incremental application of a transformation 7. For

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

postconditions Cn of the form

Si—forAll(s | SCond(s) implies
Ti—exists(t | TCond(t) and P;;(s,1)))

derived constraints Cn® can be defined for the incremental
application of Cn to model increments (finite collections of
creations, deletions and modifications of model elements).

The incremental version 72 of a transformation 7 is defined
to have postconditions formed from the constraints Cn® for
each postcondition Cn of 7, and ordered according to the
order of the Cn in the Post of 7. In a similar way, target-
source change propagation can be defined. Change propagation
is implemented in UML-RSDS by the incremental mode of use
case execution.

B. Cleanup before Construct

This pattern defines a two-phase approach in both forward
and reverse transformations associated with a bx with relation
R: the forward transformation R first removes all elements
from the target model n which fail to satisfy R for any element
of the source m, and then constructs elements of n to satisfy
R with respect to m. The reverse transformation R operates
on m in the same manner.

Benefits: The pattern is an effective way to ensure the
correctness of separate-models bx.

Disadvantages: There may be efficiency problems because
for each target model element, a search through the source
model for possibly corresponding source element may be
needed. Elements may be deleted in the Cleanup phase only
to be reconstructed in the Construct phase. Auxiliary Corre-
spondence Model may be an alternative strategy to avoid this
problem, by enforcing that feature values should change in
response to a feature value change in a corresponding element,
rather than deletion of elements.

Related Patterns: This pattern is a variant of the Construc-
tion and Cleanup pattern of [14].

Examples: An example is the Composers bx [4]. Im-
plicit deletion in QVT operates in a similar manner to this
pattern, but can only modify models (domains) marked as
enforced [15]. In UML-RSDS, explicit cleanup rules Cn*
can be deduced from the construction rules Cn, for mapping
transformations, as described in Section III above. If identity
attributes are used to define the source-target correspondence,
then Cn* can be simplified to:

Ti—forAll(t | TCond(t) and
Si—collect(sld)—excludes(t.tld) implies
t—isDeleted())

and

Ti—forAll(t | TCond(t) and
Si—collect(sld)—includes(t.tld) and s = S;[t.11d)]
and not(SCond(s)) implies t—isDeleted|))

In the case that TCond(¢) and SCond(s) hold for corresponding
s, t, but P;;(s,t) does not hold, ¢ should not be deleted, but
P; (s,) should be established by updating #:

Si—forAll(s | T—collect(tld)—includes(s.sld) and
t = Tj[sld] and SCond(s) and
TCond(t) implies P; (s, 1))

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

For a transformation 7, the cleanup transformation 7> has the
above Cn™ constraints as its postconditions, in the same order
as the Cn occur in the Post of 7. Note that 77 is 7; 7, and

72 is 7%; 7 incrementally applied.

C. Unique Instantiation

This pattern avoids the creation of unnecessary elements
of models and helps to resolve possible choices in reverse
mappings. It uses various techniques such as traces and unique
keys to identify when elements should be modified and reused
instead of being created. In particular, unique keys can be used
to simplify checking for existing elements.

Benefits: The pattern helps to ensure the Hippocraticness
property of a bx by avoiding changes to a target model if it is
already in the transformation relation with the source model.
It implements the principle of ‘least change’ [17].

Disadvantages: The need to test for existence of elements
adds to the execution cost. This can be ameliorated by the use
of the Object Indexing pattern [14] to provide fast lookup of
elements by their primary key value.

Examples: The key attributes and check-before-enforce
semantics of QVT-R follow this pattern, whereby new elements
of source or target models are not created if there are already
elements, which satisfy the specified relations of the transfor-
mation [16]. The E—exists1(e | P) quantifier in UML-RSDS is
used in a similar way. It is procedurally interpreted as “create
a new e : E and establish P for e, unless there already exists
an e : E satisfying P” [11]. For bx, the quantifier exists should
also be treated in this way. If a transformation uses identity
attributes (to implement Auxiliary Correspondence Model), the
quantifier E—exists(e | e.eld = v and P) can be interpreted as:
“if E[v] exists, apply stat(P) to this element, otherwise create
a new E instance with eld = v and apply stat(P) to it”. This
ensures Hippocraticness.

D. Phased Construction for bx

This pattern defines a bx 7 by organising R, as a union of
relations Rg; 7; which relate elements of entities Si and 7j which
are in corresponding levels of the composition hierarchies of
the source and target languages. Figure 3 shows the typical
schematic structure of the pattern. At each composition level
there is a 0..1 to 0..1 relation (or more specialised relation)
between the corresponding source and target entity types.

si rule2 T
<< >
(sCond} transformsTo {TCond}
*Isr * ptr
SSub rule1 TSub
<<transformsTo>>

Figure 3. Phased Construction pattern

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Benefits: The pattern provides a modular and extensible
means to structure a bx.

Examples: The UML to relational database example of [15]
is a typical case, where Package and Schema correspond at
the top of the source/target language hierarchies, as do Class
and Table (in the absence of inheritance), and Column and
Attribute at the lowest level.

In UML-RSDS a transformation defined according to this
pattern has its Post consisting of constraints Cn of the form

Si—forAll(s | SCond(s) implies
Ti—exists(t | TCond(t) and P;;(s,1)))

where §; and T; are at corresponding hierarchy levels, and Inv
consists of constraints Cn™ of the form

Ti—forAll(t | TCond(t) implies
Si—exists(s | SCond(s) and Pi(s,1)))

No nested quantifiers or deletion expressions x—isDeleted()
are permitted in SCond, TCond or P;j, and P;; is restricted to
be formed of invertible expressions.

Each rule creates elements ¢ of some target entity type
T;, and may lookup target elements produced by preceding
rules to define the values of association end features of
t: t.tr = TSub[s.sr.idSSub] for example, where TSub is lower
than 7; in the target language composition hierarchy (as in
Figure 3) and there are identity attributes in the entities to
implement a source-target correspondence at each level. Both
forward and reverse transformations will conform to the pattern
if one direction does. The assignment to t.fr has inverse:
s.sr = SSub|[t.tr.idTSub).

Two UML-RSDS bx 7 : § — T, 0 : T — U using
this pattern can be sequentially composed to form another bx
between S and U: the language T becomes auxiliary in this
new transformation. The forward direction of the composed
transformation is 77; o, the reverse direction is o ; 7.

E. Entity Merging/Splitting for bx

In this variation of Phased Construction, data from multiple
source model elements may be combined into single target
model elements, or vice-versa, so that there is a many-one
relation from one model to the other. The pattern supports
the definition of such bx by including correspondence links
between the multiple elements in one model which are related
to one element in the other.

Benefits: The additional links enable the transformation to
be correctly reversed.

Disadvantages: Additional auxiliary data needs to be added
to record the links. The validity of the links between elements
needs to be maintained. There may be potential conflict
between different rules which update the same element.

Related Patterns: This uses a variant of Auxiliary Cor-
respondence Model, in which the correspondence is between
elements in one model, in addition to cross-model correspon-
dences. The attributes used to record intra-model correspon-
dences may not be primary keys.

Examples: An example of Entity Merging is the Col-
lapse/Expand State Diagrams benchmark of [6]. The UML to
RDB transformation is also an example in the case that all
subclasses of a given root class are mapped to a single table

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

that represents this class. The Pivot/Unpivot transformation of
[3] is an example of Entity Splitting.

In the general case of merging/splitting, the inverse of C,:

S,‘l—)fOFAll(sl ‘
Sin—forAll(sn | SCond(s1, ..., sn) implies
T —exists(tl | ...
Ty, —exists(tm | TCond(t1, ..., tm) and
P(sl,...,sn,tl,...,tm))...)) ...)

is Cn™:

Tih—forAll(rl | ...
Ty—forAll(tm | TCond(t1, ..., tm) implies
Sa—exists(sl | ...
Siwn—rexists(sn | SCond(s1, ..., sn) and
P~ (s1,....sn,tl,...,tm))...))...)

In UML-RSDS, correspondence links between elements in
the same model are maintained using additional attributes. All
elements corresponding to a single element will have the same
value for the auxiliary attribute (or a value derived by a 1-1
function from that value).

F. Map Objects Before Links for bx

If there are self-associations on source entity types, or other
circular dependency structures in the source model, then this
variation on Phased Construction for bx can be used. This
pattern separates the relation between elements in target and
source models from the relation between links in the models.

Benefits: The specification is made more modular and
extensible. For example, if a new association is added to
one language, and a corresponding association to the other
language, then a new relation relating the values of these
features can be added to the transformation without affecting
the existing relations.

Disadvantages: Some features of one entity type are treated
in separate relations.

Examples: In UML-RSDS a first phase of such a transfor-
mation relates source elements to target elements, then in a
second phase source links are related to corresponding target
links. The second phase typically has postcondition constraints
of the form S;—forAll(s | Tj[s.idS].rr = TRef[s.r.idSRef]) to
define target model association ends rr from source model
association ends r, looking-up target model elements Tj[s.idS]
and TRef([s.r.idSRef] which have already been created in
a first phase. Such constraints can be inverted to define
source data from target data as: Tj—forAll(t | Si[t.idT].r =
SRef[t.rr.idTRef]). The reverse transformation also conforms
to the Map Objects Before Links pattern.

An example of this pattern is the tree to graph transforma-
tion [9], Figure 4.

A first rule creates a node for each tree:
Tree—forAll(t | Node—exists(n | n.label = t.label))

A second rule then creates edges for each link between parent
and child trees:

Tree—forAll(t |
Tree—forAll(p | t.parent—includes(p) implies
Edge—exists(e | e.source = Nodelt.label| and
e.target = Node|p.label))))

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Node
Iree label: String
label: String {identity}
* {identity}
source 1] target
0..1] parent % *
Edge

Figure 4. Tree to graph metamodels

The corresponding invariant predicates, defining the reverse
transformation, are:

Node—forAll(n | Tree—sexists(t | t.label = n.label))
and

Edge—forAll(e |
Tree—sexists(t | Tree—exists(p |
t.parent—includes(p) and
t.label = e.source.label and
p.label = e.target.label)))

Inv is derived mechanically from Post using Table I, and pro-
vides an implementable reverse transformation, since stat(Inv)
is defined.

V. RELATED WORK

There are a wide range of approaches to bx [8]. Cur-
rently the most advanced approaches [2][5] use constraint-
based programming techniques to interpret relations P(s,?)
between source and target elements as specifications in both
forward and reverse directions. These techniques would be a
potentially useful extension to the syntactic inverses defined in
Table I, however the efficiency of constraint programming will
generally be lower than the statically-computed inverses. The
approach also requires the use of additional operators extend-
ing standard OCL. Further techniques include the inversion of
recursively-defined functions [18], which would also be useful
to incorporate into the UML-RSDS approach.

In [13] we identify the role of language interpretations
X : 8 — T in specifying transformations. Interpretations are
closely related to transformation inversion: at the model level a
mapping Mod(x) : Mod(T) — Mod(S) from the set of models
of T to those of S can be defined based on x: the interpretation
of an S language element E in Mod(x)(n) for n : Mod(T) is
that of x(E) in n. Syntactically, the inverse of a transformation
7 specified by a language morphism x can be derived from x:
the value of a feature f of source element s of source entity
E is set by s.f = t.x(E :: f) in the case of an attribute, and
by s.r = SRef[t.x(E :: r).idTRef] in the case of a role with
element type SRef.

Considerable research has been carried out on the theory
of bx. One principle which has been formulated for bx is the
principle of least change [17]. This means that a bx which
needs to modify one model in order to re-establish the bx

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

relation R with a changed other model, should make a minimal
possible such change to the model. In our approach, Post in
the forward direction, and Inv in the reverse direction, express
the necessary minimal conditions for the models to be related
by R. The synthesised implementation of these constraints as
executable code carries out the minimal changes necessary to
establish Post and Inv, and hence satisfies the principle of least
change.

VI. CONCLUSION

We have defined a declarative approach for bidirectional
transformations based on the derivation of forward and reverse
transformations from a specification of dual postcondition
and invariant relations between source and target models.
The approach enables a wide range of bx to be defined,
including cases of many-to-one and one-to-many relations
between models, in addition to bijections. We have described
transformation patterns which may be used to structure bx. The
derivation of reverse transformations has been implemented in
the UML-RSDS tools [11].

REFERENCES

[11 A. Anjorin and A. Rensink, “SDF to Sense transformation”, TU
Darmstadt, Germany, 2014.

[2] A. Anjorin, G. Varro, and A. Schurr, “Complex attribute manipulation
in TGGs with constraint-based programming techniques”, BX 2012,
Electronic Communications of the EASST vol. 49, 2012.

[3] M. Beine, N. Hames, J. Weber, and A. Cleve, “Bidirectional transfor-
mations in database evolution: a case study ‘at scale’”, EDBT/ICDT
2014, CEUR-WS.org, 2014.

[4] J. Cheney, J. McKinna, P. Stevens, and J. Gibbons, “Towards a reposi-
tory of bx examples”, EDBT/ICDT 2014, 2014, pp. 87-91.

[5] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, “JTL: a
bidirectional and change propagating transformation language”, SLE
2010, LNCS vol. 6563, 2011, pp. 183-202.

[6] K. Czarnecki, J. Nathan Foster, Z. Hu, R. Lammel, A. Schurr, and J.
Terwilliger, “Bidirectional transformations: a cross-discipline perspec-
tive”, GRACE workshop, ICMT, 2009.

[71 E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns:
Elements of Reusable Object-Oriented Software”, Addison-Wesley,
1994.

[8] Z. Hu, A. Schurr, P. Stevens, and J. Terwilliger (eds.), “Report from
Dagstuhl Seminar 110317, January 2011, www.dagstuhl.de/11031.

[9] D.S. Kolovos, R. F. Paige, and F. Polack, “The Epsilon Transformation
Language”, ICMT, 2008, pp. 46—60.

[10] K. Lano and S. Kolahdouz-Rahimi, “Constraint-based specification of
model transformations”, Journal of Systems and Software, vol. 88, no.
2, February 2013, pp. 412-436.

[11] K. Lano, The UML-RSDS
www.dcs.kcl.ac.uk/staff/kcl/luml2web/umlrsds.pdf, 2015.

[12] K. Lano, S. Kolahdouz-Rahimi, and K. Maroukian, “Solving the Petri-
Nets to Statecharts Transformation Case with UML-RSDS”, TTC 2013,
EPTCS, 2013, pp. 101-105.

[13] K. Lano and S. Kolahdouz-Rahimi, “Towards more abstract specifica-
tion of model transformations”, ICTT 2014.

[14] K. Lano and S. Kolahdouz-Rahimi, “Model-transformation Design
Patterns”, IEEE Transactions in Software Engineering, vol 40, 2014,
pp. 1224-1259.

[15] OMG, MOF 2.0 Query/View/Transformation Specification v1.1, 2011.

[16] P. Stevens, “Bidirectional model transformations in QVT: semantic
issues and open questions”, SoSyM, vol. 9, no. 1, January 2010, pp.
7-20.

[17] Theory of Least Change, groups.inf.ed.ac.uk/bx/, accessed 3.9.2015.

[18] J. Voigtlander, Z. Hu, K. Matsuda, and M. Wang, “Combining syntactic
and semantic bidirectionalization”, ICFP *10, ACM Press, 2010, pp.
181-192.

Manual,

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Towards a Framework for Software Product Maturity Measurement

Mohammad Alshayeb!, Ahmad Khader Abdellatif!, Sami Zahran? and Mahmood Niazi'

I Information and Computer Science Department
King Fahd University of Petroleum and Minerals
Dhahran, 31261 Saudi Arabia
e-mail: {alshayeb, aabdellatif, mkniazi}@kfupm.edu.sa

Z: Intelligent Consultancy & Training (ICT) Limited, United Kingdom
e-mail: Sami_zahran@hotmail.com

Abstract—Capability Maturity Model Integration (CMMI) is a
software process improvement model that aims at improving the
processes of the software development. CMMI focuses on the
“process quality” instead of “product quality”. Studies have
shown that focusing on “process quality” alone does not
guarantee the quality of the produced software, whereas equal
attention to product quality is also essential for ensuring the
overall software quality. The objective of this paper is to present
the initial structure of the framework we propose to measure
and assess the software product maturity level. The measure we
use for the product maturity is the level of the product
compliance with the internal and external quality attributes
defined in the stakeholders’ requirements. In this framework,
we focus on the quality of the product of the process. The
proposed framework will help assess the quality of the software
product through assessment of the final software deliverable.
Successful implementation of the proposed framework will
provide a better insight of the software product quality, hence
its maturity. We refer to any deliverable code as a product.

Keywords-Software Product Quality; Software Product
Maturity; Product Maturity Assessment; Product Maturity Levels;
Product Maturity Model Integration (PMMI); Product Maturity
Assessment Method (PMAM).

1. INTRODUCTION

The Software Engineering Institute (SEI) of Carnegie
Mellon University (CMU) defines the Capability Maturity
Model Integration (CMMI) as a process improvement
approach that provides organizations with the essential
elements of effective processes to improve their software
development performance. CMMI process improvement
includes identifying the organization’s process strengths and
weaknesses and making process changes to convert
weaknesses into strengths [1]. CMMI consists of best
practices that help organizations to improve their software
development effectiveness, efficiency, and quality [2].

CMMI defines three constellations, which are collections
of best practices and process improvement goals that
organizations use to evaluate and improve their processes.
These goals and practices are organized into different process
areas. The three constellations are:

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

1. The CMMI for Acquisition (CMMI-ACQ): provides
guidance to organizations that manage the supply
chain to acquire products and services that meet the
needs of the customer.

2. The CMMI for Development (CMMI-DEV):
provides process improvement guidance to
organizations that develop products and services.

3. The CMMI for Services (CMMI-SVC): provides
guidance to organizations that establish, manage, and
deliver services that meet the needs of customers and
end users.

CMMI aims at improving the process of the software
development, however, that does not guarantee the quality of
the produced software as the focus in CMMI does not cover
“product quality”. Previous research have shown that dealing
with only “process quality” is not sufficient and that
assessment of “product quality” is also required for the
improvement of overall software quality [3]. Our proposed
framework described in this paper focuses on the quality of
the product instead of the process. The quality/maturity of the
software product can be assured through the assessment of
deliverables of the major phases of the software development
lifecycle. Our proposed framework adopts a method for
technical product evaluation and quality assessment as the
basis for establishing the product’s level of maturity. The level
of product maturity measured by the degree of its compliance
with the internal and external quality attributes defined in the
stakeholders requirements. We call this framework Technical-
CMMI (T-CMMI). The proposed framework along with the
assessment method will: 1) enable software companies to
assess their software products to ensure they meet the desired
quality before they release it to their clients, 2) enable clients
to evaluate the quality of the product before purchasing it and
3) provide the clients with the ability to compare between the
quality of different software products.

The rest of this paper is organized as follows: we present
the related work in Section 2. In Section 3, we describe the
proposed framework. Finally, in Section 4, we present the
conclusions and future work.

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

II. RELATED WORK

In this section, we review the literature on developing
maturity models and in software certification for quality
assessment.

A. Software Product Maturity Models

Researchers proposed different product maturity models.
Al-Qutaish et al. [4] proposed a software product quality
maturity model (SPQMM) for assessing the quality of the
software product. The proposed model is based on ISO 9126,
Six Sigma, and ISO 15026. The model wuses the
characteristics, sub-characteristics, and measurements of ISO
9126. The values are combined into a single value, which are
converted to six sigma. After that, the integrity level of the
software product using ISO 15026 is calculated. Finally, the
maturity level of the software product is identified. SPQMM
is limited to the quality attributes and metrics defined in
ISO/IEC 9126 standard.

The EuroScope consortium [5] proposed SCOPE Maturity
Model (SMM), a maturity model of software products
evaluation. The model has five maturity levels: initial,
repeatable, defined, managed, and optimizing. SMM levels 2,
3, and 4 use ISO 12119, ISO/IEC 9126, and ISO 14598
standards. SMM is a measure of the quality in terms of
matching stated specifications or requirements; tests are
executed to assess the degree to which a product meets the
required specifications. SMM requires the process to be
documented to ensure the product matches the specifications.
Thus, SMM does not focus on the final product quality (code).

April et al. [6] proposed the Software Maintenance
Maturity Model (SMmm) However, SMmm focuses only on
maintainability. Alvaro et al. [7] proposed a Software
Component Maturity Model (SCMM) that is based on
ISO/IEC9126 and ISO/IEC 14598 standards. SCMM contains
five levels. SCMM depends mainly on the component quality
model (CQM). SCMM measures only the maturity of the
components and it cannot assess different types of product
such as enterprise applications, web-services. Golden et al. [8]
proposed the Open Source Maturity Model (OSMM) which
helps in assessing and comparing open source software
products to identify which one is the best for a defined
application. OSMM evaluates the maturity of open source
products only without assessing the quality of these software
products. OSMM is not primarily used to assess software
product quality attributes or product maturity but to help
organizations perform a comparison between open source
systems.

These three models above either

e Use limited set of quality attributes [4], do not focus

on measuring the final software quality [5], or

e Have limited scope [6]-[8].

Therefore, the proposed model will overcome all these
limitations.

Our proposed model is designed to be flexible to enable
the assessor(s) to define their own set of quality attributes and
metrics (based on the stakeholders requirements). In addition,

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

it is generic enough to be applicable to any type of software
domain, size or development method.

B. Software Product Certifications

Our proposed model can also serve in certifying software
products. Software certification can be granted for different
types of software such as final software products [9-13] and
components [14]. Certification can be provided by
independent agencies, which function like other quality
agencies. Involving external agencies in providing the
certificate increases the trust in the certification as indicated
by Voas [15] “completely independent product certification
offers the only approach that consumers can trust”. Most of
the certification methods are process-based [16], from the
process they can determine the quality of the final product.
However, certifying the software development process only
does not guarantee the quality of the final product [3].

III. FRAMEWORK FOR SOFTWARE PRODUCT MATURITY
MODEL INTEGRATION

In this section, we describe the proposed product maturity
assessment framework that can be used to assess the maturity
of software products. T-CMMI follows the CMMI approach
in defining a reference model and assessment method. T-
CMMI consists of two parts:

1. Reference Model that describes the common basis for
the assessors to assess the maturity of software
products. The reference model describes a scale of the
maturity/capability levels of the software product
based on its degree of compliance with a set of quality
attributes and metrics defined in the stakeholders’
requirements.

2. Assessment Method that describes how to use the
reference model in assessing the final software
product. It also provides guidelines and checklists that
help in the assessment process and to ensure a
common base of judgment.

Both reference model and the assessment method of the T-

CMMI are shown in Figure 1.

T-CMMI

<<Assessment
Method>>
Product Maturity
Assessment Method
(PMAM)

<<Reference
Model>>
Product Maturity
Model Integration
(PMMI)

—

Figure 1. T-CMMI Architecture

We adopted CMMI structure for the development of T-
CMMI architecture, which contains a reference model and an
assessment method. The reference model for the T-CMMI is

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

called Product Maturity Model Integration (PMMI), which
contains the capability and product maturity levels. PMMI
contains a predefined set of quality attributes and metrics to
measure these quality attributes. PMMI adopts the focus-area
maturity model structure as opposed to the fixed levels
maturity model structure adopted by CMMI. PMMI has two
focus-areas, which concentrate on the internal and external
quality attributes of the product. The purpose of the Reference
Model is to provide a platform and a focus for gathering
evidence for product quality indicators that will be used to
assess the product maturity level during the Product Maturity
Assessment.

The assessment method is called Product Maturity
Assessment Method (PMAM). PMAM defines the steps for
assessing the final software product against the reference
model maturity levels. PMAM contains guidelines and
checklists to illustrate how the assessors follow the guidelines
in order to measure the capability level and product maturity
level for both of PMMI’s focus-areas, which concentrate on
the internal and external quality attributes. The purpose of the
PMAM is to provide a standard method for assessing the
product maturity/capability by assessing the degree to which
the product conforms to the stakeholders required quality
attributes. Below, we discuss these two components in details.

A. Product Maturity Model Integration (PMMI)

PMMI defines a reference model for assessing product
maturity and capability. The scope of the PMMI reference
model covers integrated view to the end-to-end lifecycle
starting with product requirements and ending with product
integration, testing and release. The lifecycle is divided into
two stages, the DEV stage and the REL stage. These two

[DEV Stage Product Maturity Level]

~
Aggregated DEV Stage Maturity Aggregated REL Stage Maturity
Level Level
J
Weighted average capability
4_ ————

Software product internal

values of the quality attributes

stages are separate Functional Domains (containing all
activities and actors that are involved in the set of activities
defined in the development methodology being followed).
Each of the DEV & REL stage will have its own Set of
Stakeholders and product quality attributes. These two
functional domains are defined as follows:
e The DEV stage: covers all the processes and activities
for software development, integration and testing
(both software unit and software integration testing)
of the product. The outcome of the DEV stage is a
product ready to be transitioned to the REL stage.
e The REL stage: covers system integration and product
pre-release testing
Figure 2 illustrates the PMMI structure showing the DEV
and REL stages. Figure 2 shows the main components of each
PMMI stage. On the left side are DEV-Stage components,
which focus on measuring internal quality attributes, while on
the right side are REL-Stage components, which focus on
external quality attributes. Product maturity assessment
component contains the metrics for each quality attribute that
are measured and their results are collected to calculate the
capability level for each quality attribute. Then, the capability
level of all quality attributes will be fetched into PMMI
internal/external quality attributes components. In PMMI
internal/external quality attributes component, the weighted
average capability values of all quality attributes is calculated
to measure the stage maturity level. Finally, the calculated
maturity level will be the input to Aggregated DEV/REL
Stage Maturity Level component where it is rounded down to
calculate the stage maturity level.

~

[REL Stage Product Maturity Level

J

Measurement results
from assessing the

Software product external Quality

Quality Attributes ; Attributes
product compliance
AAAAAAALAAAAALAL with the quality ~ - IYYYYYYYYYYYY
Pie attributes S A

‘/

Product Maturity Assessment
PMA#1

Product Maturity Assessment
PMA#2

Figure 2. Components of the Product Maturity Model Integration (PMMI)

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Copyright (c) IARIA, 2015.

B. Product Maturity Assessment Method (PMAM)

The PMAM assessment method covers the activities
necessary to determine the extent of a product capability
to perform in a full compliance with stakeholders’ quality
requirements. The scope of the assessment is to assess a
software product's degree of compliance with the quality
attributes defined by the stakeholders (agreed in advance
with the assessment sponsor) that covers an integrated
view of the end-to-end lifecycle starting with the product
and ending with product integration, testing and release.
The purpose of the PMAM is to provide a standard
method for assessing the level of the product
maturity/capability by assessing the degree of the
product’s conformance with the stakeholders required
quality attributes. The PMAM method is compliant with
“Guidance on Performing an Assessment” ISO model
(ISO 15504-3) [17] framework for software assessment
in specifying and defining:

1. Assessment Input.

Assessment Process.

Assessment Output.

Identity of assessment sponsors

Identity of Assessors.

Responsibilities of each PMAM team member.
Expected assessment output and minimum data
that should be included in the final assessment
report

C. T-CMMI Flexibility

Both components of T-CMMI (PMMI and PMAM)
are designed to be flexible and independent of the specific
development methodology. In PMMI, assessors can 1)
define the quality attributes of interest to the relevant
stakeholders with no limits as ISO 9126 defines six
attributes only, 2) select the metrics used to measure these
quality attributes and 3) define the target capability and
maturity levels and their threshold.

PMAM is also designed to be flexible. PMAM
process, 1) is applicable to all software domains, 2) can
be applied to all software with any size and complexity,
and 3) is applicable to all software development lifecycles
regardless of the process (or the development
methodology) used to build it.

NNk WD

IV. CONCLUSION AND FUTURE WORK

This paper presented an approach towards developing
a software product maturity model. The proposed
framework gives the ability to measure the maturity of a
software product of any size and domain. It is also
applicable to all software regardless of the process used
to build it. T-CMMI framework is designed to be flexible,
however, assessors can always use the pre-defined set of
quality attributes and metrics (which will be supplied
with the model) if they wish without customization.

ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

T-CMMI will complement CMMI as CMMI assesses
the process quality while T-CMMI assesses product
quality. We expect that companies with higher CMMI
level should produce better products measured by T-
CMMI framework.

In our future work, we plan to complete the
development and evaluation of the framework. We will
also develop a website to automate the assessment
process.

ACKNOWLEDGEMENT

The authors would like to acknowledge the support
provided by King Abdul-Aziz City for Science and
Technology (KACST) through the Science &
Technology Unit at King Fahd University of Petroleum
& Minerals (KFUPM) for funding this work through
project no. 12-INF3012-04 as part of the National
Science, Technology and Innovation Plan.

REFERENCES

[1] SEI-CMU. Capability Maturity Model Integration. Accessed
(August 2015), Available: http://www.sei.cmu.edu/cmmi/

[2] SEI-CMU. CMMI Process Areas. Accessed (August 2015),
Available: http://cmmiinstitute.com/cmmi-overview/cmmi-
process-areas/

[3] T. Maibaum and A. Wassyng, "A product-focused approach to
software certification," Computer, vol. 41, 2008, pp. 91-93.

[4] R.Qutaish and A. Abran, "A maturity model of software product
quality," Journal of Research and Practice in Information
Technology, vol. 43, 2011, pp. 307-327.

[5] A.B. Jakobsen, M. O’Dufty, and T. Punter, "Towards a maturity
model for software product evaluations," in Proceedings of 10th
european conference on software cost estimation (ESCOM’99),
1999.

[6] A. April, J. Huffman Hayes, A. Abran, and R. Dumke, "Software
Maintenance Maturity Model (SMmm): the software
maintenance process model," Journal of Software Maintenance
and Evolution: Research and Practice, vol. 17, 2005, pp. 197-
223.

[71 A. Alvaro, E. S. de Almeida, and S. L. Meira, "A Software
Component Maturity Model (SCMM)," in Software Engineering
and Advanced Applications, 2007. 33rd EUROMICRO
Conference on, 2007, pp. 83-92.

[8] B. Golden, Succeeding with open source: Addison-Wesley
Professional, 2005.

[91 R. Baggen, J. P. Correia, K. Schill, and J. Visser, "Standardized
code quality benchmarking for improving software
maintainability," Software Quality Journal, vol. 20, 2012, pp.
287-307.

[10] J. P. Correia and J. Visser, "Certification of technical quality of
software products," in Proc. of the Int’l Workshop on
Foundations and Techniques for Open Source Software
Certification, 2008, pp. 35-51.

[11] P. Heck, M. Klabbers, and M. van Eekelen, "A software product
certification model," Software Quality Journal, vol. 18,
2010/03/01 2010, pp. 37-55.

[12] P. M. Heck, "A Software Product Certification Model for
Dependable Systems " Eindhoven: Technische Universiteit
Eindhoven 2006.

[13] J. H. Yahaya, A. Deraman, and A. R. Hamdan, "SCfM_PROD:
A software product certification model," in Information and
Communication Technologies: From Theory to Applications,
2008. ICTTA 2008. 3rd International Conference on, 2008, pp.
1-6.

10

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

[14]

[15]

[16]

[17]

A. Alvaro, E. S. d. Almeida, and S. L. Meira, "Towards a
Software Component Certification Framework," in Proceedings
of the Seventh International Conference on Quality Software,
2007, pp. 298-303.

J. Voas, "Developing a usage-based software certification
process," Computer, vol. 33, 2000, pp. 32-37.

J. Morris, G. Lee, K. Parker, G. A. Bundell, and C. P. Lam,
"Software component certification," Computer, vol. 34, 2001, pp.
30-36.

ISO/IEC, "15504-3: Information Technology - Process
Assessment - Part 3 - Guidance on Performing an Assessment
No. 15504-3," 2004.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

11

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

An Exploratory Study on the Influence of Developers in Code Smell Introduction

Leandro Alves, Ricardo Choren, Eduardo Alves
Military Institute of Engineering - IME
Computer Science’s Departament
RJ, Brazil

Email: leansousa@gmail.com,

Abstract—A code smell is any symptom in the source code
that possibly indicates a deeper maintainability problem. Code
smell introduction is a creative task - developers unintentionally
introduce code smells in their programs. In this study, we try
to obtain a deeper understanding on the relationship between
developers and code smell introduction on a software. We ana-
lyzed instances of code smells previously reported in the literature
and our study involved over 6000 commits of 5 open source
object-oriented systems. First, we analyzed the distributions of
developers using specific characteristics to classify the developers
into groups. Then, we investigated the relationships between types
of developers and code smells. The outcome of our evaluation
suggests that the way a developer participates in the project may
be associated with code smell introduction.

Keywords—Code smells; exploratory study; software development
and maintenance; development teams

I. INTRODUCTION

Software development is a complex activity that does
not end even when the software is delivered. Usually, a
software needs to be modified to correct faults, to improve
performance or other attributes, or to adapt the product to a
modified environment [1]. However, continuous change can
degrade the system maintainability. The degree of maintain-
ability of a software system can be defined as the degree of
ease that the software can be understood, adjusted, adapted,
and evolved, and comprises aspects that influence the effort
required to implement changes, perform modifications and
removal of defects [2]. There are several issues that decrease
the maintainability of a software system, such as problems
with design principles, lack of traceability between analysis
and design documentation, source code without comments and
code smells.

Code smells are characteristics of the software that may
indicate a code or design problem that can make software hard
to evolve and maintain [3]. For instance, the more parameters
a method has, the more complex it is. It would be desirable to
limit the number of parameters you need in a given method,
or use an object to combine the parameters. The presence of
code smells indicates that there are issues with code quality,
such as understandability and changeability, which can lead to
maintainability problems [4].

The code quality depends on how good the developers
are. However, there is little knowledge about the influence of
developers on the introduction of code smells in a software
system. Previous work focus on code smell detection and
removal [5][6] and other studies focus on the awareness about
code smells on the developer’s side [4][6]. The challenge is
to further understand the relationship between developers and

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

choren@ime.eb.br,

eduaopec@yahoo.com.br

code smell introduction. As a result, software managers have
little knowledge on how the development team affects the
software maintainability.

There are still some questions regarding the interplay
between developers and the existence of code smells in a
source code. Can the way how a developer Works in a Project,
be used to understand the frequency of some code smell
introduction in a source code? What types of code smells a
developer is more likely to introduce? Understanding these
issues may help developers to improve their skills and to build
team culture with the purpose of avoiding code smells.

This paper presents a study to assess the influence of
developers in code smell introduction in software code. Our
investigation focused on the study of five software maintenance
projects. The projects were selected because of the following
characteristics: they were open source projects; information
about them were available in a Git repository [7]; they had a
substantial number of commits (over a seven hundred each);
and they were developed using an object oriented programming
language (Java).

This paper is structured as follows: Section 2 presents the
concepts related to Code Smells and the classification of the
developers. Section 3 describes a proposed method to sort
the developers in groups and assess the contribution on the
variation of Code Smells in the source code of the software.
Section 4 demonstrates a case study for the application of the
method of classification of developers, evaluating the influence
of each developer group in variation of Code Smells. Section
5 describes related work and finally, Section 6 presents the
conclusion of this article.

II. STUDY PRELIMINARIES

This Section presents the definitions of code smells and of
developer characteristics used in our study.

A. Code Smells

Webster [8] defined antipatterns in object-oriented devel-
opment. An antipattern is similar to a pattern except it is an
obvious but wrong solution to a problem. Nevertheless, these
antipatterns will be tried again by someone simply because
they appear to be the right solution [9]. Code smells refer to
structural characteristics of a source code that indicate this
code has problems, affecting directly on the maintainability
of the software and resulting in a greater effort to carry out
developments in this source code [10].

12

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

B. Developer Characteristics

Software development is a human activity [11]. Under-
standing the human factors of the developers allows soft-
ware managers to organize them in groups, so that they can
compose more efficient teams [12]. Whereas distinguishing
and verifying the impacts of each developer individually is
a very difficult task, developers can be categorized according
to their involvement in a software project. The involvement of
a developer can be measured in terms of level of participation
and degree of authorship on the source code [13].

The level of participation is related to the developer’s
involvement in the project and can be used, for example, to
determine the degree of decision-making the developer has in
the project team, allowing discover developers who exercise
leadership in project [13][14]. The degree of authorship indi-
cates the usual tasks the developer performs when acting on the
software source code. It involves line code change, insertion
or removal and file (e.g., class in an object-oriented system)
insertion and removal.

III. STUDY SETTINGS

The goal of our study is to investigate the influence of
developers on the introduction of code smells in a software
code. To do so, we analyzed the sequence of commits done
in the repository of five different software projects. Merge
(branches) were considered in the selection of the project
commits.

First, we categorized the developers in different groups
according to their characteristics in the project (participation
and authorship). Then, for each commit, we searched for code
smells in the source code. The quality focus was the analysis
on the variation of the number of code smells along the time.

To categorize the developers, we used the k-means clus-
tering algorithm [15]. The information used in the k-means
algorithm was taken from the software repository and they
were related to the participation level and degree of authorship
of the developers in each selected project.

To find code smells in the source code, we used PMD [16],
a static rule-set based Java source code analyser that seeks to
evaluate aspects related to good programming practices.

A. System Characteristics

The first decision we made in our study was the selection
of the target systems. We chose five medium-size systems. The
first one, called Behave, is an automation tool for functional
testing. It was first versioned in 2013 and we found 724
commits in its project. We selected 373 commits of Behave
in our study. The second was JUnit, a unit-testing framework
for the Java programming language. It was first versioned in
2000 and we found 1885 commits in its project. We selected
1203 commits of Junit in our study. The third one was Mockito,
an open source-testing framework for Java, which allows the
creation of test double objects (mock objects) in automated
unit tests for the purpose of Test-driven Development or
Behavior Driven Development. It was first versioned in 2007
and we found 1993 commits in its project. We selected 1561
commits of Mockito in our study. The fourth one, called
RxJava, is a library for composing asynchronous and event-
based programs using observable sequences for the Java VM.
It was first versioned in 2012 and we found 2939 commits

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

in its project. We selected 906 commits of RxJava in our
study. The last system was VRaptor, a Java MVC Framework
focused in delivering high productivity to web developers. It
was first versioned in 2009 and we found 3385 commits in its
project. We selected 2243 commits of VRaptor in our study.
The projects selected for this study were taken from the Git
repository on June 2014.

These systems were chosen because they met a number of
relevant criteria for our study. First, these systems encompass
a rich set of code smells (e.g., Dead Code, Long Method,
Unhandled Exception). Second, they are non-trivial systems
and their sizes are manageable for an analysis of code smells.
Third, each one of them were implemented by more than
50 programmers with different levels of participation (the
selected systems were all open source projects). Last, they
have a significant lifetime, comprising of several commits.
The availability of multiple commits allowed us to observe
the introduction of code smell throughout their long-term
development and evolution.

It should be noted that for this study, commits were
discarded that altered documentation of source code, HTML
pages and templates (css, imagens, javascript) changes because
they have no relation with change of code smells.

B. Study Phases

Our study was based on the analysis of the developers’
information and the systems’ code smells. The main phases of
our study are described next.

Recovering the Developers’ Information. In this phase,
we focused in gathering information about the level of partic-
ipation and degree of authorship of a developers. The reason
was that we needed to group the developers so that we
could rely on general coding behaviour instead of trying to
focus in each developer separately. We selected information
from the data available in the Git repository. As a result, we
concentrated on the analysis of information for each developer
commit. For level of participation, we collect date and time
of commit initial, date and time of last commit and interval
(days) between commits. For degree of authorship, we collect
amount of modified files (classes) in the commit (insertion,
modification and deletion) and the amount of lines of code
modified during the commit (insertion and deletion).

Classifying the Developers. The recovered information
was used in the k-means clustering algorithm to identify groups
of developers with similar characteristics, according to their
participation and degree of authorship in the project. In this
study, we used the k-means algorithm varying the value of
k from four up to nine in order to verify the distribution of
developers in the clusters.

The overall results provided six sets of developer clusters.
Analysing these sets, we decided to use the results from k=5
(five clusters) because we wanted to avoid the presence of
very scarce clusters. Then we used the apriori association
algorithm to find correlations between different attributes in
each cluster. The results identified the general association rules
for the population of each cluster, as shown in Table I.

(@) Group 01: less frequent participation and line code
deletion as general authorship behaviour;

(b) Group 02: less frequent participation and line code
insertion and deletion as general authorship behaviour;

13

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

(¢) Group 03: less frequent participation and file inser-
tion, modification and deletion as general authorship
behaviour;

(d) Group 04: more frequent participation and no partic-
ular general authorship behaviour (i.e., it performs all
behaviours almost evenly);

(e) Group 05: more frequent participation and file inser-
tion as general authorship behaviour.

TABLE I. POPULATION OF EACH CLUSTER

Gr. | Behave | JUnit | Mokito | RxJava | VRaptor

01 2 15 5 2 24
02 7 27 25 31 10
03 10 33 58 13 31
04 2 14 17 17 15
05 15 6 5 10 13

Selection of Code Smells. In this phase, we focused on
selecting code smells that were previouly described in the
literature. Moreover, we have not considered creating specific
PMD rulesets to identify code smells. The reason was that we
needed to rely on code smells that could be precisely identified
in a systematic fashion, without any specialist assistance. As
a result, we concentrated on the analysis of five existing code
smells [17], which covered various anomalies related to object
oriented programming. Those were: Dead Code (DC); Large
Class (LC); Long Method (LM); Long Parameter List (LPL);
and, Unhandled Exception (UE).

Identifying Occurrences of Code Smells. Code smells
were identified using the PMD tool. Thus, code smells were
detected using five ready-to-run PMD rulesets. We decided not
to define specific rules for this study because we understand
that code smells should be identified as simply as possible.

Analysis of Code Smell Introduction. The goal of the fifth
phase was to analyse the behaviour of code smell introduction
for the selected projects. The analysis aimed at triggering some
insights for helping maintainers to understand the relationships
between code smell introduction and the developers in the
project team. To support the data analysis, the assessment
phase was decomposed in three main stages. The first stage
aimed at examining the occurrence frequency of each code
smell in the analyzed commits. The second stage was con-
cerned with observing the participation of the developers in
the analyzed commits. The last stage focused on assessing
the relationship of developers on a code smell manifestation.
In this last stage, we calculated the average percentage of
introduction and of removal of the selected code smell by each
group of developers. The idea is to verify the general influence
of each group in the project.

IV. STtUuDY FINDINGS

The first subsection below shows the total number of
each investigated code smell in the target systems. The fol-
lowing five subsections report the findings associated with
the characterization of code smells and the involvement of
the developers. Finally, the last subsection presents some
discussion about the results and the impact of developers in
code smell introduction.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

A. Occurrence of Code Smells

There was a significant difference on how often each
investigated code smell occurred in the target systems. The
results are summarized in Table II. The ”I” column indicates
the total number of times each code smell was inserted in
each target system and the “R” column indicates the total
number of times each code smell was removed. The ”Tot” line
presents the total number of smell instances detected (inserted
and removed respectively). For ”I” equal to 0 means that there
was no inclusion of this code smell. For "R” equal to 0, means
that no removal of said code smell. It is important to mention
that not all code smells inserted in the analyzed commits were
removed.

TABLE II. CODE SMELL OCCURRENCES

‘ Behave JUnit Mokito RxJava VRaptor
cs | 1 R | I R | I R | I R | 1 R
DC 91 81 208 262 | 230 335 168 224 311 517
LC 39 92 204 242 | 181 340 215 224 220 403
LM 46 61 98 161 112 353 149 225 150 409
LPL 0 0 3 9 0 0 63 112 0 1
UE 69 95 240 269 | 337 288 205 236 377 419
Tot | 245 329 | 753 943 | 860 1316 | 800 1021 | 1058 1749
B. Dead Code

The Dead Code code smell refers to code that is not been
used. These code smells were identified using the Empty Code,
Unnecessary and Unused Code rulesets in PMD. These rulesets
are composed of the following rules:

(@) Empty Code: this ruleset aims to check if there are
empty statements of any kind (empty method, empty
block statement, empty try or catch block, etc.);

(b) Unnecessary: this ruleset aims to determine whether
there are unnecessary code (unnecessary returns, final
modifiers, null checks, etc.);

(¢) Unused Code: this ruleset aims to find unused or
ineffective code (unused fields, variables, parameters,
etc.).

The results are summarized in Table III, which shows the

percentage of insertion and removal of the Dead Code smell
for each target system by developer group.

TABLE III. RESULTS FOR DEAD CODE

‘ Behave JUnit Mokito RxJava VRaptor
Gr. | 1% R% | 1% R% | 1% R% | 1% R% | 1% R%
01 0 0 0 0 74 78 40 39 0 0
02 76 67 25 31 10 12 9 9 15 17
03 24 33 58 53 3 3 29 32 34 26
04 0 0 17 17 0 0 0 0 51 56
05 0 0 0 0 13 7 22 20 0 0

C. Large Class

The Large Class code smell refers to classes that are
trying to do too much, often showing up as too many instance
variables. These code smells were identified using a subset of
the Code Size ruleset in PMD. The rules used to identify this
code smell were:

14

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

(a) Excessive Class File Length: usually indicates that the
class may be burdened with excessive responsibilities
that could be provided by external classes or functions;

(b) Excessive Public Count: seeks for large numbers of
public methods and attributes.

(c) NCSS Type Count: uses the NCSS (Non-Commenting
Source Statements) algorithm to determine the number
of lines of code for a given type;

(d) Too Many Fields: determines if a class has too many
fields in its code;

(e) Too Many Methods: determines if a class has too many
methods in its code.

The results are summarized in Table IV, which shows the
percentage of insertion and removal of the Large Class smell
for each target system by developer group.

TABLE IV. RESULTS FOR LARGE CLASS

‘ Behave JUnit Mokito RxJava VRaptor
Gr. | 1% R% | 1% R% | 1% R% | 1% R% | 1% R%
01 0 0 0 0 70 79 35 37 0 0
02 69 72 28 29 15 10 10 8 19 15

03 31 28 58 53 2 4 34 30 39 34
04 0 0 14 18 0 0 0 0 42 51
05 0 0 0 0 12 7 20 25 0 0

D. Long Method

The Long Method code smell refers to methods that are
trying to do too much, often presenting too much code. These
code smells were identified using a subset of the Code Size
ruleset in PMD. The rules used to identify this code smell
were:

(a) Excessive Method Length: seeks for methods that are
excessively long;

(b) NCSS Method Count: uses the NCSS algorithm to
determine the number of lines of code for a given
method;

(c) NCSS Constructor Count: uses the NCSS algorithm
to determine the number of lines of code for a given
constructor;

(d) NPath Complexity: determines the NPath complexity
of a method (the number of acyclic execution paths
through that method).

The results are summarized in Table V, which shows the
percentage of insertion and removal of the Long Method smell
for each target system by developer group.

TABLE V. RESULTS FOR LONG METHOD

Behave JUnit Mokito RxJava ‘VRaptor

Gr. | 1% R% | 1% R% |I% R% | 1% R% | 1% R%

01 0 0 0 0 71 77 42 36 0 0
02 72 64 24 29 13 12 8 10 16 16
03 28 36 58 43 4 3 28 30 39 25
04 0 0 17 28 0 0 0 0 45 60
05 0 0 0 0 13 8 23 24 0 0

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

E. Long Parameter List

The Long Parameter List code smell refers to methods that
present a long parameter list usually involving global data.
These code smells were identified using a single rule of the
Code Size ruleset in PMD:

(@) Excessive Parameter List: seeks for methods with
numerous parameters.

The results are summarized in Table VI, which shows the
percentage of insertion and removal of the Long Parameter
List smell for each target system by developer group.

TABLE VI. RESULTS FOR LONG PARAMETER LIST

‘ Behave JUnit Mokito RxJava VRaptor
Gr. | 1% R% | 1% R% | 1% R% | 1% R% | 1% R%
01 0 0 0 0 0 0 40 35 0 0
02 0 0 33 67 0 0 14 19 0 0
03 0 0 67 22 0 0 22 26 0 0
04 0 0 0 11 0 0 0 0 0 0
05 0 0 0 0 0 0 24 21 0 0

F. Unhandled Exceptions

The Unhandled Exceptions code smell refers to pieces of
code containing malformed throw/try/catch statements. These
code smells were identified using a single ruleset in PMD:

(a) Strict Exceptions: provides some strict guidelines
about throwing and catching exceptions.

The results are summarized in Table VII, which shows
the percentage of insertion and removal of the Unhandled
Exceptions smell for each target system by developer group.

TABLE VII. RESULTS FOR UNHANDLED EXCEPTIONS

‘ Behave JUnit RxJava
Gr. ‘ 1% R% ‘ 1% R% ‘ 1% R% ‘ 1% R% ‘ 1% R%

01 0 0 0 0 71 82 38 39 0 0
02 71 73 27 33 15 8 13 7 16 14
03 29 27 58 49 3 2 25 33 31 33
04 0 0 15 18 0 0 0 0 53 53
05 0 0 0 0 11 8 24 21 0 0

Mokito ‘VRaptor

G. Discussion

Tables 2 to 6 presented the percentage of participation
of each group of developers in the insertion and removal
of code smells for the five studied systems, represented by
the %I column and the %R, respectively. In the analyzed
set of commits of the Behave system, in general, groups 2
and 3 were responsible for inserting and removing such code
smells. Group 2 inserted more smells but also removed in
an even proportion. For JUnit and VRaptor, groups 2, 3 and
4 were responsible for inserting and removing code smells.
Four groups inserted and removed code smells in the Mokito
system, but the results point out to group 1 as been the one
group with more impact on the insertion and removal of code
smells. Finally, for the RxJava, the results indicate that groups
1, 3 and 5 were more responsible for inserting and removing
code smells.

15

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

In the selected set of commits analyzed in this study,
all code smells were decreased (had more removals than
insertions). This is an indication that the occurrence of code
smells depends on the software evolution. It seems that the
code smells in the study tend to appear in preliminary releases
with more frequency. We did not use the initial commits in
our study to avoid the “cold start” problem as we believed
these data would not have a proper indication of code smell
removal.

Code Smells with Highest Frequencies. The code smells
associated with the problem of dead code and unhandled
exceptions fell in the group of highest insertion frequency
for the analyzed target systems. A closer look made us to
suspect that this probably occurred because groups 1 and 2
were more involved in these code smells. Such groups do not
present a high level of participation and have a common au-
thorship behavior, which is line code removal. We understand
that, in some cases, lines may have been removed without
the appropriate care, resulting in dead code and unhandled
exceptions. The code smells associated with the problem of
long method fell in the group of highest removal frequency
for the analyzed target systems. This finding suggests that the
development team for the target systems may have done proper
refactoring as to decrease the size of the methods.

No Influence on Code Smells. The classification process
found members for all groups in the development teams of
every target system. However, there were groups that were not
involved with code smells in some systems. For instance, group
4 did not insert nor remove code smells in the Mokito system.
Groups 1, 4 and 5 did not insert nor remove code smells in
the Behave system. We suspect that this occurred because there
were few members in these groups for such systems. We used
the whole dataset to classify the developers and when we took
a deeper look in a system by system basis, some groups were
scarce.

Developers vs. Code Smells. In general, groups 1 to
3 (groups whose members have fewer participation in the
code development) tended to have a higher engagement in the
introduction and removal of code smells. Initially, we thought
that the developers in the groups with higher participation
frequency would have more impact in code smell removal.
This was not observed. We believe that, in the context of our
study, this may have happened due to the fact that groups 4 and
5 were more more responsible for in adding functionality to the
target systems whereas the other groups were more involved
in fault correction.

Recommendations. Considering the results, it is necessary
to evaluate the quality of the source code, taking into account
the inclusion and removal of problematic code snippets. Thus,
the developers assessment process (Group) must be reevaluated
constantly, based on data related to the project’s commit
history. In addition, it is recommended that there is a mixture
of different groups, considering the features that contribute to
remove code smells.

H. Limitations

Some limitations or imperfections of our study can be
identified and are discussed in the following.

Construct Validity. Threats to construct validity are
mainly related to possible errors introduced during specific

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

data processing from the repository. The repository did not
provide an unique identification data for a developer, thus, it
was not possible to determine whether a developer performed
commits with different identifications. In this sense, each
developer (responsible) identified in the repository was treated
as a different developer. However, the study was not intended
to focus on the contribution of a specific developer.

Conclusion Validity. We have three issues that threaten
the conclusion validity of our study: the number of evaluated
systems; the evaluated code smells (and their relation to the
PMD rules), and; discarding the data from the commits that
did not increase nor decrease the number of code smells. Five
open source projects from Git were analyzed. A higher number
of systems is always desired. However, the analysis of a
bigger sample in this kind of study could be non-practical. The
number of systems with all the required information available
to perform this kind of study is bare. We understand that
our sample can be seen as appropriate for a first exploratory
investigation [18]. Related to the second issue, our analysis
used the PMD tool. Regarding the set of code smells used in
the study, code smells reported in the literature were considered
in our study. Finally, we discarded data from commits that
maintained the amount of code smells. Although the study fo-
cused on associating developer profiles to improving or lessen
the quality of the code, we understand that this limitation does
not allow us to make a conclusion for a specific code smell.

V. RELATED WORK

There are several approaches available in the literature
for detecting Code Smells. Mantyla investigated as developers
identify and treat Code Smells in the source code to compare
with automated detection methods [19]. There are also several
approaches available in the literature for investigation of the
effects of Code Smells in aspects related to software main-
tainability [20], such as defects [21], effort [22] and requests
for changes [23]. In addition, few studies have focused on the
detection of Code Smell through mining activities in software
repositoryc [24].

Regarding the classification of developers in groups, there
are several existing approaches in the literature. In this context,
one of the proposals is based on data extracted from the
repository in relation to the time of performing the commit.
Thus, the model proposes to assess in which the range of hours
developers insert more bugs in your commits [25]. Another
approach is to sort the developers on the basis of the records
related to quantity, time, and type of actions and activities that
these developers come true, working on the project, and the
data extracted from the version control system and other tools,
such as mailing list and bug tracker tools [26][27].

VI. CONCLUDING REMARKS

This work presented a study to assess the influence of
developers on the introduction of code smells in a software
system. We classified the developers into five categories and
verified their contributions (increasing or decreasing) in the
number of code smells in a set of consecutive software
versions. This exploratory study revealed, within the limits
of the threats to its validity, the conjecture that the team
member behaviour (participation frequency, authorship and
development activity - feature development or fault correction)
impacts in the insertion and removal of code smells.

16

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Finally, it is important to highlight that we have analyzed

commits of five systems. Then, the relationships of code smells
and developers should be tested in broader contexts in the
future. It would also be desirable to use the development
activity of the developers in the classification and association
of developers.

ACKNOWLEDGMENT

The authors thank everyone who provided knowledge and

skills that really helped the search. The result is a compilation
of ideas and concepts throughout the development of this work.

[5]

[6]

[7]
[8]
[9]

[10]

(11]

(12]

[13]

[14]

Copyright (c) IARIA, 2015.

REFERENCES

IEEE, IEEE Standard for Software Maintenance, IEEE Std 1219-1998.
1IEEE Press, 1999, vol. 2.

“Software engineering - product quality, ISO/IEC 9126-1,” International
Organization for Standardization, Tech. Rep., 2001.

F. A. Fontana and M. Zanoni, “On investigating code smells correla-
tions,” in ICST Workshops’11, 2011, pp. 474-475.

A. F. Yamashita and L. Moonen, “Do developers care about
code smells? an exploratory survey.” in WCRE, R. Lammel,
R. Oliveto, and R. Robbes, Eds. IEEE, pp. 242-251. [Online].
Available: http://dblp.uni-trier.de/db/conf/wcre/were2013.html (access
date: September 2015)

I. M. Bertran, “Detecting architecturally-relevant code smells in
evolving software systems,” in Proceedings of the 33rd International
Conference on Software Engineering, ser. ICSE ’11. New York,
NY, USA: ACM, 2011, pp. 1090-1093. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1986003 (access date: September
2015)

R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and G. Succi,
“Balancing agility and formalism in software engineering,” B. Meyer,
J. R. Nawrocki, and B. Walter, Eds., 2008, ch. A Case Study on the
Impact of Refactoring on Quality and Productivity in an Agile Team,
pp. 252-266.

GitHub, “Git repository,” https://github.com, 2014.
B. F. Webster, Pitfalls of object-oriented development. M And T, 1995.

J. Long, “Software reuse antipatterns,” SIGSOFT Softw. Eng.
Notes, vol. 26, no. 4, Jul. 2001, pp. 68-76. [Online]. Available:
http://doi.acm.org/10.1145/505482.505492 (access date: September
2015)

J. Schumacher, N. Zazworka, F. Shull, C. Seaman, and M. Shaw,
“Building empirical support for automated code smell detection,” in
Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, ser. ESEM ’10.
New York, NY, USA: ACM, 2010, pp. 8:1-8:10. [Online]. Available:
http://doi.acm.org/10.1145/1852786.1852797 (access date: September
2015)

R. S. Pressman, Software Engineering: A Practitioner’s Approach,
5th ed. McGraw-Hill Higher Education, 2001.

E. Di Bella, A. Sillitti, and G. Succi, “A multivariate classification of
open source developers,” Inf. Sci., vol. 221, Feb. 2013, pp. 72-83.
[Online]. Available: http://dx.doi.org/10.1016/j.ins.2012.09.031 (access
date: September 2015)

S. Matsumoto, Y. Kamei, A. Monden, K.-i. Matsumoto, and
M. Nakamura, “An analysis of developer metrics for fault
prediction,” in Proceedings of the 6th International Conference
on Predictive Models in Software Engineering, ser. PROMISE ’10.
New York, NY, USA: ACM, 2010, pp. 18:1-18:9. [Online]. Available:
http://doi.acm.org/10.1145/1868328.1868356 (access date: September
2015)

M. Zhou and A. Mockus, “Developer fluency: achieving true mastery
in software projects,” in Proceedings of the 18th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,

ISBN: 978-1-61208-438-1

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

2010, Santa Fe, NM, USA, November 7-11, 2010, 2010, pp. 137—
146. [Online]. Available: http://doi.acm.org/10.1145/1882291.1882313
(access date: September 2015)

J. B. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proc. of the fifth Berkeley Symposium on
Mathematical Statistics and Probability, L. M. L. Cam and J. Neyman,
Eds., vol. 1. University of California Press, 1967, pp. 281-297.

