
ICSEA 2015

The Tenth International Conference on Software Engineering Advances

ISBN: 978-1-61208-438-1

November 15 - 20, 2015

Barcelona, Spain

ICSEA 2015 Editors

Roy Oberhauser, Aalen University, Germany

Luigi Lavazza, Università dell'Insubria - Varese, Italy

Herwig Mannaert, University of Antwerp, Belgium

Stephen Clyde, Utah State University, USA

 1 / 512

ICSEA 2015

Forward

The Tenth International Conference on Software Engineering Advances (ICSEA 2015), held on
November 15 - 20, 2015 in Barcelona, Spain, continued a series of events covering a broad spectrum of
software-related topics.

The conference covered fundamentals on designing, implementing, testing, validating and
maintaining various kinds of software. The tracks treated the topics from theory to practice, in terms of
methodologies, design, implementation, testing, use cases, tools, and lessons learnt. The conference
topics covered classical and advanced methodologies, open source, agile software, as well as software
deployment and software economics and education.

The conference had the following tracks:

 Advances in fundamentals for software development

 Advanced mechanisms for software development

 Advanced design tools for developing software

 Software engineering for service computing (SOA and Cloud)

 Advanced facilities for accessing software

 Software performance

 Software security, privacy, safeness

 Advances in software testing

 Specialized software advanced applications

 Web Accessibility

 Open source software

 Agile and Lean approaches in software engineering

 Software deployment and maintenance

 Software engineering techniques, metrics, and formalisms

 Software economics, adoption, and education

 Business technology

 Improving productivity in research on software engineering

Similar to the previous edition, this event continued to be very competitive in its selection process
and very well perceived by the international software engineering community. As such, it is attracting
excellent contributions and active participation from all over the world. We were very pleased to receive
a large amount of top quality contributions.

We take here the opportunity to warmly thank all the members of the ICSEA 2015 technical program
committee as well as the numerous reviewers. The creation of such a broad and high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
that dedicated much of their time and efforts to contribute to the ICSEA 2015. We truly believe that
thanks to all these efforts, the final conference program consists of top quality contributions.

 2 / 512

This event could also not have been a reality without the support of many individuals, organizations
and sponsors. We also gratefully thank the members of the ICSEA 2015 organizing committee for their
help in handling the logistics and for their work that is making this professional meeting a success.

We hope the ICSEA 2015 was a successful international forum for the exchange of ideas and results
between academia and industry and to promote further progress in software engineering research. We
also hope Barcelona provided a pleasant environment during the conference and everyone saved some
time for exploring this beautiful city.

ICSEA 2015 Advisory Chairs

Herwig Mannaert, University of Antwerp, Belgium

Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden

Luigi Lavazza, Università dell'Insubria - Varese, Italy

Roy Oberhauser, Aalen University, Germany

Elena Troubitsyna, Åbo Akademi University, Finland

Davide Tosi, Università dell'Insubria - Como, Italy

Luis Fernandez-Sanz, Universidad de Alcala, Spain

Michael Gebhart, iterate GmbH, Germany

ICSEA 2015 Research Institute Liaison Chairs

Oleksandr Panchenko, Hasso Plattner Institute for Software Systems Engineering - Potsdam, Germany

Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland

Osamu Takaki, Gunma University, Japan

Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

ICSEA 2015 Industry/Research Chairs

Herman Hartmann, University of Groningen, The Netherlands

Hongyu Pei Breivold, ABB Corporate Research, Sweden

ICSEA 2015 Special Area Chairs

Formal Methods

Paul J. Gibson, Telecom & Management SudParis, France

Testing and Validation

Florian Barth, University of Mannheim, Germany

Web Accessibility

Adriana Martin, National University of Austral Patagonia (UNPA), Argentina

Software engineering for service computing

Muthu Ramachandran, Leeds Beckett University, UK

 3 / 512

ICSEA 2015 Publicity Chairs

Sébastien Salva, University of Auvergne, Clermont-Ferrand, France

 4 / 512

ICSEA 2015

Committee

ICSEA Advisory Chairs

Herwig Mannaert, University of Antwerp, Belgium
Mira Kajko-Mattsson, Stockholm University & Royal Institute of Technology, Sweden
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Roy Oberhauser, Aalen University, Germany
Elena Troubitsyna, Åbo Akademi University, Finland
Davide Tosi, Università dell'Insubria - Como, Italy
Luis Fernandez-Sanz, Universidad de Alcala, Spain
Michael Gebhart, iteratec GmbH, Germany

ICSEA 2015 Research Institute Liaison Chairs

Oleksandr Panchenko, Hasso Plattner Institute for Software Systems Engineering - Potsdam, Germany
Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland
Osamu Takaki, Gunma University, Japan
Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria

ICSEA 2015 Industry/Research Chairs

Herman Hartmann, University of Groningen, The Netherlands
Hongyu Pei Breivold, ABB Corporate Research, Sweden

ICSEA 2015 Special Area Chairs

Formal Methods
Paul J. Gibson, Telecom & Management SudParis, France

Testing and Validation
Florian Barth, University of Mannheim, Germany

Web Accessibility
Adriana Martin, National University of Austral Patagonia (UNPA), Argentina

Software engineering for service computing
Muthu Ramachandran, Leeds Beckett University, UK

ICSEA 2015 Publicity Chairs

Sébastien Salva, University of Auvergne, Clermont-Ferrand, France

 5 / 512

ICSEA 2015 Technical Program Committee

Shahliza Abd Halim, Universiti of Technologi Malaysia (UTM) - Skudai, Malaysia
Mohammad Abdallah, Al-Zaytoonah University of Jordan, Jordan
Adla Abdelkader, University of Oran, Algeria
Muhammad Ovais Ahmad, University of Oulu, Finland
Moataz A. Ahmed, King Fahd University of Petroleum & Minerals – Dhahran, Saudi Arabia
Syed Nadeem Ahsan, TU-Graz, Austria
Mehmet Aksit, University of Twente, Netherlands
Ahmed Al-Moayed, Hochschule Furtwangen University, Germany
Azadeh Alebrahim, University of Duisburg-Essen, Germany
Mamdouh Alenezi, Prince Sultan University - Riyadh, Saudi Arabia
Basem Y. Alkazemi, Umm Al-Qura University, Saudi Arabia
Mohammad Alshayeb, King Fahd University of Petroleum and Minerals, Saudi Arabia
Zakarya A. Alzamil, King Saud University, Saudi Arabia
Vincenzo Ambriola, Università di Pisa, Italy
Jose Andre Dorigan, State University of Maringa, Brazil
Buzzi Andreas, Credit Suisse AG – Zürich, Switzerland
Andreas S. Andreou, Cyprus University of Technology - Limassol, Cyprus
Maria Anjum, Durham University, UK
Paulo Asterio de Castro Guerra, Tapijara Programação de Sistemas Ltda. - Lambari, Brazil
Colin Atkinson, University of Mannheim, Germany
Marco Autili, University of L’Aquila, Italy
Robert Azarbod, Oracle Corporation, USA
Thomas Baar, Hochschule für Technik und Wirtschaft (HTW) Berlin, Germany
Gilbert Babin, HEC Montréal, Canada
Muneera Bano, International Islamic University - Islamabad, Pakistan
Fernando Sérgio Barbosa, Escola Superior de Tecnologia do Instituto Politécnico de Castelo Branco,
Portugal
Jorge Barreiros, CITI/UNL: Center of Informatics and Information Technology - UNL || ISEC/IPC: ISEC -
Polytechnic Institute of Coimbra, Portugal
Florian Barth, University of Mannheim, Germany
Gabriele Bavota, University of Salerno, Italy
Noureddine Belkhatir, University of Grenoble, France
Simona Bernardi, Centro Universitario de la Defensa / Academia General Militar - Zaragoza, Spain
Jorge Bernardino, Polytechnic Institute of Coimbra - ISEC-CISUC, Portugal
Ateet Bhalla, Independent Consultant, India
Celestina Bianco, Systelab Technologies - Barcelona, Spain
Christian Bird, University of California, USA
Kenneth Boness, Reading University, UK
Mina Boström Nakicenovic, Sungard Front Arena, Stockholm, Sweden
M. Boukala-Ioualalen, University of Science and Technology Houari Boumediene, Algeria
Fernando Brito e Abreu, Instituto Universitário de Lisboa (ISCTE-IUL), Portugal
Hongyu Pei Breivold, ABB Corporate Research, Sweden
Manfred Broy, Technische Universität München, Germany
Georg Buchgeher, Software Competence Center Hagenberg GmbH, Austria
Thomas Buchmann, Universität Bayreuth, Germany
Lucas Bueno Ruas de Oliveira, University of São Paulo (ICMC/USP), Brazil

 6 / 512

Luigi Buglione, ETS Montréal / Engineering.IT S.p.A., Canada
Christian Bunse, University of Applied Sciences Stralsund, Germany
Stefan Burger, Allianz Deutschland AG, Germany
David W. Bustard, University of Ulster - Coleraine, UK
Haipeng Cai, University of Notre Dame, USA
Fabio Calefato, University of Bari, Italy
Vinicius Cardoso Garcia, Centro de Informática (CIn) - Universidade Federal de Pernambuco (UFPE),
Brazil
José Carlos Metrôlho, Polytechnic Institute of Castelo Branco, Portugal
Bengt Carlsson, Blekinge Institute of Technology – Karlskrona, Sweden
Rocío Castaño Mayo, Universidad de Oviedo, Spain
Everton Cavalcante, Federal University of Rio Grande do Norte, Brazil / IRISA-UMR CNRS-Université de
Bretagne-Sud, France
Alexandros Chatzigeorgiou, University of Macedonia, Greece
Antonin Chazalet, IT&Labs, France
Yoonsik Cheon, The University of Texas at El Paso, USA
Federico Ciccozzi, Mälardalen University, Sweden
Vanea Chiprianov, University of Pau, France
Morakot Choetkiertikul, Mahidol University, Thailand
Antonio Cicchetti, Mälardalen University, Sweden
Federico Ciccozzi, Mälardalen University, Sweden
Marta Cimitile, Unitelma Sapienza University, Italy
Tony Clark, Middlesex University, UK
Stephen Clyde, Utah State University, USA
Methanias Colaço Júnior, Federal University of Sergipe, Brazil
Rebeca Cortázar, University of Deusto - Bilbao, Spain
Oliver Creighton, Siemens AG, Germany
Carlos E. Cuesta, Rey Juan Carlos University - Madrid, Spain
Beata Czarnacka-Chrobot, Warsaw School of Economics, Poland
Zhen Ru Dai, Hamburg University of Applied Science, Germany
Darren Dalcher, Hertfordshire Business School, UK
Peter De Bruyn, University of Antwerp, Belgium
Claudio de la Riva, Universidad de Oviedo - Gijon, Spain
Peter De Bruyn, University of Antwerp, Belgium
Diego Dermeval Medeiros da Cunha Matos, Federal University of Campina Grande (UFCG), Brazil
Onur Demirors, Middle East Technical University, Turkey
Steven A. Demurjian, The University of Connecticut - Storrs, USA
Vincenzo Deufemia, University of Salerno, Italy
Antinisca Di Marco, University of L'Aquila - Coppito (AQ), Italy
Themistoklis Diamantopoulos, Aristotle University of Thessaloniki, Greece
Tadashi Dohi, Hiroshima University, Japan
José André Dorigan, State University of Londrina, Brazil
Lydie du Bousquet, J. Fourier-Grenoble I University, LIG labs, France
Roland Ducournau, LIRMM - CNRS & Université Montpellier 2, France
Juan Carlos Dueñas López, Universidad Politécnica de Madrid, Spain
Slawomir Duszynski, Fraunhofer Institute for Experimental Software Engineering, Germany
Christof Ebert, Vector Consulting Services, Germany
Holger Eichelberger, University of Hildesheim, Germany

 7 / 512

Younès El Amrani, Université Mohammed V - Agdal, Morocco
Mohamed El-Attar, King Fahd University of Petroleum and Minerals - Al Dhahran, Kingdom of Saudi
Arabia
Vladimir Estivill-Castro, Griffith University - Nathan, Australia
Kleinner Farias, University of Vale do Rio dos Sinos (Unisinos), Brazil
Fausto Fasano, University of Molise - Pesche, Italy
Feipre Ferraz, CESAR / CIN-UFPE, Brazil
Martin Filipsky, Czech Technical University in Prague, Czech Republic
Derek Flood, Dundalk Institute of Technology (DkIT), Ireland
Diego Fontdevila, Universidad Nacional de Tres de Febrero, Argentina
Rita Francese, University of Salerno, Italy
Terrill L. Frantz, Peking University HSBC Business School, China
Jicheng Fu, University of Central Oklahoma, USA
Felipe Furtado, Recife Center of Advanced Studies and Systems / Federal University of Pernambuco,
Brazil
Cristina Gacek, City University London, UK
Matthias Galster, University of Canterbury, New Zealand
G.R. Gangadharan, IDRBT, India
Stoyan Garbatov, OutSystems, Portugal
José Garcia-Alonso, University of Extremadura, Spain
Kiev Gama, UFPE, Brazil
Antonio Javier García Sánchez, Technical University of Cartagena, Spain
José García-Fanjul, University of Oviedo, Spain
Michael Gebhart, iteratec GmbH, Germany
Sébastien Gérard, CEA LIST, France
Paul Gibson, Telecom SudParis, France
Yossi Gil, Technion - Israel Institute of Technology, Israel
Ignacio González Alonso, Infobótica RG University of Oviedo, Spain
Oleg Gorbik, Accenture - Riga Delivery Centre, Latvia
Mohamed Graiet, ISIMS, MIRACL, Monastir, Tunisia
Gregor Grambow, University of Ulm, Germany
Carmine Gravino, Università degli Studi di Salerno, Italy
George A. Gravvanis, Democritus University of Thrace, Greece
Jeff Gray, University of Alabama, USA
Sam Guinea, Politecnico di Milano, Italy
Bidyut Gupta, Southern Illinois University, USA
Ensar Gul, Marmara University - Istanbul, Turkey
Zhensheng Guo, Siemens AG - Erlangen, Germany
Nahla Haddar, University of Sfax, Tunisia
Waqas Haider Khan Bangyal, IUI Islamabad, Pakistan
Imed Hammouda, University of Gothenburg, Sweden
Jameleddine Hassine, King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia
Shinpei Hayashi, Tokyo Institute of Technology, Japan
José R. Hilera, University of Alcala, Spain
Željko Hocenski, University Josip Juraj Strossmayer of Osijek, Croatia
Bernhard Hollunder, Furtwangen University of Applied Sciences, Germany
Siv Hilde Houmb, Secure-NOK AS / Gjøvik University College, Norway
LiGuo Huang, Southern Methodist University Huang, USA

 8 / 512

Noraini Ibrahim, University of Technology Malaysia (UTM), Malaysia
Milan Ignjatovic, ProSoftwarica, Switzerland
Jun Iio, Faculty of Letters - Chuo University, Japan
Naveed Ikram, Riphah International University – Islamabad, Pakistan
Gustavo Illescas, Universidad Nacional del Centro-Tandil-Bs.As., Argentina
Claire Ingram, Newcastle University, UK
Emilio Insfran, Universitat Politècnica de València, Spain
Shareeful Islam, University of East London, U.K.
Slinger Jansen (Roijackers), Utrecht University, The Netherlands
Marko Jäntti, University of Eastern Finland, Finland
Kashif Javed, Abo Akademi University, Finland
Hermann Kaindl, TU-Wien, Austria
Mira Kajko-Mattsson, Stockholm University and Royal Institute of Technology, Sweden
Ahmed Kamel, Concordia College - Moorhead, USA
Dariusz W. Kaminski, The Open University, UK
Teemu Kanstrén, VTT Technical Research Centre of Finland - Oulu, Finland
Lucia Kapova, Karlsruhe Institute of Technology, Germany
Tatjana Kapus, University of Maribor, Slovenia
Krishna M. Kavi, University of North Texas, USA
Carlos Kavka, ESTECO SpA, Italy
Markus Kelanti, University of Oulu, Finland
Abeer Khalid, International Islamic University Islamabad, Pakistan
Foutse Khomh, École Polytechnique de Montréal, Canada
Holger Kienle, Freier Informatiker, Germany
Reinhard Klemm, Avaya Labs Research, USA
Mourad Kmimech, l’Institut Supérieur d’informatique de Mahdia (ISIMA), Tunisia
Jens Knodel, Fraunhofer IESE, Germany
William Knottenbelt, Imperial College London, UK
Takashi Kobayashi, Tokyo Institute of Technology, Japan
Radek Kocí, Brno University of Technology, Czech Republic
Christian Kop, Alpen-Adria-Universität Klagenfur, Austria
Georges Edouard Kouamou, National Advanced School of Engineering - Yaoundé, Cameroon
Segla Kpodjedo, Ecole de Technologie Supérieure - Montreal, Canada
Natalia Kryvinska, University of Vienna, Austria
Tan Hee Beng Kuan, Nanyang Technological University, Singapore
Vinay Kulkarni, Tata Consultancy Services, India
Sukhamay Kundu, Louisiana State University - Baton Rouge, USA
Eugenijus Kurilovas, Vilnius University and Vilnius Gediminas Technical University, Lithuania
Rob Kusters, Open University/Eindhoven University of Technology, Netherlands
Alla Lake, LInfo Systems, LLC - Greenbelt, USA
Einar Landre, Statiol ASA, Norway
Kevin Lano, King's College London, UK
Casper Lassenius, MIT, USA
Jannik Laval, University Bordeaux 1, France
Luigi Lavazza, Università dell'Insubria - Varese, Italy
Luka Lednicki, ABB Corporate Research, Sweden
Plinio Sá Leitão-Junior, Federal University of Goias, Brazil
Maurizio Leotta, University of Genova, Italy

 9 / 512

Valentina Lenarduzzi, Università degli Studi dell'Insubria, Italy
Jörg Liebig, University of Passau, Germany
Maria Teresa Llano Rodriguez, Goldsmiths/University of London, UK
Klaus Lochmann, Technische Universität München, Germany
Sérgio F. Lopes, University of Minho, Portugal
Juan Pablo López-Grao, University of Zaragoza, Spain
Ivan Machado, Universidade Federal da Bahia, Brazil
Ricardo J. Machado, University of Minho, Portugal
Sajjad Mahmood, King Fahd University of Petroleum and Minerals, Saudi Arabia
Charif Mahmoudi, LACL - Paris 12 University, France
Nicos Malevris, Athens University of Economics and Business, Greece
Herwig Mannaert, University of Antwerp, Belgium
Cristiano Marçal Toniolo, Faculdade Anhanguera, Brazil
Eda Marchetti, ISTI-CNR - Pisa Italy
Alexandre Marcos Lins de Vasconcelos, Federal University of Pernambuco, Brazil
Daniela Marghitu, Auburn University, USA
Adriana Martin, National University of Austral Patagonia (UNPA), Argentina
Luiz Eduardo Galvão Martins, Federal University of São Paulo, Brazil
Miriam Martínez Muñoz, Universidad de Alcalá de Henares, Spain
Jose Antonio Mateo, Aalborg University, Denmark
Fuensanta Medina-Dominguez, Universidad Carlos III Madrid, Spain
Karl Meinke, KTH Royal Institute of Technology, Sweden
Igor Melatti, Sapienza Università di Roma, Italy
Andreas Menychtas, National Technical University of Athens, Greece
Jose Merseguer, Universidad de Zaragoza, Spain
Apinporn Methawachananont, National Electronics and Computer Technology Center (NECTEC),
Thailand
Markus Meyer, University of Applied Sciences Ingolstadt, Germany
João Miguel Fernandes, Universidade do Minho - Braga, Portugal
Amir H. Moin, fortiss, An-Institut Technische Universität München, Germany
Hassan Mountassir, University of Besançon, France
Henry Muccini, University of L'Aquila, Italy
Aitor Murguzur, IK4-Ikerlan Research Center, Spain
Elena Navarro, University of Castilla-La Mancha, Spain
Mahmood Niazi, King Fahd University of Petroleum and Minerals, Saudi Arabia
Oksana Nikiforova, Riga Technical University, Latvia
Natalja Nikitina, KTH Royal Institute of Technology - Stockholm, Sweden
Mara Nikolaidou, Harokopio University of Athens, Greece
Marcellin Julius Nkenlifack, Univeristé de Dschang - Bandjoun, Cameroun
Tetsuo Noda, Shimane University, Japan
Marc Novakouski, Software Engineering Institute/Carnegie Mellon University, USA
Nicole Novielli, University of Bari, Italy
Bo Nørregaard Jørgensen, Centre for Energy Informatics - University of Southern Denmark, Denmark
Roy Oberhauser, Aalen University, Germany
Pablo Oliveira Antonino de Assis, Fraunhofer Institute for Experimental Software Engineering - IESE,
Germany
Flavio Oquendo, IRISA - University of South Brittany, France
Baris Ozkan, Atilim University - Ankara, Turkey

 10 / 512

Claus Pahl, Dublin City University, Ireland
Marcos Palacios, University of Oviedo, Spain
Fabio Palomba, University of Salerno, Italy
Päivi Parviainen, VTT, Software Technologies Center, Finland
Aljosa Pasic, ATOS Research, Spain
Fabrizio Pastore, University of Milano - Bicocca, Italy
Asier Perallos, University of Deusto, Spain
Óscar Pereira, University of Aveiro, Portugal
Beatriz Pérez Valle, University of La Rioja, Spain
David Pheanis, Arizona State University, USA
Pasqualina Potena, University of Alcalá, Spain
Christian Prehofer, Kompetenzfeldleiter Adaptive Kommunikationssysteme / Fraunhofer-Einrichtung für
Systeme der Kommunikationstechnik ESK – München, Germnay
Abdallah Qusef, University of Salerno, Italy
Salman Rafiq, Fraunhofer Institute for Embedded Systems and Communication Technologies, Germany
Claudia Raibulet, Università degli Studi di Milano-Bicocca, Italy
Muthu Ramachandran, Leeds Beckett University, UK
Amar Ramdane-Cherif, University of Versailles, France
Raman Ramsin, Sharif University of Technology, Iran
Gianna Reggio, DIBRIS - Università di Genova, Italy
Zhilei Ren, Dalian University of Technology, China
Hassan Reza, University of North Dakota - School of Aerospace, USA
Samir Ribic, University of Sarajevo, Bosnia and Herzegovina
Elvinia Riccobene, University of Milan, Italy
Daniel Riesco, National University of San Luis, Argentina
Michele Risi, University of Salerno, Italy
Gabriela Robiolo, Universidad Austral, Argentina
Oliveto Rocco, University of Molise, Italy
Rodrigo G. C. Rocha, Federal Rural University of Pernambuco, Brazil
Daniel Rodríguez, University of Alcalá, Madrid, Spain
María Luisa Rodríguez Almendros, Universidad de Granada, Spain
Siegfried Rouvrais, Institut Mines Telecom Bretagne, France
Suman Roychoudhury, Tata Consultancy Services, India
Mercedes Ruiz Carreira, Universidad de Cádiz, Spain
Alessandra Russo, Imperial College London, UK
Mehrdad Saadatmand, Mälardalen University / Alten AB, Sweden
Krzysztof Sacha, Warsaw University of Technology, Poland
Francesca Saglietti, University of Erlangen-Nuremberg, Germany
Sébastien Salva, LIMOS-CNRS / Auvergne University / IUT d'Aubière, France
Maria-Isabel Sanchez-Segura, Carlos III University of Madrid, Spain
Luca Santillo, Agile Metrics, Italy
Gaetana Sapienza, ABB Corporate Research, Sweden
Federica Sarro, University College London, UK
Patrizia Scandurra, University of Bergamo - Dalmine, Italy
Giuseppe Scanniello, Università degli Studi della Basilicata - Potenza, Italy
Christelle Scharff, Pace University, USA
Klaus Schmid, University of Hildesheim, Germany
Felix Schwägerl, University of Bayreuth, Germany

 11 / 512

Bran Selic, Malina Software, Canada
Fereidoon Shams, Shahid Beheshti University, Iran
Fernando Selleri Silva, Mato Grosso State University (UNEMAT), Brazil
István Siket, University of Szeged, Hungary
Abu Bakar Md Sultan, Universiti Putra Malaysia, Malaysia
Sidra Sultana, National University of Sciences and Technology, Pakistan
Lijian Sun, Chinese Academy of Surveying & Mapping, China
Mahbubur R. Syed, Minnesota State University – Mankato, USA
Davide Taibi, Free University of Bozen, Italy
Osamu Takaki, Gunma University, Japan
Giordano Tamburrelli, Università della Svizzera Italiana (USI), Swizterland
Wasif Tanveer, University of Engineering and Technology - Lahore, Pakistan
Nebojša Taušan, University of Oulu, Finland
Pierre Tiako, Langston University, USA
Maarit Tihinen, VTT Technical Research Centre of Finland - Oulu, Finland
Massimo Tivoli, University of L'Aquila, Italy
Maria Tortorella, University of Sannnio - Benevento Italy
Davide Tosi, Università degli studi dell'Insubria - Varese, Italy
Peter Trapp, Ingolstadt, Germany
Elena Troubitsyna, Åbo Akademi University, Finland
Mariusz Trzaska, Polish-Japanese Academy of Information Technology, Poland
George A. Tsihrintzis, University of Piraeus, Greece
Masateru Tsunoda, Kinki University, Japan
Henry Tufo, University of Colorado at Boulder, USA
Javier Tuya, Universidad de Oviedo - Gijón, Spain
Andreas Ulrich, Siemens AG, Germany
Christelle Urtado, LGI2P / Ecole des Mines d'Alès - Nîmes, France
Dieter Van Nuffel, University of Antwerp, Belgium
Timo Vepsäläinen, Tampere University of Technology, Finland
Laszlo Vidacs, Hungarian Academy of Sciences, Hungary
Tanja Vos, Universidad Politécnica de Valencia, Spain
Stefan Wagner, University of Stuttgart, Germany
Hironori Washizaki, Waseda University, Japan
Stefan Wendler, Ilmenau University of Technology, Germany
Agnes Werner-Stark, University of Pannonia, Hungary
Norman Wilde, University of West Florida, USA
Andreas Winter, Carl von Ossietzky University, Germany
Victor Winter, University of Nebraska-Omaha, USA
Martin Wojtczyk, Technische Universität München, Germany & Cubotix, USA
Haibo Yu, Shanghai Jiao Tong University, China
Elisa Yumi Nakagawa, University of São Paulo (USP), Brazil
Saad Zafar, Riphah International University - Islamabad, Pakistan
Amir Zeid, American University of Kuwait, Kuwait
Michal Zemlicka, University of Finance and Administration, Czech Republic
Gefei Zhang, Celonis GmbH, Germany
Qiang Zhu, The University of Michigan - Dearborn, USA

 12 / 512

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 13 / 512

Table of Contents

Patterns for Specifying Bidirectional Transformations in UML-RSDS
Sobhan Yassipour-Tehrani, Shekoufeh Kolahdouz-Rahimi, and Kevin Lano

1

Towards a Framework for Software Product Maturity Measurement
Mohammad Alshayeb, Ahmad Abdellatif, Sami Zahran, and Mahmood Niazi

7

An Exploratory Study on the Influence of Developers in Code Smell Introduction
Leandro Alves, Ricardo Choren, and Eduardo Alves

12

The Object Oriented Petri Net Component Model
Radek Koci and Vladimir Janousek

18

“Free” Innovation Environments: Lessons learned from the Software Factory Initiatives
Davide Taibi, Valentina Lenarduzzi, Muhammad Ovais Ahmad, Kari Liukkunen, Ilaria Lunesu, Martina Matta,
Fabian Fagerholm, Ju?rgen Mu?nch, Sami Pietinen, Markku Tukiainen, Carlos Ferna?ndez-Sa?nchez, Juan
Garbajosa, and Kari Systa?

25

Performance Exploring Using Model Checking A Case Study of Hard Disk Drive Cache Function
Takehiko Nagano, Kazuyoshi Serizawa, Nobukazu Yoshioka, Yasuyuki Tahara, and Akihiko Ohsuga

31

Towards a Better Understanding of Static Code Attributes for Defect Prediction
Muhammed Maruf Ozturk and Ahmet Zengin

40

Communication and Coordination Challenges Mitigation in Offshore Software Development Outsourcing
Relationships: Findings from Systematic Literature Review
Rafiq Ahmad Khan, Siffat Ullah Khan, and Mahmood Niazi

45

Adapting Heterogeneous ADLs for Software Architecture Reconstruction Tools
Dung Le, Ana Nicolaescu, and Horst Lichter

52

Verifying and Constructing Abstract TLA Specifications: Application to the Verification of C programs
Amira Methni, Matthieu Lemerre, Belgacem Ben Hedia, Serge Haddad, and Kamel Barkaoui

56

Revisiting The Package-level Cohesion Approaches
Waleed Albattah and Suliman Alsuhibany

62

Towards a Technical Debt Management Framework based on Cost-Benefit Analysis
Muhammad Firdaus Bin Harun and Horst Lichter

70

Design and Implementation of Business Logic Layer Object-Oriented Design versus Relational Design
Ali Alharthy

74

 1 / 6 14 / 512

Pymoult : On-Line Updates for Python Programs
Sebastien Martinez, Fabien Dagnat, and Jeremy Buisson

80

Aiming Towards Modernization: Visualization to Assist Structural Understanding of Oracle Forms Applications
Kelly Garces, Edgar Sandoval, Rubby Casallas, Camilo Alvarez, Alejandro Salamanca, Sandra Pinto, and Fabian
Melo

86

Effects of Recency and Commits Aggregation on Change Guide Method Based on Change History Analysis
Tatsuya Mori, Anders Hagward, and Takashi Kobayashi

96

Towards Flexible Business Software
Ahmed Elfatatry

102

EBGSD: Emergence-Based Generative Software Development
Mahdi Mostafazadeh, Mohammad Reza Besharati, and Raman Ramsin

108

A GPU-aware Component Model Extension for Heterogeneous Embedded Systems
Gabriel Campeanu, Jan Carlson, and Severine Sentilles

115

Soft System Stakeholder Analysis Methodology
Markus Kelanti, Jarkko Hyysalo, Jari Lehto, Samuli Saukkonen, Markku Oivo, and Pasi Kuvaja

122

Publish/Subscribe Cloud Middleware for Real-Time Disease Surveillance
Silvino Neto, Marcia Valeria, Plinio Manoel, and Felipe Ferraz

131

Requirement’s Variability in Model Generation from a Standard Document in Natural Language
Juliana Greghi, Eliane Martins, and Ariadne Carvalho

139

An Approach to Compare UML Class Diagrams Based on Semantical Features of Their Elements
Oksana Nikiforova, Konstantins Gusarovs, Ludmila Kozacenko, Dace Ahilcenoka, and Dainis Ungurs

147

Model-Based Evaluation and Simulation of Software Architecture Evolution
Peter Alexander, Ana Nicolaescu, and Horst Lichter

153

Towards Time-triggered Component-based System Models
Hela Guesmi, Belgacem Ben Hedia, Simon Bliudze, Saddek Bensalem, and Jacques Combaz

157

A User-App Interaction Reference Model for Mobility Requirements Analysis
Xiaozhou Li and Zheying Zhang

170

Design and Implementation of a Tool to Collect Data of a Smart City Through the TV
Glaydstone Teixeira and Felipe Ferraz

178

 2 / 6 15 / 512

Comparison of Educational Project Management Tools
Rafael Goncalves and Christiane Wangenheim

184

Model-Driven Engineering of Software Solutions for QoS Management in Real-Time DBMS
Salwa M'barek, Leila Baccouche, and Henda Ben Ghezala

192

An Approach for Reusing Software Process Elements based on Reusable Asset Specification: a Software Product
Line Case Study
Karen D. R. Pacini and Rosana T. V. Braga

200

An Extensible Platform for the Treatment of Heterogeneous Data in Smart Cities
Cicero A. Silva and Gibeon S. A. Junior

207

Improving the Application of Agile Model-based Development: Experiences from Case Studies
Kevin Lano, Hessa Alfraihi, Sobhan Yassipour-Tehrani, and Howard Haughton

213

Metrics Framework for Cycle-Time Reduction in Software Value Creation - Adapting Lean Startup for
Established SaaS Feature Developers
Pasi Tyrvainen, Matti Saarikallio, Timo Aho, Timo Lehtonen, and Rauno Paukeri

220

A Context-Driven Approach for Guiding Agile Adoption: The AMQuICk Framework
Hajer Ayed, Benoit Vanderose, and Naji Habra

228

Kanban in Industrial Engineering and Software Engineering: A Systematic Literature Review
Muhammad Ovais Ahmad, Jouni Markkula, Markku Oivo, and Bolaji Adeyemi

234

Efficient ETL+Q for Automatic Scalability in Big or Small Data Scenarios
Pedro Martins, Maryam Abbasi, and Pedro Furtado

242

The Role of People and Sensors in the Development of Smart Cities: A Systematic Literature Review
Italberto Figueira Dantas and Felipe Silva Ferraz

248

A Knowledge Base for Electric Vehicles in Inner-City Logistics
Volkmar Schau, Johannes Kretzschmar, Thomas Prinz, and Paul Hempel

257

Building a Service Manager For a Smart City Archicture
Gutemberg Cavalcante, Felipe Ferraz, and Guilherme Medeiros

261

Intersection of MPS.BR-E and SPICE Models Focused on Projects for the Automotive Industry
Vanessa Matias Leite, Jandira Guenka Palma, and Emmanuel da C. Gallo

268

Quality-Based Score-level Fusion for Secure and Robust Multimodal Biometrics-based Authentication on
Consumer Mobile Devices

274

 3 / 6 16 / 512

Mikhail Gofman, Sinjini Mitra, Kevin Cheng, and Nicholas Smith

An Approach for Sensor Placement to Achieve Complete Coverage and Connectivity in Sensor Networks
Monia Techini, Ridha Ejbali, and Mourad Zaied

277

Dynamic Symbolic Execution using Eclipse CDT
Andreas Ibing

280

Evaluating the Usability of Mobile Instant Messaging Apps on iOS Devices
Sergio Caro-Alvaro, Antonio Garcia-Cabot, Eva Garcia-Lopez, Luis de-Marcos, and Jose-Javier Martinez-
Herraiz

286

Multi-Criteria Test Case Prioritization Using Fuzzy Analytic Hierarchy Process
Sahar Tahvili, Mehrdad Saadatmand, and Markus Bohlin

290

Analysis of Optimization Requirement of Mobile Application Testing Procedure
Manish Kumar, Kapil Kant Kamal, Bharat Varyani, and Meghana Kale

297

Property Based Verification of Evolving Petri Nets
Yasir Imtiaz Khan and Ehab Al-Shaer

301

Dynamic Evolution of Source Code Topics
Khaled Almustafa and Mamdouh Alenezi

307

Model Transformation Applications from Requirements Engineering Perspective
Sobhan Yassipour Tehrani and Kevin Lano

313

Analyzing the Evolvability of Modular Structures: a Longitudinal Normalized Systems Case Study
Philip Huysmans, Peter De Bruyn, Gilles Oorts, Jan Verelst, Dirk van der Linden, and Herwig Mannaert

319

Applying ISO 9126 Metrics to MDD Projects
Ricardo Alonso Munoz Riesle, Beatriz Marin, and Lidia Lopez

326

Evaluation of a Security Service Level Agreement
Chen-Yu Lee and Krishna M. Kavi

333

Towards Systematic Safety System Development with a Tool Supported Pattern Language
Jari Rauhamaki, Timo Vepsalainen, and Seppo Kuikka

341

An Analysis of sSven Concepts and Design Flaws in Identity Management Systems
Joao Jose Calixto das Chagas and Felipe Ferraz

349

ATM Security: A Case Study of a Logical Risk Assessment 355

 4 / 6 17 / 512

Johannes Braeuer, Bernadette Gmeiner, and Johannes Sametinger

Applications of Security Reference Architectures in Distributed Systems: Initial Findings of Systematic Mapping
Study
Sajjad Mahmood, Muhammad Jalal Khan, and Sajid Anwer

363

Cif: A Static Decentralized Label Model (DLM) Analyzer to Assure Correct Information Flow in C
Kevin Muller, Sascha Uhrig, Michael Paulitsch, and Georg Sigl

369

Minimizing Attack Graph Data Structures
Peter Mell and Richard Harang

376

Reliability-Aware Design Specification for Allowing Reuse-Based Reliability Level Increment
Patricia Lopez, Leire Etxeberria, and Xabier Elkorobarrutia

386

Best Practices for the Design of RESTful Web Services
Pascal Giessler, Michael Gebhart, Dmitrij Sarancin, Roland Steinegger, and Sebastian Abeck

392

Criteria of Evaluation for Systems Using Sensor as a Service
Anderson Brito and Felipe Ferraz

398

Middleware Applied to Digital Preservation: A Literature Review
Eriko Brito, Paulo Cesar Abrantes, and Bruno de Freitas Barros

404

Middleware For Heterogeneous Healthcare Data Exchange: A Survey
Carlos Bezerra, Andre Araujo, Bruno Rocha, Vagner Pereira, and Felipe Ferraz

409

Teaching Robotics and Mechanisms
Daniela Marghitu and Dan . Marghitu

415

Case of Enterprise Architecture in Manufacturing Firm
Alicia Valdez, Griselda Cortes, Sergio Castaneda, Gerardo Haces, and Jose Medina

419

An Empirical Investigation on the Motivations for the Adoption of Open Source Software
Davide Taibi

426

Gamifying and Conveying Software Engineering Concepts for Secondary Education: An Edutainment Approach
Roy Oberhauser

432

Using Cloud Services To Improve Software Engineering Education for Distributed Application Development
Jorge Edison Lascano and Stephen W. Clyde

438

Controlled Variability Management for Business Process Model Constraints 445

 5 / 6 18 / 512

Neel Mani and Claus Pahl

Several Issues on the Model Interchange Between Model-Driven Software Development Tools
Una Ieva Zusane, Oksana Nikiforova, and Konstantins Gusarovs

451

Testing Smart Cities Through an Extensible Testbed
Guilherme Medeiros, Felipe Ferraz, and Gutemberg Cavalcante

457

Implementing the Observer Design Pattern as an Expressive Language Construct
Taher Ghaleb, Khalid Aljasser, and Musab Al-Turki

463

Supporting Tools for Managing Software Product Lines: a Systematic Mapping
Karen D. R. Pacini and Rosana T. V. Braga

470

Recovering Lost Software Design with the Help of Aspect-based Abstractions
Kiev Gama and Didier Donsez

477

Networking-based Personalized Research Environment : NePRE
Heeseok Choi, Jiyoung Park, Hyoungseop Shim, and Beomjong You

484

Decision Making and Service Oriented Architecture for Recruitment Process Using the New Standard Decision
Model and Notation (DMN)
Fatima Boumahdi, Houssem Eddine Boulefrakh, and Rachid Chalal

489

Powered by TCPDF (www.tcpdf.org)

 6 / 6 19 / 512

Patterns for Specifying Bidirectional Transformations in UML-RSDS

K. Lano,
S. Yassipour-Tehrani
Dept. of Informatics

King’s College London
London, UK

Email: kevin.lano@kcl.ac.uk,
s.yassipour-tehrani@kcl.ac.uk

S. Kolahdouz-Rahimi
Dept of Software Engineering

University of Isfahan
Isfahan, Iran

Email: sh.rahimi@eng.ui.ac.ir

Abstract—In this paper, we identify model transformation spec-
ification and design patterns, which support the property of
transformation bidirectionality: the ability of a single specification
to be applied either as a source-to-target transformation or as
a target-to-source transformation. In contrast to previous work
on bidirectional transformations (bx), we identify the important
role of transformation invariants in the derivation of reverse
transformations, and show how patterns and invariants can be
used to give a practical means of defining bx in the UML-RSDS
transformation language.
Keywords — Bidirectional transformations; transformation
design patterns; UML-RSDS

I. INTRODUCTION

Bidirectional transformations (bx) are considered important
in a number of transformation scenarios:

• Maintaining consistency between two models which
may both change, for example, if a UML class dia-
gram and corresponding synthesised Java code both
need to be maintained consistently with each other, in
order to implement round-trip engineering for model-
driven development.

• Where a mapping between two languages may need to
be operated in either direction for different purposes,
for example, to represent behavioural models as either
Petri Nets or as state machines [12].

• Where inter-conversion between two different repre-
sentations is needed, such as two alternative formats
of electronic health record [3].

Design patterns have become an important tool in software
engineering, providing a catalogue of ‘best practice’ solutions
to design problems in software [7]. Patterns for model transfor-
mations have also been identified [14], but patterns specifically
for bx have not been defined.

In this paper, we show how bx patterns can be used to
obtain a practical approach for bx using the UML-RSDS
language [11].

Section II defines the concept of a bx. Section V de-
scribes related work. Section III describes UML-RSDS and
transformation specification in UML-RSDS. Section IV gives
a catalogue of bx patterns for UML-RSDS, with examples.
Section VI gives a conclusion.

II. CRITERIA FOR BIDIRECTIONALITY

Bidirectional transformations are characterised by a binary
relation R : SL ↔ TL between a source language (metamodel)

SL and a target language TL. R(m, n) holds for a pair of
models m of SL and n of TL when the models consist of
data which corresponds under R. It should be possible to
automatically derive from the definition of R both forward and
reverse transformations

R→ : SL × TL → TL R← : SL × TL → SL

which aim to establish R between their first (respectively
second) and their result target (respectively source) models,
given both existing source and target models.

Stevens [16] has identified two key conditions which bidi-
rectional model transformations should satisfy:

1) Correctness: the forward and reverse transforma-
tions derived from a relation R do establish R:
R(m,R→(m, n)) and R(R←(m, n), n) for each
m : SL, n : TL.

2) Hippocraticness: if source and target models already
satisfy R then the forward and reverse transformations
do not modify the models:

R(m, n) ⇒ R→(m, n) = n
R(m, n) ⇒ R←(m, n) = m

for each m : SL, n : TL.

The concept of a lens is a special case of a bx satisfying these
properties [16].

III. BX SPECIFICATION IN UML-RSDS
UML-RSDS is a hybrid model transformation language,

with a formal semantics [10] and an established toolset [11].
Model transformations are specified in UML-RSDS as UML
use cases, defined declaratively by three main predicates,
expressed in a subset of OCL:

1) Assumptions Asm, which define when the transfor-
mation is applicable.

2) Postconditions Post, which define the intended effect
of the transformation at its termination. These are an
ordered conjunction of OCL constraints (also termed
rules in the following) and also serve to define a
procedural implementation of the transformation.

3) Invariants Inv, which define expected invariant prop-
erties which should hold during the transformation
execution. These may be derived from Post, or spec-
ified explicitly by the developer.

From a declarative viewpoint, Post defines the conditions
which should be established by a transformation. From an

1Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 20 / 512

implementation perspective, the constraints of Post also define
intended computation steps of the transformation: each com-
putation step is an application of a postcondition constraint to
a specific source model element or to a tuple of elements.

For example, an elementary transformation specification
τa2b on the languages S consisting of entity type A and T
consisting of entity type B (Figure 1) could be:

(Asm) :
B→forAll(b | b.y ≥ 0)

(Post) :
A→forAll(a | B→exists(b | b.y = a.x→sqr()))

(Inv) :
B→forAll(b | A→exists(a | a.x = b.y→sqrt()))

The computation steps α of τa2b are applications of
B→exists(b | b.y = a.x→sqr()) to individual a : A. These
consist of creation of a new b : B instance and setting its y
value to a.x ∗ a.x. These steps preserve Inv: Inv ⇒ [α]Inv.

Figure 1. A to B Transformation τa2b

This example shows a typical situation, where the invariant
is a dual to the postcondition, and expresses a form of min-
imality condition on the target model: that the only elements
of this model should be those derived from source elements
by the transformation. In terms of the framework of [16],
the source-target relation Rτ associated with a UML-RSDS
transformation τ is Post and Inv. As in the above example,
Rτ is not necessarily bijective. The forward direction of τ is
normally computed as stat(Post): the UML activity derived
from Post when interpreted procedurally [10]. However, in
order to achieve the correctness and hippocraticness properties,
Inv must also be considered: before stat(Post) is applied to the
source model m, the target model n must be cleared of elements
which fail to satisfy Inv.

In the a2b example, the transformation τ×a2b with postcon-
dition constraints:

(CleanTarget1) :
B→forAll(b | not(b.y ≥ 0) implies

b→isDeleted())
(CleanTarget2) :

B→forAll(b | not(A→exists(a | a.x = b.y→sqrt()))
implies b→isDeleted())

is applied before τa2b, to remove all B elements which fail to
be in Ra2b with some a : A, or which fail to satisfy Asm.

This is an example of the Cleanup before Construct pattern
(Section IV). Additionally, the E→exists(e | P) quantifier in
rule succedents should be procedurally interpreted as “create a
new e : E and establish P for e, unless there already exists an

e : E satisfying P”. That is, the Unique Instantiation pattern
[14] should be used to implement ‘check before enforce’ se-
mantics. The forward transformation τ→ is then the sequential
composition τ×; τ of the cleanup transformation and the
standard transformation (enhanced by Unique Instantiation).

In the reverse direction, the roles of Post and Inv are
interchanged: elements of the source model which fail to
satisfy Asm, or to satisfy Post with respect to some element
of the target model should be deleted:

(CleanSource2) :
A→forAll(a | not(B→exists(b | b.y = a.x→sqr()))

implies a→isDeleted())

This cleanup transformation is denoted τ∼×a2b . It is followed by
an application of the normal inverse transformation τ∼a2b which
has postcondition constraints Inv ordered in the corresponding
order to Post. Again, Unique Instantiation is used for source
model element creation. The overall reverse transformation is
denoted by τ← and is defined as τ∼×; τ∼.

In the case of separate-models transformations with type 1
postconditions (Constraints whose write frame is disjoint from
their read frame), Inv can be derived automatically from Post
by syntactic transformation, the CleanTarget and CleanSource
constraints can also be derived from Post, and from Asm. This
is an example of a higher-order transformation (HOT) and is
implemented in the UML-RSDS tools.

In general, in the following UML-RSDS examples, τ
is a separate-models transformation with source language S
and target language T , and postcondition Post as an ordered
conjunction of constraints of the form:

(Cn) :
Si→forAll(s | SCond(s) implies

Tj→exists(t | TCond(t) and Pi,j(s, t)))

and Inv is a conjunction of dual constraints of the form

(Cn∼) :
Tj→forAll(t | TCond(t) implies

Si→exists(s | SCond(s) and P∼i,j(s, t)))

where the predicates Pi,j(s, t) define the features of t from those
of s, and are invertible: an equivalent form P∼i,j(s, t) should
exist, which expresses the features of s in terms of those of t,
and such that

Si→forAll(s | Ti→forAll(t | Pi,j(s, t) = P∼i,j(s, t)))

under the assumptions Asm. Table I shows some examples
of inverses P∼ of predicates P. The computation of these
inverses are all implemented in the UML-RSDS tools (the
reverse option for use cases). More cases are given in [11].
The transformation developer can also specify inverses for
particular Cn by defining a suitable Cn∼ constraint in Inv,
for example, to express that a predicate t.z = s.x + s.y should
be inverted as s.x = t.z − s.y.

Each CleanTarget constraint based on Post then has the
form:

(Cn×) :
Tj→forAll(t | TCond(t) and

not(Si→exists(s | SCond(s) and Pi,j(s, t))) implies
t→isDeleted())

Similarly for CleanSource.

2Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 21 / 512

TABLE I. EXAMPLES OF PREDICATE INVERSES

P(s,t) P∼(s, t) Condition
t.g = s.f s.f = t.g Assignable features f , g
t.g = s.f→sqrt() s.f = t.g→sqr() f , g non-negative attributes
t.g = K ∗ s.f + L s.f = (t.g − L)/K f , g numeric attributes
Numeric constants K, L, K ̸= 0
t.rr = s.r→including(s.p) s.r = t.rr→front() and rr, r ordered association ends
t.rr = s.r→append(s.p) s.p = t.rr→last() p 1-multiplicity end
t.rr = s.r→sort() s.r = t.rr→asSet() r set-valued, rr ordered
t.rr = s.r→asSequence()
R(s, t) and Q(s, t) R∼(s, t) and Q∼(s, t)
t.rr = TRef [s.r.idS] s.r = SRef [t.rr.idT] rr association end with
idS primary key of SRef , element type TRef ,
idT primary key of TRef r association end with

element type SRef
t.g = s.r.idS s.r = SRef [t.g] idS primary key of SRef ,
Attribute g r association end with

element type SRef
Tj[s.idS].rr = TRef [s.r.idSRef] Si[t.idT].r = SRef [t.rr.idTRef] idS, idSRef primary
r has element type SRef , keys of Si, SRef
rr has element type TRef idT, idTRef primary

keys of Tj, TRef

IV. PATTERNS FOR BX

In this section, we give a patterns catalogue for bx, and
give pattern examples in UML-RSDS.

A. Auxiliary Correspondence Model

This pattern defines auxiliary entity types and associations
which link corresponding source and target elements. These
are used to record the mappings performed by a bx, and to
propagate modifications from source to related target elements
or vice-versa, when one model changes.

Figure 2 shows a typical schematic structure of the pattern.

Figure 2. Auxiliary Correspondence Model pattern

Benefits: The pattern is a significant aid in change-
propagation between models, and helps to ensure the correct-
ness of a bx. Feature value changes to a source element s can
be propagated to changes to its corresponding target element,
and vice-versa, via the links. Deletion of an element may imply
deletion of its corresponding element.
Disadvantages: The correspondence metamodel must be
maintained (by the transformation engineer) together with the

source and target languages, and the necessary actions in creat-
ing and accessing correspondence elements adds complexity to
the transformation and adds to its execution time and memory
requirements.

Related Patterns: This pattern is a specialisation of the
Auxiliary Metamodel pattern of [14].

Examples: This mechanism is a key facility of Triple
Graph Grammars (TGG) [1][2], and correspondence traces are
maintained explicitly or implicitly by other MT languages such
as QVT-R [15].

In UML-RSDS, the pattern is applied by introducing aux-
iliary attributes into source and target language entity types.
These attributes are primary key/identity attributes for the
entity types, and are used to record source-target element corre-
spondences. Target element t : Tj is considered to correspond
to source element(s) s1 : S1, ..., sn : Sn if they all have the
same primary key values: t.idTj = s1.idS1, etc. The identity
attributes are String-valued in this paper. The correspondence
between a source entity Si and a target entity Tj induced by
equality of identity attribute values defines a language mapping
or interpretation χ of Si by Tj in the sense of [13]:

Si 7−→ Tj

with Si→collect(idSi) = Tj→collect(idTj).

The existence of identity attributes facilitates element
lookup by using the Object Indexing pattern [14], which
defines maps from String to each entity type, permitting
elements to be retrieved by the value of their identity attribute:
Tj[v] denotes the Tj instance t with t.idTj = v if v is a
single String value, or the collection of Tj instances t with
v→includes(t.idTj) if v is a collection. The last three cases in
Table I show inverse predicates derived using this approach to
correspondence models. Note that Tj[x.idTj] = x for x : Tj.

The pattern can be used to define source-target propaga-
tion and incremental application of a transformation τ . For

3Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 22 / 512

postconditions Cn of the form

Si→forAll(s | SCond(s) implies
Tj→exists(t | TCond(t) and Pi,j(s, t)))

derived constraints Cn∆ can be defined for the incremental
application of Cn to model increments (finite collections of
creations, deletions and modifications of model elements).

The incremental version τ∆ of a transformation τ is defined
to have postconditions formed from the constraints Cn∆ for
each postcondition Cn of τ , and ordered according to the
order of the Cn in the Post of τ . In a similar way, target-
source change propagation can be defined. Change propagation
is implemented in UML-RSDS by the incremental mode of use
case execution.

B. Cleanup before Construct
This pattern defines a two-phase approach in both forward

and reverse transformations associated with a bx with relation
R: the forward transformation R→ first removes all elements
from the target model n which fail to satisfy R for any element
of the source m, and then constructs elements of n to satisfy
R with respect to m. The reverse transformation R← operates
on m in the same manner.
Benefits: The pattern is an effective way to ensure the
correctness of separate-models bx.
Disadvantages: There may be efficiency problems because
for each target model element, a search through the source
model for possibly corresponding source element may be
needed. Elements may be deleted in the Cleanup phase only
to be reconstructed in the Construct phase. Auxiliary Corre-
spondence Model may be an alternative strategy to avoid this
problem, by enforcing that feature values should change in
response to a feature value change in a corresponding element,
rather than deletion of elements.
Related Patterns: This pattern is a variant of the Construc-
tion and Cleanup pattern of [14].
Examples: An example is the Composers bx [4]. Im-
plicit deletion in QVT operates in a similar manner to this
pattern, but can only modify models (domains) marked as
enforced [15]. In UML-RSDS, explicit cleanup rules Cn×
can be deduced from the construction rules Cn, for mapping
transformations, as described in Section III above. If identity
attributes are used to define the source-target correspondence,
then Cn× can be simplified to:

Tj→forAll(t | TCond(t) and
Si→collect(sId)→excludes(t.tId) implies

t→isDeleted())

and

Tj→forAll(t | TCond(t) and
Si→collect(sId)→includes(t.tId) and s = Si[t.tId]
and not(SCond(s)) implies t→isDeleted())

In the case that TCond(t) and SCond(s) hold for corresponding
s, t, but Pi,j(s, t) does not hold, t should not be deleted, but
Pi,j(s, t) should be established by updating t:

Si→forAll(s | Tj→collect(tId)→includes(s.sId) and
t = Tj[sId] and SCond(s) and
TCond(t) implies Pi,j(s, t))

For a transformation τ , the cleanup transformation τ× has the
above Cn× constraints as its postconditions, in the same order
as the Cn occur in the Post of τ . Note that τ→ is τ×; τ , and
τ∆ is τ×; τ incrementally applied.

C. Unique Instantiation
This pattern avoids the creation of unnecessary elements

of models and helps to resolve possible choices in reverse
mappings. It uses various techniques such as traces and unique
keys to identify when elements should be modified and reused
instead of being created. In particular, unique keys can be used
to simplify checking for existing elements.
Benefits: The pattern helps to ensure the Hippocraticness
property of a bx by avoiding changes to a target model if it is
already in the transformation relation with the source model.
It implements the principle of ‘least change’ [17].
Disadvantages: The need to test for existence of elements
adds to the execution cost. This can be ameliorated by the use
of the Object Indexing pattern [14] to provide fast lookup of
elements by their primary key value.
Examples: The key attributes and check-before-enforce
semantics of QVT-R follow this pattern, whereby new elements
of source or target models are not created if there are already
elements, which satisfy the specified relations of the transfor-
mation [16]. The E→exists1(e | P) quantifier in UML-RSDS is
used in a similar way. It is procedurally interpreted as “create
a new e : E and establish P for e, unless there already exists
an e : E satisfying P” [11]. For bx, the quantifier exists should
also be treated in this way. If a transformation uses identity
attributes (to implement Auxiliary Correspondence Model), the
quantifier E→exists(e | e.eId = v and P) can be interpreted as:
“if E[v] exists, apply stat(P) to this element, otherwise create
a new E instance with eId = v and apply stat(P) to it”. This
ensures Hippocraticness.

D. Phased Construction for bx
This pattern defines a bx τ by organising Rτ as a union of

relations RSi,Tj which relate elements of entities Si and Tj which
are in corresponding levels of the composition hierarchies of
the source and target languages. Figure 3 shows the typical
schematic structure of the pattern. At each composition level
there is a 0..1 to 0..1 relation (or more specialised relation)
between the corresponding source and target entity types.

Figure 3. Phased Construction pattern

4Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 23 / 512

Benefits: The pattern provides a modular and extensible
means to structure a bx.
Examples: The UML to relational database example of [15]
is a typical case, where Package and Schema correspond at
the top of the source/target language hierarchies, as do Class
and Table (in the absence of inheritance), and Column and
Attribute at the lowest level.

In UML-RSDS a transformation defined according to this
pattern has its Post consisting of constraints Cn of the form

Si→forAll(s | SCond(s) implies
Tj→exists(t | TCond(t) and Pi,j(s, t)))

where Si and Tj are at corresponding hierarchy levels, and Inv
consists of constraints Cn∼ of the form

Tj→forAll(t | TCond(t) implies
Si→exists(s | SCond(s) and P∼i,j(s, t)))

No nested quantifiers or deletion expressions x→isDeleted()
are permitted in SCond, TCond or Pi,j, and Pi,j is restricted to
be formed of invertible expressions.

Each rule creates elements t of some target entity type
Tj, and may lookup target elements produced by preceding
rules to define the values of association end features of
t: t.tr = TSub[s.sr.idSSub] for example, where TSub is lower
than Tj in the target language composition hierarchy (as in
Figure 3) and there are identity attributes in the entities to
implement a source-target correspondence at each level. Both
forward and reverse transformations will conform to the pattern
if one direction does. The assignment to t.tr has inverse:
s.sr = SSub[t.tr.idTSub].

Two UML-RSDS bx τ : S → T , σ : T → U using
this pattern can be sequentially composed to form another bx
between S and U: the language T becomes auxiliary in this
new transformation. The forward direction of the composed
transformation is τ→; σ→, the reverse direction is σ←; τ←.

E. Entity Merging/Splitting for bx
In this variation of Phased Construction, data from multiple

source model elements may be combined into single target
model elements, or vice-versa, so that there is a many-one
relation from one model to the other. The pattern supports
the definition of such bx by including correspondence links
between the multiple elements in one model which are related
to one element in the other.
Benefits: The additional links enable the transformation to
be correctly reversed.
Disadvantages: Additional auxiliary data needs to be added
to record the links. The validity of the links between elements
needs to be maintained. There may be potential conflict
between different rules which update the same element.
Related Patterns: This uses a variant of Auxiliary Cor-
respondence Model, in which the correspondence is between
elements in one model, in addition to cross-model correspon-
dences. The attributes used to record intra-model correspon-
dences may not be primary keys.
Examples: An example of Entity Merging is the Col-
lapse/Expand State Diagrams benchmark of [6]. The UML to
RDB transformation is also an example in the case that all
subclasses of a given root class are mapped to a single table

that represents this class. The Pivot/Unpivot transformation of
[3] is an example of Entity Splitting.

In the general case of merging/splitting, the inverse of Cn:

Si1→forAll(s1 | ...
Sin→forAll(sn | SCond(s1, ..., sn) implies

Tj1→exists(t1 | ...
Tjm→exists(tm | TCond(t1, ..., tm) and

P(s1, ..., sn, t1, ..., tm))...)) ...)

is Cn∼:

Tj1→forAll(t1 | ...
Tjm→forAll(tm | TCond(t1, ..., tm) implies

Si1→exists(s1 | ...
Sin→exists(sn | SCond(s1, ..., sn) and

P∼(s1, ..., sn, t1, ..., tm))...))...)

In UML-RSDS, correspondence links between elements in
the same model are maintained using additional attributes. All
elements corresponding to a single element will have the same
value for the auxiliary attribute (or a value derived by a 1-1
function from that value).

F. Map Objects Before Links for bx
If there are self-associations on source entity types, or other

circular dependency structures in the source model, then this
variation on Phased Construction for bx can be used. This
pattern separates the relation between elements in target and
source models from the relation between links in the models.
Benefits: The specification is made more modular and
extensible. For example, if a new association is added to
one language, and a corresponding association to the other
language, then a new relation relating the values of these
features can be added to the transformation without affecting
the existing relations.
Disadvantages: Some features of one entity type are treated
in separate relations.
Examples: In UML-RSDS a first phase of such a transfor-
mation relates source elements to target elements, then in a
second phase source links are related to corresponding target
links. The second phase typically has postcondition constraints
of the form Si→forAll(s | Tj[s.idS].rr = TRef [s.r.idSRef]) to
define target model association ends rr from source model
association ends r, looking-up target model elements Tj[s.idS]
and TRef [s.r.idSRef] which have already been created in
a first phase. Such constraints can be inverted to define
source data from target data as: Tj→forAll(t | Si[t.idT].r =
SRef [t.rr.idTRef]). The reverse transformation also conforms
to the Map Objects Before Links pattern.

An example of this pattern is the tree to graph transforma-
tion [9], Figure 4.

A first rule creates a node for each tree:

Tree→forAll(t | Node→exists(n | n.label = t.label))

A second rule then creates edges for each link between parent
and child trees:

Tree→forAll(t |
Tree→forAll(p | t.parent→includes(p) implies

Edge→exists(e | e.source = Node[t.label] and
e.target = Node[p.label])))

5Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 24 / 512

Figure 4. Tree to graph metamodels

The corresponding invariant predicates, defining the reverse
transformation, are:

Node→forAll(n | Tree→exists(t | t.label = n.label))

and

Edge→forAll(e |
Tree→exists(t | Tree→exists(p |

t.parent→includes(p) and
t.label = e.source.label and
p.label = e.target.label)))

Inv is derived mechanically from Post using Table I, and pro-
vides an implementable reverse transformation, since stat(Inv)
is defined.

V. RELATED WORK

There are a wide range of approaches to bx [8]. Cur-
rently the most advanced approaches [2][5] use constraint-
based programming techniques to interpret relations P(s, t)
between source and target elements as specifications in both
forward and reverse directions. These techniques would be a
potentially useful extension to the syntactic inverses defined in
Table I, however the efficiency of constraint programming will
generally be lower than the statically-computed inverses. The
approach also requires the use of additional operators extend-
ing standard OCL. Further techniques include the inversion of
recursively-defined functions [18], which would also be useful
to incorporate into the UML-RSDS approach.

In [13] we identify the role of language interpretations
χ : S → T in specifying transformations. Interpretations are
closely related to transformation inversion: at the model level a
mapping Mod(χ) : Mod(T) → Mod(S) from the set of models
of T to those of S can be defined based on χ: the interpretation
of an S language element E in Mod(χ)(n) for n : Mod(T) is
that of χ(E) in n. Syntactically, the inverse of a transformation
τ specified by a language morphism χ can be derived from χ:
the value of a feature f of source element s of source entity
E is set by s.f = t.χ(E :: f) in the case of an attribute, and
by s.r = SRef [t.χ(E :: r).idTRef] in the case of a role with
element type SRef .

Considerable research has been carried out on the theory
of bx. One principle which has been formulated for bx is the
principle of least change [17]. This means that a bx which
needs to modify one model in order to re-establish the bx

relation R with a changed other model, should make a minimal
possible such change to the model. In our approach, Post in
the forward direction, and Inv in the reverse direction, express
the necessary minimal conditions for the models to be related
by R. The synthesised implementation of these constraints as
executable code carries out the minimal changes necessary to
establish Post and Inv, and hence satisfies the principle of least
change.

VI. CONCLUSION

We have defined a declarative approach for bidirectional
transformations based on the derivation of forward and reverse
transformations from a specification of dual postcondition
and invariant relations between source and target models.
The approach enables a wide range of bx to be defined,
including cases of many-to-one and one-to-many relations
between models, in addition to bijections. We have described
transformation patterns which may be used to structure bx. The
derivation of reverse transformations has been implemented in
the UML-RSDS tools [11].

REFERENCES
[1] A. Anjorin and A. Rensink, “SDF to Sense transformation”, TU

Darmstadt, Germany, 2014.
[2] A. Anjorin, G. Varro, and A. Schurr, “Complex attribute manipulation

in TGGs with constraint-based programming techniques”, BX 2012,
Electronic Communications of the EASST vol. 49, 2012.

[3] M. Beine, N. Hames, J. Weber, and A. Cleve, “Bidirectional transfor-
mations in database evolution: a case study ‘at scale’”, EDBT/ICDT
2014, CEUR-WS.org, 2014.

[4] J. Cheney, J. McKinna, P. Stevens, and J. Gibbons, “Towards a reposi-
tory of bx examples”, EDBT/ICDT 2014, 2014, pp. 87–91.

[5] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, “JTL: a
bidirectional and change propagating transformation language”, SLE
2010, LNCS vol. 6563, 2011, pp. 183–202.

[6] K. Czarnecki, J. Nathan Foster, Z. Hu, R. Lammel, A. Schurr, and J.
Terwilliger, “Bidirectional transformations: a cross-discipline perspec-
tive”, GRACE workshop, ICMT, 2009.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns:
Elements of Reusable Object-Oriented Software”, Addison-Wesley,
1994.

[8] Z. Hu, A. Schurr, P. Stevens, and J. Terwilliger (eds.), “Report from
Dagstuhl Seminar 11031”, January 2011, www.dagstuhl.de/11031.

[9] D. S. Kolovos, R. F. Paige, and F. Polack, “The Epsilon Transformation
Language”, ICMT, 2008, pp. 46–60.

[10] K. Lano and S. Kolahdouz-Rahimi, “Constraint-based specification of
model transformations”, Journal of Systems and Software, vol. 88, no.
2, February 2013, pp. 412–436.

[11] K. Lano, The UML-RSDS Manual,
www.dcs.kcl.ac.uk/staff/kcl/uml2web/umlrsds.pdf, 2015.

[12] K. Lano, S. Kolahdouz-Rahimi, and K. Maroukian, “Solving the Petri-
Nets to Statecharts Transformation Case with UML-RSDS”, TTC 2013,
EPTCS, 2013, pp. 101–105.

[13] K. Lano and S. Kolahdouz-Rahimi, “Towards more abstract specifica-
tion of model transformations”, ICTT 2014.

[14] K. Lano and S. Kolahdouz-Rahimi, “Model-transformation Design
Patterns”, IEEE Transactions in Software Engineering, vol 40, 2014,
pp. 1224–1259.

[15] OMG, MOF 2.0 Query/View/Transformation Specification v1.1, 2011.
[16] P. Stevens, “Bidirectional model transformations in QVT: semantic

issues and open questions”, SoSyM, vol. 9, no. 1, January 2010, pp.
7–20.

[17] Theory of Least Change, groups.inf.ed.ac.uk/bx/, accessed 3.9.2015.
[18] J. Voigtlander, Z. Hu, K. Matsuda, and M. Wang, “Combining syntactic

and semantic bidirectionalization”, ICFP ’10, ACM Press, 2010, pp.
181–192.

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 25 / 512

Towards a Framework for Software Product Maturity Measurement

Mohammad Alshayeb1, Ahmad Khader Abdellatif1, Sami Zahran2 and Mahmood Niazi1
1: Information and Computer Science Department
King Fahd University of Petroleum and Minerals

Dhahran, 31261 Saudi Arabia
e-mail: {alshayeb, aabdellatif, mkniazi}@kfupm.edu.sa

2: Intelligent Consultancy & Training (ICT) Limited, United Kingdom

e-mail: Sami_zahran@hotmail.com

Abstract—Capability Maturity Model Integration (CMMI) is a
software process improvement model that aims at improving the
processes of the software development. CMMI focuses on the
“process quality” instead of “product quality”. Studies have
shown that focusing on “process quality” alone does not
guarantee the quality of the produced software, whereas equal
attention to product quality is also essential for ensuring the
overall software quality. The objective of this paper is to present
the initial structure of the framework we propose to measure
and assess the software product maturity level. The measure we
use for the product maturity is the level of the product
compliance with the internal and external quality attributes
defined in the stakeholders’ requirements. In this framework,
we focus on the quality of the product of the process. The
proposed framework will help assess the quality of the software
product through assessment of the final software deliverable.
Successful implementation of the proposed framework will
provide a better insight of the software product quality, hence
its maturity. We refer to any deliverable code as a product.

Keywords-Software Product Quality; Software Product
Maturity; Product Maturity Assessment; Product Maturity Levels;
Product Maturity Model Integration (PMMI); Product Maturity
Assessment Method (PMAM).

I. INTRODUCTION

The Software Engineering Institute (SEI) of Carnegie
Mellon University (CMU) defines the Capability Maturity
Model Integration (CMMI) as a process improvement
approach that provides organizations with the essential
elements of effective processes to improve their software
development performance. CMMI process improvement
includes identifying the organization’s process strengths and
weaknesses and making process changes to convert
weaknesses into strengths [1]. CMMI consists of best
practices that help organizations to improve their software
development effectiveness, efficiency, and quality [2].

CMMI defines three constellations, which are collections
of best practices and process improvement goals that
organizations use to evaluate and improve their processes.
These goals and practices are organized into different process
areas. The three constellations are:

1. The CMMI for Acquisition (CMMI-ACQ): provides
guidance to organizations that manage the supply
chain to acquire products and services that meet the
needs of the customer.

2. The CMMI for Development (CMMI-DEV):
provides process improvement guidance to
organizations that develop products and services.

3. The CMMI for Services (CMMI-SVC): provides
guidance to organizations that establish, manage, and
deliver services that meet the needs of customers and
end users.

CMMI aims at improving the process of the software
development, however, that does not guarantee the quality of
the produced software as the focus in CMMI does not cover
“product quality”. Previous research have shown that dealing
with only “process quality” is not sufficient and that
assessment of “product quality” is also required for the
improvement of overall software quality [3]. Our proposed
framework described in this paper focuses on the quality of
the product instead of the process. The quality/maturity of the
software product can be assured through the assessment of
deliverables of the major phases of the software development
lifecycle. Our proposed framework adopts a method for
technical product evaluation and quality assessment as the
basis for establishing the product’s level of maturity. The level
of product maturity measured by the degree of its compliance
with the internal and external quality attributes defined in the
stakeholders requirements. We call this framework Technical-
CMMI (T-CMMI). The proposed framework along with the
assessment method will: 1) enable software companies to
assess their software products to ensure they meet the desired
quality before they release it to their clients, 2) enable clients
to evaluate the quality of the product before purchasing it and
3) provide the clients with the ability to compare between the
quality of different software products.

The rest of this paper is organized as follows: we present
the related work in Section 2. In Section 3, we describe the
proposed framework. Finally, in Section 4, we present the
conclusions and future work.

7Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 26 / 512

II. RELATED WORK

In this section, we review the literature on developing
maturity models and in software certification for quality
assessment.

A. Software Product Maturity Models

Researchers proposed different product maturity models.
Al-Qutaish et al. [4] proposed a software product quality
maturity model (SPQMM) for assessing the quality of the
software product. The proposed model is based on ISO 9126,
Six Sigma, and ISO 15026. The model uses the
characteristics, sub-characteristics, and measurements of ISO
9126. The values are combined into a single value, which are
converted to six sigma. After that, the integrity level of the
software product using ISO 15026 is calculated. Finally, the
maturity level of the software product is identified. SPQMM
is limited to the quality attributes and metrics defined in
ISO/IEC 9126 standard.

The EuroScope consortium [5] proposed SCOPE Maturity
Model (SMM), a maturity model of software products
evaluation. The model has five maturity levels: initial,
repeatable, defined, managed, and optimizing. SMM levels 2,
3, and 4 use ISO 12119, ISO/IEC 9126, and ISO 14598
standards. SMM is a measure of the quality in terms of
matching stated specifications or requirements; tests are
executed to assess the degree to which a product meets the
required specifications. SMM requires the process to be
documented to ensure the product matches the specifications.
Thus, SMM does not focus on the final product quality (code).

April et al. [6] proposed the Software Maintenance
Maturity Model (SMmm) However, SMmm focuses only on
maintainability. Alvaro et al. [7] proposed a Software
Component Maturity Model (SCMM) that is based on
ISO/IEC9126 and ISO/IEC 14598 standards. SCMM contains
five levels. SCMM depends mainly on the component quality
model (CQM). SCMM measures only the maturity of the
components and it cannot assess different types of product
such as enterprise applications, web-services. Golden et al. [8]
proposed the Open Source Maturity Model (OSMM) which
helps in assessing and comparing open source software
products to identify which one is the best for a defined
application. OSMM evaluates the maturity of open source
products only without assessing the quality of these software
products. OSMM is not primarily used to assess software
product quality attributes or product maturity but to help
organizations perform a comparison between open source
systems.

These three models above either
 Use limited set of quality attributes [4], do not focus

on measuring the final software quality [5], or
 Have limited scope [6]-[8].[6-8].
Therefore, the proposed model will overcome all these

limitations.
Our proposed model is designed to be flexible to enable

the assessor(s) to define their own set of quality attributes and
metrics (based on the stakeholders requirements). In addition,

it is generic enough to be applicable to any type of software
domain, size or development method.

B. Software Product Certifications

Our proposed model can also serve in certifying software
products. Software certification can be granted for different
types of software such as final software products [9-13] and
components [14]. Certification can be provided by
independent agencies, which function like other quality
agencies. Involving external agencies in providing the
certificate increases the trust in the certification as indicated
by Voas [15] “completely independent product certification
offers the only approach that consumers can trust”. Most of
the certification methods are process-based [16], from the
process they can determine the quality of the final product.
However, certifying the software development process only
does not guarantee the quality of the final product [3].

III. FRAMEWORK FOR SOFTWARE PRODUCT MATURITY

MODEL INTEGRATION

In this section, we describe the proposed product maturity
assessment framework that can be used to assess the maturity
of software products. T-CMMI follows the CMMI approach
in defining a reference model and assessment method. T-
CMMI consists of two parts:

1. Reference Model that describes the common basis for
the assessors to assess the maturity of software
products. The reference model describes a scale of the
maturity/capability levels of the software product
based on its degree of compliance with a set of quality
attributes and metrics defined in the stakeholders’
requirements.

2. Assessment Method that describes how to use the
reference model in assessing the final software
product. It also provides guidelines and checklists that
help in the assessment process and to ensure a
common base of judgment.

Both reference model and the assessment method of the T-
CMMI are shown in Figure 1.

We adopted CMMI structure for the development of T-
CMMI architecture, which contains a reference model and an
assessment method. The reference model for the T-CMMI is

T-CMMI

<<Reference
Model>>

Product Maturity
Model Integration

(PMMI)

<<Assessment
Method>>

Product Maturity
Assessment Method

(PMAM)

Figure 1. T-CMMI Architecture

8Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 27 / 512

called Product Maturity Model Integration (PMMI), which
contains the capability and product maturity levels. PMMI
contains a predefined set of quality attributes and metrics to
measure these quality attributes. PMMI adopts the focus-area
maturity model structure as opposed to the fixed levels
maturity model structure adopted by CMMI. PMMI has two
focus-areas, which concentrate on the internal and external
quality attributes of the product. The purpose of the Reference
Model is to provide a platform and a focus for gathering
evidence for product quality indicators that will be used to
assess the product maturity level during the Product Maturity
Assessment.

The assessment method is called Product Maturity
Assessment Method (PMAM). PMAM defines the steps for
assessing the final software product against the reference
model maturity levels. PMAM contains guidelines and
checklists to illustrate how the assessors follow the guidelines
in order to measure the capability level and product maturity
level for both of PMMI’s focus-areas, which concentrate on
the internal and external quality attributes. The purpose of the
PMAM is to provide a standard method for assessing the
product maturity/capability by assessing the degree to which
the product conforms to the stakeholders required quality
attributes. Below, we discuss these two components in details.

A. Product Maturity Model Integration (PMMI)

PMMI defines a reference model for assessing product
maturity and capability. The scope of the PMMI reference
model covers integrated view to the end-to-end lifecycle
starting with product requirements and ending with product
integration, testing and release. The lifecycle is divided into
two stages, the DEV stage and the REL stage. These two

stages are separate Functional Domains (containing all
activities and actors that are involved in the set of activities
defined in the development methodology being followed).
Each of the DEV & REL stage will have its own Set of
Stakeholders and product quality attributes. These two
functional domains are defined as follows:

 The DEV stage: covers all the processes and activities
for software development, integration and testing
(both software unit and software integration testing)
of the product. The outcome of the DEV stage is a
product ready to be transitioned to the REL stage.

 The REL stage: covers system integration and product
pre-release testing

Figure 2 illustrates the PMMI structure showing the DEV
and REL stages. Figure 2 shows the main components of each
PMMI stage. On the left side are DEV-Stage components,
which focus on measuring internal quality attributes, while on
the right side are REL-Stage components, which focus on
external quality attributes. Product maturity assessment
component contains the metrics for each quality attribute that
are measured and their results are collected to calculate the
capability level for each quality attribute. Then, the capability
level of all quality attributes will be fetched into PMMI
internal/external quality attributes components. In PMMI
internal/external quality attributes component, the weighted
average capability values of all quality attributes is calculated
to measure the stage maturity level. Finally, the calculated
maturity level will be the input to Aggregated DEV/REL
Stage Maturity Level component where it is rounded down to
calculate the stage maturity level.

DEV Stage Product Maturity Level

Software product internal
Quality Attributes

Aggregated DEV Stage Maturity
Level

Product Maturity Assessment
PMA#1

REL Stage Product Maturity Level

Software product external Quality
Attributes

Aggregated REL Stage Maturity
Level

Product Maturity Assessment
PMA#2

Weighted average capability
values of the quality attributes

Measurement results
from assessing the

product compliance
with the quality

attributes

Figure 2. Components of the Product Maturity Model Integration (PMMI)

9Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 28 / 512

B. Product Maturity Assessment Method (PMAM)

The PMAM assessment method covers the activities
necessary to determine the extent of a product capability
to perform in a full compliance with stakeholders’ quality
requirements. The scope of the assessment is to assess a
software product's degree of compliance with the quality
attributes defined by the stakeholders (agreed in advance
with the assessment sponsor) that covers an integrated
view of the end-to-end lifecycle starting with the product
and ending with product integration, testing and release.
The purpose of the PMAM is to provide a standard
method for assessing the level of the product
maturity/capability by assessing the degree of the
product’s conformance with the stakeholders required
quality attributes. The PMAM method is compliant with
“Guidance on Performing an Assessment” ISO model
(ISO 15504-3) [17] framework for software assessment
in specifying and defining:

1. Assessment Input.
2. Assessment Process.
3. Assessment Output.
4. Identity of assessment sponsors
5. Identity of Assessors.
6. Responsibilities of each PMAM team member.
7. Expected assessment output and minimum data

that should be included in the final assessment
report

C. T-CMMI Flexibility

Both components of T-CMMI (PMMI and PMAM)
are designed to be flexible and independent of the specific
development methodology. In PMMI, assessors can 1)
define the quality attributes of interest to the relevant
stakeholders with no limits as ISO 9126 defines six
attributes only, 2) select the metrics used to measure these
quality attributes and 3) define the target capability and
maturity levels and their threshold.

PMAM is also designed to be flexible. PMAM
process, 1) is applicable to all software domains, 2) can
be applied to all software with any size and complexity,
and 3) is applicable to all software development lifecycles
regardless of the process (or the development
methodology) used to build it.

IV. CONCLUSION AND FUTURE WORK

This paper presented an approach towards developing
a software product maturity model. The proposed
framework gives the ability to measure the maturity of a
software product of any size and domain. It is also
applicable to all software regardless of the process used
to build it. T-CMMI framework is designed to be flexible,
however, assessors can always use the pre-defined set of
quality attributes and metrics (which will be supplied
with the model) if they wish without customization.

T-CMMI will complement CMMI as CMMI assesses
the process quality while T-CMMI assesses product
quality. We expect that companies with higher CMMI
level should produce better products measured by T-
CMMI framework.

In our future work, we plan to complete the
development and evaluation of the framework. We will
also develop a website to automate the assessment
process.

ACKNOWLEDGEMENT

The authors would like to acknowledge the support
provided by King Abdul-Aziz City for Science and
Technology (KACST) through the Science &
Technology Unit at King Fahd University of Petroleum
& Minerals (KFUPM) for funding this work through
project no. 12-INF3012-04 as part of the National
Science, Technology and Innovation Plan.

REFERENCES
[1] SEI-CMU. Capability Maturity Model Integration. Accessed

(August 2015), Available: http://www.sei.cmu.edu/cmmi/
[2] SEI-CMU. CMMI Process Areas. Accessed (August 2015),

Available: http://cmmiinstitute.com/cmmi-overview/cmmi-
process-areas/

[3] T. Maibaum and A. Wassyng, "A product-focused approach to
software certification," Computer, vol. 41, 2008, pp. 91-93.

[4] R. Qutaish and A. Abran, "A maturity model of software product
quality," Journal of Research and Practice in Information
Technology, vol. 43, 2011, pp. 307-327.

[5] A. B. Jakobsen, M. O’Duffy, and T. Punter, "Towards a maturity
model for software product evaluations," in Proceedings of 10th
european conference on software cost estimation (ESCOM’99),
1999.

[6] A. April, J. Huffman Hayes, A. Abran, and R. Dumke, "Software
Maintenance Maturity Model (SMmm): the software
maintenance process model," Journal of Software Maintenance
and Evolution: Research and Practice, vol. 17, 2005, pp. 197-
223.

[7] A. Alvaro, E. S. de Almeida, and S. L. Meira, "A Software
Component Maturity Model (SCMM)," in Software Engineering
and Advanced Applications, 2007. 33rd EUROMICRO
Conference on, 2007, pp. 83-92.

[8] B. Golden, Succeeding with open source: Addison-Wesley
Professional, 2005.

[9] R. Baggen, J. P. Correia, K. Schill, and J. Visser, "Standardized
code quality benchmarking for improving software
maintainability," Software Quality Journal, vol. 20, 2012, pp.
287-307.

[10] J. P. Correia and J. Visser, "Certification of technical quality of
software products," in Proc. of the Int’l Workshop on
Foundations and Techniques for Open Source Software
Certification, 2008, pp. 35-51.

[11] P. Heck, M. Klabbers, and M. van Eekelen, "A software product
certification model," Software Quality Journal, vol. 18,
2010/03/01 2010, pp. 37-55.

[12] P. M. Heck, "A Software Product Certification Model for
Dependable Systems " Eindhoven: Technische Universiteit
Eindhoven 2006.

[13] J. H. Yahaya, A. Deraman, and A. R. Hamdan, "SCfM_PROD:
A software product certification model," in Information and
Communication Technologies: From Theory to Applications,
2008. ICTTA 2008. 3rd International Conference on, 2008, pp.
1-6.

10Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 29 / 512

[14] A. Alvaro, E. S. d. Almeida, and S. L. Meira, "Towards a
Software Component Certification Framework," in Proceedings
of the Seventh International Conference on Quality Software,
2007, pp. 298-303.

[15] J. Voas, "Developing a usage-based software certification
process," Computer, vol. 33, 2000, pp. 32-37.

[16] J. Morris, G. Lee, K. Parker, G. A. Bundell, and C. P. Lam,
"Software component certification," Computer, vol. 34, 2001, pp.
30-36.

[17] ISO/IEC, "15504-3: Information Technology - Process
Assessment - Part 3 - Guidance on Performing an Assessment
No. 15504-3," 2004.

11Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 30 / 512

An Exploratory Study on the Influence of Developers in Code Smell Introduction

Leandro Alves, Ricardo Choren, Eduardo Alves
Military Institute of Engineering - IME

Computer Science’s Departament
RJ, Brazil

Email: leansousa@gmail.com, choren@ime.eb.br, eduaopec@yahoo.com.br

Abstract—A code smell is any symptom in the source code
that possibly indicates a deeper maintainability problem. Code
smell introduction is a creative task - developers unintentionally
introduce code smells in their programs. In this study, we try
to obtain a deeper understanding on the relationship between
developers and code smell introduction on a software. We ana-
lyzed instances of code smells previously reported in the literature
and our study involved over 6000 commits of 5 open source
object-oriented systems. First, we analyzed the distributions of
developers using specific characteristics to classify the developers
into groups. Then, we investigated the relationships between types
of developers and code smells. The outcome of our evaluation
suggests that the way a developer participates in the project may
be associated with code smell introduction.

Keywords–Code smells; exploratory study; software development
and maintenance; development teams

I. INTRODUCTION

Software development is a complex activity that does
not end even when the software is delivered. Usually, a
software needs to be modified to correct faults, to improve
performance or other attributes, or to adapt the product to a
modified environment [1]. However, continuous change can
degrade the system maintainability. The degree of maintain-
ability of a software system can be defined as the degree of
ease that the software can be understood, adjusted, adapted,
and evolved, and comprises aspects that influence the effort
required to implement changes, perform modifications and
removal of defects [2]. There are several issues that decrease
the maintainability of a software system, such as problems
with design principles, lack of traceability between analysis
and design documentation, source code without comments and
code smells.

Code smells are characteristics of the software that may
indicate a code or design problem that can make software hard
to evolve and maintain [3]. For instance, the more parameters
a method has, the more complex it is. It would be desirable to
limit the number of parameters you need in a given method,
or use an object to combine the parameters. The presence of
code smells indicates that there are issues with code quality,
such as understandability and changeability, which can lead to
maintainability problems [4].

The code quality depends on how good the developers
are. However, there is little knowledge about the influence of
developers on the introduction of code smells in a software
system. Previous work focus on code smell detection and
removal [5][6] and other studies focus on the awareness about
code smells on the developer’s side [4][6]. The challenge is
to further understand the relationship between developers and

code smell introduction. As a result, software managers have
little knowledge on how the development team affects the
software maintainability.

There are still some questions regarding the interplay
between developers and the existence of code smells in a
source code. Can the way how a developer Works in a Project,
be used to understand the frequency of some code smell
introduction in a source code? What types of code smells a
developer is more likely to introduce? Understanding these
issues may help developers to improve their skills and to build
team culture with the purpose of avoiding code smells.

This paper presents a study to assess the influence of
developers in code smell introduction in software code. Our
investigation focused on the study of five software maintenance
projects. The projects were selected because of the following
characteristics: they were open source projects; information
about them were available in a Git repository [7]; they had a
substantial number of commits (over a seven hundred each);
and they were developed using an object oriented programming
language (Java).

This paper is structured as follows: Section 2 presents the
concepts related to Code Smells and the classification of the
developers. Section 3 describes a proposed method to sort
the developers in groups and assess the contribution on the
variation of Code Smells in the source code of the software.
Section 4 demonstrates a case study for the application of the
method of classification of developers, evaluating the influence
of each developer group in variation of Code Smells. Section
5 describes related work and finally, Section 6 presents the
conclusion of this article.

II. STUDY PRELIMINARIES

This Section presents the definitions of code smells and of
developer characteristics used in our study.

A. Code Smells

Webster [8] defined antipatterns in object-oriented devel-
opment. An antipattern is similar to a pattern except it is an
obvious but wrong solution to a problem. Nevertheless, these
antipatterns will be tried again by someone simply because
they appear to be the right solution [9]. Code smells refer to
structural characteristics of a source code that indicate this
code has problems, affecting directly on the maintainability
of the software and resulting in a greater effort to carry out
developments in this source code [10].

12Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 31 / 512

B. Developer Characteristics
Software development is a human activity [11]. Under-

standing the human factors of the developers allows soft-
ware managers to organize them in groups, so that they can
compose more efficient teams [12]. Whereas distinguishing
and verifying the impacts of each developer individually is
a very difficult task, developers can be categorized according
to their involvement in a software project. The involvement of
a developer can be measured in terms of level of participation
and degree of authorship on the source code [13].

The level of participation is related to the developer’s
involvement in the project and can be used, for example, to
determine the degree of decision-making the developer has in
the project team, allowing discover developers who exercise
leadership in project [13][14]. The degree of authorship indi-
cates the usual tasks the developer performs when acting on the
software source code. It involves line code change, insertion
or removal and file (e.g., class in an object-oriented system)
insertion and removal.

III. STUDY SETTINGS

The goal of our study is to investigate the influence of
developers on the introduction of code smells in a software
code. To do so, we analyzed the sequence of commits done
in the repository of five different software projects. Merge
(branches) were considered in the selection of the project
commits.

First, we categorized the developers in different groups
according to their characteristics in the project (participation
and authorship). Then, for each commit, we searched for code
smells in the source code. The quality focus was the analysis
on the variation of the number of code smells along the time.

To categorize the developers, we used the k-means clus-
tering algorithm [15]. The information used in the k-means
algorithm was taken from the software repository and they
were related to the participation level and degree of authorship
of the developers in each selected project.

To find code smells in the source code, we used PMD [16],
a static rule-set based Java source code analyser that seeks to
evaluate aspects related to good programming practices.

A. System Characteristics
The first decision we made in our study was the selection

of the target systems. We chose five medium-size systems. The
first one, called Behave, is an automation tool for functional
testing. It was first versioned in 2013 and we found 724
commits in its project. We selected 373 commits of Behave
in our study. The second was JUnit, a unit-testing framework
for the Java programming language. It was first versioned in
2000 and we found 1885 commits in its project. We selected
1203 commits of Junit in our study. The third one was Mockito,
an open source-testing framework for Java, which allows the
creation of test double objects (mock objects) in automated
unit tests for the purpose of Test-driven Development or
Behavior Driven Development. It was first versioned in 2007
and we found 1993 commits in its project. We selected 1561
commits of Mockito in our study. The fourth one, called
RxJava, is a library for composing asynchronous and event-
based programs using observable sequences for the Java VM.
It was first versioned in 2012 and we found 2939 commits

in its project. We selected 906 commits of RxJava in our
study. The last system was VRaptor, a Java MVC Framework
focused in delivering high productivity to web developers. It
was first versioned in 2009 and we found 3385 commits in its
project. We selected 2243 commits of VRaptor in our study.
The projects selected for this study were taken from the Git
repository on June 2014.

These systems were chosen because they met a number of
relevant criteria for our study. First, these systems encompass
a rich set of code smells (e.g., Dead Code, Long Method,
Unhandled Exception). Second, they are non-trivial systems
and their sizes are manageable for an analysis of code smells.
Third, each one of them were implemented by more than
50 programmers with different levels of participation (the
selected systems were all open source projects). Last, they
have a significant lifetime, comprising of several commits.
The availability of multiple commits allowed us to observe
the introduction of code smell throughout their long-term
development and evolution.

It should be noted that for this study, commits were
discarded that altered documentation of source code, HTML
pages and templates (css, imagens, javascript) changes because
they have no relation with change of code smells.

B. Study Phases
Our study was based on the analysis of the developers’

information and the systems’ code smells. The main phases of
our study are described next.

Recovering the Developers’ Information. In this phase,
we focused in gathering information about the level of partic-
ipation and degree of authorship of a developers. The reason
was that we needed to group the developers so that we
could rely on general coding behaviour instead of trying to
focus in each developer separately. We selected information
from the data available in the Git repository. As a result, we
concentrated on the analysis of information for each developer
commit. For level of participation, we collect date and time
of commit initial, date and time of last commit and interval
(days) between commits. For degree of authorship, we collect
amount of modified files (classes) in the commit (insertion,
modification and deletion) and the amount of lines of code
modified during the commit (insertion and deletion).

Classifying the Developers. The recovered information
was used in the k-means clustering algorithm to identify groups
of developers with similar characteristics, according to their
participation and degree of authorship in the project. In this
study, we used the k-means algorithm varying the value of
k from four up to nine in order to verify the distribution of
developers in the clusters.

The overall results provided six sets of developer clusters.
Analysing these sets, we decided to use the results from k=5
(five clusters) because we wanted to avoid the presence of
very scarce clusters. Then we used the apriori association
algorithm to find correlations between different attributes in
each cluster. The results identified the general association rules
for the population of each cluster, as shown in Table I.

(a) Group 01: less frequent participation and line code
deletion as general authorship behaviour;

(b) Group 02: less frequent participation and line code
insertion and deletion as general authorship behaviour;

13Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 32 / 512

(c) Group 03: less frequent participation and file inser-
tion, modification and deletion as general authorship
behaviour;

(d) Group 04: more frequent participation and no partic-
ular general authorship behaviour (i.e., it performs all
behaviours almost evenly);

(e) Group 05: more frequent participation and file inser-
tion as general authorship behaviour.

TABLE I. POPULATION OF EACH CLUSTER

Gr. Behave JUnit Mokito RxJava VRaptor

01 2 15 5 2 24
02 7 27 25 31 10
03 10 33 58 13 31
04 2 14 17 17 15
05 15 6 5 10 13

Selection of Code Smells. In this phase, we focused on
selecting code smells that were previouly described in the
literature. Moreover, we have not considered creating specific
PMD rulesets to identify code smells. The reason was that we
needed to rely on code smells that could be precisely identified
in a systematic fashion, without any specialist assistance. As
a result, we concentrated on the analysis of five existing code
smells [17], which covered various anomalies related to object
oriented programming. Those were: Dead Code (DC); Large
Class (LC); Long Method (LM); Long Parameter List (LPL);
and, Unhandled Exception (UE).

Identifying Occurrences of Code Smells. Code smells
were identified using the PMD tool. Thus, code smells were
detected using five ready-to-run PMD rulesets. We decided not
to define specific rules for this study because we understand
that code smells should be identified as simply as possible.

Analysis of Code Smell Introduction. The goal of the fifth
phase was to analyse the behaviour of code smell introduction
for the selected projects. The analysis aimed at triggering some
insights for helping maintainers to understand the relationships
between code smell introduction and the developers in the
project team. To support the data analysis, the assessment
phase was decomposed in three main stages. The first stage
aimed at examining the occurrence frequency of each code
smell in the analyzed commits. The second stage was con-
cerned with observing the participation of the developers in
the analyzed commits. The last stage focused on assessing
the relationship of developers on a code smell manifestation.
In this last stage, we calculated the average percentage of
introduction and of removal of the selected code smell by each
group of developers. The idea is to verify the general influence
of each group in the project.

IV. STUDY FINDINGS

The first subsection below shows the total number of
each investigated code smell in the target systems. The fol-
lowing five subsections report the findings associated with
the characterization of code smells and the involvement of
the developers. Finally, the last subsection presents some
discussion about the results and the impact of developers in
code smell introduction.

A. Occurrence of Code Smells
There was a significant difference on how often each

investigated code smell occurred in the target systems. The
results are summarized in Table II. The ”I” column indicates
the total number of times each code smell was inserted in
each target system and the ”R” column indicates the total
number of times each code smell was removed. The ”Tot” line
presents the total number of smell instances detected (inserted
and removed respectively). For ”I” equal to 0 means that there
was no inclusion of this code smell. For ”R” equal to 0, means
that no removal of said code smell. It is important to mention
that not all code smells inserted in the analyzed commits were
removed.

TABLE II. CODE SMELL OCCURRENCES

Behave JUnit Mokito RxJava VRaptor

CS I R I R I R I R I R

DC 91 81 208 262 230 335 168 224 311 517
LC 39 92 204 242 181 340 215 224 220 403
LM 46 61 98 161 112 353 149 225 150 409
LPL 0 0 3 9 0 0 63 112 0 1
UE 69 95 240 269 337 288 205 236 377 419

Tot 245 329 753 943 860 1316 800 1021 1058 1749

B. Dead Code
The Dead Code code smell refers to code that is not been

used. These code smells were identified using the Empty Code,
Unnecessary and Unused Code rulesets in PMD. These rulesets
are composed of the following rules:

(a) Empty Code: this ruleset aims to check if there are
empty statements of any kind (empty method, empty
block statement, empty try or catch block, etc.);

(b) Unnecessary: this ruleset aims to determine whether
there are unnecessary code (unnecessary returns, final
modifiers, null checks, etc.);

(c) Unused Code: this ruleset aims to find unused or
ineffective code (unused fields, variables, parameters,
etc.).

The results are summarized in Table III, which shows the
percentage of insertion and removal of the Dead Code smell
for each target system by developer group.

TABLE III. RESULTS FOR DEAD CODE

Behave JUnit Mokito RxJava VRaptor

Gr. I% R% I% R% I% R% I% R% I% R%

01 0 0 0 0 74 78 40 39 0 0
02 76 67 25 31 10 12 9 9 15 17
03 24 33 58 53 3 3 29 32 34 26
04 0 0 17 17 0 0 0 0 51 56
05 0 0 0 0 13 7 22 20 0 0

C. Large Class
The Large Class code smell refers to classes that are

trying to do too much, often showing up as too many instance
variables. These code smells were identified using a subset of
the Code Size ruleset in PMD. The rules used to identify this
code smell were:

14Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 33 / 512

(a) Excessive Class File Length: usually indicates that the
class may be burdened with excessive responsibilities
that could be provided by external classes or functions;

(b) Excessive Public Count: seeks for large numbers of
public methods and attributes.

(c) NCSS Type Count: uses the NCSS (Non-Commenting
Source Statements) algorithm to determine the number
of lines of code for a given type;

(d) Too Many Fields: determines if a class has too many
fields in its code;

(e) Too Many Methods: determines if a class has too many
methods in its code.

The results are summarized in Table IV, which shows the
percentage of insertion and removal of the Large Class smell
for each target system by developer group.

TABLE IV. RESULTS FOR LARGE CLASS

Behave JUnit Mokito RxJava VRaptor

Gr. I% R% I% R% I% R% I% R% I% R%

01 0 0 0 0 70 79 35 37 0 0
02 69 72 28 29 15 10 10 8 19 15
03 31 28 58 53 2 4 34 30 39 34
04 0 0 14 18 0 0 0 0 42 51
05 0 0 0 0 12 7 20 25 0 0

D. Long Method
The Long Method code smell refers to methods that are

trying to do too much, often presenting too much code. These
code smells were identified using a subset of the Code Size
ruleset in PMD. The rules used to identify this code smell
were:

(a) Excessive Method Length: seeks for methods that are
excessively long;

(b) NCSS Method Count: uses the NCSS algorithm to
determine the number of lines of code for a given
method;

(c) NCSS Constructor Count: uses the NCSS algorithm
to determine the number of lines of code for a given
constructor;

(d) NPath Complexity: determines the NPath complexity
of a method (the number of acyclic execution paths
through that method).

The results are summarized in Table V, which shows the
percentage of insertion and removal of the Long Method smell
for each target system by developer group.

TABLE V. RESULTS FOR LONG METHOD

Behave JUnit Mokito RxJava VRaptor

Gr. I% R% I% R% I% R% I% R% I% R%

01 0 0 0 0 71 77 42 36 0 0
02 72 64 24 29 13 12 8 10 16 16
03 28 36 58 43 4 3 28 30 39 25
04 0 0 17 28 0 0 0 0 45 60
05 0 0 0 0 13 8 23 24 0 0

E. Long Parameter List
The Long Parameter List code smell refers to methods that

present a long parameter list usually involving global data.
These code smells were identified using a single rule of the
Code Size ruleset in PMD:

(a) Excessive Parameter List: seeks for methods with
numerous parameters.

The results are summarized in Table VI, which shows the
percentage of insertion and removal of the Long Parameter
List smell for each target system by developer group.

TABLE VI. RESULTS FOR LONG PARAMETER LIST

Behave JUnit Mokito RxJava VRaptor

Gr. I% R% I% R% I% R% I% R% I% R%

01 0 0 0 0 0 0 40 35 0 0
02 0 0 33 67 0 0 14 19 0 0
03 0 0 67 22 0 0 22 26 0 0
04 0 0 0 11 0 0 0 0 0 0
05 0 0 0 0 0 0 24 21 0 0

F. Unhandled Exceptions
The Unhandled Exceptions code smell refers to pieces of

code containing malformed throw/try/catch statements. These
code smells were identified using a single ruleset in PMD:

(a) Strict Exceptions: provides some strict guidelines
about throwing and catching exceptions.

The results are summarized in Table VII, which shows
the percentage of insertion and removal of the Unhandled
Exceptions smell for each target system by developer group.

TABLE VII. RESULTS FOR UNHANDLED EXCEPTIONS

Behave JUnit Mokito RxJava VRaptor

Gr. I% R% I% R% I% R% I% R% I% R%

01 0 0 0 0 71 82 38 39 0 0
02 71 73 27 33 15 8 13 7 16 14
03 29 27 58 49 3 2 25 33 31 33
04 0 0 15 18 0 0 0 0 53 53
05 0 0 0 0 11 8 24 21 0 0

G. Discussion
Tables 2 to 6 presented the percentage of participation

of each group of developers in the insertion and removal
of code smells for the five studied systems, represented by
the %I column and the %R, respectively. In the analyzed
set of commits of the Behave system, in general, groups 2
and 3 were responsible for inserting and removing such code
smells. Group 2 inserted more smells but also removed in
an even proportion. For JUnit and VRaptor, groups 2, 3 and
4 were responsible for inserting and removing code smells.
Four groups inserted and removed code smells in the Mokito
system, but the results point out to group 1 as been the one
group with more impact on the insertion and removal of code
smells. Finally, for the RxJava, the results indicate that groups
1, 3 and 5 were more responsible for inserting and removing
code smells.

15Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 34 / 512

In the selected set of commits analyzed in this study,
all code smells were decreased (had more removals than
insertions). This is an indication that the occurrence of code
smells depends on the software evolution. It seems that the
code smells in the study tend to appear in preliminary releases
with more frequency. We did not use the initial commits in
our study to avoid the ”cold start” problem as we believed
these data would not have a proper indication of code smell
removal.

Code Smells with Highest Frequencies. The code smells
associated with the problem of dead code and unhandled
exceptions fell in the group of highest insertion frequency
for the analyzed target systems. A closer look made us to
suspect that this probably occurred because groups 1 and 2
were more involved in these code smells. Such groups do not
present a high level of participation and have a common au-
thorship behavior, which is line code removal. We understand
that, in some cases, lines may have been removed without
the appropriate care, resulting in dead code and unhandled
exceptions. The code smells associated with the problem of
long method fell in the group of highest removal frequency
for the analyzed target systems. This finding suggests that the
development team for the target systems may have done proper
refactoring as to decrease the size of the methods.

No Influence on Code Smells. The classification process
found members for all groups in the development teams of
every target system. However, there were groups that were not
involved with code smells in some systems. For instance, group
4 did not insert nor remove code smells in the Mokito system.
Groups 1, 4 and 5 did not insert nor remove code smells in
the Behave system. We suspect that this occurred because there
were few members in these groups for such systems. We used
the whole dataset to classify the developers and when we took
a deeper look in a system by system basis, some groups were
scarce.

Developers vs. Code Smells. In general, groups 1 to
3 (groups whose members have fewer participation in the
code development) tended to have a higher engagement in the
introduction and removal of code smells. Initially, we thought
that the developers in the groups with higher participation
frequency would have more impact in code smell removal.
This was not observed. We believe that, in the context of our
study, this may have happened due to the fact that groups 4 and
5 were more more responsible for in adding functionality to the
target systems whereas the other groups were more involved
in fault correction.

Recommendations. Considering the results, it is necessary
to evaluate the quality of the source code, taking into account
the inclusion and removal of problematic code snippets. Thus,
the developers assessment process (Group) must be reevaluated
constantly, based on data related to the project’s commit
history. In addition, it is recommended that there is a mixture
of different groups, considering the features that contribute to
remove code smells.

H. Limitations
Some limitations or imperfections of our study can be

identified and are discussed in the following.
Construct Validity. Threats to construct validity are

mainly related to possible errors introduced during specific

data processing from the repository. The repository did not
provide an unique identification data for a developer, thus, it
was not possible to determine whether a developer performed
commits with different identifications. In this sense, each
developer (responsible) identified in the repository was treated
as a different developer. However, the study was not intended
to focus on the contribution of a specific developer.

Conclusion Validity. We have three issues that threaten
the conclusion validity of our study: the number of evaluated
systems; the evaluated code smells (and their relation to the
PMD rules), and; discarding the data from the commits that
did not increase nor decrease the number of code smells. Five
open source projects from Git were analyzed. A higher number
of systems is always desired. However, the analysis of a
bigger sample in this kind of study could be non-practical. The
number of systems with all the required information available
to perform this kind of study is bare. We understand that
our sample can be seen as appropriate for a first exploratory
investigation [18]. Related to the second issue, our analysis
used the PMD tool. Regarding the set of code smells used in
the study, code smells reported in the literature were considered
in our study. Finally, we discarded data from commits that
maintained the amount of code smells. Although the study fo-
cused on associating developer profiles to improving or lessen
the quality of the code, we understand that this limitation does
not allow us to make a conclusion for a specific code smell.

V. RELATED WORK

There are several approaches available in the literature
for detecting Code Smells. Mantyla investigated as developers
identify and treat Code Smells in the source code to compare
with automated detection methods [19]. There are also several
approaches available in the literature for investigation of the
effects of Code Smells in aspects related to software main-
tainability [20], such as defects [21], effort [22] and requests
for changes [23]. In addition, few studies have focused on the
detection of Code Smell through mining activities in software
repositoryc [24].

Regarding the classification of developers in groups, there
are several existing approaches in the literature. In this context,
one of the proposals is based on data extracted from the
repository in relation to the time of performing the commit.
Thus, the model proposes to assess in which the range of hours
developers insert more bugs in your commits [25]. Another
approach is to sort the developers on the basis of the records
related to quantity, time, and type of actions and activities that
these developers come true, working on the project, and the
data extracted from the version control system and other tools,
such as mailing list and bug tracker tools [26][27].

VI. CONCLUDING REMARKS

This work presented a study to assess the influence of
developers on the introduction of code smells in a software
system. We classified the developers into five categories and
verified their contributions (increasing or decreasing) in the
number of code smells in a set of consecutive software
versions. This exploratory study revealed, within the limits
of the threats to its validity, the conjecture that the team
member behaviour (participation frequency, authorship and
development activity - feature development or fault correction)
impacts in the insertion and removal of code smells.

16Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 35 / 512

Finally, it is important to highlight that we have analyzed
commits of five systems. Then, the relationships of code smells
and developers should be tested in broader contexts in the
future. It would also be desirable to use the development
activity of the developers in the classification and association
of developers.

ACKNOWLEDGMENT

The authors thank everyone who provided knowledge and
skills that really helped the search. The result is a compilation
of ideas and concepts throughout the development of this work.

REFERENCES
[1] IEEE, IEEE Standard for Software Maintenance, IEEE Std 1219-1998.

IEEE Press, 1999, vol. 2.
[2] “Software engineering - product quality, ISO/IEC 9126-1,” International

Organization for Standardization, Tech. Rep., 2001.
[3] F. A. Fontana and M. Zanoni, “On investigating code smells correla-

tions,” in ICST Workshops’11, 2011, pp. 474–475.
[4] A. F. Yamashita and L. Moonen, “Do developers care about

code smells? an exploratory survey.” in WCRE, R. Lammel,
R. Oliveto, and R. Robbes, Eds. IEEE, pp. 242–251. [Online].
Available: http://dblp.uni-trier.de/db/conf/wcre/wcre2013.html (access
date: September 2015)

[5] I. M. Bertran, “Detecting architecturally-relevant code smells in
evolving software systems,” in Proceedings of the 33rd International
Conference on Software Engineering, ser. ICSE ’11. New York,
NY, USA: ACM, 2011, pp. 1090–1093. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1986003 (access date: September
2015)

[6] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and G. Succi,
“Balancing agility and formalism in software engineering,” B. Meyer,
J. R. Nawrocki, and B. Walter, Eds., 2008, ch. A Case Study on the
Impact of Refactoring on Quality and Productivity in an Agile Team,
pp. 252–266.

[7] GitHub, “Git repository,” https://github.com, 2014.
[8] B. F. Webster, Pitfalls of object-oriented development. M And T, 1995.
[9] J. Long, “Software reuse antipatterns,” SIGSOFT Softw. Eng.

Notes, vol. 26, no. 4, Jul. 2001, pp. 68–76. [Online]. Available:
http://doi.acm.org/10.1145/505482.505492 (access date: September
2015)

[10] J. Schumacher, N. Zazworka, F. Shull, C. Seaman, and M. Shaw,
“Building empirical support for automated code smell detection,” in
Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, ser. ESEM ’10.
New York, NY, USA: ACM, 2010, pp. 8:1–8:10. [Online]. Available:
http://doi.acm.org/10.1145/1852786.1852797 (access date: September
2015)

[11] R. S. Pressman, Software Engineering: A Practitioner’s Approach,
5th ed. McGraw-Hill Higher Education, 2001.

[12] E. Di Bella, A. Sillitti, and G. Succi, “A multivariate classification of
open source developers,” Inf. Sci., vol. 221, Feb. 2013, pp. 72–83.
[Online]. Available: http://dx.doi.org/10.1016/j.ins.2012.09.031 (access
date: September 2015)

[13] S. Matsumoto, Y. Kamei, A. Monden, K.-i. Matsumoto, and
M. Nakamura, “An analysis of developer metrics for fault
prediction,” in Proceedings of the 6th International Conference
on Predictive Models in Software Engineering, ser. PROMISE ’10.
New York, NY, USA: ACM, 2010, pp. 18:1–18:9. [Online]. Available:
http://doi.acm.org/10.1145/1868328.1868356 (access date: September
2015)

[14] M. Zhou and A. Mockus, “Developer fluency: achieving true mastery
in software projects,” in Proceedings of the 18th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,

2010, Santa Fe, NM, USA, November 7-11, 2010, 2010, pp. 137–
146. [Online]. Available: http://doi.acm.org/10.1145/1882291.1882313
(access date: September 2015)

[15] J. B. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proc. of the fifth Berkeley Symposium on
Mathematical Statistics and Probability, L. M. L. Cam and J. Neyman,
Eds., vol. 1. University of California Press, 1967, pp. 281–297.

[16] InfoEther, “Pmd is a source code analyzer,” http://pmd.sourceforge.net/,
2014.

[17] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley, 1999.

[18] B. Kitchenham, H. Al-Khilidar, M. A. Babar, M. Berry, K. Cox,
J. Keung, F. Kurniawati, M. Staples, H. Zhang, and L. Zhu,
“Evaluating guidelines for empirical software engineering studies,”
in Proceedings of the 2006 ACM/IEEE International Symposium
on Empirical Software Engineering, ser. ISESE ’06. New
York, NY, USA: ACM, 2006, pp. 38–47. [Online]. Available:
http://doi.acm.org/10.1145/1159733.1159742 (access date: September
2015)

[19] M. Mantyla and C. Lassenius, “What types of defects are
really discovered in code reviews?” IEEE Trans. Software
Eng., vol. 35, no. 3, 2009, pp. 430–448. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TSE.2008.71 (access date:
September 2015)

[20] D. I. Sjoberg, A. Yamashita, B. C. Anda, A. Mockus, and T. Dyba,
“Quantifying the effect of code smells on maintenance effort,” IEEE
Transactions on Software Engineering, vol. 39, no. 8, 2013, pp. 1144–
1156.

[21] F. Rahman, C. Bird, and P. T. Devanbu, “Clones: What is that smell?” in
MSR, J. Whitehead and T. Zimmermann, Eds. IEEE, 2010, pp. 72–81.
[Online]. Available: http://dblp.uni-trier.de/db/conf/msr/msr2010.html
(access date: September 2015)

[22] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, blob and spaghetti code,
on program comprehension.” in CSMR, T. Mens, Y. Kanellopoulos,
and A. Winter, Eds. IEEE Computer Society, 2011, pp. 181–190.
[Online]. Available: http://dblp.uni-trier.de/db/conf/csmr/csmr2011.html
(access date: September 2015)

[23] S. M. Olbrich, D. Cruzes, and D. I. K. Sjberg, “Are all code
smells harmful? a study of god classes and brain classes in
the evolution of three open source systems.” in ICSM. IEEE
Computer Society, 2010, pp. 1–10. [Online]. Available: http://dblp.uni-
trier.de/db/conf/icsm/icsm2010.html (access date: September 2015)

[24] R. Peters and A. Zaidman, “Evaluating the lifespan of code smells using
software repository mining,” in Software Maintenance and Reengineer-
ing (CSMR), 2012 16th European Conference on. IEEE, 2012, pp.
411–416.

[25] J. Eyolfson, L. Tan, and P. Lam, “Do time of day and developer
experience affect commit bugginess?” in Proceedings of the 8th
Working Conference on Mining Software Repositories, ser. MSR ’11.
New York, NY, USA: ACM, 2011, pp. 153–162. [Online]. Available:
http://doi.acm.org/10.1145/1985441.1985464 (access date: September
2015)

[26] W. Poncin, A. Serebrenik, and M. van den Brand, “Process mining
software repositories,” in Software Maintenance and Reengineering
(CSMR), 2011 15th European Conference on, March 2011, pp. 5–14.

[27] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye,
“Evolution patterns of open-source software systems and communities,”
in Proceedings of the International Workshop on Principles of Software
Evolution, ser. IWPSE ’02. New York, NY, USA: ACM, 2002, pp.
76–85. [Online]. Available: http://doi.acm.org/10.1145/512035.512055

(access date: September 2015)

17Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 36 / 512

The Object Oriented Petri Net Component Model

Radek Kočı́ and Vladimı́r Janoušek

Brno University of Technology, Faculty of Information Technology,

IT4Innovations Centre of Excellence

Czech Republic

email: {koci,janousek}@fit.vutbr.cz

Abstract—The formalism of Object Oriented Petri Nets (OOPN) is
a part of the work dealing with the method of system development
in simulation. The work is based on the idea that system models
are always executed even if they contain only one simple element
or any changes are performed. Moreover, this idea does not
distinguish between system models, prototypes, or target system;
everything should be presented by the same means. Nevertheless,
it should be possible to use different formalisms to describe
models. It follows that a common platform is needed. The
platform has to be simple and has to allow to change models
on the fly. The formalism of Discrete Event System Specification
(DEVS) has been used to specify the platform, because it enables
to compose system using components, whereas each such a
component can be modeled by different formalism. Proposed
approach preserves the advantages of using OOPN for behavior
modeling of components and makes it possible to hierarchize
models using DEVS-based platform. The paper defines a platform
based on DEVS and OOPN formalisms and deals with a question
of safe changes of components on the fly.

Keywords–Object Oriented Petri Nets; DEVS; component plat-
form; interface consistency.

I. INTRODUCTION

This paper is part of the System in Simulation Development
(SiS) work [1] based on the formalism of Object oriented
Petri nets (OOPN) [2]. The basic SiS principle consists in
continuous incremental development of models in the live
system with the goal to come to the target system without
a need of implementation—there is no difference between
models, prototypes, or target system. The SiS concept re-
quires three basic conditions. First, models have to be able
to combine different formalisms or languages, e.g., Petri nets
and Smalltalk language. For instance, the control part of
the developed system can be modeled by OOPN, which has
to be able to communicate to sensors—the communication
channel can be implemented in Smalltalk language. Second,
models can be execute in different simulation modes that are
suitable for design, testing, in-the-loop simulation, and system
deployment [3]. Third, there has to be a possibility to exchange
any elements of the models on the fly; the model elements
should be exchanged with no changes in the depending model
elements [4].

To achieve presented requirements, a common platform is
needed. The platform has to be simple and has to fulfill the
SiS requirements, mainly changing models on the fly. The
formalism of Discrete Event System Specification (DEVS)
has been used to specify the common platform. It enables to
compose system using DEVS-based components, whereas each
such a component is modeled by means of OOPN. It preserves

the advantages of using OOPN for behavior modeling and
makes it possible to hierarchize models.

So far, there have been works dealing with a usage of
OOPN and DEVS formalisms, but the compact definition of
common platform has not been introduced and a question
about safe replacement has not been solved. The paper defines
the OOPN component model based on the DEVS common
platform to which the formalism of OOPN is incorporated.
The question about component interfaces and their consistency
during the component changes will also be discussed.

The paper is organized as follows. We describe concepts
of the common platform in Section III. Then, we define the
OOPN component model based on the common platform in
Section IV. The Section V describes a problem of the compo-
nent interface consistency and introduces interface constraints.
Section VI deals with a realization of constraints based on
the formalism of OOPN. The summary and future work is
described in Section VII.

II. RELATED WORK

The modeling of software system in live environment is
not new idea. Model-Driven Software Development [5][6] uses
executable models, e.g., Executable UML [7], which allows
to test systems using models. Models are then transformed
into code, but the resulted code has to often be finalized
manually and the problem with imprecision between models
and transformed code remains unchanged. Further similar work
based on ideas of model-driven development deals with gaps
between different development stages and focuses on the usage
of conceptual models during the simulation model develop-
ment process—these techniques are called model continuity
[8]. While it works with simulation models during design
stages, the approach proposed in this paper focuses on live
models that are used in target environments, i.e., when the
system is deployed.

The research activities in the area of system changes on the
fly are usually focused on direct or indirect approaches. The
direct approach uses formalisms containing intrinsic features
allowing to change the system. Formalisms are usually based
on kinds of Petri nets. Reconfigurable Petri Nets [9] introduces
a special place describing the reconfiguration behavior. Net
Rewriting System [10] extends the basic model of Petri nets
and offers a mechanism of dynamic changes description. This
work has been improved [11] by a possibility to implement
net blocks according to their interfaces. Intelligent Token Petri
Nets [12] introduces tokens representing jobs by that the

18Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 37 / 512

dynamic changes can be easily modeled. Their disadvantage
is that they usually do not define the modularity.

The indirect approach handles system changes using extra
mechanisms. Model-based control design method, presented
by Ohashi and Shin [13], uses state transition diagrams and
general graph representations. Discrete-event controller based
on finite automata has been presented by Liu and Darabi [14].
The presented methods use external mechanisms, nevertheless,
most of them do not deal with validity of changes.

The approach presented in this paper combines direct
and indirect methods. To define platform allowing to change
component on the fly, the intrinsic features of the formalism
of DEVS is used in combination with application framework
allowing to work with simulation in live environment.

III. COMMON PLATFORM

As we mentioned above, we need to have a common
platform allowing to interconnect different formalisms, as well
as to change model element on the fly. We have decided [4] to
use DEVS [15] approach to specify the platform. This section
describes a formal base of the common platform and introduces
a simple example to demonstrate its features and usage.

A. Discrete Event System Specification Platform

The formalism of DEVS can represent any system whose
input/output behavior can be described as a sequence of events.
The model consists of atomic models M . Their behavior is
described by functions that work with input event values X
and produce output event values Y . These functions are not
important from the paper point of view, so that we will abstract
them. Atomic models can be coupled together to form a
coupled model CM . The later model can itself be employed as
a component of a larger model. The atomic model, as well as
the coupled model, corresponds to the term component. This
way the DEVS formalism brings a hierarchical component
architecture. The platform based on DEVS will be called
common component platform and will be denoted M. The set
of components of the platform M will be denoted D.

B. Component Interface

Sets X and Y of the component are usually specified
as structured sets. It allows to define input and output ports
for input and output events specification, as well as for
coupling specification. Let us have the structured set X =
{(v1, v2, . . . , vn)|v1 ∈ X1, . . . , vn ∈ Xn)}, where vi repre-
sents a value of the ith variable from the domain set Xi. We
will denote members v1, v2, . . . , vn as input ports and will
write X = (VX , X1×X2×· · ·×Xn), where VX is an ordered
set of n input ports. The set of output ports VY is defined
similarly on the structured set Y . The component interface is
then built up from input ports VX and output ports VY .

The component platform consists of components that
are coupled through their ports. We define a relationship

coupling
D
⇁ ⊆

⋃
i∈D V i

Y ×
⋃

i∈D V i
X meaning that

there are channels for data transmission between ports
of components. We will denote input port, resp. output
port, by the notation component name⊕port name, resp.

component name⊖port name. Then, the notation c1⊖p1
D
⇁

c2⊕p2 means that there is the coupling between the output
port p1 of the component c1 and the input port p2 of the

component c2. The relationship
D
⇁ can also be written in

opposite direction
D
↽ .

Then, the common component platform is defined M =

(D,
D
⇁ ,V M

X , V M
Y), where V M

X =
⋃

i∈D V i
X and V M

Y =⋃
i∈D V i

Y represent ports that are accessible from the platform
neighborhood.

C. Component Changes on the Fly

The component in the common platform is a model de-
scription, as well as its executable form. There is no difference
between static and dynamic (live) representation of models.
In comparison with classic object oriented approach, we need
not care about classes, new instances, and reference changes
(i.e., how to detach old objects and to attach new objects) at
the moment of component changes. We simply create the new
component and change the connections (couplings).

D. Example Specification

The concepts presented in the paper will be demonstrated
on the small example consisting of sensor nets, a module
collecting data from sensors, and a module making decision
based on the data (the form of decision is not important). Other
parts will be abstracted.

Figure 1. An example—class diagram.

In the classic object approach, we can define two analytical
classes Control (decision maker) and Sensor (data collector).
The class Sensor defines operations allowing to start or stop
the data collection (start) and to get acquired data from sensors
(getData). The class Control defines operations to attach and to
detach a sensor (addSensor and removeSensor) and to control
the process (main). The class diagram is shown in Figure
1. The basic algorithm of the method main is illustrated in
the note window—it starts data collection and then performs
following operations in the loop: gets data, makes decision,
and waits for a while.

Now, we take the example specification to the com-
mon component platform. Figure 2 shows an example of
the platform M1 containing two components Control and
Sensors, where Sensors represents a communication channel
to the sensor nets and Control receives acquired data and
makes decisions about the system. Due to simplification of
notation, we will write cn and sn instead of full names.

19Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 38 / 512

Then, the platform consists of D1 = {cn, sn}, where the
components interfaces consists of V cn

X = {data, run, stop},
V cn
Y = {start, request}, V sn

X = {start, request}, and
V sn
Y = {data}.

Now, we can compare DEVS-based common platform
with object approach. First, the class Sensor and the com-
ponent sn. The method start is represented by the input port
sn⊕start receiving a command to start or stop data collecting.
The method getData is represented by a pair of input port
sn⊕request and output port sn⊖data. If any component asks
for data, it puts a command to sn⊕request and the component
reacts by putting data to sn⊖data.

Controldata

request

Sensors

data

start start

request
run

stop

Figure 2. Common platform M1.

Second, the class Control and the component cn. There
is no port equivalent to the method main because of intrin-
sic definition of the component behavior. Nevertheless, ports
cn⊕run and cn⊕stop serve to start and to stop main loop of
the component cn. These ports are not connected inside the
platform; they will be used from outside to control platform
run. The communication to cn surroundings is represented by
ports cn⊖start (starting a data collection), cn⊖request (a
request for acquired data) and cn⊕data (an answer for data
requesting). The component cn sends commands to the com-

ponent sn by carrying data through cn⊖start
D
⇁ sn⊕start

and cn⊖request
D
⇁ sn⊕request. The component sn reacts

by sending data through the coupling cn⊕data
D
↽ sn⊖data.

IV. OOPN COMPONENT MODEL

The common platform based on DEVS formalism of-
fers component approach allowing to wrap another kind of
formalisms, so that each such a formalism is evaluated by
own means. The Object oriented Petri Net component model
(OOPN component model) consists of DEVS components that
are described by the OOPN formalism. This section introduces
the OOPN formalism and its relationship to the common
platform M.

A. Object Oriented Petri Nets

First of all, let us agree upon the following definitions in
the OOPN component system. The Object oriented Petri net is
a tuple (Σ, c0), where Σ is a system of classes and c0 is an ini-
tial class. Σ contains sets of OOPN elements, which constitute
classes. For the paper purpose, we will denote only selected
elements that are used. The system of classes Σ is defined as
follows Σ = (CPN ,MSG,NO, NM , SP,NP, P, T), where
CPN is a set of OOPN classes, MSG is a set of message
selectors, NO is a set of object nets, NM is a set of method
nets, SP is a set of synchronous ports, NP is a set of negative
predicates, P is a set of places, and T is a set of transitions.
The message selectors MSG corresponds to method nets,
synchronous ports, and negative predicates. Object nets de-
scribe possible autonomous activities of objects, while method

nets describe reactions of objects to messages. A class C
is defined as C = (MSGC , onC , NC

M , SPC , NPC), where
MSGC ⊆ MSG, onC ∈ NO, N

C
M ⊆ NM , SPC ⊆ SP , and

NPC ⊆ NP . Every net consists of places (a subset of P) and
transitions (a subset of T).

The OOPN dynamics comprises the system of objects Γ.
Elements from C describe a structure of simulation model and
have to be instantiated to simulate the model. If the class C ∈
CPN is instantiated (the object o is created), the instance of
object net onC is created immediately. If the message m ∈
MSG is sent to the object o, an instance of the method net is
created. Then, we can define Γ = (OBJ, INV), where OBJ
is a set of objects including their object net instances and INV
is a set of invoked method nets.

B. OOPN in Common Platform

In the common platform, there is no difference between
a static representation of the model and its live (running,
executed) form. To include the OOPN formalism, we introduce
the live model of OOPN as the tuple Π = (Σ,Γ, c0, obj0),
where c0 ∈ CPN is an initial class and obj0 ∈ OBJ is an
initial object of the class c0.

In the common platform, the OOPN model is split up into
submodels, whereas each submodel has its own initial class
c0 and initial object obj0. Let MPN = (M,Π, P inp

c0 , P out
c0)

be a DEVS component M , which wraps an OOPN submodel
Π. The initial class c0 is instantiated immediately the com-
ponent MPN is created. The component interface (VX , VY)
is represented by subsets of places P

inp
c0 , P out

c0 ⊆ P , where
P is a set of object net places of the initial class c0 and

P
inp
c0 ∩ P out

c0 = ∅. There are bijections mapinp : P inp
c0 → VX

and mapout : P out
c0 → VX mapping ports and places and

the mapped places then serve as input or output ports of the
component.

C. OOPN Example

Let us continue with the example from Figure 2. Figure 4
shows an OOPN model of the component Sensors (sn) and
Figure 3 shows an OOPN model of the component Control
(cn). Both models have the same basis—the loop driven by an
external stimulus (a token placed in the place s).

data

request

#getData

stop
v

run

v

self hold: h.

h

h

h

h

h

v

h

v > 0

self process: lst.
lst

start
true

false

tStart

tStop

s

Figure 3. OOPN model of the component Control.

20Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 39 / 512

First, let us have a look at the component Control (Figure
3). Input port cn⊕run expects a number h representing an
interval of asking data from the component sn. Input port
cn⊕stop expects any value—it only activates transition tStop,
which suspends the loop. Both ports generate a command for
coupled components through the output port cn⊖start (they
put true or false to the mapped place start). The component
cn asks for data by putting a symbol #getData to output port
cn⊖request and waits for data (input port cn⊕data). When
the data are acquired, the method process: of the initial class
c0 is called and data are processed. Then, the loop waits for a
given time unit h (the method hold:) and asks for data again.

data

#getData
request

list

v

start

v

d := self getData.

self hold: h.

10

h

(h, d)

(h, d)

h

h

list

list

h

list

v == true

v == false

data

add

s

tStart

tStop

list add: d.

MyData new.

Figure 4. OOPN model of the component Sensor

Second, let us have a look at the component Sensor
(Figure 4). Input port sn⊕start expects values true or false
activating transitions tStart or tStop that start or suspend the
loop. The component receives a request for data by input port
sn⊕request and puts data to the output port sn⊖data.

The component sn acquires data in the loop, where the
method getData is called, the new data d is add by the
transition add, and, finally, the loop waits for a given time unit
h. The place data contains an object (an instance of the class
MyData) and the transition add simply adds new item by the
method add:. Instance of the class MyData is created and put
into the place data in the moment of object net instantiation
(it is a place initialization, as shown in Figure 4).

D. Data Model Interface

So far, we did not care about actual data. Their form is not
important for this paper (real numbers, integral numbers, etc.),
only the way of data manipulation will be taken into account.
It comes to this, that the data interface is important. Figure 5
shows identified interfaces and classes.

Figure 5. Classes and interfaces of data.

The component sn uses data storage by only way—adds
a new item. So, the interface SData containing the operation

add: can be identified. Let us suppose, that the component
cn needs following operations: get (getting an item), avg
(average value), max (maximum value), and min (minimum
value). These operations on data are performed within the
method process:. Then, the interface CData can be identified.
The data storage (instance of the class MyData) used in the
component sn (see Figure 4) has to implement the SData
interface. The storage object used in the component cn has
to implement the CData interface. Because both objects are

identical (the object is carried through sn⊖data
D
⇁ cn⊕data),

the class MyData has to implement both interfaces, as shown
in Figure 5.

V. COMPONENT INTERFACE CONSISTENCY

The System in Simulation (SiS) concept assumes that
components can be exchanged with no changes in the other
components. In conjunction with the application framework
[16], the component can be suspended, resumed, or changes
any time during the system simulation. Therefore, it is neces-
sary to be concerned with the problem of component interface
consistency, in other words, the question whether component
interfaces are compatible and whether its exchange is safe.

The component communication is provided by data pass-
ing [4]—the calling component (client) sends a data to the
called component (server); the client does not need to wait for
an answer. We will distinguish the structural aspect and the
behavioral aspect of the component interface. The structural
aspect is defined by ports and couplings. There is no problem
to check if the components can be coupled or not. The
behavioral aspect corresponds to the concrete data and their
form.

A. Type constraints

Although the formalism of OOPN is pure object-based
system and there is no need to define special kind of types
instead of class, we will have special requirements to the set
of types that can be checked:

• a class or a subclass – we need to check if the object
is an instance of the class or its subclasses

• an object interface – we need to check if the object
complies with the interface

Since we will check the type constraints, we have to define
the term type in the context of the OOPN component system.
CLenv is a set of classes from the product environment (the
notation product environment is understood as the environment
including language in which the application framework is
implemented), CLprim ⊂ CLenv is a set of primitive classes
(numbers, characters, and symbols), I ⊆ P(MSG) is a set
of object interfaces, and ε represents a special kind of type
meaning unspecified type. We define the interface I in the
general way, as a set of operations that are independent from
classes. The type is then TY PE = CLPN ∪CLenv ∪I ∪{ε}.

Let TP be a surjection TP : P → P(TY PE) assigning
a set of types to a given place. The type of the place can be
derived from the associations between classes, whereas there
is no necessary to define only one type (and, thus, to allow all
subtypes), but the set can be extended to next types. Implicitly,

21Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 40 / 512

each place has assigned the type ε. To discriminate between
different levels of type constraints, we introduce following
operators based on TP :

• �: OBJ × TY PE meaning the object is an instance
of the class or derived classes, ∀o ∈ OBJ : o � ε

• ≻: OBJ × I , meaning the object complies with the
interface, ∀o ∈ OBJ : o ≻ ε

Let us continue with the example defined in Section IV-C.
Figure 6–a shows type constraints defined on the input ports
stop and data of the component Control (cn). The port stop
requires any value of any type, so that the constraint is set to
ε. The port data requires objects of the class MyData, so
that ∀o in the place data : o � MyData. The constraint will
be written � {MyData}.

stop
v

h

h

ε

data
lst

≥{MyData}

data
lst

>{CData}

data
lst

>{SData}

a)

b)

Figure 6. An example of type constraints.

Let us investigate a variant of interface usage—it is shown
in Figure 6–b. There are depicted the input port Control.data
and the output port Sensor.data. Each of them operates with
the different interface. Control.data demands objects under-
standing methods defined by the interface CData, whereas
Sensor.data offers object understanding methods defined by
the interface SData (interfaces are discussed in Section IV-D).

B. Data constraints

Since the interface of the common platform is based on
the principle of data passing, there will often be a request
for constraints on data. First, let us define two auxiliary
notions. Let IG be a function IG : TY PE → P(TY PE)
assigning a set of generalized classes to the given class and
IS : TY PE → P(TY PE) be a function assigning a set
of specialized classes to the given class. Then, CLprim =
IS(Number) ∪ IS(Character) ∪ IS(Symbol). To discrimi-
nate between different levels of data constraints, we introduce
following notions:

• an enumeration η = {e1, e2, . . . }, to check if the
object o gets one of the listed values, o ∈ η; it can be
used for symbols, numbers, or characters CLprim

• an interval ι(i1, i2), to check if the object o gets a
value from the interval, o ∈ ι(i1, i2); it can be used
for numbers I(Number); there is a special value ω
represents a maximal value or infinity

request
#getData

run

v

h

v
v > 0

ι(0,ω)

η{#getData}

s

start
v

η{true, false}

v == true

v == false
v

Figure 7. An example of data constraints.