InfoEther, “Pmd is a source code analyzer,” http://pmd.sourceforge.net/,
2014.

M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley, 1999.

B. Kitchenham, H. Al-Khilidar, M. A. Babar, M. Berry, K. Cox,
J. Keung, F. Kurniawati, M. Staples, H. Zhang, and L. Zhu,
“Evaluating guidelines for empirical software engineering studies,”
in Proceedings of the 2006 ACM/IEEE International Symposium
on Empirical Software Engineering, ser. ISESE ’06. New
York, NY, USA: ACM, 2006, pp. 38-47. [Online]. Available:
http://doi.acm.org/10.1145/1159733.1159742 (access date: September
2015)

M. Mantyla and C. Lassenius, “What types of defects are
really discovered in code reviews?” IEEE Trans. Software
Eng., vol. 35, no. 3, 2009, pp. 430-448. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TSE.2008.71 (access date:
September 2015)

D. 1. Sjoberg, A. Yamashita, B. C. Anda, A. Mockus, and T. Dyba,
“Quantifying the effect of code smells on maintenance effort,” IEEE
Transactions on Software Engineering, vol. 39, no. 8, 2013, pp. 1144—
1156.

F. Rahman, C. Bird, and P. T. Devanbu, “Clones: What is that smell?”” in
MSR, J. Whitehead and T. Zimmermann, Eds. IEEE, 2010, pp. 72-81.
[Online]. Available: http://dblp.uni-trier.de/db/conf/msr/msr2010.html
(access date: September 2015)

M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, blob and spaghetti code,
on program comprehension.” in CSMR, T. Mens, Y. Kanellopoulos,
and A. Winter, Eds. IEEE Computer Society, 2011, pp. 181-190.
[Online]. Available: http://dblp.uni-trier.de/db/conf/csmr/csmr201 1.html
(access date: September 2015)

S. M. Olbrich, D. Cruzes, and D. 1. K. Sjberg, “Are all code
smells harmful? a study of god classes and brain classes in
the evolution of three open source systems.” in ICSM. IEEE
Computer Society, 2010, pp. 1-10. [Online]. Available: http://dblp.uni-
trier.de/db/conf/icsm/icsm2010.html (access date: September 2015)

R. Peters and A. Zaidman, “Evaluating the lifespan of code smells using
software repository mining,” in Software Maintenance and Reengineer-
ing (CSMR), 2012 16th European Conference on. IEEE, 2012, pp.
411-416.

J. Eyolfson, L. Tan, and P. Lam, “Do time of day and developer
experience affect commit bugginess?” in Proceedings of the 8th
Working Conference on Mining Software Repositories, ser. MSR ’11.
New York, NY, USA: ACM, 2011, pp. 153-162. [Online]. Available:
http://doi.acm.org/10.1145/1985441.1985464 (access date: September
2015)

W. Poncin, A. Serebrenik, and M. van den Brand, ‘“Process mining
software repositories,” in Software Maintenance and Reengineering
(CSMR), 2011 15th European Conference on, March 2011, pp. 5-14.

K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye,
“Evolution patterns of open-source software systems and communities,”
in Proceedings of the International Workshop on Principles of Software
Evolution, ser. IWPSE 02. New York, NY, USA: ACM, 2002, pp.
76-85. [Online]. Available: http://doi.acm.org/10.1145/512035.512055

(access date: September 2015)

17

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

The Object Oriented Petr1 Net Component Model

Radek Koc¢i and Vladimir JanouSek

Brno University of Technology, Faculty of Information Technology,
IT4Innovations Centre of Excellence
Czech Republic
email: {koci,janousek} @fit.vutbr.cz

Abstract—The formalism of Object Oriented Petri Nets (OOPN) is
a part of the work dealing with the method of system development
in simulation. The work is based on the idea that system models
are always executed even if they contain only one simple element
or any changes are performed. Moreover, this idea does not
distinguish between system models, prototypes, or target system;
everything should be presented by the same means. Nevertheless,
it should be possible to use different formalisms to describe
models. It follows that a common platform is needed. The
platform has to be simple and has to allow to change models
on the fly. The formalism of Discrete Event System Specification
(DEVS) has been used to specify the platform, because it enables
to compose system using components, whereas each such a
component can be modeled by different formalism. Proposed
approach preserves the advantages of using OOPN for behavior
modeling of components and makes it possible to hierarchize
models using DEVS-based platform. The paper defines a platform
based on DEVS and OOPN formalisms and deals with a question
of safe changes of components on the fly.

Keywords—Object Oriented Petri Nets; DEVS; component plat-
Jorm; interface consistency.

I. INTRODUCTION

This paper is part of the System in Simulation Development
(SiS) work [1] based on the formalism of Object oriented
Petri nets (OOPN) [2]. The basic SiS principle consists in
continuous incremental development of models in the live
system with the goal to come to the target system without
a need of implementation—there is no difference between
models, prototypes, or target system. The SiS concept re-
quires three basic conditions. First, models have to be able
to combine different formalisms or languages, e.g., Petri nets
and Smalltalk language. For instance, the control part of
the developed system can be modeled by OOPN, which has
to be able to communicate to sensors—the communication
channel can be implemented in Smalltalk language. Second,
models can be execute in different simulation modes that are
suitable for design, testing, in-the-loop simulation, and system
deployment [3]. Third, there has to be a possibility to exchange
any elements of the models on the fly; the model elements
should be exchanged with no changes in the depending model
elements [4].

To achieve presented requirements, a common platform is
needed. The platform has to be simple and has to fulfill the
SiS requirements, mainly changing models on the fly. The
formalism of Discrete Event System Specification (DEVS)
has been used to specify the common platform. It enables to
compose system using DEVS-based components, whereas each
such a component is modeled by means of OOPN. It preserves

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

the advantages of using OOPN for behavior modeling and
makes it possible to hierarchize models.

So far, there have been works dealing with a usage of
OOPN and DEVS formalisms, but the compact definition of
common platform has not been introduced and a question
about safe replacement has not been solved. The paper defines
the OOPN component model based on the DEVS common
platform to which the formalism of OOPN is incorporated.
The question about component interfaces and their consistency
during the component changes will also be discussed.

The paper is organized as follows. We describe concepts
of the common platform in Section III. Then, we define the
OOPN component model based on the common platform in
Section IV. The Section V describes a problem of the compo-
nent interface consistency and introduces interface constraints.
Section VI deals with a realization of constraints based on
the formalism of OOPN. The summary and future work is
described in Section VII.

II. RELATED WORK

The modeling of software system in live environment is
not new idea. Model-Driven Software Development [5][6] uses
executable models, e.g., Executable UML [7], which allows
to test systems using models. Models are then transformed
into code, but the resulted code has to often be finalized
manually and the problem with imprecision between models
and transformed code remains unchanged. Further similar work
based on ideas of model-driven development deals with gaps
between different development stages and focuses on the usage
of conceptual models during the simulation model develop-
ment process—these techniques are called model continuity
[8]. While it works with simulation models during design
stages, the approach proposed in this paper focuses on live
models that are used in target environments, i.e., when the
system is deployed.

The research activities in the area of system changes on the
fly are usually focused on direct or indirect approaches. The
direct approach uses formalisms containing intrinsic features
allowing to change the system. Formalisms are usually based
on kinds of Petri nets. Reconfigurable Petri Nets [9] introduces
a special place describing the reconfiguration behavior. Net
Rewriting System [10] extends the basic model of Petri nets
and offers a mechanism of dynamic changes description. This
work has been improved [11] by a possibility to implement
net blocks according to their interfaces. Intelligent Token Petri
Nets [12] introduces tokens representing jobs by that the

18

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

dynamic changes can be easily modeled. Their disadvantage
is that they usually do not define the modularity.

The indirect approach handles system changes using extra
mechanisms. Model-based control design method, presented
by Ohashi and Shin [13], uses state transition diagrams and
general graph representations. Discrete-event controller based
on finite automata has been presented by Liu and Darabi [14].
The presented methods use external mechanisms, nevertheless,
most of them do not deal with validity of changes.

The approach presented in this paper combines direct
and indirect methods. To define platform allowing to change
component on the fly, the intrinsic features of the formalism
of DEVS is used in combination with application framework
allowing to work with simulation in live environment.

III. COMMON PLATFORM

As we mentioned above, we need to have a common
platform allowing to interconnect different formalisms, as well
as to change model element on the fly. We have decided [4] to
use DEVS [15] approach to specify the platform. This section
describes a formal base of the common platform and introduces
a simple example to demonstrate its features and usage.

A. Discrete Event System Specification Platform

The formalism of DEVS can represent any system whose
input/output behavior can be described as a sequence of events.
The model consists of atomic models M. Their behavior is
described by functions that work with input event values X
and produce output event values Y. These functions are not
important from the paper point of view, so that we will abstract
them. Atomic models can be coupled together to form a
coupled model C' M . The later model can itself be employed as
a component of a larger model. The atomic model, as well as
the coupled model, corresponds to the term component. This
way the DEVS formalism brings a hierarchical component
architecture. The platform based on DEVS will be called
common component platform and will be denoted M. The set
of components of the platform M will be denoted D.

B. Component Interface

Sets X and Y of the component are usually specified
as structured sets. It allows to define input and output ports
for input and output events specification, as well as for
coupling specification. Let us have the structured set X =
{(v1,v2,...,05)|v1 € X1,...,0, € Xp,)}, where v; repre-
sents a value of the ith variable from the domain set X;. We
will denote members vy, ve,...,v, as input ports and will
write X = (Vx, X1 x X x---x X,,), where Vx is an ordered
set of n input ports. The set of output ports Vy is defined
similarly on the structured set Y. The component interface is
then built up from input ports Vx and output ports Vy .

The component platform consists of components that
are coupled through their ports. We define a relationship
coupling. 5 C Ujep Vi X U,ep Vi meaning that
there are channels for data transmission between ports
of components. We will denote input port, resp. output
port, by the notation component_name®port_name, resp.

component_nameSport_name. Then, the notation c;Sp; 2,

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

co®p2 means that there is the coupling between the output
port p; of the component c¢; and the input port ps of the

. . D . .

component co. The relationship — can also be written in
T D

opposite direction < .

Then, the common component platform is defined M =

(D, Z VP VM), where VM = J,op Vi and ViM =

Uien Vi represent ports that are accessible from the platform
neighborhood.

C. Component Changes on the Fly

The component in the common platform is a model de-
scription, as well as its executable form. There is no difference
between static and dynamic (live) representation of models.
In comparison with classic object oriented approach, we need
not care about classes, new instances, and reference changes
(i.e., how to detach old objects and to attach new objects) at
the moment of component changes. We simply create the new
component and change the connections (couplings).

D. Example Specification

The concepts presented in the paper will be demonstrated
on the small example consisting of sensor nets, a module
collecting data from sensors, and a module making decision
based on the data (the form of decision is not important). Other
parts will be abstracted.

Control Sensor

+main()
+removeSensor (Sensor)
+removeSensor(Sensor)

+start(boolean)
+getData(): Set<Data>

main:
sn.start(true)
Tloop:
sn.getData()
make decision
sleep N

Figure 1. An example—class diagram.

In the classic object approach, we can define two analytical
classes Control (decision maker) and Sensor (data collector).
The class Sensor defines operations allowing to start or stop
the data collection (start) and to get acquired data from sensors
(getData). The class Control defines operations to attach and to
detach a sensor (addSensor and removeSensor) and to control
the process (main). The class diagram is shown in Figure
1. The basic algorithm of the method main is illustrated in
the note window—it starts data collection and then performs
following operations in the loop: gets data, makes decision,
and waits for a while.

Now, we take the example specification to the com-
mon component platform. Figure 2 shows an example of
the platform M containing two components Control and
Sensors, where Sensors represents a communication channel
to the sensor nets and Control receives acquired data and
makes decisions about the system. Due to simplification of
notation, we will write ¢n and sn instead of full names.

19

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Then, the platform consists of D1 = {cn,sn}, where the
components interfaces consists of V" = {data,run, stop},
Ver = {start,request}, V" = {start,request}, and

Vg = {data}.

Now, we can compare DEVS-based common platform
with object approach. First, the class Sensor and the com-
ponent sn. The method start is represented by the input port
sndstart receiving a command to start or stop data collecting.
The method getData is represented by a pair of input port
snédrequest and output port snSdata. If any component asks
for data, it puts a command to sn®request and the component
reacts by putting data to snSdata.

\—Cdata Control - tant

Qrun
stop

start Sensors

data

request request

Figure 2. Common platform M.

Second, the class C'ontrol and the component cn. There
is no port equivalent to the method main because of intrin-
sic definition of the component behavior. Nevertheless, ports
cen@®run and cn®stop serve to start and to stop main loop of
the component cn. These ports are not connected inside the
platform; they will be used from outside to control platform
run. The communication to cn surroundings is represented by
ports cn©start (starting a data collection), cn©request (a
request for acquired data) and cn@®data (an answer for data
requesting). The component cn sends commands to the com-

ponent sn by carrying data through cn©start LD snostart
and cnorequest T snérequest. The component sn reacts
by sending data through the coupling cn®data 2 snodata.

IV. OOPN COMPONENT MODEL

The common platform based on DEVS formalism of-
fers component approach allowing to wrap another kind of
formalisms, so that each such a formalism is evaluated by
own means. The Object oriented Petri Net component model
(OOPN component model) consists of DEVS components that
are described by the OOPN formalism. This section introduces
the OOPN formalism and its relationship to the common
platform M.

A. Object Oriented Petri Nets

First of all, let us agree upon the following definitions in
the OOPN component system. The Object oriented Petri net is
a tuple (3, ¢g), where X is a system of classes and ¢y is an ini-
tial class. 2 contains sets of OOPN elements, which constitute
classes. For the paper purpose, we will denote only selected
elements that are used. The system of classes X is defined as
follows ¥ = (Cpn, MSG,No, Ny, SP,NP,P,T), where
Cpn is a set of OOPN classes, M SG is a set of message
selectors, No is a set of object nets, N, is a set of method
nets, SP is a set of synchronous ports, IV P is a set of negative
predicates, P is a set of places, and 7" is a set of transitions.
The message selectors M.SG corresponds to method nets,
synchronous ports, and negative predicates. Object nets de-
scribe possible autonomous activities of objects, while method

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

nets describe reactions of objects to messages. A class C
is defined as C = (MSGY,on®, N§;, SPY, NPY), where
MSG® C MSG, on® € No, N§; € Ny, SPC C SP, and
NPCY C NP. Every net consists of places (a subset of P) and
transitions (a subset of 7).

The OOPN dynamics comprises the system of objects I'.
Elements from C' describe a structure of simulation model and
have to be instantiated to simulate the model. If the class C' €
Cpy is instantiated (the object o is created), the instance of
object net on® is created immediately. If the message m €
M SG is sent to the object o, an instance of the method net is
created. Then, we can define I"' = (OBJ, INV'), where OB.J
is a set of objects including their object net instances and IN'V
is a set of invoked method nets.

B. OOPN in Common Platform

In the common platform, there is no difference between
a static representation of the model and its live (running,
executed) form. To include the OOPN formalism, we introduce
the live model of OOPN as the tuple IT = (X, T, g, objo),
where ¢y € Cpy is an initial class and obj, € OBJ is an
initial object of the class cg.

In the common platform, the OOPN model is split up into
submodels, whereas each submodel has its own initial class
co and initial object objo. Let Mpy = (M,II, P.g?, Py™)
be a DEVS component M, which wraps an OOPN submodel
II. The initial class cg is instantiated immediately the com-
ponent Mpy is created. The component interface (Vx, Vy)
is represented by subsets of places P.%, P9 C P, where
P is a set of object net places of the initial class ¢y and
PP N PGt = (). There are bijections mapin, : Peg? — Vx
and mapey: : PY" — Vx mapping ports and places and
the mapped places then serve as input or output ports of the
component.

C. OOPN Example

Let us continue with the example from Figure 2. Figure 4
shows an OOPN model of the component Sensors (sn) and
Figure 3 shows an OOPN model of the component Control
(cn). Both models have the same basis—the loop driven by an
external stimulus (a token placed in the place s).

run

tStart

#getData

request

data

self hold: h.

Figure 3. OOPN model of the component Control.

20

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

First, let us have a look at the component C'ontrol (Figure
3). Input port cn@run expects a number h representing an
interval of asking data from the component sn. Input port
cn@stop expects any value—it only activates transition tStop,
which suspends the loop. Both ports generate a command for
coupled components through the output port cnSstart (they
put true or false to the mapped place start). The component
cn asks for data by putting a symbol #get Data to output port
cnOrequest and waits for data (input port cn®data). When
the data are acquired, the method process: of the initial class
co is called and data are processed. Then, the loop waits for a
given time unit h (the method hold:) and asks for data again.

d := self getData.

tD:
(h, d)

self hold: h.

Figure 4. OOPN model of the component Sensor

Second, let us have a look at the component Sensor
(Figure 4). Input port sndstart expects values true or false
activating transitions tStart or tStop that start or suspend the
loop. The component receives a request for data by input port
snédrequest and puts data to the output port snSdata.

The component sn acquires data in the loop, where the
method getData is called, the new data d is add by the
transition add, and, finally, the loop waits for a given time unit
h. The place data contains an object (an instance of the class
MyData) and the transition add simply adds new item by the
method add:. Instance of the class MyData is created and put
into the place data in the moment of object net instantiation
(it is a place initialization, as shown in Figure 4).

D. Data Model Interface

So far, we did not care about actual data. Their form is not
important for this paper (real numbers, integral numbers, etc.),
only the way of data manipulation will be taken into account.
It comes to this, that the data interface is important. Figure 5
shows identified interfaces and classes.

<<interface>>

SData
\ +add()

<<interface>>
CData

+get()

1 +avg()

1 +max ()

L e e e == >|+min()

Figure 5. Classes and interfaces of data.

MyData [- - >
+add() --
+get ()
+avg()
+max ()
+min()

The component sn uses data storage by only way—adds
a new item. So, the interface SData containing the operation

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

add: can be identified. Let us suppose, that the component
cn needs following operations: get (getting an item), avg
(average value), max (maximum value), and min (minimum
value). These operations on data are performed within the
method process:. Then, the interface C'Data can be identified.
The data storage (instance of the class MyData) used in the
component sn (see Figure 4) has to implement the SData
interface. The storage object used in the component cn has
to implement the C'Data interface. Because both objects are

identical (the object is carried through snSdata z cnddata),
the class MyData has to implement both interfaces, as shown
in Figure 5.

V. COMPONENT INTERFACE CONSISTENCY

The System in Simulation (SiS) concept assumes that
components can be exchanged with no changes in the other
components. In conjunction with the application framework
[16], the component can be suspended, resumed, or changes
any time during the system simulation. Therefore, it is neces-
sary to be concerned with the problem of component interface
consistency, in other words, the question whether component
interfaces are compatible and whether its exchange is safe.

The component communication is provided by data pass-
ing [4]—the calling component (client) sends a data to the
called component (server); the client does not need to wait for
an answer. We will distinguish the structural aspect and the
behavioral aspect of the component interface. The structural
aspect is defined by ports and couplings. There is no problem
to check if the components can be coupled or not. The
behavioral aspect corresponds to the concrete data and their
form.

A. Type constraints

Although the formalism of OOPN is pure object-based
system and there is no need to define special kind of types
instead of class, we will have special requirements to the set
of types that can be checked:

e a class or a subclass — we need to check if the object
is an instance of the class or its subclasses

e an object interface — we need to check if the object
complies with the interface

Since we will check the type constraints, we have to define
the term fype in the context of the OOPN component system.
CLecny is a set of classes from the product environment (the
notation product environment is understood as the environment
including language in which the application framework is
implemented), C'Lyyim C ClLepy is a set of primitive classes
(numbers, characters, and symbols), I C P(MSG) is a set
of object interfaces, and ¢ represents a special kind of type
meaning unspecified type. We define the interface I in the
general way, as a set of operations that are independent from
classes. The type is then TY PE = CLpn UC Lep, UTU{c}.

Let Tp be a surjection Tp : P — P(TY PE) assigning
a set of types to a given place. The type of the place can be
derived from the associations between classes, whereas there
is no necessary to define only one type (and, thus, to allow all
subtypes), but the set can be extended to next types. Implicitly,

21

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

each place has assigned the type €. To discriminate between
different levels of type constraints, we introduce following
operators based on T'p:

e >:0BJ xTY PFE meaning the object is an instance
of the class or derived classes, Yo € OBJ : 0 = ¢

e >: OBJ x I, meaning the object complies with the
interface, Vo € OBJ : 0 = ¢

Let us continue with the example defined in Section I'V-C.
Figure 6—a shows type constraints defined on the input ports
stop and data of the component Control (cn). The port stop
requires any value of any type, so that the constraint is set to
€. The port data requires objects of the class MyData, so
that Vo in the place data : 0 = MyData. The constraint will
be written > {MyData}.

stop " QJ‘.
— o

.- >{CData}

data .-’
*" Ist

.- >{SData}

data .-~

O 8 I:] b)

Figure 6. An example of type constraints.

Let us investigate a variant of interface usage—it is shown
in Figure 6-b. There are depicted the input port C'ontrol.data
and the output port Sensor.data. Each of them operates with
the different interface. Control.data demands objects under-
standing methods defined by the interface C'Data, whereas
Sensor.data offers object understanding methods defined by
the interface S Data (interfaces are discussed in Section IV-D).

B. Data constraints

Since the interface of the common platform is based on
the principle of data passing, there will often be a request
for constraints on data. First, let us define two auxiliary
notions. Let Zg be a function Zg : TYPE — P(TYPE)
assigning a set of generalized classes to the given class and
Zs : TYPE — P(TYPE) be a function assigning a set
of specialized classes to the given class. Then, CLpyip, =
Zs(Number) U Zs(Character) U Zg(Symbol). To discrimi-
nate between different levels of data constraints, we introduce
following notions:

e an enumeration 1 = {ej,es,...}, to check if the
object o gets one of the listed values, o € 7; it can be
used for symbols, numbers, or characters C'Lyim

e an interval 1(i1,12), to check if the object o gets a
value from the interval, o € ¢(i1,142); it can be used
for numbers Z(Number); there is a special value w
represents a maximal value or infinity

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

wn -HoQl
x" v v
O]

.. nf#getData}
request .-
Ec) #getData |:|
-
.- nftrue, falset
start .-
- Vv
Vv
>

Figure 7. An example of data constraints.

Let us continue with the example defined in Section
IV-C. Figure 7-a shows data constraints defined on the input
port cn@®run. It requires a number from interval +(0,w).
Figure 7-b shows data constraints defined on the input port
snd(request, start). They require an enumeration of symbols
or boolean values.

VI. CONSTRAINTS REALIZATION

Although the OOPN classes bring more intuitive modeling
of behavior, they do not offer intrinsic definitions of constraints
such as invariants or type checking. Nevertheless, there is very
simple way how to define and test these conditions by means of
OOPN [17]. Tests are generated by the application framework
in accordance to required constraints defined on ports.

A. Type Constraints Testing

The test of class constraints is defined as 0 (p, ET) =
drepA Ht e ET : z = t, where is an object in the place
p and ET is a set of expected types. The test of interface
constraints is defined as 0, (p, ET) = 3x € p APt € ET :
x > t, where x is an object in the place p and ET is a set of
expected types.

Both tests are implemented by negative predicates as
shown in Figure 8. It follows the example defined in Sec-
tion IV-C and shows two possibilities. First, the type con-
straint = {MyData} is defined for the input place data
of the component Control. This notion is equivalent to
0 (Control.data, {MyData}). There is generated negative
predicate cT'ypeData and associated place ET' containing a
set of names of expected types. Names are stored in the form
of symbols.

Firablity of the negative predicate is defined in two cases as
follows. First, it is firable if there is no object in the associated
place. Second, it is firable if the place is not empty and
there is at least one object, which does not satisfy predicate
conditions—on other words, the negative predicate finds all
objects x that do not satisfy conditions. The condition is
represented by arc expression ¢ and calling special method
isKindOf: t on the object . The method is a part of
object’s metaprotocol and resolves in true or false depending

22

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

.- 2{MyData]

X

data ..~

cTypeData
x isKindOf: t

.- >{CData, SData

data .-~

cTypeData
x compliesWith: t

#CData,
#SData

II'I'I
—

Figure 8. Type constraints realization.

on decision if the object is an instance of the class ¢ (or its
subclasses) or not. So, the predicate cI'ypeData is firable if
there is an object in the place data and this object is not the
instance of MyData.

Second possibility represents the type constraint >
{CData,SData} defined for the input place data of
the component Control. This notion is equivalent to
0. (Control.data,{C Data, SData}). The constraint realiza-
tion is the same as for > except that it uses the method
compliesWith: instead of isKindOf:.

B. Data Constraints Testing

The tests of data constraints are implemented by negative
predicates as shown in Figure 9. It follows the example defined
in Section IV-C and shows two possibilities. First, the data
constraint +(0,w) is defined for the input place start of the
component Control. There is generated negative predicate
cDataStart having a condition corresponding to the defined
interval. The predicate is firable if the condition is not satisfied.

start lQQJ

" x cDataStart

.- nf#getData

request. cDataRequest X
#getData

Figure 9. Data constraints realization.

Second, the data constraint n{#getData} is defined for
the input place request of the component Sensor. There is
generated negative predicate cDataRequest and associated
place containing a set of expected symbols. The predicate is
firable if there is found a symbol in the place request that is
not in the predefined set.

C. Exceptions

Constraints realizations presented in previous sections can-
not be evaluated without calling them. Therefore, the new
element of exception is introduced to the formalism of OOPN.
The exception is demonstrated on the example of type con-
straint = {MyData} from Figure 8. The syntax is shown
in Figure 10-a. The exception checks type constraint and if
the constraint is not satisfied, it removes an object from the
place data and the associated “any action” is performed. The
implementation is shown in Figure 10-b.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

eData

>{MyData}

"any action"

eData
E >{MyData}
"any action”

a) c)

data .-

eData

self cTypeData
ny action"
v
data
X cTypeData t
>I x isKindOf: t ™
b)

Figure 10. Invariants and testing conditions.

The exception may also have a side effect, e.g., it may offer
substitute object and place it back to the place data (shown
in Figure 10-c).

D. Example of Component Changes

Let us continue with the example of common platform
presented in Figure 2. The component Sensors will be re-
placed by the component Sensors2 having the same structural
interface, i.e., the same sets of input and output ports, as shown
in Figure 11.

;2{CData
t(j data Control i@ a
Qrun -
QJ stop request { request

Sensors2

d start | >{SData]

——— request data

Figure 11. Common platform Maj.

Let us suppose that the class MyData has been changed to
MyData2 containing only add: and get operations. Now, we

will be only interested with snSdata L enadata coupling.
The constraint > {SData} is satisfied (operation add:), but the
constraint > {C'Data} is not satisfied (operations avg, mazx,
and men are not present). Watching such incorrect changes,
that do not have to be simply detected, allows to prevent
systems from unexpected behavior.

VII. CONCLUSION AND FUTURE WORK

The paper dealt with the concept of component platform
based on DEVS and OOPN formalisms. It defined component
interface and constraints above input and output ports. The
interface is described by the means of OOPN places. Although
they has assigned no type, for constraint testing it is possible to
assign a set of types or constraints the objects have to satisfy.
The concept of exception has been introduced to OOPN.
Exceptions are a form of interface constraint testing. Incorrect
changes done inside components do not have to easily be
in evidence at the interface level. Constraints together with
exceptions in languages that do not work with types allow to
safe modification and changing component.

Future work will be aimed to a possibility to derive a set
of types or constraints from the model analysis or simulation.

23

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

The component interface will be also generalized to other
formalisms that can be incorporated into common DEVS
platform.

ACKNOWLEDGMENT

This work has been supported by the internal BUT project
FIT-S-14-2486 and the EU/Czech IT4Innovations Centre of
Excellence project CZ.1.05/1.1.00/02.0070).

REFERENCES

[11 R. Ko¢i and V. Janousek, “Modeling and Simulation-Based Design
Using Object-Oriented Petri Nets: A Case Study,” in Proceeding of the
International Workshop on Petri Nets and Software Engineering 2012,
vol. 851. CEUR, 2012, pp. 253-266.

2] M. Ce§ka, V. JanousSek, and T. Vojnar, PNtalk — a computerized tool
for Object oriented Petri nets modelling, ser. Lecture Notes in Computer
Science. Springer Verlag, 1997, vol. 1333, pp. 591-610.

[3] R. Ko¢i and V. Janousek, “Formal Models in Software Development
and Deployment: A Case Study,” International Journal on Advances in
Software, vol. 7, no. 1, 2014, pp. 266-276.

[4] R. Koci and V. Janousek, “System Composition Using Petri Nets and
DEVS Formalisms,” in The Ninth International Conference on Software
Engineering Advances. Xpert Publishing Services, 2014, pp. 309-315.

[5]1 S. Beydeda, M. Book, and V. Gruhn, Model-Driven Software Develop-
ment. Springer-Verlag, 2005.

[6] M. Broy, J. Gruenbauer, D. Harel, and T. Hoare, Eds., Engineering
Theories of Software Intensive Systems: Proceedings of the NATO
Advanced Study Institute. Kluwer Academic Publishers, 2005.

[7]1 C. Raistrick, P. Francis, J. Wright, C. Carter, and 1. Wilkie, Model
Driven Architecture with Executable UML. Cambridge University
Press, 2004.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

(81

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

D. Cetinkaya, A. V. Dai, and M. D. Seck, “Model continuity in
discrete event simulation: A framework for model-driven development
of simulation models,” ACM Transactions on Modeling and Computer
Simulation, vol. 25, no. 3, 2015.

S. U. Guan and S. S. Lim, “Modeling adaptable multimedia and self-
modifying protocol execution,” Future Gener. Comput. Syst., vol. 20,
no. 1, 2004, pp. 123-143.

M. Llorens and J. Oliver, “Structural and dynamic changes in concurrent
systems: Reconfigurable petri nets,” IEEE Transactions on Automation
Science and Engineering, vol. 53, no. 9, 2004, pp. 1147-1158.

J. Li, X. Dai, and Z. Meng, “Automatic reconfiguration of petri net con-
trollers for reconfigurable manufactoring systems with an improved net
rewriting system based approach,” IEEE Transactions on Automation
Science and Engineering, vol. 6, no. 1, 2009, pp. 156-167.

N. Q. Wu and M. C. Zhou, “Intelligent token petri nets for modelling
and control of reconfigurable automated manufactoring systems with
dynamic changes,” Transactions of the Institute of Measurement and
Control, vol. 33, no. 1, 2011, pp. 9-29.

K. Ohashi and K. G. Shin, “Model-based control for reconfigurable
manufacturing systems,” in Proc. of IEEE International Conference on
Robotics and Automation, 2011, pp. 553-558.

J. Liu and H. Darabi, “Control reconfiguration of discrete event systems
controllers with partial observation,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B, Cybertetics, vol. 34, no. 6, 2004, pp.
2262-2272.

B. Zeigler, T. Kim, and H. Praehofer, Theory of Modeling and Simu-
lation. Academic Press, Inc., London, 2000.

R. Ko¢i and V. JanouSek, “The PNtalk System,” 2015. [Online].
Available: http://perchta.fit.vutbr.cz/pntalk2k/

R. Ko¢i and V. Janousek, “Specification of UML Classes by Object
Oriented Petri Nets,” in ICSEA 2012, The Seventh International Con-
ference on Software Engineering Advances. Xpert Publishing Services,
2012, pp. 361-366.

24

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

“Free” Innovation Environments: Lessons learned from the Software Factory
Initiatives

Davide Taibi, Valentina Lenarduzzi

Free University of Bolzano-Bozen
Bolzano-Bozen, Italy
e-mail: {name.surname}@unibz.it

Muhammad Ovais Ahmad, Kari Liukkunen

University of Oulu
Oulu, Finland
e-mail: {name.surname}@oulu.fi

Ilaria Lunesu, Martina Matta

University of Cagliari
Cagliari, Italy
e-mail: {name.surname}@diee.unica.it

Abstract— Entrepreneurs and Small and Medium Enterprises
usually have issues on developing new prototypes, new ideas or
testing new techniques. In order to help them, in the last years,
academic Software Factories, a new concept of collaboration
among universities and companies has been developed. Software
Factories provide a unique environment for students and
companies. Students benefit from the possibility of working in a
real work environment learning how to apply the state of the art
of the existing techniques and showing their skills to
entrepreneurs. Companies benefit from the risk-free
environment where they can develop new ideas, in a protected
environment. Universities, finally benefit from this setup as a
perfect environment for empirical studies in industrial-like
environment. In this paper, we present the network of academic
Software Factories in Europe, showing how Companies had
already benefit from existing Software Factories and reporting
success stories. The results of this paper can increase the network
of the factories and help other universities and companies to set-
up similar environment to boost the local economy.

Keywords—Software Factory; Experience Report.

L INTRODUCTION

Universities are perfect environments to exploit
technological research for innovation. The biggest challenge to
solve in universities is that they are nowadays rarely used by
companies, and at the same time, universities are poorly
oriented to give economic value while start-ups and Small and
Medium Enterprises (SMEs) face new and tough challenges to
survive in the market. Indeed, also big industries sometimes
have difficulty being continuously innovative. In fact, ideas
come out slowly and require a lot of effort to be implemented.

Fresh ideas, coming from the new digital native generation
of developers, should encourage seniors to fresh thinking.
From this aspect, the combination of university research,
teaching and industry production would increase the value of
skills of everyone and the development of innovation.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Fabian Fagerholm, Jiirgen Miinch
Department of Computer Science, University of Helsinki
Helsinki, Finland
e-mail: {name.surname}@cs.helsinki.fi

Sami Pietinen, Markku Tukiainen
University of Eastern Finland, School of Computing
Joensuu, Finland
e-mail: {name.surname}@uef.fi

Carlos Fernandez-Sanchez, Juan Garbajosa

Technical University of Madrid (CITSEM & ETSISI)
Madrid, Spain
e-mail: carlos.fernandez@upm.es

Kari Systé

Tampere University of Technology
Tampere, Finland
e-mail: kari.systa@tut.fi

Innovations lab of similar initiatives such as academic
Software Factories (SF) [1] could contribute to fill this gap.

In SF, students and entrepreneurs collaborate together to
develop a new idea or to apply existing techniques that
couldn’t be achieved by the entrepreneur itself without
accessing to external resources. SF are university laboratories
that emulate a real working environment, in which a given
number of students, in the same location, work as a real team
implementing a project for 7-11 weeks in a controlled
environment with real customers and real deadlines.
Entrepreneurs benefit from the new innovative ideas and the
effort coming from students. Students have, in turn, a unique
experience of working in an industry-like work environment
getting in touch with the real business and a given number of
credits. Moreover, students have the chance to present their
skills to the entrepreneurs that can finally hire students partially
trained on their technologies. The SF initiative is a fully bottom
up initiative that cooperates on a voluntary basis without any
funding framework, except for their enthusiasm and the
common interest in getting excellent educational, and research
results.

The goal of this work is to present the ecosystem of
European SFs describing how best practices are shared
between different software factories. Moreover, we aim at
analyzing similarities and differences among SF in different
countries (namely Finland, Italy and Spain), highlighting pros
and cons for the different stakeholders. The results of the paper
show how the use of SFs, as safe environment for developing
new prototypes and products for start-ups or entrepreneurs,
could represent a good practice and an important starting point
for creating a connection between academic and working
worlds.

The paper is structured as follows. After a first introductory
section, we describe the SF concept in Section II. In Section
111, we describe our international SFs, highlighting similarities

25

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

and differences. We report success stories in Section IV and

finally we draw conclusions and future works in Section V.

TABLE L. SF BENEFITS
Academic Institutions Companies Students
« Perfect environment for empirical studics * Environment to develop innovative ideas. * First early contact with real-world projects
P * Environment to test new development tools or * Develop transversal capabilities such as self-

* Provide better training to their students.

* Collaboration with industry

* Environment for the development of research
prototypes

methodologies.

* Opportunities for hiring new staff trained in the | *
technologies that they use.

organized, responsibility, communication, etc.
Put into practice the theoretical concepts
learned in the courses

* Learn new techniques and technologies.

II. BACKGROUND

SF proposes itself as an infrastructure that supports
research and education in software engineering and also
entrepreneurship. In the Finnish editions, many collaborations
with important organizations guided forward good results for
customers and developers. SF is a safe and monitored
environment that reproduces in a faithful manner the working
team dynamics that develop a prototype or a software product
for a customer, (SMEs) or a start-up. Since its first edition SF
brings together three essential goals: Learn, Share, Grow. SF
[1] represents also a shared educational platform for
universities to hold courses where students are involved in a
real-world project developing software in the same location or
in different sites. SF relies on self-organization as its primary
way of organizing the work [2].

It represents a unique platform in which a team of students
develops software. SF projects are conducted in a manner that
simulate as closely as possible, the reality of software
development in the product development organization. We can
then observe how SF could represent, despite its constraints
and limitations, the operational core from which startups,
entrepreneurs or SMEs could set up their own ideas allowing,
at the same time, smart and brilliant students to make a unique
practical experience learning by doing new methodologies and
practices but also approaching the working world through the
main door showing what they can do.

In addition, SF offers a way to learn new practices and
technologies not only by reading from books but also by
building a product. The results are achieved as a result of
collaborative work of all team members, to improve their
knowledge and skills getting in contact with people having
different background and experience. As the students need to
independently gain new knowledge and meet new people to
create the product they get in touch with working reality and
undertake new important collaborations. At the same time, SF
are independent and open for collaboration with all kind of
companies for entrepreneur or startups, the SF could represent
a low cost environment in which they can set up new ideas and
new projects in which create not only a prototype but meet
partners and developers to be integrated in their own team
having the advantage of a training period. The SF advantages
exist also for researchers or academic members that would like
to have the possibility to assist to the meeting of two worlds:
work and study but in a monitored lab environment. This
fosters the measures and observations to make research from a
software perspective making measure about effort or software
metrics and also from the educational perspective observing
the student interactions, their learning behavior and their
attitude in the creation of a new product. Table I summarizes
the benefits of the SF environment.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

III. THE SOFTWARE FACTORIES NETWORK

In this section, we describe the SF network in Europe
presenting the different set-up and operational model.

A. The Helsinki SF (Finland)

SF at the University of Helsinki [1][8] has been organized
since 2010. The factory deeply integrates the customer
company into the development process. The customer provides
a product owner who interacts directly with the student team
during the project. The customer can range from local
entrepreneurs to large enterprises and even to Open Source
projects. For example, in spring 2015, the factory is
participating in Facebook’s Open Academy program,
collaborating on two Open Source projects with universities
worldwide. As a rule, five projects are arranged per year. The
factory supports the projects with research-based insights for
project management, methods, and pedagogy, and through full-
time coaching of the teams.

B. The Bolzano-Bozen SF (Italy)

The factory [6][7] is organized by the Free University of
Bolzano-Bozen. It is actively running once a year for 4 years,
developing more than 10 projects. The participants are students
from the first year of the Master program in Computer Science,
third year of the Bachelor in Design and Education faculties, as
well as local entrepreneurs. Project ideas come mainly from
local entrepreneurs who are not affiliated to the university. The
course runs during the summer semester for 11 weeks with a
required effort of 200 hours per student. Students vote the
projects to be developed based on their interests and skills. The
most voted projects are developed during the SF. Students are
then split in groups of 5-6 people and every group is assigned
to a project. The entrepreneur who proposed the idea is
required to be available at the SF at least once a week to
support the students.

C. The Cagliari SF (Italy)

The factory has being running once a year for 3 years from
2012, developing a total of 4 projects. Participants are students
from the Master program in Electronic Engineering,
Telecommunication Engineering, Computer Science, PhD
Course and local entrepreneurs. Projects come local
entrepreneurs or ideas born for implementing applications to
satisfy the needs of the research group. The course runs during
the summer semester for 7-11 weeks with a required effort of
120-200 hours per student, with 4-8 people assigned to each
project. The entrepreneur who proposed the ideas is required to
be in class to support the students at least twice a week. The
development is driven by an expert PhD student that plays the
role of coach/coordinator. In order to replicate a real company

26

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

development environment, an open space is assigned to the
team and the team members have to come twice or three times
at week during the period.

D. The Joensuu SF

University of Eastern Finland's School of Computing
established SF Joensuu in 2010 and is running 3-5 rounds per
year. Teams consist of mostly master level computer science
students with minimum target of 4 people. They are
encouraged to participate two rounds, first round as software
developer and later, second as team leader. Product ideas come
from entrepreneurs and research groups with having target to
produce new business opportunities or improve the world in
general. SF team is supported by mentoring given by SF lead
and students from previous rounds. Frequent interaction with
customer is required in order to achieve release cycle of 1-2
weeks, preferably with face-to-face meetings at least at same
interval and with other medium more frequently. Customers
have been either starting entrepreneurs with just a good idea in
their hands or already established companies from start -ups
such as Epooq to big companies like CGI.

E. The Oulu SF (Finland)

The Oulu SF is established in 2012 to provide a realistic
environment, which improves the students’ learning experience
by providing them with insights into the conduct of real-life
software projects with close customer involvement, intensive
teamwork, and the use of modern software development tools
and processes [5][7]. As a platform, it serves multiple
purposes. It is a test bed for software engineering ideas and a
source for original basic scientific software development
research. Oulu SF runs twice a year and it has completed more
than 8 projects since 2012. The participating students are from
first and second year of master's degree in information
processing science. The project tasks come from the local
software companies and or research projects. Each project
involves a minimum of four members. The students are
encouraged to tackle management and resource planning issues
pertaining to large teams. Each project team is assigned a
project supervisor who provides the team with technical and
non-technical guidance. The supervisor is also responsible for
monitoring and assessing the team throughout the course of the
project.

F. The Madrid SF (Spain)

Madrid factory has been operating since 2011. The factory
was a joint set-up between the Technical University of Madrid
(UPM) and Indra Software Labs, a subsidiary of Indra, a
Spanish global company. Actually, two software factories were
set up, one in UPM and one in Indra Software Labs, to run
joint projects. As an educational setting, students that
participate are from a Degree in Software Engineering and
Masters Program on Computational Science and Technology.
Most of the projects are closely related to tasks of European or
National Research projects, very often collaborative projects
between industry and UPM. Different kind of projects have
been performed over these years, and more than 10 projects:
five of them were distributed projects, in which up to three
nodes from different countries were involved, e.g., Helsinki

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

(Finland) and Bolzano (Italy). The Factory recruits students
usually in November and February. The recruitment process
includes an interview to applicants with a given number of
questions. Even when some these questions are technical, other
skills are also searched, also considering the kind of project
that the student would like to be involved, and the positions
available for each project. Students usually work in teams,
from 3 to 6 students. Students perform slots of 140 hours,
during generally 8 weeks, and up to a maximum of 3 of these
slots.

IV. SIMILAR ACTIVITIES IN TAMPERE (FINLAND)

A project course with many similarities to SF has been run
at Tampere University of Technology from year 1991. Already
during the first years, we received project ideas from
companies, and this collaboration has been a key component of
the of project course. Currently, the project ideas come from
the companies and companies give constant feedback about
progress of the project and produced software. These
companies essentially play a role of customer for the student
team. Since the course has a long history in Tampere, many
managers in the surrounding companies have participated in
the course in the past, they now have a high motivation to
collaborate as a customer. Key role of the companies is seen
valuable for both students since it gives both parties an
opportunity to network.

In addition to independent project work, the course also
includes some lectures that help students in management of the
project. There are also lectures about IRR, legal and business
aspects. The volume of the project course has been varying
over the years. During academic year 2014-2015 there were 10
project teams with 5-8 members each. The number of hours
spent per student is in the range of 130 — 260 hours. The course
is run yearly starting September and ending in February to an
end seminar and celebration.

Since 2008, Demola [9], has also been another option in
Tampere. Demola focuses on innovation projects, where
students are asked to further develop ideas given by
surrounding companies and public institutes. Demola is hosted
by Hermia (a business development company) and three
universities, Tampere University of Technology, University of
Tampere and Tampere University of Applied Sciences,
participate in Demola. The project teams are cross-disciplinary
and consist, e.g., of engineering, business, and design students
from participating universities. Since Demola projects
concentrate in innovation and further development of the idea,
the process includes value creation workshops and pitching
events. Furthermore, Demola shares promises with Protomo
[10], which is a development community for new businesses
and start-ups

Regular Demola projects run twice a year: once in the fall
and once during the spring. The volume of 20-25 projects per
season typically run by groups of 4-5 students. The main
difference between Software Engineering Project Course and
Demola is that the former concentrates in professional
development projects while the latter concentrates in idea
development and innovation.

27

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

V. SOFTWARE FACTORY SUCCESS STORIES

Software factories actively supported local entrepreneurs.
Here, we report on some of the most important success stories
of our factories.

A. Innovative Video Calling Service

Between September 2012 and December 2013 the SF
Helsinki conducted three projects together with Tellybean Ltd.,
a small Finnish startup [3]. The vision of this startup was to
deliver a life-like video -calling experience for specific
customer segments such as elderly persons. The overall goal of
the collaboration was to conduct build-measure-learn loops to
validate critical assumptions underlying the business model
and the technical solutions in order to rapidly learn if the
chosen strategy needs adjustments or can be persevered. The
first project focused on the development of appropriate
analytics for measuring the performance of the video service so
that business-critical information can be gathered and
analyzed. In addition, technical feasibility aspects were
analyzed. The second project mainly focused on validating
technical assumptions. In particular, the company wanted to
understand the scalability and robustness of the proposed
system architecture, technical weaknesses of the system, and
the company wanted to identify alternative options for the
system architecture. The project resulted in a significantly
better understanding of the limitations and future development
options. The third project helped the company to better deploy
functionality in a continuous way.

Overall, the prototypes that were created and used in the
projects served as so-called minimum viable products to
quickly validate business-critical assumptions and helped the
startup to accelerate learning about their ideas. In the
meantime, the startup got significant funding. Now, Tellybean
partners with major service providers. The SF Helsinki
benefited well from these projects by learning how to organize
industry-academia collaborations in order to test business-
critical assumptions.

B. Memoree

Memoree was a SF project at Bolzano in spring 2013. It
was based on a business idea from a local entrepreneur who
needed to develop a prototype to prove his idea. The initially
intended software solution would pack personal photos, videos
and audios into a memory package and shared it among
friends. The project lasted 11 weeks. In total, 14 students were
involved in the Memoree project. The majority came from the
Computer Science faculty. Two designers were involved at the
later stage of the project. The entrepreneur played the customer
role for the project and made himself available all through the
SF session. The Memoree SF project was very useful for the
local entrepreneur to understand what are the crucial features
of Memoree, and what should be skipped. SF also helped him
to decide what could be the core component of the application.
The developed prototype was very different than the initial idea
that he had. The students were not just implementing the
prototype, they were contributing to the understanding of the
need the startup intended to meet, and the clarification of the
vision that drives the startup. After the SF session, the
Memoree idea became more concrete. It is positioned as a
mobile application that is developed for automatic creation of

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

videos based on different contents (photos, songs, etc.). The
app provides content privacy, and creates videos automatically
by taking songs and photos as an input. This application is
composed of two modules: content management (photos) and
video creation. The intended customers are iOS users. The
entrepreneur team was expanded from a single person to five
founders (two economics, one finance, one graphic designers
and one computer scientist). The actual development started in
May 2014.

C. Medygo

Different from the Memoree case, when a founder of
Medygo approached the Bolzano SF in Spring 2014, the
business idea has already been validated initially with potential
customers, and a prototype was developed already. It is a
mobile application that is developed with motive “health on
go”. It is mainly developed for people to solve their health
problems during traveling and staying abroad. The main
purpose of developing this application was to prevent travelers
from the hustle when they travel and become sick during their
journey. This mobile app converts medicine, what they take in
their own country, to what they should take in another country.
This app is initially developed for android users. There were
four founders (two businessmen, two pharmacists). It’s been
one year since they have been working on this idea before they
contacted the Bolzano SF. The actual development started in
November 2013 by adding another team member as a
developer. The initial version was launched in January 2014.

One of the benefits of working in SF was that, recalled by
one founder, was the iterative approach the SF adopted. There
were always some deadlines, and the team had to finish on
time. During the SF session, the Medygo team set milestones
e.g., two-week idea validation, two-week date collection, four-
week development and so on. At the end of the 10th week,
their prototype was ready. The team was also facilitated by the
SF tutors to handle pressure, and to meet deadlines. In addition,
the SF students worked on the project became potential hire for
the startup company due to the intimate knowledge they
obtained through working on the project at the SF.

D. Matchall2

The Matchall2 project was proposed by a local
entrepreneur that played the customer role during the
development period, with the aim to build a plugin for
categorizing personal multimedia content gathered from
famous social networks such as Facebook, Youtube and Flickr.
Matchall2 created a personal communication engine based on
innovative principles and functionalities, with a web
implementation and diffusion strategy. The final prototype,
thanks to an idea of some developers, was represented by a
bookmarklet that allowed one to easily classify and categorize
personal content, such as pictures and videos, in a customized
manner using tags. The focus of the project was to implement
the same application for different social networks. This SF
started in early March of 2013 and held 11 weeks involving 8
specialized students with rich and different skills and
backgrounds.

In order to take advantage of developer's skill diversity, the
development was organized considering pairs in which an
expert developer supported a less experienced student.

28

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

In this edition, many technologies and new abilities are
used and learned to obtain the maximum result. The meetings
with the entrepreneur allowed to stay in the right edges of time
and specifics. The particularity of this case is that people also
when they don't know each other thanks to the fact they have
the same aim, strive to implement a success product, behaving
as a family helping each others to solve problems or achieve
the same objectives.

E. SERTS (Software Engineering Research Tool Suite)

During the SF of 2013 edition, the project Software
Engineering Research Tool Suite (SERTS) has been developed
by a team of 6 students. The aim was the implementation of a
semi-automatic tool able to semplify the analysis of data
collected in software repositories such as Bugzilla, CVS, SVN,
Git, and Jira. The development period lasted eight weeks, from
September 2013 to November 2013 by a team composed by six
developers: a PostDocstudent, four PhD students and one
undergraduated. In this specific project, a medium knowledge
of software development was required. Each component of the
team had different tasks, chosen according to their skills. One
of the PhD students with a strong knowledge of the
technologies involved into the project, played the role of team
coordinator/coach. The used development process was Scrum
with iterations of two weeks.

The figure of the customer was very significant. Every two
weeks he monitored the work of the students observing the
progress of the project through spikes. Due to its constant
presence, it was possible to build a prototype inherent to its
requirements.

F. FREI MARKT SUDTIROL

In 2014, Oulu SF and Bolzano SF start a collaborative time
banking project “FREI MARKT SUDTIROL”. An Italian
entrepreneur was sending requests for his project to Oulu SF
team. The project idea was to provide a common single plate
form for existing time banking systems in South Tyrol and
other near cities.

Project aim was to provide a fresh new time bank-
community system which cover various parts of society and
particularly for those people who are strongly hit by the
ongoing socio-economic crisis including young unemployed,
working-poor and immigrants. A system was developed which
allows users to create their personal profiles, look for jobs &
products, post jobs & products, apply for jobs & product and
give feedbacks. In addition, a SMS platform will facilitate the
new member registration process, modification and verification
of time-checks (BiX) when the people are not familiar with the
Internet. Project team consists of eight students; in which four
students working from Oulu SF and four from Bolzano SF.
Both teams were having mentors to help agile and lean
concepts in the project. The use of Kanban method and JIRA
was mandatory for Oulu SF students while the Bolzano SF
students were not following any specific methodology or
practices. Both teams use and get experience with Rise Editor,
Myeclipse, Apache Tomcat, PostgreSql, Dreamweaver, and
GitHub in the project. In first two weeks, students attend
mandatory lectures and exercises in SF. During weeks 3 to 5
literature was studied related to the project idea, working
methodology and preliminary project plan were drafted. Then
design and actual development related tasks were carried out

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

within weeks 6 to 12. After every two week the teams deliver
batch of minimum viable product to customer. The project
demo was given in Bolzano University which was appreciated
and covered by local press.

G. Google Glass for Traffic Warden

One of the latest Demola examples is a project where five
students got the idea from a local SW company Vincit but also
collaborated with City of Tampere. The project integrated
automatic recognition register plates to Google Glasses. In this
project, the student group developed the first commercial smart
glass application in Finland. With this application the traffic
warden is able to see right away if the parking ticket has been
paid or not. The city of Tampere is piloting this system in
spring time 2015 [14].

Development of this system may not have been possible
with traditional processes where software companies and
public authority as customer should recognize the idea first and
then have detailed enough specification. In this case, the
student group approached the idea as a start-up by trying and
doing. The system project received also a fair amount of
publicity in Finland.

H. Optimeter

The Optimeter project was developed in 2012 by the
Madrid SF (Technical University of Madrid and Indra
Software Labs) and the Helsinki SF (University of Helsinki).
The Optimeter project (in practice there were two projects
inside the SF, Optimeter I and the subsequent Optimeter IT) had
as goal to implement some use cases about data acquisition in
intelligent power networks, usually known as power smart
grids. The objective was to build a benchmark to validate
massive raw data coming from sensors and smart meters. The
benchmark was created using Apache Hadoop and Oracle
NoSQL Database to provide distributed processing and storage
capabilities to the system. Optimeter I and II were traversal to
two European projects under the ITEA2 Programe: IMPONET
(Intelligent Monitoring of POwer NET [11], 127 man years)
and NEMO&CODED (Networked Monitoring & Control
Diagnostic for Electrical Distribution [12], 112 man years, and
a third Spanish project called ENERGOS (Technologies for
automated and intelligent management of power distribution
networks of the future [13], with a budget of 24.3 million
euros). The project was developed using agile practices, and
more concretely following the Scrum methodology. Optimeter
was an excellent framework to set up a collaboration activity
between three Software Factories (UPM and ISL in Madrid,
and UH in Helsinki).

One lesson learned is that the training that the students can
get in such environment is very useful but straining. Students
were under the same pressure that the industrial development
team during the weeks the project took place. But at the end,
the background, skills and experience were very much
welcome by the students.

From the point of view of the industry, they could develop
the software that they needed, experimenting the usage of agile
methodologies in a distributed development environment. Also
they use the project to test some development tools that they
were not using until that moment.

29

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

1. HavuSport

In 2013, School of Computing in Joensuu was contacted by
two hockey coaches with an idea that the junior coaching
should be supported by an electronic system, usable with
different end user devices. Mobile device is the device of the
day that younger people easily relate to. The system should
support all major activities of a hockey team from messaging
and timetabling to performance statistics while getting rid of
excel-sheets, paper and pen. They could not find a proper
existing system, so they decided to have it build. SF Joensuu
built a web-based system with mobile applications coming
aside during two project rounds. Team size was 8 people, but
the project needed to be scoped very well because of the high
amount of required features and the fact that there was a lot to
learn in a short period of time.

Team felt a real business pressure to deliver, a feature that
is build inherently to SF, succeeding to achieve the target in
time. They felt proud that their hard work paid off. Havusoft
Company Ltd. was formed around the product and now
Havusoft is planning to extend the software system for other
sports activities too and there is great interest in the market to
use the system. The major role of SF concept in this process
was to enable starting entrepreneurs to push their idea forward
and show to the world that they are serious with their endeavor.

VI. CONCLUSION

In this paper, we present the academic Software Factories
(SF) in Europe, describing how they can help the local
economy by means of the collaboration among academia,
entrepreneurs and SMEs.

Our goal is to report on our SFs and similar initiatives,
presenting success stories.

SF provide an unique environment where entrepreneurs can
explore new ideas, develop new prototypes or apply new
techniques and students can study and work in a setting that
replicate, as much as possible, a real work environment.
Moreover, students have the opportunity to show their skills to
entrepreneurs and entrepreneurs can find new developers
easily, based on a direct knowledge of the students itself.

The network of SF in Europe, shared among Finland, Italy
and Spain is composed by several University that serves
hundreds entrepreneurs. SF collaborates with some shared
projects, working for the same project collaboratively, such as
the project described in the success story “Frei Markt
Sudtirol”. We reported several success stories, such as the
Google Glass for Traffic Warden, Memoree, Optimeter and
others, showing how the different stakeholders benefit of the
SF environment, from an entreprencurial, didactical, and
research points of view.

A new Software Factory has recently been established at
Montana State University in Bozeman, MT. A first project with
a company from the financial sector has started and
relationships with entrepreneur communities such as
Blackstone Launchpad have been established.

In the future we plan to further expand the community
extending the number of partners’ universities and increasing
the number of shared projects and involving industries in the
project selection and execution.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Finally, future works include the analysis of different
development approaches adopted in the SFs, so as to
understand if success stories are caused by the agile approaches
or for other reasons.

ACKNOWLEDGMENTS

The authors would like to thank the companies and their
employees for participating to this research. This research has
been carried out in Digile Need for Speed and Digital Services
programs, and it has been partially funded by Tekes (the
Finnish Funding Agency for Technology and Innovation), the
Italian Regione Autonoma della Sardegna (RAS), Regional
Law No. 7-2007, project CRP-17938 LEAN 2.0, the Spanish
projects iSSF (i-Smart-Software-Factory) IPT-430000-2010-
38, INNOSEP TIN2009-13849, IMPONET ITEA 2 09030
TSI-020400-2010-103, NEMO-CODED ITEA2 08022 NEMO
CODED IDI-20110864, and ENERGOS CEN-20091048.