Let us continue with the example defined in Section
IV-C. Figure 7–a shows data constraints defined on the input
port cn⊕run. It requires a number from interval ι(0, ω).
Figure 7–b shows data constraints defined on the input port
sn⊕(request, start). They require an enumeration of symbols
or boolean values.

VI. CONSTRAINTS REALIZATION

Although the OOPN classes bring more intuitive modeling
of behavior, they do not offer intrinsic definitions of constraints
such as invariants or type checking. Nevertheless, there is very
simple way how to define and test these conditions by means of
OOPN [17]. Tests are generated by the application framework
in accordance to required constraints defined on ports.

A. Type Constraints Testing

The test of class constraints is defined as θ�(p,ET) =
∃x ∈ p ∧ ∄t ∈ ET : x � t, where x is an object in the place
p and ET is a set of expected types. The test of interface
constraints is defined as θ≻(p,ET) = ∃x ∈ p ∧ ∄t ∈ ET :
x ≻ t, where x is an object in the place p and ET is a set of
expected types.

Both tests are implemented by negative predicates as
shown in Figure 8. It follows the example defined in Sec-
tion IV-C and shows two possibilities. First, the type con-
straint � {MyData} is defined for the input place data
of the component Control. This notion is equivalent to
θ�(Control.data, {MyData}). There is generated negative
predicate cT ypeData and associated place ET containing a
set of names of expected types. Names are stored in the form
of symbols.

Firablity of the negative predicate is defined in two cases as
follows. First, it is firable if there is no object in the associated
place. Second, it is firable if the place is not empty and
there is at least one object, which does not satisfy predicate
conditions—on other words, the negative predicate finds all
objects x that do not satisfy conditions. The condition is
represented by arc expression t and calling special method
isKindOf : t on the object x. The method is a part of
object’s metaprotocol and resolves in true or false depending

22Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 41 / 512

data
x

≥{MyData}

#MyData
tcTypeData

x isKindOf: t

data
x

>{CData, SData}

#CData,

#SData

tcTypeData

x compliesWith: t

ET

ET

Figure 8. Type constraints realization.

on decision if the object is an instance of the class t (or its
subclasses) or not. So, the predicate cT ypeData is firable if
there is an object in the place data and this object is not the
instance of MyData.

Second possibility represents the type constraint ≻
{CData, SData} defined for the input place data of
the component Control. This notion is equivalent to
θ≻(Control.data, {CData, SData}). The constraint realiza-
tion is the same as for � except that it uses the method
compliesWith: instead of isKindOf :.

B. Data Constraints Testing

The tests of data constraints are implemented by negative
predicates as shown in Figure 9. It follows the example defined
in Section IV-C and shows two possibilities. First, the data
constraint ι(0, ω) is defined for the input place start of the
component Control. There is generated negative predicate
cDataStart having a condition corresponding to the defined
interval. The predicate is firable if the condition is not satisfied.

request
x

start

x

ι(0,ω)

η{#getData}

#getData
x

cDataStart

x > 0

cDataRequest

Figure 9. Data constraints realization.

Second, the data constraint η{#getData} is defined for
the input place request of the component Sensor. There is
generated negative predicate cDataRequest and associated
place containing a set of expected symbols. The predicate is
firable if there is found a symbol in the place request that is
not in the predefined set.

C. Exceptions

Constraints realizations presented in previous sections can-
not be evaluated without calling them. Therefore, the new
element of exception is introduced to the formalism of OOPN.
The exception is demonstrated on the example of type con-
straint � {MyData} from Figure 8. The syntax is shown
in Figure 10-a. The exception checks type constraint and if
the constraint is not satisfied, it removes an object from the
place data and the associated ”any action” is performed. The
implementation is shown in Figure 10-b.

data

≥{MyData}

data
x

#MyData
tcTypeData

x isKindOf: t

"any action"

E

self cTypeData

v

"any action"

eData

eData

data

≥{MyData}

E "any action"

eData

a)

b)

c)

subst

Figure 10. Invariants and testing conditions.

The exception may also have a side effect, e.g., it may offer
substitute object and place it back to the place data (shown
in Figure 10-c).

D. Example of Component Changes

Let us continue with the example of common platform
presented in Figure 2. The component Sensors will be re-
placed by the component Sensors2 having the same structural
interface, i.e., the same sets of input and output ports, as shown
in Figure 11.

Controldata

request

Sensors

data

start start

request
run

stop

Sensors2

data

start

request

>{SData}

>{CData}

Figure 11. Common platform M2.

Let us suppose that the classMyData has been changed to
MyData2 containing only add: and get operations. Now, we

will be only interested with sn⊖data
D
⇁ cn⊕data coupling.

The constraint≻ {SData} is satisfied (operation add:), but the
constraint ≻ {CData} is not satisfied (operations avg, max,
and min are not present). Watching such incorrect changes,
that do not have to be simply detected, allows to prevent
systems from unexpected behavior.

VII. CONCLUSION AND FUTURE WORK

The paper dealt with the concept of component platform
based on DEVS and OOPN formalisms. It defined component
interface and constraints above input and output ports. The
interface is described by the means of OOPN places. Although
they has assigned no type, for constraint testing it is possible to
assign a set of types or constraints the objects have to satisfy.
The concept of exception has been introduced to OOPN.
Exceptions are a form of interface constraint testing. Incorrect
changes done inside components do not have to easily be
in evidence at the interface level. Constraints together with
exceptions in languages that do not work with types allow to
safe modification and changing component.

Future work will be aimed to a possibility to derive a set
of types or constraints from the model analysis or simulation.

23Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 42 / 512

The component interface will be also generalized to other
formalisms that can be incorporated into common DEVS
platform.

ACKNOWLEDGMENT

This work has been supported by the internal BUT project
FIT-S-14-2486 and the EU/Czech IT4Innovations Centre of
Excellence project CZ.1.05/1.1.00/02.0070).

REFERENCES

[1] R. Kočı́ and V. Janoušek, “Modeling and Simulation-Based Design
Using Object-Oriented Petri Nets: A Case Study,” in Proceeding of the
International Workshop on Petri Nets and Software Engineering 2012,
vol. 851. CEUR, 2012, pp. 253–266.

[2] M. Češka, V. Janoušek, and T. Vojnar, PNtalk — a computerized tool
for Object oriented Petri nets modelling, ser. Lecture Notes in Computer
Science. Springer Verlag, 1997, vol. 1333, pp. 591–610.

[3] R. Kočı́ and V. Janoušek, “Formal Models in Software Development
and Deployment: A Case Study,” International Journal on Advances in
Software, vol. 7, no. 1, 2014, pp. 266–276.

[4] R. Kočı́ and V. Janoušek, “System Composition Using Petri Nets and
DEVS Formalisms,” in The Ninth International Conference on Software
Engineering Advances. Xpert Publishing Services, 2014, pp. 309–315.

[5] S. Beydeda, M. Book, and V. Gruhn, Model-Driven Software Develop-
ment. Springer-Verlag, 2005.

[6] M. Broy, J. Gruenbauer, D. Harel, and T. Hoare, Eds., Engineering
Theories of Software Intensive Systems: Proceedings of the NATO
Advanced Study Institute. Kluwer Academic Publishers, 2005.

[7] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie, Model
Driven Architecture with Executable UML. Cambridge University
Press, 2004.

[8] D. Cetinkaya, A. V. Dai, and M. D. Seck, “Model continuity in
discrete event simulation: A framework for model-driven development
of simulation models,” ACM Transactions on Modeling and Computer
Simulation, vol. 25, no. 3, 2015.

[9] S. U. Guan and S. S. Lim, “Modeling adaptable multimedia and self-
modifying protocol execution,” Future Gener. Comput. Syst., vol. 20,
no. 1, 2004, pp. 123–143.

[10] M. Llorens and J. Oliver, “Structural and dynamic changes in concurrent
systems: Reconfigurable petri nets,” IEEE Transactions on Automation
Science and Engineering, vol. 53, no. 9, 2004, pp. 1147–1158.

[11] J. Li, X. Dai, and Z. Meng, “Automatic reconfiguration of petri net con-
trollers for reconfigurable manufactoring systems with an improved net
rewriting system based approach,” IEEE Transactions on Automation
Science and Engineering, vol. 6, no. 1, 2009, pp. 156–167.

[12] N. Q. Wu and M. C. Zhou, “Intelligent token petri nets for modelling
and control of reconfigurable automated manufactoring systems with
dynamic changes,” Transactions of the Institute of Measurement and
Control, vol. 33, no. 1, 2011, pp. 9–29.

[13] K. Ohashi and K. G. Shin, “Model-based control for reconfigurable
manufacturing systems,” in Proc. of IEEE International Conference on
Robotics and Automation, 2011, pp. 553–558.

[14] J. Liu and H. Darabi, “Control reconfiguration of discrete event systems
controllers with partial observation,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B, Cybertetics, vol. 34, no. 6, 2004, pp.
2262–2272.

[15] B. Zeigler, T. Kim, and H. Praehofer, Theory of Modeling and Simu-
lation. Academic Press, Inc., London, 2000.

[16] R. Kočı́ and V. Janoušek, “The PNtalk System,” 2015. [Online].
Available: http://perchta.fit.vutbr.cz/pntalk2k/

[17] R. Kočı́ and V. Janoušek, “Specification of UML Classes by Object
Oriented Petri Nets,” in ICSEA 2012, The Seventh International Con-
ference on Software Engineering Advances. Xpert Publishing Services,
2012, pp. 361–366.

24Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 43 / 512

“Free” Innovation Environments: Lessons learned from the Software Factory
Initiatives

Davide Taibi, Valentina Lenarduzzi
Free University of Bolzano-Bozen

Bolzano-Bozen, Italy
e-mail: {name.surname}@unibz.it

Muhammad Ovais Ahmad, Kari Liukkunen
University of Oulu

Oulu, Finland
e-mail: {name.surname}@oulu.fi

Ilaria Lunesu, Martina Matta
University of Cagliari

Cagliari, Italy
e-mail: {name.surname}@diee.unica.it

Fabian Fagerholm, Jürgen Münch
Department of Computer Science, University of Helsinki

Helsinki, Finland
e-mail: {name.surname}@cs.helsinki.fi

Sami Pietinen, Markku Tukiainen
University of Eastern Finland, School of Computing

Joensuu, Finland
e-mail: {name.surname}@uef.fi

Carlos Fernández-Sánchez, Juan Garbajosa
Technical University of Madrid (CITSEM & ETSISI)

Madrid, Spain
e-mail: carlos.fernandez@upm.es

Kari Systä
Tampere University of Technology

Tampere, Finland
e-mail: kari.systa@tut.fi

Abstract— Entrepreneurs and Small and Medium Enterprises
usually have issues on developing new prototypes, new ideas or
testing new techniques. In order to help them, in the last years,
academic Software Factories, a new concept of collaboration
among universities and companies has been developed. Software
Factories provide a unique environment for students and
companies. Students benefit from the possibility of working in a
real work environment learning how to apply the state of the art
of the existing techniques and showing their skills to
entrepreneurs. Companies benefit from the risk-free
environment where they can develop new ideas, in a protected
environment. Universities, finally benefit from this setup as a
perfect environment for empirical studies in industrial-like
environment. In this paper, we present the network of academic
Software Factories in Europe, showing how Companies had
already benefit from existing Software Factories and reporting
success stories. The results of this paper can increase the network
of the factories and help other universities and companies to set-
up similar environment to boost the local economy.

Keywords—Software Factory; Experience Report.

I. INTRODUCTION
Universities are perfect environments to exploit

technological research for innovation. The biggest challenge to
solve in universities is that they are nowadays rarely used by
companies, and at the same time, universities are poorly
oriented to give economic value while start-ups and Small and
Medium Enterprises (SMEs) face new and tough challenges to
survive in the market. Indeed, also big industries sometimes
have difficulty being continuously innovative. In fact, ideas
come out slowly and require a lot of effort to be implemented.

Fresh ideas, coming from the new digital native generation
of developers, should encourage seniors to fresh thinking.
From this aspect, the combination of university research,
teaching and industry production would increase the value of
skills of everyone and the development of innovation.

Innovations lab of similar initiatives such as academic
Software Factories (SF) [1] could contribute to fill this gap.

In SF, students and entrepreneurs collaborate together to
develop a new idea or to apply existing techniques that
couldn’t be achieved by the entrepreneur itself without
accessing to external resources. SF are university laboratories
that emulate a real working environment, in which a given
number of students, in the same location, work as a real team
implementing a project for 7-11 weeks in a controlled
environment with real customers and real deadlines.
Entrepreneurs benefit from the new innovative ideas and the
effort coming from students. Students have, in turn, a unique
experience of working in an industry-like work environment
getting in touch with the real business and a given number of
credits. Moreover, students have the chance to present their
skills to the entrepreneurs that can finally hire students partially
trained on their technologies. The SF initiative is a fully bottom
up initiative that cooperates on a voluntary basis without any
funding framework, except for their enthusiasm and the
common interest in getting excellent educational, and research
results.

The goal of this work is to present the ecosystem of
European SFs describing how best practices are shared
between different software factories. Moreover, we aim at
analyzing similarities and differences among SF in different
countries (namely Finland, Italy and Spain), highlighting pros
and cons for the different stakeholders. The results of the paper
show how the use of SFs, as safe environment for developing
new prototypes and products for start-ups or entrepreneurs,
could represent a good practice and an important starting point
for creating a connection between academic and working
worlds.

The paper is structured as follows. After a first introductory
section, we describe the SF concept in Section II. In Section
III, we describe our international SFs, highlighting similarities

25Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 44 / 512

and differences. We report success stories in Section IV and finally we draw conclusions and future works in Section V.
TABLE I. SF BENEFITS

Academic Institutions Companies Students

• Perfect environment for empirical studies
• Provide better training to their students.
• Collaboration with industry
• Environment for the development of research

prototypes

• Environment to develop innovative ideas.
• Environment to test new development tools or

methodologies.
• Opportunities for hiring new staff trained in the

technologies that they use.

• First early contact with real-world projects
• Develop transversal capabilities such as self-

organized, responsibility, communication, etc.
• Put into practice the theoretical concepts

learned in the courses
• Learn new techniques and technologies.

II. BACKGROUND
SF proposes itself as an infrastructure that supports

research and education in software engineering and also
entrepreneurship. In the Finnish editions, many collaborations
with important organizations guided forward good results for
customers and developers. SF is a safe and monitored
environment that reproduces in a faithful manner the working
team dynamics that develop a prototype or a software product
for a customer, (SMEs) or a start-up. Since its first edition SF
brings together three essential goals: Learn, Share, Grow. SF
[1] represents also a shared educational platform for
universities to hold courses where students are involved in a
real-world project developing software in the same location or
in different sites. SF relies on self-organization as its primary
way of organizing the work [2].

It represents a unique platform in which a team of students
develops software. SF projects are conducted in a manner that
simulate as closely as possible, the reality of software
development in the product development organization. We can
then observe how SF could represent, despite its constraints
and limitations, the operational core from which startups,
entrepreneurs or SMEs could set up their own ideas allowing,
at the same time, smart and brilliant students to make a unique
practical experience learning by doing new methodologies and
practices but also approaching the working world through the
main door showing what they can do.

In addition, SF offers a way to learn new practices and
technologies not only by reading from books but also by
building a product. The results are achieved as a result of
collaborative work of all team members, to improve their
knowledge and skills getting in contact with people having
different background and experience. As the students need to
independently gain new knowledge and meet new people to
create the product they get in touch with working reality and
undertake new important collaborations. At the same time, SF
are independent and open for collaboration with all kind of
companies for entrepreneur or startups, the SF could represent
a low cost environment in which they can set up new ideas and
new projects in which create not only a prototype but meet
partners and developers to be integrated in their own team
having the advantage of a training period. The SF advantages
exist also for researchers or academic members that would like
to have the possibility to assist to the meeting of two worlds:
work and study but in a monitored lab environment. This
fosters the measures and observations to make research from a
software perspective making measure about effort or software
metrics and also from the educational perspective observing
the student interactions, their learning behavior and their
attitude in the creation of a new product. Table I summarizes
the benefits of the SF environment.

III. THE SOFTWARE FACTORIES NETWORK
In this section, we describe the SF network in Europe

presenting the different set-up and operational model.

A. The Helsinki SF (Finland)
SF at the University of Helsinki [1][8] has been organized

since 2010. The factory deeply integrates the customer
company into the development process. The customer provides
a product owner who interacts directly with the student team
during the project. The customer can range from local
entrepreneurs to large enterprises and even to Open Source
projects. For example, in spring 2015, the factory is
participating in Facebook’s Open Academy program,
collaborating on two Open Source projects with universities
worldwide. As a rule, five projects are arranged per year. The
factory supports the projects with research-based insights for
project management, methods, and pedagogy, and through full-
time coaching of the teams.

B. The Bolzano-Bozen SF (Italy)
The factory [6][7] is organized by the Free University of

Bolzano-Bozen. It is actively running once a year for 4 years,
developing more than 10 projects. The participants are students
from the first year of the Master program in Computer Science,
third year of the Bachelor in Design and Education faculties, as
well as local entrepreneurs. Project ideas come mainly from
local entrepreneurs who are not affiliated to the university. The
course runs during the summer semester for 11 weeks with a
required effort of 200 hours per student. Students vote the
projects to be developed based on their interests and skills. The
most voted projects are developed during the SF. Students are
then split in groups of 5-6 people and every group is assigned
to a project. The entrepreneur who proposed the idea is
required to be available at the SF at least once a week to
support the students.

C. The Cagliari SF (Italy)
The factory has being running once a year for 3 years from

2012, developing a total of 4 projects. Participants are students
from the Master program in Electronic Engineering,
Telecommunication Engineering, Computer Science, PhD
Course and local entrepreneurs. Projects come local
entrepreneurs or ideas born for implementing applications to
satisfy the needs of the research group. The course runs during
the summer semester for 7-11 weeks with a required effort of
120-200 hours per student, with 4-8 people assigned to each
project. The entrepreneur who proposed the ideas is required to
be in class to support the students at least twice a week. The
development is driven by an expert PhD student that plays the
role of coach/coordinator. In order to replicate a real company

26Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 45 / 512

development environment, an open space is assigned to the
team and the team members have to come twice or three times
at week during the period.

D. The Joensuu SF
University of Eastern Finland's School of Computing

established SF Joensuu in 2010 and is running 3-5 rounds per
year. Teams consist of mostly master level computer science
students with minimum target of 4 people. They are
encouraged to participate two rounds, first round as software
developer and later, second as team leader. Product ideas come
from entrepreneurs and research groups with having target to
produce new business opportunities or improve the world in
general. SF team is supported by mentoring given by SF lead
and students from previous rounds. Frequent interaction with
customer is required in order to achieve release cycle of 1-2
weeks, preferably with face-to-face meetings at least at same
interval and with other medium more frequently. Customers
have been either starting entrepreneurs with just a good idea in
their hands or already established companies from start -ups
such as Epooq to big companies like CGI.

E. The Oulu SF (Finland)
The Oulu SF is established in 2012 to provide a realistic

environment, which improves the students’ learning experience
by providing them with insights into the conduct of real-life
software projects with close customer involvement, intensive
teamwork, and the use of modern software development tools
and processes [5][7]. As a platform, it serves multiple
purposes. It is a test bed for software engineering ideas and a
source for original basic scientific software development
research. Oulu SF runs twice a year and it has completed more
than 8 projects since 2012. The participating students are from
first and second year of master's degree in information
processing science. The project tasks come from the local
software companies and or research projects. Each project
involves a minimum of four members. The students are
encouraged to tackle management and resource planning issues
pertaining to large teams. Each project team is assigned a
project supervisor who provides the team with technical and
non-technical guidance. The supervisor is also responsible for
monitoring and assessing the team throughout the course of the
project.

F. The Madrid SF (Spain)
Madrid factory has been operating since 2011. The factory

was a joint set-up between the Technical University of Madrid
(UPM) and Indra Software Labs, a subsidiary of Indra, a
Spanish global company. Actually, two software factories were
set up, one in UPM and one in Indra Software Labs, to run
joint projects. As an educational setting, students that
participate are from a Degree in Software Engineering and
Masters Program on Computational Science and Technology.
Most of the projects are closely related to tasks of European or
National Research projects, very often collaborative projects
between industry and UPM. Different kind of projects have
been performed over these years, and more than 10 projects:
five of them were distributed projects, in which up to three
nodes from different countries were involved, e.g., Helsinki

(Finland) and Bolzano (Italy). The Factory recruits students
usually in November and February. The recruitment process
includes an interview to applicants with a given number of
questions. Even when some these questions are technical, other
skills are also searched, also considering the kind of project
that the student would like to be involved, and the positions
available for each project. Students usually work in teams,
from 3 to 6 students. Students perform slots of 140 hours,
during generally 8 weeks, and up to a maximum of 3 of these
slots.

IV. SIMILAR ACTIVITIES IN TAMPERE (FINLAND)
A project course with many similarities to SF has been run

at Tampere University of Technology from year 1991. Already
during the first years, we received project ideas from
companies, and this collaboration has been a key component of
the of project course. Currently, the project ideas come from
the companies and companies give constant feedback about
progress of the project and produced software. These
companies essentially play a role of customer for the student
team. Since the course has a long history in Tampere, many
managers in the surrounding companies have participated in
the course in the past, they now have a high motivation to
collaborate as a customer. Key role of the companies is seen
valuable for both students since it gives both parties an
opportunity to network.

In addition to independent project work, the course also
includes some lectures that help students in management of the
project. There are also lectures about IRR, legal and business
aspects. The volume of the project course has been varying
over the years. During academic year 2014-2015 there were 10
project teams with 5-8 members each. The number of hours
spent per student is in the range of 130 – 260 hours. The course
is run yearly starting September and ending in February to an
end seminar and celebration.

Since 2008, Demola [9], has also been another option in
Tampere. Demola focuses on innovation projects, where
students are asked to further develop ideas given by
surrounding companies and public institutes. Demola is hosted
by Hermia (a business development company) and three
universities, Tampere University of Technology, University of
Tampere and Tampere University of Applied Sciences,
participate in Demola. The project teams are cross-disciplinary
and consist, e.g., of engineering, business, and design students
from participating universities. Since Demola projects
concentrate in innovation and further development of the idea,
the process includes value creation workshops and pitching
events. Furthermore, Demola shares promises with Protomo
[10], which is a development community for new businesses
and start-ups

Regular Demola projects run twice a year: once in the fall
and once during the spring. The volume of 20-25 projects per
season typically run by groups of 4-5 students. The main
difference between Software Engineering Project Course and
Demola is that the former concentrates in professional
development projects while the latter concentrates in idea
development and innovation.

27Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 46 / 512

V. SOFTWARE FACTORY SUCCESS STORIES
Software factories actively supported local entrepreneurs.

Here, we report on some of the most important success stories
of our factories.

A. Innovative Video Calling Service
Between September 2012 and December 2013 the SF

Helsinki conducted three projects together with Tellybean Ltd.,
a small Finnish startup [3]. The vision of this startup was to
deliver a life-like video calling experience for specific
customer segments such as elderly persons. The overall goal of
the collaboration was to conduct build-measure-learn loops to
validate critical assumptions underlying the business model
and the technical solutions in order to rapidly learn if the
chosen strategy needs adjustments or can be persevered. The
first project focused on the development of appropriate
analytics for measuring the performance of the video service so
that business-critical information can be gathered and
analyzed. In addition, technical feasibility aspects were
analyzed. The second project mainly focused on validating
technical assumptions. In particular, the company wanted to
understand the scalability and robustness of the proposed
system architecture, technical weaknesses of the system, and
the company wanted to identify alternative options for the
system architecture. The project resulted in a significantly
better understanding of the limitations and future development
options. The third project helped the company to better deploy
functionality in a continuous way.

Overall, the prototypes that were created and used in the
projects served as so-called minimum viable products to
quickly validate business-critical assumptions and helped the
startup to accelerate learning about their ideas. In the
meantime, the startup got significant funding. Now, Tellybean
partners with major service providers. The SF Helsinki
benefited well from these projects by learning how to organize
industry-academia collaborations in order to test business-
critical assumptions.

B. Memoree
Memoree was a SF project at Bolzano in spring 2013. It

was based on a business idea from a local entrepreneur who
needed to develop a prototype to prove his idea. The initially
intended software solution would pack personal photos, videos
and audios into a memory package and shared it among
friends. The project lasted 11 weeks. In total, 14 students were
involved in the Memoree project. The majority came from the
Computer Science faculty. Two designers were involved at the
later stage of the project. The entrepreneur played the customer
role for the project and made himself available all through the
SF session. The Memoree SF project was very useful for the
local entrepreneur to understand what are the crucial features
of Memoree, and what should be skipped. SF also helped him
to decide what could be the core component of the application.
The developed prototype was very different than the initial idea
that he had. The students were not just implementing the
prototype, they were contributing to the understanding of the
need the startup intended to meet, and the clarification of the
vision that drives the startup. After the SF session, the
Memoree idea became more concrete. It is positioned as a
mobile application that is developed for automatic creation of

videos based on different contents (photos, songs, etc.). The
app provides content privacy, and creates videos automatically
by taking songs and photos as an input. This application is
composed of two modules: content management (photos) and
video creation. The intended customers are iOS users. The
entrepreneur team was expanded from a single person to five
founders (two economics, one finance, one graphic designers
and one computer scientist). The actual development started in
May 2014.

C. Medygo
Different from the Memoree case, when a founder of

Medygo approached the Bolzano SF in Spring 2014, the
business idea has already been validated initially with potential
customers, and a prototype was developed already. It is a
mobile application that is developed with motive “health on
go”. It is mainly developed for people to solve their health
problems during traveling and staying abroad. The main
purpose of developing this application was to prevent travelers
from the hustle when they travel and become sick during their
journey. This mobile app converts medicine, what they take in
their own country, to what they should take in another country.
This app is initially developed for android users. There were
four founders (two businessmen, two pharmacists). It’s been
one year since they have been working on this idea before they
contacted the Bolzano SF. The actual development started in
November 2013 by adding another team member as a
developer. The initial version was launched in January 2014.

One of the benefits of working in SF was that, recalled by
one founder, was the iterative approach the SF adopted. There
were always some deadlines, and the team had to finish on
time. During the SF session, the Medygo team set milestones
e.g., two-week idea validation, two-week date collection, four-
week development and so on. At the end of the 10th week,
their prototype was ready. The team was also facilitated by the
SF tutors to handle pressure, and to meet deadlines. In addition,
the SF students worked on the project became potential hire for
the startup company due to the intimate knowledge they
obtained through working on the project at the SF.

D. Matchall2
The Matchall2 project was proposed by a local

entrepreneur that played the customer role during the
development period, with the aim to build a plugin for
categorizing personal multimedia content gathered from
famous social networks such as Facebook, Youtube and Flickr.
Matchall2 created a personal communication engine based on
innovative principles and functionalities, with a web
implementation and diffusion strategy. The final prototype,
thanks to an idea of some developers, was represented by a
bookmarklet that allowed one to easily classify and categorize
personal content, such as pictures and videos, in a customized
manner using tags. The focus of the project was to implement
the same application for different social networks. This SF
started in early March of 2013 and held 11 weeks involving 8
specialized students with rich and different skills and
backgrounds.

 In order to take advantage of developer's skill diversity, the
development was organized considering pairs in which an
expert developer supported a less experienced student.

28Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 47 / 512

In this edition, many technologies and new abilities are
used and learned to obtain the maximum result. The meetings
with the entrepreneur allowed to stay in the right edges of time
and specifics. The particularity of this case is that people also
when they don't know each other thanks to the fact they have
the same aim, strive to implement a success product, behaving
as a family helping each others to solve problems or achieve
the same objectives.

E. SERTS (Software Engineering Research Tool Suite)
During the SF of 2013 edition, the project Software

Engineering Research Tool Suite (SERTS) has been developed
by a team of 6 students. The aim was the implementation of a
semi-automatic tool able to semplify the analysis of data
collected in software repositories such as Bugzilla, CVS, SVN,
Git, and Jira. The development period lasted eight weeks, from
September 2013 to November 2013 by a team composed by six
developers: a PostDocstudent, four PhD students and one
undergraduated. In this specific project, a medium knowledge
of software development was required. Each component of the
team had different tasks, chosen according to their skills. One
of the PhD students with a strong knowledge of the
technologies involved into the project, played the role of team
coordinator/coach. The used development process was Scrum
with iterations of two weeks.

The figure of the customer was very significant. Every two
weeks he monitored the work of the students observing the
progress of the project through spikes. Due to its constant
presence, it was possible to build a prototype inherent to its
requirements.

F. FREI MARKT SÜDTIROL
In 2014, Oulu SF and Bolzano SF start a collaborative time

banking project “FREI MARKT SÜDTIROL”. An Italian
entrepreneur was sending requests for his project to Oulu SF
team. The project idea was to provide a common single plate
form for existing time banking systems in South Tyrol and
other near cities.

Project aim was to provide a fresh new time bank-
community system which cover various parts of society and
particularly for those people who are strongly hit by the
ongoing socio-economic crisis including young unemployed,
working-poor and immigrants. A system was developed which
allows users to create their personal profiles, look for jobs &
products, post jobs & products, apply for jobs & product and
give feedbacks. In addition, a SMS platform will facilitate the
new member registration process, modification and verification
of time-checks (BiX) when the people are not familiar with the
Internet. Project team consists of eight students; in which four
students working from Oulu SF and four from Bolzano SF.
Both teams were having mentors to help agile and lean
concepts in the project. The use of Kanban method and JIRA
was mandatory for Oulu SF students while the Bolzano SF
students were not following any specific methodology or
practices. Both teams use and get experience with Rise Editor,
Myeclipse, Apache Tomcat, PostgreSql, Dreamweaver, and
GitHub in the project. In first two weeks, students attend
mandatory lectures and exercises in SF. During weeks 3 to 5
literature was studied related to the project idea, working
methodology and preliminary project plan were drafted. Then
design and actual development related tasks were carried out

within weeks 6 to 12. After every two week the teams deliver
batch of minimum viable product to customer. The project
demo was given in Bolzano University which was appreciated
and covered by local press.

G. Google Glass for Traffic Warden
One of the latest Demola examples is a project where five

students got the idea from a local SW company Vincit but also
collaborated with City of Tampere. The project integrated
automatic recognition register plates to Google Glasses. In this
project, the student group developed the first commercial smart
glass application in Finland. With this application the traffic
warden is able to see right away if the parking ticket has been
paid or not. The city of Tampere is piloting this system in
spring time 2015 [14].

Development of this system may not have been possible
with traditional processes where software companies and
public authority as customer should recognize the idea first and
then have detailed enough specification. In this case, the
student group approached the idea as a start-up by trying and
doing. The system project received also a fair amount of
publicity in Finland.

H. Optimeter
The Optimeter project was developed in 2012 by the

Madrid SF (Technical University of Madrid and Indra
Software Labs) and the Helsinki SF (University of Helsinki).
The Optimeter project (in practice there were two projects
inside the SF, Optimeter I and the subsequent Optimeter II) had
as goal to implement some use cases about data acquisition in
intelligent power networks, usually known as power smart
grids. The objective was to build a benchmark to validate
massive raw data coming from sensors and smart meters. The
benchmark was created using Apache Hadoop and Oracle
NoSQL Database to provide distributed processing and storage
capabilities to the system. Optimeter I and II were traversal to
two European projects under the ITEA2 Programe: IMPONET
(Intelligent Monitoring of POwer NET [11], 127 man years)
and NEMO&CODED (Networked Monitoring & Control
Diagnostic for Electrical Distribution [12], 112 man years, and
a third Spanish project called ENERGOS (Technologies for
automated and intelligent management of power distribution
networks of the future [13], with a budget of 24.3 million
euros). The project was developed using agile practices, and
more concretely following the Scrum methodology. Optimeter
was an excellent framework to set up a collaboration activity
between three Software Factories (UPM and ISL in Madrid,
and UH in Helsinki).

One lesson learned is that the training that the students can
get in such environment is very useful but straining. Students
were under the same pressure that the industrial development
team during the weeks the project took place. But at the end,
the background, skills and experience were very much
welcome by the students.

From the point of view of the industry, they could develop
the software that they needed, experimenting the usage of agile
methodologies in a distributed development environment. Also
they use the project to test some development tools that they
were not using until that moment.

29Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 48 / 512

I. HavuSport
In 2013, School of Computing in Joensuu was contacted by

two hockey coaches with an idea that the junior coaching
should be supported by an electronic system, usable with
different end user devices. Mobile device is the device of the
day that younger people easily relate to. The system should
support all major activities of a hockey team from messaging
and timetabling to performance statistics while getting rid of
excel-sheets, paper and pen. They could not find a proper
existing system, so they decided to have it build. SF Joensuu
built a web-based system with mobile applications coming
aside during two project rounds. Team size was 8 people, but
the project needed to be scoped very well because of the high
amount of required features and the fact that there was a lot to
learn in a short period of time.

Team felt a real business pressure to deliver, a feature that
is build inherently to SF, succeeding to achieve the target in
time. They felt proud that their hard work paid off. Havusoft
Company Ltd. was formed around the product and now
Havusoft is planning to extend the software system for other
sports activities too and there is great interest in the market to
use the system. The major role of SF concept in this process
was to enable starting entrepreneurs to push their idea forward
and show to the world that they are serious with their endeavor.

VI. CONCLUSION
In this paper, we present the academic Software Factories

(SF) in Europe, describing how they can help the local
economy by means of the collaboration among academia,
entrepreneurs and SMEs.

Our goal is to report on our SFs and similar initiatives,
presenting success stories.

SF provide an unique environment where entrepreneurs can
explore new ideas, develop new prototypes or apply new
techniques and students can study and work in a setting that
replicate, as much as possible, a real work environment.
Moreover, students have the opportunity to show their skills to
entrepreneurs and entrepreneurs can find new developers
easily, based on a direct knowledge of the students itself.

The network of SF in Europe, shared among Finland, Italy
and Spain is composed by several University that serves
hundreds entrepreneurs. SF collaborates with some shared
projects, working for the same project collaboratively, such as
the project described in the success story “Frei Markt
Sudtirol”. We reported several success stories, such as the
Google Glass for Traffic Warden, Memoree, Optimeter and
others, showing how the different stakeholders benefit of the
SF environment, from an entrepreneurial, didactical, and
research points of view.

A new Software Factory has recently been established at
Montana State University in Bozeman, MT. A first project with
a company from the financial sector has started and
relationships with entrepreneur communities such as
Blackstone Launchpad have been established.

In the future we plan to further expand the community
extending the number of partners’ universities and increasing
the number of shared projects and involving industries in the
project selection and execution.

Finally, future works include the analysis of different
development approaches adopted in the SFs, so as to
understand if success stories are caused by the agile approaches
or for other reasons.

ACKNOWLEDGMENTS
The authors would like to thank the companies and their

employees for participating to this research. This research has
been carried out in Digile Need for Speed and Digital Services
programs, and it has been partially funded by Tekes (the
Finnish Funding Agency for Technology and Innovation), the
Italian Regione Autonoma della Sardegna (RAS), Regional
Law No. 7-2007, project CRP-17938 LEAN 2.0, the Spanish
projects iSSF (i-Smart-Software-Factory) IPT-430000-2010-
38, INNOSEP TIN2009-13849, IMPONET ITEA 2 09030
TSI-020400-2010-103, NEMO-CODED ITEA2 08022 NEMO
CODED IDI-20110864, and ENERGOS CEN-20091048.

We also thank Ville Korpiluoto from Demola (Tampere)
and Xiaofeng Wang (Free University of Bolzano) for
reviewing and supporting this paper.

REFERENCES
[1] P. Abrahamsso, P. Kettunen and F. Fagerholm, ”The set-up of a

software engineering research infrastructure of the 2010s.” In
Proceedings of the 11th International Conference on Product Focused
Software ACM. pp. 112-114, 2014.

[2] X. Wang, I. Lunesu, J. Rikkila, M. Matta and P. Abrahamsson, ”Self-
organized Learning in Software Factory: Experiences and Lessons
Learned”. In Agile Processes in Software Engineering and Extreme
Programming. pp. 126-142, 2014.

[3] F. Fagerholm, A. Sanchez Guinea, H. Mäenpää and J. Münch, “Building
Blocks for Continuous Experimentation”. In Proceedings of the 1st
International Workshop on Rapid Continuous Software Engineering
(RCoSE 2014), Hyderabad, India,. pp 26-35, June 2014.

[4] M.O. Ahmad, K. Liukkunen and J. Markkula, J., “Student perceptions
and attitudes towards the software factory as a learning environment”.
IEEE Conference on Global Engineering Education. Istanbul, Turkey.
pp 422 – 428, 2014.

[5] M.O. Ahmad, J. Markkula and M. Oivo, “Kanban for software
engineering teaching in Software Factory learning environment”. World
Transactions on Engineering and Technology Education (WIETE),
Vol.12, No.3, pp 338-343, 2014.

[6] V. Lenarduzzi, I. Lunesu, M. Matta, and D. Taibi, “Functional Size
Measures and Effort Estimation in Agile Development: a Replicated
Study”, in XP2015, Helsinki, Finland 2015

[7] Bolzano-Bozen Software Factory, http://www.newsoftwarefactory.org
(Accessed: June 2015).

[8] Helsinki Software Factory, http://www.softwarefactory.cc. (Accessed:
June 2015).

[9] Demola. www.demola.fi. (Accessed: June 2015).
[10] www.protomo.fi. (Accessed: June 2015).
[11] IMPONET, https://itea3.org/project/imponet.html (Accessed: June

2015).
[12] NEMO&CODED, https://itea3.org/project/nemo-coded.html (Accessed:

June 2015).
[13] ENERGOS, http://innovationenergy.org/energos/ (Accessed: June

2015).
[14] Google Glass for Traffic Warden.

http://googleglassfortrafficwarden.blogspot.fi (Accessed: March 2015).

30Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 49 / 512

Performance Exploring Using Model Checking
A Case Study of Hard Disk Drive Cache Function

Takehiko Nagano1,3, Kazuyoshi Serizawa1, Nobukazu Yoshioka2, Yasuyuki Tahara3 and Akihiko Ohsuga3

1Research & Development Group, Hitachi, Ltd., Yokohama, Japan
2GRACE Center, National Institute of Informatics, Tokyo, Japan

3Graduate School of Information Systems, University of Electro-Communications, Chofu, Japan
e-mail: {takehiko.nagano.nr, kazuyoshi.serizawa.fz}@hitachi.com, nobukazu@nii.ac.jp, {tahara, ohsuga}@is.uec.ac.jp

Abstract—To avoid performance problems (e.g., execution

delay), model-based development represented by model checking
is used to improve performance quality. However, not so many
studies have applied the model checking of performance to actual
product development. Specifically, model checking has not been
applied to performance exploring, so it is hard to say how
effective model checking is. Furthermore, creating a new model
for performance verification in addition to the usual development
process greatly burdens developers. To reduce this burden, man
hours for performance verification modeling must also be
reduced. Accordingly, we embedded parameter deployment code
to create a performance verification model and achieved
performance exploration to ease performance optimization. Also,
we developed a performance verification modeling method
reusing existing product code to reduce modeling costs (man
hours). In this paper, we report a case study in which the
proposed method was applied to a Hard Disk Drive (HDD) cache
emulation program. According to the results, the minimum cache
capacity required processing was completed within the target
time. We also show that 57.89% of cache emulation program
codes were reused to create the new performance verification
model. These results validated the proposed method.

Keywords-performance; model checking; embedded system.

I. INTRODUCTION
Embedded computer systems acquire more advanced features

and become more complicated every year, so the lines of code
also increase. Therefore, the parameters that control the
system increase, the combinations of the processing that
attains performance become huge, and the performance
prediction and exploring of the system are difficult. For
example, in the database software case, although the tuning
parameter is prepared, performance optimization is not carried
out for each product. Thus, system engineers need to do
performance tuning using the above parameter before product
release. Therefore, the tuning documents and tools are
prepared by the software vender [11]. Moreover, system
engineers need to explore system performance including
hardware controlled by software and other software packages.
However, if performance tuning is not finished by the release
deadline and products are released while still having
performance problems, we may suffer damaged customer
relations, business failures, income loss, additional project
resources, reduced competitiveness, and project failure [2].
Complicated product exploring is difficult to fit in to the
limited time of a product’s release schedule. Compuware

reported that 20% of computer systems have performance
problems (e.g., execution delay) [13].
To solve these problems, usually two approaches have been

taken. One is carrying out performance prediction and design
at early phase of system development. The other is verifying,
analyzing, and solving the performance problems at later
phase of system development [1][2].
Specifically, at early phase of system development, we carry

out system performance prediction using a mathematical
model represented by queuing theory [3][4] and performance
verification of an algorithm using model checking represented
by UPPAAL [6][16][17]. At later phase of system
development, we carry out implementation based on a design
using the above techniques and performance evaluation,
analysis, tuning, and redesign using test results [2]. These
techniques have achieved positive results. However, it is
difficult to evaluate and analyze performance
comprehensively. Because, the parameters that control the
system increase, and the combinations of the processing that
attains performance become huge. In this paper, we focus on
model checking from the viewpoint of comprehension. And
we apply it to performance exploring.
The case studies of using model checking are reported [6],

[7][8]. However, not so many studies have applied the model
checking of performance to actual product development
[16][17]. Specifically, model checking has not been applied to
performance exploring, so it is hard to say how effective
model checking is. Furthermore, creating a new model for
performance verification in addition to the usual development
is a big burden for developers. To reduce this burden, man
hours for performance verification modeling must also be
reduced.
In this paper, we propose the following two methods:

1) An easy performance exploring method embedding
parameter deployment code used to create performance
verification model;

2) A performance verification modeling method reusing
existing product code to reduce modeling costs (man hours).
By method 1), performance exploring realizes a

comprehensive verification mechanism of model checking.
Moreover, by method 2), the C code embedded function of
PROMELA is used for performance verification modeling
[20]. Specifically, costs are reduced by using the actual
product C code instead of new modeling by PROMELA.
Moreover, we report a case study in which the proposed

method was applied to a cache emulation program.

31Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 50 / 512

In Section 2, we describe a performance problem and
objective. In Section 3, we explain our proposed method. In
Section 4, we present about our target, a HDD. Specifically,
we present a cache emulation program and analysis results of
its application. In Section 5, we discuss the effect of the
proposed method. In Section 6, we detail our conclusions and
future work.

II. PROBLEM AND OBJECTIVE

A. Performance problem and research scope
A purpose of this paper is to solve the execution delay

problem of the embedded computer system. We assume that
all programs are implemented in C language in this paper,
because C is a major programming language in embedded
systems. Particularly, a target of this paper is an embedded
system in that software controls hardware, such as a storage
system, a car engine controller and so on.

B. Related works
To solve these problems, many techniques have been

proposed and applied. To overcome system performance
problems, two approaches have been taken. One is carrying
out performance prediction and design at early phase of
system development. The other is verifying, analyzing, and
solving the performance problem at later phase of software
development. Below, examples of these approaches are
presented.

1) Countermeasures against performance problems at
early phase of system development
At early phase of system development, we carry out system

performance prediction and performance verification of an
algorithm. Performance prediction uses a mathematical model,
typically queuing theory. Queuing theory has been applied in
various fields, and many results have been reported [3][4].
Moreover, an example using the Markov model for the
performance prediction model has also been reported [5].

Next, the prediction and verification using a design model
are described. The modeling method consists of a
mathematical model and a programmatic model. In the
mathematical model, the model is created using timed-
automata [9], Petri net [18], and so on. In the programmatic
model, the model is created using UML extended by MARTE
[1]. The performance design and verification using model
checking is included here. UPPAAL using timed automata is a
widely used model checking tool in this domain [6][16][17].
For example, UPPAAL is applied to time constraint
verification of Audio/Visual protocol [6]. There are also other
models checking tools like PRISM that can verify a statistical
model [7].

2) Countermeasures against performance problems at
later phase of system development
At later phase of system development, we carry out two main

performance improvement measures. One is a performance
analysis test of a developed system to evaluate whether the
target performance is achieved. The other is performance

tuning to analyze test results. After that, the system is
redesigned, parameters are reconfigured, etc. [1][2]. These
techniques have been applied to actual systems, and designs
for next generation products have been reported [15].
Moreover, our company also applies these measures in many
product developments. Furthermore, documents and tools
needed to master a software package are prepared by the
software vender [11].

C. Problems to solve
The countermeasure described in Section 2-B is implemented

to prevent performance problems. And, these techniques have
achieved positive results. However, it is difficult to evaluate
and analyze performance comprehensively. Because, the
parameters that control the system increase, and the
combinations of the processing that attains performance
become huge. In this paper, we focus on model checking from
the viewpoint of comprehension. Also, we apply it to
performance exploring.
Not so many studies have applied the model checking of

performance to actual product development. Specifically,
model checking has not been applied to performance
exploring, so it is hard to say how effective model checking is.
Moreover creating a new model for performance verification
in addition to the usual development greatly burdens
developers. Furthermore, to reuse old product code, it is
necessary to create a performance verification model that also
includes the past code. This recurrent work also becomes a big
burden. To reduce the above burdens, man hours for
performance verification modeling must also be reduced.
As a result of the above issues, the problem to solve is as

follows.

Problem to solve: Enable performance exploring of
complicated systems with advanced features.

To solve the above problem by model checking, we first do
the following.

• Establish a method for applying model checking to
performance exploring

• Develop an efficient performance modeling method

III. PERFORMANCE EXPLORING USING PARAMETER
DEVELOPMENT AND PERFORMANCE VERIFICATION MODELING

REUSING PRODUCT CODE
There are various types of performance, such as execution

time and throughput. In this paper, we define execution time
as performance.

A. Outline of proposed method
Many modeling languages exist for design and verification.

Modeling languages for design include UML, and modeling
languages for verification include model checking such as
PROMELA [20]. Furthermore, there are two types of
language for verification. One is for functional verification
such as PROMELA, and the other is for verification for real
time systems such as UPPAAL [6]. In this paper, our target is
a modeling language for functional verification such as

32Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 51 / 512

 PROMELA. Because model checking is used, comprehensive
verification is attained. Additionally, by applying model
checking, performance exploring is achieved. From the above,
we propose the following two methods.

1) Easy performance exploring using parameter
deployment code

2) Performance verification modeling reusing product
code

By method 1), we can apply model checking to performance
exploring. Performance exploring is realized using the
comprehensive verification mechanism of model checking.
Moreover, by method 2), we can develop an efficient
performance modeling method. We use the C code embedded
function of PROMELA for performance verification modeling.
Specifically, costs are reduced by using actual product C code
instead of new modeling by PROMELA. Here, FeaVer, which
generates the PROMELA model from the C code, exists as
related research. However, FeaVer is not a performance
verification model but only a functional verification model [9].

Moreover, we explain how to verify HDD performance using
PROMELA/SPIN not aimed at real-time verification, unlike
UPPAAL.

B. Performance exploring using parameter deployment code
In case that there are some parameters affecting to system

performance, to find a set of the parameters to achieve
required performance, performance exploring of the
parameters needed to repeat until adequate set was found.
We propose a parameter exploring method for performance to
let a model checker, like SPIN. For example, in selecting
cache size, we want to choose the smallest cache that satisfies
the target performance. In this case, after the cache size is
changed, many tests must be performed and results evaluated.
When a tester uses a simulation program, the program
evaluates by creating a script as shown in Figure 1. In Figure 1,
the caches sizes in the second line (4, 8, 16, 32, and 64MB)
are inputted to the cache_simlator program, and all patterns
are executed to calculate execution time.

Figure 1. Wrapping program
By using a model checking technique, SPIN deploys

parameters for exploring. Furthermore, the machine was
checked to see whether verification conditions were satisfied.
To evaluate cache size, as shown in Figure 2, all cache sizes
that can be taken in “if” sentences must be described. By this
description, the verification machine (SPIN) verifies by
exploring using all parameters. Thereby, to create a script as
shown in Figure 1, performance test using an actual machine,
analysis of the result log, etc. become unnecessary, and
performance exploring efficiency improves.

Figure 2. Parameter deployment sample

1 if
2 :: CacheSize_MB = 4
3 :: CacheSize_MB = 8
4 :: CacheSize_MB = 16
5 :: CacheSize_MB = 32
6 :: CacheSize_MB = 64
7 fi;

C. Performance verification modeling reusing product code
1) Reuse of whole processing
The part that does not contain the conditional branch that

influences performance reuses the original C code. The only
thing necessary is to surround the function of C language with
the c_code{}. An example is shown in Figure 3. In Figure 3,
the function sorts a segment’s structure by time using qsort of
libc. To apply this technique, it is necessary to check whether
the target function is processed atomically. This is because the
inside of the processing surrounded by c_code{} is processed
atomically by SPIN.

1 c_code{
2 //compare function
3 int comp_segment(const void *seg1,const void *seg2)
4 {
5 int Time1,Time2;
6 SegmentUnit *Unit1 = *(SegmentUnit **)seg1;
7 SegmentUnit *Unit2 = *(SegmentUnit **)seg2;
8
9 Time1 = Unit1->Time;
10 Time2 = Unit2->Time;
11
12 return Time1 - Time2;
13 }
14}

Figure 3. Example of call function writing by C code
2) Modeling of the part containing conditional branch
that influences performance
In this subsection, we describe modeling the part containing

the conditional branch that influences performance. In the
proposed method, the conditional branch (if, while, etc.),
which has influence on performance need to be converted to
conditional branch of PROMELA, and about expression of the
condition, the original C code need to be surrounded with the
c_expr{}.

1 #!/bin/sh
2 for CACHE in 4 8 16 32 64
3 do
4./cache_simulator workload_cmd_data.csv $CACHE >
result$CACHE.txt
5 done

Figure 4 shows the original C code of the conditional branch,
and Figure 5 shows an example in which it is PROMELA-ized.
The control structure of C language can be mostly used by
PROMELA: “if” sentence, “while” sentence, etc. Thus, we
use it as shown in Figure 5.
 1 if(LRUDumpTime ==0){
 2 SystemTime += TimeInterval;
 3 }else{
 4 SystemTime += LRUDumpTime;
 5 LRUDumpTime = 0; }

Figure 4. Example of original C code

33Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 52 / 512

In this study, we explore and verify the performance of this
cache function using model checking and show the results.

Moreover, for the processing time of a drive portion, a value
is returned using the time it takes on the average to make data
size uniform.

1 if
2 ::c_expr{ LRUDumpTime == 0} ->
3 c_code{

1) Composition of HDD and cache memory 4 Pcache_main->SystemTime += TimeInterval;
5 }; The composition of HDD is shown Figure 6. HDD consists

of software, represented by firmware (FW), and hardware,
represented by the I/F controller, memory, disk drive, and
other controllers.

6 ::else ->
7 c_code{
8 Pcache_main->SystemTime = += LRUDumpTime;
9 LRUDumpTime = 0; Next, we explain the processing flow using write processing.

First, the HDD receives a host command (workload data) from
the I/F controller. Second, the I/F controller sends a command
to FW. Third, the FW’s cache controller module checks
whether writable cache area remains. If it does not, the data on
cache is written to the disk drive using a memory controller
and drive controller, thus opening up writable space on the
cache. Fourth, after writing, new command data is written on
cache memory by FW.

10 };
11 fi;

Figure 5. Example of PROMELA model
For example, when the “if” sentence shown in Figure 4 is

written by PROMELA, the whole code is surrounded by “if”
and “fi” like in the first and eleventh lines in Figure. 5.
Conditional sentences are written like the second and sixth
lines. Moreover, we need the cross-reference of the variable
declared within the model of the PROMELA portion and the
variable declared in the C code portion. In this paper, the
variable declared within the model of PROMELA is updated
by the C code side and then used for PROMELA model
control. For example, the fourth line in Figure 5 is equivalent
to this processing. In this case, the variable “SystemTime”
declared by PROMELA is updated by the C code side. If
SPIN can be distinguished in the variable of the PROMELA
process, SPIN cannot be renewed. In this case, “Pcache_main”
describes the PROMELA process information. P represents a
process, and cache_main represents the process name. By
following this notation, SPIN can execute a name resolution
so that an applicable variable can be referred to.

Figure 6. HDD Overview

2) Verification targets
IV. HARD DISK DRIVE CACHE EMULATION PROGLAM AND

ANALYSIS RESULT
In this paper, we verify the performance of the cache

function. Here, performance is defined as execution time.
Based on the above definition, our verified targets define the
time from the head command being accepted to the tail
command being accepted.

In this section, we describe the analysis results for applying
the technique of performance verification and exploring
described in Section 3 to a HDD cache emulation program.
Moreover, we describe the application of the technique using
the analysis results.

Next, in the future, we plan to use verification results of
actual product development. Hence, we plan to make time
accuracy of verification results equivalent to the actual system.
Therefore, we do not abstract time accuracy.

Therefore, first, we describe the HDD cache emulation
program used this time. Next, we describe the analysis results
of the cache emulation program. Furthermore, we describe the
modeling of reusing actual cache emulation program code.
Finally, we evaluate the created model’s validity.

In this paper, we chose only write processing as the modeling
target.
3) Parameters used for cache emulation
Here, we use parameters equivalent to an emulation program.

These parameters’ information is shown in Table I. A. HDD outline
Here, we describe performance verification of the cache

function of HDD. The performance of HDD is influenced by
the frequency of drive access. For example, while the drive
head attainment time (seek time + wait time of revolution) is
16.53msec in the drive of 7200rpm, cache memory control
processing needs µ sec order. This proves that time of drive
access is dominant in the I/O time of HDD [10]. From this,
HDD is equipped with the cache function to hold the accessed
data in a memory in order to reduce the number of disk
accesses. The utilization efficiency of the cache is improved,
and the whole performance is demonstrated.

TABLE I. PARAMETERS FOR EVALUATION

Parameter Meaning
Rotational speed Revolution per minute
Sector Size Subdivision area size of a track

(512 or 4096 byte)
Cache Size Total cache size
Average seek time Head moving time to target
Max segment count Subdivision area count of Cache

memory
Max sector count Max sector count per track

34Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 53 / 512

q10: Create new segment [step4] B. Cache emulation program
q11: Modify hit segment [step4] Cache processing outlines shown in Figure 7. Before Step 1,

the cache program is checked to see if a command has arrived.
If it has, cache program is checked to see if it still has easy-to-
output data (Step 1). If it does, the cache program transfers the
data from cache to a disk drive and opens up writable space in
cache (Step 2). If it does not, cache receives a command from
the I/F controller (Step 3). Next, the cache program judges
whether the new caches used are to be bigger than cache
capacity or not (Step 4). If cache overflows, the data chosen
by the cache program using a policy (ex: LRU) is written to
the disk drive (Step 5). After that, the cache program transfers
the data held by I/F to cache memory (Step 6).

q12: Check cache size [step4]
q13: Decide destage segment [step5]
q14: Calculate drive access time and clear cache [step5]
q15: Transfer data from I/F to cache [step6]
q16: Finish
Next, we explain the flow of processing using Figure 8. When
workload processing starts, the processing changes to q0:
Workload check state. Then, the number of remaining
commands of the workload is checked. If there are any
remaining commands, the processing will change to q1, and if
not, it will change to q16, finish emulation, and verify
execution time. In q1: Segment count check state, segment
count (Seg) in the cache is checked and whether to output
cache contents to the drive or not is determined. If Seg > 1
(outputting cache contents to drive), processing changes to q2.
If Seg <=1 (not outputting), then processing changes to state
q5. In q2: Create drive access list using cache data state, a
drive access list is created and processing changes to q3. In
q3: Judge existing access list state, if an access list exists,
processing changes to q4. If no list exists, processing changes
to q5. In q4: Calculate drive access time and clear cache state,
drive access time is calculated and acquired from head LBA
address of the access list and the length of access data. After
this step is completed, processing changes to q5. In q5: Check
if any drive access state exists, check whether existing drive
access (at q4 or q14) exists or not. If drive access exists, then
processing changes to q6. If not, processing changes to q7. In
q6: Set lapsed time by drive access state, drive access time is
added to system lapsed time, and processing changes to q8. In
q7: Set interval time state, configured interval time is added to
system lapsed time, and processing changes to q8.

Figure 7. Cache processing outline In q8: Update system time state, system time is updated using
set lapsed time. After system time is updated, processing
changes to q9. In q9: Obtain commands within update time
state, the commands arrive within the updated time. If there
are no commands, processing changes to q0. If commands
exist, a cache is judged to be a hit or miss. If a command is
judged to be a miss, processing changes to q10. If a command
is judged to be a hit, processing changes to q11. In q10: Create
new segment state, the new segment set up information is
secured and processing changes to q12. In q11: Modify hit
segment state, the updated information on hit cache segment is
acquired and processing changes to q12. In q12: Check cache
size state, updated cache size is judged to be bigger than the
system cache or not. If it is bigger, processing changes to q13.
If not, processing changes to q9. In q13: Decide destage
segment state, the segment that is outputted to a disk drive or
deleted is chosen by using a scheduling algorithm (ex. LRU),
and processing changes to q14. In q14: Cache drive access
time and clear cache state, cache segment information and
clear segment are outputted and processing changes to q15. In
q15: Transfer data from I/F to cache state, the command data
which has reached I/F is transfer to cache. After this step is
completed, processing changes to q 12.

On the basis of the above process and in accordance with the
modeling plan shown in Section 4-A, we created a verification
model written in PROMELA from cache emulation program.
Figure 8 shows the state transition diagram of cache emulation
program with the object of performance modeling. The
emulation program modeling this time does not have a host
portion. The module of Host I/F reads the workload file and
carries out emulation of cache.
Moreover, to calculate drive access time, we did not use an

actual HDD. We use the virtual model that calculates average
drive access time in this report.
States of the state transition diagram are as follows. The
correspondence state in Figure 7 is shown inside of [].
q0: Workload check [before step1]
q1: Segment count check [step1]
q2: Create drive access list using cache data [step1]
q3: Judge existing access list [step1]
q4: Calculate drive access time and clear cache [step2]
q5: Check exist any drive access [step2]
q6: Set lapsed time by drive access [step2]
q7: Set interval time [before step3]
q8: Update system time [before step3]
q9: Obtain commands within update time [step3]

35Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 54 / 512

Figure 8. Cache program state transition diagram

The above is processing sequence of the target cache
emulation program.

C. Analysis results of cache emulation program
This section describes the analysis result of a cache

emulation program. This time, cache performance verification
model is created reusing the existing cache emulation C
program. Therefore, we describe how to judge whether to
reuse the C program part or the new modeling part.
1) Analysis of the cache emulation program based on
the contents of verification
Based on the verification contents described in Section 4-A-2,

we analyzed the target cache emulation program. This
subsection describes the analysis of results.
As described in Section 4-A the HDD I/O performance has

dominant disk access time. Additionally, cache processing
time does not influence system execution time. Thus, in this
verification, addition of lapsed time was limited to the drive
access part. However, the opportunity to generate drive access

depends on command arrival time. Therefore, we decided to
calculate lapsed time on the basis of the command arrival time.
Moreover, as mentioned above, since a branch was required to
judge the existence of drive processing and a branch
accompanying command processing affected lapsed time, they
were newly modeled by PROMELA.
Next, from the above-mentioned plan, in processing that

determines the contents of drive access, only an execution
result influences drive access time, so we thought that the
process would not influence performance. Therefore, the
processing model that determines the contents of drive access
reused the cache emulation C program code. Furthermore,
cache emulation program calculates drive access time using
only access length, not an internal drive state. Thus, we chose
the processing drive portion reusing cache emulation C
program code.
From the results of the above analysis, we decided to

determine the part that reuses cache emulation C program
code and a new modeling part using PROMELA.
D. Development of performance verification model
using cache emulation program
1) Create performance verification model
As opposed to the state transition diagram in Figure 8, on the

basis of the analysis results in Section 4-C, we decided the
part that reuses cache emulation C program code, the part that
models using PROMELA, and the part that calculates time
progress. The result is shown in Figure 9.
 The parts enclosed in a dotted line reuse the existing code,
and the parts enclosed in a solid line newly create a model
using PROMELA. Time progress processing (to carry out
drive access part) is in gray.
The example of modeling in Figure 9 already appeared in

Figure 5. Figure 5 shows the same processing as the state
diagram that consists of a tri-state of q5, q6, and q7. Lines 1, 2,
6, and 11 in Figure 5 show the same processing as q5. Lines 3
to 5 in Figure 5 show the same processing as q7. Lines 7 to 10
in Figure 5 show the same processing as q6. Finally, lines 3 to
5 and lines 7 to 10 are reused by inserting them into c_code.
Other processing parts similarly create a model reusing C code
or using PROMELA.
E. The validity check of created model
In this section, the verification model created in Section 4-D

is verified using actual work load data. Results are described
below.
1) Workload used for verification
In this verification, we use the workload in Table II.

TABLE II. WORKLOAD SPECIFICATIONS
Name Value

Command count 6510
Command input time range (µ sec) 0~ 35529817
Start LBA range 95~1953512383
Data length (sector) 1~256

2) Parameters for verification
In this verification, we use following parameters shown in

Table III.

36Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 55 / 512

In this verification, we use SPIN. The version of used
verification tool is SPIN 5.2.5.

Figure 9. Modeling method

F. Verification of execution time
First, we explain the verification of execution time. After the

input of the workload, the verification machine calculated
execution time and verified whether it satisfied the conditional
expression. Then, we verified whether the SystemTime for
reaching q16: finish state in Figure 8 exceeded the
requirement value. The used verification condition is assert
(System Time < Target Time).
A [](System Time < Target Time) can also be used for the

same verification.
In the results of this verification, the trail file was outputted

when SystemTime exceeded the TargetTime. Thereby, the
execution time was verified to satisfy the target or not.
Figure 10 shows an example case in which the above

verification conditions were not satisfied.
When the cache size was 4MB and target time was 40,000,000
µ sec, processing took 47,681,370 µ seconds and System Time
exceeded requirement time, so a trail file was outputted
(Figure 10).

TABLE III. HARDDISK PARAMETERS
Parameter Meaning

Rotational speed 7200 rpm
Sector Size 512 byte
Cache Size 4,8,16,32,64 MB
Average seek time 8.2 msec
Max segment count 2048
Max sector count 2048

3) PC used for verification
In this verification, we use the PC in Table IV.

TABLE IV. SPECIFICATIONS OF EXPERIMENT PC
Name Dell Precision T1500

CPU Intel(R)Core(TM)i7-860 2.8GHz
Memory 16GB DDR3 SDRAM(1066MHz)
Chip Set Intel(R) H57

4) Using verification tool

Figure 10. Trail file example1

We acquired the execution results of the cache emulation
program and compared them with the verification results of
the created model.
The execution results of emulation program are shown in
Figure 11.

Figure 11. Result of emulation program

The file named result*.txt in Figure 11 is an execution result
of an emulation program. The applicable numerical value at *
shows the cache size. The result of Figure 10 and the result in
cache size equals 4MB of Figure 11 are equivalent. All the
results in Figure 11 became equal when a model is executed
using the same conditions. From this, the created model was
judged to have behavior equivalent to that of an emulation
program from this result. As mentioned above, in this research,

37Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 56 / 512

the created model was judged to be executed the same as an
emulation program. Therefore, the created model is thought to
be appropriate.

The first pan file has the same contents as Figure 10, so an
explanation is omitted. The results of having read the second
pan file are shown in Figure 13. As Figure 12 shows, when
cache size was 8MB, execution time became 44,080,020 µ sec,
which did not satisfy verification formula. In the verification
and results in Figure 11, when cache size was less than 8MB,
verification showed that target performance could not be
attained. It also turned out that 16MB attains target
performance with the smallest cache capacity.

V. DISCUSSION

A. Source code reuse ratio and evaluation
In this paper, we attempted to create a model more efficient

than the newly made model by reusing C source code. Then,
we analyzed the ratio of the reused number of C codes close to
the number of codes of the model.
The results of analysis are shown in Table V.

TABLE V. RESULTS OF CODE REUSE ANALYSIS
Name Value

Model LOC 627 (comment lines are excluded)
Cache C code LOC 605 (comment lines are excluded)
C Line in model 363 (Number of C codes (reuse codes) in a

model
Reuse rate 57.89% (vs. Model LOC)
Reuse rate 60.00% (vs. Cache C code)

In the results, 60% of original source codes were reused.
Moreover, the reuse ratio of the cache C code to a model
became 57.89%.
B. Performance exploring using model checking
Next, we show the results of performance exploring using

model checking. We used the same verification conditions as
described in Ⅳ-F and the code shown in Figure 5, which
distributes the cache sizes of 4, 8, 16, 32, and 64MB.
The target time was 40,000,000 µ sec like in Section 4-F, and

we carried out performance exploring. In addition, this
exploring was completed just to run the program once the pan
file that the SPIN generated was executed. Creation of a
program as shown in Figure 1 is unnecessary.
The results are shown in Figure 12. These results show that

two cache sizes cannot fulfill the conditions, abnormalities
occur, and a trail file is generated.

Figure 12. Results of performance exploring

Figure 13. Trail example 2

As mentioned above, in model checking, parameters are
explored by using the code for parameter deployment, the
code for selection of an algorithm is similarly embedded, and
a user becomes able to optimize performance easily.

VI. CONCLUSION AND FUTURE WORK
In this paper, to enable performance exploring for embedded

computer systems, which acquire more advanced features and
become more complicated every year, we decided to achieve
the following objectives for model checking.

• Establish a method for applying model checking to
performance exploring

• Develop an efficient performance modeling method

To meet the above objectives, we proposed the following
two methods.

1) Easy performance exploring using parameter
deployment code

2) Performance verification modeling reusing product
code
Moreover, the proposed techniques were applied to a HDD

cache emulation program, and we verified whether processing
could be completed within a target time and confirmed its
validity.
Furthermore, we embedded parameter deployment code to

create a performance verification model and achieved
performance exploring, and then we the determined that
minimum cache capacity required processing was completed
within the target time. We also showed that 57.89% of cache
emulation program codes were reused to create the new
performance verification model. From these results, we
validated the proposed technique.
For future work, we need to evaluate whether the proposed
technique reduces the man hours in an actual product
development.
Moreover, although reuse of code was considered to improve

the efficiency of modeling this time, the used part of code will
be processed atomically. From the characteristic of HDD,
since the criterion of judgment of atomizing was created, it is
necessary to also examine the criterion of judgment in the case
of applying the proposed technique to other products.

38Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 57 / 512

Finally, the performance was defined as execution time and
verified in this paper. However, since the throughput is
similarly important as an index of performance, it will need to
be considered too.

REFERENCES
[1] M. Woodside, G. Franks, and C. Petriu, “The Future of Software

Perfo-mance Engineering” in Proc. Future of Software
Engineering 2007, May. 2007, pp. 171-187.

[2] C. Smith, L. Williams, “Performance solutions” Addison-
Wesley Publishers, 2001.

[3] K. Trivedi, “Probability and Statistics with Reliability” Queuing,
and Computer Science Applications. Wiley, 2001.

[4] L. H. Henry, “Software performance and scalability” Wiley,
2009.

[5] Q. Qinru, M. Pedram, “Dynamic power management based on
continuous-time Markov decision processes” in Proc. of Design
Automation Conference, New Orleans, LA, June 21-25. 1999,
pp.555-561.

[6] K. Havelund, A. Skou, K. G. Larsen, and K. Lund, “Formal
Modelling and Analysis ofan Audio/Video Protocol: An
Industrial Case Study using UPPAAL” in Proc. the 18th IEEE
Real-Time System Symposium, Dec 1997, pp 2-13.

[7] T. Nagaoka, A. Ito, K. Okano, and S. Kusumoto, “QoS Analysis
of Real-time Distributed System Based on Hybrid Analysis of
ProbabilisticModel Checking” IEICE Transactions on
Information and Systems, Vol.E94-D, No.5, pp.958-966, May
2011.

[8] K. Moonzoo, K. Yunho, “Automated Analysis of Industrial
Embedded Software” in Proc. 9th International Symposium,
ATVA 2011, Taipei, Taiwan, October 11-14, 2011, pp. 51-59.

[9] R. Alur, D. Dill, “A theory of timed automata,” Theoretical
Computer Science 126:183-235, April 1994, doi:10.1016/0304-
3975(94)90010-8

[10] B. Jacob, N. W. Spencer, D. T. Wang, “Memory Systems Cache,
DRAM, Disk” Morgan Kaufmann Publishers,2008

[11] Oracle(R), “Database Performance Tuning Guide 10g Release2”
http://docs.oracle.com/cd/B19306_01/server.102/b14211/toc.ht
m. [Accessed: Sep 24, 2015]

[12] G. J. Holzmann, M. H. Smith, “Software model checking:
extracting verification models from source code Formal
Methods for Protocol Engineering and Distributed Systems” in
Proc. (FORTE/PSTV99) October 1999,pp.481-47.

[13] Compuware, “Applied Performance Management Survey”, Oct
2006.

[14] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of
Embedded Software: A First Step Towards Software Power
Minimization” IEEE Transactions on VLSI Systems, Vol2, pp.
437-445, Dec. 1994, doi:10.1109/92.335012

[15] S. Barber, “Creating Effective Load Models for Performance
Testing with Incomplete Empirical Data,” in Proc. 6th IEEE Int.
Workshop on Web Site Evolution, 2004, PP. 51-59.

[16] A. David, K. Larsen, K. Legay, M. Mikucionis, D. Poulsen, and
S. Sedwards, “Runtime Verification of Biological Systems,”
ISOLA, LNCS, Springer, Vol7609, 2012, pp 388-404.

[17] G. Igna, V. Kannan, Y. Yang, T. Basten, M. Geilen, F.
Vaandrager, M. Voorhoeve, S Smet, and L. Somers, “Formal
Modeling and Scheduling of Datapaths of Digital Document
Printers.” Proceedings FORMATS'08, Saint-Malo, France,
September 15-17, 2008. LNCS 5215, pp. 170-187.

[18] R. Hamadi, and B. Boualem, “A Petri net-based model for web
service composition,” Proceedings of the 14th Australasian
database conference-Vol17. Australian Computer Society, Inc.,
2003, pp 191-200.

[19] Object Management Group, “UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded Systems,”
http://www.omg.org/spec/MARTE/, [Accessed: Sep 24, 2015]

[20] G. J. Holzmann, “The model checker SPIN ,” Software
Engineering, IEEE Transactions, Vol23(5), 279-295., May 1997,
doi: 10.1109/32.588521

39Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 58 / 512

Towards a Better Understanding of Static Code
Attributes for Defect Prediction

Muhammed Maruf Öztürk and Ahmet Zengin

Department of
Computer Engineering
Faculty of Computer

and Information Sciences
Sakarya, Turkey 54187

Email: muhammedozturk@sakarya.edu.tr, azengin@sakarya.edu.tr

Abstract—Defect prediction requires intensive effort and includes
operations which are focused on reducing the cost of software
development. These operations involving the use of machine
learning algorithms could produce wrong results originated from
skewed or missing data. In order to increase the success rate of
predictors, defect data sets are either pruned or duplicated. To
address this problem, we observe the effects of the derivation
of low level metrics using statistical methods in prediction
performance. The performance of predictions are evaluated using
10-fold cross-validation on each data set. Experimental results
obtained by using 15 data sets show that naive Bayes classifier
improved values of Area Under the Curve (AUC) with the rate
of 0,1 in average.

Keywords–Defect prediction; Low level metrics; Metric deriva-
tion

I. INTRODUCTION

Properties of software codes vary depending on develop-
ment processes, functional goals, and development constraints
[1][2]. In order to comprehend this variety in depth, we should
examine software behaviours and tendencies, in which ver-
sions of software changes, along with specific software metric
models [3][4][5]. Developers need metric tables to advance
their understanding of how software changes across it’s newer
versions [6]. The standards, which were developed by McCabe
and Halstead, are widely used ones while generating software
metric tables [7][8]. These standards do not require an in-
depth analysis in the structure of codes; however, the model
presented by McCabe is more suitable than the others in the
design level [9].

Metric tables of software components have a property that
indicates the defect-proneness of software. Thanks to this
property, a defect prediction can be conducted on the basis
of binary classification. However, each data set has potential
problems caused by noise or repeated data points that this
issue reduces the success of prediction [10]. One of the mostly
known problems in defect prediction is class-imbalanced data
sets. In such cases, defects are generally intensified on specific
parts of software so that the reliability of the prediction is not
as desired. In this respect, it is rather difficult to determine
a general bias about the software modules [11]. We have
two ways to cope with class-imbalance: undersampling, and

oversampling. Although undersampling is an efficient method,
it causes the hiding of useful data. Likewise, oversampling
may cause an unrealistic increase in the success of learning
[12], [13][14].

In this study, we investigate metric derivation methods and
its effects on defect prediction. Defect data sets consist of
15 data sets including NASA metrics data program (NASA
MDP) and Softlab. The common feature of these data sets is
that they were generated using McCabe & Halstead metrics.
After adding some metrics to the data sets such as character
count (cCount) and class size (cS), the variation recorded
on the performance parameters such as accuracy and AUC
was observed. Moreover, the relationship between low level
and other metrics was strived for the exploration. The results
obtained from the experiment show that the proposed method
increased the success of prediction on 15 data sets in general.

The rest of the paper is organized as follows. Section
2 provides a background describing the relevant terms and
approaches. Related works are mentioned in Section 3 and this
section also discusses the distinctive aspect of our work when
it is compared to similar works. The proposed approach is in
Section 4. The results, we have obtained so far, are explained
in Section 5. The novelty and the contribution of the paper are
presented in Section 6.

II. BACKGROUND

Two types of learning are used in defect prediction: super-
vised and unsupervised learning. Supervised learning is the
most commonly used technique [15][16]. It includes SMV,
ANN, decision trees etc.. Although unsupervised learning does
not requie a labelling on training data, supervised learning
analyzes the data only labeled. Researchers generally want
to see which supervised learning techniques are suitable for
defect data sets to be predicted. Learning techniques also called
predictors are to predict defect-proneness of modules for the
next version of software.

Properties of code are prepared using a particular mea-
suring standard namely metrics [17]. Even though researches
published in last five years are focused on process metrics that
yielded promising results [18][19], code metrics have some
gaps that are worthy to explore [20][21]. One of them is

40Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 59 / 512

the reliability of defect data sets. As the defect data sets are
generally prepared by combining all related developer’s com-
ments, they may have missing or noisy data points. In order to
cope with this problem, the data are re-sampled or reduced by
using particular preprocessing techniques. SMOTE is one of
the widely used sampling strategy for defect prediction [22].
However it is sensible to combine a sample reduction method
with an over-sampling technique [23].

III. RELATED WORKS

One of the leading fields to explore static code properties
is machine learning. Menzies et al.’s work, published in 2007,
is a much cited work in this field [24]. This work stressed that
the type of the metric set is more important than the selected
predictor in the success of precision. The promising result of
this work is that Bayes classifier showed better performance
than J48 with the rate of 71%. Likewise, we have taken naive
Bayes among performance measurement algorithms.

The framework developed by Song et al. showed that every
data set may not be suitable for every prediction model [25].
This especially changes depending on the type of the data set.
Using this result we can say that every learning method is
not suitable for every defect data set. A two-phase prediction
model was developed in Kim and Kim’s work [26], the reports
considered as eligible were eliminated in the first phase and
the prediction accuracy was obtained as 70%. This work also
proved the importance of preprocessing in defect data sets.

One of the works which used NASA MDP data sets is
Gray et al.’s work [27]. This work, especially focused on data
cleansing, removed some properties of the metrics obtained
from 13 data sets to be suitable for binary classification.
Missing values were assigned to zero. The first of these results
is that used data sets should be extended. Thus, we can
determine whether the repeated data points are in general.
Second, low level metrics should be used to detect repeated
data. Third is the presence of the issues caused by the repeated
data.

The studies above all use static code metrics to build a
proper prediction model. However, the most relevant work to
ours is Gray et al’s work which is explained in the preceding
paragraph. This work and our work have similarities: they
use the same experimental data sets and have claimed the
importance of the use of low level metrics.

IV. PROPOSED APPROACH

NASA MDP and SOFTLAB data sets consisting of metric
values that range from 21 to 40. Tests including ANOVA, t-
test, and chi-square unveiled the relationship between character
count and LOC (number of lines of code) as below:

cCount ∼= lCode ∗ 30. (1)

Lorenz and Kidd presented object-oriented metric tables [28].
The main reason why object-oriented metrics are widely used
is that such metrics are the best indicator of system reliability at
design level [29]. cS is also a low level metric but it is not avail-
able in the data sets of NASA MDP and SOFTLAB (CS=total
number of operations+ number the attributes) [28]. In order
to explore the relationships of defects, Linear and Multiple
Regression analyses were used. If the binary-dependencies of
the metrics are desired to be extracted, Linear Regression is

a convenient method. This method assumes that relations be-
tween variables can explained through a linear model [30][31].
Also our approach is to unveil the linear relationships between
defect data set values. Given a dependent variable as y-f(x),
the assumption having independent variable(x) emerges as
y=ax+b. This is called as Curve Fitting [32]. The aim of this
process is to find the most suitable a and b variables for f(x).
As the value of R2 closes to the one, a rather suitable curve
is obtained. If ei is regarded as error term, the formula is
ei = yi,measured − yi,model. We aim at minimizing Sr in the
formula of Sr =

∑n
i (ei)

2. Linear and nonlinear distribution
samples are seen in Figure 1 and Figure 2. The more function
curve fits the real data, including large samples up to the count
of 17186, the more accurate model is obtained.

If f(x) linear function is to be expressed with more than
one independent variable, Multiple Linear Regression is used.
For two variables, we have:

f(x) = b+ a0x1 + a1x2 (2)

Our approach can be summarized as follows: 1. The extraction

Figure 1. Curve Fitting (Linear).

Figure 2. Nonlinear distribution.

of characteristic properties of software defect data sets and
exploring required models. 2. The derivation of new low level
metrics regarding defect data sets and adding to the data sets.
3. The comparison of data sets including low level metrics
with preceding situation.

V. RESULTS

cCount and cS are obtained by using the relationships of
data. To test the use of low level metric, we have used 15
data sets including NASA MDP and SOFTLAB. These data
sets belong to software projects developed using C, C++, and
Java programming languages. The data sets have some metrics
range from 21 to 40 including large samples up to the count

41Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 60 / 512

of 17186. Data sets, having skewed samples at a certain ratio,
comprise 25 missing values. The experimental study has been
tested by using the framework we have been developing. This
framework is able to generate over the given codes and drives
defect prediction with defect prediction algorithms.

The regression analysis results between class size and the
other three metrics are illustrated in Figure 3. According to
these results, a formula y = 0, 5244x− 14, 679, R2 = 0, 9453
has been found using cS-comment loc. R2 is close to one
that verifies the consistency of the equation. When it comes to
the relation of CS-Executable loc, an equation is obtained as
y = 9, 5518ln(x) − 34, 278, R2 = 0, 523. On the other hand,
the effects of Code and comment loc and unique operand are
close to the zero.

Figure 3. Relations between Class Size and other metrics.

Before the prediction, definitions including defect-prone
or not-defect-prone property of software modules should be
prepared. If a module does not include any defect and rightly
biased then it is labeled as TN. In such cases if the module is
wrongly biased then it is labeled as FP. If any module including
defects is wrongly biased, labeled as FN. Last, if the bias and
the prediction is the same for a defect-prone module, it is
labeled as TP. Using these parameters, a table confusion matrix
is organized as in Table 1. The success of the proposed method
is compared to the others by benefiting the formulas defined
in Listing 3.

TABLE I. CONFUSION MATRIX

PREDICTED
nfp fp

REAL nfp TN FP
fp FN TP

Precision = TP/(TP + FP), Recall = TP/(TP + FN)
(3)

TPR = (TP/TP+FN)∗100%, FPR = (FP/FP+TN)∗100%
(4)

Accuracy = TP + TN/(TP + FP + FN + TN) (5)

Four classifiers including naive Bayes, Bayes, Random Forest
and J48 have been used for the experiment. 10 fold cross-
validation has been used along with 10 iteration. One of the
evaluation parameters is AUC that is the indicator of the
probability of false alarm versus the probability of detection.

Figure 4. Accuracy values of Bayes.

Figure 5. Accuracy values of naiveBayes.

Figure 6. Accuracy values of RandomForest.

Figure 7. Accuracy values of J48.

42Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 61 / 512

On 15 data sets naive Bayes increased the AUC values in
general with the rate of 0.1. Figure 4-Figure 7 show some
results that explain the successes of the predictors both before
the use of low level metrics and after. First, naive Bayes and
RandomForest have increased the success of the prediction in
all data sets except for the pc1. Second, Bayes has produced
worse results than the other algorithms. Last, while the success
of J48 on jm1 data set has been reduced, successes of the
other algorithms have been increased. Figure 8 and 9 show
the AUC values that measures testing reliability. Having low
level metrics, remarkable improvement has been achieved on
testing set as seen in Figure 9.

Figure 8. AUC values before preprocessing.

Figure 9. AUC values after preprocessing.

VI. CONCLUSION

Here, we want to discuss the use of low level metrics in
defect prediction and present our approach based on least-
square using metric relationships. Thus, extracting mathemat-
ical models of the metrics has raised some bias. The first
results showed that the use of low level metrics has achieved
an unprecedented success in NASA MDP and SOFTLAB data
sets.

Low level metrics help us to better understand the details of
software systems. However, the success of learning algorithms
may not be improved with increasing count of the metrics at
steady state. Furthermore, skewness of data sets should be fixed
by exposing all data to a preprocessing. To gain better insight,
we should develop a preprocessing algorithm which uses some

tests such as ANOVA, t-test, and chi-square. In addition, the
software, in which data sets are extracted, are coded by using
various languages including C, C++, and Java. Therefore, the
types of coding should be considered during the extension of
metric tables.

The contributions of this paper can be summarized as
follows: (i) proposed method for deriving low level metrics
could shed new light to researchers in terms of valuable data
sets that are not publicly available. (ii) metric relations change
depending on the type of coding as in the range of ar3-pc1
coded with C programming language. (iii) using few samples
does not produce consistent results such as ar3 data set having
64 samples.

Our current approach has been merely tried on NASA MDP
and SOFTLAB data sets. Therefore, one of the purposes which
will extend this study is the testing of the approach on other
publicly available data sets. An important issue that could arise
during the experiment is the ambiguous effects of repeated data
points. In this respect, our future work aims to investigate the
contribution of the low level metric in the detection of repeated
data.

ACKNOWLEDGMENT

The authors would like to thank Tim Menzies who is one
of the co-founders of tera-Promise.

REFERENCES

[1] I. Herraiz, D. Rodriguez, and R. Harrison, “On the statistical distribution
of object-oriented system properties,” in Emerging Trends in Software
Metrics (WETSoM), 2012 3rd International Workshop on. IEEE, 2012,
pp. 56–62.

[2] J. Highsmith, Adaptive software development: a collaborative approach
to managing complex systems. Addison-Wesley, 2013.

[3] N. Fenton and J. Bieman, Software metrics: a rigorous and practical
approach. CRC Press, 2014.

[4] R. J. Leach, Software Reuse: Methods, Models, Costs. AfterMath,
2012.

[5] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing
software metrics for defect prediction: an investigation on feature
selection techniques,” Software: Practice and Experience, vol. 41, no. 5,
2011, pp. 579–606.

[6] L. Putnam and W. Myers, Five core metrics: the intelligence behind
successful software management. Addison-Wesley, 2013.

[7] T. J. McCabe, “A complexity measure,” Software Engineering, IEEE
Transactions on, no. 4, 1976, pp. 308–320.

[8] M. Halstead, “Potential impacts of software science on software life
cycle management,” Purdue University Library, 1977.

[9] T. J. McCabe and C. W. Butler, “Design complexity measurement and
testing,” Communications of the ACM, vol. 32, no. 12, 1989, pp. 1415–
1425.

[10] L. Pelayo and S. Dick, “Applying novel resampling strategies to
software defect prediction,” in Fuzzy Information Processing Society,
2007. NAFIPS’07. Annual Meeting of the North American. IEEE,
2007, pp. 69–72.

[11] G. M. Weiss, “Mining with rarity: a unifying framework,” ACM
SIGKDD Explorations Newsletter, vol. 6, no. 1, 2004, pp. 7–19.

[12] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for
class-imbalance learning,” Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, vol. 39, no. 2, 2009, pp. 539–550.

[13] T. M. Khoshgoftaar and K. Gao, “Feature selection with imbalanced
data for software defect prediction,” in Machine Learning and Appli-
cations, 2009. ICMLA’09. International Conference on. IEEE, 2009,
pp. 235–240.

43Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 62 / 512

[14] T. M. Khoshgoftaar, K. Gao, and N. Seliya, “Attribute selection and
imbalanced data: Problems in software defect prediction.” in ICTAI
(1), 2010, pp. 137–144.

[15] H. Lu, B. Cukic, and M. Culp, “A semi-supervised approach to software
defect prediction,” in Computer Software and Applications Conference
(COMPSAC), 2014 IEEE 38th Annual. IEEE, 2014, pp. 416–425.

[16] H. Lu, E. Kocaguneli, and B. Cukic, “Defect prediction between
software versions with active learning and dimensionality reduction,”
in Software Reliability Engineering (ISSRE), 2014 IEEE 25th Interna-
tional Symposium on. IEEE, 2014, pp. 312–322.

[17] C. Kaner et al., “Software engineering metrics: What do they measure
and how do we know?” in In METRICS 2004. IEEE CS. Citeseer,
2004.

[18] F. Rahman and P. Devanbu, “How, and why, process metrics
are better,” in Proceedings of the 2013 International Conference
on Software Engineering, ser. ICSE ’13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 432–441. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486846

[19] I. S. Wiese, F. R. Côgo, R. Ré, I. Steinmacher, and M. A. Gerosa,
“Social metrics included in prediction models on software engineering:
A mapping study,” in Proceedings of the 10th International Conference
on Predictive Models in Software Engineering, ser. PROMISE ’14.
New York, NY, USA: ACM, 2014, pp. 72–81. [Online]. Available:
http://doi.acm.org/10.1145/2639490.2639505

[20] P. Oliveira, M. T. Valente, and F. Paim Lima, “Extracting relative thresh-
olds for source code metrics,” in Software Maintenance, Reengineering
and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution
Week-IEEE Conference on. IEEE, 2014, pp. 254–263.

[21] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards building a
universal defect prediction model,” in Proceedings of the 11th Working
Conference on Mining Software Repositories. ACM, 2014, pp. 182–
191.

[22] R. Pears, J. Finlay, and A. M. Connor, “Synthetic minority over-
sampling technique (smote) for predicting software build outcomes,”
arXiv preprint arXiv:1407.2330, 2014.

[23] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Negative samples reduction
in cross-company software defects prediction,” Information and Soft-
ware Technology, vol. 62, 2015, pp. 67–77.

[24] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” Software Engineering, IEEE Trans-
actions on, vol. 33, no. 1, 2007, pp. 2–13.

[25] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, “A general software
defect-proneness prediction framework,” Software Engineering, IEEE
Transactions on, vol. 37, no. 3, 2011, pp. 356–370.

[26] D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where should we fix this
bug? a two-phase recommendation model,” Software Engineering, IEEE
Transactions on, vol. 39, no. 11, 2013, pp. 1597–1610.

[27] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, “Reflections
on the nasa mdp data sets,” Software, IET, vol. 6, no. 6, 2012, pp. 549–
558.

[28] M. Lorenz and J. Kidd, Object-oriented software metrics: a practical
guide. Prentice-Hall, Inc., 1994.

[29] Y. Suresh, J. Pati, and S. K. Rath, “Effectiveness of software metrics for
object-oriented system,” Procedia Technology, vol. 6, 2012, pp. 420–
427.

[30] E. Kocaguneli, T. Menzies, and J. W. Keung, “On the value of ensemble
effort estimation,” Software Engineering, IEEE Transactions on, vol. 38,
no. 6, 2012, pp. 1403–1416.

[31] B. Kitchenham and E. Mendes, “Why comparative effort prediction
studies may be invalid,” in Proceedings of the 5th international Con-
ference on Predictor Models in Software Engineering. ACM, 2009,
p. 4.

[32] R. A. Johnson, I. Miller, and J. E. Freund, Probability and statistics for
engineers. Prentice-Hall, 2011.

44Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 63 / 512

Communication and Coordination Challenges Mitigation in Offshore Software

Development Outsourcing Relationships: Findings from Systematic Literature

Review

Rafiq Ahmad Khan, Siffat Ullah Khan

Software Engineering Research Group (SERG_UOM),

Department of Computer Science & IT, University of

Malakand, Pakistan

E-mail: rafiqahamdk@gmail.com, siffatullah@uom.edu.pk

Mahmood Niazi
Information and Computer Science Department, King Fahd

University of Petroleum and Minerals, Saudi Arabia

Faculty of Computing, Riphah International University,

Islamabad, Pakistan

E-mail: mkniazi@kfupm.edu.sa

Abstract— Over the last decade, many firms in the world have

started adopting Global Software Development (GSD) in order

to reduce software development cost, and access to qualified

resources and modern technology. Due to the rapid

development of ICTs, the GSD has become an acceptable

business strategy with several paradigms. One of the rising

business paradigms of GSD is Offshore Software Development

Outsourcing (OSDO). The objective of this research is to

provide mitigation advice for addressing communication and

coordination challenges from vendors' perspectives in OSDO

relationships. We have performed systematic literature review

(SLR) process for identifying the practices/solutions for these

challenges. We have identified 65 practices for addressing

these challenges. This paper can help the OSDO vendor

organizations to use the identified practices in order to address

the communication and coordination challenges in OSDO

relationships.

Keywords—Global Software Development; Software

Outsourcing; Communication and Coordination challenges and

its Solutions/Practices; SLR

I. INTRODUCTION

Many software development companies from the last

decade have been trying to enhance their business profits by

improving the time-to-market of their products, reducing

costs by hiring people from countries with cheaper work-

hours. These days, a large number of software development

projects are distributed at many different sites and normally

located in different countries. This distributed setting of

managing a software project is termed as Global Software

Development (GSD) and the discipline is termed as Global

Software Engineering (GSE) [1]. One of the rising business

paradigms of global software development is Offshore

Software Development Outsourcing (OSDO) [2]. OSDO

represents the practices of holding an outside party to carry

out software development work/processes in a state/country

other than the one where the products or services are

actually developed [3]. Today many software organizations

have turned to software outsourcing to get economic cost

advantages [4]. Over the last decade outsourcing functions

gain competitive advantages due to different reasons, such

as the drastic growth in the ICTs market and shortage of

information system professionals [4]. In addition, China and

India have made the OSDO a reality due to the presence of

qualified persons, the availability of resources, skills and

better business and economic environment [4].

However, several researchers [5]-[6] recommended that

increased globalization of software development creates

challenges due to cultural differences, time zone differences,

lack of trust, language differences, geographical distance

and diversity of communication and coordination. Ali-Babar

et al. [7] suggested that the main stumbling block to OSDO

is the geographical dispersion. The two major pillars and the

backbone of successful OSDO activities are the

communication and coordination processes, but it can be

hampering due to geographical dispersion, cultural and

language differences [8]. The lack of face-to-face meetings

is one of the challenges and it affects the process of OSDO

[9].

In OSDO relationship, Khan et al. [10] identified various

critical challenges faced by vendor organizations. In these

challenges, communication and coordination is a critical

challenge to vendors in OSDO. Our prior research identified

a list of 18 communication and coordination challenges

faced by vendors in OSDO relationships [5]. Amongst the

identified list of challenges 6 were marked as critical

challenges. These identified critical challenges are:

‘Geographical Dispersion’, ‘Cultural Differences’,

‘Language Differences’, ‘Lack of Credence’, ‘Lack of

ICT/Technological Cohesion’ and ‘Lack of Informal/ Face-

to-Face Communication’ [5].

It is also important to provide mitigation advice in the

form of practices for the identified critical challenges as this

will help organizations facing these challenges. For this

reason, we conducted a SLR process for finding the

practices for addressing the aforementioned critical

communication and coordination challenges in OSDO

outsourcing relationships form vendor’s perspectives.

We have formulated the following research question in

order to understand the practices/solutions for

communication and coordination challenges in OSDO

relationships.

RQ. What are the solutions/practices, as identified in the

literature, for addressing communication and coordination

challenges in OSDO relationships from vendors'

perspective?

45Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 64 / 512

The structure of the paper is organized as follows:

Section II explains the background. Section III explains the

research methodology. Results are presented in Section IV.

Study limitations are discussed in Section V. Conclusion

and future works are presented in Section VI.

II. BACKGROUND

In software outsourcing paradigm, various challenges and

hurdles are faced by vendor organizations. Different

researchers and practitioners have conducted case studies,

questionnaire surveys, focus group sessions, interviews and

literature reviews to dig out various aspects of the OSDO

relationship.

Alberto Avritzer et al. [11] conducted a case study and

suggested that geographic dispersion in global software

engineering can be reduced by organizing face to face

meetings, effective time management among the team

members and "hands-on and Shake-off session", providing

possibilities of synchronous communication, giving support

for video conference at all sites and also giving suitable

selection of communication tools. Cultural differences in

OSDO can be reduced by providing the facilities of face to

face meeting, cultural training, adopt low-context

communication style, cultural liaison/Ambassador and

reduce interaction between team from different cultures

[12]. The problems of cultural differences can also be

mitigated by adapting agile and scrum methods [13].

Similarly the temporal distance in offshore outsourcing can

be reduced by establishing a bridging team, relocate to

adjacent time zone, adopt and follow the sun development,

using appropriate and advance technology, such as ICT,

audio and video conferencing, instant messaging, online

chat, email, web came and mobile alerts [11].

We can reduce the lack of trust in global software

development by managing efficient outsourcing

relationships, establishment of an appropriate

communication and infrastructure, to encourage effective

communication through the adaptation of tools and

techniques and promotion of informal communication [12].

The probable solutions of language differences in global

software development are composed of translating policies

and practices into local languages and by putting emphasis

on spoken language skills [14].

The lack of ICT or technological cohesion in global

software development can be reduced by using proper

communication technologies or tools, such as, internet,

video conferencing, data conferencing, teleconferencing,

telephone calls, chats, emails, instant messaging, shared

databases, Wikis, shared desk top technology, net meeting,

change management system, virtual whiteboards, photo

gallery, team Intranet websites, electronic meeting systems,

voicemail, CAMEL, NEXTMOVE, TAMRI, Dropbox,

Mendeley, IRC and Skype etc [15]. Lack of face-to-face or

informal communication problems in OSDO relationship

can be reduced by provision of multiple communication

mode counting support to face-to-face synchronous

communication, creation of communication protocols, to

promote informal interactions, to apply agile practices

(SCRUM), to deploy knowledge transfer mechanisms [16].

By using SLR for identifying the practices/solutions for

communication and coordination challenges in OSDO

relationships from a vendor's perspective will confine the

missing communication and coordination practices in

OSDO relationship. The novelty of our research shows that

nobody has conducted SLR in this domain to find out

practices for addressing communication and coordination

challenges faced to vendors in OSDO relationships. The

findings will assist OSDO vendor organizations to adopt the

identified practices in order to avoid/mitigate the

communication and coordination challenges in OSDO

relationships.

III. RESEARCH METHODOLOGY

A SLR [17] process was used for data collection,

because it is more thorough, less biased, rigorous and open

as compared to ordinary literature review [17]. In finding,

evaluating and summarizing all available evidences on a

specific research question, a systematic review may provide

a greater level of validity in its findings than ordinary

literature review. A number of researchers [5][18] have used

the SLR approach for reviewing the literature. Protocol

development is the first phase of the SLR process and it

describes planning of the review. In this connection, a

systematic review protocol was written first to describe the

plan for the review. Details of the various steps in our SLR

methodology are available in our SLR protocol [18].

A. Search the Literature

Based on the available access, the digital libraries IEEE

Explore, ScienceDirect, ACM Digital Library, SpringerLink

and CiteSeer were used to carry out the search phase of the

SLR. We used the following search string as a trial search:

((Solutions OR practices OR "best practice" OR "lessons

learned" OR Advice) AND ("communication and

coordination problems" OR " communication and

coordination challenges" OR " communication and

coordination norms" OR " communication and coordination

barriers" OR " communication and coordination risks")

AND ("offshore software outsourcing" OR "information

systems outsourcing" OR "IS outsourcing" OR "IT

outsourcing" OR "global software development" OR GSD

OR "offshore software development outsourcing" OR

OSDO))

The major search string was developed and validated

after thoroughly getting information and guidance from the

trial search. Some digital libraries required different

concrete syntax for the search term; we developed the

46Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 65 / 512

search string for each resource. In our study, we identify the

paper based on the publication’s type, such as conference

proceeding, databases, specific journals, technical

magazines, book chapters, technical books, web pages and

reports, etc. In Table I, we represent the final list of

resources to be searched also including their search terms

and number of publications found in each resource.

TABLE I DATA SOURCES AND SEARCH STRATEGY FOR
PRACTICES/SOLUTIONS

S.

NO
Resources

Total Results

Found

Primary

Selection

Final

Selection

1 IEEE 1424 166 39

2 Science Direct 1055 82 7

3 ACM 925 114 2

4 Springer Link 347 80 10

5 Cite Seer 500 29 4

Total 4251 471 62

We have selected these resources based on our previous

SLRs [5][20] experiences and discussions with our

colleagues at the University.

B. Literature Selection

In this section, we are going to presents the criteria for

inclusion and exclusion of relevant articles.

a. Inclusion criteria

We use the following inclusion criteria for the selection

of relevant papers:

 The paper must be relevant to Computer Sciences or

Engineering research background because quality

research topics in software applications are keep

growing from time to time.

 Priority usually goes to journal and conference

published papers- that is why in our final selection the

majority of papers are journal and conference papers.

 The papers should at least contain challenges, practices

and solutions related to communication and

coordination in OSDO relationships.

 The papers should contain communication or

coordination practices/solutions affecting the

continuation or termination of outsourcing

relationships.

 Studies that is relevant to outsourcing.

b. Exclusion criteria

We use the following exclusion criteria to exclude the

irrelevant papers:

 The papers not relevant to Computer Sciences or

Engineering research background.

 The studies not relevant to the research questions.

 The papers that are not written in English.

 Studies not mentioned the challenges/ practices/

solutions of communication or coordination in OSDO

relationships.

 Studies that contain duplicate data.

 Studies not relevant to outsourcing.

C. Publication Quality Assessment

The publication quality assessment is performed after

final selection of publications. During the selection process

of studies, some questions were asked to ensure the quality

of selected studies. The questions in Table II were

constructed to facilitate the studies selection process and to

ensure that only relevant papers are being selected. The

questions used in the study selection process are shown in

the Table II.

TABLE II STUDY SELECTION PROCESS

Question Answer

Is it clear how communication or coordination

practices/solution was measured in OSDO

relationship?

Yes/No/Partially

Is it clear how the practices in the selection of

software outsourcing vendors were identified?
Yes/No/Partially

By using publication quality assessment questions,

studies that are not scholarly reviewed were excluded. Only

those studies are selected that aim practices at addressing

communication and coordination challenges in OSDO

relationships. Similarly, studies that did not provide

persuasive results in practices for addressing

communication and coordination challenges in the aspects

of OSDO relationships were excluded.

D. Data Extraction and Synthesis

The following data was extracted from each

publication: Date of review, Title, Authors, Reference,

Database, Practices/Solutions: factors that have a positive

impact on software development outsourcing vendors,

Methodology (interview, case study, ordinary literature

review, systematic literature review, report, survey, etc),

Target Population, Sample Population, Publication Quality

Description, Organization Type (software house, university,

research institute etc), Company size (small, medium,

large), Country/location of the Analysis and Year.

The data synthesis phase was done by the primary

reviewer (the primary author) with the help of secondary

reviewer (the co-author). After a thorough review with

external reviewer, we have identified 65 practices/solutions

from the sample of 62 papers for addressing communication

and coordination challenges.

47Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 66 / 512

E. Classification of Communication and Coordination

practices/solutions

After identifying practices/solutions for addressing

communication and coordination challenging in OSDO

relationships through SLR, we classified a few

practices/solutions in different tables as shown in Section

IV. The classification of practices/solutions was based upon

the relevant practices/solutions for the identified critical

challenges in our previous research [5]. The following

criterion for the selection of critical challenges was used:

 Those challenges were considered as critical

challenges whose frequency was equal to 40% or higher

than 40%. The identified critical communication and

coordination challenges are ‘Geographical dispersion’,

‘cultural differences’, ‘language differences’ ‘lack of

technological cohesion’, 'Lack of Informal/Face-to-to face

Communication' and 'Lack of Credence'.

IV. RESULTS

This section presents the results of the SLR process for

finding the practices/solutions for addressing

communication and coordination challenges faced by

OSDO vendors.

We identified 65 mitigation advices/practices/solutions

for addressing communication and coordination challenges

faced to OSDO vendors. SLR has been conducted in the

area of OSDO relationships for the identification of these

practices. The OSDO vendor organizations can also get help

from these practices in order to know that how they can

solve the problems of their clients. We have followed SLR

guidelines [17] for synthesizing the different practices for

the identified critical communication and coordination

challenges.

The subsequent sections present the 6 critical challenges

and their respective identified practices.

A. Geographical Dispersion

Ali-Babar et al. [7] suggested that the main stumbling

block to OSDO is the geographical dispersion. Table III

presents the list of our identified 15 practices for addressing

the communication and coordination challenge

'Geographical Dispersion'.

TABLE III PRACTICES FOR ADDRESSING GEOGRAPHICAL

DISPERSION

CCCC1: Geographical Dispersion

S/N

O

Practices/Solutions for Addressing Geographical

Dispersion

% of

Practices

via SLR

(N=62)

1

Use of technology to make knowledge sharing easier

between the teams. Such as, webcams and instant
messaging software to improve communication and

coordination between the team members distributed

across multiple sites

50

2

Synchronous communication, such as face-to-face

meetings, online chats, teleconferences, and web
conferences, is ideal for quick status meetings,

brainstorming sessions, and reviews. Asynchronous

communication, such as email, discussion forums,
and shared documents, provides a persistent record

of discussions and decisions, and don’t require

participants to be available at the same time

47

3

Shifting the working hours of both the onshore and
offshore teams, by adjusting direct meetings to the

time zones or by creating asynchronous meetings via

project managers.

23

4 Communicate with clients timely 23

5 Negotiate teams working hours for Synchronicity 21

6 Create a team calendar aiding in project planning 18

7
Encourage both asynchronous and synchronous
communication

15

8

Establish communication guidelines, technical

infrastructure for information and communication,

for example, effective tools and work environments

15

9
Provides opportunities for synchronous interactions

without prior schedule definition
15

10 Be online or stay connected 6

11
Assign technical lead to each site that would be
responsible to coordinate process, development and

schedule activities

3

12 Create bridging team 2

13

Create roles, relationships and rules to facilitate

coordination and control over geographical, temporal

and cultural distance

2

14 Promote visits and exchanges among sites 2

15

Utilize the global distribution to conduct tasks ‘‘over

night’’, e.g. the test of new components so that the

results are available on the following morning

2

B. Cultural Differences

Cultural differences is a critical challenge faced in the

communication and coordination processes because it can

slow down the OSDO activities [20].

TABLE IV PRACTICES FOR ADDRESSING CULTURAL
DIFFERENCES

CCCC2: Cultural Differences

S/N

O

Practices/Solutions for Addressing Cultural

Differences

% of

Practices

via SLR

(N=62)

1
Establish open communication between stakeholders
through face to face meetings, instant messaging and

onsite visits

57

2
Use of online tools for online team-building if visits

won’t work
49

3

Arrange training and workshops to understand both

client organization and people culture involved in

OSDO

31

4
Define a cultural ambassador for the project to create
teams with complementary skills and cultures

13

5

Create close cooperation between team members

involved at both client and vendor side to built trust-
worthy relationship

8

6
Build mixed teams with memberships from different

cultural backgrounds.
7

7
Create roles, relationships and rules to facilitate
coordination and control over geographical, temporal

and cultural distance

7

8 Increase project members’ domain knowledge and 5

48Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 67 / 512

reduced cultural distance by using Agile Methods

9 Introduce a neutral third-party Agile coach 5

10 Appoint strong leadership for each team 5

11 Make visible the work progress for all stakeholders 4

12 knowledge of the client’s language and culture 4

13
Take equality and justice approach in management

activities.
2

Table IV presents the list of our identified 13 practices

for addressing the communication and coordination

challenge 'Cultural Differences'.

C. Lack of Credence

Several researchers [5][12][20] recommended that

increased globalization of software development creates

challenges due to cultural differences, time zone differences,

lack of trust, language differences, geographical distance

and diversity of communication and coordination.

TABLE V PRACTICES FOR ADDRESSING LACK OF CREDENCE

CCCC3: Lack of Credence

S/N

O
Practices/Solutions for Addressing Lack of Credence

% of

Practices

via SLR

(N=62)

1
Investing in building and maintaining trust and good

relations
30

2
Arrange frequent meetings in various forms such as
video conferencing, personnel rotations, and team

building exercises

21

3

Improve vendor’s capability such as technical,
managerial, and staffing capabilities as this play a

cardinal role in maintaining a client’s trust in an

ongoing business relationship.

18

4 Improve personal relationship with clients 15

5 Promote efficient outsourcing relationship 13

6 Promote informal meetings 10

7

Effective and frequent communication between

clients and vendors at all levels of the organizational
hierarchy are pivotal for managing trust

10

8
Build efficient a contract and Conform to the

contract and quality of deliverables
9

9
Spending resources on reducing socio-cultural
distance by means of facilitating face-to-face

meetings.

9

10
Implement the contract successfully is it was signed
without cost overrun etc.

5

11

Have at least some people at each node who have

met people at peer nodes in person. This also reduces

the perceived geographical distance, if not the

physical. This helps promote trust and reduce fear

4

12 Early and frequent delivery of working software 4

13 Travel to client location for establishing friendly ties 4

14 Use status (every three weeks) to signal transparency 4

15 Run series of workshops 2

16
Using Scrum practices in GSD improved

communication, trust, motivation and product
2

17
Use Trusty, a tool which was designed to support the

distributed software development process
2

Table V presents the list of our identified 17 practices

for addressing the communication and coordination

challenge 'Lack of Credence'.

D. Language Differences

The two major pillars and the back of OSDO

relationships are the communication and coordination

processes, but it is not properly achieved due to several

challenges like geographical dispersion, culture, time zone

and language differences [8].

TABLE VI PRACTICES FOR ADDRESSING LANGUAGE
DIFFERENCES

CCCC4: Language Differences

S/N

O

Practices/Solutions for Addressing Language

Differences

% of

Practices

via SLR

(N=62)

1

Use of communication media to support a sense of

co-located and synchronous interaction by

employing facial expressions, body language, and
speech

50

2
Understand the language and business culture of

clients
12

3 Encourage face-to-face meetings 10

4
Select a vendor with knowledge of the client’s
language

7

5 Review project document by a native speaker 4

6

Encourage team members to use standard

language/common language in order to avoid miss-
interpretation

2

7
Appoint team members having fluency in English

language
2

8 Appoint language translator 2

Table VI presents the list of our identified 8 practices

for addressing the communication and coordination

challenge 'Language differences'.

E. Lack of Informal/Face-to-face Communication

Lack of face to face meetings is raised due to the parties

being widely dispersed from each other, and hence it affect

the process of OSDO [9]. Table VII presents the list of our

identified 14 practices for addressing the communication

and coordination challenge 'Lack of Informal/Face-to-face

Communication'.

TABLE VII PRACTICES FOR ADDRESSING LACK OF

INFORMAL/FACE-TO-FACE COMMUNICATION

CCCC5: Lack of Informal/Face-to-Face Communication

S/N

O

Practices/Solutions for Addressing Lack of

Informal/Face-to-Face Communication

% of

Practices

via SLR

(N=62)

1

Adopt appropriate communication tools like

videoconferencing, Teleconferencing, Data

Conferencing and Web-Based Technologies

52

2
Encourage frequent communication through latest
technologies

50

3

Daily exchange of the project status by technologies

such as, telephone calls, video conferences or emails
etc

50

4 Create a Communication Protocol 15

5 Increase frequency of communication between team 15

49Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 68 / 512

members

6
Create team having technical skills and cultural

awareness
10

7

Establish cooperation by to one member from each

team. This might possibly solve some of the

communication decencies, e.g., when decisions are
made at informal meetings.

9

8
Arrange conferences/workshops for distributed team

members
7

9 Build trustworthy relationship 7

10 Sponsor team members for site visits 4

11
Create a database that contains the areas of expertise

of the individual project participants
4

12

Arrange weekly conference calls by the central team

or the remote team(s) to talk about the status of the
project and clarify questions, or they take place at

dates specified in the project plan, usually to discuss

deliverables

2

13 Use Distributed Agile models e.g. SCRUM 2

14
Use of tools such as 'Trusty' to support software

development process
2

F. Lack of ICT/Technological Cohesion

Communication and coordination processes in OSDO

relationships can be hampered due to high cost and lack of

ICT [12].

TABLE VIII PRACTICES FOR ADDRESSING LACK OF

ICT/TECHNOLOGICAL COHESION

CCCC6: Lack of ICT/Technological Cohesion

S/N

O

Practices/Solutions for Addressing Lack of

ICT/Technological Cohesion

% of

Practices

via SLR

(N=62)

1

Adopt Different Latest Technologies such as:

Teleconferencing (two-way audio) e.g., NetMeeting,
CU-SeeMe, Microsoft Exchange, Dropbox, Wikis,

Mendeley etc.

Videoconferencing (two-way audio and video) e.g.,
NetMeeting, CU-SeeMe, Microsoft Exchange,

Dropbox, Wikis, Mendeley

Data Conferencing (whiteboards, application sharing,
data presentations) e.g., NetMeeting, Evoke, WebEx,

etc.

Web-Based Technologies Tools (Intranets, Listservs,
Newsgroups, chat, message boards) e.g., E-groups,

Yahoo Groups, Open Topics, etc.

Proprietary (with or without web browser interface)
e.g., Lotus Notes, IBM Workgroup, ICL Team

WARE Office, Novell GroupWise, The Groove, etc.

Voice over IP
Electronic Meeting Systems e.g., Group Systems,

Meeting Works, Team Focus, Vision Quest,

Facilitate.com, etc.

52

2

Adopt both Asynchronous (text) and Synchronous

(voice) tools like:

 Telephone, E-mail, Instant Messaging, Wiki,
Internet, Voicemail, Shared Databases, Mailing lists,

IRC, Messenger, Skype, Chat, Phone, Net meeting,

Change Management System, Virtual white boards,
Photo Gallery, Team Intranet Websites, Group

Calendars, Fax, Power Point Presentations, Blog,

Nor-real-time database, CAMEL, NEXT MOVE,
TAMARI and Team space

50

3
Arrange ICT Training Sessions for the team

members
10

4 Use of Web Technologies for Collaboration e.g. 5

Web-based tutoring, web-based mentoring, web-

based knowledge mining and web-based knowledge
profiling

5
Arrange Knowledge Sharing Activities between team

members
5

6
Arrange social events for awareness between team
members

5

7 Build Communication Protocol 4

8
Adopt Distributed Agile Models such as Distributed

pair programming and Urgent request
4

Table VIII presents the list of our identified 8 practices

for addressing the communication and coordination

challenge 'Lack of ICT/Technological Cohesion'.

V. STUDY LIMITATIONS

By using the SLR process, we have extracted data about

the practices/solutions for addressing communication and

coordination challenges; however, we might have omitted

some practices? For internal validity, one possible threat is

that any specific article may have not in fact described

underlying reasons to report practices/solutions for

addressing these challenges. This threat has not been

independently controlled by us. Other threat is publication

bias during SLR process. By using our SLR process, we

may have missed out some relevant papers, due to the

increasing number of papers in software outsourcing.

However, like other researchers of SLR, this is not a

systematic omission [21].

How valid are our findings? The results of our finding

are not based on studies that used a random sample of

software developing outsourcing organization in the world.

Yet, in the exploration of our research question, our study is

the most comprehensive up to date. As discussed in result

sections, the dilemma of simplifying our findings can also

be measured by evaluating the finding of other related

studies. To provide support for simplification, we found

many similarities in our findings as compare to other

people’s findings. In order to decrease the researcher’s bias,

we have carried out the inter-rater reliability tests in the

selection of primary studies and data extraction phases. Due

to limited resources and not enough access to every digital

library, we were unable to find out all the relevant papers in

our area, although, the used digital libraries are sufficient for

the simplification of findings in our study.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have provided mitigation advice in the

form of practices for addressing communication and

coordination challenges from vendors' perspectives in

OSDO relationships. Our results reveal that focusing on

these practices can help vendor organizations in order to

strengthen their relationships with client organizations in

OSDO. However, we recommend independent studies on

this topic in global software development. This will increase

confidence in our results and also track changes in attitudes

to OSDO activities over time. We have identified the

50Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 69 / 512

following goals that we plan to follow in future from the

findings of this study:

 The practices/solutions for addressing communication

and coordination challenges will be validated using

empirical studies with practitioners working in

outsourcing industries, as done by other researchers

[22][23].

 The practices/solutions in OSDO relationships from

client’s perspectives will be analyzed.

Our future work will focus on developing a

Communication Coordination Challenges Mitigation Model

(CCCMM). This paper gives only one component of the

CCCMM, such as the identification of various

practices/solutions for addressing communication and

coordination challenges via SLR. The proposed CCCMM

will bring together and advance the work that has been

undertaken on frameworks and models for outsourcing

relationships.

REFERENCES

[1] R. Britto, V. Freitas, E. Mendes, and M. Usman, “Effort

Estimation in Global Software Development:A Systematic

Literature Review,” in IEEE 9th International Conference on

Global Software Engineering, Shangai, China, 2014, pp. 135-

144.

[2] P. Lago, H. Muccini, and M. Ali-Babar, "Developing a course

on designing software in globally distributed teams.", IEEE

International Conference on Global Software Engineering,

ICGSE, Bangalore , 17-20 Aug, 2008, pp. 249-253

[3] M. Ali-Babar, J. M. Verner, and N. P. Thanh, “Establishing

and Maintaining Trust in Software Outsourcing Relationships:

An Empirical Investigation,” The Journal of Systems and

Software, vol. 80, no. 9, 2007, pp. 1438-1449.

[4] D. Avison and T. Gholamreza, "Outsourcing and Offshoring

Information System Projects," Information Systems Project

Management, p. 351: SAGE Publications, Inc., 2009.

[5] R. A. Khan and S. U. Khan, “Communication and

Coordination Challenges in Offshore Software Development

Outsourcing Relationship from Vendors’ Perspective:

Preliminary Results,” ISoRIS2014 Malaysia, Special edition,

Journal of Science International Lahore, vol. 26, no. 4, 15-16

October, 2014, pp. 1425-1429.

[6] S. Mehmood, M. Niazi, and H. Akthar, “Identifying the

Challenges for Managing Component-Based Development in

Global Software Development: Preliminary Results,” in

Proceedings of the Science and Information Conference (SAI

2015), 2015, pp. 933 – 938.

[7] M. Ali-Babar and L. Christian, “Global software engineering:

Identifying challenges is important and providing solutions is

even better,” Information and Software Technology, vol.

56,2014, pp. 1-5.

[8] I. Richardson, “A Process Framework for Global Software

Engineering Teams ” Information and Software Technology,

2012, vol 45 (11), pp. 1175-1191.

[9] M. Hansen and H. Baggesen, "From CMMI and Isolation to

Scrum, Agile, Lean and Collaboration.", Agile Conference,

2009. AGILE '09., Chicago, IL, 24-28 August, 2009, pp. 283-

288.

[10] S. U. Khan, M. Niazi, and R. Ahmad, “Critical Barriers for

Offshore Software Development Outsourcing Vendors: A

Systematic Literature Review ” in Software Engineering

Conference, APSEC '09, Asia-Pacific 2009, pp. 79 - 86

[11] A. Alberto, B. Sarah, K. Josiane, S. Menasche, N. John, and P.

Maria, “Survivability Models for Global Software

Engineering,” in IEEE 9th International Conference on Global

Software Engineering, Shangai, China, 2014, pp. 100-109.

[12] J. Verner, O.P. Brereton, B. A. Kitchenham, M. Turner, and M.

Niazi, “Risks and risk mitigation in global software

development: A tertiary study,” Information and Software

Technology, vol. 56, 2014, pp. 54–78.

[13] P. Maria and L. Casper, “Could Global Software Development

Benefit from Agile Methods?,” International Conference on

Global Software Engineering, ICGSE '06, Florianopolis, Oct

2006, pp. 109-13.

[14] S. Wu, "Overview of Communication in Global Software

Development Process. IEEE Inernational Conference on

Service Operations and Logistics, and Informatics (SOLI),

Suzhoe, 8-10 July, 2012. pp. 474-478"

[15] G. Vanessa and M. Sabrina, “Problems? We All Know We

Have Them. Do We Have Solutions Too? A Literature Review

on Problems and Their Solutions in Global Software

Development,” in IEEE Seventh International Conference on

Global Software Engineering, Porto Alegre, 27-30 Aug. 2012,

pp. 154-158.

[16] M. Niazi, “An Instrument for Measuring the Maturity of

Requirements Engineering Process,” Product Focused

Software Process Improvement, vol. 3547, 2005, pp. 574-585.

[17] B. Kitchenham and S. Charters, Guidelines for performing

Systematic Literature Reviews in Software Engineering Keele

University and Durham University Joint Report, 2007, pp 1-

44.

[18] M. Niazi, “Do Systematic Literature Review Outperform

Informal Literature Reviews in the Software Engineering

Domain? An Initial Case Study,” Arabian Journal for Science

and Engineering, vol. 40(3), March 2015, pp. 845-855.

[19] R. A. Khan and S. U. Khan, “Communication and

Coordination Challenges in Offshore Software Outsourcing

Relationships: A Systematic Literature Review Protocol,”

Gomal University Journal of Research, vol. 30, no. 1, 2014,

pp. 9-17.

[20] S. U. Khan and M. I. Azeem, “Intercultural Challenges in

Offshore Software Development Outsourcing Relationships:

An Exploratory Study Using a Systematic Literature Review,”

IET Software, vol. 8, no. 4, 2014, pp. 161-173.

[21] E. Hossain, M. Ali-Babar, and H. Y. Paik, “Using Scrum in

Global Software Development: A Systematic Literature

Review.,” in IEEE International Conference on Global

Software Engineering, ICGSE09, Lero, Limerick, Ireland.,

2009, pp. 175-184.

[22] M. Niazi, K. Cox, and J. Verner, “An empirical study

identifying high perceived value requirements engineering

practices,” in Advances in Information Systems Development,

Fourteenth International Conference on Information Systems

Development (ISD´2005) Karlstad University, Sweden, 2006,

pp. 731-743.

[23] S. Mehmood, “Empirical Study of Software Component

Integration Process Activities,” IET Software, vol. 7, no. 2,

2013, pp. 65 – 75.

51Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 70 / 512

Adapting Heterogeneous ADLs for Software Architecture Reconstruction Tools

Dung Tien Le

Thai German Graduate School of Engineering,
King Mongkut’s University of Technology North Bangkok

Bangkok - Thailand
Email: le.t-sse2013@tggs-bangkok.org

Ana Nicolaescu, Horst Lichter

Software Construction Research Group
RWTH-Aachen University

Aachen - Germany
Email: ana.nicolaescu@swc.rwth-aachen.de,

horst.lichter@swc.rwth-aachen.de

Abstract—Architecture reconstruction tools were proposed to
enable the extraction of descriptive architecture models based
on prescriptive input models. A limitation of these tools is that
they employ specific meta-models to which the input prescriptive
models must adhere. These are often incompatible with the
languages or notations that architects use in practice, leading
to substantial effort to overcome terminology differences, to
transform possibly already existing prescriptive models in tool-
compatible ones and interpreting the results. To alleviate this
problem we propose to leverage model engineering techniques in
order to enable heterogeneous prescriptive and descriptive models
as input and output artifacts of reconstruction tools. We exem-
plify our proposal by extending the Architecture Analysis and
Monitoring Infrastructure (ARAMIS) - an approach developed
within our previous work for the reconstruction and evolution of
software architectures with a strong focus on the behavior view.

Keywords–Software Architecture; Architecture Reconstruction;
Model-To-Model Transformation; Architecture Description Lan-
guage; Unified Modeling Language.

I. INTRODUCTION

It is generally acknowledged that the architecture greatly
affects the quality of a given software and that its description
is crucial to support understanding, decision making, etc. For
example, Bass et al. stated that the software architecture is
essential because of three main reasons: it is the basis for com-
munication among stakeholders, it encompasses the important,
early design decisions and it is a transferable abstraction of a
system [1]. Because of its importance, over the years numerous
attempts and even standards [2] have been proposed to support
the description of the software architecture. A plethora of
methods, tools and languages covering a very wide spectrum
of formality were proposed and used to serve this purpose.
Architects often use informal descriptions in the form of text,
boxes and lines diagrams and alike but also employ more
formal languages like the Architecture Description Languages
(ADLs) or Unified Modeling Language (UML) when more
formality is needed and/or required. Nowadays, there are more
than 100 published ADLs available for use [3]. The use of
UML to describe architectures has also increased, especially
after the introduction of UML Profiles in UML 2.0 [4]–
[7]. When considering the wide pallet of choices and the
uncertainty regarding their suitability for use in a given context,
it can seem natural to consider unifying these in one single
highly-expressive architectural language. However, in a recent
journal publication [8], Malavolta et al. stated that such an
universal language is unlikely to become popular. Instead,
each architectural language will be created based on specific
stakeholders requirements.

Due to the numerous possibilities to describe architec-
tures, their purpose and the various involved stakeholders, it
is common that even in the same project or company, the
software architecture is described differently using various
tools and languages. Typically, most of the effort to document
architectures is invested in the early phases of the software
development process and the result thereof is the so-called
”prescriptive architecture”. Although descriptions are in later
phases very useful to support the system’s further development,
these usually go out of date soon because of the relatively high
effort that should otherwise be invested to keep them consistent
to the actual architecture [9].

To approach this problem, several architecture reconstruc-
tion (AR) techniques were proposed. These aim to identify ”the
descriptive architecture” which is the actual description that
reflects the system’s reality. In order to use these approaches,
usually the architects must specify the prescriptive architecture
in advance. The descriptive architecture model is then derived
by correcting the prescriptive one with information extracted
from the real system. However, for defining the prescriptive
architecture, the architects are bound to use the meta-model of
the employed AR tools [10]. These meta-models are usually
stiff and cannot be extended. For example, even though the
architects have initially used UML Profiles or a given ADL to
describe a prescriptive architecture, if the tool that they cur-
rently want to employ only defines layers, then the architects
must re-describe the architecture using only this concept. As
our previous work has shown [10], this situation can lead to
misunderstandings and in the end, prohibit the wide adoption
of the considered AR tool. While the meta-models of other
AR tools are extendible, there might still be gaps between
what the architects are familiar with and the new meta-models.
Furthermore, effort must be invested in order to understand and
extend a given AR meta-model.

In our opinion, there is a need for reconstruction tools that
address this heterogeneity problem. The architects should
be able to model the prescriptive architecture using their
familiar languages or tools. Then, by employing such an AR
tool, a descriptive architecture model should be retrieved that
adheres to the same meta-model as the prescriptive one. In
this paper, we present an approach to extend the ARAMIS
Workbench - developed during our previous work to evaluate
the communication between the architecture units composing
software systems - with the possibility to allow the input and
output of heterogeneous prescriptive and descriptive architec-
ture descriptions respectively.

This paper is structured as follows: in Section II, we
present the ARAMIS concepts that are the foundations of

52Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 71 / 512

the ARAMIS Workbench. Section III presents our solution
to enable different types of architecture descriptions within
ARAMIS. Section IV discusses the related work and Section V
concludes the paper.

II. ARAMIS
The Architecture Analysis and Monitoring Infrastructure

(ARAMIS) is ”a tool-supported framework for run-time mon-
itoring, communication integrity validation, evaluation and
visualization of the behavior view of software architectures”
[11], [12]. ARAMIS allows the architects to validate the
communication between the hierarchies of architecture units
that constitute a given system. In order to do so, ARAMIS
maps extracted low-level run-time traces on architecture units
and validates the mapped communication according to the
rules given in the prescriptive architecture. The ARAMIS
meta-model (ARAMIS-MM) [12] to which the prescriptive
architecture should adhere to, although developed for flexibility
is still specific. The ARAMIS Workbench offers technical
mechanisms for the mapping and validation of the communica-
tion and the visualization of the result using various interactive
views.

One of the major limitations of this concept is that both the
prescriptive and descriptive architecture models must adhere
to the ARAMIS-MM. The visualizations are also ARAMIS-
specific. This leads to situations in which architects must
first (1) re-describe their prescriptive, e.g., component-based
diagram using the ARAMIS Architecture Modeller and then
(2) interpret the result as displayed in an ARAMIS-specific vi-
sualization that has no traceability links with their prescriptive
architecture model from step (1).

In order to loosen this limitation and increase the ac-
ceptability of ARAMIS, we currently work on enhancing
ARAMIS so that it allows flexible input and output architecture
descriptions. In such a scenario the architect would merely
upload, e.g., a component diagram and receive as output the
same diagram, augmented with run-time information (e.g.,
frequency with which one component accesses another one)
and information regarding occurred architecture violations.

III. GOALS AND SOLUTION CONCEPT
Our main goals that we pursue with our approach are:
• enable the architects to reuse their prescriptive archi-

tecture models even though these might not necessar-
ily conform to ARAMIS-MM.

• enable the generation of outputs that conform to the
same meta-model as the input. Preferably, the output
should be obtained by simply augmenting the prescrip-
tive input model, in order to boost understanding by
leveraging recognition effects.

In order to solve the heterogeneity problem mentioned in
the introduction, we developed a solution concept to fill in
the gap between the popular architectural languages - that are
being used by the architects - and ARAMIS. The core of the
concept is to transform an existing architecture description
(AD) of a software system into an AD that conforms to
the ARAMIS meta-model and subsequently to reverse the
transformation to present the output.

Model-to-model (M2M) transformation is the process of
producing one or more output (target) models based on one or
more input (source) models. Based on the modeling languages
used for the input and output, we can differentiate between

two types of transformation: exogenous - the input and output
languages are different, endogenous - the input and output
languages are the same [13]. To enable the transformation, a
so-called transformation definition consisting of transformation
rules must be created. The transformation rules are specified
at meta-model level and prescribe how one or more elements
from the output model must be produced based on one or
more elements from the input model. Upon performing the
actual transformation, the application of these rules leads to
the emergence of transformation links between the elements
of the input and output models. If the transformation rules are
bidirectional, then the transformation is also named bidirec-
tional, otherwise it is called unidirectional.

A M2M transformation suitable to solve the problem
described before must be (1) exogenous - because the in-
put models are probably not ARAMIS-specific - and (2)
unidirectional. Given that the ARAMIS-MM is very general
(see Figure 1), we assume that the probability that more

Figure 1. Excerpt from the ARAMIS-MM

elements from the input meta-model (e.g., box, component)
must be transformed to the same ARAMIS-MM element (e.g.,
architecture unit) is relatively high. In such a scenario, defining
bidirectional transformation rules can be complex. Instead, in
order to enable the architects to analyze the result on their
own architecture description, we propose to store the concrete
links resulted during the transformation and reuse them after
the ARAMIS validation results are available in order to map
these on the input model. This leads to the same effect as the
bidirectional transformation.

Another important aspect deals with the nature of the
input and output models. The output model expresses the
architecture from a behavior point of view. More explicitly,
the communication of two architecture units is assigned a
frequency and is possibly marked as a violation. If the in-
put model offers a structural overview of the architecture,
then there are probably no dedicated meta-model elements
to express these behavioral aspects. There are at least two
options to address this problem. We can either reuse general
purpose elements with a loose semantic from the input meta-
model (e.g., in UML we can append the results using UML
comments) or, alternatively, we can extend the input meta-
model with additional suitable elements, (e.g., a new property
called ”frequency” can be added to an already existing element
called ”DirectedLine”).

Figure 2. The model transformation chain in ARAMIS.

In order to enable the exogenous, unidirectional trans-
formations, we implemented a solution that uses Epsilon

53Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 72 / 512

[14], a fully integrated environment for model engineering
that, among other features, supports meta-model design, cre-
ating inter-model links, generating model editors, and M2M
transformations. Also, because of its active community and
provided documentation with comprehensive examples, its
learning curve is reduced. The model transformation chain that
resulted when we extended ARAMIS with our Epsilon-based
solution is represented in Figure 2.

To use Epsilon, we first converted the ARAMIS-MM
[11] into an equivalent Ecore model representation. When a
prescriptive architecture model with a new, previously not
analyzed meta-model must be considered, this meta-model
must first also be documented in an Ecore model and then
the transformation rules between it and the ARAMIS-MM
can be defined. By applying the transformation rules, a set
of transformation links emerges.

Assuming that each model element can be uniquely iden-
tified and differentiated (e.g., by its ID), we can keep track of
every transformation with the exact source and target model
elements. The result of the transformation, i.e., the ARAMIS
input model, will further undergo a subsequent endogenous
transformation performed by the ARAMIS Workbench which
will then create the ARAMIS output model. This endogenous
transformation creates an important issue: the ARAMIS output
model might contain elements that were not present in the
input model and thus are not linked to the prescriptive model
(e.g., unforeseen communication between architecture units).
This issue is a sign of a mismatch between the prescriptive
and descriptive architecture. The architects can use this result
to further investigate the considered software system.

Figure 3. The ARAMIS ADL transformation process

The process encompassing all activities necessary to em-
ploy ARAMIS using a new ADL is depicted in Figure 3.
This process consists of four major steps: 1. Preprocessing,
2. Model to Model Transformation, 3. ARAMIS Processing,
4. Result augmentation.

In the following, we exemplify the steps 1,2 and 4 using
an example based on a simple boxes-and-lines ADL. Step 3 is

not further detailed in this paper, since it was covered by our
previous work [11].

A. Preprocessing
To exemplify our approach, we have implemented an

example using a boxes-and-lines ADL. Figure 4 shows its
meta-model (BL-MM). As mentioned above, the preprocessing
step prepares the prescriptive meta-model (in this case BL-
MM) for the next steps, by creating a corresponding Ecore
meta-model.

Architecture DirectedLineBox
1..*

1..*

+source1 +out *

+target

1 +in
*

Comment
*

Figure 4. Meta-model of a simple boxes-and-lines ADL

In this case, an extension of the BL-MM that permits
the addition of behavior-related information is not necessary,
because we can use for this purpose the Comment BL-MM ele-
ment. The validation results from ARAMIS,i.e., the frequency
of the calls and their validity, will be augmented in the initial
model using Comment elements.

B. Model transformation
Based on the ARAMIS-MM (see Figure 1) and the BL-

MM, we define the transformation rules. In our example, we
want to create transformation rules for (1) mapping Box in
BL-MM on ArchitectureUnit in the ARAMIS-MM and (2)
mapping DirectedLine of BL-MM on AUCommunication of
ARAMIS-MM. Figure 5 presents a simple boxes-and-lines

Figure 5. Example of a model transformation

model (on the left hand side) and the ARAMIS model elements
that are the result of the M2M transformation. Facade and Con-
troller are transformed to the AUFacade and AUController re-
spectively. The call from Facade to Controller is transformed to
an AUCommunication Facade2Controller that has AUFacade
as caller, AUController as callee, an initial frequency unknown
and a true isAllowed attribute. These correspondences are then
saved as transformation links.

C. Augmenting the ARAMIS results
The ARAMIS output model is presented on the left side

of Figure 6. First, we can see that, after running ARAMIS,
Facade2Controller now has the updated frequency value of
100. Second, there is a new element that did not exist in the
input model: Controller2Facade. This element appears because
ARAMIS detected that AUController has also accessed the

54Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 73 / 512

Figure 6. Example: ARAMIS augmented result

AUFacade during run-time. Based on this result, the prescrip-
tive architecture model is augmented. Based on the previously
generated transformation links, we know that our M2M trans-
formation transformed the prescriptive model element Facade
into the ARAMIS AUFacade; transformed Controller into AU-
Controller; and transformed the directed line between Facade
and Controller into Facade2Controller. We can now use this
information to augment the prescriptive model. For this we
create in the input model a new Comment element that we at-
tach to the DirectedLine from Facade to Controller as shown in
the left side of Figure 6. This comment contains the isAllowed
and frequency attributes that characterize the communication
between Facade and Controller. Furthermore, since there is
no transformation link for the ARAMIS Controller2Facade, a
new DirectedLine is added to the initial model for the detected
communication from Controller to Facade. To this, we also
attach a corresponding comment with information regarding
its frequency and permission.

IV. RELATED WORK
Most of the architecture reconstruction tools have rigid ar-

chitecture description meta-models. For example, Sonargraph-
Architect [15] allows users to define the architecture of the
software systems using layers, layer groups, vertical slices,
vertical slices groups and subsystems. The architects cannot
use other types of ADL.

Malavolta et al. [16] proposed the DUALLY framework
that supports architectural and tools interoperability. By using
its intermediate ADL meta-model for architectural language, it
provides ADL interoperability, but no support for architecture
reconstruction or validation is available.

The meta-model of the SoftArch reconstruction tool in-
cludes 3 architecture concepts: components, associations and
annotations. The users can then create customized figures for
the various elements, to simulate the use of various meta-
models [17].

V. CONCLUSION AND FUTURE WORK
In this paper, we presented an approach for enabling

heterogeneous input and output architecture descriptions for
the ARAMIS Workbench. We have implemented an extension
for ARAMIS to leverage a M2M transformation using the
Epsilon framework. Our solution aims to close the gap between
the ADLs that the architects are familiar with and ARAMIS.
To reduce the amount of time/complexity for further model
transformations, we are offering pre-defined transformation
rules for the most popular cases, such as boxes-and-lines and

UML component diagrams. In the future we plan to evaluate
our solution within an extensive case-study on a real-world
system.

An open question related to our work is how to reduce
even more the effort needed to be invested by the architects
when using ARAMIS. For example, if the input boxes and
lines diagram is simply a drawing, we currently expect that
the architect ”translates” the diagram to an Ecore model. A
complete solution would employ image recognition techniques
to directly transform the model. Given that different techniques
might be necessary depending on the type and form of input
model, this represents an important limitation of our approach.

REFERENCES
[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,

2nd ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2003.

[2] “ISO/IEC/IEEE 42010,” http://www.iso-architecture.org/42010 [ac-
cessed: 2015.10.01].

[3] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “The up-
to-date list of currently existing architectural languages,” http://www.di.
univaq.it/malavolta/al/ [accessed: 2015.10.01].

[4] J. Pardillo and C. Cachero, “Domain-specific language modelling with
UML profiles by decoupling abstract and concrete syntaxes,” Journal
of Systems and Software, vol. 83, no. 12, Dec. 2010, pp. 2591–2606.

[5] M. H. Kacem, A. H. Kacem, M. Jmaiel, and K. Drira, “Describing
dynamic software architectures using an extended uml model,” in
Proceedings of the 2006 ACM Symposium on Applied Computing, ser.
SAC ’06. ACM, 2006, pp. 1245–1249.

[6] P. Selonen and J. Xu, “Validating uml models against architectural
profiles,” in Proceedings of the 9th European Software Engineering
Conference Held Jointly with 11th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, 2003, pp. 58–67.

[7] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E. Robbins,
“Modeling software architectures in the unified modeling language,”
ACM TOSEM, vol. 11, no. 1, Jan. 2002, pp. 2–57.

[8] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What
industry needs from architectural languages: A survey,” IEEE Trans.
Softw. Eng., vol. 39, no. 6, Jun. 2013, pp. 869–891.

[9] S. Ducasse and D. Pollet, “Software architecture reconstruction: A
process-oriented taxonomy,” IEEE Trans. Softw. Eng., vol. 35, no. 4,
Jul. 2009, pp. 573–591.

[10] A. Dragomir, M. F. Harun, and H. Lichter, “On bridging the gap
between practice and vision for software architecture reconstruction and
evolution: A toolbox perspective,” in Proceedings of the WICSA 2014
Companion Volume. ACM, 2014, pp. 10:1–10:4.

[11] A. Dragomir, H. Lichter, J. Dohmen, and H. Chen, “Run-time
monitoring-based evaluation and communication integrity validation of
software architectures,” in Proceedings of the 2014 21st Asia-Pacific
Software Engineering Conference - Volume 01, 2014, pp. 191–198.

[12] A. Nicolaescu, H. Lichter, A. Göringer, P. Alexander, and D. Le,
“The aramis workbench for monitoring, analysis and visualization of
architectures based on run-time interactions,” in Proceedings of the
2015 European Conference on Software Architecture Workshops, ser.
ECSAW ’15. ACM, 2015, pp. 57:1–57:7.

[13] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software
Engineering in Practice, 1st ed. Morgan & Claypool Publishers, 2012.

[14] “Epsilon,” http://www.eclipse.org/epsilon/ [accessed: 2015.10.01].
[15] “Sonargraph Architect,” https://www.hello2morrow.com/products/

sonargraph/architect [accessed: 2015.10.01].
[16] I. Malavolta, H. Muccini, P. Pelliccione, and D. Tamburri, “Providing

architectural languages and tools interoperability through model trans-
formation technologies,” IEEE Trans. Softw. Eng., vol. 36, no. 1, Jan.
2010, pp. 119–140.

[17] J. Grundy and J. Hosking, “Softarch: Tool support for integrated
software architecture development,” International Journal of Software
Engineering and Knowledge Engineering, vol. 13, 2003, pp. 125–152.

55Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 74 / 512

Verifying and Constructing Abstract TLA Specifications: Application to the Verification

of C programs

Amira Methni∗, Matthieu Lemerre†, Belgacem Ben Hedia†, Serge Haddad‡ and Kamel Barkaoui∗
∗CNAM, CEDRIC, 292 rue Saint Martin, Paris Cedex 03, France

Email: first.last@cnam.fr
†CEA, LIST, Centre de Saclay, PC172, 91191, Gif-sur-Yvette, France

Email: matthieu.lemerre@cea.fr, belgacem.ben-hedia@cea.fr
‡LSV, ENS Cachan, CNRS & INRIA, France

Email: haddad@lsv.ens-cachan.fr

Abstract—One approach to verify the correctness of a system is
to prove that it implements an executable (specification) model
whose correctness is more obvious. Here, we define a kind of
automata whose state is the product of values of multiple variables
that we name State Transition System (STS). We define the
semantics of TLA+ (specification language of the Temporal Logic
of Actions) constructs using STSs, in particular the notions of
TLA+ models, data hiding, and implication between models. We
implement these concepts and prove their usefulness by applying
them to the verification of C programs against abstract (TLA+
or STS) models and properties.

Keywords–Temporal Logic of Actions; formal specification;
model-checking; C programs; refinement mapping.

I. INTRODUCTION

As software systems become large and error-prone, formal
verification methods become an essential key concept to ensure
their correctness. Model Checking [1] provides an automated
technique to check and detect errors in computer programs. But
despite its promise, the verification process may be complex
due to the size of these systems. One useful technique to
reduce the complexity of verification process is abstraction.
Generally, an abstract model specify “what” the system do
while the concrete model describes “how”. The idea is to map
the concrete set of states to a smaller set of states resulting in
an approximation of the system with respect to the property
of interest. We say that the concrete model implements the
abstract one. Verifying the abstract model is generally more
efficient than verifying properties of the original.

a) Contributions: We define an operational semantics
of a TLA specification in terms of automata, that we called
State Transition System (STS). We remind the concepts of
implementation relation and refinement mapping in TLA+ that
we formalize in terms of relations between STSs. The refine-
ment between specifications can be checked with the TLC
model checker. Verified properties on the abstract specification
can thus be deduced in the concrete specification. A way
to abstract details of the concrete specification is to hide its
irrelevant variables. TLA+ can express data hiding, but TLC
can’t support this type of construct. So, we have implemented
the notion of data hiding by constructing a STS that we call
“quotient STS”, which is constructed by extending the TLC
model checker. In order to let the quotient STS be analyzed
by existing tools, we extend the TLC model checker to produce
an LTS that can be checked by the CADP toolkit. We apply the
mentioned concepts on C programs using our tool C2TLA+.

Preliminary results show the importance of using an abstract
model to reduce the complexity of verification.

b) Outline: The remainder of the paper is structured as
follows. We give an overview of TLA+ and its operational
semantics in Section 2. Section 3 reminds the concepts of
refinement mapping and the implementation relation between
specifications and describe a way to construct the quotient
STS. In Section 4, we apply these concepts to verify the
correctness of the C implementation with respect to their
specification and we report some preliminary experimental
results obtained. We discuss related work in Section 5. Section
6 concludes and presents future research directions.

II. AN OPERATIONAL SEMANTICS FOR TLA
SPECIFICATION

In this section, we explain some basics concerning the
syntax and the semantics of TLA [2]. Then, we describe the
operational semantics of TLA using a STS.

A. Overview of TLA+
TLA+ is a formal specification language based on the TLA

[3] for the description of reactive and distributed systems. TLA
itself is a variant of linear-time temporal logic. The semantics
of TLA is defined in terms of states. A state is a mapping from
variables to values. A state function is a nonboolean expression
built from constants, variables and constant operators, that
maps each state to a value. For example, y + 3 is a state
function from a state s to three plus the value that s assigns to
the variable y . An action is a boolean expression containing
constants, variables and primed variables (adorned with “′”
operator). Unprimed variables refer to variable values in the
actual state and primed variables refer to their values in the
next-state. Thus, an action represents a relation between an old
state and a new state. For example, x = y ′ + 2 is an action
asserting that the value of x in the old state is two greater that
the value of y in the new state. A state predicate (or predicate
for short) is an action with no primed variables.

Syntactically, TLA formulas are built up from actions and
predicates using boolean operators (¬ and ∧ and others that
can be derived from these two), quantification over logical
variables (∀, ∃), the operators ′ and the unary temporal operator
� (always) of linear-time temporal logic [4].

The expression [A]vars where A is an action and vars the
tuple of all system variables, is defined as A ∨ (vars ′ =

56Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 75 / 512

vars). It states that either A holds between the current and
the next state or the values of vars remain unchanged when
passing to the next state. For any action A, the state predicate
Enabled(A) describes whether the action A can be executed
in the current state s , i.e., there exists some state t such that
s −→ t is an A step.

To specify a system in TLA, one describes its allowed
behaviors. A behavior is an infinite sequence of states that
represents a conceivable execution of the system. The system
specification can be given by the temporal formula Φ defined
as a conjunction of the form:

Φ
∆
= Init ∧�[Next]vars ∧ F (1)

Where, Init is the predicate describing all legal initial
states, Next is the next-state action defining all possible
transitions between states and F is a conjunction of fairness
assumptions about the execution of actions. However, other
forms of specification are possible and can occasionally be
useful.

A TLA formula is true or false on a behavior, which is
a sequence of states. Let σ = 〈s0, s1, . . .〉 be a behavior. σ
satisfies Spec iff Init is true of the first state s0 and every
state that satisfies Next or a “stuttering step” that leaves all
variables unchanged.

B. State Transition System
In TLA, the behavior of a system is modeled as an

infinite sequence of states. The operational semantics of a TLA
specification can be given in terms of a STS, which is easier
to work with than sets of sequences.

Φ
∆
= ∧ (x = 0 ∧ y = 0)

∧ � [
∧ x ′ = (x + 1)%4
∧ y ′ = x ÷ 2

]〈x ,y〉

(a) TLA specification

(b) The STS of Φ

Figure 1. The operational semantics of a TLA specification

Definition 1: A STS is a 3-tuple T = (Q, I, δ) given by

- a finite set of states Q,
- a set I ⊆ Q of initial states,
- a transition relation δ ⊆ Q×Q.

Figure 1 shows a TLA specification and its corresponding
STS TΦ = (QΦ, IΦ, δΦ) which encodes all its possible behav-
iors (÷ symbol denotes integer division). The specification Φ
is translated into TΦ as follows:

- TΦ has initial state(s) IΦ specified by the predicate
x = 0 ∧ y = 0,

- every state s ∈ QΦ corresponds to a valuation of the
state function 〈x , y〉,

- each transition t ∈ δΦ corresponds to satisfying the
predicate [x ′ = (x + 1)%4 ∧ y ′ = x ÷ 2]〈x ,y〉.

III. REFINEMENT AND ABSTRACTION OF TLA
SPECIFICATIONS

A way to reduce the verification task is to define an abstract
model as a specification, and then relate behaviors of the ab-
stract model to those of the implementation. Properties checked
on the abstract model can be deduced on the concrete one.
We use concrete model to refer to high-level specification and
abstract model to refer to low-level specification. This section
describes the semantics of refinement between a high-level and
a low-level TLA+ specification. Then, we present a way to
automatically construct a reduced model, which abstracts the
detailed behavior of the concrete TLA+ specification.

A. Refinement Mapping
Abadi and Lamport [5] described that a high-level speci-

fication Ψ implements a low-level specification Φ iff for each
behavior of Ψ, there is a behavior of Φ with the same sequence
of externally visible states, allowing stuttering, e .g., if the
state Φ does not change during a finite number of steps. This
implementation relation is proved by defining a refinement
mapping between specifications.

Let Ψ and Φ be two TLA specifications, x1, . . . , xm and
y1, . . . , yn the variables occurring in the specifications Ψ
and Φ respectively. A (concrete) specification Ψ implements
an abstract specification Φ if Ψ ⇒ Φ. The proof of this
implication consists in defining state functions ȳ1, . . . , ȳn in
terms of the variables y1, . . . , yn and prove that Ψ⇒ Φ̄, where
Φ̄ denotes the formula Φ obtained by substituting ȳi for the
free occurrences of yi , for all i .

The set of state functions ȳ1, . . . , ȳn is called a refinement
mapping. The “barred variable” ȳi is the state function with
which Ψ implements the variable yi of Φ. So, if σ is the
behavior s1 → s2 → s3 . . . of Ψ, we define the behavior σ̄ to
be s̄1 → s̄2 → s̄3 . . . We say that Ψ implements Φ under this
refinement mapping iff, for each behavior σ satisfying Ψ, the
behavior σ̄ is a behavior of Φ.

B. Implementation Relation and Property Preservation
The proof Ψ⇒ Φ under a refinement mapping is sufficient

to verify that Ψ implements Φ [5]. The key to the implication
relation is that TLA allows to write only formula that are
insensitive to stuttering, i.e., given a TLA formula Φ and
two stuttering equivalent runs σ and σ′, Φ holds along σ
if and only if it holds along σ′ [3]. This implementation
relation between TLA specifications can be viewed as a weak
simulation relation between its corresponding STSs.

Definition 2: Let TΨ = (QΨ, IΨ, δΨ) and TΦ =
(QΦ, IΦ, δΦ) denote two STSs. A simulation R relation from
QΨ to QΦ is a function that satisfies the following conditions:

• ∀s ∈ IΨ,R(s) ⊆ IΦ (initial states are mapped to
initial states),

57Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 76 / 512

• For each state pairs (s1, s2) ∈ δΨ,
(R(s1),R(s2)) ∈ δΦ (state transitions are mapped
into state transitions or stuttering steps).

If a lower-level specification, expressed by a TLA formula
Ψ, implements an abstract specification Φ, Ψ preserves all
TLA properties of Φ if and only if for every formula φ, if
Φ⇒ φ is valid, then so is Ψ⇒ φ. This is true if Ψ⇒ Φ.

C. Data Hiding in TLA
A very useful form of data abstraction is variable hiding,

which refers to providing only essential information to the
outside world and hiding not needed information. In TLA, it is
possible to hide some variables using the existential quantifier
∃∃∃∃∃∃ (which differs from the quantifier of predicate logic). The
formula ∃∃∃∃∃∃ x : Φ asserts that it doesn’t matter what the actual
values of x are, but there are some values x can assume for
which Φ holds. The meaning of ∃∃∃∃∃∃ is defined by (2). The
formula σ ∼x τ is defined to be true iff σ can be obtained
from τ (or vice-versa) by adding and/or removing stuttering
steps and changing the values of x . Thus, the (2) is true for a
behavior σ iff Φ is true for some behavior τ such that σ ∼x τ
is true.

σ |= ∃∃∃∃∃∃ x : Φ
∆
= ∃ behavior (σ ∼x τ) ∧ (τ |= Φ) (2)

The temporal formula (3) describes a specification Φ where
v is the list of all relevant state variables and x is the list of
internal (hidden) variables.

Φ
∆
= ∃∃∃∃∃∃ x : Init ∧ [Next]v ∧ L (3)

The existential operator is a very simple and useful way
in which the system is described as a black box. However, in
practice, the TLC model checker cannot handle the TLA hiding
operator. In what follows, we present a way to implement
data hiding by constructing a quotient STS from a TLA
specification.

D. Computing a Quotient STS

Figure 2. Constructing the quotient STS using the refinement mapping
ȳ

∆
= y

Given a concrete STS T = (Q, I, δ) describing a TLA
specification, one can obtain an abstraction of T , a small STS
that we call quotient STS and which is obtained by quotienting
the states Q under a refinement mapping γ.

Figure 2 shows a STS resulting from adding a refinement
mapping ȳ

∆
= y in all states of the concrete STS. The quotient

STS (at the right side of the figure) is constructed by collapsing
all states related under the relation γ into the same state. Let
T /γ = (Q/γ , I/γ , δ/γ) be the quotient STS of T = (Q, I, δ)

1: procedure QUOTIENTSTS
2: Qγ ← γ(I)
3: NotSeen ← {s ′ ∈ Q | s ∈ Q and (s, s ′) ∈ δ}
4: while NotSeen 6= {} do
5: for ∀q ∈ NotSeen do
6: if γ(q) /∈ Qγ then
7: Qγ ← Q/γ ∪ {γ(q)}
8: δ/γ = δ/γ ∪ {(γ(q), γ(q ′)) | (q , q ′) ∈ δ}
9: NotSeen = NotSeen \ {q}

10: end if
11: end for
12: end while
13: end procedure

Figure 3. Construction algorithm of the quotient STS

under the refinement mapping γ. The algorithm of constructing
T /γ is given in Figure 3.

We extend the implementation of TLC to produce the
quotient STS “on-the fly” when the TLC model checker
computes the state space of a specification. In fact, TLC makes
efficient use of disk. It doesn’t keep all states in memory which
is the limiting factor of the explicit other model checkers.
Instead, it stores just fingerprints of states, which is a 64-bit
number generated by a “hashing” function. So, the probability
that two states have the same fingerprint is 2−64 which is a
very small number. So, the quotient STS is generated with the
same fingerprint collision probability and without exploding
the memory.

E. Translating a STS into a Labelled Transition System
In order to use existing tools to check properties on a

STS, we transform the quotient STS into a Labelled Transition
System (LTS), that we call quotient LTS.

Definition 3: A LTS is 4-tuple T = 〈Q,L, δ, s0〉, where:

• Q is the set of states,
• L is the set of action labels,
• δ is the transition relation (a subset of Q×L×Q),
• and s0 is the initial state.

A transition (s1, l , s2) of δ, indicates that the system can move
from state s1 to state s2 by performing action labelled by l .

c) Property preservation: The equivalence between
checking a property given in LTL\x (Linear Temporal Logic
without the “next operator”) on the quotient LTS and checking
it on the original LTS is ensured by the preservation.

Proposition 1: Let ϕ be an LTL\x formula, let TΦ and TΨ

be two STSs such that TΨ ⇒ TΦ. If TΦ |= ϕ then TΨ |= ϕ.

F. Usefulness of the Quotient LTS
The quotient LTS abstracts away the details of the concrete

specification. Its main advantage is its small size. As proper-
ties are preserved between the concrete specification and its
corresponding quotient STS, model checking properties can
be done on the quotient LTS directly, which is a simple task.
The quotient LTS is generated once and can be used to verify
different properties (modulo the refinement mapping).

To express and check properties on the quotient STS, we
use the CADP [6] toolkit. For this, we first adapt the label

58Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 77 / 512

Figure 4. Verification flow of C programs

names such that LTS can be parsed by the CADP tools. Then,
we express properties in the Model Checking Language (MCL)
[7] language, the property specification language of CADP that
can be verified by its associated model checker.

IV. APPLICATION OF C PROGRAMS

In this section, we implement the concept of refinement
between TLA+ specifications and the quotient LTS on C pro-
grams. Figure 4 illustrates the verification flow of C programs.
We use our tool C2TLA+ [8] to translate C programs into
(a concrete) TLA+ specification. This latter can be checked
directly against a set of properties, or against an abstract
specification by defining the refinement mapping and the
implementation relation between the concrete and the abstract
specifications. Properties can be expressed in TLA to be
verified using the TLC model checker. The quotient LTS is
generated, and MCL properties can be verified by the CADP
model checker.

In what follows, we briefly present how we specify the
semantics of C in TLA+. We apply the described notions by
considering the example of the dining philosophers. Finally,
we assess the usefulness of using abstraction by giving results
of properties verification using TLC and the CADP model
checker.

A. TLA+ specification of a C program
C2TLA+ [8] generates a TLA+ specification that describes

the behavior of the C program as a closed system according
to a set of translation rules. A concurrent program consists in
a set of C functions. In C2TLA+, concurrency is modeled by
considering all possible interleaving of sequences of operations
called processes (corresponding to threads in C). Each step of
the complete specification is attributed to exactly one process.
The C program is defined by a TLA formula in the form of
(1). For more detailed information about the translation from
C to TLA+, please refer to our previous work [8].

B. Illustrating Example
As an example, we consider the classic dining philosophers

problem. One possible solution to this problem is the one that
appears in Tanenbaum’s popular operating systems textbook
[9],, given in Figure 5.

In the implementation of this solution, the global
semaphore mutex provides mutual exclusion for execution

#define N 4
#define THINKING 0
#define HUNGRY 1
#define EATING 2
#define LEFT(i) (i+N-1)%N
#define RIGHT(i) (i+1)%N
typedef int semaphore;
int state[N];
semaphore mutex;
semaphore sem[N];

void philosopher(int i)
{ while (1) {

think();
take_forks(i);
eat();
put_forks(i); }

}
void take_forks(int i) {
P(&mutex);
state[i] = HUNGRY;
test(i);
V(&mutex);
P(&sem[i]);}

void put_forks(i)
{
P(&mutex);
state[i] = THINKING;
test(LEFT(i));
test(RIGHT(i));
V(&mutex);

}

void test(i)
{
if (state[i] = HUNGRY

&& state[LEFT(i)]!=
EATING

&& state[RIGHT(i)]
!= EATING)

{
state[i] = EATING;
V(&sem[i]);

}
}

Figure 5. Tanenbaum’s solution for the dining philosophers

of critical sections and the semaphore sem[i] ensures syn-
chronization. The latters perform P() to acquire a lock and
V() to release it, using ”Compare-and-swap“ primitive.

C. Refinement of Specifications

d) Abstract specification of the dining philosophers:
We define a coarse-grained representation of the dining
philosopher, illustrated by Figure 6 that captures the aspects
of the system that interest us without giving all the details of
its internal structure.

In order to check liveness properties, we consider that
the philosopher cannot starve waiting for a fork, i.e., no
philosopher is eating forever. This assumption is stated by the
formula Fairness , where WFvars(A) denotes weak fairness
on action A and the symbol ♦ denotes the temporal operator
eventually.

59Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 78 / 512

MODULE Abstract philosophers
EXTENDS Naturals, TLC
CONSTANT N
VARIABLES phil state, forks
vars

∆
= 〈phil state, forks〉

fork available(i)
∆
= forks[i] = N

fork acquire(p, i)
∆
= forks ′ = [forks EXCEPT ! [p] = i]

forks release(p)
∆
=

forks ′ = [forks EXCEPT ! [p] = N , ! [(p + 1)%N] = N]
fork release(p)

∆
= forks ′ = [forks EXCEPT ! [p] = N]

LEFT (p)
∆
= (p + 1)

RIGHT (i)
∆
= IF (i = 0) THEN (N − 1) ELSE (i − 1)

think(ph)
∆
=

∧ phil state[ph] = “think”
∧ fork available(LEFT (ph))
∧ fork acquire((LEFT (ph), ph)
∧ phil state ′ = [phil state EXCEPT ! [ph] = “hungry”]

hungry(ph)
∆
=

∧ phil state[ph] = “hungry”
∧ IF (fork available(ph))

THEN
∧ fork acquire(ph, ph)
∧ phil state ′ = [phil state EXCEPT ! [ph] = “eat”]

ELSE
∧ fork release(LEFT (ph))
∧ phil state ′ = [phil state EXCEPT ! [ph] = “think”]

eat(ph)
∆
= ∧ phil state[ph] = “eat”
∧ forks release(ph)
∧ phil state ′ = [phil state EXCEPT ! [ph] = “think”]

Init
∆
= ∧ phil state = [i ∈ (0 . . (N − 1)) 7→ “think”]
∧ forks = [i ∈ (0 . . (N − 1)) 7→ N]

Spec
∆
= Init ∧�[∃ i ∈ 0 . . (N − 1) :

think(ph) ∨ hungry(ph) ∨ eat(ph)]vars
∧ Fairness

Figure 6. Abstract TLA+ version of the dining philosophers

Fairness
∆
=

∧ ∀ i ∈ (0 . . N − 1) : WFvars(hungry(i)) ∧ WFvars(eat(i))
∧ ∀ i ∈ (0 . . N − 1) : �♦(ENABLED 〈think(i)〉vars)

=⇒ (�♦〈eat(i)〉vars)

e) Specifying the refinement relation: To check that
the concrete specification generated by C2TLA+, implements
the abstract version of the dining philosophers, we define the
refinement relation as shown in Figure 7. In this section, we
don’t illustrate the translation of the C code, as the translation
rules are described in our previous work [8].

The implementation relation is an implication formula
Spec ⇒ Abstract instance!Spec.

D. Expressing properties

An interesting property that the implementation should
hold is that the critical sections are protected with the primi-
tives P() and V(). This property can be simply expressed in
TLA+ (on the abstract specification) as follows:

MODULE refinement definition
EXTENDS Concrete philosophers
philNum

∆
= load(“unused”,Addr N)

get val(addr , off)
∆
=

load(“unused”, [loc 7→ addr .loc, offs 7→ addr .offs + off]).val

refmap(addr)
∆
=

[i ∈ (0 . . philNum) 7→
LET val

∆
= get val(addr state, i)

IN IF val = 0 THEN “think”
ELSE IF val = 1 THEN “hungry”

ELSE “eat”]

Abstract instance
∆
= INSTANCE Asbtract philosophers WITH

N ← philNum,
phil state ← refmap(Addr state)

Spec =⇒ Abstract instance !Spec

Figure 7. Definition of refinement relation between abstract and concrete
TLA+ specifications of the dining philosophers

mutual exclusion
∆
=

∀ i ∈ (0 . . (N − 1)) : (phil state[i] = “eat”) =⇒
(phil state[LEFT (i)] 6= “eat” ∧ phil state[RIGHT (i)] 6= “eat”)

The dining philosophers problem captures many aspects of
liveness. Among liveness properties of the dining philosophers
is starvation-freedom and deadlock freedom that we expressed
in TLA+ as follows:

NoStarvation
∆
= ∀ i ∈ (0 . . (N − 1)) :

�((phil state[i] = “hungry”) =⇒ ♦(phil state[i] = “eat”))

DeadlockFree
∆
=

�((∀ i ∈ (0 . . (N − 1)) : (phil state[i] = “hungry”)) =⇒
(∀ i ∈ (0 . . (N − 1)) : ♦(phil state[i] = “eat”)))

E. Verification results and comparison

We check that the concrete TLA+ specification (generated
by C2TLA+) implements the abstract TLA+ specification
(given in Figure 7). We also check the set of properties on
these two specifications. We extract the quotient LTS from
the concrete specification that we checked against the set
of properties that we express in MCL. Table I shows the
number of states and the verification time of the concrete
and the abstract specifications using TLC, and the numbers
of states, transitions and the time verification of the quotient
LTS using CADP model checker. Experiments were carried
on an Intel Core Pentium i7-2760QM with 8 cores (2.40GHz
each) machine, with 8Gb of RAM memory. For 5 philosophers,
the state space of the concrete TLA specification exceeds 113
millions states and its verification takes more than 10 hours to
check the properties.

For the same number of philosophers, the abstract TLA
specification generates 82 states and properties were checked
in only 1 minute using TLC. On the other hand, the quotient
LTS generated 47 states and its verification time is 42s. Due to
the preservation properties, we can deduce that all the verified
properties on the abstract TLA specification or on the quotient
LTS are verified on the concrete specification. The use of

60Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 79 / 512

TABLE I. RUNTIMES OF MODEL CHECKING

Philos
Verification using TLC Verification using CADP

Concrete Spec. Abstract Spec. Quotient LTS
States Time(s) States Time(s) States Time(s)

3 395K 157 14 15 14 12

4 27.285K 1.080 32 23 20 20

5 113.285K >36.000 82 64 47 42

abstraction reduces considerably the complexity of verification
of C implementations.

When TLC reports that a transition violates the imple-
mentation formula Spec ⇒ Abstract instance!Spec, there
is an error either in the concrete specification, the abstract
specification, or the refinement mapping function. The trace
given by TLC can help to determine which one of those is the
case. We use our tool to translate this trace in C and get the
C execution sequence that leads to the error.

V. RELATED WORK

Predicate abstraction [10] is a technique to abstract a
program so that only the information about the given predicates
are preserved. This technique is being used in SLAM [11],
BLAST [12] and MAGIC [13]. Their approach has been
shown to be very effective on specific application domains
such as device drivers programming. SLAM uses symbolic
algorithms, while BLAST is an on-the-fly reachability analysis
tool. The Magic tool use LTS a specification formalism, and
weak simulation as a notion of conformance of a system and
its abstract specification.

These tools are applied to C programs and use automated
theorem prover to construct the abstraction of the C program.
The difficulty of these refinement-based approaches is that
performing a refinement proofs between an abstract and a
refined model require non trivial human effort and expertise
in theorem proving to get the prover to discharge the proof
obligations. SLAM cannot deal with concurrency, BLAST
cannot handle recursion.

Besides predicate abstraction, several verification tech-
niques for C programs have been proposed. CBMC [14]
is a bounded model checker for ANSI C programs which
translates a program into a propositional formula (in Static
Single Assignment form), which is then fed to a SAT solver
to check its satisfiability. CBMC explores program behavior
exhaustively but only up to a given depth.

Compared to previous related works that use an over-
approximation of the code implementation which is sound,
our approach is based on constructing an executable abstract
model, that can be expressed using TLA+ or by constructing
the quotient LTS. Moreover, TLA+ is a logic that can express
safety and liveness properties unlike SLAM, BLAST and
CBMC which have limited support for concurrent properties
as they only check safety properties.

VI. CONCLUSION AND FUTURE WORK

We have defined an operational semantics of a TLA+
specification in terms of a STSs. We redefined the semantics
of refinement between a high-level (concrete) and a low-level
(abstract) TLA+ specifications using STSs and we illustrated

a way to automatically construct a quotient STS from the
concrete specification by extending the TLC model checker.
We applied all these notions for verifying C programs. Exper-
imental results show that verifying properties on the abstract
model reduces considerably the complexity of the verification
process.

As future work, we plan to extend this work on several
interesting directions. We would like to generate TLA+ and
MCL properties from the ACSL [15] specification language
used in Frama-C. We envisage to benefit from Frama-C
analysis of shared variables by several processes to generate
TLA+ code with less interleaving between the processes, to
reduce the state space. Finally, we aim to use the TLA+
proof system [16] to prove refinement between a concrete and
abstract specifications.

REFERENCES
[1] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model checking.

Cambridge, MA, USA: MIT Press, 1999.
[2] L. Lamport, Specifying Systems, The TLA+ Language and Tools for

Hardware and Software Engineers. Addison-Wesley, 2002.
[3] L. Leslie, “The Temporal Logic of Actions,” ACM Trans. Program.

Lang. Syst., vol. 16, no. 3, 1994, pp. 872–923.
[4] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concur-

rent Systems. New York, NY, USA: Springer-Verlag New York, Inc.,
1992.

[5] M. Abadi and L. Lamport, “The Existence of Refinement Mappings,”
Theor. Comput. Sci., vol. 82, no. 2, 1991, pp. 253–284.

[6] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “CADP 2011: a
toolbox for the construction and analysis of distributed processes,” In-
ternational Journal on Software Tools for Technology Transfer, vol. 15,
no. 2, 2013, pp. 89–107.

[7] R. Mateescu and D. Thivolle, “A Model Checking Language for Con-
current Value-Passing Systems,” in Proceedings of the 15th International
Symposium on Formal Methods. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 148–164.

[8] A. Methni, M. Lemerre, B. Ben Hedia, S. Haddad, and K. Barkaoui,
“Specifying and Verifying Concurrent C Programs with TLA+,” in
Formal Techniques for Safety-Critical Systems, C. Artho and P. C.
lveczky, Eds. Springer, 2015, vol. 476, pp. 206–222.

[9] A. S. Tanenbaum, Modern Operating Systems, 3rd ed. Upper Saddle
River, NJ, USA: Prentice Hall Press, 2007.

[10] S. Graf and H. Saı̈di, “Construction of Abstract State Graphs with PVS,”
in Proceedings of the 9th International Conference on Computer Aided
Verification. London, UK, UK: Springer-Verlag, 1997, pp. 72–83.

[11] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani, “Automatic
predicate abstraction of c programs,” in Proceedings of the ACM
SIGPLAN 2001 conference on Programming language design and
implementation, ser. PLDI ’01. New York, USA: ACM, 2001, pp. 203–
213. [Online]. Available: http://doi.acm.org/10.1145/378795.378846

[12] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Software
Verification with BLAST.” Springer, 2003, pp. 235–239.

[13] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith, “Modular
Verification of Software Components in C,” IEEE Trans. Software Eng.,
vol. 30, no. 6, 2004, pp. 388–402.

[14] E. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-
C Programs,” in TACAS, K. Jensen and A. Podelski, Eds., vol. 2988.
Springer, 2004, pp. 168–176.

[15] P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Pre-
vosto, ACSL: ANSI/ISO C Specification Language, version 1.4, 2009,
[retrieved: October, 2015].

[16] D. Cousineau, D. Doligez, L. Lamport, S. Merz, D. Ricketts, and
H. Vanzetto, “TLA+ Proofs,” in 18th International Symposium on
Formal Methods - FM 2012, D. Giannakopoulou and D. Méry, Eds.,
vol. 7436. Paris, France: Springer, 2012, pp. 147–154.

61Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 80 / 512

Revisiting The Package-level Cohesion Approaches

Waleed Albattah
Information Technology Department

Qassim University
Qassim, Saudi Arabia

e-mail: w.albattah@qu.edu.sa

Suliman Alsuhibany
Computer Science Department

Qassim University
Qassim, Saudi Arabia

e-mail: salsuhibany@qu.edu.sa

Abstract—Software measurements play a critical role in
assessing software properties. Cohesion is one of the software
properties that are considered to have a relationship with
software quality. Many cohesion metrics have been proposed
by researchers to assess cohesion on different software
abstractions, i.e., class-level and package-level. The proposed
package-level cohesion metrics in the literature seem to differ
in their assessment of cohesion. In this paper, we try to
investigate this issue and establish whether cohesion has only
one concept. The conclusion of this paper encourages further
investigation and comparison between the existing package-
level cohesion metrics.

Keywords—Cohesion; package; metric; measurement;
software.

I. INTRODUCTION
With the increased importance of software

measurements in assessing software properties, research
works have produced and are continuing to produce new
software measures. One specific type of measure is
cohesion. Cohesion refers to the degree to which the
elements of a specific component belong together [3].

During software maintenance, developers spend at least
50% of their time analysing and understanding software [2].
In object-oriented programming languages, e.g., Java,
assembling only closely related classes into packages can
improve software maintenance. Package cohesion metrics
measure the coherence of a package amongst its elements
that should be closely related. Cohesion is an internal
attribute of software that affects its maintainability and
reusability. Following the design principles [21], a high
level of cohesion has as its goal to achieve software
maintainability and promote its reusability [22][26].

Package-level cohesion research has received very little
focus compared with research on other abstractions, e.g.,
class-level. When one examines the literature on package
cohesion metrics, it is clear that there are significant
differences in these metrics. Thus, the following natural
question arises: do these metrics measure the same thing?
This question will be addressed in this paper.

The paper is organised as follows. In Section II, we
present Package Cohesion Principles [21]. The existing
approaches to package cohesion are presented in Section III.
Section IV presents the general example for all the existing

approaches. The conclusion and future work are given in
Section V.

II. PACKAGE COHESION PRINCIPLES
R. C. Martin [21] has presented six principles for

package design, which have since become well-known and
well-accepted. The first three principles are for package
cohesion and they help to allocate system classes to
packages. This allocation can help to manage the software
during its development. In our previous work [23], the three
package cohesion principles of Martin [21] were discussed
and they are introduced here briefly from [23]:

1) The Reuse-Release Equivalence Principle (REP)
 “The granule of reuse is the granule of release”

This states that the reuse of the code should be the same
size as the release one. If a person decides to reuse someone
else’s code, he needs a guarantee that the support will
continue and the release of new versions will be on the same
original size. To ensure the reusability of the code, the author
must organise the classes into reusable packages and then
track them with the release.

2) The Common Reuse Principle (CRP)
“The classes in a package are reused together. If you reuse
one of the classes in a package, you reuse them all”

This principle tells us which classes should be grouped
together. As it states, the classes that tend to be reused
together should be in the same package. It is more likely for
reusable classes to depend on each other, so classes are
rarely reused in separation. CRP states that the classes of a
package should be inseparable, which means that if a
package depends on this package, it should depend on all of
its classes and not on a number of them. In short, classes
that are not tightly coupled to each other should not be kept
in the same package.

3) The Common Closure Principle (CCP)
“The classes in a package should be closed together against
the same kinds of changes. A change that affects a package
affects all the classes in that package and no other
packages”

From the maintenance point of view, while the change is
not avoidable, it should be controlled (minimised). If a
change has been made on one package, there is no need to

62Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 81 / 512

re-release or revalidate packages that do not depend on the
changed package. The CCP states that the classes in the
package should not have different reasons to change.

While the previous two principles, REP and CRP, focus
on reusability, the CCP focuses on the system
maintainability. If a change is made on the code, it would be
better to be on one package or on a few packages rather than
being on many packages. The classes that are tightly related
will change together. Hence, if they are kept in the same
package, only one package or a small number of packages
are going to be affected when a change happens. Also, the
effort regarding revalidating and re-releasing of software
will be minimised.

III. THE EXISTING PACKAGE COHESION APPROACHES
A number of cohesion approaches have been proposed on

class and method levels [1][3]-[6]-[18]. In this section, we
present some of the existing package-level cohesion
approaches. A brief description is given for each. In the
literature, Misic [19], Ponisio and Nierstrasz [22], Martin
[21], Xu et al. [20], Zhou et al. [24], Abdeen et al. [25], and
Albattah and Melton [23] have each proposed different
methods to measure package cohesion. Each proposes a
cohesion metric on the package level. A brief discussion for
each approach is given next.

A. Approach by Misic
Misic [19] proposes a way to measure a functional

cohesion. Since a number of approaches were focusing on
cohesion as an internal structure issue, Misic claimed that
cohesion could be also observed externally by focusing on its
functional property regardless of the package’s internal
structure.

The approach measures the similarity of package objects
(elements). The similarity between elements can be
measured by looking at the external clients’ usage patterns.

Method

Misic defined write and read range concepts. The write
range of an object O, W(O), refers to the set of objects
(servers) used by this object (client). The read range of an
object O, R(O), refers to the set of objects (clients) used by
this object (server).

Given a set of objects S, let R(S) be its client set (Read
range), Sw the subset that IS? used to write its clients, and let
Sw(x) be the part of that subset that IS? used to write the
client x. Then, the coherence is given by the following
formula:

!!
ψ (S)=

(#Sw(x)−1)
x∈R(S)
∑

(#S −1)
x∈R(S)
∑

 (1)

 where

#S stands for the number of elements in S.

The coherence measure proposed by Misic can be
calculated internally or externally. For internal coherence,
the summation in the numerator and denominator will be
restricted only for clients inside the questioned set. Similarly,
the summation will be restricted only for clients outside the
questioned set to measure the external cohesion.

B. Approach by Ponisio and Nierstrasz
Ponisio and Nierstrasz [22] proposed a similar approach

to measure package cohesion. The proposed contextual
metric measures the cohesion based on the common use by
clients. The approach idea is to propose the Common-Use
(CU) metric that measures the package cohesion by taking
into account the way that a package’s classes are accessed
by other packages.

Method

CU measures the cohesion of package P by considering
the use of its elements by the package clients. If all the
clients use the same set of P’s elements, these elements share
the same responsibilities of P, and then P is cohesive.
Instead, if the clients use a different set of P’s elements,
these elements have different responsibilities, and then P is
not cohesive.

There is a need for weight to differentiate between client
packages. Not all clients have the same degree in assessing
P’s cohesion. The weight reduces the influence of P’s
cohesion from the promiscuous clients.

Definition: “We define the weight of a (client) package
Pclient as the inverse of the number of connections that Pclient
has with other packages.”

The definition of CU is given as follows:

 “We define Common-Use (CU) as the sum of weighted
pairs of classes from the interface of a package having a
common client package (f), divided by the number of pairs
that can be formed with all classes in the interface.”

The value of CU is between 0, which represents that the

interface classes of the package have disjoint responsibilities,
and 1, which means that the interface classes of the package
are used together.

5 Common-Use (CU): Inferring Cohesion
from Reuse

Common-Use (CU) measures cohesion in P by taking
into account the way client packages use the responsibilities
of P .

The intuition behind CU is that if all the clients use the
same set of classes in P , these classes contribute to the pur-
pose of P , and therefore P is cohesive. But if some clients
use a subset of classes in P and other clients use a disjoint
subset, then P apparently fulfils different, possibly unre-
lated responsibilities, which makes it not cohesive.

Figure 1 depicts both situations: in (a) some client pack-
ages access only class A and others access only class B,
indicating that P1 could be split, but in (b) every client ac-
cesses class A and class B, indicating that P2 should not be
split.

5.1 Distinguishing Packages: the Need for a
Weight

Not every client contributes to P ’s cohesion to the same
degree. For example, a package P

client

(see Figure 2(a))
that accesses every class in the system, including the classes
of P , does not tell us very much about P ’s cohesion!

We find therefore the need to differentiate client pack-
ages that indicate P ’s cohesion from those that don’t. To
achieve this we introduce the notion of weight.

The weight contributes to lowering the cohesion of P
described by CU if the clients of P exhibit poor procedural
abstraction.

Definition 1 We define the weight of a (client) package
P

client

as the inverse of the number of connections that
P

client

has with other packages.

w(P
client

) =
1

fan in(P
client

) + fan out(P
client

)

The weight is intended to reduce the contribution to the
cohesion of P from clients that are very promiscuous in
their connections to packages of the system. In particular,
we do not want poorly-structured applications to “acciden-
tally” indicate that their packages are highly cohesive sim-
ply because everything accesses everything else!

If a client package P invokes common methods which
are implemented by classes everywhere in the system (e.g.
‘printOn:’), then the number of fan in and fan out dependen-
cies of this package will be high, which in turn diminishes
its weight and when P acts as client pointing out cohesion
of a provider Q, it reduces the CU value of Q.

P

P

Client Client

B

A

Client

Clients
using classes

A and B

client

clientB

A

Pclient

P2

P's interface

dependencies of kind inherits, state, class
references, and message sends

The ubiquitous

dependencies from

Pclient obscure the

dependencies form

clients that indicate

lack of cohesion

(a) Problem: Pclient indicating P cohesive when P is not

(b) Solution: measure the importance of the clients accessing

a pair of classes

P3

The weight of the

clients of the pair A-

B determines the

importance of the

pair in adding

towards cohesion

P's interface

Figure 2. Example of the effect of ubiquitous

clients in measuring cohesion (a) and the

weight of clients as a solution (b)

5.2 Defining CU

Definition 2 We define Common-Use (CU) as the sum of
weighted pairs of classes from the interface of a package
having a common client package (f), divided by the number
of pairs that can be formed with all classes in the interface.

CU =
X

a,b2I

f(a, b) ⇤ weight(a, b)
#Pairs

Where

I = interface(P)
#Pairs = |I|⇥(|I|�1)

2
C = clients(a) \ clients(b)

f(a, b) =
⇢

1, if C 6= ;
0, otherwise

weight(a, b) =
P

c2C

w(c)
|C|

Note that if #Pairs = 0 (i.e.,, if | I |= 0 or 1), then CU
is undefined, since a package without at least two interface
classes can neither be cohesive nor not cohesive from the
point of view of its clients.

CU results in a number between 0 and 1, where 0 means
that the classes of the interface have disassociated (disjoint)
responsibilities, and a number close to 1 indicates that all

5

5 Common-Use (CU): Inferring Cohesion
from Reuse

Common-Use (CU) measures cohesion in P by taking
into account the way client packages use the responsibilities
of P .

The intuition behind CU is that if all the clients use the
same set of classes in P , these classes contribute to the pur-
pose of P , and therefore P is cohesive. But if some clients
use a subset of classes in P and other clients use a disjoint
subset, then P apparently fulfils different, possibly unre-
lated responsibilities, which makes it not cohesive.

Figure 1 depicts both situations: in (a) some client pack-
ages access only class A and others access only class B,
indicating that P1 could be split, but in (b) every client ac-
cesses class A and class B, indicating that P2 should not be
split.

5.1 Distinguishing Packages: the Need for a
Weight

Not every client contributes to P ’s cohesion to the same
degree. For example, a package P

client

(see Figure 2(a))
that accesses every class in the system, including the classes
of P , does not tell us very much about P ’s cohesion!

We find therefore the need to differentiate client pack-
ages that indicate P ’s cohesion from those that don’t. To
achieve this we introduce the notion of weight.

The weight contributes to lowering the cohesion of P
described by CU if the clients of P exhibit poor procedural
abstraction.

Definition 1 We define the weight of a (client) package
P

client

as the inverse of the number of connections that
P

client

has with other packages.

w(P
client

) =
1

fan in(P
client

) + fan out(P
client

)

The weight is intended to reduce the contribution to the
cohesion of P from clients that are very promiscuous in
their connections to packages of the system. In particular,
we do not want poorly-structured applications to “acciden-
tally” indicate that their packages are highly cohesive sim-
ply because everything accesses everything else!

If a client package P invokes common methods which
are implemented by classes everywhere in the system (e.g.
‘printOn:’), then the number of fan in and fan out dependen-
cies of this package will be high, which in turn diminishes
its weight and when P acts as client pointing out cohesion
of a provider Q, it reduces the CU value of Q.

P

P

Client Client

B

A

Client

Clients
using classes

A and B

client

clientB

A

Pclient

P2

P's interface

dependencies of kind inherits, state, class
references, and message sends

The ubiquitous

dependencies from

Pclient obscure the

dependencies form

clients that indicate

lack of cohesion

(a) Problem: Pclient indicating P cohesive when P is not

(b) Solution: measure the importance of the clients accessing

a pair of classes

P3

The weight of the

clients of the pair A-

B determines the

importance of the

pair in adding

towards cohesion

P's interface

Figure 2. Example of the effect of ubiquitous

clients in measuring cohesion (a) and the

weight of clients as a solution (b)

5.2 Defining CU

Definition 2 We define Common-Use (CU) as the sum of
weighted pairs of classes from the interface of a package
having a common client package (f), divided by the number
of pairs that can be formed with all classes in the interface.

CU =
X

a,b2I

f(a, b) ⇤ weight(a, b)
#Pairs

Where

I = interface(P)
#Pairs = |I|⇥(|I|�1)

2
C = clients(a) \ clients(b)

f(a, b) =
⇢

1, if C 6= ;
0, otherwise

weight(a, b) =
P

c2C

w(c)
|C|

Note that if #Pairs = 0 (i.e.,, if | I |= 0 or 1), then CU
is undefined, since a package without at least two interface
classes can neither be cohesive nor not cohesive from the
point of view of its clients.

CU results in a number between 0 and 1, where 0 means
that the classes of the interface have disassociated (disjoint)
responsibilities, and a number close to 1 indicates that all

5

(2)

(3)

63Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 82 / 512

C. Approach by Martin
Martin [21] presents a set of principles of object-

oriented package design. Three of these principles, package
cohesion principles, try to help the software architect to
organise classes over packages. These principles are: REP,
CCP, and CRP, discussed earlier in Section II. The three
principles aim to provide a high quality of package
cohesion.

Method

Martin [21] proposed a number of simple package-level
metrics. One of them is a relational cohesion of a package.
The package cohesion metric is presented as an average
number of internal relations per class. Regardless of the
package external dependencies that are considered in other
cohesion metrics, the metric measures the connectivity
between package elements. This metric is quite simple to
apply, and is given by:

H=(R+1)/N

where
 H: package cohesion

 R: number of internal relations
 N: number of the package classes

The extra “1” in the numerator prevents cohesion H
from equalling zero when N=1. This metric gives all internal
relations the same weight and disregards the external ones.
It has been applied to a number of software projects and is
widely accepted.

D. Approach by Xu et al.
Xu et al. [20] propose an approach to measuring the

package cohesion in Ada95 object-oriented programming
language. The proposed metric is based on dependence
analysis between package entities. It is assumed that the
package may have objects and sub-programs.

Method

The package dependence graph (PGDG) describes all
types of dependencies: inter-object dependence graph
(OOG), inter-subprogram dependence graph (PPG), and
subprogram-object dependence graph (POG). The method
measures package cohesion according to PGDG. It assumes
that package PG has n objects and m subprograms, where n,
m > 0.

To present the measure in a unified model, a power for
each object PW(O) is given:

Xu et al. [20] claimed that, according to the definitions, it

is easy to prove that the measure satisfies the four properties
given by Briand et al. [3][27] to develop a good cohesion
measure.

However, an Ada package represents a logical grouping
of declarations. The role of an Ada package is similar to the
role of class in other languages, such as Java [24]. Thus, this
package cohesion metric cannot be applied to the general
example in the next section. An Ada package actually falls in
the category of class-level cohesion metric.

E. Approach by Zhou et al.
Zhou et al. [24] proposed an approach to measuring

package semantic cohesion called the Similar Context
Cohesiveness (SCC). In this approach, the common context
is used to assess the degree of relation between two
components. SCC measures the inter- and intra-package
dependencies that can reveal semantic cohesion between
components.

Method

The proposed package cohesion measure SCC is based
on the component context. The context of component c is
composed of two sets: the components that depend on c and
those that c depends on. The SCC metric is given by:

where

 m: number of components c in p

CCS(c1,c2): denotes the similarity between the contexts of

two components c1 and c2 , and is given by:
CCS(c1, c2) = kRSS(c1, c2) + (1-k)DSS(c1, c2)
k: represents the position’s importance
RSS(c1, c2): similarity between SR(c1) and SR(c2)
DSS(c1, c2): similarity between SD(c1) and SD(c2)

F. Approach by Abdeen et al.
The approach proposed by Abdeen et al. [25] is based on

the Simulated Annealing technique. The approach aims to
reduce package coupling and cycles by moving classes
between packages. Two metrics have been defined for this
purpose, coupling and cohesion metrics.

Method

The approach automatically reduces package coupling
and cycles by moving classes between packages considering
the existing class organisation and package structure. This
approach can help maintainers to define: the maximum
number of classes that can change their packages, the
maximum number of classes that a package can contain, and

function tg (x: real) return real is

begin

 temp1:=sin(x);temp2:=cos(x);

 temp:=temp1/temp2; return temp;

end tg;

…

 end Tri;

3.2 Extended Definitions
Since there is no object in the package of PG2, the definitions of
Section 3 can not be applied to these packages directly. Therefore,
this section will extend the definitions of Section 3.1 to a more
general model by the following steps:

y For PG1, if there is an embedded package, the package is
taken as an object.

y For PG2, take the components of the type as objects of the
package.

Let A, B be object of a type T, M, P primitive subprograms, and
Com1 and Com2 are components of T. Then

� A, B (A.Com1 Æ B.Com2) � Com1 Æ Com2.

� A, P (P Ö A.Com) � P Ö Com.

� A, B, M, P (M ����� o� 2.,1. ComBComA P)

� M ���� o� 2,1 ComCom P.

y For PG3, take the types as objects of the package.

y To present our measure in a unified model, we add powers
for different objects.

PW(O) =

°
¯

°
®

­

others
OOPGCohesioin

OOCohesion

1

object typea is))((

object package a is)(

where Cohesion (O) is the cohesion of O, PG (O) returns the
package containing O.

4. MEASURING PACKAGE COHESION
According to the PGDG, this section will propose our method to
measure the package cohesion. In the following discussions, we
assume package PG contains n objects and m subprograms, where
m, n t0.

4.1 Measuring Inter-Object Cohesion
Inter-object cohesion is about the tightness among objects in a
package. To measure this cohesion, for each object A, introduce a
set A_DEP to record the objects on which A depends, i.e.

O_DEP(A) = {B| AÆB, A z B}.
Let

¦
�

)(_

)()(_
ADEPOB

BPWADEPPW .

Then, we define the inter-object cohesion as:

),_(PGOOCohesion

°
°

¯

°
°

®

­

!
�

¦

1
1

)(_1

1)(

00

1

n
n

ADEPPW
n

nAPW
n

n

i

i

where
1

)(_

�n
ADEPPW

 represents the degree on which A

depends on other objects.

If n=0, there is no object in the package, we set it to 0. If n=1,
there is one and only one object in the package, the cohesion is its
power.

4.2 Measuring Subprogram-Object Cohesion
Subprogram-object cohesion is the most important field in
measuring cohesion. Until now, there have been several
approaches proposed in literature, such as Chae’s methods [6, 7].
But most approaches are based on the POG. As we have
mentioned above, all these methods describe the object reference
in a simple way and subprograms are connected by the objects
referred. Whether there are related among these subprograms are
not described exactly. Thus, these approaches should be improved
to describe these relations. For completeness, we use Co(Prev) to
represent a previous cohesion measure, which satisfies Briand’s
four properties.

For each subprogram P, we introduce another two sets: P_O and
P_O_OUT. Where

x P_O(P) records all the objects referred in P.

Figure. 1. PGDG of class Tri

temp

temp1

temp2

(a) OOG

sin

cos

tg

ctg

(c) PPG

sin cos tg ctg

temp temp1 temp2

(b) POG

64

Besides, the computation of CCS(c1, c2) involves

inter-package data dependence like CCS(SCCMetric,

RCMetric). This shows that both intra- and inter- package

data dependences contribute to the cohesion of a package.

3.2. Measure definition
According to the discussion in Section 3.1, the

components have two kinds of relations: context and

data. For two components c1 and c2, they have a context

relation, if CCS(c1, c2) does not equal 0. And they have a

data relation, if Dep(c1, c2) equals to 1. Herein, Dep(c1,

c2) is determined as follows:

1 2 2 1

1 2

1
(,)

0

d dif c c or c c
Dep c c

else
­ ⎯⎯→ ⎯⎯→= ®
¯

As in Figure 1, the component SCCMetric and
RCMetric have a context relation. And the component

DependenceGraph and Element have a data relation.

Definition 4 The weighted interaction graph WIG

of a package p is an undirected graph, WIG(p) = (V(p),

E(p)) where V(p) is a set of components in p, and E(p)

is a set of edges labeled with weights Wgt, i.e.

E(p) = {(c1, c2) ∈ V(p) × V(p) | Wgt(c1, c2) > 0}

where

Wgt(c1, c2) = CCS(c1, c2) + Dep(c1, c2)

Based on Definition 4, the higher the sum of the

weights of WIG(p) is, the closer the components of p

are tied. Thus, the measure, SCC (Similar Context
Cohesiveness) is defined as the ratio of the sum of

weights of WIG(p) to the number of all possible

context and data relations of p.

Definition 5 For a package p and V(p) = {c1, c2,…, cm},

we have

(,) ()

(,)

1()
(1)

1 1

i j

i j
c c E p

Wgt c c
if mSCC p m m
if m

∈
­
°° >= ® −
°

=°̄

¦

When m = 1, there is only one component in p. In

this case, p is cohesive obviously. We thus set SCC(p)

to 1. When m > 1, if each pair of components has no

relation, SCC(p) = 0. And if the Wgt for each pair of

components reaches the maximum value 2, SCC(p) =

1. Thus, SCC(p) ∈ [0, 1].

In the context of SCC, we regard that for a cohesive

package p, WIG(p) should be a connected graph and

the weight for each edge should be no less than 0.5.

According to graph theory, a connected graph with m

nodes has no less than m – 1 edges. Thus, the

theoretical threshold of SCC is 1 / 2m. For example,

the threshold for the package CohesionMetrics is 0.17.

Figure 2 shows WIG(CohesionMetrics). And based

on Definition 5, SCC(CohesionMetrics) = 0.44, much

greater than 0.17, which is consistent with the fact that

CohesionMetrics is cohesive.

SCC satisfies the monotony and combination rule

which is proposed by Briand et al
[11-12]

. It is widely

accepted that a good module cohesion measure should

conform to these two rules.

Theorem 1 For a package p, SCC(p) does not

decrease when adding a data dependence in p.

Proof Let c1, c2 ∈ p, when adding a data dependence

c2
d⎯⎯→ c1, we have:

(1) SR(c1) = SR(c1) ∪ SR(c2), thus ∀ci ∈ p and ci ≠ c1,

RSS(c1, ci) does not decrease.

(2) SD(c2) = SD(c1) ∪ SD(c2), thus, ∀ci ∈ p and ci ≠ c2,

DSS(c2, ci) does not decrease.

(3) Dep(c1, c2) = 1.

According to Definition 4 and 5, SCC(p) does not

decrease when adding a data dependence in p. ͣ�

Theorem 2 For the package p1, p2, and there is no

relation between p1 and p2, let p3 = p1 ∪ p2, then SCC(p3)

≤ Max(SCC(p1), SCC(p2)).

Proof Based on SCC, there are no relation between

p1 and p2 if they satisfy

∀c1 ∈ p1 ∧ ∀c2 ∈ p2: Wgt(c1, c2) = 0

When combining p1 and p2, the number of the

components of p3 is equal to the sum of the number of the

components of p1 and p2. Let m1 = |p1|, m2 = |p2|, we have:

If m1 = 1 and m2 = 1, then SCC(p3) is visibly 0. Thus,

SCC(p3) ≤ Max(SCC(p1), SCC(p2))

If m1 = 1 and m2 ≠ 1 (m1 ≠ 1 and m2 = 1), then,

2
3 2 2

2

1
() () ()

1

mSCC p SCC p SCC p
m

−= <
+

Therefore,

SCC(p3) ≤ Max(SCC(p1), SCC(p2))

If m1 ≠ 1 and m2 ≠ 1, then,

1 1 1 2 2 2
3

1 2 1 2

(1) () (1) ()
()

()(1)

m m SCC p m m SCC pSCC p
m m m m

− + −=
+ + −

Figure 2. WIG(CohesionMetrics)

130

Besides, the computation of CCS(c1, c2) involves

inter-package data dependence like CCS(SCCMetric,

RCMetric). This shows that both intra- and inter- package

data dependences contribute to the cohesion of a package.

3.2. Measure definition
According to the discussion in Section 3.1, the

components have two kinds of relations: context and

data. For two components c1 and c2, they have a context

relation, if CCS(c1, c2) does not equal 0. And they have a

data relation, if Dep(c1, c2) equals to 1. Herein, Dep(c1,

c2) is determined as follows:

1 2 2 1

1 2

1
(,)

0

d dif c c or c c
Dep c c

else
­ ⎯⎯→ ⎯⎯→= ®
¯

As in Figure 1, the component SCCMetric and
RCMetric have a context relation. And the component

DependenceGraph and Element have a data relation.

Definition 4 The weighted interaction graph WIG

of a package p is an undirected graph, WIG(p) = (V(p),

E(p)) where V(p) is a set of components in p, and E(p)

is a set of edges labeled with weights Wgt, i.e.

E(p) = {(c1, c2) ∈ V(p) × V(p) | Wgt(c1, c2) > 0}

where

Wgt(c1, c2) = CCS(c1, c2) + Dep(c1, c2)

Based on Definition 4, the higher the sum of the

weights of WIG(p) is, the closer the components of p

are tied. Thus, the measure, SCC (Similar Context
Cohesiveness) is defined as the ratio of the sum of

weights of WIG(p) to the number of all possible

context and data relations of p.

Definition 5 For a package p and V(p) = {c1, c2,…, cm},

we have

(,) ()

(,)

1()
(1)

1 1

i j

i j
c c E p

Wgt c c
if mSCC p m m
if m

∈
­
°° >= ® −
°

=°̄

¦

When m = 1, there is only one component in p. In

this case, p is cohesive obviously. We thus set SCC(p)

to 1. When m > 1, if each pair of components has no

relation, SCC(p) = 0. And if the Wgt for each pair of

components reaches the maximum value 2, SCC(p) =

1. Thus, SCC(p) ∈ [0, 1].

In the context of SCC, we regard that for a cohesive

package p, WIG(p) should be a connected graph and

the weight for each edge should be no less than 0.5.

According to graph theory, a connected graph with m

nodes has no less than m – 1 edges. Thus, the

theoretical threshold of SCC is 1 / 2m. For example,

the threshold for the package CohesionMetrics is 0.17.

Figure 2 shows WIG(CohesionMetrics). And based

on Definition 5, SCC(CohesionMetrics) = 0.44, much

greater than 0.17, which is consistent with the fact that

CohesionMetrics is cohesive.

SCC satisfies the monotony and combination rule

which is proposed by Briand et al
[11-12]

. It is widely

accepted that a good module cohesion measure should

conform to these two rules.

Theorem 1 For a package p, SCC(p) does not

decrease when adding a data dependence in p.

Proof Let c1, c2 ∈ p, when adding a data dependence

c2
d⎯⎯→ c1, we have:

(1) SR(c1) = SR(c1) ∪ SR(c2), thus ∀ci ∈ p and ci ≠ c1,

RSS(c1, ci) does not decrease.

(2) SD(c2) = SD(c1) ∪ SD(c2), thus, ∀ci ∈ p and ci ≠ c2,

DSS(c2, ci) does not decrease.

(3) Dep(c1, c2) = 1.

According to Definition 4 and 5, SCC(p) does not

decrease when adding a data dependence in p. ͣ�

Theorem 2 For the package p1, p2, and there is no

relation between p1 and p2, let p3 = p1 ∪ p2, then SCC(p3)

≤ Max(SCC(p1), SCC(p2)).

Proof Based on SCC, there are no relation between

p1 and p2 if they satisfy

∀c1 ∈ p1 ∧ ∀c2 ∈ p2: Wgt(c1, c2) = 0

When combining p1 and p2, the number of the

components of p3 is equal to the sum of the number of the

components of p1 and p2. Let m1 = |p1|, m2 = |p2|, we have:

If m1 = 1 and m2 = 1, then SCC(p3) is visibly 0. Thus,

SCC(p3) ≤ Max(SCC(p1), SCC(p2))

If m1 = 1 and m2 ≠ 1 (m1 ≠ 1 and m2 = 1), then,

2
3 2 2

2

1
() () ()

1

mSCC p SCC p SCC p
m

−= <
+

Therefore,

SCC(p3) ≤ Max(SCC(p1), SCC(p2))

If m1 ≠ 1 and m2 ≠ 1, then,

1 1 1 2 2 2
3

1 2 1 2

(1) () (1) ()
()

()(1)

m m SCC p m m SCC pSCC p
m m m m

− + −=
+ + −

Figure 2. WIG(CohesionMetrics)

130

Besides, the computation of CCS(c1, c2) involves

inter-package data dependence like CCS(SCCMetric,

RCMetric). This shows that both intra- and inter- package

data dependences contribute to the cohesion of a package.

3.2. Measure definition
According to the discussion in Section 3.1, the

components have two kinds of relations: context and

data. For two components c1 and c2, they have a context

relation, if CCS(c1, c2) does not equal 0. And they have a

data relation, if Dep(c1, c2) equals to 1. Herein, Dep(c1,

c2) is determined as follows:

1 2 2 1

1 2

1
(,)

0

d dif c c or c c
Dep c c

else
­ ⎯⎯→ ⎯⎯→= ®
¯

As in Figure 1, the component SCCMetric and
RCMetric have a context relation. And the component

DependenceGraph and Element have a data relation.

Definition 4 The weighted interaction graph WIG

of a package p is an undirected graph, WIG(p) = (V(p),

E(p)) where V(p) is a set of components in p, and E(p)

is a set of edges labeled with weights Wgt, i.e.

E(p) = {(c1, c2) ∈ V(p) × V(p) | Wgt(c1, c2) > 0}

where

Wgt(c1, c2) = CCS(c1, c2) + Dep(c1, c2)

Based on Definition 4, the higher the sum of the

weights of WIG(p) is, the closer the components of p

are tied. Thus, the measure, SCC (Similar Context
Cohesiveness) is defined as the ratio of the sum of

weights of WIG(p) to the number of all possible

context and data relations of p.

Definition 5 For a package p and V(p) = {c1, c2,…, cm},

we have

(,) ()

(,)

1()
(1)

1 1

i j

i j
c c E p

Wgt c c
if mSCC p m m
if m

∈
­
°° >= ® −
°

=°̄

¦

When m = 1, there is only one component in p. In

this case, p is cohesive obviously. We thus set SCC(p)

to 1. When m > 1, if each pair of components has no

relation, SCC(p) = 0. And if the Wgt for each pair of

components reaches the maximum value 2, SCC(p) =

1. Thus, SCC(p) ∈ [0, 1].

In the context of SCC, we regard that for a cohesive

package p, WIG(p) should be a connected graph and

the weight for each edge should be no less than 0.5.

According to graph theory, a connected graph with m

nodes has no less than m – 1 edges. Thus, the

theoretical threshold of SCC is 1 / 2m. For example,

the threshold for the package CohesionMetrics is 0.17.

Figure 2 shows WIG(CohesionMetrics). And based

on Definition 5, SCC(CohesionMetrics) = 0.44, much

greater than 0.17, which is consistent with the fact that

CohesionMetrics is cohesive.

SCC satisfies the monotony and combination rule

which is proposed by Briand et al
[11-12]

. It is widely

accepted that a good module cohesion measure should

conform to these two rules.

Theorem 1 For a package p, SCC(p) does not

decrease when adding a data dependence in p.

Proof Let c1, c2 ∈ p, when adding a data dependence

c2
d⎯⎯→ c1, we have:

(1) SR(c1) = SR(c1) ∪ SR(c2), thus ∀ci ∈ p and ci ≠ c1,

RSS(c1, ci) does not decrease.

(2) SD(c2) = SD(c1) ∪ SD(c2), thus, ∀ci ∈ p and ci ≠ c2,

DSS(c2, ci) does not decrease.

(3) Dep(c1, c2) = 1.

According to Definition 4 and 5, SCC(p) does not

decrease when adding a data dependence in p. ͣ�

Theorem 2 For the package p1, p2, and there is no

relation between p1 and p2, let p3 = p1 ∪ p2, then SCC(p3)

≤ Max(SCC(p1), SCC(p2)).

Proof Based on SCC, there are no relation between

p1 and p2 if they satisfy

∀c1 ∈ p1 ∧ ∀c2 ∈ p2: Wgt(c1, c2) = 0

When combining p1 and p2, the number of the

components of p3 is equal to the sum of the number of the

components of p1 and p2. Let m1 = |p1|, m2 = |p2|, we have:

If m1 = 1 and m2 = 1, then SCC(p3) is visibly 0. Thus,

SCC(p3) ≤ Max(SCC(p1), SCC(p2))

If m1 = 1 and m2 ≠ 1 (m1 ≠ 1 and m2 = 1), then,

2
3 2 2

2

1
() () ()

1

mSCC p SCC p SCC p
m

−= <
+

Therefore,

SCC(p3) ≤ Max(SCC(p1), SCC(p2))

If m1 ≠ 1 and m2 ≠ 1, then,

1 1 1 2 2 2
3

1 2 1 2

(1) () (1) ()
()

()(1)

m m SCC p m m SCC pSCC p
m m m m

− + −=
+ + −

Figure 2. WIG(CohesionMetrics)

130

components. The context of a component reflects the
relationship between the component and the rest of the
software. In real world, engineers always design or
comprehend a component by means of the context
where the component exists. The similar contexts of
two components indicate that the components are
related semantically to some degree. In the next
section, we will discuss how to use the component
context to evaluate the cohesion of a package.

3. Similar context based package cohesion measure

To properly evaluate the cohesiveness of a package,
we should identify the coupling between components
through their contexts. Therefore in this section, we
first discuss the context of a component. Then, we
propose a new package cohesion measure called SCC
based on the component context.

3.1. Component context

In this paper, we regard that the context of a
component c is composed of two parts: One is the
components that c has data dependences on. Another is
the components that have data dependences on c. For
properly define the context, we give a formal definition of
data dependence.

Definition 1 A component c1 has a data dependence
on another component c2, denoted by d⎯⎯→ , if c1
references a function, a variable or a type defined in c2.
A component c1 has an indirect data dependence on
another component c2, denoted by c1

d+⎯⎯→ c2, if (c1,
c2) belong to the transitive closure of d⎯⎯→ .

For instance in Figure 1, the component RCMetric
has a data dependence on the component Element.

Definition 2 For a component c, we have:
SR(c) = {ci | ci

d+⎯⎯→ c}
SD(c) = {ci | c d+⎯⎯→ ci}

Here, SR(c) is set of the components that have data
dependences on c, which represents the components
that may be affected when c is changed. SD(c) contains
the components that c has data dependences on, which
denotes the components whose changes may leads to
the change of c. Then, the context of a component is
defined as a tuple of SR and SD.

Definition 3 For a component c, the context of c is
(SR(c), SD(c)), denoted by CC(c).

It is rational to infer that two components c1 and
c2are related tightly if their contexts are similar. Since
the context of a component is composed of SR and SD,
the evaluation of the similarity between CC(c1) and
CC(c2), denoted by CCS(c1, c2), need to allow for the

similarity between SR(c1) and SR(c2), denoted by
RSS(c1, c2), and the similarity between SD(c1) and
SD(c2), denoted by DSS(c1, c2). Herein, the similarity
between two sets S1, S2 is defined as the number of
elements that differ:

1 2
1 2

1 21 2

1 2

| |
| |(,)
0

S S if S S
S SSimilarity S S

if S S

∩­ ∪ ≠ ∅° ∪= ®
° ∪ = ∅¯

When RSS(c1, c2) = 0 and DSS(c1, c2) = 0, CCS(c1,
c2) should also equal to 0. When RSS(c1, c2) = 1 and
DSS(c1, c2) = 1, CCS(c1, c2) should achieve maximum
value 1. Thus,

1 2 1 2 1 2(,) (,) (1) (,)CCS c c kRSS c c k DSS c c= + −

Herein, the value of k belongs to [0, 1]. In the rest
of this paper, we take k as 0.5 which represents that
RSS and DSS are in the same important position.
Consider the component SCCMetric and RCMetric in
the package CohesionMetrics in Figure 1:

SR(SCCMetric) = {Evaluator}
SR(RCMetric) = {Evaluator}
SD(SCCMetric) =

{DependenceGraphBuilder, Element}
SD(RCMetric) =

{DependenceGraphBuilder, Element}
RSS(SCCMetric, RCMetric) = 1
DSS(SCCMetric, RCMetric) = 1
CCS(SCCMetric, RCMetric) = 1

CCS(c1, c2) has capability of revealing the semantic
coupling between c1 and c2. On the one hand, RSS(c1,
c2) reflects the degree that the two components are
reused together. In terms of Common Reuse Principle
[1], the components tending to be reused together are
always related tightly. Generally speaking, it is seldom
for a component to be reused solely. To achieve one
task, a reusable component needs to collaborate with
other components that are part of the reusable
abstraction. Thus, the components always reused
together serve for a common abstraction regardless of
whether there are data dependences between them or
not. Indeed, the more frequently the components are
commonly reused, the more tightly they are related. On
the other hand, DSS(c1, c2) represents the degree that
the two components use the common components.
Indeed, c1 and c2 have high probability of performing
similar or semantic-related operations in virtue of the
shared components, such as the components in the
package CohesionMetrics in Figure 1. This is similar to
the shared type employed in class cohesion measures [5, 9-

10]. Thus, DSS(c1, c2) can mine the semantic relation
between c1 and c2 to some extent.

129

(4)

(5)

64Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 83 / 512

the classes that should not change their packages and/or the
packages that should not be changed. A set of measures is
defined to determine and quantify the quality of a package.
The number of package dependencies (|PD|) normalises
these measures.

The package cohesion metric is defined to be the direct
dependencies between its classes. Hence, the cohesion of a
package P is proportional to the number of its internal
dependencies (|P Int.D |) according to the CCP Principle [19].
The cohesion quality is given as follows:

where

 |PD| is the number of all internal and external
dependencies of classes in the package.

G. Approach by Bauer and Trifu
Bauer and Trifu [28] have proposed an approach,

architecture-aware adaptive clustering, to produce
meaningful decompositions in a system. They have
evaluated their approach by defining two metrics: the
average cohesion of a subsystem and the average coupling
between subsystems.

Method

The approach was based on providing better
understanding of the system. They tried to recover from the
original decomposition and then impose an appropriate
structure. The new structure aims to maximise subsystems
cohesion. To evaluate the recovered subsystem
decomposition, they performed a comparative study that is
based on two criteria, accuracy and optimality. For
accuracy, they compared the resulting decompositions with
both the original package structure and the ideal Common
Reuse Principle structure of [21]. For optimality, they used
some optimality metrics to show whether the resulting
decompositions have high cohesion and low coupling. To
evaluate their approach, two metrics were defined: average
cohesion of the subsystems and average coupling between
the subsystems of a given decomposition. The average
cohesion metric is given by:

where

 D: a composition

noInternalEdges(Si): number of edges between

classes in Si

|D|*: number of subsystems except single-class

subsystems in D

Si: subsystem number i in D

 |Si|: number of classes in subsystem Si

H. Approach by Seng et al.
The approach by Seng et al. [29] aims to develop

existing object-oriented system decompositions by defining
new decompositions with better metric values and fewer
violations of design principles. They defined the problem as
a search problem. The quality of the resulting subsystem
decompositions is measured by the fitness function that
combines software metrics and design heuristics.

Method

The fitness function consists of cohesion, coupling,
complexity metrics, as well as cyclic dependencies and
bottleneck heuristics. The value of each individual function
is between 0 and 1, where the optimal value is 1. The
cohesion of a system s is the summation of cohesion values
for the individual subsystems in s. The cohesion for a
subsystem si is measured by counting the number of different
classes in si known by some class cj ⊂ si ,(#k(cj)), and
dividing this by the square number of classes in si , (#c(si)).
The resulting value can be normalised if divided by the
number of subsystems (#s).

I. Approach by Tagoug

Tagoug [30] has proposed coupling and cohesion
metrics on subjects, which are similar to packages. Each
subject is a collection of classes. The approach aims to
measure cohesion and coupling at the system level. The
quality metric, which combines cohesion and coupling
values, measures the decomposition’s quality as early as the
analysis and design phases of the software development
lifecycle.

Method

The two metrics measure the quality of object-oriented
decomposition. The cohesion metric focuses on the
interactions of components inside a subject, while the
coupling metric focuses on the interactions of components
among subjects. The cohesion of subject E is given by:

!!
C(E)=

Wij
j=i+1

n

∑
i=1

n−1

∑
Wmax *(n*(n−1)/2)

where
 E: a set of classes of S.
 Wij: the sum of the weights of links in Lij.
 Lij: the set of all links between classes Pi and Pj.
 Wmax = max {Wij} in system S

other hand, moving c7 increases the number of inter-package
dependencies. In Modularization2, there are 6 inter-
package dependencies compared to 5 for Modularization1.

III. MODULARIZATION QUALITY

Our goal is to automatically optimize the decomposition
of software system into packages so that the resulting
organization of classes/packages, mainly, reduces connectivity
and cyclic-connectivity between packages. This goal is
inspired from well known quality principles already discussed
in [3], [11], [23] and in particular from the following
principle: packages are desired to be loosely coupled and
cohesive to a certain extent [11]. In such a context, we
need to define measures that evaluate package cohesion and
coupling.

In addition, cyclic dependencies between packages are
considered as an anti-pattern for package design [23].
In this section we define two suites of measures: the first is
used when evaluating modularization quality and the second
is used when evaluating modularity quality of single package.
Note that all measures we define in this section take their
value in the interval [0..1] where 1 is the optimal value and
0 is the worst value.

A. Measuring Modularization Quality

Inter-Package Dependencies: according to Common
Closure Principle (CCP) [23], classes that change together
should be grouped together. In such a context, optimizing
modularization requires reducing the sum of inter-package
dependencies (IPD =

P|MP |
i=1 |piExt.Out.D

|) [3], [11]. Since
we do not change the dependencies between classes during
our optimization process, we use the sum of inter-class
dependencies (ICD =

P|MC |
j=1 |cjOut.D

|) as normalizer. We
define the measure CCQ to evaluate the Common Closure
Quality of a modularization M as follows:

CCQ(M) = 1� IPD

ICD

Inter-Package Connections: according to Common
Reuse Principle (CRP) [23], classes that are reused together
should be grouped together. In such a context, optimizing
modularization requires reducing the sum of inter-package
connections (IPC =

P|MP |
i=1 |piOut.Con

|) [3], [11]. We define
the measure CRQ to evaluate the Common Reuse Quality
of a modularization M as follows:

CRQ(M) = 1� IPC

ICD

Inter-Package Cyclic-Dependencies: according to
Acyclic Dependencies Principle (ADP) [23], dependen-
cies between packages must not form cycles. In such
a context, optimizing modularization requires reducing
the sum of inter-package cyclic-dependencies (IPCD =P|MP |

i=1 |piOut.Cyc.D
|). We define the measure ADQ to mea-

sure the Acyclic Dependencies Quality of a modularization
M as follows: ADQ(M) = 1� IPCD

ICD

Inter-Packages Cyclic-Connections: as for cyclic de-
pendencies between packages, reducing cyclic connections
between packages is required.
For example, in Modularization1 in Fig. 1, there are 3
cyclic dependencies [(c3, c6), (c7, c1), (c7, c2)] and 2 cyclic
connections [(p1, p2), (p2, p1)]; moving c7 to p3 will reduce
the number of cyclic-dependencies: in modularization2

there are only 2 cyclic dependencies [(c6, c9), (c7, c6)], but
it remains 2 cyclic connections [(p2, p3), (p3, p2)]. We thus
deduce that reducing inter-package cyclic dependencies does
not necessarily reduce inter-package direct cyclic-connections
(IPCC =

P|MP |
i=1 |piOut.Cyc.Con

|).
We define the measure ACQ to evaluate the Acyclic Con-
nections Quality of a modularization M as follows:

ACQ(M) = 1� IPCC

ICD

B. Measuring Package Quality

In addition to measures presented in Section III-A, we
define a set of measures that help us determine and quantify
the quality of a single package within a given modularization.
To normalize the value of those measures we use the number
of dependencies related to the considered package (|pD|)
with |pD| > 0.

Package Cohesion: we relate package cohesion to the
direct dependencies between its classes. In such a context,
we consider that the cohesion of a package p is proportional
to the number of internal dependencies within p (|pInt.D|).
This is done according to the Common Closure Principle
(CCP) [23]. We define the measure of package cohesion
quality similarly to that in [1] as follows:

CohesionQ(p) = |pInt.D|
|pD|

Package Coupling: we relate package coupling to
its efferent and afferent coupling (Ce,Ca) as defined by
Martin in [24]. Package Ce is the number of packages that
this package depends upon (|pPro.P |). Package Ca is the
number of packages that depend upon this package (|pCli.P |).
According to the common reuse principle, we define the
measure of package coupling quality using the number of
package providers and clients as follows:

CouplingQ(p) = 1� |pP ro.P[pCli.P |
|pD|

Package Cyclic-Dependencies: for automatically detect-
ing packages that suffer from direct-cyclic dependencies
we define a simple measure that evaluates the quality of
package cyclic dependencies (CyclicDQ) using the number
of package cyclic dependencies:

CyclicDQ(p) = 1� |pCyc.D|
|pD|

Similarly we define another measure that evaluates package
cyclic connections quality (CyclicDQ) using the number of
package cyclic connections:

CyclicCQ(p) = 1� |pCyc.Con|
|pD|

105105

the MoJo7 metric. The ideal CRP structure is the ideal
decomposition from the point of view of the Common
Reuse Principle [14]. In order to obtain this decom-
position, we applied our MMST algorithm on a set of
similarities that were computed using only the indirect
coupling. The MoJo metric counts the minimum num-
ber of basic operations (moves and joins) that must be
performed to transform one decomposition to another.
In essence, this metric shows how similar two decom-
positions are. It is clear, from the above mentioned de-
scription, that the lower the value of the MoJo metric,
the more similar the two decompositions. Similarity to
the original package structure means that subsystems
contain only semantically related classes. We base this
affirmation on the assumption that the original pack-
age structure was designed to reflect groups of seman-
tically related classes. Similarity to the ideal CRP
structure means that all the semantically related classes
are in a single subsystem because they are consistently
used together. In addition to these measurements, we
also rely on manual inspection of the decompositions
to prove that the architecture-aware adaptive clustering
produces more accurate decompositions than its non-
adaptive counterpart.

• Optimality. Most of the other clustering approaches
are evaluated using some sort of optimality metric
which shows that the resulting decompositions exhibit
desirable attributes of the subsystem: high internal co-
hesion and low external coupling. In our case, op-
timality is just a secondary criterion. We wanted to
prove that the superior accuracy of our approach is not
achieved at the expense of optimality. To evaluate our
approach based on this criterion, we have defined two
metrics: average cohesion of the subsystems and av-
erage coupling between the subsystems of a given de-
composition. The formulas to compute these metrics
are given below:

avgCohesion(D) =

∑
Si∈D
|Si|>1

noInternalEdges(Si)
|Si|2−|Si|

2

|D|∗

avgCoupling(D) =

∑
Si,Sj∈D

i<j

noExternalEdges(Si,Sj)
|Si|∗|Sj |

|D|2−|D|
2

where D is a decomposition, |D| is the number
of subsystems in decomposition D, Si is the ith

subsystem in D, |Si| is the number of classes in

7For a description of the MoJo metric, see [24].

subsystem Si, noInternalEdges(Si) is the number
of undirected edges between the classes of Si and
noExternalEdges(Si, Sj) is the number of undi-
rected edges between classes from Si and classes from
Sj . Note that when computing the average cohesion,
we do not consider single-class clusters as the inter-
nal cohesion of such clusters is undefined. |D|∗ is the
number of subsystems that are not single-class subsys-
tems in decomposition D. Also, avgCoupling(D) is
not defined for decompositions that contain a single
cluster.

Both the Accuracy and Optimality related measure-
ments were done for three different values of the closeness
factor given as a parameter to the MMST clustering algo-
rithm.

We have applied the above mentioned evaluation proce-
dure on two case studies: the Java AWT library and the SSH-
Tools project. The following subsection presents the results
obtained for the former.

3.1 The Java AWT Library

The Java AWT Library is a collection of classes for cre-
ating lightweight user interfaces and for painting graphics
and images. It is part of the standard Java platform. It is
structured into 14 relatively large packages.

Table 2 presents time and size measurements for the Java
AWT library.

From this table, we can clearly see that the only time and
memory consuming phase is the fact extraction phase. Still,
the size of the source model (38 MBytes) and the execution
time (under 5 minutes) are reasonable for a project so large
(more than 140,000 lines of code).

Next, table 3 presents the accuracy related measurements
for the Java AWT library. The accuracy and optimality ta-
ble headings contain the following abbreviations: Pack -
the original package structure, CRP - the ideal CRP struc-
ture, NA - the decomposition produced by the non-adaptive
clustering, and A - the decomposition produced by the
architecture-aware adaptive clustering.

The results clearly show that the architecture-aware
adaptive clustering produces more accurate decomposi-
tions than its non-adaptive counterpart. In the case of
architecture-aware adaptive clustering, the values of the
MoJo metric, although lower than in the case of non-
adaptive clustering, are rather high for the comparison with
the original package structure. This is due to the differ-
ence in average cluster size. Our MMST tends to create
small clusters, while the original package structure contains
a small number of large clusters. The problem will be dis-
cussed in more detail later on in this section.

The manual inspection of the clusterings revealed some
very interesting results. We have compared only the cluster-

Proceedings of the Eighth European Conference on Software Maintenance and Reengineering (CSMR’04)
1534-5351/04 $ 20.00 © 2004 IEEE

way, that the newly created individuals are likely to have an
improved fitness.

Furthermore the operators are designed to be non-destructive
and to preserve a complete subsystem candidate as far as
possible. The operators take care to produce only consistent
and complete decompositions, so we do not waste computa-
tion time on infeasible solutions.

The crossover operator forms two children from two par-
ents. After choosing the parents, the operator selects a se-
quence of subsystem candidates in both parents (step 0)
and mutually integrates them as new subsystem candidates
in the other parent (step 1) and vice versa, thus forming
two new children consisting of both old and new subsystem
candidates. Old subsystem candidates which now contain
duplicated classes are deleted (step 2), their non-duplicated
classes are collected (step 3) and distributed over the re-
maining subsystem candidates (step 4). In this step we con-
sider the number of dependencies between the classes that
are to be distributed to new subsystem candidates. We al-
locate them to those subsystem candidates which have the
strongest connections to the classes. The process of the
crossover operator is depicted in Figure 3, where we show
how one of the two possible children is created.

The split&join mutation either divides a subsystem can-
didate into two smaller subsystem candidates or joins two
subsystem candidates by unifying their classes. The oper-
ator splits a subsystem candidate in such a way, that the
separation in two subsystem candidates occurs at a loosely
associated point in the dependency graph. Similarly, the
operator connects two subsystem candidates with strong as-
sociation weight.

Elimination mutation deletes a subsystem candidate and
distributes its classes to other subsystem candidates, based
on association weights. Elimination mutation is part of our
crossover operator discussed above.

Adoption mutation tries to find a new subsystem candi-
date for an orphan, i.e. a subsystem candidate containing
only a single class. Thus our approach naturally implements
an orphan adoption technique [18]. Orphan adoption avoids
useless subsystems candidates containing only a single class.
Our operator simply moves the orphan to the subsystem
candidate that has the highest connectivity to the orphan.

2.2.3 Initial population
The building block theory tells us, that the GA constructs

solutions by combining building blocks. But where do these
building blocks come from? As a general purpose search the
GA is claimed to find building blocks over time [8]. But
since we design a specialized GA for software decomposi-
tion, we can use domain knowledge to shortcut the search
for building blocks and speed up the convergence. Thus
the suboptimal results of problem specific algorithms can
be used to create an initial population that might help the
GA to find proper building blocks fast [10].

For good starting populations, two competing properties
are desirable. On the one hand the individuals should have
a high fitness, so good building blocks are already present in
the population. On the other hand, the GA needs diversity
in the population to be able to explore the search space.

We propose to balance the competing goals by taking ran-
domly selected connected components of the dependency
graph for half of our population and highly fit ones for the
rest.

The strategy for finding highly fit individuals may vary
depending on the availability of existing decompositions:

• If a suitable decomposition is given (e.g. by the pack-
age structure of a Java system), we use it as the highly
fit initial population.

• If no decomposition is available, we attempt to build
several suboptimal decompositions. Our approach is
based on a modification of Kruskal’s algorithm for the
construction of minimum spanning trees (MST) on the
dependency graph [20]. We modify this greedy algo-
rithm by defining a threshold for the unification of
two subtrees of the MST. This results in a solution
that consists of a forest representing initial building
blocks of the decomposition. Using different thresh-
olds, which are chosen randomly from a certain inter-
val, we can create a set of individuals representing the
highly fit half of our initial population.

2.3 Fitness function
Our fitness function fit(s) is a multi modal fitness func-

tion. Each of the individual functions calculates a value
between 0 and 1, where 1 is the optimal value. Such a multi
modal fitness function can be easily mapped into a linear
fitness function, by just adding up the weighted individual
values.

fit(s)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cohesion(s) :

#s∑

i=1

#c(si)∑

j=1

#k(cj)

#c(si)2

#s

coupling(s) : 1 −
#s∑
i=1

#rO(si)
#r

complexity(s) :
#s∑
i=1

(
com(si) ∗ #c(si)

#c

)

cycles(s) : 1 −
n∑

i=1
size(scc[i])k

#sk

bottlenecks(s) : 1 −
#s∑
i=1

min(inDeg(si),outDeg(si))
#s∗maxDeg

Currently we are using standard coupling and cohesion
metrics as parts of our fitness function [2]. To measure
the cohesion for a system s, we sum up the cohesion val-
ues for the individual subsystems in s. The cohesion for a
subsystem si is determined by counting the number of dif-
ferent classes inside si known by some class cj ∈ si (#k(cj))
and divide this by the square of the number of classes in si

(#c(si)). This value is then normalized by dividing it by
the number of subsystems (#s).

The coupling function is the sum of the coupling values for
each subsystem in s. The coupling value for one subsystem
si is calculated in the following way: at first, we count the
number of dependency edges between classes inside si and
classes belonging to other subsystems sj (#rO(si)). This
number is divided by the overall number of dependency
edges (#r) in s.

The complexity function adds up the complexity values
com(si) of all subsystems si in s, normalized by the propor-

tion of classes #c(si)
#c of si in s. The complexity value com(si)

of a subsystem si depends on four threshold parameters:
com(si) is considered to be optimal (i.e = 1) if the com-
plexity of a subsystem is inside the interval [minO, maxO].
Otherwise, the value is linearly interpolated between 0 and 1
inside the intervals [minU, minO] and [maxO, maxU]. This

1047

(6)

(7)

(8)

(9)

65Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 84 / 512

 n = |E|, n > 1

The cohesion value is between 0, i.e., there are no links
between classes, and 1, maximum links with maximum
weight. The weights of links between classes of a subject
are ordered in Table I based on the degree of association
according to the object-oriented expert designers.

TABLE I. WEIGHTS OF LINKS BETWEEN CLASSES.

Links Type Weights (Wij)

Whole Part Structure 0.9

Inheritance 0.8

Instance Connection 0.7

Message Connection 0.6

Conceptual Link 0.5

J. Approach by Albattah and Melton
The approach by Albattah and Melton [23] is motivated

by the package cohesion principles [21]. They proposed two
different cohesion metrics to measure two different cohesion
concepts or types based on Martin’s package cohesion
principles in [21]. The first cohesion type, Common Reuse
(CR), includes the factors that help in assessing CR
cohesion. Similarly, the second cohesion type, Common
Closure (CC), includes the factors that help in assessing CC
cohesion. After each type of cohesion is measured by itself,
the two values of CR and CC may be combined to one
unified value of package cohesion, while still recognising
the two types.

Method

The CR metric measures cohesion based only on the
common reuse factors of the package. The elements of a
package have different degrees of reachability. Reachability
of a class in a package is the number of classes in the same
package that can be reached directly or indirectly. The CR
metric is defined as follows:

“Let c ∈ C, and suppose there is an incoming relation to
c from a class in a different package. Then c is called an in-
interface class. The cardinality of the intersection of the hub
sets of all the in-interface classes in C divided by the
number of classes in C is the CR of P ”.

CR= |∩ In-interface class hub sets| / |C|

where

Hubness(c) = {d ∈ C: if there is a path c àd}

 C: set of classes in package P

 c and d: classes in C

The CC metric considers the package dependencies on
other packages as well as the internal dependencies between
classes of the package. The classes of the package should
depend on the same set of packages and, thus, they will have
the same reasons for a change. The CC metric is defined as
follows:

“The cardinality of the intersection of the reachable sets
divided by the cardinality of the union of the sets represents
the CC of P ”.

CC= (|∩ Reachable Package sets | / |∪ Reachable Package sets |)

The combined cohesion CH is defined as follows:

CH =
2 −D
2

D= (1−CR)2 +(1−CC)2

IV. THE GENERAL EXAMPLE
While we try to understand each of the previously

presented approaches, we rely on our best understanding for
each. One method of empirical investigation is to apply all
the approaches on the same situation and compare the
results. The approaches have been applied to measure the
cohesion of P1 in Figure 1. The concern is to measure the
cohesion of P1 only for the purpose of comparison between
the approaches. If all the approaches rely on the same idea,
their assessments of the cohesion of P1 will be alike.
Otherwise, they probably rely on different concepts of
package cohesion.

In Figure 1, there are six packages and a number of
classes in each package. The arrows represent the
dependencies between classes within the same package, i.e.,
in P1, or between classes in different packages. The
direction of the dependency is very important because it
shows the depended-upon class. For example, C6 depends
on C2 but not the opposite. In the figure, P1 has four classes
that have incoming and outgoing dependencies. Using the
presented approaches, we try to measure how cohesive are
the classes of P1. It is worth mentioning that all the
presented approaches consider the dependencies between
classes to measure cohesion, but in different ways. Some
approaches, such as Albattah and Melton [23], consider the
direction of the dependencies. However, some other
approaches, such as Martin [21], do not consider the
direction of the dependencies. For this difference and other
differences between the presented approaches, it is expected
to find distinct cohesion assessment values for P1.

Again, all calculations are made based on our own
understanding of each approach.

(10)

(11)

(12)

(13)

66Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 85 / 512

Figure 1. The general example.

Table II presents the cohesion values of package P1 for
the different approaches.

TABLE II. COHESION VALUES OF THE PRESENTED APPROACHES.

Although all the presented approaches have the same
range of cohesion values except Martin’s approach [21],
they end up with different cohesion values for the same
package, i.e., P1 in Figure 1. For example, the approaches
by Bauer and Trifu [28] and Tagoug [30] assess the
cohesion of P1 as relatively high. In contrast, the approach
by Albattah and Melton [23] assesses the cohesion of P1 as
poor.

This simple comparison raises a question about the
theory behind these different approaches. The distinct
evaluation results for the same package means that the
presented approaches rely on different views of cohesion.
These views can be noticed by investigating the presented
approaches. We believe cohesion has different types or parts

and some approaches focus only on one part. This can lead
to misleading cohesion assessments. Cohesion has three
different concepts that led to different approaches. The first
concept considers cohesion as an internal property of a
package that can be measured from inside the package only,
such as the approach by Martin [21]. The second concept
considers cohesion as a property that can be measured from
outside the package, such as the approach by Ponisio and
Nierstrasz [22]. The third concept considers cohesion to be
measured from both inside and outside the package, such as
the approach by Albattah and Melton [23].

These three concepts represent three scopes where
cohesion has been measured in the presented approaches.
The scope of package cohesion can be used to classify the
presented approaches. Table III presents this classification
based on the scope of cohesion used in each approach, i.e.,
internal, external, or both.

TABLE III. CLASSIFICATION OF THE PRESENTED APPROACHES.

Approach Method
Scope of Cohesion

Internal External

Misic [19] External Objective ✓

Ponisio and
Nierstrasz [22]

Common Use of
the package ✓

Martin [21] Relational
Cohesion ✓

Zhou et al. [24] Similar Context
Cohesiveness ✓ ✓

Abdeen et al.
[25]

Dependency
Analysis ✓

Bauer and Trifu
[28] Average Cohesion ✓

Seng et al. [29] Dependency
Analysis ✓

Tagoug [30] Interactions inside
the package ✓

Albattah and
Melton [23]

Common Reuse &
Common Closure ✓ ✓

The classification in Table III can reveal, somehow, the
reason behind the diversity of package cohesion approaches
that led to distinct results in Table II. Package cohesion has
been viewed in different ways. It is worth saying that all the
views may be right but they are different. This leads to the
idea that there is more than one type of cohesion. The
previous research works treated cohesion as one type or one
concept, except for the research carried out by Albattah and
Melton [23], and this was not accurate in our opinion.

We support the idea of Albattah and Melton [23] that is
presented in this paper about cohesion. They defined
cohesion as an internal property of the package and it has
two different types. The first type can be measured from
outside the package and it represents how well the classes in

Approach
Cohesion

Metric Value Min Max

Misic [19] Ψ(S) 0.33 0 1

Ponisio and
Nierstrasz [22]

CU 0.125 0 1

Martin [21] H 1.25 > 0 N(N-1)*

Zhou et al. [24] SCC(p) 0.36 0 1

Abdeen et al. [25] CohesionQ(p) 0.29 0 1

Bauer and Trifu
[28]

avgCohesion(D) 0.67 0 1

Seng et al. [29] cohesion(s) 0.25 0 1

Tagoug [30] C(E) 0.67 ** 0 1

Albattah and
Melton [23]

CH 0 0 1

* N: number of classes in the package
**Assuming that all the connections are instance connections with 0.7
weights.

67Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 86 / 512

the package cooperate to provide a service to classes outside
the package. The second type measures how well the classes
in the package are closed in using classes in other packages.
This type represents the closure of the package’s classes
against the same kind of changes, which is the same set of
depended-upon packages.

We believe cohesion is affected by internal and external
factors and it should be treated based on this concept for
accurate assessments. On the other hand, the generalised
term of “cohesion” should not be used if the approach only
relies on one consideration, i.e., internal or external. Terms
such as “Common Closure Cohesion” and “Common Reuse
Cohesion” can be used to describe the approach that relies
on one consideration, i.e., internal and external,
respectively. It is worth saying that Martin [21] has
established a theory behind the internal and external factors
by presenting the three package cohesion principles already
discussed in Section II. Moreover, Martin’s cohesion
principles have been used to distinguish between package
cohesion types in our previous work, Albattah and Melton
[23].

V. CONCLUSION AND FUTURE WORK
In this paper, a preliminary research survey on package

cohesion approaches is presented. The survey shows that
there is a rich variety of package cohesion understanding,
which has led to the production of different package
cohesion metrics in which each of them is based on a
specific view of cohesion. We believe that there are
significant differences in these metrics. Thus, the metrics of
these approaches measure different things. The example
given in the paper shows different values of cohesion and
motivates us to classify the presented approaches. A
preliminary classification reveals the reason behind the
diversity of package cohesion approaches that led to distinct
results in the given example. Obviously, the scope of
cohesion is the foundation for this classification. We
conclude that cohesion is more than one part and the term of
“cohesion” should not be used unless the internal and
external considerations are taken into account. Otherwise,
terms such as “Common Closure Cohesion” and “Common
Reuse Cohesion” can be used to describe the approach that
relies on one consideration, i.e., internal and external,
respectively.

In future work, we plan to examine the role of package
cohesion in predicting software maintainability and software
reusability.

REFERENCES

[1] S. R. Chidamber and C. F. Kemerer, "A metrics suite for

object oriented design." IEEE Transactions on Software
Engineering, 20.6 (1994): 476-493.

[2] V. Basili, "Evolving and packaging reading technologies."
Journal of Systems and Software 38.1 (1997): 3-12.

[3] L. Briand, J. Daly, and Jürgen Wüst, "A unified framework
for cohesion measurement in object-oriented systems."
Empirical Software Engineering 3.1 (1998): 65-117.

[4] L. Briand, S. Morasca, and V. Basili, "Measuring and
assessing maintainability at the end of high level design."
Conference on Software Maintenance Proceedings, 1993.
CSM-93 (pp. 88-87), IEEE, 1993.

[5] B. Henderson-Sellers, L. Constantine, and I. Graham,
"Coupling and cohesion (towards a valid metrics suite for
object-oriented analysis and design)." Object Oriented
Systems 3.3 (1996): 143-158.

[6] S. Orlov and A. Vishnyakov, "Metric Suite Selection Methods
for Software Development of Logistics and Transport
Systems." Proceedings of the 11th International Conference
"Reliability and Statistics in Transportation and
Communication" (RelStat'11), 19-22 October 2011, Riga,
Lativia, p.301-310.

[7] J. Eder, G. Kappel, and M. Schrefl, "Coupling and cohesion
in object-oriented systems." Technical Reprot, University of
Klagenfurt, Austria (1994).

[8] Y. Lee, B. Liang, S. Wu, and F. Wang, "Measuring the
coupling and cohesion of an object-oriented program based on
information flow." In Proc. International Conference on
Software Quality, Maribor, Slovenia, 1995, (pp. 81-90).

[9] G. Gui and P. Scott, "Coupling and cohesion measures for
evaluation of component reusability." Proceedings of the
2006 International workshop on Mining software repositories,
2006, (pp. 18-21). ACM, 2006.

[10] M. Hitz, and B. Montazeri, "Measuring coupling and
cohesion in object-oriented systems." Proceedings of the
International Symposium on Applied Corporate Computing.
Vol. 50. 1995.

[11] W. Li and S. Henry, "Maintenance metrics for the object
oriented paradigm." Proceedings of First International
Software Metrics Symposium, 1993, (pp. 52-60), IEEE, 1993.

[12] S. Chidamber and C. Kemerer, “Towards a metrics suite for
object oriented design.” Vol. 26. No. 11 , 1991, (pp. 197-211).
ACM.

[13] J. Bieman and Byung-Kyoo Kang, "Cohesion and reuse in an
object-oriented system." ACM SIGSOFT Software
Engineering Notes. Vol. 20. No. SI. ACM, 1995.

[14] J. Bieman and Linda M. Ott, "Measuring functional
cohesion." IEEE Transactions on Software Engineering, Vol.
20, No. 8, (1994): (pp 644-657).

[15] L. Etzkorn, S. Gholston, J. Fortune, C. Stein, D. Utley, P.
Farrington, and G. Cox, "A comparison of cohesion metrics
for object-oriented systems." Information and Software
Technology Vol. 46, No. 10, (2004): (pp 677-687).

[16] H. Chae, Y. Kwon, and Doo-Hwan Bae, "A cohesion measure
for object-oriented classes." Software-Practice and
Experience, Vol. 30, No.12, (2000): (pp 1405-1432).

[17] L. Ott, , J. Bieman, B. Kang, and B. Mehra, "Developing
measures of class cohesion for object-oriented software." In
Proc. Annual Oregon Workshop on Software Merics
(AOWSM'95), vol. 11. 1995.

[18] J. Bansiya, L. Etzkorn, C. Davis, and W. Li, "A class
cohesion metric for object-oriented designs." Journal of
Object-Oriented Programming, Vol. 11, No. 8, (1999): (pp
47-52).

[19] V. Misic, "Cohesion is structural, coherence is functional:
Different views, different measures." Proceedings of the
Seventh International Software Metrics Symposium, 2001,
(pp. 135-144), METRICS. IEEE, 2001.

[20] B. Xu, Z. Chen, and J. Zhao, "Measuring cohesion of
packages in Ada95." ACM SIGAda Ada Letters, Vol. 24,
No.1, (2004): (pp 62-67).

68Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 87 / 512

[21] R. C. Martin, Agile software development: principles,
patterns, and practices. Prentice Hall PTR, 2003.

[22] L. Ponisio and O. Nierstrasz, “Using contextual information
to assess package cohesion”, Technical Report No. IAM-06-
002, 2006, Institute of Applied Mathematics and Computer
Sciences, University of Berne, 2006.

[23] W. Albattah and A. Melton, “Package cohesion
classification”, in: Software Engineering and Service Science
(ICSESS), 2014 5th IEEE International Conference on, IEEE,
2014, (pp. 1–8).

[24] T. Zhou, B. Xu, L. Shi, Y. Zhou, and L. Chen, "Measuring
package cohesion based on context." IEEE International
Workshop in Semantic Computing and Systems, 2008.
WSCS'08, (pp. 127-132), IEEE, 2008.

[25] H. Abdeen, S. Ducasse, H. Sahraoui, and I. Alloui,
"Automatic package coupling and cycle minimization." 16th
Working Conference on Reverse Engineering, 2009, (pp. 103-
112), WCRE'09. IEEE, 2009.

[26] T. Biggerstaff and A. Perlis, "Software reusability: vol. 1,
concepts and models." (1989).

[27] L. Briand, S. Morasca, and V. Basili, "Property-based
software engineering measurement." IEEE Transactions on
Software Engineering, Vol.22, No.1, (1996): (pp 68-86).

[28] M. Bauer and M. Trifu, "Architecture-aware adaptive
clustering of OO systems." Eighth European Conference on
Software Maintenance and Reengineering Proceedings 2004,
CSMR 2004, (pp. 3-14), IEEE, 2004.

[29] O. Seng, M. Bauer, M. Biehl, and G. Pache, "Search-based
improvement of subsystem decompositions." In Proceedings
of the 7th annual conference on Genetic and evolutionary
computation, 2005, (pp. 1045-1051), ACM, 2005.

[30] N. Tagoug, "Object-oriented system decomposition quality.",
7th IEEE International Symposium on High Assurance
Systems Engineering Proceedings, 2002, (pp. 230-235),
IEEE, 2002.

69Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 88 / 512

Towards a Technical Debt Management Framework
based on Cost-Benefit Analysis

Muhammad Firdaus Harun, Horst Lichter
RWTH Aachen University, Research Group Software Construction

Aachen, Germany
e-mail: {firdaus.harun, horst.lichter}@swc.rwth-aachen.de

Abstract—Technical debt (TD) is a metaphor of bad software
design or immature artifacts of a software system. The metaphor
has been quite intensively researched especially on how to
identify the TD symptoms, (e.g., system deficiencies or archi-
tecture violations) explicitly. Although the TD identification is
quite important in the TD management process, a systematic
management of TD and how to reduce it should also be considered
important in each release of the development project. Otherwise,
the software becomes more and more unmaintainable. In this
paper, we introduce a framework to manage and reduce the TD
of software systems. As it is based on quantification and a cost-
benefit analysis, it is called Cost-Benefit based Technical Debt
Management (CoBeTDM). CoBeTDM defines explicit phases
focusing on the most important aspects of TD management:
identification, monitoring, and prioritization. Overall, CoBeTDM
should support managers to take the right decisions regarding
the software evolution and the reduction of the collected TD at
the right time.

Keywords–technical debt management; code smells; architecture
smells; refactoring; cost-benefit analysis.

I. INTRODUCTION AND MOTIVATION

It is a must to implement a payback strategy (when and
how to determine to pay it back) to reduce technical debt
for every software organization. It has been reported that TD
exists in most of the software systems [1]. If we do not
cautiously manage the debt or have no strategy to pay it
back, the system may finally go to the “bankruptcy” phase,
i.e., the software is unmaintainable and the maintenance cost
will increase continuously. In general, refactoring is one of the
strategies to pay it back. Refactoring has typically been used
as a mean to improve detailed design and code quality. In this
paper, refactoring will be referred to as an effort to improve
existing software either on code or architecture-level without
changing the behaviour of the system.

Commonly, project managers are always juggling on the
decision making either to add new features or to make changes,
(i.e., maintenance or refactoring) in a release cycle. It is
always complicated to decide, which refactoring task should
be done first or could be postponed. Therefore, quantification
of refactorings should be implemented to identify, which
effort can achieves maximum benefit and minimize risk. A
simple cost-benefit analysis is a simple approach that could
be applied to quantify it as introduced [2]. Borrowing from
economic domain, a cost is a principal that indicate effort
estimation to resolve a TD item and a benefit is an interest
that indicate less probability impact to the software system.
However, the quantification cannot answer the question “How
the refactoring effort could be paid off to the identified TD,
i.e., Return On Investment (ROI)?”. ROI is a predictor that
shows a particular refactoring may improve the design and save

the maintenance cost in the future. Besides the unanswered
question of ROI, it lacks of risk factors consideration and
misses the payback strategy over releases. Therefore, to reduce
technical debt and to sustain software quality in software
development continuously, a wise decision making should be
made based on a cost-benefit analysis.

In this paper, we want to introduce an approach of technical
debt management based on cost-benefit analysis. The remain-
der of this paper is organized as follows: Section II presents the
research goals. Section III describes our approach to Technical
Debt Management and its phases. Section IV discusses relevant
related work and Section V concludes the paper.

II. GOALS

In order to support software development organizations
to systematically manage the TD of their software systems,
we propose an approach called Cost-Benefit based Technical
Debt Management (CoBeTDM). Its overall goal is to provide
a framework to manage and reduces TD based on cost-benefit
analysis for each release. To achieve this main goal, the
following sub-goals should be fulfilled:

1) Provide a debt item model (see Table I) that com-
prises all information of code and architecture smells
and the effort needed to resolve them.

2) Quantify cost and benefit for each possible refactor-
ing of a particular debt item. This enables to select
the “best” refactoring based on the expected ROI.

3) Provide a structured process on how to strategically
pay back the TD based on quantified cost-benefit of
refactoring effort either tactically or proactively.

4) Develop a toolbox to support TD management and
to monitor the identified debt items.

CoBeTDM defines four phases as shown in Figure 1 (see
Section III for details):

1) Identification & Assessment: Here, the focus is to
identify and measure the worst smells as well as to
model them by means of debt items.

2) Monitoring: In order to know the development of TD
and its trend, it has to be monitored continuously.

3) Quantification & Prioritization: Based on a cost-
benefit analysis of each possible refactoring associ-
ated with a debt item, the quantified refactorings are
prioritized based on their ROI.

4) Repayment: Selected refactorings will be inserted
into backlog for current or later releases in order to
reduce the TD.

70Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 89 / 512

III. COST-BENEFIT BASED TECHNICAL DEBT
MANAGEMENT (COBETDM)

Relevant and accurate data is needed to quantify TD related
cost and benefit for a software system. It is to support managers
to take the right decisions. To provide this data, a collection
of metrics that characterize code and architecture smells could
be applied.

Figure 1. CoBeTDM Process

Modeling Debt Items. We propose a data structure (called
debt item) to store all relevant and accurate information of
all detected code and architecture smells. It will be stored in
Release History Database (RHDB) - a database that stores data
model that link between bug tracking system and versioning
system. The data structure is depicted in Table I.

TABLE I. DEBT ITEM DATA STRUCTURE

Field Description
Id Unique identifier of debt item
Issue\Case Task IDs or Case IDs, which represent a critical artifact

(hotspot)
Dependency Case IDs that depends on this debt item
Frequent Change How many modifications have been made for one release?
Class Class name
Code Smells List of detected smells and its metrics values
Architecture-level Architecture elements such as class, package, module or

layer name
Architecture Smells List of detected architecture smells and its metric values
Worst Smells Sum of frequent change + code smells value + architecture

smells value
Principal Effort estimation to resolve this debt item
Interest Extra effort estimation to resolve this debt item
Impact Other artifacts that are impacted
When-to-Release Release number
Responsible A person or unit responsible for this debt item

A. TD Identification and Assessment
The identification of deficiencies of a software system is a

must in the early phase of TD management. In CoBeTDM, the
detection of bad smells is done in the following two steps: 1)
Hotspot detection: Here, the goal is to find frequent changes,
(i.e., unstable) software artifacts, which might be critical for
the evolution of the system; 2) Code and architecture bad
smells detection: For all identified hotspots, the worst code
and architecture smells will be detected.

Hotspots detection. Hotspot detection is an approach to
find the most critical artifacts of a software system. In this

paper, the critical artifact means the module becomes unstable
for certain releases, (i.e., frequent change over releases) and
indicates strong increase in size and complexity (using metrics
such as Lines of Code and McCabe Cyclomatic Complexity).
It is important to detect the hotspot due to the symptom cost
more than other code deficiencies. It is because we consistently
have to pay back to tame it for every release. The hotspots
detection can be supported by a dedicated mining repository
approach where data from bug tracking and versioning tools
are extracted, filtered and classified by tracking any frequent
changes of contained artifacts. Currently, we manually map
their IDs between Bugzilla and the Git repository. Then, we
examine these artifacts by analyzing its size and complexity
trend over releases. As a result, the artifacts that have many
changes, (i.e., high maintenance activities) within the release
could be detected as potential hotspots. We quantify criticality
of an artifact by the number of changes that have been made,
(i.e., Git log entries) performed for fixing bugs, (i.e., different
severity levels of bugs) that were reported for specific releases.
E.g., up to release 1, CriticalPackage of Application X
got 200 modification from 130 bugs rated critical. Besides
that, the identified artifact has a significant increase in size
and complexity. From 4,000 LOC in release 0.9. increases to
10,000 LOC in release 1.0. Furthermore, the complexity of the
package increases from 30 in release 0.9 to 50 in release 1.0.
This symptom can be called as a critical artifact or hotspots.

Code Smells Detection. To detect code smells of the
identified hotspots, we use a tool called iPlasma introduced
by [3]. The tool shows a list of smells and its metric values.
The highest metric values for each smell will be selected
and prioritized. This data is recorded into a debt item to be
used in the next phase. For instance, the CriticalPackage
as detected as critical artifact previously will be assessed by
iPlasma. The tool will detect any possible bad code smells.
E.g., CriticalPackage contains GodClass, which has
been detected as God class. The class has for example, 453
methods, defines 114 attributes and is more than 3500 lines
long. It may also contain other smells, e.g., code duplication,
data class etc., in this particular case, we focus on God class
due to its refactor effort is quite high [4] compared to other
smells. The tool will show relevant metrics for God class such
as Access to Foreign Data (ATFD), Weighted Method Count
(WMC) and Tight Class Cohesion (TCC). Each metrics value
will be shown, e.g., as WMC (107), TCC (0.0) and ATFD (28).
The metric values then will be recorded into Code Smells field
in a debt item as shown in Table II.

Architecture Smells Detection. Next, the identified smells
will be analyzed to detect architecture smells. The metrics
introduced by [5] can be applied at class-, package- or
subsystem-level. These smells can be detected by using exist-
ing tools such as Sonargraph-Architect [6]. The metric values
produced by the architecture analysis tool will be stored as
well into their respective debt items. In previous example,
CriticalPackage was detected as critical artifact and con-
tains GodClass. The class might contain cyclic dependency
with other classes both within or outside the package. To detect
the smells, the aforementioned tool can be used. For example,
Sonargraph-Architect can detect it between classes or packages
visually. It also displays the information regarding number of
cycles and artifacts name. Then, cyclic value will be recorded
into Architecture Smells field in the debt item.

71Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 90 / 512

TABLE II. DEBT ITEM EXAMPLE

Field Description
Id DI001
Issue\Case #1234, #1235, #1236: Critical bugs of Application X
Dependency #4321 #4322: Other critical bugs of Application X
Frequent Change 200 modification
Class GodClass
Code Smells God Class: WMC(107), TCC(0.0), ATDF(28)
Architecture-level CriticalPackage
Architecture Smells Cycle Dependency: Cyclic(10)
Worst Smells 200 + (107+0.0+28) + 10 = 345
Principal 16 hours (code smells) + 4 hours (cyclic dependency) =

20 hours: 1) cost to split a class = 8 hours. At least 2
classes will be partitioned for refactoring; It means 8×2; 2)
cost to cut an edge between two files = 4 hours. At least
2 files will be cut for refactoring. Both estimation based on
[7]

Interest 2 hours, i.e., estimation extra work
Impact 15 classes and 2 packages
When-to-Release Current: 1; Next: 1.1
Responsible Mr. X

Assessing Bad Smells. After collecting the data from
both code and architecture smells detection, we can analyze
the obtained metric values to detect, which artifacts contain
worst smells (i.e., highest in identified smells). For this means,
we propose to apply the following formula Worst Smells
of Detected Critical Artifact = Most Frequent Changes +
Highest Metrics of particular Code Smells + Highest Metrics
of particular Architecture Smells. See Worst Smells field in
Table II. The worst smells value, then, will be compared with
other debt items. The high value will be prioritized first instead
of the low value. Besides that, the value could be used for TD
monitoring as we explain in the next section.

B. TD Monitoring
To answer important questions such as: 1) How much TD

do we have right now or in the current release?; 2) Is the TD
at an acceptable level or not? 3) Does the TD continuously
grows for each release?; 3) What is an acceptable threshold
value of TD of each release? What is a maximum TD (debt
ceiling) or minimum TD (debt baseline) for each release?;
4) How to react when the TD reaches the ceiling?; the TD
has to be monitored continuously. Therefore, the TD data and
its trend has to be visualized appropriately. The first idea is
shown in Figure 2. Currently we are developing ideas and
solutions for a systematic TD monitoring approach. Examples
are: 1) A dedicated dashboard used to visualize TD data based
on the managers’ information needs. For example, the worst
smells for certain release, high or low impact of debt item
etc.; 2) A process to conduct semi-structured interview with
managers or lead developers in order to gain information such
as acceptable and minimum vs. maximum TD; 3) Development
of a risk mitigation strategy framework that could be applied
if TD reaches debt ceiling.

C. TD Quantification and Prioritization
In this phase, the debt items are quantified to perform a

cost-benefit analysis. By cost, we mean the estimated effort and
extra effort, (i.e., principal + interest) of a particular possible
refactoring for a debt item. The cost value is stored together
with the estimation risk, (i.e., judgment by experts) that may
resulted from the refactoring. Then, it should be cataloged and
stored in the database, (e.g., RDBMS) in order to be referred
in the future. Then, the benefit is estimated, i.e., the less
effort of refactoring, which gives positive impact. Currently,
the benefits values are estimated based on the impact analysis

Figure 2. TD Trend over Releases

in particular dependency analysis. In addition, we also add
defect and change likelihood as properties, while calculating
benefits. The less value of both likelihood are potentially has
less frequent of the same symptoms in the future. It means
that the refactoring effort for maintenance and correction will
decline.

Firstly, analyzing the changes that could be affected by
the dependency of artifacts, (e.g., classes or packages) on
particular refactoring candidate - impact analysis. The changes
might alter and create new artifacts for e.g., operations, classes
or packages, which require a cost to do that. Therefore, the
more dependencies the artifacts are, the more cost should be
spent. For e.g., see DI001 in Table III, GodClass depends
on the other five classes and two external packages. Two points
or weight will give to the fifteen classes and five points to
2 packages, (i.e., (2×15) + (5×2) = 40 points) as shown in
Refactoring Impact column in Table III. Secondly, the defect
likelihood could be analyzed by computing on how many
defect fixes affected by the detected smells. The likelihood
could be computed by detecting the smells, (e.g., specifically
the god class) from certain periods, (e.g., from April to July).
Then, count the number of defects that lead to fix in the god
class in this time period and divide by the number of all defects
that were fixed in the same time period. The higher the value
the more likely a defect will be indicated in the god class. For
instance, see column Defect Likelihood for DI001, it has been
detected that the GodClass was god class from particular
period. Assume the likelihood of 0.5, it means every second
fixed defect will lead to changes in this god class. Thirdly,
the change likelihood could be analyzed by computing on
how likely a class is to be modified when a change to the
software is executed. The same computation method will be
used as defect likelihood for this purpose. It means the higher
the value, the more likely that maintainability effort is higher
for the god class [4]. For example, if change likelihood of
0.1 shows that the class was, on overage, modified with every
10th change to the software. By computing the impact analysis,
defect and change likelihood represent as a weight, it will,
then, multiply by raw benefit. The raw benefit is an effort
estimation that can be saved in terms of maintenance work in
the next release. An expert will give this raw estimation. Then,
the total benefit will be calculated. Based on the estimated cost
and benefit values, the ROI value is calculated by (adopted
from [8] where ROI = (Saving Effort and Less Impact of
Proposed Refactoring/Effort of Proposed Refactoring)), i.e.,
ratio of total Benefit to the total Cost. If the ROI value is
greater than or equal to one, the refactoring is cost effective,

72Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 91 / 512

TABLE III. COST-BENEFIT ANALYSIS EXAMPLE

No.
Debt
Item
ID

Refactoring

Cost
(Principal
+
Interest)

Risk (R)
in Hour

Total
Cost
(Cost + R)

Refactor-
ing
Impact
(RI)

Change
Like.
(CL)

Defect
Like.
(DL)

Weight
(RI X
CL X DL)

Raw
Benefit
(RB)
in Hour

Total
Benefit
(Weight
X EB)

ROI
(TB / TC) Rank

1.

DI001
-God Class
-Cyclic
Dependency

-Extract Class
-Cut Dependency 22

-Regression
bugs (2)
-Testing (2)

26 40 0.5 0.1 2 5 10 0.4 1

2.

DI002
-Long Method
Class
-Inheritance too
Deep

-Extract Method
-Delegation 10

-Merge
conflict (3)
-Testing (2)

15 15 0.1 0.3 0.45 5 2.25 0.3 2

3.
DI003
-Duplicate Code
-Cyclic Dependency

-Extract Method
-Cut Dependency 8

-Build
breaks(2)
-Testing

12 10 0.25 0.11 0.28 3 0.84 0.06 3

i.e., the debt is paid off. Finally, the ROI values are prioritized.
Based on the example (see Table III), DI001 seems promising
to be paid first instead of DI002 and DI003. The ROI DI001
value is bigger than the latter, (i.e., the refactoring effort could
reach ROI) and it may give positive impact to the system.

D. TD Repayment
In the last phase, refactorings, which has been prioritized

in the previous phase are added to the current backlog of the
software system. By implementing the refactoring, the gap
between the software as “it is” and the hypothesized “ideal”
state could be closed. Although, there is no general agreement
that refactoring could realize the idea, [9] claimed that by
applying Test-Driven Development and continuous refactoring,
the TD could be reduced systematically by releases. But,
the questions “Which refactoring should be implemented first
or later?” and “Should pay or not to pay?” are still open.
Currently, we are still investigating how to strategically pay
back based on TD metrics as introduced by [10].

IV. RELATED WORKS

Technical debt management. A few researchers have
been focusing on how to manage TD. For example, [11]
proposed a TD management framework, which aids managers
to decide, which items should be implemented either first or
later. A simple cost-benefit analysis is applied and less impact
to the project is put at the top, i.e., prioritization. However,
the approach does not consider risk factors in estimating the
cost. Unlike CoBeTDM, it integrates risk factors [12] in the
analysis due to uncertainty that may always happen. [13]
introduced a tool to manage TD in terms of code violations.
It guides to select the smells that should be refactored first
based on pyramid data - the lowest part needs to be considered
first. In contrast, CoBeTDM considers not only code but also
architecture smells as the latter ones have high negative impact
on the software quality.

Hotspot, code-, architecture-smells detection. We have
adopted existing metrics [3] [5], which are quite useful to
characterize smells on code- and architecture-level. However,
these metrics do not integrate with each other. Our approach
combines both metric sets to determine worst smells and
identify very critical artifact as proposed by [14] for hotspot
detection.

V. CONCLUSION

This paper introduces a TD management framework based
on cost-benefit analysis, called CoBeTDM. It offers a system-
atic way of reducing the technical debt by quantifying cost

and benefit of refactorings. It also considers with relevant
risk factors. Until now, the CoBeTDM process is performed
manually. But, we have started to develop a toolbox to support
CoBeTDM and to monitor the TD trend in order to react early
enough if the TD becomes critical.

REFERENCES
[1] CAST, “Cast Worldwide Application Software Quality Study: Summary

of Key Findings,” 2010.
[2] C. Seaman, Y. Guo, N. Zazworka, F. Shull, C. Izurieta, Y. Cai, and

A. Vetro, “Using technical debt data in decision making: Potential
decision approaches,” in 2012 Third Int. Workshop on Managing TD
(MTD). IEEE, Jun. 2012, pp. 45–48.

[3] M. Lanza and R. Marinescu, OO Metrics in Practice - Using Software
Metrics to Characterize, Evaluate, and Improve the Design of OO
Systems. Springer, 2006, ISBN: 978-3-540-24429-5.

[4] N. Zazworka, C. Seaman, and F. Shull, “Prioritizing design debt invest-
ment opportunities,” in Proceeding of the 2nd working on Managing
technical debt - MTD ’11. New York, New York, USA: ACM Press,
May 2011, p. 39.

[5] M. Lippert and S. Roock, Refactoring in Large Software Projects:
Performing Complex Restructurings Successfully. Wiley, 2006, ISBN:
978-0-470-85892-9.

[6] Hello2morrow, “Sonargraph Architect,” 2013, URL: https://www.
hello2morrow.com/products/sonargraph/architect [accessed: 2015-08-
09].

[7] Sonarqube, “Technical Debt Calculation,” March 09, 2011, URL:
http://docs.sonarqube.org/display/PLUG/Technical+Debt+Calculation
[accessed: 2015-09-08].

[8] R. Leitch and E. Stroulia, “Assessing the maintainability benefits of
design restructuring using dependency analysis,” in Proceedings. 5th
Int. Workshop on Enterprise Networking and Computing in Healthcare
Industry). IEEE Comput. Soc, 2003, pp. 309–322.

[9] J. Kerievsky, Refactoring to Patterns. Pearson Higher Education, 2004,
ISBN: 0321213351.

[10] N. Ramasubbu, C. Kemerer, and C. Woodard, “Managing Technical
Debt: Insights from Recent Empirical Evidence,” IEEE Software,
vol. 32, no. 2, Mar 2015, pp. 22–25.

[11] Y. Guo, R. O. Spı́nola, and C. Seaman, “Exploring the costs of technical
debt management a case study,” Empirical Software Engineering, Nov.
2014.

[12] M. Kim, T. Zimmermann, and N. Nagappan, “An empirical study of
refactoring challenges and benefits at Microsoft,” IEEE Transactions on
Software Engineering, vol. 40, no. 7, 2014, pp. 633–649.

[13] J.-L. Letouzey and M. Ilkiewicz, “Managing TD with the SQALE
Method,” IEEE Software, vol. 29, no. 6, Nov. 2012, pp. 44–51.

[14] M. DAmbros, H. Gall, M. Lanza, and M. Pinzger, “Analysing Software
Repositories to Understand Software Evolution,” in Software Evolution
SE - 3. Springer Berlin Heidelberg, 2008, pp. 37–67.

73Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 92 / 512

Design and Implementation of Business Logic Layer Object-Oriented Design

versus Relational Design

Ali Alharthy
Faculty of Engineering and IT

University of Technology, Sydney

Sydney, Australia

Email: Ali.a.alharthy@student.uts.edu.au

Abstract—Object-oriented programming has become one of the

mainstream programming paradigms in software engineering,

whereas relational models are predominant in commercial

data processing applications. There is strong competition

between these models for dominance in the building of modern

applications, especially after the emergence and spread of

object-relational mapping technology. This paper addresses

the question of whether the object-oriented approach is better

than the traditional approach in terms of flexibility with

respect to changing requirements.

Keywords-object-oriented design; relational design; requirement

changes; maintenance

I. INTRODUCTION

Currently, most business logic layers of modern

applications are constructed using either an object-oriented

model or a relational model. The object-oriented model is

based on software engineering principles such as coupling,

inheritance, cohesion, and encapsulation, whereas the

relational model is based on predicate logic and set theory

principles [1]. The object-oriented model chains the building

of applications within objects that have both data and

behavior. The relational model supports the storage of data in

tables and the treatment of that data with data manipulation

language within the database through stored procedures and

externally through structured query language. The relational

model is currently used in many database systems [1].

Object-oriented technology is also commonly used in

database application development. The difference between

the two technologies is called the object-relational

impedance mismatch [2][3]. In particular, when objects need

to be stored in a relational database, object-relational

mapping (ORM) appears to play an important role in

overcoming the problem of impedance mismatch. ORM is a

new technology that allows applications to access relational

data in an object-oriented manner [4][5]. With the

widespread use of ORM technology, domain objects are built

as objects, and the application logic manipulates these

objects in a pure object-oriented manner. The critical issue

that arises is whether such an object-oriented model for

business logic layers is a good choice in general. Proponents

of the object-oriented approach have tended to assume that

an object-oriented business model will make the system

easier to maintain, easier to extend, and easier to reuse.

The object-oriented approach has been advocated as a

tool for improving developer productivity and software

quality [6][7]. Moreover, it has been suggested that

development using object-oriented programming enhances

productivity by simplifying understandability, program

design, and maintenance in comparison to traditional

approaches [8].These studies have maintained that using the

object-oriented approach would help reduce the maintenance

cost of software. However, there are few complete

experimental results that support the claim that there is an

advantage in the maintainability of programs developed with

the object-oriented approach over those developed with

traditional approaches [7][9].

The objective of this paper is to extend this body of

knowledge by critically examining this assumption and to

carefully compare the applicability and flexibility of the

object-oriented system to those of the relational system. The

findings from this project will be significant for practical

applications in which the business logic layer is implemented

in an object-oriented fashion, which is a growing trend in

enterprise computing.

The rest of the paper is organised as follows. Section II

presents the motivation for the study. Section III outlines the

investigation method. Sections IV, V, VI, and VII present the

case studies, and Section VIII reports the experimental

results. Section IX concludes the paper.

II. MOTIVATION

Today, changing requirements have become a fact of life

for software developers. Many studies have shown that

changes in software were one of the reasons why various

projects failed. For example, a study by the Standish Group

found that only 37% of information technology projects are

considered successes and that 21% of projects are considered

failures [10]. The remaining 42% are considered

„challenged‟—defined as late, over budget, or having failed

to meet expectations. Requirement changes are the major

cause of this phenomenon. Such changes can occur during

the development and maintenance phase in order to

accommodate user and business requirements. Therefore,

there is a need to identify a flexible approach that can deal

with requirement changes.

However, ORM is very popular and widely used.

According to Russell [3], in order to access data stored in

relational databases, most modern applications are built

using ORM technology rather than the traditional approach.

74Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 93 / 512

It has also been argued that using ORM tools can help reduce

project costs. Moreover, proponents of the object-oriented

approach have tended to assume that an object-oriented

business model will make the system easier to maintain,

easier to extend, and easier to reuse. On the other hand,

proponents of the traditional approach have argued that not

all the world must be handled in objects. In addition, they

have maintained that there is some native incompatibility

between ORM code and databases. They also maintain that

although object-oriented development promises to reduce

maintenance effort, these promises are not based on reliable

experimentation [11]. Indeed, there is a significant lack of

research on whether the object-oriented approach is better

than the traditional approach in terms of flexibility in the

face of requirement changes.

III. INVESTIGATION METHOD

The investigation is performed using a number of case

studies and by introducing a variety of requirement changes

in order to evaluate how the two approaches cope with them.