We also thank Ville Korpiluoto from Demola (Tampere)
and Xiaofeng Wang (Free University of Bolzano) for
reviewing and supporting this paper.

REFERENCES

[1] P. Abrahamsso, P. Kettunen and F. Fagerholm, “The set-up of a
software engineering research infrastructure of the 2010s.” In
Proceedings of the 11th International Conference on Product Focused
Software ACM. pp. 112-114,2014.

[2] X. Wang, I. Lunesu, J. Rikkila, M. Matta and P. Abrahamsson, “’Self-
organized Learning in Software Factory: Experiences and Lessons
Learned”. In Agile Processes in Software Engineering and Extreme
Programming. pp. 126-142, 2014.

[3] F.Fagerholm, A. Sanchez Guinea, H. Méenp4é and J. Miinch, “Building
Blocks for Continuous Experimentation”. In Proceedings of the Ist
International Workshop on Rapid Continuous Software Engineering
(RCoSE 2014), Hyderabad, India,. pp 26-35, June 2014.

[4] M.O. Ahmad, K. Liukkunen and J. Markkula, J., “Student perceptions
and attitudes towards the software factory as a learning environment”.
IEEE Conference on Global Engineering Education. Istanbul, Turkey.
pp 422 —428,2014.

[S] M.O. Ahmad, J. Markkula and M. Oivo, “Kanban for software
engineering teaching in Software Factory learning environment”. World
Transactions on Engineering and Technology Education (WIETE),
Vol.12, No.3, pp 338-343, 2014.

[6] V. Lenarduzzi, I. Lunesu, M. Matta, and D. Taibi, “Functional Size
Measures and Effort Estimation in Agile Development: a Replicated
Study”, in XP2015, Helsinki, Finland 2015

[7] Bolzano-Bozen Software Factory, http://www.newsoftwarefactory.org
(Accessed: June 2015).

[8] Helsinki Software Factory, http://www.softwarefactory.cc. (Accessed:
June 2015).

[9] Demola. www.demola.fi. (Accessed: June 2015).

[10] www.protomo.fi. (Accessed: June 2015).

[11] IMPONET,

https://itea3.org/project/imponet.html (Accessed: June

2015).

[12] NEMO&CODED, https://itea3.org/project/nemo-coded.html (Accessed:
June 2015).

[13] ENERGOS, http://innovationenergy.org/energos/ (Accessed: June
2015).

[14] Google Glass for Traffic Warden.

http://googleglassfortrafficwarden.blogspot.fi (Accessed: March 2015).

30

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Performance Exploring Using Model Checking
A Case Study of Hard Disk Drive Cache Function

Takehiko Nagano™®, Kazuyoshi Serizawa®, Nobukazu Yoshioka®, Yasuyuki Tahara® and Akihiko Ohsuga®

'Research & Development Group, Hitachi, Ltd., Yokohama, Japan
’GRACE Center, National Institute of Informatics, Tokyo, Japan
*Graduate School of Information Systems, University of Electro-Communications, Chofu, Japan
e-mail: {takehiko.nagano.nr, kazuyoshi.serizawa.fz}@hitachi.com, nobukazu@nii.ac.jp, {tahara, ohsuga}@is.uec.ac.jp

Abstract—To avoid performance problems (e.g., execution
delay), model-based development represented by model checking
is used to improve performance quality. However, not so many
studies have applied the model checking of performance to actual
product development. Specifically, model checking has not been
applied to performance exploring, so it is hard to say how
effective model checking is. Furthermore, creating a new model
for performance verification in addition to the usual development
process greatly burdens developers. To reduce this burden, man
hours for performance verification modeling must also be
reduced. Accordingly, we embedded parameter deployment code
to create a performance verification model and achieved
performance exploration to ease performance optimization. Also,
we developed a performance verification modeling method
reusing existing product code to reduce modeling costs (man
hours). In this paper, we report a case study in which the
proposed method was applied to a Hard Disk Drive (HDD) cache
emulation program. According to the results, the minimum cache
capacity required processing was completed within the target
time. We also show that 57.89% of cache emulation program
codes were reused to create the new performance verification
model. These results validated the proposed method.

Keywords-performance; model checking; embedded system.

. INTRODUCTION

Embedded computer systems acquire more advanced features
and become more complicated every year, so the lines of code
also increase. Therefore, the parameters that control the
system increase, the combinations of the processing that
attains performance become huge, and the performance
prediction and exploring of the system are difficult. For
example, in the database software case, although the tuning
parameter is prepared, performance optimization is not carried
out for each product. Thus, system engineers need to do
performance tuning using the above parameter before product
release. Therefore, the tuning documents and tools are
prepared by the software vender [11]. Moreover, system
engineers need to explore system performance including
hardware controlled by software and other software packages.
However, if performance tuning is not finished by the release
deadline and products are released while still having
performance problems, we may suffer damaged customer
relations, business failures, income loss, additional project
resources, reduced competitiveness, and project failure [2].
Complicated product exploring is difficult to fit in to the
limited time of a product’s release schedule. Compuware

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

reported that 20% of computer systems have performance
problems (e.g., execution delay) [13].

To solve these problems, usually two approaches have been
taken. One is carrying out performance prediction and design
at early phase of system development. The other is verifying,
analyzing, and solving the performance problems at later
phase of system development [1][2].

Specifically, at early phase of system development, we carry
out system performance prediction using a mathematical
model represented by queuing theory [3][4] and performance
verification of an algorithm using model checking represented
by UPPAAL [6][16][17]. At later phase of system
development, we carry out implementation based on a design
using the above techniques and performance evaluation,
analysis, tuning, and redesign using test results [2]. These
techniques have achieved positive results. However, it is
difficult to evaluate and analyze performance
comprehensively. Because, the parameters that control the
system increase, and the combinations of the processing that
attains performance become huge. In this paper, we focus on
model checking from the viewpoint of comprehension. And
we apply it to performance exploring.

The case studies of using model checking are reported [6],
[71[8]. However, not so many studies have applied the model
checking of performance to actual product development
[16][17]. Specifically, model checking has not been applied to
performance exploring, so it is hard to say how effective
model checking is. Furthermore, creating a new model for
performance verification in addition to the usual development
is a big burden for developers. To reduce this burden, man
hours for performance verification modeling must also be
reduced.

In this paper, we propose the following two methods:

1) An easy performance exploring method embedding
parameter deployment code used to create performance
verification model;

2) A performance verification modeling method reusing
existing product code to reduce modeling costs (man hours).

By method 1), performance exploring realizes a
comprehensive verification mechanism of model checking.
Moreover, by method 2), the C code embedded function of
PROMELA is used for performance verification modeling
[20]. Specifically, costs are reduced by using the actual
product C code instead of new modeling by PROMELA.

Moreover, we report a case study in which the proposed
method was applied to a cache emulation program.

31

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

In Section 2, we describe a performance problem and
objective. In Section 3, we explain our proposed method. In
Section 4, we present about our target, a HDD. Specifically,
we present a cache emulation program and analysis results of
its application. In Section 5, we discuss the effect of the
proposed method. In Section 6, we detail our conclusions and
future work.

Il. PROBLEM AND OBJECTIVE

A. Performance problem and research scope

A purpose of this paper is to solve the execution delay
problem of the embedded computer system. We assume that
all programs are implemented in C language in this paper,
because C is a major programming language in embedded
systems. Particularly, a target of this paper is an embedded
system in that software controls hardware, such as a storage
system, a car engine controller and so on.

B. Related works

To solve these problems, many techniques have been
proposed and applied. To overcome system performance
problems, two approaches have been taken. One is carrying
out performance prediction and design at early phase of
system development. The other is verifying, analyzing, and
solving the performance problem at later phase of software
development. Below, examples of these approaches are
presented.

1) Countermeasures against performance problems at
early phase of system development
At early phase of system development, we carry out system
performance prediction and performance verification of an
algorithm. Performance prediction uses a mathematical model,
typically queuing theory. Queuing theory has been applied in
various fields, and many results have been reported [3][4].
Moreover, an example using the Markov model for the
performance prediction model has also been reported [5].

Next, the prediction and verification using a design model
are described. The modeling method consists of a
mathematical model and a programmatic model. In the
mathematical model, the model is created using timed-
automata [9], Petri net [18], and so on. In the programmatic
model, the model is created using UML extended by MARTE
[1]. The performance design and verification using model
checking is included here. UPPAAL using timed automata is a
widely used model checking tool in this domain [6][16][17].
For example, UPPAAL is applied to time constraint
verification of Audio/Visual protocol [6]. There are also other
models checking tools like PRISM that can verify a statistical
model [7].

2) Countermeasures against performance problems at
later phase of system development
At later phase of system development, we carry out two main
performance improvement measures. One is a performance
analysis test of a developed system to evaluate whether the
target performance is achieved. The other is performance

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

tuning to analyze test results. After that, the system is
redesigned, parameters are reconfigured, etc. [1][2]. These
techniques have been applied to actual systems, and designs
for next generation products have been reported [15].
Moreover, our company also applies these measures in many
product developments. Furthermore, documents and tools
needed to master a software package are prepared by the
software vender [11].

C. Problems to solve

The countermeasure described in Section 2-B is implemented
to prevent performance problems. And, these techniques have
achieved positive results. However, it is difficult to evaluate
and analyze performance comprehensively. Because, the
parameters that control the system increase, and the
combinations of the processing that attains performance
become huge. In this paper, we focus on model checking from
the viewpoint of comprehension. Also, we apply it to
performance exploring.

Not so many studies have applied the model checking of
performance to actual product development. Specifically,
model checking has not been applied to performance
exploring, so it is hard to say how effective model checking is.
Moreover creating a new model for performance verification
in addition to the usual development greatly burdens
developers. Furthermore, to reuse old product code, it is
necessary to create a performance verification model that also
includes the past code. This recurrent work also becomes a big
burden. To reduce the above burdens, man hours for
performance verification modeling must also be reduced.

As a result of the above issues, the problem to solve is as
follows.

Problem to solve: Enable performance exploring of
complicated systems with advanced features.

To solve the above problem by model checking, we first do
the following.
e Establish a method for applying model checking to
performance exploring

o Develop an efficient performance modeling method

I11. PERFORMANCE EXPLORING USING PARAMETER
DEVELOPMENT AND PERFORMANCE VERIFICATION MODELING
REUSING PRODUCT CODE

There are various types of performance, such as execution
time and throughput. In this paper, we define execution time
as performance.

A. Outline of proposed method

Many modeling languages exist for design and verification.
Modeling languages for design include UML, and modeling
languages for verification include model checking such as
PROMELA [20]. Furthermore, there are two types of
language for verification. One is for functional verification
such as PROMELA, and the other is for verification for real
time systems such as UPPAAL [6]. In this paper, our target is
a modeling language for functional verification such as

32

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

PROMELA. Because model checking is used, comprehensive
verification is attained. Additionally, by applying model
checking, performance exploring is achieved. From the above,
we propose the following two methods.
1) Easy performance exploring
deployment code

using parameter

2) Performance verification modeling reusing product
code

By method 1), we can apply model checking to performance
exploring. Performance exploring is realized using the
comprehensive verification mechanism of model checking.
Moreover, by method 2), we can develop an efficient
performance modeling method. We use the C code embedded
function of PROMELA for performance verification modeling.
Specifically, costs are reduced by using actual product C code
instead of new modeling by PROMELA. Here, FeaVer, which
generates the PROMELA model from the C code, exists as
related research. However, FeaVer is not a performance
verification model but only a functional verification model [9].

Moreover, we explain how to verify HDD performance using
PROMELA/SPIN not aimed at real-time verification, unlike
UPPAAL.

B. Performance exploring using parameter deployment code

In case that there are some parameters affecting to system

performance, to find a set of the parameters to achieve
required performance, performance exploring of the
parameters needed to repeat until adequate set was found.
We propose a parameter exploring method for performance to
let a model checker, like SPIN. For example, in selecting
cache size, we want to choose the smallest cache that satisfies
the target performance. In this case, after the cache size is
changed, many tests must be performed and results evaluated.
When a tester uses a simulation program, the program
evaluates by creating a script as shown in Figure 1. In Figure 1,
the caches sizes in the second line (4, 8, 16, 32, and 64MB)
are inputted to the cache_simlator program, and all patterns
are executed to calculate execution time.

1 #!/bin/sh

2 for CACHE in4 8 16 32 64
3do
4./cache_simulator
result$CACHE.txt
5 done

workload_cmd_data.csv $CACHE >

Figure 1. Wrapping program
By using a model checking technique, SPIN deploys
parameters for exploring. Furthermore, the machine was
checked to see whether verification conditions were satisfied.
To evaluate cache size, as shown in Figure 2, all cache sizes
that can be taken in “if” sentences must be described. By this
description, the verification machine (SPIN) verifies by
exploring using all parameters. Thereby, to create a script as
shown in Figure 1, performance test using an actual machine,
analysis of the result log, etc. become unnecessary, and

performance exploring efficiency improves.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

1

2 :: CacheSize MB =4
3 :: CacheSize_MB =8
4 :: CacheSize_MB = 16
5 :: CacheSize_MB =32
6 :: CacheSize_MB =64
7

Figure 2. Parameter deployment sample

C. Performance verification modeling reusing product code

1) Reuse of whole processing

The part that does not contain the conditional branch that
influences performance reuses the original C code. The only
thing necessary is to surround the function of C language with
the c_code{}. An example is shown in Figure 3. In Figure 3,
the function sorts a segment’s structure by time using gsort of
libc. To apply this technique, it is necessary to check whether
the target function is processed atomically. This is because the
inside of the processing surrounded by c¢_code{} is processed
atomically by SPIN.

/1 c_code{ A
/lcompare function
int comp_segment(const void *segl,const void *seg2)

{
int Timel, Time2;
SegmentUnit *Unitl = *(SegmentUnit **)seg1;
SegmentUnit *Unit2 = *(SegmentUnit **)seg?2;

Co~NouhhwnN

Timel = Unitl->Time;
10 Time2 = Unit2->Time;
11
12 return Timel - Time2;
13 }
\14})
Figure 3. Example of call function writing by C code
2) Modeling of the part containing conditional branch
that influences performance

In this subsection, we describe modeling the part containing
the conditional branch that influences performance. In the
proposed method, the conditional branch (if, while, etc.),
which has influence on performance need to be converted to
conditional branch of PROMELA, and about expression of the
condition, the original C code need to be surrounded with the
c_expr{}.

Figure 4 shows the original C code of the conditional branch,
and Figure 5 shows an example in which it is PROMELA-ized.
The control structure of C language can be mostly used by
PROMELA: “if” sentence, “while” sentence, etc. Thus, we
use it as shown in Figure 5.

1 if(LRUDumpTime ==0){
2 SystemTime += Timelnterval;

3 Jelse{
4 SystemTime += LRUDumpTime;
5 LRUDumpTime =0; }

Figure 4. Example of original C code

33

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

=)

~

2 ::c_expr{ LRUDumpTime == 0} ->

3 c_code{

4 Pcache_main->SystemTime += Timelnterval;

5 %

6 :else ->

7 c_code{

8 Pcache_main->SystemTime = += LRUDumpTime;
9 LRUDumpTime =0;

10 }

11 fi;

Figure 5. Example of PROMELA model
For example, when the “if” sentence shown in Figure 4 is
written by PROMELA, the whole code is surrounded by “if”
and “fi” like in the first and eleventh lines in Figure. 5.
Conditional sentences are written like the second and sixth
lines. Moreover, we need the cross-reference of the variable
declared within the model of the PROMELA portion and the
variable declared in the C code portion. In this paper, the
variable declared within the model of PROMELA is updated
by the C code side and then used for PROMELA model
control. For example, the fourth line in Figure 5 is equivalent
to this processing. In this case, the variable “SystemTime”
declared by PROMELA is updated by the C code side. If
SPIN can be distinguished in the variable of the PROMELA
process, SPIN cannot be renewed. In this case, “Pcache_main”
describes the PROMELA process information. P represents a
process, and cache_main represents the process name. By
following this notation, SPIN can execute a hame resolution

so that an applicable variable can be referred to.

IVV. HARD DISK DRIVE CACHE EMULATION PROGLAM AND
ANALYSIS RESULT

In this section, we describe the analysis results for applying
the technique of performance verification and exploring
described in Section 3 to a HDD cache emulation program.
Moreover, we describe the application of the technique using
the analysis results.

Therefore, first, we describe the HDD cache emulation
program used this time. Next, we describe the analysis results
of the cache emulation program. Furthermore, we describe the
modeling of reusing actual cache emulation program code.
Finally, we evaluate the created model’s validity.

A. HDD outline

Here, we describe performance verification of the cache
function of HDD. The performance of HDD is influenced by
the frequency of drive access. For example, while the drive
head attainment time (seek time + wait time of revolution) is
16.53msec in the drive of 7200rpm, cache memory control
processing needs W sec order. This proves that time of drive
access is dominant in the 1/O time of HDD [10]. From this,
HDD is equipped with the cache function to hold the accessed
data in a memory in order to reduce the number of disk
accesses. The utilization efficiency of the cache is improved,
and the whole performance is demonstrated.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

In this study, we explore and verify the performance of this
cache function using model checking and show the results.

Moreover, for the processing time of a drive portion, a value
is returned using the time it takes on the average to make data
size uniform.

1) Composition of HDD and cache memory

The composition of HDD is shown Figure 6. HDD consists
of software, represented by firmware (FW), and hardware,
represented by the I/F controller, memory, disk drive, and
other controllers.

Next, we explain the processing flow using write processing.
First, the HDD receives a host command (workload data) from
the I/F controller. Second, the I/F controller sends a command
to FW. Third, the FW’s cache controller module checks
whether writable cache area remains. If it does not, the data on
cache is written to the disk drive using a memory controller
and drive controller, thus opening up writable space on the
cache. Fourth, after writing, new command data is written on
cache memory by FW.

HDD

Host I/FJ

work contraller controller
load T
CPU

»

F 9

1] Cache Drive

controller || comtroller

Figure 6. HDD Overview
2) Verification targets

In this paper, we verify the performance of the cache
function. Here, performance is defined as execution time.
Based on the above definition, our verified targets define the
time from the head command being accepted to the tail
command being accepted.

Next, in the future, we plan to use verification results of
actual product development. Hence, we plan to make time
accuracy of verification results equivalent to the actual system.
Therefore, we do not abstract time accuracy.

In this paper, we chose only write processing as the modeling
target.

3) Parameters used for cache emulation
Here, we use parameters equivalent to an emulation program.
These parameters’ information is shown in Table I.

TABLE |. PARAMETERS FOR EVALUATION

Parameter Meaning
Rotational speed Revolution per minute
Sector Size Subdivision area size of a track
(512 or 4096 byte)
Cache Size Total cache size

Average seek time
Max segment count

Head moving time to target
Subdivision area count of Cache
memory

Max sector count per track

Max sector count

34

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

B. Cache emulation program

Cache processing outlines shown in Figure 7. Before Step 1,
the cache program is checked to see if a command has arrived.
If it has, cache program is checked to see if it still has easy-to-
output data (Step 1). If it does, the cache program transfers the
data from cache to a disk drive and opens up writable space in
cache (Step 2). If it does not, cache receives a command from
the I/F controller (Step 3). Next, the cache program judges
whether the new caches used are to be bigger than cache
capacity or not (Step 4). If cache overflows, the data chosen
by the cache program using a policy (ex: LRU) is written to
the disk drive (Step 5). After that, the cache program transfers
the data held by I/F to cache memory (Step 6).

ata, easily puf
out remains in

Yes

Make space in cache
[Transfer data: cache->DiskDrive)

“Step2 |

I/F has
receive
ommand]s,

Will cache
averflow?

Make space in cache
(Transfer data: cache->DiskDrive)

Step5

f———
Stepﬁ'l— Transfer data: I/F->cache |

|
Figure 7. Cache processing outline

On the basis of the above process and in accordance with the
modeling plan shown in Section 4-A, we created a verification
model written in PROMELA from cache emulation program.
Figure 8 shows the state transition diagram of cache emulation
program with the object of performance modeling. The
emulation program modeling this time does not have a host
portion. The module of Host I/F reads the workload file and
carries out emulation of cache.

Moreover, to calculate drive access time, we did not use an
actual HDD. We use the virtual model that calculates average
drive access time in this report.

States of the state transition diagram are as follows. The
correspondence state in Figure 7 is shown inside of [].
q0: Workload check [before stepl]

gl: Segment count check [stepl]

g2: Create drive access list using cache data [stepl]
g3: Judge existing access list [step1]

g4: Calculate drive access time and clear cache [step2]
g5: Check exist any drive access [step2]

g6: Set lapsed time by drive access [step2]

q7: Set interval time [before step3]

g8: Update system time [before step3]

q9: Obtain commands within update time [step3]

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

q10: Create new segment [step4]

g11: Modify hit segment [step4]

ql12: Check cache size [step4]

q13: Decide destage segment [step5]

g14: Calculate drive access time and clear cache [step5]

q15: Transfer data from I/F to cache [step6]

ql16: Finish

Next, we explain the flow of processing using Figure 8. When
workload processing starts, the processing changes to qo:
Workload check state. Then, the number of remaining
commands of the workload is checked. If there are any
remaining commands, the processing will change to g1, and if
not, it will change to ql6, finish emulation, and verify
execution time. In gl: Segment count check state, segment
count (Seg) in the cache is checked and whether to output
cache contents to the drive or not is determined. If Seg > 1
(outputting cache contents to drive), processing changes to q2.
If Seg <=1 (not outputting), then processing changes to state
g5. In g2: Create drive access list using cache data state, a
drive access list is created and processing changes to g3. In
g3: Judge existing access list state, if an access list exists,
processing changes to g4. If no list exists, processing changes
to g5. In g4: Calculate drive access time and clear cache state,
drive access time is calculated and acquired from head LBA
address of the access list and the length of access data. After
this step is completed, processing changes to g5. In g5: Check
if any drive access state exists, check whether existing drive
access (at g4 or g14) exists or not. If drive access exists, then
processing changes to g6. If not, processing changes to q7. In
g6: Set lapsed time by drive access state, drive access time is
added to system lapsed time, and processing changes to g8. In
q7: Set interval time state, configured interval time is added to
system lapsed time, and processing changes to g8.

In g8: Update system time state, system time is updated using
set lapsed time. After system time is updated, processing
changes to g9. In g9: Obtain commands within update time
state, the commands arrive within the updated time. If there
are no commands, processing changes to q0. If commands
exist, a cache is judged to be a hit or miss. If a command is
judged to be a miss, processing changes to g10. If a command
is judged to be a hit, processing changes to ql11. In q10: Create
new segment state, the new segment set up information is
secured and processing changes to g12. In g11: Modify hit
segment state, the updated information on hit cache segment is
acquired and processing changes to q12. In gq12: Check cache
size state, updated cache size is judged to be bigger than the
system cache or not. If it is bigger, processing changes to q13.
If not, processing changes to g9. In ql3: Decide destage
segment state, the segment that is outputted to a disk drive or
deleted is chosen by using a scheduling algorithm (ex. LRU),
and processing changes to ql4. In gl4: Cache drive access
time and clear cache state, cache segment information and
clear segment are outputted and processing changes to q15. In
q15: Transfer data from I/F to cache state, the command data
which has reached I/F is transfer to cache. After this step is
completed, processing changes to q 12.

35

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

No command No remain command

w'thin update time

cache sice
underflow

cache size overflow
Finish

Decide segment

Finish

Figure 8. Cache program state transition diagram
The above is processing sequence of the target cache
emulation program.

C. Analysis results of cache emulation program

This section describes the analysis result of a cache
emulation program. This time, cache performance verification
model is created reusing the existing cache emulation C
program. Therefore, we describe how to judge whether to
reuse the C program part or the new modeling part.

1) Analysis of the cache emulation program based on
the contents of verification

Based on the verification contents described in Section 4-A-2,
we analyzed the target cache emulation program. This
subsection describes the analysis of results.

As described in Section 4-A the HDD 1/O performance has
dominant disk access time. Additionally, cache processing
time does not influence system execution time. Thus, in this
verification, addition of lapsed time was limited to the drive
access part. However, the opportunity to generate drive access

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

depends on command arrival time. Therefore, we decided to
calculate lapsed time on the basis of the command arrival time.
Moreover, as mentioned above, since a branch was required to
judge the existence of drive processing and a branch
accompanying command processing affected lapsed time, they
were newly modeled by PROMELA.

Next, from the above-mentioned plan, in processing that
determines the contents of drive access, only an execution
result influences drive access time, so we thought that the
process would not influence performance. Therefore, the
processing model that determines the contents of drive access
reused the cache emulation C program code. Furthermore,
cache emulation program calculates drive access time using
only access length, not an internal drive state. Thus, we chose
the processing drive portion reusing cache emulation C
program code.

From the results of the above analysis, we decided to
determine the part that reuses cache emulation C program
code and a new modeling part using PROMELA.

D. Development of performance verification model
using cache emulation program
1) Create performance verification model

As opposed to the state transition diagram in Figure 8, on the
basis of the analysis results in Section 4-C, we decided the
part that reuses cache emulation C program code, the part that
models using PROMELA, and the part that calculates time
progress. The result is shown in Figure 9.

The parts enclosed in a dotted line reuse the existing code,
and the parts enclosed in a solid line newly create a model
using PROMELA. Time progress processing (to carry out
drive access part) is in gray.

The example of modeling in Figure 9 already appeared in
Figure 5. Figure 5 shows the same processing as the state
diagram that consists of a tri-state of g5, g6, and 7. Lines 1, 2,
6, and 11 in Figure 5 show the same processing as g5. Lines 3
to 5 in Figure 5 show the same processing as q7. Lines 7 to 10
in Figure 5 show the same processing as g6. Finally, lines 3 to
5 and lines 7 to 10 are reused by inserting them into ¢_code.
Other processing parts similarly create a model reusing C code
or using PROMELA.

E. The validity check of created model

In this section, the verification model created in Section 4-D
is verified using actual work load data. Results are described
below.

1) Workload used for verification
In this verification, we use the workload in Table II.

TABLE Il. WORKLOAD SPECIFICATIONS

Name Value
Command count 6510
Command input time range (U sec) 0~ 35529817
Start LBA range 95~1953512383
Data length (sector) 1~256

2) Parameters for verification
In this verification, we use following parameters shown in
Table 111

36

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

No commaznd Mo remgin command

w'thin update time

Exist
Access

list ¢~
{ q4
/
FIrlIbTI
Exist d-ive access

No drive access

Cache size
underflow

Cache sice over Mow

s N
Finish | §q13}
LY '

; Decide segment
[q14 l

; Finish

qIS;

o s 7
-y
{)Reuseccode
o
@ Comrrand check or drive access chack

O Drive Access

Figure 9. Modeling method
TABLE Ill. HARDDISK PARAMETERS

Parameter Meaning
Rotational speed 7200 rpm
Sector Size 512 byte
Cache Size 4,8,16,32,64 MB
Average seek time 8.2 msec
Max segment count 2048
Max sector count 2048
3) PC used for verification

In this verification, we use the PC in Table IV.

TABLE IV. SPECIFICATIONS OF EXPERIMENT PC

Name Dell Precision T1500
CPU Intel(R)Core(TM)i7-860 2.8GHz
Memory 16GB DDR3 SDRAM(1066MHz)
Chip Set Intel(R) H57

4) Using verification tool

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

In this verification, we use SPIN. The version of used
verification tool is SPIN 5.2.5.

F. Verification of execution time

First, we explain the verification of execution time. After the
input of the workload, the verification machine calculated
execution time and verified whether it satisfied the conditional
expression. Then, we verified whether the SystemTime for
reaching ql6: finish state in Figure 8 exceeded the
requirement value. The used verification condition is assert
(System Time < Target Time).

A [](System Time < Target Time) can also be used for the
same verification.

In the results of this verification, the trail file was outputted
when SystemTime exceeded the TargetTime. Thereby, the
execution time was verified to satisfy the target or not.

Figure 10 shows an example case in which the above

verification conditions were not satisfied.
When the cache size was 4MB and target time was 40,000,000
M sec, processing took 47,681,370 W seconds and System Time
exceeded requirement time, so a trail file was outputted
(Figure 10).

(- [O]]

LN ottty e o 0/ e v o
antlt assertion violated (SvatenTime<d0000000) (at depth 78415) =]
Epin: trail ends after 78415 steps
Hprocessmes I
784151 proc 0 (: 1nét 1) line B46 (state 2)
Zend-
78415: proc 1 (cache_main) line 809 (state 78) (invalid end state)
assert [(SyztenTine<40000000))

lzlobal vars:
local ware proc 1 (cache main):
int DataCount : 510
int SystemTine: 47631370 j
124084,17 99%

Figure 10. Trail file examplel
We acquired the execution results of the cache emulation
program and compared them with the verification results of
the created model.
The execution results of emulation program are shown in
Figure 11.

- [O]]

TP HE REE FHEE JUbO-MQ) SUEOM) Resize AJLFH

takelide] [-t1500: /papers 201 37hdd_c/ best 1 D538 cab resulbd. bt B
fine name = zample_cmd_data.cav ,command count = 6510
achedize = 4194304
Final Cache 3ize = 4137984 ,3ystemlime = 47681370

takeldel 1 -41600: ~fpaper/ 201 5/hdd_c/test1023% caf resultd.ixt
fine name = zample_cmd_data.cav ,command count = 0

acheSize = $388608
Final Cache Size = 8371200 3ystemTime = 44080020
takeflide] 1 -t1500: /paper/2013/hdd_c/test1023% cat resultlB.txt
fine name = sample_cmd_data.csv ,command count = B510
acheSize = 16777
Final Cache Size = 16763904 ,SystenTime = 39385296

takeflde] 1 t1500 /paper/2013fhdd c/test10838 cat resultd2.txt
fine name = sample_cmd_data.csv ,command count = B510
achedize = 33554432
Final Cache Size = 33547264 ,SystenTime = 35b2OL6Z

takelde] 1 t1500 /paper/2013fhdd c/test10238 cat resultfd.txt
fine name = sample cmd data.csv ,command count = 6510

achedize = 67108564
Final Cache Size = bb00BBIE ,SystenTime = 35530000
takeldel 1 -1500: "/ paper/ 2013/ hdd_c/text 10233

-
Figure 11. Result of emulation program

The file named result*.txt in Figure 11 is an execution result
of an emulation program. The applicable numerical value at *
shows the cache size. The result of Figure 10 and the result in
cache size equals 4MB of Figure 11 are equivalent. All the
results in Figure 11 became equal when a model is executed
using the same conditions. From this, the created model was
judged to have behavior equivalent to that of an emulation
program from this result. As mentioned above, in this research,

37

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

the created model was judged to be executed the same as an
emulation program. Therefore, the created model is thought to
be appropriate.

V. DISCUSSION

A. Source code reuse ratio and evaluation

In this paper, we attempted to create a model more efficient
than the newly made model by reusing C source code. Then,
we analyzed the ratio of the reused number of C codes close to
the number of codes of the model.

The results of analysis are shown in Table V.

TABLE V. RESULTS OF CODE REUSE ANALYSIS

Name Value
Model LOC 627 (comment lines are excluded)
Cache C code LOC 605 (comment lines are excluded)
C Line in model 363 (Number of C codes (reuse codes) in a
model
Reuse rate 57.89% (vs. Model LOC)
Reuse rate 60.00% (vs. Cache C code)

In the results, 60% of original source codes were reused.
Moreover, the reuse ratio of the cache C code to a model
became 57.89%.

B. Performance exploring using model checking

Next, we show the results of performance exploring using
model checking. We used the same verification conditions as
described in IV-F and the code shown in Figure 5, which
distributes the cache sizes of 4, 8, 16, 32, and 64MB.

The target time was 40,000,000 p sec like in Section 4-F, and
we carried out performance exploring. In addition, this
exploring was completed just to run the program once the pan
file that the SPIN generated was executed. Creation of a
program as shown in Figure 1 is unnecessary.

The results are shown in Figure 12. These results show that
two cache sizes cannot fulfill the conditions, abnormalities
occur, and a trail file is generated.

(O[]

L T T =ty |) B O v = N

acheSize - MB = 4194304 =
WS Svstem Time = 47681370

an 117 aszertion violated (SyetenTime<d0000000) (at depth 78414)

an: wrote cache_main_1022.pmll . trail

acheSlze KB = 8383608
LERe] Syetem Time = 44080020
an wrote cache_main_1022.pml 2. trail

achedize MB = 18777216
BiiH$33 System Time = 39885296

achedize MB = 33554432
Pittesd System Time = 36529562

acheSize MB = B7108864
fiffddd System Time = 35630000

(Spin Vers%}on 5.2.5 —- 17 heril 2010)

artial Order Reduction

Full statespace search for:
never claim - (none specified)
agsertion violations +
cvele checks - (disabled by -DSAFETY)
invalid end states +

tate-vector 92 byte, depth reached 401788, errors:

93080Z states, stored

18 states, matched
930820 transzitions (= stored+matched)
atomic steps

ash conflictz: 207476 (rezolved)
tats on memory usase (in Mesabytes):
108,522 equivalent memory uzage for states (stored*(State-vector + overhead))
463,678 actual memory usage for states (unsuccessful compression: 304.68%)
gtate-vector as stored = 1058 byte + 28 brte overhead
memory used for hash table (-wl9)
memory used for DFS stack (- m20000000)
other (proc_and chan stacks
total actual memory usase

4.000
915.527
74142
1907348

4.1 Fare | ﬂ
Figure 12. Results of performance exploring

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

The first pan file has the same contents as Figure 10, so an
explanation is omitted. The results of having read the second
pan file are shown in Figure 13. As Figure 12 shows, when
cache size was 8MB, execution time became 44,080,020 p sec,
which did not satisfy verification formula. In the verification
and results in Figure 11, when cache size was less than 8MB,
verification showed that target performance could not be

attained. It also turned out that 16MB attains target
performance with the smallest cache capacity.
IS [=]
FIIET dmalE) eroEL o0 Ty TH TN Resize LT
an:l: agzertion violated (SystemTime<40000000) (at depth 875910 =

pin trail ends after 87591 steps
procezzes £
875911 proc 0 (linit!] line 683 (state 2)
b
87591: proc 1 (cache main) line B4B (state 78) (invalid end state)
azzert ((Srst enTime<40000000))
lobal wars:
local vars proc 1 (cache_main):
int DataCount :
int Svstemlime:

6610
44080020 :|
141075, 8 9% =

Figure 13. Trail example 2
As mentioned above, in model checking, parameters are
explored by using the code for parameter deployment, the
code for selection of an algorithm is similarly embedded, and
a user becomes able to optimize performance easily.

VI. CONCLUSION AND FUTURE WORK

In this paper, to enable performance exploring for embedded
computer systems, which acquire more advanced features and
become more complicated every year, we decided to achieve
the following objectives for model checking.

e Establish a method for applying model
performance exploring

checking to

o Develop an efficient performance modeling method

To meet the above objectives, we proposed the following
two methods.

1) Easy performance
deployment code

2) Performance verification modeling reusing product
code

Moreover, the proposed techniques were applied to a HDD
cache emulation program, and we verified whether processing
could be completed within a target time and confirmed its
validity.

Furthermore, we embedded parameter deployment code to
create a performance verification model and achieved
performance exploring, and then we the determined that
minimum cache capacity required processing was completed
within the target time. We also showed that 57.89% of cache
emulation program codes were reused to create the new
performance verification model. From these results, we
validated the proposed technique.

For future work, we need to evaluate whether the proposed
technique reduces the man hours in an actual product
development.

Moreover, although reuse of code was considered to improve
the efficiency of modeling this time, the used part of code will
be processed atomically. From the characteristic of HDD,
since the criterion of judgment of atomizing was created, it is
necessary to also examine the criterion of judgment in the case
of applying the proposed technique to other products.

exploring using parameter

38

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Finally, the performance was defined as execution time and
verified in this paper. However, since the throughput is
similarly important as an index of performance, it will need to
be considered too.

REFERENCES

[11 M. Woodside, G. Franks, and C. Petriu, “The Future of Software
Perfo-mance Engineering” in Proc. Future of Software
Engineering 2007, May. 2007, pp. 171-187.

[21 C. Smith, L. Williams, “Performance solutions” Addison-
Wesley Publishers, 2001.

[3]1 K. Trivedi, “Probability and Statistics with Reliability” Queuing,
and Computer Science Applications. Wiley, 2001.

[41 L. H. Henry, “Software performance and scalability”
20009.

[51 Q. Qinru, M. Pedram, “Dynamic power management based on
continuous-time Markov decision processes” in Proc. of Design
Automation Conference, New Orleans, LA, June 21-25. 1999,
pp.555-561.

[6] K. Havelund, A. Skou, K. G. Larsen, and K. Lund, “Formal
Modelling and Analysis ofan Audio/Video Protocol: An
Industrial Case Study using UPPAAL” in Proc. the 18th IEEE
Real-Time System Symposium, Dec 1997, pp 2-13.

[71 T. Nagaoka, A. Ito, K. Okano, and S. Kusumoto, “QoS Analysis
of Real-time Distributed System Based on Hybrid Analysis of
ProbabilisticModel ~ Checking” IEICE Transactions on
Information and Systems, Vol.E94-D, No.5, pp.958-966, May
2011.

[8] K. Moonzoo, K. Yunho, “Automated Analysis of Industrial
Embedded Software” in Proc. 9" International Symposium,
ATVA 2011, Taipei, Taiwan, October 11-14, 2011, pp. 51-59.

[91 R. Alur, D. Dill, “A theory of timed automata,” Theoretical
Computer Science 126:183-235, April 1994, doi:10.1016/0304-
3975(94)90010-8

[10] B.Jacob, N. W. Spencer, D. T. Wang, “Memory Systems Cache,
DRAM, Disk” Morgan Kaufmann Publishers,2008

Wiley,

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

[11] Oracle(R), “Database Performance Tuning Guide 10g Release2”
http://docs.oracle.com/cd/B19306_01/server.102/b14211/toc.ht
m. [Accessed: Sep 24, 2015]

[12] G. J. Holzmann, M. H. Smith, “Software model checkina:
extractina verification models from source code Formal
Methods for Protocol Enaineering and Distributed Systems” in
Proc. (FORTE/PSTV99) October 1999,pp.481-47.

[13] Compuware, “Applied Performance Management Survey”, Oct
2006.

[14] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of
Embedded Software: A First Step Towards Software Power
Minimization” IEEE Transactions on VLSI Systems, Vol2, pp.
437-445, Dec. 1994, doi:10.1109/92.335012

[15] S. Barber, “Creating Effective Load Models for Performance
Testing with Incomplete Empirical Data,” in Proc. 6" IEEE Int.
Workshop on Web Site Evolution, 2004, PP. 51-59.

[16] A. David, K. Larsen, K. Legay, M. Mikucionis, D. Poulsen, and
S. Sedwards, “Runtime Verification of Biological Systems,”
ISOLA, LNCS, Springer, Vol7609, 2012, pp 388-404.

[17] G. Igna, V. Kannan, Y. Yang, T. Basten, M. Geilen, F.
Vaandrager, M. Voorhoeve, S Smet, and L. Somers, “Formal
Modeling and Scheduling of Datapaths of Digital Document
Printers.” Proceedings FORMATS'08, Saint-Malo, France,
September 15-17, 2008. LNCS 5215, pp. 170-187.

[18] R. Hamadi, and B. Boualem, “A Petri net-based model for web
service composition,” Proceedings of the 14th Australasian
database conference-Vol17. Australian Computer Society, Inc.,
2003, pp 191-200.

[19] Object Management Group, “UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded Systems,”
http://ww.omg.org/spec/MARTE/, [Accessed: Sep 24, 2015]

[20] G. J. Holzmann, “The model checker SPIN ,” Software
Engineering, IEEE Transactions, VVol23(5), 279-295., May 1997,
doi: 10.1109/32.588521

39

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Towards a Better Understanding of Static Code
Attributes for Defect Prediction

Muhammed Maruf Oztiirk and Ahmet Zengin

Department of
Computer Engineering
Faculty of Computer

and Information Sciences
Sakarya, Turkey 54187

Email: muhammedozturk@sakarya.edu.tr,

Abstract—Defect prediction requires intensive effort and includes
operations which are focused on reducing the cost of software
development. These operations involving the use of machine
learning algorithms could produce wrong results originated from
skewed or missing data. In order to increase the success rate of
predictors, defect data sets are either pruned or duplicated. To
address this problem, we observe the effects of the derivation
of low level metrics using statistical methods in prediction
performance. The performance of predictions are evaluated using
10-fold cross-validation on each data set. Experimental results
obtained by using 15 data sets show that naive Bayes classifier
improved values of Area Under the Curve (AUC) with the rate
of 0,1 in average.

Keywords—Defect prediction; Low level metrics; Metric deriva-
tion

I. INTRODUCTION

Properties of software codes vary depending on develop-
ment processes, functional goals, and development constraints
[1]1[2]. In order to comprehend this variety in depth, we should
examine software behaviours and tendencies, in which ver-
sions of software changes, along with specific software metric
models [3][4][5]. Developers need metric tables to advance
their understanding of how software changes across it’s newer
versions [6]. The standards, which were developed by McCabe
and Halstead, are widely used ones while generating software
metric tables [7][8]. These standards do not require an in-
depth analysis in the structure of codes; however, the model
presented by McCabe is more suitable than the others in the
design level [9].

Metric tables of software components have a property that
indicates the defect-proneness of software. Thanks to this
property, a defect prediction can be conducted on the basis
of binary classification. However, each data set has potential
problems caused by noise or repeated data points that this
issue reduces the success of prediction [10]. One of the mostly
known problems in defect prediction is class-imbalanced data
sets. In such cases, defects are generally intensified on specific
parts of software so that the reliability of the prediction is not
as desired. In this respect, it is rather difficult to determine
a general bias about the software modules [11]. We have
two ways to cope with class-imbalance: undersampling, and

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

azengin@sakarya.edu.tr

oversampling. Although undersampling is an efficient method,
it causes the hiding of useful data. Likewise, oversampling
may cause an unrealistic increase in the success of learning
[12], [13][14].

In this study, we investigate metric derivation methods and
its effects on defect prediction. Defect data sets consist of
15 data sets including NASA metrics data program (NASA
MDP) and Softlab. The common feature of these data sets is
that they were generated using McCabe & Halstead metrics.
After adding some metrics to the data sets such as character
count (cCount) and class size (cS), the variation recorded
on the performance parameters such as accuracy and AUC
was observed. Moreover, the relationship between low level
and other metrics was strived for the exploration. The results
obtained from the experiment show that the proposed method
increased the success of prediction on 15 data sets in general.

The rest of the paper is organized as follows. Section
2 provides a background describing the relevant terms and
approaches. Related works are mentioned in Section 3 and this
section also discusses the distinctive aspect of our work when
it is compared to similar works. The proposed approach is in
Section 4. The results, we have obtained so far, are explained
in Section 5. The novelty and the contribution of the paper are
presented in Section 6.

II. BACKGROUND

Two types of learning are used in defect prediction: super-
vised and unsupervised learning. Supervised learning is the
most commonly used technique [15][16]. It includes SMYV,
ANN, decision trees etc.. Although unsupervised learning does
not requie a labelling on training data, supervised learning
analyzes the data only labeled. Researchers generally want
to see which supervised learning techniques are suitable for
defect data sets to be predicted. Learning techniques also called
predictors are to predict defect-proneness of modules for the
next version of software.

Properties of code are prepared using a particular mea-
suring standard namely metrics [17]. Even though researches
published in last five years are focused on process metrics that
yielded promising results [18][19], code metrics have some
gaps that are worthy to explore [20][21]. One of them is

40

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

the reliability of defect data sets. As the defect data sets are
generally prepared by combining all related developer’s com-
ments, they may have missing or noisy data points. In order to
cope with this problem, the data are re-sampled or reduced by
using particular preprocessing techniques. SMOTE is one of
the widely used sampling strategy for defect prediction [22].
However it is sensible to combine a sample reduction method
with an over-sampling technique [23].

III. RELATED WORKS

One of the leading fields to explore static code properties
is machine learning. Menzies et al.’s work, published in 2007,
is a much cited work in this field [24]. This work stressed that
the type of the metric set is more important than the selected
predictor in the success of precision. The promising result of
this work is that Bayes classifier showed better performance
than J48 with the rate of 71%. Likewise, we have taken naive
Bayes among performance measurement algorithms.

The framework developed by Song et al. showed that every
data set may not be suitable for every prediction model [25].
This especially changes depending on the type of the data set.
Using this result we can say that every learning method is
not suitable for every defect data set. A two-phase prediction
model was developed in Kim and Kim’s work [26], the reports
considered as eligible were eliminated in the first phase and
the prediction accuracy was obtained as 70%. This work also
proved the importance of preprocessing in defect data sets.

One of the works which used NASA MDP data sets is
Gray et al.’s work [27]. This work, especially focused on data
cleansing, removed some properties of the metrics obtained
from 13 data sets to be suitable for binary classification.
Missing values were assigned to zero. The first of these results
is that used data sets should be extended. Thus, we can
determine whether the repeated data points are in general.
Second, low level metrics should be used to detect repeated
data. Third is the presence of the issues caused by the repeated
data.

The studies above all use static code metrics to build a
proper prediction model. However, the most relevant work to
ours is Gray et al’s work which is explained in the preceding
paragraph. This work and our work have similarities: they
use the same experimental data sets and have claimed the
importance of the use of low level metrics.

IV. PROPOSED APPROACH

NASA MDP and SOFTLAB data sets consisting of metric
values that range from 21 to 40. Tests including ANOVA, t-
test, and chi-square unveiled the relationship between character
count and LOC (number of lines of code) as below:

cCount ~= lCode * 30. (1)

Lorenz and Kidd presented object-oriented metric tables [28].
The main reason why object-oriented metrics are widely used
is that such metrics are the best indicator of system reliability at
design level [29]. ¢S is also a low level metric but it is not avail-
able in the data sets of NASA MDP and SOFTLAB (CS=total
number of operations+ number the attributes) [28]. In order
to explore the relationships of defects, Linear and Multiple
Regression analyses were used. If the binary-dependencies of
the metrics are desired to be extracted, Linear Regression is

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

a convenient method. This method assumes that relations be-
tween variables can explained through a linear model [30][31].
Also our approach is to unveil the linear relationships between
defect data set values. Given a dependent variable as y-f(x),
the assumption having independent variable(x) emerges as
y=ax+b. This is called as Curve Fitting [32]. The aim of this
process is to find the most suitable a and b variables for f(x).
As the value of R? closes to the one, a rather suitable curve
is obtained. If e; is regarded as error term, the formula is
€; = Yi,measured — Yi,model- W€ aim at minimizing .S, in the
formula of S, = Y7 (e;)?. Linear and nonlinear distribution
samples are seen in Figure 1 and Figure 2. The more function
curve fits the real data, including large samples up to the count
of 17186, the more accurate model is obtained.

If f(x) linear function is to be expressed with more than
one independent variable, Multiple Linear Regression is used.
For two variables, we have:

fx) =b+ apz1 + arx2 2

Our approach can be summarized as follows: 1. The extraction

f(x)=ax+b

A

»
>

Figure 1. Curve Fitting (Linear).

——data
---. 2nd order
3nd order

Figure 2. Nonlinear distribution.

of characteristic properties of software defect data sets and
exploring required models. 2. The derivation of new low level
metrics regarding defect data sets and adding to the data sets.
3. The comparison of data sets including low level metrics
with preceding situation.

V. RESULTS

cCount and cS are obtained by using the relationships of
data. To test the use of low level metric, we have used 15
data sets including NASA MDP and SOFTLAB. These data
sets belong to software projects developed using C, C++, and
Java programming languages. The data sets have some metrics
range from 21 to 40 including large samples up to the count

41

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

of 17186. Data sets, having skewed samples at a certain ratio,
comprise 25 missing values. The experimental study has been
tested by using the framework we have been developing. This
framework is able to generate over the given codes and drives
defect prediction with defect prediction algorithms.

The regression analysis results between class size and the
other three metrics are illustrated in Figure 3. According to
these results, a formula y = 0, 52442 — 14,679, R? = 0, 9453
has been found using cS-comment_loc. R? is close to one
that verifies the consistency of the equation. When it comes to
the relation of CS-Executable_loc, an equation is obtained as
y = 9,5518In(x) — 34,278, R? = 0,523. On the other hand,
the effects of Code_and_comment_loc and unique_operand are
close to the zero.

100,00

90,00 -1

80,00 >
70,00 *
s 60,00 s 4
- 00,00 7
» { @ comment_loc
@ | 50,00 g
@ *? M code_and_comment_loc
S| 4000
© .':'0' executable_loc
30,00 ¥
o
20,00 L« 3

10,00 ﬁ ;
0,00 +) Suiinanlin] L an

[} 50 100 150 200 250

Figure 3. Relations between Class Size and other metrics.

Before the prediction, definitions including defect-prone
or not-defect-prone property of software modules should be
prepared. If a module does not include any defect and rightly
biased then it is labeled as TN. In such cases if the module is
wrongly biased then it is labeled as FP. If any module including
defects is wrongly biased, labeled as FN. Last, if the bias and
the prediction is the same for a defect-prone module, it is
labeled as TP. Using these parameters, a table confusion matrix
is organized as in Table 1. The success of the proposed method
is compared to the others by benefiting the formulas defined
in Listing 3.

TABLE I. CONFUSION MATRIX

PREDICTED
nfp | fp
[nfp | TN | FP
[fp [FN [TP

REAL

Precision =TP/(TP + FP), Recall = TP/(TP + FN)
3)

TPR = (TP/TP+FN)x100%, FPR = (FP/FP+TN)%100%

“)
Accuracy =TP+TN/(TP+ FP+FN+TN) (5)

Four classifiers including naive Bayes, Bayes, Random Forest
and J48 have been used for the experiment. 10 fold cross-
validation has been used along with 10 iteration. One of the
evaluation parameters is AUC that is the indicator of the
probability of false alarm versus the probability of detection.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Bayes
100%
95% I"‘\ /L
90% /’" !
3‘ 85% R jv\i
s M A\
5 80% [— y, =& Before
g \
< 75% _“/ \ After
70% (4 ~—¥ -
65% =
60%
= N M =S NN S N O N TN O Ao
£ 2L 88888k 85 & & EE
igure 4. Accuracy values of Bayes.
Figure 4. A y val f Bay
naive Bayes
100% ~»
95%
g 90%
‘a' == Before
8 gco
< 8% After
80%
75%
N M = NN N0 N T N0 —
S90S eCTY8CLTLLEE
¥ £ ¥ 080 00 o0 ® 6 6 & 5 5
Figure 5. Accuracy values of naiveBayes.
RandomForest
100%
/
95% /v —
/| -
|
g 90% 7/ —
§ { / \ =& Before
g 85% 1\ 2
7 / \ After
80% _/ v _/,\ v
v
75% T T T T T
N M N MmN O N SN O oo
SP8EYERFEEEREEE
Figure 6. Accuracy values of RandomForest.
100% y
95% L\ /Q\
\
g sox av e
3 / \ C == Before
o % AN ' (S
< 85% =" N /v A Y After

80%

75%

kel
ke2
ke3
pcl
pc2
pc3
pc4
ar2
pc6
ar3
ar4
ar5
ar6
cml
jmi

Figure 7. Accuracy values of J48.

42

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

On 15 data sets naive Bayes increased the AUC values in
general with the rate of 0.1. Figure 4-Figure 7 show some
results that explain the successes of the predictors both before
the use of low level metrics and after. First, naive Bayes and
RandomForest have increased the success of the prediction in
all data sets except for the pcl. Second, Bayes has produced
worse results than the other algorithms. Last, while the success
of J48 on jml data set has been reduced, successes of the
other algorithms have been increased. Figure 8 and 9 show
the AUC values that measures testing reliability. Having low
level metrics, remarkable improvement has been achieved on
testing set as seen in Figure 9.

@B Bayes
naiveBayes
J48
109 @B RandomForest
0.8+
0.6+
(&)
o)
<C 0.4
O.C.--..--.I-..--.
S S
Data set
Figure 8. AUC values before preprocessing.
@B Bayes
naiveBayes
J48
107 @B RandomForest
0.8
0.6+
[&]
=
<C 0.44
0.2
0.0-%+ T
P vsbé‘ SEEE L Pl

Data set

Figure 9. AUC values after preprocessing.

VI. CONCLUSION

Here, we want to discuss the use of low level metrics in
defect prediction and present our approach based on least-
square using metric relationships. Thus, extracting mathemat-
ical models of the metrics has raised some bias. The first
results showed that the use of low level metrics has achieved
an unprecedented success in NASA MDP and SOFTLAB data
sets.

Low level metrics help us to better understand the details of
software systems. However, the success of learning algorithms
may not be improved with increasing count of the metrics at
steady state. Furthermore, skewness of data sets should be fixed
by exposing all data to a preprocessing. To gain better insight,
we should develop a preprocessing algorithm which uses some

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

tests such as ANOVA, t-test, and chi-square. In addition, the
software, in which data sets are extracted, are coded by using
various languages including C, C++, and Java. Therefore, the
types of coding should be considered during the extension of
metric tables.

The contributions of this paper can be summarized as
follows: (i) proposed method for deriving low level metrics
could shed new light to researchers in terms of valuable data
sets that are not publicly available. (ii) metric relations change
depending on the type of coding as in the range of ar3-pcl
coded with C programming language. (iii) using few samples
does not produce consistent results such as ar3 data set having
64 samples.

Our current approach has been merely tried on NASA MDP
and SOFTLAB data sets. Therefore, one of the purposes which
will extend this study is the testing of the approach on other
publicly available data sets. An important issue that could arise
during the experiment is the ambiguous effects of repeated data
points. In this respect, our future work aims to investigate the
contribution of the low level metric in the detection of repeated
data.

ACKNOWLEDGMENT

The authors would like to thank Tim Menzies who is one
of the co-founders of tera-Promise.

REFERENCES

[1] 1. Herraiz, D. Rodriguez, and R. Harrison, “On the statistical distribution
of object-oriented system properties,” in Emerging Trends in Software
Metrics (WETSoM), 2012 3rd International Workshop on. IEEE, 2012,
pp. 56-62.

[2] J. Highsmith, Adaptive software development: a collaborative approach
to managing complex systems. Addison-Wesley, 2013.

[3] N. Fenton and J. Bieman, Software metrics: a rigorous and practical
approach. CRC Press, 2014.

[4] R. J. Leach, Software Reuse: Methods, Models, Costs.
2012.

[5] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing
software metrics for defect prediction: an investigation on feature
selection techniques,” Software: Practice and Experience, vol. 41, no. 5,
2011, pp. 579-606.

[6] L. Putnam and W. Myers, Five core metrics: the intelligence behind
successful software management. Addison-Wesley, 2013.

[71 T.J. McCabe, “A complexity measure,” Software Engineering, IEEE
Transactions on, no. 4, 1976, pp. 308-320.

[8] M. Halstead, “Potential impacts of software science on software life
cycle management,” Purdue University Library, 1977.

AfterMath,

[9] T.J. McCabe and C. W. Butler, “Design complexity measurement and
testing,” Communications of the ACM, vol. 32, no. 12, 1989, pp. 1415—
1425.

[10] L. Pelayo and S. Dick, “Applying novel resampling strategies to
software defect prediction,” in Fuzzy Information Processing Society,
2007. NAFIPS’07. Annual Meeting of the North American. IEEE,
2007, pp. 69-72.

[11] G. M. Weiss, “Mining with rarity: a unifying framework,” ACM
SIGKDD Explorations Newsletter, vol. 6, no. 1, 2004, pp. 7-19.

[12] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for
class-imbalance learning,” Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, vol. 39, no. 2, 2009, pp. 539-550.

[13] T. M. Khoshgoftaar and K. Gao, “Feature selection with imbalanced
data for software defect prediction,” in Machine Learning and Appli-
cations, 2009. ICMLA’09. International Conference on. IEEE, 2009,
pp. 235-240.

43

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

T. M. Khoshgoftaar, K. Gao, and N. Seliya, “Attribute selection and
imbalanced data: Problems in software defect prediction.” in ICTAI
(1), 2010, pp. 137-144.

H. Lu, B. Cukic, and M. Culp, “A semi-supervised approach to software
defect prediction,” in Computer Software and Applications Conference
(COMPSAC), 2014 IEEE 38th Annual. IEEE, 2014, pp. 416-425.

H. Lu, E. Kocaguneli, and B. Cukic, “Defect prediction between
software versions with active learning and dimensionality reduction,”
in Software Reliability Engineering (ISSRE), 2014 IEEE 25th Interna-
tional Symposium on. IEEE, 2014, pp. 312-322.

C. Kaner et al., “Software engineering metrics: What do they measure
and how do we know?” in In METRICS 2004. IEEE CS. Citeseer,
2004.

F. Rahman and P. Devanbu, “How, and why, process metrics
are better,” in Proceedings of the 2013 International Conference
on Software Engineering, ser. ICSE ’13. Piscataway, NI,
USA: IEEE Press, 2013, pp. 432-441. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486846

I. S. Wiese, F. R. Cogo, R. Ré, 1. Steinmacher, and M. A. Gerosa,
“Social metrics included in prediction models on software engineering:
A mapping study,” in Proceedings of the 10th International Conference
on Predictive Models in Software Engineering, ser. PROMISE ’14.
New York, NY, USA: ACM, 2014, pp. 72-81. [Online]. Available:
http://doi.acm.org/10.1145/2639490.2639505

P. Oliveira, M. T. Valente, and F. Paim Lima, “Extracting relative thresh-
olds for source code metrics,” in Software Maintenance, Reengineering
and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution
Week-IEEE Conference on. IEEE, 2014, pp. 254-263.

F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards building a
universal defect prediction model,” in Proceedings of the 11th Working
Conference on Mining Software Repositories. ACM, 2014, pp. 182—
191.

R. Pears, J. Finlay, and A. M. Connor, “Synthetic minority over-
sampling technique (smote) for predicting software build outcomes,”
arXiv preprint arXiv:1407.2330, 2014.