For the implementation, we used Java Database Connectivity

(JDBC), a representative relational system, and Hibernate, a

representative ORM framework, as well as MYSQL, a

relational database. All of these are popular open-source

products. In order to measure the overall implementation

effort associated with JDBC and Hibernate due to

new/changed requirements, we used the code size produced

in the completion of a task—the code size was measured in

lines of code and takes into account lines added, modified,

and deleted—as well as the time required to complete a task.

To measure the code size, we used a free tool to compare the

source code files after each implementation. The case

studies implementation has been done by a developer who

has six years experience in Web and Database applications

development.

IV. FIRST CASE STUDY

We chose a simple case study to make an initial

comparison of the effort involved in implementing the two

technological approaches and changing them in response to

requirement changes.

A. Problem statement

 A company requires a Car Park application to maintain

information about employees and their parking permits. The

car park has a number of parking spots, which are divided

into three areas: A, B, and C. Employees who want a permit

have to pay a fee on a quarterly basis, which will be

automatically deducted from their salary. The purpose of the

Car Park application is to help the car park manager process

the employees' applications for parking permits. Each

employee has an ID, a name, and a phone extension. Each

permit has a permit number, the car's registration number,

and the section where the car can be parked. An employee

can have at most two permits. Employees may change their

extension in the course of their employment. When

employees get a new car and want to use it instead of the old

one, they have to discontinue the current permit and apply

for a new one.

B. Comparison of the findings of the initial construction of

the two approaches

TABLE I. FINDINGS OF THE INITIAL CONSTRUCTION

Progra

m

Files SLOC
Total/

Lines

ET

H
ib

er
n

at
e

CPSystem.java 141

251

4 h 30

min

Permit.java 47

Employee.java 47

HibernateUtil.java 16

Employee.hbm.xml 17

49 Permit.hbm.xml 14

Hibernate.cfg.xml 18

Total 300

JDBC CPSystem.java 283 283 3 h

 Table I summarises the findings of the initial

construction of the Car Park system using the two

approaches. The table shows that even though there are no

significant differences between the two approaches with

respect to the effort measured by size of source code, the

Hibernate approach took more time than the JDBC approach.

In fact, with Hibernate we had to deal with six files, whereas

with JDBC we had to deal with only one file. Therefore, the

Hibernate approach took about 4.3 h, compared to 3 h for

JDBC.

C. Impact of requirement changes on the two approaches

Because requirements change frequently in practice, it is

useful to see how different approaches cope with

requirement changes. For the initial investigation regarding

requirement changes, we made the following change: in the

Terminate Permit use case, instead of deleting the permit (as

we did before), we labelled the permit as terminated.

D. Comparison of findings after first requirement change

TABLE II. FIRST REQUIREMENT CHANGE

Progr

am

Files V1 V2 A M D S

ET

H
ib

er
n

at
e

CPS.java 141 149 10 4 2 16

40

min

Permit.java 47 65 8 0 0 8

Emp.java 47 47 0 0 0 0

Emp.hbm.xml 17 17 0 0 0 0

Perm.hbm.xml 14 15 1 0 0 1

Hiber.cfg.xml 18 18 0 0 0 0

HiberUtil.java 16 16 0 0 0 0

Total 300 327 19 4 2 25

JDBC CPSy.java 283 283 0 3 0 3
10

min

V1 = before the change; V2 = after the change; A = add; M = modify; D =

delete; S = summation of A,M, and D; ET = estimated time

75Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 94 / 512

As Table II shows, there are significant differences

between the two approaches with respect to the

implementation effort measured by the size of the source

code. The implementation of the new requirement changes

with Hibernate required a total of 25 lines of code, compared

to only 3 lines of code using JDBC. In addition, the

implementation of the new requirement changes with

Hibernate took about 40 min, whereas it took only 3 min

with JDBC. Indeed, it is evident that JDBC offered more

flexibility with regard to both time and effort.

E. Further impact of requirement changes on the two

approaches

For the second requirement change, suppose a company

needs to distinguish between full-time and part-time

employees. Part-time employees are paid an hourly rate,

whereas full-time employees are assigned a salary.

TABLE III. SECOND REQUIREMENT CHANGE

Pro

gra

m

Files V1 V2 A M D S

ET

H
ib

er
n

at
e

CPS.java 149 154 5 2 0 7

1 h

Permit.java 65 65 0 0 0 0

Emp.java 47 47 0 1 0 1

PartTime.java - 20 20 0 0 20

FullTime.java - 20 20 0 0 20

Emp.hbm.xml 16 16 0 0 0 0

Perm.hbm.xml 17 24 7 0 0 7

Hiber.cfg.xml 15 15 0 0 0 0

HiberUtil.java 18 18 0 0 0 0

Total 327 379 52 3 0 55

JD

BC
CPSy.java 283 296 13 3 0 16

20

min

As Table III shows, the new requirements have had a

greater impact on the program implemented through

Hibernate, in terms of both the time and the effort required to

implement these changes. The implementation of the new

requirement changes with Hibernate required a total of 55

lines of code, in contrast to JDBC, which required only 16

lines. This difference represents a nearly 3:1 ratio in quantity

of code. Although one of the key benefits of inheritance is

minimising the amount of duplicate code in an application by

sharing common code amongst several subclasses, the

majority of new code is due to inheritance code. Moreover,

the implementation with Hibernate took about 1 h, compared

to only 20 m using JDBC. As a result, increasing the number

of classes that need to be persisted automatically can lead to

increased levels of effort and time.

V. SECOND CASE STUDY

We made the second case study more complicated than
the first in order to produce more statistics with which to
compare the two approaches. We also made changes that
reflect the change in business policy, that is, allowing more
than one kind of item to be stored at a shelf location. This

change in policy required a change in the structure of the
classes. It will provide more data with which to compare the
two approaches.

F. Problem statement

A database is needed to maintain information about the
items stored in various warehouses of a company. Design a
relational database, which can store the information
contained the following:

1. Each warehouse has a phone (not shown) to contact

the staff at the warehouse.

2. Shelf locations are of two types: single access and

double access.

3. The present policies require that each shelf location,

at any time, can be used to store only one kind of

item.

TABLE IV. FINDINGS OF THE INITIAL CONSTRUCTION

Program

Files SLOC
Total/

Lines

ET

H
ib

er
n

at
e

PartInWareHouse.java 141

300

4 h

Part.java 30

Warehouse.java 31

ShelfLocation.java 45

ShelfLocationPK.java 37

HibernateUtil.java 16

Warehouse.hbm.xml 12

58
Part.hbm.xml 13

ShelfLocation.hbm.xml 15

Hibernate.cfg.xml 18

Total 358

JDBC PartInWareHouse.java 202 2.3 h

Table IV summarises the findings for implementing the

Parts in Warehouses system with the two approaches.

Hibernate required a total of 358 lines of code, in contrast to

JDBC, which required 202 lines. In addition, Hibernate

required about 4 h, whereas JDBC required 2.3 h. Hibernate

clearly required more effort and time than JDBC.

G. Impact of requirement changes on the two approaches

The storage rules change to allow more than one kind of

item to be stored at a shelf location. This entails that the

cardinality relationship between the two entities Shelf

Location and Items must be changed to one-to-many.

H. Comparison of the findings after first requirement

change

As shown in Table V, the new requirements have had a

greater impact on the program implemented through

Hibernate, in terms of both the time and the effort required to

implement these changes. The implementation of the new

requirement changes with Hibernate required a total of 139

lines of code, in contrast to JDBC, which required only 38.

This difference represents a nearly 4:1 ratio in quantity of

code. Indeed, the source of increase in code quantity was due

to the addition of an item class with its composite key, which

76Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 95 / 512

is not necessary in JDBC. Moreover, the implementation

with Hibernate took about 1.30 h, compared to only 30 min

with JDBC.

TABLE V. FIRST REQUIREMENT CHANGE

Pro

gra

m

Files V1 V2 A M D S

ET

H
ib

er
n

at
e

WHouse.java
14

1

15

5
14 5 0 19

1.30
h

Part.java 30 30 0 0 0 0

Whouse.java 31 31 0 0 0 0

SLoc.java 45 32 2 6 15 23

SLocPK.java 37 37 0 0 0 0

Item.java - 29 29 0 0 29

ItemPK.java - 37 37 0 0 37

HibUtil.java 16 16 0 0 0 0

Who.hbm.xml 12 12 0 0 0 0

Part.hbm.xml 13 19 6 0 0 6

SLo.hbm.xml 15 20 5 2 1 8

Item.hbm.xml - 16 16 0 0 16

Hiber.cfg.xml 18 19 1 0 0 1

Total 358 453 110 13 16 139

JDB

C
WHouse.java

20

2

21

8
16 20 2 38

40

min

VI. THIRD CASE STUDY: ISSUE OF RELATIONAL

REPRESENTATION/NAVIGATION

The representation of the relationship is a fundamental

issue. In fact, the difference between hierarchy, network,

relational, and object-oriented databases is the way in which

the relationship is represented. Therefore, if we construct

the application with JDBC, we will not experience the

navigation problem, whereas the problem arises when the

application is constructed with ORM. Thus, we have to

decide how to represent the navigation objects.

I. Problem statement

A distribution company supplies various kinds of

products to customers on a daily basis according to the

standing orders placed by the customers. The company wants

to set up a system to maintain information about the products

that the company can supply, its customers, and the standing

orders.

J. Comparison of the findings of the initial construction of

the two approaches

Table VI summarises the findings for implementing the

Standing Order system with the two approaches. Hibernate

required a total of 268 lines of code, in contrast to JDBC,

which required 141. In addition, Hibernate required about 3

h, whereas JDBC required 2 h. Thus, Hibernate required

more effort and time than JDBC.

TABLE VI. FINDINGS OF THE INITIAL CONSTRUCTION

Progra

m

Files SLOC
Total/

Lines

ET

H
ib

er
n

at
e

SOSystem.java 86

212

3 h

Customer.java 22

Order.java 47

Product.java 41

HibernateUtil.java 16

Customer.hbm.xml 10

56
Order.hbm.xml 15

Product.hbm.xml 12

Hibernate.cfg.xml 19

Total 268

JDBC SOSystem.java 141 141 2 h

K. Impact of requirement changes on the two approaches

We changed the navigation rule between the objects

from unidirectional to bidirectional association.

TABLE VII. FINDINGS OF THE INITIAL CONSTRUCTION

Prog

ram

File Name V1 V2 A M D S

ET

H
ib

er
n

at
e

SOSys.java 86 86 0 0 0 0

30

min

Cust.java 22 32 10 0 0 10

Order.java 47 47 0 0 0 0

Product.java 41 51 10 0 0 10

Htil.java 16 16 0 0 0 0

Cu.hbm.xml 10 14 4 0 0 4

Or.hbm.xml 15 15 0 0 0 0

Pr.hbm.xml 12 16 4 0 0 4

Hib.cfg.xml 19 19 0 0 0 0
Total 268 296 28 0 0 28

JDBC SOSys.java 141 141 0 0 0 0 0

As Table VII shows, the new requirements have had a

greater impact on the program implemented through

Hibernate, in terms of both the time and the effort required

to implement these changes. The implementation of the new

requirement changes with Hibernate required a total of 28

lines of code and 30 min, in contrast JDBC, which did not

require any changes, because navigation is not an issue for

it.

VII. FOURTH CASE STUDY

We made this case study even more complicated and

realistic in order to produce much more statistical data with

which to compare the two approaches. The case study also

highlights the issue of relationship representation and

illustrates that the object-oriented approach is more sensitive

to the class model than the relational model.

77Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 96 / 512

L. Problem statement

Eastern Suburb Gymnastics (ESG) is a regional

organisation that is responsible for running competitions

between the gymnastics clubs in eastern suburbs of

Melbourne. The competitions are organised into seasons.

ESG needs a system to help organise and maintain the

records of the competitions that take place in a single

season. The system, in essence, needs to store information

on the gymnasts, their clubs, the organisation of the

competitions, and the competition results.

M. Comparison of the findings of the initial construction of

the two approaches

TABLE VIII. FINDINGS OF THE INITIAL CONSTRUCTION

Progra

m

File SLOC
Total/

Lines
ET

H
ib

er
n

at
e

GScoringSystem 237

810

6 h

Club 44

Competition 24

CompetitionPk 35

Division 60

EventPk 46

Event 37

EventType 58

Gymnast 60

Judge 40

Meet 52

TeamPk 46

Team 33

Score 22

HibernateUtil 16

Club.hbm.xml 13

177

Competition.hbm.xml 12

Division.hbm.xml 15

Event.hbm.xml 21

EventType.hbm.xml 14

Gymnast.hbm.xml 15

Judge.hbm.xml 17

Meet.hbm.xml 14

Team.hbm.xml 14

Score.hbm.xml 16

Hibernate.cfg.xml 26

Total 987

JDBC GScoringSystem 259 259 3 h

 Table VIII summarises the findings for implementing

the Eastern Suburb Gymnastics system with the two

approaches. Hibernate required a total of 987 lines of code,

in contrast to JDBC, which required 259. In addition,

Hibernate required about 6 h, whereas JDBC required 3 h. It

is evident that Hibernate required more effort and time than

JDBC. This difference represents a nearly 4:1 ratio in

quantity of code. Indeed, the source of the increase in the

code quantity was due to a plain old Java objects (POJO) and

its mapping files.

N. Impact of requirement changes on the two approaches

Here, we investigated how sensitive the two approaches

are to the choice of domains modelled.

TABLE IX. FINDINGS OF THE INITIAL CONSTRUCTION

Prog

ram

File Name V1 V2 A M D S

E

T

H
ib

er
n

at
e

GSSystem
23

7
274 37 0 0 37

1

h

Club 44 44 0 0 0 0

Competition 24 24 0 0 0 0

CompetitionPk 35 35 0 0 0 0

Division 60 60 0 0 0 0

EventPk 46 46 0 0 0 0

Event 37 37 0 0 0 0

EventType 58 58 0 0 0 0

Gymnast 60 60 0 0 0 0

Judge 40 40 0 0 0 0

Meet 52 52 0 0 0 0

TeamPk 46 46 0 0 0 0

Team 33 33 0 0 0 0

TeamMember - 55 55 0 0 55

Score 22 22 0 0 0 0

HibernateUtil 16 16 0 0 0 0

Club.hbm.xml 13 13 0 0 0 0

Comp.hbm.xml 12 12 0 0 0 0

Divis.hbm.xml 15 15 0 0 0 0

Event.hbm.xml 21 21 0 0 0 0

EType.hbm.xml 14 14 0 0 0 0

Gymt.hbm.xml 15 15 0 0 0 0

Judge.hbm.xml 17 17 0 0 0 0

Meet.hbm.xml 14 14 0 0 0 0

Team.hbm.xml 14 14 0 0 0 0

TMember..xml - 14 14 0 0 14

Score.hbm.xml 16 16 0 0 0 0

Hibern.cfg.xml 26 27 1 0 0 1
Total 987 1093 106 0 0 106

JDBC GSSystem 259 291 32 0 0 32

25

mi

n

Table IX shows that the implementation of the new

requirement changes with Hibernate required a total of 106

lines of code, in contrast to JDBC, which required only 32.

This difference represents a nearly 3:1 ratio in quantity of

code. Moreover, the implementation with Hibernate took

about 1 h, compared to only 25 min for JDBC.

VIII. RESULTS

The results of our critical comparison of the two

paradigms in terms of flexibility, which was based on

implementation findings, indicate that in the initial

construction of the application, using ORM is much costlier

than using JDBC. In other words, the level of effort and time

required to implement the application is much higher with

Hibernate than with JDBC. For instance, the initial

construction of the ESG system with ORM required a total

of 987 lines of code, in contrast to JDBC, which required

259. This difference represents a nearly 4:1 ratio in quantity

78Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 97 / 512

of code. In addition, ORM required about 6 h, whereas

JDBC required only 3 h. Indeed, increasing the number of

classes that need to be persisted automatically can lead to

increased levels of effort and time.

Moreover, JDBC is more flexible in the face of

requirement changes than is ORM. For example, for an

object to be persisted to a database, Hibernate needs a

mapping file for all the objects that are to be persisted as well

as POJO, which is not required when using the JDBC

approach. This means that if we would like to add an

attribute to or delete an attribute from a class, we must

modify the mapping file of that class to map or delete the

attribute, and subsequently we must modify the class itself to

add/delete that an attribute with its getter and setter methods.

When using JDBC, in contrast, we do not need to undertake

these steps. Furthermore, the object-oriented paradigm has

an issue related to navigation between objects through

association links, whereas navigation is not an issue for

JDBC. In addition, determining the direction with UML is

not an easy task, which can be considered one of the

common mistakes in design decision. In addition, the object-

oriented approach is more sensitive to the class model than

the relational model. It is worth mentioning that the

developer did not use auto-code generation during

performing the initial construction implementation, and this

could explain the remarkable difference in time between two

approaches.

Although the current study has yielded some clear

preliminary findings, its design is not without flaws. First,

the case studies were small scale as a result of some

restrictions, such as the time and effort required for

implementation. A further limitation is that the

implementation of all the case studies was performed by one

developer, which may affect the generalisability of the

study‟s findings to different developers.

IX. CONCLUSION

This paper addressed the question of whether the object-

oriented approach is better than the traditional approach or

vice versa in terms of applicability and flexibility to

requirement changes. The experimental results show that the

object-oriented approach required more time and effort as a

result of mapping files. Moreover, the object-oriented

approach has an issue of navigation between objects.

However, our examination is only the beginning. We believe

there is still a need for further research with real projects to

yield reliable results. Our future work will focus on

conducting more experiments on real projects to validate our

results and to investigate flexibility of object-oriented

approach to requirement changes.

REFERENCES

[1] E. F. Codd, “A Relational Model of Data for Large Shared Data
Banks,” Communications of the ACM, vol. 13, 1970, pp. 377-387.

[2] B. Unger, L. Prechelt, and M. Philippsen, The Impact of Inheritance
Depth on Maintenance Tasks: Detailed Description and Evaluation of
Two Experiment Replications. Fak. für Informatik Univ., 1998.

[3] C. Russell, “Bridging the Object-relational Divide,” Queue, vol. 6,
2008, pp. 18-28.

[4] M. I. Aguirre-Urreta and G. M. Marakas, “Comparing Conceptual
Modeling Techniques: A Critical Review of the EER vs. OO
Empirical Literature,” ACM SIGMIS Database, vol. 39, 2008, pp. 9-
32.

[5] F. Lodhi and M. A. Ghazali, “Design of a Simple and Effective
Object-to-Relational Mapping Technique,” in Proceedings of the
2007 ACM Symposium on Applied Computing, 2007, pp. 1445-1449.

[6] S. Sircar, S. P. Nerur, and R. Mahapatra, “Revolution or Evolution? A
Comparison of Object-oriented and Structured Systems Development
Methods,” MIS Quarterly, 2001, pp. 457-471.

[7] G. A. Kiran, S. Haripriya, and P. Jalote, “Effect of object orientation
on maintainability of software,” in Software Maintenance, 1997.
Proc. International Conference on, 1997, pp. 114-121.

[8] M. B. Rosson and S. R. Alpert, “The Cognitive Consequences of
Object-oriented Design,” Human-Computer Interaction, vol. 5, 1991,
pp. 345-379.

[9] M. A. Eierman and M. T. Dishaw, “The Process of Software
Maintenance: A Comparison of Object-oriented and Third-generation
Development Languages,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 19, 2007, pp. 33-47.

[10] S. Group. (2011). The Standish Group International Inc.

[11] E. Arisholm and D. I. Sjoberg, “Evaluating the Effect of a Delegated
Versus Centralized Control Style on the Maintainability of Object-
oriented Software,” IEEE Transactions on Software Engineering, vol.
30, 2004, pp. 521-534.

79Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 98 / 512

Pymoult : On-Line Updates for Python Programs

Sébastien Martinez and Fabien Dagnat
IRISA, Télécom Bretagne

Brest, France
Email: first.last@telecom-bretagne.eu

Jérémy Buisson
IRISA, Écoles de Saint-Cyr Coëtquidan

Guer, France
Email: jeremy.buisson@irisa.fr

Abstract—On-line updates have proved to be essential for critical
long running applications that hardly can be stopped. Indeed,
security patches or feature enhancements need to be applied
frequently. Pymoult is a platform allowing on-line updates for
Python programs. It provides many mechanisms from the liter-
ature for updating running programs without requiring them to
be stopped, allowing update developers to combine and configure
the mechanisms for each update. This paper presents the design
of Pymoult and details the implementation of several mechanisms
it provides. With the help of an example, this paper also presents
how mechanisms can be combined and configured to design on-
line updates with Pymoult.

Keywords–On-line updates; Python; Software maintenance

I. INTRODUCTION

Today’s world expects software systems to be available at
every moment, whether the system provides critical services
like airport traffic control or whether its downtime would cause
user discomfort like an operating system forcing a reboot
for updating. Updating running software systems becomes a
critical issue as it requires the system to be restarted, causing
downtime and loss of state as well as financiary losses [1].
Not applying updates or postponing them is dangerous, as
updates are necessary to keep software safe from bugs and
security breaches. Dynamic Software Updating (DSU) allows
updates to be applied on running software without requiring
it to be restarted, causing little service disruption and no loss
of data. This goal is reached by using DSU mechanisms for
modifying the control flow (redefining functions) and the data
flow (converting the data to a new version) of a given program.
The majority of DSU platforms gather a predetermined set of
these mechanisms they use to apply each update.

A lot of platforms have been proposed [2], [3], defining
several mechanisms. Each mechanism has different proper-
ties and constraints. A DSU platform selects the best suited
mechanisms for the type of program it targets and the kind of
updates it expects. For example, K42 [4] is an operating system
embedding its own DSU system. It handles its updates by
swapping modified components when all old threads running
out of date code are terminated. These mechanisms are best
suited to the design of K42, which has a component based
architecture and runs short lived threads. Updates often consist
in the modification of components and, because the threads
are short-lived, waiting for old threads to terminate is an easy
way to ensure that components are swapped when they are
quiescent. But when applying an unforeseen kind of update,
the fixed set of mechanisms provided by the DSU system might
be inefficient or even it may be impossible. For example, K42
does not handle API changes very well because they need to
apply changes across the components.

Pymoult is a DSU platform providing several DSU mech-
anisms for updating Python programs. Its approach is to let an

update developer select and configure the DSU mechanisms
best suited for its update. While it requires more work from
update developers than automated DSU platforms, it ensures
that every update can be applied with best suited mechanisms.
This paper presents the design and implementation of Pymoult.
Section II discusses the implementation of DSU mechanisms
in Python and presents Pypy-dsu, our custom Pypy interpreter
enhanced for DSU support. Section III details the design
of Pymoult and discusses the implementation of some of
the mechanisms it provides before presenting an example
of dynamic update using Pymoult in section IV. Section V
compares Pymoult to other DSU platforms and Section VI
introduces future work before concluding this paper.

II. PYTHON AND ON-LINE UPDATES
While many DSU mechanisms can be implemented in

Python, some of them are impossible to develop using the
standard implementation. For that reason, Pymoult uses Pypy-
dsu, a Python interpreter enhanced with DSU features.

A. DSU capabilities of bare Python
Python is a dynamically typed, interpreted, object-oriented

language. It has natural indirection and allows dynamic manip-
ulation of programs models. The flexibility of Python and its
introspection features make it easy to implement DSU mech-
anisms. For example, object fields, class methods, variables
and functions are treated the same way, they are manipulated
directly through their name. This allows, for example, to easily
redefine a function foo by calling foo=foo_v2 since each
call to foo resolves the function name.

Fields can be added or deleted from objects and classes,
allowing easy modification of objects or classes. The type of an
object is kept as a __class__ field which refers to that type.
By consequence, changing the type of an object corresponds to
changing the class the __class__ field refers to and adding
or deleting fields to conform the object to its new type.

Thanks to the meta-object protocol embedded in Python,
Pymoult can implement a lazy method for updating objects.
In Python, attributes and methods of objects are accessed
(for writing, reading or calling) using __getattribute__
and __setattr__ methods of their class. By default, these
methods resolve to the implementation in the object class.
By overriding these methods for a given class, we can run
updating code on an object before accessing its fields. Objects
can therefore be updated only when actually used (i.e., when
one of their fields is accessed).

Python is also a uni-typed language, allowing variables to
change type dynamically without requiring specific tools. The
type checking uses duck-typing. For example, if a.foo is
called, the type of object a is checked for a method called
foo. Variables can therefore be modified freely except for the
deletion of fields used in the program.

80Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 99 / 512

B. The Pypy-dsu interpreter
Several DSU mechanisms can not be properly implemented

in Python. For example, in a standard Python interpreter, it is
not possible for a thread to suspend another one. This inability
is a problem when needing to suspend parts of a program.
We therefore decided to extend the features of a Python
interpreter. We chose to base ourselves on the Pypy interpreter,
a Python interpreter written in Python. Pypy is easier to
modify than CPython (the reference Python interpreter) and
already extends Python with object proxies and continuations
that were helpful when implementing DSU mechanisms. This
subsection presents new features that where added in Pypy-
dsu, our customized Pypy interpreter.

1) Traces for controlling threads: Suspending a thread is
implemented using traces. Python traces are functions called
after each statement. To suspend a thread, a trace waiting for
an event to be triggered is inserted. On the next statement, the
trace will block until the event is triggered, causing the thread
to be suspended. In Pypy, a trace cannot be set for a given
thread and traces only start on the next call to a function. In
Pypy-dsu it is possible to set a trace for a given thread using
sys.settrace_for_thread. When setting the trace, one
can choose whether the trace should start immediately or on
the next function call. This feature allowed the development
of mechanism to suspend and resume thread and control their
execution (see paragraph II-B3 for an example).

2) Intercepting object creation: Although Pypy provides a
garbage collector, it cannot be used to get a reference on every
object created since the starting of the program. Such feature is
essential when implementing mechanisms to update the data of
a program. We therefore added the possibility to setup a global
hook with set_instance_hook that is called each time an
object is created. We use that hook to maintain a pool of weak
references to each object created by the program. Each time
an object is created, a hook creating a weak reference to it and
adding it to the pool is called. This pool is used each time a
mechanism requires accessing all the data at a same time.

3) Dropping frames: It is not possible in Python to manip-
ulate the stack of a thread, making it impossible to support on
stack replacement of functions. We added new instructions to
drop frames from the stack. Calling a dropNframe value
statement will cause the N most recent frames to exit immedi-
ately, returning value. On stack replacement of a function by
a new one is implemented using traces and the drop2frames
function to force the two most recent frames to exit and
return value. A trace calling the new function before using
drop2frames is inserted in the target thread. When the
thread enters a frame running the old function, the trace
captures the local state of that frame and calls the new function,
giving that state as an argument. The return value of the new
function is then given as argument to drop2frames. The
last two frames (i.e., the frame of the trace and the frame of
the old function) are dropped and the return value of the new
function is returned to caller of the old function.

III. PYMOULT
To our knowledge, Pymoult is the first DSU platform

for Python programs. Its approach is to provide as many
DSU mechanisms as possible through an API that allows
their combination and configuration. Since the creation of
Pymoult in 2012, we implemented over 30 DSU mechanisms.
For that reason and for the features we previously detailed,

Application
variables

classes

functions

threads

Pymoult

DSU Mechanisms

On-line Patch

Update

Manager

new variables

new classes

new functions

Update Instance

Manager Instance

1

3

2

4

4

Figure 1. Map of an on-line update

we think that Python is a good language for writing DSU
mechanisms, and testing platforms designs. The design of
Pymoult is the result of incremental work. Since the first
version of Pymoult [5] and throughout the experiments we
conduced with it, the design evolved to its actual form we
present in this section.

To update a running program with Pymoult, the pro-
gram developer must start a specific Pymoult thread called
Listener in the program. That thread enables the supplying
of on-line patches for the running application. An on-line patch
is a piece of Python code that uses the Pymoult API. It contains
the code of the updated elements of the program (e.g., func-
tions, classes) and instructions on which DSU mechanisms to
use. Dynamic updates rely on Manager and Update classes.
A manager (an instance of the Manager class) is responsible
for applying modifications according to the instructions given
by an update object (an instance of the Update class).

Subsection III-A presents the design of Pymoult and details
how to write an on-line patch with Pymoult. Subsection III-B
details the implementation of some mechanisms provided by
Pymoult and section IV presents the example of an on-line
update using Pymoult.

A. Design
In Pymoult, an update is composed of several instances of

an Update class. These instances are supplied to a manager
that will apply them. For the remainder of this section, we use
the term update object to refer to instances of Update. An
on-line patch is therefore a set of update objects.

Figure 1 presents the architecture of a program undergoing
an on-line update. An on-line patch embeds new variables,
classes and functions 1 which are used by an update object
to specify the instructions for the manager 2 . The manager
controls and modifies the elements of the program 3 using
DSU mechanisms provided by Pymoult and as specified by
the update object 4 .

Pymoult provides several off-the-shelf manager classes that
can be instantiated in the program or in an on-line patch to
create new managers. The regular Manager class describes
a manager that operates only when the program calls its
apply_next_update method. This kind of manager allows
the program to decide when modifications can be applied
to it. The ThreadedManager class describes a manager
that operates in its own thread. It applies modifications each
time an update object is supplied to it. Pymoult also provides
preconfigured managers that are bound to an Update class
and will always use the same DSU mechanisms to apply every
modification. Lastly, one can extend the Manager class to

81Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 100 / 512

1 2 3 4 5 6 7 8 9

4b

check
requirements

preliminary
setup

waiting
alterability

suspend
threads

apply
modifications

pre-resume
setup

resume
threads

wait end of
update

clean up

clean failed
alterability

alterability not reached

Figure 2. The updating process

Update

name:str

check_requirements():str
preupdate_setup()
wait_alterability():bool
check_alterability():bool
clean_failed_alterability()
apply():str
preresume_setup()
wait_over()
check_over():bool
cleanup()

Manager

name:str

suspend_threads()
resume_threads()
add_update(Update)
apply_next_update()

Thread
∗ threads

updates ∗

threads ∗

Figure 3. Update and Manager classes

define one’s own manager. The classes involved in the updating
process are presented in Figure 3.

Update developers can define their own update classes
by extending the Update class. An update class has one
method for each step of the updating process. These methods
can use the DSU mechanisms provided by Pymoult through
calls to specific functions. Update objects are instances of
developer defined update classes and are supplied to managers.
The managers implement the updating process pictured in
Figure 2. When an update is supplied to a manager, that
manager checks the requirements of the update 1 . To do so,
it calls the check_requirements method of the update
that returns "yes", "no" or "never" if the requirements
are (respectively) met, not met or can never be met. If
"no" is returned, the update is postponed. If "never" is
returned, the update is canceled and if "yes" is returned, the
updating process continues. The manager then proceeds to the
preliminary setup step 2 where it installs elements required
for the next steps. To do so, it calls the preupdate_setup
method of the update. When the preliminary setup is finished
(i.e., the preupdate_setup method has returned), the
manager waits for the application to be in a safe state we
call alterability 3 by calling the wait_alterability
method of the update. That method returns True when the
application can be safely modified or False if a safe state
could not be met in a fixed amount of time. If False is
returned, the manager invokes a cleanup step 4b in which
it calls the clean_failed_alterability method of
the update for uninstalling the elements that were set up
in the preliminary setup step. The update is then post-
poned. If wait_alterability returns True, the manager
suspends some threads of the program 4 by calling its
suspend_threads method. If the update specifies threads
in its threads attribute, suspend_threads will suspend

them, if not it will suspend the threads controlled by the
manager (i.e., the threads in its threads attribute). If the
manager does not control any threads, no thread is suspended.
The manager then proceeds to the apply step 5 where it calls
the apply method of the update. That method realizes all
the modifications needed by the update (e.g. redefine func-
tions, transform the data). The following step of the manager,
the pre-resume setup step 6 , calls the preresume_setup
method of the update that follows the same principle as the
preupdate_setup method. Suspended threads are then
resumed by the resume_threads method of the manager
7 . When all threads are resumed, the manager waits for the

update to be over 8 by calling the wait_over method of
the update that returns when the update is over. Indeed the
apply step may have started tasks that run along the rest of the
program. For example, the update can start lazy modifications
of objects and requires all the objects to be transformed before
completing. When the update is over, the manager cleans up
any element installed in the preliminary setup and pre-resume
steps 9 by calling the cleanup method of the update.

While this updating process is exactly followed as we just
described by instances of ThreadedManager, instances of
Manager wait passively for a safe state and for the end of
the update. They give back the hand to the program each time
they have to wait. For that purpose, they call the non-blocking
check_alterability method (resp. check_over) in-
stead of wait_alterability (resp. wait_over).

B. Mechanisms
Mechanisms are provided as functions that can be called in

the methods of update classes. In this subsection, we follow the
updating process detailed in the previous one and present some
mechanisms that can be used for each step. Figure 4 presents
an update object using the mechanisms discussed here.

1) Preliminary setup: Some mechanisms provided by Py-
moult need preliminary installation before being used. This is
the case of the forceQuiescence mechanism that forces
a function to be quiescent. In the pre-update setup step, the
setupForceQuiescence function replaces the targeted
function by a stub that blocks all incoming, non-recursive
calls by waiting for a specific continue event to be activated.
A watcher thread is then started. That thread watches the
quiescence of the targeted function.

2) Waiting alterability: We call alterability the state of a
program when it can be updated without provoking errors.
Indeed, if the update is applied at a wrong moment, updated
code can call obsolete code and cause a crash. For example,
an outdated function could try to access an updated piece of
data that is no longer compatible with the function.

82Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 101 / 512

Application Variables
a (of type A)

Classes
A

Functions
foo
bar

Threads
thread 1
thread 2

On-line patch
New Variables

New Classes
B

New Functions
foo2

Update Class
• wait_alterability
-forceQuiescence: foo
• apply
-redefineFunction: foo → foo2
-redefineClass: A → B
-access immediately instances of A,
updateToClass: A → B.

Manager Instance
• threads

thread1, thread2
Alterability

Quiescence of foo

update object

suspend

redefineFunction

redefineClass

Data Accessor
+ update to class

Figure 4. An example of update using Pymoult

Alterability can be detected by watching alterability cri-
teria such as the quiescence of a component to be up-
dated [6] or any condition on the state of the program.
These criteria depend on the modifications applied by the
update and may vary among all the updates. Several such
criteria are proposed in the literature as the tranquility [7]
or the serenity [8] of components. Pymoult provides several
functions for expressing alterabilty crtieria. Here, we discuss
the waitForceQuiescence function that expresses the cri-
terion “target function must be quiescent” while forcing its qui-
escence instead of waiting for it. waitForceQuiescence
waits for the watcher thread started in the previous step to
detect the quiescence of the target function, then returns.

3) Applying modifications:
a) Accessing and updating data: Pymoult provides

two ways to access data through the DataAccessor class
that behaves as an iterator. When creating an instance of
DataAccessor, one must precise the type of objects it
accesses and the strategy to use as a string. The immedi-
ate strategy accesses all the objects when the instance of
DataAccessor is created. It is then possible to iterate over
all the objects. The progressive strategy uses the meta-object
protocol described in section II-B to access objects lazily. Each
time an object of the given type is used by the program, it is
enqueued to the instance of DataAccessor. It is possible
to iterate over the objects progressively as they are accessed.
When the queue of accessed objects is empty, the iteration
hangs until new objects are accessed. As a consequence, it is
not possible to know a priori when all the objects have been
accessed and therefore, when the iteration ends.

When they are accessed, objects can be updated using the
updateToClass function. This function changes the type
of a given object to a given class by updating its __class__
attribute. A transformer supplied by the update developer is
then applied to the object to modify its attributes.

b) Updating functions and classes: One way to update
a function is to replace it by a new version. This mechanism
is provided through the redefineFunction function that

uses the native indirection of Python to change the body bound
to the old function’s name.

Similarly, classes can be redefined globally using
redefineClass or one can add new fields or modify
existing ones with addFieldToClass. In Python, classes
are just special objects that can be modified dynamically as
any other object.

4) Pre-resume setup: At this step, a mechanism may re-
quire some set up before resuming the excution of the program.
For example, this is the case of forceQuiescence. In this
step, the cleanForceQuiescence function activates the
continue event waited by the blocking stub added during the
pre-update setup. As a consequence, all the calls to the targeted
function are released.

5) Cleaning failed alterabilty: DSU mechanisms handling
alterability watching that required preliminary set up require
clean up if the program fails to reach alterability. If the
forceQuiescence mechanism fails to guide the program
to alterability, the cleanFailedForceQuiescence func-
tion stops the watcher thread, activates the continue event and
removes the stub installed in the pre-update setup step.

IV. AN EXAMPLE

Various uses of Pymoult have been tested to validate it.
Among the applications we have dynamically updated with
Pymoult is the Django application server. Pymoult allowed us
to update a running Django server from version 1.6.8 to version
1.6.10, choosing different DSU mechanisms for both succes-
sive updates (from 1.6.8 to 1.6.9 and from 1.6.9 to 1.6.10).
Such a complex update does not fit as an introductory example.
Instead, we present here the example of a program serving
pictures through a socket. This program is representative of
the Django example while staying simple.

Figure 5 presents the main elements of this program.
Picture objects are stored in folders a files dictionary.
Folders are served by the serve_folder method of
the ConnThread class which defines connection handling
threads. When starting, the program creates a listener to
receive future on-line patches (as explained in section III).
It also creates an instance of ThreadedManager and an
ObjectPool that will contain weak references to all the
created objects as explained in section II-B. That pool will
enable immediate access to objects for future updates. Each
time a new client connects to the server, a new ConnThread
instance starts responding to all the commands it receives. The
do_command method specifies the reaction to each received
command.

Figure 6 presents an on-line patch that introduces support
for comments. It is now possible to add a comment to pictures
and before serving pictures from a folder, the pictures are
annotated with their comment. The on-line patch redefines the
Picture class and the serve_folder and do_command
methods. In order to update the picture objects, the patch
provides a transformer named pic_trans.

The ServerUpdate class defines a new update class
which alterability criteria are the quiescence of the methods
do_command and serve_folder. Because the update
aims to redefine these two methods and to modify the picture
objects they both use, waiting for their quiescence before
updating ensures that it will not provoke errors. Before waiting

83Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 102 / 512

class Picture(object):
def __init__(self,path,name):...
def stream(self):...

class ConnThread(threading.Thread):
def __init__(self,connection):...
def serve_folder(self,folder):...
def do_command(self,command):...
def run(self):
while self.connection:
data = self.connection.recv(1024)
self.do_command(data.strip())

def main():
#create a socket to listen for commands
while True:
conn,addr = sock.accept()
ConnThread(conn).start()

if __name__ == "__main__":
listener = Listener()
listener.start()
manager = ThreadedManager()
manager.start()
ObjectsPool()
main()

Figure 5. Structure of the program

for alterability, the update captures all the ConnThread in-
stances and the main thread as they need to be suspended (Sus-
pending the main thread ensures that no new ConnThread is
created during the update). For that purpose, the patch defines
the method getAllConnThreads. When alterability is met,
the update uses addFieldToClass to redefine the methods
and uses a DataAccessor to access the picture objects. It
then uses updateToClass to update the accessed objects
and redefineClass to redefine the Picture class.

The on-line patch creates an instance of ServerUpdate
then supplies it to the manager. When the patch is sent to
the listener created by the application, it is loaded in the
application and its code is executed. The functions and classes
it contains are defined and the update object is created and
supplied to the manager.

Writing on-line patches as small programs which execution
will update the targeted program allows for a fine control over
the DSU mechanisms. For example, as presented in figure 7,
we could have chosen to apply the update without waiting
for the quiescence of do_command and serve_folder
and use on-stack replacement to update theses methods while
they are active. That would be a good choice if do_command
and serve_folder are rarely quiescent at the same time.
If the server handles a great amount of pictures, updat-
ing them all at the same time is long and disrupts the
service since connections are suspended during the update.
Updating picture objects lazily would be a better solution
as data would be migrated without suspending connections
(at the cost of the overhead introduced by the update of
objects the first time they are accessed). Figure 7 presents
this alternative patch for the update of the server. It uses
rebootFunction to capture the state of currently running
do_command and serve_folder methods then uses on-
stack replacement. For that purpose, the patch defines the
command_capture and serve_capture functions. The
update uses startLazyUpdate to start updating picture
objects lazily using the meta-object protocol described in II.

class Picture_V2(object):
def __init__(self,path,name):
...
self.commentary = "Witty comment"
self.basepath = path

def stream(self):...
def comment(self,text):...
def annotate(self):...

def getAllConnThreads():...
def pic_trans(pic):
pic.basepath = pic.path
pic.commentary = "Witty comment"

def serve_folder_v2(self,folder):...
def do_command_v2(self,command):...
class ServerUpdate(Update):
def preupdate_setup(self):
self.threads = getAllConnThreads()

def wait_alterability(self):
return waitQuiescenceOfFunctions([do_command,

serve_folder])
def apply(self):
addFieldToClass(ConnThread,"do_command",

do_command_v2)
addFieldToClass(ConnThread,"serve_folder",

serve_folder_v2)
accessor = DataAccessor(Picture,"immediate")
for picture in accessor:
updateToClass(picture,Picture,Picture_V2,

pic_trans)
redefineClass(Picture,Picture_V2)

conn_update = ServerUpdate(name="conn_update")
main.manager.add_update(conn_update)

Figure 6. Simplified on-line patch

class ServerUpdate(Update):
def preupdate_setup(self):
self.threads = getAllConnThreads()

def wait_alterability(self):
return True

def apply(self):
addFieldToClass(ConnThread,"do_command",

do_command_v2)
addFieldToClass(ConnThread,"serve_folder",

serve_folder_v2)
for thread in self.threads:
rebootFunction(do_command,do_command_v2,

command_capture)
rebootFunction(serve_folder,serve_folder_v2,

serve_capture)
startLazyUpdate(Picture,PictureV2,pic_update)
redefineClass(Picture,Picture_V2)

Figure 7. An alternate on-line patch (simplified)

V. RELATED WORK
To our knowledge, Pymoult is the only DSU platform for

Python and its approach letting update developers combine
and configure DSU mechanisms is an actual topic in the
field. While classical DSU platforms use the same combination
of mechanisms to apply every update, some platforms allow
update developers to configure some mechanisms.

In ProteOS, [9] Giuffrida et al. propose to let update
developers decide the alterability criteria for each update. The
criteria are expressed as filters on the state of the OS. ProteOS
allows processes to be updated by starting the new version of
a process and transferring and updating the data from the old
process to the new one. The data is accessed immediately using
code instrumentation.

K42 [4] is an operating systems that allows its components
to be swapped at runtime. When applying an on-line patch, it

84Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 103 / 512

forces all swapped components to be quiescent by suspending
all threads created after the on-line update is requested and
waiting for the old threads to terminate. Components are
progressively swapped when they become quiescent.

Jvolve [10] is a DSU platform for Java programs. It
allows classes and methods to be redefined. Update developers
provide the source code of the program and of its updated
version as well as class transformers (for updating static class
fields) and object transformers (for updating object fields).
The alterability criteria for every update is that the program
must reach a VM safe point (usually a point where the
garbage collector is called) where the redefined methods are
quiescent. Update developers can also indicate methods whose
quiescence will constitute an additional alterability criterion.
When alterability is met, all threads are suspended and Jvolve
updates methods using indirection at VM level and on-stack
replacement. It accesses objects using the garbage collector
and updates them immediately.

For these three platforms, the on-line patch supplied by
the update developer is made of the source code of the new
version of the program plus some instructions (K42: code of
the transfomers; Jvolve and ProteOS: code of the transformers
and of the alterability criteria). While Jvolve and ProteOS
allow update developers to configure mechanisms by giving
additional alterabilty criteria, they support little variability on
the updating process. These platforms force the configuration
of DSU mechanisms (e.g alterability criteria are quiescence of
some functions) and only allow update developers to extend
some of them (e.g by giving new functions that need to be
quiescent for alterability). To our knowledge, Pymoult is the
first DSU platform giving as much control on the mechanisms
used for on-line updates.

VI. CONCLUSION AND FUTURE WORK

We presented the design of Pymoult and presented how
it allows DSU mechanisms to be combined and configured
when writting an on-line patch. We also presented an example
of on-line update of a Python program using Pymoult.

Pymoult is built atop a modified version of the Pypy
interpreter. Because the modifications we applied to Pypy are
little intrusive on the interpreter, they have no impact on the
way Pypy interprets Python programs. Pymoult is therefore
fully compatible with all the applications that are compatible
with Pypy. Nevertheless, many common Python applications
have compatibility issues with Pypy. The purpose of Pymoult
was to find a design that allows DSU mechanisms to be easily
configured and combined. Therefore, compatibility with every
Python application was not an issue. Nonetheless, to ensure
better compatibility with common Python software, we are de-
veloping a custom version of the CPython interpreter, the most
used Python interpreter. Having a CPython-dsu interpreter will
allow Pymoult to be tested with more real-life Python software.

Updating Django proved that Pymoult can be used to
update real world software. Further experiments, such as
overhead measurement, are required before validating the use
of Pymoult for production software.

Pycots [11], a component model enabling architectural
reconfiguration of applications, is an example of the use of
Pymoult. The model is paired with a development process for
specifying reconfiguration and proving their corectness using
Coq before executing them using Pymoult.

The design of Pymoult is well suited for designing cus-
tomized updates for Python programs. Having a similar design
for different languages would be a good thing because it would
allow combining DSU platforms for updating complex appli-
cations made of several programs using different languages.
We are currently working on a C version of Pymoult as a
means to establish an equivalent design for C programs.

Pymoult is free software published under GPL License.
Its source code, as well as several examples can be found
on the project repository [12]. The example presented in
subsection IV is based on the “interactive” example.

ACKNOWLEDGEMENT
The work presented in this paper is funded by Brittany

regional council, as part of project IMAJD.

REFERENCES
[1] Channelinsider, “Unplanned IT Outages Cost More than $5,000

per Minute: Report,” http://www.channelinsider.com/c/a/Spotlight/
Unplanned-IT-Outages-Cost-More-than-5000-per-Minute-Report-105393,
2011, [Online; accessed 28-September-2015].

[2] E. Miedes and F. D. Muñoz-Escoí, “A survey about dynamic software
updating,” Instituto Univ. Mixto Tecnológico de Informática, Universitat
Politècnica de València, Tech. Rep. ITI-SIDI-2012/003, May 2012.

[3] H. Seifzadeh, H. Abolhassani, and M. S. Moshkenani, “A survey
of dynamic software updating,” Journal of Software: Evolution and
Process, 2012. [Online]. Available: http://dx.doi.org/10.1002/smr.1556

[4] C. A. N. Soules et al., “System support for online reconfiguration,” in
Proc. of the Usenix Technical Conference, 2003, pp. 141–154.

[5] S. Martinez, F. Dagnat, and J. Buisson, “Prototyping DSU techniques
using Python,” in HotSWUp 2013 : 5th Workshop on Hot Topics in
Software Upgrades, USENIX, Ed., 2013.

[6] J. Kramer and J. Magee, “The evolving philosophers problem:
Dynamic change management,” IEEE Trans. Softw. Eng., vol. 16,
no. 11, Nov. 1990, pp. 1293–1306. [Online]. Available: http:
//dx.doi.org/10.1109/32.60317

[7] H. Chen, J. Yu, C. Hang, B. Zang, and P.-C. Yew, “Dynamic software
updating using a relaxed consistency model,” IEEE Transactions on
Software Engineering, vol. 37, no. 5, 2011, pp. 679–694.

[8] M. Ghafari, P. Jamshidi, S. Shahbazi, and H. Haghighi, “An architectural
approach to ensure globally consistent dynamic reconfiguration
of component-based systems,” in Proc of the 15th Symposium
on Component Based Software Engineering, ser. CBSE. New
York, USA: ACM, 2012, pp. 177–182. [Online]. Available: http:
//doi.acm.org/10.1145/2304736.2304765

[9] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Safe and automatic
live update for operating systems,” in Proc of the International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS. New York, USA: ACM, 2013,
pp. 279–292. [Online]. Available: http://doi.acm.org/10.1145/2451116.
2451147

[10] S. Subramanian, M. Hicks, and K. S. McKinley, “Dynamic software
updates: A vm-centric approach,” in Proc of the Conference on
Programming Language Design and Implementation, ser. PLDI.
New York, USA: ACM, 2009, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/1542476.1542478

[11] J. Buisson, E. Calvacante, F. Dagnat, S. Martinez, and E. Leroux,
“Coqcots & Pycots: non-stopping components for safe dynamic re-
configuration,” in Proc of the 17th Symposium on Component-Based
Software Engineering, ser. CBSE, ACM, Ed., New York, USA, 2014,
pp. 85 – 90.

[12] S. Martinez, J. Buisson, F. Dagnat, A. Saric, D. Gilly, and A. Manoury,
“Pymoult,” https://bitbucket.org/smartinezgd/pymoult, 2008, [Online;
accessed 28-September-2015].

85Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 104 / 512

Aiming towards Modernization: Visualization to Assist Structural Understanding of Oracle
Forms Applications

Kelly Garcés, Edgar Sandoval,
Rubby Casallas, Camilo Álvarez

Los Andes University
School of Engineering

Department of Systems and Computing Engineering
Bogotá, Colombia

email:{kj.garces971,ed.sandoval1644,rcasalla,c.alvarez956}
@uniandes.edu.co

Alejandro Salamanca, Sandra Pinto, Fabian Melo
Asesoftware

Bogotá, Colombia
email:{asalaman, spinto, fmelo}@asesoftware.com

Abstract—Oracle Forms is a tool for creating screens that
interact with an Oracle database. It appeared in the eighties and
its use spread to many IT sectors today. There are pressures that
push software engineers to modernize Oracle Forms applications:
obsolescence of technology, requirements of users, etc. For a
straightforward modernization, it is necessary to comprehend the
applications from a prior step. This paper reports the preliminary
results of the ”Forms Modernization” project, in particular, of the
understanding step. In most cases, the understanding of Forms
applications is a complex and time-consuming task due to several
reasons: large size of applications, lack of design documentation,
lack of software organization. This paper proposes a visualization
process to alleviate these issues. The process takes static Oracle
Forms code as input and produces a set of domain specific
diagrams/views, that ranges from high to low abstraction levels,
as output. The gist of diagrams and views is to assist engineers
in a structural understanding of the Oracle Forms software. The
process includes algorithms for element discovery and clustering,
and is instrumented by means of a tool running on Eclipse
Modeling technologies. We take advantage of four real Oracle
Forms applications to illustrate the benefits of this approach.
These applications have been provided by Asesoftware, which is
the Colombian industrial partner of the project.

Keywords—program comprehension; reverse engineering; tools;
clustering algorithms; model-driven engineering; graphical editors.

I. INTRODUCTION

Software is constantly evolving; this evolution is motivated
by different reasons such as the obsolescence of a technology,
the pressure of users, or the need to build a single coherent
information system when companies merge [1]. Our research
lies in the field of software modernization, a kind of evolution,
that refers to the understanding and evolving of existing
software assets to maintain a large part of their business value
[2].

This paper presents the preliminary results of the ”Forms
Modernization” project, which involves academic and indus-
trial partners. The project arose as a result of some problems
faced by Asesoftware, a Colombian software company that
offers modernization services to its clients, regarding the desire
to migrate Oracle Forms applications to modern platforms (in
particular Java).

Oracle Forms appeared towards the end of the 1980s.

It comprises a rapid database application development en-
vironment and a runtime environment, where the database
applications run. Oracle Forms applications are present in
many sectors. Such is the case in Colombia as well as in
other countries. Results of a tool usage survey [3], carried out
by the Oracle User Group Community Focused On Education
(ODTUG) in 2009, indicate that 40 percent of 581 respondents
(application developers) use Oracle Forms.

The migration of Oracle Forms applications to new tech-
nologies is mainly caused by three factors: the fear that Oracle
desupports Forms, the difficulty to find Forms programmers,
and Forms no longer meeting business requirements.

Furthermore, the company, Asesoftware, complains about
the following three problems of manual modernization: i)
Difficulty to understand the Oracle Forms application, ii) Time-
consuming and repetitive migration, and iii) Poor testing. The
”Forms Modernization” project addresses these problems in
three phases. Here, we report the results of the phase that aims
to solve the first problem.

According to Lethbridge and Anquetil [4], the main dif-
ficulties when trying to understand legacy applications are
the following: i) lack of a directory hierarchy and of design
information, ii) original designers’ lack of knowledge of soft-
ware architecture, and iii) undermining of the original design
decisions as many additions and alterations were made. An
Oracle Forms system is not the exception to Lethbridge and
Anquetil’s claim about legacy software organization: it lacks
a directory hierarchy and the file names are not necessarily
meaningful. As a result, an inspection of this code, aimed at
understanding, is time consuming and error-prone.

To cope with this, Asesoftware organizes meetings with
the clients, where the latter transfer their knowledge regarding
application functionalities to the engineers in charge of the
modernization process. The purpose of these meetings is to
obtain a global understanding of the application’s functional
requirements, in order to ease the subsequent inspection of
the code as well as the migration process. Nevertheless, this
understanding remains in the mind of the engineers and it
is not reported in any formal document in a way that the
learning curve could be shortened for new people that enter
the modernization process.

This paper presents the proposed approach as a solution to

86Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 105 / 512

the understanding issue. The approach consists of a process
that takes a given Oracle Forms application as input and
produces a set of diagrams and views that give an insight into
the application’s structural organization as output. The pro-
cess includes algorithms for element discovery and clustering,
and is instrumented by means of a tool running on Model-
Driven engineering technologies. The resulting diagrams and
views are designed to satisfy three concrete understanding
challenges. When comparing our approach to related work
—either research work [5][6][7] or commercial tools (i.e.,
Oracle2Java [8], Evo [9], Jheadstart [10], Pitss [11], Ormit
[12])— we found that they only provide views with a low
level of abstraction, whereas our approach proposes diagrams
and views that range from high to low abstraction levels, thus,
contributing to the acceleration of the understanding of the
Oracle Forms program and aiming at modernization.

The paper is structured as follows: Section II describes
the main building blocks of Oracle Forms applications and
introduces four real Oracle Forms applications that serve as
illustrating examples. Through an example, Section III elabo-
rates on the understanding challenges that guide our research.
Section IV establishes certain criteria, classifies related work
according to it, and compares these works to our proposal.
Sections V and VI present our approach and the tool used
for instrumentation, respectively. Section VII describes how
the user interacts with the visualizations in order to achieve
an understanding. Section VIII elaborates on the results of
applying our proposal to the illustrating examples. Finally,
Section IX concludes the paper and outlines future work.

II. ORACLE FORMS OVERVIEW AND ILLUSTRATING
EXAMPLES

We present the main concepts of an Oracle Forms appli-
cation below:

• Form: A Form is a collection of objects and code,
including windows, items, triggers, etc.

• Blocks: Represent logical containers for grouping re-
lated items into a function unit to store, display and
manipulate records of database tables. Programmers
configure the blocks depending on the number of
tables from which they want to manipulate the form:
◦ The way to display a single database table in

a form is to create a block. This results in a
single table relationship between the form and
the table.

◦ The way to display two tables that share a
master-detail relationship (i.e., ”One to Many”
relationship) is through two blocks. Oracle
Forms guarantees that the detail block will
display only records that are associated with
the current record in the master block. This
results in a master/detail relationship between
the form and the two tables.

• Item: Items display information to users and enable
them to interact with the application. Item objects
include the following types: button, check box, display
item, image, list item, radio group, text item and/or
user area, among others.

• Trigger: A trigger object is associated to an event.
It represents a named PL/SQL function or procedure
that is written in a form, block or item. PL/SQL
is the Oracle procedural extension of SQL. PL/SQL
allows programmers to declare constants, variables,
control program flows, SQL statements and APIs. A
useful Oracle Forms API written in PL/SQL is the
one offering procedures for form displaying, i.e., the
OPEN/CALL statements.

• Menu: Is displayed as a collection of menu names
appearing horizontally under the application window
title. There is a drop-down list of commands under
each menu name. Each command can represent a
submenu or an action.

These concepts are found in the examples that will be used
throughout the paper. These examples are aligned with four
real applications related to treasury, banking and insurance
sectors. These applications will be referred to as Conciso,
Servibanca, Maestro, and Sitri. The following information is
useful in order to give an idea about the application’s size:
the number of forms ranges from 83 to 178, referenced tables
from 101 to 200, blocks from 361 to 765 and triggers from
2140 to 4406.

III. CHALLENGES ILLUSTRATED BY AN EXAMPLE

Using a concrete example, this section presents the chal-
lenges we face. Suppose a form of Conciso has to be modern-
ized in two senses: i) evolution towards a new technology,
and ii) introduction of a small modification to the initial
functionality. The form allows manipulating deductions from
an Employee’s withholding tax. The modification consists in
taking into account the deductions to which an employee has
the right after making donations to institutions that promote
culture, sports and art at a municipal level. Specifically, this
modification should ensure that the user indicates a city, de-
partment and country in the form when the option of deduction
by donations to local institutions has been chosen.

We face the following challenges as we try to understand
the scope of the modernization at an application level:

A. Challenge 1: Functional modules and their relationships

This challenge concerns the following questions: What
is the functional module that contains the form subject to
modernization? Is this module related to another modules?

The fact of knowing the module that contains the form
subject matter of modernization helps engineers to delimit
the modernization scope. As we said in the introduction
Section,the Oracle Forms software often lacks documentation,
directory hierarchy and meaningful naming conventions; as a
consequence, the functional modules are hard to infer. This
is the case in the scenario where the client provides a folder
that contains 144 forms on the root, with no subfolders nor
documentation. Each form has a name that is the concatenation
of a prefix (e.g., CBF) and a 5-digit number. In addition, the
Oracle forms IDE only shows one form at a time, so that there
is no a notion of a forms container.

Furthermore, it is important to know the dependency
relationships between modules. A dependency relationship

87Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 106 / 512

between modules results when forms a1, a2, .., an call forms
b1, b2, .., bn, and the forms are contained in two different
modules A and B. Engineers can use this kind of relationship
as an indication about the potential impact that a modification
in the deduction form has on forms that belong to different
modules. As for the modules, it is also hard to derive the
relationships between modules in Oracle Forms. To do so,
it is necessary to inspect the form PL/SQL code and look
for CALL/OPEN statements directed towards another form.
Note that these statements are spread along the form elements,
which makes it difficult to discover the relationships between
modules.

B. Challenge 2: Relationships between forms and tables

When addressing this challenge one should be able to
answer the following questions: Which are the tables related
to the form that will be modernized? What is the type of
relationship between the form and the tables?

The relationships between forms and tables are important
because they suggest to engineers that they have to review,
more in detail, how changes in tables (for example, adding
a foreign key from the deduction table towards the city table
) impact form elements and their embedded PL/SQL code.
The amount of effort to find out the tables related to a form
depends on the type of relationship. Whereas single table and
master/detail relationships are relatively easy to discover, by
regarding the form navigation tree available on the Oracle
Forms IDE, relationships resulting from references to tables
embedded into the PL/SQL code are more time demanding
because the code is scattered throughout the form elements
(i.e. forms, blocks, items).

C. Challenge 3: Relationships between forms

This challenge includes providing an answer to the ques-
tion: Is there any form related to the form that will be
modernized? The purpose of this question is twofold: i) to
know if related forms have to be changed in order to fully
satisfy the functionality of the form after its modernization,
and ii) to figure out if changes to the form subject matter of
modernization impact the capabilities of the related forms. The
example mentioned at the beginning of this section illustrates
the first part of the purpose: it is important to know if there is
any form —currently calling the deduction form— that needs
to be modified in order to specify the different options of
deductions and display the deduction form in an appropriate
manner by taking into account the selection made by the user.
This challenge is related to the first one in the sense that the
relationship between two modules depends on the relationships
between the forms that are contained in the modules. The
mechanism to infer the relationships between forms is to
review the PL/SQL code seeking for CALL/OPEN statements.
Because this task has to be performed regardless of whether
the forms are in the same module or in two different modules,
it is very time consuming.

The challenges above are valid for multiple scenarios; they
motivate the approach we propose in Section V. However,
before elaborating on the approach, we present related work
that helps us establish a background regarding visualization
processes.

IV. RELATED WORK

In this Section, we establish criteria that help us classify
related research. For each criterion, we give a definition,
variations on how the criterion can be satisfied —which results
in categories—, and the position of each related work within
these categories. The Section ends by comparing our approach
to those found in related work.

A. Software systems

Tilley [13] has conducted extensive research into the use
of views as a form of program comprehension. He found
that numerous approaches focus on three different categories
of software: i) legacy systems, ii) web applications, and iii)
application design patterns. After considering the results of
referential databases, we resolved that Tilley’s criterion to
classify view-related works is still valid, and decided to use it
in our classification.

The legacy systems category encompasses traditional sys-
tems characterized as follows: monolithic, homogeneous, and
typically written in third generation procedural programming
languages. The purpose of related work within this category
[5][6][7] is to achieve an understanding of the system, that can
serve as a basis for its maintenance or for migration to newer
languages.

The second category comprises Web applications. These
systems often share many of the negative features of traditional
legacy systems (e.g., poor structure, little or no documenta-
tion). The gist of related work in this category [14][15] is to
understand the interaction behavior of the Web application, for
further development and maintenance.

Finally, the third category covers a broader range of
systems, including the software systems mentioned above.
However, the difference is that related research within this
category [16] specializes on design pattern recognition for
better comprehension. The provided views are important to
detect the critical points of an application for maintenance
purposes.

B. Process

This criterion describes the steps that are followed to gen-
erate software systems views. Most of the reviewed approaches
[5][6][7][14][16] agree with the following three steps: i) data
injection, ii) querying, and iii) visualization. The first step con-
sists in obtaining an in-memory representation from the input
software artifacts. The second step aims at building blocks
through the representation. Finally, the third step includes the
generation of views for the groupings of blocks that result from
the second step.

C. Input

This criterion indicates which kinds of inputs can be used
by the process mentioned above. Literature reports mainly
two kinds of inputs: i) Static input, and ii) Dynamic input.
A static input only refers to source code [5][6][7]. Dynamic
inputs, in contrast, are related to run-time information. Authors
[14][15][16] obtain the second kind of input by executing
scenarios that help them identify the invocation of a specific
software feature (e.g., field, method, web page). Commonly,
dynamic inputs are complemented by static inputs.

88Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 107 / 512

D. Source code language

This criterion points out the languages in which the source
code is written; there are two categories: i) language specific,
and ii) language independent. While the first category classifies
the works whose implementations can be applied to source
code written in a particular programming language, the second
category encompasses the tools that can be applied to a variety
of languages. Most of works [5][6][7][14][16] fall in the first
category, they reverse engineer applications written in PHP,
COBOL, Smalltak, C++, Oracle Forms. In contrast, there are
few approaches in the second category [17]. The strategy of
the latter is to develop bridges (i.e., programs, compilers,
grammars, transformations) that allow the authors to go from
the source code to an intermediate format on top of which the
views are built up.

E. Notation

This criterion determines whether the notation used in the
view is: i) standard, or ii) domain specific. The second option
is suggested over the first one in cases where the reverse
engineering task includes experts/users for which a customized
graphical notation results in straightforward comprehension
and communication. However, the second option implies a
higher development effort when compared with the first one:
while the first option can reuse existing viewers, the second
option often requires the construction of viewers from scratch.
The most disseminated standard notation among the articles
[5][14][17][18] is the Unified Modeling Language (UML),
in particular, class and sequence diagrams. Another popular
standard notation is the graph theory, where nodes and edges
are generic enough to represent any kind of software element
and relationship between elements. An example of an articles
that uses graph notation is [16]. In turn, the following are
articles that propose domain specific notations: [6][7].

F. Views

In this criterion, we take advantage of Lowe’s taxonomy
[19] to classify the proposed views according to related work.
Lowe et al. arrange the views in two categories: i) high
level, and ii) low level. The high level category covers the
views suitable to directly support program comprehension.
Examples of such representations are class interaction graphs,
lists of possible components/modules/subsystems, and archi-
tectural diagrams. On the other hand, low level views are
much too complex to provide any understanding of any non-
trivial program. Examples of low level representations are
basic block graphs, single static assignment representations,
call graphs, and control flow graphs. The following are some
related works that provide high level views: [5][6][14][16][18].
In turn, [7][18] fall on the low level view category.

G. Comparison

Taking into account the criteria mentioned above, we
compared our approach to related work —research work and
commercial tools included— and we reached the following
conclusions:

• Software systems: Similarly to [5][6][7], our approach
falls on the legacy system category.

Figure 1. View-generation process overview

• Process: Our solution overlaps all previously cited
solutions in the three steps of the view-generation
process.

• Input: In similar fashion to [5][6][7], our approxima-
tion takes only source code as input.

• Source code language: Our approach takes source
code written in Oracle Forms as input. That is, it
belongs to the language specific category as well as
[5][6][7].

• Notation: Like [6][7], our solution proposes a domain
specific notation.

• Views: There is a noticeable difference between our
approach and related work with respect to this cri-
terion. Our literature review points out [7] as the
sole scientific approach that provides views for Or-
acle Forms program understanding. The review also
includes a set of commercial tools (i.e., Oracle2java,
Evo, Jheadstart, Pitss, Ormit) that propose views for
the same purpose. In both cases, the views are of
two kinds: i) layout view and ii) application naviga-
tion tree. The layout view reflects how the graphical
elements are arranged on a form and displayed to
the user. The application navigation tree provides a
hierarchical display of all forms in an application as
well as the objects in each form —triggers, blocks,
program units, etc.—. In our opinion, these views
would be categorized as low level since they show
a high level of detail; in contrast, we provide not
only low level views but also high level ones, which
can accelerate the understanding of the Oracle Forms
program.

V. VIEW-GENERATION PROCESS

The view-generation process (see Figure 1) involves re-
verse engineering the Oracle Forms application and presenting
several different diagrams and views to the developers. These
diagrams and views can be further analyzed to determine
subsystems, the elements that compose these subsystems(e.g.,
forms, database tables), and the relationships between these
elements.

A. Data injection step

This step corresponds to data injection, which is the first
step of a classical view-generation process (see Section IV-B).

89Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 108 / 512

Figure 2. Module metamodel

As mentioned before, the purpose of this step is to obtain an
in-memory representation from the input software artifacts. In
our approach, we obtain an Abstract Semantic Graph (ASG)
from Forms files (.fmb, .mmb). While a .fmb file describes
a particular form, a .mmb file describes the menu from
which all the application forms are displayed. This ASG is
navigated to create model elements that conform to the Form
metamodel. The main concepts of this metamodel have already
been mentioned in Section II, namely forms, menus, blocks,
items, triggers, relationships and tables. It is worth noting that
we manage to extract not only the tables that are directly
referenced by blocks, but also table references embedded into
PL/SQL code. The reason to use models instead of the ASG
is that we use tools that easily build editors for diagrams and
views on top of models (see SectionVI).

B. Data querying step

This step corresponds to the second step of the view-
generation process, whose gist is to search for building blocks
through the representation. In our case, the representation is
the Form model mentioned in the previous step and we search
for elements such as modules, forms, tables, and relationships.
Then, the elements resulting from this search are represented in
another model, referred to as Module model. In contrast to the
former model —which is verbose—, the latter model contains
only the elements that matter in the visualization step. We
describe the main concepts of the module model below and,
then, the algorithms used to obtain it.

1) Module model: This model conforms to a metamodel
(see Figure 2) and its concepts are explained below:

• Application is the root element of the metamodel. It
describes the Oracle Forms application under study.

An application consists of a set of modules that are
related to each other.

• Module is a necessary concept because it works as a
container of Oracle Forms elements and their relation-
ships.

• ModuleRelationship represents the relationship be-
tween a pair of modules. A relationship going from
module A to module B means that A contains a form
that calls a form from B.

• Element describes Oracle Forms elements, i.e., forms
and tables.

• Form specifies an Oracle form.

• Table indicates a table referenced from a form.

• ElementRelationship represents a relationship between
a pair of Oracle Forms elements. An ElementRelation-
ship can be classified into one of the following four
sub-kinds.

• SingleTableRelationship is established between a form
and a table, when the form has a block that references
that table.

• MasterDetailRelationship is established between a
form and two tables, when the form has two blocks —
related via properties—, the tables are those referenced
by the blocks, and one of them has the master role and
the other one the detail role.

• PLSQLRelationship is established between a form
and a table, if the form has PL/SQL that contains
occurrences of the table name. A classic example
of this is the relationship created from a form with
a lookup field. The form contains a block with the
addition of one field that displays data from another
table. Such data is ”looked up” via PL/SQL code when
the form runs.

• FormCallRelationship is established between two
forms C and D, if form C contains CALL/OPEN
statements parametrized with the name of form D.

2) Algorithms: Two kinds of algorithms are necessary to
obtain a given module model:

1) Element discovery algorithm: This algorithm creates
appropriate model elements depending on the forms,
tables, and relationships found in the Forms model.

2) Clustering algorithms: One of the main concepts
in the metamodel is the Module. Having modules
makes the software easy to understand and, therefore,
to change. However, it is not always easy to get
the modules because legacy software organization is
often quite poor. To cope with this, previous works in
software comprehension[20][21] have used clustering
algorithms. A clustering algorithm arranges software
components into modules, by evaluating the rela-
tionships among these components. We have imple-
mented the following two clustering algorithms that
arrange the forms, tables and relationships discovered
by the Element discovery algorithm, into modules:

90Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 109 / 512

a) Menu-based clustering algorithm: This algorithm
takes a Forms model and its corresponding Module model
—which results from the Element discovery algorithm— as
inputs. From these two inputs, the menu-based clustering
algorithm is in charge of producing a new Module model
where the model elements (i.e., forms, tables, and relation-
ships) are arranged into modules. For each menu in the Forms
model, the algorithm inspects the commands in the respective
drop-down list until it reaches the commands that are calls
to forms. Then, the algorithm creates a module element —
whose name is the corresponding menu name— and groups
each form element within the module, according to the form
name indicated by the corresponding call. In addition, the
algorithm arranges the tables into the modules, following the
relationships existing between forms and tables. Asesoftware
Oracle Forms experts argue that there is good accuracy in
the resulting modules diagrams when looking at the menus;
however, they also point out that there is a lack of .mmb files
because Oracle Forms programmers prefer to create menus by
manually adding buttons through a .fmb file. We propose the
following algorithm to tackle this lack of .mmb files.

b) Table betweenness clustering algorithm: This algo-
rithm has four phases:

1) In the first phase, it takes a Module model —which
results from the Element discovery algorithm— as
input and produces a graph as output. In the graph,
the nodes represent forms, and an edge is established
between each pair of nodes (or forms) if they have
several tables in common.

2) In the second phase, the algorithm determines the
modules, that is, the subgraphs of the graph obtained
in the first phase. This algorithm identifies a subgraph
because its inner connections are dense, and the
outer connections among subgraphs are sparser. There
are several ways of identifying subgraphs, however,
due to the delivery dates of the project being so
close, we decided to use an existing method: the
Girvan-Newman algorithm [22]. Therefore, in the
second phase, our algorithm delegates the subgraph
construction to the Girvan-Newman algorithm. The
latter progressively finds and removes edges with the
highest betweenness, until the graph breaks up into
subgraphs. The betweenness of an edge is defined
as the number of shortest paths between all pairs
of nodes in the graph passing through that edge. If
there is more than one shortest path between a pair
of nodes, then each path is assigned equal weight
such that the total weight of all of the paths is
equal to unity; nonetheless, the betweenness value
for an edge is not necessarily an integer. Because
the edges that lie between subgraphs are expected
to be those with the highest betweenness values, a
good separation of the graph into subgraphs can be
achieved by removing them recursively.

3) In the third phase, our algorithm creates a module
element for each subgraph indicated in the Girvan-
Newman algorithm output. For each node in a sub-
graph, the algorithm groups into the module the
corresponding form element. To do so, the algorithm
follows two rules: i) If a subgraph has more than
one node (i.e., a form), the algorithm arranges the

Figure 3. Legacy modules diagram for Conciso (result of the Menu-
Based clustering algorithm)

forms (and referenced tables) within a new module
—whose name is the concatenation of a keyword and
a counter—; ii) If a subgraph has only one node, then
it is arranged into the isolated form module.

4) Finally, in the fourth phase, the algorithm arranges
the tables into the modules, by following the existing
relationships between forms and tables.

It is worth noting that the number of database tables in
common and the number of iterations of the Girvan-Newman
algorithm, that is, the parameters used in the first and second
phases, respectively, are given by the user and impact the
number of resulting modules as follows: A highest number of
database tables in common or a highest number of iterations
result in the following: i) a highest number of modules, which
are small in size because each of them contains few forms,
and ii) an big-sized isolated form module that contains a lot
of forms.

C. Visualization step

This step involves techniques that are of use to present the
gathered information via diagrams and views. These diagrams
and views are high-level or low-level representations that allow
developers to obtain a structural understanding of the system.
Basically, the diagrams have nodes and edges, and the views
look like tables. We describe the different aspects of diagrams
below: category (either low or high), purpose, notation, layout
and filters that ease their navigation. The Section ends by
presenting the information displayed in the table-like views.

1) Functional modules and their relationships: This dia-
gram belongs to the high-level category. Its main purpose is to
show how a legacy system is organized in terms of modules
or subsystems, and which are the relationships between the
modules of a system. A secondary purpose of the legacy
module diagram is to serve as an entry point for the Forms and
tables diagram. Figure 3 shows the diagram for Conciso, after
applying the menu-based clustering algorithm (the notation is

91Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 110 / 512

the same as in the table betweenness algorithm). The notation
used in both diagrams is explained below:

• An orange circle represents a Module. The circle label
is the module name, which can be changed by the user
into a more meaningful name. The size of the circle is
proportional to the number of form elements contained
within the module.

• A red arrow represents a ModuleRelationship.

The modules are radially arranged in descending order by
size. The module with the biggest size is positioned at three-
o’clock and the remaining modules are organized proceeding
clockwise. In addition, the diagram provides a filter that hides
ModuleRelationships.

2) Forms and tables diagram: This diagram falls into the
low-level category. It is available when one selects a module
from the legacy modules diagram. Its purpose is to show the
forms and tables contained in the module and the relationships
between them. Figure 4 shows excerpts from the Forms and
tables diagram of a module of the illustrating example (i.e.,
General Parameters). The notation that was used is explained
below:

• A green square represents a Form. The square label
is the form name (if present) or the file name that
corresponds to the form.

• A blue square depicts a Table. The label is the table
name.

• A red arrow indicates a SingleTableRelationship (see
Figure 4(a)).

• A pair of purple and black arrows indicates a Mas-
terDetailRelationship. In particular, the purple arrow
points to the master table and the black arrow to the
detail table (see Figure 4(b)).

• A green dotted arrow represents a PLSQLRelationship
(see Figure 4(c)).

The diagram layout is in charge of placing all the elements
in a way that the relationships intercept as little as possible.
Furthermore, the diagram offers filters that allow us to leave
all the relationships of a certain type visible in the diagram.

3) Forms call dependency diagram: This diagram belongs
to the low-level category. This diagram presents the call-graph
of the forms of an Oracle Forms application. Figure 5 shows
an excerpt from the Forms call dependency diagram of the
General Parameters module. The notation that was used is
explained below:

• A green circle represents a Form. The circle label is
a concatenation of the form name (if present) and the
file name that corresponds to the form.

• The arrows describe FormCallRelationships between
forms. In particular, a green arrow indicates an OPEN
statement and a red arrow a CALL statement.

The forms are arranged following a tree layout. In addition,
there are two kinds of filters: i) A filter that removes all
unconnected Forms from the diagram, and ii) A filter that,
if disabled, hides all FormCallRelationships.

(a) Single table relationship

(b) Master/detail relationship

(c) PLSQL relationship

Figure 4. Excerpt of Forms and tables diagram for Conciso.

Figure 5. Forms call dependency diagram for Conciso.

4) Migration views: This view falls into the low-level
category. It displays detailed information about an element,
when it is selected by the user from one of the aforementioned
diagrams.

• The Module migration view is displayed when a
module is selected from the legacy module diagram. It
shows the module’s weight and the forms and tables it
contains. Due to page restrictions, a figure illustrating
this view is not included. It is worth noting that
this view looks like the views below, but it displays
different information.

• The Form migration view is shown when a form
is chosen from the forms and tables diagram. It
demonstrates the detailed form name, the number of
canvases, and the blocks and program units declared
in the form (see Figure 6(a)).

• The Relationship migration view is offered when a
relationship is selected from the forms and tables
diagram. The view shows the relationship details ac-
cording to its type:
◦ In case of a MasterDetailRelationship, it points

out the master and detail tables, the Oracle
Form relationship, and the block.

◦ In case of a SingleTableRelationship, it shows
the table and the corresponding block.

◦ In case of a PLSQLRelationship, it shows the
table, the respective block, and the trigger
where the PL/SQL is embedded (see Figure

92Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 111 / 512

(a) Form migration view (b) PLSQL relationship migration
view

Figure 6. Migration view examples for Conciso.

6(b) that contains the most complex migration
view for relationships).

VI. TOOLING

We have built a tool that instruments our approach. The
components that comprise the tool architecture are described
below. Components 1 to 4 are part of an existing open
source infrastructure[23] that we used to build the tool, but
components 5 to 10 are built by us.

1) Eclipse: includes a basic platform (i.e. workbench,
workspace and team facilities) that is useful for the
development of extensions.

2) EMF: is a framework for building tools based on a
metamodel.

3) Acceleo: includes a feature that interprets the Object
Constraint Language (OCL). OCL is a language that
provides query expressions on any model.

4) Sirius: is a plug-in to create graphical editors that
allow edition and visualization of models. Sirius can
be classified into the approaches provided with DSL
constructs that serve to specify the graphical notation
of a view, e.g., rules to determine color/size of nodes
or edges, layout, etc. Sirius is applicable to any
domain, for example, a Sirius node can represent
a software system entity but also the member of a
family.

5) Domain metamodels: contains the Forms and Module
metamodels presented in Section V.

6) Forms injector: its purpose is twofold: i) to obtain a
form model from Forms files, and ii) to enrich the
Module model with PL/SQL relationships. In order
to meet the first purpose, we take advantage of the
JDAPI [24], which is an API to manipulate Forms
files. Thus, we navigate the ASG —resulting from
the JDAPI— and create model elements according
to the Forms metamodel classes. To attain the sec-
ond purpose, we adapt an existing PL/SQL ANTLR
parser.

7) Clustering algorithms: these algorithms have been
implemented as Java programs. In particular, the table

betweenness clustering algorithm takes advantages of
the betweenness centrality algorithm that comes with
the JUNG API [25].

8) Diagrams and views specification: A model that, con-
forming to Sirius constructs, specifies the graphical
notation of diagrams and views.

9) Customized layout: implements layouts beyond Sir-
ius’ default layouts (i.e., tree or composite). Cur-
rently, it contains the radial layout implementation,
useful in the legacy modules diagram.

10) Wizard: is a graphical interface that allows engineers
to configure visualization process aspects, that is, the
Form files path, the form to be processed and the
clustering algorithm.

VII. INTERACTION PATH

In this Section, we describe how the engineer, guided by a
set of questions —stated in the form of challenges— uses the
visualizations in order to achieve a progressive understanding
of the Oracle Application. Like in previous sections, Conciso
is used for illustration purposes.

A. Challenge 1: Functional modules and their relationships

The legacy modules diagram targets this challenge. Figure
3 shows the resulting diagram for Conciso. It contains seven
functional modules and zero relationships between modules.
We present below, how this diagram is obtained and how
engineers can take advantage of it and of adjacent tooling to
address Challenge 1. Given that Conciso includes .mmb files,
we selected the menu-based clustering algorithm option first,
from the visualization process wizard.

Once the process is finished, the view is derived; then, en-
gineers have two options to figure out which module contains
the deduction form —whose physical name is CBF55410—
. On the one hand, the first option consists of the following
two steps: i) To point each module displayed in the legacy
module diagram and ii) To look at the Migration properties
view of each module, until finding the deduction form in the
Contents list. On the other hand, the second option includes
the following three steps: i) To open Acceleo Interpreter, ii)
To point the root of the Module model and iii) To build an
OCL query to ask for the module tat contains the form.

Knowing that the module General Parameters contains
the deduction form, engineers go back to the diagram to see
the module properties: name, size, relationships, etc. The fact
that the module General Parameters has no ingoing/outgoing
relationships, is a signal to engineers that they only have to take
care of propagating changes inside the mentioned module (if
ever needed). There is no need to worry about other modules
when modifying the deduction form. In addition, the diagram
shows that there are no relationships between modules, which
indicates that Conciso modules are decoupled enough.

We decided to derive another legacy modules diagram for
Conciso. This time, we chose the table betweenness cluster-
ing algorithm from the visualization process wizard. When
comparing the result of this algorithm with the menu-based
clustering algorithm result, we observed no correspondences
with respect to the number of modules and their content.
This fact should not call into question the accuracy of the

93Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 112 / 512

algorithm. Instead, the reason for this disparity is that the
algorithm’s derive modules take into account different aspects
of software. On the one hand, the menu-based algorithm uses
the menu whose items are normally organized in terms of
user tasks. As a consequence, the resulting modules diagram
maps the final user mental model. On the other hand, the table
betweenness algorithm organizes modules taking into account
the tables common to different forms. Thus, the resulting
modules diagram maps an internal view of the software that
is potentially useful to developers. We conclude that in case
of having .mmb files, engineers can use the two clustering
algorithms results as complementary perspectives. However,
in case of lacking .mmb files, the table betweenness is a good
starting point for structural understanding.

B. Challenge 2: Relationships between forms and tables

Now, we describe how forms and the table diagram ad-
dress this challenge. When located in the General Parameters
module, engineers can navigate the forms and tables diagram
until finding the deduction form. Engineers can focus the form
following two alternative paths: manual scrolling or an Acceleo
query. At the beginning, the diagram shows the relationships
between all the forms and tables in the module (i.e. 19 single
table, 37 master/detail and 407 PL/SQL relationships), which
makes it difficult to focus on the elements that matter. Here is
where the filters gain prominence: it is suggested that engineers
firstly switch off all filters and, then, progressively turn on each
one of them, going from the simplest (i.e., the single table
filter) to the more complex (i.e., the PL/SQL filter). Every time
a new filter is activated, engineers should analyze the resulting
relationships. As an output of filtering, engineers conclude
that the deduction form has only a master/detail relationship
with two tables, where the master is CP MONEY TYPE and
the detail CP CURRENCY TYPE (see Figure 4(b)). From
this, they obtain knowledge about the tables whose change
may impact the deduction form in any way. Subsequently,
engineers should complement their knowledge with database
information, in order to get a more precise insight about the
nature of the impact. A benefit of the diagram, when compared
with the manual approach, is that it points out only the tables
that are relevant to the form —which would likely speed up
the impact study.

C. Challenge 3: Relationships between forms

This paragraph describes how the Forms call dependency
diagram targets the third challenge. Once the diagram is
generated, engineers can observe that several forms have no
dependencies with others. At this point, it is recommended
to apply the filter Single Elements to leave only the forms
that share dependencies. After filtering, engineers obtain the
diagram shown in Figure 5. Given the call relationship between
form CBF55400 and the deduction form, engineers can infer
that changes in the former will likely impact the latter. Then,
engineers need to complement their knowledge with an exter-
nal source (e.g., the Oracle Forms navigation tree) in order to
specify the kind of impact on the related form. Like the Forms
and table diagram, the forms call diagram benefit —when
compared to a manual approximation— is that it limits the
number of forms that have to be inspected during a subsequent
impact review.

VIII. APPLYING APPROACH TO ILLUSTRATING EXAMPLES

To demonstrate the applicability of our approach, we have
obtained visualizations, not only for Conciso but for all the
applications mentioned in Section II. Below, we present a
table that summarizes what we noticed regarding the resulting
diagrams for these applications. Ultimately, we analyze the
table data by taking the challenges into account. All tests were
executed on a machine with a Windows 7 operative system,
Intel Xeon dual core processor and 12 GB of RAM.

TABLE I. Visualization statistics for all applications

Criteria Conciso Maestro Servibanca Sitri
Clustering
Algorithm

Menu
-based

Table
betweenness

Table
betweenness

Menu
-based

Modules 7 7 10 69
Module
relationships 0 6 5 1

Forms 144 155 83 178
Forms
and tables
relationships

Master 87 52 42 95
Master
Detail 47 43 23 61

PL/SQL 958 1234 462 1832
Forms
relationships 3 154 30 1

Processing
time
(seconds)

62 83 49 90

• Modules and relationships between modules: The
module row shows the application size in terms of
modules; it ranges from 7 to 69. The latter number
indicates not only that Sitri is the largest one from a
functional perspective, but also that its menu may be
complex due to the large number of options (i.e., 69).
In turn, the modules relationships row demonstrates
that the modules of Conciso and Sitri have a low
coupling. Given that the menu-based clustering was
used to derive the ”legacy modules diagrams” for
Conciso and Sitri, we conclude —from the number
of module relationships— that each menu option calls
forms that are not called from another menu option.
In addition, the modules relationships row shows that
Maestro and Servibanca have the highest coupling
when compared with the rest of the applications. The
rationale behind this result is related to the table
betweenness algorithm parameters (i.e., number of
database tables in common and number of iterations).
It is worth emphasizing that the relationships between
modules summarize the relationships between forms
contained in different modules. This is the reason why
the number of the former relationships is less than the
number of the latter relationships.

• Forms and relationships between forms and tables:
There is a correlation between these rows and the
processing time row. The processing time results show
that the time spent on the visualization process ranges
from 90-50 seconds. The value for each application
depends on the application size: the more forms
and relationships (either single table, master/detail or
PL/SQL), the longer the processing time. For example,
Sitri, with the highest processing time, contains much
more forms and relationships (i.e., 178 and 1988,
respectively) than the rest of the applications.

94Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 113 / 512

• Relationships between forms: As shown in this row,
Conciso and Sitri have few relationships between
forms (i.e., from 1 to 3); this occurs because, in these
applications, most forms work as independent units
accessed through a menu. In contrast, Maestro and
Servibanca have much more relationships (i.e., from
30 to 154); the reason is that these applications have
no .mmb files. Instead, menus are created manually by
adding buttons in .fmb files. As a result, many forms
are dependent on these .fmb files.

IX. CONCLUSION AND FUTURE WORK

This article proposes a visualization approach for Ora-
cle Forms applications. The diagrams and views have been
designed having the ease of modernization in mind. This
approach has two main benefits, which were discussed in Sec-
tion VIII and can be summarized as follows: i) The proposed
visualization aids engineers to obtain an understanding of the
application. This knowledge can be useful to determine the
modernization scope at different abstraction levels: At a high
abstraction level, it shows modules that could be potentially
impacted by a change made to a form. At a low abstraction
level, it points out forms and database tables that are likely
affected by the change. ii) The second benefit concerns the
productivity of engineers: when compared with the manual
inspection of Oracle Forms assets, our visualization approach
should reduce the understanding effort in terms of time. This
claim will be formally validated by means of a focus group,
before project closure.

Also, we outline the four fronts on which we are working
on below: i) As was mentioned in Section VIII, the proposed
visualization gives an initial knowledge that has to be com-
plemented with information coming from other sources. The
navigation from our tool to these sources and vice versa can be
tedious, therefore, we are currently working on the integration
of the most common source —the Oracle Forms IDE— into
our tool; ii) The possibility to reorganize the modules from
the diagrams in a way that the new organization is maintained
during the migration process; iii) A new functionality that
allows engineers to add information to the diagrams —this in-
formation could summarize the knowledge they have acquired
from the visualizations and from external sources, such as final
users—; iv) Finally, a new visualization that looks like a table
to display application statistics —such as number of forms,
blocks, trigger, etc.— would be desirable. These statistics can
be helpful for engineers to estimate modernization costs.

REFERENCES

[1] F. Fleurey, E. Breton, B. Baudry, A. Nicolas, and J.-M. Jézéquel,
“Model-driven engineering for software migration in a large industrial
context.” in MoDELS, ser. Lecture Notes in Computer Science, vol.
4735. Springer, 2007, pp. 482–497.

[2] J. Izquierdo and J. Molina, “An architecture-driven modernization tool
for calculating metrics,” Software, IEEE, vol. 27, no. 4, pp. 37–43, 2010.

[3] M. Riley. (2009) Choosing the right tool. [Online]. Available:
http://www.oracle.com/partners/campaign/o49field-084396.html.
[Accessed: April, 2015]

[4] T. C. Lethbridge and N. Anquetil, “Advances in software engineering,”
H. Erdogmus and O. Tanir, Eds. New York, NY, USA: Springer-
Verlag New York, Inc., 2002, ch. Approaches to Clustering for Program
Comprehension and Remodularization, pp. 137–157.

[5] G. Ramalingam and et al., “Semantics-based reverse engineering of
object-oriented data models,” in IN PROC. INTL. CONF. ON SOFT-
WARE ENG. ACM Press, 2006, pp. 192–201.

[6] R. Bril and et al., “Maintaining a legacy: Towards support at the
architectural level,” Journal of Software Maintenance, vol. 12, no. 3,
pp. 143–170, 2000.

[7] O. Sanchez Ramon, J. Sanchez Cuadrado, and J. Garcia Molina,
“Model-driven reverse engineering of legacy graphical user interfaces,”
Automated Software Engineering, vol. 21, no. 2, pp. 147–186, 2014.

[8] Composer technologies. Oracle forms to java. [On-
line]. Available: http://composertechnologies.com/migration-
solutions/oracle-forms-to-java/. [Accessed: April, 2015]

[9] VGO Software. Evo. [Online]. Available: http://www.
vgosoftware.com/products/evo/walkthrough.php. [Accessed: April, 2015]

[10] Oracle. Jheadstart. [Online]. Available:
http://www.oracle.com/technetwork/developer-tools/
jheadstart/overview/jhs11-fomrs2adf-overview-130955.pdf.
[Accessed: April, 2015]

[11] Pitss. Re-engineering edition-Pitss. [Online]. Available: http:
//pitss.com/us/products/application-re-engineering-edition/.
[Accessed: April, 2015]

[12] Renaps. Ormit. [Online]. Available: http://www.renaps.com/
ormit-java-adf.html. [Accessed: April, 2015]

[13] S. Tilley, “Documenting software systems with views vi: Lessons
learned from 15 years of research & practice,” in Proceedings of the
27th ACM International Conference on Design of Communication, ser.
SIGDOC ’09. New York, NY, USA: ACM, 2009, pp. 239–244.

[14] M. Alalfi, J. Cordy, and T. Dean, “Automated reverse engineering of uml
sequence diagrams for dynamic web applications,” in Software Testing,
Verification and Validation Workshops, 2009. ICSTW ’09. International
Conference on, 2009, pp. 287–294.

[15] G. A. Di Lucca, A. R. Fasolino, and P. Tramontana, “Reverse en-
gineering web applications: the ware approach,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 16, no. 1-2,
pp. 71–101, 2004.

[16] T. Richner and S. Ducasse, “Recovering high-level views of object-
oriented applications from static and dynamic information,” in Software
Maintenance, 1999. (ICSM ’99) Proceedings. IEEE International Con-
ference on, 1999, pp. 13–22.

[17] E. Duffy and B. Malloy, “A language and platform-independent ap-
proach for reverse engineering,” in Third ACIS International Conference
on Software Engineering Research, Management and Applications,
2005, 2005, pp. 415–422.

[18] C. Bennett and et al., “A survey and evaluation of tool features for
understanding reverse-engineered sequence diagrams,” J. Softw. Maint.
Evol., vol. 20, no. 4, pp. 291–315, 2008.

[19] W. Lowe, M. Ericsson, J. Lundberg, T. Panas, and N. Petersson,
“Vizzanalyzer - a software comprehension framework,” in Proc. of 3rd
Conference on Software Engineering Research and Practise in, 2003,
pp. 127–136.

[20] N. Anquetil and J. Laval, “Legacy software restructuring: Analyzing a
concrete case,” in 15th European Conference on Software Maintenance
and Reengineering, 2011, pp. 279–286.

[21] S. Mancoridis, B. Mitchell, Y. Chen, and E. Gansner, “Bunch: a
clustering tool for the recovery and maintenance of software system
structures,” in IEEE International Conference on Software Maintenance,
1999, pp. 50–59.

[22] M. Girvan and M. E. Newman, “Community structure in social and
biological networks.” Proceedings of the National Academy of Sciences,
vol. 99, no. 12, pp. 7821–7826, 2002.

[23] Eclipse Community. Eclipse. [Online]. Available: https:
//eclipse.org/. [Accessed: April, 2015]

[24] Oracle. JDAPI documentation. [Online].
Available: http://www.oracle.com/technetwork/developer-tools/
forms/documentation/10g-forms-091309.html. [Accessed: April, 2015]

[25] J. O’Madadhain. JUNG - Java Universal Network/Graph
Framework. [Online]. Available: http://jung.sourceforge.net/.
[Accessed: April, 2015]

95Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 114 / 512

Effects of Recency and Commits Aggregation on Change Guide Method

Based on Change History Analysis

Tatsuya Mori†, Anders Mikael Hagward‡,†, Takashi Kobayashi†

† Graduate School of Information Science & Engineering, Tokyo Institute of Technology,
2–12–1 Ookayama, Meguro, Tokyo, Japan

‡ School of Computer Science and Communication, KTH Royal Institute of Technology,
Stockholm, Sweden

Email: {tmori, anders, tkobaya}@sa.cs.titech.ac.jp

Abstract—To prevent overlooked changes, many studies on change
guide, which suggest necessary code changes with using co-change
rules extracted from a change history, have been performed.
These approaches support developers to find codes that they
should change but have not been done yet when they decide
to commit their changes. The recommendations by existing
approaches are adequately accurate when the tools find can-
didates. However, these tools often fail to detect candidates of
overlooked changes. In this study, we focus on two characteristics
to increase the opportunity of recommendation to detect more
overlooked changes: one is the consideration of recency, i.e.,
we use only recent commits for extracting co-change rules, and
the other is the aggregation of commits for the same task,
i.e., we aggregate consecutive commits fixing the same bug. We
investigate the effects of our methods on the quality of co-change
rules. Experimental results using typical Open Source Software
(OSS) show that the consideration of recency can improve the
recommendation performance. Our approach can extract more
useful co-change rules and recommend more overlooked changes
in a higher rank than without the consideration of recency.

Keywords–change guide; software repository mining; commit
history; software maintenance.

I. INTRODUCTION

As the structure of a software program is scaled up, the
effort for the ripple effect analysis [1] significantly increases
during maintenance, such as bug correction and implementing
new features. For the quality of the product, it is important
to complete modifications. To prevent overlooked changes,
many change guide methods based on static analysis (SA)
have been proposed to analyze the scope of change effects [2].
However, these approaches detect many static dependencies
include ones unrelated to the change propagation [3]. Further,
SA-based approaches fail to find all of necessary dependencies
[4]. It cannot find dependencies between codes and non-code
elements, such as configuration files and ones through third
party libraries.

To overcome the limitations of SA-based change guide
methods, studies focusing on the analysis of a software change
history in version control system has been performed. These
approaches leverage implicit dependencies (aka. logical cou-
pling [5]) extracted from a change history with data mining
techniques.

By using association rule mining, an association between
code changes are extracted as rules that indicate “if a file is

changed, it is highly possible that another file is changed at
the same time”. We refer to those rules as co-change rules.
Zimmermann et al. proposed a co-change recommendation
tool, eROSE, that extracts co-change rules from a change
history and recommends code elements (e.g., methods or
fields) as possible future changes [6]. Their experimental
results showed the usefulness of co-change rules for the change
guide task. They achieved quite high accuracy for the change
recommendation with eROSE. However, the coverage of their
recommendation is a few percent; their approach often fails to
detect candidates of overlooked changes.

We consider that it is important to expand the coverage
for detecting overlooked changes. To increase the opportunity
of change guide, we address this low-coverage issue of co-
change rules based change guide. In this paper, we propose
methods to improve the quality of co-change rules. We focus
on two characteristics of change history. One is rececy, i.e.,
how recent the commit was done, and the other is task, i.e.,
which task the commit was related to.

The dependencies that cause change effect become altered
along with the project being a long life. That means that the
files that had been changed in early term of development might
have no dependencies currently. When we use all of the past
change histories, we might fail to extract useful dependencies
as a consequence of such noise dependencies. We form a
hypothesis that we can extract co-change rules strongly related
to current changes by considering recency.

When partial changes for a bug fix had been overlooked in
past, a developer may have already found these overlooked
changes and corrected them. We should treat these change
history as a single commit for a bug fix to capture the actual
co-change relation. This problem can be generalized as the
granularity of commits. Not only for unintended separation,
the granularity of commits also depends on the nature of
developers and projects. For example, while some developers
commit all changes for one task, others may commit changed
files in separate revisions for the same task. The difference
between developers commits behavior might introduce noise
for analysis of change history.

In this study, we investigated effects of the consideration
of recency and the aggregation of consecutive commits fixing
the same bug on the performance of change guide based on
analyzing change history. We formalize our study with the
following two research questions:

96Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 115 / 512

RQ1 Can we improve the effectiveness of change rec-
ommendations with the consideration of recency?

RQ2 Can we improve the effectiveness of change rec-
ommendations with the aggregation of consecu-
tive commits fixing the same bug?

The main contributions of this paper are:

• We empirically confirm the usefulness of co-change
rules to recommend overlooked changes by using three
large OSS projects.

• We indicate that we can recommend more overlooked
changes significantly by considering recency as a
result of an experiment. Moreover, we can recommend
correct overlooked changes in a higher rank than
without the consideration of recency.

• We also show that we can improve the performance of
recommendation by aggregating consecutive commits
fixing the same bug depending on the projects.

Structure of the Paper. Section II discusses the related
work. Section III describes the experimental setup. Section
IV presents the results of experiments. Section V mentions
threats to validity. Section VI closes with conclusion and
consequences.

II. RELATED WORK

In this section, we survey the related work in the fields
of logical coupling and change guide based on change history
analysis. We also survey the related work using some methods
that we focus on in our study.

A. Logical Coupling
Gall et al. extracted dependencies between files that have a

chance to be changed at the same time by analyzing a change
history of a software system stored in version control system,
e.g., Concurrent Versions System (CVS) or Git [5]. They called
those dependencies “logical coupling.” Logical coupling can
represent implicit dependency that can not be extracted by
static analysis. Lanza et al. proposed Evolution Radar [7]. This
tool integrates both file-level and module-level logical coupling
information and visualizes those logical couplings. Alali et
al. investigated the impact of temporal and spatial locality
on the results of computing logical couplings [8]. Wetzlmaier
et al. reported insights about logical couplings extracting
from the change history of commercial software system [9].
They indicated resulting limitations and recommend further
processing and filtering steps to prepare the dependency data
for subsequent analysis and measurement activities.

Zimmermann et al. proposed eROSE [6]. This tool extracts
method-level logical couplings and recommends code elements
as possible future changes. eROSE extracts logical couplings
as association rules by association rule mining. Zimmermann
et al. performed an experiment to evaluate a performance of
recommendations by eROSE in the scenario that “when a
developer decides to commit changes to the version control
system, can eROSE recommend related changes that have not
been done yet?” As a result of the experiment, Precision of
recommendations by eROSE was 0.69. That means that 69%
of recommendations were correct. The recommendations by
eROSE were adequately accurate. However, Recall was 0.023.
(Note that they showed Recall was 0.75 in their paper. How-
ever, they calculated this value without the ratio of occurrence

of their recommendations. We recalculated actual Recall as the
product of their Recall and their Feedback.) That means that
only 2.3% of overlooked changes could be recommended. The
performance of recommendations by eROSE is satisfactory, but
we are motivated to recommend more overlooked changes.

B. Change guide based on change history analysis
Kagdi et al. proposed sqminer [10]. This tool uncovers

the sequences of changed files spuriously and decreases false
recommendations. Gerardo et al. showed that Granger causality
test can provide logical couplings that are complementary to
those extracted by association rules. They built hybrid rec-
ommender combining recommendations from association rules
and Granger causality. Their experimental results indicated that
the recommender can achieve a higher recall than the two
single techniques [4].

C. Consideration of Recency
In the field of data mining related to segmentation in

direct marketing, Recency, Frequency, and Monetary (RFM)
analysis is often performed [11][12]. RFM means how recently
a customer has purchased (recency), how often they purchase
(frequency), and how much the customer spends (monetary).
On the other hand, an association rule mining is often used
in the field of change guide for developers, and this method
takes only frequency (how often the files are co-changed in
the same commit) into account. The dependencies that cause
change effect become altered along with the project being a
long life, so co-change rules extracted from very old commits
might be useless currently. We form a hypothesis that if we also
take recency into account for an association rule mining, we
can extract co-change rules strongly related to current changes.

D. Aggregation of Commits related to the same task
McIntosh et al. investigated the dependency between source

code files and build files. In their research, they aggregated
commits related to the same task for an association rule
mining to reduce the noise caused by inconsistent developer
commit behavior [13]. They aggregated commits based on
information extracted from Issue Tracking System and called
those aggregated commits “work item”. They found that work
item is a more suitable level of granularity for identifying co-
changing software entities rather than a single commit. An
aim of their study is detecting the logical couplings between
production code changes and build files. On the other hand, an
aim of our study is detecting and recommending overlooked
changes using logical couplings between source code files, but
we think that we can use the same technique for our study.

III. EXPERIMENTAL SETUP

In this section, we describe the tools that we implemented
for our experiments, a dataset, experimental settings to address
our research questions, and evaluation metrics to evaluate the
quality of recommendations.

A. Experimental Environment
We implemented LCExtractor for our experiments. LCEx-

tractor extracts co-change rules by using an Apriori algorithm
[14]. A co-change rule has a form of “A ⇒ B”. The notation
“A ⇒ B” means “if A is changed, it is highly possible that B is
changed at the same time.” “A” and “B” are called the left-hand

97Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 116 / 512

TABLE I. HISTORY OF ANALYZED PROJECTS

Project # Commits in Git since
Eclipse JDT 21,378 2001–2014
Firefox 395,466 1998–2014
Tomcat 13,824 2006–2014

side and the right-hand side, respectively. The left-hand side is
a set of files, and the right-hand side is a file. There are some
differences between LCExtractor and eROSE. LCExtractor
extracts file-level co-change rules, whereas eROSE extracts
method-level change rules. eROSE is an Eclipse plugin. On
the other hand, LCExtractor is the tool that spuriously makes
the situation, where a file that should be changed is overlooked,
and evaluate whether LCExtractor can recommend this over-
looked file or not. Therefore, LCExtractor can not recommend
to developers actually. However, LCExtractor is superior to
eROSE in some ways. LCExtractor can track renamed files
and deleted files in a change history. Due to this extension,
LCExtractor can recommend renamed files using co-change
rules extracted from files before renamed, and exclude deleted
files from candidate recommendations. LCExtractor extracts
co-change rules by analyzing change history in a modern
version control system, Git or Subversion, whereas eROSE
extracts co-change rules by analyzing change history in CVS.

Let us explain the process of LCExtractor recommendation.
We set the range of target commits, e.g., the latest 1,000
commits. LCExtractor extracts co-change rules using older
commits before the target commit. LCExtractor spuriously
makes the situation, where one file that should be changed is
forgotten to commit, by removing a file from the target commit.
Finally, LCExtractor recommends files using co-change rules
and evaluate those recommendations. LCExtractor performs
above processes iteratively for each target commit in order of
old to new. Note that LCExtractor uses commits treated as
targets in previous iterations for extracting co-change rules.

This tool was executed on an iMac Retina 5k, Late 2014,
with a 4GHz Intel Core i7 and 32GB main memory, running
Apple OS X Yosemite.

B. Dataset
For our experiments, we analyzed the change history of

three large open-source projects (Table I). We cloned all of
the commit histories of those projects as of December 2, 2014,
from GitHub.

C. Consideration of recency
To investigate how the consideration of recency affects a

performance of change recommendations, we compared the
case when we used only recent 5,000 commits older than a
target commit for extracting co-change rules, to the case when
we used all of the commits older than a target commit. We
refer to the latter case as a baseline. Concerning Firefox, we
used 20,000 commits older than a target commit instead of all
of the commits for the baseline. It is because the total number
of commits was very large (about 400,000) and it was difficult
for LCExtractor to use all of them for calculating co-change
rules.

The Apriori algorithm used in LCExtractor required two
parameters: minimum support (minsup) and minimum confi-
dence (minconf). We set minsup to be 0.0025 for Eclipse

and Firefox, and 0.001 for Tomcat. We set minconf to be
from 0.1 to 0.9 in steps of 0.1 for each project. As described
in Section III-A, we need to set the range of target commits.
In this experiments, we use 2,000 commits as target commits
for Eclipse, 5,000 commits for Firefox, and 3,000 commits for
Tomcat.

D. Aggregation of consecutive commits fixing the same bug
To investigate how the aggregation of consecutive com-

mits fixing the same bug affects a performance of change
recommendations, we compared the case when we aggregated
consecutive commits fixing the same bug, to the case when
we did not aggregate. We refer to the latter case as a baseline.
In the former case, we referred to a commit message of each
commit and checked if the commit message contains a bug id.
If the commit message partially matched one of the following
regular expressions, we assumed that the commit was fixing a
bug.

• bug[# \t]*[0-9]+
• pr[# \t]*[0-9]+
• Show\ bug\.cgi\?id=[0-9]+

If the messages of consecutive commits contain the same
bug id, we aggregated them, i.e., we treated them as one
commit. In our experiment, we did not take other information
of commits (e.g., author or an interval between each commit)
when we aggregated them.

In this experiment, we used all of the commits older than
a target commit for extracting co-change rules, i.e., we did
not consider recency. Concerning Firefox, we used 20,000
commits older than a target commit instead of all of the
commits as we did in Section III-C. The settings of two
parameters (minsup and minconf) and the range of target
commits were same as Section III-C.

E. Evaluation Metrics
The most important aim of our study is a prevention of

overlooked changes. We used an evaluation setting that was
similar to the error prevention setting in [6] to evaluate the
quality of recommendations. We used Precision and Recall
for the metrics of recommendations. Precision represents the
accuracy of the recommendations. Recall represents the ratio
that the expected files are recommended. Because our aim
is a prevention of overlooked changes, Recall is important
rather than Presicion. In our experiments, the expected rec-
ommendation is only one file. As a result of this experimental
setting, it is possible that Precision become low unfairly
due to many false positives. To evaluate an accuracy of our
recommendations, we also use Mean Reciprocal Rank (MRR).
This metric is not used in [6]. The high MRR score means
that the expected files are recommended in a higher rank.
For example, if most of the expected files place top three
recommendations, MRR is higher than 0.33. The definition
of the metrics for co-change rules is described as follows.

Let the set of co-change rules be Rule = {(l1, r1),
(l2, r2), ..., (lm, rm)}, where li is the left-hand set of files and
ri is the right-hand file described in Section III-A. Let commit
history be Commit = {com1, com2, ..., comn}, where comi

is the set of files. For every changed file c ∈ comi, let
recomi,c be the recommended file set from the changed files

98Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 117 / 512

without c, as described below. In this experiments, c represents
a overlooked change file.

recomi,c =
∪

(lj ,rj)∈Rule

{
rj (if lj ⊆ (comi − {c}))
∅ (else)

(1)

For every overlooked change file c ∈ comi, let ranki,c be
the rank of {c} in recommendations ranked by confidence.
The confidence is one of the measure to evaluate the quality
of an association rule [15]. If the recommended file set do
not contain {c}, ranki,c is 0. Next, we define feedbacki,
precisioni, recalli, and mrri for each comi (note that |{c}|
is always 1).

feedbacki =
1

|comi|
∑

c∈comi

{
1 (if recomi,c ̸= ∅)
0 (else)

(2)

precisioni =
1

feedbacki · |comi|
∑

c∈comi

|recomi,c ∩ {c}|
|recomi,c|

(3)

recalli =
1

|comi|
∑

c∈comi

|recomi,c ∩ {c}|
|{c}|

(4)

mrri =
1

feedbacki · |comi|
∑

c∈comi

1

ranki,c
(5)

Similar to [6], we calculated precisioni with feedbacki
as the denominator, in the sense of “the accuracy of when
the recommendation was displayed.” If feedbacki was 0 (no
recommendation is displayed at this commit), we did not
calculate precisioni and excluded this commit from calcu-
lating PrecisionM . Unlike [6], we calculated recalli without
feedbacki as the denominator, in the sense of “the rate of
detecting overlooked changes for all commits, regardless of
whether of not the recommendation is displayed.” Similar to
Precision, if feedbacki was 0, we did not calculate mrri
and excluded this commit from calculating MRR. Finally,
let PrecisionM , RecallM and MRR be the average of
precisioni, recalli and mrri. Additionally, we define the
F -measure by calculating the harmonic mean of PrecisionM

and RecallM to evaluate the performance of recommenda-
tion comprehensively because there is a trade-off between
Precision and Recall.

Commit∗ = {comi|comi ∈ Commit, feedbacki ̸= 0} (6)

PrecisionM =
1

|Commit∗|
∑

comi∈Commit∗

precisioni (7)

RecallM =
1

|Commit|
∑

comi∈Commit

recalli (8)

TABLE II. MAXIMUM F -MEASURE

Project Considering recency Baseline
Eclipse JDT 0.137 (minconf: 0.5) 0.063 (minconf: 0.5)
Firefox 0.374 (minconf: 0.8) 0.362 (minconf: 0.8)
Tomcat 0.204 (minconf: 0.4) 0.167 (minconf: 0.4)

MRR =
1

|Commit∗|
∑

comi∈Commit∗

mrri (9)

F -measure = 2 · PrecisionM ·RecallM
PrecisionM +RecallM

(10)

IV. EXPERIMENTAL RESULT

We performed two experiments. In this section, we describe
results of each experiment.

A. RQ1: Can we improve the effectiveness of change recom-
mendations with the consideration of recency?

Figure 1 shows the relations between PrecisionM and
RecallM , and the relations between MRR and RecallM for
each project with varying minconf . The red curve represents
the case when we consider recency, and the blue one represents
a baseline.

Figure 1.(a), Figure 1.(c), and Figure 1.(e) show that
RecallM increased with the consideration of recency although
PrecisonM slightly decreased in all projects. As we aim to
find more overlooked changes rather than to make the recom-
mendations more accurate, that is a good result. Particularly
regarding Eclipse, RecallM significantly increased. In Figure
1.(a), a maximum RecallM is 0.28 with the consideration of
recency whereas a maximum RecallM of the baseline is 0.11.
That means that we could detect 2.5 times more overlooked
changes by considering recency than the baseline.

As a result of considering recency, PrecisionM is slightly
decreased. It is because the number of recommendations in-
creased with consideration of recency, i.e., many false positives
decreased PrecisionM even if the set of recommendations
contained a expected recommendation. However, in the view-
point of MRR, the recommendations with consideration of
recency were more accurate than the baseline. In Figure 1.(b)
and Figure 1.(d), MRR clearly increased with consideration
of recency. That means that we could recommend overlooked
changes in a higher rank with consideration of recency than the
baseline. Regarding Tomcat, shown in Figure 1.(f), we could
not improve MRR with consideration of recency. We consider
that it is because MRR was already high without consideration
of recency.

Table II shows a maximum F -measure of each project in
the case of considering recency and a baseline. For all of the
projects, a maximum F -measure achieved by consideration
of recency is higher than the baseline. That means that the
quality of the recommendations by consideration of recency
was comprehensively better than the baseline.

99Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 118 / 512

Eclipse	
 Firefox	
 Tomcat	

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

0" 0.1" 0.2" 0.3" 0.4"

Pr
ec
is
io
n�

Recall�

With"
recency"
Baseline"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0" 0.1" 0.2" 0.3" 0.4"
M
RR
�

Recall�

With"recency"

Baseline"

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

0" 0.1" 0.2" 0.3"

Pr
ec
is
io
n�

Recall�

With"recency"

Baseline"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0" 0.1" 0.2" 0.3"

M
RR
�

Recall�

With"recency"

Baseline"

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

0" 0.1" 0.2" 0.3"

Pr
ec
is
io
n�

Recall�

With"recency"

Baseline"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0" 0.1" 0.2" 0.3"

M
RR
�

Recall�

With"recency"

Baseline"

(a)	

(b)	

(c)	

(d)	

(e)	

(f)	

Figure 1. Performance of recommendations by considering of recency and baseline with varying minconf .The upper graphs show a relation between
PrecisionM and RecallM . The lower graphs show a relation between MRR and RecallM .

� �
The answer to RQ1 is Yes. If we consider recency, we
can extract useful co-change rules that are not able to
be extract without consideration of recency. Therefore,
Recall of recommendations increase with consideration
of recency. Although Precision slightly decrease, we can
recommend overlooked changes in a higher rank than
without consideration of recency.� �

B. RQ2: Can we improve the effectiveness of change recom-
mendations by the aggregation of consecutive commits fixing
the same bug?

Figure 2 shows the relations between PrecisionM and
RecallM for each project with varying minconf . The yellow
curve represents the case when we aggregate consecutive
commits fixing the same bug, and the blue one represents a
baseline.

In Figure 2.(a) and Figure 2.(c), we could not improve
both RecallM and PrecisionM . However, regarding Firefox,
shown in Figure 2.(b), RecallM increased with the aggregation
of consecutive commits fixing the same bug. That means that
we could extract useful co-change rules that were not able to be
extract without aggregation of consecutive commits fixing the
same bug depending on projects. As a result of an additional
investigation, it is reveal that the number of commits used for
extracting co-change rules drastically decreased by aggregating
for Firefox (from 20,000 to 15,918), whereas the number
of those slightly decreased by aggregating for Eclipse (from
21,378 to 21,098) and Tomcat (from 13,824 to 13,661). We
found that the effect that we aggregate consecutive commits
fixing the same bug depended on a nature or commit policy
of the project.

Table III shows a maximum F -measure of each project
in the case of aggregating consecutive commits fixing the
same bug and a baseline. Regarding Firefox, a maximum

TABLE III. MAXIMUM F -MEASURE

Project Aggregating commits Baseline
Eclipse JDT 0.063 (minconf: 0.5) 0.063 (minconf: 0.5)
Firefox 0.414 (minconf: 0.8) 0.362 (minconf: 0.8)
Tomcat 0.167 (minconf: 0.4) 0.167 (minconf: 0.4)

F -measure achieved by aggregation of consecutive commits
fixing the same bug is higher than the baseline. Regarding
Eclipse and Tomcat, maximum F -measure of two cases
are same because we could not improve both RecallM and
PrecisionM as previously described. That means that the
quality of co-change rules can be improved by aggregation
of consecutive commits fixing the same bug in some cases.
Moreover, we also found that aggregation of commits did not
affect the performance of recommendation in a negative way.� �

The answer to RQ2 is, in some cases, Yes. If we aggregate
consecutive commits fixing the same bug, we can extract
useful co-change rules that are not able to be extract
without aggregation of commits depending on projects.
Even if we can not extract more useful co-change rules
by aggregation of commits, there is no harmful effect.� �

V. THREATS TO VALIDITY

Threats to internal validity relate to errors in LCExtractor
and parameter settings. We have carefully checked our code,
however still there could be errors that we did not notice. In
our experiments, we set minsup to be 0.0025 for Eclipse
and Firefox, and 0.001 for Tomcat. It is possible that those
values were not appropriate. At the moment, we have no
method that decide an appropriate minsup prior to performing
experiments.

100Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 119 / 512

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

0" 0.1" 0.2" 0.3" 0.4"

Pr
ec
is
io
n�

Recall�

With"
aggrega5on"

Baseline"

(b)	

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

0" 0.1" 0.2" 0.3"

Pr
ec
is
io
n�

Recall�

With"aggrega5on"

Baseline"

(c)	

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

0" 0.1" 0.2"

Pr
ec
is
io
n�

Recall�

With"aggrega5on"

Baseline"

(a)	

Eclipse	
 Firefox	
 Tomcat	

Figure 2. Relation between PrecisionM and RecallM by aggregating of commits and baseline with varying minconf .

Threats to external validity relate to the generalizability
of our results. We have analyzed 3 different projects. In the
future, we plan to reduce this threat further by analyzing more
change histories from additional software projects.

Threats to construct validity relate to the experimental
settings. We defined using recent 5,000 commits older than a
target commit for extracting co-change rules as consideration
of recency in the first experiment. However, we did not
perform experiments with changing the number of commits
for extracting co-change rules. In the future, we plan to reduce
this threat further by performing experiments with changing
the number of commits used for extracting co-change rules. In
the second experiment, we aggregated commits based on only
bug id information extracted from commit messages. If we
extract more information from Issue Tracking System or Bug
Tracking System and use them, we might aggregate commits
more appropriately.

VI. CONCLUSION AND FUTURE WORK

Numerous studies for supporting developers to find neces-
sary code changes with using co-change rules extracted from
the change history have been performed. However, the scope
of overlooked changes that existing tools can recommend is
limited. In this paper, we focused on the consideration of
recency and the aggregation of consecutive commits fixing the
same bug. We investigated how they affected the performance
of recommendations by using typical OSS (Eclipse, Firefox,
and Tomcat). As a result of experiments, we could recommend
more overlooked changes by considering recency. We also
could recommend correct files in a higher rank than recom-
mendations without consideration of recency. Concerning the
case when we aggregated consecutive commits fixing the same
bug, we found that the performance of recommendations can
be improved depending on projects.

In the future, we plan to perform experiments using more
change histories from additional software projects to generalize
our theory. In this paper, we indicate that we can improve
the performance of recommendations by considering recency.
However, we suppose that we can not extract useful co-change
rules if we use the small set of commits, e.g., only 10 commits
older than a target commit. We plan to investigate how many
recent commits are sufficient to extract useful co-change rules.

ACKNOWLEDGMENT

This work is partially supported by the Grant-in-Aid for
Scientific Research of MEXT Japan (#24300006, #25730037,
#26280021).

REFERENCES
[1] S. S. Yau, J. S. Collofello, and T. MacGregor, “Ripple effect analysis

of software maintenance,” in Proc. COMPSAC’78, pp. 60–65.
[2] L. C. Briand, J. Wust, and H. Lounis, “Using coupling measurement

for impact analysis in object-oriented systems,” in Proc. ICSM ’99, pp.
475–482.

[3] M. M. Geipel and F. Schweitzer, “Software change dynamics: evidence
from 35 java projects,” in Proc. FSE 2009, pp. 269–272.

[4] G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta, “Using
multivariate time series and association rules to detect logical change
coupling: an empirical study.” in Proc. ICSM 2010, pp. 1–10.

[5] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history,” in Proc. ICSM ’98, pp. 190–198.

[6] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” IEEE TSE, vol. 31, no. 6,
2005, pp. 429–445.

[7] M. D’Ambros, M. Lanza, and M. Lungu, “The evolution radar: Visual-
izing integrated logical coupling information,” in Proc. MSR 2006, pp.
26–32.

[8] A. Alali, B. Bartman, C. D. Newman, and J. I. Maletic, “A preliminary
investigation of using age and distance measures in the detection of
evolutionary couplings,” in Proc. MSR 2013, pp. 169–172.

[9] T. Wetzlmaier, C. Klammer, and R. Ramler, “Extracting dependencies
from software changes: an industry experience report,” in Proc. IWSM-
MENSURA 2014, pp. 163–168.

[10] H. Kagdi, S. Yusuf, and J. I. Maletic, “Mining sequences of changed-
files from version histories,” in Proc. MSR 2006, pp. 47–53.

[11] P. C. Verhoef, P. N. Spring, J. C. Hoekstra, and P. S. Leeflang, “The
commercial use of segmentation and predictive modeling techniques
for database marketing in the netherlands,” Decision Support Systems,
vol. 34, no. 4, 2003, pp. 471–481.

[12] J. A. McCarty and M. Hastak, “Segmentation approaches in data-
mining: A comparison of rfm, chaid, and logistic regression,” Journal
of business research, vol. 60, no. 6, 2007, pp. 656–662.

[13] S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and A. E. Hassan,
“An empirical study of build maintenance effort,” in Proc. ICSE 2011,
pp. 141–150.

[14] P. Bondugula, Implementation and Analysis of Apriori Algorithm for
Data Mining. ProQuest, 2006.

[15] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in ACM SIGMOD Record,
vol. 22, no. 2, 1993, pp. 207–216.

101Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 120 / 512

Towards Flexible Business Software

Ahmed Elfatatry
Information Technology Department

Alexandria University
Alexandria Egypt

elfatatry@alexu.edu.eg

Abstract—Software flexibility is a multidimensional
problem. Solving one side of the problem might not enhance
the situation significantly. This work is motivated by both
the problem of software flexibility and the need for a
solution for highly volatile business software. The work
presented here is based upon ongoing research into software
flexibility. The main contribution of this work is the
proposal of a new framework to facilitate frequent changes
in both the business layer and the presentation layer.
Among systems that benefit from such design are workflow
systems and document oriented.

Keywords-Software Flexibility; Document Oriented
Systems; presentation layer

I. INTRODUCTION
Software flexibility is the ease with which a software

system can be modified in response to changes in system
requirements. Software flexibility is a multidimensional
problem. Solving one side the problem may not improve
the situation significantly. When software is built out of
layers, often, applying changes to one layer affects other
layers.

 Changing one part of a system may require changing
a number of related parts; this is known as the
"propagation effect" of change. Each of the related parts
may need to be dealt with differently. For instance, a
change request may affect business rules, user interface,
and data. Each of these facets needs to be designed in a
way that facilitates change.

The focus of this work is flexibility in business
software systems. While all software systems could be
subject to change, business software systems are more
likely to change as result of their changing environments.
Flexibility problems in business systems vary according
to the type of the system. Business software systems
include business information systems, workflow systems,
and document oriented systems [1]. In workflow systems,
for instance, modelling techniques produce tightly
coupled systems [2]. Minimal change in business
requirements may require the change of many parts of a
given model. A case in point is the model adopted by the
Workflow Management Coalition (WFMC) which
embeds transition information within activities [3]. As a
result, changing the sequence of activities may require

rewriting such activities. Other models integrate business
rules within the specification of the activities. This results
in activities that are complex and hard to maintain.

A Document-Oriented Application (DOA) is a type of
business applications that is built around business
documents. User interface in DOAs is both stage-based
and role-based where it displays and manipulates
business documents in several stages for different roles.
Such characteristics bring about a common requirement
for applying consistent stage-based and role-based
presentation behaviour throughout the entire application.

Adapting DOA after it has been deployed in
production usually involves allowing business-experts to
change business rules including specifications about
stages and/or roles for business documents. Combining
this requirement with the stage-based and role-based
characteristics brings about a design challenge: the
application should be designed to support flexibility both
in the business layer and the presentation layer. In other
words, the changes made to the business layer should also
affect the presentation layer in a consistent manner.

This paper is structured as follows. In Section 2, the
problem of building flexible business systems is
analysed. Section 3 introduces a framework for dealing
with flexibility issues. The evaluation of the proposed
work in presented in Section 4. Section 5 discusses the
contribution of the work and outlines the future
extensions.

II. PROBLEM AND MOTIVATION
Large changes in business requirements naturally

lead to large changes in the supporting software systems.
When small changes in business requirements lead to
large changes in the supporting software system, this
indicates the presence of a design problem. In this work,
flexibility related problems are classified into two main
classes. Each class exposes a different perspective of the
system.

A. User Interface problems
An important class of business software is Document

Oriented Applications (DOA). A Document Oriented
Application is a type of business applications that is built

102Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 121 / 512

around business documents. In such systems, work
procedures are done by exchanging documents according
to some rules related to both the persons using the
documents and the state of the given document. A case in
point is the exchange of legal documents in a court.
Current approaches used in building DOAs fail to solve
the issue of reflecting changes in business logic to user
interface in a way that retains flexibility [4]. Such
approaches have a number of problems discussed below.

• Violating the separation of concerns concept by
injecting large crosscutting concerns into user interface
[5]. Crosscutting concerns are software features whose
implementation is spread across many modules in the
form of tangled and scattered code [6]. For example,
reflecting presentation behaviour for the active role using
current approaches of security architectures results in
software that has application code tangled with security
code. Such tangling makes it difficult to change security
architecture once the software has been deployed [7].

• Concealing the high abstract view of business logic
behind presentation changes and blending it within the
presentation code. This hardens any attempts to
understand or extract business logic that leads to a
specific behaviour.

• Producing inflexible solutions that cannot cope with
changes in business rules. This leads to DOAs that lose
its ability to adapt change once it has been deployed in
production. The typical solution to modify or to include
new business rules requires a new cycle of development
and testing for each modified rule.

• Preventing business-experts who have the required
knowledge in a business domain from participating in
adapting DOAs. Usually, business experts do not
understand programming languages and therefore they
cannot directly change the application [8]. Instead, they
have to wait for IT-professionals to implement new
business rules and to change the behaviour of the user
interface.

B. Modelling Problems
Decisions at the conceptual level strongly affect

flexibility. The chosen model of decomposition has a
direct effect on the cost of change. This sub-section
outlines a number of problems that may result from the
modelling phase.

 Inability to respond to frequent changes of
business processes. Most workflow modelling techniques
produce tightly coupled systems. A minimal change in a
business attribute may require the change of many parts
of a given model. For instance, the model adopted by the
Workflow Management Coalition [WFMC] embeds
transition information within activities [3]. As a result,
changing the sequence of activities may lead to rewriting
of the activity body itself. Other models integrate

business rules within the specification of the activities
[9]. Such activities are complex and hard to be
maintained.

 Model inconsistency. The addition or deletion of
tasks, relationships, or rules at runtime may cause system
inconsistencies especially when changes are done in an
ad-hoc manner [10]. Consider a simple order processing
where the billing step and the shipping step take place at
same time. Assume that a change at run time is made so
that the shipping step is performed after the billing step.
If at the time of the change, a job had started with
shipping, it will never perform the billing step according
to the instructions of the new procedure. Thus, a
customer will not be billed for the goods that he receives.
If there are a large number of jobs being in the same
situation at the time of change, then a large number of
customers will not be billed. This is a very simple
example of a "dynamic bug". Many of these bugs are
much more difficult to detect and can have unexpected
effects. In the following section, the proposed framework
addresses these problems.

C. Research questions
The previous discussion of flexibility problems leads

to a number of research questions. First: how can we
build user interfaces that can accommodate changes in
other layers of the software system? Second: how can
workflow systems be more adaptive to change?

III. THE PROPOSED FRAMEWORK
To address the issues described above, we propose a

framework for flexibility. The following sub sections
describe the proposed framework.

D. Conceptual view
The proposed framework defines a workflow as a set

of activities as shown in Figure 1. The upper part of the
figure shows a design time view of a workflow. The
lower part of the figure shows the runtime view of the
figure. A workflow consists of one or more activities
ordered according to some transition flow rules.
Transition flows are not embedded within activities. They
are modelled as first class entities. Each activity is
assigned to a specific role according to binding
conditions. Role binding rules postpone the assignment of
an activity to an available user until runtime [11].

At runtime, activities are bounded to the appropriate
services through service requests. Business rules can be
bound to workflow at any time during its life cycle,
providing the ability to customize the workflow while it
is executed.

103Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 122 / 512

E. 3.2 Presentation Behaviour Layer (PBL)
In typical DOAs, a system is divided into three

layers: Data-Access layer, Business layer and
Presentation layer. In the proposed approach, we
introduce a fourth layer: Presentation-Behaviour Layer
(PBL) as shown in Figure 2. The main goal of this
layer is to provide a mechanism for applying
presentation changes in a consistent manner.

The PBL externalizes the logic of applying
presentation-behaviours instead of hard coding it within
the presentation layer. This externalization provides
support for building flexible DOAs. The PBL consists of
(PBM) and Presentation-Behaviours Run-time
(PBR). The PBM is responsible for defining and storing
presentation behaviours, while the PBR is the responsible
for applying such behaviours during the runtime. The
arrows show that PL uses services from BL and BL uses
services from DAL. Arrows on the left, show the
interaction between PBL and PL in response to a given
change.

Presentation-Behaviour Model (PBM). The PBM
consists of state machines and sequence flows. Each state
diagram describes the behaviours that the system should
apply at each stage of the process. One of the main
objectives of PBM is to externalize and store full
specifications about presentation changes outside the
presentation code. The specifications are stored in XML
documents which contain all the information required to
describe how and when to apply presentation
behaviours. When a change happens, it is analysed to its
atomic element and then reflected to the presentation
behaviour layer.

State machines. State machines are the ideal
placeholders to store specifications about presentation
behaviour for each process stage. They are suitable for
representing the stages of business documents. In
contrast to other approaches that blend presentation
behaviour within the source code, the state diagrams keep
the original definition of these behaviours inside the
BPM model. Obviously, this simplifies the
understanding of business rules that lead to a specific
presentation behaviour. In addition, storing
presentation behaviours in state diagrams representations
rather than source code allows business-experts to
participate in the development process by defining
presentation behaviours for each business requirement.

In the proposed approach, we employ state
diagrams to store specifications about business
processes and their related presentation behaviours.
Therefore, we need to store extra specifications about
presentation behaviours for each combination of a stage
and a role.

State: a state corresponds t o a document stage
i n a business process. Usually the state identifies a
significant point in the lifecycle of a business
process.

Actions: an action represents a business logic that
should run to perform a business task. In our approach,
actions are modelled as sequence diagrams which

Business Rules Transition Flow Data Flow

Workflow Activity Role

Service request

Constraints,
Actions, Events

Workflow instance

Message

Service instance
Running state

User

Has

Scheduled by Send/receive

Consist
of

Assign
ed to

 Role
binding

conditions

Events guide the
execution of

Govern and manage

Mapped into

Service discovery and
invocation

invoke

uses

D
es

ig
n

V
ie

w

Im
pl

em
en

ta
tio

n
V

ie
w

Figure 1. Design View & Implementation View

Figure 2. Presentation Behavior Layer

104Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 123 / 512

provide simplicity and flexibility. Operations and
Transitions are concrete forms of actions. From the
user interface perspective, actions (Operations and
Transitions) are reflected to user interfaces as tasks that
can be triggered by end-users.

Transitions: a transition represents a change
in the document stage. The transition connects a
source to target state. At any given time only one
transition can be executed for each document.

Guard conditions: a guard condition is an
optional specification that describes business rules. It has
to be evaluated before a transition can be executed.

Operations: an operation represents a business
logic that should run to perform a business task.
Operations can range from simple and common actions
such as CRUD (Create, Retrieve, Update, and Delete)
operations, to complex and custom tasks such as
"Calculating Taxes".

Attributes: an attribute represents a document
element that can be entered, modified and displayed.
The concept of attributes is introduced to the proposed
state diagrams to allow presentation behaviours to be
defined at the granularity of attributes.

Roles: the role-based nature of business documents
requires proper communication with access control
model. In the proposed approach, we enriched state
diagrams to define access controls for each element in
each stage.

Specifying Presentation Behaviour. The
proposed state machines have additional attributes that
describe presentation behaviour. The objective of these
attributes is to provide specifications that allow PBR to
apply presentation changes automatically to user
interfaces. The additional attributes deal with the
following issues.
• Controlling tasks. User interfaces in document
oriented applications provide end-users with a set of tasks
that are appropriate for both active stage and role.
Storing specifications about such tasks allows PBR to
display proper tasks upon each stage change. Definitions
of tasks include both visual and functional aspects. These
specifications transform the tasks from being code-
oriented to a higher and more abstract form. Such form
is more business-expert oriented. It treats tasks as
standalone elements that can be granted to or denied to
certain roles.

•Controlling default presentation modes and
exceptions. A document stage usually defines whether
the user interfaces allow end-users to modify
document information or not. The default mode allows
readers to easily figure-out the expected behaviour
especially in user interfaces that represent documents
with large set of attributes.

• Controlling common handlers. The architecture
of business documents results in common and
redundant operations that could be applied to any
document instance. For instance, all business
documents provide common business operations such
as CRUD operations, validation handlers, state
transitions and etc. Although these operations are
usually written centrally in the data access layer
(DAL) and the business layer (BL) respectively,
however, the code that calls them and displays their

results to end-users is usually written in each user
interface. Externalizing the decisions to activate or
deactivate such common operations into the
definitions of state machines provides more flexibility
to adapt user interfaces according to the
characteristics of each document stage.
• Controlling default authorization mode and its
exceptions. Similar to the presentation mode, the
default authorization mode simplifies defining
authorizations to document information.
• Controlling role access. Although the default
authorization mode discussed above facilitates the
definitions of implicit authorizations, however, there is
a need in some situations to define access roles in the
granularity of attributes, transitions, and
operations. We believe that this part is the most
complex and is responsible for most of the
crosscutting code.

IV. EVALUATION
At the architectural level, software quality attributes

such as flexibility are hard to measure using direct
quantitative measures. Other indirect methods are more
suitable for the nature of this work. Two methods have
been adopted to evaluate this work. The first method
examines the effects of different types of changes on the
proposed system and compares the results to those of
traditional workflow systems. The second method
evaluates this work by cross-referencing the features of
this solution and a number of flexibility requirements.

A. Comparing the proposed framework with
related work

One way to measure the success of the proposed
solution to achieve flexibility is to test it on different
scenarios of change and compare the ease of change with
the results of traditional workflow management systems.

A common area of change in businesses is policy
change. Policy changes usually have a substantial effect
on workflows. Existing workflow models deal with
business policies and rules in different ways. Usually,
workflow systems introduce only a limited type of
constraint that could be defined within an activity as a
transition condition. Modeling business policies with
such a model will be very hard. It may only be modeled
as a new activity with different behavior, and different
pre and post conditions which leads to a complex design.

Another way to model policies is to use a rule based
workflow model. The entire workflow composition logic
is specified in the form of if/then rules. Such a model
determines the boundaries of a workflow, and leaves the
freedom to the designer to specify the transitions between
the activities. The workflow components such as
activities, flows, roles, business policies are expressed in
terms of activities built in process specification. This
results in processes that are not modular, complex, and
hard to maintain. In such a case, business rules are hard
to change without affecting the core composition of the
model. This way of modeling decreases the flexibility of
the workflow.

105Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 124 / 512

The Proposed model introduces rules as a first class
abstraction that governs and guides workflow execution.
Each rule has enforcement conditions which state when
and how such a rule is enforced inside the flow. Rules are
not embedded within processes. Change in policies is
enforced by changing related rules. This principle makes
the workflow more simple and easy to maintain.
Workflow enactment engine enforces policies by
checking rules related to each step before performing it.
Rules do not only govern activities but also govern role
binding, services specifications, and exception handling.

The Model-View-Controller (MVC) is a software
pattern for implementing the separation of concerns
concept in the implementation of software systems. The
work presented here focuses on providing a mechanism
for reflecting changes on the presentation layer
specifically.

SNATA defines service oriented architecture for N-
tier application [11], however, it does not provide a
mechanism for change propagation between layers.

B. Matching the features of the solution to the
specified flexibility requirements

The proposed solution has been evaluated against a
set of flexibility requirements. This set of requirements is
derived from a number of well-established software
engineering principles such as abstraction, separation of
concerns, and loose coupling. The requirements are
discussed below.

R1: Support model evolution. Evolution of
workflows occurs over time as a result of changing tasks,
priorities, responsibilities, and people. Modifications
should be allowed at design time as well as at runtime.
The proposed solution allows structural changes as well
as behavioural changes. Structural changes allow model
evolution. The Rule manager provides an interface to
accomplish this requirement.

R2: Allow function/provider decoupling. The
provider of a specific functionality may not be specified
until runtime. Hard coding such information at design
time leads to systems that are not flexible. In the
proposed solution, activities are implemented as services.
Services are selected according to some criteria that may
not be known until runtime. Service selection constraints
are sent through service requests to each running instance
to select a suitable service and source of provision. A
new activity or behaviour could be added at runtime to
allow composition of a complex task.

R3: A workflow has to provide an integrated
multiple view of a business system.
A workflow model has to provide high level of
abstraction, and support visualization of its parts. The
Proposed framework combines an activity based model,
role model and a rule based model. A business system
may be viewed from one or more perspectives: roles,
processes, or rules. The proposed framework provides a
multi-view modeling of a business system.

R4: Support the management of evolving
workflow schema. Changes in business environment
have to propagate to running workflow instances. A
robust management system has to support propagation of

change to running instances in a consistent way. The
presented work didn’t address this requirement.

V. CONCLUSION
The main contribution of this work is the

introduction of a framework for dealing with change
in business software. The focus is on workflow
systems and user interface in document oriented
systems.

A major drawback of current approaches for
building document oriented applications is neglecting the
impact of change in business rules on user interfaces. The
result is having systems that are hard to change when
business requirements change. While it may be easy to
change the code related to business rules, the impact of
such changes on the user interface may cause undesirable
knock-on effect. For instance, many researches focus on
how to provide flexibility in the business layer by
providing workflow based solutions. However, the impact
of such changes on user interface is usually ignored.

It is necessary that flexibility should be addressed in
each logical layer and also between different
communicating layers. That is why it is common that
many business applications that provide flexibility in
the business layer and also provide flexibility in
presentation layer fail to sustain flexibility across the
boundary between the two layers.

To address such problems, we introduced the
Presentation Behaviour Layer (PBL) as a solution of
providing flexibility between business layer and
presentation layer. We believe that, the PBL can
eliminate most of the crosscutting concerns usually
found in document oriented applications to apply
presentation changes while keeping flexibility. In
addition, the visual representation of PBMs allows
business-experts to modify their applications based on
business rules without the need to touch the source code.

Building flexible workflow systems comes at a cost.
The main cost is the implementation efficiency. While
separating roles, business rules, and invocation
conditions, leads to a flexible design, it certainly adds
processing overhead.

Although a complete analysis of flexibility problems
and limitations has been discussed, the proposed solution
has mainly focused on modelling problems. Runtime
limitations still need more research. Currently, we are
working on enhancing the performance of workflow
engines. The ongoing work focuses on the development
of more propagation strategies and building workflow
engines able to efficiently weave rules with activities.

Three medium sized companies with average of seven
developers each have been chosen to implement the
proposed framework. The framework will be applied to
existing systems that are subject to frequent change
requests. A comparison between the performance before
and after using the framework will be published later.

REFERENCES
[1] C. Wiehr, N. Aquino, K. Breiner, M. Seissler and G. Meixner,

"Improving the flexibility of model transformations in the model-
based development of interactive systems," in Proceedings of the
13th IFIP TC 13 international conference on Human-computer

106Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 125 / 512

interaction - Volume Part IV, Lisbon, Portugal, 2011,pp. 540-543.
[2] S. Bhiri, G. Khaled , O. Perrin and C. Godart, Overview of

Transactional Patterns: Combining Workflow Flexibility and
Transactional Reliability for Composite Web Services, Springer
Berlin / Heidelberg, 2005, pp. 440-445.

[3] WfMC, "Interface 1: Process Definition Interchange," [Online].
[Accessed May 2015].

[4] O. Chapuis, D. Phillips and N. Roussel, "User interface façades:
towards fully adaptable user interfaces," in Proceedings of the 19th
annual ACM symposium on User interface software and
technology, Montreux, Switzerland, 2006, pp 309-318.

[5] A. Marot, "reserving the separation of concerns while composing
aspects on shared joinpoints," in 4th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2009, Orlando, Florida,
USA., 2009, pp. 837-839.

[6] A. Sabas, S. Shankar, V. Wiels and M. Boyer, "Undesirable Aspect
Interactions: A Prevention Policy," in Theoretical Aspects of
Software Engineering, Joint IEEE/IFIP Symposium, Montreal,
Montreal, QC, Canada, 2011, , pp. 225-228.

[7] G. Chao, "Human-Machine Interface: Design Principles of Visual
Information in Human-Machine Interface Design," in IHMSC '09
Proceedings of the 2009 International Conference on Intelligent
Human-Machine Systems and Cybernetics, IEEE Computer
Society Washington, 2009, pp. 262-265.

[8] M. Mike and D. Dwight , "End user developer: friend or foe?," J.
Comput. Small Coll., vol. 24, no. 4, pp. 40-45, April 2009, pp. 42-
49, 2009.

[9] T. Sterling and D. Stark, "A High-Performance Computing
Forecast: Partly Cloudy," Computing in Science and Eng., vol. 11,
no. 4, pp. 42-49, 2009.

[10] M. Blake, A. Bansal and S. Kona, "Workflow composition of

service level agreements for web services," Decision Support
Systems, vol. 53, no. 1, April 2012, pp. p. 234–244,.

[11] A. Elfatatry, Z. Mohamed and M. Eleskandarany, "Enhancing
Flexibility of Workflow Systems," 80 Int.J. of Software
Engineering, IJSE, vol. 3, no. 1, pp. 79-92, 2010.

[12] T. . C. Shan and W. H. Winnie , "Solution Architecture for N-Tier
Applications," in Proceedings of the IEEE International
Conference on Services Computing, September 2006, pp. 234-
244.

[13] C. Ackermann, M. Lindvall and G. Dennis, "Redesign for
Flexibility and Maintainability: A Case Study," in Software
Maintenance and Reengineering, Kaiserslautern, Germany, 2009,
2009, pp. 259-262.

[14] A. Bruno, F. Patern and C. Santoro, "Supporting interactive
workflow systems through graphical web interfaces and interactive
simulators," in TAMODIA '05 Proceedings of the 4th international
workshop on Task models and diagrams, Gdansk, Poland, 2005, pp
63-70.

[15] D. Gaurav, "A survey on guiding logic for automatic user interface
generation," in Proceedings of the 6th international conference on
Universal access in human-computer interaction: design for all
and eInclusion - Volume Part I, Orlando, FL, 2011, pp. 365-372.

[16] IEEE, "IEEE Standard Glossary of Software Engineering
Terminology," IEEE Std 610.12-1990, pp. 1-84, Dec 1990.

107Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 126 / 512

EBGSD: Emergence-Based Generative Software Development

Mahdi Mostafazadeh, Mohammad Reza Besharati, Raman Ramsin

Department of Computer Engineering

Sharif University of Technology

Tehran, Iran

e-mail: {mmostafazadeh, besharati}@ce.sharif.edu, ramsin@sharif.edu

Abstract—Generative Software Development (GSD) is an

area of research that aims at increasing the level of

productivity of software development processes. Despite

widespread research on GSD approaches, deficiencies such

as impracticability/impracticality, limited generation power,

and inadequate support for complexity management have

prevented them from achieving an ideal level of generativity.

We propose a GSD approach based on a novel modeling

paradigm called ‘Ivy’. Ivy models the context domain as a

set of conceptual phenomena, and depicts how these

phenomena emerge from one another. Our proposed

approach, Emergence-Based Generative Software

Development (EBGSD), uses Ivy models for modeling how a

software system (as a phenomenon) can emerge from its

underlying phenomena, and can provide an effective means

for managing software complexity. Developers can also elicit

generative patterns from Ivy models and utilize them to

increase the level of reuse and generativity, and thus

improve their productivity.

Keywords-generative software development; phenomenon;

emergence; conceptual model

I. INTRODUCTION

As Mens points out, “Software systems are among the
most intellectually complex artifacts ever created by
humans” [1]. Managing software complexity is indeed the
main impetus behind many research areas in software
engineering. Generative Software Development (GSD)
aims to address this issue through increasing the level of
automation in software development, which also enhances
productivity. Despite widespread research on GSD
approaches such as Model-Driven Development (MDD),
Software Product Lines (SPL), Program Development
from Formal Specifications, Generative Patterns, and
High-Level Programming Languages, there are certain
disadvantages in each of them that have prevented
researchers from achieving an ideal level of generativity in
software development. For instance, in Czarnecki’s GSD
approach [2], two methods (Configuration and
Transformation [3]) have been suggested for transition
from the problem domain to the solution domain; although
this approach is well-established, it has not achieved an
ideal level of generativity, mainly due to deficiency in
generation power, inflexibility of configuration, over-
abstractness, inattention to seamlessness, and ambiguities
in transformation. Furthermore, some of the approaches,
such as MDD and High-Level Programming Languages,
are deficient as to their support for complexity
management. These shortcomings (further explained in
Section II) are the main motivations behind this research.

We propose a GSD approach based on a novel
modeling paradigm called Ivy, originally proposed by

Besharati in a seminar report in 2013 [9]. Phenomenon and
Emergence [13] are the two basic concepts of the Ivy
paradigm. The Ivy paradigm prescribes a way for
modeling the emergence of a conceptual phenomenon
from its underlying phenomena. Emergence is recursive:
an Ivy model takes the form of a digraph that shows how a
phenomenon emerges from its underlying phenomena,
which in turn emerge from other phenomena, and so on.

In the Ivy-based software development approach that
we propose herein (which we have chosen to call
Emergence-Based Generative Software Development, or
EBGSD for short), the target software system is considered
as a phenomenon that emerges from its underlying
phenomena, and is therefore represented as an Ivy model.
The Ivy model helps manage the inherent complexity of
software systems. Furthermore, it is possible to extract
generative patterns from Ivy models and utilize them to
increase the level of reuse in software development
processes, and thereby promote generativity. The
evolutionary nature of the modeling approach makes it
highly practical, and can lead to a high level of flexibility
in software development. We have also proposed a
methodology for applying EBGSD to real-world projects.
EBGSD promotes seamlessness, and can improve software
processes as to smoothness of transition among
development activities.

The rest of the paper is structured as follows: Section II
provides an overview of the research background through
focusing on a number of prominent GSD approaches; in
Section III, we introduce the Ivy modeling paradigm as the
basis for our proposed approach; our EBGSD approach
and its corresponding methodology are proposed in
Sections IV and V, respectively; an illustrative example of
the application of EBGSD is given in Section VI; finally,
Section VII presents the conclusions and suggests ways for
furthering this research.

II. RESEARCH BACKGROUND

Software generation is an old ideal that has been
pursued and evolved over decades. The advent of
programming languages and compilers can be considered
as the first step towards enhanced productivity in software
development. The field has evolved over decades: for
instance, in the context of MDD, programming languages
and compilers have been replaced by Domain-Specific
Languages (DSLs) and model/code generators. Due to the
vastness of the research conducted on software
generativity, it is not possible to discuss all of them here;
hence, we will focus on the four most prominent
approaches, as listed below. Our main purpose in this
section is to demonstrate the motivations for this research,
and to outline the research objective.

108Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 127 / 512

Genetic and evolutionary approaches: these
approaches aim at generating complex systems through
creation of a simple generative system to generate new
constructions that ultimately lead to the desired complex
system [4]. The main problem with these approaches is
that due to their high level of inherent randomness, they
are not applicable to systems with specific requirements.

MDD: MDD considers models as first-degree entities
that drive the software development process and serve as
the basis for generating the target software [5]. In this
approach, software is developed through creation of
models at a high-level of abstraction, and then
transformation of these models into their lower-level
counterparts (and ultimately software) based on certain
mappings. Although this approach has become popular in
recent years, there are major problems that prevent it from
achieving an ideal level of automation. For instance,
although this approach intends to reduce software
complexity, it in fact just shifts the complexity [6]:
development is easy and straightforward when the
modeling levels and their corresponding mappings have
been specified, but defining the levels and the mappings
themselves is by no means straightforward.

SPL: in the software product line approach, instead of
developing a single software system from scratch, the
focus is on a family of systems that are developed from a
set of common reusable components by applying a defined
process [7]. To be more precise, a software product line is
a set of software-intensive systems that share a common
set of features, and that are developed from a common set
of core assets [8]. As implied by this definition, SPL aims
to improve the productivity of software development
processes through providing a higher level of reuse; but the
definition makes no hint of any automation involved in the
process. Hence, SPL has not been able to achieve an ideal
level of generativity. Moreover, creating reusable assets is
a costly process, which might even adversely affect the
productivity of software development processes.

Czarnecki’s GSD approach: similar to SPL,
Czarnecki’s approach aims at increasing the productivity
of software development processes through focusing on
families of systems [2]. The main difference between this
approach and the SPL approach is that it emphasizes
automated composition of components, whereas manual
composition is acceptable in SPL. However, just like SPL,
GSD too can have an adverse affect on productivity.

As observed in the above approaches, although they
have strived to increase the level of software generativity,
certain deficiencies prevent them from achieving the ideal
level of generativity in software development, and
overcoming these deficiencies is the objective of this
research. Specifically, genetic approaches enjoy a high
level of automation, but are not practicable. On the other
hand, MDD, SPL, and GSD are practicable, but are
deficient as to complexity management, automation, and
productivity; to be precise, these approaches just replace
development complexity with mapping complexity.

III. IVY PARADIGM

Ivy [9] is a modeling paradigm for representing
conceptual phenomena and their emergence. Conceptual
phenomena are typically regarded as abstractions of real-
world phenomena. Ivy is based on the notion that

conceptual phenomena can be combined, and a new
conceptual phenomenon thus emerges. We model this fact
in the Ivy Model; as seen in Figure 1, an Ivy model is a
directed graph in which nodes represent phenomena, and
arcs represent emergences. As an example, consider the
following three conceptual phenomena: car, red, and
wheel, which are the results of abstraction from their real-
world counterparts. As shown in Figure 1, from a certain
point of view, the phenomena car and red can be
combined, and the phenomenon red car thus emerges.
From another point of view, the phenomena wheel and red
can be combined, and the phenomenon red wheel emerges.
The phenomena car and red wheel can be combined, and
from two different points of view, two phenomena emerge:
red-wheeled car, and red car wheel.

The world of software development is full of
representation, combination and emergence of conceptual
phenomena. Requirements engineering is concerned with
conceptual phenomena directly abstracted from real-world
phenomena. Some of these phenomena are combined, and
other conceptual phenomena emerge as a result. For
instance, the conceptual phenomena actors, use cases and
their relationships are combined and the phenomenon use
case diagram emerges; or in goal-oriented requirements
engineering, certain phenomena (i.e., goals) could be
combined, and a higher-level goal would emerge. Software
platforms are themselves conceptual phenomena that
emerge from other phenomena (e.g., requirements).
Design and implementation phases are concerned with
combination of requirement and platform phenomena and
the emergence of software-solution phenomena.

Since the dependencies in an Ivy model are
unidirectional, it can enhance understandability and
modifiability, leading to better complexity management.
The Ivy model may look very similar to other models such
as goal models [10] and feature models [11], but there are
fundamental differences. In those models, relationships
have very specific semantics: in goal models, relationships
mean Why and How [10], and in feature models,
relationships show the semantics of Has [12]. Whereas in
Ivy, the emergence relationship has a general meaning, and
its concrete semantics depends on the perspective upon
which it is based. The semantic generality of emergence is
an important feature of Ivy, which makes it capable of
tying all conceptual phenomena together. Thus, the
relationships in feature models and goal models can be
considered as special kinds of emergence.

car red wheel

red car

red
wheel

red-
wheeled

car

red car
wheel

Emergence

Phenomenon

Figure 1. Example of an Ivy model.

109Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 128 / 512

In the next section, we will explain our proposed GSD
approach based on the Ivy model.

IV. EBGSD APPROACH

In our proposed Ivy-based software development
approach, EBGSD, the system for which a software
solution is required is considered as a problem-domain
phenomenon, which itself emerges from lower-level
phenomena. We represent this fact in an Ivy model. This
process is applied recursively: for each phenomenon at
every level, we can represent the emergence of that
phenomenon from lower-level phenomena. Although this
process is theoretically endless, we continue it until the
phenomena at the lowest level can be considered as basic
phenomena in the problem domain; these ’leaf’
phenomena are the finest-grained phenomena required for
fulfilling the purposes of the developers. Similarly, we
consider the software platform (solution domain) as a
phenomenon, and draw an Ivy model to represent its
emergence. In the next step, we combine the two Ivy
models (problem-domain and solution-domain), and
software-solution phenomena emerge. The combination
process is initiated in a manual fashion, but it can then
proceed with a certain degree of automation through
producing and applying Ivy generators. This is done by
identifying recurring and reusable patterns of combination,
and capturing them as Ivy generation patterns. An Ivy
generator can then be developed to automatically apply
these patterns, and thereby combine the two source models
(problem-domain and solution-domain) into the destination
model (software-solution).

Ultimately, the code corresponding to each software-
solution phenomenon is produced. To this aim, it is first
determined which underlying software solution
phenomena affect the generation or modification of the
code corresponding to the target phenomenon; a set of
code generators are then developed for these underlying
phenomena, the outputs of which should be conveyed to
the codes of higher-level phenomena. Many of these code
generators are typically reusable, and therefore act as
patterns. The generation logic embodied in the code
generator of each phenomenon utilizes the outputs of
lower-level generators (i.e., the codes of the corresponding
lower-level phenomena) to generate the code of the target
phenomenon. Examples of the abovementioned models
and patterns are provided in Section VI.

In the next section, we propose an iterative-incremental
methodology for applying EBGSD in software
development projects.

V. A METHODOLOGY FOR APPLYING EBGSD

The iterative-incremental software development
methodology hereby proposed for applying EBGSD
consists of five iterative workflows (as shown in Figure 2):
1) Production of Problem-Domain Ivy Model, 2)
Production of Software-Platform Ivy Model, 5) Emergence
of Software-Solution Ivy Model, 4) Production of Ivy
Generators, and 5) Production and Application of Code
Generators. These workflows are iterated in order to
gradually produce the models and the target system. This
methodology is not a full-lifecycle process; it should be
augmented with complementary activities (including
umbrella activities and post-implementation activities) in
order to become practicable. The workflows will be
explained throughout the rest of this section. Section VI
provides examples of the products of these workflows.

A. Production of Problem-Domain Ivy Model

We consider the system (for which we intend to
develop software) as a phenomenon, and draw an Ivy
model depicting the phenomena from which it emerges.
Requirements and structural constituents of the problem
domain are considered as important phenomena in this
model. As previously mentioned, based on different points
of view, different Ivy models can be produced for the same
purpose. Drawing the Ivy model requires no special skills
on the part of the modeler; developers can draw their own
based on their particular perspectives of the system. For
example, an analyst who knows how to model the
requirements as use cases can regard each use case as a
phenomenon emerging from its steps, and each step as a
phenomenon emerging from the phenomena in the
structural view of the system. It should be noted that since
everything is represented as phenomena, it is necessary to
add certain semantic phenomena in order to provide the
readers and the generators with adequate semantics. For
example, if Add Student is a use case (represented as a
phenomenon of the same name), it is necessary to
represent the emergence of this phenomenon from a
phenomenon named Use Case.

B. Production of Software-Platform Ivy Model

We consider the software platform (solution domain)
as a phenomenon, and draw an Ivy model depicting the
phenomena from which it emerges. For example, in the
object-oriented platform, the phenomenon Class emerges
from the phenomena Attribute and Method, the
phenomenon Attribute itself emerges from its Type, and so
on. In some cases, it is enough to just model the solution-
domain phenomena; emergences are left out in such cases.

Production of Problem-
Domain Ivy Model

Production of Ivy
Generators

Production of Software-
Platform Ivy Model

Emergence of Software-
Solution Ivy Model

Production and
Application of Code

Generators

Product:
Problem-Domain
Ivy Model

Product:
Software-Platform
Ivy Model

Products:
-Ivy Generation Patterns
-Ivy Generators

Product:
Software-Solution Ivy Model

Products:
-Code Generation Patterns
-Code Generators
-Target Code

Figure 2. A methodology for applying EBGSD (workflows and products).

110Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 129 / 512

C. Emergence of Software-Solution Ivy Model

The problem-domain and software-platform Ivy
models are combined (partly manually, and mostly by
applying the Ivy generators produced in the next
workflow), and the software-solution Ivy model emerges;
as this workflow is dependent on Ivy generators, it
generally overlaps with the next workflow. It should be
noted that three types of phenomena may affect the
emergence of each software-solution phenomenon:
problem-domain phenomena, solution-domain phenomena,
and other software-solution phenomena. For instance, the
software-solution phenomenon Student emerges from
other software-solution phenomena (Name and Age), as
well as a solution-domain phenomenon (Class) and its
problem-domain counterpart (Student).

D. Production of Ivy Generators

Based on the problem-domain and software-platform
Ivy models, a set of Ivy generation patterns are elicited and
their corresponding Ivy generators are developed (to be
updated iteratively). This workflow starts after
combination patterns have been identified through manual
combination of the source Ivy models, and its results are in
turn used for producing the software-solution Ivy model; it
therefore overlaps with the previous workflow.

E. Production and Application of Code Generators

Based on the software-solution Ivy model, a set of code
generators are developed (as explained in Section IV).
These generators are in fact responsible for realizing what
the literature on emergence calls Radical Novelty [13]:
unpredicted and rich features that cannot be anticipated
until they actually surface.

VI. EXAMPLE

A partial problem-domain Ivy model for an education
system is illustrated in Figure 3. The Ivy model has been
drawn based on two different points of view. The left part
of the model is drawn based on a structural view of the

system. School and Student are two pivotal entities in the
system, so we have represented them as two phenomena
that have both emerged from the Entity phenomenon. The
Bold Tags shown on some of the phenomena indicate the
emergence of those phenomena from a phenomenon with
the same name as the tag; hence, there is no need to
explicitly show the corresponding emergence arcs, and
excessive complexity is thereby avoided. For instance, the
Entity tag on the Student phenomenon is equivalent to an
emergence arc from the Entity phenomenon to the Student
phenomenon. The PD prefix means that the phenomenon
belongs to the problem domain. One important relation in
the system is the relation between a school and its
students; hence, we have represented it as a phenomenon
that has emerged from three phenomena: School, Students,
and Relation.

The right half of the Ivy model is drawn based on a
functional view of the system. One of the system’s use
cases (Add Student) has been represented as a
phenomenon, emerging from its Steps and the Use Case
phenomenon. The use case steps themselves have emerged
from structural-view phenomena and certain semantic
phenomena such as Add and Command; these semantic
phenomena are essential for developing code generators. It
should be noted that these points of view are chosen from
among many possible alternatives; developers draw the Ivy
model based on their own perspectives (e.g., a feature-
driven point of view). Each phenomenon and emergence
itself may possess implicit semantics, which can be
represented separately as an Ivy model; however, due to
practicality considerations, the process of Ivy modeling
should be brought to an end before the complexity
becomes pointlessly overwhelming.

A partial solution-domain Ivy model for the object-
oriented platform is shown in Figure 4. This Ivy model has
been produced based on well-established object-oriented
notions, e.g., a class is an encapsulation of certain
attributes and methods. It should be noted that solution
domains are typically application-independent.

Structural Viewpoint CRUD Viewpoint

School and
Student
Relation

School
Role

IsNavigable

School
Entity

Role

Multiplicity
1

Property

Name

String Entity

Students
Role

IsNavigable

Relation

Student

Age

IsNavigable

Integer

Multiplicity
N

Add
Student

Use CaseEnter Data

Enter Name
Name

Use Case Step

Enter Age
Age

Use Case Step

Add Student
Command

Use Case Step

Add Command

Use Case Step

Education
System

Registration
Subsystem

Records
Subsystem

Figure 3. Partial problem-domain Ivy model for an education system.

111Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 130 / 512

Class

Attribute CollectionMethod

IsSingleton

Singleton Class

CollectionAttribute

Class with Some Collection Attributes

Figure 4. Partial solution-domain Ivy model for the object-oriented

platform.

A partial software-solution Ivy model for the education
system is illustrated in Figure 5. This model is obtained
through extracting and applying a set of Ivy generation
patterns. These patterns are illustrated in Table I. Each
pattern has a Name, a Before state, and an After state
(which is basically an extension of the Before state). The
phenomena whose names are shown in braces are
placeholders for any phenomenon that conforms to the
topology of the pattern. As seen in Table I, these
placeholders are used for naming new phenomena in the
After state.

A set of code generation patterns, which can be used in
order to generate the code of our target system, are
illustrated in Table II. Each generation pattern has a Name,
an Ivy pattern that corresponds to the generator, and a
generation logic that generates or modifies the code of
some phenomena using the code of lower-level
phenomena. Table III shows a more complex code
generation pattern corresponding to class reification
(extraction of a class from an association relationship), and
Table IV shows an example of its application to a concrete
Ivy model.

VII. CONCLUSION AND FUTURE WORK

We have proposed EBGSD as a GSD approach, and
have proposed a methodology for applying it to real-world
projects. Achieving high levels of reuse, maintainability,
and complexity management are some important potential
benefits of our proposed approach. Since Ivy generation
patterns and code generation patterns are fine-grained
patterns expressed at a high level of abstraction, EBGSD
can achieve high levels of reuse. EBGSD can increase
maintainability and manage software complexity from two
aspects: increasing software understandability, and
improving modifiability. The Ivy model can be seen as a
software construction map, which can be easily reviewed
through a graph traversal algorithm. On the other hand,
since the couplings among Ivy elements are simple and
unidirectional, it is easy to apply the necessary changes, as
the changes do not propagate in an unmanageable fashion.
Furthermore, because this approach performs all the steps
of software development and produces the target artifacts
in a smooth and seamless manner, it can be a potential
solution to the conflict between modeling and agile
development; model-phobic agile methodologies might
find it worthwhile to invest in Ivy modeling, as Ivy models
are simple and straightforward, and can be used in such a
way that agility is not adversely affected.

School
PD::School

Class

Attribute

Student
PD::Student

Age
PD::Age

PD:Integer

Name
PD::Name
PD:String

school
PD::school
Attribute

students
PD::students

Attribute

Collection

Figure 5. Partial software-solution Ivy model for the education system.

At present, we are evaluating the approach through a
case study. Future research can focus on exploring existing
opportunities for using the approach for enhancing
automation through construction, rather than just reuse.

REFERENCES

[1] T. Mens, “On the Complexity of Software Systems,” Computer,
vol. 45, Aug. 2012, pp. 79–81, doi: 10.1109/MC.2012.273.

[2] K. Czarnecki, “Generative Programming,” PhD thesis, Technical
University of Ilmenau, 1999.

[3] K. Czarnecki, “Overview of Generative Software Development,”
Proc. European Commision and US National Science Foundation
Strategic Research Workshop on Unconventional Programming
Paradigms, 2005, pp. 326–341, doi: 10.1007/11527800_25.

[4] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide to
Genetic Programming, Lulu Enterprises, 2008.

[5] M. Volter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, Model-
Driven Software Development: Technology, Engineering,
Management, Wiley, 2013.

[6] B. Hailpern and P. Tarr, “Model-driven development: The good,
the bad, and the ugly,” IBM Systems Journal, vol. 45, July. 2006,
pp. 451–461, doi: 10.1147/sj.453.0451.

[7] S. Apel, D. Batory, C. Kastner, and G. Saake, Feature-Oriented
Software Product Lines: Concepts and Implementation, Springer,
2013.

[8] J. Royer and H. Arboleda, Model-Driven and Software Product
Line Engineering, Wiley, 2012.

[9] M. Besharati, “Generativity in Software Development: Survey and
Analysis,” M.Sc. Seminar Report, Sharif University of
Technology, 2013 (In Persian).

[10] A. Van Lamsweerde, Requirements Engineering: From System
Goals to UML Models to Software Specifications, Wiley, 2009.

[11] C. Kastner and S. Apel, “Feature-Oriented Software Development:
A Short Tutorial on Feature-Oriented Programming, Virtual
Separation of Concerns, and Variability-Aware Analysis,” in
Generative and Transformational Techniques in Software
Engineering IV, J.M. Fernandes, R. Lammel, J. Visser, J. Saraiva,
Eds. Springer, 2013, pp. 346–382, doi: 10.1007/978-3-642-18023-
1.

[12] P. Schobbens, P. Heymans, and J. Trigaux “Feature Diagrams: A
Survey and a Formal Semantics,” Proc. International Conference
on Requirements Engineering, 2006, pp. 139–148, doi:
10.1109/RE.2006.23.

[13] J. Goldstein , “Emergence in complex systems,” in The SAGE
Handbook of Complexity and Management, P. Allen, S. Maguire,
B. Mckelvey, Eds. SAGE, 2011, pp. 65–78.

112Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 131 / 512

TABLE I. A SET OF IVY GENERATION PATTERNS ELICITED FROM THE EXAMPLE

NAME BEFORE AFTER

Emergence of

Classes and

Attributes

{Ph1}Entity

{Ph2}Property

{Ph1}Entity

{Ph2}Property

{Ph1}

{Ph2}

Class

Attribute

Emergence of
Relational

Attribute

{Ph1}IsNavigable

Role

{Ph1}IsNavigable

Role

{Ph1}

Attribute

Specifying

Relational

Attribute Type

{Ph3}{Ph1}

{Ph4}

Attribute

{Ph2} ClassEntity

{Ph3}{Ph1}

{Ph4}

Attribute

{Ph2} ClassEntity

Injecting

String Type
{Ph1}Property

{Ph2}

String

Attribute

{Ph1}Property

{Ph2}

String

Attribute

Injecting

Integer Type
{Ph1}Property

{Ph2}

Integer

Attribute

{Ph1}Property

{Ph2}

Integer

Attribute

Emergence of

Collections
Multiplicity N

Attribute

{Ph2}

Role

{Ph1}

Multiplicity N

Attribute

{Ph2}

Role

{Ph1} Collection

Injecting

Relational

Attribute into

Class

Role

{Ph1} {Ph2}

{Class}

Class

Relation{Relation}

{Ph3}

Attribute

Role

{Ph1} {Ph2}

{Class}

Class

Relation{Relation}

{Ph3}

Attribute

TABLE II. A SET OF CODE GENERATION PATTERNS ELICITED FROM THE EXAMPLE

NAME PATTERN GENERATION LOGIC

Class Code Generation
Class{Ph1}

class {Ph1} { ClassTemplate c;

 Code() { if(c == null) c = Class::Code();
 c.SetName({Ph1});

 return c; } }

Injecting Attribute Code

into Class Code
Class{Ph1}

{Ph2} Attribute

class {Ph1} { ClassTemplate c;

 Code() { if(c == null) c = Class::Code();
 AttributeTemplate a = {Ph2}::Code();

 c.AddAttribute(a) } }

Injecting Type into

Attribute Code
Class{Ph1}

{Ph2} Attribute

class {Ph2} { AttributeTemplate a;

 Code() { if(a == null) a = Attribute::Code();
 a.SetType({Ph1});

 return a; } }

Injecting Collection

Semantic into Attribute

Code

Collection

{Ph1} Attribute

class {Ph1} { AttribueTemplate a;

 Code() { if(a == null) a = Attribute::Code();

 a.SetAsCollection();
 return a; } }

113Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 132 / 512

TABLE III. A MORE COMPLEX CODE GENERATION PATTERN, CORRESPONDING TO CLASS REIFICATION

NAME PATTERN GENERATION LOGIC

Reified-Class

Code

Generation

Reified

{Ph3}

{Ph1}

Class

{Ph2}

class {Ph1} {

 ClassTemplate c;

 Code() {
 c.SetName({Ph1});

 AttributeTemplate a1 = new AttributeTemplate();

 a1.SetType({Ph2});
 a2.SetName(lowercase({Ph2}));

 c.AddAttribute(a1);

 AttributeTemplate a2 = new AttributeTemplate();
 a2.SetType({Ph3});

 a2.SetName(lowercase({Ph3}));

 c.AddAttribute(a2);
 AttributeTemplate a = new AttributeTemplate();

 a.SetType(c);

 a.SetName(plural(lowercase({Ph1})));
 a.SetAsCollection();

 a.SetAsStatic();

 c.AddAtribute(a);
 MethodTemplate m = new MethodTemplate();

 m.SetName("Add"+{Ph1});

 m.AddParameter(1, {Ph2}, lowercase({Ph3}));
 m.AddParameter(2, {Ph3}, lowercase({Ph3}));

 CreateTemplate cr =

 new CreateTemplate({Ph1}, m.GetParameter(1), m.GetParameter(2));
 AddToCollectionTemplate ad =

 new AddToCollectionTemplate(cr.GetResult(), a);

 m.AddStatement(1, (StatementTemplate)cr);
 m.AddStatement(2, (StatementTemplate)ad);

 c.AddMethod(m);

 return c;
 }

}

TABLE IV. EXAMPLE OF APPLYING THE CODE GENERATION PATTERN SHOWN IN TABLE III (CLASS REIFICATION)

CONCRETE IVY TARGET CODE

Reified

Course

Registration

Class

Student

class Registration {
 Student student;

 Course course;

 Registration(Student student, Course course) {
 this.student = student;

 this.course = course;

 }
 static Collection<Registration> registrations;

 static AddRegistration(Student student, Course course) {

 Registration registration = Registration(student, Course);
 registrations.Add(registration);

 }

}

114Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 133 / 512

A GPU-aware Component Model Extension for Heterogeneous Embedded Systems

Gabriel Campeanu, Jan Carlson and Séverine Sentilles

Mälardalen Real-Time Research Center
Mälardalen University, Sweden

Email: {gabriel.campeanu, jan.carlson, severine.sentilles}@mdh.se

Abstract—One way for modern embedded systems to tackle the
demand for more complex functionality requiring more compu-
tational power is to take advantage of heterogeneous hardware.
These hardware platforms are constructed from the combination
of different processing units including both traditional CPUs and
for example Graphical Processing Units (GPUs). However, there is
a lack of efficient approaches supporting software development
for such systems. In particular, modern software development
approaches, such as component-based development, do not pro-
vide sufficient support for heterogeneous hardware platforms.
This paper presents a component model extension, which defines
specific features for components with GPU capabilities. The
benefits of the proposed solution include an increased system
performance by accelerating the communication between GPU-
aware components and the possibility to control the distribution
of GPU computation resources at system level.

Keywords–Embedded Systems; Component-based Development;
Heterogeneous CPU-GPU Systems; GPU Component Model.

I. INTRODUCTION

In the last years, various embedded computing technologies
have emerged due to the rapid advance of microprocess-
ing technology. Homogeneous single-core CPU systems have
evolved into heterogeneous systems with different processing
units such as multi-core CPUs or GPUs. Taking benefits of
the increased computational parallel power, new applications
have emerged while others improved their performance. Ex-
amples of systems that now use GPU processing hardware
include vehicle vision systems [1] and autonomous vision-
based robots [2]. However, a GPU is a different hardware unit
that has its own memory system. As a result, combining a GPU
with a CPU leads to an increase of the software complexity
and the need to optimize the use of the available resources.

One way of addressing the increasing system complexity
is through component-based development (CBD). In CBD,
complex software applications are built by composing already
existing software solutions (i.e., software components), result-
ing in increased productivity, better quality and a faster time-
to-market. The approach has been successfully used in other
domains, but has recently attracted attention also for develop-
ing software for embedded systems, as evident by industrially
adopted component models such as Autosar [3] and Rubus [4].
In order to address the specifics of embedded systems, many
component models targeting this domain follow a pipe & filter
architectural style. Using this style, the components are passive
and the transfer of data and control is defined statically by how
they are connected, rather than the typical object oriented style
with active components and method calls [5].

Having no component model support for GPU devel-
opment, each component that needs to use the GPU must

encapsulate various GPU specific operations such as memory
initialization, and operations to shift data between the CPU
and GPU memory systems. This introduces a communication
overhead among components (i.e., leading to longer response
times) and unnecessary code duplication. Also, these com-
ponents have to encapsulate all the GPU settings required
to meet their functionality. For example, each component
independently decides how much GPU computation resources
it uses (e.g., number of threads), which can result in a
suboptimal GPU usage in the system as a whole, decreasing
the system performance. The lack of efficient development
methods affects several component properties (e.g., granularity,
reusability), making difficult to fully use the benefits of GPU
systems.

In this paper, we describe how the problem can be tack-
led by proposing a GPU-aware component model extension
where components are equipped with GPU ports that allow
component communication directly through the GPU environ-
ment. We also provide a way for the system to decide the
GPU settings (e.g., number of threads) for each GPU-aware
component. Enhancing the communication and delegating the
component GPU settings to the system level, result in increased
system performance while keeping the key benefits of the CBD
approach.

The rest of the paper is organized as follows. Section II
gives a background depiction of existing component model
challenges in addressing efficiently the GPU hardware. A high
level descriptions of the GPU-aware components is covered by
Section III, where the specification of the component interfaces
and GPU ports are described in depth. Section IV describes a
running example which illustrates the underlying details of our
solution. In Section V, a series of experiments were carried out
to evaluate the performance efficiency of the proposed method.
Related work is described by Section VI, while Section VII
presents the paper conclusion and future work.

II. USING GPUS IN COMPONENT-BASED DEVELOPMENT

When developing applications for heterogeneous embedded
systems using a pipe & filter-type of component model, the
developer follows the model specifications to develop software
components. The same specifications are used even when
the model does not provide directions on how to support
GPU within the component. Hence, a component with GPU
computations requires encapsulation of all the information and
operations needed to support its functionality. For example, the
information and operations include choosing the GPU compu-
tational resources (e.g., number of threads, grid dimension) to
process data or, being GPU unaware, operations to replicate
data from and to the main (CPU) memory system.

115Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 134 / 512

In the following example, we present a part of a
component-based software architecture of a demonstrator that
uses a heterogeneous CPU-GPU hardware platform. The
demonstrator is an underwater robot developed at Mälardalen
University, Sweden. It is used as the running case for the
RALF3 research project [6]. The architecture is an abstract
view of a component model design that uses a pipe&filter
interaction style (e.g., ProCom [7], Rubus [4]). The robot has
an embedded electronic board containing a GPU, alongside the
common CPU. Both processing units have different memory
systems. The board is connected to the cameras that are
providing a continuous stream of images, and to other sensors
and actuators (e.g., pressure sensors, motors).

Object'
Detector'

Image'
Merger'

Camera1'
Vision'

Manager'
Camera2'

Legend:'

Standard'component''
GPU'non:aware''' Standard'output'port'

Standard'input'port'Directed'communica>on'link'

Figure 1. The abstract software architecture of the vision system

Figure 1 presents the robot vision system architecture
combined with the data propagation view. The robot uses two
cameras which give an extended perspective of the surrounding
underwater environment. The physical cameras provide a con-
tinuous stream of frames to Camera1 and Camera2 software
components. The ImageMerger receives the frames from the
camera components and merge them into a single frame that
is filtered by ObjectDetector. The filtering process produces a
black-and-white frame which eases the identification process
of specific objects (e.g., red buoys). The vision system uses the
parallel processing power of the GPU hardware for its main
data processing activities from ImageMerger and ObjectDetec-
tor components. The black-and-white frame is received by the
VisionManager component which, based on the position of the
objects that have been detected, takes movement decisions for
the underwater robot.

Each component, as part of its functionality, accesses
particular hardware elements (e.g., CPU, RAM, GPU) in a
specific order. The hardware related activities of the vision
system are illustrated in Figure 2. The Camera1 and Camera2
components, connected to the physical cameras, fetch data
frames (two at a time) onto the main (CPU) memory system.
The ImageMerger component duplicates the two frames onto
the GPU memory system and processes them (i.e., merge
them into one frame). The component handles inside various
operations such as memory allocation, specific GPU-shifting
operations and picking suitable GPU computational settings for
its processing activity. Having GPU-unaware communication
ports, the connection with the ObjectDetector component is
done in a form that is recognized by the existing component
interfaces, i.e., thought the main system. Using the same
component model rules, the ObjectDetector component has

similar actions.

copy%

process%

Image&
Merger&

copy%

GPU%CPU%

copy%

Object&
Detector&

copy%

process%
copy%

Camera1&

Camera2&

Vision&
Manager&

process%

process%

process%

Legend:%

Processing%unit%

So6ware%component%

Flow%of%data%

Data%transfer%opera>on%

Processing%opera>on%

Figure 2. Vision system activities over the hardware

In general, using a pipe & filter-type of component model
to develop applications for heterogeneous embedded systems
has the following disadvantages:

• By being responsible for transferring the data be-
tween processing units, each component with GPU
capability uses an inefficient copying mechanism as
communication method. In most cases, this results
in an increased communication over the CPU-GPU
hardware bridge (e.g., PCI-Express), which decreases
the system performance (e.g., worse reaction time).

• As a side effect of the component encapsulating the
same transfer operations, the system contains duplicate
code. That is each GPU-based component has copy-
from or copy-to CPU operations.

• Each component with GPU capability individually
decides (at the development phase) the computational
configuration settings. This affects the overall GPU
usage of the system and also makes the component
less reusable in other contexts.

III. THE GPU-AWARE COMPONENT MODEL EXTENSION

To overcome the drawbacks of using pipe & filter com-
ponent models with no GPU support, we propose a GPU-
aware component model extension. In summary, the solution
introduces:

• A standardized configuration interface through which
a component receives GPU computational settings.
The assigned settings (limited by the hardware con-
straints) have a direct impact on the performance of
the application. The system, knowing the underlying
hardware platform, takes the decision of the com-
putational resources distribution among GPU-aware
components. For example, it may distribute the GPU
computational resources in such a way that several
components can run in parallel (e.g., their summed
number of threads should not exceed the total GPU
number of threads).

• Dedicated GPU ports which are aware of the GPU en-
vironment. Instead of communicating using the main

116Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 135 / 512

memory, the GPU-aware components communicate
directly using the GPU memory.

• Automatically generated adapters with dedicated
transfer operations. The adapters are automatically
introduced when a GPU port is connected to a standard
port, in order to facilitate the data transfer operation
between the processing units.

According to our proposed solution, the architectural soft-
ware model of a heterogeneous embedded system is extended
in the following way. Ports are classified as GPU ports or stan-
dard ports, and the model contains two types of components,
GPU-aware and standard components. Standard components
can only have standard ports while the GPU-aware components
can have both GPU and standard ports. In addition, the
software model contains two new inter-component commu-
nication elements, the automatically generated communication
adapters (CPU-to-GPU and GPU-to-CPU) that resolve the data
incompatibility issue between the port types.

Object'
Detector'

Image'
Merger'

Camera1'
Vision'

Manager'
Camera2'

GPU3aware''
component'

Legend:'

Standard'component''
GPU'non3aware'''

GPU'output'port'

GPU'input'port'

Standard'output'port'

Standard'input'port'

Generated''
CPU3to3GPU'adapter'

Generated''
GPU3to3CPU'adapter'

Directed'communica>on''
link'

Figure 3. The abstract software architecture of the vision system using a
GPU-aware solution

Figure 3 illustrates the abstract software architecture of the
vision system using our proposed solution. The system has two
GPU-aware components, i.e., ImageMerger and ObjectDetec-
tor, that uses their GPU ports to communicate via the GPU
environment. The data provided by the Camera1 and Camera2
components are placed onto the GPU by automatically gener-
ated CPU-to-GPU adapters. After the GPU-aware components
finish their functionality, the output is placed on the main
(CPU) memory by another generated adapter (i.e., GPU-to-
CPU adapter). This makes the output of the ObjectDetector
available to the VisionManager component.

At startup, the system communicates in a transparent way
with the GPU-aware components, connecting to their standard-
ized configuration interfaces. From the architectural software
perspective, however, this system-to-component communica-
tion mechanism is not graphically represented.

Figure 4 presents the vision system activities of the GPU-
adapted software architecture. Compared to the previous non-
GPU-aware solution from Figure 2, the newly introduced
adapters are handling the data transfer between the CPU and
GPU. The two first adapters move data onto the GPU, while
the third one transfers the final result back onto the CPU.
The ImageMerger component, using its GPU ports, takes the
frames directly from the GPU (where the adapters placed them)
and processes them using the hardware configuration setting
received from the system. Also, by having dedicated GPU
ports, the communication with ObjectDetector is done locally
via the GPU memory.

GPUCPU
Camera1'

Camera2'

Vision'
Manager'

process$

process$

process$

Legend:$

Processing$unit$

So5ware$component$

Flowofdata$

Data$transfer$opera=on$

Processing$opera=on$

copy$

Image'
Merger'

Object'
Detector'

copy$

process$

process$

copy$

Adapter$

Figure 4. GPU-aware vision system activities over the hardware

The main advantages of our GPU-aware solution are the
following:

• Keeping the component communication local on the
GPU, whenever possible. This improves the system
performance (e.g., better component-to-component
communication time) and decreases the communica-
tion stress over the hardware CPU-GPU bridge.

• By externalizing the data shifting operations from the
component, the component granularity is improved.
Also, as a consequence of introducing the specialized
adapters, duplicated code is reduced (when the system
has at least two GPU-aware components sequentially
connected).

• Deciding the GPU configuration of each component
at the system level improves the reusability of com-
ponents. For example, the system can run several com-
ponents in parallel on the GPU by adjusting their GPU
configuration settings, or the same component can be
used in different systems with different configuration
settings.

IV. EXTENSION IMPLEMENTATION

Next, we give an example of what the extension might look
like when implemented. We base the presentation on a simple
reference component model to simplify the presentation, and
use the vision system from Figure 3 as a running example.

A. An implementation of GPU-aware components
Using C++ as the implementation language, we see a soft-

ware component as an object with its public member functions
describing the component ports and interfaces. Any GPU-
aware component is characterized by four member functions,
as presented in Figure 5.

The first argument set of the initialize function, (i.e.,
SIZE TYPE frame1 in, ...) specifies the data sizes of the input
ports, while the second set (i.e., SIZE TYPE frame1 out,
...) describes the data sizes of the output ports. For GPU-
aware components, the initialize function has the role of
allocating memory on the GPU to hold the produced output

117Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 136 / 512

class GPU awareComp{
public:

void initialize(SIZE TYPE frame1 in, ...,
SIZE TYPE ∗frame1 out, ...);

void config gpu(int tile, int block x, int block y, int block z);
void execute(GPU TYPE in1, ..., GPU TYPE ∗out1, ...);
void free memory();
};

Figure 5. A GPU-aware component implementation details

data. Based on the sizes of the input data, the component uses
a GPU API routine (e.g., cudaMalloc) to allocate a specific
chunk of memory. The sizes of the allocated memory (i.e.,
SIZE TYPE frame1 out, ...) will be propagated to the next
connected component as input data sizes. The (input and
output) arguments are of a structure type and may hold several
elements indicating the multi-dimensional aspect of the data,
such as three-dimensional matrices or bi-dimensional images.
For example, a 2D image argument may be represented by a
data structure with two member elements (width and height)
that specify the number of image pixels.

Each GPU-aware component receives from the system
its GPU execution settings, through the config gpu function.
The function parameters describe this settings, such as the
three-dimensional size (block x ∗ block y ∗ block z) of the
thread-blocks unit. A thread-block is a specific unit of thread
organization.

The initialize and config gpu functions are used once at
system startup. After a component allocates the memory to
hold its results, it reuses it for all of its executions. The
same principle applies for the GPU execution setting; once
a component has the GPU setting, it is used every time the
component is executed. This design decision is suitable for
relatively simple stream processing applications, with static
control flow and where one frame is fully processed before
starting on the next. Each time a component is invoked,
it processes different data using the same GPU setting and
reusing the same allocated memory space (considering the
dimensions of the streaming frames do not change over time),
avoiding the overhead of allocating/deallocating and specifying
the execution setting for each frame of the stream.

The execute function triggers the core functionality of a
component. This function is specified with two sets of argu-
ments. The first set (e.g., GPU TYPE in1, ...), corresponding
to its input ports, are pointer variables that specify the GPU
locations of the input data. The second set (i.e., GPU TYPE
*out1, ...) indicates the GPU locations of the component
results, corresponding to the output ports. In case when the
component also has standard ports, the types of the ports are
used (e.g., TYPE instead of GPU TYPE).

After the component finishes its executions (it may run
several times), it must free the memory that has been allocated
to hold its output results. This is done by the free memory
function, which uses a GPU API deallocation routine (e.g.,
cudaFree).

B. Adapters implementation
The GPU-aware components, by communicating directly

via the GPU memory, do not have to handle the data shifting

class Cpu2Gpu adapter{
public:

void initialize(SIZE TYPE frame in);
void transfer(TYPE in, GPU TYPE ∗out);
void free memory();
};

Figure 6. A CPU-to-GPU adapter implementation details

activities. Instead, we propose automatically generated soft-
ware adapters to handle the data transfer between the two
computational units.

Figure 6 describes the interface of an adapter that handles
the CPU-to-GPU data transfer. Through the initialize function,
the adapter receives from the system the size of the data to
be transferred. Based on this, it allocates memory space on
the GPU using a GPU API procedure. The parameter of the
initialize function, being of a structure type, may hold several
elements, which reflects the multi-dimension aspect of the
frame in. The transfer function uses a GPU API copy proce-
dure (e.g., cudaMemcpy) to transfer data. The first argument
represents the CPU location of the input data (from the main
memory system), while the second argument holds the GPU
location where the data was transferred. The free memory
interface deallocates the memory space that was allocated on
the GPU.

GPU UCHAR ∗dev ptr;

void initialize(SIZE TYPE frame in) {
cudaMalloc(&dev ptr, 3 ∗ sizeof(dev ptr) ∗ frame in.width ∗

frame in.height);
}

void transfer(unsigned char ∗in, GPU UCHAR ∗∗out) {
cudaMemcpy(dev rgb, host ptr, 3 ∗ sizeof(in) ∗ frame in.

width ∗ frame in.height, cudaMemcpyHostToDevice);
∗out = dev ptr;
}

void free memory() {
cudaFree(dev ptr);
}

Figure 7. An example of CPU-to-GPU adapter implementation using CUDA
API

Figure 7 illustrates the implementation details of a CPU-
to-GPU adapter using the CUDA API programming model.
The adapter transfers a bi-dimensional RGB image (red, green
and blue elements of a frame pixel) from the main (CPU)
memory to the GPU memory. The input image argument (img)
is represented by a SIZE TYPE data structure that contains
two member elements, width and height. The transfer function
uses the main memory frame location specified by the input
argument in, and executing the cudaMemcpy routine, places the
image onto the GPU. The memory location of the newly shifted
image is memorized by the output argument out. In order to
make a distinction between the two different memory systems
(CPU and GPU), we use two different types to characterize
the input and output arguments, i.e., the unsigned char and

118Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 137 / 512

struct SIZE TYPE {
int height;
int width;

};

SIZE TYPE frame1 in, frame2 in, frame mrg, frame filtered;
unsigned char ∗camera1 in, ∗camera2 in, ∗result;
GPU UCHAR ∗adp1, ∗adp2, ∗merge, ∗obj;

Camera1.initialize(&frame1 in);
Camera2.initialize(&frame2 in);
Adapter1 CPU2GPU.initialize(frame1 in);
Adapter2 CPU2GPU.initialize(frame2 in);
ImageMerger.initialize(frame1 in, frame2 in, &frame mrg);
ObjectDetection.initialize(frame mrg, &frame filtered);
Adapter3 GPU2CPU.initialize(frame filtered);
VisionManager.initialize(frame filtered);

ImageMerger.config gpu(16, 16, 16, 1);
ObjectDetection.config gpu(32, 16, 16, 1);

while(stream!=NULL) {
Camera1.execute(&camera1 in);
Camera2.execute(&camera2 in);
Adapter1 CPU2GPU.transfer(camera1 in, &adp1);
Adapter2 CPU2GPU.transfer(camera2 in, &adp2);
ImageMerger.execute(adp1, adp2, &merge);
ObjectDetection.execute(merge, &obj);
Adapter3 GPU2CPU.transfer(obj, &result);
VisionManager.execute(result);
}

Figure 8. The implementation details of the vision system

GPU UCHAR types for the main memory and GPU memory
location, respectively.

The GPU-to-CPU adapter is implemented in a similar way.
The only major difference is located in the transfer function,
where the first argument describes the GPU location of the
image to be transferred, while the other argument describes
the main memory (CPU) location of the transferred data.

C. Vision system implementation
We now use the GPU-aware component and adapter imple-

mentations previously described to present our implementation
of the vision system.

For the robot’s vision system, three adapters are automat-
ically generated: two for placing images on the GPU and the
other for shifting the final result back on the main (CPU)
memory. The initialization of the adapters and GPU-aware
components are specified in the upper part of the Figure 8.

The image sizes of the camera output are propagated to
the rest of the system according to each component’s func-
tionality. For example, the ImageMerger component receives
the input sizes of the two camera images, and outputs the
size of the merged image to the next connected component
(ObjectDetection). The initialization part is done only once,
each adapter and GPU-aware component reusing the same
allocated memory to place the continuous stream of frames
received from the cameras.

The GPU setting of each GPU-aware component is pro-
vided by the system through the conf gpu methods. The

system sends once the execution setting to each of the com-
ponents, which is reused for every image processing activity
of the components during the entire application execution. For
example, the processing unit of ObjectDetection is a block of
16 ∗ 16 ∗ 1 threads, while is applied on frame tiles of 32 ∗ 32
pixels.

The execution of the system core functionality is illustrated
in the bottom part of the figure, inside the while loop. As
long as the stream frame flow is not closed (it stops when
e.g., the robot mission is completed), the camera components
are producing frames which are copied onto the GPU by the
CPU-to-GPU adapters. ImageMerger uses its input parameter
pointers that indicate the GPU memory location of the frames,
and outputs, using a GPU-type pointer variable, the location
of its result. In the end, the VisionManager, using the memory
location provided by the GPU-to-CPU shifted data, it processes
the data, taking appropriate movement decisions of the under-
water robot.

V. EVALUATION

To examine the benefits of our proposed solution, we
conducted a small experiment to compare the performance
with and without the GPU-aware extension, to determine the
reduction in communication overhead. To keep it simple, we
use only one component, i.e., vertical mirroring of an image,
implemented in two variants. A GPU-aware component, devel-
oped using our solution, and a standard component developed
as described in Section II (encapsulating the data shifting
operations between CPU and GPU). We then construct systems
of difference sizes by connecting multiple (from 5 to 25)
component instances sequentially, using either the GPU-aware
or the standard variant.

Two input images are used, one with 1152 ∗ 864 pixels
and a second, larger, with 1152∗1782 pixels. The platform on
which the experiments were executed consists of an NVIDIA
GPU hardware with a Kepler architecture, a 2,6 GHz IntelCore
i7 CPU with 16 GB of internal RAM memory. For each case,
we executed the system 100 times and calculated the average
of the measured times.

5 10 15 20 25

300

350

400

450

Components

E
xe

cu
tio

nT
im

e
(m

s)

Standard GPU-aware

Figure 9. Execution times of two types of systems when processing an
image with 1152 ∗ 864 pixels

Figure 9 illustrates the execution times of the two types of
systems while processing an input image of 1152∗864 pixels.
With standard components, represented in blue color, it takes
approximately 315 ms for 5 component to sequentially process

119Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 138 / 512

the input image, and 420 ms when the system consists of 25
components. The GPU-aware variant, depicted with red color,
need approximately 300 ms to process the same image with 5
components, and 355 ms when the system is composed of 25
components.

The results for the larger input image of 1152∗1782 pixels,
presented in Figure 10, show similar improvements.

5 10 15 20 25

600

700

800

Components

E
xe

cu
tio

nT
im

e
(m

s)

Standard GPU-aware

Figure 10. Execution times of two types of systems when processing an
image with 1152 ∗ 1782 pixels

The experiment shows a performance increase of the GPU-
aware solution over the standard one where GPU interaction
is completely encapsulated in the components. For the smaller
input data, the gain is approximately 5% of the total execution
time with 5 components, and 16% with 25 components. For
the larger input, the gain is 6% and 12% with 5 and 25
components, respectively.

VI. RELATED WORK

There are several component-based approaches that in
different ways target GPU-based systems, as discussed in the
following paragraphs.

Elastic Computing [8] is a framework that, based on a
library that contains pre-built ”elastic functions” for specific
computations, determines offline the optimized execution con-
figuration for a given platform. The framework does not
manage the execution of GPU devices, which is done inter-
nally inside the elastic functions, alongside with the resource
allocation and data management.

Kicherer et al. [9] use a component-based approach to
propose a performance model suitable for on-line learning
systems. The disadvantage of their approach is that the data
management does not handle transfer operations for the GPU
execution. Hence, the data transfer between the main memory
and the GPU device is done internally by the library of the
performance model. Differing from both of the presented ap-
proaches, the data management and resource allocation is done
automatically (by adapters), from outside of the component
level.

A theoretical component model is proposed by Stoin-
ski [10] to support data stream applications by adding a
dedicated port which enables data stream communication
(e.g., MPEG1 video) between components. Comparable to this
theoretical approach, we are extending the hardware platform
specification to include GPUs, and enriching the component

interfaces to enable data (e.g., stream of frames) communica-
tion between components via the GPU memory system.

The PEPPHER component model [11] constructs an en-
vironment for annotations of C/C++ components for hetero-
geneous systems, including (multi-)GPU based systems. The
model provides different (sequential or parallel) implementa-
tion variants (e.g., one for multi-core CPU and another for
GPU) for the same computational functionality (component),
together with the meta-data (tunable parameters). The compo-
sition code of the component is in the form of stubs (proxy
or wrapper functions). In addition to this work, we address,
transparently, the system-to-component communication for the
GPU execution settings. The memory management issue is
handled by smart containers. Contrasting their approach, we
use automatically generated adapters which can be seen as a
high level memory management elements.

Regarding code generation, there is much work done in
automatically porting sequential (or parallel) CPU source code
for GPU execution. Several programming languages have
such GPU translators, such as Java [12], C [13], C++ [14],
OpenMP [15], Python [16] or Matlab [17]. For our work, these
approaches can be used to generate parts of the implementation
of GPU-aware components.

VII. CONCLUSION

Despite the growing trend of using heterogeneous platforms
for embedded systems, there is a lack of efficient ways to
address the CPU-GPU combination in the existing pipe &
filter component models. When a component model does
not provide dedicated means to specifically handle GPUs,
each component have to redundantly encapsulate the same
GPU specific operations and settings required to meet and
support their functionality. Our solution tackles the inefficient
development by proposing a GPU-aware component model
extension. With our method, the components are aware of the
GPU environment by having specialized GPU interfaces and
ports which facilitates the component communication via the
GPU environment.

The benefits of our solution include:

• The system performance is increased from reducing
the component communication overhead and keeping
data locally on the GPU when possible, as indicated
by the experiment in Section V.

• Improved component granularity and reduced code du-
plication, as a consequence of introducing specialized
generated adapters for data shifting operations.

• An increased reusability of components by adjusting
the components GPU configuration setting at the sys-
tem level. For example, the system can run several
components in parallel on the GPU by adjusting their
GPU configuration settings, or the same component
can be used in different systems with different settings.

As future work we want to increase the flexibility of the
GPU memory management to support also more dynamic
memory allocation. Moreover, our work may be extended
by supporting parallel execution of GPU-aware components.
Another possible thread of future work includes implementing
the method in some existing component model, e.g., Rubus [4]
or ProCom [7].

120Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 139 / 512

ACKNOWLEDGMENT

Our research is supported by the RALF3 project [18]
through the Swedish Foundation for Strategic Research (SSF).

REFERENCES
[1] D. Geronimo, A. M. Lopez, A. D. Sappa, and T. Graf, “Survey of

pedestrian detection for advanced driver assistance systems,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 32, no. 7,
2010, pp. 1239–1258.

[2] P. Michel et al., “GPU-accelerated real-time 3D tracking for humanoid
locomotion and stair climbing,” in Intelligent Robots and Systems,
2007. IROS 2007. IEEE/RSJ International Conference on. IEEE, 2007,
pp. 463–469.

[3] AUTOSAR Development Partnership, “AUTOSAR Technical Overview,
v4.2,” http://www.autosar.org, (accessed June 28, 2015).

[4] Arcticus Systems, “Rubus Component Model,” https://www.
arcticus-systems.com, (accessed June 28, 2015).

[5] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. Chaudron, “A classifi-
cation framework for software component models,” IEEE Transaction
of Software Engineering, vol. 37, no. 5, October 2011, pp. 593–615.

[6] C. Ahlberg et al., “The Black Pearl: An autonomous underwater
vehicle,” Mälardalen University, Tech. Rep., June 2013, published as
part of the AUVSI Foundation and ONR’s 16th International RoboSub
Competition, San Diego, CA.

[7] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, and I. Crnkovic, “A
component model for control-intensive distributed embedded systems,”
in Proceedings of the 11th International Symposium on Component
Based Software Engineering (CBSE2008). Springer Berlin, October
2008, pp. 310–317.

[8] J. R. Wernsing and G. Stitt, “Elastic computing: A portable optimization
framework for hybrid computers,” Parallel Computing, vol. 38, no. 8,
2012, pp. 438–464.

[9] M. Kicherer, F. Nowak, R. Buchty, and W. Karl, “Seamlessly portable
applications: Managing the diversity of modern heterogeneous systems,”
ACM Transactions on Architecture and Code Optimization (TACO),
vol. 8, no. 4, 2012, p. 42.

[10] F. Stoinski, “Towards a component model for universal data streams,”
Eighth IEEE International Symposium on Computers and Communica-
tion, 2003, 2003.

[11] U. Dastgeer, L. Li, and C. Kessler, “The PEPPHER composition tool:
Performance-aware dynamic composition of applications for GPU-
based systems,” in High Performance Computing, Networking, Storage
and Analysis (SCC), 2012 SC Companion:. IEEE, 2012, pp. 711–720.

[12] Y. Yan, M. Grossman, and V. Sarkar, “JCUDA: A programmer-friendly
interface for accelerating Java programs with CUDA,” in Euro-Par 2009
Parallel Processing. Springer, 2009, pp. 887–899.

[13] M. M. Baskaran, J. Ramanujam, and P. Sadayappan, “Automatic C-to-
CUDA code generation for affine programs,” in Compiler Construction.
Springer, 2010, pp. 244–263.

[14] F. Jacob, J. Gray, Y. Sun, and P. Bangalore, “A platform-independent
tool for modeling parallel programs,” in Proceedings of the 49th Annual
Southeast Regional Conference. ACM, 2011, pp. 138–143.

[15] S. Lee, S.-J. Min, and R. Eigenmann, “OpenMP to GPGPU: a compiler
framework for automatic translation and optimization,” ACM Sigplan
Notices, vol. 44, no. 4, 2009, pp. 101–110.

[16] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih,
“PyCUDA and PyOpenCL: A scripting-based approach to GPU run-
time code generation,” Parallel Computing, vol. 38, no. 3, 2012, pp.
157–174.

[17] A. R. Brodtkorb, “The graphics processor as a mathematical copro-
cessor in MATLAB,” in Complex, Intelligent and Software Intensive
Systems, 2008. CISIS 2008. International Conference on. IEEE, 2008,
pp. 822–827.

[18] RALF3, “Software for Embedded High Performance Architecture,”
http://www.mrtc.mdh.se/projects/ralf3/, (accessed September 10, 2015).

121Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 140 / 512

Soft System Stakeholder Analysis Methodology

Markus Kelanti, Jarkko Hyysalo, Samuli Saukkonen,

Pasi Kuvaja, Markku Oivo

Department of Information Processing Science

University of Oulu

Oulu, Finland
{markus.kelanti; jarkko.hyysalo; samuli.saukkonen;

pasi.kuvaja; markku.oivo}@oulu.fi

Jari Lehto

Nokia, Networks

Espoo, Finland

jari.lehto@nokia.com

Abstract— Understanding problems and the values of any

solution from multiple stakeholder perspectives is a

fundamental feature of stakeholder analysis. As modern

systems increase in size and functionality and include services

and other non-software or hardware components, more

stakeholders are involved. These stakeholders have different

interests and needs, which are often expressed in a multitude of

ways. Describing problems and identifying the local strategic

values in a constantly changing business environment is

strategically important to companies. This paper describes

action research conducted within a large, global

telecommunication company to study how stakeholder analysis

can support software-intensive systems development. The

results of the study demonstrate the need to analyse, structure

and identify problems and solutions with different local and

strategical values. Furthermore, the results show the

importance of method usability and the role of stakeholder

analysis in supporting software intensive systems development.

The outcome of the study was a method for a practical

stakeholder analysis that supports the identified needs in the

software-intensive systems development.

Keywords-Software Intensive Systems; Stakeholder;

Stakeholder Analysis; Action Research.

I. INTRODUCTION

In today’s world, software systems development is
becoming increasingly challenging. Software systems are
typically not developed by a single company. Rather, they
are developed globally, with collaboration between
subcontractors, third-party suppliers and in-house
developers. Modern systems like software intensive systems
(SIS) have not remained local isolated applications, but have
become large and complex systems with increased
communication with other systems and attached services.
Few can master the entire process of product development,
so several experts pool their expertise and work together,
especially when the software is the main component and
affects the product’s usability, functionality, development
tools and methods, production mechanisms and innovation.
Such systems are known as SIS [1][2][3].

The case company, Nokia Networks, develops very
large-scale SIS for the global telecommunication market.
Development occurs across several countries, which requires
knowledge workers [4][5] with a common understanding,

shared goals, awareness and practices that support the work.
Knowledge-intensive processes are characterised by dynamic
changes of goals, information, environment and constraints,
as well as intensive individual ad hoc communication and
collaboration patterns; thus, it is not easy to plan the work in
detail beforehand [6]. SIS are often very large-scale systems,
and various stakeholders from different organisations work
in collaboration, forming teams that are dynamically and
spontaneously assembled and work together via
communications technology [7].

In the case of Nokia Networks, large-scale SIS
developers often find it difficult to approach, collect, analyse
and structure all the information that is currently available.
Similar challenges are presented by the information that is
obtained as time progresses. The company has adapted agile
development approaches to answer these problems, and the
individual teams have especially benefitted from this
approach. When, however, products or features are analysed
from the platform or architectural level, the problems still
exist. These challenges often result from ill-defined goals
and evaluation criteria and require changes in goals and
plans during development. Multiple actors and perspectives,
incommensurable and/or conflicting interests, important
intangibles, and key uncertainties are typical in such
situations [8].

To solve problems like this, a common approach in
Requirements Engineering (RE) is to perform a stakeholder
analysis [9][10]. This type of analysis aims to discover the
stakeholders relevant to the problem faced by the developers.
Analysing the stakeholders’ needs allows the real system and
environment of the stakeholders to be defined and the
problem to be further understood from multiple perspectives.
Utilising this information, a company can design an initial
solution and negotiate with stakeholders to solve conflicting
interests and produce a solution that results in the most value
for the stakeholders and the company. However, the
environment in which the company works is highly
competitive and dynamic, requiring speed and agility from
the development process. There are often uncertainties about
whether information is valid or common enough when new
features or products are developed. In addition, the
development situation also changes as more information
becomes available. Uncertainty and changes are common in
software development because the processes are complicated

122Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 141 / 512

and not all circumstances can be predicted [12][13].
Furthermore, the order in which activities are executed is not
necessarily important—it may even be impractical as
interaction with the environment, activities and underlying
business logic determines the order of execution rather than
predetermined, static process schema [11]. The analysis of
information is often done intangibly, since the development
process involves numerous personalities, experiences, types
of education and backgrounds. Understanding and
processing is essential for properly structuring information as
it helps the company identify the real problem, determine
where it can potentially gain the most value and discover the
type of solution that is capable of realising this value.

Therefore, the research problem of this paper is: how can
problems in SIS development be described and structured
using stakeholder analysis? In particular, how can problems
in an SIS development environment be described and
analysed in order to identify the impact and value from
different stakeholder viewpoints?

Action research [14] was conducted over a period of one
year in the case company to research and develop a practical
way to perform stakeholder analysis. The rest of the paper is
structured as follows. Section 2 presents the related research,
and Section 3 presents the research method. Section 4
describes how the action research cycles were performed and
their results. Section 5 presents the soft system stakeholder
analysis methodology (S3AM) developed as a result of the
action research. Section 6 discusses the results of the
research and how problems in SIS should be approached and
section 7 describes threats to validity and the limitations of
the research. Section 8 presents the conclusions and future
topics.

II. RELATED RESEARCH

Freeman [15] was the first to popularise the concept of
‘stakeholder’. He defined a stakeholder as a group or
individual affected by the achievement of an organisation’s
objectives, or a group or individual that can affect them. This
concept introduced ethical thinking to businesses, causing a
company to consider other stakeholders’ benefits rather than
just stockholders’ [16]. This is known as a stakeholder
approach where company needs to identify stakeholders in
order to identify their needs and manage them [17].

Stakeholder analysis is an internal part of RE in any
software development process. An RE stakeholder is
generally a person, group or organisation that has an interest
in or is connected to the system under development [9][10].
Common stakeholders are end users, engineers, managers
and customers [18][19]. Stakeholder analysis is generally
integrated into the specific RE method and does not exist as
an independent method. It mainly supports the [9][10][19]:

 identification of relevant stakeholders,

 elicitation of stakeholder requirements,

 analysis of requirements from stakeholders’
perspectives,

 validation of requirements,

 negotiation of requirements with stakeholders, and

 prioritisation of requirement implementation.

A common approach is to utilise user stories, requirement
templates or other structured or semi-structured data
containers to capture information about a system and how it
works from a stakeholder’s perspective. This process can be
guided by practical perspective [20] or used to support
negotiations [21].

The main critique of stakeholder analysis is that it is not
systematic and well defined [18][22]. Either it supports few
activities in the development process or its instructions and
process are vaguely described. To counter this problem,
multiple stakeholder analysis methods have been developed.

Ballejos and Montagna [18] describe a specific method
for stakeholder identification in an inter-organisational
environment utilising generic stakeholder categories.
McManus [22] defines a general systematic approach to
stakeholder analysis that describes the identification,
elicitation, analysis and negotiation processes in RE.
McManus also provides an identification and analysis
method based on the World Bank’s list of possible
stakeholders. Alexander and Robertson [33] use the onion
model to identify and involve stakeholders to the
development process. Lim et al. [23] utilises social networks
to systematically analyse stakeholders in large-scale software
projects. They utilise crowdsourcing to automate stakeholder
analysis by asking the stakeholders to recommend other
relevant stakeholders and aggregating the answers via social
network analysis.

While there are known and established methods for
stakeholder analysis, none has established itself as the
benchmark method in a development effort dominated by
software. Furthermore, the methods typically concentrate on
small- and medium-scale development efforts. However,
instead of abolishing any of the existing methods, it is
worthwhile to examine how the stakeholder analysis should
work in SIS development context and how it should be
implemented in order to benefit its users.

III. RESEARCH SETTING AND PROCESS

To monitor their development process, the case company
utilises metrics that measure the process on different levels.
Data is collected and then synthesised for different
stakeholders to compare the development to pre-defined
guidelines. This system is known as a metrics reporting
system (MRS). The main benefit of this type of system is
that it helps analyse and visualise the statuses of different
organisational units and the overall picture.

The data for the MRS is provided and calculated by
multiple units. The units participating in this research had
been experiencing organisational changes: some of the work
was done manually, and some was assisted by tools. The
company was interested in finding a way to automate the
reporting system—or at least parts of it—to try to avoid
manual data collection. Its goals were to determine the extent
to which the MRS could be automated, discover its
requirements and calculate the value of the automation. In
this case, part of the MRS (8 metrics) was deployed to
measure the performance of product lines. The metrics
reported the data for each product line at the end of a
reporting period.

123Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 142 / 512

In order to reach these goals, the company needed a
method for collecting and structuring information to describe
the current MRS from multiple stakeholder perspectives.
This would allow for the analysis of changes to the system
and their potential value. Because the current understanding
of the MRS was unclear and there were a number of
unknown variables, action research [14] was selected as the
research method. It was important to establish constant
collaboration between the company, participants and
researchers to ensure a complete understanding of the
environment and problem. Action research offered flexibility
and an iterative approach to the problem.

Action research is an iterative and systematic process that
addresses concrete organisational problems through the
application of theories in practice. It allows both researchers
and practitioners to gradually create a satisfactory solution to
the organisation’s problem while adding to the scientific
knowledge on the topic [24][25]. Action research is
composed of cycles or iterations, allowing for constant re-
evaluation of the problem, implementation of the solution
and learning in short intervals [14][26][27]. The cycles are
divided into the following phases:

• diagnosis, where the problem is identified, analysed
and defined;

• action planning, where the actions to address the
defined problem are decided based on the available
solutions and theories;

• action taking, where the desired actions are
implemented;

• evaluation, where the impact of the action is
studied; and

• specify learning, where the results and findings of
the evaluation are documented and published, and
then this information is used in a new cycle.

 The action research method in this study was
implemented as follows. A pre-study was conducted to
analyse the company’s problem and select a suitable
approach from the literature. After the pre-study, the
iterations began and were continued until a suitable solution
was devised. Each iteration began with a diagnosis meeting
between at least two company representatives and one
researcher, who analysed the results of the pre-study or a
previous iteration. Based on the results, they determined the
desired actions for the iteration and how long the iteration
would last. After the meeting, the actions were implemented;
this was done primarily by the researcher, who was assisted
by the company representatives. When this phase ended, the
researcher evaluated the results and presented them in a
retrospective meeting. The purpose of the retrospective
meeting was to specify what was learned. This meeting is
open to the company representatives and other company
personnel, especially those who were involved in the
research.

A total of five iterations were completed during 2014,
and a total of 30 modelling sessions were completed with 20
MRS stakeholders. Five meetings and five workshops were
held at the beginning and end of each iteration, respectively.

IV. RESEARCH EXECUTION

This chapter describes the execution and results of the
research.

A. Pre-study

The first step was to analyse the problem the company
was experiencing with the MRS. The company
representatives provided a data set containing descriptions of
the reports, the reports’ data structures and the stakeholders
who were responsible for providing the reports. In addition,
descriptions of the metrics in the MRS were provided,
including metric input data, calculation formulas and the
organisational units responsible for providing data.
Currently, the metrics in question are reported both manually
and with Excel templates.

After analysing the information, the scale and amount of
the information presented from multiple stakeholder
perspectives became the main problem. The first step was to
select a way to structure all the information. A problem
structuring method was determined to be a suitable
framework since similar problems are generally approached
in this way, a soft systems methodology (SSM) [28]. SSM
was selected due its iterative approach and ability to
conceptually model any stakeholder viewpoint into a soft
system model. A soft system can be any system where both
natural objects and humans interact, which is essential for
SIS descriptions. SSM consists of:

• entering the problem situation,
• expressing the problem situation,
• formulating root definitions of relevant systems,
• building conceptual models of human activity

systems,
• comparing the models with the real world,
• defining changes that are desirable and feasible, and
• taking action to improve the real-world situation.
Other problem structuring methods exist, such as

multiview, information requirements analysis and logico-
linguistic modelling. They are similar in approach to SSM
but are designed to be more systematic and rigorous. In this
case, because the principles remained the same, SSM was
used to structure the MRS.

B. Action research iterations

Based on the pre-study, the action research began by
structuring the problem situation so that it could be
understood properly. SSM was selected as a starting point
for the research activities. Table 1 describes the first two
iterations.

124Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 143 / 512

The first iteration concentrated on creating a conceptual
model of the problem. Unified Modelling Language (UML)
flowchart was selected as a basic modelling language.
However, it quickly became obvious that a structure for the
modelling approach was required to obtain an accurate
model. Allowing abstract descriptions hid the information
obtained by the stakeholders. Therefore, the second iteration
utilised the input–function–output structure to describe any
activity performed by the stakeholders. In addition, actual
stakeholders were involved to obtain the data directly from
the stakeholders themselves, as the original data was
insufficient. The results of the second iteration indicated that
the company’s problem was not to just to solve the problems
in MRS, but also how to analyse it systematically in SIS
environment. It became clear the company personnel had to
work in a certain manner and with certain restrictions caused
by the SIS development. The participants felt that the
methodology used in the research would be more useful than
just solving the problem they had with the MRS.

It was determined that the actual goal of the research
should be to design a methodology that the company could

use to analyse problems during SIS development, as it was
believed that the stakeholders would benefit from analysing
the problems themselves. Since SSM was perceived to be too
vague and unfamiliar to participants, it was designed to be
part of a stakeholder analysis. Essentially, stakeholder
analysis and SSM have similar outcomes. However, the
participants understood the concept of stakeholder analysis
better. Utilising a UML flowchart (UML was identified to be
a suitable modelling language) and existing systematic
approaches to stakeholder analysis (e.g., [22], [23]), three
more iterations were run in order to develop and refine a
stakeholder analysis (S3AM) suitable for an SIS
development environment. Table 2 describes the following
three iterations, which aimed to develop a methodology to
analyse problems during SIS development.

Iterations 3–5 mainly concentrated on identifying the
special attributes of SIS development and how the S3AM
needs to support the company’s development process. The
result of the action research was an exact methodology,
which is described in the next sub-chapter.

TABLE I. ITERATIONS 1–2

Iter. Diagnosis Action planning and taking Evaluation Learning

1 Problem should be further
modelled and analysed in
order to understand it
properly.

Create a soft system model
from the MRS using SSM and
the data obtained in the pre-
study.

Use a UML flowchart as a
modelling language.

Use Microsoft Visio as a
modelling tool.

Perform iteration lasting 3
months; one researcher creates
the soft system model from
MRS.

The soft system model resulting from
SSM was found to be informative and
easy to understand.

The UML flowchart was able to model
the information, and participants had
experience using it.

Microsoft Visio was able to model the
soft system model.

The data given by the company in the beginning was
insufficient, as the resulting soft system model in the
end of the iteration was missing information.
Stakeholders need to be involved directly.

Data and functions were found to be missing after the
soft system model was finished, especially manual
work, which was done but is missing from the official
documentation.

A visual model of the soft system promotes
communication and information distribution between
stakeholders.

The UML flowchart was sufficient for describing the
MRS. It utilised familiar language and increased the
acceptance of the method.

2 Stakeholders need to be

directly involved to discover

their understanding of the

problem and the soft system

where it resides.

UML flowcharts and

Microsoft Visio should still

be used to visualise the soft

system model.

SSM should be used as long

as the soft system model is

able to present the problem.

The modelling approach

needs to be structured since

data and activities can be

hidden. An approach is

needed to identify and

model these data and

activities.

Select two example metrics

and relevant stakeholders in

order to discover whether the

soft system model is

beneficial.

Organise 1.5-hour modelling

sessions with the identified

stakeholders. One researcher

and at least one stakeholder

participate in each modelling

session.

The participating stakeholder

must identify other

stakeholders that can describe

the soft system if the original

stakeholder was not able to do

so.

Separate each stakeholder
viewpoint with layers in
Microsoft Visio.

Utilise an input(s)–

function(s)–output(s) structure

for information flow to help

identify what the stakeholders

actually do in the system.

Using actual stakeholders helped create a

soft system model that represented how

the MRS worked in reality.

Modelling sessions with each

stakeholder allowed for the modelling

and separation of stakeholder viewpoints

within the same soft system model.

Multiple viewpoints helped to remove

uncertain parts from the model and

increased the quality of data as they were

refined and confirmed by more than one

stakeholder.

Stakeholders can be systematically

added to the model by asking the

stakeholders to identify who provides

them with information or uses

information provided by them.

The layers used in Microsoft Visio

clearly visualise how different

stakeholders see, understand and work

within the MRS.

The input(s)–function(s)–output(s)
structure of the model increased the level
of detail and helped stakeholders work
through the details of their work and the
process.

The soft system model must allow for irregular and
abstract viewpoint descriptions from different
stakeholders, as it cannot be guaranteed that every
stakeholder is able to use formal language. The
input(s)–function(s)–output(s) structure should not be
strictly enforced.

Multiple viewpoints revealed variations and different
data and activities than were originally known by the
stakeholders. The differences and variations affected
metric generation.

A systematic method is needed, as multiple

stakeholders are required to work on it

simultaneously due to the scale of the problems and

working environment.

The soft system model was easy to understand, but the
concept of SSM was not. It was seen as too vague, and
it is unusable in its current form.

Participants felt that the methodology, which helped
them to approach problems in their work, was more
valuable than solving the problem in the MRS.

Participants discussed different problems related to

MRS that became visible form the model, as they

appeared to have even more value if solved.

A need to analyse value from stakeholder’s
perspective surfaces as different changes or impacts
were evaluated against the soft system model.

125Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 144 / 512

TABLE II. ITERATIONS 3–5

Iter. Diagnosis Action planning and taking Evaluation Learning

3 The fact that SSM creates soft system
models helps individuals comprehend
and approach problems during SIS
development.

The SSM approach adapted in the
research should be methodised for the
company.

The SSM was perceived as too vague
and difficult, and it was too general to
be used as such in SIS environment.

Stakeholder analysis is a better-known
concept in software development and
has similar outcomes to SSM.

The solution was to combine
stakeholder analysis and a framework
for creating a soft system model from
SSM.

The value of introducing any change to
the soft system should be analysed,
preferably by asking the stakeholder
directly or using a pre-defined value
measurement.

Design a first version of the
S3AM based on the findings of
previous iterations utilising
existing systematic stakeholder
analysis approaches.

Extend the analysis to a larger
part of the MRS to test the S3AM
in its intended environment.

Select eight metrics reported by
eight different product lines with
responsible stakeholders to be
analysed.

Organise 1.5-hour modelling

sessions with each stakeholder.

One researcher and at least one

stakeholder participate in each

modelling session.

Ask each stakeholder how many

working hours they spend

performing particular tasks to

evaluate value.

Identifying additional stakeholders
by asking participating
stakeholders was effective.

As the analysis was extended to a
larger portion of the MRS, the
analysis must be conducted by
multiple persons.

Getting stakeholders to participate
is becoming difficult due to the
number of stakeholders and
scheduling problems.

When stakeholders saw the
existing model during modelling
sessions, they seemed to
understand the modelling
approach, and in most cases, they
described their activities related to
MRS without requiring further
instruction. This applied to both
managers and engineers.

The variations and differences between data
and activities become even more pronounced
as more stakeholder viewpoints are added.

Promoting the input(s)–function(s)–
output(s)—language structure, which is typical
in system descriptions, produced a richer and
more detailed soft system model.

Visualising the models increased the
effectiveness of communication in every
meeting.

The existing soft system model helped
participants understand their tasks and
increased the speed of the modelling process
faster as participants had an example to work
from.

Stakeholders felt that the ability to see other
stakeholders’ viewpoints in the model
increased their understanding of how the MRS
worked. This led to discussions on how the
MRS could be improved and how it should be
analysed to understand its problems.

4 Explicit visualisation of stakeholders’
viewpoints was an eye-opener for
many stakeholders.

Stakeholders who can see and
understand other viewpoints are able to
evaluate impact and value from a wider
perspective.

Continue the modelling
performed in Iteration 3.

Make the existing soft system
model available and present it to
stakeholders.

Adding more stakeholder
viewpoints to the soft system
model helped stakeholders evaluate
impact and value from a wider
perspective.

Improving the soft system model
makes interpretation and reading
the model more difficult for
stakeholders.

Model abstraction is needed in both the soft
system model and in the tool used to generate
the soft system model.

Gradually building and constantly refining a
soft system model supports the distribution of
work and the co-operative nature of the
development environment.

Feedback from stakeholders signalled a need
to identify the most important areas to analyse
and where there is missing information in
order to determine how the system should be
changed to address problems.

5 Abstraction of stakeholders’
viewpoints is necessary in large
systems.

The SIS environment causes certain
restrictions and requirements for the
S3AM because work is continuous and
the aim of the analysis changes when
new information is made available.

Model abstraction layers using
descriptions of stakeholders’
viewpoints.

Analyse the original problem
based on the soft system model
and create a separate impact layer
where the system automation can
be evaluated. This information
can be used to determine whether
the current soft system model is
adequate for determining the
value of automation and how it
should be implemented.

Continue the modelling
performed in Iterations 3 and 4.

The implementation layer allowed
stakeholders to identify missing
information and unclear areas.

Stakeholders identified problems
with more value than the original
problem.

The soft system model, along with
the implementation layer, helped to
direct the analysis based on unclear
data that was connected to the
impact model.

Previously unknown but relevant
stakeholders were identified based
on the analysis in the impact layer
due to missing information.

Multiple viewpoints increased the visibility
and transparency of the MRS and refined the
original problem.

Multiple viewpoints allowed for the evaluation
of different value perspectives, especially local
and strategic perspectives.

Constant analysis of the problem directed the
modelling of the soft system and provided
direction for the analysis based on the impact
of the problem. When the impact extended out
of the model, it was an indication for doing
further analysis on those sections.

The introduction of an analysis layer for
analysing the impact of automation helped
stakeholders identify missing or unclear
information and find previously unknown
stakeholders.

C. S3AM

The principle idea of S3AM is to model different

stakeholder viewpoints into the same soft system model.

Each viewpoint, however, is the conceptualisation of a
stakeholder’s understanding of the soft system. In essence,

each viewpoint contains information about how the

stakeholder perceives and understands the way in which a

real life phenomenon works.

The S3AM starts with a single stakeholder, who

identifies a soft system of interest. Due to this interest, the

stakeholder intends to present a request, requirement, need

or problem that aims to change that soft system in a certain
manner. The stakeholder is seeking to provide information

about how to change a certain soft system he believes

requires such change.

In order to create the soft system model, a certain

structure was required to describe stakeholder viewpoints.

In this case, all soft system descriptions follow the same

126Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 145 / 512

principle of information flow description: input(s)-

function(s)-output(s). Each stakeholder’s viewpoint is

constructed in a similar manner: information (documents,

emails, communication, etc.) is received, something is done

with the information (analysis, transfer, format changes etc.)

and the result is a defined output (report, piece of
information, emails, etc.). For example, a stakeholder is in

charge of collecting summaries of metric data from two

other stakeholders. Figure 1 demonstrates the soft system

model created from the stakeholder’s viewpoint.

From this stakeholder viewpoint, the summarised metric

data element in the upper right corner and the summarised

data element on the upper left form the boundaries of the

stakeholder’s viewpoint. The stakeholder does not know

how the other stakeholders actually perform the data

summaries and what data is used.

Now that the boundaries are known for the first

stakeholder, the next step is to analyse the intent of the
stakeholder (e.g., to automate data collection and create a

data summary). The known soft system model is now

analysed to determine whether it contains enough

information to analyse the real impact from all relevant

stakeholder viewpoints.

After the initial soft system model is created, the next

step is either to analyse how the soft system would change if

some desired change were introduced, or to simply extend

the model by adding more stakeholder viewpoints. The first

case asks practitioners to analyse how the current soft

system changes if some desired change, for example a
stakeholder’s need, affects it. In this case, an impact layer is

drawn using the existing soft system model modified by the

change. If the change affects any of the boundary elements

in the soft system model, the stakeholder whose viewpoint

has the boundary element should identify a stakeholder who

knows how the soft system worked prior to that element,

and it should then be modelled. This continues until there

are no boundary elements affected by the change. This helps

to direct the analysis effort to those parts that are not yet

modelled but will be affected by the desired change. The

other option is to simply ask each stakeholder to identify

other stakeholders that can describe the system beyond the
boundary elements of his or her own viewpoint and keep

extending the model.

Summarise metric
data

Summarised
data

Give data to
stakeholder

Summarised
data

Figure 1. An example of a single stakeholder viewpoint

As more stakeholder viewpoints are added, there will

eventually be shared elements and conflicting viewpoints.

Figure 2. demonstrates an additional stakeholder viewpoint

added to the soft system model. The colour white indicates a

stakeholder who collects the metric data from the report,

summarises it as a single figure and gives it to the original
stakeholder. Another stakeholder asks for the metric data

directly from the engineers, summarises it and gives it to the

original stakeholder. However, the stakeholder also states

that it is not exactly the same metric data; it is presented by

a separate data element.

As the model is updated, it is important to verify with

each stakeholder that existing elements (both functions and

data) remain the same along with the data flows. If they are

not, they must be modelled separately to highlight the

differences. One of the key principles is that each

stakeholder ‘owns’ his or her own system description. Thus,

if any changes were made to a single viewpoint, the
stakeholder who owns it had to accept the change. This was

determined to be an important feature, as it prevents a loss

of information by assuming the elements in the soft system

are the same. Therefore, each element in the soft system

model belongs to one or multiple stakeholders, and any

change to an element requires all stakeholders to agree to

the change or newly created element.

To analyse the value of any change to the soft system, a

need presented by a stakeholder should be analysed and

modelled as an impact model, describing a solution for the

need. The impact model can be used to determine all
elements affected by the impact and therefore track all the

viewpoints in which those new, modified or deleted

elements reside. The value can be analysed either by

measuring impact to the work effort or by asking the

stakeholder directly what value he believes the new soft

system would bring.

A report
Obtain report from

email
A report

Collect relevant
netric data from the

report

Metric data
Summarise metric

data
Summarised

data

Give data to
another stakeholder

Summarised
data

Metric data’
Ask metric data
from engineers

Figure 2. Two stakeholder viewpoints in a single soft system model

These values can be summarised to evaluate the overall
impact. Furthermore, these values can also be used to

redesign the solution to achieve a different impact with

127Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 146 / 512

different values. When the value is known for each

stakeholder, it is possible to determine the overall effect and

analyse the effect for different groups of stakeholders.

Values can be both negative and positive.

Based on the results, it was determined that using a

modelling language with which the organisation is familiar
supports the usability of the method. Therefore, S3AM

allows utilisation of any modelling language as long as it

supports visualisation, an input(s)-function(s)-output(s)

model structure and allows attributes to be defined for each

element. The important factor, however, is the ability to

visualise the soft system and only promote the input(s)-

function(s)-output(s) modelling structure to help

stakeholders structure their viewpoints. This allows

practitioners with varying levels of technical understanding

to understand the described soft system more quickly and

from different perspectives.

V. DISCUSSION

The results from the action research show that problems

in which humans are an integral part are hard to describe,

comprehend and communicate. Understanding and

structuring such a problem requires human understanding.

The results further demonstrate how the same phenomena,

the MRS and data used by the system, are perceived and

understood in a different manner by each stakeholder.

S3AM was developed as a combination of SSM principles,

stakeholder analysis and a model-based approach to a soft

system where humans play an integral role. These systems

are never plain, hard systems. They are, rather, a collection
of hard systems interacting with themselves or with humans.

While they can be described using a hard system approach,

the difference is that hard systems are considered to be free

of interpretation and follow almost exact rules. Such

systems can be described with exact languages due the

nature of them. However, when humans are added to these

systems as actors or observers, the way the system is

perceived and how it functions now depends on individual

perception, understanding and behaviour. Multiple actors

can understand and describe same phenomena in equally

different ways, all of which need to be captured somehow.

For example, a single product in the telecommunication
domain can simultaneously include building the physical

network, maintenance and customer support. Due to the

nature of human thinking, the same principles do not apply

to designing, analysing and modelling, and a ‘soft’ approach

is required. While the goal of a soft system approach is the

same as a hard system approach (i.e., model a real world

phenomena), the soft system approach introduces a way to

capture and understand different viewpoints of human

actors.

S3AM adapted the systems thinking part from SSM,

where root definitions of the soft system in question are
determined and modelled using semi-formal language. The

key principle is to allow highly abstract, conflicting, very

structured schematics or any other forms of system

descriptions to exist in a single soft system model. In

S3AM, this was done by utilising stakeholder viewpoints as

layers and the boundaries of these viewpoints as connection

points to other viewpoints. While this model itself was not

coherent, the main idea was to analyse and connect models

to form a coherent and structured soft system model. This
allows different worldviews to come together and facilitate

consensus building between stakeholders. At the same time,

the method gradually removes differences in the concepts

and terms between stakeholders, who are able to see them

through the viewpoint of others and obtain crucial insight

into how others think. Workshop discussions indicated

problems in communication between management and

engineering. The ability to have both viewpoints in the same

model helped stakeholders from both groups communicate

more efficiently and allowed them to understand each

other’s concerns and perspectives.

S3AM fulfilled the role of stakeholder analysis by
allowing participants to identify relevant stakeholders, elicit

and analyse their needs and have the means to verify and

validate the problem system. In the end, S3AM was

designed to be simplistic and direct the user to structure any

problem as a soft system model, utilising stakeholder

viewpoints to describe it as accurately as possible. It also

provides information in the form of impact and value to

facilitate understanding of the requirements, negotiation and

agreement on a solution. The S3A also addresses the

identified issues within stakeholder analysis by providing a

systematic and defined approach and analysis method. It
allows systematic construction of a soft system model

explaining how different stakeholders perceive the real

world. A local problem was structured and expanded to

describe the soft system from additional perspectives,

especially a strategic perspective, which allowed

identification of problems and issues that potentially bring

more value to multiple stakeholders rather than a few local

stakeholders.

However, the research also showed that systematic and

defined stakeholder analysis alone is not enough. How it is

implemented and how it creates new information for the

process is equally important. This defines the usefulness of
the method and justifies its existence. Stakeholder analysis

in SIS development is not only about identifying the

requirements and agreeing on their specification through

negotiation, prioritisation and validation. It also

communicates information, creates awareness and elevates

thinking to higher abstraction layers, enabling the discovery

of problems or issues that create strategic value. S3AM

enabled discovery and analysis of impacts and values

outside the original problem description. In such a situation,

the original requirement only presented a situational or

tactical problem. Analysing it systematically from different
stakeholder viewpoints revealed ‘strategic’ problems that

were previously unknown. As local and strategic

perspectives were visible, S3AM had a clear impact on

removing uncertainty within the participants. It effectively

128Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 147 / 512

increased the quality of the information that described the

soft system. Essentially, this helped the stakeholders

evaluate how much information they had and what

information was potentially missing. Furthermore, as more

stakeholders shared a viewpoint, the quality of the

information increased.
The action research also revealed the needs and

limitations of the SIS development process. This had a clear

impact on the usability of the method. The case company’s

development process leans towards a decision-oriented [29]

culture, emphasising the nature of information needed in the

process. Furthermore, the need to make decisions in quick

intervals was also apparent, and some kind of result was

always necessary to either satisfy the information need to

make a decision or to continue the analysis, as the risk of the

unknown was too great. In this sense, stakeholder analysis

also needs to inform the practitioners whether they know

enough or whether there is missing information that still
must be analysed. The process, methods and practices, as

well as the workflow used to implement and enact them,

should support freedom in the order of activities and the

implementation of practices and strategies. In the modern

world, stakeholders come from different organisations,

forming distributed teams that work with the help of

communications technology. In distributed teams, people

work as dynamically and spontaneously assembled groups

in a collaborative mode [7]. However, the developer’s

activity is still guided by objectives, work requirements,

constraints and resources, which form the fundamental
constraints on workers’ behaviour [30]. Software design is

never a fully rational process [31][32] as:

 People who commission software system do not

know exactly what they want and frequently are

unable to elaborate what they want.

 Even if the real need is known, further information

needs surface as development moves towards

implementation.

 Most humans cannot comprehend all information,

even if all information is available.

 Only the most trivial projects are not subject to
external changes.

 Human errors can only be avoided by excluding

humans in the development.

 Preconceived ideas often influence the design

process in ways that are not necessarily

appropriate.

 There may be a reuse of software developed by

others or from other projects that is not necessary

ideal.

For the SIS development, gradual expansion, refinement
and correction of the entire soft system model was a

practical approach. The complexity and uncertainty in the

beginning required that the problem first be structured and

the data refined to validate it. The ability to modify any part

at any given time was seen as an important aspect of the

method. Since the information was not complete in the

beginning (or it could not be properly comprehended),

validation from multiple viewpoints was also essential.

The participants saw visualisation as an essential feature.

They frequently talked about the same system but tried to
explain the differences they perceived. They lacked either

the words or expressions to describe this effectively for

other stakeholders. However, when each viewpoint was

modelled and the entire soft system was visible in a single

model, the differences were communicated to each

stakeholder more easily.

VI. THREATS TO VALIDITY AND LIMITATIONS

The reliability of the data and results was ensured via a

rigorous research protocol with peer reviews by researchers

and company representatives. The action research cycles

were described and followed throughout the research. The

modelling sessions were recorded and transcribed by the
researchers.

This study is limited only to the telecommunication

domain. Furthermore, only one company was involved in

this research, limiting the generalisability of the results.

However, the study uses a well-established problem

structuring method that has been used in multiple domains.

In order to make definitive conclusions, more domains and

companies should be involved in future research.

The way the action research was implemented in this

study also introduces a danger of positive bias within

researchers and company participants. Due to the constant
communication and interventions in the company,

participants could be positively biased, producing only

positive results. This issue was addressed by having

multiple different viewpoints presented in the meetings. In

addition, agreement over clear roles and rigorous research

methods helped participants remain observers.

VII. CONCLUSIONS

In this paper, action research was conducted in a

telecommunication domain company, aiming to create a

stakeholder analysis for SIS development. Using the SSM

as a starting template, the result was a Soft System

Stakeholder Analysis Methodology (S3AM).
The main contribution of this paper is that it shows the

importance of systematic analysis of stakeholder viewpoints

from a soft system perspective. Furthermore, it raises the

importance of method usability, a factor that cannot be

ignored in SIS development as it directly affects data

collection, quality and analysis. From an academic

perspective, this study provides industry insight in terms of

stakeholder analysis and utilisation in an SIS environment.

It demonstrated the importance of systematic problem

structuring and model creation in stakeholder analysis.

Finally, the results present a systematic and practical
approach for stakeholder analysis in an SIS development

environment.

129Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 148 / 512

Future research should examine the use of S3M in

domains other than telecommunication to verify and

validate the methodology and its generalisability. In

addition, more research is needed concerning the

development of the modelling language.

ACKNOWLEDGMENT

The authors would like to thank the Digile N4S project
and TEKES for providing support and funding for the
research.

REFERENCES

[1] M. Broy, “The ‘grand challenge’ in informatics: Engineering
software-intensive systems,” Computer, vol. 39, no.10, 2006,
pp. 72–80.

[2] Recommended Practice for Architectural Description of
Software-intensive Systems, IEEE-Std-1471-2000. New
York, USA, October 2000.

[3] H. Giese and S. Henkler, “A survey of approaches for the
visual model-driven development of next generation software-
intensive systems,” Journal of Visual Languages and
Computing, vol. 17, December 2006, pp. 528–550.

[4] P. Robillard, “The role of knowledge in software
development,” Communications of the ACM, vol. 42, num. 1,
1999, pp. 87–92.

[5] F. O. Bjørnson and T. Dingsøyr, “Knowledge management in
software engineering: A systematic review of studied
concepts, findings and research methods used,” Information
and Software Technology, vol. 50, 2008, pp. 1055–1068.

[6] S. Buckingham Shum, “Negotiating the Construction of
Organizational Memories,” in U. Borghoff and R. Parechi,
Eds. Information Technology for Knowledge Management,
Berlin, Germany: Springer Verlag, 1998, pp. 55–78.

[7] W. Prinz, H. Loh, M. Pallot, H. Schaffers, A. Skarmeta, and
S. Decker, “ECOSPACE – Towards an Integrated
Collaboration Space for Eprofessionals,” in International
Conference on Collaborative Computing: Networking,
Applications and Worksharing, 2006, pp. 39–45.

[8] J. Rosenhead and J. Mingers, J, Rational Analysis for a
Problematic World Revisited. Chichester: Wiley, 2001.

[9] G. Kotonya and I. Sommerville, Requirements engineering:
Processes and Techniques. Chichester: Wiley, 1998.

[10] I. Sommerville, Software Engineering, 7th ed. Harlow:
Pearson Education Limited, 2004.

[11] P. Robillard, P, “The role of knowledge in software
development,” Communications of the ACM, vol. 42, no. 1,
1999, pp. 87–92.

[12] F. O. Bjørnson and T. Dingsøyr, “Knowledge management in
software engineering: A systematic review of studied
concepts, findings and research methods used,” Information
and Software Technology, vol. 50, 2008, pp. 1055–1068.

[13] L. J. Bannon and K. Schmidt, “CSCW: Four Characters in
Search of a Context,” Proceedings of the First European
Conference on Computer Supported Cooperative Work
(ECSCW 89), Gatwick, London, 13–15 September 1989, pp.
358–372.

[14] J. McKernan, Curriculum Action Research: A Handbook of
Methods for the Reflective Practitioner, 2nd ed. London:
Kogan Page, 1996.

[15] R. E. Freeman, Strategic Management: A Stakeholder
Approach. Boston: Pitman, 1984.

[16] R. E. Freeman, J. S. Harrison, and A. C. Wicks, Managing for
Stakeholders: Survival, Reputation, and Success. Yale
University Press, 2008.

[17] A. P. Friedman and S. Miles, Stakeholders, Theory and
Practice. Oxford: Oxford University Press, 2006.

[18] L. Ballejos and J. Montagna, 2008, “Method for stakeholder
identification in interorganizational environments,”
Requirements Engineering, vol. 13, no. 4, pp. 281–297.

[19] A. D. Davis, Just Enough Requirements Management: Where
Software Development Meets Marketing. New York: Dorset
House Publishing, 2005.

[20] I. Alexander and R. Stevens, Writing Better Requirements.
Reading: Addison Wesley, 2002.

[21] B. Boehm, B. Bose, E. Horowitz, and M. J. Lee, “Software
Requirements Negotiation and Renegotiation Aids: A Theory-
based Spiral Approach,” Proceedings of the 17th International
Conference on Software Engineering, 1995, pp. 243–253.

[22] J. McManus, 2004, “A stakeholder perspective within
software engineering projects,” Engineering Management
Conference, vol. 2, pp. 880–884. IEEE.

[23] S. L. Lim, D. Quercia, and A. Finkelstein, “StakeNet: Using
Social Networks to Analyse the Stakeholders of Large-scale
Software Projects,” Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering (ICSE 10),
2010, pp. 295–304.

[24] R. McTaggart, “Guiding principles for participatory action
research," in Participatory Action Research: International
Contexts and Consequences, R. McTaggart, Ed. Albany: State
University of New York Press, 1997, pp. 25–43.

[25] R. Baskerville and A. T. Wood-Harper, “A critical
perspective on action research as a method for information
systems research,” Journal of Information Technology, vol.
11, no. 3, 1996, pp. 235–246.

[26] R. Rapoport, “Three dilemmas in action research,” Human
Relations, vol. 23, no. 6, 1970, pp. 499–513.

[27] G. Sussman and R. Evered, “An assessment of the scientific
merits of action research,” Administrative Science Quarterly,
vol. 23, 1978, pp. 582–603.

[28] P. B. Checkland, Systems Thinking, Systems Practice, John
Wiley & Sons Ltd., 1981.

[29] J. Hyysalo, M. Kelanti, J. Lehto, P. Kuvaja, and M. Oivo,
Software Development as a Decision-Oriented Process.
Switzerland: Springer International Publishing, 2004.

[30] J. Rasmussen, A. M. Pejtersen, and K. Schmidt, Taxonomy
for Cognitive Work Analysis. Roskilde, Denmark: Risø
National Laboratory, Risø report M-2871, 1990.

[31] D. L. Parnas and P. C. Clements, “A rational design process:
How and why to fake It,” IEEE Transactions on Software
Engineering, vol. SE-12, no. 2, February 1986, pp. 251–257.

[32] D. L. Parnas, “Document based rational software
development, knowledge-based systems, vol. 22, Elsevier,
2009, pp. 132–141.

[33] I. Alexander and S. Robertson, “Understanding project
sociology by modeling stakeholders,” IEEE Software, vol. 21,
no. 1, 2004, pp. 23–27.

130Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 149 / 512

Publish/Subscribe Cloud Middleware for Real-Time Disease Surveillance

Silvino Neto, Márcia Valéria, Plínio Manoel, Felipe Ferraz

Recife Center for Advanced Studies and Systems (CESAR)

Recife – PE, Brazil

e-mail: {silvino.neto, marciavr.souza, ti.plinio}@gmail.com, fsf@cesar.org.br

Abstract - This paper presents the design and implementation

of a cloud-based middleware built on top of the Google Cloud

Platform (PaaS), in order to exchange real-time information

about outbreak notifications of global diseases in a system-level

by using an extension of the HL7 Fast Healthcare

Interoperability Resources (FHIR) specification to support

statistical data based on the ICD-10 medical classification list.

The proposed solution aims to allow healthcare organizations

to register their systems to send and receive notifications, so

the alerts are spread to all the subscribed systems using

webhooks in a publish/subscribe fashion.

Keywords - middleware; google cloud pub/sub; google cloud

platform; FHIR

I. INTRODUCTION

There is an increasing demand for real-time monitoring
of a broad variety of complex events. The processing of
these information streams originated from multiple sources
allows the early identification of threats and swift response.
With the advent of modern communication technology, we
are able to report incidences of disease outbreaks worldwide
in a timely manner. Institutions such as the World Health
Organization (WHO) and the Centers for Disease Control
have been involved in the development of surveillance
mechanisms that triggers alerts that support the decision-
making process about how to respond to these incidents.

As results, there has been many successful experiences in
using different forms of communication to exchange data
related to surveillance and control of diseases, such as Short
Message Service (SMS) [1][2], integration of device data
capture [3] and system-level notifications [4].

Healthcare records are increasingly becoming digitized.
In order to support system-level exchange of clinical data, a
set of standards are required. The HL7 specification
comprises a set of international standards to exchange
clinical data between healthcare applications. In an attempt
to improve its simplicity and extensibility, the HL7
introduced a new specification known as Fast Healthcare
Interoperability Resources (FHIR). When compared with its
predecessors, HL7 FHIR offers a whole new set of features,
such as: support for multiple data formats: Extensible
Markup Language (XML) and JavaScript Object Notation
(JSON), extensible data model and a RESTful API.

This paper describes the Platform for Real-Time
Verification of Epidemic Notification (PREVENT), a cloud-
based message-oriented middleware in collaboration with the
use of an extended instance of the FHIR specification to
support statistical reports for disease surveillance in order to
monitor and notify outbreak occurrences in real-time fashion.

In our solution, we have developed our middleware
application on top of the Google Cloud Platform, using the
Google Cloud Pub/Sub, which is a many-to-many,
asynchronous messaging service. Healthcare organizations
may send and receive push notifications through the use of a
registered webhook endpoint that can accept POST requests
over HTTPS.

This paper is further structured as follows: In Section 2,
we discuss the foundations for this paper. In Section 3, we
present the architectural approaches proposed for the
middleware and some of the design choices implemented. In
Section 4, we explain our evaluation approach and present
the results obtained. In Section 5, we discuss related work
and finally, Section 6 presents our conclusions and possible
future work.

II. FOUNDATIONS

In this Section, this paper presents key concepts that

served as basis for the development of this work.

A. WHO

The WHO is a specialized worldwide health agency
subordinated to the United Nations (UN) that, according to
its constitution [5], one of its main objectives is the
development and improvement of the health of people to the
highest possible levels. Still, according to the WHO
constitution, it is responsible for coordinating efforts to
control and prevent outbreaks and diseases. The WHO
supervises the implementation of the International Health
Regulations and publishes a series of medical classifications,
including the International Statistical Classification of
Diseases and Related Health Problems (ICD) [6]. The ICD is
designed to promote international comparability in the
collection, processing, classification, and presentation of
mortality and morbidity statistics.

According to the International Health Regulations (IHR),
an international legal instrument that is compulsory in 196
countries and in all the WHO member states, its goal is to
assist the international community in the prevention and
response to potential cross-border public health risks. The
IHR requires that countries report disease outbreaks and
public health events to WHO [7].

The present work discusses a system platform that allows
national health organizations, members of the United
Nations, hospitals or healthcare agencies, regardless the
location, to subscribe their applications to send and receive
real-time notifications for disease surveillance. Thus, they
contribute with the propagation of the notified information,
so it can achieve the widest possible reach through the use of

131Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 150 / 512

a cloud-based platform. Therefore, countries and healthcare
organizations may act promptly under the emergency and
disaster risk management protocol to prevent, prepare,
respond and recover from incidents due to any danger that
might represent a threat to human health security.

B. HL7 and FHIR

To reach its goal, this work analyzes a set of international
standards that provide a framework for the integration and
share of clinical and administrative data between systems
and electronic devices dedicated to health care. The HL7 [8]
was created in 1987 and has been maintained by Health
Level Seven International, a nonprofit international
organization that supports and promotes the development of
international interoperability standards in healthcare systems.

The second version of HL7, an ad hoc approach to
integrate various fields in health care, hospitals, clinics and
administrative applications, has become a widely used
standard, adopted and supported by most healthcare
application vendors in North America [9]. Despite HL7 v2
wide acceptance, the limitations of the ad hoc approach have
not allowed significant high scale use in larger multiplatform
environments. Another downside observed on HL7 v2 is the
lack of a formal data model that can unify concepts and
interfaces for message transmission. HL7 v3 emerged as a
response to all the problems recognized on the previous
version. However, it was heavily criticized by the industry
for being inconsistent, overly complex and infeasible to
implement in real life systems. For a while, it appeared as if
interoperability initiatives for health care had lost
momentum.

Hence, FHIR was created with the objective of
improving HL7 messaging standards and addressing some of
the issues identified on the previous specifications. There
have been discussions towards a new approach for data
exchange in health care. This approach provides a
Representational State Transfer (REST) interface, which is a
very simple and lightweight interoperable alternative for
system integration. REST-based architectures are known for
its scalability, user-perceived performance and ease of
implementation approach that provides a fast data
transmission pattern mostly using the HTTP protocol [10].
Resource interoperability allows information to be readily
distributed and provides an alternative to document-centric
approaches by directly exposing data elements as services.

FHIR uses syntax based on XML or JSON, simplifying
the system-level communication. It also offers support for an
extensible data model, allowing applications to enhance its
data structures using FHIR extensibility mechanism. The
features mentioned on this paper were decisive factors for
the adoption of FHIR on the development of PREVENT.

C. Cloud Computing and Scalability

According to A. T. Velte et al. “In essence, cloud
computing is a construct that allows you to access
applications that actually reside on a location other than your
computer or other Internet-connected device; most often, this
will be a distant data center” [11]. This is a constant reality
for the majority of the Internet users on a daily basis. Among

the benefits of cloud computing cited by [11], there are
simplicity, knowledgeable vendors, more internal resources,
security, and scalability.

Scalability is seen as a fundamental feature of cloud
computing. It appears as if computational resources are
infinite and end users easily notice the increase of
performance of used resources in a cloud-based platform.
Scalability is not restricted to expanding resource capacity,
being scalable is to increase the capacity of operations in an
efficient and adequate manner, maintaining the quality of
service [12]. In the literature, it is possible to identify two
dimensions of scalability: vertical and horizontal. Vertical
scalability refers to the improvement of hardware capabilities
by incrementing existing nodes individually. Horizontal
scalability refers to the addition of extra hardware nodes to
the current solution in a way that it can be possible to
distribute application requests between these machines [13].
In the context of this work, PREVENT is designed and
implemented with focus on horizontal scalability. In order to
sustain a large volume of time-constrained notifications and
to leverage the platform overall scalability, PREVENT is
deployed in a cloud-based platform.

D. PREVENT and Complex Event Processing (CEP)

CEP is a new technology to extract information from
distributed message-based systems. This technology allows
users of a system to specify the information that is of interest
to them. It can be low-level network processing data or high-
level enterprise management intelligence, depending on the
role and point of view of individual users. It operates not
only on sets of events but also on relationships between
events [14].

In order to respond in a suitable manner, it is
fundamental to use technology that supports the construction
and management of event-oriented information systems, and
is also able to perform real-time data analysis. CEP consists
in processing various events in order to identify their
significance within a cloud of information [15]. CEP
involves rules to aggregate, filter and match low-level
events, coupled with actions to generate new, higher-level
events from those events [16].

PREVENT has its own complex event processing unit,
namely, PREVENT CEP Engine (PCEPE). PREVENT
randomly receives data messages derived from healthcare
applications subscribed as data providers or data sources,
once data messages have been received, they are delegated to
PREVENT internal complex data processing unit (PCEPE)
that identifies the source and semantics of the data received,
extracting relevant information.

After the information extraction phase previously
described, the data collected goes through a second-phase
analysis that intends to identify if the events notified at that
time indicate a warning situation. As an example, a
significant volume of reports of a certain disease from a
specific geographically delimited area, points to a relevant
situation of alert.

Finally, PREVENT only delivers relevant notifications to
each subscribed message receiver. Figure 1 presents the

132Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 151 / 512

processing flow for data received from health care
organizations in the PREVENT platform.

Figure 1. CEP diagram in PREVENT.

An event processing approach is ideal for applications

concerned with the constant delivery of responses [15]. For

sensitive information that requires a high level of

consistency, it is extremely important that PREVENT

responses are cohesive. This way, having an internal unit for

the processing of the received events is required for the

proper functioning of the PREVENT platform.

III. MIDDLEWARE

In this Section, this paper explores the proposed
architecture and the workflow of events implemented in our
middleware platform. Every step below is described as part
of the process designed to perform the management of the
subscribed applications, the process of data analysis and the
delivery of notifications in the subscription topic:

• Healthcare applications may subscribe to our
middleware platform in order to send and receive
notifications to/from other systems;

• PREVENT will register the healthcare application in
a subscription topic, and reply with an assigned
application ID;

• Healthcare applications may now send notifications
to PREVENT subscription topic;

• PREVENT will perform a real-time analysis of the
data received, and publish notifications that match
the specified criteria;

• Healthcare applications may now receive
asynchronous notifications sent by other

applications, delivered by PREVENT in a push
request.

A. System Architecture

The system architecture designed for PREVENT is
illustrated in Figure 2. In this diagram, PREVENT is
organized into the Google App Engine [17] which is a
hosting environment for web-based cloud applications. It is
part of the Google Cloud Platform, as well as the Google
Cloud Datastore, which is a schemaless NoSQL scalable
datastore, and the Google Cloud Pub/Sub, an asynchronous
messaging framework. Both framework platforms are used
for data persistence and messaging (publish/subscribe
pattern) services. It is important to mention that this
middleware was developed in the Java programming
language, using the Java Servlet API, a standard to
implement applications hosted on Web servers under the
Java platform. Despite being implemented on top of the Java
platform, PREVENT is a completely agnostic technology, it
uses interoperable standards such as HL7 FHIR, REST and
JSON, and it can be integrated to any healthcare application,
regardless the implementation language.

Figure 2. PREVENT Deployment Diagram.

Persistence is used on PREVENT to store data related to
the subscribed healthcare applications and the statistical
reports extracted from notifications received. The
information stored by PREVENT at the Google Cloud
Datastore is relevant not only for the delivery of real-time
notifications, but it may also be useful for audit and access
control policy and procedures. The data stored is replicated
across multiple datacenters using a highly available platform
based on the Paxos algorithm, which is a family of protocols
for solving consensus in distributed environments [21].

PREVENT is designed to be a Message-oriented
middleware (MOM) platform. It is implemented by using the
publish/subscribe pattern, since it requires many-to-many
communication. The Google Cloud Pub/Sub [18] platform
supports two delivery strategies: push and pull delivery. In
the push delivery, the server sends a request to the subscriber
application at a previously informed endpoint URL for every
message notification. In the pull delivery, the subscribed

133Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 152 / 512

Figure 3. Subscription & Notification Scenario Class Diagram.

application has to explicitly invoke the API pull method,
which requests the delivery of any existing message
available in the subscription topic to the invoker. In our
middleware implementation, we have chosen the push
delivery strategy, based on the following criteria:

• Reduced network traffic;

• Reduced latency;

• Restrict/eliminate impacts of adaptation on
healthcare applications (No need for message
handling and flow control).

However, it’s important to note that Google Cloud
Pub/Sub platform is still a Beta release, so few limitations
may be applied. Currently, the only supported endpoint URL
for push delivery is an HTTPS server that can accept
Webhook delivery. For this reason, we designed an internal
HTTPS endpoint message listener that can be used as a
proxy by healthcare applications in order to receive
notifications that are subsequently forwarded to a regular
HTTP endpoint URL.

B. Subscription Request

Healthcare organizations that want their application to
send and receive notifications from our middleware should
send subscription requests to PREVENT informing a single
parameter named callback endpoint. The value of this
parameter should correspond to a regular HTTP or HTTPS
URL that will be invoked for notification delivery. As a
response, PREVENT will reply with a unique application ID
assigned for the request in JSON format as illustrated in
Figure 3. As exhibited in the class diagram (See Figure 3),
our middleware platform receives subscription requests
through a Java servlet. The requests are subsequently
assigned to the SubscriptionManager class, responsible for
interacting with the Google Cloud Pub/Sub and Google
Datastore APIs in order to both create a new subscription and
store application data.

Once successfully registered, healthcare applications are
allowed to send notifications to our middleware by
informing its unique application ID with an extended HL7
FHIR message instance in JSON format.

C. Publishing Notifications

Previously registered systems should be able to publish

notifications to all the subscribed applications. In order to

do so, subscribed applications should always inform their

application ID with an extended version of the HL7 FHIR

message, as shown on Figure 3. As demonstrated in the

class diagram (See Figure 3), there is another servlet class to

receive requests for notification dispatch. This servlet class

is expecting an HL7 FHIR message in JSON format. After

the message is successfully parsed into its Java object

representation, it will be dispatched to the

NotificationManager class, responsible for the delivery of

the message by invoking a method on the Google Cloud

Pub/Sub API to add the new message to the subscription

topic, making it available for delivery.
As mentioned earlier, HL7 FHIR provides a flexible

mechanism for the inclusion of additional information into
the FHIR data model. The class DiagnosticStatiscalReport
shown in the diagram above (See Figure 3) is an example of
an extension implemented on top of the FHIR specification.
According to the FHIR specification, in order to use an
extension, we must follow a three-step process, as defined in
[19].

D. Delivery of Notifications

Notifications added to the subscription topic will be
asynchronously sent to the registered endpoints for every
subscribed application, in a multithread context. Messages
are dispatched in the body of an HTTP push request. The
body is a JSON data structure as depicted on Figure 4.

Figure 4. Google Cloud Pub/Sub JSON message data structure.

134Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 153 / 512

The data attribute contained into the message data type
structure holds the HL7 FHIR message encoded in Base64
format. Once the FHIR message is retrieved, in order to
restore it back to its original form, healthcare applications
must decode it. Furthermore, to indicate the successful
delivery of the message received and avoid duplicate
deliveries, healthcare applications must return one of the
following HTTP status code: 200, 201, 203, 204 or 102.
Otherwise, the Google Cloud Pub/Sub retries sending the
message indefinitely to assure its delivery, using an
exponential backoff algorithm in order to avoid network
congestion [23]. The use of an exponential backoff algorithm
is a feature offered by the messaging platform, in order to
guarantee message delivery in case of message destination is
unreachable or unavailable. Therefore, no message
expiration or timeout is applicable.

It is expected to configure push endpoints with SSL
certificates, so data integrity is guaranteed since all messages
sent to them are encrypted over HTTPS. However,
healthcare applications that do not provide an HTTPS
webhook enabled endpoint, may still receive notifications
using a regular HTTP endpoint URL. As already mentioned,
PREVENT offers an internal message listener component
that acts as a proxy for notification of delivery. During the
subscription request processing, PREVENT will
automatically assign an internal push endpoint for healthcare
applications that informed regular HTTP URLs. Therefore,
for every notification to be delivered, PREVENT hands it
over to its internal message listener component that
subsequently dispatches the notifications to their
corresponding destinations. In order to manage HTTP
connections efficiently, PREVENT uses the Apache
HttpComponents, which is a toolset of low-level Java
components APIs focused on HTTP [20]. Apache
HttpComponents is designed to be a flexible framework,
supporting blocking, non-blocking and event driven I/O
models. In our middleware implementation, we selected the
asynchronous non-blocking I/O model, in order to be able to
handle thousands of simultaneous HTTP connections in an
efficient manner.

Figure 5. Message Listener Component Class Diagram

The class diagram shown on Figure 5 presents a short

representation of the elements discussed on the previous

paragraph.

IV. EVALUATION

We have developed a proof-of-concept implementation

in order to evaluate the middleware. Our goal is to show

how effective and responsive a cloud-based middleware

platform for real-time surveillance can be. In accordance

with the criteria established, we use a few metrics to

measure the efficiency and performance of the middleware

platform. In our experiments, we evaluate the middleware

by using a set of simulation tools. The test environment set

up for the evaluation is composed by a cloud-based instance

of the middleware distributed into the Google Cloud

Platform, a set of 50 callback endpoints, and an Intel i5

2.60GHz 6GB RAM Linux workstation. Each callback

endpoint simulates a subscribed healthcare application,

previously registered on the middleware. In order to act as

an enlisted application, we have implemented a simple Java

servlet class and a PHP file that basically returns an HTTP

status code of 200 (OK) to acknowledge the successful

reception of notifications delivered. The callback endpoints

are deployed into two separate cloud platforms: Digital

Ocean [22] and Google Cloud Platform. The tests are

divided in two different scenarios. The first test scenario is

executed at the execution environment of callback

endpoints. On the second test scenario, we use a local

computer workstation to perform a stress test. Both test

scenarios will be conducted using a set of preconfigured

simulation tools. In this evaluation, the following metrics

are gathered and further analyzed:

• Throughput: measured by the number of delivered
notifications per second;

• Error Ratio: measured by the number of requests
failed or rejected by the middleware;

• Message Loss Ratio: measured by the proportion
between the number of lost messages and the total
number of messages delivered;

• Message Delivery Time: measured by the time taken
to a notification request to be sent to the middleware
and received by the subscribed healthcare
applications.

A. Simulation Description

We perform the dispatch of messages using JMeter, a Java
based testing tool, to send multiple HTTP requests.

On the first test scenario, our test suite is configured to
send one message request per second, limited to 60 messages
to be delivered to 50 subscribed callback endpoints.
Messages used in the test are defined on HL7 FHIR JSON
format. Each message size is approximately 1 KB. This
scenario seeks to evaluate the performance of the
middleware about the delivery ratio and message delivery
time. In order to measure the total message delivery time, we
must consider that the actual delivery of each message sent
to the middleware occurs in an asynchronous manner.
Therefore, time tracking has to be split into two separate
variables:

• T¹ = Amount of time it takes for message requests
sent to the middleware to be responded;

135Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 154 / 512

Figure 6. HTTP messages delivered

• T² = The average of the amount of time it takes for
the middleware to send notifications received to
all of the subscribed callback endpoints and get
their message acknowledged;

• This way, Total Message Delivery Time = T¹ + T².
In order to obtain the values required to calculate both

variables T¹ and T², we use both JMeter Test Results
Report and Apache log4j, which is a Java-based logging
utility.

The second test scenario is divided into 4 different test
cases. Each test case has different settings, related to the
number of messages that are expected to be processed. The
number of concurrent threads (publishers) configured for
each test case are limited to 10, 20, 60 and 100,
respectively. Every thread is expected to simultaneously
send one message per second. Every message received
needs to be processed and delivered to 50 subscribed
endpoints. Therefore, we expect a total of 14500 messages
delivered after all test cases are completed. To evaluate
message delivery to all of the subscribed callback
endpoints, we created a shell script using AWK, which is a
data-driven scripting language used in Unix-like operating
systems, to extract and parse NGINX and Apache HTTP
Server access logs in order to quantify the number of
successfully received requests based on a pre-determined
pattern as shown on Figure 6.

The results obtained will be summarized and compared
to the total amount of messages sent. As a result, we
expect to evaluate the middleware performance under
heavy load, collecting and analyzing metrics like the
throughput and message loss ratio.

B. Results

The evaluation shows that a cloud-based middleware
for real-time surveillance works reliably and efficiently to
report critical events in a timely manner. As illustrated on
Figure 7, from a total of 14500 messages sent to the
middleware platform, we reported 356 failed or rejected
requests and 135 messages that have not been
acknowledged as delivered. It corresponds respectively to
2.45% and 0.93% of the total amount of messages
processed. The results obtained could be even better, since
we reported a large concentration of failed requests at the
end of the last test case, due to quota limits exceeded.

Figure 7. Message Delivery 3D Grouped Column Chart

In the same stress test scenario, we collected a set of
performance related metrics, as shown in Table 1. The
middleware comfortably supported the intense load of
requests, maintaining good performance levels. Based on
the results obtained, a few observations can be made about
this platform. Throughput and performance are positively
impacted under heavier load of concurrent requests. We
believe that it happens due to reconfiguration algorithms
implemented by the cloud platform, scaling to uphold the
increasing volume of requests. However, we have also
observed that the reliability of message delivery is
negatively impacted under these circumstances.

TABLE I. PERFORMANCE RELATED METRICS

Number

of

Samples

Median

(ms)

Throughput kB/sec Lost

Messages

Failed

Requests

500 691 48,4/sec 474,75 0 0

1000 394 55,2/sec 949,5 0 0

3000 293 103,4/sec 2848,5 3 0

10000 204 177,7/sec 9495,0 132 356

In the test scenario executed at a registered callback

endpoint environment, we collected and measured the total
amount of time for every notification to be delivered to all
of the subscribed endpoints, as described on the previous
subsection. Figure 8 presents the total message delivery
time measured at specific intervals during the test
execution. The x-Axis represents time (HH:MM:SS)
intervals at which messages were delivered, while the y-
Axis represents the total message delivery time in
milliseconds for each notification sent during the test.

136Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 155 / 512

Figure 8. Total Message Delivery Time

Based on a string of experiments, we conclude that the
differences observed in the results, exhibited on Figure 8,
occur as a consequence of the following events: Network
jittering, resource availability, and concurrency. The
simulation results show that the performance provided by
the platform, in terms of delivery ratio, throughput and
timeliness is suitable to the middleware purpose. This is a
consequence of the use of an asynchronous messaging
approach and a cloud-based platform, capable of scaling
and performing according to the restrictions imposed.
Therefore, it is possible to offer a high degree of
scalability using a publish/subscribe middleware for real-
time disease surveillance. Even for larger applications
scenarios, where the number of subscribed healthcare
applications is considerably higher, or where the messages
exchanged are in a higher number, we believe that it is
possible to scale in order to support the increase of load.
Further experiments have shown that when the number of
concurrent messages is increased, the middleware’s
throughput is higher, while the performance is stable.
However, with a higher amount of messages exchanged,
we have observed an increase in the number of lost or
unacknowledged messages.

V. RELATED WORK

Much of the related work has been covered in the
previous Sections of this paper. In this Section, we revisit
some of the topics discussed and present them in a
summarized view.

Healthcare Interoperability. As mentioned on
Section 2, subsection B, multiple approaches have been
attempted in order to promote interoperability initiatives
for healthcare systems, as demonstrated on both [3] and
[24]. Recent work has been developed in order to offer a
powerful and extensible standard specification for
healthcare system-level integration, namely FHIR [9]. In
our work, we have slightly extended the FHIR data model
in order to include statistical information to be further
processed by a CEP unit.

Disease Surveillance. This is an emerging field of
research that has been achieving significant success in the
early detection and report of disease outbreaks at regional
scale. The DHIS 2 project as described in [1] uses Java
enabled phones to send health related data using SMS.

This is an example of how a low-cost disease surveillance
mechanism can be helpful in the prevention or mitigation
of occurrences, especially in developing countries [2].
Another successful example can be found in India and Sri
Lanka, as described in the work of Waidyanatha et al [4].
The T-Cube project has been developed in order to detect
emerging patterns of potentially epidemic events based on
the analysis of digitized clinical health records. On our
work, we use a similar approach, as previously described.