L. Chen, B. Fang, Z. Shang, and Y. Tang, “Negative samples reduction
in cross-company software defects prediction,” Information and Soft-
ware Technology, vol. 62, 2015, pp. 67-77.

T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” Software Engineering, IEEE Trans-
actions on, vol. 33, no. 1, 2007, pp. 2-13.

Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general software
defect-proneness prediction framework,” Software Engineering, IEEE
Transactions on, vol. 37, no. 3, 2011, pp. 356-370.

D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where should we fix this
bug? a two-phase recommendation model,” Software Engineering, IEEE
Transactions on, vol. 39, no. 11, 2013, pp. 1597-1610.

D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, “Reflections
on the nasa mdp data sets,” Software, IET, vol. 6, no. 6, 2012, pp. 549—
558.

M. Lorenz and J. Kidd, Object-oriented software metrics: a practical
guide. Prentice-Hall, Inc., 1994.

Y. Suresh, J. Pati, and S. K. Rath, “Effectiveness of software metrics for
object-oriented system,” Procedia Technology, vol. 6, 2012, pp. 420—
427.

E. Kocaguneli, T. Menzies, and J. W. Keung, “On the value of ensemble
effort estimation,” Software Engineering, IEEE Transactions on, vol. 38,
no. 6, 2012, pp. 1403-1416.

B. Kitchenham and E. Mendes, “Why comparative effort prediction
studies may be invalid,” in Proceedings of the 5th international Con-
ference on Predictor Models in Software Engineering. ACM, 2009,
p- 4.

R. A. Johnson, I. Miller, and J. E. Freund, Probability and statistics for
engineers. Prentice-Hall, 2011.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

44

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Communication and Coordination Challenges Mitigation in Offshore Software
Development Outsourcing Relationships: Findings from Systematic Literature
Review

Rafig Ahmad Khan, Siffat Ullah Khan
Software Engineering Research Group (SERG_UOM),
Department of Computer Science & IT, University of
Malakand, Pakistan
E-mail: rafigahamdk@gmail.com, siffatullah@uom.edu.pk

Abstract— Over the last decade, many firms in the world have
started adopting Global Software Development (GSD) in order
to reduce software development cost, and access to qualified
resources and modern technology. Due to the rapid
development of ICTs, the GSD has become an acceptable
business strategy with several paradigms. One of the rising
business paradigms of GSD is Offshore Software Development
Outsourcing (OSDO). The objective of this research is to
provide mitigation advice for addressing communication and
coordination challenges from vendors' perspectives in OSDO
relationships. We have performed systematic literature review
(SLR) process for identifying the practices/solutions for these
challenges. We have identified 65 practices for addressing
these challenges. This paper can help the OSDO vendor
organizations to use the identified practices in order to address
the communication and coordination challenges in OSDO
relationships.

Keywords—Global Software Development; Software
Outsourcing; Communication and Coordination challenges and
its Solutions/Practices; SLR

. INTRODUCTION

Many software development companies from the last
decade have been trying to enhance their business profits by
improving the time-to-market of their products, reducing
costs by hiring people from countries with cheaper work-
hours. These days, a large number of software development
projects are distributed at many different sites and normally
located in different countries. This distributed setting of
managing a software project is termed as Global Software
Development (GSD) and the discipline is termed as Global
Software Engineering (GSE) [1]. One of the rising business
paradigms of global software development is Offshore
Software Development Outsourcing (OSDO) [2]. OSDO
represents the practices of holding an outside party to carry
out software development work/processes in a state/country
other than the one where the products or services are
actually developed [3]. Today many software organizations
have turned to software outsourcing to get economic cost
advantages [4]. Over the last decade outsourcing functions
gain competitive advantages due to different reasons, such
as the drastic growth in the ICTs market and shortage of
information system professionals [4]. In addition, China and
India have made the OSDO a reality due to the presence of

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Mahmood Niazi
Information and Computer Science Department, King Fahd
University of Petroleum and Minerals, Saudi Arabia
Faculty of Computing, Riphah International University,
Islamabad, Pakistan
E-mail: mkniazi@kfupm.edu.sa

qualified persons, the availability of resources, skills and
better business and economic environment [4].

However, several researchers [5]-[6] recommended that
increased globalization of software development creates
challenges due to cultural differences, time zone differences,
lack of trust, language differences, geographical distance
and diversity of communication and coordination. Ali-Babar
et al. [7] suggested that the main stumbling block to OSDO
is the geographical dispersion. The two major pillars and the
backbone of successful OSDO activities are the
communication and coordination processes, but it can be
hampering due to geographical dispersion, cultural and
language differences [8]. The lack of face-to-face meetings
is one of the challenges and it affects the process of OSDO
[9].

In OSDO relationship, Khan et al. [10] identified various
critical challenges faced by vendor organizations. In these
challenges, communication and coordination is a critical
challenge to vendors in OSDO. Our prior research identified
a list of 18 communication and coordination challenges
faced by vendors in OSDO relationships [5]. Amongst the
identified list of challenges 6 were marked as critical
challenges. These identified critical challenges are:
‘Geographical ~ Dispersion’, ‘Cultural Differences’,
‘Language Differences’, ‘Lack of Credence’, ‘Lack of
ICT/Technological Cohesion’ and ‘Lack of Informal/ Face-
to-Face Communication’ [5].

It is also important to provide mitigation advice in the
form of practices for the identified critical challenges as this
will help organizations facing these challenges. For this
reason, we conducted a SLR process for finding the
practices for addressing the aforementioned critical
communication and coordination challenges in OSDO
outsourcing relationships form vendor’s perspectives.

We have formulated the following research question in

order to understand the practices/solutions for
communication and coordination challenges in OSDO
relationships.
RQ. What are the solutions/practices, as identified in the
literature, for addressing communication and coordination
challenges in OSDO relationships from vendors'
perspective?

45

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

The structure of the paper is organized as follows:
Section Il explains the background. Section Il explains the
research methodology. Results are presented in Section IV.
Study limitations are discussed in Section V. Conclusion
and future works are presented in Section V1.

I1. BACKGROUND

In software outsourcing paradigm, various challenges and
hurdles are faced by wvendor organizations. Different
researchers and practitioners have conducted case studies,
questionnaire surveys, focus group sessions, interviews and
literature reviews to dig out various aspects of the OSDO
relationship.

Alberto Avritzer et al. [11] conducted a case study and
suggested that geographic dispersion in global software
engineering can be reduced by organizing face to face
meetings, effective time management among the team
members and “hands-on and Shake-off session”, providing
possibilities of synchronous communication, giving support
for video conference at all sites and also giving suitable
selection of communication tools. Cultural differences in
OSDO can be reduced by providing the facilities of face to
face meeting, cultural training, adopt low-context
communication style, cultural liaison/Ambassador and
reduce interaction between team from different cultures
[12]. The problems of cultural differences can also be
mitigated by adapting agile and scrum methods [13].
Similarly the temporal distance in offshore outsourcing can
be reduced by establishing a bridging team, relocate to
adjacent time zone, adopt and follow the sun development,
using appropriate and advance technology, such as ICT,
audio and video conferencing, instant messaging, online
chat, email, web came and mobile alerts [11].

We can reduce the lack of trust in global software
development by managing efficient outsourcing
relationships, establishment of an appropriate
communication and infrastructure, to encourage effective
communication through the adaptation of tools and
techniques and promotion of informal communication [12].
The probable solutions of language differences in global
software development are composed of translating policies
and practices into local languages and by putting emphasis
on spoken language skills [14].

The lack of ICT or technological cohesion in global
software development can be reduced by using proper
communication technologies or tools, such as, internet,
video conferencing, data conferencing, teleconferencing,
telephone calls, chats, emails, instant messaging, shared
databases, Wikis, shared desk top technology, net meeting,
change management system, virtual whiteboards, photo
gallery, team Intranet websites, electronic meeting systems,
voicemail, CAMEL, NEXTMOVE, TAMRI, Dropbox,
Mendeley, IRC and Skype etc [15]. Lack of face-to-face or
informal communication problems in OSDO relationship
can be reduced by provision of multiple communication

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

mode counting support to face-to-face synchronous
communication, creation of communication protocols, to
promote informal interactions, to apply agile practices
(SCRUM), to deploy knowledge transfer mechanisms [16].

By using SLR for identifying the practices/solutions for
communication and coordination challenges in OSDO
relationships from a vendor's perspective will confine the
missing communication and coordination practices in
OSDO relationship. The novelty of our research shows that
nobody has conducted SLR in this domain to find out
practices for addressing communication and coordination
challenges faced to vendors in OSDO relationships. The
findings will assist OSDO vendor organizations to adopt the
identified practices in order to avoid/mitigate the
communication and coordination challenges in OSDO
relationships.

1. RESEARCH METHODOLOGY

A SLR [17] process was used for data collection,
because it is more thorough, less biased, rigorous and open
as compared to ordinary literature review [17]. In finding,
evaluating and summarizing all available evidences on a
specific research question, a systematic review may provide
a greater level of validity in its findings than ordinary
literature review. A number of researchers [5][18] have used
the SLR approach for reviewing the literature. Protocol
development is the first phase of the SLR process and it
describes planning of the review. In this connection, a
systematic review protocol was written first to describe the
plan for the review. Details of the various steps in our SLR
methodology are available in our SLR protocol [18].

A. Search the Literature

Based on the available access, the digital libraries IEEE
Explore, ScienceDirect, ACM Digital Library, SpringerLink
and CiteSeer were used to carry out the search phase of the
SLR. We used the following search string as a trial search:

((Solutions OR practices OR "best practice” OR "lessons

learned® OR Advice) AND ("communication and
coordination problems" OR " communication and
coordination challenges” OR " communication and

coordination norms” OR " communication and coordination
barriers" OR " communication and coordination risks")
AND ("offshore software outsourcing” OR "information
systems outsourcing” OR "IS outsourcing” OR "IT
outsourcing" OR "global software development” OR GSD
OR "offshore software development outsourcing” OR
0OSDO0))

The major search string was developed and validated
after thoroughly getting information and guidance from the
trial search. Some digital libraries required different
concrete syntax for the search term; we developed the

46

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

search string for each resource. In our study, we identify the
paper based on the publication’s type, such as conference
proceeding, databases, specific journals, technical
magazines, book chapters, technical books, web pages and
reports, etc. In Table I, we represent the final list of
resources to be searched also including their search terms
and number of publications found in each resource.

TABLE | DATA SOURCES AND SEARCH STRATEGY FOR
PRACTICES/SOLUTIONS

S. RESOUICES Total Results Primary Final
NO Found Selection Selection
1 IEEE 1424 166 39
2 Science Direct 1055 82 7
3 ACM 925 114 2
4 Springer Link 347 80 10
5 Cite Seer 500 29 4
Total 4251 471 62

We have selected these resources based on our previous
SLRs [5][20] experiences and discussions with our
colleagues at the University.

B. Literature Selection

In this section, we are going to presents the criteria for
inclusion and exclusion of relevant articles.

a. Inclusion criteria

We use the following inclusion criteria for the selection
of relevant papers:

e The paper must be relevant to Computer Sciences or
Engineering research background because quality
research topics in software applications are keep
growing from time to time.

e Priority usually goes to journal and conference
published papers- that is why in our final selection the
majority of papers are journal and conference papers.

e The papers should at least contain challenges, practices

and solutions related to communication and
coordination in OSDO relationships.
e The papers should contain communication or

coordination practices/solutions affecting the
continuation or termination of outsourcing
relationships.

e Studies that is relevant to outsourcing.

b. Exclusion criteria

We use the following exclusion criteria to exclude the
irrelevant papers:

e The papers not relevant to Computer Sciences or
Engineering research background.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

e The studies not relevant to the research questions.

e The papers that are not written in English.

e Studies not mentioned the challenges/ practices/
solutions of communication or coordination in OSDO
relationships.

e Studies that contain duplicate data.

e Studies not relevant to outsourcing.

C. Publication Quality Assessment

The publication quality assessment is performed after
final selection of publications. During the selection process
of studies, some questions were asked to ensure the quality
of selected studies. The questions in Table 1l were
constructed to facilitate the studies selection process and to
ensure that only relevant papers are being selected. The
questions used in the study selection process are shown in
the Table I1.

TABLE I STUDY SELECTION PROCESS

Question Answer

Is it clear how communication or coordination
practices/solution was measured in OSDO
relationship?

Yes/No/Partially

Is it clear how the practices in the selection of

software outsourcing vendors were identified? Yes/No/Partially

By using publication quality assessment questions,
studies that are not scholarly reviewed were excluded. Only
those studies are selected that aim practices at addressing
communication and coordination challenges in OSDO
relationships. Similarly, studies that did not provide
persuasive results in practices for addressing
communication and coordination challenges in the aspects
of OSDO relationships were excluded.

D. Data Extraction and Synthesis

The following data was extracted from each
publication: Date of review, Title, Authors, Reference,
Database, Practices/Solutions: factors that have a positive
impact on software development outsourcing vendors,
Methodology (interview, case study, ordinary literature
review, systematic literature review, report, survey, etc),
Target Population, Sample Population, Publication Quality
Description, Organization Type (software house, university,
research institute etc), Company size (small, medium,
large), Country/location of the Analysis and Year.

The data synthesis phase was done by the primary
reviewer (the primary author) with the help of secondary
reviewer (the co-author). After a thorough review with
external reviewer, we have identified 65 practices/solutions
from the sample of 62 papers for addressing communication
and coordination challenges.

47

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

E. Classification of Communication and Coordination
practices/solutions

After identifying practices/solutions for addressing
communication and coordination challenging in OSDO
relationships through SLR, we classified a few
practices/solutions in different tables as shown in Section
IV. The classification of practices/solutions was based upon
the relevant practices/solutions for the identified critical
challenges in our previous research [5]. The following
criterion for the selection of critical challenges was used:

e Those challenges were considered as critical
challenges whose frequency was equal to 40% or higher
than 40%. The identified critical communication and
coordination challenges are ‘Geographical dispersion’,
‘cultural differences’, ‘language differences’ ‘lack of
technological cohesion’, '"Lack of Informal/Face-to-to face
Communication' and 'Lack of Credence".

V. RESULTS

This section presents the results of the SLR process for
finding the practices/solutions for addressing
communication and coordination challenges faced by
OSDO vendors.

We identified 65 mitigation advices/practices/solutions
for addressing communication and coordination challenges
faced to OSDO vendors. SLR has been conducted in the
area of OSDO relationships for the identification of these
practices. The OSDO vendor organizations can also get help
from these practices in order to know that how they can
solve the problems of their clients. We have followed SLR
guidelines [17] for synthesizing the different practices for
the identified critical communication and coordination
challenges.

The subsequent sections present the 6 critical challenges
and their respective identified practices.

A. Geographical Dispersion

Ali-Babar et al. [7] suggested that the main stumbling
block to OSDO is the geographical dispersion. Table Il
presents the list of our identified 15 practices for addressing
the communication and coordination challenge
‘Geographical Dispersion'.

TABLE Il PRACTICES FOR ADDRESSING GEOGRAPHICAL
DISPERSION

Synchronous communication, such as face-to-face
meetings, online chats, teleconferences, and web
conferences, is ideal for quick status meetings,
brainstorming sessions, and reviews. Asynchronous

2 ot oo - 47
communication, such as email, discussion forums,
and shared documents, provides a persistent record
of discussions and decisions, and don’t require
participants to be available at the same time
Shifting the working hours of both the onshore and
3 offshore teams, by adjusting direct meetings to the 23
time zones or by creating asynchronous meetings via
project managers.
4 Communicate with clients timely 23
5 | Negotiate teams working hours for Synchronicity 21
6 Create a team calendar aiding in project planning 18
7 Encourage both asynchronous and synchronous 15

communication

Establish communication guidelines, technical
8 infrastructure for information and communication, 15
for example, effective tools and work environments

Provides opportunities for synchronous interactions

9 without prior schedule definition 5

10 | Beonline or stay connected 6
Assign technical lead to each site that would be

11 | responsible to coordinate process, development and 3
schedule activities

12 | Create bridging team 2
Create roles, relationships and rules to facilitate

13 | coordination and control over geographical, temporal 2
and cultural distance

14 | Promote visits and exchanges among sites 2
Utilize the global distribution to conduct tasks ‘‘over

15 | night’’, e.g. the test of new components so that the 2

results are available on the following morning

B. Cultural Differences

Cultural differences is a critical challenge faced in the
communication and coordination processes because it can
slow down the OSDO activities [20].

TABLE IV PRACTICES FOR ADDRESSING CULTURAL
DIFFERENCES

CCCC2: Cultural Differences

CCCC1: Geographical Dispersion

Practices/Solutions for Addressing Geographical % of
S/N | Dispersion Practices
(e} via SLR
(N=62)

% of
SIN | Practices/Solutions for Addressing Cultural | Practices
0} Differences via SLR
(N=62)

Establish open communication between stakeholders

1 | through face to face meetings, instant messaging and 57
onsite visits

2 Use of online tools for online team-building if visits 49
won’t work
Avrrange training and workshops to understand both

3 client organization and people culture involved in 31
0OSDO

4 Define a cultural ambassador for the project to create 13

teams with complementary skills and cultures

Use of technology to make knowledge sharing easier
between the teams. Such as, webcams and instant

1 messaging software to improve communication and 50
coordination between the team members distributed
across multiple sites

Create close cooperation between team members
5 involved at both client and vendor side to built trust- 8
worthy relationship

Build mixed teams with memberships from different

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

6 cultural backgrounds. 7
Create roles, relationships and rules to facilitate

7 coordination and control over geographical, temporal 7
and cultural distance

8 Increase project members’ domain knowledge and 5

48

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

reduced cultural distance by using Agile Methods

9 Introduce a neutral third-party Agile coach

10 | Appoint strong leadership for each team

11 | Make visible the work progress for all stakeholders

12 | knowledge of the client’s language and culture

N (A O|for

13 Take equality and justice approach in management
activities.

Table IV presents the list of our identified 13 practices
for addressing the communication and coordination
challenge 'Cultural Differences'.

C. Lack of Credence

Several researchers [5][12][20] recommended that
increased globalization of software development creates
challenges due to cultural differences, time zone differences,
lack of trust, language differences, geographical distance
and diversity of communication and coordination.

TABLE V PRACTICES FOR ADDRESSING LACK OF CREDENCE

D. Language Differences

The two major pillars and the back of OSDO
relationships are the communication and coordination
processes, but it is not properly achieved due to several
challenges like geographical dispersion, culture, time zone
and language differences [8].

TABLE VI PRACTICES FOR ADDRESSING LANGUAGE
DIFFERENCES

CCCC3: Lack of Credence

CCCC4: Language Differences

% of
SIN | Practices/Solutions for Addressing Language | Practices
0} Differences via SLR
(N=62)

Use of communication media to support a sense of
co-located and synchronous interaction by

1 . - ; 50
employing facial expressions, body language, and
speech

5 Understand the language and business culture of 12
clients

3 Encourage face-to-face meetings 10

4 Select a vendor with knowledge of the client’s 7
language

5 Review project document by a native speaker 4
Encourage team members to use standard

6 language/common language in order to avoid miss- 2
interpretation

7 Appoint team members having fluency in English 2
language

8 | Appoint language translator 2

% of
SIN Practices/Solutions for Addressing Lack of Credence Pfac“Ces
6} via SLR
(N=62)
1 Investing in building and maintaining trust and good 30
relations
Arrange frequent meetings in various forms such as
2 video conferencing, personnel rotations, and team 21
building exercises
Improve vendor’s capability such as technical,
3 managerial, and staffing capabilities as this play a 18
cardinal role in maintaining a client’s trust in an
ongoing business relationship.
4 Improve personal relationship with clients 15
5 | Promote efficient outsourcing relationship 13
6 Promote informal meetings 10
Effective and frequent communication between
7 clients and vendors at all levels of the organizational 10

hierarchy are pivotal for managing trust

Build efficient a contract and Conform to the
contract and guality of deliverables

Spending resources on reducing socio-cultural

Table VI presents the list of our identified 8 practices
for addressing the communication and coordination
challenge 'Language differences'.

E. Lack of Informal/Face-to-face Communication

Lack of face to face meetings is raised due to the parties
being widely dispersed from each other, and hence it affect
the process of OSDO [9]. Table VII presents the list of our
identified 14 practices for addressing the communication
and coordination challenge ‘Lack of Informal/Face-to-face
Communication'.

TABLE VII PRACTICES FOR ADDRESSING LACK OF
INFORMAL/FACE-TO-FACE COMMUNICATION

9 | distance by means of facilitating face-to-face 9
meetings.
Implement the contract successfully is it was signed
10 - 5
without cost overrun etc.
Have at least some people at each node who have
1 met people at peer nodes in person. This also reduces 4
the perceived geographical distance, if not the
physical. This helps promote trust and reduce fear
12 | Early and frequent delivery of working software 4
13 | Travel to client location for establishing friendly ties 4
14 | Use status (every three weeks) to signal transparency 4
15 | Run series of workshops 2
Using Scrum practices in GSD improved
16 L S 2
communication, trust, motivation and product
17 Use Trusty, a tool which was designed to support the 2

distributed software development process

Table V presents the list of our identified 17 practices
for addressing the communication and coordination
challenge 'Lack of Credence'.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

CCCCS5: Lack of Informal/Face-to-Face Communication

% of
SIN | Practices/Solutions for Addressing Lack of | Practices
0} Informal/Face-to-Face Communication via SLR
(N=62)

Adopt appropriate communication tools like
1 | videoconferencing, Teleconferencing, Data 52
Conferencing and Web-Based Technologies

Encourage frequent communication through latest

2 : 50
technologies
Daily exchange of the project status by technologies

3 such as, telephone calls, video conferences or emails 50
etc

4 | Create a Communication Protocol 15

5 Increase frequency of communication between team 15

49

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

F. Lack of ICT/Technological Cohesion

Communication and coordination processes in OSDO
relationships can be hampered due to high cost and lack of
ICT [12].

TABLE VIII PRACTICES FOR ADDRESSING LACK OF
ICT/TECHNOLOGICAL COHESION

CCCC6: Lack of ICT/Technological Cohesion

% of
Practices
via SLR

(N=62)

SIN | Practices/Solutions for Lack of

(e} ICT/Technological Cohesion

Addressing

Adopt Different Latest Technologies such as:
Teleconferencing (two-way audio) e.g., NetMeeting,
CU-SeeMe, Microsoft Exchange, Dropbox, Wikis,
Mendeley etc.

Videoconferencing (two-way audio and video) e.g.,
NetMeeting, CU-SeeMe, Microsoft Exchange,
Dropbox, Wikis, Mendeley

Data Conferencing (whiteboards, application sharing,
data presentations) e.g., NetMeeting, Evoke, WebEX,
etc.

Web-Based Technologies Tools (Intranets, Listservs,
Newsgroups, chat, message boards) e.g., E-groups,
Yahoo Groups, Open Topics, etc.

Proprietary (with or without web browser interface)
e.g., Lotus Notes, IBM Workgroup, ICL Team
WARE Office, Novell GroupWise, The Groove, etc.
Voice over IP

Electronic Meeting Systems e.g., Group Systems,
Meeting Works, Team Focus, Vision Quest,
Facilitate.com, etc.

Adopt both Asynchronous (text) and Synchronous
(voice) tools like:

Telephone, E-mail, Instant Messaging, Wiki,
Internet, VVoicemail, Shared Databases, Mailing lists,
IRC, Messenger, Skype, Chat, Phone, Net meeting,
Change Management System, Virtual white boards,
Photo Gallery, Team Intranet Websites, Group
Calendars, Fax, Power Point Presentations, Blog,
Nor-real-time database, CAMEL, NEXT MOVE,
TAMARI and Team space

50

Arrange ICT Training Sessions for the team 10
members

4 Use of Web Technologies for Collaboration e.g. 5

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

members Web-based tutoring, web-based mentoring, web-

6 Create team having technical skills and cultural 10 based knowledge mining and web-based knowledge
awareness profiling
Establish cooperation by to one member from each 5 Arrange Knowledge Sharing Activities between team 5

7 team. This might possibly solve some of the 9 members
communication decencies, e.g., when decisions are 6 Avrrange social events for awareness between team 5
made at informal meetings. members

8 Arrange conferences/workshops for distributed team 7 7 Build Communication Protocol 4
members 8 Adopt Distributed Agile Models such as Distributed 4

9 Build trustworthy relationship 7 pair programming and Urgent request

10 | Sponsor team members for site visits 4

11 | Create adatabase that contains the areas of expertise 4 Table V111 presents the list of our identified 8 practices
of the individual project participants . s N
Arrange weekly conference calls by the central team for addressing the communlc_atlon anq coordination
or the remote team(s) to talk about the status of the challenge 'Lack of ICT/Technological Cohesion'.

12 | project and clarify questions, or they take place at 2
dates specified in the project plan, usually to discuss Vi STUDY LIMITATIONS
deliverables '

13 | Use Distributed Agile models e.g. SCRUM 2 By using the SLR process, we have extracted data about

14 | Use of tools such as "Trusty" to support software 2 the practices/solutions for addressing communication and
development process

coordination challenges; however, we might have omitted
some practices? For internal validity, one possible threat is
that any specific article may have not in fact described
underlying reasons to report practices/solutions for
addressing these challenges. This threat has not been
independently controlled by us. Other threat is publication
bias during SLR process. By using our SLR process, we
may have missed out some relevant papers, due to the
increasing number of papers in software outsourcing.
However, like other researchers of SLR, this is not a
systematic omission [21].

How valid are our findings? The results of our finding
are not based on studies that used a random sample of
software developing outsourcing organization in the world.
Yet, in the exploration of our research question, our study is
the most comprehensive up to date. As discussed in result
sections, the dilemma of simplifying our findings can also
be measured by evaluating the finding of other related
studies. To provide support for simplification, we found
many similarities in our findings as compare to other
people’s findings. In order to decrease the researcher’s bias,
we have carried out the inter-rater reliability tests in the
selection of primary studies and data extraction phases. Due
to limited resources and not enough access to every digital
library, we were unable to find out all the relevant papers in
our area, although, the used digital libraries are sufficient for
the simplification of findings in our study.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have provided mitigation advice in the
form of practices for addressing communication and
coordination challenges from vendors' perspectives in
OSDO relationships. Our results reveal that focusing on
these practices can help vendor organizations in order to
strengthen their relationships with client organizations in
OSDO. However, we recommend independent studies on
this topic in global software development. This will increase
confidence in our results and also track changes in attitudes
to OSDO activities over time. We have identified the

50

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

following goals that we plan to follow in future from the

findings of this study:

e The practices/solutions for addressing communication
and coordination challenges will be validated using
empirical studies with practitioners working in
outsourcing industries, as done by other researchers
[22][23].

e The practices/solutions in OSDO relationships from
client’s perspectives will be analyzed.

Our future work will focus on developing a
Communication Coordination Challenges Mitigation Model
(CCCMM). This paper gives only one component of the
CCCMM, such as the identification of various
practices/solutions for addressing communication and
coordination challenges via SLR. The proposed CCCMM
will bring together and advance the work that has been
undertaken on frameworks and models for outsourcing
relationships.

REFERENCES

[1] R. Britto, V. Freitas, E. Mendes, and M. Usman, “Effort
Estimation in Global Software Development:A Systematic
Literature Review,” in IEEE 9th International Conference on
Global Software Engineering, Shangai, China, 2014, pp. 135-
144,

[2] P. Lago, H. Muccini, and M. Ali-Babar, "Developing a course
on designing software in globally distributed teams.”, IEEE
International Conference on Global Software Engineering,
ICGSE, Bangalore , 17-20 Aug, 2008, pp. 249-253

[3] M. Ali-Babar, J. M. Vermer, and N. P. Thanh, “Establishing
and Maintaining Trust in Software Outsourcing Relationships:
An Empirical Investigation,” The Journal of Systems and
Software, vol. 80, no. 9, 2007, pp. 1438-1449.

[4] D. Avison and T. Gholamreza, "Outsourcing and Offshoring
Information System Projects,” Information Systems Project
Management, p. 351: SAGE Publications, Inc., 2009.

[5] R. A. Khan and S. U. Khan, “Communication and
Coordination Challenges in Offshore Software Development
Outsourcing Relationship from Vendors’ Perspective:
Preliminary Results,” ISoRIS2014 Malaysia, Special edition,
Journal of Science International Lahore, vol. 26, no. 4, 15-16
October, 2014, pp. 1425-1429.

[6] S. Mehmood, M. Niazi, and H. Akthar, “Identifying the
Challenges for Managing Component-Based Development in
Global Software Development: Preliminary Results,” in
Proceedings of the Science and Information Conference (SAI
2015), 2015, pp. 933 —938.

[7] M. Ali-Babar and L. Christian, “Global software engineering:
Identifying challenges is important and providing solutions is
even better,” Information and Software Technology, vol.
56,2014, pp. 1-5.

[8] I Richardson, “A Process Framework for Global Software
Engineering Teams ™ Information and Software Technology,
2012, vol 45 (11), pp. 1175-1191.

[9] M. Hansen and H. Baggesen, "From CMMI and Isolation to
Scrum, Agile, Lean and Collaboration.”, Agile Conference,
2009. AGILE '09., Chicago, IL, 24-28 August, 2009, pp. 283-
288.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

[10] S. U. Khan, M. Niazi, and R. Ahmad, “Critical Barriers for
Offshore Software Development Outsourcing Vendors: A
Systematic Literature Review ” in Software Engineering
Conference, APSEC '09, Asia-Pacific 2009, pp. 79 - 86

[11] A. Alberto, B. Sarah, K. Josiane, S. Menasche, N. John, and P.
Maria, “Survivability Models for Global Software
Engineering,” in IEEE 9th International Conference on Global
Software Engineering, Shangai, China, 2014, pp. 100-109.

[12] J. Verner, O.P. Brereton, B. A. Kitchenham, M. Turner, and M.
Niazi, “Risks and risk mitigation in global software
development: A tertiary study,” Information and Software
Technology, vol. 56, 2014, pp. 54-78.

[13] P. Maria and L. Casper, “Could Global Software Development
Benefit from Agile Methods?,” International Conference on
Global Software Engineering, ICGSE '06, Florianopolis, Oct
2006, pp. 109-13.

[14] S. Wu, "Overview of Communication in Global Software
Development Process. IEEE Inernational Conference on
Service Operations and Logistics, and Informatics (SOLI),
Suzhoe, 8-10 July, 2012. pp. 474-478"

[15] G. Vanessa and M. Sabrina, “Problems? We All Know We
Have Them. Do We Have Solutions Too? A Literature Review
on Problems and Their Solutions in Global Software
Development,” in IEEE Seventh International Conference on
Global Software Engineering, Porto Alegre, 27-30 Aug. 2012,
pp. 154-158.

[16] M. Niazi, “An Instrument for Measuring the Maturity of
Requirements Engineering Process,” Product Focused
Software Process Improvement, vol. 3547, 2005, pp. 574-585.

[17] B. Kitchenham and S. Charters, Guidelines for performing
Systematic Literature Reviews in Software Engineering Keele
University and Durham University Joint Report, 2007, pp 1-
44,

[18] M. Niazi, “Do Systematic Literature Review Outperform
Informal Literature Reviews in the Software Engineering
Domain? An Initial Case Study,” Arabian Journal for Science
and Engineering, vol. 40(3), March 2015, pp. 845-855.

[197R. A. Khan and S. U. Khan, “Communication and
Coordination Challenges in Offshore Software Outsourcing
Relationships: A Systematic Literature Review Protocol,”
Gomal University Journal of Research, vol. 30, no. 1, 2014,
pp. 9-17.

[20] S. U. Khan and M. 1. Azeem, “Intercultural Challenges in
Offshore Software Development Outsourcing Relationships:
An Exploratory Study Using a Systematic Literature Review,”
IET Software, vol. 8, no. 4, 2014, pp. 161-173.

[21] E. Hossain, M. Ali-Babar, and H. Y. Paik, “Using Scrum in
Global Software Development: A Systematic Literature
Review.,” in IEEE International Conference on Global
Software Engineering, ICGSEQ9, Lero, Limerick, Ireland.,
2009, pp. 175-184.

[22] M. Niazi, K. Cox, and J. Verner, “An empirical study
identifying high perceived value requirements engineering
practices,” in Advances in Information Systems Development,
Fourteenth International Conference on Information Systems
Development (ISD"2005) Karlstad University, Sweden, 2006,
pp. 731-743.

[23] S. Mehmood, “Empirical Study of Software Component
Integration Process Activities,” IET Software, vol. 7, no. 2,
2013, pp. 65— 75.

51

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Adapting Heterogeneous ADLs for Software Architecture Reconstruction Tools

Dung Tien Le

Thai German Graduate School of Engineering,
King Mongkut’s University of Technology North Bangkok
Bangkok - Thailand
Email: le.t-sse2013@tggs-bangkok.org

Abstract—Architecture reconstruction tools were proposed to
enable the extraction of descriptive architecture models based
on prescriptive input models. A limitation of these tools is that
they employ specific meta-models to which the input prescriptive
models must adhere. These are often incompatible with the
languages or notations that architects use in practice, leading
to substantial effort to overcome terminology differences, to
transform possibly already existing prescriptive models in tool-
compatible ones and interpreting the results. To alleviate this
problem we propose to leverage model engineering techniques in
order to enable heterogeneous prescriptive and descriptive models
as input and output artifacts of reconstruction tools. We exem-
plify our proposal by extending the Architecture Analysis and
Monitoring Infrastructure (ARAMIS) - an approach developed
within our previous work for the reconstruction and evolution of
software architectures with a strong focus on the behavior view.

Keywords—Software Architecture; Architecture Reconstruction;
Model-To-Model Transformation; Architecture Description Lan-
guage; Unified Modeling Language.

I. INTRODUCTION

It is generally acknowledged that the architecture greatly
affects the quality of a given software and that its description
is crucial to support understanding, decision making, etc. For
example, Bass et al. stated that the software architecture is
essential because of three main reasons: it is the basis for com-
munication among stakeholders, it encompasses the important,
early design decisions and it is a transferable abstraction of a
system [1]. Because of its importance, over the years numerous
attempts and even standards [2] have been proposed to support
the description of the software architecture. A plethora of
methods, tools and languages covering a very wide spectrum
of formality were proposed and used to serve this purpose.
Architects often use informal descriptions in the form of text,
boxes and lines diagrams and alike but also employ more
formal languages like the Architecture Description Languages
(ADLs) or Unified Modeling Language (UML) when more
formality is needed and/or required. Nowadays, there are more
than 100 published ADLs available for use [3]. The use of
UML to describe architectures has also increased, especially
after the introduction of UML Profiles in UML 2.0 [4]-
[7]1. When considering the wide pallet of choices and the
uncertainty regarding their suitability for use in a given context,
it can seem natural to consider unifying these in one single
highly-expressive architectural language. However, in a recent
journal publication [8], Malavolta et al. stated that such an
universal language is unlikely to become popular. Instead,
each architectural language will be created based on specific
stakeholders requirements.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Ana Nicolaescu, Horst Lichter

Software Construction Research Group
RWTH-Aachen University
Aachen - Germany
Email: ana.nicolaescu@swc.rwth—aachen.de,
horst.lichter@swc.rwth—aachen.de

Due to the numerous possibilities to describe architec-
tures, their purpose and the various involved stakeholders, it
is common that even in the same project or company, the
software architecture is described differently using various
tools and languages. Typically, most of the effort to document
architectures is invested in the early phases of the software
development process and the result thereof is the so-called
“prescriptive architecture”. Although descriptions are in later
phases very useful to support the system’s further development,
these usually go out of date soon because of the relatively high
effort that should otherwise be invested to keep them consistent
to the actual architecture [9].

To approach this problem, several architecture reconstruc-
tion (AR) techniques were proposed. These aim to identify the
descriptive architecture” which is the actual description that
reflects the system’s reality. In order to use these approaches,
usually the architects must specify the prescriptive architecture
in advance. The descriptive architecture model is then derived
by correcting the prescriptive one with information extracted
from the real system. However, for defining the prescriptive
architecture, the architects are bound to use the meta-model of
the employed AR tools [10]. These meta-models are usually
stiff and cannot be extended. For example, even though the
architects have initially used UML Profiles or a given ADL to
describe a prescriptive architecture, if the tool that they cur-
rently want to employ only defines layers, then the architects
must re-describe the architecture using only this concept. As
our previous work has shown [10], this situation can lead to
misunderstandings and in the end, prohibit the wide adoption
of the considered AR tool. While the meta-models of other
AR tools are extendible, there might still be gaps between
what the architects are familiar with and the new meta-models.
Furthermore, effort must be invested in order to understand and
extend a given AR meta-model.

In our opinion, there is a need for reconstruction tools that
address this heterogeneity problem. The architects should
be able to model the prescriptive architecture using their
familiar languages or tools. Then, by employing such an AR
tool, a descriptive architecture model should be retrieved that
adheres to the same meta-model as the prescriptive one. In
this paper, we present an approach to extend the ARAMIS
Workbench - developed during our previous work to evaluate
the communication between the architecture units composing
software systems - with the possibility to allow the input and
output of heterogeneous prescriptive and descriptive architec-
ture descriptions respectively.

This paper is structured as follows: in Section II, we
present the ARAMIS concepts that are the foundations of

52

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

the ARAMIS Workbench. Section III presents our solution
to enable different types of architecture descriptions within
ARAMIS. Section IV discusses the related work and Section V
concludes the paper.

II. ARAMIS

The Architecture Analysis and Monitoring Infrastructure
(ARAMIS) is “a tool-supported framework for run-time mon-
itoring, communication integrity validation, evaluation and
visualization of the behavior view of software architectures”
[11], [12]. ARAMIS allows the architects to validate the
communication between the hierarchies of architecture units
that constitute a given system. In order to do so, ARAMIS
maps extracted low-level run-time traces on architecture units
and validates the mapped communication according to the
rules given in the prescriptive architecture. The ARAMIS
meta-model (ARAMIS-MM) [12] to which the prescriptive
architecture should adhere to, although developed for flexibility
is still specific. The ARAMIS Workbench offers technical
mechanisms for the mapping and validation of the communica-
tion and the visualization of the result using various interactive
views.

One of the major limitations of this concept is that both the
prescriptive and descriptive architecture models must adhere
to the ARAMIS-MM. The visualizations are also ARAMIS-
specific. This leads to situations in which architects must
first (1) re-describe their prescriptive, e.g., component-based
diagram using the ARAMIS Architecture Modeller and then
(2) interpret the result as displayed in an ARAMIS-specific vi-
sualization that has no traceability links with their prescriptive
architecture model from step (1).

In order to loosen this limitation and increase the ac-
ceptability of ARAMIS, we currently work on enhancing
ARAMIS so that it allows flexible input and output architecture
descriptions. In such a scenario the architect would merely
upload, e.g., a component diagram and receive as output the
same diagram, augmented with run-time information (e.g.,
frequency with which one component accesses another one)
and information regarding occurred architecture violations.

IIT. GOALS AND SOLUTION CONCEPT
Our main goals that we pursue with our approach are:

e ecnable the architects to reuse their prescriptive archi-
tecture models even though these might not necessar-
ily conform to ARAMIS-MM.

e enable the generation of outputs that conform to the
same meta-model as the input. Preferably, the output
should be obtained by simply augmenting the prescrip-
tive input model, in order to boost understanding by
leveraging recognition effects.

In order to solve the heterogeneity problem mentioned in
the introduction, we developed a solution concept to fill in
the gap between the popular architectural languages - that are
being used by the architects - and ARAMIS. The core of the
concept is to transform an existing architecture description
(AD) of a software system into an AD that conforms to
the ARAMIS meta-model and subsequently to reverse the
transformation to present the output.

Model-to-model (M2M) transformation is the process of
producing one or more output (target) models based on one or
more input (source) models. Based on the modeling languages
used for the input and output, we can differentiate between

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

two types of transformation: exogenous - the input and output
languages are different, endogenous - the input and output
languages are the same [13]. To enable the transformation, a
so-called transformation definition consisting of transformation
rules must be created. The transformation rules are specified
at meta-model level and prescribe how one or more elements
from the output model must be produced based on one or
more elements from the input model. Upon performing the
actual transformation, the application of these rules leads to
the emergence of transformation links between the elements
of the input and output models. If the transformation rules are
bidirectional, then the transformation is also named bidirec-
tional, otherwise it is called unidirectional.

A M2M transformation suitable to solve the problem
described before must be (1) exogenous - because the in-
put models are probably not ARAMIS-specific - and (2)
unidirectional. Given that the ARAMIS-MM is very general
(see Figure 1), we assume that the probability that more

. caller
Architecture Architecture -1~
Description 1% Unit

=1
callee

Figure 1. Excerpt from the ARAMIS-MM

.. AUCommunication

.| +isAllowed:boolean
+frequencyint

elements from the input meta-model (e.g., box, component)
must be transformed to the same ARAMIS-MM element (e.g.,
architecture unit) is relatively high. In such a scenario, defining
bidirectional transformation rules can be complex. Instead, in
order to enable the architects to analyze the result on their
own architecture description, we propose to store the concrete
links resulted during the transformation and reuse them after
the ARAMIS validation results are available in order to map
these on the input model. This leads to the same effect as the
bidirectional transformation.

Another important aspect deals with the nature of the
input and output models. The output model expresses the
architecture from a behavior point of view. More explicitly,
the communication of two architecture units is assigned a
frequency and is possibly marked as a violation. If the in-
put model offers a structural overview of the architecture,
then there are probably no dedicated meta-model elements
to express these behavioral aspects. There are at least two
options to address this problem. We can either reuse general
purpose elements with a loose semantic from the input meta-
model (e.g., in UML we can append the results using UML
comments) or, alternatively, we can extend the input meta-
model with additional suitable elements, (e.g., a new property
called "frequency” can be added to an already existing element
called ”DirectedLine”).

A .
exogenous transformation augmentation by
(Epsilon) ARAMIS

endogenous transformation
(ARAMIS)

Legend

PMM: Prescriptive meta-model AIM: ARAMIS input model >
PAM: Prescriptive architecture model ~ ARAMIS-MM: ARAMIS meta-model
AOM: ARAMIS output model

conforms to

ADA: Augmented descriptive architecture model

Figure 2. The model transformation chain in ARAMIS.

In order to enable the exogenous, unidirectional trans-
formations, we implemented a solution that uses Epsilon

53

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

[14], a fully integrated environment for model engineering
that, among other features, supports meta-model design, cre-
ating inter-model links, generating model editors, and M2M
transformations. Also, because of its active community and
provided documentation with comprehensive examples, its
learning curve is reduced. The model transformation chain that
resulted when we extended ARAMIS with our Epsilon-based
solution is represented in Figure 2.

To use Epsilon, we first converted the ARAMIS-MM
[11] into an equivalent Ecore model representation. When a
prescriptive architecture model with a new, previously not
analyzed meta-model must be considered, this meta-model
must first also be documented in an Ecore model and then
the transformation rules between it and the ARAMIS-MM
can be defined. By applying the transformation rules, a set
of transformation links emerges.

Assuming that each model element can be uniquely iden-
tified and differentiated (e.g., by its ID), we can keep track of
every transformation with the exact source and target model
elements. The result of the transformation, i.e., the ARAMIS
input model, will further undergo a subsequent endogenous
transformation performed by the ARAMIS Workbench which
will then create the ARAMIS output model. This endogenous
transformation creates an important issue: the ARAMIS output
model might contain elements that were not present in the
input model and thus are not linked to the prescriptive model
(e.g., unforeseen communication between architecture units).
This issue is a sign of a mismatch between the prescriptive
and descriptive architecture. The architects can use this result
to further investigate the considered software system.

2 Prescriptive
Define meta-model f------> architecture meta-
model

2 .
AHAMIS-MMBT—"—{ Map meta-models | ------> Transrﬁrer:amn

o .5 ARAMIS input -

V. model

Prescriptive arch.| __ -

1 odel (PAD) ﬁ)[Transform model }
Transformation links
N S '
i | Source code f------> ARAMIS output |
; N I outpu :
: IARAMIS Core Services model :
Run-time AN 1
traces |

Preprocessing

M2M Transformation

ARAMIS ADL Transformation Process
ARAMIS

Augmented
,,,,,,, descriptive
architecture

Augment PAD with
ARAMIS results

Result Augmentation

Figure 3. The ARAMIS ADL transformation process

The process encompassing all activities necessary to em-
ploy ARAMIS using a new ADL is depicted in Figure 3.
This process consists of four major steps: 1. Preprocessing,
2. Model to Model Transformation, 3. ARAMIS Processing,
4. Result augmentation.

In the following, we exemplify the steps 1,2 and 4 using
an example based on a simple boxes-and-lines ADL. Step 3 is

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

not further detailed in this paper, since it was covered by our
previous work [11].

A. Preprocessing

To exemplify our approach, we have implemented an
example using a boxes-and-lines ADL. Figure 4 shows its
meta-model (BL-MM). As mentioned above, the preprocessing
step prepares the prescriptive meta-model (in this case BL-
MM) for the next steps, by creating a corresponding Ecore
meta-model.

1

WX .
l Box 1 .1 Architecture)’ DirectedLine Vl Comment]
*

n

H
+out| * ™!

[

1 | +source

+target

Figure 4. Meta-model of a simple boxes-and-lines ADL

In this case, an extension of the BL-MM that permits
the addition of behavior-related information is not necessary,
because we can use for this purpose the Comment BL-MM ele-
ment. The validation results from ARAMIS.i.e., the frequency
of the calls and their validity, will be augmented in the initial
model using Comment elements.

B. Model transformation

Based on the ARAMIS-MM (see Figure 1) and the BL-
MM, we define the transformation rules. In our example, we
want to create transformation rules for (1) mapping Box in
BL-MM on ArchitectureUnit in the ARAMIS-MM and (2)
mapping DirectedLine of BL-MM on AUCommunication of
ARAMIS-MM. Figure 5 presents a simple boxes-and-lines

BL-Model ARAMIS-Input-Model

caller

Facade2Controller

isAllowed: true

frequency: unknown

- - transformation link

Legend

Figure 5. Example of a model transformation

model (on the left hand side) and the ARAMIS model elements
that are the result of the M2M transformation. Facade and Con-
troller are transformed to the AUFacade and AUController re-
spectively. The call from Facade to Controller is transformed to
an AUCommunication Facade2Controller that has AUFacade
as caller, AUController as callee, an initial frequency unknown
and a true isAllowed attribute. These correspondences are then
saved as transformation links.

C. Augmenting the ARAMIS results

The ARAMIS output model is presented on the left side
of Figure 6. First, we can see that, after running ARAMIS,
Facade2Controller now has the updated frequency value of
100. Second, there is a new element that did not exist in the
input model: Controller2Facade. This element appears because
ARAMIS detected that AUController has also accessed the

54

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

ARAMIS-Ouput-Model Augmented BL-Model

AUFacade AUController

isAllowed: true
frequency: 100

. ARAMIS comment: *

caller callee; callee 1 caller

Facade

Facade2Controller

. ARAMIS comment: :
isAllowed: true
frequency: 10

isAllowed: true

frequency: 100

present only in the output augmented information

Figure 6. Example: ARAMIS augmented result

AUFacade during run-time. Based on this result, the prescrip-
tive architecture model is augmented. Based on the previously
generated transformation links, we know that our M2M trans-
formation transformed the prescriptive model element Facade
into the ARAMIS AUFacade; transformed Controller into AU-
Controller; and transformed the directed line between Facade
and Controller into Facade2Controller. We can now use this
information to augment the prescriptive model. For this we
create in the input model a new Comment element that we at-
tach to the DirectedLine from Facade to Controller as shown in
the left side of Figure 6. This comment contains the isAllowed
and frequency attributes that characterize the communication
between Facade and Controller. Furthermore, since there is
no transformation link for the ARAMIS Controller2Facade, a
new DirectedLine is added to the initial model for the detected
communication from Controller to Facade. To this, we also
attach a corresponding comment with information regarding
its frequency and permission.

IV. RELATED WORK

Most of the architecture reconstruction tools have rigid ar-
chitecture description meta-models. For example, Sonargraph-
Architect [15] allows users to define the architecture of the
software systems using layers, layer groups, vertical slices,
vertical slices groups and subsystems. The architects cannot
use other types of ADL.

Malavolta et al. [16] proposed the DUALLY framework
that supports architectural and tools interoperability. By using
its intermediate ADL meta-model for architectural language, it
provides ADL interoperability, but no support for architecture
reconstruction or validation is available.

The meta-model of the SoftArch reconstruction tool in-
cludes 3 architecture concepts: components, associations and
annotations. The users can then create customized figures for
the various elements, to simulate the use of various meta-
models [17].

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach for enabling
heterogeneous input and output architecture descriptions for
the ARAMIS Workbench. We have implemented an extension
for ARAMIS to leverage a M2M transformation using the
Epsilon framework. Our solution aims to close the gap between
the ADLs that the architects are familiar with and ARAMIS.
To reduce the amount of time/complexity for further model
transformations, we are offering pre-defined transformation
rules for the most popular cases, such as boxes-and-lines and

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

UML component diagrams. In the future we plan to evaluate
our solution within an extensive case-study on a real-world
system.

An open question related to our work is how to reduce
even more the effort needed to be invested by the architects
when using ARAMIS. For example, if the input boxes and
lines diagram is simply a drawing, we currently expect that
the architect “translates” the diagram to an Ecore model. A
complete solution would employ image recognition techniques
to directly transform the model. Given that different techniques
might be necessary depending on the type and form of input
model, this represents an important limitation of our approach.

REFERENCES

[11 L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
2nd ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2003.

[2] “ISO/IEC/IEEE 42010,” http://www.iso-architecture.org/42010 [ac-
cessed: 2015.10.01].

[3] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “The up-
to-date list of currently existing architectural languages,” http://www.di.
univaq.it/malavolta/al/ [accessed: 2015.10.01].

[4] J. Pardillo and C. Cachero, “Domain-specific language modelling with
UML profiles by decoupling abstract and concrete syntaxes,” Journal
of Systems and Software, vol. 83, no. 12, Dec. 2010, pp. 2591-2606.
[S] M. H. Kacem, A. H. Kacem, M. Jmaiel, and K. Drira, “Describing
dynamic software architectures using an extended uml model,” in

Proceedings of the 2006 ACM Symposium on Applied Computing, ser.
SAC *06. ACM, 2006, pp. 1245-1249.

[6] P. Selonen and J. Xu, “Validating uml models against architectural
profiles,” in Proceedings of the 9th European Software Engineering
Conference Held Jointly with 11th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, 2003, pp. 58—67.

[7] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E. Robbins,
“Modeling software architectures in the unified modeling language,”
ACM TOSEM, vol. 11, no. 1, Jan. 2002, pp. 2-57.

[8] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What
industry needs from architectural languages: A survey,” IEEE Trans.
Softw. Eng., vol. 39, no. 6, Jun. 2013, pp. 869-891.

[9] S. Ducasse and D. Pollet, “Software architecture reconstruction: A
process-oriented taxonomy,” IEEE Trans. Softw. Eng., vol. 35, no. 4,
Jul. 2009, pp. 573-591.

[10] A. Dragomir, M. F. Harun, and H. Lichter, “On bridging the gap
between practice and vision for software architecture reconstruction and
evolution: A toolbox perspective,” in Proceedings of the WICSA 2014
Companion Volume. ACM, 2014, pp. 10:1-10:4.

[11] A. Dragomir, H. Lichter, J. Dohmen, and H. Chen, “Run-time
monitoring-based evaluation and communication integrity validation of
software architectures,” in Proceedings of the 2014 21st Asia-Pacific
Software Engineering Conference - Volume 01, 2014, pp. 191-198.

[12] A. Nicolaescu, H. Lichter, A. Goringer, P. Alexander, and D. Le,
“The aramis workbench for monitoring, analysis and visualization of
architectures based on run-time interactions,” in Proceedings of the
2015 European Conference on Software Architecture Workshops, ser.
ECSAW ’15. ACM, 2015, pp. 57:1-57:7.

[13] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software
Engineering in Practice, 1st ed. Morgan & Claypool Publishers, 2012.

[14] “Epsilon,” http://www.eclipse.org/epsilon/ [accessed: 2015.10.01].

[15] “Sonargraph Architect,” https://www.hello2morrow.com/products/
sonargraph/architect [accessed: 2015.10.01].

[16] 1. Malavolta, H. Muccini, P. Pelliccione, and D. Tamburri, “Providing
architectural languages and tools interoperability through model trans-
formation technologies,” IEEE Trans. Softw. Eng., vol. 36, no. 1, Jan.
2010, pp. 119-140.

[17] J. Grundy and J. Hosking, “Softarch: Tool support for integrated
software architecture development,” International Journal of Software
Engineering and Knowledge Engineering, vol. 13, 2003, pp. 125-152.

55

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Verifying and Constructing Abstract TLA Specifications: Application to the Verification

of C programs

Amira Methni*, Matthieu Lemerre, Belgacem Ben Hedia', Serge Haddad* and Kamel Barkaoui*
*CNAM, CEDRIC, 292 rue Saint Martin, Paris Cedex 03, France
Email: first.last@cnam.fr
TCEA, LIST, Centre de Saclay, PC172, 91191, Gif-sur-Yvette, France
Email: matthieu.lemerre @cea.fr, belgacem.ben-hedia@cea.fr
J;LSV, ENS Cachan, CNRS & INRIA, France
Email: haddad @Isv.ens-cachan.fr

Abstract—One approach to verify the correctness of a system is
to prove that it implements an executable (specification) model
whose correctness is more obvious. Here, we define a kind of
automata whose state is the product of values of multiple variables
that we name State Transition System (STS). We define the
semantics of TLA+ (specification language of the Temporal Logic
of Actions) constructs using STSs, in particular the notions of
TLA+ models, data hiding, and implication between models. We
implement these concepts and prove their usefulness by applying
them to the verification of C programs against abstract (TLA+
or STS) models and properties.

Keywords—Temporal Logic of Actions; formal specification;
model-checking; C programs; refinement mapping.

I. INTRODUCTION

As software systems become large and error-prone, formal
verification methods become an essential key concept to ensure
their correctness. Model Checking [1] provides an automated
technique to check and detect errors in computer programs. But
despite its promise, the verification process may be complex
due to the size of these systems. One useful technique to
reduce the complexity of verification process is abstraction.
Generally, an abstract model specify “what” the system do
while the concrete model describes “how”. The idea is to map
the concrete set of states to a smaller set of states resulting in
an approximation of the system with respect to the property
of interest. We say that the concrete model implements the
abstract one. Verifying the abstract model is generally more
efficient than verifying properties of the original.

a) Contributions: We define an operational semantics
of a TLA specification in terms of automata, that we called
State Transition System (STS). We remind the concepts of
implementation relation and refinement mapping in TLA+ that
we formalize in terms of relations between STSs. The refine-
ment between specifications can be checked with the TLC
model checker. Verified properties on the abstract specification
can thus be deduced in the concrete specification. A way
to abstract details of the concrete specification is to hide its
irrelevant variables. TLA+ can express data hiding, but TLC
can’t support this type of construct. So, we have implemented
the notion of data hiding by constructing a STS that we call
“quotient STS”, which is constructed by extending the TLC
model checker. In order to let the quotient STS be analyzed
by existing tools, we extend the TLC model checker to produce
an LTS that can be checked by the CADP toolkit. We apply the
mentioned concepts on C programs using our tool C2TLA+.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Preliminary results show the importance of using an abstract
model to reduce the complexity of verification.

b) Outline: The remainder of the paper is structured as
follows. We give an overview of TLA+ and its operational
semantics in Section 2. Section 3 reminds the concepts of
refinement mapping and the implementation relation between
specifications and describe a way to construct the quotient
STS. In Section 4, we apply these concepts to verify the
correctness of the C implementation with respect to their
specification and we report some preliminary experimental
results obtained. We discuss related work in Section 5. Section
6 concludes and presents future research directions.

II. AN OPERATIONAL SEMANTICS FOR TLA
SPECIFICATION

In this section, we explain some basics concerning the
syntax and the semantics of TLA [2]. Then, we describe the
operational semantics of TLA using a STS.

A. Overview of TLA+

TLA+ is a formal specification language based on the TLA
[3] for the description of reactive and distributed systems. TLA
itself is a variant of linear-time temporal logic. The semantics
of TLA is defined in terms of states. A state is a mapping from
variables to values. A state function is a nonboolean expression
built from constants, variables and constant operators, that
maps each state to a value. For example, y + 3 is a state
function from a state s to three plus the value that s assigns to
the variable y. An action is a boolean expression containing
constants, variables and primed variables (adorned with ““/”
operator). Unprimed variables refer to variable values in the
actual state and primed variables refer to their values in the
next-state. Thus, an action represents a relation between an old
state and a new state. For example, z = y’ + 2 is an action
asserting that the value of z in the old state is two greater that
the value of y in the new state. A state predicate (or predicate
for short) is an action with no primed variables.

Syntactically, TLA formulas are built up from actions and
predicates using boolean operators (— and A and others that
can be derived from these two), quantification over logical
variables (V, 3), the operators / and the unary temporal operator
U (always) of linear-time temporal logic [4].

The expression [A],qrs Where A is an action and vars the
tuple of all system variables, is defined as A V (vars’ =

56

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

vars). It states that either A holds between the current and
the next state or the values of vars remain unchanged when
passing to the next state. For any action .4, the state predicate
Enabled(A) describes whether the action A can be executed
in the current state s, i.e., there exists some state ¢ such that
s —» t is an A step.

To specify a system in TLA, one describes its allowed
behaviors. A behavior is an infinite sequence of states that
represents a conceivable execution of the system. The system
specification can be given by the temporal formula ® defined
as a conjunction of the form:

® = Init AO[Newt]yars A F 1)

Where, Init is the predicate describing all legal initial
states, Next is the next-state action defining all possible
transitions between states and F' is a conjunction of fairness
assumptions about the execution of actions. However, other
forms of specification are possible and can occasionally be
useful.

A TLA formula is true or false on a behavior, which is
a sequence of states. Let o = (sg, $1,...) be a behavior. ¢
satisfies Spec iff Init is true of the first state sy and every
state that satisfies Next or a “stuttering step” that leaves all
variables unchanged.

B. State Transition System

In TLA, the behavior of a system is modeled as an
infinite sequence of states. The operational semantics of a TLA
specification can be given in terms of a STS, which is easier
to work with than sets of sequences.

d = A(x=0Ay=0)

ANz =(x+1)%4
A AN oy =x=2
(a) TLA specification

O
o)

(b) The STS of &

](x,y>

Figure 1. The operational semantics of a TLA specification

Definition 1: A STS is a 3-tuple 7 = (Q,Z,) given by
- a finite set of states Q,

- aset Z C Q of initial states,

- a transition relation § C Q x Q.

Figure 1 shows a TLA specification and its corresponding
STS 7o = (Qa,Zs, 69) which encodes all its possible behav-
iors (= symbol denotes integer division). The specification ®
is translated into 7 as follows:

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

- 7To has initial state(s) Zg specified by the predicate
r=0ANy=0,

- every state s € Qg corresponds to a valuation of the
state function (z, y),

- each transition ¢ € Jg corresponds to satisfying the
predicate [z' = (z +1)%4 Ay =z + 2] .

III. REFINEMENT AND ABSTRACTION OF TLA
SPECIFICATIONS

A way to reduce the verification task is to define an abstract
model as a specification, and then relate behaviors of the ab-
stract model to those of the implementation. Properties checked
on the abstract model can be deduced on the concrete one.
We use concrete model to refer to high-level specification and
abstract model to refer to low-level specification. This section
describes the semantics of refinement between a high-level and
a low-level TLA+ specification. Then, we present a way to
automatically construct a reduced model, which abstracts the
detailed behavior of the concrete TLA+ specification.

A. Refinement Mapping

Abadi and Lamport [5] described that a high-level speci-
fication ¥ implements a low-level specification ® iff for each
behavior of W, there is a behavior of ¢ with the same sequence
of externally visible states, allowing stuttering, e.g., if the
state ® does not change during a finite number of steps. This
implementation relation is proved by defining a refinement
mapping between specifications.

Let ¥ and ¢ be two TLA specifications, x1, ..., Z,, and
Y1,--.,Yn the variables occurring in the specifications W
and ® respectively. A (concrete) specification ¥ implements
an abstract specification ® if U = &. The proof of this
implication consists in defining state functions 7, ..., ¢, in
terms of the variables y, ..., ¥, and prove that ¥ = ®, where
® denotes the formula ® obtained by substituting g; for the

free occurrences of y;, for all 3.

The set of state functions 1, ..., ¥, is called a refinement
mapping. The “barred variable” ¢; is the state function with
which ¥ implements the variable y; of ®. So, if o is the
behavior s; — s5 — s3... of ¥, we define the behavior ¢ to
be 51 — $o — $3... We say that ¥ implements ¢ under this
refinement mapping iff, for each behavior o satisfying ¥, the
behavior & is a behavior of ®.

B. Implementation Relation and Property Preservation

The proof ¥ =- & under a refinement mapping is sufficient
to verify that U implements ® [5]. The key to the implication
relation is that TLA allows to write only formula that are
insensitive to stuttering, i.e., given a TLA formula & and
two stuttering equivalent runs o and o', ® holds along o
if and only if it holds along ¢’ [3]. This implementation
relation between TLA specifications can be viewed as a weak
simulation relation between its corresponding STSs.

Definition 2: Let Ty = (Qu,Zy,0y) and To =
(Q4,Zp,0s) denote two STSs. A simulation R relation from
Qy to Qg is a function that satisfies the following conditions:

e VseTZy,R(s) C Zg (initial states are mapped to
initial states),

57

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

e For each state pairs (s1,82) € o,
(R(s1),R(s2)) € do (state transitions are mapped
into state transitions or stuttering steps).

If a lower-level specification, expressed by a TLA formula
U, implements an abstract specification ®, U preserves all
TLA properties of ® if and only if for every formula ¢, if
® = ¢ is valid, then so is ¥ = ¢. This is true if ¥ = .

C. Data Hiding in TLA

A very useful form of data abstraction is variable hiding,
which refers to providing only essential information to the
outside world and hiding not needed information. In TLA, it is
possible to hide some variables using the existential quantifier
3 (which differs from the quantifier of predicate logic). The
formula 3z : ¢ asserts that it doesn’t matter what the actual
values of z are, but there are some values x can assume for
which ® holds. The meaning of 3 is defined by (2). The
formula ¢ ~, 7 is defined to be true iff ¢ can be obtained
from 7 (or vice-versa) by adding and/or removing stuttering
steps and changing the values of z. Thus, the (2) is true for a
behavior ¢ iff ® is true for some behavior 7 such that o ~, 7
is true.

g): dz: 9 é = beham‘or(a ~z T) A (T): (I)> (2)

The temporal formula (3) describes a specification ® where
v is the list of all relevant state variables and z is the list of
internal (hidden) variables.

® = Jz: Init A [Next]y, AL (3)

The existential operator is a very simple and useful way
in which the system is described as a black box. However, in
practice, the TLC model checker cannot handle the TLA hiding
operator. In what follows, we present a way to implement
data hiding by constructing a quotient STS from a TLA
specification.

D. Computing a Quotient STS

Figure 2. Constructing the quotientA STS using the refinement mapping
y=y

Given a concrete STS 7 = (Q,Z,0) describing a TLA
specification, one can obtain an abstraction of 7, a small STS
that we call quotient STS and which is obtained by quotienting
the states Q under a refinement mapping .

Figure 2 shows a STS resulting from adding a refinement
mapping y = y in all states of the concrete STS. The quotient
STS (at the right side of the figure) is constructed by collapsing
all states related under the relation v into the same state. Let
T/y=(2/y,Z/y,6/) be the quotient STS of T = (Q,Z,)

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

1: procedure QUOTIENTSTS

2 Q, (D)

3 NotSeen «— {s' € Q| s € Q and (s,s") € §}
4 while NotSeen # {} do

5: for Vq € NotSeen do

6 if v(q) ¢ Q, then

7 Q, — 9/, U{y(q)}

8

: 6/y=10/y U {(v(a),7(d)) | (¢, ¢") € 6}
9: NotSeen = NotSeen \ {q}

10: end if
11: end for
12: end while

13: end procedure

Figure 3. Construction algorithm of the quotient STS

under the refinement mapping ~. The algorithm of constructing
T/ is given in Figure 3.

We extend the implementation of TLC to produce the
quotient STS “on-the fly” when the TLC model checker
computes the state space of a specification. In fact, TLC makes
efficient use of disk. It doesn’t keep all states in memory which
is the limiting factor of the explicit other model checkers.
Instead, it stores just fingerprints of states, which is a 64-bit
number generated by a “hashing” function. So, the probability
that two states have the same fingerprint is 27%4 which is a
very small number. So, the quotient STS is generated with the
same fingerprint collision probability and without exploding
the memory.

E. Translating a STS into a Labelled Transition System

In order to use existing tools to check properties on a
STS, we transform the quotient STS into a Labelled Transition
System (LTS), that we call quotient LTS.

Definition 3: A LTS is 4-tuple T = (Q, L, 4, sy), where:

e O is the set of states,

L is the set of action labels,
e § is the transition relation (a subset of Q x £ x Q),
e and s is the initial state.

A transition (s1, 1, s2) of 4, indicates that the system can move
from state s; to state so by performing action labelled by /.

c) Property preservation: The equivalence between
checking a property given in LTL,, (Linear Temporal Logic
without the “next operator”) on the quotient LTS and checking
it on the original LTS is ensured by the preservation.

Proposition 1: Let ¢ be an LTL,, formula, let 73 and Ty
be two STSs such that Ty = Ts. If T | ¢ then Ty = .

FE. Usefulness of the Quotient LTS

The quotient LTS abstracts away the details of the concrete
specification. Its main advantage is its small size. As proper-
ties are preserved between the concrete specification and its
corresponding quotient STS, model checking properties can
be done on the quotient LTS directly, which is a simple task.
The quotient LTS is generated once and can be used to verify
different properties (modulo the refinement mapping).

To express and check properties on the quotient STS, we
use the CADP [6] toolkit. For this, we first adapt the label

58

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Formalization in MCL

Properties '\Formalization
1 inTLA

C2TLA+
Translator

C files TLA+

specification

refinement
satisfied ?

yes

Property
satisfied ?
no

Statistics

CADP model
checker

Error trace

TLA+ error trace

Figure 4. Verification flow of C programs

names such that LTS can be parsed by the CADP tools. Then,
we express properties in the Model Checking Language (MCL)
[7] language, the property specification language of CADP that
can be verified by its associated model checker.

IV. APPLICATION OF C PROGRAMS

In this section, we implement the concept of refinement
between TLA+ specifications and the quotient LTS on C pro-
grams. Figure 4 illustrates the verification flow of C programs.
We use our tool C2TLA+ [8] to translate C programs into
(a concrete) TLA+ specification. This latter can be checked
directly against a set of properties, or against an abstract
specification by defining the refinement mapping and the
implementation relation between the concrete and the abstract
specifications. Properties can be expressed in TLA to be
verified using the TLC model checker. The quotient LTS is
generated, and MCL properties can be verified by the CADP
model checker.

In what follows, we briefly present how we specify the
semantics of C in TLA+. We apply the described notions by
considering the example of the dining philosophers. Finally,
we assess the usefulness of using abstraction by giving results
of properties verification using TLC and the CADP model
checker.

A. TLA+ specification of a C program

C2TLA+ [8] generates a TLA+ specification that describes
the behavior of the C program as a closed system according
to a set of translation rules. A concurrent program consists in
a set of C functions. In C2TLA+, concurrency is modeled by
considering all possible interleaving of sequences of operations
called processes (corresponding to threads in C). Each step of
the complete specification is attributed to exactly one process.
The C program is defined by a TLA formula in the form of
(1). For more detailed information about the translation from
C to TLA+, please refer to our previous work [8].

B. Illustrating Example

As an example, we consider the classic dining philosophers
problem. One possible solution to this problem is the one that
appears in Tanenbaum’s popular operating systems textbook
[9],, given in Figure 5.

In the implementation of this solution, the global
semaphore mutex provides mutual exclusion for execution

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

#define N 4 void put_forks (i)
#define THINKING 0 {
#define HUNGRY 1 P (&mutex) ;
#define EATING 2 state[i] = THINKING;
#define LEFT (i) (i+N-1)3%N test (LEFT (1)) ;
#define RIGHT (i) (i+1)3%N test (RIGHT (1)) ;
typedef int semaphore; V (&mutex) ;
int state[N]; }
semaphore mutex;
semaphore sem[N]; void test (1)
{
void philosopher (int i) if (state[i] = HUNGRY
{ while (1) { && state[LEFT(i)]!=
think () ; EATING
take_forks (i) ; && state[RIGHT (1)]
eat (); = EATING)
put_forks(i); } {
} state[i] = EATING;
void take_forks(int 1) { V(&sem[i]);
P (&mutex) ; }
state[i] = HUNGRY; }
test (1) ;

V (&mutex) ;
P(&sem[i]);}

Figure 5. Tanenbaum’s solution for the dining philosophers

of critical sections and the semaphore sem[1i] ensures syn-
chronization. The latters perform P () to acquire a lock and
V () to release it, using “Compare-and-swap‘* primitive.

C. Refinement of Specifications

d) Abstract specification of the dining philosophers:
We define a coarse-grained representation of the dining
philosopher, illustrated by Figure 6 that captures the aspects
of the system that interest us without giving all the details of
its internal structure.

In order to check liveness properties, we consider that
the philosopher cannot starve waiting for a fork, i.e., no
philosopher is eating forever. This assumption is stated by the
formula Fairness, where WF,,s(A) denotes weak fairness
on action A and the symbol { denotes the temporal operator
eventually.

59

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

MODULE Abstract_philosophers

EXTENDS Naturals, TLC
CONSTANT N
VARIABLES phil_state, forks
vars = (phil_state, forks)
fork_available(7) 2 forks[| =N
fork_acquire(p,) = forks' = [forks EXCEPT ![p] = 1]
forks_release(p) 2
forks' = [forks EXCEPT ![p] = N, ![(p + 1)%N] = N]

fork_release(p) = forks' = [forks EXCEPT ![p] = N]
LEFT(p) = (p+1)
RIGHT (i) = 1F (¢ = 0) THEN (N — 1) ELSE (i — 1)
think(ph) =

A phil_state[ph] = “think”

A fork_available(LEFT (ph))

A fork_acquire((LEFT (ph), ph)

A phil_state’ = [phil_state EXCEPT ![ph] = “hungry”]

hungry(ph) =
A phil_state[ph] = “hungry”
A IF (fork_available(ph))
THEN
A fork_acquire(ph, ph)
A phil_state’ = [phil_state EXCEPT ![ph] = “eat”]
ELSE
A fork_release(LEFT (ph))
A phil_state’ = [phil_state EXCEPT ![ph] = “think”]

eat(ph) = A phil_state[ph] = “eat”
A forks_release(ph)
A phil_state’ = [phil_state EXCEPT ![ph] = “think”]

Init = A phil_state = [i € (0.. (N —1)) = “think’]
Aforks =i € (0.. (N —1)) — N]

Spec & Init AO[3i€0.. (N —1):
think(ph) V hungry(ph) V eat(ph)]vars
A Fairness

Figure 6. Abstract TLA+ version of the dining philosophers

Fairness =
AYi € (0. — 1)1 WFyaps (hungry(i)) A WFoyars (eat(i))
AYi € (0.. N —1): OO(ENABLED (think(i)),,)

= (B0{eat())

vars)

e) Specifying the refinement relation: To check that
the concrete specification generated by C2TLA+, implements
the abstract version of the dining philosophers, we define the
refinement relation as shown in Figure 7. In this section, we
don’t illustrate the translation of the C code, as the translation
rules are described in our previous work [8].

The implementation relation is an implication formula
Spec = Abstract_instance!Spec.

D. Expressing properties

An interesting property that the implementation should
hold is that the critical sections are protected with the primi-
tives P () and V (). This property can be simply expressed in
TLA+ (on the abstract specification) as follows:

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

MODULE refinement_definition ————
EXTENDS Concrete_philosophers

philNum 2 load(“unused”, Addr_N)

get_val(addr, off) =
load(“unused”, [loc — addr.loc, offs — addr.offs + off]).val

refmap(addr) =
[i € (0 .. philNum) —
LET val = get_val(addr_state, 1)
IN IF val = 0 THEN “think”
ELSE IF val = 1 THEN “hungry”
ELSE “eat”]

Abstract_instance = INSTANCE Asbtract_philosophers WITH
N < philNum,
phil_state < refmap(Addr_state)

Spec = Abstract_instance! Spec

Figure 7. Definition of refinement relation between abstract and concrete
TLA+ specifications of the dining philosophers

mutual_exclusion =
Vi€ (0..(N—1)): (phil_state[i] = “eat”) —
(phil_ state[LEFT(z)} # “eat” A phil_state[RIGHT (i)] # “eat”)

The dining philosophers problem captures many aspects of
liveness. Among liveness properties of the dining philosophers
is starvation-freedom and deadlock freedom that we expressed
in TLA+ as follows:

NoStarvation = Vi e (0.. (N —1)):
O((phil_state[i] = “hungry”) = O(phil_state[i] = “eat”))

DeadlockFree =
O((vVie (0..(N—=1)): (phil_state[i] = “hungry”)) =
(Vi€ (0..(N—=1)): O(phil_state[i] = “eat”)))

E. Verification results and comparison

We check that the concrete TLA+ specification (generated
by C2TLA+) implements the abstract TLA+ specification
(given in Figure 7). We also check the set of properties on
these two specifications. We extract the quotient LTS from
the concrete specification that we checked against the set
of properties that we express in MCL. Table I shows the
number of states and the verification time of the concrete
and the abstract specifications using TLC, and the numbers
of states, transitions and the time verification of the quotient
LTS using CADP model checker. Experiments were carried
on an Intel Core Pentium i7-2760QM with 8 cores (2.40GHz
each) machine, with 8Gb of RAM memory. For 5 philosophers,
the state space of the concrete TLA specification exceeds 113
millions states and its verification takes more than 10 hours to
check the properties.

For the same number of philosophers, the abstract TLA
specification generates 82 states and properties were checked
in only 1 minute using TLC. On the other hand, the quotient
LTS generated 47 states and its verification time is 42s. Due to
the preservation properties, we can deduce that all the verified
properties on the abstract TLA specification or on the quotient
LTS are verified on the concrete specification. The use of

60

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

TABLE I. RUNTIMES OF MODEL CHECKING

Verification using TLC Verification using CADP

Philos Concrete Spec. Abstract Spec. Quotient LTS
States Time(s) States Time(s) States Time(s)

3 395K 157 14 15 14 12

4 27.285K 1.080 32 23 20 20

5 113.285K >36.000 82 64 47 42

abstraction reduces considerably the complexity of verification
of C implementations.

When TLC reports that a transition violates the imple-
mentation formula Spec = Abstract_instance!Spec, there
is an error either in the concrete specification, the abstract
specification, or the refinement mapping function. The trace
given by TLC can help to determine which one of those is the
case. We use our tool to translate this trace in C and get the
C execution sequence that leads to the error.

V. RELATED WORK

Predicate abstraction [10] is a technique to abstract a
program so that only the information about the given predicates
are preserved. This technique is being used in SLAM [11],
BLAST [12] and MAGIC [13]. Their approach has been
shown to be very effective on specific application domains
such as device drivers programming. SLAM uses symbolic
algorithms, while BLAST is an on-the-fly reachability analysis
tool. The Magic tool use LTS a specification formalism, and
weak simulation as a notion of conformance of a system and
its abstract specification.

These tools are applied to C programs and use automated
theorem prover to construct the abstraction of the C program.
The difficulty of these refinement-based approaches is that
performing a refinement proofs between an abstract and a
refined model require non trivial human effort and expertise
in theorem proving to get the prover to discharge the proof
obligations. SLAM cannot deal with concurrency, BLAST
cannot handle recursion.

Besides predicate abstraction, several verification tech-
niques for C programs have been proposed. CBMC [14]
is a bounded model checker for ANSI C programs which
translates a program into a propositional formula (in Static
Single Assignment form), which is then fed to a SAT solver
to check its satisfiability. CBMC explores program behavior
exhaustively but only up to a given depth.

Compared to previous related works that use an over-
approximation of the code implementation which is sound,
our approach is based on constructing an executable abstract
model, that can be expressed using TLA+ or by constructing
the quotient LTS. Moreover, TLA+ is a logic that can express
safety and liveness properties unlike SLAM, BLAST and
CBMC which have limited support for concurrent properties
as they only check safety properties.

VI. CONCLUSION AND FUTURE WORK

We have defined an operational semantics of a TLA+
specification in terms of a STSs. We redefined the semantics
of refinement between a high-level (concrete) and a low-level
(abstract) TLA+ specifications using STSs and we illustrated

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

a way to automatically construct a quotient STS from the
concrete specification by extending the TLC model checker.
We applied all these notions for verifying C programs. Exper-
imental results show that verifying properties on the abstract
model reduces considerably the complexity of the verification
process.

As future work, we plan to extend this work on several
interesting directions. We would like to generate TLA+ and
MCL properties from the ACSL [15] specification language
used in Frama-C. We envisage to benefit from Frama-C
analysis of shared variables by several processes to generate
TLA+ code with less interleaving between the processes, to
reduce the state space. Finally, we aim to use the TLA+
proof system [16] to prove refinement between a concrete and
abstract specifications.

REFERENCES

[1] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model checking.
Cambridge, MA, USA: MIT Press, 1999.

[2] L. Lamport, Specifying Systems, The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, 2002.

[3] L. Leslie, “The Temporal Logic of Actions,” ACM Trans. Program.
Lang. Syst., vol. 16, no. 3, 1994, pp. 872-923.

[4] Z.Manna and A. Pnueli, The Temporal Logic of Reactive and Concur-
rent Systems. New York, NY, USA: Springer-Verlag New York, Inc.,
1992.

[S] M. Abadi and L. Lamport, “The Existence of Refinement Mappings,”
Theor. Comput. Sci., vol. 82, no. 2, 1991, pp. 253-284.

[6] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “CADP 2011: a
toolbox for the construction and analysis of distributed processes,” In-
ternational Journal on Software Tools for Technology Transfer, vol. 15,
no. 2, 2013, pp. 89-107.

[71 R. Mateescu and D. Thivolle, “A Model Checking Language for Con-
current Value-Passing Systems,” in Proceedings of the 15th International
Symposium on Formal Methods. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 148-164.

[8] A. Methni, M. Lemerre, B. Ben Hedia, S. Haddad, and K. Barkaoui,
“Specifying and Verifying Concurrent C Programs with TLA+” in
Formal Techniques for Safety-Critical Systems, C. Artho and P. C.
Iveczky, Eds. Springer, 2015, vol. 476, pp. 206-222.

[9] A. S. Tanenbaum, Modern Operating Systems, 3rd ed. Upper Saddle
River, NJ, USA: Prentice Hall Press, 2007.

[10] S. Graf and H. Saidi, “Construction of Abstract State Graphs with PVS,”
in Proceedings of the 9th International Conference on Computer Aided
Verification. London, UK, UK: Springer-Verlag, 1997, pp. 72-83.

[11] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani, “Automatic
predicate abstraction of c¢ programs,” in Proceedings of the ACM
SIGPLAN 2001 conference on Programming language design and
implementation, ser. PLDI '01. New York, USA: ACM, 2001, pp. 203—
213. [Online]. Available: http://doi.acm.org/10.1145/378795.378846

[12] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Software
Verification with BLAST.” Springer, 2003, pp. 235-239.

[13] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith, “Modular
Verification of Software Components in C,” IEEE Trans. Software Eng.,
vol. 30, no. 6, 2004, pp. 388—402.

[14] E. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-
C Programs,” in TACAS, K. Jensen and A. Podelski, Eds., vol. 2988.
Springer, 2004, pp. 168-176.

[15] P. Baudin, J.-C. Filliatre, C. Marché, B. Monate, Y. Moy, and V. Pre-
vosto, ACSL: ANSI/ISO C Specification Language, version 1.4, 2009,
[retrieved: October, 2015].

[16] D. Cousineau, D. Doligez, L. Lamport, S. Merz, D. Ricketts, and
H. Vanzetto, “TLA+ Proofs,” in 18th International Symposium on
Formal Methods - FM 2012, D. Giannakopoulou and D. Méry, Eds.,
vol. 7436. Paris, France: Springer, 2012, pp. 147-154.

61

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Revisiting The Package-level Cohesion Approaches

Waleed Albattah
Information Technology Department
Qassim University
Qassim, Saudi Arabia
e-mail: w.albattah@qu.edu.sa

Abstract—Software measurements play a critical role in
assessing software properties. Cohesion is one of the software
properties that are considered to have a relationship with
software quality. Many cohesion metrics have been proposed
by researchers to assess cohesion on different software
abstractions, i.e., class-level and package-level. The proposed
package-level cohesion metrics in the literature seem to differ
in their assessment of cohesion. In this paper, we try to
investigate this issue and establish whether cohesion has only
one concept. The conclusion of this paper encourages further
investigation and comparison between the existing package-
level cohesion metrics.

Keywords—Cohesion; package; metric; ~measurement;
software.

1. INTRODUCTION
With the increased importance of software

measurements in assessing software properties, research
works have produced and are continuing to produce new
software measures. One specific type of measure is
cohesion. Cohesion refers to the degree to which the
elements of a specific component belong together [3].

During software maintenance, developers spend at least
50% of their time analysing and understanding software [2].
In object-oriented programming languages, e.g., Java,
assembling only closely related classes into packages can
improve software maintenance. Package cohesion metrics
measure the coherence of a package amongst its elements
that should be closely related. Cohesion is an internal
attribute of software that affects its maintainability and
reusability. Following the design principles [21], a high
level of cohesion has as its goal to achieve software
maintainability and promote its reusability [22][26].

Package-level cohesion research has received very little
focus compared with research on other abstractions, e.g.,
class-level. When one examines the literature on package
cohesion metrics, it is clear that there are significant
differences in these metrics. Thus, the following natural
question arises: do these metrics measure the same thing?
This question will be addressed in this paper.

The paper is organised as follows. In Section II, we
present Package Cohesion Principles [21]. The existing
approaches to package cohesion are presented in Section III.
Section IV presents the general example for all the existing

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Suliman Alsuhibany
Computer Science Department
Qassim University
Qassim, Saudi Arabia
e-mail: salsuhibany@qu.edu.sa

approaches. The conclusion and future work are given in
Section V.

II. PACKAGE COHESION PRINCIPLES

R. C. Martin [21] has presented six principles for
package design, which have since become well-known and
well-accepted. The first three principles are for package
cohesion and they help to allocate system classes to
packages. This allocation can help to manage the software
during its development. In our previous work [23], the three
package cohesion principles of Martin [21] were discussed
and they are introduced here briefly from [23]:

1) The Reuse-Release Equivalence Principle (REP)
“The granule of reuse is the granule of release”

This states that the reuse of the code should be the same
size as the release one. If a person decides to reuse someone
else’s code, he needs a guarantee that the support will
continue and the release of new versions will be on the same
original size. To ensure the reusability of the code, the author
must organise the classes into reusable packages and then
track them with the release.

2) The Common Reuse Principle (CRP)
“The classes in a package are reused together. If you reuse
one of the classes in a package, you reuse them all”

This principle tells us which classes should be grouped
together. As it states, the classes that tend to be reused
together should be in the same package. It is more likely for
reusable classes to depend on each other, so classes are
rarely reused in separation. CRP states that the classes of a
package should be inseparable, which means that if a
package depends on this package, it should depend on all of
its classes and not on a number of them. In short, classes
that are not tightly coupled to each other should not be kept
in the same package.

3) The Common Closure Principle (CCP)
“The classes in a package should be closed together against
the same kinds of changes. A change that affects a package
affects all the classes in that package and no other
packages”

From the maintenance point of view, while the change is
not avoidable, it should be controlled (minimised). If a
change has been made on one package, there is no need to

62

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

re-release or revalidate packages that do not depend on the
changed package. The CCP states that the classes in the
package should not have different reasons to change.

While the previous two principles, REP and CRP, focus
on reusability, the CCP focuses on the system
maintainability. If a change is made on the code, it would be
better to be on one package or on a few packages rather than
being on many packages. The classes that are tightly related
will change together. Hence, if they are kept in the same
package, only one package or a small number of packages
are going to be affected when a change happens. Also, the
effort regarding revalidating and re-releasing of software
will be minimised.

III. THE EXISTING PACKAGE COHESION APPROACHES

A number of cohesion approaches have been proposed on
class and method levels [1][3]-[6]-[18]. In this section, we
present some of the existing package-level cohesion
approaches. A brief description is given for each. In the
literature, Misic [19], Ponisio and Nierstrasz [22], Martin
[21], Xu et al. [20], Zhou et al. [24], Abdeen et al. [25], and
Albattah and Melton [23] have each proposed different
methods to measure package cohesion. Each proposes a
cohesion metric on the package level. A brief discussion for
each approach is given next.

A. Approach by Misic

Misic [19] proposes a way to measure a functional
cohesion. Since a number of approaches were focusing on
cohesion as an internal structure issue, Misic claimed that
cohesion could be also observed externally by focusing on its
functional property regardless of the package’s internal
structure.

The approach measures the similarity of package objects
(elements). The similarity between elements can be
measured by looking at the external clients’ usage patterns.

Method

Misic defined write and read range concepts. The write
range of an object O, W(0O), refers to the set of objects
(servers) used by this object (client). The read range of an
object O, R(O), refers to the set of objects (clients) used by
this object (server).

Given a set of objects S, let R(S) be its client set (Read
range), S,, the subset that IS? used to write its clients, and let
Sw(x) be the part of that subset that IS? used to write the
client x. Then, the coherence is given by the following
formula:

Y, (#S (x)-1)

__ xeR(S)
V)=

XeR(S)

where

#S stands for the number of elements in S.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

The coherence measure proposed by Misic can be
calculated internally or externally. For internal coherence,
the summation in the numerator and denominator will be
restricted only for clients inside the questioned set. Similarly,
the summation will be restricted only for clients outside the
questioned set to measure the external cohesion.

B. Approach by Ponisio and Nierstrasz

Ponisio and Nierstrasz [22] proposed a similar approach
to measure package cohesion. The proposed contextual
metric measures the cohesion based on the common use by
clients. The approach idea is to propose the Common-Use
(CU) metric that measures the package cohesion by taking
into account the way that a package’s classes are accessed
by other packages.

Method

CU measures the cohesion of package P by considering
the use of its elements by the package clients. If all the
clients use the same set of P’s elements, these elements share
the same responsibilities of P, and then P is cohesive.
Instead, if the clients use a different set of P’s elements,
these elements have different responsibilities, and then P is
not cohesive.

There is a need for weight to differentiate between client
packages. Not all clients have the same degree in assessing
P’s cohesion. The weight reduces the influence of P’s
cohesion from the promiscuous clients.

Definition: “We define the weight of a (client) package
Pciient as the inverse of the number of connections that P jient
has with other packages.”

1
w(Pclient) ==

fan in(Pclient) +fan Out(Pclient)

The definition of CU is given as follows:

“We define Common-Use (CU) as the sum of weighted
pairs of classes from the interface of a package having a
common client package (f), divided by the number of pairs
that can be formed with all classes in the interface.”

f(a,b) = weight(a, b)

U= > :
v #Pairs
Where
I = interface(P)
#Pairs = 7|I‘X(|21‘_1)
C = clients(a) N clients(b)
_ [L ifC#0
f(a,0) a { 0, otherwise
weight(a,b) = 3 .o %

The value of CU is between 0, which represents that the
interface classes of the package have disjoint responsibilities,
and 1, which means that the interface classes of the package
are used together.

2

3)

63

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

C. Approach by Martin

Martin [21] presents a set of principles of object-
oriented package design. Three of these principles, package
cohesion principles, try to help the software architect to
organise classes over packages. These principles are: REP,
CCP, and CRP, discussed earlier in Section II. The three
principles aim to provide a high quality of package
cohesion.

Method

Martin [21] proposed a number of simple package-level
metrics. One of them is a relational cohesion of a package.
The package cohesion metric is presented as an average
number of internal relations per class. Regardless of the
package external dependencies that are considered in other
cohesion metrics, the metric measures the connectivity
between package elements. This metric is quite simple to
apply, and is given by:

H=(R+1)/N “4)
where
H: package cohesion
R: number of internal relations
N: number of the package classes

The extra “1” in the numerator prevents cohesion H
from equalling zero when N=1. This metric gives all internal
relations the same weight and disregards the external ones.
It has been applied to a number of software projects and is
widely accepted.

D. Approach by Xu et al.

Xu et al. [20] propose an approach to measuring the
package cohesion in Ada95 object-oriented programming
language. The proposed metric is based on dependence
analysis between package entities. It is assumed that the
package may have objects and sub-programs.

Method

The package dependence graph (PGDG) describes all
types of dependencies: inter-object dependence graph
(00G), inter-subprogram dependence graph (PPG), and
subprogram-object dependence graph (POG). The method
measures package cohesion according to PGDG. It assumes
that package PG has n objects and m subprograms, where #,
m>0.

To present the measure in a unified model, a power for
each object PW(O) is given:

Cohesion(O) O is a package object
Cohesioin(PG(0)) Oisa type object
1 others

Xu et al. [20] claimed that, according to the definitions, it
is easy to prove that the measure satisfies the four properties
given by Briand et al. [3][27] to develop a good cohesion
measure.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

However, an Ada package represents a logical grouping
of declarations. The role of an Ada package is similar to the
role of class in other languages, such as Java [24]. Thus, this
package cohesion metric cannot be applied to the general
example in the next section. An Ada package actually falls in
the category of class-level cohesion metric.

E. Approach by Zhou et al.

Zhou et al. [24] proposed an approach to measuring
package semantic cohesion called the Similar Context
Cohesiveness (SCC). In this approach, the common context
is used to assess the degree of relation between two
components. SCC measures the inter- and intra-package
dependencies that can reveal semantic cohesion between
components.

Method

The proposed package cohesion measure SCC is based
on the component context. The context of component c is
composed of two sets: the components that depend on ¢ and
those that ¢ depends on. The SCC metric is given by:

Y. Wat(e,.c,)
(¢ < E(p)

m(m—1)
1 if m=1

SCC(p)= if m>1

where
m: number of components ¢ in p

Wgt(cla CZ) = CCS(C15 Cz) + Dep(cla CZ)

Dep(cl,cz)z{l if ¢—%>c, or ¢,—%>c¢

0 else

CCS(c},cy): denotes the similarity between the contexts of
two components ¢; and ¢, , and is given by:
CCS(cy, ¢3) = kRSS(cy, ¢) + (1-k)DSS(cy, ¢2)
k: represents the position’s importance
RSS(cl, ¢2): similarity between Sg(c1) and Sg(c2)
DSS(c1, ¢2): similarity between Sp(c1) and Sp(c2)

Se(©) = {c, | ¢+ _yc}
SD(C) = {Ci | CL} Ci}

F. Approach by Abdeen et al.

The approach proposed by Abdeen et al. [25] is based on
the Simulated Annealing technique. The approach aims to
reduce package coupling and cycles by moving classes
between packages. Two metrics have been defined for this
purpose, coupling and cohesion metrics.

Method

The approach automatically reduces package coupling
and cycles by moving classes between packages considering
the existing class organisation and package structure. This
approach can help maintainers to define: the maximum
number of classes that can change their packages, the
maximum number of classes that a package can contain, and

)

64

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

the classes that should not change their packages and/or the
packages that should not be changed. A set of measures is
defined to determine and quantify the quality of a package.
The number of package dependencies (|Pp|) normalises
these measures.

The package cohesion metric is defined to be the direct
dependencies between its classes. Hence, the cohesion of a
package P is proportional to the number of its internal
dependencies (|P j..p |) according to the CCP Principle [19].
The cohesion quality is given as follows:

CohesionQ(p) = 1pinenl

(6)
lpD|
where
|Pp| is the number of all internal and external

dependencies of classes in the package.

G. Approach by Bauer and Trifu

Bauer and Trifu [28] have proposed an approach,
architecture-aware adaptive clustering, to produce
meaningful decompositions in a system. They have
evaluated their approach by defining two metrics: the
average cohesion of a subsystem and the average coupling
between subsystems.

Method

The approach was based on providing better
understanding of the system. They tried to recover from the
original decomposition and then impose an appropriate
structure. The new structure aims to maximise subsystems
cohesion. To evaluate the recovered subsystem
decomposition, they performed a comparative study that is
based on two criteria, accuracy and optimality. For
accuracy, they compared the resulting decompositions with
both the original package structure and the ideal Common
Reuse Principle structure of [21]. For optimality, they used
some optimality metrics to show whether the resulting
decompositions have high cohesion and low coupling. To
evaluate their approach, two metrics were defined: average
cohesion of the subsystems and average coupling between
the subsystems of a given decomposition. The average
cohesion metric is given by:

Z nolnternalEdges(S;)

[S;12 =151
S;ep e
[S;1>1

avgCohesion(D) =

®)

|D[*

where
D: a composition
nolnternalEdges(Si): number of edges between
classes in Si
|D|*: number of subsystems except single-class

subsystems in D

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Si: subsystem number i in D

|S7|: number of classes in subsystem Si

H. Approach by Seng et al.

The approach by Seng et al. [29] aims to develop
existing object-oriented system decompositions by defining
new decompositions with better metric values and fewer
violations of design principles. They defined the problem as
a search problem. The quality of the resulting subsystem
decompositions is measured by the fitness function that
combines software metrics and design heuristics.

Method

The fitness function consists of cohesion, coupling,
complexity metrics, as well as cyclic dependencies and
bottleneck heuristics. The value of each individual function
is between 0 and 1, where the optimal value is 1. The
cohesion of a system s is the summation of cohesion values
for the individual subsystems in s. The cohesion for a
subsystem s; is measured by counting the number of different
classes in s; known by some class ¢; C s; ,(#k(c;)), and
dividing this by the square number of classes in s; , (#c(s))).
The resulting value can be normalised if divided by the
number of subsystems (#s).

#s #c(s;)

#k(cj)
2 X Fe(i)?
. =1 g:l 7
cohesion(s) 75

1. Approach by Tagoug

Tagoug [30] has proposed coupling and cohesion
metrics on subjects, which are similar to packages. Each
subject is a collection of classes. The approach aims to
measure cohesion and coupling at the system level. The
quality metric, which combines cohesion and coupling
values, measures the decomposition’s quality as early as the
analysis and design phases of the software development
lifecycle.

Method

The two metrics measure the quality of object-oriented
decomposition. The cohesion metric focuses on the
interactions of components inside a subject, while the
coupling metric focuses on the interactions of components
among subjects. The cohesion of subject E is given by:

n-1 n
2 X Wi

i=1 j=i+l

w_ *n*(n-1)/2)

)

C(E)=

where
E: a set of classes of S.
Wij: the sum of the weights of links in Lij.
Lij: the set of all links between classes Pi and Pj.
Wmax = max {Wij} in system S

(7

65

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

n=|E|,n>1

The cohesion value is between 0, i.e., there are no links
between classes, and 1, maximum links with maximum
weight. The weights of links between classes of a subject
are ordered in Table I based on the degree of association
according to the object-oriented expert designers.

TABLE L WEIGHTS OF LINKS BETWEEN CLASSES.
Links Type Weights (Wij)
Whole Part Structure 0.9
Inheritance 0.8
Instance Connection 0.7
Message Connection 0.6
Conceptual Link 0.5

J. Approach by Albattah and Melton

The approach by Albattah and Melton [23] is motivated
by the package cohesion principles [21]. They proposed two
different cohesion metrics to measure two different cohesion
concepts or types based on Martin’s package cohesion
principles in [21]. The first cohesion type, Common Reuse
(CR), includes the factors that help in assessing CR
cohesion. Similarly, the second cohesion type, Common
Closure (CC), includes the factors that help in assessing CC
cohesion. After each type of cohesion is measured by itself,
the two values of CR and CC may be combined to one
unified value of package cohesion, while still recognising
the two types.

Method

The CR metric measures cohesion based only on the
common reuse factors of the package. The elements of a
package have different degrees of reachability. Reachability
of a class in a package is the number of classes in the same
package that can be reached directly or indirectly. The CR
metric is defined as follows:

“Let ¢ € C, and suppose there is an incoming relation to
¢ from a class in a different package. Then c is called an in-
interface class. The cardinality of the intersection of the hub
sets of all the in-interface classes in C divided by the
number of classes in C is the CR of P ”".

CR= |ﬁ In-interface class hub sets‘ / |C| (10)
where

Hubness(c) = {d € C: if there is a path ¢ 2>d}

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

C: set of classes in package P
c and d: classes in C

The CC metric considers the package dependencies on
other packages as well as the internal dependencies between
classes of the package. The classes of the package should
depend on the same set of packages and, thus, they will have
the same reasons for a change. The CC metric is defined as
follows:

“The cardinality of the intersection of the reachable sets
divided by the cardinality of the union of the sets represents
the CC of P .

CC: (|ﬁ Reachable Package sets | / |U Reachable Package sets |) (1 1)

The combined cohesion CH is defined as follows:

J2-D

(12)
V2

CH =

D=1(1-CRY +(1—-CCY: (13)

IV. THE GENERAL EXAMPLE

While we try to understand each of the previously
presented approaches, we rely on our best understanding for
each. One method of empirical investigation is to apply all
the approaches on the same situation and compare the
results. The approaches have been applied to measure the
cohesion of P/ in Figure 1. The concern is to measure the
cohesion of P/ only for the purpose of comparison between
the approaches. If all the approaches rely on the same idea,
their assessments of the cohesion of P/ will be alike.
Otherwise, they probably rely on different concepts of
package cohesion.

In Figure 1, there are six packages and a number of
classes in each package. The arrows represent the
dependencies between classes within the same package, i.e.,
in PI, or between classes in different packages. The
direction of the dependency is very important because it
shows the depended-upon class. For example, C6 depends
on C2 but not the opposite. In the figure, P/ has four classes
that have incoming and outgoing dependencies. Using the
presented approaches, we try to measure how cohesive are
the classes of P/. It is worth mentioning that all the
presented approaches consider the dependencies between
classes to measure cohesion, but in different ways. Some
approaches, such as Albattah and Melton [23], consider the
direction of the dependencies. However, some other
approaches, such as Martin [21], do not consider the
direction of the dependencies. For this difference and other
differences between the presented approaches, it is expected
to find distinct cohesion assessment values for PJ.

Again, all calculations are made based on our own
understanding of each approach.

66

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

P

n N

P P3

H a n ! ,-.
n
N

P5
P6
P

and some approaches focus only on one part. This can lead
to misleading cohesion assessments. Cohesion has three
different concepts that led to different approaches. The first
concept considers cohesion as an internal property of a
package that can be measured from inside the package only,
such as the approach by Martin [21]. The second concept
considers cohesion as a property that can be measured from
outside the package, such as the approach by Ponisio and
Nierstrasz [22]. The third concept considers cohesion to be
measured from both inside and outside the package, such as
the approach by Albattah and Melton [23].

These three concepts represent three scopes where
cohesion has been measured in the presented approaches.
The scope of package cohesion can be used to classify the
presented approaches. Table III presents this classification
based on the scope of cohesion used in each approach, i.e.,

Figure 1. The general example. internal, external, or both.
Table II presents the cohesion values of package P/ for TABLEIIL. CLASSIFICATION OF THE PRESENTED APPROACHES.
the different approaches.
A b Method Scope of Cohesion
pproac etho
TABLE II. COHESION VALUES OF THE PRESENTED APPROACHES. Internal External
Cohesion Misic [19] External Objective v
Approach
Metric Value Min Max Ponisio and Common Use of v/
. i 22 th
Misic [19] vs) 033 0) Nierstrasz [22] e package
. . Relational
Ponisio and cU 0.125 0 | Martin [21] Cohesion v
Nierstrasz [22] ’ Similar Context
ar Contex
Martin [21] H 1.25 >0 N(N-1)* Zhou etal. [24] Cohesiveness 4 4
Zhou et al. [24] SCC(p) 0.36 0 1 Abdeen et al. Dependency v/
- [25] Analysis
Abdeen et al. [25] CohesionQ(p) 0.29 0 1
Bauer and Trifu .
Bauer and Trifu . 28 Average Cohesion v
(28] avgCohesion(D) 0.67 0 1 [28]
Dependency
Seng et al. [29] cohesion(s) 0.25 0 1 Seng ctal. [29] Analysis 4
Tagoug [30] C(E) 0.67 ** 0 1 Tagoug [30] Interactions inside v/
the package
Albattah and
Melton [23] CH 0 0 1 Albattah and Common Reuse & v/ v/

* N: number of classes in the package
**Assuming that all the connections are instance connections with 0.7
weights.

Although all the presented approaches have the same
range of cohesion values except Martin’s approach [21],
they end up with different cohesion values for the same
package, i.e., P/ in Figure 1. For example, the approaches
by Bauer and Trifu [28] and Tagoug [30] assess the
cohesion of P/ as relatively high. In contrast, the approach
by Albattah and Melton [23] assesses the cohesion of P/ as
poor.

This simple comparison raises a question about the
theory behind these different approaches. The distinct
evaluation results for the same package means that the
presented approaches rely on different views of cohesion.
These views can be noticed by investigating the presented
approaches. We believe cohesion has different types or parts

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Melton [23] Common Closure

The classification in Table III can reveal, somehow, the
reason behind the diversity of package cohesion approaches
that led to distinct results in Table II. Package cohesion has
been viewed in different ways. It is worth saying that all the
views may be right but they are different. This leads to the
idea that there is more than one type of cohesion. The
previous research works treated cohesion as one type or one
concept, except for the research carried out by Albattah and
Melton [23], and this was not accurate in our opinion.

We support the idea of Albattah and Melton [23] that is
presented in this paper about cohesion. They defined
cohesion as an internal property of the package and it has
two different types. The first type can be measured from
outside the package and it represents how well the classes in

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

the package cooperate to provide a service to classes outside
the package. The second type measures how well the classes
in the package are closed in using classes in other packages.
This type represents the closure of the package’s classes
against the same kind of changes, which is the same set of
depended-upon packages.

We believe cohesion is affected by internal and external
factors and it should be treated based on this concept for
accurate assessments. On the other hand, the generalised
term of “cohesion” should not be used if the approach only
relies on one consideration, i.e., internal or external. Terms
such as “Common Closure Cohesion” and “Common Reuse
Cohesion” can be used to describe the approach that relies
on one consideration, 1i.e., internal and external,
respectively. It is worth saying that Martin [21] has
established a theory behind the internal and external factors
by presenting the three package cohesion principles already
discussed in Section II. Moreover, Martin’s cohesion
principles have been used to distinguish between package
cohesion types in our previous work, Albattah and Melton
[23].

V. CONCLUSION AND FUTURE WORK

In this paper, a preliminary research survey on package
cohesion approaches is presented. The survey shows that
there is a rich variety of package cohesion understanding,
which has led to the production of different package
cohesion metrics in which each of them is based on a
specific view of cohesion. We believe that there are
significant differences in these metrics. Thus, the metrics of
these approaches measure different things. The example
given in the paper shows different values of cohesion and
motivates us to classify the presented approaches. A
preliminary classification reveals the reason behind the
diversity of package cohesion approaches that led to distinct
results in the given example. Obviously, the scope of
cohesion is the foundation for this classification. We
conclude that cohesion is more than one part and the term of
“cohesion” should not be used unless the internal and
external considerations are taken into account. Otherwise,
terms such as “Common Closure Cohesion” and “Common
Reuse Cohesion” can be used to describe the approach that
relies on one consideration, i.e., internal and external,
respectively.

In future work, we plan to examine the role of package
cohesion in predicting software maintainability and software
reusability.

REFERENCES

[1] S. R. Chidamber and C. F. Kemerer, "A metrics suite for
object oriented design." IEEE Transactions on Software
Engineering, 20.6 (1994): 476-493.

[2] V. Basili, "Evolving and packaging reading technologies."
Journal of Systems and Software 38.1 (1997): 3-12.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

[10]

(1]

[13]

[14]

[15]

[16]

[17]

(18]

[19

—

[20]

L. Briand, J. Daly, and Jiirgen Wiist, "A unified framework
for cohesion measurement in object-oriented systems."
Empirical Software Engineering 3.1 (1998): 65-117.

L. Briand, S. Morasca, and V. Basili, "Measuring and
assessing maintainability at the end of high level design."
Conference on Software Maintenance Proceedings, 1993.
CSM-93 (pp. 88-87), IEEE, 1993.

B. Henderson-Sellers, L. Constantine, and 1. Graham,
"Coupling and cohesion (towards a valid metrics suite for
object-oriented analysis and design)." Object Oriented
Systems 3.3 (1996): 143-158.

S. Orlov and A. Vishnyakov, "Metric Suite Selection Methods
for Software Development of Logistics and Transport
Systems." Proceedings of the 11th International Conference
"Reliability —and Statistics in Transportation and
Communication" (RelStat'11), 19-22 October 2011, Riga,
Lativia, p.301-310.

J. Eder, G. Kappel, and M. Schrefl, "Coupling and cohesion
in object-oriented systems." Technical Reprot, University of
Klagenfurt, Austria (1994).

Y. Lee, B. Liang, S. Wu, and F. Wang, "Measuring the
coupling and cohesion of an object-oriented program based on
information flow." In Proc. International Conference on
Software Quality, Maribor, Slovenia, 1995, (pp. 81-90).

G. Gui and P. Scott, "Coupling and cohesion measures for
evaluation of component reusability." Proceedings of the
2006 International workshop on Mining software repositories,
2006, (pp. 18-21). ACM, 2006.

M. Hitz, and B. Montazeri, "Measuring coupling and
cohesion in object-oriented systems." Proceedings of the
International Symposium on Applied Corporate Computing.
Vol. 50. 1995.

W. Li and S. Henry, "Maintenance metrics for the object
oriented paradigm." Proceedings of First International
Software Metrics Symposium, 1993, (pp. 52-60), IEEE, 1993.

S. Chidamber and C. Kemerer, “Towards a metrics suite for
object oriented design.” Vol. 26. No. 11, 1991, (pp. 197-211).
ACM.

J. Bieman and Byung-Kyoo Kang, "Cohesion and reuse in an
object-oriented system." ACM SIGSOFT Software
Engineering Notes. Vol. 20. No. SI. ACM, 1995.

J. Bieman and Linda M. Ott, "Measuring functional
cohesion." IEEE Transactions on Software Engineering, Vol.
20, No. 8, (1994): (pp 644-657).

L. Etzkorn, S. Gholston, J. Fortune, C. Stein, D. Utley, P.
Farrington, and G. Cox, "A comparison of cohesion metrics
for object-oriented systems." Information and Software
Technology Vol. 46, No. 10, (2004): (pp 677-687).

H. Chae, Y. Kwon, and Doo-Hwan Bae, "A cohesion measure
for object-oriented classes." Software-Practice and
Experience, Vol. 30, No.12, (2000): (pp 1405-1432).

L. Ott, , J. Bieman, B. Kang, and B. Mehra, "Developing
measures of class cohesion for object-oriented software." In
Proc. Annual Oregon Workshop on Software Merics
(AOWSM'95), vol. 11. 1995.

J. Bansiya, L. Etzkorn, C. Davis, and W. Li, "A class
cohesion metric for object-oriented designs." Journal of
Object-Oriented Programming, Vol. 11, No. 8, (1999): (pp
47-52).

V. Misic, "Cohesion is structural, coherence is functional:
Different views, different measures." Proceedings of the
Seventh International Software Metrics Symposium, 2001,
(pp. 135-144), METRICS. IEEE, 2001.

B. Xu, Z. Chen, and J. Zhao, "Measuring cohesion of
packages in Ada95." ACM SIGAda Ada Letters, Vol. 24,
No.1, (2004): (pp 62-67).

68

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

(21]

[22]

(23]

[25]

Copyright (c) IARIA, 2015.

R. C. Martin, Agile software development:
patterns, and practices. Prentice Hall PTR, 2003.

L. Ponisio and O. Nierstrasz, “Using contextual information
to assess package cohesion”, Technical Report No. IAM-06-
002, 2006, Institute of Applied Mathematics and Computer
Sciences, University of Berne, 2006.

W. Albattah and A. Melton, “Package cohesion
classification”, in: Software Engineering and Service Science
(ICSESS), 2014 5th IEEE International Conference on, IEEE,
2014, (pp. 1-8).

T. Zhou, B. Xu, L. Shi, Y. Zhou, and L. Chen, "Measuring
package cohesion based on context." IEEE International
Workshop in Semantic Computing and Systems, 2008.
WSCS'08, (pp. 127-132), IEEE, 2008.

H. Abdeen, S. Ducasse, H. Sahraoui, and I. Alloui,
"Automatic package coupling and cycle minimization." 16th

Working Conference on Reverse Engineering, 2009, (pp. 103-
112), WCRE'09. IEEE, 2009.

principles,

ISBN: 978-1-61208-438-1

[26]

[27]

(28]

[29]

[30]

T. Biggerstaff and A. Perlis, "Software reusability: vol. 1,
concepts and models." (1989).

L. Briand, S. Morasca, and V. Basili, "Property-based
software engineering measurement." IEEE Transactions on
Software Engineering, Vol.22, No.1, (1996): (pp 68-86).

M. Bauer and M. Trifu, "Architecture-aware adaptive
clustering of OO systems." Eighth European Conference on
Software Maintenance and Reengineering Proceedings 2004,
CSMR 2004, (pp. 3-14), IEEE, 2004.

0. Seng, M. Bauer, M. Biehl, and G. Pache, "Search-based
improvement of subsystem decompositions." In Proceedings
of the 7th annual conference on Genetic and evolutionary
computation, 2005, (pp. 1045-1051), ACM, 2005.

N. Tagoug, "Object-oriented system decomposition quality.",
7th IEEE International Symposium on High Assurance
Systems Engineering Proceedings, 2002, (pp. 230-235),
IEEE, 2002.

69

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Towards a Technical Debt Management Framework
based on Cost-Benefit Analysis

Muhammad Firdaus Harun, Horst Lichter
RWTH Aachen University, Research Group Software Construction
Aachen, Germany
e-mail: {firdaus.harun, horst.lichter} @swc.rwth-aachen.de

Abstract—Technical debt (TD) is a metaphor of bad software
design or immature artifacts of a software system. The metaphor
has been quite intensively researched especially on how to
identify the TD symptoms, (e.g., system deficiencies or archi-
tecture violations) explicitly. Although the TD identification is
quite important in the TD management process, a systematic
management of TD and how to reduce it should also be considered
important in each release of the development project. Otherwise,
the software becomes more and more unmaintainable. In this
paper, we introduce a framework to manage and reduce the TD
of software systems. As it is based on quantification and a cost-
benefit analysis, it is called Cost-Benefit based Technical Debt
Management (CoBeTDM). CoBeTDM defines explicit phases
focusing on the most important aspects of TD management:
identification, monitoring, and prioritization. Overall, CoBeTDM
should support managers to take the right decisions regarding
the software evolution and the reduction of the collected TD at
the right time.

Keywords—technical debt management; code smells; architecture
smells; refactoring; cost-benefit analysis.

I. INTRODUCTION AND MOTIVATION

It is a must to implement a payback strategy (when and
how to determine to pay it back) to reduce technical debt
for every software organization. It has been reported that TD
exists in most of the software systems [1]. If we do not
cautiously manage the debt or have no strategy to pay it
back, the system may finally go to the “bankruptcy” phase,
i.e., the software is unmaintainable and the maintenance cost
will increase continuously. In general, refactoring is one of the
strategies to pay it back. Refactoring has typically been used
as a mean to improve detailed design and code quality. In this
paper, refactoring will be referred to as an effort to improve
existing software either on code or architecture-level without
changing the behaviour of the system.

Commonly, project managers are always juggling on the
decision making either to add new features or to make changes,
(i.e., maintenance or refactoring) in a release cycle. It is
always complicated to decide, which refactoring task should
be done first or could be postponed. Therefore, quantification
of refactorings should be implemented to identify, which
effort can achieves maximum benefit and minimize risk. A
simple cost-benefit analysis is a simple approach that could
be applied to quantify it as introduced [2]. Borrowing from
economic domain, a cost is a principal that indicate effort
estimation to resolve a TD item and a benefit is an interest
that indicate less probability impact to the software system.
However, the quantification cannot answer the question “How
the refactoring effort could be paid off to the identified TD,
i.e., Return On Investment (ROI)?”. ROI is a predictor that
shows a particular refactoring may improve the design and save

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

the maintenance cost in the future. Besides the unanswered
question of ROI, it lacks of risk factors consideration and
misses the payback strategy over releases. Therefore, to reduce
technical debt and to sustain software quality in software
development continuously, a wise decision making should be
made based on a cost-benefit analysis.

In this paper, we want to introduce an approach of technical
debt management based on cost-benefit analysis. The remain-
der of this paper is organized as follows: Section II presents the
research goals. Section III describes our approach to Technical
Debt Management and its phases. Section IV discusses relevant
related work and Section V concludes the paper.

II. GOALS

In order to support software development organizations
to systematically manage the TD of their software systems,
we propose an approach called Cost-Benefit based Technical
Debt Management (CoBeTDM). Its overall goal is to provide
a framework to manage and reduces TD based on cost-benefit
analysis for each release. To achieve this main goal, the
following sub-goals should be fulfilled:

1) Provide a debt item model (see Table I) that com-
prises all information of code and architecture smells
and the effort needed to resolve them.

2) Quantify cost and benefit for each possible refactor-
ing of a particular debt item. This enables to select
the “best” refactoring based on the expected ROI.

3) Provide a structured process on how to strategically
pay back the TD based on quantified cost-benefit of
refactoring effort either tactically or proactively.

4) Develop a toolbox to support TD management and
to monitor the identified debt items.

CoBeTDM defines four phases as shown in Figure 1 (see
Section III for details):

1) Identification & Assessment: Here, the focus is to
identify and measure the worst smells as well as to
model them by means of debt items.

2) Monitoring: In order to know the development of TD
and its trend, it has to be monitored continuously.

3) Quantification & Prioritization: Based on a cost-
benefit analysis of each possible refactoring associ-
ated with a debt item, the quantified refactorings are
prioritized based on their ROL

4) Repayment: Selected refactorings will be inserted
into backlog for current or later releases in order to
reduce the TD.

70

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

III. COST-BENEFIT BASED TECHNICAL DEBT
MANAGEMENT (COBETDM)

Relevant and accurate data is needed to quantify TD related
cost and benefit for a software system. It is to support managers
to take the right decisions. To provide this data, a collection
of metrics that characterize code and architecture smells could
be applied.

Mine
Repositories Identify Code:
(1ssue Identify And Assess Record
—_— —_—
Tracker and Hotspot Architecture Smells ™", Debt item

Revision smells .
Tools) D .
Debt Item
A

[

TD Identification
& Assessment

v {TD reach Celhng]‘
Select an
Appropriate Monitor TD Execute
Debt Item —- Over Refactoring —
Fields for TD Releases Immediately
Values

Visualize
D

Refactoring
Executed

T
Monitoring

O ——{TDinAceptable stel]—J

Analyze Analyze Determine Estimate Catalog
Impact, Cost v

Cont . winclude= — Catalos | .
Change Benefit

Risks Risk Factors
And Defect ~
Likelihood 1 e D
) Debt tem
Determine Prioritize Estimate \dentify
<«— Refactoring

Benefit based ROI Effort

|

_____ AddTo
v (Pay for Short-Term]- Current

TO Metrics | Assess Backlog
Select
[Decide to Pay> Selected
Refactorings ¢ .
P Refactorings Hold for Refactoring
D [Pay for Long Term}s ;‘f“ Executed
Predefined Rules [Decide not to Pay]—yo Backlogs or

“Pay or Not To Pay’ Releases

Figure 1. CoBeTDM Process

Modeling Debt Items. We propose a data structure (called
debt item) to store all relevant and accurate information of
all detected code and architecture smells. It will be stored in
Release History Database (RHDB) - a database that stores data
model that link between bug tracking system and versioning
system. The data structure is depicted in Table I.