The ESS project developed in Sweden is an Event-
based Surveillance System that uses records of telephone
calls to the Swedish National Health Service, in order to
monitor unusual patterns [25]. Statistical analysis is
performed over collected data to calculate deviation limits.
In an attempt to process larger datasets, Santos and
Bernardino presented a system architecture for near real-
time detection of epidemic outbreak at global scale using
on-line analytical processing (OLAP) techniques [26].

VI. CONCLUSIONS

This paper has presented a middleware platform

responsible for receiving and interpreting data informed

by healthcare organizations, and based on the results

obtained through data analysis, the middleware publishes

real-time notifications to all healthcare applications

subscribed to this platform.

There is an increasing need for timely delivery of

messages and notifications, in very large user base

platforms. In this context, it is extremely important to

develop a platform capable of scaling to sustain the

expected levels of performance and throughput under

growing demand. PREVENT uses the FHIR specification

in order to exchange system-level messages, presenting a

market-friendly environment for real-time integration of

applications. FHIR is currently published as a Draft

Standard for Trial Use (DSTU), hence we hope that this

work may serve as a contribution on the promotion of

interoperability initiatives, and a step towards the

development of an international disease surveillance

platform.

We believe that several factors combined make

PREVENT a scalable and efficient platform:

• An asynchronous event-based approach for

message processing, reducing network contention

and the number of threads needed to process the

same workload;

• A network-efficient non-blocking I/O

communication model for HTTP connections;

• And a cloud hosting infrastructure.

The results obtained from our experiments demonstrate

that a cloud-based platform using the publish/subscribe

pattern for real-time notifications represents an

appropriate choice, in order to assure time-constrained

delivery of mission-critical data.

The contribution of this paper is a first step to enabling

the use of the FHIR specification for healthcare system

integration in order to support a global system-level

137Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 156 / 512

outbreak warning platform. Our ongoing research aims to

perform experiments using heterogeneous environments

and datasets, in order to present richer interoperable

scenarios.

As future works, we plan to implement several

extensions on our middleware platform in order to support

functionalities like: security using OAuth; big data

analytics for prediction using information extracted from

notifications received; support for legacy and multi-

format messages (HL7 v2, short message services, etc.)

using a message adapter layer for data transformation, and

multiprotocol integration using TCP, HTTP and HTTPS.

REFERENCES

[1] L. Pascoe, J. Lungo, J. Kaasbøll, and I. Koleleni,
“Collecting Integrated Disease Surveillance and Response
Data through Mobile Phones,” IST-Africa Conference
Proceedings, 2012, pp. 1-6.

[2] C. Déglise, L.S. Suggs, and P. Odermatt, “SMS for disease
control in developing countries: a systematic review of
mobile health applications,” Journal of Telemedicine and
Telecare, 2012, v. 18, n.5, pp. 273-281.

[3] T. Tran, H-S. Kim, and H. Cho, “A Development of HL7
Middleware for Medical Device Communication,” Proc.
5th ACIS Int. Conf. Softw. Eng. Res., Manage. Appl.,
2007, pp. 485-492.

[4] N. Waidyanatha et al., "T-Cube Web Interface as a tool for
detecting disease outbreaks in real-time: A pilot in India
and Sri Lanka," IEEE RIVF International Conference on
Computing and Communication Technologies, Research,
Innovation, and Vision for the Future (RIVF), 2010, pp. 1-
4, doi: 10.1109/RIVF.2010.5633019.

[5] “Constitution of the World Health Organization”, 2005.
[Online]. Available: http://goo.gl/2vvJBS. [Accessed: 30-
May-2015].

[6] “International Statistical Classification of Diseases and
Related Problems”, 2010. [Online]. Available:
http://goo.gl/FCp5Js. [Accessed: 30-May-2015].

[7] “International Health Regulations”, 2005 Second Edition.
[Online]. Available: http://goo.gl/m8Rajk. [Accessed: 30-
May-2015].

[8] “Health Level Seven International – Homepage”, 2015.
[Online]. Available: http://www.hl7.org/. [Accessed: 31-
May-2015].

[9] D. Bender and K. Sartipi, "HL7 FHIR: An Agile and
RESTful approach to healthcare information Exchange,”
Computer-Based Medical Systems (CBMS), IEEE 26th
International Symposium, 2013, pp. 326-331.

[10] R. T. Fielding, “Architectural Styles and the Design of
Network-based Software Architectures,” Doctoral
dissertation, University of California, Irvine, 2000.

[11] T. Velte, A. Velte, and R. Elsenpeter, “Cloud computing, a
practical approach.” McGraw-Hill, Inc., 2009.

[12] P. Jogakekar and M. Woodside, “Evaluating the scalability
of distributed systems,” IEEE Transactions on Parallel and
Distributed Systems, 2000, v. 11, n. 6, pp. 589-603.

[13] D.F. Garcia, R. Garcia, J. Entrialgo, J. Garcia, and M.
Garcia, “Experimental evaluation of horizontal and vertical
scalability of cluster-based application servers for
transactional workloads,” 8th International Conference on
Applied Informatics and Communications, 2008, pp. 29-34.

[14] D. C. Luckham and B. Frasca, “Complex event processing
in distributed systems,” Computer Systems Laboratory

Technical Report CSL-TR-98-754, Stanford University,
Stanford, v. 28, 1998.

[15] V. Vaidehi, R. Bhargavi, K. Ganapathy, and C.S.
Hemalatha, "Multi-sensor based in-home health monitoring
using Complex Event Processing," International
Conference on Recent Trends In Information Technology
(ICRTIT), 2012, pp. 570-575.

[16] D. Robins, "Complex event processing," Second
International Workshop on Education Technology and
Computer Science, Wuhan, 2010. [Online]. Available:
http://goo.gl/jLROpc . [Accessed: 30-May-2015].

[17] “Google App Engine”. [Online]. Available:

https://cloud.google.com/appengine/docs/. [Accessed: 13-
June-2015].

[18] “Google Cloud Pub/Sub”. [Online]. Available:

https://cloud.google.com/pubsub/docs/. [Accessed: 13-
June-2015].

[19] “FHIR Specification Home Page- FHIR v. 0.0.82”, 2015.
[Online]. Available: http://goo.gl/RDwuPm. [Accessed: 31-
May-2015].

[20] “Apache HttpComponents.” [Online]. Available:

https://hc.apache.org/. [Accessed: 13-June-2015].

[21] L. Lamport, “The part-time parliament,” ACM
Transactions on Computer Systems (TOCS) Journal, 1998,
v. 16, n. 2, pp. 133-169.

[22] “Digital Ocean” [Online]. Available:
https://www.digitalocean.com/. [Accessed: 13-September-
2015].

[23] Byung-Jae Kwak, Nah-Oak Song, and Miller, M.E.,
“Analysis of the stability and performance of exponential
backoff,” IEEE Wireless Communications and Networking,
2003, v.3, pp. 1754-1759, doi:
10.1109/WCNC.2003.1200652.

[24] Fabio Vitali, Alessandro Amoroso, Marco Rocetti, and
Gustavo Marfia, “RESTful Services for an Innovative E-
Health Infrastructure: A Real Case Study,” IEEE 16th
International Conference on e-Health Networking,
Applications and Services, 2014, pp. 188-193.

[25] Deleer Barazanji and Pär Bjelkmar, “System for
Surveillance and Investigation of Disease Outbreaks," 23rd
International Conference on World Wide Web Pages, 2014,
pp. 667-668.

[26] Ricardo Jorge Santos and Jorge Bernardino, “Global
Epidemiological Outbreak Surveillance System
Architecture,” 10th International Database Engineering and
Applications Symposium, 2006, pp. 281-284.

138Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 157 / 512

Requirement’s Variability in Model Generation from a Standard Document in Natural
Language

Juliana Galvani Greghi∗†, Eliane Martins†, Ariadne M. B. R. Carvalho†
∗Department of Computer Science

University of Lavras
Lavras-MG Brazil

Email:juliana@dcc.ufla.br
†Institute of Computing
University of Campinas

Campinas-SP Brazil
Email: {eliane, ariadne}@ic.unicamp.br

Abstract—Requirement documents are, in general, written in
natural language and, therefore, may contain problems such
as ambiguities and inconsistencies. In some domains, such as
the aerospace domain, requirements are obtained from standard
documents that describe the set of services to be implemented.
The standard document may present variability, with a set of
mandatory requirements, which must be always implemented,
and a set of optional ones. Also, different applications may require
different sets of services. In general, models, such as Extended
Finite State Machines (EFSMs), are used to represent the require-
ments. Because of the variability found in the document, different
models can be generated, making manual modeling a difficult and
error-prone task. There are many approaches to (semi) automatic
generation of models from requirement documents. But, to the
best of our knowledge, none is applied to standard documents,
or considers variability issues. In this work, a method for semi-
automatic generation of EFSMs from a natural language standard
document, with the use of variability modeling, is presented.
To validate the proposed approach, a prototype to generate
different EFSMs for the same service was developed, considering
the commonalities and variabilities of the requirements. The
document describes services and protocols for applications in the
aerospace domain.

Keywords–requirements modeling; variability management;
aerospace domain.

I. INTRODUCTION

The use of models in Software Engineering is not new,
because they are less subject to ambiguities and inconsistencies
than natural language descriptions. Besides, models can be
automatically processed by tools, enabling not only their
validation, but also the derivation of code, as well as test
cases. However, modeling is a manual task, error-prone [1]
due to human interference. Many applications may show some
degree of variability, and the definition of commonalities and
variabilities enables reuse of software artifacts, ensuring the
quality of the developed applications [2]. Reuse decreases
development and testing time, and increases reliability of the
reused elements, as much as these artifacts will have been
validated in previous applications [3].

Many different models may be required in the presence of
variability, catering for mandatory requirements, and for many
possible combinations of mandatory and optional require-
ments. In this context, the following research questions must

be answered: Can we deal with the large number of different
models that may be generated, considering the combination of
mandatory and optional requirements? Can these models be
semi-automatically generated?

Some approaches for automatic conversion of texts into
models [4][5][6] are detailed in Section III-A. But, to the best
of our knowledge, the available approaches do not address
variability in the requirements, i.e., when optional requirements
make it possible to create different behavioral instances, with
the same core asset, which allow the final product to have
different capabilities.

In this work, product line engineering concepts were applied
to a standard document to deal with the variability of the
requirements, and to be able to generate models that rep-
resent the services described in the standard document. The
analyzed standard document was elaborated by the European
Cooperation for Space Standardization (ECSS). The document
is the ECSS-E-70-41A - Ground System and Operations -
Telemetry and Telecommand Packet Utilization, called Packet
Utilization Standard (PUS), which standardizes telecommand
and telemetry packets related to a set of services for handling
on-board data software [7]. Those requirements are applicable
to every space mission, and they take into account that different
missions require different functionalities [7]. Furthermore,
variability modeling of the services described in the PUS
document helps the expert user, presenting the features that
must be included in the implementation, as well as the optional
ones, in a self-contained, summarized, and graphical format.
Moreover, the model shows relations between features, sug-
gesting features that should be made available together, and the
ones that should not, thus reducing the human effort required
to identify the information needed to implement a service.

The objective of this work is to show how to use variability
modeling to represent functional requirements from standard
documents, and to semi-automatically generate models rep-
resenting the requirements of each service described in the
standard document.

It is important to say that the EFSMs [8] are generated from
the standard document, not from the variability model. The
variability model is used to help understanding the relation-
ship between the services and their functionalities, which are
described in the standard document, and in the development

139Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 158 / 512

of a product line to semi-automatically generate EFSMs rep-
resenting the requirements defined in a standard document.
The proposed approach was evaluated with a prototype to
semi-automatically generate EFSMs from standard documents.
Furthermore, an empirical work was conducted in which the
PUS document [7] was used. For that, we had the collaboration
of researchers from the National Institute for Space Research
(INPE), and from the Aeronautics Technology Institute (ITA),
who provided the requirements for prototype development, and
who informally evaluated the generated models. They are very
familiar with the PUS document [7] because it is used in the
development of some of their projects.

The rest of the article is organized as follows. Section II
introduces the main concepts related to software product line,
and variability management. Section III presents related work,
and Section IV introduces the proposed approach. Section
V shows a working example, and Section VI presents the
validation of the proposed feature model. Finally, Section VII
concludes the article with suggestions for further work.

II. BACKGROUND

Software Product Line (SPL) is a set of software systems
that share common and optional features. It specifies particular
needs, obtained from a set of common assets [9]. Software
Product Line Engineering (SPLE) is a paradigm for developing
software applications using a common structure and satisfying
individual client needs. These individual needs are the vari-
ability of the system [2].

There are different definitions for variability. In this work,
the following definition is used: “Variability is the ability to
change or customize a system” [10]. There are several methods
for variability modeling, many of them based on features [11].
The concept of feature modeling was first proposed within the
Feature-Oriented Domain Analysis (FODA) method [12]. A
feature is an important quality or characteristic of a software
system, visible to the user. Feature Model (FM) is used to
express common and variable system requirements in a certain
domain, and the relationship between them [12]. FM is used
for product line development, and it represents the properties
of the system that are relevant to the end users in a hierarchical
form [11].

Feature modeling was chosen because it can be easily
understood by stakeholders, and it is widely accepted by
software engineers [11]. The notation used, presented in [13]
apud [14], extends the feature model notation with the feature
type or-feature, improving the representation of the relation-
ship between features.

III. RELATED WORK

There are many approaches for model generation from
natural language documents. The most relevants to this work
are presented in Subsection III-A. The application of SPL
in the space domain has been encouraged along the years,
and some examples of these applications are presented in
Subsection III-B.

A. Model Generation from Natural Language Information
The transformation of natural language requirements into

models present many challenges. Sometimes documents have
to be rewritten, either to correct mistakes, or to express
information in a structured format. Moreover, the notation in

which the information is expressed, and the kind of model that
must be generated, should be taken into account.

The approaches presented here use some sort of Natural
Language Processing (NLP) technique for text pre-processing,
usually a syntactic analyzer (or parser), and a part-of-speech
(PoS) tagger. The parser provides a valid syntactic structure for
a sentence. The process is supported by a grammar that defines
a set of valid structures in a given domain [15][16]. The PoS
tagger associates syntactic and morphological features to the
words of a sentence or text [15].

Yue, Briand and Labiche [17][4] present a method, imple-
mented as part of the aToucan tool, which takes use cases
in a pre-defined format [18] as input, extracting information
and producing Unified Modeling Language (UML) models
(class, activity, and state diagrams). Information extraction is
performed by NLP tools and transformation algorithms. An
extension of this work is presented in [19] to generate Aspect-
based State Machines. A product line model and configuration
were proposed in [20] to support model-based tests.

Deeptimahanti and Babar [21] transform the requirements
document into UML models (class, use cases, and collabo-
ration diagrams), using a tool called UMGAR. The process
initiates with requirements being rewritten to remove eventual
ambiguities from the sentences. Then, the information is ex-
tracted to generate the analysis model. The model can be con-
verted to Extensible Markup Language Metadata Interchange
(XMI) files, allowing for requirements traceability [5].

Kof [6] presents an approach to convert textual descriptions
of an automaton into a finite automaton model. The text is
pre-processed using a PoS tagger. The identification of states
relies on search terms, defined by the user, and on specific
word categories. The identification of transitions is based
on sentence’s segmentation, and on the categorization of the
sentence segments. A set of rules was defined to extract the
text segments that should be used for model generation. The
generated automaton is represented in a tabular form.

Kof and Penzenstadler [22] present a method for integration
of an NLP approach and a CASE tool. They show a method-
ology for translation from text to model using a previous
work [6]. The training data requires that the user selects the
section of the document to be processed. The methodology
was integrated with a tool that enables user interaction. The
tool learns on the fly about words and grammar constructions
that can be used in model generation.

Santiago [23] presents a methodology, SOLIMVA, to gen-
erate model-based test cases from requirements in natural
language documents. A statechart is produced with the in-
formation extracted from the requirements and a tool, called
GTSC [24], is used to generate test cases.

In our approach, the input is not restricted to a specific
format, as in [4][17], and sentences are not rewritten, differ-
ently from [21][5]. The search for patterns is similar to [6],
but in addition, our approach uses patterns extracted from
the document’s structure to obtain information that is used
for model generation. Similarly to Santiago’s work [23], our
approach was applied to the aerospace domain. All of them
use NLP tools to extract information from a natural language
document.

The novelty of the proposed approach is variability handling:
to the best of our knowledge, none of the existing approaches

140Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 159 / 512

deals with requirements variability during model generation.
In our approach, commonalities and variabilities are identified
and modeled with an FM, and this information is used to guide
model generation.

The information extraction process is briefly described in
Section IV.

B. Product Line for Space Application
The use of SPL approaches in space applications has in-

creased along the years due to many factors, e.g., search for
more rigorous architectural definition, cost saving, and the
need for more systematic approaches for systems develop-
ment [25][26][27][28].

Many approaches apply product line concepts in the
aerospace domain and, in general, the final products are spe-
cific software applications [28][29]. Our approach, differently,
applies product line concepts for model generation.

IV. REPRESENTING VARIABILITY FOR
EFSM MODEL GENERATION

The goal of this work was to use variability modeling to help
the semi-automatic generation of EFSMs. Variabilities were
identified to facilitate the generation, from standard documents,
of models used for development and testing. To exemplify the
entire process, a sample text, with some characteristics often
found in standard documents, is presented in Figure 1.

This is a made up data packet validation protocol, illustrating the proposed
information extraction methodology.
Standard document for network communication protocol
Chapter 3 - Data packet validation
3-A Description
This chapter defines a protocol for data packet validation. Data is organized
in packets, as described in chapter 1, and these packets must be validated
before sending. When a packet is sent, a validation activity is initiated.
The mandatory fields must be filled always, on each data transfer. Optional
fields can be filled according to the application requirements.
3-B Concepts
Data packet validation occurs in two stages:
1) Verification of mandatory fields: the type and the size of data must be
verified. Data must conform to the allowed types, and the size must comply
with the restrictions of the used type. An error shall occur if any mandatory
field is not filled.
2) Verification of optional fields: if one (or more) optional field is filled, the
data value must be verified. Data must conform to the allowed values for
the field. If a field value is out of range, a failure report must be generated.
3-C Available functionalities
3-C.1 Basic functionalities
Verification of mandatory fields (1,1): the result of the verification must be
recorded in a report file.
Verification of optional fields (2,1): the result of the verification can be
recorded in a report file if it is required by the application.
In addition to the description, other details about the protocol are described
in the last chapters of this manual. For details consult Appendix A.
3-C.2 Additional functionalities
Sending a warning e-mail (3,2)
Registering a log file for validation errors (4,2)
Validation of data packet integrity (5,2)
3-D Dependencies

ID Name Requires
1 Verification of mandatory fields
2 Verification of optional fields
3 Sending a warning e-mail
4 Registering a log file for validation errors
5 Validation of data packet integrity 1,2

Figure 1. Text fragment to illustrate the proposed methodology.

A. EFSM model generation
Figure 2 shows the process diagram for State Machine

Generation. The entire process has seven steps, subdivided in
sixteen tasks, which are described next. The process of infor-
mation identification and information extraction was already
discussed in a previous work [30].

Figure 2. Process Diagram for State Machine Generation.

Step 1 - Semi-automated analysis of the standard docu-
ment

This step comprises a set of activities performed by an
expert analyst. The process initiates with the selection of the
standard document to be processed (Task 1 - Figure 2). The
selected document must be in plain text format (.txt) to be
processed by the NLP tools. If the text is available in a different
format, it must be converted to .txt (Step 1.1 - Figure 2).
The plain text standard document is then processed by a word
frequency counter tool, and the results are used in the analysis
of the text (Tasks 2 and 3 - Figure 2). This analysis helps to
identify structural patterns in the sentences. Stop words, i.e.,
words that have a high frequency but no semantic meaning
[31], are not taken into account in the analysis. An example
of an identified pattern is: most sentences initiating with the
word “if” present a condition for the execution of an action,
as it can be noticed in the sentence “If a field value is out
of range, a failure report must be generated.”, presented in
Section 3-B.2, Figure 1.

Step 2 - Reading the text
After finding patterns in the sentences, the next task is the

careful manual reading of the standard document to identify
references to other documents, or to a different section or
chapter of the same document (Task 4 - Figure 2). This
information is marked for future processing.

The next task is to identify implicit information, i.e, infor-
mation represented in tables or figures that are not explicit in
the text, and that are related to the described service (Task 5 -
Figure 2). This information must also be marked and processed
to be used in a later stage. In the proposed methodology,
information described in different chapters/sections, or as

141Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 160 / 512

figures or tables, is manually extracted and stored in a database
for EFSM generation. This fact can be observed in Section 3-
D, line 5, Figure 1: the dependency relation is not explicit
in the text, and must be manually extracted and stored in a
database to be used during model generation.

Step 3 - Reading the service description
Text is pre-processed using the Stanford PoS Tagger [32]

(Task 6 - Figure 2). Each category attributed to a word is a
tag that can be used to help the expert analyst in the extraction
process. Sequences of tags were already used by Kof [6], and
his research is the work mostly related to ours. In Figure 3, we
can observe sequences of tags. In the underlined text segments,
the sequence “noun (tags initiated by NN) preposition (tag
IN) adjectives (tag JJ) noun (tags initiated by NN) noun (tags
initiated by NN)” is recurrent and can be used to identify sets
of information that must be extracted and used in later stages.
The process of finding patterns in the sequences of tags is
represented, in Figure 2, by Task 7.

In addition to the categories, the structural pattern identified
in the document can also be used during information extrac-
tion. The identification of structural patterns is represented, in
Figure 2, by Task 8. An example of a structural pattern can
be found in Section 3-C.1, Figure 1. There is a description
of a functionality, followed by a parenthesis, two numbers
separated by a comma, and another parenthesis. The first
number is an identification of the functionality, and the second
indicates if it is a mandatory functionality (number 1), or
an optional functionality (number 2). The pattern “description
parenthesis number comma number parenthesis” can be used in
the extraction process to help the identification of information.
After the analysis, the expert analyst must identify mandatory
and optional functionalities described in the text. These func-
tionalities must be represented in a feature model, which is
used to guide the selection of services and functionalities in a
later stage of the processing (Task 9 - Figure 2).

Step 4 - Identification of states and transitions
The process continues with the identification of states (Task

10 - Figure 2), which relies on the location of the information,
e.g., on the section of the document where the information is
described, and on the sequence of the tags. In Figure 1, we can
see that states are located in the “Concepts” section, identified
by the number of the chapter, and by the identification of the
section (3-B). We can also observe that the description of the
stages starts with a noun (tags initiated with NN), followed by
“of” plus and adjective, and finished with a noun. This pattern
may be identified in Figure 3, in the underlined text segments.
The tasks to identify transitions are very similar to those for
state identification, and represented, in Figure 2, by Task 11.
A transition is composed of events, actions and conditions,
also known as guards. The identification of each transition
component can follow a set of rules and patterns.

The identification of conditions and actions, for example,
is based on the keyword “if”. In Figure 1, we can observe
two different situations: the if-clause at the beginning of the
sentence (Section 3-B.2, Figure 1 - “If a field value is out of
range, a failure report must be generated.”), and the if-clause
at the end of the sentence (Section 3-B.1, Figure 1 - “ An

a DT -RRB- -RRB-Verification NNP of IN mandatory JJ fields NNS
: : the DT type NN and CC the DT size NN of IN data/NNS (...)
b DT -RRB- -RRB- Verification NNP of IN optional JJ fields NNS
: : if IN one CD -LRB--LRB- or CC more JJR -RRB--RRB-
optional VBD (...)

Figure 3. Text segments for tag pattern identification

error shall occur if any mandatory field is not filled.”). In the
first situation, the text segment between the conjunction and
the comma is a condition (“a field value is out of range”), and
the text segment after the comma is an action (“failure report
must be generated”). In the second situation, the action is the
text segment until the conjunction (“An error shall occur”)
and the condition is the text segment after the conjunction
(“any mandatory field is not filled.”). Patterns are used to
create sets of rules to extract information from the standard
document. The set of rules must cover the entire description
of a service present in the standard document. It is possible
that each service may need a specific set of rules, because the
methodology is highly dependent on the text structure and on
the writing style.

Step 5 - Selection of the service and functionalities to be
modeled

This activity must be performed by an expert user, who
is using the requirements described in the standard document
for the development of a new system. The user must select
the service that needs to be modeled (Task 12 - Figure 2).
The mandatory functionalities are selected by default, but the
expert user may select the optional functionalities that must
be present in the model (Task 13 - Figure 2). The information
about what is mandatory or not in a service is provided by the
feature models elaborated in Task 9, Figure 2.

Step 6 - Information extraction
The information extraction is an automated task (Task 14

- Figure 2), which uses the sets of rules created during Step
4. The rules are applied in the standard document to extract
information about a specific service, selected by the expert user
in Task 12, Figure 2. The entire information about the selected
service is recovered. After the extraction process is completed,
the necessary information to represent only the functionalities
selected in Task 13, Figure 2, is filtered and sent to the next
step, that is, generation of EFSM. The process of information
filtering is based on mandatory and optional features identified
through the feature models elaborated in Task 9, Figure 2.

Step 7 - Generation of the EFSM
In the last step of the process, the expert user must select

the model format (Task 15 - Figure 2). The text format is
generated by default, but the user may request the generation
in graphical format too. The last activity is the generation of
the model (Task 16 - Figure 2). The extracted information
filtered according to the selection made by the expert user is
used to generate the EFSM.

B. Variability Modeling
As mentioned in Section II, variability is expressed through

a Feature Model (FM), following the FODA method [12]. The
three steps for feature modeling are described next.

Feature Identification
A feature is an aspect or characteristic of the system

considered important by its users [12]. In our proposal, features
are defined according to the expert user’s viewpoint.

The user may select the standard document version, the text
converter and the PoS tagger. The text converter is used to
pre-process the standard document, and the PoS tagger is used
for annotation. These requirements are considered features
because they are directly related to the choices of the expert
user that can affect the configuration of the new model.

Regarding the state machine model, the user must select
the service(s) to be modeled, the information about the EFSM
that will guide model generation, and the output notation of the
model. These are the main mandatory features of the system.
The sub-features identified for each of these main features are
as follows.

142Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 161 / 512

Feature modeling
According to the FODA method [12], feature commonalities

and variabilities are represented as a tree. Figure 4 presents the
feature diagram for the translation system txt2smm.

Figure 4. Feature diagram for the txt2smm system.

The generation of a new model requires the configuration of
six main mandatory features. Three of them are related to doc-
ument management: “Document Version”, “Text Converter”
and “PoS Tagger”, each with alternative sub-features. In an
alternative relationship, only one sub-feature must be selected.

“Document Version” presents the sub-features “V1” and
“Vn”, representing that the user must select the version of the
standard document. “Text Converter” presents the sub-features
“C1” and “Cn”, representing that the user must select the
converter tool. Finally “PoS Tagger” presents the sub-features
“T1” and “Tn”, representing the user must select the PoS
Tagger to be used for text annotation.

“Service Description”, “EFSM Information” and “Model
Format” are the next three features, related to the state machine
generation. “Service Description” presents the or-features “S1”
and “Sn”, which means that at least one service must be
selected. Each service has a set of mandatory functionalities,
always available in every implementation of the service, and
which are represented by the mandatory feature “Function-
ality Group 1”. Additional functionalities are represented by
optional features “Functionality Group N”. Each Functionality
may describe a set of sub-functionalities such as reports,
messages, or requests.

These are represented by “Sub-functionality 1” to “Sub-
functionality N”, which may be mandatory, optional, alter-
native, or or-feature, depending on the requirements of each
functionality.

The information extracted for state machine generation
is presented to the expert user who may edit it. This is
represented by the mandatory feature “EFSM Information”,
and by the optional feature “Information Edition”. The state
machine model can be generated in textual or graphical nota-
tion. This selection is represented by the mandatory feature
“Model Format”, and the available formats are represented
by the mandatory feature “Text”, and by the optional feature
“Graphic”.

Applying feature modeling to the text example in Figure 1,
and considering that “Data packet validation protocol” is one
of the protocols described in the standard document, the

resultant FM would look like the diagram shown in Figure 5,
where “Data transfer protocol” is represented by “S1”.

Figure 5. Feature diagram for the text example.

The service described in the text example is a made up data
packet validation protocol, and the available functionalities
are: Verification of mandatory fields, Verification of optional
fields, Sending a warning e-mail, Registering a log file for
validation errors, and Validation of data packet integrity. The
first two functionalities are mandatory, i.e., they must be
always available in every implementation of the protocol,
and the last three functionalities are optional. The text also
describes the generation of a report file for “Verification of
optional fields”, which is mandatory. The dependency relation
is described in Section 3-D, Figure 1.

Feature model validation and analysis
There are many tools for supporting feature modeling, but

some are more adequate for feature checking; to validate and
analyze the generated model, one, to be presented later, was
chosen. Several operations for automated analysis of feature
models are available, like: validation of the feature model,
i.e., whether the FM allows for the configuration of at least
one valid product; estimation of the number of valid products;
computation of all valid products; evaluation of the variability
degree of the feature model; checking the consistency of the
product, i.e., determining if a specific combination of features
is valid, looking for errors in the feature model, and many other
operations. The feature model validation process is presented
in Section VI.

V. WORKING EXAMPLE
The proposed approach was applied to the PUS docu-

ment [7]. A prototype was developed to extract the necessary
information, and to generate different models for the same
service, taking into account the commonalities and variabilities
of the service. The text was pre-processed using the Stanford
PoS Tagger [32].

The PUS document describes a set of 16 services to
support functionalities for spacecraft monitoring, but there
are no mandatory services for a given mission. Each service
is described with a minimum capability set that must be
always included in every implementation of the service, and
additional capability sets that may be optionally implemented
[7]. In addition to the variability, the document also defines

143Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 162 / 512

other important requirements that must be considered in the
implementation of each service, and which may appear in
different sections of the PUS document.

An example of an instantiation of the feature model for the
generation of a state machine of the Telecommand Verification
Service (TVS) is shown. This example was executed using the
prototype especially developed for the task.

The TVS is described in four stages, each one with a set
of capabilities that might be mandatory or optional. Each
capability defines the generation of reports describing the
failure or the success of a given stage. According to the chapter
that describes the information that can be used for any service,
failure reports must always be generated and, according to
the description of the service, there will be a dependency
relationship between success and failure reports [7].

Regarding document processing, the following features were
selected: standard document version: V1, corresponding to
the version from 30 January, 2003; Text converter: C1; POS
Tagger: T1; Service: TVS; Minimum Capability: Capability
Group 1, corresponding to Acceptance of the telecommand;
Additional Capabilities: Capability Group 4, corresponding to
the Completion of the Execution of the telecommand; Edit
Information: No edition; Model Format: text.

With this configuration, an EFSM in text format is gen-
erated, and shown here in a tabular form (Table I). The
first column shows the state names, extracted from the PUS
document. The state “withoutTC” is not presented in the text,
but it was included in the EFSM as recommended by the
researchers from INPE and ITA who informally evaluated the
generated models.

The second and third columns are names used to identify
input and output events for each state. These names were semi-
automatically extracted from the document during the infor-
mation extraction phase, presented in Figure 2. This simple
example shows the state machines generated to represent the
normal behavior of the Telecommand Verification Service. The
resultant model can be seen in Figure 6.

The model presented in Figure 6 represents a semi-
automatically generated EFSM for the example presented in
Table I. It was redrawn, and the natural language conditions
were suppressed due to the to lack of space. In this model, the
service is represented in two main states: the acceptance of
the telecommand, and the completion of the execution of the
telecommand. For each of these states, there is an available
report. In Figure 6, this report is represented by a natural
language parameter, followed by the terms AckON or AckOFF.
These terms refer to the possibility of sending or not the report
to the control station.

To evaluate the generated model, the model presented in
Figure 6 was compared to the EFSM manually generated
(Figure 7), available at [33].

These models represent the same capabilities configured in
the example (Table I), and some differences between the mod-
els were found: an additional state present in Figure 7, which

TABLE I. OUTPUT FROM THE STATE MACHINE GENERATION
SYSTEM

State Input Event Output Event
without TC TC TC

Acceptance of the TC Acceptance OK
telecommand

Completion of Acceptance OK Completion OK
execution

is represented in the semi-automatically generated EFSM as
a natural language condition; the information about sending
reports to the control station that is represented, in Figure
7, by brackets and hifens. Despite of these differences, the
main information were preserved, and the semi-automatically
generated model can be used by the expert user as a initial
model for the development and testing processes.

This working example helps to answer the first research
question presented in Section I: Can we manage the large
number of different models that can be generated, considering
the combination of mandatory and optional requirements?
The product line approach helps to deal with the different
models which may be generated for the same service, con-
sidering the possible combinations between mandatory and
optional features. The implementation of the prototype and the
evaluation of the generated models helps to answer the last
research question presented in Section I: the models can be
semi-automatically generated, and the possible combinations
are generated in a controlled way, avoiding invalid feature
combination.

VI. FEATURE MODEL VALIDATION
The feature model presented in Figure 4 was validated

within the FaMa FW [34] tool, which represents variability via
feature models. FaMa FW performs many analysis operations
on an FM, for example, checking if the FM has at least one
valid product, computing all valid products for a given FM,
and the variability degree of the FM.

Figure 6. EFSM semi-automatically generated.

Figure 7. EFSM manually generated. Adapted from [33]

144Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 163 / 512

FaMa FW can be used in a shell front-end, or integrated to
other applications. In this work, the shell front-end was used.
All available operations in the command line interface were
applied, and no errors were found.

For instance, the TVS affords two document versions, two
converter tools, two PoS taggers, the different combinations of
capabilities from TVS, the possibility of editing information,
and two model notations to represent the EFSM. Choices be-
tween the several alternatives multiply to give 256 descriptions
of new products. The number gets even larger if it is taken into
account that the PUS document describes 16 services.

The prototype avoids the selection of invalid combinations,
for example, automatically selecting mandatory features from
a selected service by the expert user, or automatically select-
ing/deselecting features related to an optional, or alternative
feature selected by the expert user.

Regarding the selection used in the working example for the
Document Version, the PoS tagger, the text converter and the
selected service, there are 8 different possible combinations of
additional capabilities for the TVS.

Some limitations were identified in the proposed approach:
self-loops and hierarchies cannot be treated unless explicitly
described in the text.

VII. CONCLUSION AND FUTURE WORK
The use of models to represent requirements is widespread

as an alternative to minimize problems during development
and testing processes of computational systems. In an attempt
to help the semi-automatic generation of EFSMs, considering
the variability of requirements in a natural language standard
document, the following questions were posed in Section I:
Can we deal with the large number of different models that
may be generated considering the combination of manda-
tory and optional requirements? Can these models be semi-
automatically generated?

These questions were answered in the article, showing that
variability modeling is fundamental to the successful gener-
ation of state machine models, not only by allowing for the
exploration of numerous combinations, but also for avoiding
the invalid ones.

A prototype tool was implemented to semi-automatically
generate state machine models. The models were generated
according to the proposed feature model, and informally eval-
uated by the INPE and ITA researchers, who also selected
the set of services to be modeled. The state machine models
generated with the prototype tool were validated using a model
checking tool, and by comparing the semi-automatically and
manually generated models for the same services, with the
same configuration.

Results showed that the state machines are very similar.
The similarities are a strong indication that the generated
models could help the analysts in the development and testing
processes of new computational systems, reducing time and
effort needed for manual modeling.

Although the effort needed to extract information from the
document may seem excessive due to the writing style depen-
dency of the standard document, this can be counterbalanced
by several aspects: reduction of time consumed in manual
modeling, minimization of errors due to human interference,
and possibility of automating the testing process. Moreover,
a standard document is used by many organizations around
the world, and these benefits can be extended to all of them.
Another positive trait of the approach is that the use of
structural information of the text during information extraction
process eliminates the need for rewriting sentences, as required
by some available approaches.

Some limitations to the semi-automatic generation are the
treatment of self-loops and of the hierarchical relationships,
already identified in the literature. In the proposed approach,
self-loops could be treated if they were explicitly described in
the text.

As future work, we intend to generate models for other
services described in the PUS document, and evaluate the
prototype from the user perspective, aiming at identifying
usability issues and other problems that might be fixed in the
final version of the tool.

ACKNOWLEDGMENT
The authors would like to thank Ana Maria Ambrósio,

from the National Institute for Space Research, for providing
requirements for service implementation, Emı́lia Villani, from
the Aeronautics Technology Institute, Cecı́lia M. F. Rubira,
from the University of Campinas, Patrick Henrique Brito,
from the Federal University of Alagoas, Marco Vieira, from
Coimbra University and Raphael Winckler de Bettio, from the
University of Lavras, for their valuable help throughout this
research. The authors would also like to thank Fundação de
Amparo à Pesquisa do Estado de Minas Gerais - Fapemig,-
Fundação de Apoio ao Ensino, à Pesquisa e à Extensão -
FAEPEX/Unicamp and Institute of Computing - Unicamp, for
providing financial support.

REFERENCES

[1] V. Ambriola and V. Gervasi, “Processing natural language require-
ments,” in In Proceedings of ASE 1997. IEEE Press, 1997, pp. 36–45.

[2] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2005.

[3] R. Pressman, Engenharia de software. McGraw-Hill, 2006.

[4] T. Yue, L. Briand, and Y. Labiche, “Automatically deriving a UML
analysis model from a use case model,” Simula Research Laboratory,
Tech. Rep. 2010-15 (Version 2), 2013.

[5] D. K. Deeptimahanti and R. Sanyal, “Semi-automatic generation
of UML models from natural language requirements,” in
Proceedings of the ISEC ’11. New York, NY, USA: ACM,
2011, pp. 165–174, retrieved: 2015.09.17. [Online]. Available:
http://doi.acm.org/10.1145/1953355.1953378

[6] L. Kof, “Translation of textual specifications to automata by means of
discourse context modeling,” in Requirements Engineering: Foundation
for Software Quality, ser. LNCS, M. Glinz and P. Heymans, Eds.
Springer Berlin Heidelberg, 2009, vol. 5512, pp. 197–211.

[7] ECSS, Ground systems and operations - Telemetry and telecommand
packet utilization. ECSS-E-70-41A. ESA Publications Division, 2003.

[8] V. S. Alagar and K. Periyasamy, Specification of Software Systems.
Springer London Dordrecht Heidelberg New York, 2011.

[9] L. M. Northrop, “SEI’s software product line tenets,” IEEE Softw.,
vol. 19, no. 4, Jul. 2002, pp. 32–40, retrieved: 2015.09.17. [Online].
Available: http://dx.doi.org/10.1109/MS.2002.1020285

[10] J. van Gurp, J. Bosch, and M. Svahnberg, “On the notion of variability
in software product lines,” in Software Architecture, 2001. Proceedings.
Working IEEE/IFIP Conference on, 2001, pp. 45–54.

[11] K. Kang and H. Lee, “Variability modeling,” in Systems and Software
Variability Management, R. Capilla, J. Bosch, and K.-C. Kang, Eds.
Springer Berlin Heidelberg, 2013, pp. 25–42.

[12] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson,
“Feature-oriented domain analysis (FODA) feasibility study,”
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, Tech. Rep. CMU/SEI-90-TR-021, 1990, retrieved:
2015.09.17.

[13] K. Czarnecki, “Generative programming: Principles and techniques of
software engineering based on automated configuration and fragment-
based component models,” Ph.D. dissertation, Technical University of
Ilmenau, October 1998.

145Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 164 / 512

[14] K. Czarnecki, S. Helsen, and E. Ulrich, “Staged configuration through
specialization and multilevel configuration of feature models,” Software
Process: Improvement and Practice, vol. 10, 04/2005 2005, pp. 143 –
169.

[15] E. Charniak, “Statistical techniques for natural language parsing,” AI
Magazine, vol. 18, no. 4, 1997, pp. 33–44.

[16] D. Klein and C. D. Manning, “Accurate unlexicalized parsing,” in
Meeting of the Association for Computational Linguistics, 2003, pp.
423–430.

[17] T. Yue, L. Briand, and Y. Labiche, “An automated approach
to transform use cases into activity diagrams,” in Modelling
Foundations and Applications, ser. LNCS, T. Kühne, B. Selic, M.-P.
Gervais, and F. Terrier, Eds. Springer Berlin Heidelberg, 2010,
vol. 6138, pp. 337–353, retrieved: 2015.09.17. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-13595-8 26

[18] ——, “A use case modeling approach to facilitate the transition towards
analysis models: Concepts and empirical evaluation,” in Model Driven
Engineering Languages and Systems, ser. Lecture Notes in Computer
Science, A. Schürr and B. Selic, Eds. Springer Berlin Heidelberg,
2009, vol. 5795, pp. 484–498.

[19] T. Yue and S. Ali, “Bridging the gap between requirements and
aspect state machines to support non-functional testing: Industrial
case studies,” in Modelling Foundations and Applications, ser. Lecture
Notes in Computer Science, A. Vallecillo, J.-P. Tolvanen, E. Kindler,
H. Störrle, and D. Kolovos, Eds. Springer Berlin Heidelberg, 2012,
vol. 7349, pp. 133–145, retrieved: 2015.09.17. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-31491-9 12

[20] S. Ali, T. Yue, L. Briand, and S. Walawege, “A product line
modeling and configuration methodology to support model-based
testing: An industrial case study,” in Model Driven Engineering
Languages and Systems, ser. Lecture Notes in Computer Science,
R. France, J. Kazmeier, R. Breu, and C. Atkinson, Eds. Springer
Berlin Heidelberg, 2012, vol. 7590, pp. 726–742, retrieved: 2015.09.17.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-33666-9 46

[21] D. K. Deeptimahanti and M. A. Babar, “An automated tool for generat-
ing UML models from natural language requirements,” in Proceedings
of ASE’09, Nov 2009, pp. 680–682.

[22] L. Kof and B. Penzenstadler, “Faster from requirements documents to
system models: Interactive semi-automatic translation,” in Proceedings
of the REFSQ 2011 Workshops REEW, EPICAL and RePriCo, the
REFSQ 2011 Empirical Track (Empirical Live Experiment and Em-
pirical Research Fair), and the REFSQ 2011 Doctoral Symposium,
B. Berenbach, M. Daneva, J. Dör, S. Fricker, V. Gervasi, M. Glinz,
A. Herrmann, B. Krams, N. H. Madhavji, B. Paech, S. Schockert, and
N. Seyff, Eds. ICB Research Report- 44, 2011, pp. 14–25.

[23] V. A. d. Santiago Júnior and N. Vijaykumar, “Generating model-based
test cases from natural language requirements for space application
software,” Software Quality Journal, vol. 20, no. 1, 2012, pp. 77–143.

[24] V. A. d. Santiago Junior, N. Vijaykumar, D. Guimaraes, A. Amaral, and
E. Ferreira, “An environment for automated test case generation from
statechart-based and finite state machine-based behavioral models,” in
Proceedings of ICSTW ’08, April 2008, pp. 63–72.

[25] R. Lutz, “Software engineering for space exploration,” Computer,
IEEE Computer Society, vol. 44, no. 10, 2011, pp. 41–46, retrieved:
2015.09.17.

[26] J. Penã, M. G. Hinchey, A. Ruiz-Cortés, and P. Trinidad, “Building the
core architecture of a nasa multiagent system product line,” in AOSE,
ser. LNCS, L. Padgham and F. Zambonelli, Eds. Springer Berlin
Heidelberg, 2007, vol. 4405, pp. 208–224.

[27] K. Weiss, “Reviewing aerospace proposals with respect to software
architecture,” in Aerospace Conference, 2007 IEEE, March 2007, pp.
1–20.

[28] J. Fant, H. Gomaa, and R. Pettit, “Software product line engineering
of space flight software,” in Product Line Approaches in Software
Engineering (PLEASE), 2012 3rd International Workshop on, June
2012, pp. 41–44.

[29] I. Habli, T. Kelly, and I. Hopkins, “Challenges of establishing a software
product line for an aerospace engine monitoring system,” in Software
Product Line Conference, 2007. SPLC 2007. 11th International, Sept
2007, pp. 193–202.

[30] J. G. Greghi, E. Martins, and A. M. B. R. Carvalho, “Semi-automatic
generation of extended finite state machines from natural language
standard documents,” in Dependable Systems and Networks Workshops

(DSN-W), 2015 IEEE International Conference on, June 2015, pp. 45–
50.

[31] C. D. Manning and H. Schütze, Foundations of statistical natural
language processing. MIT press, 1999.

[32] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer,
“Feature-rich part-of-speech tagging with a cyclic dependency
network,” in Proceedings of the NAACL ’03 - Volume 1.
Stroudsburg, PA, USA: Association for Computational Linguistics,
2003, pp. 173–180, retrieved: 2015.09.17. [Online]. Available:
http://dx.doi.org/10.3115/1073445.1073478

[33] R. P. Pontes, P. C. Véras, A. M. Ambrosio, and E. Villani,
“Contributions of model checking and cofi methodology to the
development of space embedded software,” Empirical Software
Engineering, vol. 19, no. 1, 2014, pp. 39–68, retrieved: 2015.09.18.
[Online]. Available: http://dx.doi.org/10.1007/s10664-012-9215-y

[34] Research Group of Applied Software Engineering, “FAMA-FeAture
Model Analyser,” http://www.isa.us.es/fama/, retrieved: 2015.09.17.

146Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 165 / 512

An Approach to Compare UML Class Diagrams Based on Semantical Features of

Their Elements

Oksana Nikiforova, Konstantins Gusarovs, Ludmila Kozacenko, Dace Ahilcenoka, Dainis Ungurs

Faculty of Computer Science and Information Technology

Riga Technical University

Riga, Latvia

{oksana.nikiforova, konstantins.gusarovs, ludmila.kozacenko, dace.ahilcenoka, dainis.ungurs}@rtu.lv

Abstract —Models are widely used in software engineering,

where the Unified Modelling Language (UML) class diagrams

are the top notation to present the core system structure and

serves as the main artefact for analysis, design and

implementation of the software system. As far as the UML class

diagram is created at the different levels of abstraction, fluently

modified and used to present different aspects of the system, the

software development project may need to manage different

versions of the system model presented in that notation.

Therefore, it is very important to have an ability to compare

different versions of the UML class diagram created for the

same system to avoid duplicates, missings and contradictions in

the whole system model. In this paper an approach to do such a

comparison is being described and tested on a simple example

in comparison with some other similar methods. We analyze

some of the existing methods and algorithms used for the UML

class diagram comparison and offer the new approach on a

subject. The approach offered in this paper is based on the

evaluation of semantical features of the UML class diagram

elements.

Keywords – semi-automatic diagram comparison; conformity

verification; UML class diagram.

I. INTRODUCTION

Nowadays, system development starts with a modeling of
a problem domain and then of a software domain. The benefit
of using the models is that it helps to solve the complexity of
systems by showing only required information and
representing it in a graphical manner comprehensible to a
human. Since modeling is used from the early software
development phases, the system engineers can have a large
amount of the model’s versions representing the system from
the different aspects, in different development stages and
versions. In order to evaluate the differences between these
model versions, one needs to compare them. These
differences allow detecting the incomplete functionality,
errors or lack of correspondence. For example, when it is
necessary to find out if the model specified in documentation
complies with the actual system model, which can be
generated automatically from the code.

In addition, the comparison of the model versions can be
used to analyze the differences between the implemented
systems and systems under development, thus identifying the
reusable components [1].

One more task where model comparison is of high
importance is evaluation of model transformation itself.

During the software development, the models can be created
manually [2], generated from the code [3] or transformed
from the other models, e.g., using the transformation
approaches presented in [4]-[6]. The model comparison can
be used to evaluate the models obtained automatically
(generated from the code or via transformation) so that the
model generation or transformation method can be validated
[7][8]. In this case, a formal approach to the model
comparison can serve to evaluate the method proposed and
used for automatic generation of some diagram or model
transformation. The manual model comparison is a time
consuming and complicated task. Therefore, the automatic
comparison is preferred.

Commonly, different graphical notations are used to
describe the system or its part in different levels of
abstraction. There are many notations that can be used to
model system [9]. It can delay an evolution of the comparison
methods used for the model conformity verification, because
we would need many comparison methods specific to the
certain modeling language. Still, it is possible to try to
introduce the method for evaluation of the most popular
modeling language. One of these notations is the UML,
which is recognized as an industry standard proposed by the
Object Management Group [10]. The UML is designed to
model and visualize the system from the different point of
views, such as the system structure and behavior. The most
widely used UML diagram is the class diagram, therefore the
main focus of this paper is turned to the UML class diagrams
and their comparison abilities. The goal of this paper is to
propose an approach for the comparison of the UML class
diagrams adoptable also for the other modeling languages,
which have the similar infrastructure as UML.

 The rest of the paper is structured as follows. The second
section describes related work on existing model comparison
methods and techniques. The third section explains the
comparison approach offered by the authors. The proposed
approach is demonstrated on an abstract example in the fourth
section, where the defined calculations are applied to compare
two class diagrams containing all the possible features to
show the essence of the approach. The conclusions are made
in the fifth section.

II. RELATED WORK

 In order to cover the state of the art in the existing
methods for UML class diagram comparison, the authors
conducted a research using online libraries, such as IEEE,

147Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 166 / 512

EBSCO and Springer Link. Several methods exist in the area
and approaches proposed differ in the results obtained from
an UML-model comparison process (e.g [1][11]-[13]).
Analyzing those methods we have searched for the ones that
are providing the numerical metrics that describe model
differences in order to compare those to our proposed
approach. As a result two similar methods were selected for
evaluation.

The first method similar to proposed by the authors is
described by Mojeeb Al-Rhman Al-Khiaty and Moataz
Ahmed [1]. The method is based upon several similarity
metrics described as follows:

 Shallow Lexical Name Similarity Metric (NS) –
describes the difference between two semantically similar
class names.

 Attribute Similarity Metric (ASim) – describes the
difference between two sets of class attributes.

 Operations’ Similarity Metric (OSim) – describes the
difference between two sets of operations (methods).

 Internal Similarity Metric (IS) – utilizes two previously
defined ASim and OSim metrics in order to estimate the
difference between two classes.

 Neighborhood Similarity Metric (NHS) – describes the
difference of class neighborhoods (i.e., related classes) using
special relation type comparison table.

All metrics defined above are being used to produce a
similarity score for pairs of elements in the compared class
diagrams.

The second method described in this paper is proposed by
D. H. Qiu, H. Li, and J. L. Sun [11]. The authors of this paper
propose not to compare class names while estimating the
difference between two class models since it may result in a
rather big impact to the comparison results. Similarly to [1],
this method uses attribute and operation sets to define
difference between compared class structure, however,
relation similarity estimation is different – focusing on three
types of class relations defined by the authors:

 Inheritance – which includes both inheritance and

realization.

 Method coupling – when class A uses methods of class B

that is commonly referred as a dependency.

 Data coupling – when class A uses publicly available

data of class B, as well as cases of aggregation and

composition.
As a result, a single number describing two class diagram

similarity is obtained.

III. PROPOSED COMPARISON METHOD

 In order to successfully compare two different UML class
diagrams, it is necessary to take into account its elements,
relations between them, as well as semantical information of
those. Since the UML class diagrams are usually produced by
the human system analysts, it is possible that two elements
that are equal by their semantics have different names, which
makes the naive approach not applicable. The authors state
that the UML class diagram comparison should also be done
by a human (however, it is possible to introduce some kind of

automation) after the semantically equal element pairs are
identified.

The proposed method compares the following of the UML
class diagram elements [3]:

 Classes (and interfaces).

 Class attributes.

 Methods.

 Relations between elements.
For each of those elements the following comparison

algorithm is defined:
1. Pair the elements from two diagrams according to their

semantical meaning. This step of the algorithm requires

human involvement.

2. Calculate distance between the elements of each pair.

3. Add the calculated distance to a model difference vector

that is used to estimate the final difference.
After these steps are done, a vector containing distances

between appropriate element pairs is constructed, and its
length is being estimated to receive the resulting difference.

The distances between the classes and interfaces are
calculated using Table I.

TABLE I. CLASS AND INTERFACE DISTANCES

Criteria Distance

In both models semantically equal elements

with same names are present

0

In both models semantically equal elements

are present, however, their names differ

0.5

One of the model doesn’t contain semantically

equal class from another model

1

In order to calculate the distances between the class

attributes, it is necessary to construct the temporary vector
shown in formula 1 and estimate its length (described in
details in Table II).

 (1)

TABLE II. ELEMENTS OF COMPARISON VECTOR FOR CLASS

ATTRIBUTES

Element Criteria Value

a Difference between

access modifiers of

appropriate class

attributes

0 for the same, 1 for

different

s Static modifier flag 0 if both attributes

share the same static

modifier, 1 otherwise

n Name difference 0 for the same attribute

names, 1 for different

t Attribute type

difference

0 for the same type, 1

for different

In case one of the attributes is present only in one of the

compared class diagrams (or when the enclosing class is not
present), all the elements of attribute difference vector are set

148Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 167 / 512

to 1. After the construction of the vector, its length is being
calculated providing distance value between attributes.

The distance calculation between the class methods also
requires the construction of temporary vector (formula 2) and
its length estimation (described in details in Table III):

 (2)

TABLE III. ELEMENTS OF COMPARISON VECTOR FOR CLASS METHODS

Element Criteria Value

o Owning class

difference

If a method is defined in

a semantically equal

classes (interfaces) – 0, 1

otherwise

a Difference between

access modifiers

0 for the same, 1 for

different

s Static modifier flag 0 if both methods share

the same static modifier,

1 otherwise

n Name difference 0 for the same method

names, 1 for different

p Difference between

method arguments

0.2 for each mismatching

attribute type, 0.5 for

missing argument (see

explanation below)

r Difference between

return type

0 when return type is

semantically equal, 1

otherwise.

The difference between the method arguments is

calculated basing on the types of arguments. In order to
calculate this difference, the arguments of the compared
methods are paired by their semantical meaning, and then for
the each pair the types of the arguments are being compared.
If the types mismatch, 0.2 is being added to the difference. In
case when the argument is present only in one of the
compared methods, the difference is increased by 0.5 thus
giving the formula 3.

 (3)

Where:

at – number of the method arguments with mismatching

types.

am – number of the cases when the method argument is

present only in the one of compared UML class diagrams.

The argument order is not being taken into account, since the

argument pairing by their semantical meaning is performed

before the actual difference calculation.
The relation comparison is also done using the difference

vector shown in formula 4 that is described as follows with
the detailed explanation given in the Table IV.

 (4)

After the comparison of the identified element pairs, set of
distances between those is received. This set of values is then
converted into n-dimension model difference vector, where n
is a number of the identified element pairs. The final model
difference estimation is equal to the length of the model
difference vector and is represented by a single number.

TABLE IV. RELATION COMPARISON VECTOR ELEMENTS

Element Criteria Value

s Relation source difference –

denotes if relation is

outgoing from the

semantically equal class in

both models

0 for the same

class, 1 for

different

t Relation target difference –

denotes if relation is

incoming into the

semantically equal class in

both models

0 for the same

class, 1 for

different

y Relation type difference 0 if both

relations are of

the same type, 1

otherwise

m Multiplicity difference 0 if relations

have the same

multiplicity, 1

otherwise

In all the cases above, when the n-dimensional vector

length is mentioned, it is calculated by the following formula
5 (Euclidian distance).

 (5)

Thus, the final output of the proposed UML class diagram

comparison method is the number which defines the distance
between the diagrams that are compared. The larger is the
resulting number, the more differences are noted. Such
information is useful when developing model transformations
with the target of the UML class diagram or code – thus
generated model/code can be compared to the ones produced
by a human in order to define the quality of transformation.
The shorter is the distance from the generated class diagram
to the etalon, the higher is a quality of the defined
transformation.

It is also possible to use the model difference vector in
order to detect changes when working with several versions
of the same UML class diagram. In such case each element of
this vector determines the amount of changes for each of the
UML class diagram elements that are being compared. It is
also possible to apply different weights to the different
elements of the model difference vector however there is no
universal solution for the weighting in this case.

149Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 168 / 512

IV. APROBATION OF THE METHOD

In order to test the proposed UML class diagram
comparison method, three simple UML class diagrams were
created. The diagrams contain 2 classes: Point and Line, and
describe the abstract geometrical domain. The class Line
consists of two points – the start and the end. The first class
diagram is shown in Figure 1 and is used as a reference
diagram in the comparison. It means that two other diagrams
are compared vice versa of this.

Figure 1. Reference UML class model (Diagram 1).

The second class diagram shown in Figure 2 is different
from the first one in two aspects:

1) the class name –Point is renamed to Coordinates

2) the difference in arguments of the method

Coordinates.distanceFrom().

Figure 2. Class model with renamed class (Diagram 2).

The third diagram is shown in Figure 3, while it shares the

same class names it has different return types for methods

that are used to calculate distance between two points – the

methods Point.distance() and the Line.length()

respectively. Also, the arguments of the method

Point.distanceFrom()are different in the same way as in

the diagram in Figure 2.

Figure 3. Class model with different return type (Diagram 3).

A. Comparison of Diagram 1 and Diagram 2

Comparison of the UML class diagrams using the
approach offered in this paper requires the identification of
the element pairs and calculation of the distance between
them. In this paper the accessor and mutator methods are
being omitted since the distance between them is equal to 0
due to equality of the names, access modifiers, return types
and signatures. The details in comparison of the element pairs
and the distance are shown in Table V.

The estimation of the model difference vector for those
two models gives the final model difference equal to 1.5811
(formula 6).

(6)

B. Comparison of Diagram 1 and Diagram 3

The elements of the diagram difference vector for the
UML class diagrams 2 and 3 as well, as appropriate diagram
element pairs (those that are responsible for these element
values) are shown in Table VI.

The estimation of the diagram difference vector for those
two models gives the final model difference equal to 2.0616
(formula 7).

(7)

150Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 169 / 512

TABLE V. ELEMENT PAIR COMPARISON FOR DIAGRAM 1 AND DIAGRAM 2

Diagram 1 Element Diagram 2 Element Distance
Point Coordinates 0.5
Point.x Coordinates.x
Point.y Coordinates.y
Point.distance() Coordinates.distance()
Point.distanceFrom() Coordinates.distanceFrom()
Line Line 0
Line.start Line.start
Line.end Line.end
Line.length() Line.length()
Aggregation (Line -> Point) Aggregation (Line -> Coordinates)

TABLE VI. ELEMENT PAIR COMPARISON FOR MODELS 1 AND DIAGRAM 3

Diagram 1 Element Diagram 3 Element Distance
Point Point 0
Point.x Point.x
Point.y Point.y
Point.distance() Point.distance()
Point.distanceFrom() Point.distanceFrom()
Line Line 0
Line.start Line.start
Line.end Line.end
Line.length() Line.length()
Aggregation (Line -> Point) Aggregation (Line -> Point)

C. Result Analysis

The analysis of the results achieved proves to be as
expected: Diagram 1 and Diagram 2 are actually less different
then Diagram 1 and Diagram 3 despite the fact that in
Diagram 2 the class Point has the different name. This is due
to the class Point/Coordinates itself is semantically the same
in both Diagrams 1 and 2, i.e., with the same attributes and
methods. Therefore, the impact on the class difference is
much slighter.

Such results seem to be relevant in case of studying the
output of the human-produced class diagrams that are
commonly used in the first stages of a software development
process. Since the human system analysts may (and usually
will) use different names for the similar concepts when
modeling the problem domain class, the name difference
should affect comparison results in a slightly lower way than
the structural difference of compared models.

In comparison to the proposed approach method described
by Mojeeb Al-Rhman Al-Khiaty and Moataz Ahmed [1]
tends to define more differences between models in example
case – due to use of Longest Common Subsequence (LCS)
algorithm when comparing the names of the model elements.
Exact numbers aren’t provided in the paper due to different
scales of the numbers.

D. H. Qiu’s, H. Li’s, and J. L. Sun’s method [11] was also
compared to the proposed one. In this case name differences
aren’t taken into account thus method shows less differences

between compared class models – only ones that are result of
inner structure mismatch.

Thus we can conclude that proposed method is
somewhere between those two eliminating the drawbacks of
former.

V. CONCLUSION

One of the recent trends used in the iterative software
development is a model presenting the system at the different
levels of abstraction. As the system model is created at the
different stages of the system development and in the
different manner – manually or generating from some text
information or other model, there is a need to evaluate the
current version of some diagram and compare it to the other
diagrams created at the previous stages of the project or in the
different way of the modelling.

The most widely used notation in the modern software
development projects is the UML, and its class diagram is
applicable at the different abstraction levels of the software
system development. Therefore, the most important task of
the comparison of two models is exactly the UML class
diagram comparison and evaluation. An effort to find a
suitable approach to compare two UML class diagrams in
advanced scientific databases gave the authors very pure
results. Namely, there are a very few methods how to
compare the UML class diagrams and they don’t provide a
valuable result.

151Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 170 / 512

The authors of this paper are working on the development
of the model transformation method for the generation of the
UML class diagram from the so-called two-hemisphere
model [5]. There is a need to compare the received UML
class diagram with the diagram created manually during the
software development process to approve the quality of the
transformation offered. This is one more reason to turn the
attention to searching for existing approach to the UML
diagram comparison or inventing a new one.

The comparison approach offered in this paper is based on
the semantical features of the elements presented in the UML
class diagram and takes into consideration the structural
facilities of the diagram as they are more essential than, e.g.,
the name differences. The essence of the approach is based on
the identification of the semantically same or similar pairs of
the diagram elements and further evaluation of the distance
between them.

The comparison approach offered in this paper is applied
to the several examples to compare the class diagrams created
in the different manner, but, due to the length limitations of
the paper, only the abstract example is demonstrated here.
The application of the comparison approach to the evaluation
of the transformations defined by the two-hemisphere model-
driven approach is stated as a direction for the future research.

ACKNOWLEDGMENT

The research presented in the paper is supported by the
Latvian Council of Science, No. 342/2012 "Development of
Models and Methods Based on Distributed Artificial
Intelligence, Knowledge Management and Advanced Web
Technologies".

REFERENCES

[1] Al-Khiaty, M.A.-R.; Ahmed, M., "Similarity assessment of
UML class diagrams using simulated annealing," Software
Engineering and Service Science (ICSESS), 2014 5th IEEE
International Conference on , vol., no., pp.19,23, 27-29 June
2014

[2] Sharifi H.R., Mohsenzadeh M., Hashemi S.M. CIM to PIM
Transformation: An Analytical Survey. International Journal
of Computer Technology & Applications. 2012, vol.3, no.2,
pp.791-796. ISSN: 2229-6093.

[3] Brambilla M., Cabot J., Wimmer M. Model-Driven Software
Engineering in Practice. 1edition. USA: Morgan & Claypool
Publishers, 2012.

[4] Al-Jamini H., Ahmed M. Transition from Analysis to Software
Design: A Review and New Perspective. The Proceeding of
International Conference on Soft Computing and Software
Engineering. 2013, vol.3, no.3, pp. 169-176.

[5] Nikiforova, O., Gusarovs, K., Gorbiks, O., Pavlova N.
BrainTool A Tool for Generation of the UML Class Diagrams.
In: Proceedings of the Seventh International Conference on
Software Engineering Advances : The Seventh International
Conference on Software Engineering Advances (ICSEA
2012), Lisbon, Portugal, 18-23 Novemer, 2012. Lisbon:
IARIA, 2012, 60-69.lpp.

[6] Rodriguez-Dominguez, C., Ruiz-Lopez, T., Benghazi, K.,
Noguera, M., u.c. A Model-Driven Approach for the
Development of Middleware In: Technologies for Ubiquitous
Systems. 9th International Conference on Intelligent
Environments (IE), Athens, Greece, 16-17 July, 2013. IEEE,
2013, pp.16-23.

[7] Kriouile A., Gadi T., Balouki Y. IM to PIM Transformation: A
criteria Based Evaluation. International Journal of Computer
Technology & Applications. 2013, vol.4, no.4, pp.616-625.

[8] Lano K., Kolahdouz-Rahimi S., Poernomo I. Comparative
Evaluation of Model Transformation Specification
Approaches. International Journal of Software and Informatics.
2012, vol.6, no.2, pp. 233-269.

[9] Harmon, P, Wolf, C. The State of Business Process
Management 2014 [online]. BPTrends, 2014 [viewed 19 April
2014]. Available from: http://www.bptrends.com/bpt/wp-
content/uploads/BPTrends-State-of-BPM-Survey-Report.pdf

[10] Unified Modeling Language: superstructure v.2.2, OMG.
Available: http://www.omg.org/spec/UML/2.2/Superstructure
[retrieved: August, 2014].

[11] Qiu, D.H.; Li, H.; Sun, J.L., "Measuring software similarity
based on structure and property of class diagram," Advanced
Computational Intelligence (ICACI), 2013 Sixth International
Conference on , vol., no., pp.75,80, 19-21 Oct. 2013

[12] Maoz, S.; Ringert, J.O.; Rumpe, B., "CDDiff: Semantic
Differencing for Class Diagrams", ECOOP 2011 – Object-
Oriented Programming, 25th European Conference, Lancaster,
Uk, pp.230-254, 25-29 July, 2011.

[13] Uhrig S., "Matching class diagrams: with estimated costs
towards the exact solution?.", 2008 international workshop on
Comparison and versioning of software models (CVSM '08),
pp. 7-12, ACM, New York, NY, USA, 2008.

152Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 171 / 512

Model-Based Evaluation and Simulation of Software Architecture Evolution

Peter Alexander

Thai-German Graduate School of Engineering
King Mongkut’s University of Technology North Bangkok

Bangkok, Thailand
email: peter.a-sse2013@tggs-bangkok.org

Ana Nicolaescu, Horst Lichter

RWTH Aachen University
Research Group Software Construction

Aachen, Germany
email: {nicolaescu, lichter}@swc.rwth-aachen.de

Abstract—The software architecture description is often the rea-
soning basis for important design decisions. Nevertheless, during
the evolution of a system, the software architecture tends to devi-
ate from its description which gradually approaches obsolescence.
Software architecture reconstruction tools can be employed to
retrieve up-to-date descriptions, however reconstruction by itself
is never a purpose. The reconstructed architecture description
should, e.g., support the architects to identify the best evolution
variant with respect to a set of quality characteristics of interest.
The state of the art approaches address reconstruction and
evolution simulation in separation. To simulate changes, the
current state of the system must be first manually modeled. In our
previous work, we presented ARAMIS, an approach to support
the reconstruction and evaluation of software architecture with a
strong emphasis on software behavior. In this paper, we propose
the extension of our approach for enabling the simulation of
design decisions on the recovered architecture description. To
reduce complexity and support a more focused analysis, we allow
to specify and apply viewpoints, views, and perspectives on the
recovered description and its evolution simulations.

Keywords–Software Architecture Reconstruction; Software Ar-
chitecture Evaluation; Software Architecture Simulation; Software
Architecture Viewpoint; Software Architecture

I. INTRODUCTION

As abstractions of the architecture of a software system,
the prescriptive (as-designed) and descriptive (as-implemented)
architecture descriptions can greatly contribute to support
reasoning and evolution. However, very often design decisions
are not documented in the descriptive architecture description
[1], which consequently degrades [2] and gradually approaches
obsolescence. In consequence, further design decisions may be
taken based on low-fidelity reasoning. This situation can easily
lead to the continuous degradation of the system’s quality as
formulated in Lehman’s laws of software evolution [3].

To avoid this, the evolution should be analyzed using
up-to-date descriptive architecture descriptions. However, the
software architecture encompasses a wide variety of aspects,
making it very difficult to explore it in its entirety. To enable
a more focused analysis, the concepts of view and viewpoint
have been introduced and adopted by the major architecture
description standards (i.e., [4], [5]). Thus, an architecture
viewpoint (e.g., operational, deployment, logical) represents
”a set of conventions for constructing, interpreting, using, and
analyzing one type of Architecture View”. An architecture
view ”expresses the Architecture of a System of Interest” from
the perspective of several stakeholders using the conventions
of its corresponding viewpoint. According to [6], a perspective

is system-independent and specifies a further refinement of a
view according to a set of interesting quality properties.

Several view models have been proposed (e.g., [7], [8]) to
guide the description of software architectures. However, most
of them make a clear distinction between static and dynamic
views. The dynamic view is usually very complex, bloated
with huge low-level run-time information, making it hard to
document (and thus is often avoided) and understand. We
strongly argue that the dynamic view should be considered as a
description by itself and be considered from various viewpoints
and perspectives.

Given that the behaviour of a system is the one that actually
supports its use-cases, we think that evolution should also be
discussed at this level. The viewpoints and perspectives can be
then applied to support the analysis with relevant information
while avoiding cluttering.

In our previous work we proposed the Architecture Analy-
sis and Monitoring Infrastructure (ARAMIS), an approach for
the reconstruction and evaluation of software architectures with
a strong emphasis on software behavior. Our approach allows
to enrich the architecture description with the software’s static
and dynamic information and identify architectural degrada-
tion. In our previous work [9], we presented our achievement in
developing a semi-automatic approach to unobtrusively extract
the run-time interactions of a software system, map these on
architecture-level, identify unintended architectural behavior
and mark these as violations, and characterize the system’s
behavior using a series of architectural metrics. This paper
presents an extension of our approach to allow the simulation
of design decisions and the viewpoint-based analysis.

The remainder of this paper is organized as follows: in
Section II, we describe the ARAMIS meta-model and our
proposed viewpoint-supported evolution process; Section III
offers an overview of related work; Section IV discusses future
work and concludes the paper.

II. CONCEPT

ARAMIS aims to support the systematic evolution of
software architecture through the process depicted in Figure
1. We elaborate the process in four sequential sessions (mon-
itoring, analysis, evaluation, and evolution) in which a cycle
of activities (A) are divided between the architect (upper row)
and ARAMIS (lower row).

Monitoring. To allow ARAMIS to reconstruct the be-
havior of a software system, the architect needs to provide
the system’s run-time information obtained using run-time

153Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 172 / 512

Figure 1. ARAMIS Process

monitoring. To avoid collecting large chunks of unnecessary
information, the scope and granularity of the monitoring can
be configured (A1). Various system episodes can then be
executed, e.g., test cases and GUI interactions (A2). ARAMIS
then intercepts the run-time interactions between the system’s
code building blocks and persists these in a single collection,
a so-called episode, for later analysis (A3).

Analysis. By providing the system’s prescriptive archi-
tecture description (A4) and selecting the episodes to be
analyzed, the architect can trigger ARAMIS to reconstruct the
system’s descriptive architecture description (A5). Based on
this, ARAMIS then maps the code-level interactions from the
chosen episodes on architecture-level units from the prescrip-
tive architecture and validates these against architectural rules.
The result is then characterized using a series of architectural
metrics and presented for evaluation.

Evaluation. Upon analyzing the presented result (A6), the
architect might want to refine his view by applying a certain
viewpoint and/or perspective on it (A7), as later exemplified
in Subsection B. ARAMIS then refines the result accordingly
(A8) and builds various relevant visualizations thereof (A9) in
order to support reasoning of evolution variants.

Evolution. To assure that the evolved system will exhibit
the quality properties of interest, ARAMIS allows the archi-
tect to simulate the considered design decisions by applying
a mock-up architecture description on the current software
behavior. The simulated result can then be further refined using
viewpoints and perspectives (A10, A11). Iterative refinements
of the design decisions (A12, A10, A11) can be performed
through further simulations to gain the best evolution variant
for evolving the system (A13).

All in all, this cyclic process embodies the continuous re-
construction, evaluation and evolution of software architecture.

A. ARAMIS - Meta-Model
In our previous work [9], we presented the meta-model of

ARAMIS that can be used to create the system’s prescriptive
architecture description needed in A4. As depicted in Figure
2, we extended the meta-model to enable the definition of
viewpoints and perspectives (A7, A10), but also abbreviated
some parts which are loosely related to the focus of this paper.

The recorded episode from A2 produces a sequence of run-
time traces, which are basically an ordered lists of so-called

Execution Record Pairs. An execution record pair represents
a one-way communication between a pair of Code Building
Blocks which can be Java methods, classes, packages, etc,
depending on the monitoring granularity configured in A1.
This information serves as the system’s low-level dynamic
behavior and can be further processed by ARAMIS with the
provision of the Prescriptive Architecture Description (A4).

The Architecture Description captures a set of Architecture
Units (AU) and the Communication Rules between them.
Each architecture unit can contain other architecture units and
Code Units (CU), building a tree-like hierarchical structure.
The code unit is a representative of a single code building
block which participated during the run-time monitoring. It
is designed to be untyped in order to make it programming-
language independent and thus allowing further extension of
ARAMIS to monitor other systems than Java-based system.
Furthermore, the communication rule basically specifies pairs
of AUs and the communication permission types between them
(allowed/disallowed) (for a more detailed description, see [9]).

In order to focus the analysis on a specific type of system
behavior, a Viewpoint can be defined. It is composed by one or
more Communication Patterns which characterize the behavior
of interest. The communication pattern between a pair of
AUs specifies the communication direction and the number
of communication hops - which is the number of intermediate
AUs through which communication must pass between source
and destination (e.g., all communications originating from
some AU ”X” and ending in some AU ”Y” with 0 hops in
between, i.e., only direct communication). It is worth noting
that we designed the viewpoint to be scalable, allowing the
architect to break down the analysis to any level of software
architecture granularity. As a result, the viewpoint can support
the system-independent analysis.

Furthermore, a View is obtained by applying a view-
point on a concrete set of Episodes of a chosen Software
System. To further refine the obtained result from various
quality perspectives, Perspectives can be applied. We clas-
sify the perspective in four focuses: Unit Involvement, Unit
Interdependence, Communication Integrity, and Cardinality.
The unit involvement perspective focuses on identifying AUs
that are considered as active (more outgoing than incoming
communication) or passive (more incoming than outgoing
communication). The interdependence type perspective focuses
on identifying AUs depending on their coupling and cohesion

154Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 173 / 512

Figure 2. ARAMIS Meta-Model. The new elements of the meta-model are shaded.

attributes (e.g, highly coupled, low cohesion). The communi-
cation integrity perspective focuses on identifying violations
of the pre-specified rules. Last but not least, the cardinality
perspective focuses on quantifying the occurrences of a certain
element - which can be AU, CU, or communication pattern -
during the execution of some episodes to assess quality.

By versioning the architecture description and the episodes,
ARAMIS allows the architect to apply the same viewpoint
and perspective to obtain views that depict a system’s past
evolution or create simulations for the future. Furthermore,
to support the analysis of evolution impact, ARAMIS enables
the comparison of multiple views and highlight the differences
between them (e.g., evolution of number of violations).

B. ARAMIS - Domain Specific Language
To support the modeling of viewpoints and perspectives

(A7, A10) and the creation of views (A8, A11), we have
designed a domain-specific language (DSL). We chose DSL as
the modeling technique in order to provide high expressiveness
in specifying the system behavior and high readability for the
domain-experts. Also, with the ARAMIS-DSL, we intend to
offer flexibility in extracting only architectural data interesting
for a given purpose, thus reducing analysis complexity, espe-
cially in the case of large-scale software systems. Since this
paper presents our work in progress, we do not explain the
full-grammar of the DSL nor other implementation details.
Instead, we exemplify the application of the viewpoint and
view specification using an example case.

Example Case
Let ”LayeredArchitectureSystem” be a layered system that

the architect currently wants to analyze. It defines three layers:
application layer (top), business layer (middle), and data layer
(bottom). According to the layered design principles, each
layer should depend on the layer immediately below it and
the lower layers should not depend on any of the upper
layers. The architect is worried that a cyclic dependency
may have emerged between the business and data layers. An
uncontrolled evolution in this direction would render the two
layers monolithic.

Given his concern, the architect creates a viewpoint called
”CyclicDependency” using the ARAMIS-DSL, as presented in
Figure 3. The DSL keywords are made bold.

Figure 3. ARAMIS Viewpoint Specification DSL Example

The viewpoint specifies two variables: L1 and L2, which
represent the ”Business Layer” and ”Data Layer” architecture
units, respectively. Since the architect is interested in retrieving
any cyclic communication between the two, he can include a
communication pattern (named as ”CyclicCommunication”),
which starts from the L1 (business layer) to the L2 (data
layer) and then forwarded back to the L1 (business layer). The
architect can then apply this viewpoint on any layered system
to construct a view which specifically supports the cyclic
dependency analysis between the business and data layers.

Furthermore, the ARAMIS-DSL supports the specification
of views, which permits the architect to specify the system and
corresponding episodes to be analyzed, to apply viewpoints
and perspectives, and to perform evolution impact analysis.
Our decision to place the perspective specification along with
the view specification is based on our in line idea with the
paradigm of architectural perspective introduced in [6], that
the perspective aims to enhance the existing views to ensure
that the architecture exhibits the desired quality properties and
are therefore considered as ’orthogonal’ to viewpoints.

In Figure 4, we exemplify the application of ARAMIS-
DSL to specify two views: ”CurrentBehavior” and ”Simulat-
edBehavior”. The ”CurrentBehavior” view presents the actual
system behavior, whereas the ”SimulatedBehavior” presents
the simulated system behavior. To these views, we apply the
viewpoint ”CyclicDependency” and perspective of cardinality
to project the evolution of cyclic dependency occurrence.

For the sake of exemplifying, we assume that the architect
previously monitored an episode called ”aBusinessProcess”.

155Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 174 / 512

Figure 4. ARAMIS View and Perspective Specification DSL Example

The current prescriptive architecture description of the system
is given by the triple (”code unit version 1”, ”architecture unit
version 1”, ”rule version 1”). We assume that the architect has
applied the viewpoint ”CyclicDependency” on this particular
episode and architecture description, and consequently dis-
covered many cyclic communications between the ”Business
Layer” and ”Data Layer” architecture units. Therefore, the
architect simulated merging some Java packages (thus creating
”code unit version 2”) and moving the newly created code
unit to another layer (thus creating ”architecture unit version
2”), while the set of rules between the architecture units
remained the same. The architect now wants to check how
would the number of cyclic communication change if evolving
the architecture as described in his simulation. He achieves this
by applying the ”cardinality” perspective of ”CyclicCommuni-
cation” described in the used viewpoint, which quantifies the
number of cyclic communications in each of the constructed
views (”CurrentBehavior” and ”SimulatedBehavior”).

Figure 5. ARAMIS Simulation Result of the Example Case

The result, as it will be projected by ARAMIS is depicted
in Figure 5. The ARAMIS simulation gives the architect that
the design decisions he simulated in the ”SimulatedBehavior”
will reduce the number of cyclic communications. The archi-
tect can further refine and re-simulate his design decisions to
achieve a better result before bringing them into effect.

III. RELATED WORK

The reconstruction of software behavior and up-to-date
architecture description have been for long in the focus of
software architecture community. However, little emphasis has
been put on analyzing and validating the software dynamic
behavior on various abstraction levels, which are defined in the
static view of the architecture. For a more detailed overview
of the existing works in this regard, see [9].

Proposals regarding the simulation of software architec-
ture were also made. The simulation of various architectural
design decisions by replicating the system’s behavior from

UML diagrams have been offered (e.g., [10]–[12]). However,
a study about continuous architecture simulation [13] has
concluded that the modeling process of UML diagrams for
evaluation purposes is very time-consuming and it makes the
continuous simulation effort not appropriate for evaluating a
software architecture. Other approaches (e.g., [14], [15]) allow
to simulate the software architecture based on the software’s
run-time behavior and mainly focus on some quality attributes
like performance and availability. None of these simulation
approaches focuses on the preliminary reconstruction of the
architecture description as a basis for further analysis.

IV. CONCLUSION AND FUTURE WORK

All in all, this paper presented and exemplified our current
work to enable the viewpoint-based analysis and evolution of
software architecture within the ARAMIS project. Our next
steps are to conclude the implementation of the presented
concept and to evaluate the achieved result.

REFERENCES
[1] J. D. Herbsleb and D. Moitra, “Global software development,” IEEE

Software, vol. 18, no. 2, Mar/Apr 2001, pp. 16–20.
[2] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture:

Foundations, Theory, and Practice. Wiley Publishing, 2009.
[3] M. M. Lehman, “Laws of software evolution revisited,” in Proceed-

ings of the 5th European Workshop on Software Process Technology.
London: Springer-Verlag, 1996, pp. 108–124.

[4] M. W. Maier, D. E. Emery, and R. Hilliard, “Software architecture:
Introducing IEEE standard 1471,” IEEE Computer, 2001.

[5] ISO/IEC/IEEE, “Systems and software engineering – architecture
description,” ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC
42010:2007 and IEEE Std 1471-2000), 2011.

[6] N. Rozanski and E. Woods, Software Systems Architecture: Work-
ing with Stakeholders Using Viewpoints and Perspectives, 2nd ed.
Addison-Wesley, 2011.

[7] P. Kruchten, “The 4+1 view model of architecture,” IEEE Software,
vol. 12, no. 6, Nov. 1995, pp. 42–50.

[8] C. Hofmeister, R. Nord, and D. Soni, Applied Software Architecture.
Boston: Addison-Wesley, 2000.

[9] A. Dragomir, H. Lichter, J. Dohmen, and H. Chen, “Run-time
monitoring-based evaluation and communication integrity validation of
software architectures,” in the 21st Asia-Pacific Software Engineering
Conference (APSEC 2014), Jeju, South Korea, December 1–4, 2014,
vol. 1. IEEE, December 2014, pp. 191–198.

[10] A. Kirshin, D. Dotan, and A. Hartman, “A uml simulator based on
a generic model execution engine,” in Proceedings of the 2006 Inter-
national Conference on Models in Software Engineering. Springer-
Verlag, 2006.

[11] V. Cortellessa, P. Pierini, R. Spalazzese, and A. Vianale, “Moses:
Modeling software and platform architecture in uml 2 for simulation-
based performance analysis,” in Proceedings of the 4th International
Conference on Quality of Software-Architectures: Models and Archi-
tectures. Springer-Verlag, 2008.

[12] R. Singh and H. S. Sarjoughian, “Software architecture for object-
oriented simulation modeling and simulation environments: Case study
and approach,” Computer Science Engineering Dept., Arizona State
University, Tempe, AZ, Tech. Rep., 2003.

[13] F. Mårtensson and P. Jönsson, “Software architecture simulation - a
continuous simulation approach,” Master’s thesis, Blekinge Institute of
Technology, 2002.

[14] V. Bogado, S. Gonnet, and H. Leone, “Modeling and simulation of
software architecture in discrete event system specification for quality
evaluation,” Simulation, vol. 90, no. 3, Mar. 2014, pp. 290–319.

[15] R. von Massow, A. van Hoorn, and W. Hasselbring, “Performance
simulation of runtime reconfigurable component-based software archi-
tectures,” in Software Architecture - 5th European Conference, ECSA
2011, Essen, Germany, September 13–16, 2011. Proceedings. Springer-
Verlag, 2011, pp. 43–58.

156Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 175 / 512

Towards Time-triggered Component-based System Models

Hela Guesmi, Belgacem Ben Hedia

CEA, LIST, PC 172
91191 Gif-sur-Yvette, France

Email: firstname.lastname@cea.fr

Simon Bliudze

EPFL IC IIF RiSD, Station 14
CH-1015 Lausanne, Switzerland

Email: simon.bliudze@epfl.ch

Saddek Bensalem, Jacques Combaz

Verimag,
38610 Gieres, France

Email: firstname.lastname@imag.fr

Abstract—In this paper, we propose a methodology for producing
correct-by-construction Time-Triggered (TT) physical model by
starting from a high-level model of the application software
in Behaviour, Interaction, Priority (BIP). BIP is a component-
based framework with formal semantics that rely on multi-party
interactions for synchronizing components. Commonly in TT
implementations, processes interact with each other through a
communication medium. Our methodology transforms, depend-
ing on a user-defined task mapping, high-level BIP models where
communication between components is strongly synchronized,
into TT physical model that integrates a communication medium.
Thus, only inter-task communications and components partici-
pating in such interactions are concerned by the transformation
process. The transformation consists of: (1) breaking atomicity of
actions in components by replacing strong synchronizations with
asynchronous send/receive interactions, (2) inserting communica-
tion media that coordinate execution of inter-task interactions
according to a user-defined task mapping, (3) extending the
model with an algorithm for handling conflicts between different
communication media and (4) instantiating task components and
adding local priority rules for handling conflicts between inter-
task and intra-task interactions. We also prove the correctness
of our transformation, which preserves safety properties.

Keywords–Anything; Time-Triggered paradigm; correct-by-
construction; component-based design; model transformation; BIP
Framework.

I. INTRODUCTION

A Time-Triggered (TT) system initiates all system activities
-task activation, message transmission, and message detection-
at predetermined points in time. Ideally, in a time-triggered
operating system there is only one interrupt signal: the ticks
generated by the local periodic clock. These statically defined
activation instants enforce regularity and make TT systems
more predictable than Event-Triggered (ET) systems. This
approach is well-suited for hard real-time systems.

In [1] and [2], Kopetz presents an approach for real-time
system design based on the TT paradigm which comprises
three essential elements:

The global notion of time: It must be established by
a periodic clock synchronization in order to enable a TT
communication and computation,

The temporal control structure of each task: In a
sequence of computational or communication processes (called
tasks), the start of a task is triggered by the progression of
the global time, independently from the involved data of the
task. The worst-case execution time and thus the worst-case
termination instant are also assumed to be known a priori.
These statically predefined start and worst-case termination
instants, define the temporal control structure of the task,

TT communication system: To isolate subsystems from
each other in a TT architecture, a special interface called
the temporal firewall has been designed. It consists in a
shared memory element for unidirectional exchange of in-
formation between sender/receiver tasks components. It’s the
responsibility of the TT communication system [3], [1] to
transport, with access to the global time, the information from
the sender firewall to the receiver firewall. The instants at
which information is delivered or received are a priori defined
and known to all nodes. Furthermore, the TT communication
service/protocol avoids interference between concurrent read
and write operations on the memory elements.

Analysis and design of hard real-time systems often starts
with developing a high-level model of the system. Building
models allows designers to abstract away implementation
details and validate the model regarding a set of intended
requirements through different techniques such as formal ver-
ification, simulation, and testing. However, deriving a cor-
rect TT implementation from a high-level model is always
challenging, since adding TT implementation details involves
many subtleties that can potentially introduce errors to the
resulting system. Furthermore, in the context of hard real-
time systems (and time-triggered paradigm), services offered
by target operating systems should be taken into account in
the derived implementation.
Thus it is highly advantageous if designers can somehow
derive a model with implementation details in a systematic
and correct way from high-level models. We call such a
model physical model. It can be automatically translated to
the programming language specific to the target TT platform.

In this paper, we present a method for transforming high-
level models in BIP [4] into TT physical model that integrates
the three TT-paradigm properties mentioned above. The BIP
framework is used for constructing systems by superposition
of three layers: Behaviour, Interaction, and Priority. The Be-
haviour layer consists of a set of components represented by
automata or Petri nets extended by data and functions given
in C++. The interaction layer describes possible interactions
between atomic components. Interactions are sets of ports
allowing synchronizations between components. They are de-
fined and graphically represented by connectors. The execution
of interactions may involve transfer of data between the
participating components. The third layer includes priorities
between interactions using mechanisms for conflict resolution.
In this work, we consider Real-Time BIP (RT-BIP) framework
[5], [6] where behaviour of components is represented by a
timed automaton [7].

We believe that the first two properties of the TT paradigm

157Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 176 / 512

can be obtained straightforwardly from RT-BIP, and that the
main difficulty lies in representing tasks and inter-task com-
munication system in the physical model. To achieve this goal,
we introduced in this paper TT-BIP model, which combines
elements of both RT-BIP, Send/Receive BIP [8] (SR-BIP)
model and TT paradigm. It introduces additional structure
in order to model the TT communication system explicitly.
The TT communication system is modelled by introducing
dedicated atomic components. Depending on a user-defined
task mapping, components in the system executing the same
task are grouped into composite components called tasks.
The latter can interact only through the atomic components
modelling the TT communication system. The TT-BIP model
draws on some of the ideas behind SR-BIP – the model used
for distributed implementation of untimed BIP systems [9] and
RT-BIP systems [10]. We also define transformation rules for
deriving a TT-BIP model from a high-level RT-BIP model and
a task mapping. We show that this transformation preserves
trace inclusion (i.e., safety properties).

The rest of this paper is structured as follows. In Section
II, we present the basic concepts related to our work; RT-
BIP and SR-BIP models. Section III formalizes the TT-BIP
architecture and describes the transformation. Experimental
results are presented in Section IV. Section V analyses related
work. And finally, we make concluding remarks in Section
VI. For lack of space, all correctness proofs appear in the
appendix.

II. BACKGROUND CONCEPT: BIP FRAMEWORK

In this section, we first provide the definition and the
semantics of RT-BIP. RT-BIP is a component framework for
constructing systems by superposing three layers of modelling:
Behaviour, Interaction, and priority. And then, we describe the
SR-BIP model. Before giving the definition and semantics of
an RT-BIP component, we first fix some notations.

A. Preliminary notations
1) Valuation function: Given a variable x, the domain of

x is the set D(x) of all values possibly taken by x. Given
a set of variables X , We denote by v(x) the corresponding
element of x ∈ D(x). A valuation of X is a function v :
X →

⋃
x∈X D(x) associating with each variable x its value

v(x). Given a subset of variables X ′ ⊆ X and a variable value
a ∈ D(x), we denote by v [X ′ ← a] the valuation defined by:

v[X ′ ← a](x) =

{
a if x ∈ X ′
v(x) otherwise.

(1)

We denote by V(X) =
∏
x∈X D(X) the set of all possible

valuations of the variables in X .
2) Guards: Guards are boolean expressions used to specify

when actions of a system are enabled. A guard g is a predicate
on a set of variables X . Given valuation v ∈ V(X), we denote
by g(v) ∈ {False,True} the evaluation of g for v.

3) Clocks: We assume that time progress is measured by
clocks which are integer or real-valued variables increasing
synchronously. Each clock can be reset (i.e., set to 0) inde-
pendently of other clocks.
We denote by R+ the set of non-negative reals, and by N the
set of non-negative integers. Given a set of clocks C, let V(C)
be the set of all clock valuation functions vc : C → R+.
Given δ, such that δ ∈ R+, for all c ∈ C, we use c+δ as usual
notation for the valuation defined by (vc + δ)(c) = vc(c) + δ.

4) Timing constraints: Timing constraints are guards over
the set of clocks C. They are used to specify when actions
of a system are enabled regarding system clocks. The basic
building blocks for timing constraints are comparisons; given
a set of clocks C, c ∈ C and a ∈ R+, comparison between
the valuation of c and a can be presented as c ∼ a where
∼∈ {≤, <,=, >,≥}. Constraints are built using the following
grammar:

tc := True | False | c ∼ a | tc ∧ tc | tc ∨ tc | ¬tc

Notice that any guard tc can be written as:

tc :=
∧
c∈C

lc ≤ c ≤ uc, where lc, uc ∈ R+∀c ∈ C (2)

We denote by T C(C), the set of clock constraints defined over
clocks of C.

5) Time progress conditions: Time progress conditions are
used to specify whether time can progress at a given state
of the system. They correspond to a special case of timing
constraint where ∼ is restricted to {≤} and operators ¬ and ∨
are disallowed. Formally, time progress conditions are defined
by the following grammar:

tpc := True | False | c ∼ a | tc∧tc, where c ∈ C and a ∈ R+

Note that any time progress condition tpc can be written as:

tpc =
∧
c∈C

c ≤ uc, where uc ∈ R+ ∪ {+∞} (3)

B. Basic semantic model of RT-BIP
In RT-BIP, systems are built by composing atomic compo-

nents with interactions defined using connectors.
A component in RT-BIP is essentially a timed automaton

[11] labelled by ports that represent the component’s interface
for communication with other components. Let P be a set of
ports. We assume that every port p ∈ P has an associated data
variable xp. This variable is used to exchange data with other
components, when interactions take place.

Definition 1: (Component). A component B is a tuple
B = (L,P,X,C, T, {tpcl}l∈L) where: L is a finite set of
control locations, P ⊆ P is a finite set of ports, called the
interface of B, X is a set of local variables. We denote the
set of variables associated to ports by XP ⊆ X and the set of
the rest of local variables by XB , such that X = XB ∪XP ,
C is a finite set of clocks, T is a set of labelled transitions.
A transition τ ∈ T from a control location l to l′ is a tuple
τ = (l, p, gτ , fτ , R, l

′) where :

• p is a port.
• gτ = gX∧tc is a boolean guard, which is a conjunction of a

predicate gX on local variables X and a timing constraint
tc over C. We say that a transition τ is enabled for the
valuation v ∈ V(X), when its guard gτ evaluates to True.

• fτ is a function that updates the set of variables on X
• R is the subset of clocks R ⊆ C, that are reset by the

transition τ .

For each place l ∈ L, tpcl is a time progress condition.
Definition 2: (Semantics of a component). The semantics

of a component B = (L,P,X,C, T, {tpcl}l∈L) is defined as a
labelled transition system SB = (QB , PB ,−→

B
), where: QB =

158Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 177 / 512

L× V(C)× V(X) is the set of states, PB = P ∪ R>0 is the
set of labels: ports or time delays, −→

B
⊂ QB × PB × QB is

the set of labelled transitions defined as follows. Let (l, vc, vx)
and (l′, v′c, v

′
x) be two states, p ∈ P , and δ ∈ R>0 be a delay.

• Jump transitions: We have (l, vc, vx)
p−→
B

(l′, v′c, v
′
x) iff

there exists a transition τ = (l, p, gτ , fτ , R, l
′) enabled for

(vc, vx) and v′x = fτ (vx), and for all c ∈ r, v′c(c) = 0.

• Delay transitions: We have (l, vc, vx)
δ−→
B

(l, vc+δ, vx) iff
∀δ′ ∈ [0, δ], tpcl(vc + δ′) evaluates to True.

A component B can execute a transition τ =
(l, p, gτ , fτ , R, l

′) from a state (l, vc, vx) if its timing constraint
is met by the valuation vc. The execution of τ corresponds to
moving from control location l to l′, updating variables and
resetting clocks of R. From state (l, vc, vx), B can also wait
for δ > 0 time units if the time progress condition tpcl stays
True. Waiting for δ time units increases all the clock values
by δ. Notice that the execution of transitions is instantaneous
and time elapses only on states.

The interaction model is specified by a set of interactions
γ ⊆ 2P . Interactions of γ can be enabled or disabled.

Definition 3: (Interaction). Let {Bi}ni=1 be a set of com-
ponents as above. An interaction α between components
{Bi}ni=1 is a quadruple (a,Xa, Ga, Fa), where: a ⊆ P con-
tains at most one port of every component, that is, | a∩Pi |6 1,
for all i ∈ [1, n]. Xa = ∪p∈aXp is the set of variables available
to an interaction α. Ga is the set of boolean guards associated
to α. Fa is the set of the update functions associated to α and
defined over Xa.

In the remainder of the paper, we may denote the interac-
tion (a,Xa, Ga, Fa) by its set of ports a. An interaction a is
enabled for a valuation va of Xa if and only if, for all i ∈ [1, n],
the port in a ∩ Pi is enabled in Bi and Ga(va) = True. That
is, an interaction is enabled if each port that is participating in
this interaction is enabled and the guard evaluates to True.

We denote by comp(a) the set of components that have
ports participating in a. comp(a) is formally defined as:

comp(a) = {Bi|i ∈ [1, n], Pi ∩ a 6= ∅} (4)

Two interactions are conflicting at a given state of the system if
both are enabled, but it is not possible to execute both from that
state (i.e., the execution of one of them disables the other). In
fact the enabledness of interactions only indirectly depends on
the current state, through the enabledness of the participating
ports. In systems without priorities, two interactions a and b
may conflict only if they involve a shared component. In Figure
1a, the conflict comes from the fact that a and b involve two
ports p and q of the same component labelling two transitions
enabled from the same location. When reaching location, the
component can execute either transition labelled by p or the
one labelled by q but not both. This implies that when a and
b are enabled, only one of them should execute. Figure 1b
depicts a special case of conflict where interactions a and b
share a common port p. Update functions of a and b may
update variables exported by port p. This implies that when a
and b are enabled, only one of them should execute.

Definition 4: (Conflicting interactions).
Let γ(B1, ..., Bn) be a BIP model. We say that two

interactions a and b of γ are conflicting, iff, there exists an

l

pq

p

a

q

b

(a)

p

a b

(b)
Figure 1. Conflicting interactions

atomic component Bi ∈ comp(a) ∩ comp(b) that has two
transitions τa = (l, p, l′1) and τb = (l, q, l′2) from the same
control location l such that p ∈ a and q ∈ b. We denoted the
conflict between a and b by a#b. If a and b are not conflicting
we say that they are independent. The system is conflict-free
if all interactions are pairwise-independent.

Priorities are defined in order to reduce non-determinism
in the system, that is, they are used to filter interactions among
the enabled ones.

Definition 5: (Priority in BIP).
Given a set γ of interactions defined over a set of

components {B1, ..., Bn}, we define a priority as a relation
π ⊆ BQ×γ×γ, where B is the set of booleans and Q the set of
states, such that for all (C, a, a′) ∈ π, C depends only on data
variables that are associated with ports of interactions a or a′
and ∀q ∈ Q, πq = {(a, a′) ∈ γ×γ | C(q)∧(C, a, a′) ∈ π} is a
partial order. We say that a has less priority than a′ whenever
the predicate C holds.

The predicate C depends on the data variables exported by
the participants in some interactions, allowing the correspond-
ing priority rule to be dynamically enabled. A static priority
is expressed by having C = True for all (C, a, a′) ∈ π.

A composite component is built from a set of n components
{Bi = (Li, Pi, Xi, Ci, Ti, {tpcl}l∈Li)}ni=1 such that their
respective sets of places, ports, clocks, and discrete variables
are pairwise disjoint; i.e., for any two i 6= j from [1, n], we
have Li∩Lj = ∅, Pi∩Pj = ∅, Ci∩Cj = ∅, and Xi∩Xj = ∅.

Definition 6: (Composite Component with interactions).
Let γ be a set of interactions. We denote by B

def
=

γ(B1, ..., Bn) the composite component obtained by apply-
ing γ to the set of components {Bi}ni=1. It is defined by
the component B = (L,P,X,C, T, {tpcl}l∈L) as follows:
L = L1 × ... × Ln is the set of locations, P =

⋃n
i=1 Pi

is the set of ports, X =
⋃n
i=1Xi is the set of variables,

C =
⋃n
i=1 Ci is the set of clocks, Let α = (a,Xa, Ga, Fa) ∈ γ

be an interaction. We denote Ia = i ∈ [1, n]|Bi ∈ comp(a).
A transition τ = (l, a, gτ , fτ , R, l

′) from l = (l1, ..., ln) to
l′ = (l′1, ..., l

′
n) (l = l′ if i /∈ Ia) is in T if its projection

τi = (li, pi, gτi , fτi , Ri, l
′
i) is a transition of Bi for all i ∈ Ia,

where gτ i and fτ i are such that :

• gτ = Ga ∧
∧
i∈Ia

gτi ,

• fτ = fτ1 ◦ ... ◦ fτn ◦ Fa where fτi is the identity function,
for i /∈ Ia (Notice that functions fτi modify disjoint sets
of variables, hence can be composed in any order),

• R =
⋃
i=Ia

Ri.

For a control location l = (l1, ..., ln) ∈ L, the time progress
condition is tpcl =

∧
i∈[1,n]

tpcli .

159Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 178 / 512

Definition 7: (Composite Component with priorities). Let
Bγ = γ(B1, ..., Bn) be the composite component obtained
by applying γ to the set of components {Bi}ni=1. And let
L be their set of locations and π the set of priority rules
πl for l ∈ L. We denote by Bπγ = πγ(B1, ..., Bn) the
composite component obtained by applying priorities to the
set of components Bγ : Given two interactions a, a′ ∈ γ,
with corresponding transitions τγ = (l, a, gτγ , fτγ , Ra, l

′) and
τ ′γ = (l, a′, gτ ′γ , fτ ′γ , ra′ , l

′′) in Bγ , such that ∃(C, a, a′) ∈ π
(i.e. a has less priority than a’ in the current location l), the
corresponding transitions in Bπγ are:

• τπγ = (l, a, gτπγ , fτγ , Ra, l
′), with gτπγ = gτγ∧¬gτ ′γ∧C,

• and τ ′πγ = (l, a′, gτ ′πγ , fτ ′γ , Ra′ , l
′′), with gτ ′πγ = gτ ′γ .

The execution of interactions, taking into account priority
rules and execution of local code of components are orches-
trated by a sequential scheduler. Conflicts that are not resolved
by priority rules are resolved by this scheduler; it randomly
chooses one of simultaneously enabled interactions.

Components that are not composite, i.e. specified directly
as LTS in the model, are called in the remainder of the article
atomic components.

C. SR-BIP model
The SR-BIP models are designed, for untimed [8], [12]

and timed [10] BIP, to automatically derive distributed im-
plementations. They are intended to be implementable us-
ing basic message-passing primitives. The execution of a
distributed process is a sequence of actions that are either
message emission, message reception or internal computa-
tion. Consequently the SR-BIP model includes three types of
ports: send-ports, receive-ports and unary-ports. Unary-ports
correspond to internal computation. They can only appear
in unary interactions, that is interactions involving only one
component. Send and receive ports appear only in message-
passing interactions (called send/receive interactions). Such
an interaction has no guard, and the update function copies
variables exported by the send-port to variables exported by
the receive-port. In a canonic message-passing environment,
each send action has a well-defined recipient. Therefore, it is
required in SR-BIP models that each send-port participates in
exactly one send/receive interaction. The latter ensures that for
each send-port there is a unique corresponding receive-port.

An SR-BIP model is an RT-BIP model which contains
components glued by send/receive interactions. A send/receive
interaction is composed of one send-port and one or more
receive-ports depending on the data transfer direction.

Since concurrency and distribution introduced to RT-BIP
model can not be handled by sequential single scheduler,
SR-BIP model handles interactions in dedicated schedulers,
and resolves conflicts through conflict resolution protocol. It
complies with a 3-layer architecture consisting of:

1) Components layer: The bottom layer consists of atomic
components. Their interfaces are made of one send-port and
one or more receive-ports. Components share their lists of
enabled ports with the upper layer.

2) Schedulers: The second layer consists of a set of com-
ponents each hosting a set of interactions. Conflicts between
interactions included in the same component are resolved lo-
cally. And conflicts between interactions of different scheduler
components are resolved using the third layer.

3) Conflict Resolution Protocol (CRP): This layer im-
plements an algorithm based on the idea of message-count
technique presented in [13]. It consists on counting the number
of times that component participates in an interaction. Conflicts
are resolved by ensuring that each participating number is
used only once. Different implementations of the reservation
protocol are presented in [8].

III. FROM HIGH-LEVEL RT-BIP TO TT PHYSICAL MODEL

In this section, we propose a generic framework for trans-
forming an RT-BIP model into a TT physical model. We first
detail subtleties of this transformation with respect to RT-
BIP and SR-BIP. Then, we present the TT-BIP architecture
that addresses these subtleties. Finally, we describe how to
construct a correct TT-BIP model starting from a high-level
RT-BIP model.

A. Subtleties of the transformation
In sequential models, interactions are executed atomically

by a single scheduler. To the contrary, introducing TT settings
(mainly decomposition into tasks and assuming TT communi-
cation mechanism) to this model requires the implementation
to deal with more complex issues:

1) Decomposition into Tasks: Tasks (processes, threads,
etc.) are building blocks for TT applications. In Design phase,
designers have the choice to model a TT task using one or more
BIP components. Thus depending on the user task mapping,
tasks should appear in the derived physical model with respect
to the initial high-level model.

2) Strong synchronization in BIP interactions Vs. message-
passing: In order to respect TT communication setting, the
derived physical model should handle intertask communication
through dedicated RT-BIP component which stands for the
TT communication system. The challenge is to switch from
the high-level RT-BIP model, where multiparty synchronized
interaction is a primitive, to the TT model, where inter-task
communication is performed via a communication medium.

3) Resolving conflicts: In high-level RT-BIP model, con-
flicts are handled by the single scheduler. TT communication
components in the derived model must ensure that execution
of conflicting interactions is mutually exclusive.

We address the first issue, by initiating composite task
components that encompass atomic components mapped to
the same task. The second problem is addressed by breaking
the atomicity of execution of interactions, so that a task
can execute unobservable actions to notify TT communi-
cation component about their states, and then execute the
corresponding interaction. Communication between tasks and
TT communication component is send/receive interactions.
Resolving conflicts leads us to use solution proposed in SR-
BIP model, which consists in instantiating a BIP component
that implements the algorithm proposed in [13]. The latter
uses message counts to ensure synchronization and reduces the
conflict resolution problem to dining or drinking philosophers
[14].

B. TT-BIP Architecture
In this subsection, we present the TT-BIP architecture that

combines elements of RT-BIP, SR-BIP and the TT paradigm
to address previously mentioned issues. This architecture is
based on tasks (processes, threads, etc.) as one of its build-
ing blocks. A task can be mapped on one or more atomic

160Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 179 / 512

components. Inter-task communication is handled by dedicated
components called Time-Triggered Communication Compo-
nents (TTCC) standing for schedulers in RT-BIP and SR-BIP
models. Conflicts between different TTCC components, are
resolved through CRP components of SR-BIP model.

An RT-BIP model BTT complies with the TT-BIP architec-
ture if it consists of three basic entities: Tasks, TTCC and CRP
components, organized by the following abstract grammar:

TT -BIP -Model ::= Task+ . TTCC+ . CRP . S/R-connector+

Task ::= atomic-component+ .
atomic-talking-component+ . connectors+

TTCC ::= TTCCNC | TTCCC

Task 1

B0

B1
B2

a0sr
sr

s rrs r

Task 2

B3 B4

a2
sr sr

s r

Task 3

B5

r sr

TTCCC

r s r

TTCCC

r s r

TTCCNC

r s r

CRPr s s r s s

Figure 2. TT-BIP model

Task components (resp. TTCC components) and TTCCs
(resp. CRP components) communicate with each other
through message-passing, i.e., send/receive interactions.
This latter is a set of one send port and one or more
receive ports. Communication between components inside a
task are classic multi-party RT-BIP interactions (see. Figure 2).

Definition 8: We say that BTT =
πTT γTT (BTT1 , ..., BTTn) is a TT-BIP model iff we can
partition the set of its interactions in two sets AI and AE
that are respectively sets of internal and external interactions,
corresponding to intra-task and inter-task interactions, such
that:
• Each interaction a ∈ AI , is a classic multi-party interaction

presented by classic RT-BIP connectors relating atomic
components inside one task component,
• Ports of Task, TTCC and CRP components can be parti-

tioned into three sets Pu, Ps and Pr that are respectively
the set of unary ports, send ports and receive ports. Each
interaction a ∈ AE , is either (1) a send/receive interaction
with a = s, r1, ..., rk, s ∈ Ps, r1, ..., rk ∈ Pr or, (2) a
unary interaction a = p with p ∈ Pu,

• The order of execution of transitions labelled by send or
receive-ports depends on the nature of component (task,
TTCC or CRP component). In task (resp. TTCC and
CRP) components, each one or two successive transition(s)
labelled by send-port(s) (rep. receive-ports) should be ac-
knowledged by a transition labelled by receive-port (resp.
send-port),

• If s is a port in Ps, then there exists one and only one
send/receive interaction a ∈ γTT with a = (s, r1, ..., rk)
and all ports r1, ..., rk are receive-ports. We say that
r1, ..., rk are receive-ports of s,

• If a = (s, r1, ..., rk) is a send/receive interaction in γTT

and s is enabled at some global state of BTT , then all its
receive-ports r1, ..., rk are also enabled at that state,

The specificity of each constituent element of the TT-BIP
architecture is detailed below.

1) Task components: A task component is a composite
component consisting of one or more atomic components
related to each other using connectors. Atomic components
within a task which export their send and receive ports to
the task interface are called atomic-talking-components (ATC).
These latter can only communicate with a TTCC components
(through the task component interface). TTCC component
interferes only in external interactions referring to inter-task
interactions AE . These external interactions are presented
locally (in the task component) by artefact interactions. We
denote the set of these artefact interactions by AEartefact . The
remaining components in a task, do not export their ports. They
can only participate in internal interactions AI (see Figure 3).

Task

B1 B2

a1
sr sr

s r

asartefact arartefact

as ar

Internal interaction: a1

External interactions: as and ar

Artefact interactions: asartefact
and arartefact

a1 > as, ar

L1

L3L1

qsp

Figure 3. Example of a task component

In task component, conflicts between internal and artefact
interactions can be resolved by local priority rules. In such
cases, execution of internal interactions are privileged to ex-
ternal ones, that is, internal interactions have more priority
than artefact ones (see. Figure 3). Through these priority rules,
all possible conflict cases are handled. If the conflict can be
resolved locally, the priority rule a ∈ AI > a′ ∈ Aartefact
can be used. Otherwise, the conflict will be handled by TTCC
and CRP components.

Each ATC component in the task component has one or
more send and receive ports and zero or more standard ports. It
contains in addition to observable states and transitions, some
partial states and unobservable transitions. An unobservable
transition always leads to a partial state. Transitions allowing
communication with the TTCC could be seen as a non atomic
transition. It starts first by a non visible transition labelled by
the send port. It allows to send an offer (i.e., information
about active ports) to TTCC component. This transition is
followed then by a visible transition labelled by the receive
port indicating the completion of the communication. These
two transitions are separated by a partial-state location standing
for a busy state of the component where it is waiting for a
notification from the TTCC via the receive port (cf. Figure 4).

xr, gr

L1 ⊥p L2
s r

s
xr, gr

r
xr

Figure 4. ATC Communication pattern

2) TTCC Component: Each TTCC component represents
one interaction a ∈ γ with a = (a,Ga, Fa), we denote
by n the number of components related to TTCC. It is
inspired from schedulers of the SR-BIP models implemented
for distributed implementations in BIP [9] and RT-BIP [10].
The TTCC component is designed to model the behaviour of

161Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 180 / 512

the communication system in the TT paradigm in order to
execute an interaction a. There are two different types of TTCC
components: conflicting and non-conflicting, denoted respec-
tively TTCCC and TTCCNC . TTCC component behaviour
is made of three steps; (1) the component reads variables and
guards from task components, (2) based on these received
guards and the guard of the interaction a, the TTCC component
takes a decision by either executing the interaction upon
synchronization (i.e., conjunction of read guards evaluates to
True) if a is a non-conflicting interaction or soliciting the
CRP component to find out if the conflicting interaction a
can be executed and (3) finally it writes on appropriate task
components by sending a notification. Figure 5a presents an
example of TTCCNC and Figure 5b presents an example of
TTCCC for n = 2.

waitstart

L1

L2

read write wait

p1
r p2

r

p2
r p1

r

G
∧
g1
p

∧
g2
p ps

F

Xl ∪ {(xip, gip)}i∈1..2

p1
r

x1p, g
1
p

p2
r

x2p, g
2
p

ps

x1p, x
2
p

(a) TTCCNC component, n=2

waitstart

L1

L2

read try write wait

p1
r p2

r

p1
r

p2
r

p2
r p1

r

rsv

p1
r

p2
r

p1
r

p2
r

G
∧

g1
p

∧
g2
p

fail

ps

F

ok

Xl ∪ {(xip, gip)}i∈1..2

p1
r

x1p, g
1
p

p2
r

x2p, g
2
p

ps

x1p, x
2
p

rsv ok fail

(b) TTCCC component, n=2
Figure 5. Conflicting and non conflicting TTCC components

The behaviour of the TTCC components is described as a
timed automata. It depends on whether the TTCC handling an
interaction a is conflicting (TTCCC) or not (TTCCNC).

The set of variables of TTCC can be partitioned into two
classes. The first class consists in variables updated whenever
an offer from ATC components Bi participating in the interac-
tion a is received. They consist of the following: guard variable
gip and a local copy of the variables Xi

p for each port p involved
in the interaction a, a time progress condition variable tpci and
a participation number variable ni for each ATC component
Bi of tasks participating in a. The second class consists in
variables updated whenever interaction a is scheduled which
are: execution date variable texa , that stores the last execution
date of interaction a and, an execution date variable texi for
each component Bi participating in a.

In case of a non conflicting TTCC (TTCCNC), the set of
places contains the followings: For each ATC component Bi
within a task involved in the interaction a, we include waiting

places: wait and the set L⊥ with |L⊥| =
n−2∑
k=0

k∏
j=0

(n − j).

L⊥ locations present states where component is waiting for
reception of other tasks guards and variables. Each place l⊥ ∈
L⊥ that is reached by a transition receiving offer from Bi,
has a time progress condition defined by the variable tpci.
We include a writing place write that allows notification of
tasks (and then ATC components) participating in a. The time

progress condition of write is False. In case of a conflicting
TTCC (TTCCC), the set of states includes the same states of
a non conflicting TTCC, with an additional trying state trya.

The set of ports of a non conflicting TTCC consists of
the following: For each ATC component Bi within a task
involved in the interaction a,TTCC includes a receive-port pri ,
to receive offers. Each port pri is associated with the variables
gip and Xi

p for each port p of Bi as well as the variable tpci
and ni of Bi. The set of ports of TTCC includes a send-port
ps, which exports the set of variables ∪Xp

p∈a
∪ {texi} where i

is the index of ATC component Bi that exports port p. TTCC
includes also a unary port a allowing the execution of the
interaction a. In case of a conflicting TTCC (TTCCC), the
set of ports includes the same ports of a non conflicting TTCC
except the unary one, with additional ports; rsva associated
with the set of variables ni of components Bi ∈ comp(a).

Transitions of a non conflicting TTCC are as following:
In order to receive data from task components; we include
for each {l, l′} ⊆ {{wait, read} ∪ L⊥} and each i ∈ [1..n]
a transition τreceivei = (l, pir, T rue, Identity, l

′). This transi-
tion guard is default to True. In order to execute the interaction
a we include the Transition leading from state read to state

write , where τa = (read, pu, Ga
∧
(
n∧
i=1

gip) ,Fa, write) where

pu is a unary port, Ga is a guard on variables of the set
Xl, and Fa is a function on Xl. To notify task components
after executing the interaction a, we include the transition
τwrite = (write, ps, T rue, Identity, wait).
In case of a conflicting TTCC (TTCCC), the set of transitions
includes in addition to transitions τreceive and τwrite of non
conflicting TTCC, the following transitions: To each place
l⊥ ∈ L⊥ reached by transition labelled by port pri we
include a loop transition τloopi = (l⊥, p

i
r, T rue, Identity, l⊥).

Before executing interaction a, we include the transition
that will solicit the CRP component from the state read,
where τrsv = (read, rsv, True, Identity, try). We also in-
clude loop transitions on place read, allowing reception
from receive ports, such that for all i ∈ [1, n], τ ′loopi =

(read, pir, T rue, identity, read). From try location, the first
possible transition, depending on the response of the CRP

component, τok = (try, ok,Ga
∧
(
n∧
i=1

gip), Fa, write), where

Ga is a guard on variables of the set Xl, and Fa is a function
on Xl. This transition will execute the interaction a. We
also include loop transitions on place try, allowing reception
from receive ports, such that for all i ∈ [1, n], τ ′′loopi =

(try, pir, T rue, identity, try). The second possible transition
from state try is τfail = (try, fail, T rue, Identity, read), in
that case, a is not allowed to execute.

3) Conflict Resolution Protocol Component: The conflict
resolution protocol (CRP) accommodates the algorithm pro-
posed in [13]. It uses message counts to ensure synchroniza-
tion and reduces the conflict resolution problem to dining
or drinking philosophers [14]. Its main role is to check the
freshness of requests received for an interaction, that is, to
check that no conflicting interactions has been already executed
using the same request. In each request, an interaction sends
the participation numbers of its components, i.e., number of
interactions each ATC component has participated in. This en-
sures that two conflicting interactions cannot execute with the
same request. Mutual exclusion is ensured using participation

162Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 181 / 512

numbers. To this end, the conflict resolution protocol keeps
the last participation number Ni of each component Bi and
compares it with the participation number ni provided along
with the reservation request from TTCC components. If each
participation number from the request is greater than the one
recorded by the conflict resolution protocol (ni > Ni), the
interaction is then granted to execute and Ni is updated to ni.
Otherwise, the interaction execution is disallowed. Figure 6
presents the places, transitions, variables, guards and update
functions involved in handling an interaction a with two
participating components B1 and B2. Whenever a reservation
for executing a arrives, this token moves from place waita to
place receivea. From this place, if the guard of the transition
labelled by oka is Trueaccording to the current values of Ni
variable and freshly received ni variables, the transition can
take place. The transition labelled by faila is always possible.

waita

receivea

rsva

failan1 > N1∧
n2 > N2

oka

N1 := n1
N2 := n2

rsva oka faila

n1 n2

N1 N2

Figure 6. Fragment of the CRP component

C. From High-level RT-BIP model to TT-BIP model
In this section, we present the model transformation

from a RT-BIP model B
def
= πγ(B1, ..., Bn)

into an equivalent TT-BIP model BTT =
πTT γTT (BTT1 , ..., BTTn , TTCC1, ..., TTCCm, CRP).

This transformation is parametrized by a user-defined task
mapping which consists in associating to each task Tk a group
of atomic components of the model B. We denote by B the
set of atomic components of model B. We assume, we have
K ≤ n tasks and we denote by T = {Tk}k∈K the Task set,
such that T is a partition of B: where for all j, k ∈ K and j 6=
k, Tj∩Tk = ∅. For all k ∈ K we have Tk = {Bi}i∈Ik , Ik ⊆ K
such that ∪

k∈K
Ik = K.

The transformation process is performed in two steps as
shown in Figure 7. First, an analysis phase allows definition of
set of components and connectors to be transformed depending
on the task mapping. Then, the RT-BIP model is transformed
into a TT-BIP model where only inter-task interactions are re-
placed by TTCC components and intra-task interactions remain
intact. Components mapped to the same task are gathered in
a composite task component.

We consider that the original RT-BIP model consists only
of atomic components and flat connectors. Moreover, each
connector defines one and only one interaction. Indeed, these
assumptions do not impose any restrictions on the original
model, since we can apply the transformations ”Component
flattening” and ”Connector flattening” of previous research
work in [15].

Task mapping RT-BIP model

Multiparty

interactions
and priorities

TT-BIP model

Tasks
TTCC

and CRP

analysis phase Transformation

Figure 7. Transformation from RT-BIP to TT-BIP model

D. Analysis Phase
Starting from a high-level RT-BIP model and a user task

mapping, a TT-BIP model can be derived. Thus, we have first
to identify internal and external interactions as well as ATC
components. Conflicts between external interactions are held
by CRP components. But conflicts between an internal and
external interactions should be also resolved. We distinguish
between three cases of a conflict between an internal and
external interaction; (1) conflict not resolved in the initial
model by a priority rule, (2) conflict initially resolved by a
static priority rule and (3) a conflict initially resolved by a
dynamic priority rule. These three cases should be taken into
account. In the first case, the conflict can be resolved locally in
the task by imposing a priority rule that privileges the internal
interaction (see Figure 3). In the second case, the conflict is
already resolved and the initial priority rule is kept in the
derived model. In the third case, task component can’t resolve
the conflict locally, since it doesn’t have access to the global
state of the model and thus can’t evaluate the dynamic priority
rule. In that case, the internal conflicting interaction is exported
to be held by a dedicated TTCC. This interaction is thus being
an external interaction. And the conflict is being a conflict
between two external interactions. It can now be resolved by
the CRP component initially intended to handle such a conflict.

The algorithm of the analysis phase initialises sets of
internal, external and ATC components (A′I , A′E and B′ATC)
based on the task mapping. And then, it defines new sets (AI ,
AE and BATC) depending on conflicts between internal and
external interactions and existing priority rules related to this
conflict. These obtained sets are inputs for the transformation
process.

A′I , A′E and B′ATC sets are defined depending on the user
task mapping as follows:

• External interactions: A′E set is defined as the set of
interactions in the participant components of which we can
find at least two different atomic components belonging to
two different tasks.
Formally, A′E = {a ∈ γ | ∃B1, B2 ∈ comp(a), T1, T2 ∈
T : B1 ∈ T1, B2 ∈ T2, T1 6= T2}.
• Internal interactions: A′I set in defined as the set of

interactions in the participant components of which we can
find only atomic components belonging to the same task.
A′I = γ \A′E .
• Atomic talking components: B′ATC set is initialised to

the set of atomic components in B that are concerned
by external interactions (i.e., are related to other atomic
components belonging to a different task). We define
B′ATC = {B ∈ B|A′E ∩ PB 6= ∅}, where PB is the port
set of the component B.

After defining initial sets of internal interactions, external
interactions and ATC components, the final sets AE , AI
and BATC are defined depending on existing priority rules
following Rule 1.

Rule 1: For each a ∈ A′I , and, a′ ∈ A′E such that ∃q ∈ Q,
(C(Q), a, a′) ∈ πQ, AE = A′E ∪ {a}, AI = γ \AE , BATC =
{B ∈ B|AE ∩ PB 6= ∅}.

E. Transformation rules

Starting from an RT-BIP model B
def
= πγ(B1, ..., Bn),

we first apply a variation of the transformation from RT-BIP

163Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 182 / 512

to SR-BIP [8] which transforms original atomic components
defined in the RT-BIP model by send/receive components,
handles initial interactions using schedulers and adds a conflict
resolution protocol component for conflict resolution. Then,
we instantiate components associated to the same task in one
composite task component following Rule 4.

In our case, we need to implement intertask communication
using dedicating components instead of BIP connectors. Thus,
we propose here to apply the send/receive transformation only
to the subset of components and connectors dedicated to inter-
task communication in the initial model. Thus, only ATC com-
ponents are transformed in send/receive atomic components
following Rule 2, and only inter-task connectors referring to
external interactions AE are replaced by TTCC components
and the CRP component following Rule 3.

1) ATC component transformation: Every atomic compo-
nent can define a set of local clocks. They can be reset at any
time and are involved in timing constraints and time progress
conditions. TTCC component makes use only of the common
time scale presented by a global clock Cgwhich is initialized
to 0 and is never reset, and measures the absolute time elapsed
since the system started executing.

Since TTCC receives timing constraints and time progress
conditions from different ATC components, it would be better
if these latter transforms their sent data using the global clock.
Therefore, we follow the approach of [6]: for each clock c of
an atomic component B, we introduce a variable ρc that stores
the absolute time of the last reset of c. This variable is updated
whenever the component executes a transition resetting clock
c. In fact, when the TTCC executes an interaction a, it stores its
execution date in a variable texa . The value of this variable is
then sent to participating components (during the notification).
Each participating component executes then the corresponding
transition according to the received notification, and updates
each variable ρc to texa if the transition resets clock c in the
original model. Notice that the value of c can be computed
from the current value of Cg and ρc by using the equality
c = Cg − ρc. Using ρc, any timing constraint tc involved in a
component B can be expressed using the clock Cg instead of
clocks C. We can transform tc as follows:

tc =

m∨
k=1

∧
c∈C

lkc 6 c 6 ukc =

m∨
k=1

∧
c∈C

lkc + ρc 6 Cg 6 ukc + ρc

(5)
Similarly, any time progress condition tpc involved in B

is transformed using the clock Cg as follows:

tpc =
∨
c∈C

c 6 uc =
∨
c∈C

Cg 6 uc + ρc (6)

We transform then an ATC component
BATC = (L,P,X,C, T, {tpcl}l∈L) of a RT-
BIP model into a TT ATC component BTT =
(LTT , PTT , XTT , CTT , TTT ,{tpcTTl }l∈L) that is capable
of communicating with TTCC component(s). We denote
by a the initial interaction between two or more ATC
components and by p the port of BATC such that p ∈ a.
Instead of the initial connector linking these atomic
components, communication is performed through added
TTCC component. Thus, each atomic component will
be connected to TTCC component using send/receive
connectors.

Rule 2: In each ATC component BATC ∈ BATC , for each
port p ∈ P ∩AE , each transition labelled by the port p will be
duplicated in two transitions with an intermediate partial state
⊥p. A new added send-port ps and the port p (Receive port) are
the successive labels of the two new transitions. The transition
labelled by ps is an unobservable transition. Formally, BTT is
obtained from B as follows:

• LTT = L ∪ L⊥, where L⊥ = {⊥l,p |∃τ =
(l, p, gτ , fτ , r, l

′) ∈ T, a ∈ AE , p ∈ P ∩ a} ,
• PTT = P ∪ Ps, where Ps = {ps|p ∈ P ∩AE},
• XTT = X ∪{gp}p∈P∩AE ∪{nb, ρc, texa}, where nb is the

number of participation of BTT ,
• CTT = C,Cg ,
• TTT = T\{τp}p∈P∩AE ∪ {τps , τ ′p}p∈P∩AE where p ∈
P ∩ AE , τp ∈ T and τps , τ

′
p ∈ TTT such that τp =

(l, p, gτp , fτp , l
′), τps = (l, ps, T rue, gp = gτp , L⊥) and

τ ′p = (L⊥, p, T rue, fτ ′p , l
′). fτ ′p executes fτp and incre-

ments nb.
• For places L⊥, the time progress condition is tpcTTL⊥ =
True.

We denote the set of transformed ATC components by
BAT CTT .
Figure 8 illustrates this transformation for the cases of con-
flicting and non conflicting interactions.

xp

L1 L2
p

gp

p xp

xp, gp, n, tex

L1 ⊥p L2
ps p

ps
xp, gp, n

p
xp, tex

(a) Non conflicting interaction

xp, xq

L1

L2L3

pq
gq gp

p xpq xq

xp, gp, xq, gq, n, tex

L1

⊥p

⊥q

L2L3

ps

qs

pq

ps
xp, gp, n

p
xp, tex

qs
xq, gq, n

q
xq, tex

(b) Conflicting interaction
Figure 8. Atomic Component transformation

2) Connector transformation: Each connector presenting
an inter-task communication will be replaced by a TTCC
component as described by the following rule:

Rule 3: Let Ck be a connector defining an external com-
munication between k components of different tasks which
handles an external interaction (a,Xa, Ga, Fa) ∈ AE . We
replace Ck by a TTCCk component and a set of corresponding
connectors, as follows::

• if a is a conflicting interaction (i.e., ∃a′ ∈ AE such that
a#a′), TTCCk is an instance of TTCCC components,
else TTCCk is an instance of TTCCNC component.

• In both cases, the set of local variables of TTCCk is
Xl = Xa ∪ {nb, tex}, and in the transition executing the

interaction a, we have the guard G = Ga
∧
(
k∧
i=1

)gip and the

function F = Fa.
• k binary and one k+1−ary send/receive connectors are

instantiated to connect TTCC to ATC components,
• A CRP component is then instantiated and connected to
TTCCC components via three binary send/receive con-
nectors each.

164Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 183 / 512

3) Task component instantiation: Task components are
created according to the task mapping. Each transformed ATC
component exports its send and receive ports to the task
component interface. Each exported port will be referenced by
an artefact external interaction aartefact that presents locally
the external interaction involving the task. Conflicts between
internal and artefact interactions that are not initially resolved
by priority rules, are resolved by a static added rule that favours
the internal interaction.

Rule 4: For each task Tk = {Bi}i∈Ik ∈ T , we instantiate
a composite component TTTk where:

• The set of exported ports of TTTk is PTTT = (Ps ∩⋃
BTTi ∈TTTk ∩BAT CTT

PBTTi)∪(Pr∩
⋃

BTTi ∈TTTk ∩BAT CTT
PBTTi),

• for each interaction a ∈ AI in conflict with an interaction
b ∈ AE , we add the priority rule π = (True, b, a).

In this section, we proposed TT-BIP architecture as a TT
physical model that allows inter-task interactions only through
a communication media (TTCC components) in order to com-
ply with the TT paradigm. We also defined a transformation
process that derives correctly a TT-BIP model from a high-
level RT-BIP model. The obtained TT-BIP model is intended to
be translated into the language specific to target TT platform.
Since each operating system (OS) offers specific services
(communication, scheduling policy, etc.), it is advantageous
to define a mapping between these offered services and their
corresponding elements in the TT-BIP model. To be able to
do such a mapping, we consider the decomposition of the
TTCC component into an equivalent set of atomic components
each describing a step of its behaviour: components allowing
individual acquisition of offers, components to aggregate them,
and component executing the interaction. We believe that some
parts of TTCC subcomponents can be mapped into OS com-
munication services. Priorities in the TT-BIP model (including
added ones in task component) are priorities on interactions.
In simulation level they can be resolved by RT-BIP sequential
scheduler. In order to be handled in implementation, these
priority rules should be translated either into predicates on
transitions following [9], or, into priorities on tasks, which
could parametrize the scheduler of the target platform. This
adequation between subset of TTCC (resp. priority rules) and
OS communication services (resp. schedulers) will be the
object of a future publication.

IV. CASE STUDY

In this section, we present a simple but representative case
study which consists in a Flight Simulator (FS) application.
We have first modelled the FS application in RT-BIP starting
from FS Modelica model. Then, we applied manually the
transformation to derive the equivalent TT-BIP model. The
simulation of three models reveals that their outputs are similar.

The initial RT-BIP model, consists of a set of six com-
municating components (see. Figure 9): autopilot, fly-by-wire,
route, servo, simulator and sensor. The autopilot models the
pilot commands in function of the flight state. It has four main
functionalities: flight state reception from sensor component,
execution of the route planner, execution of fly-by-wire and
sending command to servo component. The route component
computes distance to current waypoint and change route to-
wards next waypoint if necessary. It operates in low frequency:
every 15 seconds. The fly-by-wire component allows course

correction by setting roll attitude and ailerons and elevator. It
operates in high frequency: every 5 seconds. The servo refers
to the autopilot’s actuation on plane’s flight control surfaces.
Servo component receives command from autopilot component
and transfers it to simulator component. The Flight simulator
simulates flight dynamics computation of plane and wing tips
position based on received commands (i.e., new values of
roll, pitch and throttle). The sensor refers to the autopilot’s
perception of real world data. Sensor component receives data
about flight state from simulator component and resend them
to the autopilot. The sensor can add some noise, delay, etc.,
to mimic realistic data acquisitions. But in our example, we
stand for copying the state computed by simulator component.

fly
fly

cfly = 5
ffly

resert(cfly)

fly

route

route
croute = 15

froute
resert(croute)

route

Loop

start

o-c

i-sfly

route

i-s o-c

r

start

s

o-ci-c

i-c o-c

c

start

sr

state
computation

o-s

i-c

i-c o-s

r

start

s

o-si-s

i-s o-s

Figure 9. Initial Flightsim model

We apply the transformation and derive the TT-BIP model.
The chosen task mapping is as follows; the first task com-
promises autopilot, route and fly-by-wire components. Servo,
sim and sensor are each mapped on a different task. Thus,
only connectors route and fly remain intact. Other connectors
are inter-task connectors. They are transformed in TTCC com-
ponents. The interactions connecting the autopilot component
to the sensor and servo components are conflicting in the
state ”loop” of the autopilot. Thus, instantiated TTCC for
these interactions are related to CRP component. Figure 10,
shows the obtained model. Behaviours of TTCC and CRP
components are not displayed for lack of space. Nonetheless,
since all TTCC components are connecting exactly two tasks,
their automata are strictly similar to those in Figure 5.

fly
fly

cfly = 5
ffly

resert(cfly)

fly

route
route

croute = 15
froute

resert(croute)

route

Autopilot
Task1

Loop

start

⊥is ⊥oc

psoc psis

i-s

o-c

fly
cfly = 5

route
croute = 15

i-s o-cpsocpsis

Servo
Task2

r

start

⊥oc

s

⊥ic

psoc

o-cmdpsic

i-cmd

i-c psic o-cpsoc

Sim
Task3

c

start

s

⊥cr

⊥s

Internal
state

computation

pss

o-state

psc

i-cmd

i-c o-spsspsc

Sensor
Task4

r

start

⊥os

s

⊥is

psos

o-statepsis

i-state

i-s o-spsospsis

TTCCC TTCCC TTCCNC TTCCNC

CRP

rsv ok fail rsv ok fail

Figure 10. Final Flightsim model

In order to be able to compare the functionality of two
models, we used BIP simulator that generates C++ code from
the initial and the obtained model. Simulation of two generated
codes, allowed us to visualize and compare the output signals.
A band shows the trajectories of left and right wingtips and
illustrates the roll movement that precedes the change in course
at each waypoint, while the plane progressively reaches its
desired altitude.

165Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 184 / 512

trajectoire

trajectoire au sol

-100
-50

0
50

100
150

200
250

300
350-100

-50

0

50

100

150

200

250

300

350

400

-50

0

50

100

150

200

250

300

350

Figure 11. Trajectories of left and right wingtips

Figure 11 presents the simulation results of the ini-
tial and the derived models, for the waypoints (300,0,300),
(300,300,300), (0,300,300) and (0,0,300). Visual inspection
reveals that the output of the transformed model is strictly
similar to that of the original model.

V. RELATED WORK

There have been a number of approaches exposing the
relevant features of the underlying architectures at high level
design tool.

Authors in [16] present a design framework based on
UML diagrams for applications running on Time-Triggered
Architecture (TTA). This approach doesn’t support earlier
architectural design phase and needs a backward mechanism
for the generated code verification. It also doesn’t target
generic TT implementations since it assumes the underlying
TT protocol to be The Flexray standard.

Authors of [17] and [18] present a method to reduce the
gap between models used for timing analysis and for code gen-
eration. This method relies on AADL model transformations
in order to lower automatically the abstraction level of models.
However, this work did not rely on formal semantics.

Since BIP design flow is unique due to its single semantic
framework used to support application modelling and to gener-
ate correct-by-construction code, many approaches tend to use
it to translate high level models into physical models including
architectural features. For instance, in [15], a distributed BIP
model is generated from a high level one. In [19], a method
is presented for generating a mixed hardware/software system
model for many-core platforms from an application software
and a mapping. These two approaches take advantages from
BIP framework but they do not address the TT paradigm.

To the best of our knowledge, our approach is the first to
address the problem of deriving progressively a TT physical
model in a single host component-based language rooted in
well defined semantics.

VI. CONCLUSION

In this paper, we proposed a chain of transformations that
starts from an arbitrary abstract RT-BIP model, and a user-
defined task mapping. The transformation process obtains a
model that suits the TT-BIP architecture and consists of: (1)
breaking atomicity of actions in ATC components by replac-
ing strong synchronizations with asynchronous send/receive
interactions, (2) inserting TTCC components that coordinate
execution of inter-task interactions according to a user-defined
task mapping, (3) extending the model with an algorithm for
handling conflicts between TTCC and (4) adding local priority
rules in task components for handling conflicts between inter-
task and intra-task interactions. We have shown correctness of
the final model by trace inclusion.

For future work, we plan to automate the transformation
process in RT-BIP modelling environment. Furthermore, we
are working on the tool allowing code generation for the
target TT platform, that depends on the offered communication
services of target operating system. For each specific target
operating system, it translates an adapted version of the model.

REFERENCES
[1] H. Kopetz, “The time-triggered approach to real-time system design,”

Predictably Dependable Computing Systems. Springer, 1995.
[2] ——, “Time-triggered real-time computing,” Annual Reviews in Con-

trol, vol. 27, no. 1, 2003, pp. 3–13.
[3] W. Elmenreich, G. Bauer, and H. Kopetz, “The time-triggered

paradigm,” in Proceedings of the Workshop on Time-Triggered and
Real-Time Communication, Manno, Switzerland, 2003.

[4] BIP2 Documentation, July 2012.
[5] T. Abdellatif, “Rigourous implementation of real-time systems,” Ph.D.

dissertation, UJF, 2012.
[6] T. Abdellatif, J. Combaz, and J. Sifakis, “Model-based implementation

of real-time applications,” May 2010, pp. 229–238.
[7] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical

computer science, vol. 126, no. 2, 1994, pp. 183–235.
[8] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and J. Sifakis, “From

high-level component-based models to distributed implementations,” in
Proceedings of the tenth ACM international conference on Embedded
software. ACM, 2010, pp. 209–218.

[9] J. Quilbeuf, “Distributed implementations of component-based systems
with prioritized multiparty interactions. application to the bip frame-
work.” Ph.D. dissertation, Université de Grenoble, 2013.

[10] A. Triki, B. Bonakdarpour, J. Combaz, and S. Bensalem, “Auto-
mated conflict-free concurrent implementation of timed component-
based models,” in NASA Formal Methods. Springer, 2015, pp. 359–
374.

[11] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
computer science, vol. 126, no. 2, 1994, pp. 183–235.

[12] A. Basu, P. Bidinger, M. Bozga, and J. Sifakis, “Distributed semantics
and implementation for systems with interaction and priority,” in Formal
Techniques for Networked and Distributed Systems–FORTE 2008.
Springer, 2008, pp. 116–133.

[13] R. Bagrodia, “Process synchronization: Design and performance evalu-
ation of distributed algorithms,” Software Engineering, IEEE Transac-
tions on, vol. 15, no. 9, 1989, pp. 1053–1065.

[14] K. M. Chandy and J. Misra, “The drinking philosophers problem,” ACM
Transactions on Programming Languages and Systems (TOPLAS),
vol. 6, no. 4, 1984, pp. 632–646.

[15] M. Bozga, M. Jaber, and J. Sifakis, “Source-to-source architecture trans-
formation for performance optimization in bip,” Industrial Informatics,
IEEE Transactions on, vol. 6, no. 4, 2010, pp. 708–718.

[16] K. D. Nguyen, P. Thiagarajan, and W.-F. Wong, “A uml-based design
framework for time-triggered applications,” in Real-Time Systems Sym-
posium, 2007. RTSS 2007. 28th IEEE International. IEEE, 2007, pp.
39–48.

[17] E. Borde, S. Rahmoun, F. Cadoret, L. Pautet, F. Singhoff, and P. Dis-
saux, “Architecture models refinement for fine grain timing analysis of
embedded systems,” in Rapid System Prototyping (RSP), 2014 25th
IEEE International Symposium on. IEEE, 2014, pp. 44–50.

[18] F. Cadoret, E. Borde, S. Gardoll, and L. Pautet, “Design patterns for
rule-based refinement of safety critical embedded systems models,”
in Engineering of Complex Computer Systems (ICECCS), 2012 17th
International Conference on. IEEE, 2012, pp. 67–76.

[19] P. Bourgos, “Rigorous design flow for programming manycore plat-
forms,” Ph.D. dissertation, Grenoble, 2013.

[20] R. Milner, Communication and Concurrency. Hertfordshire, UK, UK:
Prentice Hall International (UK) Ltd., 1995.

166Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 185 / 512

APPENDIX
TRANSFORMATION CORRECTNESS PROOFS

In this section we prove the correctness of our TT-BIP
model. First, we show that the obtained model is indeed a TT-
BIP model. Second, in order to prove the correctness of our
transformation, we consider these two steps in transforming
a model B; the first step that transforms ATC components
and inter-task connectors, and the second step that instantiates
composite task components with priorities. We denote by
BTTSR the output model of the first step and by BTT the
final model after applying the second step. We show that B
weakly simulates BTTSR . And finally, we prove trace inclusion
between BTTSR and BTT , i.e., the second step of transformation
preserves safety property.

A. Compliance with TT-BIP model
We need to show that receive ports of BTT model will

unconditionally become enabled whenever one of the corre-
sponding send ports is enabled. Intuitively, this holds since
communications between tasks and TTCC components, and
between TTCC components and CRP component follow a re-
quest/acknowledgement pattern. Whenever a component sends
a request (via a send port) it enables the receive port to receive
acknowledgement.

In ATC components, we denote by l⊥ in LTT each place
allowing sending offer to TTCC component. Note that l⊥
precedes one ⊥p place when only one intertask interaction
is possible (e.g., the place L1 in the right part of Figure 8a).
It consists in all states allowing to send successive offers to
TTCC components in case of conflicting intertask interactions
(e.g., the places L1 and ⊥p in the right part of Figure 8b). l⊥
places are called busy locations. We denote by ⊥∗p each ⊥p
place from which no offer could be sent (e.g., the place Lp in
the right part of Figure 8a and the place Lq in the right part
of Figure 8b). We denote by l places that are neither l⊥ nor
⊥∗p places. In AC components, all places are denoted by l.

Lemma 1: Given an RT-BIP model B = πγ(B1, ..., Bn)
and a task mapping T = {T1, ..., Tk}, the model BTT =
πTT γTT (BTT1 , ..., BTTn , TTCC1, ..., TTCCm, CRP)
obtained by transformation of section III-C meets the
properties of definition 8.

Proof:
The first four constraints of Definition 8 are trivially met

by construction. We now prove that the fifth constraint also
holds, i.e., whenever a send port is enabled, all its associated
receive ports are enabled as well.

• Between a task component BTTi and a TTCCNCj com-
ponent, for all interactions involving a component Bi, we
distinguish between four classes of states:
◦ The first class contains all states between wait and Read

states of TTCCj where this latter is enabling all its
receive ports in all possible orders and BTTi is in a
busy location l⊥. This class presents waiting states.
From that class, the only enabled send-port involved
in an interaction with BTTi is the port psi of Bi. By
definition of the class, all associated receive ports are
also enabled, and the send/receive interaction can take
place to reach a state of the second class.

◦ In the second class, the component BTTi is in a place
⊥∗p that is not a busy location, and the TTCC com-
ponent is in the Read place. From that configuration,

there is no enabled send-port involved in an interaction
with BTTi . The next class of states is reached when the
TTCC executes a unary interaction a.
◦ In the third class, the TTCC component is in the place

write and BTTi component is still in ⊥∗p place. The
send-port ps of TTCC is enabled. By definition of
the class, the corresponding receive-port is enabled
since component BTTi is in location ⊥∗p. Thus the
send/receive interaction can take place either to reach
back the first class of states or to reach the following
class.
◦ In the remaining class, the component BTTi is in place
l and TTCC component is in Wait place. From this
state only inta-task interactions could be enabled and no
communication with TTCC component can be planned
(no send-port is active).

• Between a task component BTTi and a TTCCCj compo-
nent, for all interactions involving the interaction a which
is externally conflicting, we have almost the same four
classes as non conflicting TTCC. TTCCCj refers to CRP
before executing a. It uses the current participation num-
ber of Bi for the execution of a and no other interaction is
granted using the same participation number. Thus, write
is the only active place, from which a notification could
be sent to a component Bi.

• Between the TTCC component TTCCCj and the conflict
resolution protocol CRP , we consider the places trya
in the component TTCCCj , waita and treata in CRP
component. If TTCCCj in not in trya place, and CRP in
in the waita place, only reservation request through port
rsva is enabled. When the rsva request is sent, the place
trya and treata become active. From this configuration,
only send ports oka and faila are enabled in the CRP,
and the associated ports are also enabled in the TTCC
(from trya location).

This proof ensures that any component ready to perform
a transition labelled by a send-port will not be blocked by
waiting for the corresponding receive-ports.

B. Observational Equivalence between B and BTTSR
We denote by B the initial model and by BTTSR the resulting

model of the step 1 of the transformation.
We show that B and BTTSR are observationally equivalent.

The definition of observational equivalence between two tran-
sition systems A = (QA, PA ∪ {β},−→

A
) and B = (QB , PB ∪

{β},−→
B

) is based on the usual definition of weak bisimilarity
[20], where β-transitions are considered unobservable.

Definition 9: (Weak Simulation A weak simulation over
A and B, denoted A ⊂ B, is a relation R ⊂ QA ×QB , such
that: ∀(q, r) ∈ R, a ∈ P : qA

a→A q′ =⇒ ∃r′: (q′, r′) ∈ R ∧
r
β∗aβ∗→ B r′ and ∀(q, r) ∈ R: q

β→A q′ =⇒ ∃r′: (q′, r′) ∈ R
∧ r β

∗

→B r′.
A weak bisimulation over A and B is a relation R such

that R and R−1 are both weak simulations. we say that A
and B are observationally equivalent and we write A ∼ B if
for each state of A there is a weakly bisimilar state of B and
conversely.

We consider the correspondence between actions of B and
BTTSR as follows. To each interaction a ∈ γ of B, we associate

167Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 186 / 512

either the multi-party interaction aMP , the binary interaction
oka or the unary interaction a of BTTSR , depending on whether a
is inta-task interaction, external conflicting or external and not
conflicting interaction. Other interactions of BTTSR (send/receive
interactions) are unobservable and denoted by β.

We proceed as follow to complete the proof of observa-
tional equivalence. Among unobservable actions β, we distin-
guish between β1 actions, that are interactions between ATC
components and TTCC components, and β2 actions that are
interactions between TTCC components and CRP component
(namely the reserve and fail). We denote by qTTSR a state of
BTTSR and q a state of B. A state of BTTSR from where no β1
action is possible is called a stable state, in the sense that any
β action from this state does not change the state of atomic
components.

Lemma 2: From any state qTTSR , there exists a unique stable

state [qTTSR] such that qTTSR
β∗1→γTT [qSRTT]

Proof: The state [qTTSR] exists since in AC component
no β transitions are possible and since each ATC component
BTTSR i can either send one or successive offers, or receive a
notification. Since two β1 transitions involving two different
components are independent (i.e., modify distinct variables and
places), the same final state is reached independently of the
order of execution of β1 actions. Thus [qTTSR] is unique.

The above lemma proves the existence of a well-defined
stable state for any of the transient states reachable by the BTTSR
model. The state [qTTSR] verifies the property qTTSR

β∗1→γTT [qSRTT]

and [qTTSR]
β∗1
6→γTT .

Lemma 3: At a stable state [qTTSR], the BTTSR model verifies
the following properties:

• All ATC components are in non busy places ⊥∗p or l.
• All other atomic components are in a non busy place l.
• All TTCC components are in receive places read,
• The clock Cg and all variables in ATC components have

the same value than their copies in the TTCC component.

Proof: The three first points come from Lemma 1 that
guarantees possible execution of a send/receive interaction
if its send-port is enabled. Therefore no place write in the
TTCC components (respectively l⊥ in atomic components)
can be active at [qTTSR], otherwise the answer ps of TTCC
(respectively the offer from l⊥) could occur. Furthermore,
since all offers have been sent, none of the TTCC components
can be in wait place. In each TTCCj , when read place
is active, the last executed transitions are either offers or a
fail message reception. The latter does not modify variables
in the TTCCj . For each variable x in the TTCCj , the last
modifying transitions are offers from the corresponding atomic
components Bi, which ensures that each variable in the TTCC
component has the same value as the corresponding ATC
component. The clock Cg has the same value in the atomic
components and the TTCC as it is never reset.

Lemma 4: When ATC component BTTSR i is in a stable
state, we have ni > Ni

Proof: Where in a stable state, the ATC component is
either in place ⊥∗p or l following Lemma 3. When ATC
component is in place ⊥∗p all offers have been sent, thus
the participation numbers in TTCC corresponds to those in

components. Initially, for each ATC component Bi, Ni = 0
and ni = 1. By letting all components sending offers to
all TTCC components, we reach the first stable state where
the property holds, since β1 actions do not modify the Ni
variables. The variables Ni in the CRP component are updated
upon execution of an oka transition, using values provided
by the TTCC, that are values from components according to
Lemma 3. Thus, in the unstable state reached immediately after
an oka transition, we have ni = Ni for each component BTTSR i
participant in a. Then, the notification transition increments
participation numbers in components so that in the next stable
state ni > Ni. For components B′i not participating in a, by
induction on the number of okinteractions, we have n′i > N ′i .
Now when ATC component is in place l, only multiparty
interaction is possible with AC components. This interaction
involves only AC components, and thus has no effect on Ni,
it only increments ni. If a previous inter-task interaction has
been performed so at state l, we have ni > Ni. If no intertask
interaction has been performed before reaching place l, the
property holds since initially ni = 1 and Ni = 0, and since
each action from a state l increments ni.

Lemma 4 shows that the participation numbers propagate
in a correct manner. In particular, at any stable state the conflict
resolution protocol has only previously used values and TTCC
components have the freshest values, that are the same as in
ATC components. To prove the correctness of the step 1 of
our transformation, we exhibit a relation between the states Q
of the original model B = {B1, .., Bn} and the states QTTSR of
final model BTTSR = {BTTSR 1, .., B

TT
SRn} and prove that it is an

observational equivalence.
We define the relation by assigning to each state qTTSR ∈

QTTSR an equivalent state equ(qTTSR) ∈ Q by:

1) considering the unique stable state [qTTSR] reachable by
doing β transitions.

2) considering the control location l⊥ and ⊥∗p in BTTSR i as
the control location l for Bi, in equ(qTTSR). The control
location l in BTTSR i are considered as the control location
l for Bi, in equ(qTTSR). Lemma 3 ensures that it is a valid
control state for Bi.

3) taking the valuation of variables of BTTSR i to a valuation
of variables in Bi, and

4) taking the valuation of original clock ci in Bi as the
valuation of gρci .

Theorem 1: BTTSR ∼ BTT

Proof: We then define the equivalence R by taking:

R = {(qTTSR , q) ∈ QTTSR ×Q|q = equ(qTTSR)} (7)

The three next assertions prove that R is a weak bisimula-
tion:

1) If (qTTSR , q) ∈ R and qTTSR
β→ rTTSR then (rTTSR , q) ∈ R.

2) If (qTTSR , q) ∈ R and qTTSR
σ→ rTTSR then ∃r ∈ Q : qTTSR

σ→ r
and (rTTSR , r) ∈ R.

3) If (qTTSR , q) ∈ R and q
σ→γ r, then ∃rTTSR ∈ QTTSR :

qTTSR
β∗σ→ γTTSR

rTTSR and (rTTSR , r) ∈ R.

The property 1) is a direct consequence of Lemma 2. If
qTTSR

β→γTTSR
rTTSR , then β is either β1 action, thus by definition

[qTTSR] = [rTTSR], or β is β2 action which does not change the
state of the atomic components, thus [qTTSR] = [rTTSR]. Thus, we

168Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 187 / 512

have equ(qTTSR) = equ(rTTSR).
To prove property 2), we assume the action σ in BTT is

either an intra-task interaction (multi-party interaction) a, or
an inter-task interaction (corresponding to a unary or binary
interaction) or a delay step δ.
If a is an intra-task interaction, it is not concerned by the
transformation. That is q = equ(qTTSR) and r = equ(rTTSR).
If a is an inter-task interaction, it corresponds to executing
a transition labelled by a unary port a in TTCC component
handling a or a transition labelled by oka. These transitions
are enabled according to valuations of variables and clock Cg
in the TTCC handling a. If a is not externally conflicting,
by construction of the TTCC, the transition labelled by a has
the conjunction of guards gp sent by the ATCs of different
tasks for each p ∈ a. Thus the guard of this transition
is G = Ga

∧
(
∧
p∈a

gp), where gp = gXp
∧
tcp being the

conjunction of the boolean guard over variables, and timing
constraints. By lemma 3 these values are the same in atomic
talking components (ATC), and by extension in q = equ(qTTSR).
Thus the guard of a evaluates to Trueat q = equ(qTTSR). By con-
struction of ATC components, the guard gp = gXp

∧
tcp sent

from l⊥ in BTTSR i are boolean guards and timing constraints at
state l in Bi.
These timing constraints are expressed on clock Cg which
could be equivalently expressed on original clocks c involved
in the original timing constraints of Bi. The valuation of each
clock c involved in the timing constraint of a is computed from
the valuation of g − ρc where ρc is the last clock reset date
of c. Therefore, at state q the timing constraint of a expressed
on its original clocks are also met.
if a is externally conflicting, the transition labelled oka in
CRP is possible only if the transition rsva executes in the
TTCC component. This transition has the same guard and
timing constraint of transition labelled by a. Thus, if this
transition is possible in the TTCC component, then the guard
of a is met at q. Moreover, if transition labelled oka is
enabled, this means that for each component Bi involved in a,
ni > Ni. In particular, for each involved component Bi, the
offer corresponding to the number ni has not been consumed
yet. Thus, we conclude that in both cases, we have q a→ r.
Finally, executing a in BTTSR triggers the execution of the data
transfer function Fa, followed by the computation in ATC upon
reception of the response. Thus at [rTTSR], the values in ATC
components are the same as in r, which yields (rTTSR , r) ∈ R.

if a is a delay step, it corresponds by letting time progress
by δ in either busy locations l⊥ or in places between wait
and read of the TTCC components, corresponding to ATC
components Bi. Location l⊥i has the time progress condition
tpcli and states between wait and Read in TTCC has each the
time progress condition tpci sent from the ATC components
and corresponding to time progress condition of location li.
Thus, all these time progress conditions are not false, otherwise
the δ delay step would not be allowed.

By Lemma 3, the values involved in time progress condition
and sent from l⊥ in BTTSR i are the values of time progress
condition at state li in Bi. These time progress conditions are
expressed on clock Cg which could be equivalently expressed
on original clocks c involved in the original time progress
conditions Bi. The valuation of each clock c involved in the
time progress condition of Bi is computed from the valuation
of g− ρc where ρc is the last clock reset date of c. If the time

progress condition tpci expressed on clock Cg allows the time
step δ in TTCC component, thus, δ is also allowed by the time
progress condition tpcli expressed on original clocks of Bi.
Therefore q δ→ r. Executing δ has the same effect on clocks
in both models, therefore (rTTSR , r) ∈ R.

To prove the property 3), we notice that if σ can be
executed in B at state q, then from an equivalent state qTTSR ,
one can reach the state [qTTSR] (by doing β1 actions) where the
clock Cg and data of ATC components have the same values
as those of q (Lemma 3). As previously, we distinguish the
cases where σ is an interaction a or a delay step δ.
If σ is an intra-task interaction a, then it is not concerned by the
transformation and remains intact in the obtained model. Thus
we have straightforwardly (qTTSR , q) ∈ R and (rTTSR , r) ∈ R.
If σ is an inter-task interaction a from q, then the timing
constraint and guard of a are True. From qTTSR we reach
[qTTSR] by doing β1 actions. Then, we execute all possible
fail interactions (that are β2 actions), to reach [q′

TT
SR]. At

this state, if a is not conflicting, the interaction a is enabled,
else the sequence rsva oka can be executed since lemma 4
ensures that guard of oka is True. In both cases, the interaction
corresponding to a brings the system in state rTTSR . From this
state, the response corresponding to ports of a are enabled,
and the next stable state [rTTSR] is equivalent to r. Thus we

have qTTSR
β∗1−→ [qTTSR]

β∗1−→
fail

[q′
TT
SR]

a−→ rTTSR
β∗1−→ [rTTSR] and

qTTSR
β∗1−→ [qTTSR]

β∗1−→
fail

[q′
TT
SR]

rsva,oka−→ rTTSR
β∗1−→ [rTTSR]. Thus

(rTTSR , r) ∈ R.
If σ is a delay step δ then from state [qTTSR], time can progress
also by δ to reach state r′

TT
SR . At this state, place read of

TTCC is active and having the tpci sent by [BTTSR i] which is the
same as the time progress condition of Bi at q. From reached
state r′TTSR we execute all possible fail interactions (that are
β2 actions), to reach rTTSR .The time progress conditions are
equal to Falsein receive place in the CRP component. That is,
even if some β2 actions is possible from state r′TTSR , no delay

is allowed at this state. Thus we have, qTTSR
β∗1−→ [qTTSR]

δ−→
r′
TT
SR

β2−→ rTTSR with (rTTSR , r) ∈ R.

C. Trace inclusion between BTTSR and BTT

We denote by BTTSR the initial model and by BTT the
resulting model of the step 2 of the transformation.

The observational equivalence cannot be proven between
BTTSR and the resulting BTT . In BTT model, conflicts between
internal and external interactions are resolved by adding local
priority rules in the task. Thus when interactions aI and aE
(respectively internal and external interactions) are possible,
always the internal one will be executed. This restriction
implies that the set of traces of the BTT model is a subset
of traces of BTTSR model.

169Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 188 / 512

A User-App Interaction Reference Model for Mobility Requirements Analysis

Xiaozhou Li∗, Zheying Zhang†
School of Information Sciences, University of Tampere

Email: ∗li.xiaozhou.x@student.uta.fi, †zheying.zhang@uta.fi

Abstract—Contemporary mobile applications (apps) value mobil-
ity as a key characteristic that allows users to access services
or features ubiquitously. In order to achieve decent mobility,
apps shall provide features that are suitable to use under a
wide range of contexts. In this paper, we analyze the situational
contexts, towards which the mobile apps shall comply with in
terms of mobility. By analyzing the contexts and the ways of
interaction between users and apps, we propose and illustrate
a mobile requirements analysis process model to identify the
conflicts between users’ ideal ways of interaction and the way
the feature is designed to provide. The identified conflicts help to
elicit requirements for the enhancement of the apps’ mobility.

Keywords–Mobility; Mobile application; Requirements; Context;
Situational Context; Interaction;

I. INTRODUCTION
The emergence of iOS and Android OS has been changing

the mobile industry and people’s daily lives, and been pro-
viding new trends in the academic research [1]. Changes in
distribution process and mobile software market mechanism
lead to better customer accessability towards mobile apps
and inevitable competition [2]. The ranking mechanism also
intensifies the competition, demanding mobile apps satisfying
users’ diversified demands, which shall be reached in varying
situations, compared to desktop software. It thus requires
companies to take into account the capability of the mobile
applications to provide satisfactory user experience regardless
the changing environment [3].

Mobility is one of the most significant and unique features
for mobile apps, refering to the ability to access services
ubiquitously through wireless networks and various mobile
devices [4][5]. The vision of mobility is to be able to work
“anytime, anywhere” [6]. However, with limited support of
systems towards mobility, the capability of being comfort-
ably used at “anytime, anywhere” of mobile apps is seldom
achieved. Thus, achieving mobility shall result in the enhanced
competitiveness of mobile apps in terms of user satisfaction.

Contexts, which refers to the information that characterizes
the situation of an entity, has a great impact on usability and
user experience of mobile apps [7]–[10]. Mobility, as a key
aspect of usability of mobile apps, is also affected largely by
their context [11], which also influences the way, by which
a user interacts with an mobile app [12]. By specifying the
ways, in which user and app interact, we analyze their relation
towards different contexts. The elicited mobility requirements
shall thus reflect suitable interaction ways between users and
apps in differen contexts.

Many studies analyze the phenomena of use situations
concerning mobile commerce [4][13] and other types of mobile
apps [14]. But studies on mobility requirements analysis are
very limited. A goal-oriented framework for modeling and
analyzing requirements for varying contexts was proposed
based on the goal model to reason variants [15]. But it fails
to address how to identify the varying contexts and derive

requirements regarding the way of interaction. Several other
studies [16][17] address challenges and methods of require-
ments analysis for mobile systems and pervasive services,
but lack a concrete proposal on taking varying contexts into
account for requirements analysis.

In this study, we focus on the analysis of context of use of
mobile apps and the possible ways of interaction between users
and an app, and further study the way of analyzing mobility
requirements. The paper tries to tackle the following questions.

RQ1 What are the contexts that affect the interaction
between user and mobile apps?

RQ2 What are the ways in which a user interacts with
mobile apps, and what are their relations with
different contexts?

RQ3 How to take into account contexts and ways of
interaction when analyzing apps mobility require-
ments?

The purpose of this research is to enhance the mobility
of mobile apps by taking into account the varying contexts
in requirement analysis. To answer RQ1, we summarize the
definition of mobility and main perspectives of mobile app
contexts by reviewing the literature on the concept of mobility
and context in Section 2. We also tackle RQ2 by analyzing
the relation between the way users interact with mobile apps
and different contexts via user-app interaction reference model
in Section 3 and 4. In Section 5, we propose our approach to
analyzing mobility requirements with a case study for further
illustrating and discussing in Section 6, which altogether
answers RQ3. Section 7 concludes with implications for future
research.

II. MOBILE APPS AND THEIR MOBILITY REQUIREMENTS
Mobile devices and applications has enabled new freedom

and flexibility on the way people communicate, work, and
entertain by providing services beyond the constraints of
fixed locations and devices. Compared to the old style of
using manufacturer provided mobile software, contemporary
mobile apps have lower distribution costs and can be more
easily accessed by customers via the change in distribution
process and mobile software market mechanism [2]. The
mechanism stimulates the development of mobile application
markets and results in fierce competition with even software
on personal computers challenged. Prior to the investigation of
the circumstances, under which users would prefer to mobile
applications rather than desktop software, the unique mobility
characteristics of mobile applications differentiated from those
of desktop software shall be understood.

A. Mobility
Mobility was understood as the human’s independency

from geographic constraints or the ability and/or quality to
ensure the given entity can move or be moved [18]. Mobility
primarily facilitates a mobile device to operate properly when

170Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 189 / 512

its location changes. This provides a generic view of how
mobility is supposed to be acquired by users when they
use mobile apps, and forms a general goal in mobile app
development. According to [5], the key feature of mobile
technology is the capability of using services on the move,
with wireless network and various devices, which provides
the literal meaning of mobility. Other similar terms, such as
nomadicity, which indicates a system’s capability of providing
services to the nomad as he moves from place to place in a
transparent and convenient form [6], also reflexes the concept
of mobility.

Consequently, mobility is an attribute of both human beings
and the computational devices they interact [11]. The mobility
of mobile devices refers to the ability to access services ubiq-
uitously, or “anytime, anywhere” through wireless networks
and various mobile devices [4][6] and for mobile apps as
well. As a critical feature of mobile apps usability, mobility
has considerable impact on the interaction between users and
mobile devices and apps [19]. Thus, compared to mobility of
human beings, mobile app mobility is seen as the usefulness
and ease of use provided by the app towards user satisfaction
in “anytime, anywhere”.

There are three types of mobility in terms of modality [20],
i.e., travelling, visiting and wondering. The mobility towards
the usability of mobile apps is hence seen in these three
perspectives as well, that is, to provide services when users
are traveling, visiting, and wondering. Similar categorization
is also given by [21], which describes the motion of mobile
app users into none motion, constant motion and varying mo-
tion. Besides the categorization of mobility regarding spatial
movement, time and context changes also contribute to the
mobility attribute provided by mobile apps [18]. In this study,
we see all the factors that influence the mobility of the mobile
app from outside the app itself as its context.

From the context of use perspective, mobility implies that
the app shall provide context-aware features and/or services.
Following the definition of the concept of context, i.e., the
information that can be used to characterize the situation of an
entity [7][8], where an entity can be a place, person, physical
or computational object, we define context-aware features as
the use of context to provide task-relevant information and/or
features, which a user feels easy to use. The situation can
be characterized in perspectives, such as location, surrounding
changing objects, and people, and can define where you are,
who you are with, and what resources are nearby [22][23].
These perspectives can be further refined into users, tasks,
equipment (i.e., hardware, software and materials), location,
physical environment, temporal context, social environment,
technical and information context, etc. and have been inten-
sively addressed and adapted in surveys and research on the
context in mobile computing and the impact on the overall
design of the product [8][10][17][24]–[28] .

B. Mobility Requirements Analysis
We consider mobility as an intrinsic attribute of mobile

applications. It refers to the capability of providing receptive
and pleasant services acquired by users in spite of the changes
in environments. Such an attribute can be refined into different
types of requirements contributing to users’ satisfaction. The
requirements include functional requirements complementing
the main features of an application and supporting users to

fulfill their goals, interface requirements facilitating the inter-
action between users and the application, as well as constraints
on the application.

In addition to analyzing the core features of an application,
mobility requirements analysis shall emphasize ease of use
in the dynamic environment of use, and focus on analyzing
the diversity of context of use and ways of interaction
between users and the app. Accordingly, we adapt the generic
requirements syntax of Mavin et al.’s EARS model [29]
for mobility requirements, emphasizing the context and the
interaction with users, as shown below.

In <situational contexts>,<optional preconditions>
<optional trigger> the <mobile app name> shall <app
response> in <ways of interaction>.

The syntax marked in grey is what was specified in the
EARS model [29]. It can be further specialized into different
types of requirements following temporal logic defined be-
tween the precondition, the trigger, the app response, etc. [29].
In addition, the components marked in black are situational
contexts and ways of interaction, which highlights the mobility
attributes a mobile app shall reflect and the requirements
analysis shall take into account. The situational context en-
compasses a wide range of elements, such as the location
and surroundings, the social context, the user’s movement,
the temporal context, etc. Combining value of these elements
forms a variety of scenarios of using a mobile app. Changes
of the scenarios continuously reframe a user’s interaction
with a mobile app. Obviously not all scenarios are desired
and friendly. The requirements analyst shall be aware of
the suitable ways of interaction is adopted towards typical
scenarios, which secures users’ satisfaction and receptiveness
largely.

III. A USER-APP INTERACTION REFERENCE MODEL

Interaction between a user and a mobile app occurs after
the user opens the app and before he or she closes it [30]. We
call it a user-app interaction. According to the definition of
context given by [7][8], the context of a user-app interaction
is referred to as the information to characterize the situation
of the two entities, i.e., the user and the app. The context is
further depicted in Figure 1.

Figure 1. User-App Interaction Reference Model.

171Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 190 / 512

The context shall ideally contain all possible situations
that affect the user-app interaction. Similar to the contexts
categories described in previous studies [17][22]–[24], the
ideal context shall contain multiple perspectives including
user profile, operating system, hardware system and network,
physical context, temporal context, task context, and social
context. As shown in Figure 1, we divide the wide range of
context into intrinsic and extrinsic ones. The intrinsic context
refers to the inner attributes of entities that influence, or occa-
sionally determine the occurrence of a user-app interaction. For
example, the features provided by mobile apps and demands
for operating them intrinsically determine their usefulness
when users’ goals and their characteristics determine whether
to use. The extrinsic context refers to the external factors
that influence a user’s decision of his or her engagement in
a user-app interaction. The extrinsic contexts, defined also
as situational contexts, include device context, environmental
context, spatial context, temporal context and social context.
The device context (e.g. system, network, hardware, etc.) and
the environmental context (e.g. light, noise, wind, temperature,
etc.) have been often studied in requirements engineering
for self-adaptive software systems [31]. However, the other
extrinsic contexts, such as spatial, temporal, and social contexts
are rarely discussed in requirements analysis process. Hereby,
we focus on these situational contexts to investigate their
relations with the mobility attribute of a mobile app.

A. Intrinsic Contexts
Many researchers have addressed and verified that a user’s

demographic properties, such as age, gender, education, in-
come, etc. are relevant factors affecting a user’s attitudes and
preference to the use of an app [17][28][32]–[34]. Besides the
demographic properties, individual users with various interests
and attitudes toward the mobile value form other important
perspectives influencing a user’s engagement in an app activity.
Users’ adoption to mobile services has been analyzed from the
perspectives of a user’s characteristics, major value, attitude,
and major interests. [28]. Concerning a user-app interaction,
the user’s goals refer to the objectives of the user at the critical
moment when the interaction occurs. For an instance, the goal
of a student working on an exam is to pass the exam. It is
not only related to mobile applications but also has a wider
range than the term described in goal-oriented requirements
engineering [35]. Thus the characteristics and goals of the user
form the intrinsic and determinant context to the initiation of
a user-app interaction [36].

On the other hand, a user-app interaction occurs when a
user determines to perform a task associated with a mobile
app with a particular purpose, i.e., fulfilling a user’s goal. The
features of a mobile app contain capabilities that enables users
to fulfill their goals by accomplishing the tasks. The user is
prone to intrinsically start an interaction with the app when the
provided features comply with his or her intention to achieve
his or her goal. The demands are defined as the workload
that a user is obliged to engage in order to accomplish the
task as the demands, which contain six subscales, i.e., mental
demand, physical demand, temporal demand, frustration, effort
and performance [37]. They define the subjective experience
of users on using the app and are affected by the intrinsic
contexts of a user-app interaction as well.

B. Situational Context Model
The situational context refers to the extrinsic properties of

the user and the app that impact the initiation of a user-app
interaction. As mentioned above, we only focus on the tem-
poral, spatial and social perspectives to discuss the situational
context in this study.

1) Temporal Context: Temporality, as one of the dimen-
sions of the mobility concept originally [18], has been influ-
enced by the mobile technology inherently in terms of human
interaction. The multiple perspectives of temporality, such as
structural and interpretive, monochronicity and polychronicity
and so on have been studied previously [18][38]. Compared
to the previous frameworks, we argue that the temporality in
terms of a user-app interaction is determined by the user’s
sense of time and the persistence of the app to accomplish
one operation session, and define temporal context in this
paper as the sense of external time pressure of the user caused
by the confliction or the accordance of user’s goal and app’s
demands. Thus, two values of intensive and allocative are used
to describe temporal context. Intensive refers to the situation
when the user is in urgent need of achieving his or her goal
and has limited spare time of interacting with the app (e.g.
the user is busy in working on assignments with approaching
deadline). Allocative, on the other hand, indicates that the user
has no urgent goal to achieve and is temporally available (e.g.
the user is staying at home idle).

2) Spatial Context: The spatial perspective of mobility
indicates the geographic movement of the user when engaged
in the interaction with the mobile app [18]. In this study,
the spatial context refers to the current movement of the user
further indicating the physical availability for the app usage.
we adopt the mobile modality types given by [20] categorizing
the spatial context, including visiting, traveling and wandering.
Visiting context indicate that the user is in a physically
stationary status(e.g. sitting in a meeting). Traveling context
refers to the situation when the user is in a transportation tool
(e.g. a car or train). Wandering, on the other hand, refers to
the situation when the user is physically moving from place to
place (e.g. walking or running). However, the categorization
given by [20] did not specify the difference between driving
a transportation tool or sitting in one in terms of traveling
perspective. In addition, exercise related scenarios of walking
or running is not taken into account either. In this study, these
distinctions shall be reflected by the combination with other
contexts.

3) Social Context: The social context is interpreted by
[8][10][17][24]–[28][39] as the influence of other persons’
presence and the interpersonal interaction between the user and
others. In this study, we interpret the social context of a user-
app interaction as the social norms that constrain user from
or encourage user into the interaction [40], which contains
similar meaning towards the functional place concept in [39].
We define the scale of social context from constraining to
encouraging the use of apps based on the social norms. For
example, a conference presentation is socially constraining
when idleness at home is socially encouraging.

According to the three perspectives of situational context
mentioned above, values are assigned to each perspective,
combining which leads to a unique context scenario description
(shown in Table I).

Ideally, based on the given situational context model, the
situational context of user can be described by the combination

172Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 191 / 512

TABLE I. VALUES OF SITUATIONAL CONTEXT PERSPECTIVES.

Perspective Value
Temporal Intensive, Allocative
Spatial Visiting, Traveling, Wondering
Social Constraining, Encouraging

of the three perspectives. The 12 situational contexts include
Intensive-Visiting-Constraining (IVC), Allocative-Visiting-
Constraining (AVC), Intensive-Visiting-Encourage (IVE),
Allocative-Visiting-Encourage (AVE), Intensive-Traveling-
Constraining (ITC), Allocative-Traveling-Constraining (ATC),
Intensive-Traveling-Encouraging (ITE), Allocative-Traveling-
Encouraging (ATE), Intensive-Wondering-Constraining
(IWC), Allocative-Wondering-Constraining (AWC), Intensive-
Wondering-Encouraging (IWE), and Allocative-Wondering-
Encouraging (AWE). For each combination of values from
different perspectives, we provide a typical situational context
scenario, shown in Table II.

TABLE II. TYPICAL SCENARIOS FOR EACH SITUATIONAL CONTEXT.

Situational Context Typical Scenario
IVC In a conference giving presentation
AVC In a lecture listening
IVE In a cafe working on assignments with close deadline
AVE At home idle
ITC In a car driving with time limit
ATC In a car driving and sight seeing
ITE In a train when it is about to arrive at the destination
ATE In a train idle
IWC Running in a race
AWC Wondering in a cocktail party as a host
IWE Running to catch a bus
AWE Walking in a park relaxing

In practice, the scenarios that used for describing situa-
tional contexts might vary based on the collective understand-
ing of the contexts from the team. For example, the scenario
“In a conference giving presentation” and “in a contract
signing meeting negotiating” can both be used describing the
situational context of IVC.

IV. WAYS OF USER-APP INTERACTIONS
The concept of mobility is not only just a matter of people

traveling, but also the interaction people perform, that is, the
way in which they interact with each other [18]. The mobility
is thus reflected in the way in which users interact with the
apps. It occurs when an app sends out a notification to the user
who responds it and ends when the user finishes using the app
and closes it. However, users in different situational contexts,
who have different goals and characteristics, will expect to
interact with different features of the app differently but
comfortably. In order to find the match between the designed
and expected ways of interaction, we adapt the dimensions
of interaction modality [41][42] discussing the situational
characteristics of mobile apps including their obtrusiveness and
persistence.

An obtrusive interaction imposes obligation to notice or
react [18], which indicates that the interaction is evoked
by notifying the user to start it without the user’s internal
motivation to do so. For example, an obtrusive interaction
is initiated when the user stops original reading activity and
responds to the new message notification from WeChat. On
the contrary, an unobtrusive interaction is initiated with the
user’s internal motivation. For example, the user encounters
an unfamiliar term while reading and decides to look it up in
Eudic without receiving notification. On the other hand, the

persistence dimension specifies the duration of an interaction,
which is largely depending on the time length a user spends
on completing an interaction task. An ephemeral interaction
requires a short time to achieve user’s goal (e.g. replying a
message, looking up a word). A persistent interaction oppo-
sitely takes a long period to accomplish (e.g. playing Subway
Surfers, listening to Spotify).

With the two dimensions combined, a user-app inter-
action can thus be described as obtrusive-persistent (OP),
unobtrusive-persistent (UP), obtrusive-ephemeral (OE), or
unobtrusive-ephemeral (UE). By analyzing the relation be-
tween different types of user-app interactions and the way they
fit in the process of the way of the user’s original activity,
we conclude four ways of interaction, including intermittent,
interrupting, accompanying, and ignoring.

An intermittent way of interaction refers to the interlaced
engagement in both the user’s original task and the user’s
interaction towards the mobile app, with the whole process
of several short interactions, which are neither consistent nor
interfering the proceeding of the original task. For example,
when watching TV, the user starts the interaction with WeChat.
Within the whole process, the user inconsistently responds
messages but his or her task of watching TV remains pro-
ceeding. An intermittent way of interaction often consists of
a number of ephemeral interactions, which are also mostly
obtrusive.

An interrupting way of interaction requires the user to
convert full concentration on the interaction and cease the
original activity. For example, to start playing Subway Surfers,
the user has to stop the original task, such as reading books
or watching TV. It can be interpreted as the original task is
interrupted by this user-app interaction. An interrupting way
of interaction is mostly persistent.

An accompanying way of interaction refers to the paral-
leling engagement in both user’s original task and the user-
app interaction tasks. Comparing to the interrupting or the
intermittent way of interaction, the accompanying one will
not attract the user’s full attention, as the user does not stop
the continuous progress of the original task. For example,
when running on a treadmill, the user starts watching films
from Netflix. The activity of running is, instead of interrupted,
paralleling with the user-app interaction. The interaction can
be ephemeral or persistent, depending on the amount of
engagement an app requires from the user.

An ignoring way of interaction indicates that the interaction
with the mobile app is ignored by the user in order to maintain
the proceeding of his or her original task. For example, when
taking an examination at school, the user will ignore any types
of interaction with the mobile apps.

The relation between different types of user-app interac-
tions and the according ways of interaction is summarized in
Figure 2. In Figure 2, the narrow arrows underneath represent
the user’s original task, and the thick ones represent the
user-app interactions. Lighter gray arrows are the interactions
ignored and not executed. In addition, the length of the
arrows indicates the timeline of proceeding with the task or
interaction.

By analyzing the different ways of user-app interactions,
we are enabled to analyze the expected way of interactions
towards each mobile app feature. And towards mobility, ex-
pected ways of interaction shall comply with the previously

173Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 192 / 512

Figure 2. Ways of User-App Interactions

defined situational contexts. Combining this analysis, we shall
be able to detect how an app feature is expected to perform in
different situational contexts. For requirements analysts, each
feature and the refined requirements could be analyzed and
mapped into the situational contexts assigned with expected
ways of user-app interactions. For example, Table III shows
the expected ideal ways of interaction towards given situational
context .

TABLE III. IDEAL WAY OF INTERACTION FOR EACH SITUATIONAL
CONTEXT.

S.C. Typical Scenario Ideal Ways
IVC In a conference giving presentation Accompanying
AVC In a lecture listening Intermittent
IVE In a caf working on assignments with close deadline Intermittent,

Accompanying
AVE At home idle Interrupting

Intermittent
Accompanying

ITC In a car driving with time limit Accompanying
ATC In a car driving and sight seeing Accompanying,

Intermittent
ITE In a train when it is about to arrive at the destination Accompanying,

Intermittent
ATE In a train idle Interrupting,

Intermittent
Accompanying

IWC Running in a race Accompanying
AWC Wondering in a cocktail party as a host Intermittent
IWE Running to catch a bus Accompanying
AWE Walking in a park relaxing Accompanying,

Intermittent

Table III indicates that in a specific situational context one
mobile app feature shall enable users to interact comfortably
in the ideal ways of interaction. Taking the situational context
scenario of IVC as an example, the ideal way is the accom-
panying way of interaction. Thus, a mobile app feature which
offers such a way of interaction is more likely to be used in this
circumstance. For example, the slide presentation feature of
Prezi can provide accompanying way of interaction in the IVC
context scenario of “In a conference giving presentation”. The
typical scenario of situational contexts can be also different.
For example, IVC context can also be represented in the
scenario of “In a university exam with time limit” or “In a
chess competition with time limit for each move”. When a
certain feature fails to initiate the ideal ways of interaction, it
shall be adjusted at requirement specification level towards the
ideal ways. Therefore, a process of identifying such features
and specifying the according strategy of mobility enhancing
adjustment is required.

V. MOBILITY REQUIREMENTS ANALYSIS PROCESS

The mobility requirements analysis process contains a
sequence of pre-defined steps, by following which require-
ments analysts can specify existing user requirements towards
enhanced mobility. The aim of mobility requirements analysis
is to provide specified requirements that enable users to use the
given features in a satisfied way in the possible situational con-
texts. As defined previously, a user’s satisfaction for a specific
feature is achieved by using this feature in different situational
contexts via ideal ways of interactions. Thus the proposed
mobility requirements analysis process is to refine existing app
features by taking into account the given situational contexts
and the according ways of interactions. The process of mobility
requirements analysis is described as Figure 3.

Figure 3. Mobility Requirements Analysis Process.

The analysis process consists of four key steps, as ex-
plained below.

Step 1. Identify the Primary Situational Contexts
Mobile apps are meant to satisfy users’ needs in all possible

situational contexts in an ideal way. However, mobile apps
have distinct visions and features, and cannot comply with
every situational context to meet users’ needs. It thus requires
the requirements analysts to identify the primary situational
contexts by prioritization. The outcome of this activity is a
list of prioritized situational contexts, or a number of primary
situational contexts.

Step 2. Specify the Expected Way of Interaction for Each
Feature

For each feature of the mobile app, requirements analysts
shall be able to specify an expected way of interaction, which
is expected by users. It means that users will use this feature
most comfortably via that way of interaction. The outcome of
this activity is a list of features together with expected ways
of interaction respectively.

Step 3. Compare the Previous Two Outcomes and Identify
the Conflicts

By comparing the outcomes of the previous steps with
Table III, we can find the features, of which the expected
way of interaction, conflicts with the ideal ones of the primary
situational contexts. These conflicts shall be adjusted in the
next step to enhance the app’s mobility attribute.

Step 4. Adjust Conflicting Feature towards Mobility Re-
quirements

We diminish the conflicts by changing the requirements
related to the feature or adding new ones.

VI. CASE STUDY

By following the steps of mobility requirements analysis
process, we are able to identify the features of a mobile
app that may contain conflicts against the ideal ways of

174Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 193 / 512

interaction in specified primary situational contexts, and also to
analyze and adjust the according features towards eliminating
the conflicts, hence enhancing their mobility. In this section,
we apply our proposed approach to analyzing three mobile
apps, WeChat[43], Gmail[44], and AlienBlue[45]. WeChat is
a messaging and calling app. It allows users to communicate
with friends for free text (SMS/MMS), voice & video calls,
moments, photo sharing, and games. Gmail (IOS) is the
official mobile app for iPhone and iPad. It supports real-time
notifications of new mails, multiple accounts, and mail search
across the entire inbox. AlienBlue is the official app for Reddit,
an online bulletin system. It enables users to browse threads
from Reddit, post new threads and reply on others’ threads
with other features, such as liking or disliking, subscribing,
image uploading, and so on.

The three mobile apps share the essential feature of user
communication but contain differences in details. For example,
WeChat enables users to receive, send, and share multimedia
messages instantly. Gmail contains no voice messaging feature
and takes longer time on individual operation session, such
as browsing and replying emails. On the other hand, the
communication between users on AlienBlue is fulfilled by
posting, reading and replying threads in Reddit. Thus, in the
study, we focus on the communication feature of the three apps
to analyze their mobility attributes and requirements.

Step 1. Identify the Primary Situational Context
Firstly, the primary situational contexts shall be identified

amongst the previously defined 12 situational contexts, as well
as the scope of the analysis. Instead of prioritizing the 12
situational contexts precisely, for these cases, we categorize
situational contexts into three prioritization level, including,
primary, secondary and ignorable. Primary situational contexts
indicates that most users tend to use this feature in these
situational contexts. Secondary contexts are those situational
contexts in which the user has the equal possibility of using
the app or not. And ignorable contexts are those in which
users nearly never use the feature. In terms of the “user
communication” feature of the three cases, the according
categorization of situational context is shown as Table IV.

TABLE IV. PRIMARY SITUATIONAL CONTEXTS.

WeChat Gmail AlienBlue
Primary AVE, ATE, AWE AVE, ATE AVE, ATE
Secondary AVC, IVE, ITE, ITE, AWE AWE

AWC
Ignorable IVC, ITC, ATC, IVC, AVC, IVE, IVC, AVC, IVE,

IWC, IWE ITC, ATC, AWC, ITC, ATC, ITE,
IWC, IWE IWC, AWC, IWE,

Taking WeChat as an example, it enables users instant
communication. Thus, the actions of reading and replying
messages is to a large extent encouraged in the situation
without social constraints (e.g. driving for safety reason) or
time limit towards other objectives (e.g. deadlines). The social
encourging and time allocative contexts are also the primary
contexts for the other two apps. But different from them,
instant communication feature of WeChat is also encouraged
in ‘wondering’ contexts. Besides, even with certain social
constraints and time limits, users tend to use WeChat more
than the other two, which is why more secondary situational
contexts are identified for WeChat.

Step 2. Specify the Expected Ways of Interaction
The expected way of interaction for the feature shall

be determined by the way in which most of the users use

the feature, which can be identified and analyzed by using
different requirements elicitation techniques, or asserted by
requirements analysts based on the use pattern of other similar
products. For example, the expected way of interaction for
WeChat communication is intermittent, as users only allocate
short time for instant communication without original activity
fully interrupted. Comparatively, Gmail and AlienBlue require
more concentration and time from users for reading and reply-
ing emails, which results in an interrupting way of interaction.

Step 3. Compare the Previous Two Outcomes and Identify
the Conflicts

Comparing the pre-defined ideal ways of interaction for
the primary situational contexts and the expected way of
interaction for the feature, we find no conflicts for all apps in
their primary situational contexts (shown in Table V). When no
conflicts are found for all primary situational contexts, we can
indicate that this existing feature provides adequate mobility
support.

TABLE V. COMPARISON OF IDEAL AND EXPECTED WAYS OF
INTERACTION

Primary Ideal WeChat Gmail AlienBlue
Interrupting,

AVE Intermittent, Intermittent Interrupting Interrupting
Accompanying
Interrupting,

ATE Intermittent, Intermittent Interrupting Interrupting
Accompanying
Intermittent,

AWE Accompanying Intermittent Interrupting Interrupting

However, conflicts are found in the secondary context of
AWE for Gmail and AlienBlue. Compared with the primary
contexts, we find that users in “wondering” context are more
likely to start interaction with WeChat rather than Gmail and
AlienBlue based on their expected ways of interaction. Thus,
to enhance the mobility of them, conflicts for this secondary
situational context shall be addressed with additional mobility
requirements as in practise the secondary situational contexts
might be also of high priorities.

Step 4. Adjust Conflicting Feature towards Mobility Re-
quirements

Once the conflicts were detected, the according feature
or function shall be adjusted in order to improve the overall
mobility of the app. According to the conflicting situational
context (i.e., AWE), the mobility requirement to adjust is as
follows.

In a situational context of “Allocative-Wandering-
Encouraging”, the Gmail/AlienBlue app shall provide user
text-based communication functionality in the intermittent way
of interaction.

The mobility requirements provide the goal for require-
ments analysts indicating which specific situational contexts
and by which ways of interaction the target feature shall be
adjusted. The adjustment can be applied by adding or editing
the existing requirements related to this function. Taking
AlienBlue as an example, part of functions related to text-
based communication in thread discussion is summarized in
Table VI.

When adjusting the functions, we shall take into account
the conflicting situational context. The perspective that plays
a critical part of the conflict is firstly focused. For example,
concerning the specific situational context of “Allocative-

175Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 194 / 512

TABLE VI. ALIENBLUE’S FUNCTIONS

App Name Functions
AlienBlue AFR1.The app allows the user to view through the whole thread;

AFR2.The app allows the user to reply on a specific comment;
AFR3.The app allows the user to send replies with images and emojis;
AFR4.The app allows the user to like or dislike other comments;
AFR5.The app allows the user to receive comments notifications;

Wandering-Encouraging”, social encouraging and time alloca-
tive contexts do not hinder user’s interaction with the thread
receiving and replying feature of AlienBlue. Thus, within the
range of this very feature, we change the existing function with
more specified function variations. As follows, based on the
given functions, we provide examples on how to change the
existing function or add new functions that comply with the
“Wandering” situational context.

Taken as examples, AFR1 and 2 are two of the essential
function of the AlienBlue app, which must not be removed.
However, as a persistent and non-obtrusive functions, based
on Figure 2, these functions are prone to be ignored in most
situational contexts, especially for the “Wandering” context.
One way to change them is to shorten the operating session.

Thus, the AFR1 and AFR2 can be changed into:
AFR1.1 The app shall allow the user to view exclusively

his or her own comments and the ones he or she
comments on with unrelated comments folded;

AFR1.2 The app shall allow the user to view unrelated
comments by unfolding them;

AFR1.3 The app shall allow the user to quickly control the
display of the thread interface by hand gestures;

AFR1.4 The app shall allow the user to view comments
concerning him or her on the lock screen;

AFR2.1 The app shall allow the user to reply with prede-
fined quick responses;

AFR2.2 The app shall allow the user to save unfinished
comments automatically and to continue compos-
ing;

AFR2.3 The app shall allow the user to respond to the
received comments on the lock screen;

Compared to the originial requirements, the specified re-
quirements largely reduced the browsing time by directly en-
abling the user to focus on the relevant comments. Meanwhile,
the specified requirements also enhance the obtrusiveness of
the notification, which allows the user to better respond to the
notification. In this way, based on the existing functions, these
functions are adjusted in order to eliminate the conflicts be-
tween ideal way of interaction in a certain primary situational
context and the expected way of interaction of this feature. By
repetitively doing so with all the features of the mobile app,
the mobility of the target mobile app is supported as users are
enabled to interaction with the features in the expected way of
interaction.

In this case study, we adopt existing mobile apps as ex-
amples to demonstrate how the mobility requirements analysis
process can be applied. It is easy to identify the features that
require mobility enhancement and the corresponding change
proposal for well-known apps. In practise, it is hard to predict
and fully specify all situational contexts and assure that the
target app attract users to use in their expected way. The
proposed approach and process provides a way of analyzing
situational contexts, in which the app is put to use and eliciting
requirements that enhance its mobility. This study contributes

in filling the gap in the studies on applying the understanding
of context into mobile app requirements analysis. Furthermore,
the user-app interaction reference model and the situational
context analysis provides an extensible framework of studying
the context of a user-app interaction where more perspectives
can be added to enrich the scenario set of situational contexts.
This approach also enables developers to choose the suitable
set of context scenarios and prioritization, as well the ideal
ways of interactions, based on the vision and scope of their
target mobile apps.

VII. CONCLUSION
In this paper, we explore the concept of mobility as the

characteristic of mobile apps, which satisfies users’ need to use
them under changing contexts. By analyzing the perspectives
of mobility, we define situational contexts as the key extrinsic
factors that influence users’ satisfaction in user-app interac-
tions. Compared to the other context factors, such as device
context and environmental context, the situational contexts are
more tangible towards the understanding of how users and
apps interact, and also the factors shall be taken into account
when mobile development team aims to enhance the mobility
of their mobile products.

Furthermore, based on the specification of typical situa-
tional context scenarios, we further analyze connection be-
tween these situational contexts and the ideal ways of user-app
interactions. Hence, seeking the conflicts between ideal ways
of interaction and the current ones is the method to detect the
key mobility-lacking features of a mobile app. On the basis
of the analysis, we propose the mobility requirements analysis
process, which helps to adjust features and the according re-
quirements towards the ideal ways of interaction. Accordingly,
the overall mobility of the mobile app improves.

The future work of this study will focus on the other
extrinsic contexts and their influences on user-app interactions,
which shall be utilized as the replenishment for the existing
reference model. The user characteristics and goals, as well
as their connection towards the mobile application feature and
demands, shall also be reviewed and analyzed in the mobile
app domain. In addition, the connection between the improve-
ment of mobility and user satisfaction to mobile apps shall
be also studied as the validation of our mobility requirements
analysis method in our future studies.

REFERENCES
[1] D. Gavalas and D. Economou, “Development platforms for mobile

applications: Status and trends,” Software, IEEE, vol. 28, no. 1, 2011,
pp. 77–86.

[2] A. Holzer and J. Ondrus, “Mobile application market: A developers
perspective,” Telematics and informatics, vol. 28, no. 1, 2011, pp. 22–
31.

[3] C. Ryan and A. Gonsalves, “The effect of context and application
type on mobile usability: an empirical study,” in Proceedings of the
Twenty-eighth Australasian conference on Computer Science-Volume
38. Australian Computer Society, Inc., 2005, pp. 115–124.

[4] N. Mallat, M. Rossi, V. K. Tuunainen, and A. Öörni, “The impact of use
situation and mobility on the acceptance of mobile ticketing services,”
in System Sciences, 2006. HICSS’06. Proceedings of the 39th Annual
Hawaii International Conference on, vol. 2. IEEE, 2006, pp. 42b–42b.

[5] C. Coursaris and K. Hassanein, “Understanding m-commerce: a
consumer-centric model,” Quarterly journal of electronic commerce,
vol. 3, 2002, pp. 247–272.

[6] L. Kleinrock, “Nomadicity: anytime, anywhere in a disconnected
world,” Mobile networks and applications, vol. 1, no. 4, 1996, pp. 351–
357.

176Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 195 / 512

[7] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a better understanding of context and context-
awareness,” in Handheld and ubiquitous computing. Springer, 1999,
pp. 304–307.

[8] A. K. Dey, “Understanding and using context,” Personal and ubiquitous
computing, vol. 5, no. 1, 2001, pp. 4–7.

[9] L. Barnard, J. S. Yi, J. A. Jacko, and A. Sears, “Capturing the effects of
context on human performance in mobile computing systems,” Personal
and Ubiquitous Computing, vol. 11, no. 2, 2007, pp. 81–96.

[10] H. Korhonen, J. Arrasvuori, and K. Väänänen-Vainio-Mattila,
“Analysing user experience of personal mobile products through con-
textual factors,” in Proceedings of the 9th International Conference on
Mobile and Ubiquitous Multimedia. ACM, 2010, p. 11.

[11] L. Gorlenko and R. Merrick, “No wires attached: Usability challenges
in the connected mobile world,” IBM Systems Journal, vol. 42, no. 4,
2003, pp. 639–651.

[12] A. Oulasvirta, S. Tamminen, V. Roto, and J. Kuorelahti, “Interaction
in 4-second bursts: the fragmented nature of attentional resources in
mobile hci,” in Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM, 2005, pp. 919–928.

[13] C. Kim, M. Mirusmonov, and I. Lee, “An empirical examination of
factors influencing the intention to use mobile payment,” Computers in
Human Behavior, vol. 26, no. 3, 2010, pp. 310–322.

[14] T.-P. Liang and Y.-H. Yeh, “Effect of use contexts on the continuous use
of mobile services: the case of mobile games,” Personal and Ubiquitous
Computing, vol. 15, no. 2, 2011, pp. 187–196.

[15] R. Ali, F. Dalpiaz, and P. Giorgini, “A goal-based framework for contex-
tual requirements modeling and analysis,” Requirements Engineering,
vol. 15, no. 4, 2010, pp. 439–458.

[16] J. Krogstie, “Requirement engineering for mobile information systems,”
in Proceedings of the seventh international workshop on requirements
engineering: Foundations for software quality (REFSQ01), 2001.

[17] E. Eshet and H. Bouwman, “Addressing the context of use in mobile
computing: a survey on the state of the practice,” Interacting with
Computers, 2014, p. iwu002.

[18] M. Kakihara and C. Sorensen, “Mobility: An extended perspective,” in
System Sciences, 2002. HICSS. Proceedings of the 35th Annual Hawaii
International Conference on. IEEE, 2002, pp. 1756–1766.

[19] H. B.-L. Duh, G. C. Tan, and V. H.-h. Chen, “Usability evaluation
for mobile device: a comparison of laboratory and field tests,” in
Proceedings of the 8th conference on Human-computer interaction with
mobile devices and services. ACM, 2006, pp. 181–186.

[20] S. Kristoffersen and F. Ljungberg, “Mobile use of it,” in the Proceedings
of IRIS22, Jyväskylä, Finland. Citeseer, 1999.

[21] J. Kjeldskov and J. Stage, “New techniques for usability evaluation
of mobile systems,” International journal of human-computer studies,
vol. 60, no. 5, 2004, pp. 599–620.

[22] B. N. Schilit and M. M. Theimer, “Disseminating active map informa-
tion to mobile hosts,” Network, IEEE, vol. 8, no. 5, 1994, pp. 22–32.

[23] B. Schilit, N. Adams, and R. Want, “Context-aware computing applica-
tions,” in Mobile Computing Systems and Applications, 1994. WMCSA
1994. First Workshop on. IEEE, 1994, pp. 85–90.

[24] P. J. Brown, “The stick-e document: a framework for creating context-
aware applications,” Electronic publishing-chichester-, vol. 8, 1995, pp.
259–272.

[25] J. Pascoe, “Adding generic contextual capabilities to wearable comput-
ers,” in Wearable Computers, 1998. Digest of Papers. Second Interna-
tional Symposium on. IEEE, 1998, pp. 92–99.

[26] T. Rodden, K. Cheverst, K. Davies, and A. Dix, “Exploiting context
in hci design for mobile systems,” in Workshop on human computer
interaction with mobile devices, 1998, pp. 21–22.

[27] G. Chen, D. Kotz et al., “A survey of context-aware mobile computing
research,” Technical Report TR2000-381, Dept. of Computer Science,
Dartmouth College, Tech. Rep., 2000.

[28] R. Harrison, D. Flood, and D. Duce, “Usability of mobile applications:
literature review and rationale for a new usability model,” Journal of
Interaction Science, vol. 1, no. 1, 2013, pp. 1–16.

[29] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, “Easy approach to

requirements syntax (ears),” in Requirements Engineering Conference,
2009. RE’09. 17th IEEE International. IEEE, 2009, pp. 317–322.

[30] M. Böhmer, B. Hecht, J. Schöning, A. Krüger, and G. Bauer, “Falling
asleep with angry birds, facebook and kindle: a large scale study on
mobile application usage,” in Proceedings of the 13th international
conference on Human computer interaction with mobile devices and
services. ACM, 2011, pp. 47–56.

[31] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson,
N. Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf, “An
architecture-based approach to self-adaptive software,” IEEE Intelligent
systems, no. 3, 1999, pp. 54–62.

[32] I. D. Constantiou, J. Damsgaard, and L. Knutsen, “The four incremental
steps toward advanced mobile service adoption,” Communications of
the ACM, vol. 50, no. 6, 2007, pp. 51–55.

[33] Z. Zhang and X. Zheng, “User profiles and user requirements in mobile
services,” Perspectives in Business Information Research-BIR’2007,
2007, p. 170.

[34] Y. Liu and Z. Zhang, “Stakeholder-centered requirements elicitation: A
view from user research,” in 7th International Conference on Perspec-
tives in Business Information Research, 2008, pp. 25–26.

[35] A. Van Lamsweerde, “Goal-oriented requirements engineering: A
guided tour,” in Requirements Engineering, 2001. Proceedings. Fifth
IEEE International Symposium on. IEEE, 2001, pp. 249–262.

[36] K. W. Thomas and B. A. Velthouse, “Cognitive elements of empower-
ment: An interpretive model of intrinsic task motivation,” Academy of
management review, vol. 15, no. 4, 1990, pp. 666–681.

[37] S. G. Hart and L. E. Staveland, “Development of nasa-tlx (task load
index): Results of empirical and theoretical research,” Advances in
psychology, vol. 52, 1988, pp. 139–183.

[38] S. R. Barley, “On technology, time, and social order: Technically
induced change in the temporal organization of radiological work,”
Making time: Ethnographies of high-technology organizations, 1988,
pp. 123–169.

[39] S. Jumisko-Pyykkö and T. Vainio, “Framing the context of use for mo-
bile hci,” International Journal of Mobile Human Computer Interaction,
vol. 2, no. 4, 2010, pp. 1–28.

[40] L. Chittaro, “Distinctive aspects of mobile interaction and their impli-
cations for the design of multimodal interfaces,” Journal on Multimodal
User Interfaces, vol. 3, no. 3, 2010, pp. 157–165.

[41] K. Schmidt and C. Simonee, “Coordination mechanisms: Towards a
conceptual foundation of cscw systems design,” Computer Supported
Cooperative Work (CSCW), vol. 5, no. 2-3, 1996, pp. 155–200.

[42] F. Ljungberg and C. Sørensen, “Overload: From transaction to interac-
tion,” Planet Internet, 2000, pp. 113–136.

[43] Tencent Technology (Shenzhen) Company Limited, “Wechat.” [Online].
Available: http://www.wechat.com/

[44] Google, Inc., “Gmail-email from google.” [Online]. Available:
https://itunes.apple.com/us/app/id422689480

[45] REDDIT, INC., “Alienblue-reddit official client.” [Online]. Available:
https://itunes.apple.com/us/app/id923187241

177Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 196 / 512

Design and Implementation of a Tool to Collect Data of a Smart City Through the

TV

Glaydstone Alves Teixeira

CESAR – Recife Center for Advanced Studies and

Systems
Centro de Estudos e Sistemas Avançados do Recife

Recife, Brazil

glaydstone.a.teixeira@gmail.com

Felipe Silva Ferraz

CESAR – Recife Center for Advanced Studies and

Systems
Centro de Estudos e Sistemas Avançados do Recife

Recife, Brazil

fsf@cesar.org.br

Abstract — Smart City is the future of urban planning of the

cities in the next generations. In Smart Cities, values are added

to services, such as optimizing traffic and better use of

energetic resources, generating a resource saving. These

services are a result of a wide data collection from sensors or

through crowdsensing. The objective of this work is to propose

the development of a tool called PlugTV to collect information

of citizens through the TV. The tool is composed by a Web

component, implemented as a service, which allows data

collection as a log from heterogeneous clients (TV, connected

devices and sensors) and by a mobile component, implemented

in an Android Mini-PC attached to the TV that allows data

collection from the TV in a transparent way for the citizen,

abstracting the dependency on a Digital TV middleware. In

parallel, there is a gain of portability when it comes to IPTV

providers because each Smart TV produces has its own
platform of development and communication.

Keywords- mini-pc; middleware; crowdsensing.

I. INTRODUCTION

Seventy percents of the world population, i.e., 7.2 billion
people are expected to be living in cities and surrounding
areas by the year 2050 [1][2][3]. Cities are having more
control on their political, technological and economic
development due to growing urbanization. Parallel to it, they
face a series of challenges and threats to sustainability in all
their central systems, which need to be approached in a
holistic way [4].

Washburn and Sindhu [5] affirm that cities are becoming
“smarter” once governments, companies and communities
rely more and more on technology to overcome the
challenges of fast urbanization. What makes a “smart city” is
the combined use of systems, software infrastructure and a
network of interconnected devices – the so called smart
computing technology – in order to connect better seven
components and infrastructure services of the city:
administration, education, health, public safety, real estate,
transportation and public services.

A Smart City is instrumented and tracked by a group of
sensors and devices that collect data in such a way they can
dynamically measure the urban activities of the city, helping

the infrastructure of them [6]. This is the role of the smart
software in smart cities. In this scenery, the paradigm of the
Internet of Things (IoT) is based on the identification and use
of a great number of physical and virtual objects disposed in
a heterogeneous way and connected to the Internet.

IoT is now a subject of intense research. Technologies of
the IoT are being implemented in a great number of
applications. In the scope of Smart City initiatives, systems
based on IoT are playing an important role, allowing the use
of network infrastructures to introduce or improve a variety
of services for the citizens. A network sensor is a key
element in the Internet of Things, therefore, a key element in
the Smart City applications. A variety of data is collected
through sensors distributed all over the city or through
crowdsensing. Data collected include typical information
about the traffic, energy consumption of houses and
apartments, devices connected to the Internet, etc. These data
are stored as logs and analyzed by mining techniques,
transforming the information into services that may be useful
for the lives of citizens. However, the cost to implement and
maintain these sensors is considerably high. Dohler and Ratti
affirm that citizens will be the living sensors of smart cities
and the central systems of the city should be connected to
them [7].

This article proposes the development of a tool called
PlugTV to collect data of the urban environment of a city
and information about the routine of the citizen through the
TV and provide the information collected as raw data into
more accessible data, delivering information of much
aggregated value.

This paper is structured as follows: Section II discusses
state of the art. Our tool, its uses and functionalities are
described in section III, while section IV describes
technologies applied. Our studies and future works are
presented in section V and section VI provides concluding
remarks.

II. BACKGROUND

A. Smart City

Smart Cities are those that use advanced technologies to
find solutions for their problems and for the new demands of

178Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 197 / 512

the population. What makes a city smart is the combined use
of software, network infrastructure and client devices [6]. In
the smart city, a variety of data is collected from sensors and
people all over the city. These data include information about
the traffic, energy consumption in houses and apartments,
use of home appliances, etc.

Data are stored as logs and analyzed by advanced
techniques of data processing, then used to aggregate value
to services for a sustainable society.

According to Dirks and Keeling, the city is a like a
system of systems [8]. No system works in an isolated way;
instead, there is an interconnecting net. For example,
transportation, industry and energy systems are closely
related – transportation and industry are the main users of
energy. Connecting these systems will offer more efficiency
for the sustainability in the long run. The connection between
the water and energy systems is another example of the
connections there are between systems. A substantial amount
of electricity generated goes to the pumping and treatment of
water. In Malta, for example, a new smart utility system will
inform citizens and companies about the use of energy and
water, allowing them to make better decisions on the
consumption of resources.

B. IOT

Internet of Things (IoT) and Cloud Computing are

nowadays two of the most popular paradigms in Information

and Communication Technologies (ICT) and should build

the next computing era [9]. The IoT allows the

communication between different objects, as well as the

context of service innovation towards applications with

greater aggregated value.

According to JIN et al [10], the network environment in

IoT is strongly characterized by heterogeneity.

Heterogeneous networks have a multi-service platform,
providing different possibilities of services and applications.

Cities are composed by a set of complex and heterogeneous

systems of different kinds: infrastructure of civil

engineering, ICT infrastructure, social media, financial

networks, etc. All systems demand great management effort

(tracking, reports and interventions) to guarantee the

constant performance of relevant activities and services

[11].

In 2008, the number of “things” connected to the Internet

exceeded the number of people on Earth and by 2020 this

number will exceed 50 billion things connected to the
Internet, as seen in the following figure, presented by

CISCO [12]:

Figure 1. Growth of connected devices

As shown in Figure 2, the number of houses with TVs is

three times higher in developing countries than in developed

ones. When compared to the rest of the world, these

numbers come to 1.3 higher. The discussed tool is

extensible to treat heterogeneous data from different devices

connected to the Internet, such as sensors, light, refrigerator,

smart meters of water and energy, etc. The constant growth
of the number of TVs in homes has motivated us to put the

TV as the device used on this research for the proposed

platform.

Figure 2. Growth of connected devices

C. Crowdsensing

Crowdsourcing is a new paradigm of managing

information collection knowledge from a group of users,

in order to execute complex tasks [13]. A well-known

example of a crowdsourcing activity is Waze [14], one of

the biggest traffic applications of the world based in a

community.

179Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 198 / 512

III. PLUGTV

A. Architecture of the PlugTV

An application to collect data from the routine of the
citizen through the TV is being developed. These data will
be converted into useful service to the citizen. Figure 3
shows the general architecture of the PlugTV. Components
of Figure 3 are the Smart City services, mobile component
and WEB component, called PlugTVMobile and
PlugTVRestful, respectively.

PlugTVMobile is implemented in an Android Mini-PC
connected to the TV and it is responsible for collecting
information from the routine of the citizen. When the TV is
connected, the application creates an event via Broadcast
notifying the change of status of the TV and this change is
persisted through services disposed in the PlugTVRestful.
Data will be converted into information such as: time when
the citizen leaves home and arrives at work associated to
services of the city as traffic information, climate
catastrophes and flooding situations. As we can see, the
architecture of the platform is composed by 4 components:

1) Architecture of the platform
a) Mini-PC (Gateway) – A Mini-PC installed in

the house of the citizen. It is connected to
heterogeneous devices connected to the Internet
and it is through this gateway that some of the
data processing happen to detect patterns on the
routine of the citizen;

b) PlugTVRestful (WEB component) – It is a Web
component implemented as a service in the Java
EE 7 platform and it is organized as a RESSTful
service, which has the Framework Jersey as its
base. Loggers of the devices are persisted and
sent in Json format through this component;

c) PlugTVMobile (Mobile component) – It is the
mobile component developed in the Android
platform and it is installed in the Mini-PC
attached to the TV via HDMI to collect the
logger. With the citizen properly registered and
authenticated in the system, the device receives
permission to send data to the Web platform and
this component sends a logger automatically
every time the TV is turned on, in an automatic
and transparent way to the citizen, collecting
data such as: time the TV was turned on, house
and city where the device is being monitored,
latitude and longitude, information about the
city such as Gross Domestic Product (GDP),
current manager, revenues, expenditures and
territorial area;

d) Smart City Services – Available services of the
cities, such as:

 Transportation.

 Healthcare.

 Education.

 Public safety and security.

 Building management.

 City administration.

Figure 3. Architecture of the PlugTV.

B. Characteristics of the PlugTV

PlugTV is a proposal of developing software to collect
and process data of the routine of the citizen through the TV.
Because this a software, the development of the tool is based
on some essential characteristics, such as: (a) reliability; (b)
performance; (c) maintanability; (d) safety; (e) flexibility; (f)
testing facility; (g) portability; (h) reusability; (i)
interoperability.

Besides comprehending these characteristics, the PlugTV
aims to eliminate two issues found in the development of
applications for TV, which are: (a) dependency on the
communication between the application and the Digital TV
Middleware and how to order the application in the carrousel
of data of the Digital TV providers; (b) existence of different
platforms of application for Smart TV, since each
manufacturer has their own SDK, which disables portability.
With the use of PlugTV, these issues are abstracted, allowing
an application to collect information through the TV and
remaining in a RESTful server found in the clouds, without
making these data go through the carrousel of data. PlugTV
makes this application work in any Smart TV, regardless the
producer and IPTV patterns.

Data will be collected every time the TV is turned on, in
a transparent way for the user, so they can be analyzed and
converted into information useful for the citizen, connecting
them to services offered by the city, for example: traffic
information, climate change and better use of resources, such
as energy.

C. Data Structure of the PlugTV

PlugTV manages 2 types of data: house data, collected

by devices (e.g., Smart TV) and settings data, which can

be classified the following way:

1. House settings: Contains information about the

house and has two entities: City Entity and
House Entity;

2. Device Settings: Has two entities – Device and

DeviceType. Device is the real device installed

in the house and DeviceType classified the kind

of device connected;

180Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 199 / 512

3. Person Settings: Has two entities: Citizen and

Logger. Citizen represents all the citizen

information and Logger contains information of

all the devices of the citizen and routine data

collected by the application.

Figure 4 illustrates the Diagram of Entity and
Relationship of the PlugTV.

Figure 4. Design of the PlugTV database.

IV. TECHNOLOGIES APPLIED

PlugTV was developed in two modules: the one called
PlugTVRestful was developed in the Java EE7 Platform and
it is disposed as a RESTful server, with a Jersey Framework
as base; the second module was implemented in the Android
platform, running in a Mini PC attached to the TV. In order
to manipulate the exchange of information with the server,
the API JSON was used.

The main objective of the following sub-items is
presenting artifacts generated during the implementation of
the PlugTV.

A. Functional Requirements

The main functional requirements of the PlugTV are: (a)
generating a routine logger of the citizen through the TV; (b)
visualizing the collected data; (c) exporting the collected data
in different formats, for example: xml, json, html, text/plain;
(d) automatic saving of the TV logger.

The automatic saving of the TV log consists in handling
data that will remain on the Restful server, called
PlugTVRestful. If the service that collects loggers is not
available, data will be kept in the device to be synchronized
after in the server.

B. Non-functional Requirements

Non-functional requirements refer to general features of
the system, such as: safety, performance, distribution,
maintainability and others. For the PlugTV, the following
requirements were defined as non-functional: (a)
Implementation using JAVA EE 7 to ensure portability; (b)
Implementation using Android Version 4; (c) All API traffic
should be over a secure connection using SSL; (d) Retrieved
address and object information must be authenticated;
Implementation of PlugTV Services

In order to provide services to be associated to services of
smart cities, it was necessary to implement a services API of
general use, including consultations to many data requests of
the PlugTV. First, we are going to classify the types of
service and their respective responses to requests. Services of
the PlugTV were implemented as RESTful Web services and
will be described after. Figure 5 presents the services and
resources of the PlugTV.

Figure 5. PlugTV services.

V. EXPERIMENTAL EVALUATION

This section discusses the method used to evaluate

the proposed tool. In order to perform this analysis, two

experiments were made, contextualized as tests. Two

181Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 200 / 512

servers were used to conduct the tests: the first

representing the devices of the clients and the second

representing the server, called SERVER1 and

SERVER2 respectively.

SERVER1 was used to simulate users (TV) who

send requests through the PlugTV tool. When it comes to

the simulation of users, tests were recreated in the JMeter

tool, version 2.3, a tool used to test the load in services

offered by computer systems. This tool is part of the

Jakarta project from the Apache Software Foundation.
The computer called SERVER2, located in clouds, was

responsible for hosting the web module PlugTV and

process the requests sent by SERVER1.

Two tests called Test1 and Test2, respectively,
were performed to contextualize the experiments. The

first simulated requests only where no event from the city

was set by the tool, for example, a traffic jam at the time

the citizen eventually leaves the house. In the second test,

for every request made to the tool, an event of the city

was associated. The metrics selected to track the

performance of the tests were: Times Over Time,

Response Times Percentiles, Aggregate Graph.

The setting of the requests of the users was made

through Http Request the GET kind and configured as

follows: Connect Timeout – 10.000(ms), Response

Timeout = 10.000(ms). That is, if the request takes

between zero and ten seconds to be opened or more than

10 seconds to be answered, this request is considered a

defected one. The Path defined for the GET method
described before follows the following format:

/PlugTVRestful/logger/get/[request id]/.

A. Times Over Time

The objective of this metric is to measure the average

time a request takes to be answered. That is, the time taken

or the average delay between the start of a transaction and

the results of it. These metrics are referenced and

represented in JMeter by Times Over Time and Aggregate

Graph.

In Test1, the user only sends his requests to module

PlugTVRestful, which registers the logger of the TV. Since

no event of the city was notified, an archive in the JSON

format informs the logger was registered, unlike Test2.
There, each request is associated to an event of the city,

which besides sending the logger of the TV, an event

associated to services of the city is signed, for example,

traffic information, generating a JSON archive with

information of the event.

In order to understand better the response time, the

response time of each test is shown in Figure 6.

Figure 6. Response Time.

Percentiles are measures that divide the ordered sample

(by ascending data order) in 100 parts, each one with a data

percentage approximately equal. The k-nth Pk percentile is
the x value (xk), which corresponds to the cumulative

frequency of N k/100, where N is the sample size. Equation

(1) demonstrates how the percentiles are calculated. The

percentiles of the response time for each test are described

in Figure 7. With an average response time of 1.749,4ms,

Test1 is in a percentile of 79,5%. It means that 79,5% of the

requests have a shorter or equal time than/to the average.

Similarly, Test2 is in the percentile of 69,2%, with an

average response time of 4.180,3 ms.

Figure 7. Percentile rank.

(1)

B. Success and Failure Rate

The objective of this metric is to analyze the success and

failure behavior in the requests measures in the tests.

In order to perform the tests in JMeter, a metric called

Transactions per Second was used, where the requests were

set to suppose there was a failure in case of the connection

182Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 201 / 512

takes more than 10 seconds to be opened or more than 10

seconds to be answered.

For Test1, 122,7 requests were successfully processed and

6,76 requests per second failed. For Test2, 114, 8 were

successful and 23,20 failures, as the following figure 8

shows.

Figure 8. Success and Failure Rate.

VI. CONCLUSION

This paper proposed the development of a platform to
integrate data of the urban space of a city with information
on the routine of the citizen through a TV, in the context of
the Internet of Things. The architecture is based on services
and its objective is to provide information, abstracting the
dependency of the communication of the TV with the Digital
TV Middleware. For future works, the development and
refining of the platform components, unit, integration and
functional testing are expected. Another open question is
increasing the number of devices connected to the tool,
allowing a larger number of data. When it comes to data
analysis, the development of a component that allows real-
time analysis through techniques of Complex Events
Processing (CEP) is desired.

REFERENCES

[1] J. Belissent, “Getting clever about smart cities: new opportunities

require new business models,” 2010. [Online]. Available:
https://www.forrester.com/Getting Clever About Smart Cities New

Opportunities Require New Business Models/fulltext/-/E-res56701

[2] J. Jin, J. Gubbi, T. Luo, and M. Palaniswami, “Network architecture
and QoS issues in the internet of things for a smart city,” 2012 Int.

Symp. Commun. Inf. Technol., pp. 956–961, Oct. 2012.

[3] Washburn, D., Sindhu, U., Balaouras, S., Dines, R. A., Hayes, N. M.,
& Nelson, L. E., Helping CIOs Understand “Smart City” Initiatives:

Defining the Smart City, Its Drivers, and the Role of the
CIO.Cambridge, MA: 2010 Forrester Research, Inc. Available at

http://public.dhe.ibm.com/partnerworld/pub/smb/smarterplanet/forr_h
elp_cios_und_smart_city_initiatives.pdf.

[4] Dirks, S., Gurdgiev, C., & Keeling, M. (2010). Smarter Cities for

Smarter Growth: How Cities Can Optimize Their Systems for the
Talent-Based Economy. Somers, NY: IBM Global Business Services.

Somers, NY: IBM Global Business Services. Available at
ftp://public.dhe.ibm.com/common/ssi/ecm/en/gbe03348usen/GBE033

48USEN.PDF

[5] Washburn, D., Sindhu, U., Balaouras, S., Dines, R. A., Hayes, N. M.,

& Nelson, L. E. (2010). Helping CIOs Understand "Smart City"

Initiatives: Defining the Smart City, Its Drivers, and the Role of the

CIO. Cambridge, MA: Forrester Research, Inc. Available from
http://public.dhe.ibm.com/partnerworld/pub/smb/smarterplanet/forr_h

elp_cios_und_smart_city_initiatives.pdf.

[6] S. Nanni and G. Mazzini, “Smart City, a model and an architecture of

a real project: SensorNet,” in Software, Telecommunications and
Computer Networks (SoftCOM), 2013 21st International Conference

on, 2013, pp. 1–4

[7] F. G. Dohler M., Ratti C., Paraszczak J., “Mart ities,” no. June, pp.
70–71, 2013.

[8] S. Dirks and M. Keeling, “A vision of smarter cities,” New York IBM

Glob. Serv., p. 18, 2009.

[9] G. Suciu, A. Vulpe, S. Halunga, O. Fratu, G. Todoran, and V. Suciu,
“Smart Cities Built on Resilient Cloud Computing and Secure

Internet of Things,” in Control Systems and Computer Science
(CSCS), 2013 19th International Conference on, 2013, pp. 513–518.

[10] D. Jin, Y. Zheng, H. Zhu, D. M. Nicol, and L. Winterrowd, “Virtual

Time Integration of Emulation and Parallel Simulation,” in Principles
of Advanced and Distributed Simulation (PADS), 2012

ACM/IEEE/SCS 26th Workshop on, 2012, pp. 201–210.

[11] E. Theodoridis, G. Mylonas, and I. Chatzigiannakis, “Developing an
IoT Smart City framework,” in Information, Intelligence, Systems

and Applications (IISA), 2013 Fourth International Conference on,
2013, pp. 1–6.

[12] CISCO, The Internet of Things, Infographic, available online at
http://blogs.cisco.com/news/the-internet-of-things-infographic, 2011

[13] E. Aubry, T. Silverston, A. Lahmadi, and O. Festor, “CrowdOut: A

mobile crowdsourcing service for road safety in digital cities,” in
Pervasive Computing and Communications Workshops (PERCOM

Workshops), 2014 IEEE International Conference on, 2014, pp. 86–
91.

[14] Waze (Community-Based Traffic and Navigation Application).

Retrieved June 29, 2015 from https://www.waze.com.

[15] M. Fowler, UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd ed. Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc., 2003.

183Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 202 / 512

Comparison of Educational Project Management Tools

Rafael Queiroz Gonçalves, Christiane Gresse von Wangenheim

Department of Informatics and Statistics, Graduate Program on Computer Science

Federal University of Santa Catarina, UFSC

Florianópolis, Brazil

e-mail: rafael.queiroz@posgrad.ufsc.br, c.wangenheim@ufsc.br

Abstract—Project management tools are mandatory to properly

manage software projects. The teaching of the usage of these tools

is carried out in higher education computer courses and, usually

generic tools are adopted, such as MS-Project. However, their

lack of educational features has motivated the development of

several educational project management tools. This study aims at

the analysis of such existing tools, carrying out a systematic

comparison. Therefore, we selected the most relevant educational

project management tools based on the results of a Systematic

Literature Review. These results were updated, including newly

available tools and excluding proprietary and no longer available

ones. The selected tools are presented, highlighting their

educational features, supported functionalities and content

coverage considering the whole project management process. A

systematic comparison is conducted, discussing each evaluation

criteria, resulting in a guideline for choosing the proper

educational project management tool according to the

educational goal. The presented results may be useful for

instructors of Project Management courses as well as for

researchers, to guide further research based on the identified

gaps in this area.

Keywords-Project Management; Project Management Tool;

PMBOK; Teaching; Education; Open-source.

I. INTRODUCTION

Project Management (PM) is a critical area for many
organizations in the software industry. A significant amount of
projects still fail due to a lack of proper management, causing
problems related to unaccomplished deadlines, budget overrun,
or scope coverage [1]. In this context a project is considered a
temporary endeavor to achieve a single result, and PM is the
use of knowledge, abilities, tools, and techniques that enable a
project to reach its goals [2].

Project problems occur mainly because of the absence of a
PM process [3], resulting in a limited control over project
restrictions and resources [1]. The adoption of a PM process
may be facilitated by the usage of a PM tool [4]. A PM tool is a
software that supports the PM process (either as a whole or
partly), offering functionalities like: schedule development,
resources allocation, cost planning, among others [7]. Despite
the fact that many organizations still do not adopt any PM tool,
the positive contributions that these tools may bring have
increased the interest in their usage [5].

The responsibility for the usage of these tools lies with the
project manager, who is accountable for the success of the
project, having the authority to direct its resources in order to
conduct the project by following a systematic PM process [2].

Given that the usage of PM tools is not yet common in
organizations and that many projects still fail, a possible cause
for this could be the lack of teaching the usage of these tools to
project managers and team members [1][6][7].

The teaching of PM has to cover knowledge on PM,
beyond general knowledge on administration, project
environment, application area, and interpersonal abilities [2].
However, the teaching of PM should not just be focused on
theoretical knowledge, as this is not enough for an effective
PM application. And, as due to the complexity of contemporary
software projects, PM is impracticable without the support of a
PM tool, and the ability to use such tools is also among the
project manager‟s competencies [4][8].
In Section 2, we present the background Section, followed by

Section 3 that presents the analysis of related studies that have

compared PM tools. In Section 4 we present the process we

have adopted to carry out the educational PM tools

comparison. In Section 5 we present each of the selected PM

tools, and a structured comparison is presented in Section 6,

leading to a discussion about each evaluated criteria in Section

7, resulting in a guideline for choosing the proper educational

PM tool according to the educational goal. In Section 8 we

present the conclusions of this study. These results may assist

teachers in the teaching of this competence. They may also

assist researchers in the improvement of support to the

existing tools, or the development of new ones, covering the

gaps that remain in this area.

II. BACKGROUND

Concepts that are relevant to this research are presented in

this Section, namely: PM, PM tools, and teaching of PM tools.

These concepts are used during the discussion of our findings,

in terms of criteria for selection and evaluation of educational

PM tools, or for analyzing their educational characteristics and

general functionalities.

A. Project Management

PM conducts project activities and resources to meet its
requirements, from its initiation to closure (Figure 1).

184Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 203 / 512

Figure 1. PM processes groups [2].

Orthogonally to these process groups, the PM processes are
organized in 10 knowledge areas (TABLE I).

TABLE I. PM KNOWLEDGE AREAS [2].

Knowledge area Processes to:

Integration Identify, define, combine, unify, and coordinate PM
processes and PM activities.

Scope Ensure that the project addresses the entire work

and meets all its requirements.

Time Plan, monitor and control the activities that will be
carried out during the project so it concludes within

the deadline.

Cost Plan, estimate, and control project costs, so it

concludes within the approved budget.

Quality Define the responsibilities, goals, and quality

policies so the project meets the needs that have

initiated it.

Human

Resources

Organize and manage the project team.

Communication Ensure the generation, collection, distribution,

storage, recovery, and final destination of project
information.

Risk Identify, monitor and control the project risks.

Acquisition Buy or contract products, services or any resources

that are not available as project internal resources.

Stakeholder Identify and manage the stakeholders and its
expectations.

In the context of this study, the PM process refers to the

one defined by PMBOK [3], which is the main reference in

this area and widely accepted [9].

The application of a PM process is assisted by the usage of

PM tools, which support the PM process, either as a whole, or

a particular part of it. This support may semi-automatize some

activities of PM process, such as writing status reports or

providing online forms to record meeting minutes [6].

Furthermore, some PM process activities may be totally

automated by PM tools, such as for instance, calculating the

total project cost, the identification of the critical path, or the

identification of over-allocated resources [5][10].

B. PM Tools

Conducting the PM process may be very complex and

demand considerable resources of an organization. To assist in

its execution, many PM tools have been developed. Examples

include: MS-Project, Primavera, DotProject, Project.net, etc.

[4][11]. However, due to the wide variety of PM tools, their

functionalities and characteristics are very heterogenic [5, 12].

Supported functionalities, for instance, may cover the whole

PM process, or just one or a few PM knowledge areas, or,

more specifically, just some activities, for example, the

tracking of work hours [11, 12]. The scope of the offered

functionalities influences the usage of these tools for teaching,

as they may restrict the addressed content.

Beyond its functionalities, other characteristics may also

influence the choice of a PM tool to be adopted for teaching.

According to its characteristics, such a tool may require some

particularities in the computational environment besides the

need for economic investments. Among these characteristics

are: availability, platform, and usage propose.

The availability of PM tools may be proprietary (the use of

a license or acquisition is mandatory and it is maintained

exclusively by a single organization) or open-source (free

usage and maintained by users community). Consequently,

proprietary PM tools may be adopted only by organizations

that are prepared to acquire its licence, while others may

prefer to adopt as more low-budget alternative open-source

tools.

In terms of platform, there are available stand-alone tools

(mono-user and accessed via desktop) or web-based systems

(multi-user and accessed via web browser). In practice, a web-

based PM tool has to be used in order to properly manage a

software project, as they allow collaborative work and sharing

of information [4][5]. Thus, the teaching of these tools

prepares the student better for a professional career [5].

However, the adoption of a PM web-based tool for educational

proposes requires that this tool is installed on a web server that

complies with the tool specification, and the students must

have internet access.

Beyond the generic PM tools, such as MS-Project or

DotProject that are focused on the professional daily routine,

there also exist educational PM tools, which focus on student

learning, such as ProMES and PpcProject [10]. These tools

include didactic features, such as instructions about the usage

of its functionalities, and simulations that create scenarios that

propitiate the application of specific PM techniques.

C. Teaching of PM Tools

The usage of PM tools is part of the project manager
responsibilities [2]. The need for teaching this competency is
addressed by the ACM/IEEE reference curriculum for
Computer Science [13]. It specifies that students have to
develop knowledge in all PM knowledge areas, and have to
learn the usage of a PM tool to develop a project schedule,
allocate resources, monitor the project, etc. Often the teaching
of PM tools usage includes the application of the following
techniques [2][7][10]: the Critical Path Method (CPM) – that
identifies the project activities that cannot be delayed without
affecting the project deadline; the Program Evaluation and
Review Technique (PERT) – that calculates the estimated
effort to carry out an activity based on three other estimates
(worst case, most common case, and best case); the
Responsibility assignment matrix (RACI Matrix) – that
describes the participation by various roles in completing
project activities; Resources Leveling – technique in which
start and finish dates are adjusted based on resource constraints,

185Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 204 / 512

with the goal of balancing demand for resources with the
available supply; amongst others.

III. RELATED STUDIES

Several studies have presented comparisons of PM tools
using different criteria for tools selection and evaluation
[5][11][14][15][16].

Mishra et al. [14] compared 20 popular PM tools,

presenting a brief description of each one and comparing

them, based on criteria like platform, availability, and

functionalities (e.g., resources management, schedule

development, and earned value analysis). However, no PM

tools selection criteria were presented.

Dippelreiter et al. [15] presents the comparison of 4

popular open-source PM tools that are adopted in industry, but

again do not present selection criteria. The evaluation criteria

were based on a set of functional requirements obtained after

conducting interviews with project managers. Among these

functional requirements are: project maintenance, contacts,

activities, costs, documents download/upload, etc.
Margea et al. [16] compares 9 PM tools, including

proprietary and open-source, and also stand-alone and web-
based PM tools. Selection criteria were not presented. This
study presents a description of each tool, including its main
features and functionalities. Then, these tools are compared
based on their platform and supported functionalities (e.g.,
resource management, risk analysis, schedule development,
etc.).

Cicibas et al. [5] presents a comparison of 10 PM tools,
including proprietary and open-source tools, and stand-alone
and web-based. They included tools that were subject of
previous scientific studies, as well as to be popular in the PM
community (based on forums, blogs, and non-official web
sites).Besides these characteristics, the PM tools were
compared based on their functionalities, including: schedule
development, resource management, time tracking, change
management, document management, risk assessment,
collaboration, amongst others. These evaluation criteria are
explained, describing the expected functionalities that
characterize its attendance.

Pereira et al. [11] presents a comparison of open-source

PM tools. These tools were selected based on a systematic

search in Sourceforge, the most relevant repository of open-

source tools, and the comparison criteria were based on a

unified best practice of PMBOK [2] and CMMI-DEV [12].

This study has compared 5 PM tools, which are claimed to be

the most relevant based on the defined criteria. For each PM

tool the supported PM best practices are identified.
Analyzing these comparisons we may conclude that

currently there exist a wide variety of PM tools, and although
they share some common features, their functionalities vary
significantly. Thus, the PM process is partially supported by
most of these tools and the choice of a PM tool may differ
according to organization demands. However, before choosing
a PM tool, it is important to know how to use its functionalities
to support the PM process, hence, performing a conscious
choice. Aiming to assist in the teaching of PM tools
functionalities, some educational PM tools were developed, but
no comparison with this specific focus has been encountered.

In this context, the contribution of the work presented here lies
in the analysis and comparison of relevant open-source
educational PM tools.

IV. TOOL ASSESSMENT

The goal of this work is to present relevant educational PM

tools and to assess their characteristics, educational features

and functionalities. To systematically carry out the tool

assessment, we adopted the following research process:

(1) Selection of educational PM tools, based on previous

researches that present these tools.

(2) Definition of evaluation criteria with respect to the PM

tools characteristics, educational features, and general

functionalities.

(3) Execution of the PM tools evaluation.

(4) Analysis and interpretation of the collected data.

This process has been conducted by a PhD student of the

Graduate Program in Computer Science (PPGCC) of the

Federal University of Santa Catarina/Brazil, and revised by a

senior researcher with expertise in Software Process

Improvement and Project Management.

A. Tools selection

Aiming at the selection of relevant educational PM tools,

we based our selection on a previous research carried out by

the authors, which performed a Systematic Literature Review

on the teaching of the usage of PM tools [17]. Among the

results of this study is the identification of educational PM

tools adopted for teaching. In the current study we performed

a deeper exploration of each PM tool, identifying when each

of them may be adopted and creating a guideline to

instructors, so they can choose which educational PM tool

may be adopted according to their educational goals.

Moreover, for this study we have updated the results found on

[17], including new educational PM tools.

In this context, the inclusion criteria for tool selection are:

 PM tool must include educational features;

 PM tool must be open-source; and

 PM tool must be available for download.

The exclusion criteria are:

 The software must be a PM tool (not games, simulators

or e-learning platforms); and

 The tool must be focused on “traditional” PM (e.g.,

excluding any tool focused exclusively on agile PM).

This search, conducted in June 2015, returned a total of 10

educational PM tools. Applying the defined inclusion and

exclusion criteria, only 5 educational PM tools have been

considered relevant in the context of our study. We excluded

tools such as EduSet [18], CBT Module [19], and POM-QM

[20], which appear to be no longer available. Other tools such

as PSG [21] and PTB [22] were excluded because they are

proprietary tools. These tools were excluded, as we aim at

presenting only PM tools that currently may be adopted by

instructors or researchers to assist in their activities. The

selected educational PM tools are presented in TABLE II.

186Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 205 / 512

TABLE II. SELECTED EDUCATIONAL PM TOOL.

PM Tool Available for download at:

DrProject [23] www.drproject.org

PpcProject [10] http://code.google.com/p/ppcproject/

ProMES [24] www.simor.mech.ntua.gr/Kirytopoulos/promes.asp

DotProject+ [25] http://www.gqs.ufsc.br/evolution-of-dotproject

RESCON [26] http://www.econ.kuleuven.be/rescon/

B. Evaluation criteria

Considering that only open-source educational PM tools are
being evaluated, the evaluation criteria include the platform
(stand-alone or web-based), educational features (aggregating
all variations of educational features presented by the evaluated
tools), PM techniques (that contains some educational support),
and PM process coverage (in terms of knowledge areas and
processes groups). These criteria are presented in TABLE III.

TABLE III. EVALUATION CRITERIA.

Description Items to be evaluated

Platform Stand-alone or web-based.

Educational PM
features

 Scenarios to assist the application of specific PM
techniques.

 Feedback when students make some wrong usage of
PM tool.

 Hints to guide the student in the usage of PM tool.

 Problems to be solved and definition of difficulty
level.

 Instructional materials to assist in the learning of PM
tool usage.

 Communication channels between students and
teacher

PM techniques CPM, PERT, Resources Leveling, RACI Matrix.

PM process coverage

Knowledge
areas

Integration, scope, time, cost, quality, communication,
human resource, risk, acquisition, stakeholders.

Process Groups Initiation, planning, execution, monitoring & controlling,
closing.

For the evaluation of these criteria, only the functionalities

that were presented by the authors of the PM tools were

considered, excluding any undocumented functionality or

extensions that may have been developed after their

publication.

V. RESULTS EVALUATION

In this Section, we analyze each selected tool. The

information presented for each tool include: its objective (for

what it was designed), platform, a screenshot, main

functionalities and educational features.

A. DrProject

DrProject (Figure 2) is a web-based PM tool, which was

designed to assist students to understand the concept of a

project and its lifecycle. It includes functionalities that assist

the students to carry out an entire software project with team

work, from its initiation to closure. Its main functionalities

include features to assist team work, such as wiki, tickets,

documents repository and mailing list. In addition, it also

contains functionalities for definition of project activities and

milestones.

Figure 2. DrProject.

The educational feature of this tool provides the instructor

with a view of how students are performing at intermediate

milestones. The forms were optimized to contain a minimum

set of fields needed for didactic purposes, making it easier for

students to understand the tool usage. The tool also provides

administrative features that make it easier for the teacher to

setup new projects and create new groups every term, thus

reducing the time the instructor has to spend with

administrative duties.

B. PpcProject

PpcProject (Figure 3) is a stand-alone tool that was

developed to assist in the teaching of a PM tool with respect to

CPM, PERT, and resources leveling techniques. This tool also

has the goal to be at least comparable by students with other

generic and proprietary tools, such as MS-Project.

Figure 3. PpcProject.

The main functionality of this tool is focused on the

schedule development, thus, supporting activity definition and

sequencing, estimation of resources and durations, besides

schedule development (Gantt chart).

The educational features are organized in three main

modules: CPM, PERT, and Resource Allocation, which are

the PM techniques this tool aims at teaching. The use of the

CPM module is intended for students to deepen their

understanding on the concepts of project activity

decomposition, to analyze precedence relationships and to

learn how to identify activities that cannot be delayed to

achieve the expected completion date of the project, as well as

to correctly interpret the Gantt chart. Using the PERT module

students are expected to be able to calculate the project

completion date in a probabilistic context and analyze the

paths and critical activities during the project implementation.

The Resources Allocation module includes features such as

resources allocation, and identification of over allocated

resources to apply resources leveling methods. By using this

module, the students should be able to understand the

influence of resource limitations on the project scheduling and

propose alternative scheduling to improve resource usage.

187Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 206 / 512

C. ProMES

ProMES (Figure 4) is a stand-alone tool that was

developed exclusively for academic purposes and aims at

students to understand how CPM, PERT, and RACI are used,

besides enhancing conditions for the acquisition of the

required knowledge based on pedagogical approaches.

Figure 4. ProMES.

General functionalities include activity definition and

sequencing, record estimations for effort, duration, and

resources. The tool also supports the configuration of human

resource roles and their allocation.

The educational features of ProMES, include CPM, PERT,

and RACI matrix techniques. This tool offers the students

feedback through interaction with the system. When the

student begins to solve a scenario (exercise), the system

checks and displays in message style all the errors. The

student may revise his/her thoughts and try another solution.

This procedure continues until no errors can be identified by

the system. So, the student learns how to use the tool through

feedback and tool interaction. Another very important

educational aspect of ProMES is the help offered to the novice

student. When the student first accesses the tool interface, a

demonstration of how the tool works is displayed. In addition,

the tool also gradually increases the difficulty of the proposed

scenarios.

D. DotProject+

DotProject+ (Figure 5) has been developed to support the

PM process to all knowledge areas for the initiation and

planning processes groups. The educational goal of this tool is

to assist the student to learn how to create a project charter and

the project plan, supported by a PM tool. This tool is web-

based and it is an enhancement of the generic PM tool –

DotProject.

Figure 5. DotProject+.

Its functionalities include all standard functionalities of

DotProject core modules, e.g., schedule development,

calendar, contacts list, forum, tickets, etc. It also contains

several add-on modules to include functionalities to cover all

knowledge areas, for instance, registration of risk analysis,

planned acquisitions, quality control plan, project

stakeholders, etc.

Among the educational features, this tool includes

instructional material, which explains the PM process and how

it is supported by the tool‟s functionalities. Thus, it assists the

student to conduct the PM process through learning the usage

of a PM tool to support its execution.

E. RESCON: Educational Project Scheduling Software

The RESCON (Figure 6) is a stand-alone tool that focuses

on the scheduling part of the PM process. It presents to

students instances of the Resource-Constrained Project

Scheduling Problem (RCPSP), that have to be solved with one

of the many types of scheduling algorithms that are embedded

in the educational PM tool.

Figure 6. RESCON.

The general functionalities are related to the schedule

development, and also with the human resource profiles

configuration and allocation.

The educational features of this tool include the execution

of CPM and the results of its execution are plotted with

colored rectangles, which assist in the understanding of the

related concepts, such as earliest and late possible start date,

activity slacks and resources over allocation. The main

educational feature of this tool lies in providing 48 kinds of

188Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 207 / 512

algorithms to schedule development that may be executed and

their results compared.

VI. COMPARISON

As part of the evaluation, we compare the support provided

by the PM tools in relation to each evaluation criteria as

presented in TABLE III. For the criteria related to PM tools

platform, PM techniques and educational feature we used a

nominal rating scale, indicating whether the PM tool contains

or not a certain feature. For the criteria related to the PM

process coverage we used a 4-point ordinal rating scale, rating

the support level for each knowledge area or processes group

as presented in TABLE IV.

The results of the comparison of the educational PM tools

are presented in TABLE V, where each PM tool is evaluated

over the defined criteria (TABLE III) using the evaluation

scales (TABLE IV).

TABLE IV. SCALES FOR RATING THE EVALUATION CRITERIA.

Nominal rating scale

- The tool does not contain the feature.

X The tool contains the feature.

4-Points ordinal rating scale

- The tool does not support the knowledge area or process group.

* The tool supports minimally the knowledge area or process group.

** The tool has a wide support for the knowledge area or process group,
but it is not complete.

*** The tool offers complete support for the knowledge area or process

group.

TABLE V. COMPARISON OF EDUCATIONAL PROJECT MANAGEMENT TOOLS.

Evaluation Criteria

Educational PM Tools

DrProject PpcProject ProMES DotProject+ RESCON

Platform

Stand-alone - X X - X

Web-based X - - X -

PM techniques (with educational support)

CPM - X X - X

PERT - X X - -

Resource Leveling - X - - -

RACI Matrix - - X - -

Educational features

Scenarios to assist the application of specific PM techniques. - X X - X

Feedback when students make wrong usage of PM tool. - X X - -

Hints to guide the student in the usage of PM tool. - X X X -

Problems to be solved and definition of difficulty level. - X X - -

Instructional materials to assist in the learning of PM tool usage. - - - X -

Communication channels between students and teacher X - - - -

PM process coverage

Knowledge Areas

Integration * - - *** -

Scope * - - *** -

Time * *** *** *** ***

Cost - - - *** -

Quality - - - ** -

Communication ** - - ** -

Human resource * ** ** *** **

Risk - - - *** -

Acquisition - - - ** -

Stakeholder ** - - *** -

Processes Groups

Initiation * - - *** -

Planning ** ** ** *** **

Execution * - - ** -

Monitoring and Controlling * - - ** -

Closing * - - *** -

189Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 208 / 512

VII. DISCUSSION

Analyzing the educational PM tools it is observed that only

a few tools were developed with that propose, when compared

with the wide variety of existing generic PM tools. Overall, we

can observe that each tool is able to assist in the teaching for

the purpose it was designed. However, considering the

complete PM process, most tools have targeted only a specific

part of this process and have included some educational

feature to assist the students to understand this part and how it

may be supported by PM tools functionalities.

Regarding the educational features presented by the

analyzed tools, it was observed that these functionalities vary

according to the educational goals. When the tool aims to

teach the usage of a certain functionality, it presents

instructions to demonstrate how to operate the software. Some

tools present these instructions dynamically, depending on the

student interaction with the tool. Some tools also present some

usage guide to demonstrate how and when the PM tool

functionalities may be utilized. When the goal is to teach the

project life cycle, the PM tool typically includes

functionalities for students to carry out a project from its

initiation to closure, providing communication mechanisms

between team members and the teacher.

With respect to the adopted platform, it was observed that

the tools, which focused on the teaching of PM process are

web-based. This is due to the fact that such a platform is more

suitable to the process application in organizations, supporting

multi-user accesses and information sharing among project

stakeholders. These educational PM tools are closer to the real

environment the students are going to face on real life

projects. Considering the stand-alone PM tools, we can

observe that they give support to just a few PM techniques.

The adoption of this kind of platform may be justified when

demanding a more complex user interface, using many charts

and dynamic interactions, which may be easier to be

developed on such platform.

The PM techniques that are usually taught through

educational PM tools are CPM, PERT, RACI matrix, and

resources leveling. The CPM technique is taught through

different approaches. The ProMES tool requests the students

to identify the critical activities analyzing the activity

precedence diagram. The PpcProject tool requests the students

to identify the critical activities by calculating its floats. The

PERT method is taught in a similar way by most tools,

requesting the student to enter her/his estimations for project

execution and the three scenarios (best case, most common,

and worst case), and then presenting the calculation for the

PERT method. The RACI matrix is taught by ProMES only,

allowing the students to assign responsibility, accountability,

and consultancy, as well as to designate the representative who

must be informed for each project activity. The Resources

leveling technique is explicitly taught only by PpcProject,

which imposes limits to the allocation of a certain resource,

with the student having to find alternatives to develop the

project schedule within the defined constraints. Both RACI

matrix and resources leveling are also supported by

DotProject+, but in this tool the student learns how to use it by

instructions contained in the tool usage guide.

In this context, it becomes evident that the part of the PM

process mostly addressed includes the knowledge areas time

and HR, especially for the planning process group. An

exception is the PM tool DotProject+, in which the PM

process support stands out from the others, being is an

enhancement of one of most popular open-source generic tools

for PM. Hence, its functionalities are inherited, and gaps were

filled by the addition of add-on modules. Some other tools

also present specific exceptions, for instance, DrProject has a

wide support for project communication, including support for

document repository, wiki, and mailing lists, and also presents

at least a minimum support to all processes groups.

Based on this analysis and comparison, we may identify

when each of these PM tools may be more suitable for

teaching. In situations when the educational goal is related to

the teaching of specific PM techniques such as CPM,

PpcProject, ProMES, or RESCON may be adopted. These

tools provide scenarios that make it possible for the students to

apply these techniques, and also evaluate the correctness of

their answers, besides providing some feedback and

explanations that make the teaching of these techniques easier.

Specifically for teaching the PERT technique, both PpcProject

and ProMES may be adopted. However, the resources

allocation process is only partially supported by different

tools. The PpcProject assists in the resource leveling

technique, and ProMES assists in the creation of the RACI

matrix. When intending to have support to all these techniques

in a single tool, DotProject+ is an option. However, the

instructor has to adopt some instructional method to teach

these techniques, as even though DotProject+ supports all

these functionalities, it does not contain many dedicated

educational features to assist the students.

Nevertheless, when the educational goal is to teach about

the PM process, DrProject and DotProject+ should be adopted.

DotProject+ gives a wider support to the PM process than

DrProject, providing the students with the opportunity to learn

how to use several functionalities dedicated to all knowledge

areas, such as risks, acquisition, quality and others, which are

not covered completely by DrProject. Thus, it is important to

understand that each educational PM tool has its own purpose.

But the complexity of the usage of a PM tool is still not

completely covered by any of the analyzed tools. So, it is

important to know which tool may be suitable for each

situation, according to the educational goals.

A. Threats to Validity

Several potential threats may have reduced the validity of

the results of our work. The first threat we have identified is

the existence of educational PM tools, which were not found

by this research. This may occur when some PM tool was

developed, but not published. However, we minimized this

risk by basing our search on earlier and related work and

performing an broad search on this topic.

Another threat to this research is the personal opinion of

the authors by extracting the evaluated characteristics. To

minimize this risk we considered only functionalities and

190Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 209 / 512

educational features that were documented. Thus, it is possible

that some PM tool contains some additional feature or

functionality that is not documented, which thus was not

included in our analysis.

Our specific focus on open-source educational PM tools

may also represent a threat. As a consequence we excluded 2

proprietary tools, PSG and PTB, which claim to have many

interesting educational features, such as simulations, that

propitiate the student to have ideal scenarios to learn about

project monitoring and controlling. However, these tools are

not fully available to be adopted by instructors or researches

without additional expenses.

VIII. CONCLUSIONS

This research aims at the comparison of educational PM

tools that are openly available, identifying their characteristics,

educational features, and supported functionalities. To reach

this goal, educational PM tools were selected based on results

derived from a Systematic Literature Review. Each selected

PM tool was analyzed. The analysis describes each evaluated

tool and presents a discussion of when each of these tools is

more suitable to be adopted for teaching.

Hence, despite the efforts, it is evidenced that there is no

tool that is complete enough to attend all educational demands,

and it still is necessary to adopt a set of tools, according to the

part of the PM process it aims at teaching. Future work may

suggest enhancements on some educational PM tool to include

support to all knowledge areas and process groups, expanding

the educational features and then covering the gaps still

existing in the teaching of the usage of PM tools.

ACKNOWLEDGMENT

This work was supported by the CNPq (Conselho Nacional
de Desenvolvimento Científico e Tecnológico – www.cnpq.br),
an entity of the Brazilian government focused on scientific and
technological development.

REFERENCES

[1] The Standish Group, Chaos Manifesto 2013, Boston, 2013.

[2] PMI – Project Management Institute, A Guide to the Project
Management Body of Knowledge, 5. ed., Newtown Square, 2013.

[3] M. Keil, A. Rai, and J. Mann, “Why software projects escalate: The
importance of project management constructs,” IEEE Transactions on
Engineering Management, vol. 50, n.3, 2003, pp. 251–261.

[4] R. Fabac, D. Radoševic, and I. Pihir, “Frequency of use and importance
of software tools in project management practice in Croatia,” In: Proc. of
32nd Int. Conf. on Information Technology Interfaces, Cavtat, 2010, pp.
465 -470.

[5] H. Cicibas, O. Unal, and K. Demir, “A comparison of project
management software tools (PMST),” In: Proc. of the 9th Software
Engineering Research and Practice, Las Vegas, 2010.

[6] T. Lethbridge, J. Diaz-Herrera, R. Leblanc, and J. Thompson,
“Improving software practice through education: Challenges and future
trends,” In: Proc. of Future of Software Engineering, Minneapolis, 2007,
pp. 12-28.

[7] Ž. Car, H. Belani, and K. Pripužić, “Teaching Project Management in
Academic ICT Environments,” In: Proc. of the Int. Conf. on computer as
a tool, Warsaw, 2007, pp. 2403 - 2409.

[8] L. Spencer, and S. Spencer, Competence at Work: Models for Superior
Performance, 1st ed. John Wiley & Sons, 1993.

[9] O. Ojeda, and P. Reusch, "Sustainable procurement - Extending project
procurement concepts and processes based on PMBOK," In: Proc. of 7th
International Conference on Intelligent Data Acquisition and Advanced
Computing Systems, Berlin/Germany, 2013, pp. 530 – 536.

[10] L. Salas-Morera, A. Arauzo-Azofra, and L. García-Hernández,
“PpcProject: An educational tool for software project management,”
Computers & Education, vol. 69, n. 1, 2013, pp. 181-188.

[11] A. Pereira, R. Gonçalves, and C. Wangenheim, “Comparison of open
source tools for project management,” International Journal of Software
Engineering and Knowledge Engineering, vol. 23, n. 2, 2013, pp. 189-
209.

[12] C. Wangenheim, J. Hauck, and A. Wangenheim, “Enhancing open
source software in alignment with CMMI-DEV,” IEEE Software, vol.
26, n. 2, 2009, pp. 59-67.

[13] ACM, and IEEE Computer Society, Computer Science Curricula 2013,
2013.

[14] A. Mishra, and D. Mishra, “Software Project Management Tools: A
Brief Comparative View,” ACM SIGSOFT Software Engineering Notes,
38 (3), 2013, pp. 1-4.

[15] B. Dippelreiter. “A „state of the art‟ Evaluation of PM – Systems
exploring their missing Functionalities,” In: Proc. of the 5th Int. Conf.
on Project Management", Tokyo, 2010, pp. 90-101.

[16] R. Margea and C. Margea. “Open Source Approach to Project
Management Tools.Informatica Economică”, vol. 15, n. 1, 2011, pp.
196-206.

[17] R. Gonçalves, and C. Wangenheim. “How to Teach the Usage of Project
Management Tools in Computer Courses: A Systematic Literature
Review,” In: Proc. of the Int. Conf. on Software Engineering and
Knowledge Engineering, Pittsburgh, 2015, pp. 36 - 41.

[18] J. C. Spicer. “A spiral approach to software engineering project
management education,” ACM Sigsoft Software Engineering Notes
8(3), 1983, pp. 30–38.

[19] D. Pfahl, M. Klemm, and G. Ruhe, “A CBT module with integrated
simulation component for software project management education and
training,” Journal of Systems and Software, vol. 59, n. 3, 2011, pp. 283–
298.

[20] H. Ku, R. Fulcher, and W. Xiang, “Using computer software packages to
enhance the teaching of engineering management science: Part 1 -
Critical path networks,” Computer Applications in Engineering
Education, vol. 19, n. 1, 2011, pp. 26-39.

[21] M. Vanhoucke. “The Project Scheduling Game (PSG): Simulating
Time/Cost Trade-Offs,” In Projects. Project Management Institute, vol.
36, n. 1, 2005, pp.51-59.

[22] A. Shtub. “Project management simulation with ptb project team
builder,” Proceedings of the 2010 Winter Simulation Conference,
Baltimore, 2010, pp. 242-253.

[23] K. Reid, and G.Wilson. “DrProject: A Software Project Management
Portal to Meet Educational Needs,” In: Proc. of the Special Interest
Group on Computer Science Education, Covington, 2007, pp. 317-321.

[24] G. Gregoriou, K.Kirytopoulos, and C. Kiriklidis, “Project Management
Educational Software (ProMES),” Computer Applications in
Engineering Education, vol. 21, n. 1, 2010, pp. 46–59.

[25] R. Gonçalves,. E. Kühlkamp, and C. Wangenheim. “Enhancing
dotProject to Support Risk Management Aligned with PMBOK in the
Context of SMEs,” International Journal of Information Technology
Project Management, vol. 6, n. 2, 2015, pp. 40-60.

[26] F. Deblaere, E. Demeulemeester, and W. Herroelen. “RESCON:
Educational project scheduling software,” Computer Applications in
Engineering Education, vol. 19, n. 1, 2009, pp.327-336.

191Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 210 / 512

Model-Driven Engineering of Software Solutions for QoS Management in Real-

Time DBMS

Salwa M’barek
a
, Leila Baccouche

b
, and Henda Ben Ghezala

c

RIADI Laboratory

ENSI, Manouba University

Tunis, Tunisia

e-mail:
a
salwa.mbarek@gmail.com,

b
leila.baccouche@insat.rnu.tn,

c
hhbg.hhbg@gmail.com

Abstract—Real-Time applications handling big volumes of

Real-Time data with time constraints, such as web-based

multimedia applications or Vehicular Cyber-physical Systems,

often lead to unpredictable overload problems in Real-Time

DataBase Management Systems (RTDBMS) managing them.

This is due to frequent Real-Time user transactions, requesting

access to Real-Time data, which are characterized by unknown

arrival times, unknown workloads and time constraints. In the

literature, many software solutions with Quality of Service

(QoS) management are proposed to resolve these problems.

Although effective, they remain application-dependent

regarding Real-Time data and transactions models and QoS

requirements. Moreover, no formal or semi-formal models of

these solutions or tools are proposed to design them. Therefore,

it is not possible to reuse such solutions for Real-Time

applications with specific QoS requirements and needing other

data and transactions models. To address this issue, we propose

a Model Driven Engineering based framework for modeling

QoS management solutions in RTDBMS and reusing formal

models of well-known solutions. The framework provides a tool

and strategic methodology to help users achieve their goals

through several strategies that fit their requirements.

Keywords- Model Driven Engineering; QoS management;

Real-Time DBMS; model transformations; reuse.

I. INTRODUCTION

Real-Time DataBase Management Systems (RTDBMS)

are suitable to Real-Time Applications (RTA) handling a

large volume of Real-Time data, which have validity periods

and must be updated periodically to reflect the state of the

application environment. They are able to manage Real-

Time transactions, which are time-constrained (e.g., having

deadlines) and frequently request access to Real-Time data

[18]. Examples include the Vehicular Cyber-Physical

Systems (VCPS) that must collect and handle a large volume

of Real-Time data about vehicles and road traffic for

ensuring road safety and providing various data services

within accurate time deadlines [14]. There are also included

web-based multimedia applications, such as video on

demand, which manage large amounts of data and must

respect the time constraints when transmitting video packets

[12].

A RTDBMS executes periodic update transactions, which

refresh Real-Time data to preserve the logical and temporal

consistency of the Real-Time database. In addition, it

manages transactions from users reading the Real-Time data,

called user transactions and must meet their deadlines [8].

The workload of update transactions is known in

advance, while the user transactions have unknown

workloads and unpredictable arrival times [18]. Hence, the

RTDBMS can face unpredictable overload periods and be no

longer able to satisfy both types of transactions, which lead

many Real-Time transactions to miss their deadlines. Thus,

the RTDBMS stability may not be guaranteed [8].

In the literature, many QoS-aware solutions that we call

QoS Management Solutions (QMS) aim to address this

problem, such as the solutions proposed in [2][3][11][12].

The QoS guarantee is based on QoS requirements specified

by the database administrator (DBA). Most QMS combine

the Feedback Control Scheduling Architecture (FCSA) [16]

with imprecise computation techniques [10], which allow

graceful QoS degradation during transient overloads.

Although effective, these solutions are dependent on the

Real-Time data and transactions models and requirements of

the RTA. Moreover, we did not find in the literature formal

or semi-formal models of these solutions or tools to model

them. Therefore, it is not possible to reuse existing solutions

for a RTA with specific transactions and data constraints or

specific QoS requirements.

In this paper, we propose a model driven framework

based on the Model Driven Engineering (MDE) approach

[5] for modeling new QMS by reusing models of well-

known solutions. The framework focuses on a strategic

methodology to help users modeling QMS by and for reuse.

The rest of the paper is organized as follows. In Section 2,

we present a state of the art on modeling works related to RT

DBMS. Section 3 gives a brief presentation of the QoS

management architecture in RTDBMS. The QMS

components are the subject of Section 4. The framework

architecture is detailed in Section 5. In Section 6, we present

the proposed methodology. Section 7 presents the

framework implementing. In Section 8, we give the results

of experiments on a concrete QMS. We end this paper with a

conclusion and give some future works.

192Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 211 / 512

II. RELATED WORK

QMSs mentioned above, that we have deeply studied, are

not modeled. They are described in a natural language and

presented through an architecture, QoS parameters, system

variables and algorithms acting to meet the QoS

specification. In the RTDMS domain, there are some object-

oriented models focusing on Real-Time object-oriented

databases modeling, and especially on system aspects, such

as RTSORAC [6], RODAIN [21] and BeeHive [20].

These works propose object-oriented models that only

consider structural and behavioral features of Real-Time

data and transactions. Some of them partially support the

modeling of scheduling, concurrency control, Real-Time

data distribution and quality of service policies. They

provide only specific data and transactions models and

cannot support new data and transactions constraints.

Other works offer UML profiles for modeling RTDBMS,

such as RTO-RTDB [15], RTO [9][13]. They provide UML

extensions for Real-Time databases designers, through

stereotypes, which express both the Real-Time data and

transactions constraints.

The related work that we have presented provides a rich

foundation upon which we can build. However, the QoS

modeling is partially supported in these models, which

provide specific QoS parameters and cannot specify new

parameters. They are all focused on data management and

do not consider transactions management. Moreover, there is

no one work that focuses on QMS modeling and reuse.

III. QOS MANAGEMENT ARCHIRECTURE IN REAL-TIME

DATABASE MANAGEMENT SYSTEMS

The QoS is specified by the DBA through QoS

parameters, which are metrics defining the desired

performance of the RTDBMS. The DBA specifies Quality of

Data (QoD) and Quality of Transactions (QoT) parameters

with reference values they must not exceed. In transient

overloads, an overshoot of these thresholds may be tolerated

by giving the worst-case system performance. Here, we give

an example of QoS parameters proposed in [11].

- Deadline Miss Ratio (MR) is the percentage of user

transactions that missed their deadlines regarding to the

accepted ones. MR is considered as a QoT parameter.

- Perceived freshness (PF) is the ratio of fresh data to the

entire temporal data in a database. Fresh data are data

updated within their validity interval. It is considered as a

QoD parameter.

- Maximum Overshoot (Mp) defines the worst-case system

performance in the transient system state, e.g., the

highest MR in the transient state. QoS parameters can

overshoot their reference values at maximum of Mp.

- Settling time (ts) is the time for the transient overshoot to

decay and reach the steady state performance.

In [11], authors propose the following QoS specification:

MR≤ 5%, PF≥98%, Mp ≤ 30% and ts ≤ 45sec.

The well-known QMS for RTDBMS use the FCSA

because it provides the QoS specification guarantee without

a priori knowledge of transactions workloads using feedback

control. FCSA has shown to be very effective for a large

class of systems that exhibit unpredictable workload. For

instance, it was applied to improve the QoS in distributed

multimedia systems [22] and recently in geographic

information Systems [23].

The basic FCSA applied by most QMSs in RTDMS

(Figure 1) was proposed in [2]. This architecture is based on

the principle of observation and self-adaptation. The

observation is the periodic measurement of QoS parameters

by a Monitor. The auto-adaptation is the dynamic adjustment

of the measured QoS to converge to the required QoS

achieved by the QoS Manager. The adjustment is computed

by a QoS controller containing feedback loops. The QoS

Manager executes a QoS management algorithm, which

implements adjustment scenarios based on system states [2].

The well-known QMSs in the literature [2][3][11][12] are

efficient to guarantee the QoS specification even in transient

overloads thanks to the FCSA and Imprecise Computation

techniques, which allow the use of approximate results and

imprecise data. However, these solutions may be inadequate

for RTA requiring specific QoS requirements and using

specific data and transactions models. It is more common to

take a subset of their elements in order to reuse them for a

new QMS design, which is not provided by related works.

IV. QOS MANAGEMENT SOLUTIONS COMPONENTS

Through the evaluation of the most referenced QMS [1],

we conclude that their differences and similarities are

focused on three components: Models, Parameters and

Policies, which are interdependent. In addition, RTA

requirements can be regrouped according to these

components, which are worth of reuse to fit new

requirements. For instance, take a RTA that requires a

deadline miss ratio MR≤10% and its user transactions can

follows the Milestone model that tolerates transaction

Figure 1. Basic Feedback Control Scheduling Architecture in RTDMS.

193Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 212 / 512

Figure 2. QoS Management Solutions Meta-modeling architecture.

imprecision, but does not tolerate data imprecision for

critical data. In this case, the suitable QMS must combine

transactions and queues models from the FCS-IC1 QMS [2]

with the data model, from the QMF1 QMS [11] and combine

QoD parameters from QMF1 with QoT and loops

parameters from FCS-IC1. Policies of QMF are suitable for

this RTA with some reconfiguration. If the same RTA

tolerates data imprecision, but requires specific QoS

management scenarios, then the FCS-IC1 can be reused in

this case, but its QoS management policy must be rewritten.

The component Models gathers the different models used

by a solution, namely: the Real-Time transactions model, the

Real-Time data model and the queues model, which vary

from a solution to another. We employ the notion of data

model to define data attributes, data types and data

imprecision implementation. For instance, authors in [2]

allow data to deviate, to a certain degree, from their

corresponding values in the external environment. The

transactions model denotes transactions attributes,

transactions types and the transactions imprecision

implementation, e.g., multiple versions, use of sieve

functions and the Milestone approach [10]. The queues

model describes the queues configuration through the

number of queues, priority levels and types of transactions in

each queue.

The component Parameters includes the QoD and QoT

parameters, system parameters such as ts and Mp and

feedback loops parameters that differ from one QMS to

another. The Parameters component configuration depends

on that of Models component.

The component Policies is based on the two previous

components. It comprises algorithms which impact on the

QoS, namely: the scheduling algorithm, the concurrency

control algorithm, the updating algorithm and the QoS

management algorithm. This later tries to balance the

RTDBMS workload between user and update transactions

through a compromise between QoT and QoD. For instance,

if the system downgrades the QoD, many update

transactions will be rejected and vice versa.

V. FRAMEWORK ARCHITECTURE

Our proposal is guided by the need to reuse some

elements of QMSs in order to better meet new QoS

requirement and specific constraints on Real-Time data and

transactions. For this purpose, we provide to users a

theoretical and practical framework allowing them design

and extend their own QMS models. This framework is based

on the reuse of the well-known QMS models, which are

modeled by an expert using a specific editor and broken

down into reusable fragments, that represents QMS

components (Section IV).

A. Meta-modeling architecture

The framework provides "productive" QMS models that

can be processed and transformed automatically in order to

be reused. This is allowed using the OMG meta-modeling

architecture [24] and models transformations [5], which are

the core of the MDE approach that we adopted.

 The proposed four-layered modeling architecture is based

on the OMG meta-modeling architecture for the MDE

(Figure 2). In the lowest layer M0 of systems, we find QMS.

The layer M1 above M0 contains the models that represent

QMSs, which we call QoS Management Approaches

(QMA). A model in M1 must be conformant to its meta-

model in the layer above, named M2, which defines all the

concepts of a model and is considered as an abstract syntax

of a specific modeling language to formalize model

description. In this work, we designed a QMS meta-model

named MM-SGQdS to formally express their corresponding

QMA in a modular way that represents all QMS

components. Thus, QMAs will be conformant to MM-

SGQdS and can be easily manipulated and reused. To

implement MM-SGQdS, we chose the EMF core (Ecore)

meta-meta-model at the layer M3 (above M2) [4]. It is a

subset of the OMG standard meta-modeling language MOF

[17] that formalizes the description of meta-models in M2.

Let us now present the MM-SGQdS meta-model and its

concepts.

B. QoS Management Solutions Meta-model

For each QMS component, namely: Models, Parameters

and Policies, we proposed a specific meta-model (in layer

M2) to formally express its elements and relationships

between them. They are respectively called MO-MM, PA-

MM and PO-MM (Figure 2). Thus, MM-SGQdS is

comprised of these three meta-models as illustrated by

Figure 3 showing its abstract view simplified.