TABLE 1. DEBT ITEM DATA STRUCTURE

TD Quantification
& Prioritization

Candidates

Cost-Benefit Technical Debt Management (CoBeTDM)

TD Repayment

Field Description

Id Unique identifier of debt item

Issue Case Task IDs or Case IDs, which represent a critical artifact
(hotspot)

Dependency Case IDs that depends on this debt item

Frequent Change How many modifications have been made for one release?

Class Class name

Code Smells List of detected smells and its metrics values

Architecture-level Architecture elements such as class, package, module or
layer name

Architecture Smells List of detected architecture smells and its metric values

‘Worst Smells Sum of frequent change + code smells value + architecture

smells value

Principal Effort estimation to resolve this debt item
Interest Extra effort estimation to resolve this debt item
Impact Other artifacts that are impacted
When-to-Release Release number

Responsible A person or unit responsible for this debt item

A. TD Identification and Assessment

The identification of deficiencies of a software system is a
must in the early phase of TD management. In CoBeTDM, the
detection of bad smells is done in the following two steps: 1)
Hotspot detection: Here, the goal is to find frequent changes,
(i.e., unstable) software artifacts, which might be critical for
the evolution of the system; 2) Code and architecture bad
smells detection: For all identified hotspots, the worst code
and architecture smells will be detected.

Hotspots detection. Hotspot detection is an approach to
find the most critical artifacts of a software system. In this

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

paper, the critical artifact means the module becomes unstable
for certain releases, (i.e., frequent change over releases) and
indicates strong increase in size and complexity (using metrics
such as Lines of Code and McCabe Cyclomatic Complexity).
It is important to detect the hotspot due to the symptom cost
more than other code deficiencies. It is because we consistently
have to pay back to tame it for every release. The hotspots
detection can be supported by a dedicated mining repository
approach where data from bug tracking and versioning tools
are extracted, filtered and classified by tracking any frequent
changes of contained artifacts. Currently, we manually map
their IDs between Bugzilla and the Git repository. Then, we
examine these artifacts by analyzing its size and complexity
trend over releases. As a result, the artifacts that have many
changes, (i.e., high maintenance activities) within the release
could be detected as potential hotspots. We quantify criticality
of an artifact by the number of changes that have been made,
(i.e., Git log entries) performed for fixing bugs, (i.e., different
severity levels of bugs) that were reported for specific releases.
E.g., up to release 1, CriticalPackage of Application X
got 200 modification from 130 bugs rated critical. Besides
that, the identified artifact has a significant increase in size
and complexity. From 4,000 LOC in release 0.9. increases to
10,000 LOC in release 1.0. Furthermore, the complexity of the
package increases from 30 in release 0.9 to 50 in release 1.0.
This symptom can be called as a critical artifact or hotspots.

Code Smells Detection. To detect code smells of the
identified hotspots, we use a tool called iPlasma introduced
by [3]. The tool shows a list of smells and its metric values.
The highest metric values for each smell will be selected
and prioritized. This data is recorded into a debt item to be
used in the next phase. For instance, the CriticalPackage
as detected as critical artifact previously will be assessed by
iPlasma. The tool will detect any possible bad code smells.
E.g., CriticalPackage contains GodClass, which has
been detected as God class. The class has for example, 453
methods, defines 114 attributes and is more than 3500 lines
long. It may also contain other smells, e.g., code duplication,
data class etc., in this particular case, we focus on God class
due to its refactor effort is quite high [4] compared to other
smells. The tool will show relevant metrics for God class such
as Access to Foreign Data (ATFD), Weighted Method Count
(WMC) and Tight Class Cohesion (TCC). Each metrics value
will be shown, e.g., as WMC (107), TCC (0.0) and ATFD (28).
The metric values then will be recorded into Code Smells field
in a debt item as shown in Table II.

Architecture Smells Detection. Next, the identified smells
will be analyzed to detect architecture smells. The metrics
introduced by [5] can be applied at class-, package- or
subsystem-level. These smells can be detected by using exist-
ing tools such as Sonargraph-Architect [6]. The metric values
produced by the architecture analysis tool will be stored as
well into their respective debt items. In previous example,
CriticalPackage was detected as critical artifact and con-
tains GodClass. The class might contain cyclic dependency
with other classes both within or outside the package. To detect
the smells, the aforementioned tool can be used. For example,
Sonargraph-Architect can detect it between classes or packages
visually. It also displays the information regarding number of
cycles and artifacts name. Then, cyclic value will be recorded
into Architecture Smells field in the debt item.

71

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

TABLE II. DEBT ITEM EXAMPLE

Field Description
1d DIO01
Issue)\ Case #1234, #1235, #1236: Critical bugs of Application X

Dependency #4321 #4322: Other critical bugs of Application X
Frequent Change 200 modification

Class GodClass

Code Smells God Class: WMC(107), TCC(0.0), ATDF(28)

Architecture-level CriticalPackage

Architecture Smells | Cycle Dependency: Cyclic(10)

Worst Smells 200 + (107+0.0+28) + 10 = 345

Principal 16 hours (code smells) + 4 hours (cyclic dependency) =
20 hours: 1) cost_to_split_a_class = 8 hours. At least 2
classes will be partitioned for refactoring; It means 8 x2; 2)
cost_to_cut_an_edge_between_two_files = 4 hours. At least
2 files will be cut for refactoring. Both estimation based on
[71

Interest 2 hours, i.e., estimation extra work

Impact 15 classes and 2 packages

When-to-Release Current: 1; Next: 1.1

Responsible Mr. X

Assessing Bad Smells. After collecting the data from
both code and architecture smells detection, we can analyze
the obtained metric values to detect, which artifacts contain
worst smells (i.e., highest in identified smells). For this means,
we propose to apply the following formula Worst Smells
of Detected Critical Artifact = Most Frequent Changes +
Highest Metrics of particular Code Smells + Highest Metrics
of particular Architecture Smells. See Worst Smells field in
Table II. The worst smells value, then, will be compared with
other debt items. The high value will be prioritized first instead
of the low value. Besides that, the value could be used for TD
monitoring as we explain in the next section.

B. TD Monitoring

To answer important questions such as: 1) How much TD
do we have right now or in the current release?; 2) Is the TD
at an acceptable level or not? 3) Does the TD continuously
grows for each release?; 3) What is an acceptable threshold
value of TD of each release? What is a maximum TD (debt
ceiling) or minimum TD (debt baseline) for each release?;
4) How to react when the TD reaches the ceiling?; the TD
has to be monitored continuously. Therefore, the TD data and
its trend has to be visualized appropriately. The first idea is
shown in Figure 2. Currently we are developing ideas and
solutions for a systematic TD monitoring approach. Examples
are: 1) A dedicated dashboard used to visualize TD data based
on the managers’ information needs. For example, the worst
smells for certain release, high or low impact of debt item
etc.; 2) A process to conduct semi-structured interview with
managers or lead developers in order to gain information such
as acceptable and minimum vs. maximum TD; 3) Development
of a risk mitigation strategy framework that could be applied
if TD reaches debt ceiling.

C. TD Quantification and Prioritization

In this phase, the debt items are quantified to perform a
cost-benefit analysis. By cost, we mean the estimated effort and
extra effort, (i.e., principal + interest) of a particular possible
refactoring for a debt item. The cost value is stored together
with the estimation risk, (i.e., judgment by experts) that may
resulted from the refactoring. Then, it should be cataloged and
stored in the database, (e.g., RDBMS) in order to be referred
in the future. Then, the benefit is estimated, i.e., the less
effort of refactoring, which gives positive impact. Currently,
the benefits values are estimated based on the impact analysis

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Debt Ceiling
" Actual TD

Threshold

Technical Debt

1 2 3 4 5 6

Releases

Figure 2. TD Trend over Releases

in particular dependency analysis. In addition, we also add
defect and change likelihood as properties, while calculating
benefits. The less value of both likelihood are potentially has
less frequent of the same symptoms in the future. It means
that the refactoring effort for maintenance and correction will
decline.

Firstly, analyzing the changes that could be affected by
the dependency of artifacts, (e.g., classes or packages) on
particular refactoring candidate - impact analysis. The changes
might alter and create new artifacts for e.g., operations, classes
or packages, which require a cost to do that. Therefore, the
more dependencies the artifacts are, the more cost should be
spent. For e.g., see DI001 in Table III, GodClass depends
on the other five classes and two external packages. Two points
or weight will give to the fifteen classes and five points to
2 packages, (i.e., (2x15) + (5x2) = 40 points) as shown in
Refactoring Impact column in Table III. Secondly, the defect
likelihood could be analyzed by computing on how many
defect fixes affected by the detected smells. The likelihood
could be computed by detecting the smells, (e.g., specifically
the god class) from certain periods, (e.g., from April to July).
Then, count the number of defects that lead to fix in the god
class in this time period and divide by the number of all defects
that were fixed in the same time period. The higher the value
the more likely a defect will be indicated in the god class. For
instance, see column Defect Likelihood for DI001, it has been
detected that the GodClass was god class from particular
period. Assume the likelihood of 0.5, it means every second
fixed defect will lead to changes in this god class. Thirdly,
the change likelihood could be analyzed by computing on
how likely a class is to be modified when a change to the
software is executed. The same computation method will be
used as defect likelihood for this purpose. It means the higher
the value, the more likely that maintainability effort is higher
for the god class [4]. For example, if change likelihood of
0.1 shows that the class was, on overage, modified with every
10" change to the software. By computing the impact analysis,
defect and change likelihood represent as a weight, it will,
then, multiply by raw benefit. The raw benefit is an effort
estimation that can be saved in terms of maintenance work in
the next release. An expert will give this raw estimation. Then,
the total benefit will be calculated. Based on the estimated cost
and benefit values, the ROI value is calculated by (adopted
from [8] where ROI = (Saving Effort and Less Impact of
Proposed Refactoring/Effort of Proposed Refactoring)), i.e.,
ratio of total Benefit to the total Cost. If the ROI value is
greater than or equal to one, the refactoring is cost effective,

72

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

TABLE III. COST-BENEFIT ANALYSIS EXAMPLE

Cost Refactor- . Raw Total
Debt) (Principal | Risk (R) Total ing Change | Defect | Weight Benefit | Benefit | ROI
No. Item Refactoring . Cost Like. Like. (RI X N Rank
D + in Hour (Cost + R) Impact (CL) (DL) CL X DL) fRB) (Weight (TB / TC)
Interest) (RI) in Hour X EB)
biool . i . -Regression
. | “God Class “Bxtract Class 2 bugs (2) 26 40 0.5 0.1 2 5 10 04 1
-Cyclic -Cut Dependency Testing (2)
Dependency
DI002
-Long Method -Merge
2. | Class puract Method 10 conflict (3) 15 15 0.1 03 0.45 5 225 03 2
-Inheritance too 8 -Testing (2)
Deep
DI003 -Build
3. | -Duplicate Code :'é’“t'aDC‘ Mec‘lh"d 8 breaks(2) 12 10 025 0.11 028 3 0.84 0.06 3
-Cyclic Dependency ut ependency -Testing

i.e., the debt is paid off. Finally, the ROI values are prioritized.
Based on the example (see Table III), DIO01 seems promising
to be paid first instead of DI002 and DI003. The ROIDIO0O01
value is bigger than the latter, (i.e., the refactoring effort could
reach ROI) and it may give positive impact to the system.

D. TD Repayment

In the last phase, refactorings, which has been prioritized
in the previous phase are added to the current backlog of the
software system. By implementing the refactoring, the gap
between the software as “it is” and the hypothesized “ideal”
state could be closed. Although, there is no general agreement
that refactoring could realize the idea, [9] claimed that by
applying Test-Driven Development and continuous refactoring,
the TD could be reduced systematically by releases. But,
the questions “Which refactoring should be implemented first
or later?” and “Should pay or not to pay?’ are still open.
Currently, we are still investigating how to strategically pay
back based on TD metrics as introduced by [10].

IV. RELATED WORKS

Technical debt management. A few researchers have
been focusing on how to manage TD. For example, [11]
proposed a TD management framework, which aids managers
to decide, which items should be implemented either first or
later. A simple cost-benefit analysis is applied and less impact
to the project is put at the top, i.e., prioritization. However,
the approach does not consider risk factors in estimating the
cost. Unlike CoBeTDM, it integrates risk factors [12] in the
analysis due to uncertainty that may always happen. [13]
introduced a tool to manage TD in terms of code violations.
It guides to select the smells that should be refactored first
based on pyramid data - the lowest part needs to be considered
first. In contrast, CoBeTDM considers not only code but also
architecture smells as the latter ones have high negative impact
on the software quality.

Hotspot, code-, architecture-smells detection. We have
adopted existing metrics [3] [5], which are quite useful to
characterize smells on code- and architecture-level. However,
these metrics do not integrate with each other. Our approach
combines both metric sets to determine worst smells and
identify very critical artifact as proposed by [14] for hotspot
detection.

V. CONCLUSION

This paper introduces a TD management framework based
on cost-benefit analysis, called CoBeTDM. It offers a system-
atic way of reducing the technical debt by quantifying cost

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

and benefit of refactorings. It also considers with relevant
risk factors. Until now, the CoBeTDM process is performed
manually. But, we have started to develop a toolbox to support
CoBeTDM and to monitor the TD trend in order to react early
enough if the TD becomes critical.

REFERENCES

[1] CAST, “Cast Worldwide Application Software Quality Study: Summary
of Key Findings,” 2010.

[2] C. Seaman, Y. Guo, N. Zazworka, F. Shull, C. Izurieta, Y. Cai, and
A. Vetro, “Using technical debt data in decision making: Potential
decision approaches,” in 2012 Third Int. Workshop on Managing TD
(MTD). IEEE, Jun. 2012, pp. 45-48.

[3] M. Lanza and R. Marinescu, OO Metrics in Practice - Using Software
Metrics to Characterize, Evaluate, and Improve the Design of OO
Systems. Springer, 2006, ISBN: 978-3-540-24429-5.

[4] N.Zazworka, C. Seaman, and F. Shull, “Prioritizing design debt invest-
ment opportunities,” in Proceeding of the 2nd working on Managing
technical debt - MTD *11. New York, New York, USA: ACM Press,
May 2011, p. 39.

[5] M. Lippert and S. Roock, Refactoring in Large Software Projects:
Performing Complex Restructurings Successfully. Wiley, 2006, ISBN:
978-0-470-85892-9.

[6] Hello2morrow, “Sonargraph Architect,” 2013, URL: https://www.
hello2morrow.com/products/sonargraph/architect [accessed: 2015-08-
09].

[7] Sonarqube, “Technical Debt Calculation,” March 09, 2011, URL:
http://docs.sonarqube.org/display/PLUG/Technical+Debt+Calculation
[accessed: 2015-09-08].

[8] R. Leitch and E. Stroulia, “Assessing the maintainability benefits of
design restructuring using dependency analysis,” in Proceedings. Sth
Int. Workshop on Enterprise Networking and Computing in Healthcare
Industry). IEEE Comput. Soc, 2003, pp. 309-322.

[9] J. Kerievsky, Refactoring to Patterns. Pearson Higher Education, 2004,
ISBN: 0321213351.

[10] N. Ramasubbu, C. Kemerer, and C. Woodard, “Managing Technical
Debt: Insights from Recent Empirical Evidence,” IEEE Software,
vol. 32, no. 2, Mar 2015, pp. 22-25.

[11] Y. Guo, R. O. Spinola, and C. Seaman, “Exploring the costs of technical
debt management a case study,” Empirical Software Engineering, Nov.
2014.

[12] M. Kim, T. Zimmermann, and N. Nagappan, “An empirical study of
refactoring challenges and benefits at Microsoft,” IEEE Transactions on
Software Engineering, vol. 40, no. 7, 2014, pp. 633-649.

[13] J.-L. Letouzey and M. Ilkiewicz, “Managing TD with the SQALE
Method,” IEEE Software, vol. 29, no. 6, Nov. 2012, pp. 44-51.

[14] M. DAmbros, H. Gall, M. Lanza, and M. Pinzger, “Analysing Software
Repositories to Understand Software Evolution,” in Software Evolution
SE - 3. Springer Berlin Heidelberg, 2008, pp. 37-67.

73

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Design and Implementation of Business Logic Layer Object-Oriented Design
versus Relational Design

Ali Alharthy
Faculty of Engineering and IT
University of Technology, Sydney
Sydney, Australia
Email: Ali.a.alharthy@student.uts.edu.au

Abstract—ODbject-oriented programming has become one of the
mainstream programming paradigms in software engineering,
whereas relational models are predominant in commercial
data processing applications. There is strong competition
between these models for dominance in the building of modern
applications, especially after the emergence and spread of
object-relational mapping technology. This paper addresses
the question of whether the object-oriented approach is better
than the traditional approach in terms of flexibility with
respect to changing requirements.

Keywords-object-oriented design; relational design; requirement
changes; maintenance

L INTRODUCTION

Currently, most business logic layers of modern
applications are constructed using either an object-oriented
model or a relational model. The object-oriented model is
based on software engineering principles such as coupling,
inheritance, cohesion, and encapsulation, whereas the
relational model is based on predicate logic and set theory
principles [1]. The object-oriented model chains the building
of applications within objects that have both data and
behavior. The relational model supports the storage of data in
tables and the treatment of that data with data manipulation
language within the database through stored procedures and
externally through structured query language. The relational
model is currently used in many database systems [1].
Object-oriented technology is also commonly used in
database application development. The difference between
the two technologies is called the object-relational
impedance mismatch [2][3]. In particular, when objects need
to be stored in a relational database, object-relational
mapping (ORM) appears to play an important role in
overcoming the problem of impedance mismatch. ORM is a
new technology that allows applications to access relational
data in an object-oriented manner [4][5]. With the
widespread use of ORM technology, domain objects are built
as objects, and the application logic manipulates these
objects in a pure object-oriented manner. The critical issue
that arises is whether such an object-oriented model for
business logic layers is a good choice in general. Proponents
of the object-oriented approach have tended to assume that
an object-oriented business model will make the system
easier to maintain, easier to extend, and easier to reuse.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

The object-oriented approach has been advocated as a
tool for improving developer productivity and software
quality [6][7]. Moreover, it has been suggested that
development using object-oriented programming enhances
productivity by simplifying understandability, program
design, and maintenance in comparison to traditional
approaches [8].These studies have maintained that using the
object-oriented approach would help reduce the maintenance
cost of software. However, there are few complete
experimental results that support the claim that there is an
advantage in the maintainability of programs developed with
the object-oriented approach over those developed with
traditional approaches [7][9].

The objective of this paper is to extend this body of
knowledge by critically examining this assumption and to
carefully compare the applicability and flexibility of the
object-oriented system to those of the relational system. The
findings from this project will be significant for practical
applications in which the business logic layer is implemented
in an object-oriented fashion, which is a growing trend in
enterprise computing.

The rest of the paper is organised as follows. Section II
presents the motivation for the study. Section III outlines the
investigation method. Sections IV, V, VI, and VII present the
case studies, and Section VIII reports the experimental
results. Section IX concludes the paper.

IL. MOTIVATION

Today, changing requirements have become a fact of life
for software developers. Many studies have shown that
changes in software were one of the reasons why various
projects failed. For example, a study by the Standish Group
found that only 37% of information technology projects are
considered successes and that 21% of projects are considered
failures [10]. The remaining 42% are considered
‘challenged’—defined as late, over budget, or having failed
to meet expectations. Requirement changes are the major
cause of this phenomenon. Such changes can occur during
the development and maintenance phase in order to
accommodate user and business requirements. Therefore,
there is a need to identify a flexible approach that can deal
with requirement changes.

However, ORM is very popular and widely used.
According to Russell [3], in order to access data stored in
relational databases, most modern applications are built
using ORM technology rather than the traditional approach.

74

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

It has also been argued that using ORM tools can help reduce
project costs. Moreover, proponents of the object-oriented
approach have tended to assume that an object-oriented
business model will make the system easier to maintain,
easier to extend, and easier to reuse. On the other hand,
proponents of the traditional approach have argued that not
all the world must be handled in objects. In addition, they
have maintained that there is some native incompatibility
between ORM code and databases. They also maintain that
although object-oriented development promises to reduce
maintenance effort, these promises are not based on reliable
experimentation [11]. Indeed, there is a significant lack of
research on whether the object-oriented approach is better
than the traditional approach in terms of flexibility in the
face of requirement changes.

1I1. INVESTIGATION METHOD

The investigation is performed using a number of case
studies and by introducing a variety of requirement changes
in order to evaluate how the two approaches cope with them.
For the implementation, we used Java Database Connectivity
(JDBC), a representative relational system, and Hibernate, a
representative ORM framework, as well as MYSQL, a
relational database. All of these are popular open-source
products. In order to measure the overall implementation
effort associated with JDBC and Hibernate due to
new/changed requirements, we used the code size produced
in the completion of a task—the code size was measured in
lines of code and takes into account lines added, modified,
and deleted—as well as the time required to complete a task.
To measure the code size, we used a free tool to compare the
source code files after each implementation. The case
studies implementation has been done by a developer who
has six years experience in Web and Database applications
development.

Iv.

We chose a simple case study to make an initial
comparison of the effort involved in implementing the two
technological approaches and changing them in response to
requirement changes.

FIRST CASE STUDY

A. Problem statement

A company requires a Car Park application to maintain
information about employees and their parking permits. The
car park has a number of parking spots, which are divided
into three areas: A, B, and C. Employees who want a permit
have to pay a fee on a quarterly basis, which will be
automatically deducted from their salary. The purpose of the
Car Park application is to help the car park manager process
the employees' applications for parking permits. Each
employee has an ID, a name, and a phone extension. Each
permit has a permit number, the car's registration number,
and the section where the car can be parked. An employee
can have at most two permits. Employees may change their
extension in the course of their employment. When

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

employees get a new car and want to use it instead of the old
one, they have to discontinue the current permit and apply
for a new one.

B. Comparison of the findings of the initial construction of
the two approaches

TABLE L FINDINGS OF THE INITIAL CONSTRUCTION
Progra . Total/
m Files SLOC Lines ET
CPSystem.java 141
Permit.java 47 251
Q Employee.java 47
g HibernateUtil java 16 4130
§ Employee.hbm.xml 17 min
T Permit.hbm.xml 14 49
Hibernate.cfg.xml 18
Total 300
JDBC CPSystem.java 283 283 3h
Table [summarises the findings of the initial

construction of the Car Park system using the two
approaches. The table shows that even though there are no
significant differences between the two approaches with
respect to the effort measured by size of source code, the
Hibernate approach took more time than the JDBC approach.
In fact, with Hibernate we had to deal with six files, whereas
with JDBC we had to deal with only one file. Therefore, the
Hibernate approach took about 4.3 h, compared to 3 h for
JDBC.

C. Impact of requirement changes on the two approaches

Because requirements change frequently in practice, it is
useful to see how different approaches cope with
requirement changes. For the initial investigation regarding
requirement changes, we made the following change: in the
Terminate Permit use case, instead of deleting the permit (as
we did before), we labelled the permit as terminated.

D. Comparison of findings after first requirement change

TABLE I FIRST REQUIREMENT CHANGE
Progr Files Vi|V2|A|M|D| S |ET
am
CPS java 141 | 149 | 10 4 2 16
Permit.java 47 65 8 0 0 8
Q Emp.java 47 47 0 0 0 0
g Emp.hbm.xml 17 17 0 0 0 0 40
§ Perm.hbm.xml 14 15 1 0 0 1 min
= Hiber.cfg.xml 18 18 0 0 0 0
HiberUtil java 16 16 0 0 0 0
Total 300 | 327 19 4 2 25
JDBC | CPSy.java 283 | 283 0 3 0 3 10.
min

V1 = before the change; V2 = after the change; A = add; M = modify; D =
delete; S = summation of A,M, and D; ET = estimated time

75

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

As Table II shows, there are significant differences
between the two approaches with respect to the
implementation effort measured by the size of the source
code. The implementation of the new requirement changes
with Hibernate required a total of 25 lines of code, compared
to only 3 lines of code using JDBC. In addition, the
implementation of the new requirement changes with
Hibernate took about 40 min, whereas it took only 3 min
with JDBC. Indeed, it is evident that JDBC offered more
flexibility with regard to both time and effort.

E. Further impact of requirement changes on the two
approaches

For the second requirement change, suppose a company
needs to distinguish between full-time and part-time
employees. Part-time employees are paid an hourly rate,
whereas full-time employees are assigned a salary.

TABLE III. SECOND REQUIREMENT CHANGE
Pro
gra Files Vi | V2 A |M| D S ET
m
CPS.java 149 | 154 5 2 0 7
Permit.java 65 65 0 0 0 0
Emp.java 47 47 0 1 0 1
Q PartTime.java - 20 20 | O 0 20
£ | FullTimejava - [20]2 o]0]2},
:_g Emp.hbm.xml 16 16 0 0 0 0
= Perm.hbm.xml 17 24 7 0 0 7
Hiber.cfg.xml 15 15 0 0 0 0
HiberUtil.java 18 18 0 0 0 0
Total 327 [379 | 52 | 3 0 55
22| crsyjava 283 [206 | 13 [3| 0 |16 |20

As Table III shows, the new requirements have had a
greater impact on the program implemented through
Hibernate, in terms of both the time and the effort required to
implement these changes. The implementation of the new
requirement changes with Hibernate required a total of 55
lines of code, in contrast to JDBC, which required only 16
lines. This difference represents a nearly 3:1 ratio in quantity
of code. Although one of the key benefits of inheritance is
minimising the amount of duplicate code in an application by
sharing common code amongst several subclasses, the
majority of new code is due to inheritance code. Moreover,
the implementation with Hibernate took about 1 h, compared
to only 20 m using JDBC. As a result, increasing the number
of classes that need to be persisted automatically can lead to
increased levels of effort and time.

V. SECOND CASE STUDY

We made the second case study more complicated than
the first in order to produce more statistics with which to
compare the two approaches. We also made changes that
reflect the change in business policy, that is, allowing more
than one kind of item to be stored at a shelf location. This

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

change in policy required a change in the structure of the
classes. It will provide more data with which to compare the
two approaches.

F. Problem statement

A database is needed to maintain information about the
items stored in various warehouses of a company. Design a
relational database, which can store the information
contained the following:

1. Each warehouse has a phone (not shown) to contact
the staff at the warehouse.

2. Shelf locations are of two types: single access and
double access.

3. The present policies require that each shelf location,
at any time, can be used to store only one kind of

item.
TABLE IV. FINDINGS OF THE INITIAL CONSTRUCTION
. Total/
Program Files SLOC Lines ET
PartInWareHouse.java 141
Part.java 30
Warehouse.java 31
® ShelfLocation.java 45 300
s ShelfLocationPK_java 37
E HibernateUtil.java 16 4h
'EE Warehouse.hbm.xml 12
Part.hbm.xml 13 58
ShelfLocation.hbm.xml 15
Hibernate.cfg.xml 18
Total 358
JDBC PartInWareHouse.java 202 23h

Table IV summarises the findings for implementing the
Parts in Warehouses system with the two approaches.
Hibernate required a total of 358 lines of code, in contrast to
JDBC, which required 202 lines. In addition, Hibernate
required about 4 h, whereas JDBC required 2.3 h. Hibernate
clearly required more effort and time than JDBC.

G. Impact of requirement changes on the two approaches

The storage rules change to allow more than one kind of
item to be stored at a shelf location. This entails that the
cardinality relationship between the two entities Shelf
Location and Items must be changed to one-to-many.

H. Comparison of the findings after first requirement
change

As shown in Table V, the new requirements have had a
greater impact on the program implemented through
Hibernate, in terms of both the time and the effort required to
implement these changes. The implementation of the new
requirement changes with Hibernate required a total of 139
lines of code, in contrast to JDBC, which required only 38.
This difference represents a nearly 4:1 ratio in quantity of
code. Indeed, the source of increase in code quantity was due
to the addition of an item class with its composite key, which

76

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

is not necessary in JDBC. Moreover, the implementation
with Hibernate took about 1.30 h, compared to only 30 min
with JDBC.

TABLE V. FIRST REQUIREMENT CHANGE
Pro
gra Files Vi | V2 A M D S ET
m
WHouse.java 114 155 14 5 0 19
Part.java 30 | 30 0 0 0 0
Whouse.java 31 31 0 0 0 0
SLoc.java 45 32 2 6 15 23
N SLocPK java 37 | 37 0 0 0 0
= Item.java - 29 29 0 0 29 130
§ TtemPK java -~ 3737 [0 [0 [37],;
= HibUtil.java 16 | 16 0 0 0 0
Who.hbm.xml | 12 12 0 0 0 0
Part.hbm.xml 13 19 6 0 0 6
SLo.hbm.xml 15 20 5 2 1 8
Item.hbm.xml - 16 | 16 0 0 16
Hiber.cfg.xml 18 19 1 0 0 1
Total 358 | 453 110 13 16 139
J%B WHouse.java 220 281 16 | 20 2 38 f:in

VI THIRD CASE STUDY: ISSUE OF RELATIONAL
REPRESENTATION/NAVIGATION

The representation of the relationship is a fundamental
issue. In fact, the difference between hierarchy, network,
relational, and object-oriented databases is the way in which
the relationship is represented. Therefore, if we construct
the application with JDBC, we will not experience the
navigation problem, whereas the problem arises when the
application is constructed with ORM. Thus, we have to
decide how to represent the navigation objects.

1. Problem statement

A distribution company supplies various kinds of
products to customers on a daily basis according to the
standing orders placed by the customers. The company wants
to set up a system to maintain information about the products
that the company can supply, its customers, and the standing
orders.

J. Comparison of the findings of the initial construction of
the two approaches

Table VI summarises the findings for implementing the
Standing Order system with the two approaches. Hibernate
required a total of 268 lines of code, in contrast to JDBC,
which required 141. In addition, Hibernate required about 3
h, whereas JDBC required 2 h. Thus, Hibernate required
more effort and time than JDBC.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

TABLE VI FINDINGS OF THE INITIAL CONSTRUCTION
Progra . Total/
m Files SLOC Lines ET
SOSystem.java 86
Customer.java 22
Order.java 47 212
Q Product.java 41
g HibernateUtil.java 16 3h
é’ Customer.hbm.xml 10
am Order.hbm.xml 15 56
Product.hbm.xml 12
Hibernate.cfg.xml 19
Total 268
JDBC SOSystem.java 141 141 2h

K. Impact of requirement changes on the two approaches

We changed the navigation rule between the objects
from unidirectional to bidirectional association.

TABLE VIL FINDINGS OF THE INITIAL CONSTRUCTION
Prog | pileName | Vi | v2 | A [M [D | s |ET
ram

SOSys.java 86 86 0 0 0 0
Cust.java 22 32 10 0 0 10
Order.java 47 47 0 0 0 0

2 Product.java 41 51 10 0 0 10

g Htil java 16 16 0 0 0 0 30
2 [cubbmxml | 10 | 14 [4 0 0 4 | min
T [orhbmxml [15 | 15 [0 [0 | 0 | 0
Pr.hbm.xml 12 16 4 0 0 4
Hib.cfg.xml 19 19 0 0 0 0
Total 268 296 28 0 0 28
JDBC SOSys.java 141 141 0 0 0 0 0

As Table VII shows, the new requirements have had a
greater impact on the program implemented through
Hibernate, in terms of both the time and the effort required
to implement these changes. The implementation of the new
requirement changes with Hibernate required a total of 28
lines of code and 30 min, in contrast JDBC, which did not
require any changes, because navigation is not an issue for
it.

VIL

We made this case study even more complicated and
realistic in order to produce much more statistical data with
which to compare the two approaches. The case study also
highlights the issue of relationship representation and
illustrates that the object-oriented approach is more sensitive
to the class model than the relational model.

FOURTH CASE STUDY

7

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

L. Problem statement

Eastern Suburb Gymnastics (ESG) is a regional
organisation that is responsible for running competitions
between the gymnastics clubs in eastern suburbs of
Melbourne. The competitions are organised into seasons.
ESG needs a system to help organise and maintain the
records of the competitions that take place in a single
season. The system, in essence, needs to store information
on the gymnasts, their clubs, the organisation of the
competitions, and the competition results.

M. Comparison of the findings of the initial construction of
the two approaches

TABLE VIII. FINDINGS OF THE INITIAL CONSTRUCTION
Progra File sLoc | Total ET
m Lines
GScoringSystem 237
Club 44
Competition 24
CompetitionPk 35
Division 60
EventPk 46
Event 37 810
EventType 58
Gymnast 60
Judge 40
Meet 52
© TeamPk 46
g Team 33
3 Score 22 6h
T HibernateUtil 16
Club.hbm.xml 13
Competition.hbm.xml 12
Division.hbm.xml 15
Event.hbm.xml 21
EventType.hbm.xml 14
Gymnast.hbm.xml 15 177
Judge.hbm.xml 17
Meet.hbm.xml 14
Team.hbm.xml 14
Score.hbm.xml 16
Hibernate.cfg.xml 26
Total 987
JDBC GScoringSystem | 259 259 3h

Table VIII summarises the findings for implementing
the Eastern Suburb Gymnastics system with the two
approaches. Hibernate required a total of 987 lines of code,
in contrast to JDBC, which required 259. In addition,
Hibernate required about 6 h, whereas JDBC required 3 h. It
is evident that Hibernate required more effort and time than
JDBC. This difference represents a nearly 4:1 ratio in
quantity of code. Indeed, the source of the increase in the
code quantity was due to a plain old Java objects (POJO) and
its mapping files.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

N. Impact of requirement changes on the two approaches

Here, we investigated how sensitive the two approaches
are to the choice of domains modelled.

TABLE IX. FINDINGS OF THE INITIAL CONSTRUCTION
Prog | piteName |[vi| v2 | A M| D |s [E
ram T
23
GSSystem 7 274 37 0 0 37
Club 44 44 0 0 0 0
Competition 24 24 0 0 0 0
CompetitionPk 35 35 0 0 0 0
Division 60 60 0 0 0 0
EventPk 46 46 0 0 0 0
Event 37 37 0 0 0 0
EventType 58 58 0 0 0 0
Gymnast 60 60 0 0 0 0
Judge 40 40 0 0 0 0
Meet 52 52 0 0 0 0
TeamPk 46 46 0 0 0 0
Q Team 33 33 0 0 0 0
g TeamMember - 55 55 0 0 55 1
2 [Score 2 | 22 0o JoJolo
= HibernateUtil 16 16 0 0 0 0
Club.hbm.xml 13 13 0 0 0 0
Comp.hbm.xml 12 12 0 0 0 0
Divis.hbm.xml 15 15 0 0 0 0
Event.hbm.xml 21 21 0 0 0 0
EType.hbm.xml 14 14 0 0 0 0
Gymt.hbm.xml 15 15 0 0 0 0
Judge.hbm.xml 17 17 0 0 0 0
Meet.hbm.xml 14 14 0 0 0 0
Team.hbm.xml 14 14 0 0 0 0
TMember..xml - 14 14 0 0 14
Score.hbm.xml 16 16 0 0 0 0
Hibern.cfg.xml 26 27 1 0 0 1
Total 987 1093 106 0 0 106
25
JDBC GSSystem 259 291 32 0 0 32 mi
n

Table IX shows that the implementation of the new
requirement changes with Hibernate required a total of 106
lines of code, in contrast to JDBC, which required only 32.
This difference represents a nearly 3:1 ratio in quantity of
code. Moreover, the implementation with Hibernate took
about 1 h, compared to only 25 min for JDBC.

VIII. RESULTS

The results of our critical comparison of the two
paradigms in terms of flexibility, which was based on
implementation findings, indicate that in the initial
construction of the application, using ORM is much costlier
than using JDBC. In other words, the level of effort and time
required to implement the application is much higher with
Hibernate than with JDBC. For instance, the initial
construction of the ESG system with ORM required a total
of 987 lines of code, in contrast to JDBC, which required
259. This difference represents a nearly 4:1 ratio in quantity

78

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

of code. In addition, ORM required about 6 h, whereas
JDBC required only 3 h. Indeed, increasing the number of
classes that need to be persisted automatically can lead to
increased levels of effort and time.

Moreover, JDBC is more flexible in the face of
requirement changes than is ORM. For example, for an
object to be persisted to a database, Hibernate needs a
mapping file for all the objects that are to be persisted as well
as POJO, which is not required when using the JDBC
approach. This means that if we would like to add an
attribute to or delete an attribute from a class, we must
modify the mapping file of that class to map or delete the
attribute, and subsequently we must modify the class itself to
add/delete that an attribute with its getter and setter methods.
When using JDBC, in contrast, we do not need to undertake
these steps. Furthermore, the object-oriented paradigm has
an issue related to navigation between objects through
association links, whereas navigation is not an issue for
JDBC. In addition, determining the direction with UML is
not an easy task, which can be considered one of the
common mistakes in design decision. In addition, the object-
oriented approach is more sensitive to the class model than
the relational model. It is worth mentioning that the
developer did not use auto-code generation during
performing the initial construction implementation, and this
could explain the remarkable difference in time between two
approaches.

Although the current study has yielded some clear
preliminary findings, its design is not without flaws. First,
the case studies were small scale as a result of some
restrictions, such as the time and effort required for
implementation. A further limitation is that the
implementation of all the case studies was performed by one
developer, which may affect the generalisability of the
study’s findings to different developers.

IX. CONCLUSION

This paper addressed the question of whether the object-
oriented approach is better than the traditional approach or
vice versa in terms of applicability and flexibility to
requirement changes. The experimental results show that the
object-oriented approach required more time and effort as a
result of mapping files. Moreover, the object-oriented
approach has an issue of navigation between objects.
However, our examination is only the beginning. We believe
there is still a need for further research with real projects to
yield reliable results. Our future work will focus on
conducting more experiments on real projects to validate our

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

results and to investigate flexibility of object-oriented
approach to requirement changes.

REFERENCES

[11 E. E. Codd, “A Relational Model of Data for Large Shared Data
Banks,” Communications of the ACM, vol. 13, 1970, pp. 377-387.

[2] B. Unger, L. Prechelt, and M. Philippsen, The Impact of Inheritance
Depth on Maintenance Tasks: Detailed Description and Evaluation of
Two Experiment Replications. Fak. fiir Informatik Univ., 1998.

[3] C. Russell, “Bridging the Object-relational Divide,” Queue, vol. 6,
2008, pp. 18-28.

[4] M. L Aguirre-Urreta and G. M. Marakas, “Comparing Conceptual
Modeling Techniques: A Critical Review of the EER vs. OO
Empirical Literature,” ACM SIGMIS Database, vol. 39, 2008, pp. 9-
32.

[5] F. Lodhi and M. A. Ghazali, “Design of a Simple and Effective
Object-to-Relational Mapping Technique,” in Proceedings of the
2007 ACM Symposium on Applied Computing, 2007, pp. 1445-1449.

[6] S. Sircar, S. P. Nerur, and R. Mahapatra, “Revolution or Evolution? A
Comparison of Object-oriented and Structured Systems Development
Methods,” MIS Quarterly, 2001, pp. 457-471.

[71 G. A. Kiran, S. Haripriya, and P. Jalote, “Effect of object orientation
on maintainability of software,” in Software Maintenance, 1997.
Proc. International Conference on, 1997, pp. 114-121.

[8] M. B. Rosson and S. R. Alpert, “The Cognitive Consequences of
Object-oriented Design,” Human-Computer Interaction, vol. 5, 1991,
pp. 345-379.

[91 M. A. Eierman and M. T. Dishaw, “The Process of Software

Maintenance: A Comparison of Object-oriented and Third-generation

Development Languages,” Journal of Software Maintenance and

Evolution: Research and Practice, vol. 19, 2007, pp. 33-47.

S. Group. (2011). The Standish Group International Inc.

E. Arisholm and D. 1. Sjoberg, “Evaluating the Effect of a Delegated
Versus Centralized Control Style on the Maintainability of Object-
oriented Software,” IEEE Transactions on Software Engineering, vol.
30, 2004, pp. 521-534.

[10]
(1]

79

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Pymoult : On-Line Updates for Python Programs

Sébastien Martinez and Fabien Dagnat
IRISA, Télécom Bretagne
Brest, France
Email: first.lastQtelecom-bretagne.eu

Abstract—On-line updates have proved to be essential for critical
long running applications that hardly can be stopped. Indeed,
security patches or feature enhancements need to be applied
frequently. Pymoult is a platform allowing on-line updates for
Python programs. It provides many mechanisms from the liter-
ature for updating running programs without requiring them to
be stopped, allowing update developers to combine and configure
the mechanisms for each update. This paper presents the design
of Pymoult and details the implementation of several mechanisms
it provides. With the help of an example, this paper also presents
how mechanisms can be combined and configured to design on-
line updates with Pymoult.

Keywords—On-line updates; Python; Software maintenance

I. INTRODUCTION

Today’s world expects software systems to be available at
every moment, whether the system provides critical services
like airport traffic control or whether its downtime would cause
user discomfort like an operating system forcing a reboot
for updating. Updating running software systems becomes a
critical issue as it requires the system to be restarted, causing
downtime and loss of state as well as financiary losses [1].
Not applying updates or postponing them is dangerous, as
updates are necessary to keep software safe from bugs and
security breaches. Dynamic Software Updating (DSU) allows
updates to be applied on running software without requiring
it to be restarted, causing little service disruption and no loss
of data. This goal is reached by using DSU mechanisms for
modifying the control flow (redefining functions) and the data
flow (converting the data to a new version) of a given program.
The majority of DSU platforms gather a predetermined set of
these mechanisms they use to apply each update.

A lot of platforms have been proposed [2], [3], defining
several mechanisms. Each mechanism has different proper-
ties and constraints. A DSU platform selects the best suited
mechanisms for the type of program it targets and the kind of
updates it expects. For example, K42 [4] is an operating system
embedding its own DSU system. It handles its updates by
swapping modified components when all old threads running
out of date code are terminated. These mechanisms are best
suited to the design of K42, which has a component based
architecture and runs short lived threads. Updates often consist
in the modification of components and, because the threads
are short-lived, waiting for old threads to terminate is an easy
way to ensure that components are swapped when they are
quiescent. But when applying an unforeseen kind of update,
the fixed set of mechanisms provided by the DSU system might
be inefficient or even it may be impossible. For example, K42
does not handle API changes very well because they need to
apply changes across the components.

Pymoult is a DSU platform providing several DSU mech-
anisms for updating Python programs. Its approach is to let an

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Jérémy Buisson
IRISA, Ecoles de Saint-Cyr Coétquidan
Guer, France
Email: jeremy.buisson@irisa.fr

update developer select and configure the DSU mechanisms
best suited for its update. While it requires more work from
update developers than automated DSU platforms, it ensures
that every update can be applied with best suited mechanisms.
This paper presents the design and implementation of Pymoult.
Section II discusses the implementation of DSU mechanisms
in Python and presents Pypy-dsu, our custom Pypy interpreter
enhanced for DSU support. Section III details the design
of Pymoult and discusses the implementation of some of
the mechanisms it provides before presenting an example
of dynamic update using Pymoult in section IV. Section V
compares Pymoult to other DSU platforms and Section VI
introduces future work before concluding this paper.

II. PYTHON AND ON-LINE UPDATES
While many DSU mechanisms can be implemented in
Python, some of them are impossible to develop using the
standard implementation. For that reason, Pymoult uses Pypy-
dsu, a Python interpreter enhanced with DSU features.

A. DSU capabilities of bare Python

Python is a dynamically typed, interpreted, object-oriented
language. It has natural indirection and allows dynamic manip-
ulation of programs models. The flexibility of Python and its
introspection features make it easy to implement DSU mech-
anisms. For example, object fields, class methods, variables
and functions are treated the same way, they are manipulated
directly through their name. This allows, for example, to easily
redefine a function foo by calling foo=foo_v2 since each
call to foo resolves the function name.

Fields can be added or deleted from objects and classes,
allowing easy modification of objects or classes. The type of an
objectis kept as a ___class___ field which refers to that type.
By consequence, changing the type of an object corresponds to
changing the class the ___class__ field refers to and adding
or deleting fields to conform the object to its new type.

Thanks to the meta-object protocol embedded in Python,
Pymoult can implement a lazy method for updating objects.
In Python, attributes and methods of objects are accessed
(for writing, reading or calling) using __getattribute_
and __setattr__ methods of their class. By default, these
methods resolve to the implementation in the object class.
By overriding these methods for a given class, we can run
updating code on an object before accessing its fields. Objects
can therefore be updated only when actually used (i.e., when
one of their fields is accessed).

Python is also a uni-typed language, allowing variables to
change type dynamically without requiring specific tools. The
type checking uses duck-typing. For example, if a.foo is
called, the type of object a is checked for a method called
foo. Variables can therefore be modified freely except for the
deletion of fields used in the program.

80

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

B. The Pypy-dsu interpreter

Several DSU mechanisms can not be properly implemented
in Python. For example, in a standard Python interpreter, it is
not possible for a thread to suspend another one. This inability
is a problem when needing to suspend parts of a program.
We therefore decided to extend the features of a Python
interpreter. We chose to base ourselves on the Pypy interpreter,
a Python interpreter written in Python. Pypy is easier to
modify than CPython (the reference Python interpreter) and
already extends Python with object proxies and continuations
that were helpful when implementing DSU mechanisms. This
subsection presents new features that where added in Pypy-
dsu, our customized Pypy interpreter.

1) Traces for controlling threads: Suspending a thread is
implemented using traces. Python traces are functions called
after each statement. To suspend a thread, a trace waiting for
an event to be triggered is inserted. On the next statement, the
trace will block until the event is triggered, causing the thread
to be suspended. In Pypy, a trace cannot be set for a given
thread and traces only start on the next call to a function. In
Pypy-dsu it is possible to set a trace for a given thread using
sys.settrace_for_thread. When setting the trace, one
can choose whether the trace should start immediately or on
the next function call. This feature allowed the development
of mechanism to suspend and resume thread and control their
execution (see paragraph II-B3 for an example).

2) Intercepting object creation: Although Pypy provides a
garbage collector, it cannot be used to get a reference on every
object created since the starting of the program. Such feature is
essential when implementing mechanisms to update the data of
a program. We therefore added the possibility to setup a global
hook with set_instance_hook that is called each time an
object is created. We use that hook to maintain a pool of weak
references to each object created by the program. Each time
an object is created, a hook creating a weak reference to it and
adding it to the pool is called. This pool is used each time a
mechanism requires accessing all the data at a same time.

3) Dropping frames: 1t is not possible in Python to manip-
ulate the stack of a thread, making it impossible to support on
stack replacement of functions. We added new instructions to
drop frames from the stack. Calling a dropNframe value
statement will cause the N most recent frames to exit immedi-
ately, returning value. On stack replacement of a function by
a new one is implemented using traces and the drop2frames
function to force the two most recent frames to exit and
return value. A trace calling the new function before using
drop2frames is inserted in the target thread. When the
thread enters a frame running the old function, the trace
captures the local state of that frame and calls the new function,
giving that state as an argument. The return value of the new
function is then given as argument to drop2frames. The
last two frames (i.e., the frame of the trace and the frame of
the old function) are dropped and the return value of the new
function is returned to caller of the old function.

III. PymoOULT
To our knowledge, Pymoult is the first DSU platform
for Python programs. Its approach is to provide as many
DSU mechanisms as possible through an API that allows
their combination and configuration. Since the creation of
Pymoult in 2012, we implemented over 30 DSU mechanisms.
For that reason and for the features we previously detailed,

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Application On-line Patch new variables
variables @ ;
2
@ Update Instance }——) new classes
classes @
Manager Instance new functions
functions
Y Pymoult
@ R Update DSU Mechanisms
freads T

Figure 1. Map of an on-line update

we think that Python is a good language for writing DSU
mechanisms, and testing platforms designs. The design of
Pymoult is the result of incremental work. Since the first
version of Pymoult [5] and throughout the experiments we
conduced with it, the design evolved to its actual form we
present in this section.

To update a running program with Pymoult, the pro-
gram developer must start a specific Pymoult thread called
Listener in the program. That thread enables the supplying
of on-line patches for the running application. An on-line patch
is a piece of Python code that uses the Pymoult API. It contains
the code of the updated elements of the program (e.g., func-
tions, classes) and instructions on which DSU mechanisms to
use. Dynamic updates rely on Manager and Update classes.
A manager (an instance of the Manager class) is responsible
for applying modifications according to the instructions given
by an update object (an instance of the Update class).

Subsection III-A presents the design of Pymoult and details
how to write an on-line patch with Pymoult. Subsection III-B
details the implementation of some mechanisms provided by
Pymoult and section IV presents the example of an on-line
update using Pymoult.

A. Design

In Pymoult, an update is composed of several instances of
an Update class. These instances are supplied to a manager
that will apply them. For the remainder of this section, we use
the term update object to refer to instances of Update. An
on-line patch is therefore a set of update objects.

Figure 1 presents the architecture of a program undergoing
an on-line update. An on-line patch embeds new variables,
classes and functions (1) which are used by an update object
to specify the instructions for the manager (2). The manager
controls and modifies the elements of the program (3) using
DSU mechanisms provided by Pymoult and as specified by
the update object (3.

Pymoult provides several off-the-shelf manager classes that
can be instantiated in the program or in an on-line patch to
create new managers. The regular Manager class describes
a manager that operates only when the program calls its
apply_next_update method. This kind of manager allows
the program to decide when modifications can be applied
to it. The ThreadedManager class describes a manager
that operates in its own thread. It applies modifications each
time an update object is supplied to it. Pymoult also provides
preconfigured managers that are bound to an Update class
and will always use the same DSU mechanisms to apply every
modification. Lastly, one can extend the Manager class to

81

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

check waiting apply resume
requirements alterability modifications threads clean up
O ©) ©) 4 (6) 7 ® ©)
preliminary suspend pre-resume wait end of
setup threads setup update

alterability not reached

clean failed
alterability

Figure 2. The updating process

updatesl*
Update

Manager

name : str name : str

check_requirements () : str
preupdate_setup ()
wait_alterability () :bool
check_alterability () : bool
clean_failed_alterability ()
apply () : str

threads preresume_setup ()

Thread wait_over ()
threads 1* check_over () : bool
cleanup ()

Figure 3. Update and Manager classes

suspend_threads ()
resume_threads ()
add_update (Update)
apply_next_update ()

*

define one’s own manager. The classes involved in the updating
process are presented in Figure 3.

Update developers can define their own update classes
by extending the Update class. An update class has one
method for each step of the updating process. These methods
can use the DSU mechanisms provided by Pymoult through
calls to specific functions. Update objects are instances of
developer defined update classes and are supplied to managers.
The managers implement the updating process pictured in
Figure 2. When an update is supplied to a manager, that
manager checks the requirements of the update (1. To do so,
it calls the check_requirements method of the update
that returns "yes", "no" or "never" if the requirements
are (respectively) met, not met or can never be met. If
"no" is returned, the update is postponed. If "never" is
returned, the update is canceled and if "yes" is returned, the
updating process continues. The manager then proceeds to the
preliminary setup step (2) where it installs elements required
for the next steps. To do so, it calls the preupdate_setup
method of the update. When the preliminary setup is finished
(i.e., the preupdate_setup method has returned), the
manager waits for the application to be in a safe state we
call alterability (3) by calling the wait_alterability
method of the update. That method returns True when the
application can be safely modified or False if a safe state
could not be met in a fixed amount of time. If False is
returned, the manager invokes a cleanup step in which
it calls the clean_failed_alterability method of
the update for uninstalling the elements that were set up
in the preliminary setup step. The update is then post-
poned. If wait_alterability returns True, the manager
suspends some threads of the program (4 by calling its
suspend_threads method. If the update specifies threads
in its threads attribute, suspend_threads will suspend

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

them, if not it will suspend the threads controlled by the
manager (i.e., the threads in its threads attribute). If the
manager does not control any threads, no thread is suspended.
The manager then proceeds to the apply step (5) where it calls
the apply method of the update. That method realizes all
the modifications needed by the update (e.g. redefine func-
tions, transform the data). The following step of the manager,
the pre-resume setup step (6), calls the preresume_setup
method of the update that follows the same principle as the
preupdate_setup method. Suspended threads are then
resumed by the resume_threads method of the manager
(. When all threads are resumed, the manager waits for the
update to be over (8) by calling the wait_over method of
the update that returns when the update is over. Indeed the
apply step may have started tasks that run along the rest of the
program. For example, the update can start lazy modifications
of objects and requires all the objects to be transformed before
completing. When the update is over, the manager cleans up
any element installed in the preliminary setup and pre-resume
steps (9) by calling the cleanup method of the update.

While this updating process is exactly followed as we just
described by instances of ThreadedManager, instances of
Manager wait passively for a safe state and for the end of
the update. They give back the hand to the program each time
they have to wait. For that purpose, they call the non-blocking
check_alterability method (resp. check_over) in-
stead of wait_alterability (resp. wait_over).

B. Mechanisms

Mechanisms are provided as functions that can be called in
the methods of update classes. In this subsection, we follow the
updating process detailed in the previous one and present some
mechanisms that can be used for each step. Figure 4 presents
an update object using the mechanisms discussed here.

1) Preliminary setup: Some mechanisms provided by Py-
moult need preliminary installation before being used. This is
the case of the forceQuiescence mechanism that forces
a function to be quiescent. In the pre-update setup step, the
setupForceQuiescence function replaces the targeted
function by a stub that blocks all incoming, non-recursive
calls by waiting for a specific continue event to be activated.
A watcher thread is then started. That thread watches the
quiescence of the targeted function.

2) Waiting alterability: We call alterability the state of a
program when it can be updated without provoking errors.
Indeed, if the update is applied at a wrong moment, updated
code can call obsolete code and cause a crash. For example,
an outdated function could try to access an updated piece of
data that is no longer compatible with the function.

82

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

On-line patch

Update Class New Variables

e wait_alterability
-forceQuiescence: foo

New Classes

e apply B

-redefineFunction: foo — foo2

-redefineClass: A — B

-access immediately instances of A, New Functions
updateToClass: A — B. foo2

update object

Variables
a (of type A)

Application

Manager Instance Classes
o threads A
threadl, thread2 .

Alterability Functions
Quiescence of foo foo
bar

Threads
thread 1
thread 2

Figure 4. An example of update using Pymoult

Alterability can be detected by watching alterability cri-
teria such as the quiescence of a component to be up-
dated [6] or any condition on the state of the program.
These criteria depend on the modifications applied by the
update and may vary among all the updates. Several such
criteria are proposed in the literature as the tranquility [7]
or the serenity [8] of components. Pymoult provides several
functions for expressing alterabilty crtieria. Here, we discuss
the waitForceQuiescence function that expresses the cri-
terion “target function must be quiescent” while forcing its qui-
escence instead of waiting for it. waitForceQuiescence
waits for the watcher thread started in the previous step to
detect the quiescence of the target function, then returns.

3) Applying modifications:

a) Accessing and updating data: Pymoult provides
two ways to access data through the DataAccessor class
that behaves as an iterator. When creating an instance of
DataAccessor, one must precise the type of objects it
accesses and the strategy to use as a string. The immedi-
ate strategy accesses all the objects when the instance of
DataAccessor is created. It is then possible to iterate over
all the objects. The progressive strategy uses the meta-object
protocol described in section II-B to access objects lazily. Each
time an object of the given type is used by the program, it is
enqueued to the instance of DataAccessor. It is possible
to iterate over the objects progressively as they are accessed.
When the queue of accessed objects is empty, the iteration
hangs until new objects are accessed. As a consequence, it is
not possible to know a priori when all the objects have been
accessed and therefore, when the iteration ends.

When they are accessed, objects can be updated using the
updateToClass function. This function changes the type
of a given object to a given class by updating its __class___
attribute. A transformer supplied by the update developer is
then applied to the object to modify its attributes.

b) Updating functions and classes: One way to update
a function is to replace it by a new version. This mechanism
is provided through the redefineFunction function that

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

uses the native indirection of Python to change the body bound
to the old function’s name.

Similarly, classes can be redefined globally using
redefineClass or one can add new fields or modify
existing ones with addFieldToClass. In Python, classes
are just special objects that can be modified dynamically as
any other object.

4) Pre-resume setup: At this step, a mechanism may re-
quire some set up before resuming the excution of the program.
For example, this is the case of forceQuiescence. In this
step, the cleanForceQuiescence function activates the
continue event waited by the blocking stub added during the
pre-update setup. As a consequence, all the calls to the targeted
function are released.

5) Cleaning failed alterabilty: DSU mechanisms handling
alterability watching that required preliminary set up require
clean up if the program fails to reach alterability. If the
forceQuiescence mechanism fails to guide the program
to alterability, the cleanFailedForceQuiescence func-
tion stops the watcher thread, activates the continue event and
removes the stub installed in the pre-update setup step.

IV. AN EXAMPLE

Various uses of Pymoult have been tested to validate it.
Among the applications we have dynamically updated with
Pymoult is the Django application server. Pymoult allowed us
to update a running Django server from version 1.6.8 to version
1.6.10, choosing different DSU mechanisms for both succes-
sive updates (from 1.6.8 to 1.6.9 and from 1.6.9 to 1.6.10).
Such a complex update does not fit as an introductory example.
Instead, we present here the example of a program serving
pictures through a socket. This program is representative of
the Django example while staying simple.

Figure 5 presents the main elements of this program.
Picture objects are stored in folders a files dictionary.
Folders are served by the serve_folder method of
the ConnThread class which defines connection handling
threads. When starting, the program creates a listener to
receive future on-line patches (as explained in section III).
It also creates an instance of ThreadedManager and an
ObjectPool that will contain weak references to all the
created objects as explained in section II-B. That pool will
enable immediate access to objects for future updates. Each
time a new client connects to the server, a new ConnThread
instance starts responding to all the commands it receives. The
do_command method specifies the reaction to each received
command.

Figure 6 presents an on-line patch that introduces support
for comments. It is now possible to add a comment to pictures
and before serving pictures from a folder, the pictures are
annotated with their comment. The on-line patch redefines the
Picture class and the serve_folder and do_command
methods. In order to update the picture objects, the patch
provides a transformer named pic_trans.

The ServerUpdate class defines a new update class
which alterability criteria are the quiescence of the methods
do_command and serve_folder. Because the update
aims to redefine these two methods and to modify the picture
objects they both use, waiting for their quiescence before
updating ensures that it will not provoke errors. Before waiting

83

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

class Picture (object) :
def _ init__ (self,path,name):...
def stream(self):...

class ConnThread (threading.Thread) :
def _ init_ (self,connection):...
def serve_folder (self, folder):...
def do_command(self,command) :...
def run(self):

while self.connection:

data = self.connection.recv(1024)
self.do_command (data.strip())
def main():

#create a socket to listen for commands
while True:

conn,addr = sock.accept ()
ConnThread (conn) .start ()
if _ name_ == "_ _main_ ":

listener = Listener ()
listener.start ()

manager = ThreadedManager ()
manager.start ()
ObjectsPool ()

main ()

Figure 5. Structure of the program

for alterability, the update captures all the ConnThread in-
stances and the main thread as they need to be suspended (Sus-
pending the main thread ensures that no new ConnThread is
created during the update). For that purpose, the patch defines
the method getAl1ConnThreads. When alterability is met,
the update uses addFieldToClass to redefine the methods
and uses a DataAccessor to access the picture objects. It
then uses updateToClass to update the accessed objects
and redefineClass to redefine the Picture class.

The on-line patch creates an instance of ServerUpdate
then supplies it to the manager. When the patch is sent to
the listener created by the application, it is loaded in the
application and its code is executed. The functions and classes
it contains are defined and the update object is created and
supplied to the manager.

Writing on-line patches as small programs which execution
will update the targeted program allows for a fine control over
the DSU mechanisms. For example, as presented in figure 7,
we could have chosen to apply the update without waiting
for the quiescence of do_command and serve_folder
and use on-stack replacement to update theses methods while
they are active. That would be a good choice if do_command
and serve_folder are rarely quiescent at the same time.
If the server handles a great amount of pictures, updat-
ing them all at the same time is long and disrupts the
service since connections are suspended during the update.
Updating picture objects lazily would be a better solution
as data would be migrated without suspending connections
(at the cost of the overhead introduced by the update of
objects the first time they are accessed). Figure 7 presents
this alternative patch for the update of the server. It uses
rebootFunction to capture the state of currently running
do_command and serve_folder methods then uses on-
stack replacement. For that purpose, the patch defines the
command_capture and serve_capture functions. The
update uses startLazyUpdate to start updating picture
objects lazily using the meta-object protocol described in II.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

class Picture_V2 (object) :
def _ _init__ (self,path,name):

self.commentary = "Witty comment"
self.basepath = path
def stream(self):...
def comment (self,text):...
def annotate(self):...
def getAllConnThreads():...
def pic_trans(pic):
pic.basepath = pic.path
pic.commentary = "Witty comment"
def serve_folder_v2(self, folder):...
def do_command_v2 (self,command) :...
class ServerUpdate (Update) :
def preupdate_setup (self):
self.threads = getAllConnThreads ()
def wait_alterability(self):
return waitQuiescenceOfFunctions ([do_command,
serve_folder])
def apply(self):
addFieldToClass (ConnThread, "do_command",
do_command_v2)
addFieldToClass (ConnThread, "serve_folder",
serve_folder_v2)
accessor = DataAccessor (Picture, "immediate")
for picture in accessor:
updateToClass (picture,Picture,Picture_V2,
pic_trans)
redefineClass (Picture,Picture_V2)
conn_update = ServerUpdate (name="conn_update")
main.manager.add_update (conn_update)

Figure 6. Simplified on-line patch

class ServerUpdate (Update) :
def preupdate_setup (self):
self.threads = getAllConnThreads ()
def wait_alterability(self):
return True
def apply(self):
addFieldToClass (ConnThread, "do_command",
do_command_v2)
addFieldToClass (ConnThread, "serve_folder",
serve_folder_v2)
for thread in self.threads:
rebootFunction (do_command, do_command_v2,
command_capture)
rebootFunction (serve_folder, serve_folder_v2,
serve_capture)
startLazyUpdate (Picture,PictureV2,pic_update)
redefineClass (Picture,Picture_V2)

Figure 7. An alternate on-line patch (simplified)

V. RELATED WORK

To our knowledge, Pymoult is the only DSU platform for
Python and its approach letting update developers combine
and configure DSU mechanisms is an actual topic in the
field. While classical DSU platforms use the same combination
of mechanisms to apply every update, some platforms allow
update developers to configure some mechanisms.

In ProteOS, [9] Giuffrida et al. propose to let update
developers decide the alterability criteria for each update. The
criteria are expressed as filters on the state of the OS. ProteOS
allows processes to be updated by starting the new version of
a process and transferring and updating the data from the old
process to the new one. The data is accessed immediately using
code instrumentation.

K42 [4] is an operating systems that allows its components
to be swapped at runtime. When applying an on-line patch, it

84

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

forces all swapped components to be quiescent by suspending
all threads created after the on-line update is requested and
waiting for the old threads to terminate. Components are
progressively swapped when they become quiescent.

Jvolve [10] is a DSU platform for Java programs. It
allows classes and methods to be redefined. Update developers
provide the source code of the program and of its updated
version as well as class transformers (for updating static class
fields) and object transformers (for updating object fields).
The alterability criteria for every update is that the program
must reach a VM safe point (usually a point where the
garbage collector is called) where the redefined methods are
quiescent. Update developers can also indicate methods whose
quiescence will constitute an additional alterability criterion.
When alterability is met, all threads are suspended and Jvolve
updates methods using indirection at VM level and on-stack
replacement. It accesses objects using the garbage collector
and updates them immediately.

For these three platforms, the on-line patch supplied by
the update developer is made of the source code of the new
version of the program plus some instructions (K42: code of
the transfomers; Jvolve and ProteOS: code of the transformers
and of the alterability criteria). While Jvolve and ProteOS
allow update developers to configure mechanisms by giving
additional alterabilty criteria, they support little variability on
the updating process. These platforms force the configuration
of DSU mechanisms (e.g alterability criteria are quiescence of
some functions) and only allow update developers to extend
some of them (e.g by giving new functions that need to be
quiescent for alterability). To our knowledge, Pymoult is the
first DSU platform giving as much control on the mechanisms
used for on-line updates.

VI. CONCLUSION AND FUTURE WORK

We presented the design of Pymoult and presented how
it allows DSU mechanisms to be combined and configured
when writting an on-line patch. We also presented an example
of on-line update of a Python program using Pymoult.

Pymoult is built atop a modified version of the Pypy
interpreter. Because the modifications we applied to Pypy are
little intrusive on the interpreter, they have no impact on the
way Pypy interprets Python programs. Pymoult is therefore
fully compatible with all the applications that are compatible
with Pypy. Nevertheless, many common Python applications
have compatibility issues with Pypy. The purpose of Pymoult
was to find a design that allows DSU mechanisms to be easily
configured and combined. Therefore, compatibility with every
Python application was not an issue. Nonetheless, to ensure
better compatibility with common Python software, we are de-
veloping a custom version of the CPython interpreter, the most
used Python interpreter. Having a CPython-dsu interpreter will
allow Pymoult to be tested with more real-life Python software.

Updating Django proved that Pymoult can be used to
update real world software. Further experiments, such as
overhead measurement, are required before validating the use
of Pymoult for production software.

Pycots [11], a component model enabling architectural
reconfiguration of applications, is an example of the use of
Pymoult. The model is paired with a development process for
specifying reconfiguration and proving their corectness using
Coq before executing them using Pymoult.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

The design of Pymoult is well suited for designing cus-
tomized updates for Python programs. Having a similar design
for different languages would be a good thing because it would
allow combining DSU platforms for updating complex appli-
cations made of several programs using different languages.
We are currently working on a C version of Pymoult as a
means to establish an equivalent design for C programs.

Pymoult is free software published under GPL License.
Its source code, as well as several examples can be found
on the project repository [12]. The example presented in
subsection IV is based on the “interactive” example.

ACKNOWLEDGEMENT
The work presented in this paper is funded by Brittany
regional council, as part of project IMAJD.

REFERENCES

[1] Channelinsider, “Unplanned IT Outages Cost More than $5,000
per Minute: Report,” http://www.channelinsider.com/c/a/Spotlight/

Unplanned-IT-Outages- Cost-More- than- 5000-per- Minute- Report- 105393,

2011, [Online; accessed 28-September-2015].

[2] E. Miedes and F. D. Muioz-Escoi, “A survey about dynamic software
updating,” Instituto Univ. Mixto Tecnoldgico de Informadtica, Universitat
Politecnica de Valéncia, Tech. Rep. ITI-SIDI-2012/003, May 2012.

[3] H. Seifzadeh, H. Abolhassani, and M. S. Moshkenani, “A survey
of dynamic software updating,” Journal of Software: Evolution and
Process, 2012. [Online]. Available: http://dx.doi.org/10.1002/smr.1556

[4] C. A. N. Soules et al., “System support for online reconfiguration,” in
Proc. of the Usenix Technical Conference, 2003, pp. 141-154.

[S] S. Martinez, F. Dagnat, and J. Buisson, “Prototyping DSU techniques
using Python,” in HotSWUp 2013 : 5th Workshop on Hot Topics in
Software Upgrades, USENIX, Ed., 2013.

[6] J. Kramer and J. Magee, “The evolving philosophers problem:
Dynamic change management,” IEEE Trans. Softw. Eng., vol. 16,
no. 11, Nov. 1990, pp. 1293-1306. [Online]. Available: http:
//dx.doi.org/10.1109/32.60317

[71 H. Chen, J. Yu, C. Hang, B. Zang, and P.-C. Yew, “Dynamic software
updating using a relaxed consistency model,” IEEE Transactions on
Software Engineering, vol. 37, no. 5, 2011, pp. 679-694.

[8] M. Ghafari, P. Jamshidi, S. Shahbazi, and H. Haghighi, “An architectural
approach to ensure globally consistent dynamic reconfiguration
of component-based systems,” in Proc of the 15th Symposium
on Component Based Software Engineering, ser. CBSE. New
York, USA: ACM, 2012, pp. 177-182. [Online]. Available: http:
//doi.acm.org/10.1145/2304736.2304765

[9] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Safe and automatic
live update for operating systems,” in Proc of the International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS. New York, USA: ACM, 2013,
pp. 279-292. [Online]. Available: http://doi.acm.org/10.1145/2451116.
2451147

[10] S. Subramanian, M. Hicks, and K. S. McKinley, “Dynamic software
updates: A vm-centric approach,” in Proc of the Conference on
Programming Language Design and Implementation, ser. PLDI.
New York, USA: ACM, 2009, pp. 1-12. [Online]. Available:
http://doi.acm.org/10.1145/1542476.1542478

[11] J. Buisson, E. Calvacante, F. Dagnat, S. Martinez, and E. Leroux,
“Coqcots & Pycots: non-stopping components for safe dynamic re-
configuration,” in Proc of the 17th Symposium on Component-Based
Software Engineering, ser. CBSE, ACM, Ed., New York, USA, 2014,
pp. 85 — 90.

[12] S. Martinez, J. Buisson, F. Dagnat, A. Saric, D. Gilly, and A. Manoury,
“Pymoult,” https://bitbucket.org/smartinezgd/pymoult, 2008, [Online;
accessed 28-September-2015].

85

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Aiming towards Modernization: Visualization to Assist Structural Understanding of Oracle
Forms Applications

Kelly Garcés, Edgar Sandoval,
Rubby Casallas, Camilo Alvarez
Los Andes University
School of Engineering
Department of Systems and Computing Engineering
Bogota, Colombia

email:{kj.garces971,ed.sandoval 1644, rcasalla,c.alvarez956 }

@uniandes.edu.co

Abstract—Oracle Forms is a tool for creating screens that
interact with an Oracle database. It appeared in the eighties and
its use spread to many IT sectors today. There are pressures that
push software engineers to modernize Oracle Forms applications:
obsolescence of technology, requirements of users, etc. For a
straightforward modernization, it is necessary to comprehend the
applications from a prior step. This paper reports the preliminary
results of the ”’Forms Modernization” project, in particular, of the
understanding step. In most cases, the understanding of Forms
applications is a complex and time-consuming task due to several
reasons: large size of applications, lack of design documentation,
lack of software organization. This paper proposes a visualization
process to alleviate these issues. The process takes static Oracle
Forms code as input and produces a set of domain specific
diagrams/views, that ranges from high to low abstraction levels,
as output. The gist of diagrams and views is to assist engineers
in a structural understanding of the Oracle Forms software. The
process includes algorithms for element discovery and clustering,
and is instrumented by means of a tool running on Eclipse
Modeling technologies. We take advantage of four real Oracle
Forms applications to illustrate the benefits of this approach.
These applications have been provided by Asesoftware, which is
the Colombian industrial partner of the project.

Keywords—program comprehension; reverse engineering; tools;
clustering algorithms; model-driven engineering; graphical editors.

I. INTRODUCTION

Software is constantly evolving; this evolution is motivated
by different reasons such as the obsolescence of a technology,
the pressure of users, or the need to build a single coherent
information system when companies merge [1]. Our research
lies in the field of software modernization, a kind of evolution,
that refers to the understanding and evolving of existing
software assets to maintain a large part of their business value

[2].

This paper presents the preliminary results of the "Forms
Modernization” project, which involves academic and indus-
trial partners. The project arose as a result of some problems
faced by Asesoftware, a Colombian software company that
offers modernization services to its clients, regarding the desire
to migrate Oracle Forms applications to modern platforms (in
particular Java).

Oracle Forms appeared towards the end of the 1980s.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Alejandro Salamanca, Sandra Pinto, Fabian Melo
Asesoftware
Bogota, Colombia
email:{asalaman, spinto, fmelo} @asesoftware.com

It comprises a rapid database application development en-
vironment and a runtime environment, where the database
applications run. Oracle Forms applications are present in
many sectors. Such is the case in Colombia as well as in
other countries. Results of a tool usage survey [3], carried out
by the Oracle User Group Community Focused On Education
(ODTUG) in 2009, indicate that 40 percent of 581 respondents
(application developers) use Oracle Forms.

The migration of Oracle Forms applications to new tech-
nologies is mainly caused by three factors: the fear that Oracle
desupports Forms, the difficulty to find Forms programmers,
and Forms no longer meeting business requirements.

Furthermore, the company, Asesoftware, complains about
the following three problems of manual modernization: i)
Difficulty to understand the Oracle Forms application, ii) Time-
consuming and repetitive migration, and iii) Poor testing. The
“”Forms Modernization” project addresses these problems in
three phases. Here, we report the results of the phase that aims
to solve the first problem.

According to Lethbridge and Anquetil [4], the main dif-
ficulties when trying to understand legacy applications are
the following: i) lack of a directory hierarchy and of design
information, ii) original designers’ lack of knowledge of soft-
ware architecture, and iii) undermining of the original design
decisions as many additions and alterations were made. An
Oracle Forms system is not the exception to Lethbridge and
Angquetil’s claim about legacy software organization: it lacks
a directory hierarchy and the file names are not necessarily
meaningful. As a result, an inspection of this code, aimed at
understanding, is time consuming and error-prone.

To cope with this, Asesoftware organizes meetings with
the clients, where the latter transfer their knowledge regarding
application functionalities to the engineers in charge of the
modernization process. The purpose of these meetings is to
obtain a global understanding of the application’s functional
requirements, in order to ease the subsequent inspection of
the code as well as the migration process. Nevertheless, this
understanding remains in the mind of the engineers and it
is not reported in any formal document in a way that the
learning curve could be shortened for new people that enter
the modernization process.

This paper presents the proposed approach as a solution to

86

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

the understanding issue. The approach consists of a process
that takes a given Oracle Forms application as input and
produces a set of diagrams and views that give an insight into
the application’s structural organization as output. The pro-
cess includes algorithms for element discovery and clustering,
and is instrumented by means of a tool running on Model-
Driven engineering technologies. The resulting diagrams and
views are designed to satisfy three concrete understanding
challenges. When comparing our approach to related work
—ecither research work [5][6][7] or commercial tools (i.e.,
Oracle2Java [8], Evo [9], Jheadstart [10], Pitss [11], Ormit
[12])— we found that they only provide views with a low
level of abstraction, whereas our approach proposes diagrams
and views that range from high to low abstraction levels, thus,
contributing to the acceleration of the understanding of the
Oracle Forms program and aiming at modernization.

The paper is structured as follows: Section II describes
the main building blocks of Oracle Forms applications and
introduces four real Oracle Forms applications that serve as
illustrating examples. Through an example, Section III elabo-
rates on the understanding challenges that guide our research.
Section IV establishes certain criteria, classifies related work
according to it, and compares these works to our proposal.
Sections V and VI present our approach and the tool used
for instrumentation, respectively. Section VII describes how
the user interacts with the visualizations in order to achieve
an understanding. Section VIII elaborates on the results of
applying our proposal to the illustrating examples. Finally,
Section IX concludes the paper and outlines future work.

II. ORACLE FORMS OVERVIEW AND ILLUSTRATING
EXAMPLES

We present the main concepts of an Oracle Forms appli-
cation below:

e Form: A Form is a collection of objects and code,
including windows, items, triggers, etc.

e Blocks: Represent logical containers for grouping re-
lated items into a function unit to store, display and
manipulate records of database tables. Programmers
configure the blocks depending on the number of
tables from which they want to manipulate the form:

o The way to display a single database table in
a form is to create a block. This results in a
single table relationship between the form and
the table.

o The way to display two tables that share a
master-detail relationship (i.e., ”One to Many”
relationship) is through two blocks. Oracle
Forms guarantees that the detail block will
display only records that are associated with
the current record in the master block. This
results in a master/detail relationship between
the form and the two tables.

e Item: Items display information to users and enable
them to interact with the application. Item objects
include the following types: button, check box, display
item, image, list item, radio group, text item and/or
user area, among others.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

e Trigger: A trigger object is associated to an event.
It represents a named PL/SQL function or procedure
that is written in a form, block or item. PL/SQL
is the Oracle procedural extension of SQL. PL/SQL
allows programmers to declare constants, variables,
control program flows, SQL statements and APIs. A
useful Oracle Forms API written in PL/SQL is the
one offering procedures for form displaying, i.e., the
OPEN/CALL statements.

e Menu: Is displayed as a collection of menu names
appearing horizontally under the application window
title. There is a drop-down list of commands under
each menu name. Each command can represent a
submenu or an action.

These concepts are found in the examples that will be used
throughout the paper. These examples are aligned with four
real applications related to treasury, banking and insurance
sectors. These applications will be referred to as Conciso,
Servibanca, Maestro, and Sitri. The following information is
useful in order to give an idea about the application’s size:
the number of forms ranges from 83 to 178, referenced tables
from 101 to 200, blocks from 361 to 765 and triggers from
2140 to 4406.

III. CHALLENGES ILLUSTRATED BY AN EXAMPLE

Using a concrete example, this section presents the chal-
lenges we face. Suppose a form of Conciso has to be modern-
ized in two senses: i) evolution towards a new technology,
and ii) introduction of a small modification to the initial
functionality. The form allows manipulating deductions from
an Employee’s withholding tax. The modification consists in
taking into account the deductions to which an employee has
the right after making donations to institutions that promote
culture, sports and art at a municipal level. Specifically, this
modification should ensure that the user indicates a city, de-
partment and country in the form when the option of deduction
by donations to local institutions has been chosen.

We face the following challenges as we try to understand
the scope of the modernization at an application level:

A. Challenge 1: Functional modules and their relationships

This challenge concerns the following questions: What
is the functional module that contains the form subject to
modernization? Is this module related to another modules?

The fact of knowing the module that contains the form
subject matter of modernization helps engineers to delimit
the modernization scope. As we said in the introduction
Section,the Oracle Forms software often lacks documentation,
directory hierarchy and meaningful naming conventions; as a
consequence, the functional modules are hard to infer. This
is the case in the scenario where the client provides a folder
that contains 144 forms on the root, with no subfolders nor
documentation. Each form has a name that is the concatenation
of a prefix (e.g., CBF) and a 5-digit number. In addition, the
Oracle forms IDE only shows one form at a time, so that there
is no a notion of a forms container.

Furthermore, it is important to know the dependency
relationships between modules. A dependency relationship

87

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

between modules results when forms aq, as, .., a, call forms
b1,bs,..,b,, and the forms are contained in two different
modules A and B. Engineers can use this kind of relationship
as an indication about the potential impact that a modification
in the deduction form has on forms that belong to different
modules. As for the modules, it is also hard to derive the
relationships between modules in Oracle Forms. To do so,
it is necessary to inspect the form PL/SQL code and look
for CALL/OPEN statements directed towards another form.
Note that these statements are spread along the form elements,
which makes it difficult to discover the relationships between
modules.

B. Challenge 2: Relationships between forms and tables

When addressing this challenge one should be able to
answer the following questions: Which are the tables related
to the form that will be modernized? What is the type of
relationship between the form and the tables?

The relationships between forms and tables are important
because they suggest to engineers that they have to review,
more in detail, how changes in tables (for example, adding
a foreign key from the deduction table towards the city table
) impact form elements and their embedded PL/SQL code.
The amount of effort to find out the tables related to a form
depends on the type of relationship. Whereas single table and
master/detail relationships are relatively easy to discover, by
regarding the form navigation tree available on the Oracle
Forms IDE, relationships resulting from references to tables
embedded into the PL/SQL code are more time demanding
because the code is scattered throughout the form elements
(i.e. forms, blocks, items).

C. Challenge 3: Relationships between forms

This challenge includes providing an answer to the ques-
tion: Is there any form related to the form that will be
modernized? The purpose of this question is twofold: i) to
know if related forms have to be changed in order to fully
satisfy the functionality of the form after its modernization,
and ii) to figure out if changes to the form subject matter of
modernization impact the capabilities of the related forms. The
example mentioned at the beginning of this section illustrates
the first part of the purpose: it is important to know if there is
any form —currently calling the deduction form— that needs
to be modified in order to specify the different options of
deductions and display the deduction form in an appropriate
manner by taking into account the selection made by the user.
This challenge is related to the first one in the sense that the
relationship between two modules depends on the relationships
between the forms that are contained in the modules. The
mechanism to infer the relationships between forms is to
review the PL/SQL code seeking for CALL/OPEN statements.
Because this task has to be performed regardless of whether
the forms are in the same module or in two different modules,
it is very time consuming.

The challenges above are valid for multiple scenarios; they
motivate the approach we propose in Section V. However,
before elaborating on the approach, we present related work
that helps us establish a background regarding visualization
processes.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

IV. RELATED WORK

In this Section, we establish criteria that help us classify
related research. For each criterion, we give a definition,
variations on how the criterion can be satisfied —which results
in categories—, and the position of each related work within
these categories. The Section ends by comparing our approach
to those found in related work.

A. Software systems

Tilley [13] has conducted extensive research into the use
of views as a form of program comprehension. He found
that numerous approaches focus on three different categories
of software: 1) legacy systems, ii) web applications, and iii)
application design patterns. After considering the results of
referential databases, we resolved that Tilley’s criterion to
classify view-related works is still valid, and decided to use it
in our classification.

The legacy systems category encompasses traditional sys-
tems characterized as follows: monolithic, homogeneous, and
typically written in third generation procedural programming
languages. The purpose of related work within this category
[51[6][7] is to achieve an understanding of the system, that can
serve as a basis for its maintenance or for migration to newer
languages.

The second category comprises Web applications. These
systems often share many of the negative features of traditional
legacy systems (e.g., poor structure, little or no documenta-
tion). The gist of related work in this category [14][15] is to
understand the interaction behavior of the Web application, for
further development and maintenance.

Finally, the third category covers a broader range of
systems, including the software systems mentioned above.
However, the difference is that related research within this
category [16] specializes on design pattern recognition for
better comprehension. The provided views are important to
detect the critical points of an application for maintenance
purposes.

B. Process

This criterion describes the steps that are followed to gen-
erate software systems views. Most of the reviewed approaches
[51[6][7][14][16] agree with the following three steps: i) data
injection, ii) querying, and iii) visualization. The first step con-
sists in obtaining an in-memory representation from the input
software artifacts. The second step aims at building blocks
through the representation. Finally, the third step includes the
generation of views for the groupings of blocks that result from
the second step.

C. Input

This criterion indicates which kinds of inputs can be used
by the process mentioned above. Literature reports mainly
two kinds of inputs: i) Static input, and ii) Dynamic input.
A static input only refers to source code [5][6][7]. Dynamic
inputs, in contrast, are related to run-time information. Authors
[14][15][16] obtain the second kind of input by executing
scenarios that help them identify the invocation of a specific
software feature (e.g., field, method, web page). Commonly,
dynamic inputs are complemented by static inputs.

88

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

D. Source code language

This criterion points out the languages in which the source
code is written; there are two categories: i) language specific,
and ii) language independent. While the first category classifies
the works whose implementations can be applied to source
code written in a particular programming language, the second
category encompasses the tools that can be applied to a variety
of languages. Most of works [5][6][7][14][16] fall in the first
category, they reverse engineer applications written in PHP,
COBOL, Smalltak, C++, Oracle Forms. In contrast, there are
few approaches in the second category [17]. The strategy of
the latter is to develop bridges (i.e., programs, compilers,
grammars, transformations) that allow the authors to go from
the source code to an intermediate format on top of which the
views are built up.

E. Notation

This criterion determines whether the notation used in the
view is: i) standard, or ii) domain specific. The second option
is suggested over the first one in cases where the reverse
engineering task includes experts/users for which a customized
graphical notation results in straightforward comprehension
and communication. However, the second option implies a
higher development effort when compared with the first one:
while the first option can reuse existing viewers, the second
option often requires the construction of viewers from scratch.
The most disseminated standard notation among the articles
[S1[14][17][18] is the Unified Modeling Language (UML),
in particular, class and sequence diagrams. Another popular
standard notation is the graph theory, where nodes and edges
are generic enough to represent any kind of software element
and relationship between elements. An example of an articles
that uses graph notation is [16]. In turn, the following are
articles that propose domain specific notations: [6][7].

FE Views

In this criterion, we take advantage of Lowe’s taxonomy
[19] to classify the proposed views according to related work.
Lowe et al. arrange the views in two categories: i) high
level, and ii) low level. The high level category covers the
views suitable to directly support program comprehension.
Examples of such representations are class interaction graphs,
lists of possible components/modules/subsystems, and archi-
tectural diagrams. On the other hand, low level views are
much too complex to provide any understanding of any non-
trivial program. Examples of low level representations are
basic block graphs, single static assignment representations,
call graphs, and control flow graphs. The following are some
related works that provide high level views: [5][6][14][16][18].
In turn, [7][18] fall on the low level view category.

G. Comparison

Taking into account the criteria mentioned above, we
compared our approach to related work —research work and
commercial tools included— and we reached the following
conclusions:

e Software systems: Similarly to [5][6][7], our approach
falls on the legacy system category.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

selection

Oracle Forms files ‘:{> Forms model
Clustering algorithm ‘:D -
odule model

Figure 1. View-generation process overview

Legacy modules diagram
Forms and tables diagram
Farms call graph diagram
Migration views

e Process: Our solution overlaps all previously cited
solutions in the three steps of the view-generation
process.

e Input: In similar fashion to [5][6][7], our approxima-
tion takes only source code as input.

e Source code language: Our approach takes source
code written in Oracle Forms as input. That is, it
belongs to the language specific category as well as

[S1[61(7].

e Notation: Like [6][7], our solution proposes a domain
specific notation.

e Views: There is a noticeable difference between our
approach and related work with respect to this cri-
terion. Our literature review points out [7] as the
sole scientific approach that provides views for Or-
acle Forms program understanding. The review also
includes a set of commercial tools (i.e., Oracle2java,
Evo, Jheadstart, Pitss, Ormit) that propose views for
the same purpose. In both cases, the views are of
two kinds: i) layout view and ii) application naviga-
tion tree. The layout view reflects how the graphical
elements are arranged on a form and displayed to
the user. The application navigation tree provides a
hierarchical display of all forms in an application as
well as the objects in each form —triggers, blocks,
program units, etc.—. In our opinion, these views
would be categorized as low level since they show
a high level of detail; in contrast, we provide not
only low level views but also high level ones, which
can accelerate the understanding of the Oracle Forms
program.

V. VIEW-GENERATION PROCESS

The view-generation process (see Figure 1) involves re-
verse engineering the Oracle Forms application and presenting
several different diagrams and views to the developers. These
diagrams and views can be further analyzed to determine
subsystems, the elements that compose these subsystems(e.g.,
forms, database tables), and the relationships between these
elements.

A. Data injection step

This step corresponds to data injection, which is the first
step of a classical view-generation process (see Section IV-B).

89

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

0. elements Jt
E fement |

= name : EString ‘

[L..1] source

[FormCallRelationship

B EiementReiationship)

= name : EString
[0..1] formTarget

7&77
I

[singleTableRelationship|

E Module

= weigth : Eint = 0
[1.1] targetModule| = name : EString

[1..1] singleTarget

.1y

Tabl ETE—
B Table H MasterDetailR elationship|

[l ModuleRelationship{

[1.1] masterTarget
= name : EString

[0..*] modules|

[1.1] detailTarget

[1..1] plsqiTarget

H pLSQLRelationship|

H Application

[0.."] moduleRelations = name ; Etring

Figure 2. Module metamodel

As mentioned before, the purpose of this step is to obtain an
in-memory representation from the input software artifacts. In
our approach, we obtain an Abstract Semantic Graph (ASG)
from Forms files (.fmb, .mmb). While a .fmb file describes
a particular form, a .mmb file describes the menu from
which all the application forms are displayed. This ASG is
navigated to create model elements that conform to the Form
metamodel. The main concepts of this metamodel have already
been mentioned in Section II, namely forms, menus, blocks,
items, triggers, relationships and tables. It is worth noting that
we manage to extract not only the tables that are directly
referenced by blocks, but also table references embedded into
PL/SQL code. The reason to use models instead of the ASG
is that we use tools that easily build editors for diagrams and
views on top of models (see SectionVI).

B. Data querying step

This step corresponds to the second step of the view-
generation process, whose gist is to search for building blocks
through the representation. In our case, the representation is
the Form model mentioned in the previous step and we search
for elements such as modules, forms, tables, and relationships.
Then, the elements resulting from this search are represented in
another model, referred to as Module model. In contrast to the
former model —which is verbose—, the latter model contains
only the elements that matter in the visualization step. We
describe the main concepts of the module model below and,
then, the algorithms used to obtain it.

1) Module model: This model conforms to a metamodel
(see Figure 2) and its concepts are explained below:

e Application is the root element of the metamodel. It
describes the Oracle Forms application under study.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

An application consists of a set of modules that are
related to each other.

e Module is a necessary concept because it works as a
container of Oracle Forms elements and their relation-
ships.

e ModuleRelationship represents the relationship be-
tween a pair of modules. A relationship going from
module A to module B means that A contains a form
that calls a form from B.

o Element describes Oracle Forms elements, i.e., forms
and tables.

e Form specifies an Oracle form.
e Table indicates a table referenced from a form.

o FElementRelationship represents a relationship between
a pair of Oracle Forms elements. An ElementRelation-
ship can be classified into one of the following four
sub-kinds.

o SingleTableRelationship is established between a form
and a table, when the form has a block that references
that table.

e MasterDetailRelationship is established between a
form and two tables, when the form has two blocks —
related via properties—, the tables are those referenced
by the blocks, and one of them has the master role and
the other one the detail role.

e PLSQLRelationship is established between a form
and a table, if the form has PL/SQL that contains
occurrences of the table name. A classic example
of this is the relationship created from a form with
a lookup field. The form contains a block with the
addition of one field that displays data from another
table. Such data is ’looked up” via PL/SQL code when
the form runs.

o FormCallRelationship is established between two
forms C and D, if form C contains CALL/OPEN
statements parametrized with the name of form D.

2) Algorithms: Two kinds of algorithms are necessary to
obtain a given module model:

1) Element discovery algorithm: This algorithm creates
appropriate model elements depending on the forms,
tables, and relationships found in the Forms model.

2) Clustering algorithms: One of the main concepts
in the metamodel is the Module. Having modules
makes the software easy to understand and, therefore,
to change. However, it is not always easy to get
the modules because legacy software organization is
often quite poor. To cope with this, previous works in
software comprehension[20][21] have used clustering
algorithms. A clustering algorithm arranges software
components into modules, by evaluating the rela-
tionships among these components. We have imple-
mented the following two clustering algorithms that
arrange the forms, tables and relationships discovered
by the Element discovery algorithm, into modules:

90

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

a) Menu-based clustering algorithm: This algorithm
takes a Forms model and its corresponding Module model
—which results from the Element discovery algorithm— as
inputs. From these two inputs, the menu-based clustering
algorithm is in charge of producing a new Module model
where the model elements (i.e., forms, tables, and relation-
ships) are arranged into modules. For each menu in the Forms
model, the algorithm inspects the commands in the respective
drop-down list until it reaches the commands that are calls
to forms. Then, the algorithm creates a module element —
whose name is the corresponding menu name— and groups
each form element within the module, according to the form
name indicated by the corresponding call. In addition, the
algorithm arranges the tables into the modules, following the
relationships existing between forms and tables. Asesoftware
Oracle Forms experts argue that there is good accuracy in
the resulting modules diagrams when looking at the menus;
however, they also point out that there is a lack of .mmb files
because Oracle Forms programmers prefer to create menus by
manually adding buttons through a .fmb file. We propose the
following algorithm to tackle this lack of .mmb files.

b) Table betweenness clustering algorithm: This algo-
rithm has four phases:

1) In the first phase, it takes a Module model —which
results from the Element discovery algorithm— as
input and produces a graph as output. In the graph,
the nodes represent forms, and an edge is established
between each pair of nodes (or forms) if they have
several tables in common.

2) In the second phase, the algorithm determines the
modules, that is, the subgraphs of the graph obtained
in the first phase. This algorithm identifies a subgraph
because its inner connections are dense, and the
outer connections among subgraphs are sparser. There
are several ways of identifying subgraphs, however,
due to the delivery dates of the project being so
close, we decided to use an existing method: the
Girvan-Newman algorithm [22]. Therefore, in the
second phase, our algorithm delegates the subgraph
construction to the Girvan-Newman algorithm. The
latter progressively finds and removes edges with the
highest betweenness, until the graph breaks up into
subgraphs. The betweenness of an edge is defined
as the number of shortest paths between all pairs
of nodes in the graph passing through that edge. If
there is more than one shortest path between a pair
of nodes, then each path is assigned equal weight
such that the total weight of all of the paths is
equal to unity; nonetheless, the betweenness value
for an edge is not necessarily an integer. Because
the edges that lie between subgraphs are expected
to be those with the highest betweenness values, a
good separation of the graph into subgraphs can be
achieved by removing them recursively.

3) In the third phase, our algorithm creates a module
element for each subgraph indicated in the Girvan-
Newman algorithm output. For each node in a sub-
graph, the algorithm groups into the module the
corresponding form element. To do so, the algorithm
follows two rules: i) If a subgraph has more than
one node (i.e., a form), the algorithm arranges the

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Reports
-4

Alternative
Period

=4

Queries

&

General Parameters

Load and
Validation

e
Processes Execution
Registers 5

S

Figure 3. Legacy modules diagram for Conciso (result of the Menu-
Based clustering algorithm)

forms (and referenced tables) within a new module
—whose name is the concatenation of a keyword and
a counter—; ii) If a subgraph has only one node, then
it is arranged into the isolated form module.

4) Finally, in the fourth phase, the algorithm arranges
the tables into the modules, by following the existing
relationships between forms and tables.

It is worth noting that the number of database tables in
common and the number of iterations of the Girvan-Newman
algorithm, that is, the parameters used in the first and second
phases, respectively, are given by the user and impact the
number of resulting modules as follows: A highest number of
database tables in common or a highest number of iterations
result in the following: i) a highest number of modules, which
are small in size because each of them contains few forms,
and ii) an big-sized isolated form module that contains a lot
of forms.

C. Visualization step

This step involves techniques that are of use to present the
gathered information via diagrams and views. These diagrams
and views are high-level or low-level representations that allow
developers to obtain a structural understanding of the system.
Basically, the diagrams have nodes and edges, and the views
look like tables. We describe the different aspects of diagrams
below: category (either low or high), purpose, notation, layout
and filters that ease their navigation. The Section ends by
presenting the information displayed in the table-like views.

1) Functional modules and their relationships: This dia-
gram belongs to the high-level category. Its main purpose is to
show how a legacy system is organized in terms of modules
or subsystems, and which are the relationships between the
modules of a system. A secondary purpose of the legacy
module diagram is to serve as an entry point for the Forms and
tables diagram. Figure 3 shows the diagram for Conciso, after
applying the menu-based clustering algorithm (the notation is

91

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

the same as in the table betweenness algorithm). The notation
used in both diagrams is explained below:

e An orange circle represents a Module. The circle label
is the module name, which can be changed by the user
into a more meaningful name. The size of the circle is
proportional to the number of form elements contained
within the module.

e A red arrow represents a ModuleRelationship.

The modules are radially arranged in descending order by
size. The module with the biggest size is positioned at three-
o’clock and the remaining modules are organized proceeding
clockwise. In addition, the diagram provides a filter that hides
ModuleRelationships.

2) Forms and tables diagram: This diagram falls into the
low-level category. It is available when one selects a module
from the legacy modules diagram. Its purpose is to show the
forms and tables contained in the module and the relationships
between them. Figure 4 shows excerpts from the Forms and
tables diagram of a module of the illustrating example (i.e.,
General Parameters). The notation that was used is explained
below:

e A green square represents a Form. The square label
is the form name (if present) or the file name that
corresponds to the form.

e A blue square depicts a Table. The label is the table
name.

e A red arrow indicates a SingleTableRelationship (see
Figure 4(a)).

e A pair of purple and black arrows indicates a Mas-
terDetailRelationship. In particular, the purple arrow
points to the master table and the black arrow to the
detail table (see Figure 4(b)).

e A green dotted arrow represents a PLSQLRelationship
(see Figure 4(c)).

The diagram layout is in charge of placing all the elements
in a way that the relationships intercept as little as possible.
Furthermore, the diagram offers filters that allow us to leave
all the relationships of a certain type visible in the diagram.

3) Forms call dependency diagram: This diagram belongs
to the low-level category. This diagram presents the call-graph
of the forms of an Oracle Forms application. Figure 5 shows
an excerpt from the Forms call dependency diagram of the
General Parameters module. The notation that was used is
explained below:

e A green circle represents a Form. The circle label is
a concatenation of the form name (if present) and the
file name that corresponds to the form.

e The arrows describe FormCallRelationships between
forms. In particular, a green arrow indicates an OPEN
statement and a red arrow a CALL statement.

The forms are arranged following a tree layout. In addition,
there are two kinds of filters: i) A filter that removes all
unconnected Forms from the diagram, and ii) A filter that,
if disabled, hides all FormCallRelationships.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

S Zones
| (CBFi3000) CB_UBIGEDG

(a) Single table relationship

CB_MONEV_TYPE | CB_CURRENCY TYPE

(b) Master/detail relationship

..................... SEG_MENUS

(c) PLSQL relationship

o | Currency Types
— | (cerzanay

Menu Options
Restrictions
(SEG15001)

Figure 4. Excerpt of Forms and tables diagram for Conciso.

~) -
/ Detaledana / \
[summarizea | [Conciliations Search|
|condiliations searen| | (cBrosson |
\ ccBFsso0m) /
N / N /

[/ Historical
| conditiation |
| Pendings search |

. (CBFS5100) /
. /

Historical |
| conciliation |
| Pendings searen |
. (CBFSSS10) /

. /

Historical |
| conciliation |
| Pendings searcn |
\ BFSS1D) /

. /

Figure 5. Forms call dependency diagram for Conciso.

4) Migration views: This view falls into the low-level
category. It displays detailed information about an element,
when it is selected by the user from one of the aforementioned
diagrams.

e The Module migration view is displayed when a
module is selected from the legacy module diagram. It
shows the module’s weight and the forms and tables it
contains. Due to page restrictions, a figure illustrating
this view is not included. It is worth noting that
this view looks like the views below, but it displays
different information.

e The Form migration view is shown when a form
is chosen from the forms and tables diagram. It
demonstrates the detailed form name, the number of
canvases, and the blocks and program units declared
in the form (see Figure 6(a)).

e The Relationship migration view is offered when a
relationship is selected from the forms and tables
diagram. The view shows the relationship details ac-
cording to its type:

o In case of a MasterDetailRelationship, it points
out the master and detail tables, the Oracle
Form relationship, and the block.

o In case of a SingleTableRelationship, it shows
the table and the corresponding block.

o In case of a PLSQLRelationship, it shows the
table, the respective block, and the trigger
where the PL/SQL is embedded (see Figure

92

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

S Migration Properties 52 =8

CBF13000

Faorm
Details

Detailed Mame Fonas
& Migration Properties 52 = 8
From Trigger

Lookup Relation
Details

Carvases 2z

Table CB_ENTVIG
Trigger WHEN-YALIDATE-ITEM
Ttern EMP_ENW_CODIGO

Data Block CB_EMPRESAS
Contents

3 Data Blocks,
UBG

FQOTER
TOOLBAR

(a) Form migration view (b) PLSQL relationship migration

view

Figure 6. Migration view examples for Conciso.

6(b) that contains the most complex migration
view for relationships).

VI. TOOLING

We have built a tool that instruments our approach. The
components that comprise the tool architecture are described
below. Components 1 to 4 are part of an existing open
source infrastructure[23] that we used to build the tool, but
components 5 to 10 are built by us.

1) Eclipse: includes a basic platform (i.e. workbench,
workspace and team facilities) that is useful for the
development of extensions.

2) EMF: is a framework for building tools based on a
metamodel.

3) Acceleo: includes a feature that interprets the Object
Constraint Language (OCL). OCL is a language that
provides query expressions on any model.

4) Sirius: is a plug-in to create graphical editors that
allow edition and visualization of models. Sirius can
be classified into the approaches provided with DSL
constructs that serve to specify the graphical notation
of a view, e.g., rules to determine color/size of nodes
or edges, layout, etc. Sirius is applicable to any
domain, for example, a Sirius node can represent
a software system entity but also the member of a
family.

5) Domain metamodels: contains the Forms and Module
metamodels presented in Section V.

6) Forms injector: its purpose is twofold: i) to obtain a
form model from Forms files, and ii) to enrich the
Module model with PL/SQL relationships. In order
to meet the first purpose, we take advantage of the
JDAPI [24], which is an API to manipulate Forms
files. Thus, we navigate the ASG —resulting from
the JDAPI— and create model elements according
to the Forms metamodel classes. To attain the sec-
ond purpose, we adapt an existing PL/SQL ANTLR
parser.

7) Clustering algorithms: these algorithms have been
implemented as Java programs. In particular, the table

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

betweenness clustering algorithm takes advantages of
the betweenness centrality algorithm that comes with
the JUNG API [25].

8) Diagrams and views specification: A model that, con-
forming to Sirius constructs, specifies the graphical
notation of diagrams and views.

9) Customized layout: implements layouts beyond Sir-
ius’ default layouts (i.e., tree or composite). Cur-
rently, it contains the radial layout implementation,
useful in the legacy modules diagram.

10) Wizard: is a graphical interface that allows engineers
to configure visualization process aspects, that is, the
Form files path, the form to be processed and the
clustering algorithm.

VII. INTERACTION PATH

In this Section, we describe how the engineer, guided by a
set of questions —stated in the form of challenges— uses the
visualizations in order to achieve a progressive understanding
of the Oracle Application. Like in previous sections, Conciso
is used for illustration purposes.

A. Challenge 1: Functional modules and their relationships

The legacy modules diagram targets this challenge. Figure
3 shows the resulting diagram for Conciso. It contains seven
functional modules and zero relationships between modules.
We present below, how this diagram is obtained and how
engineers can take advantage of it and of adjacent tooling to
address Challenge 1. Given that Conciso includes .mmb files,
we selected the menu-based clustering algorithm option first,
from the visualization process wizard.

Once the process is finished, the view is derived; then, en-
gineers have two options to figure out which module contains
the deduction form —whose physical name is CBF55410—
. On the one hand, the first option consists of the following
two steps: i) To point each module displayed in the legacy
module diagram and ii) To look at the Migration properties
view of each module, until finding the deduction form in the
Contents list. On the other hand, the second option includes
the following three steps: i) To open Acceleo Interpreter, ii)
To point the root of the Module model and iii) To build an
OCL query to ask for the module tat contains the form.

Knowing that the module General Parameters contains
the deduction form, engineers go back to the diagram to see
the module properties: name, size, relationships, etc. The fact
that the module General Parameters has no ingoing/outgoing
relationships, is a signal to engineers that they only have to take
care of propagating changes inside the mentioned module (if
ever needed). There is no need to worry about other modules
when modifying the deduction form. In addition, the diagram
shows that there are no relationships between modules, which
indicates that Conciso modules are decoupled enough.

We decided to derive another legacy modules diagram for
Conciso. This time, we chose the table betweenness cluster-
ing algorithm from the visualization process wizard. When
comparing the result of this algorithm with the menu-based
clustering algorithm result, we observed no correspondences
with respect to the number of modules and their content.
This fact should not call into question the accuracy of the

93

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

algorithm. Instead, the reason for this disparity is that the
algorithm’s derive modules take into account different aspects
of software. On the one hand, the menu-based algorithm uses
the menu whose items are normally organized in terms of
user tasks. As a consequence, the resulting modules diagram
maps the final user mental model. On the other hand, the table
betweenness algorithm organizes modules taking into account
the tables common to different forms. Thus, the resulting
modules diagram maps an internal view of the software that
is potentially useful to developers. We conclude that in case
of having .mmb files, engineers can use the two clustering
algorithms results as complementary perspectives. However,
in case of lacking .mmb files, the table betweenness is a good
starting point for structural understanding.

B. Challenge 2: Relationships between forms and tables

Now, we describe how forms and the table diagram ad-
dress this challenge. When located in the General Parameters
module, engineers can navigate the forms and tables diagram
until finding the deduction form. Engineers can focus the form
following two alternative paths: manual scrolling or an Acceleo
query. At the beginning, the diagram shows the relationships
between all the forms and tables in the module (i.e. 19 single
table, 37 master/detail and 407 PL/SQL relationships), which
makes it difficult to focus on the elements that matter. Here is
where the filters gain prominence: it is suggested that engineers
firstly switch off all filters and, then, progressively turn on each
one of them, going from the simplest (i.e., the single table
filter) to the more complex (i.e., the PL/SQL filter). Every time
a new filter is activated, engineers should analyze the resulting
relationships. As an output of filtering, engineers conclude
that the deduction form has only a master/detail relationship
with two tables, where the master is CP_MONEY_TYPE and
the detail CP_CURRENCY_TYPE (see Figure 4(b)). From
this, they obtain knowledge about the tables whose change
may impact the deduction form in any way. Subsequently,
engineers should complement their knowledge with database
information, in order to get a more precise insight about the
nature of the impact. A benefit of the diagram, when compared
with the manual approach, is that it points out only the tables
that are relevant to the form —which would likely speed up
the impact study.

C. Challenge 3: Relationships between forms

This paragraph describes how the Forms call dependency
diagram targets the third challenge. Once the diagram is
generated, engineers can observe that several forms have no
dependencies with others. At this point, it is recommended
to apply the filter Single Elements to leave only the forms
that share dependencies. After filtering, engineers obtain the
diagram shown in Figure 5. Given the call relationship between
form CBF55400 and the deduction form, engineers can infer
that changes in the former will likely impact the latter. Then,
engineers need to complement their knowledge with an exter-
nal source (e.g., the Oracle Forms navigation tree) in order to
specify the kind of impact on the related form. Like the Forms
and table diagram, the forms call diagram benefit —when
compared to a manual approximation— is that it limits the
number of forms that have to be inspected during a subsequent
impact review.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

VIII. APPLYING APPROACH TO ILLUSTRATING EXAMPLES

To demonstrate the applicability of our approach, we have
obtained visualizations, not only for Conciso but for all the
applications mentioned in Section II. Below, we present a
table that summarizes what we noticed regarding the resulting
diagrams for these applications. Ultimately, we analyze the
table data by taking the challenges into account. All tests were
executed on a machine with a Windows 7 operative system,
Intel Xeon dual core processor and 12 GB of RAM.

TABLE 1. Visualization statistics for all applications

Criteria Conciso | Maestro Servibanca Sitri
Clustering Menu Table Table Menu
Algorithm -based betweenness | betweenness -based
Modules 7 7 10 69
Ir\f]‘;‘i:fle hig 0 6 5 1
Forms 144 155 83 178
Forms Master 87 52 42 95
and tables Master
relationships | Detail 47 43 2 6l
PL/SQL 958 1234 462 1832
Forms
relationships 3 154 30 !
Processing
time 62 83 49 90
(seconds)

e Modules and relationships between modules: The
module row shows the application size in terms of
modules; it ranges from 7 to 69. The latter number
indicates not only that Sitri is the largest one from a
functional perspective, but also that its menu may be
complex due to the large number of options (i.e., 69).
In turn, the modules relationships row demonstrates
that the modules of Conciso and Sitri have a low
coupling. Given that the menu-based clustering was
used to derive the “legacy modules diagrams” for
Conciso and Sitri, we conclude —from the number
of module relationships— that each menu option calls
forms that are not called from another menu option.
In addition, the modules relationships row shows that
Maestro and Servibanca have the highest coupling
when compared with the rest of the applications. The
rationale behind this result is related to the table
betweenness algorithm parameters (i.e., number of
database tables in common and number of iterations).
It is worth emphasizing that the relationships between
modules summarize the relationships between forms
contained in different modules. This is the reason why
the number of the former relationships is less than the
number of the latter relationships.

e Forms and relationships between forms and tables:
There is a correlation between these rows and the
processing time row. The processing time results show
that the time spent on the visualization process ranges
from 90-50 seconds. The value for each application
depends on the application size: the more forms
and relationships (either single table, master/detail or
PL/SQL), the longer the processing time. For example,
Sitri, with the highest processing time, contains much
more forms and relationships (i.e., 178 and 1988,
respectively) than the rest of the applications.

94

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

e Relationships between forms: As shown in this row,
Conciso and Sitri have few relationships between
forms (i.e., from 1 to 3); this occurs because, in these
applications, most forms work as independent units
accessed through a menu. In contrast, Maestro and
Servibanca have much more relationships (i.e., from
30 to 154); the reason is that these applications have
no .mmb files. Instead, menus are created manually by
adding buttons in .fmb files. As a result, many forms
are dependent on these .fmb files.

IX. CONCLUSION AND FUTURE WORK

This article proposes a visualization approach for Ora-
cle Forms applications. The diagrams and views have been
designed having the ease of modernization in mind. This
approach has two main benefits, which were discussed in Sec-
tion VIII and can be summarized as follows: i) The proposed
visualization aids engineers to obtain an understanding of the
application. This knowledge can be useful to determine the
modernization scope at different abstraction levels: At a high
abstraction level, it shows modules that could be potentially
impacted by a change made to a form. At a low abstraction
level, it points out forms and database tables that are likely
affected by the change. ii) The second benefit concerns the
productivity of engineers: when compared with the manual
inspection of Oracle Forms assets, our visualization approach
should reduce the understanding effort in terms of time. This
claim will be formally validated by means of a focus group,
before project closure.

Also, we outline the four fronts on which we are working
on below: i) As was mentioned in Section VIII, the proposed
visualization gives an initial knowledge that has to be com-
plemented with information coming from other sources. The
navigation from our tool to these sources and vice versa can be
tedious, therefore, we are currently working on the integration
of the most common source —the Oracle Forms IDE— into
our tool; ii) The possibility to reorganize the modules from
the diagrams in a way that the new organization is maintained
during the migration process; iii) A new functionality that
allows engineers to add information to the diagrams —this in-
formation could summarize the knowledge they have acquired
from the visualizations and from external sources, such as final
users—; iv) Finally, a new visualization that looks like a table
to display application statistics —such as number of forms,
blocks, trigger, etc.— would be desirable. These statistics can
be helpful for engineers to estimate modernization costs.

REFERENCES

[11 F Fleurey, E. Breton, B. Baudry, A. Nicolas, and J.-M. Jézéquel,
“Model-driven engineering for software migration in a large industrial
context.” in MoDELS, ser. Lecture Notes in Computer Science, vol.
4735. Springer, 2007, pp. 482-497.

[2] 1. Izquierdo and J. Molina, “An architecture-driven modernization tool
for calculating metrics,” Software, IEEE, vol. 27, no. 4, pp. 37-43, 2010.

[3] M. Riley. (2009) Choosing the right tool. [Online]. Available:
http://www.oracle.com/partners/campaign/o49field-084396.html.
[Accessed: April, 2015]

[4] T. C. Lethbridge and N. Anquetil, “Advances in software engineering,”
H. Erdogmus and O. Tanir, Eds. New York, NY, USA: Springer-
Verlag New York, Inc., 2002, ch. Approaches to Clustering for Program
Comprehension and Remodularization, pp. 137-157.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

G. Ramalingam and et al., “Semantics-based reverse engineering of
object-oriented data models,” in IN PROC. INTL. CONF. ON SOFT-
WARE ENG. ACM Press, 2006, pp. 192-201.

R. Bril and et al.,, “Maintaining a legacy: Towards support at the
architectural level,” Journal of Software Maintenance, vol. 12, no. 3,
pp. 143-170, 2000.

O. Sanchez Ramon, J. Sanchez Cuadrado, and J. Garcia Molina,
“Model-driven reverse engineering of legacy graphical user interfaces,”
Automated Software Engineering, vol. 21, no. 2, pp. 147-186, 2014.

Composer technologies. Oracle forms to java. [On-
line]. Available: http://composertechnologies.com/migration-

solutions/oracle-forms-to-java/. [Accessed: April, 2015]

VGO Software. Evo. [Online]. Available: http:/www.
vgosoftware.com/products/evo/walkthrough.php. [Accessed: April, 2015]

Oracle. Jheadstart. [Online]. Available:
http://www.oracle.com/technetwork/developer-tools/
jheadstart/overview/jhs11-fomrs2adf-overview-130955.pdf.

[Accessed: April, 2015]

Pitss. Re-engineering edition-Pitss. [Online]. Available: http:
/Ipitss.com/us/products/application-re-engineering-edition/.

[Accessed: April, 2015]

Renaps. Ormit. [Online]. Available: http://www.renaps.com/
ormit-java-adf.html. [Accessed: April, 2015]

S. Tilley, “Documenting software systems with views vi: Lessons
learned from 15 years of research & practice,” in Proceedings of the
27th ACM International Conference on Design of Communication, ser.
SIGDOC ’09. New York, NY, USA: ACM, 2009, pp. 239-244.

M. Alalfi, J. Cordy, and T. Dean, “Automated reverse engineering of uml
sequence diagrams for dynamic web applications,” in Software Testing,
Verification and Validation Workshops, 2009. ICSTW °09. International
Conference on, 2009, pp. 287-294.

G. A. Di Lucca, A. R. Fasolino, and P. Tramontana, ‘“Reverse en-
gineering web applications: the ware approach,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 16, no. 1-2,
pp. 71-101, 2004.

T. Richner and S. Ducasse, “Recovering high-level views of object-
oriented applications from static and dynamic information,” in Software
Maintenance, 1999. (ICSM ’99) Proceedings. IEEE International Con-
ference on, 1999, pp. 13-22.

E. Duffy and B. Malloy, “A language and platform-independent ap-
proach for reverse engineering,” in Third ACIS International Conference
on Software Engineering Research, Management and Applications,
2005, 2005, pp. 415-422.

C. Bennett and et al.,, “A survey and evaluation of tool features for
understanding reverse-engineered sequence diagrams,” J. Softw. Maint.
Evol., vol. 20, no. 4, pp. 291-315, 2008.

W. Lowe, M. Ericsson, J. Lundberg, T. Panas, and N. Petersson,
“Vizzanalyzer - a software comprehension framework,” in Proc. of 3rd
Conference on Software Engineering Research and Practise in, 2003,
pp. 127-136.

N. Anquetil and J. Laval, “Legacy software restructuring: Analyzing a
concrete case,” in 15th European Conference on Software Maintenance
and Reengineering, 2011, pp. 279-286.

S. Mancoridis, B. Mitchell, Y. Chen, and E. Gansner, “Bunch: a
clustering tool for the recovery and maintenance of software system
structures,” in /EEE International Conference on Software Maintenance,
1999, pp. 50-59.

M. Girvan and M. E. Newman, “Community structure in social and
biological networks.” Proceedings of the National Academy of Sciences,
vol. 99, no. 12, pp. 7821-7826, 2002.
Eclipse Community. Eclipse. [Online].
/leclipse.org/. [Accessed: April, 2015]
Oracle. JDAPI documentation. [Online].
Available: http://www.oracle.com/technetwork/developer-tools/
forms/documentation/10g-forms-091309.html. [Accessed: April, 2015]
J. O’Madadhain. JUNG - Java Universal Network/Graph
Framework. [Online]. Available: http://jung.sourceforge.net/.
[Accessed: April, 2015]

Available: https:

95

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Effects of Recency and Commits Aggregation on Change Guide Method

Based on Change History Analysis

Tatsuya Mori',

Anders Mikael Hagward*,

Takashi Kobayashi'

1 Graduate School of Information Science & Engineering, Tokyo Institute of Technology,
2-12-1 Ookayama, Meguro, Tokyo, Japan

1 School of Computer Science and Communication, KTH Royal Institute of Technology,
Stockholm, Sweden

Email: {tmori, anders, tkobaya} @sa.cs.titech.ac.jp

Abstract—To prevent overlooked changes, many studies on change
guide, which suggest necessary code changes with using co-change
rules extracted from a change history, have been performed.
These approaches support developers to find codes that they
should change but have not been done yet when they decide
to commit their changes. The recommendations by existing
approaches are adequately accurate when the tools find can-
didates. However, these tools often fail to detect candidates of
overlooked changes. In this study, we focus on two characteristics
to increase the opportunity of recommendation to detect more
overlooked changes: one is the consideration of recency, i.e.,
we use only recent commits for extracting co-change rules, and
the other is the aggregation of commits for the same task,
i.e., we aggregate consecutive commits fixing the same bug. We
investigate the effects of our methods on the quality of co-change
rules. Experimental results using typical Open Source Software
(OSS) show that the consideration of recency can improve the
recommendation performance. Our approach can extract more
useful co-change rules and recommend more overlooked changes
in a higher rank than without the consideration of recency.

Keywords—change guide; software repository mining; commit
history; software maintenance.

I. INTRODUCTION

As the structure of a software program is scaled up, the
effort for the ripple effect analysis [1] significantly increases
during maintenance, such as bug correction and implementing
new features. For the quality of the product, it is important
to complete modifications. To prevent overlooked changes,
many change guide methods based on static analysis (SA)
have been proposed to analyze the scope of change effects [2].
However, these approaches detect many static dependencies
include ones unrelated to the change propagation [3]. Further,
SA-based approaches fail to find all of necessary dependencies
[4]. It cannot find dependencies between codes and non-code
elements, such as configuration files and ones through third
party libraries.

To overcome the limitations of SA-based change guide
methods, studies focusing on the analysis of a software change
history in version control system has been performed. These
approaches leverage implicit dependencies (aka. logical cou-
pling [5]) extracted from a change history with data mining
techniques.

By using association rule mining, an association between
code changes are extracted as rules that indicate “if a file is

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

changed, it is highly possible that another file is changed at
the same time”. We refer to those rules as co-change rules.
Zimmermann et al. proposed a co-change recommendation
tool, eROSE, that extracts co-change rules from a change
history and recommends code elements (e.g., methods or
fields) as possible future changes [6]. Their experimental
results showed the usefulness of co-change rules for the change
guide task. They achieved quite high accuracy for the change
recommendation with eROSE. However, the coverage of their
recommendation is a few percent; their approach often fails to
detect candidates of overlooked changes.

We consider that it is important to expand the coverage
for detecting overlooked changes. To increase the opportunity
of change guide, we address this low-coverage issue of co-
change rules based change guide. In this paper, we propose
methods to improve the quality of co-change rules. We focus
on two characteristics of change history. One is rececy, i.e.,
how recent the commit was done, and the other is task, i.e.,
which task the commit was related to.

The dependencies that cause change effect become altered
along with the project being a long life. That means that the
files that had been changed in early term of development might
have no dependencies currently. When we use all of the past
change histories, we might fail to extract useful dependencies
as a consequence of such noise dependencies. We form a
hypothesis that we can extract co-change rules strongly related
to current changes by considering recency.

When partial changes for a bug fix had been overlooked in
past, a developer may have already found these overlooked
changes and corrected them. We should treat these change
history as a single commit for a bug fix to capture the actual
co-change relation. This problem can be generalized as the
granularity of commits. Not only for unintended separation,
the granularity of commits also depends on the nature of
developers and projects. For example, while some developers
commit all changes for one task, others may commit changed
files in separate revisions for the same task. The difference
between developers commits behavior might introduce noise
for analysis of change history.

In this study, we investigated effects of the consideration
of recency and the aggregation of consecutive commits fixing
the same bug on the performance of change guide based on
analyzing change history. We formalize our study with the
following two research questions:

96

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

RQ1 Can we improve the effectiveness of change rec-
ommendations with the consideration of recency?
RQ2 Can we improve the effectiveness of change rec-

ommendations with the aggregation of consecu-
tive commits fixing the same bug?

The main contributions of this paper are:

e We empirically confirm the usefulness of co-change
rules to recommend overlooked changes by using three
large OSS projects.

e We indicate that we can recommend more overlooked
changes significantly by considering recency as a
result of an experiment. Moreover, we can recommend
correct overlooked changes in a higher rank than
without the consideration of recency.

e We also show that we can improve the performance of
recommendation by aggregating consecutive commits
fixing the same bug depending on the projects.

Structure of the Paper. Section II discusses the related
work. Section III describes the experimental setup. Section
IV presents the results of experiments. Section V mentions
threats to validity. Section VI closes with conclusion and
consequences.

II. RELATED WORK

In this section, we survey the related work in the fields
of logical coupling and change guide based on change history
analysis. We also survey the related work using some methods
that we focus on in our study.

A. Logical Coupling

Gall et al. extracted dependencies between files that have a
chance to be changed at the same time by analyzing a change
history of a software system stored in version control system,
e.g., Concurrent Versions System (CVS) or Git [5]. They called
those dependencies “logical coupling.” Logical coupling can
represent implicit dependency that can not be extracted by
static analysis. Lanza et al. proposed Evolution Radar [7]. This
tool integrates both file-level and module-level logical coupling
information and visualizes those logical couplings. Alali et
al. investigated the impact of temporal and spatial locality
on the results of computing logical couplings [8]. Wetzlmaier
et al. reported insights about logical couplings extracting
from the change history of commercial software system [9].
They indicated resulting limitations and recommend further
processing and filtering steps to prepare the dependency data
for subsequent analysis and measurement activities.

Zimmermann et al. proposed eROSE [6]. This tool extracts
method-level logical couplings and recommends code elements
as possible future changes. eROSE extracts logical couplings
as association rules by association rule mining. Zimmermann
et al. performed an experiment to evaluate a performance of
recommendations by eROSE in the scenario that “when a
developer decides to commit changes to the version control
system, can eROSE recommend related changes that have not
been done yet?” As a result of the experiment, Precision of
recommendations by eROSE was 0.69. That means that 69%
of recommendations were correct. The recommendations by
eROSE were adequately accurate. However, Recall was 0.023.
(Note that they showed Recall was 0.75 in their paper. How-
ever, they calculated this value without the ratio of occurrence

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

of their recommendations. We recalculated actual Recall as the
product of their Recall and their Feedback.) That means that
only 2.3% of overlooked changes could be recommended. The
performance of recommendations by eROSE is satisfactory, but
we are motivated to recommend more overlooked changes.

B. Change guide based on change history analysis

Kagdi et al. proposed sqminer [10]. This tool uncovers
the sequences of changed files spuriously and decreases false
recommendations. Gerardo et al. showed that Granger causality
test can provide logical couplings that are complementary to
those extracted by association rules. They built hybrid rec-
ommender combining recommendations from association rules
and Granger causality. Their experimental results indicated that
the recommender can achieve a higher recall than the two
single techniques [4].

C. Consideration of Recency

In the field of data mining related to segmentation in
direct marketing, Recency, Frequency, and Monetary (RFM)
analysis is often performed [11][12]. RFM means how recently
a customer has purchased (recency), how often they purchase
(frequency), and how much the customer spends (monetary).
On the other hand, an association rule mining is often used
in the field of change guide for developers, and this method
takes only frequency (how often the files are co-changed in
the same commit) into account. The dependencies that cause
change effect become altered along with the project being a
long life, so co-change rules extracted from very old commits
might be useless currently. We form a hypothesis that if we also
take recency into account for an association rule mining, we
can extract co-change rules strongly related to current changes.

D. Aggregation of Commits related to the same task

Mclntosh et al. investigated the dependency between source
code files and build files. In their research, they aggregated
commits related to the same task for an association rule
mining to reduce the noise caused by inconsistent developer
commit behavior [13]. They aggregated commits based on
information extracted from Issue Tracking System and called
those aggregated commits “work item”. They found that work
item is a more suitable level of granularity for identifying co-
changing software entities rather than a single commit. An
aim of their study is detecting the logical couplings between
production code changes and build files. On the other hand, an
aim of our study is detecting and recommending overlooked
changes using logical couplings between source code files, but
we think that we can use the same technique for our study.

III. EXPERIMENTAL SETUP

In this section, we describe the tools that we implemented
for our experiments, a dataset, experimental settings to address
our research questions, and evaluation metrics to evaluate the
quality of recommendations.

A. Experimental Environment

We implemented LCExtractor for our experiments. LCEx-
tractor extracts co-change rules by using an Apriori algorithm
[14]. A co-change rule has a form of “A = B”. The notation
“A = B” means “if A is changed, it is highly possible that B is
changed at the same time.” “A” and “B” are called the left-hand

97

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

TABLE I. HISTORY OF ANALYZED PROJECTS

Project # Commits in Git since
Eclipse JDT 21,378 2001-2014
Firefox 395,466 1998-2014
Tomcat 13,824 2006-2014

side and the right-hand side, respectively. The left-hand side is
a set of files, and the right-hand side is a file. There are some
differences between LCExtractor and eROSE. LCExtractor
extracts file-level co-change rules, whereas eROSE extracts
method-level change rules. eROSE is an Eclipse plugin. On
the other hand, LCExtractor is the tool that spuriously makes
the situation, where a file that should be changed is overlooked,
and evaluate whether LCExtractor can recommend this over-
looked file or not. Therefore, LCExtractor can not recommend
to developers actually. However, LCExtractor is superior to
eROSE in some ways. LCExtractor can track renamed files
and deleted files in a change history. Due to this extension,
LCExtractor can recommend renamed files using co-change
rules extracted from files before renamed, and exclude deleted
files from candidate recommendations. LCExtractor extracts
co-change rules by analyzing change history in a modern
version control system, Git or Subversion, whereas eROSE
extracts co-change rules by analyzing change history in CVS.

Let us explain the process of LCExtractor recommendation.
We set the range of target commits, e.g., the latest 1,000
commits. LCExtractor extracts co-change rules using older
commits before the target commit. LCExtractor spuriously
makes the situation, where one file that should be changed is
forgotten to commit, by removing a file from the target commit.
Finally, LCExtractor recommends files using co-change rules
and evaluate those recommendations. LCExtractor performs
above processes iteratively for each target commit in order of
old to new. Note that LCExtractor uses commits treated as
targets in previous iterations for extracting co-change rules.

This tool was executed on an iMac Retina 5k, Late 2014,
with a 4GHz Intel Core i7 and 32GB main memory, running
Apple OS X Yosemite.

B. Dataset

For our experiments, we analyzed the change history of
three large open-source projects (Table I). We cloned all of
the commit histories of those projects as of December 2, 2014,
from GitHub.

C. Consideration of recency

To investigate how the consideration of recency affects a
performance of change recommendations, we compared the
case when we used only recent 5,000 commits older than a
target commit for extracting co-change rules, to the case when
we used all of the commits older than a target commit. We
refer to the latter case as a baseline. Concerning Firefox, we
used 20,000 commits older than a target commit instead of all
of the commits for the baseline. It is because the total number
of commits was very large (about 400,000) and it was difficult
for LCExtractor to use all of them for calculating co-change
rules.

The Apriori algorithm used in LCExtractor required two
parameters: minimum support (minsup) and minimum confi-
dence (minconf). We set minsup to be 0.0025 for Eclipse

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

and Firefox, and 0.001 for Tomcat. We set minconf to be
from 0.1 to 0.9 in steps of 0.1 for each project. As described
in Section III-A, we need to set the range of target commits.
In this experiments, we use 2,000 commits as target commits
for Eclipse, 5,000 commits for Firefox, and 3,000 commits for
Tomcat.

D. Aggregation of consecutive commits fixing the same bug

To investigate how the aggregation of consecutive com-
mits fixing the same bug affects a performance of change
recommendations, we compared the case when we aggregated
consecutive commits fixing the same bug, to the case when
we did not aggregate. We refer to the latter case as a baseline.
In the former case, we referred to a commit message of each
commit and checked if the commit message contains a bug id.
If the commit message partially matched one of the following
regular expressions, we assumed that the commit was fixing a
bug.

o bugl# \(]*[0-9]+
e pr[# \t]*[0-9]+
e Show_bug)\.cgi\?id=[0-9]+

If the messages of consecutive commits contain the same
bug id, we aggregated them, i.e., we treated them as one
commit. In our experiment, we did not take other information
of commits (e.g., author or an interval between each commit)
when we aggregated them.

In this experiment, we used all of the commits older than
a target commit for extracting co-change rules, i.e., we did
not consider recency. Concerning Firefox, we used 20,000
commits older than a target commit instead of all of the
commits as we did in Section III-C. The settings of two
parameters (minsup and minconf) and the range of target
commits were same as Section III-C.

E. Evaluation Metrics

The most important aim of our study is a prevention of
overlooked changes. We used an evaluation setting that was
similar to the error prevention setting in [6] to evaluate the
quality of recommendations. We used Precision and Recall
for the metrics of recommendations. Precision represents the
accuracy of the recommendations. Recall represents the ratio
that the expected files are recommended. Because our aim
is a prevention of overlooked changes, Recall is important
rather than Presicion. In our experiments, the expected rec-
ommendation is only one file. As a result of this experimental
setting, it is possible that Precision become low unfairly
due to many false positives. To evaluate an accuracy of our
recommendations, we also use Mean Reciprocal Rank (MRR).
This metric is not used in [6]. The high MRR score means
that the expected files are recommended in a higher rank.
For example, if most of the expected files place top three
recommendations, MRR is higher than 0.33. The definition
of the metrics for co-change rules is described as follows.

Let the set of co-change rules be Rule = {(l1,7r1),
(I,72), .., (l;m, 7m) }, where [; is the left-hand set of files and
r; is the right-hand file described in Section III-A. Let commit
history be Commit = {comq,coma, ..., com, }, where com;
is the set of files. For every changed file ¢ € com;, let
recom; . be the recommended file set from the changed files

98

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

without ¢, as described below. In this experiments, c represents
a overlooked change file.

(if I; C (com; —{c}))

(else) M

Tj
recom; . = U 0

(lj,rj)ERule

For every overlooked change file ¢ € com;, let rank; . be
the rank of {c} in recommendations ranked by con fidence.
The con fidence is one of the measure to evaluate the quality
of an association rule [15]. If the recommended file set do
not contain {c}, rank;. is 0. Next, we define feedback;,
precision;, recall;, and mrr; for each com; (note that |{c}|
is always 1).

feedback; = @ Z {(1) Eieflsgcomi’c #0))
cEcom;
precision; = feedbaclii P Ce%;ni W 3)
pecall; = L pyy e) @)
M= feedbac/ii - |comy| ce%;n,; ﬁklc)

Similar to [6], we calculated precision; with feedback;
as the denominator, in the sense of “the accuracy of when
the recommendation was displayed.” If feedback; was 0 (no
recommendation is displayed at this commit), we did not
calculate precision; and excluded this commit from calcu-
lating Precisionys. Unlike [6], we calculated recall; without
feedback; as the denominator, in the sense of “the rate of
detecting overlooked changes for all commits, regardless of
whether of not the recommendation is displayed.” Similar to
Precision, if feedback; was 0, we did not calculate mrr;
and excluded this commit from calculating M RR. Finally,
let Precisionys, Recallyy and M RR be the average of
precision;, recall; and mrr;. Additionally, we define the
F-measure by calculating the harmonic mean of Precision s
and Recallys to evaluate the performance of recommenda-
tion comprehensively because there is a trade-off between
Precision and Recall.

Commit™ = {com;|com; € Commit, feedback; # 0} (6)

1
Precisiony = m Z precision; (7)
ommi

com; €Commit*

Recally = recall; ®)

1
|Commit| Z

com;€Commit

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

TABLE II. MAXIMUM F-M EASURE

Project Considering recency Baseline
Eclipse JDT 0.137 (minconf: 0.5) 0.063 (minconf: 0.5)
Firefox 0.374 (minconf: 0.8) 0.362 (minconf: 0.8)
Tomcat 0.204 (minconf: 0.4) 0.167 (minconf: 0.4)

1
MRR = —— i 9
|Commiit*| Z mrr ©)

com;€Commit*

Precisiony; - Recallyy
F-measure =2 -

10
Precisiony; + Recally, (10)

IV. EXPERIMENTAL RESULT

We performed two experiments. In this section, we describe
results of each experiment.

A. RQI: Can we improve the effectiveness of change recom-
mendations with the consideration of recency?

Figure 1 shows the relations between Precision); and
Recallys, and the relations between M RR and Recally; for
each project with varying mincon f. The red curve represents
the case when we consider recency, and the blue one represents
a baseline.

Figure 1.(a), Figure 1.(c), and Figure 1.(e) show that
Recall s increased with the consideration of recency although
Precisonys slightly decreased in all projects. As we aim to
find more overlooked changes rather than to make the recom-
mendations more accurate, that is a good result. Particularly
regarding Eclipse, Recally; significantly increased. In Figure
1.(a), a maximum Recally; is 0.28 with the consideration of
recency whereas a maximum Recally; of the baseline is 0.11.
That means that we could detect 2.5 times more overlooked
changes by considering recency than the baseline.

As a result of considering recency, Precision s is slightly
decreased. It is because the number of recommendations in-
creased with consideration of recency, i.e., many false positives
decreased Precisiony; even if the set of recommendations
contained a expected recommendation. However, in the view-
point of M RR, the recommendations with consideration of
recency were more accurate than the baseline. In Figure 1.(b)
and Figure 1.(d), M RR clearly increased with consideration
of recency. That means that we could recommend overlooked
changes in a higher rank with consideration of recency than the
baseline. Regarding Tomcat, shown in Figure 1.(f), we could
not improve M RR with consideration of recency. We consider
that it is because M R R was already high without consideration
of recency.

Table II shows a maximum F-measure of each project in
the case of considering recency and a baseline. For all of the
projects, a maximum F'-measure achieved by consideration
of recency is higher than the baseline. That means that the
quality of the recommendations by consideration of recency
was comprehensively better than the baseline.

99

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

1 1 1
09 —o-With recency 0.9 09 ~o-With recency
0.8 0.8 0.8
0.7 —~<Baseline 0.7 0.7 q —<Baseline
§06 §06 Sos6 .\
2 N
§ 0.5 g 05 ~o~With § 05
a 0.4 a 0.4 recency £o0a
03 03 —<Baseline 03
0.2 0.2 0.2
0.1 \N 0.1 0.1
0 - g 0 0 J
0 0.1 0.2 0.3 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3
(a) (c) (e)
Recall Recall Recall
0.6 0.6 0.6
0.5 —0-With recency 0.5 m 0.5
ST o0
0.4 —<Baseline 04 0.4
& & &
£o03 Zo03 €03
02 [SPegg oo 02 || ~°Withrecency 02 ~o-With recency
0.1 _,— 0.1 —~Baseline 0.1 —*Baseline
0) 0 J 0
0 0.1 0.2 0.3 0 0.1 0.2 0.3 0.4 0 0.1 0.2 03
(b) Recall (d) Recall) Recall
clipse irefox omca
Ecl Firef T t

Figure 1. Performance of recommendations by considering of recency and baseline with varying mincon f.The upper graphs show a relation between
Precision)s and Recallys. The lower graphs show a relation between M RR and Recall .

~

The answer to RQI is Yes. If we consider recency, we
can extract useful co-change rules that are not able to
be extract without consideration of recency. Therefore,
Recall of recommendations increase with consideration
of recency. Although Precision slightly decrease, we can
recommend overlooked changes in a higher rank than
without consideration of recency.)

B. RQ2: Can we improve the effectiveness of change recom-
mendations by the aggregation of consecutive commits fixing
the same bug?

Figure 2 shows the relations between Precision)s and
Recallys for each project with varying minconf. The yellow
curve represents the case when we aggregate consecutive
commits fixing the same bug, and the blue one represents a
baseline.

In Figure 2.(a) and Figure 2.(c), we could not improve
both Recally; and Precisiony;. However, regarding Firefox,
shown in Figure 2.(b), Recally; increased with the aggregation
of consecutive commits fixing the same bug. That means that
we could extract useful co-change rules that were not able to be
extract without aggregation of consecutive commits fixing the
same bug depending on projects. As a result of an additional
investigation, it is reveal that the number of commits used for
extracting co-change rules drastically decreased by aggregating
for Firefox (from 20,000 to 15,918), whereas the number
of those slightly decreased by aggregating for Eclipse (from
21,378 to 21,098) and Tomcat (from 13,824 to 13,661). We
found that the effect that we aggregate consecutive commits
fixing the same bug depended on a nature or commit policy
of the project.

Table III shows a maximum F-measure of each project
in the case of aggregating consecutive commits fixing the
same bug and a baseline. Regarding Firefox, a maximum

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

TABLE III. MAXIMUM F-MEASURE

Project Aggregating commits Baseline
Eclipse JDT 0.063 (minconf: 0.5) 0.063 (minconf: 0.5)
Firefox 0.414 (minconf: 0.8) 0.362 (minconf: 0.8)
Tomcat 0.167 (minconf: 0.4) 0.167 (minconf: 0.4)

F-measure achieved by aggregation of consecutive commits
fixing the same bug is higher than the baseline. Regarding
Eclipse and Tomcat, maximum F-measure of two cases
are same because we could not improve both Recallj; and
Precision)y as previously described. That means that the
quality of co-change rules can be improved by aggregation
of consecutive commits fixing the same bug in some cases.
Moreover, we also found that aggregation of commits did not
affect the performance of recommendation in a negative way.

The answer to RQ?2 is, in some cases, Yes. If we aggregate
consecutive commits fixing the same bug, we can extract
useful co-change rules that are not able to be extract
without aggregation of commits depending on projects.
Even if we can not extract more useful co-change rules
by aggregation of commits, there is no harmful effect.

V. THREATS TO VALIDITY

Threats to internal validity relate to errors in LCExtractor
and parameter settings. We have carefully checked our code,
however still there could be errors that we did not notice. In
our experiments, we set minsup to be 0.0025 for Eclipse
and Firefox, and 0.001 for Tomcat. It is possible that those
values were not appropriate. At the moment, we have no
method that decide an appropriate minsup prior to performing
experiments.

100

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

1 1 1 1
0.9 | With aggregation 0.9 0.9 With aggregation
0.8 —+Baseline 0.8 0.8 —%Baseline
0.7 0.7 0.7
5 06 §06 506
S 05 €05 €05
o o R 2
£ 04 04 With 04
03 03 aggregation 03
0.2 0.2 —Baseline 0.2
0.1 0.1 0.1
0 = 0 0 J
(a) 0 0.1 0.2 (b) O 0.1 0.2 0.3 0.4 (c) © 0.1 0.2 03
Recall Recall Recall
Eclipse Firefox Tomcat

Figure 2. Relation between Precisionys and Recallps by aggregating of commits and baseline with varying minconf.

Threats to external validity relate to the generalizability
of our results. We have analyzed 3 different projects. In the
future, we plan to reduce this threat further by analyzing more
change histories from additional software projects.

Threats to construct validity relate to the experimental
settings. We defined using recent 5,000 commits older than a
target commit for extracting co-change rules as consideration
of recency in the first experiment. However, we did not
perform experiments with changing the number of commits
for extracting co-change rules. In the future, we plan to reduce
this threat further by performing experiments with changing
the number of commits used for extracting co-change rules. In
the second experiment, we aggregated commits based on only
bug id information extracted from commit messages. If we
extract more information from Issue Tracking System or Bug
Tracking System and use them, we might aggregate commits
more appropriately.

VI. CONCLUSION AND FUTURE WORK

Numerous studies for supporting developers to find neces-
sary code changes with using co-change rules extracted from
the change history have been performed. However, the scope
of overlooked changes that existing tools can recommend is
limited. In this paper, we focused on the consideration of
recency and the aggregation of consecutive commits fixing the
same bug. We investigated how they affected the performance
of recommendations by using typical OSS (Eclipse, Firefox,
and Tomcat). As a result of experiments, we could recommend
more overlooked changes by considering recency. We also
could recommend correct files in a higher rank than recom-
mendations without consideration of recency. Concerning the
case when we aggregated consecutive commits fixing the same
bug, we found that the performance of recommendations can
be improved depending on projects.

In the future, we plan to perform experiments using more
change histories from additional software projects to generalize
our theory. In this paper, we indicate that we can improve
the performance of recommendations by considering recency.
However, we suppose that we can not extract useful co-change
rules if we use the small set of commits, e.g., only 10 commits
older than a target commit. We plan to investigate how many
recent commits are sufficient to extract useful co-change rules.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ACKNOWLEDGMENT

This work is partially supported by the Grant-in-Aid for
Scientific Research of MEXT Japan (#24300006, #25730037,
#26280021).

REFERENCES

[11 S. S. Yau, J. S. Collofello, and T. MacGregor, “Ripple effect analysis
of software maintenance,” in Proc. COMPSAC’78, pp. 60-65.

[2] L. C. Briand, J. Wust, and H. Lounis, “Using coupling measurement
for impact analysis in object-oriented systems,” in Proc. ICSM 99, pp.
475-482.

[3] M. M. Geipel and F. Schweitzer, “Software change dynamics: evidence
from 35 java projects,” in Proc. FSE 2009, pp. 269-272.

[4] G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta, “Using
multivariate time series and association rules to detect logical change
coupling: an empirical study.” in Proc. ICSM 2010, pp. 1-10.

[5] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history,” in Proc. ICSM °98, pp. 190-198.

[6] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” IEEE TSE, vol. 31, no. 6,
2005, pp. 429-445.

[71 M. D’Ambros, M. Lanza, and M. Lungu, “The evolution radar: Visual-
izing integrated logical coupling information,” in Proc. MSR 2006, pp.
26-32.

[8] A. Alali, B. Bartman, C. D. Newman, and J. I. Maletic, “A preliminary
investigation of using age and distance measures in the detection of
evolutionary couplings,” in Proc. MSR 2013, pp. 169-172.

[9] T. Wetzlmaier, C. Klammer, and R. Ramler, “Extracting dependencies
from software changes: an industry experience report,” in Proc. IWSM-
MENSURA 2014, pp. 163-168.

[10] H. Kagdi, S. Yusuf, and J. I. Maletic, “Mining sequences of changed-
files from version histories,” in Proc. MSR 2006, pp. 47-53.

[11] P. C. Verhoef, P. N. Spring, J. C. Hoekstra, and P. S. Leeflang, “The
commercial use of segmentation and predictive modeling techniques
for database marketing in the netherlands,” Decision Support Systems,
vol. 34, no. 4, 2003, pp. 471-481.

[12] J. A. McCarty and M. Hastak, “Segmentation approaches in data-
mining: A comparison of rfm, chaid, and logistic regression,” Journal
of business research, vol. 60, no. 6, 2007, pp. 656-662.

[13] S. Mclntosh, B. Adams, T. H. Nguyen, Y. Kamei, and A. E. Hassan,
“An empirical study of build maintenance effort,” in Proc. ICSE 2011,
pp. 141-150.

[14] P. Bondugula, Implementation and Analysis of Apriori Algorithm for
Data Mining. ProQuest, 2006.

[15] R. Agrawal, T. Imielifski, and A. Swami, “Mining association rules
between sets of items in large databases,” in ACM SIGMOD Record,
vol. 22, no. 2, 1993, pp. 207-216.

101

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Towards Flexible Business Software

Ahmed Elfatatry
Information Technology Department
Alexandria University
Alexandria Egypt
elfatatry@alexu.edu.eg

Abstract—Software flexibility is a multidimensional
problem. Solving one side of the problem might not enhance
the situation significantly. This work is motivated by both
the problem of software flexibility and the need for a
solution for highly volatile business software. The work
presented here is based upon ongoing research into software
flexibility. The main contribution of this work is the
proposal of a new framework to facilitate frequent changes
in both the business layer and the presentation layer.
Among systems that benefit from such design are workflow
systems and document oriented.

Keywords-Software Flexibility;
Systems; presentation layer

Document Oriented

L INTRODUCTION

Software flexibility is the ease with which a software
system can be modified in response to changes in system
requirements. Software flexibility is a multidimensional
problem. Solving one side the problem may not improve
the situation significantly. When software is built out of
layers, often, applying changes to one layer affects other
layers.

Changing one part of a system may require changing
a number of related parts; this is known as the
"propagation effect" of change. Each of the related parts
may need to be dealt with differently. For instance, a
change request may affect business rules, user interface,
and data. Each of these facets needs to be designed in a
way that facilitates change.

The focus of this work is flexibility in business
software systems. While all software systems could be
subject to change, business software systems are more
likely to change as result of their changing environments.
Flexibility problems in business systems vary according
to the type of the system. Business software systems
include business information systems, workflow systems,
and document oriented systems [1]. In workflow systems,
for instance, modelling techniques produce tightly
coupled systems [2]. Minimal change in business
requirements may require the change of many parts of a
given model. A case in point is the model adopted by the
Workflow Management Coalition (WFMC) which
embeds transition information within activities [3]. As a
result, changing the sequence of activities may require

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

rewriting such activities. Other models integrate business
rules within the specification of the activities. This results
in activities that are complex and hard to maintain.

A Document-Oriented Application (DOA) is a type of
business applications that is built around business
documents. User interface in DOAs is both stage-based
and role-based where it displays and manipulates
business documents in several stages for different roles.
Such characteristics bring about a common requirement
for applying consistent stage-based and role-based
presentation behaviour throughout the entire application.

Adapting DOA after it has been deployed in
production usually involves allowing business-experts to
change business rules including specifications about
stages and/or roles for business documents. Combining
this requirement with the stage-based and role-based
characteristics brings about a design challenge: the
application should be designed to support flexibility both
in the business layer and the presentation layer. In other
words, the changes made to the business layer should also
affect the presentation layer in a consistent manner.

This paper is structured as follows. In Section 2, the
problem of building flexible business systems is
analysed. Section 3 introduces a framework for dealing
with flexibility issues. The evaluation of the proposed
work in presented in Section 4. Section 5 discusses the
contribution of the work and outlines the future
extensions.

IL. PROBLEM AND MOTIVATION

Large changes in business requirements naturally
lead to large changes in the supporting software systems.
When small changes in business requirements lead to
large changes in the supporting software system, this
indicates the presence of a design problem. In this work,
flexibility related problems are classified into two main
classes. Each class exposes a different perspective of the
system.

A. User Interface problems

An important class of business software is Document
Oriented Applications (DOA). A Document Oriented
Application is a type of business applications that is built

102

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

around business documents. In such systems, work
procedures are done by exchanging documents according
to some rules related to both the persons using the
documents and the state of the given document. A case in
point is the exchange of legal documents in a court.
Current approaches used in building DOAs fail to solve
the issue of reflecting changes in business logic to user
interface in a way that retains flexibility [4]. Such
approaches have a number of problems discussed below.

* Violating the separation of concerns concept by
injecting large crosscutting concerns into user interface
[5]. Crosscutting concerns are software features whose
implementation is spread across many modules in the
form of tangled and scattered code [6]. For example,
reflecting presentation behaviour for the active role using
current approaches of security architectures results in
software that has application code tangled with security
code. Such tangling makes it difficult to change security
architecture once the software has been deployed [7].

* Concealing the high abstract view of business logic
behind presentation changes and blending it within the
presentation code. This hardens any attempts to
understand or extract business logic that leads to a
specific behaviour.

* Producing inflexible solutions that cannot cope with
changes in business rules. This leads to DOAs that lose
its ability to adapt change once it has been deployed in
production. The typical solution to modify or to include
new business rules requires a new cycle of development
and testing for each modified rule.

* Preventing business-experts who have the required
knowledge in a business domain from participating in
adapting DOAs. Usually, business experts do not
understand programming languages and therefore they
cannot directly change the application [8]. Instead, they
have to wait for IT-professionals to implement new
business rules and to change the behaviour of the user
interface.

B. Modelling Problems

Decisions at the conceptual level strongly affect
flexibility. The chosen model of decomposition has a
direct effect on the cost of change. This sub-section
outlines a number of problems that may result from the
modelling phase.

o [nability to respond to frequent changes of
business processes. Most workflow modelling techniques
produce tightly coupled systems. A minimal change in a
business attribute may require the change of many parts
of a given model. For instance, the model adopted by the
Workflow Management Coalition [WFMC] embeds
transition information within activities [3]. As a result,
changing the sequence of activities may lead to rewriting
of the activity body itself. Other models integrate

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

business rules within the specification of the activities
[9]. Such activities are complex and hard to be
maintained.

® Model inconsistency. The addition or deletion of
tasks, relationships, or rules at runtime may cause system
inconsistencies especially when changes are done in an
ad-hoc manner [10]. Consider a simple order processing
where the billing step and the shipping step take place at
same time. Assume that a change at run time is made so
that the shipping step is performed after the billing step.
If at the time of the change, a job had started with
shipping, it will never perform the billing step according
to the instructions of the new procedure. Thus, a
customer will not be billed for the goods that he receives.
If there are a large number of jobs being in the same
situation at the time of change, then a large number of
customers will not be billed. This is a very simple
example of a "dynamic bug". Many of these bugs are
much more difficult to detect and can have unexpected
effects. In the following section, the proposed framework
addresses these problems.

C. Research questions

The previous discussion of flexibility problems leads
to a number of research questions. First: how can we
build user interfaces that can accommodate changes in
other layers of the software system? Second: how can
workflow systems be more adaptive to change?

I1I. THE PROPOSED FRAMEWORK

To address the issues described above, we propose a
framework for flexibility. The following sub sections
describe the proposed framework.

D. Conceptual view

The proposed framework defines a workflow as a set
of activities as shown in Figure 1. The upper part of the
figure shows a design time view of a workflow. The
lower part of the figure shows the runtime view of the
figure. A workflow consists of one or more activities
ordered according to some transition flow rules.
Transition flows are not embedded within activities. They
are modelled as first class entities. Each activity is
assigned to a specific role according to binding
conditions. Role binding rules postpone the assignment of
an activity to an available user until runtime [11].

At runtime, activities are bounded to the appropriate
services through service requests. Business rules can be
bound to workflow at any time during its life cycle,
providing the ability to customize the workflow while it
is executed.

103

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Business Rules Transition Flow Data Flow
]
i I Schetluled by Send/receive
3 [Govern and manage [
">"
: [Workflow | ——22nsist 4 Activity | ——Assian Role
= : | of - edto |
& | ! | !
A : | : : Role
! : ‘ - binding
I | | Service request Eonditions
i ! i ! |
: : : 1 :
| ' | : !
. v v | Mapped into | \ 4
'é) Constraints, Workflow instance I | User
£ . ! uses
15) Actions, Events : | Lo
= N v . Service discovery and
£ ents guide § s M ihvocation
= ! essaae :
5 execu I
= :
E - - v
Running state invoke
| Service instance

Figure 1. Design View & Implementation View

E. 3.2 Presentation Behaviour Layer (PBL)

In typical DOAs, a system is divided into three
layers: Data-Access layer, Business layer and
Presentation layer. In the proposed approach, we
introduce a fourth layer: Presentation-Behaviour Layer
(PBL) as shown in Figure 2. The main goal of this
layer is to provide a mechanism for applying
presentation changes in a consistent manner.

The PBL externalizes the logic of applying
presentation-behaviours instead of hard coding it within
the presentation layer. This externalization provides
support for building flexible DOAs. The PBL consists of
(PBM) and Presentation-Behaviours Run-time
(PBR). The PBM is responsible for defining and storing
presentation behaviours, while the PBR is the responsible
for applying such behaviours during the runtime. The
arrows show that PL uses services from BL and BL uses
services from DAL. Arrows on the left, show the
interaction between PBL and PL in response to a given
change.

Presentation

Presentation — Layer(Pl)
Behavior |
Layer (PBL) 2 L

= Business

Layer (BL)
e

Data-Access
Layer (DAL)

Figure 2. Presentation Behavior Layer

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Presentation-Behaviour Model (PBM). The PBM
consists of state machines and sequence flows. Each state
diagram describes the behaviours that the system should
apply at each stage of the process. One of the main
objectives of PBM is to externalize and store full
specifications about presentation changes outside the
presentation code. The specifications are stored in XML
documents which contain all the information required to
describe how and when to apply presentation
behaviours. When a change happens, it is analysed to its
atomic element and then reflected to the presentation
behaviour layer.

State machines. State machines are the ideal
placeholders to store specifications about presentation
behaviour for each process stage. They are suitable for
representing the stages of business documents. In
contrast to other approaches that blend presentation
behaviour within the source code, the state diagrams keep
the original definition of these behaviours inside the
BPM model. Obviously, this simplifies the
understanding of business rules that lead to a specific
presentation behaviour. In addition, storing
presentation behaviours in state diagrams representations
rather than source code allows business-experts to
participate in the development process by defining
presentation behaviours for each business requirement.

In the proposed approach, we employ state
diagrams to store specifications about business
processes and their related presentation behaviours.
Therefore, we need to store extra specifications about
presentation behaviours for each combination of a stage
and a role.

State: a state corresponds to a document stage
in a business process. Usually the state identifies a
significant point in the lifecycle of a business
process.

Actions: an action represents a business logic that
should run to perform a business task. In our approach,
actions are modelled as sequence diagrams which

104

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

provide simplicity and flexibility. Operations and
Transitions are concrete forms of actions. From the
user interface perspective, actions (Operations and
Transitions) are reflected to user interfaces as tasks that
can be triggered by end-users.

Transitions: a transition represents a change
in the document stage. The transition connects a
source to target state. At any given time only one
transition can be executed for each document.

Guard conditions: a guard condition is an
optional specification that describes business rules. It has
to be evaluated before a transition can be executed.

Operations: an operation represents a business
logic that should run to perform a business task.
Operations can range from simple and common actions
such as CRUD (Create, Retrieve, Update, and Delete)
operations, to complex and custom tasks such as
"Calculating Taxes".

Attributes: an attribute represents a document
element that can be entered, modified and displayed.
The concept of attributes is introduced to the proposed
state diagrams to allow presentation behaviours to be
defined at the granularity of attributes.

Roles: the role-based nature of business documents
requires proper communication with access control
model. In the proposed approach, we enriched state
diagrams to define access controls for each element in
each stage.

Specifying Presentation Behaviour. The

proposed state machines have additional attributes that
describe presentation behaviour. The objective of these
attributes is to provide specifications that allow PBR to
apply presentation changes automatically to user
interfaces. The additional attributes deal with the
following issues.
* Controlling tasks. User interfaces in document
oriented applications provide end-users with a set of tasks
that are appropriate for both active stage and role.
Storing specifications about such tasks allows PBR to
display proper tasks upon each stage change. Definitions
of tasks include both visual and functional aspects. These
specifications transform the tasks from being code-
oriented to a higher and more abstract form. Such form
is more business-expert oriented. It treats tasks as
standalone elements that can be granted to or denied to
certain roles.

Controlling default presentation modes and
exceptions. A document stage usually defines whether
the user interfaces allow end-users to modify
document information or not. The default mode allows
readers to easily figure-out the expected behaviour
especially in user interfaces that represent documents
with large set of attributes.

* Controlling common handlers. The architecture
of business documents results in common and
redundant operations that could be applied to any
document instance. For instance, all business
documents provide common business operations such
as CRUD operations, validation handlers, state
transitions and etc. Although these operations are
usually written centrally in the data access layer
(DAL) and the business layer (BL) respectively,
however, the code that calls them and displays their

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

results to end-users is usually written in each user
interface. Externalizing the decisions to activate or
deactivate such common operations into the
definitions of state machines provides more flexibility
to adapt wuser interfaces according to the
characteristics of each document stage.

+ Controlling default authorization mode and its
exceptions. Similar to the presentation mode, the
default authorization mode simplifies defining
authorizations to document information.

* Controlling role access. Although the default
authorization mode discussed above facilitates the
definitions of implicit authorizations, however, there is
a need in some situations to define access roles in the
granularity of attributes, transitions, and
operations. We believe that this part is the most

complex and is responsible for most of the
crosscutting code.
IV. EVALUATION

At the architectural level, software quality attributes
such as flexibility are hard to measure using direct
quantitative measures. Other indirect methods are more
suitable for the nature of this work. Two methods have
been adopted to evaluate this work. The first method
examines the effects of different types of changes on the
proposed system and compares the results to those of
traditional workflow systems. The second method
evaluates this work by cross-referencing the features of
this solution and a number of flexibility requirements.

A. Comparing the proposed framework with
related work

One way to measure the success of the proposed
solution to achieve flexibility is to test it on different
scenarios of change and compare the ease of change with
the results of traditional workflow management systems.

A common area of change in businesses is policy
change. Policy changes usually have a substantial effect
on workflows. Existing workflow models deal with
business policies and rules in different ways. Usually,
workflow systems introduce only a limited type of
constraint that could be defined within an activity as a
transition condition. Modeling business policies with
such a model will be very hard. It may only be modeled
as a new activity with different behavior, and different
pre and post conditions which leads to a complex design.

Another way to model policies is to use a rule based
workflow model. The entire workflow composition logic
is specified in the form of if/then rules. Such a model
determines the boundaries of a workflow, and leaves the
freedom to the designer to specify the transitions between
the activities. The workflow components such as
activities, flows, roles, business policies are expressed in
terms of activities built in process specification. This
results in processes that are not modular, complex, and
hard to maintain. In such a case, business rules are hard
to change without affecting the core composition of the
model. This way of modeling decreases the flexibility of
the workflow.

105

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

The Proposed model introduces rules as a first class
abstraction that governs and guides workflow execution.
Each rule has enforcement conditions which state when
and how such a rule is enforced inside the flow. Rules are
not embedded within processes. Change in policies is
enforced by changing related rules. This principle makes
the workflow more simple and easy to maintain.
Workflow enactment engine enforces policies by
checking rules related to each step before performing it.
Rules do not only govern activities but also govern role
binding, services specifications, and exception handling.

The Model-View-Controller (MVC) is a software
pattern for implementing the separation of concerns
concept in the implementation of software systems. The
work presented here focuses on providing a mechanism
for reflecting changes on the presentation layer
specifically.

SNATA defines service oriented architecture for N-
tier application [11], however, it does not provide a
mechanism for change propagation between layers.

B. Matching the features of the solution to the
specified flexibility requirements

The proposed solution has been evaluated against a
set of flexibility requirements. This set of requirements is
derived from a number of well-established software
engineering principles such as abstraction, separation of
concerns, and loose coupling. The requirements are
discussed below.

R1: Support model evolution. Evolution of
workflows occurs over time as a result of changing tasks,
priorities, responsibilities, and people. Modifications
should be allowed at design time as well as at runtime.
The proposed solution allows structural changes as well
as behavioural changes. Structural changes allow model
evolution. The Rule manager provides an interface to
accomplish this requirement.

R2: Allow function/provider decoupling. The
provider of a specific functionality may not be specified
until runtime. Hard coding such information at design
time leads to systems that are not flexible. In the
proposed solution, activities are implemented as services.
Services are selected according to some criteria that may
not be known until runtime. Service selection constraints
are sent through service requests to each running instance
to select a suitable service and source of provision. A
new activity or behaviour could be added at runtime to
allow composition of a complex task.

R3: A workflow has to provide an integrated

multiple view of a business system.
A workflow model has to provide high level of
abstraction, and support visualization of its parts. The
Proposed framework combines an activity based model,
role model and a rule based model. A business system
may be viewed from one or more perspectives: roles,
processes, or rules. The proposed framework provides a
multi-view modeling of a business system.

R4: Support the management of evolving
workflow schema. Changes in business environment
have to propagate to running workflow instances. A
robust management system has to support propagation of

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

change to running instances in a consistent way. The
presented work didn’t address this requirement.

V. CONCLUSION

The main contribution of this work is the
introduction of a framework for dealing with change
in business software. The focus is on workflow
systems and user interface in document oriented
systems.

A major drawback of current approaches for
building document oriented applications is neglecting the
impact of change in business rules on user interfaces. The
result is having systems that are hard to change when
business requirements change. While it may be easy to
change the code related to business rules, the impact of
such changes on the user interface may cause undesirable
knock-on effect. For instance, many researches focus on
how to provide flexibility in the business layer by
providing workflow based solutions. However, the impact
of such changes on user interface is usually ignored.

It is necessary that flexibility should be addressed in
each logical layer and also between different
communicating layers. That is why it is common that
many business applications that provide flexibility in
the business layer and also provide flexibility in
presentation layer fail to sustain flexibility across the
boundary between the two layers.

To address such problems, we introduced the
Presentation Behaviour Layer (PBL) as a solution of
providing flexibility between business layer and
presentation layer. We believe that, the PBL can
eliminate ~ most of the crosscutting concerns usually
found in document oriented applications to apply
presentation changes while keeping flexibility. In
addition, the visual representation of PBMs allows
business-experts to modify their applications based on
business rules without the need to touch the source code.

Building flexible workflow systems comes at a cost.
The main cost is the implementation efficiency. While
separating roles, business rules, and invocation
conditions, leads to a flexible design, it certainly adds
processing overhead.

Although a complete analysis of flexibility problems
and limitations has been discussed, the proposed solution
has mainly focused on modelling problems. Runtime
limitations still need more research. Currently, we are
working on enhancing the performance of workflow
engines. The ongoing work focuses on the development
of more propagation strategies and building workflow
engines able to efficiently weave rules with activities.

Three medium sized companies with average of seven
developers each have been chosen to implement the
proposed framework. The framework will be applied to
existing systems that are subject to frequent change
requests. A comparison between the performance before
and after using the framework will be published later.

REFERENCES

[1] C. Wiehr, N. Aquino, K. Breiner, M. Seissler and G. Meixner,
"Improving the flexibility of model transformations in the model-
based development of interactive systems," in Proceedings of the
13th IFIP TC 13 international conference on Human-computer

106

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

interaction - Volume Part IV, Lisbon, Portugal, 2011,pp. 540-543.

[2] S. Bhiri, G. Khaled , O. Perrin and C. Godart, Overview of
Transactional Patterns: Combining Workflow Flexibility and
Transactional Reliability for Composite Web Services, Springer
Berlin / Heidelberg, 2005, pp. 440-445.

[3] WIMC, "Interface 1: Process Definition Interchange," [Online].
[Accessed May 2015].

[4] O. Chapuis, D. Phillips and N. Roussel, "User interface facades:
towards fully adaptable user interfaces," in Proceedings of the 19th
annual ACM symposium on User interface software and
technology, Montreux, Switzerland, 2006, pp 309-318.

[5] A. Marot, "reserving the separation of concerns while composing
aspects on shared joinpoints," in 4th Annual ACM SIGPLAN
Conference on Object-Oriented ~ Programming, Systems,
Languages, and Applications, OOPSLA 2009, Orlando, Florida,
USA., 2009, pp. 837-839.

[6] A. Sabas, S. Shankar, V. Wiels and M. Boyer, "Undesirable Aspect
Interactions: A Prevention Policy," in Theoretical Aspects of
Software Engineering, Joint IEEE/IFIP Symposium, Montreal,
Montreal, QC, Canada, 2011, , pp. 225-228.

[7]1 G. Chao, "Human-Machine Interface: Design Principles of Visual
Information in Human-Machine Interface Design," in JHMSC '09
Proceedings of the 2009 International Conference on Intelligent
Human-Machine Systems and Cybernetics, 1EEE Computer
Society Washington, 2009, pp. 262-265.

[8] M. Mike and D. Dwight , "End user developer: friend or foe?," J.
Comput. Small Coll., vol. 24, no. 4, pp. 40-45, April 2009, pp. 42-
49,2009.

[9] T. Sterling and D. Stark, "A High-Performance Computing
Forecast: Partly Cloudy," Computing in Science and Eng., vol. 11,
no. 4, pp. 42-49, 2009.

[10] M. Blake, A. Bansal and S. Kona, "Workflow composition of

ISBN: 978-1-61208-438-1

Copyright (c) IARIA, 2015.

service level agreements for web services," Decision Support
Systems, vol. 53, no. 1, April 2012, pp. p. 234-244,.

[11] A. Elfatatry, Z. Mohamed and M. Eleskandarany, "Enhancing
Flexibility of Workflow Systems," &80 IntJ. of Software
Engineering, 1JSE, vol. 3, no. 1, pp. 79-92, 2010.

[12] T.. C. Shan and W. H. Winnie , "Solution Architecture for N-Tier
Applications," in Proceedings of the IEEE International
Conference on Services Computing, September 2006, pp. 234-
244.

[13] C. Ackermann, M. Lindvall and G. Dennis, "Redesign for
Flexibility and Maintainability: A Case Study," in Software
Maintenance and Reengineering, Kaiserslautern, Germany, 2009,
2009, pp. 259-262.

[14] A. Bruno, F. Patern and C. Santoro, "Supporting interactive
workflow systems through graphical web interfaces and interactive
simulators," in TAMODIA '05 Proceedings of the 4th international
workshop on Task models and diagrams, Gdansk, Poland, 2005, pp
63-70.

[15] D. Gaurav, "A survey on guiding logic for automatic user interface
generation," in Proceedings of the 6th international conference on
Universal access in human-computer interaction: design for all
and elnclusion - Volume Part I, Orlando, FL, 2011, pp. 365-372.

[16] IEEE, "IEEE Standard Glossary of Software Engineering
Terminology," IEEE Std 610.12-1990, pp. 1-84, Dec 1990.

107

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

EBGSD: Emergence-Based Generative Software Development

Mahdi Mostafazadeh, Mohammad Reza Besharati, Raman Ramsin

Department of Computer Engineering
Sharif University of Technology
Tehran, Iran
e-mail: {mmostafazadeh, besharati}@ce.sharif.edu, ramsin@sharif.edu

Abstract—Generative Software Development (GSD) is an
area of research that aims at increasing the level of
productivity of software development processes. Despite
widespread research on GSD approaches, deficiencies such
as impracticability/impracticality, limited generation power,
and inadequate support for complexity management have
prevented them from achieving an ideal level of generativity.
We propose a GSD approach based on a novel modeling
paradigm called “Ivy’. lvy models the context domain as a
set of conceptual phenomena, and depicts how these
phenomena emerge from one another. Our proposed
approach, Emergence-Based Generative Software
Development (EBGSD), uses Ivy models for modeling how a
software system (as a phenomenon) can emerge from its
underlying phenomena, and can provide an effective means
for managing software complexity. Developers can also elicit
generative patterns from lvy models and utilize them to
increase the level of reuse and generativity, and thus
improve their productivity.

Keywords-generative software development; phenomenon;
emergence; conceptual model

. INTRODUCTION

As Mens points out, “Software systems are among the
most intellectually complex artifacts ever created by
humans” [1]. Managing software complexity is indeed the
main impetus behind many research areas in software
engineering. Generative Software Development (GSD)
aims to address this issue through increasing the level of
automation in software development, which also enhances
productivity. Despite widespread research on GSD
approaches such as Model-Driven Development (MDD),
Software Product Lines (SPL), Program Development
from Formal Specifications, Generative Patterns, and
High-Level Programming Languages, there are certain
disadvantages in each of them that have prevented
researchers from achieving an ideal level of generativity in
software development. For instance, in Czarnecki’s GSD
approach [2], two methods (Configuration and
Transformation [3]) have been suggested for transition
from the problem domain to the solution domain; although
this approach is well-established, it has not achieved an
ideal level of generativity, mainly due to deficiency in
generation power, inflexibility of configuration, over-
abstractness, inattention to seamlessness, and ambiguities
in transformation. Furthermore, some of the approaches,
such as MDD and High-Level Programming Languages,
are deficient as to their support for complexity
management. These shortcomings (further explained in
Section I1) are the main motivations behind this research.

We propose a GSD approach based on a novel
modeling paradigm called Ivy, originally proposed by

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

Besharati in a seminar report in 2013 [9]. Phenomenon and
Emergence [13] are the two basic concepts of the Ivy
paradigm. The Ivy paradigm prescribes a way for
modeling the emergence of a conceptual phenomenon
from its underlying phenomena. Emergence is recursive:
an Ivy model takes the form of a digraph that shows how a
phenomenon emerges from its underlying phenomena,
which in turn emerge from other phenomena, and so on.

In the lvy-based software development approach that
we propose herein (which we have chosen to call
Emergence-Based Generative Software Development, or
EBGSD for short), the target software system is considered
as a phenomenon that emerges from its underlying
phenomena, and is therefore represented as an vy model.
The Ivy model helps manage the inherent complexity of
software systems. Furthermore, it is possible to extract
generative patterns from Ivy models and utilize them to
increase the level of reuse in software development
processes, and thereby promote generativity. The
evolutionary nature of the modeling approach makes it
highly practical, and can lead to a high level of flexibility
in software development. We have also proposed a
methodology for applying EBGSD to real-world projects.
EBGSD promotes seamlessness, and can improve software
processes as to smoothness of transition among
development activities.

The rest of the paper is structured as follows: Section 11
provides an overview of the research background through
focusing on a number of prominent GSD approaches; in
Section 111, we introduce the Ivy modeling paradigm as the
basis for our proposed approach; our EBGSD approach
and its corresponding methodology are proposed in
Sections 1V and V, respectively; an illustrative example of
the application of EBGSD is given in Section VI; finally,
Section VII presents the conclusions and suggests ways for
furthering this research.

Il. RESEARCH BACKGROUND

Software generation is an old ideal that has been
pursued and evolved over decades. The advent of
programming languages and compilers can be considered
as the first step towards enhanced productivity in software
development. The field has evolved over decades: for
instance, in the context of MDD, programming languages
and compilers have been replaced by Domain-Specific
Languages (DSLs) and model/code generators. Due to the
vastness of the research conducted on software
generativity, it is not possible to discuss all of them here;
hence, we will focus on the four most prominent
approaches, as listed below. Our main purpose in this
section is to demonstrate the motivations for this research,
and to outline the research objective.

108

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Genetic and evolutionary approaches: these
approaches aim at generating complex systems through
creation of a simple generative system to generate new
constructions that ultimately lead to the desired complex
system [4]. The main problem with these approaches is
that due to their high level of inherent randomness, they
are not applicable to systems with specific requirements.

MDD: MDD considers models as first-degree entities
that drive the software development process and serve as
the basis for generating the target software [5]. In this
approach, software is developed through creation of
models at a high-level of abstraction, and then
transformation of these models into their lower-level
counterparts (and ultimately software) based on certain
mappings. Although this approach has become popular in
recent years, there are major problems that prevent it from
achieving an ideal level of automation. For instance,
although this approach intends to reduce software
complexity, it in fact just shifts the complexity [6]:
development is easy and straightforward when the
modeling levels and their corresponding mappings have
been specified, but defining the levels and the mappings
themselves is by no means straightforward.

SPL.: in the software product line approach, instead of
developing a single software system from scratch, the
focus is on a family of systems that are developed from a
set of common reusable components by applying a defined
process [7]. To be more precise, a software product line is
a set of software-intensive systems that share a common
set of features, and that are developed from a common set
of core assets [8]. As implied by this definition, SPL aims
to improve the productivity of software development
processes through providing a higher level of reuse; but the
definition makes no hint of any automation involved in the
process. Hence, SPL has not been able to achieve an ideal
level of generativity. Moreover, creating reusable assets is
a costly process, which might even adversely affect the
productivity of software development processes.

Czarnecki’s GSD approach: similar to SPL,
Czarnecki’s approach aims at increasing the productivity
of software development processes through focusing on
families of systems [2]. The main difference between this
approach and the SPL approach is that it emphasizes
automated composition of components, whereas manual
composition is acceptable in SPL. However, just like SPL,
GSD too can have an adverse affect on productivity.

As observed in the above approaches, although they
have strived to increase the level of software generativity,
certain deficiencies prevent them from achieving the ideal
level of generativity in software development, and
overcoming these deficiencies is the objective of this
research. Specifically, genetic approaches enjoy a high
level of automation, but are not practicable. On the other
hand, MDD, SPL, and GSD are practicable, but are
deficient as to complexity management, automation, and
productivity; to be precise, these approaches just replace
development complexity with mapping complexity.

I1l. 1vy PARADIGM

Ivy [9] is a modeling paradigm for representing
conceptual phenomena and their emergence. Conceptual
phenomena are typically regarded as abstractions of real-
world phenomena. Ivy is based on the notion that

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

conceptual phenomena can be combined, and a new
conceptual phenomenon thus emerges. We model this fact
in the Ivy Model; as seen in Figure 1, an Ivy model is a
directed graph in which nodes represent phenomena, and
arcs represent emergences. As an example, consider the
following three conceptual phenomena: car, red, and
wheel, which are the results of abstraction from their real-
world counterparts. As shown in Figure 1, from a certain
point of view, the phenomena car and red can be
combined, and the phenomenon red car thus emerges.
From another point of view, the phenomena wheel and red
can be combined, and the phenomenon red wheel emerges.
The phenomena car and red wheel can be combined, and
from two different points of view, two phenomena emerge:
red-wheeled car, and red car wheel.

The world of software development is full of
representation, combination and emergence of conceptual
phenomena. Requirements engineering is concerned with
conceptual phenomena directly abstracted from real-world
phenomena. Some of these phenomena are combined, and
other conceptual phenomena emerge as a result. For
instance, the conceptual phenomena actors, use cases and
their relationships are combined and the phenomenon use
case diagram emerges; or in goal-oriented requirements
engineering, certain phenomena (i.e., goals) could be
combined, and a higher-level goal would emerge. Software
platforms are themselves conceptual phenomena that
emerge from other phenomena (e.g., requirements).
Design and implementation phases are concerned with
combination of requirement and platform phenomena and
the emergence of software-solution phenomena.

Since the dependencies in an lvy model are
unidirectional, it can enhance understandability and
modifiability, leading to better complexity management.
The Ivy model may look very similar to other models such
as goal models [10] and feature models [11], but there are
fundamental differences. In those models, relationships
have very specific semanti