MO-MM comprises three main meta-classes, namely:

TransactionsModel, DataModel and QueuesModel

describing elements of the Models component. PA-MM

includes four main meta-classes, namely: QoDParameters,

QoTarameters, SystemParameters and LoopsParameters

194Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 213 / 512

modeling elements of the Parameters component. PO-MM

has four main meta-classes, namely:QoSPolicy,

SchedulingPolicy, UpdatingPolicy and ConcurrencyPolicy

correponding to elements of the Policies component. Each

meta-model has a tree stucture with a root meta-class linking

its main meta-classes. The root meta-classes of MO-MM,

PA-MM and PO-MM are linked to a meta-class called

QoSApproach, the root of the tree structure of MM-SGQdS.

A QMA conformant to MM-SGQdS is comprised of three

reusable fragments called Approach Fragments (AF),

namely: Frag-Models, Frag-Parameters and Frag-Policies

(Figure 2), which represent respectively Models, Parameters

and Policies component and conformant to MO-MM, PA-

MM and PO-MM meta-model, respectively.

C. Logical architecture

In the software reuse domain, two kinds of actors are

involved, namely: developers for reuse and developers by

reuse. In this work, which focuses on QMA reuse, the

framework involves two kinds of actors, namely the

RTDBMS experts and the QMA designers. The expert

generates and manages AF for reuse, while the designer

reuses these fragments in order to build a new QMA. The

two actors are guided by a methodology, which will be

described later in this paper. Existing QMSs are modeled by

the expert through a specific QMA editor to generate

corresponding QMAs and then broken down into AF. The

generated fragments are stored in a database to be reused by

the designer or the expert in new situations (Figure 4).

For the decomposition of QMA, the expert uses a

transformation called Decomposition, which generates the

three AF. To build of a new QMA, the designer uses a

transformation called Composition, which assemble AF from

different QMA. The transformation called Extension is used

to extend existing QMA by adding some elements from

other approaches.

The new QMA are in turn broken down by the expert into

AF using the Decomposition transformation.

Generated AFs are inserted into the database to be reused.

The two Processes in Figure 4 are part of a strategic

methodology for QMA design, which is the subject of the

following Section.

VI. STRATEGIC METHODOLOGY FOR QOS MANAGEMENT

APPROACHES DESIGN

To guide framework actors to achieve their goals, we

propose a methodology that defines two strategic processes,

namely: GEN-PM, a process for generating AF (expert side)

and CONS-PM, a process for building new QMA by reuse

(designer side). These processes are modeled through the

MAP formalism [19] for its flexibility and simplicity. A

MAP-based process model, called map, is an oriented graph

that represents explicitly goals to be achieved on nodes with

the different strategies for achieving them on oriented

labelled arcs. Subsequently, we detail the two processes

models.

A. Approach fragments generating process

The map for modeling the AF generating process, named

GEN-PM, contains different strategies related to three main

goals, namely, generating AF, managing AF and editing

QMA (Figure 5).

- Generating AF: three strategies are defined to achieve this

goal. The strategy "by decomposition" aims to break down a

QMA through a Decomposition transformation for QMA in

order to extract the three AF (Frag-Models, Frag-

Parameters and Frag-Policies). Thereafter, generated AFs

are stored in the database with their elements, which are

generated through a Decomposition transformation for AF.

Figure 3. Abstract view of the meta-model MM-SGQdS.

Figure 4. The framework logical architecture.

195Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 214 / 512

The strategy "by extension" aims to extend an existing

fragment by adding it some elements with conformance to

its meta-model. The expert can combine elements from

different AF to build new AF, which constitutes the aim of

the strategy "by composition". He can design a new AF

"from scratch" for specific needs, using a specific AF editor

provided by the framework.

- Managing AF: to achieve this intention, we set three

strategies, namely: "editing", updates the values of an AF

properties, "deleting", deletes un-usefull AF from the

database, and "storing", adds a new AF in the database.

- Editing QMA: existing QMS are modeled through a

specific editor based on their meta-model MM-SGQdS

following the strategy "by editing".

The "Start" and "End" goals define the start and the end of

the process, respectively. At the end of the process, the

strategy "validation" is used to check the composition. Each

new fragment must be stored in the database to be persistent

and reused thereafter, which is the role of the strategy

"storage".

B. QoS Management Approach building process

The process focusing on QMA building, called CONS-

PM, is based on model reuse through model transformations.

It represents designer goals and strategies to achieve them.

The CONS-PM map comprises three major goals, namely

selecting AF, composing QMA and extending QMA.

- Selecting AF: concerns the ways to search for AF from the

database before composing them (by name, by type or by

approach name).

- Composing QMA: builds a new QMA by linking AFs

from stored QMAs or new AFs, with conformance to MM-

SGQdS, using a QMA transformation called Composition.

- Extending QMA: to extend a QMA, the designer must

search this approach by its name, and then he inerts into the

QMA some AF elements (e.g., data model, QoD parameter,

QoSPolicy, etc.), which are generated after AF

decomposition, to meet RTA requirements. If necessary,

new elements can be edited by the expert to be used by the

designer.

VII. IMPLEMENTATION

For the framework implementation, we used the Eclipse

Meta-modeling Framework (EMF) [4] to benefit from a set

of tools, such as reflexive editors or XML serialization of

models.

The different meta-models are implemented with Ecore,

the EMF meta-modeling language. The model

transformations are implemented with KerMeta [7]. It is an

object oriented meta-modeling language. It does not focus

only on structural specifications but supports the

specification of the operational semantics of meta-models.

Thus, models can be simulated. In addition, it is a powerful

model transformation language.

A. Meta-models implementation

MM-SGQdS and the AF meta-models have a tree

structure to simplify their reuse through Decomposition,

Composition and Extension transformations. An excerpt of

MM-SGQdS, displayed with the EMF reflective editor, is

illustrated in Figure 6.

The meta-class QoSApproach is the root of MM-SGQdS.

The composition links parameters, models and policies

reference respectively the meta-classes FragParameters,

FragModels and FragPolicies, the roots of respectively, PA-

MM, Mo-MM and PO-MM. The meta-attributes like appid

and appname are QMA properties.

B. Model transformations implementation

A transformation is the automatic generation of a target

model from a source model, according to a transformation

definition. A transformation definition is a set of

transformation rules that together describe how a model in

the source language can be transformed into a model in the

target language. A transformation rule is a description of

Figure 5. Map of approach fragments generating process.

Figure 6. Excerpt of MM-SGQdS tree view.

196Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 215 / 512

how one or more constructs in the source language can be

transformed into one or more constructs in the target

language [25].

In this work, model transformations are applicable to

multiple source models and/or multiple target models. We

focus on horizontal and exogenous transformations called

Migration that keep the same level of abstraction (M1) with

models expressed using different meta-models [26].

Three categories of model transformations are proposed,

namely: Decomposition, Composition and Extension. These

transformations are implemented for three model levels:

QMA, AF (Frag-Models, Frag-Parameters and Frag-

Policies), and QoS management policies (within the

fragment Frag-Policies). This results in fifteen KerMeta

modules. All these transformations are tested on the FCS-

IC1 solution but we cannot present all results in this short

paper, neither their implementations.

VIII. EXPERIMENTS

The experiments were carried out on a QMA

representing a concrete QMS, called FCS-IC1 [2], which

was modeled using a specific QMA editor. We tested the

QMA decomposition transformation. The generated AF

(Frag-Models, Frag-Parameters and Frag-Policies) have

been used to compose a new QMA, which is identical to the

original QMA. We also tested the QMA extension by adding

a new QoS Management scenario to the QoS Management

Policy within the Frag-Policies fragment of the original

QMA.

Other transformations are tested to reuse AF elements,

which are very useful for designers. For instance, the Frag-

Models fragment of the FCS-IC1approach was decomposed

into three elements modeling respectively the transaction

model, the data model and the queues model. These

elements are recomposed to generate a new Frag-Models

fragment identically to the original fragment.

A. Expert side experiments

1) Approach edition

The EMF easily generates model editor for an Ecore

meta-model to create instances which conform. This allowed

us generate QMA editor and editors for each AF. For

instance, the QMA editor provides the expert, through a

QoSApproach Editor menu (Figure 7), a way to instantiate

the QMA root meta-class (instance of the QoSApproach

meta-class) and to configure its related AFs conformant to

MM-SGQdS.

The Edited models for QMA or AF modeling are

serialized in XMI for their persistence in the database. To

display models, EMF provides a graphical mode using its

reflexive editor. We developed methods to load AFs from

their XMI files for reuse and to display them in a textual

mode, which is not provided by EMF.

2) Approach decomposition

To decompose a QMA into AF, we developed a KerMeta

module named decomposeQoSapproaches.kmt. The method

decompose of this module parses the QMA from its root.

 For each fragment identified through a composition link

(instance of parameters, models or policies links in MM-

SGQdS) the method instantiates a new fragment conformant

to its meta-model (MO-MM, PA-MM or PA-MM). Each AF

is serialized in XMI for its persistence.

An excerpt of the graphical display of the Frag-Models

fragment, resulting from the FCS-IC1 approach

decomposition, is illustrated in Figure 8. This fragment

represents the model of the Models component of the FCS-

IC1 solution.

It begins with the configuration of the Frag-Models fragment

with conformance to MO-MM. There are detailed the data

model elements followed by the transactions model

elements.

Figure 7. QoS Management Approach Editor.

Figure 8. Excerpt of the Frag-Models fragment of FCS-IC1 QMA.

197Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 216 / 512

B. Designer side experiments

1) Approach composition

This transformation generates a new QMA conformant to

MM-SGQdS. The new approach is serialized to XMI and

displayed in a textual mode. The KerMeta module developed

for this purpose is called composeQoSApproaches.kmt. It

contains a method named compose that has a unique

parameter, a string array, containing the names of XMI files

of serializes AF that will be assembled. For each file, we get

the tree structure of the AF by loading its XMI file and

meta-model. Then, AF elements are matched to QMA

elements and attached to the root of the new QMA. An

excerpt of the textual display of the composed FCS-IC1

approach is illustrated in Figure 9. It has the same fragments

of the original FCS-IC1 approach.

2) Approach extension

We tested the extension of the QoS management policy of

the FCS-IC1 approach (included in its Frag-Policies

fragment) with a new QoS management scenario. For this

purpose, we propose to apply on-demand updates to non-

critical data when the system is at maximum overload. In

this way, we can avoid the system saturation, during which

all coming user transactions are rejected. This new scenario

was modeled with corresponding editor (Figure 10) and

added to a copy of FCS-IC1approach with conformance to

MM-SGQdS.

IX. CONCLUSION

In this paper, we proposed an MDE-based framework to

automate the reuse of QMA in RTDBMS, which is useful to

meet new RTA constraints and QoS requirements. The MDE

aims to increase productivity by offering modeling

languages tailored to a specific domain, which are typically

defined by meta-models. The QMA reuse is based on model

transformations, which is the core concept of MDE. Three

categories of model transformations are proposed, namely:

Decomposition, Composition and Extension. These

transformations are implemented for three model levels:

QMA, AF (Frag-Models, Frag-Parameters and Frag-

Policies), and QoS management policies (within the

fragment Frag-Policies). These transformations will be

detailed in an extended version of this paper. The framework

provides also a methodology consisting of two strategic

processes GEN-PM and CONS-PM to help experts and

designers achieve their goals with multiple strategies to

achieve them, depending on their requirements.

Based on meta-models, we generated editors for QMA

and their reusable fragments. We implemented and tested

transformations on a concrete QMA. After decomposition,

no specificity is ruled out and the rebuilding leads to the

initial approach, conformant to the meta-model MM-

SGQdS.

Actually, we are interested in providing users a tool for

querying the models in order to extract useful knowledge for

reuse.

REFERENCES

[1] S. M’barek, L. Baccouche, and H. Ben Ghezala, "An

evaluation of QoS management approaches in Real-Time

databases". In proc. of the Third International IEEE

Conference on Systems. Cancun (ICONS’08), Mexico, 2008,

pp. 41-46.

[2] M. Amirijoo, J. Hansson, and S. H. Son, "Specification and

Management of QoS in Real-Time Databases Supporting

Imprecise Computations", IEEE Transactions on Computers,

vol. 55, no. 3, 2006, pp. 304-319.
[3] E. Bouazizi, B. Sadeg, and C. Duvallet, "Improvement of QoD

and QoS in RTDBs", In proc. of 14th int. conf. on Real-Time
and Network System, Poitiers, France, May 30-31, 2006, pp.
87-95.

[4] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks,

EMF: Eclipse Modeling Framework, second edition (Eclipse),

Addison-Wesley Longman, Amsterdam, 2009.

[5] J. M. Favre, "Towards a Basic Theory to Model Driven

Engineering". In Proc. third Workshop in Software Model

Engineering (WISME 2004), Lisbon, portugal, 2004, pp. 262-

271.
[6] L. C. DiPippo and L. Ma, "A UML package for specifying

Real-Time objects", Computer Standards and Interfaces, vol.
22, no. 5, 2000, pp. 307-321.

[7] Z. Drey, C. Faucher, F. Fleurey, and D. Vojtisek, KerMeta
language reference manual, 2009.

[8] K. Ramamritham, S. H. Son and L. C. Dipippo, "Real-Time
Databases and Data Services", Real-Time Systems, vol. 28,
no. 2-3, 2004, pp. 179-215.

[9] Z. Ellouze, N. Louati and R. Bouaziz, "The RTO-RTDB Real-

Time Data Model". In Proc. of The 2012 World Congress in

Figure 9. Textual display of composed FCS-IC1.

Figure 10. Model of the QoS management scenario used to

extend FCS-IC1.

198Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 217 / 512

Computer Science, Computer Engineering, and Applied

Computing, 2012, pp. 333-339.
[10] J. W. S. Liu, W. K. Shih, K. J. Lin, R. Bettati, and J. Y.

Chung, "Imprecise computations", Proceedings of the IEEE,
vol. 82, no. 1, 1994, pp. 83-94.

[11] K. D. Kang, S. H. Son and J. A. Stankovic, "Managing
Deadline Miss Ratio and Sensor Data Freshness in Real-Time
Databases". IEEE Trans. Knowl. Data Eng. vol. 16, no. 10,
2004, pp. 1200-1216..

[12] B. Alaya, C. Duvallet and B. Sadeg, "A new approach to
manage QoS in Distributed Multimedia Systems", (IJCSIS)
International Journal of Computer Science and Information
Security, vol. 2, no. 1, 2009, pp. 1-10.

[13] N. Idoudi , N. Louati, C. Duvallet, R. Bouazizi, B. Sadeg and
F. Gargouri, "A Framework to Model Real-Time Databases".
International Journal of Computing and Information Sciences
(IJCIS), vol. 7, no. 1, 2010, pp. 1–11.

[14] K. Liu, V. C. S Lee., J. K-Y Ng, J. Chen and S. H. Son,
"Temporal Data Dissemination in Vehicular Cyber–Physical
Systems", IEEE Transactions on intelligent transportation
systems, vol. 15, no. 6, 2014, pp. 2419-2431.

[15] N. Louati, C. Duvallet, R. Bouaziz, and B. Sadeg, "RTO-
RTDB: A Real-Time object-oriented database model", In proc.
of the 23rd IASTED International Conference on Parallel and
Distributed Computing and Systems, Dallas, USA, 2011, pp.
1-9.

[16] C. Lu, J. A. Stankovic, G. Tao and S.H. Son, "Feedback
control Real-Time scheduling: Framework, modeling and
algorithms", In Journal of Real-Time Systems, vol. 23, no. 1,
2002, pp.85-126.

[17] OMG. Meta Object Facility (MOF) specification - version
1.4, formal/01-11-02, Avril 2002.

[18] K. Ramamritham, S. H. Son and L. C. Dipippo, "Real-Time
Databases and Data Services", Real-Time Systems, vol. 28,
no 2-3, 2004, pp. 179-215.

[19] R. Deneckere, E. Kornyshova and C. Rolland, "Enhancing the
Guidance of the Intentional Model MAP: Graph Theory
Application", IEEE 3rd int. conf. on Research Challenges in
Information Science RCIS'09, Fes, Morocco, 2009, pp. 13-22.

[20] J. A. Stankovic and S. H. Son, "Architecture and Object Model
for Distributed Object-Oriented Real-Time Databases", In
Proc. 1st Int. Symp. on Object Oriented Real-Time Distributed
Computing, Kyoto, Japan, 1998, pp. 414–424..

[21] T. Niklander and K. Raatikainen, "RODAIN: A Highly
Available Real-Time MainMemory Database System". In
Proc. of the IEEE International Computer Performance and
Dependability Symposium, Durham, NC, 1998, pp. 271-.

[22] B. Alaya, C. Duvallet and B. Sadeg, "Feedback architecture
for multimedia systems". In proc. of the IEEE/ACS
International Conference on Computer Systems and
Applications (AICCSA 2010), 2010, pp. 16-19.

[23] S. Hamdi, E. Bouazizi and S. Faiz, "A new QoS Management
Approach in Real-Time GIS with heterogeneous Real-Time
geospatial data using a feedback control scheduling". In Proc.
19th International Database Engineering & Applications
Symposium (IDEAS’15), 2015, pp.174-179

[24] C. Atkinson, and T. Kühne, "Model-driven development: A

metamodeling foundation". IEEE Software, vol. 20, no. 5,

2003, pp. 36–41.

[25] A. Kleppe, J. Warmer and W. Bast., MDA Explained, The

Model-Driven Architecture: Practice and Promise. Addison

Wesley. 2003.

[26] T. Mens, P. Van Gorp, "A taxonomy of model

transformation". Electronic Notes in Theoretical Computer

Science 152, 2006, pp. 125–142.

199Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 218 / 512

An Approach for Reusing Software Process Elements based on Reusable Asset
Specification:

a Software Product Line Case Study

Karen D. R. Pacini
and Rosana T. V. Braga

Institute of Mathematics and Computer Sciences
University of São Paulo
São Carlos, SP, Brazil

Email: karenr@icmc.usp.br, rtvb@icmc.usp.br

Abstract—Software reuse is becoming an important focus of both
academic and industrial research since the rising demand for new
software products and technologies is constantly growing. The
short time to market, limited resources and lack of specialists
are the main reasons for this investment on software reuse. As
long as customers demand speed to deliver, there is a increasing
special concern about software quality. In this context, we propose
an approach to support both better time to market and software
quality from reusing software process elements using the Reusable
Asset Specification (RAS). This approach presents a mapping
structure to represent process elements as reusable assets. The
sharing of process elements among several projects aims to
decrease time spent on defining the process model, as well as
reducing the space used to store processes and their elements.
Documenting these processes will also be facilitated, since it is
possible to reuse a whole process or process’s sub-trees that
have already been documented or even certified. To illustrate
our approach, we present a case study where a Software Product
Line (SPL) process is mapped to RAS, highlighting the issues
raised during the mapping and how we proposed to solve them.

Keywords–Software Process; Process Reuse; Software Product
Line; RAS; Reusable Asset Specification.

I. INTRODUCTION

The software industry has been adapting to the large
increase of demand arising from the constant evolution of
technology. The concept of software reuse gets an important
role on this new way of software manufacturing, in which
development time is reduced, while quality is improved [1].
Software product lines (SPL) emerged in this context, to
support reuse by building systems tailored specifically for
the needs of particular customers or groups of customers [1].
Reuse in SPL is systematic – it is planned and executed for
each artifact resulting from the development process.

The most common SPL development approaches, such
as Product Line UML-Based Software Engineering (PLUS)
[2], Product Line Practice (PLP) [1], etc., are focused on
the process to support the domain engineering and/or the
application engineering, without considering the computational
tools that support the process. Indeed, the choice and use
of tools are made apart from the process and are strongly
associated to variability management, i.e., dealing with the
definition of the feature model and its mapping to the artifacts
that implement each feature. Some examples of these tools
include Pure::Variants [3], Gears [4], and GenArch [5].

To support a uniform representation of reusable assets, in
2005 the Object Management Group (OMG) has proposed the
Reusable Asset Specification (RAS), which allows a common
approach to be used by developers when storing reusable
assets [6]. RAS offers a basic structure (CORE), but allows
the creation of extension modules in order to adequate to the
particular needs of each project. The specification is available
via XML Schema Definition (XSD) and XML Metadata Inter-
change (XMI) files and its usage is defined by profiles. In the
particular case of SPL, the use of RAS to model repositories
contributes to make assets compatible to each other.

Several extensions to the original RAS profile have been
presented, however their focus is on improving the represen-
tation of specific types of reusable assets [7][8][9]. However,
we have not found any works showing how RAS could be
used to represent the elements of a process, in particular in
the SPL domain. This is not a trivial task, as there are several
decisions to be made, for example, how process elements that
are compositions of other elements should be stored using
RAS. This also motivated this work, as we are interested in
extending reuse to the process level, i.e., to facilitate the reuse
of process phases, activities, or any other assets related to the
process itself. In the particular case of SPL, it is important to
consider approaches successfully applied in practice and well
documented, such as the approaches proposed by Gomaa [2]
and by Clements [1], for creating the case study to apply our
approach. The use of these approaches is supported by their
wide documentation and can illustrate scenarios for a variety
of real applications.

So, the main motivation for this work is that, although
SPL development approaches focus on establishing the process
itself, only SPL artifacts are considered as reusable assets,
rather than the process elements that could bring a number
of benefits if appropriately reused. Indeed, current approaches
do not motivate process reuse, which causes rework each
time a process needs to be instantiated from the general
processes. Additionally, experience gained from successful
projects executed in the past are not taken into account when
new similar projects arise, because they were not adequately
stored for reuse.

Therefore, considering this context, this paper aims at
proposing an approach that allows the storage of process
elements using RAS, in particular in the SPL domain. This

200Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 219 / 512

can leverage the reuse of each SPL process element across
several projects, in an independent way, potentially increasing
reuse. As process elements can be composed of other process
elements, reuse can be done both for single elements or
elements in higher levels of the hierarchy, which contain
one or more elements. So, the paper has also the objective
of describing the main problems found when trying to map
process elements to RAS and gives insights on how this has
been solved by our approach.

Software & Systems Process Engineering Meta-model
(SPEM) version 2.0 [10] was the process meta-model that
inspired our approach. This is because SPEM is being widely
employed as a software process modeling language, as indi-
cated by Garcia-Borgonon [11]. It was used as basis to define
our own structure, which represents several types of processes,
as presented in the paper. It is important to notice that, although
this paper presents a SPL process to exemplify the approach,
any software processes that matches the model proposed in
this paper could be used.

The remainder of this paper is organized as follows.
Section II presents some background on SPL development and
RAS. Section III presents our approach to store SPL process
elements as reusable assets using RAS. Section IV presents
a case study to illustrate our approach. Section V discusses
related work and, finally, Section VI presents conclusions and
future work.

II. BACKGROUND

In this section, we describe a SPL technique (PLUS) and
a reuse standard (RAS) that have been used as a foundation
for the proposed approach, so they are important to allow its
understanding.

A. SPL Development Process: the PLUS approach
PLUS [2] is the SPL process chosen as a case study to

illustrate the approach presented in this paper. However, any
other SPL process could have been used, since the main idea
is to illustrate how a SPL process can be represented using
RAS.

PLUS employs methods based on the Unified Modeling
Language (UML) [12] to develop and manage SPLs. Its main
goal is to model features and variabilities of an SPL. The
approach is based on the Rational Unified Process (RUP) [13]
and each phase corresponds to a RUP work-flow with the same
name.

The process used by PLUS is evolutionary and has two
main activities: the product line engineering (or Domain En-
gineering) and the Application Engineering (configuration of
the target system that results in a new product). For each
activity, either in Domain or Application Engineering, there is
a corresponding evolutionary process (Evolutionary Software
Product Line Engineering Process - ESPLEP).

According to Gomaa [2], ESPLEP life cycle for Domain
Engineering is composed of five activities with the three
most important: requirements modeling, analysis modeling and
design modeling, as can be observed in Figure 1. During
requirements modeling, the SPL scope is defined, resulting
in use cases and feature models. The analysis modeling in-
cludes static modeling, dynamic modeling, finite state machine
modeling, as well as the construction of objects and analysis

of dependencies between features and/or classes. The design
modeling involves the definition of the SPL architecture.

Figure 1. Process for applying the PLUS approach to SPL Engineering
Phase - Adapted from Gomaa [2]

These are the basic activities, but variations can be added to
the process. A characteristic of this approach is that stereotypes
are used in the diagrams to identify different types of use cases,
class diagrams or object diagrams (e.g., to denote mandatory
or optional features).

B. Reusable Asset Specification
There is an increasing demand to ease software reuse,

as it involves high costs associated to creating, searching,
understanding, and using the assets found in a specific context.
So, the creation of standards to organize and package assets is
necessary. In this context, the OMG has proposed the Reusable
Assets Specification (RAS) [6], which is a group of object
management standards to allow the packaging of digital assets
to improve their reusability.

RAS supplies, through a consistent standard, a set of
guidelines that help to structure reusable assets. This can
reduce conflicts that would arise when trying to reuse them.
RAS models are based on UML [12] and Extensible Markup
Language (XML).

The specification describes the reusable assets based on
a model called Core RAS, which represent the fundamental
elements of an asset. This core model can be adapted if
necessary, by creating Profiles. RAS Profiles are a formal
extension of core structure, which allows to add or improve in-
formation according to a specific context. They can be created
to introduce more rigid semantics or constraints, however they
must not change core definition or semantics. OMG supplies
the default profile, based only in Core RAS, and also two
customized profiles to be used in specific situations: the default
component profile to support the principles and concepts of
software components, and the default Web Service Profile that
describes the client portion of a web service. Other extensions
exist as well [7].

Core RAS packaging structure is split in five major sections
(or entities): Classification, Usage, Solution, Related Assets
and Profile, as shown in Figure 2.

201Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 220 / 512

Figure 2. Core RAS Major Sections, Adapted from OMG [6]

Classification is a container entity used to allow the classi-
fication of assets to ease their further retrieval. It can contain
descriptors, tags, and values, besides the context (domain,
development, test, deployment, etc.). Usage contains usage
instructions that improve the understanding of the asset before
its usage, as well as how to perform the customization of the
variation points. Solution contains the artifacts of the asset,
which can be requirements, models, code, tests, documents,
among others; Related Assets - describes other assets related to
this one, together with the relationship type (e.g., aggregated,
similar, dependent). Profile defines the version of the profile
to which the asset refers to (e.g., the default profile, or any
other extensions).

III. THE PROPOSAL

Although different SPL development processes share a
common basis, they also contain variabilities. This motivates
representing them as reusable assets. Therefore, in this paper,
we propose to store process elements regarding SPL develop-
ment as reusable assets using RAS (see Section II-B). In order
to accomplish that, it has been defined a process modeling
structure to represent processes.

A. Process Modeling Structure

The process modeling structure used in our approach is
shown in Figure 3. It contains several elements: process model,
phase, activity, artifact, etc. This structure was inspired on
OMG SPEM 2.0 [10] concepts, and aims to represent all
process elements for a software development process, i.e.,
it must be capable of representing processes from different
development approaches existing in the literature (in the SPL
domain we can mention ESPLEP - see Section II-A).

It is important to notice that this model is used to represent
both the process template (i.e., the process model as defined
by its authors) and the process instance, which is derived
by instantiating the process template for particular purposes.
A process instance refers to a template but has its own
elements, according to the process execution. This is important
because we may want to reuse not only the templates, but
also the instances that were successful in a particular context
and thus can be recommended when similar situations occur.
For example, PLUS is a process model (template) that can
be reused in a concrete SPL project, resulting in a process
instance. Later, when a new project begins in a similar context,
instead of reusing PLUS, we might want to reuse the instance
instead, because it is already customized to the new context.

Figure 3. Process Model derived from SPEM

B. Modeling Structure Applied to Process Template and In-
stance

To illustrate the usage of the model proposed in Figure
3 we show, in Figure 4, the example of a random software
development enterprise that is developing a SPL to ease
the development of applications for hotel management (this
example was chosen as the business is simple and it helps
to understand the difference between process template and
process instance). The development process was instantiated
from ESPLEP (Figure 1) and here we focus only on the domain
engineering phase. The domain engineer starts by creating
a specific Project (Hotel SPL Project) and, associated to it,
a Process instance (Hotel SPL Process), which in turn is
associated to ESPLEP. In the figure, we use stereotypes to
identify the roles played by each class in the example and [...]
to express that other analogous instantiations can take place.

Figure 4. Example of ESPLEP instantiation on the proposed Process Model.

For each ESPLEP process element, we have to analyse
whether it is adequate to our Hotel SPL process and, if so, cre-
ate the respective instance. Additionally, the Hotel SPL process
can be adapted to the particular context of the enterprise, for
example adding new activities or artifacts, skipping optional
activities, etc., as long as ESPLEP allows these adaptations.
This is possible because, during the definition of ESPLEP
modeling, it has been defined which elements are mandatory or
optional. Mandatory elements need to have an instance, while

202Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 221 / 512

optional elements can be omitted.

C. Mapping Process Elements to RAS
We propose to map each process element to an independent

RAS Asset, as shown in Figure 5. We discuss the rationale
for that later in Section III-D. In the figure, this mapping
is done considering the example of a template process and
its associated elements. At the left-hand side of the figure,
we have the process template, in the middle we have RAS,
and at the right-hand side, examples of values assumed by the
properties.

Figure 5. Example of a Mapping Structure from Process Template to RAS.

As presented in the figure, the attributes name and id have
a direct relationship in both structures (Process Template and
Asset). The description attribute is mapped to the Description
RAS attribute, but is limited to the first 50 characters of
the short-description attribute from the RAS Asset. The type
attribute is mapped to the Classification element in RAS. The
other process elements are treated as independent Assets, so
they are created separately in the RAS structure and then
related to each other through the RelatedAsset RAS element.

After doing this mapping, all the process information is
stored in a RAS structure, however, according to RAS, some
mandatory elements still need to be filled in. For example,
the Asset has attributes: date, state, version and access-rights,
which can be completed with default values as shown in Figure
5. The Profile element is mandatory and identifies which
profile is being used to represent the Asset. In this case, we are
using the DefaultProfile, version 2.1, as shown later in Section
IV-A.

Another important mandatory element in the RAS structure
is the Solution, which has to be filled in with information and
related documents corresponding to the process element being
stored. For example, in the Process Template the representation
could be a file containing the complete structure of the process
in an XML document. There are other optional elements
exemplified in the case study.

D. Increasing the Potential Reuse
An important goal of the proposed approach is to enhance

the potential reuse of processes, as well as decreasing time,

effort, and storage space when creating and instantiating pro-
cesses. By storing each element independently as a reusable
asset, it is possible to share it among different processes
and process instances, as illustrated in Figure 6. When an
element is shared among processes, the whole tree with related
elements associated to the root element is shared as well.

Figure 6. Example of Potential Reuse

As can be observed in Figure 6, the process element
identified by ExpAct 3 represents an expected process activity,
which is being referenced by three different expected phases.
These phases are referenced by two different processes. The
reuse of process elements as suggested by our approach allows
we to share elements both in the process template and in the
process instances, although the example in Figure 6 illustrates
reuse only in template elements. This leads to a greater reuse
potential, besides the fact that any repository or tool based on
RAS can be easily used.

IV. CASE STUDY

As described in the previous section, our approach allows
the representation of process elements according to RAS, both
for the process template and its execution. ESPLEP is com-
posed of five expected phases (see Section II-A): Requirements
Modeling, Analysis Modeling, Design Modeling, Components
Incremental Implementation, and Software Testing. Each phase
is composed of expected activities and their expected artifacts.

RAS is flexible regarding the possible ways to use, extend,
and represent assets according to each project needs. Our ap-
proach is one of many possible ways to use it. We recommend
to follow this usage pattern to ease the retrieval of assets later,
i.e., client applications for searching assets will be easier to
implement if they know that the underlying structure is based
on RAS. However, it is important to observe that there is a
minimum set of information required for a reusable asset to
be considered in conformance with RAS: it has to indicate
the used profile, at least one artifact and the basic information
about the asset, as shown in Figure 5. Additionally, there are
other information that can also be stored, so this case study
aims at showing a possible way of using RAS elements to store
process elements. This is shown in the following subsections.

A. Profile
The Profile element (Figure 7) refers to the asset represen-

tation structure that is being currently used. The RAS (Core)

203Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 222 / 512

is abstract, thus only profiles are instantiated and all of them
are derived from the core. The derived profile that is closest
to the core, and was chosen to be used in this work, is called
Default Profile. More specifically, we adopted version 2.1, as
it is compatible to any profile extending it.

Figure 7. Example of use of Profile RAS Element.

B. Solution
The Solution element refers to the artifacts that compose

the reusable asset. An asset can be seen as a set of artifacts
(at least one artifact is required). The artifacts are the main
reuse goal, and they can be classified into several types, like
documents (doc, pdf, txt), code (java, sql, php, C#), descriptors
(XML, XSD, HTML), and others.

Figure 8. Example of use of Solution RAS Element.

Figure 8 presents an instance of the Solution element.
Considering the hotel SPL introduced on Section III-B, the
solution contains the Feature Model, defined during the Define
Hotel Feature Model activity of the Hotel Requirements phase.

The main artifact stores (in fact it is a reference to where
the real object is) the model itself, and has attributes such
as name, identifier, type (file type, e.g., .astah), version, and
access rights of the artifact, which we have defined as 775,

following the Unix model, i.e., the artifact owner and the group
to which he belongs to have total rights, while other users
can only read and execute. RAS also recommends the use of
Universally Unique IDentifiers (UUIDs).

The ArtifactType represents the artifact logical type, indi-
cating what the artifact represents in the model (in the example,
it is a SPL Feature Model). The ArtifactContext represents the
context in which this artifact is useful. In the example, as the
feature model is essential for the asset, it is classified with the
Core type, as shown in the figure.

The VariabilityPoint element describes artifact variabilities.
In the example, the artifact has a feature called Payment-
Method, which has several different alternatives. In this case,
the feature that has variability is presented in this element,
while the corresponding alternative features and variability
rules are defined in the Usage element described later. Also,
this artifact has other dependent artifacts representing each
feature of the feature model. This allows the reuse of the
feature model itself and the corresponding artifacts that imple-
ment them, not only during application engineering, but also
in the domain engineering of other SPLS of the same domain
(for example, PaymentMethod could be used in many different
SPLs).

C. Classification
The Classification element refers to the asset descriptors

or classifiers. It can include more than one descriptor or even
schemas to describe the asset. It is also possible to define the
contexts that will be referenced by artifacts and by the Usage
and its activities.

Figure 9. Example of use of Classification RAS Element.

Figure 9 presents an instance of the Classification element.
Assume that we want to classify the SPL Process Template
process element. So, the “SPL Process Template” is a Type
of Process kind of classification. To map this information into
RAS, first we need to define a group of classifiers that represent
what kind of classification we are making, in this case, we are
classifying as TypeOfProcess, so this will be the name of our
DescriptorGroup RAS element. Defined that, we can define
the value for this type, each value is defined as an instance of
Descriptor RAS element, which in this case is SPL Process
Template. An asset may have many classifiers, for example this
same asset could be classified by DescriptorGroup ProcessE-
lement and Descriptor ProcessTemplate.

204Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 223 / 512

In an analogous way, all the other process elements can
be classified using this structure, for instance SPL Process
Instance which is also part of TypeOfProcess DescriptorGroup;
Expected Phase, Expected Phase and Expected Artifact, which
are also part of ProcessElement DescriptorGroup; and so on.

The Context element is used to refer to artifacts and
activities in the Asset context. As shown in the figure, the Core
context represent that the related artifact/activity is essential to
the asset.

D. Usage
The Usage element is used to keep information about how

to use the asset (manuals for example), as well as which tasks
have to be executed in order to that asset works correctly. This
information can be relative to the context, to a specific artifact,
or to the whole asset.

Figure 10. Example of use of Usage RAS Element.

Figure 10 presents an instance of the Usage element, in
which the reference attribute refers to an artifact contained
in another asset, identified by UUID HowTo artifact. This
artifact represents a document with instructions on how to
use and interpret the components of the Usage element. Even
though this artifact is not mandatory, it can be useful to
improve reuse. Schemas and other types of artifacts can also
be referenced.

In the hotel SPL example, as mentioned before, there is
a feature named PaymentMethod that represents a variability.
Figure 10 presents the rules for using this variability from in-
stances of the VariabilityPointBinding element. These instances
are contained in an Activity element, which itself is contained
in an ArtifactActivity element. This means that the activity is
relevant only in the context of the referenced artifact. The
activity (VariabilitiesBindingActivity) describes the rules to be
followed for binding variabilities of the Feature Model artifact.

In the example, the artifact identified by
UUID feature artifact has a variability called
AlternativePaymentMethods. According to the rule defined
in VariabilityPointBinding, the dependent artifacts (children)
refer to alternative features of the Feature Model as defined
in the bindingRule attribute.

E. Related Assets
The Related Asset element specifies the relationships

among reusable assets. From these relationships, it is possible
to assemble a dependency tree with all related assets.

Figure 11. Example of use of Related Asset RAS Element.

Figure 11 presents an instance of Related Asset. It has a
name attribute that corresponds to the name of the asset being
related with, as well as assetID and and assetVersion repre-
senting the ID and version of the related asset, respectively.
RAS defines some types of relationship (e.g., an aggregation
in the figure) and allows other types to be created.

In this example, there is a relationship between <<Activi-
tyInstance>> Define Hotel Feature Model and <<Artifact>>
Hotel Feature Model. In this scenario, only the activity is
related to the artifact, not the opposite way. This means that
only the activity has visibility of the artifact. If the visibility
was supposed to be both ways the artifact should have a
relationship with the activity as parent type.

Navegability on relationships is very important on the reuse
context. For example, when selecting an element for reuse, all
the dependencies of this element will be loaded as well. In
this case, if someone wishes to reuse the activity of Figure
11, the artifact would be loaded with it. But if they want to
reuse just the artifact, it is possible because the artifact has
no relationships (dependencies). Thus, if an element depends
on another element and they must be loaded together, the
relationship must be defined in both elements.

V. RELATED WORK

While searching for RAS related studies on the literature,
we could not find any descriptions or examples of how they
use RAS to represent and to pack their reusable assets. Most
of the studies focus on presenting how to identify and use the
assets, rather than on how to map them into the RAS structure.

Part of the studies found on our research proposes RAS
extensions to fit to several different purposes. The application
of RAS in these studies are usually very specific to each
case, for example to store components, or services, or process
generated artifacts and so on. One of proposed extensions is
presented by Mikyeong Moon et al. [8]. They propose an
extension of the RAS Default Profile to store, manage, and
trace variabilities on a Software Product Line.

Another example of using RAS to represent reusable assets
is proposed by Islam Elgedawy et al. [14]. They propose to
use the specification to represent Component Business Maps
(CBMs) to allow the early identification of reusable assets in
a project. They do not specify which RAS Profile they use or
if they created their own extension to represent their assets.

205Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 224 / 512

An example of RAS application that does not use new
extensions is proposed by Nianjun Zhou et al. [15]. In their
approach, they present a legacy reuse analysis and integration
method to support modeling legacy assets in a SOA context. To
store the assets extracted by their approach they use the IBM
Rational Asset Manager Repository (RAM), which is typically
used for storage of unstructured assets (jar, war and ear) and
documents specified using RAS.

There are other online repositories based on RAS in
the web, one example is LAVOI created by Moura [7] and
OpenCom created by Ren Hong-min1 et al. [9]. Both extended
the RAS profile to adapt it to a wide range of types of assets
and to facilitate assets classification, search and use.

Although there is a number of works related to RAS, none
of them brings explicit examples of how to use RAS and to
map the attributes as this work does. In addition, no studies
were found that suggest process elements reuse based on RAS.

VI. CONCLUSIONS AND FUTURE WORK

This work presented an approach to represent process
elements as reusable assets using the RAS. For this, a mapping
of these elements into the RAS structure was presented. The
mapping not only represents the main information of process
elements into RAS mandatory structure but also guides the user
on how to use several other structures that are available at the
RAS Default Profile. This representation makes possible the
creation of a repository of process elements, which may highly
increase the potential of reuse. Reusing processes and process
elements has lots of benefits, such as improving time to market,
decreasing time spent and staff effort, increasing quality.
Besides that, a repository may be built with mechanisms to
recommend process and process elements according to the user
type and application context.

The contribution of this paper is applicable not only in the
SPL context, but in any software processes in other contexts, as
long as they follow our proposed meta-model structure derived
from SPEM. For processes with different structures, a mapping
analogous to that provided here can be done.

Another advantage of using the proposed approach is that
process elements can also be shared among different project
contexts, both for template and instance applications. An ad-
ditional contribution of this paper is to serve as a documented
example of how to use RAS in a practical way, since no
example of usage details was found on our research in the
literature.

As future work, we will implement a Service Based Tool
for representing process elements into RAS Structure. This
tool will be able to get input parameters relative to each
element information (attributes) and generate its RAS mapping
to store them into any repository that can read RAS files as
input. In addition to process elements, this tool will be able
to map any reusable artifact generated from the development
process to RAS Structure. Thus, this tool will provide to the
users, services to support the management of assets of SPL
development, from process to maintenance.

ACKNOWLEDGEMENTS

Our thanks to Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior (CAPES) and University of São Paulo (USP)
for financial support.

REFERENCES
[1] P. Clements and L. Northrop, Software Product Lines: Practices and

Patterns. Addison Wesley Professional, 2002, the SEI series in software
engineering.

[2] H. Gomaa, “Designing software product lines with uml 2.0: From use
cases to pattern-based software architectures,” in Reuse of Off-the-Shelf
Components. Springer, 2006, pp. 440–440.

[3] D. Beuche, “Modeling and building software product lines with
pure::variants,” in 16th International Software Product Line Conference-
Volume 2. ACM, 2012, pp. 255–255.

[4] R. Flores, C. Krueger, and P. Clements, “Mega-scale product line
engineering at general motors,” in Proceedings of the 16th International
Software Product Line Conference-Volume 1. ACM, 2012, pp. 259–
268.

[5] E. Cirilo, U. Kulesza, and C. J. P. de Lucena, “A product derivation
tool based on model-driven techniques and annotations.” Journal of
Universal Computer Science (JUCS), vol. 14, no. 8, 2008, pp. 1344–
1367.

[6] O. M. Group, “Reusable asset specification,” OMG, 2005. [Online].
Available: http://www.omg.org/spec/RAS/2.2/ [Retrieved: Sep, 2015]

[7] D. d. S. Moura, “Software profile ras: extending ras and building
an asset repository,” Master’s thesis, 2013. [Online]. Available:
http://www.lume.ufrgs.br/handle/10183/87582

[8] M. Moon, H. S. Chae, T. Nam, and K. Yeom, “A metamodeling
approach to tracing variability between requirements and architecture
in software product lines,” in 7th IEEE International Conference on
Computer and Information Technology (CIT). IEEE, 2007, pp. 927–
933.

[9] R. Hong-min, Y. Zhi-ying, and Z. Jing-zhou, “Design and implementa-
tion of ras-based open source software repository,” in 6th International
Conference on Fuzzy Systems and Knowledge Discovery (FSKD),
vol. 2. IEEE, 2009, pp. 219–223.

[10] O. M. Group, “Software & systems process engineering
metamodel specification,” OMG, 2008. [Online]. Available:
http://www.omg.org/spec/SPEM/2.0/ [Retrieved: Sep, 2015]

[11] L. Garcı́a-Borgoñón, M. A. Barcelona, J. A. Garcı́a-Garcı́a, M. Alba,
and M. J. Escalona, “Software process modeling languages: A system-
atic literature review,” Inf. Softw. Technol., vol. 56, no. 2, Feb. 2014,
pp. 103–116.

[12] O. M. Group., “Unified modeling language,” OMG, 2011. [Online].
Available: http://www.omg.org/spec/UML/2.4.1/ [Retrieved: Sep, 2015]

[13] R. S. Corporation, “Rational unified pro-
cess,” IBM, 1998. [Online]. Available:
http://www.ibm.com/developerworks/rational/library/content/03July/
1000/1251/1251 bestpractices TP026B.pdf [Retrieved: Sep, 2015]

[14] I. Elgedawy and L. Ramaswamy, “Rapid identification approach for
reusable soa assets using component business maps,” in IEEE Interna-
tional Conference on Web Services (ICWS). IEEE, 2009, pp. 599–606.

[15] N. Zhou, L.-J. Zhang, Y.-M. Chee, and L. Chen, “Legacy asset analysis
and integration in model-driven soa solution,” in IEEE International
Conference on Services Computing (SCC). IEEE, 2010, pp. 554–561.

206Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 225 / 512

An Extensible Platform for the Treatment of Heterogeneous

Data in Smart Cities

Cı́cero Alves da Silva and Gibeon Soares de Aquino Júnior

Department of Informatics and Applied Mathematics
Federal University of Rio Grande do Norte

Natal, RN, Brazil
Email: cicerojprn@gmail.com, gibeon@dimap.ufrn.br

Abstract—Nowadays, there is a lot of devices of varying tech-
nologies in the urban environment, which makes the integration
of data generated by them a difficult process due to their
heterogeneity. However, it is important to manage these data in
an integrated way to enable the exchange of information between
existing fields and assisting in the decision-making process.
Moreover, there is no way to tell how these data will need to be
processed since each application may require it to be available
obeying specific processes. Thus, this article describes the design
and implementation of a platform that aims to integrate, process
and make available data streams from heterogeneous sources. It
also defines an extensible data processing flow, which makes the
creation of new processes for existing data and the inclusion of
new types of data easier. Finally, a case study was conducted,
which used a parking lot as scenario and assessed extensibility
and performance aspects related to platform implementation.

Keywords–Smart Cities; Software Architecture; Extensibility.

I. INTRODUCTION

The widespread use of intelligent devices and other types
of sensors resulted in the emergence of the Internet of Things
(IoT), a paradigm in which the objects of the everyday life
are equipped and able to communicate with other objects and
users, which makes them a part of the Internet [1]. Thus,
these objects are able to work in different urban environments,
providing data that are collected in them and enabling the
Smart Cities concept to be used. Even though the term “Smart
City” has been widely used nowadays, it does not present a
standardization regarding its meaning. However, it is known
that a smart city should pay special attention to performance
improvement in six different areas: Economy, People, Gover-
nance, Mobility, Environment and Living [2][3].

Nonetheless, only the use of these objects is not enough to
improve urban life [4]. It is important that the management
of the data generated in them is carried out in the same
place, allowing the exchange of information between the
existing sectors to happen and assisting in the decision-making
process. However, this data integration is not a trivial task
because of the devices’ heterogeneity [1][5][6], since they use
different technologies and different communication protocols
and produce data flows with multiple formats and different
characteristics.

Furthermore, applications that consume these data may
require them to be made available in different forms, making
it necessary for them to be processes before its delivery.
Therefore, to assist in the comprehension of the complied

problems, the systems that propose to process data flows from
these heterogeneous sources need to filter them, combine them
and assemble them, thus producing new data as output [7].
However, there is no telling in which form the data needs to
be processed, since the same data may need to be processed in
different ways to meet the application’s needs and since there
may also be the need to perform the inclusion of new types
of data in the platform.

Finally, this article discusses the definition, design and
implementation of a Smart City platform whose focus is
related to the integration, prossessing and availability of data
flows from heterogeneous sources in an urban environment. In
addition, this study also discusses the process of extensible
data processing defined in this platform, which allows the
data to be processed according to its specific characteristics
and the application’s needs. Section II discusses a few related
works. Subsequently, Section III shows the platform proposed
in this study. Section IV, in turn, discusses a case study
that used a parking lot scenario and assessed some important
aspects related to the implementation of the platform. Finally,
Section V shows this study’s conclusions and future work.

II. RELATED WORK

In the study of Anthopoulos and Fitsilis [8], a research is
held in smart cities in order to develop an architecture to be
used in the management of urban services. However, unlike
the present study, Anthopoulos and Fitsilis’ work deals only
with the architecture’s description. Thus, it is not possible
to identify the modules that must be implemented for the
proposed layers to work and it is not possible to assure that
these layers are effective to work with the data generated in
the urban environment.

In Filipponi et al.’s work [9], an event-based architecture
that allows the management of heterogeneous sensors to mo-
nitor public spaces is presented. However, this architecture is
different from the one proposed in this work, since its use is
very limited and it does not incorporate many requirements
such as privacy and monetization.

The MAGIC Broker 2 platform, which focuses on objects’
interoperability and proposes to work in an IoT environment,
is presented in Blackstock et al.’s article [10]. However, the
authors state that this platform is not ready to work in a Smart
City environment. In contrast, in the present work, the platform
is designed precisely to deal with this area of study.

207Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 226 / 512

Middlewares for IoT are proposed in Gama, Touseau and
Donsez’s study [6] and in Valente and Martins’ study [11].
However, they differ from the platform proposed in this study
since they do not perform the extraction of knowledge from
the integrated data and do not have privacy strategies for the
transfered information.

Andreini et al.’s article [12] discusses an architecture based
on the principles of service orientation. However, it is limited
to smart objects’ geographical location issues. Furthermore,
it does not address data privacy and does not allow the
aggregation and extraction of the knowledge found in them.

III. PROPOSED PLATFORM

The platform proposed in this paper aims to enable inte-
gration, processing and availability of different types of data
generated by the sensors that exist in the urban environment.
Furthermore, it focuses on providing the extensibility of pro-
cessing tasks performed on these data due to the fact that it
is not possible to predict in what form their flows need to be
processed.

Thus, the extensibility of the processing steps is important
due to the fact that the applications are so dynamic and may
require different processing ways for the same data flow and
due to the fact that with time, new types of data will turn up
as a result of the emergence of a new source.

This way, moving from the intended goals to the platform
and seeking to provide this extensible data processing feature,
the following requirements were defined:

1) Data retrieval from sources with heterogeneous tech-
nologies;

2) Availability of data integrated into the platform;
3) Data association allowing information from different

domains to be combined to work in an unified man-
ner;

4) Follow the modular and “pluggable” approaches,
making the maintenance and extension of the plat-
form easier;

5) Have a well defined data transformation process,
since its modules represent specific stages of pro-
cessing, which makes it necessary for them to have
specific responsibilities within the platform. The data
transformation process should be extensible so that
the processes can be suitable to work according to
the characteristics of each type of data;

6) Keep the transmitted data’s privacy;
7) Allow the extraction of knowledge from large volu-

mes of data integrated to the platform;
8) Enable monetization, allowing the developers of the

services to sell the data created in them.

Table I shows how the studies analyzed in Section II treat
the requirements listed above for the proposed platform. Thus,
it is clear to see that none of them defines an extensible
transformation flow for processing the data in their architecture
proposals, which is a requirement that is the main focus of
this proposal. In this flow, we determine the steps required to
process a group of data that is integrated to the platform in
order to deliver them in the best way possible to be used in
the development of new systems. Moreover, the extensibility
of the defined steps allows these steps’ processing are realized
according to the characteristics of each type of data.

TABLE I. REQUIREMENTS ATTENDED BY THE RELATED WORKS.

Requirement Works
Retrieve data from heterogeneous sources [12], [8], [10], [9], [6], [11]

Create new services [12], [8], [10], [9], [6], [11]
Support data aggregation [8], [9], [6], [11]

Well-defined and extensible data processing -
Allow the extraction of knowledge -

Modular approach [10], [9], [6], [11]
Pluggable approach -

Maintains data privacy [8]
Monetization -

Figure 1. Proposed platform.

A. Architecture

Due to the requirements listed in Section III, we decided
to carry out the implementation of the proposed architecture
in the Open Services Gateway Initiative (OSGi) framework.
This technology makes the development of modular Java
softwares easier due to the fact that it provides many benefits
related to manageability and maintainability [13], which is
essential for this solution since the extensible transformation
process thought for it aims to use the modular and “pluggable”
approaches, allowing the extensions to be easily inserted and
removed.

Figure 1 displays the platform proposed in this article. In
Figure 1, we can see that it was planned in a way to support
data from different sources, which are treated within it and then
are made available, allowing the creation of new applications.
In addition to this, it is possible to identify that when it comes
to the database that should be used, it is flexible and supports
the use of different types of database. The platform also has a
set of standard modules, which are responsible for defining
the steps of the extensible processing flow. Moreover, in the
proposed solution, there is a set of auxiliary modules that
increase the features that are important to it.

Each of these standard modules has its own specific respon-
sibilities in the architecture and provide its basic behaviors.
Furthermore, as shown in Figure 2, they are responsible for
defining the extension points, allowing different implementa-
tions to be generated and “plugged” on to the platform.

The specific modules are responsible for implementing the
processing tasks for each step of the extensible processing flow.
Therefore, to add a source to the architecture, it is necessary
to implement the specific modules that are able to handle the

208Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 227 / 512

Figure 2. Extensible architecture.

type of data being inserted and then plug them to their relating
standard modules.

In Figure 2, it is also possible to identify the existence
of the Event Admin Security module, which is an extension
of the Event Admin available in OSGi. This extension was
carried out with the goal of adding an additional security
requirement related to the access to messages transferred
in this module. Thus, this capability ensures that only the
architecture’s standard modules can receive messages from the
Event Admin, preventing the specific modules to interfere in
their flow.

The standard modules work partly in a similar way and
are only distinguished from each other in the processing step
for which they are responsible. In general, a standard module
receives a set of data. Then, it checks the specific modules
that are interested in the type of data received and passes it
to those who are allowed to access it. Thus, these specific
modules process and return the data to the standard module
which, finally, publishes it using the Event Admin Security.
This way, the architecture has six standard modules, which are:

1) Input: the modules that are “plugged” on to the Input
are responsible for integrating different data sources
that exist in the cities to the proposed architecture;

2) Semantic: is responsible for receiving the data that is
integrated in the Input and representing them in the
format that the developer feels is most appropriate to
the system that is being implemented;

3) Preprocessing: receives the data treated in Semantic
and is responsible for filtering it;

4) Persistence: its tasks is to receive the preprocessed
data and the primary responsibility of the modules
that are “plugged” on to it is to store the received
data in the architecture;

5) Intelligence: is responsible for receiving all of the
data processed by the modules mentioned above. This
way, the specific modules process this data and when
their algorithms can identify any relevant knowledge,
event 5 (E5) is published;

6) Output: is responsible for receiving the data pro-
cessed by the Persistence and the Intelligence mod-
ules. Finally, each individual Output module provides
access to the architecture’s data, allowing new appli-
cations to be developed.

The proposed architecture also has three auxiliary modules:
Security, which implements the policy of permissions to
access data that are transferred within the architecture; Billing,
which is responsible for accounting the messages that are
accessed by the specific modules to enable later billing related
to data consumption; and Data Provider, whose function is to
carry out the management of the stored data and allow them
to be accessed by the specific modules.

Figure 3. Steps of the data processing flow.

To perform the data aggregation process in a module, it
is only necessary for it to have the set of permissions to
access data from different services that lead to the compound
service. Finally, the developer is not obliged to provide specific
modules for all of the steps in the transformation flow. Thus,
the platform will transfer the data to the next module of the
flow when it is not possible to find, in a standard module,
specific implementations responsible for working with the data
type that was received.

B. Data flow in the platform
As defined in Figure 3, by making use of these six modules

and using a simplified scenario where there is only one
specific module “plugged” to each standard module, the basic
extensible flow occurs through a set of 14 steps. First, the
data is sent from the source to the Specific Input module
responsible for receiving it (Step 1), which, in Step 2, forwards
it to their relating standard module.

Then, in Step 3, the data is transferred from the Input to
the next step (Semantic). Thus, this standard module forwards
it to the specific module that is capable of working with it
(Step 4). After it is received, the Specific Semantic module
performs the first data transformation, since it is at that instant
that it starts to be represented in the format chosen by the
developer of the specific system. After that, in Step 5, ir is
sent back to Semantic and then the data is published by this
standard module (Step 6).

Preprocessing receives the data transferred in Step 6 and
delivers it to the Specific Preprocessing module (Step 7),
which performs a filtering process in which the set of data
is subjected to a cleaning and selection process. After that, in
Step 8, the filtered data returns to the Preprocessing module,
which passes it forward (Step 9).

In Step 10, Persistence transfers the pre-processed data
to the Specific Persistence module. After that, this specific
module performs the data storage process and then, in Step
11, returns the last state of the problem’s data to Persistence,
which forwards it to the next step of the flow (Step 12).

Subsequently, Output passes the data to the specific module

209Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 228 / 512

(Step 13). Thus, in Step 14, the Specific Output module makes
the data accessible to applications.

It is important to note that any of the specific modules can
perform data aggregation in its processing tasks. In addition,
Figure 3 also shows a knowledge discovery flow. In it, the
Intelligence module receives all of the data delivered in steps
3, 6, 9, and 12 of the basic flow. Every time a set of data is
received, the standard Intelligence module forwards it to the
Specific Intelligence module (Step X) which processes it at all
times in an attempt to identify any knowledge relevant to the
problem. Therefore, when something meaningful is identified,
the Specific Intelligence module returns the information to
the standard Intelligence module which, in its turn, sends it
to the Output module, which makes them available to the
applications. Finally, for this flow, the letters X, Y and Z were
used since it is not possible to predict the moment in which
every one of the steps will be executed in the processing flow
because they do not follow a sequential execution like the basic
flow does.

IV. CASE STUDY

This section describes a case study that aims to evaluate
two behavioral aspects of the implemented platform: the easi-
ness of the creation of specific modules (Extensibility) and the
data processing capacity (Performance). Finally, the planning
process and its description followed the guidelines set forth in
[14][15][16].

A. Planning

This case study investigates the following research ques-
tions (RQ):

• RQ1: Is the platform extension process that is carried
ou through the development of specific modules a
simple activity?

• RQ2: Is the performance of the data flow’s treatment
process impaired in any way due to the existence of
a set of steps for information processing?

• RQ3: Is the performance of the data flow’s treatment
process impaired when specific modules plugged to
standard module are used?

The subject who used the platform that was proposed and
implemented in this work was a developer with experience
in the development of Java and OSGi applications. Moreover,
the used object was an extension of the proposed platform
depeloped to integrate data from a parking lot. Thus, in this
scenario, we intended to access data from the server that stored
the parking lot’s information, process it using the platform’s
extensible flow and then make it available for the development
of new applications.

The analysis units for this case study are: the implemented
platform and its extension that enables to work with the
parking lot’s data. Thus, the platform’s standard modules were
evaluated regarding the performance of the data flow’s transfor-
mation process. The extension used to handle the parking lot’s
resource, in its turn, was explored regarding the extensibility
analysis and the evaluation of the performance of the data flow
when specific modules are “plugged” on to standard modules.

B. Execution
To insert the data from the parking lot in the proposed

platform, the implementation of specific modules to work with
this source was generated. A priori, the additional module
Parking Model was developed, which is used by all of the
specific modules and whose responsibility is to mold in classes
the data from the parking lot source.

Then, the Parking Input module was implemented, which
integrates the data generated in the parking lot to the platform.
Subsequently, the Parking Semantic was generated, which is
responsible for representing such data in objects. Thereafter,
the Parking Preprocessing module was developed, whose
duties are to eliminate data duplication and select only the main
data of the problem. In sequence, the Parking Persistence
was implemented, which is only responsible for performing
the received data storage step. In this study, the Parking
Intelligence module was also developed, which only stores
in a file the logs from all of events 1, 2, 3 and 4 sent in the
Event Admin Security. This was important to confirm the
sequence of the sent events. The Parking Output module is
a Representational State Transfer (REST) module that works
as a gateway for the parking lot’s resource data processed in
the architecture.

After the implementation of all of these modules, we
moved on to the stage of evaluation of all of the extensibility
and performance aspects of the platform. This evaluation was
performed in a machine with Windows 8.1 operation system
Single Langue 64-bit, Intel (R) Core (TM) i3-3227U CPU @
1.90GHz and 3.87 GB of RAM processor.

Regarding the extensibility, we collected the amount of
lines of code implemented in each of the specific modules of
the parking lot’s system, as shown in Table II. On this count, all
of the lines of code in the source code’s file were accounted
for, including imports, statements, etc. In addition, we also
counted the lines of code that are directly related to tasks
that are necessary to “plug” these modules to the platform,
as shown in Table III.

TABLE II. LINES OF CODE OF PARKING LOT’S SYSTEM

Number of lines of code
Parking Input 78
Parking Semantic 66
Parking Preprocessing 79
Parking Persistence 68
Parking Intelligence 78
Parking Output 61
Parking Model 56
Total 486

TABLE III. NUMBER OF LINES OF CODE IN THE PARKING LOT SYSTEM’S
MODULES (IGNORING STATEMENTS AND GENERAL CODE)

Number of lines of code
Parking Input 7
Parking Semantic 9
Parking Preprocessing 8
Parking Persistence 10
Parking Intelligence 9
Parking Output 12
Total 55

Regarding the performance, this requirement was evaluated

210Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 229 / 512

using the standard of measurement of the time it takes for the
data to be transferred in the flow. This measure was calculated
based on the time required for a message to be transferred
from the input point to the end of the processing flow. For
this purpose, the average time that it takes a certain amount of
packages sent at once to go through all of the processing steps
of the platform was calculated. In addition, for each amount
of packages sent, ten samples were collected and their general
average time was generated using (1).

a =

∑j=10
j=1

∑i=p

i=1
ti

p

10
(1)

Where:

• a – represents the general average;
• p – represents the amount of packages received;
• ti – represents the transfer time for the i package.

C. Threats to validity
For the case study, four types of validity were evaluated:

• Construct validity: data capture for this case study’s
execution was performed using quantitative surveys
related to factors analyzed for the implemented plat-
form. Moreover, this process took place in a single
machine, preventing changes in computer settings to
compromise the values collected in the study;

• Internal validity: the features of the subject that per-
formed the case study decreased the risk that factors
related to inexperience in the development of Java and
OSGi-based applications got out of control;

• External validity: programmers that are beginning to
work with Java and OSGi can generate solutions with
a larger amount of lines of code than those developed
by the subject that performed the case study. Finally,
the use of computer settings that are different from
those specified in Section IV-B will influence the time
it takes for messages to be processed by the platform;

• Conclusion validity: quantitative data that contributed
to the platform evaluation process were used. Regard-
ing performance data, they were collected in several
samples in order to get an average, preventing that de-
viations that reflected only one specific time influence
the outcome.

D. Answers to the research questions
This subsection answers the research questions raised in

Section IV-A.
1) RQ1: The extension of the modules responsible for

processing the data flow is a simple task, since it is only
necessary to implement a small part of the code in order to
plug them to the platform. As shown in Table II, in order to
carry out the specific application of the six modules of the
parking lot system, the implementation of 486 lines of code
was necessary. However, by observing Table III, it is possible
to note that less than 1/8 of the lines accounted for in Table II
are directly responsible for providing the extension process
defined in the standard modules.

Figure 4. Average time to transport messages depending on the amount of
packages (512 MB limit)

Figure 5. Average time to transport messages depending on the amount of
packages (1,024 MB limit)

2) RQ2: By looking at the flow’s transfer data, it is
possible to realize that the data processing steps do not affect
significantly the platform’s performance. However, this feature
depends on the settings of the computer in which it runs
since, as shown in the results in Figure 4 and Figure 5, it
is possible to note that the average transfer time for up to
100,000 packages received at the same time is stable, but
when this number of messages is increased, the transfer time
increases dramatically. Another factor that can prove this fact
is the moment in which the memory limit was doubled. With
this, the transfer time for the amount of 500,000 packages
went down to 80.27% when compared to the 512 MB of RAM
memory experiment. Furthermore, by providing the platform
twice the RAM memory, the maximum number of packages
supported also doubled, which shows that the amount of
messages supported by Event Admin Security depends on the
amount of memory available.

3) RQ3: By analyzing the graph shown in Figure 6, it is
possible to note that the use of specific modules to perform
the processing of the type of messages in the parking lot data
causes a loss of performance in the delivery of packages when
compared to the experiment shown previously in Figure 4.
However, the average time only reaches very high values when
the amount of messages received simultaneously is also very
high, as can be seen in Figure 6, where up to the amount of
1,000 messages, the average transfer time is approximately 2
seconds.

V. CONCLUSION AND FUTURE WORK

This article shows the details in definition, design and
implementation of a platform that aims to integrate, trans-
form and provide heterogeneous data generated in the urban
environment. It has an extensible processing flow, which is
important because it is not possible to predict how the different

211Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 230 / 512

Figure 6. Average time to transport messages depending on the amount of
packages using the parking lot’s specific modules (512 MB limit)

types of data need to be processed in order to be delivered to
the applications and because as time goes by, new types of
data will emerge and will also need to be ”plugged” to the
platform. This way, the main contribution of this work and
of the proposed platform was the creation of an extensible
processing flow that allows data processing to be suitable to
work according to the characteristics of each type of data
existing in the ecosystem.

Through the extension that was performed in order to
work with the parking lot scenario, it was possible to insert
data from a first source into the platform. With the specific
modules that were developed, it was possible to test the
extensible processing flow, wherein they perform processing
according to the characteristics of the parking lot’s feature
data. Furthermore, it was possible to attest the operation of
the standard modules and the auxiliary modules defined in
this work.

With the case study, it was possible to evaluate two impor-
tant aspects related to the platform implementation proposal.
The extensibility characteristic was a process that was easily
carried out due to the fact that the standard modules made
available the interfaces that define the behaviors associated
with it, which makes the process of extension and “plugging”
specific modules easy. Moreover, with the evaluation of the
performance, there is a proof that the steps defined do not
burden significantly the transfer of messages in the platform.

As future work, we intend to perform further case studies
of the use of the platform, in which we aim to work with sce-
narios where there are different sources of data allowing their
aggregation and also the development of multiple applications.
Furthermore, there is the intent to evaluate other characteristics
related to platform implementation, such as processing and
distributed scalability. Moreover, we intended to make the
cloud computing and big data concepts better in it. Finally, we
aim to use the platform to manage a real environment where
there are several devices, applications and the possibility of
the emergence of new sources of data.

REFERENCES

[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” Internet of Things Journal, vol. 1, no. 1,
February 2014, pp. 22–32.

[2] T. Nam and T. A. Pardo, “Conceptualizing smart city with dimensions
of technology, people, and institutions,” in 12th Annual International
Conference on Digital Government Research. ACM, June 2011, pp.
282–291.

[3] R. Giffinger, C. Fertner, H. Kramar, R. Kalasek, N. Pichler-Milanovic,
and E. Meijers, “Smart cities: Ranking of european medium-sized
cities,” Centre of Regional Science (SRF), Tech. Rep., 2007.

[4] A. Mostashari, F. Arnold, M. Maurer, and J. Wade, “Citizens as sensors:
The cognitive city paradigm,” in 8th International Conference Expo
on Emerging Technologies for a Smarter World (CEWIT). IEEE,
November 2011, pp. 1–5.

[5] K. Su, J. Li, and H. Fu, “Smart city and the applications,” in In-
ternational Conference on Electronics, Communications and Control
(ICECC). IEEE, September 2011, pp. 1028–1031.

[6] K. Gama, L. Touseau, and D. Donsez, “Combining heterogeneous
service technologies for building an internet of things middleware,”
Computer Communications, vol. 35, no. 4, November 2012, pp. 405–
417.

[7] G. Cugola and A. Margara, “Processing flows of information: From
data stream to complex event processing,” ACM Computing Surveys,
vol. 44, no. 3, June 2012, pp. 15:1–15:62.

[8] L. Anthopoulos and P. Fitsilis, “From digital to ubiquitous cities:
Defining a common architecture for urban development,” in Sixth
International Conference on Intelligent Environments (IE). IEEE, July
2010, pp. 301–306.

[9] L. Filipponi, A. Vitaletti, G. Landi, V. Memeo, G. Laura, and P. Pucci,
“Smart city: An event driven architecture for monitoring public spaces
with heterogeneous sensors,” in Fourth International Conference on
Sensor Technologies and Applications. IEEE, July 2010, pp. 281–
286.

[10] M. Blackstock, N. Kaviani, R. Leal, and A. Friday, “Magic broker 2:
An open and extensible platform for the internet of things,” in Internet
of Things (IOT). IEEE, November 2010, pp. 1–8.

[11] B. Valente and F. Martins, “A middleware framework for the internet of
things,” in The Third International Conference on Advances in Future
Internet. IARIA, 2011, pp. 139–144.

[12] F. Andreini, F. Crisciani, C. Cicconetti, and R. Mambrini, “A scalable
architecture for geo-localized service access in smart cities,” in Future
Network and Mobile Summit (FutureNetw). IEEE, June 2011, pp.
1–8.

[13] P. Bakker and B. Ertman, Building Modular Cloud Apps with OSGi.
USA: O Reilly, 2013.

[14] R. K. Yin, Case Study Research: Design and Methods. SAGE
Publications, 2003.

[15] B. Kitchenham, L. Pickard, and S. L. Pfleeger, “Case studies for method
and tool evaluation,” IEEE software, vol. 12, no. 4, July 1995, pp. 52–
62.

[16] P. Runeson and M. Host, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineer-
ing, vol. 14, no. 2, April 2009, pp. 131–164.

212Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 231 / 512

Improving the Application of Agile Model-based Development:
Experiences from Case Studies

K. Lano
H. Alfraihi

S. Yassipour-Tehrani
Dept. of Informatics

King’s College London
London, UK

Email: kevin.lano@kcl.ac.uk, hessa.alfraihi@kcl.ac.uk,
s.yassipour-tehrani@kcl.ac.uk

H. Haughton
Holistic Risk Solutions Ltd

Croydon, UK

Email: howard haughton@btinternet.com

Abstract—Agile model-based development has the potential to
combine the benefits of both agile and model-based develop-
ment (MBD) approaches: rapid automated software generation,
lightweight development processes and direct customer involve-
ment. In this paper, we analyse three application case studies of
agile MBD, and we identify the factors which have contributed
to the success or failure of these applications. We propose
an improved agile MBD approach, and give guidelines on its
application, in order to increase the effectiveness and success
rate of applications of agile MBD.
Keywords — Model-based development (MBD); Model-
driven development (MDD); Agile development.

I. INTRODUCTION

Agile development and model-based development (MBD)
are two alternative software development approaches which
have been devised to address the ‘software crisis’ of soft-
ware project failures and excessive development costs. Both
approaches have been adopted by industry to a certain extent,
and with some evidence of success. But both approaches also
have drawbacks and limitations, which have restricted their
uptake.

The idea of combining the approaches into an ‘agile MBD’
approach has been explored, with the intention that such
an approach would avoid the deficiencies of the individual
methods [5][12]. In some ways, agile and MBD development
approaches are compatible and complementary. For example:

• Both agile development and MBD aim to reduce the
gap between requirements analysis and implementa-
tion, and hence the errors that arise from incorrect
interpretation or formulation of requirements. Agile
development reduces the gap by using short incremen-
tal cycles of development, and by direct involvement
of the customer during development, whilst MBD
reduces the gap by automating development steps.

• Executable models (or models from which code can
be automatically generated) of MBD potentially serve
as a good communication medium between developers
and stakeholders, supporting the collaboration which
is a key element of agile development.

• Automated code generation accelerates development,
in principle, by avoiding the need for much detailed
manual low-level coding.

• The need to produce separate documentation is re-
duced or eliminated, since the executable model is its
own documentation.

On the other hand, the culture of agile development is
heavily code-centric, and time pressures may result in fixes
and corrections being applied directly to generated code, rather
than via a reworking of the models, so that models and code
become divergent. A possible corrective to this tendency is
to view the reworking of the model to align it to the code
as a necessary ‘refactoring’ activity to be performed as soon
as time permits. We have followed this approach in several
time-critical MBD applications.

Tables I and II summarise the parallels and conflicts
between MBD and Agile development.

TABLE I. ADAPTIONS OF AGILE DEVELOPMENT PRACTICES FOR
MBD

Practice Adaption
Refactoring for Use model refactoring,
quality improvement not code refactoring
Test-based (i) Generate tests
validation from models

(ii) Correct-by-construction
code generation

Rapid iterations Rapid iterations of modeling +
of development Automated code generation
No documentation Models are both code
separate from code and documentation

TABLE II. CONFLICTS BETWEEN AGILE DEVELOPMENT AND MBD

Conflict Resolutions
Agile is oriented to (i) Models as code
source code, not (ii) Round-trip engineering
models (iii) Manual re-alignment
Agile focus on writing Models are both
software, not documentation and
documentation software
Agile’s focus on users Active involvement of
involvement in development, users in conceptual
versus MBD focus on and system
automation modelling

There are therefore different ways in which agile devel-
opment and MBD can be combined, and the current agile
MBD methods adopt different approaches for this integration.
In this paper, we examine one possible approach for combining

213Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 232 / 512

agile and MBD, based on the Unified Modeling Language
Rigorous Specification, Design and Synthesis (UML-RSDS)
formalism and tools [9], which we summarise in Section II.
This is compared with other agile MBD approaches in Section
III. We then report results from three case studies using the
UML-RSDS approach (Sections IV,V,VI), and in Section VII,
we summarise the lessons learnt from these applications and
give guidelines for improving the approach. Section VIII gives
conclusions.

II. UML-RSDS
UML-RSDS is based on the class diagram, use case and

Object Constraint Language (OCL) notations of UML. System
specifications can be written in these notations, and then a
design expressed using UML activities can be automatically
synthesised from the specifications. Finally, executable code
in several alternative languages (Java, C# and C++) can be
automatically synthesised from the design [8]. Both structural
and behavioural code is synthesised, and a complete executable
is produced. The aim of the approach is to automate code
production as much as possible, including code optimisation,
so that system specifications can be used as the focus of de-
velopment activities. Some configuration of the design choices
can be carried out manually. The system construction process
supported by UML-RSDS is shown in Figure 1.

Figure 1. UML-RSDS software production process

An example specification of behaviour in UML-RSDS,
from case study 2, is the following use case postcondition,
which checks the GP data for duplicated patients (task 1b):

p : PatientGP & Id < p.Id &
name1 = p.name1 & name2 = p.name2 &
dob = p.dob & isMale = p.isMale =>

("Patients " + self + " and " + p +
" seem to be duplicates")->display()

This iterates over self : PatientGP, and displays a warning
message for each other patient p that has the same name, date
of birth and gender as self , but a different id value.

The UML-RSDS approach supports agile development,
with the options (ii) (correct-by-construction code generation)
and (i) (models as code) from Tables I and II being used to
combine MBD and agile concepts.

III. RELATED WORK

A small number of other agile MBD approaches have
been formulated and applied: Executable UML (xUML) [13];

Sage [7]; MDD System Level Agile Process (MDD-SLAP)
[18]; Hybrid MDD [4]. Both xUML and UML-RSDS use
the principle that “The model is the code”, and support
incremental system changes via changes to the specification.
There is a clearly-defined process for incremental revision
in UML-RSDS, MDD-SLAP and Hybrid MDD. MDD-SLAP
and Hybrid MDD define explicit integration processes for
combining synthesised and hand-crafted code.

Explicit verification processes are omitted from Sage and
Hybrid MDD. In MDD-SLAP, simulation and test-driven
modelling is used for validation and verification [18]. Some
support for formal validation and verification is provided by
xUML and UML-RSDS: the iUML tool for xUML has support
for simulation, and UML-RSDS provides correctness analysis
via a translation to the B formal method. By automating
code generation, agile MBD approaches should improve the
reliability and correctness of code compared to manual-coding
development. All the approaches are focussed on one-way
forward engineering, and do not support round-trip engineer-
ing, which means that synchronisation of divergent code and
models is a manual process.

UML-RSDS and xUML are based on modelling using
the standard UML model notations, with some variations
(action language in the case of xUML, use cases specified by
constraints in UML-RSDS), and on following a general MDA
process: Computation-independent Model (CIM) to Platform-
independent Model (PIM) to Platform-specific Model (PSM)
to code. Platform modelling is explicitly carried out in xUML
but not in UML-RSDS, which restricts developers to Java-like
languages for the executable code. Sage uses variants of UML
models oriented to reactive system definition using classes
and agents. These include environmental, design, behavioural
and runtime models. An executable system is produced by
integration of these models. MDD-SLAP maps MDD pro-
cess activities (requirements analysis and high-level design;
detailed design and code generation; integration and testing)
into three successive sprints used to produce a new model-
based increment of a system. Hybrid MDD envisages three
separate teams operating in parallel: an agile development team
hand-crafting parts of each release; a business analyst team
providing system requirements and working with a MDD team
to produce domain models. The MDD team also develops
synthesised code. MDD-SLAP and Hybrid MDD have the
most elaborated development processes. The survey of [5]
identifies that Scrum-based approaches such as MDD-SLAP
are the most common in practical use of agile MBD (5 of the
seven cases examined), with XP also often used (4 of 7 cases).
The agile MDD approach in the case of [15] used Scrum and
Kanban.

IV. CASE STUDY 1: FIXML CODE GENERATION

This case study was based on the problem described in
[15]. Financial transactions can be electronically expressed us-
ing formats, such as the Financial Information eXchange (FIX)
format. New variants/extensions of such message formats can
be introduced, which leads to problems in the maintenance
of end-user software: the user software, written in various
programming languages, which generates and processes finan-
cial transaction messages will need to be updated to the latest
version of the format each time it changes. In [15], the author
proposed to address this problem by automatically synthesising

214Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 233 / 512

program code representing the transaction messages from a
single XML definition of the message format, so that users
would always have the latest code definitions available. For this
case study we restricted attention to generating Java, C# and
C++ class declarations from messages in FIXML 4.4 format
[2][3].

The solution transformation should take as input a text
file of a message in XML FIXML 4.4 Schema format, and
produce as output corresponding Java, C# and C++ text files
representing this data.

The problem is divided into the following use cases:

1) Map data represented in an XML text file to an
instance model of the XML metamodel.

2) Map a model of the XML metamodel to a model
of a suitable metamodel for the programming lan-
guage/languages under consideration. This has sub-
tasks: 2a. Map XML nodes to classes; 2b. Map XML
attributes to attributes; 2c. Map subnodes to object
instances.

3) Generate program text from the program model.

In principle, these use cases could be developed independently,
although the subteams or developers responsible for use cases
2 and 3 need to agree on the programming language meta-
model(s) to be used.

The problem was set as the assessed coursework (counting
for 15% of the course marks) for the second year undergradu-
ate course “Object-oriented Specification and Design” (OSD)
at King’s College in 2013. It was scheduled in the last four
weeks at the end of the course. OSD covers UML and MBD
and agile development at an introductory level. Students also
have experience of team working on the concurrent Software
Engineering Group project (SEG). Approximately 120 students
were on the course, and these were divided into 12 teams of 10
students each, using random allocation of students to teams.

The students were instructed to use UML-RSDS to develop
the three use cases of the problem, by writing specifications
using the UML-RSDS tools and generating code from these
specifications. They were also required to write a team report
to describe the process they followed, their team organisation,
and the system specification. The case study involves research
into FIXML, XML, UML-RSDS and C# and C++, and carry-
ing out the definition of use cases in UML-RSDS using OCL.
None of these topics had been taught to the students. Scrum,
XP, and an outline agile development approach using UML-
RSDS had been taught, and the teams were recommended to
appoint a team leader. A short (5 page) requirements document
was provided, and links to the UML-RSDS tools and manual.
The XML metamodel was provided, and a UML-RSDS library
to parse XML was also given to the students to use. Each week
there was a one hour timetabled lab session where teams could
meet and ask for help from postgraduate students who had
some UML-RSDS knowledge. The outcome of the case study
is summarised in Table III.

Examples of good practices included:

• Division of a team into sub-teams with sub-team
leaders, and separation of team roles into researchers
and developers (teams 8, 11).

• Test-driven development (teams 8, 9).

TABLE III. CASE 1 RESULTS

Teams Mark range Result
5, 8, 9, 10 80+ Comprehensive solution and testing,

well-organised team
12 80+ Good solution, but used manual

coding, not UML-RSDS
4, 7, 11 70-80 Some errors/incompleteness
2, 3, 6 50-60 Failed to complete some tasks
1 Below 40 Failed all tasks, group split into two.

• Metamodel refactoring, to integrate different versions
of program metamodels for Java, C# and C++ into a
single program metamodel.

Exploratory and evolutionary prototyping were used by most
teams as their main development process. However, most teams
experienced substantial obstacles in the project, due to (i)
problems with the interface of the UML-RSDS tools, which
did not conform to the usual style of development environment
(such as NetBeans) which the students were familiar with; (ii)
problems understanding and using the MBD executable model
concept. Only four teams managed to master the development
approach, others either reverted to manual coding or produced
incomplete solutions. The total effort expended by successful
MBD teams was not in excess of that expended by the suc-
cessful manual coding team, which suggests that the approach
can be feasible even in adverse circumstances.

V. CASE STUDY 2: ELECTRONIC HEALTH RECORDS
(EHR) ANALYSIS AND MIGRATION

This case study was the OSD assessed coursework for
2014. It was intended to be somewhat easier than the 2013
coursework. Approximately 140 second year undergraduate
students participated, divided into 14 teams of 9 or 10 mem-
bers. Students were allocated randomly to teams.

There were three required use cases: (1) to analyse a dataset
of GP patient data conforming to the class diagram of Figure
2 for cases of missing names, address, or other feature values;
(2) to display information on referrals and consultations in
date-sorted order; (3) to integrate the GP patient data with
hospital patient data conforming to the class diagram of Figure
3 to produce an integrated dataset conforming to a third class
diagram (gpmm3).

Figure 2. GP patient model gpmm1

Table IV summarises the use cases and their subtasks.
As with case study 1, the teams were required to use UML-

RSDS to develop the system, and to record their organisation
and results in a report. Teams were advised to select a leader,

215Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 234 / 512

Figure 3. Hospital patient model gpmm2

TABLE IV. USE CASES FOR EHR ANALYSIS/MIGRATION

Use case Subtasks Models
1. Analyse data 1a. Detect missing data gpmm1

in GP dataset
1b. Detect duplicate gpmm1
patient records

2. View data 2a. Display consultations of each gpmm1
GP patient, in date order
2b. Display referrals of each gpmm1
GP patient, in date order

3. Integrate data Combine gpmm1, gpmm2 data gpmm1,
into gpmm3 gpmm2,

gpmm3

and to apply an agile development process, although a specific
process was not mandated. A short (2 page) requirements
document was provided, and links to the UML-RSDS tools
and manual. The three EHR models were provided. Each week
there was a one hour timetabled lab session where teams could
meet and ask for help from postgraduate students who had
some UML-RSDS knowledge.

A. Outcomes
Of the 14 teams, 13 successfully applied the tools and

an agile methodology to produce a working solution. Table
V shows the characteristics of the different team solutions.
Training time refers to the time needed to learn MBD using
UML-RSDS.

Typically the teams divided into subteams, with each
subteam given a particular task to develop, so that a degree
of parallel development could occur, taking advantage of the
independence of the three use cases. Most groups had a
defined leader role (this had been advised in the coursework
description), and the lack of a leader generally resulted in a
poor outcome (as in teams 1, 4, 9, 12, 14). As with case study
one, exploratory and evolutionary prototyping of specifications
was used by the teams.

The key difficulties encountered by most teams were:

• Lack of prior experience in using UML.
• The unfamiliar style of UML-RSDS compared to

tools such as Visual Studio, Net Beans and other
development environments.

• Conceptual difficulty with the idea of MBD and the
use of OCL to specify system functionality.

TABLE V. OUTCOMES OF EHR CASE STUDY

Team Training Technical Agile Activities, issues,
time outcome process process

1 > 1 week 8/10 8/10 Disorganised and
individual working

2 1 week 9/10 8/10 No experience
of large teams

3 > 1 week 8/10 9/10 Used pair modelling,
proactive time planning

4 1 week 7/10 8/10 No leader.
Parallel working

5 1 week 9/10 8/10 Lead
developers

6 1 week 8/10 9/10 Used Scrum, subteam
modelling, model
refactoring

7 1 week 8/10 9/10 Risk analysis,
paired
modelling

8 1 week 9/10 9/10 Small team
modelling. Lead
developers
trained team

9 > 1 week 7/10 7/10 No leader,
disorganised

10 1 week 8/10 8/10 Detailed planning,
scheduling. Lead
developers
trained team

11 1 week 9/10 9/10 Used XP
12 > 1 week 7/10 5/10 Team split

into 2
13 2 weeks 8/10 8/10 Strong

leadership
14 2 weeks 0/10 0/10 Failed to work

as a team

• Inadequate user documentation for the tools – in
particular students struggled to understand how the
tools were supposed to be used, and the connection
between the specifications written in the tool and the
code produced.

• Team management and communication problems due
to the size of the teams and variation in skill levels
and commitment within a team.

Nonetheless, in 12 of 14 cases the student teams overcame
these problems. Two teams (12 and 14) had severe manage-
ment problems, resulting in failure in the case of team 14.

The teams were almost unanimous in identifying that they
should have committed more time at the start of the project
to understand the tools and the MBD approach. This is a
case where the agile principle of starting development as soon
as possible needs to be tempered by the need for adequate
understanding of a new tool and development technique.

Factors which seemed particularly important in overcoming
problems with UML-RSDS and MBD were:

• The use of ‘lead developers’: a few team members
who take the lead in mastering the tool/MBD concepts
and who then train their colleagues. This spreads
knowledge faster and more effectively than all team
individuals trying to learn the material independently.
Teams that used this approach had a low training time
of 1 week, and achieved an average technical score of
8.66, versus 7.18 for other teams. This difference is
statistically significant at the 4% level (removing team
14 from the data).

• Pair-based or small team modelling, with subteams

216Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 235 / 512

of 2 to 4 people working around one machine. This
seems to help to identify errors in modelling which
individual developers may make, and additionally,
if there is a lead developer in each sub-team, to
propagate tool and MBD expertise. Teams using this
approach achieved an average technical score of 8.25,
compared to 7.2 for other teams. This difference is
however not statistically significant if team 14 is
excluded.

Teams using both approaches achieved an average technical
score of 9, compared to those using just one (8.2) or none
(6.9).

Another good practice was the use of model refactoring
to improve an initial solution with too complex or too finely-
divided use cases into a solution with more appropriate use
cases.

The impact of poor team management and the lack of a
defined process seems more significant for the outcome of a
team, compared to technical problems. The Pearson correlation
coefficient of the management/process mark of the project
teams with their overall mark is 0.91, suggesting a strong
positive relation between team management quality and overall
project quality. Groups with a well-defined process and team
organisation were able to overcome technical problems more
effectively than those with poor management. Groups 3, 5, 7,
11 and 13 are the instances of the first category, and these
groups achieved an average of 8.4/10 in the technical score,
whilst groups 1, 4, 9, 12 and 14 are the instances of the second
category, and these groups achieved an average of 5.8/10 in
the technical score. An agile process seems to be helpful in
achieving a good technical outcome: the correlation of the agile
process and technical outcome scores in Table V is 0.93.

The outcomes of this case study were better than for the
first case study: the average mark was 79% in case study 2,
compared to 67.5% for case study 1. This appears to be due to
three main factors: (i) a simpler case study involving reduced
domain research and technical requirements compared to case
study 1. In particular there was no need to understand and use
an external library such as the XML parser; (ii) improvements
to the UML-RSDS tools; (iii) stronger advice to follow an
agile development approach.

In conclusion, this case study illustrated the problems
which may occur when industrial development teams are
introduced to MBD and MBD tools for the first time. The
positive conclusions which can be drawn are that UML-
RSDS appears to be an approach which quite inexperienced
developers can use successfully for a range of tasks, even
with limited access to tool experts, and that the difficulties
involved in learning the tools and development approach are
not significantly greater than those that could be encountered
with any new SE environment or tools.

VI. CASE STUDY 3: COLLATERALIZED DEBT
OBLIGATIONS RISK ESTIMATION

This case study concerns the risk evaluation of multiple-
share financial investments known as Collateralized Debt Obli-
gations (CDO), where a portfolio of investments is partitioned
into a collection of sectors, and there is the possibility of
contagion of defaults between different companies in the
same sector [1][6]. Risk analysis of a CDO contract involves

computing the overall probability P(S = s) of a financial loss
s based upon the probability of individual company defaults
and the probability of default infection within sectors.

Both a precise (but very computationally expensive) and an
approximate version of the loss estimation function P(S = s)
were required. The case study was carried out in conjunction
with a financial risk analyst, who was also the customer of
the development. Implementations in Java, C# and C++ were
required.

The required use cases and subtasks are given in Table VI.
Use case 3 depends upon tasks 2a and 2b of use case 2. Unlike

TABLE VI. USE CASES FOR CDO RISK ANALYSIS

Use case Subtasks Description
1. Load data Read data from

a .csv spreadsheet
2. Calculate Poisson 2a Calculate probability
approximation of of no contagion
loss function 2b. Calculate probability

of contagion
2c. Combine 2a, 2b

3. Calculate precise
loss function
4. Write data Write data to

a .csv spreadsheet

case studies 1 and 2, team management was not a problem
because this was a single-developer project. In addition the
developer was an expert in UML-RSDS. Therefore the focus of
interest in this case study is how effectively agile development
with UML-RSDS can be used for this domain.

First, a phase of research was needed to understand the
problem and to clarify the actual computations required. Then
tasks 2a, 2b and 2c were carried out in a first development
iteration, as these were considered more critical than use cases
1 or 4. Exploratory and evolutionary prototyping were used.
Then, the use case 3 was performed in development iteration
2, and finally use cases 1 and 4 – which both involved use
of manual coding – were scheduled to be completed in a
third development iteration. A further external requirement was
introduced prior to this iteration: to handle the case of cross-
sector contagion. This requirement was then scheduled in the
third iteration, and tasks 1 and 4 in a fourth iteration.

Figure 4 shows the class diagram of the solution produced
at the end of the first development iteration.

Figure 4. CDO version 1 system specification

The following agile development techniques were em-
ployed:

217Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 236 / 512

• Refactoring: the solutions of 2a and 2b were initially
expressed as operations nocontagion, contagion of the
CDO class (Figure 4). It was then realised that they
would be simpler and more efficient if defined as
Sector operations. The refactoring Move Operation
was used. This refactoring did not affect the external
interface of the system.

• Customer collaboration in development: the risk ana-
lyst gave detailed feedback on the generated code as
it was produced, and carried out their own tests using
data such as the realistic dataset of [6].

It was originally intended to use external hand-coded
and optimised implementations of critical functions such as
the combinatorial function comb(int n, int m). However, this
would have resulted in the need for multiple versions of these
functions to be coded, one for each target implementation
language, and would also increase the time needed for system
integration. It was found instead that platform-independent
specifications could be given in UML-RSDS which were of
acceptable efficiency.

The initial efficiency of the approximate solution was too
low, with calculation of P(S = s) for all values of s ≤ 20 on the
test data of [6] taking over 2 minutes on a standard Windows
7 laptop. To address this problem, the recursive operations and
other operations with high usage were given the stereotype ≪
cached ≫ to avoid unnecessary recomputation. This stereotype
means that operations are implemented using the memoisation
technique of [14] to store previously-computed results. Figure
5 shows the refactored system specification at the end of the
third development iteration.

Figure 5. CDO version 3 system specification

Table VII shows the improvements in efficiency which
memoisation provides, and the results for generated code in
other language versions. The approximate version of P(S = s)
is compared.

TABLE VII. EXECUTION TIMES FOR CDO VERSIONS

Version Execution time for first Execution time for first
20 P(S = s) calls 50 P(S = s) calls

Unoptimised Java 121s –
Optimised Java 32ms 93ms
C# 10ms 20ms
C++ 62ms 100ms

Our experiences on this case study illustrate the UML-
RSDS principles:

• Optimisation and refactoring should be carried out
at the specification level in a platform-independent
manner where possible, not at the code level.

• The scope of MBD should be extended as far as
possible across the system development, reducing the
scope of manual coding and integration wherever
possible.

In conclusion, this case study showed that a successful
outcome is possible for agile MBD in the highly demanding
domain of computationally-intensive financial applications. A
generic MBD tool, UML-RSDS, was able to produce code
of comparable efficiency to existing hand-coded and highly
optimised solutions.

VII. GUIDELINES FOR AN IMPROVED AGILE MBD
PROCESS

The case studies have identified the need for a well-defined
agile MBD process for using UML-RSDS, and some tech-
niques for improving the adoption and application of UML-
RSDS, in addition to necessary technical improvements in the
tools. In general it was found that a development approach
using exploratory prototyping (of the system specification) at
the initial stages, and evolutionary prototyping at later stages,
was effective.

The following guidelines for adoption and application of
agile MBD are proposed, on the basis of our experiences in
the presented and other case studies:

• Utilise lead developers When introducing MBD to
a team inexperienced in its use, employ a small
number of team members – especially those who
are most positive about the approach and who have
appropriate technical backgrounds – to take the lead
in acquiring technical understanding and skill in the
MBD approach. The lead developers can then train
their colleagues.

• Use paired or small team modelling Small teams
working together on a task or use case can be very
effective, particularly if each team contains a lead
developer, who can act as the technical expert. It is
suggested in [18] that such teams should also contain
a customer representative.

• Use a clearly defined process and management
structure The development should be based on a well-
defined process, such as XP, Scrum, or the MBD
adaptions of these given in this paper or by MDD-
SLAP and Hybrid MDD. A team leader who operates
as a facilitator and co-ordinator is an important factor,
the leader should not try to dictate work at a fine-
grained level, but instead enable sub-teams to be
effective, self-organised and to work together.

• Refactor at specification level Refactor models, not
code, to improve system quality and efficiency.

• Extend the scope of MBD Encompassing more of
the system into the automated MBD process reduces
development costs and time.

The first three of these are also recommended as good practices
for agile development in general [10][11][17].

A detailed agile MBD process for UML-RSDS can be
based upon the MDD-SLAP process. Each development it-
eration is split into three phases (Figure 6):

• Requirements and specification: Identify and refine
the iteration requirements from the iteration backlog,

218Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 237 / 512

and express new/modified functionalities as system
use case definitions. Requirements engineering tech-
niques such as exploratory prototyping and scenario
analysis can be used. This stage corresponds to the
Application requirements sprint in MDD-SLAP. Its
outcome is an iteration backlog with clear and detailed
requirements for each work item.
If the use of MBD is novel for the majority of
developers in the project team, assign lead developers
to take the lead in acquiring technical skills in MBD
and UML-RSDS.

• Development, verification, code generation: Sub-
teams allocate developers to work items and write unit
tests for their assigned use cases. Subteams work on
their items in development iterations, using techniques
such as evolutionary prototyping, in collaboration with
stakeholder representatives, to construct detailed use
case specifications. Formal verification at the specifi-
cation level can be used to check critical properties.
Reuse opportunities should be regularly considered,
along with specification refactoring.
Daily Scrum-style meetings can be held within sub-
teams to monitor progress, update plans and address
problems. Techniques such as a Scrum board and
burndown chart can be used to manage work allocation
and progress. The phase terminates with the genera-
tion of a complete code version incorporating all the
required functionalities from the iteration backlog.

• Integration and testing: Do regular full builds, test-
ing and integration in an integration iteration, in-
cluding integration with other software and manually-
coded parts of the system.

Figure 6. UML-RSDS process

VIII. CONCLUSIONS

We have analysed the process and outcomes of three case
studies of MBD and agile development, involving a total of
over 250 developers. From these cases, we have identified

guidelines for the use of agile MBD, and an improved agile
MBD process for UML-RSDS. In future work, we will develop
a systematic evaluation framework for agile MDD application,
and investigate extensions of our agile MDD process.

REFERENCES
[1] M. Davis and V. Lo, “Infectious Defaults”, Quantitative Finance, vol.

1, no. 4, 2001, pp. 382–387.
[2] http://fixwiki.org/fixwiki/FPL:FIXML Syntax. Accessed 11.9.2015.
[3] http://www.fixtradingcommunity.org. Accessed 11.9.2015.
[4] G. Guta, W. Schreiner, and D. Draheim, “A lightweight MDSD process

applied in small projects”, Proceedings 35th Euromicro conference on
Software Engineering and Advanced Applications, IEEE, 2009, pp. 255-
258.

[5] S. Hansson, Y. Zhao, and H. Burden, “How MAD are we?: Empirical
evidence for model-driven agile development”, XM Workshop, MOD-
ELS 2014, 2014, pp. 2-11.

[6] O. Hammarlid, “Aggregating sectors in the infectious defaults model”,
Quantitative Finance, vol. 4, no. 1, 2004, pp. 64–69.

[7] J. Kirby, “Model-driven Agile Development of Reactive Multi-agent
Systems”, COMPSAC ’06, 2006, pp. 297–302.

[8] K. Lano and S. Kolahdouz-Rahimi, “Constraint-based specification of
model transformations”, Journal of Systems and Software, vol. 88, no.
2, February 2013, pp. 412–436.

[9] K. Lano, The UML-RSDS manual,
http://www.dcs.kcl.ac.uk/staff/kcl/umlrsds.pdf, 2015.

[10] L. Lavazza, S. Morasca, D. Taibi, and D. Tosi, “Applying Scrum
in an OSS Development Process: an Empirical Evaluation”, in 11th
International Conference XP 2010, 2010, pp. 147–159.

[11] R. C. Martin, “Agile Software Development: Principles, Patterns and
Practices”, Prentice Hall, 2003.

[12] R. Matinnejad, “Agile Model Driven Development: an intelligent
compromise”, 9th International Conference on Software Engineering
Research, Management and Applications, 2011, pp. 197–202.

[13] S. Mellor and M. Balcer, “Executable UML: A foundation for model-
driven architectures”, Addison-Wesley, Boston, 2002.

[14] D. Michie, “Memo functions and machine learning”, Nature, vol. 218,
1968, pp. 19–22.

[15] M. B. Nakicenovic, “An Agile Driven Architecture Modernization
to a Model-Driven Development Solution”, International Journal on
Advances in Software, vol 5, nos. 3, 4, 2012, pp. 308–322.

[16] K. Schwaber and M. Beedble, “Agile software development with
Scrum”, Pearson, 2012.

[17] D. Taibi, P. Diebold, and C. Lampasona, “Moonlighting Scrum: an agile
method for distributed teams with part-time developers working during
non-overlapping hours”, in ICSEA 2013, pp. 318–323.

[18] Y. Zhang and S. Patel, “Agile model-driven development in practice”,
IEEE Software, vol. 28, no. 2, 2011, pp. 84–91.

219Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 238 / 512

Metrics Framework for Cycle-Time Reduction in Software Value Creation
Adapting Lean Startup for Established SaaS Feature Developers

Pasi Tyrväinen, Matti Saarikallio
Agora Center, Department of CS and IS

University of Jyväskylä, Finland
pasi.tyrvainen@jyu.fi, matti.saarikallio@gmail.com

Timo Aho, Timo Lehtonen, Rauno Paukkeri
Solita plc

Tampere, Finland
{timo.aho, timo.lehtonen, rauno.paukkeri}@solita.fi

Abstract— Agile software development methodologies driving
cycle-time reduction have been shown to improve efficiency,
enable shorter lead times and place a stronger focus on
customer needs. They are also moving the process development
focus from cost-reduction towards value creation. Optimizing
software development based on lean and agile principles
requires tools and metrics to optimize against. We need a new
set of metrics that measure the process up to the point of
customer use and feedback. With these we can drive cycle time
reduction and improve value focus. Recently the lean startup
methodology has been promoting a similar approach within
the startup context. In this paper, we develop and validate a
cycle-time-based metric framework in the context of the
software feature development process and provide the basis for
fast feedback from customers. We report results on applying
three metrics from the framework to improve the cycle-time of
the development of features for a SaaS service.

Keywords-metrics framework; cycle-time; agile; software
engineering process; lean startup; feedback; SaaS.

I. INTRODUCTION
The software engineering (SWE) process has

traditionally been managed on a cost basis by measuring
programmer effort spent per lines of code, function point or
requirement. These metrics have also been used to guide
software process improvement. In order to align more with
business strategy and value production the focus has shifted
more towards value creation instead of cost reduction. For
example, value-based SWE [1], software value-map [2] and
a special issue on return on investment (ROI) in IEEE
Software [3] have explored value in software development.
As a reaction to move away from a cost-reduction focus, the
recent goal of lean thinking has been to optimize for
perceived customer value [4]. Thus, we can say that
leadership approach for the software development process is
moving from a cost focus to a value focus.

Measuring the value of application software and cloud
services is difficult to do before it is in use, as you need to
consider the value of the software for the potential users, the
business value for the firm developing it and the value for
other stakeholders [1][5][6]. The current theories of value do
not present a simple way of assessing customer value [7].
Although companies put a great amount of effort into
increasing customers' perceived value in the product
development process, determining how and when value is

added is still a challenge even in marketing and management
sciences. [7] Further, the software engineering metrics are
measuring attributes of the software development process
(e.g., cost, effort, quality) while these metrics remain
disconnected from the attributes and metrics developed for
measuring value (see Table I). Various approaches have been
developed to overcome this gap [1][5][6][8][9][10][11][12]
[13][14][15][16] without any major break-through.

The software engineering community has adopted an
iterative approach to software development in form of Scrum
[17], XP [18] and other agile [19] methods. These promote
fast cycle user interaction and development process to keep
the effort focused on customer needs based on fast customer
feedback either interactively or through analysis of service
use behavior. The startup community has adopted a similar
approach and commonly uses the lean startup cycle [20] to
evaluate the hypothesis of customer needs using the build-
measure-learn cycle, which is repeated to improve customer
acceptability of the offering and the business value of the
startup. The common theme of these approaches is that
instead of trying to estimate or predict the value in advance,
try to shorten the cycle time from development to actual
customer feedback, which indicates the value of the software
in use. That is, from the SWE perspective, the speed of
feedback received from users is the best indicator of the
value of the newly created software. This indicates that
shortening the feedback cycle would drive the SWE process
towards faster reaction on customer value and higher value
creation.

Although there exists a common understanding about the
key role of a fast customer feedback cycle in linking the
SWE process to value creation, the measurement methods
and metrics available in literature are positioned either as
cost-based SWE methods or as value-oriented metrics with
little connection to the engineering process providing little
guidance for managing and developing the SWE process (see
Table I). Thus, the research question of this paper is, what
metrics would guide cycle-time-driven software engineering
process development in established organizations?

As the answer is context-dependent, a set of metrics will
be needed. This paper aims at filling this gap by proposing a
metrics framework enabling adoption of such metrics in a
variety of contexts where new features are incrementally
added to software.

220Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 239 / 512

TABLE I. POSITION OF THIS RESEARCH TO BRIDGE COST-
ORIENTED SOFTWARE ENGINEERING (SWE) METRICS
AND VALUE-ORIENTED BUSINESS METRICS

Measurement Domains

SWE Metrics Research Gap
Addressed Here Value Metrics

Scope
(measurement
target)

SWE Process Value Creation
Cycle

Customer Value
of Offering,

Value of Startup
Measured
Attribute

Cost, Effort,
Quality Cycle Time

Value for
Customer,
Value for
Enterprise

Examples
Function Points

per month,
Faults per lines

of code
Value in Use,

ROI, Lean
Analytics

Applying the guidelines of the design science method

[21], this research has been initiated based on company
needs presented in interviews of Software as a Service
(SaaS) development firms in a large industry-driven research
program [22], to target an issues with business relevance in
firms.

In Section II, we construct the metrics framework artifact
based on the analysis and synthesis of previous research
literature selected from the perspective of the research
question. Following the design science research guidelines,
we also demonstrate generalizability of the framework
artifact to several contexts by choosing from a variety of
metrics to target the specific process development needs. We
also propose a simple diagrammatic representation for
visualizing some of the metrics values in operational use to
pinpoint development tracks requiring attention in an
organization with multiple parallel feature-development
teams.

In Section III, we evaluate the metrics framework by
applying it to the case of a firm developing new features for
an existing SaaS service and discuss the impact of the
findings on revising the target of the next process
improvement actions. In Section IV, we summarize the
results, draw the conclusions and propose directions for
further research.

II. THE CYCLE-TIME METRICS FRAMEWORK

A. Developing the Framework
The flow of new features through a SWE process can be

measured at various points in time with an aim to reduce
delay between points to reduce cycle time. The scope of the
process measured will impact the attention of the software
developing organization. In the narrowest scope, the cycle
time measured includes the basic software development
cycle while the widest cycle takes into account the customer
needs and experience and, thus, matches and even expands
the lean startup cycle [20].

In the proposed framework (see right side of Figure 1),
the feature life-cycle begins with three planning phase
events: 1) a need emerges, 2) a software development

organization recognizes the need, and 3) the decision is made
to develop the feature. In large established organizations, the
identification of feature needs has been excluded from the
responsibility of the SWE organization to responsibility of
the product marketing organization, while the
entrepreneurship-oriented startup community has
emphasized the value of including the need identification
step as an inherent part in the fast business development
cycle of the organization developing the software.
Sometimes there is an intentional lag between events 2 and 3
as the decision may be to wait for the right time window (cf.
real options [23][24]), or features with higher priority are
consuming all resources available.

Continuing from the 3 events that form the beginning of
the feature life cycle (above) and for the purposes of
measuring the value creation cycle, the main development
events included in this framework are 4) development starts,
5) development done, and 6) feature deployed. Use of XP,
Scrum and other iterative and incremental development (IID)
processes has aimed at reducing the time between events 4
and 5 (or fixing that to 2–4-week cycles). The cycle-time
from 4 to 5 is here referred to as the Development cycle (see
Figure 1). Moving from packaged software to cloud delivery
and SaaS development along with moving from an annual or
a six-month software release cycle to continuous integration
(CI [25]) and continuous delivery (CD [26]) in development
operations (devops [27]) has reduced the interval between 4
and 6.

After the event 6, the traditional software engineering
process is often thought to be completed, while many
entrepreneurship-oriented approaches, such as Lean Startup
[20], go further, starting from building a product to
measuring the use of it, which produces data used for
learning and for producing ideas for the next development
cycle (see left side of Figure 1). That is, building the product
based on current ideas is only one of the three main events
needed for value creation: build–measure–learn [20]. For
considering the business and customer perspectives in this
metrics framework for the value creation cycle, we need to
expand beyond step 6 to include the use, measuring and
learning phases: 7) when the feature gets used, 8) when
feedback data is collected to support learning, and 9) when a
decision is made based on the feedback. Note that events 8
and 9 resemble events 2 and 3 while not all information from
customer needs is collected through measuring the use of the
current product. It is also commonly assumed that the time
from feature deployed (6) to first use (7) is short, while
without measured data this can be an incorrect assumption.
There have been cases where almost half of software features
were never used [28]. Further, if software quality is high, it
can take some time to get feedback, and it may require many
uses of the feature before customer sends feedback about
problems. Additionally, it can take time for a feature to get
sufficient number of uses to allow for a reliable analysis of
customer behavior (8). Also, the deployment process of the
company can delay the decision to act on the feedback (9).

221Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 240 / 512

 Figure 1. The value-driven metrics framework for driving software engineering cycle-time reduction (on the right), the Lean Startup cycle (on the left)
and example cycles, for which cycle time can be used as the metrics driving cycle-time reduction (in the middle).

Figure 1 depicts the proposed framework. On the right

side we have the sequence of events identified. On the left
side, we have the Lean Startup cycle with horizontal arrows
pointing from the phases to related events of the
framework. The vertical arrows in the middle represent
examples of cycle times that can be used as a target metric
for developing SWE process. The cycles in the center are
labeled as follows: L = Lean Startup cycle, F = Full cycle
including fuzzy front end and full feature development cycle,
V = Value cycle from starting the development to value
capture, C = Core cycle from development start to first
feature use, and finally D+D2VC, where D = Development
cycle from start of development to production readiness and
D2VC = time from development done to value captured. We
emphasize that this list of cycles is not exclusive and new
cycle time metrics can be created with this framework on
demand for each context.

B. Changing Process Development Focus through Metrics
The various cycle-time metrics available in the

framework can be used for focusing process development
activity to specific process areas based on the need (see
Table II). For example, if the basic software development
process has been well developed and if some incremental
development process, automated testing and continuous
integration are applied, it may be useful to shift the attention
to continuous deployment. In that case, the metric to be
followed can be changed from Development cycle to cycle
time between events 4 and 6, from start of development to
start of production (see the second line in Table II).
Changing the metric will also change the focus of attention
and can often result in adjusting the processes, resource
allocations or tools used.

TABLE II. EXAMPLE PROCESS DEVELOPMENT TARGETS WHEN USING ALTERNATIVE CYCLE-TIME METRICS

Cycle Start Event End Event Addressed Capabilities Process Development Focus
D,
Development

4: Development
Started

5: Development
Done

XP, Scrum and other IID processes, automated
testing and continuous integration (CI)

Using this cycle-time metrics addresses
cycle-time of the basic SW development
process

Time to
production

4: Development
Started 6: In Production Same as in D, adding continuous deployment

(CD) to the measurement scope
Using metrics for this cycle time focuses
attention to CD capability

C, Core cycle 4: Development
Started 7: Feature Used Same as previous adding communication

(diffusion) to customer base to the scope
Here the focus shifts to integrating customer
facing team with development

V, Value cycle 4: Development
Started

8: Value
Captured

Adding customer analytics and customer feed-
back capabilities to the previous scope

Shifts focus to integrating analytics capability
to IID+CI+CD capability

Time to Value 4: Development
Started *: Break Even As Value cycle, but using this metrics assumes

that value produced can be evaluated. As in Value cycle
D2VC 5: Development

Done
8: Value
Captured

Post-development processes needed to deliver
the created value and to get the feedback

Focusing on value cycle capabilities after the
basic SW development process.

Fuzzy Front
End

1: Feature
Needed

3: Feature
Ordered

Deep customer understanding (between events
1 and 2) and market understanding (2 to 3)

Measuring capability to find customer needs
close to actionable market

...

222Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 241 / 512

In large organizations, where the product-marketing
department is responsible for collecting market requirements
and for product launches, the processes crossing product
development and product-marketing departments may be
problematic. In these cases, choosing the Value cycle, Time
to Value or Design done to value captured (D2VC) as a
common metric for both of the departments will enforce
collaboration between the departments and will likely
improve the total value creation capability of the
organization, while local metrics within the departments are
likely to lead to local optimization leading to non-optimal
organizational behavior. It should be noted, that this issue
appears mainly in large established organizations rather than
in small startup firms, the needs of which the lean startup
approach has been developed.

The time to value cycle in Table II ends with the event of
reaching the breakeven point, which is marked with an
asterisk “*” rather than a number representing a specific
ordering in the framework. In some cases a pay-per-use
business model provides a basis to determine the break-even
point for a feature, while in some cases the break-even point
is estimated by qualitative means. A new feature may
produce enough value to reach the break-even point when it
is published (event 6) or when it is used for the first time
(event 7). However, in many contexts this event occurs close
to event 8, Value captured, that is, the feature use count is
high enough, and sufficient feedback has been received, to
ascertain whether the feature was worth the development
effort. Based on these examples and the other examples in
Table II we can observe, that the choice of applicable metrics
is context dependent. Thus there is a need for a framework
for metrics, which supports choosing the metric applicable
for a specific situation.

C. Depicting Cycle-Time Elements
Depicting the proposed cycle-time metrics makes it

easier to decide whether to further develop or even to drop a
existing feature and will also help in communicating the
cycle-time reduction agenda to software engineers and other
parties involved. For this purpose we devised a simple
diagrammatic representation presented in Figure 2. In this
example, the development starts at point 4 and ends at point
5. The y-coordinate represents the cumulative development
time, in line with the cumulative cost for the organization.
This linear curve is intentionally simplistic as the focus is on
the form of the curve after event 5. In contrast, software
engineering oriented representations, such as the Kanban
Cumulative Flow Diagram [29], focus on analysis of the
development cycle from 4 to 5 and ignore activity after
production readiness.

From event 5 on, the horizontal line represents the
duration of the waiting time from ready-to-deploy through
deployment to first use. The feature is used for the first time
in production at event 7. After that the dropping logarithmic
curve represents the speed at which feedback has been
received. After the second use the curve comes down to half,
after the third use to one third of the original, and so on.

Figure 2. Depiction of the cycle times for feature analysis and process

development. The numbers refer to the event number in the framework.

That is, the curve represents development time divided by
number of times used. A context-specific target threshold for
development time per times used is presented as a dotted line
and the time when the curve reaches the threshold is marked
with an asterisk “*”.

In line with our approach to focus on the cycle times, this
graphical representation aims at depicting the cumulative
effort invested to the feature during development. There is a
risk embedded in this development effort as it has not
received feedback from the customers. Thus it is potential
waste if customers do not accept the feature. This risk is
mitigated along the narrowing gap of the asymptotic curve
and the horizontal axis and reaching the threshold indicates
that enough customer feedback has been received to
ascertain whether it has been worth developing the feature.
Event 8, Value captured, is serving this purpose as the event
when sufficient user feedback is gained to evaluate the value
of the newly developed feature and for adjusting the
development plans accordingly, to further develop the
feature or to drop it. In addition to guiding value creation,
fast feedback from event 8 makes it easier for software
developers to fix errors and modify the feature as long as
they can still recall the implementation of the feature and
have not moved on to new assignments.

Although measuring value is difficult, we would also like
to identify the time-to-value cycle, that is the time from
starting the development to break even, to the point at which
its value to the customer exceeds the development costs.
Now we face the challenge that while the cost can be easily
measured in terms of time or money, value as a concept is
not clearly defined and even if it were it would be hard to
measure. We can speculate that the break-even point could
be reached already on deployment (for features whose
existence provides value even if they are not used, e.g.,
emergency-situation feature), on first use (when customer
finds it), after a certain amount of uses (some use value
derived from each), or sometimes a feature can fail to
become profitable. Thus, the location of this measurement
point cannot, in general, be identified in the sequence of
events in the proposed framework, rather it is context
dependent.

If we want to measure value, we need to define value.
Historically three forms of economic value are the use value,
exchange value and price [30]. There are many theoretical
divisions of value to support decision making about which

223Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 242 / 512

software feature to work on next [2][5][7][8][9][10][11][12]
[13][14][15][16][24][30][31], but most theories consider the
use value to the customer as essential. For the purposes of
metrics development the focus will be on customer use
value. It is important to note that due to market mechanism,
exchange value is less or equal to use value [30]. This means
that we could calculate a monetary estimate for the upper
bound of the value captured by the software developer, that
can be compared with cost. Still, the issue is problematic.

If we assume that there is use value for a feature, and in
some cases the use value can be estimated as equal for each
use, we would like to measure directly the cost versus
benefits ratio: !"#"$%&'"() !"#$#

!"#"$%&'
. However, as discussed the

benefits are challenging to measure and, at worst, we might
need a new metric for each feature. This leads us to suggest
that we isolate the hard-to-measure part, benefits, by instead
measuring the precisely calculable cost per use 𝛽 =
!"#"$%&'"() !"#$#

!"#$% !"#$
 and only if possible compare it to the

estimated value for the user, based on a case-by-base
estimation method. Next, we will show, using a case study,
that reaching events “*” and 8 produce very similar value for
process development and feature decision making and that
they can be used interchangeably. Thus, time to receive
enough feedback is also a good, practical proxy for value
produced.

III. METRICS VALIDATION CASE STUDY

A. Target Organization and Service
We evaluated the metrics framework in a mid-sized

Finnish software company, Solita Ltd. The case software
development team develops a publicly available SaaS
(lupapiste.fi) used by citizen applying for a construction
permit related to real estate and other structures. This
privately operated intermediary service provides a digital
alternative to avoid the time-consuming paper-based process
of dealing directly with the public authority. This service is
used by employees of the licensing authority in the
municipalities (about 100 users), the applicants (citizens and
companies, about 100 per month), and architects and other
consultants (1-2 per application). The software development
process metrics were evaluated with the usage data collected
from the process flow of five new features of this SaaS
service deployed during the observation period, in mid-2014.

The service has a single page front-end that connects
through a RESTful API to its back-end. Each call to the API
is recorded on the production log files with a time stamp. We
mined and analyzed the log entries together with the
development data captured by the version control system. In
this case, we chose features that introduced a new service to
the API and were thus possible to trace automatically with a
simple script that queried the monitoring system
automatically. Some manual work was needed to find the
features that introduced a new API, but automation of this
work is also possible.

B. Results from Applying the Metrics to Sample Features
From the recorded event time stamps we calculated three

metrics values for the case features. Development cycle (D)
from start (4) to done (5) in working days. Lag to production
from done (5) to deployed (6) in calendar days. And
finally, D2VC, time from development done (5) to value
captured (8). In this context the target company estimated
that enough feedback data was collected for learning when
the feature was used four times per each day spent on
development, which gave the context-specific definition for
the value capture event (8). Table III presents the data that is
depicted in Figure 3. To enable comparison, all the features
are shifted in the time axis to have event 4 (start of
development) at day 0. In a daily use, an alternative
depiction can show the timeline representing the history of
all features to current point of time from which it is easy to
identify development peaks and, more specifically, to notice
the curves that remain high after the peak which indicates a
demand for action. Either a feature has not been deployed
and promoted well for the users or there is no user need for
the feature.

C. Case Analysis and Discussion
From Table III we can see that for these five features the

average of development effort needed to implement and test
the features was about eight working days. When the
development was done, on an average 12 calendar days was
spent on waiting for deployment of the feature to the
production environment. We can also observe that the
features with lower priority (F1647 Unsubscribe and F1332
Note) have almost double the lag to production compared to
the other features.

TABLE III. DESCRIPTION OF THE SAMPLE FEATURES, THEIR PRIORITY,
DEVELOPMENT TIME (IN WORKING DAYS), LAG TO
DEPLOYMENT (IN CALENDAR DAYS) AND DEVELOPMENT
TO VALUE CAPTURED (D2VC; IN CALENDAR DAYS)

Feature id

Pr
io

ri
ty

D

ev
el

op
m

en
t

(d
ay

s)

L
ag

 to

de
pl

oy
m

en
t

(d
ay

s)

D
2V

C
 (

da
ys

)

Description of the
feature

F1332 Note 2 10 24 24
Authority user can add a
textual note that other
users cannot see.

F1498
Attachment 4 9 10 N/A

Applicant user can set
the target of an uploaded
attachment.

F1507
Validate 4 10 1 49

System validates the
form prior the user sends
the application.

F1537 Sign 4 7 11 15
Authority user can
require an applicant to
sign a verdict.

F1647
Unsubscribe 3 2 15 28 Authority user can

unsubscribe emails.
Average 8 12 29

224Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 243 / 512

Figure 3. Depiction of the cycle-times of the five features. Development working days share the rising line starting from (event 5) and end in event 6

(start of the gray horizontal line), deployment (7, white dots in the right end of the gray part of the horizontal lines) and usage (yellow dots). To enable
comparison, all the features are synced to have event 5 (start of development) at day 0.

The average time from completion of development to
value capture is 29 days (this does not include feature F1498
Attachment, which did not reached the number of uses
needed for the threshold). From the depiction in Figure 3, we
can also see that this feature is no longer used. This feedback
triggers the discussion on the reasons for the discontinuation
of use of the feature to determine if there is a need to
improve it or remove it from the service. When the target is
to minimize the cycle times, minimizing the lag from
production readiness to deployment (from event 5 to 6) and
the means to increase the use of new features are clearly the
places where major improvement can be reached much
easier than from reducing average development time. By
plotting the events in this way, it is easy to identify the
places where changes can be made as well as to
communicate the need with the development teams.

The results triggered also a discussion on the release
practices of the firm. From the service use statistics it is
possible to see that the service is heavily used from Monday
to Thursday, less on Friday and very little during weekends.
Thus it is likely that features released on Mondays will get
used sooner than the ones released on Fridays, which
provides the additional benefit that the feedback from users
(8) would reach the developers when they still recall the
software they were working on. Even more profound than
the weekly cycle is a similar variation related to the vacation
seasons. Deploying new features just prior to vacations will
have negative impact on the Value cycle, as described above.

IV. SUMMARY, CONCLUSIONS AND FURTHER RESEARCH
The feedback from practitioners suggests that the current

literature lacks metrics that could be used for directing a
software development organization from the business
perspective to enhance effective value creation and value
capture. Although the Lean Startup Methodology proposes to
develop the software via the build–measure–learn cycle, we

seem to lack the means to measure the value that the
delivered software creates. Also the researchers have
observed this problem and conclude [7], that the current
theories of value do not present a simple way of assessing
customer-perceived value. Although companies put a great
amount of effort into increasing customers' perceived value
in the product development process, determining how and
when value is added is still a challenge even in marketing
and management sciences [7]. Previous literature on XP,
Scrum, lean startup and related approaches has indicated that
in the context of SaaS services, delivering new versions of a
service to the customer, collecting the usage data and making
further decisions based on the data provides the most
promising path for the software vendor to understand
customer-perceived value. Agile methods have been shown
to enable shorter lead times and a stronger focus on customer
needs [32].

Shortening the cycle times provides increased flexibility
maintaining options to change development direction with
speed [20][22] as well as other business benefits for software
service firms. This encouraged us to search for metrics that
help software firms in the process development towards
shorter cycles. On this basis, we formulated the research
question as, what metrics would guide the cycle-time-driven
software engineering process development in established
organizations?

As the proposed solution, we adopted and extended the
lean startup [20] value creation cycle and constructed a
framework for metrics based on the times between main
observable events within the cycle, all the way through to
receiving and analyzing user feedback. This focuses attention
on fast execution of the value creation within the user
feedback cycle. That is, we are not trying to measure value
of the results of the cycle, such as the value of the product
produced or the value of the startup or progress of the startup
in creating the offering, as in lean analytics [12].

225Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 244 / 512

By finding the measurable values from within the value
creation cycle, the cycle-time metrics framework aims at
bridging the gap between cost-oriented SWE metrics and
value-oriented business metrics. Cycle-time reduction serves
as the intermediary of increased value creation guiding
software feature development and software process
development. The metrics measure the calendar time
between the key events. The first three events are related to
feature need identification and the business decision to
implement the specific feature (event 3). The core events
following this decision are start of the development (4), the
feature is ready for deployment (5), the feature is deployed
(released, 6), and first use of the feature by a customer (7).
These events are followed by feedback related events, the
feature feedback data has been collected and analyzed (8)
and a decision is made based on the feedback (9). The time
intervals between the core events (4-7) are of most interest
for the engineering while the other events (1-3 and 8-9)
relate to the customer-perceived value analysis of the feature.
We also provided examples on how changing the
measurement cycle directs the process development to new
process areas.

Our empirical focus was at the level of features being
added to an existing SaaS offering. In the empirical part, the
times between the events in the core cycle were measured for
five new features in the development processes of an
independent software vendor’s SaaS service. The results
showed that the core metrics were able to capture and bring
up useful characteristics of the business process that
triggered both a “drop vs. develop feature” discussion (for
feature F1498) and a number of process development
discussions. In these five feature development cases the
average development time was shorter than the waiting time
for the feature to be released. This has negative impact to the
efficiency of fixing potential problems emerging during the
first uses of the feature by first users, as the developers have
already oriented towards another assignment. The detection
of the delay of feature releases lead to a further analysis of
the vendor’s release practices in general and prompted quick
improvements to their process.

Although the results from the empirical part showed that
the metrics are useful in practice, there are still several
avenues of further research that we wish to explore. The
empirical part used data from the engineering system and
customer feedback data to identify the core events. This
seems to be a useful starting point and the firm in our case
study would like to extend the collection of data to cover as
many of the nine events as possible and as automatically as
possible. The time from release readiness to analyzed
customer feedback seems to be a particularly useful
measurement of deployment performance.

In general, collecting the data can and should be
automated using engineering information systems to the
extent possible (events 1 and 8 cannot be detected
automatically). For the other events, we propose collecting
and depicting the data graphically in real-time status displays
providing an overview of the development activities for
business and engineering management. As we can observe
from the empirical case, the results are useful both for

focusing process development activities and for making
business decisions regarding which features will be
developed further, which will be used as they are, and which
features will be removed from the service. This way the
simplified depiction can provide transparency between the
business and the development organization. Thus we
encourage further empirical work on the automation of data
collection and its depiction based on events identified in the
framework.

In startups the result of value creation cycle can be
analyzed in the context of the evolution of the enterprise
[12]. In context of established feature development
processes, this framework adopted the approach of using
only cycle times between events as the metrics within the
value creation cycle. This is due to limited applicability of
suitable previous research results for real-time customer-
perceived value analysis beyond A/B testing and similar
tools that can be used between events 7 and 8. Although
cycle time metrics seems to provide high added value to
focus process development in connecting software
development with customer value, investigating the value
capture events 8 and “*” further is needed. Finding an easy
to apply means for estimating the perceived user benefits
would enable various new developments supporting the
operative business development of a software engineering
team.

ACKNOWLEDGMENT

This work was supported by TEKES as part of the Need
for Speed (N4S) Program of DIGILE (Finnish Strategic
Centre for Science, Technology and Innovation in the field
of ICT and digital business).

REFERENCES
[1] B. W. Boehm, “Value-based software engineering: Overview

and agenda,” in Value-based software engineering, Springer
Berlin Heidelberg, 2006, pp. 3-14

[2] M. Khurum, T. Gorschek, M. Wilson, “The software value
map - an exhaustive collection of value aspects for the
development of software intensive products,” Journal of
software: evolution and process. Wiley, 2012, 711-741.

[3] H. Erdogmus, J. Favaro, W. Strigel, “Return on investment,”
IEEE Software 3(21), 2004, pp. 18–22.

[4] K. Conboy, “Agility from first principles: reconstructing the
concept of agility in information systems development,”
Information Systems Research, 20(3), 2009, pp. 329-354.

[5] S. Barney, A. Aurum, C. Wohlin, “A product management
challenge: Creating software product value through
requirements selection,” Journal of Systems Architecture,
54(6), 2008, pp. 576-593.

[6] A. Fabijan, H, Holström Olsson, J. Bosh, “Customer
Feedback and Data Collection Techniques in Software R&D:
A Literature Review,” in Software Business. Springer
International Publishing, 2015, pp. 139-153.

[7] J. Gordijn, and J.M. Akkermans, “Value-based requirements
engineering: exploring innovative e-commerce ideas,”
Requirements Engineering 8(2), 2003, pp. 114-134.

[8] M. Rönkkö, C. Frûhwirth, S. Biffl, “Integrating Value and
Utility Concepts into a Value Decomposition Model for

226Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 245 / 512

Value-Based Software Engineering,” PROFES 2009,
Springer-Verlag, LNBIP 32, 2009, pp. 362–374.

[9] R.B. Woodruff, and F.S. Gardial, Know your customer: New
approaches to customer value and satisfaction. Cambridge,
MA, Blackwell, 1996.

[10] C. Grönroos, “Value-driven relational marketing: from
products to resources and competencies,” Journal of
Marketing Management 13(5), 1997, pp. 407–419.

[11] T. Woodall, “Conceptualising ‘value for the customer’: An
attributional, structural, and dispositional analysis,” Academy
of Marketing Science Review, no. 12, 2003, pp. 1526–1749.

[12] A. Croll, and B. Yoskovitz, Lean Analytics: Use Data to
Build a Better Startup Faste,. O'Reilly Media, Inc. 2013.

[13] P. Tyrväinen, and J. Selin, “How to sell SaaS: a model for
main factors of marketing and selling software-as-a-service,”
in: Software Business, Springer, Berlin Heidelberg, 2011, pp.
2-16.

[14] V. Mandić, V. Basili, L. Harjumaa, M. Oivo, J. Markkula,
“Utilizing GQM+ Strategies for business value analysis: An
approach for evaluating business goals,” The 2010 ACM-
IEEE International Symposium on Empirical Software
Engineering and Measurement, ACM, 2010.

[15] M. Saarikallio, and P. Tyrväinen, “Following the Money:
Revenue Stream Constituents in Case of Within-firm
Variation,” in: Software Business. Springer International
Publishing, 2014, pp. 88-99.

[16] J. Bosch, “Building products as innovation experiment
systems,” in: Software Business, Springer, Berlin Heidelberg,
2012, pp. 27-39.

[17] K. Schwaber, and M. Beedle, Agile Software Development
with SCRUM, Prentice Hall, 2002.

[18] K. Beck, Extreme Programming Explained: Embrace Change.
Addison-Wesley, 1999.

[19] A. Cockburn, Agile Software Development, 1st edition, 256
p. Addison-Wesley Professional, December 2001.

[20] E. Ries, The Lean Startup: How Today's Entrepreneurs Use
Continuous Innovation to Create Radically Successful
Businesses. Crown Publishing Group, 2011.

[21] A.R. Hevner, S.T. March, J. Park, S. Rami, “Design Science
in Information Systems Research,” MIS Quarterly, Vol. 28,
No. 1, 2004, pp. 75-105.

[22] J. Järvinen, T. Huomo, T. Mikkonen, P. Tyrväinen, “From
Agile Software Development to Mercury Business,” in:
Software Business. Towards Continuous Value Delivery,
Springer Berlin Heidelberg, LNIB, vol. 182, 2014, pp 58-71.

[23] H. Erdogmus, and J. Favaro, “Keep your options open:
Extreme programming and the economics of flexibility,” in
Giancario Succi, James Donovan Wells and Laurie Williams,"
Extreme Programming Perspectives", Addison Wesley, 2002.

[24] M. Brydon, “Evaluating strategic options using decision-
theoretic planning,” Information Technology and
Management 7, 2006, pp. 35–49.

[25] M. Fowler, Continuous Integration, 2006.
http://martinfowler.com/articles/continuousIntegration.html
retrieved: Septmeber, 2015.

[26] J. Humble, and D. Farley, Continuous delivery: reliable
software releases through build, test, and deployment
automation, Pearson Education, Jul 27, 2010.

[27] P. Debois, “Devops: A software revolution in the making,”
Cutter IT Journal, vol. 24, no. 8, August, 2011.

[28] J. Johanson, Standish Group Study, presenation at XP2002.
[29] K. Petersen, and C. Wohlin. "Measuring the flow in lean

software development." Software: Practice and experience,
vol. 41, no. 9, 2011, pp. 975-996.

[30] J.S.Mill, Principles of political economy, 1848, abr.
ed., J.L.Laughlin, 1885.

[31] M. Cohn, Agile estimating and planning. Pearson Education
Inc. 2006.

[32] M. Poppendieck and M.A. Cusumano, “Lean software
development: A tutorial,” Software, IEEE, vol. 29, no. 5,
2012, pp. 26–32.

227Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 246 / 512

A Context-Driven Approach for Guiding Agile Adoption: The AMQuICk Framework

Hajer Ayed, Benoı̂t Vanderose and Naji Habra
PReCISE Research Center

Faculty of Computer Science, UNamur
Rue Grandgagnage 21, B-5000 Namur, Belgium

emails: {hajer.ayed, benoit.vanderose, naji.habra}@unamur.be

Abstract—Regarding the proven benefits of agile software de-
velopment, more and more practitioners are becoming interested
in agile methods and have to deal with the complexity and costs
of the adoption process. In this context, agile experts argue that
prior to any agile method or practice adoption, its relevance to the
organization and team should be evaluated to avoid unnecessary
implementation efforts and resources. The goal of this research is
to investigate a context-driven approach for guiding agile meth-
ods adoption: starting from the characterization of the context
properties, the approach helps to identify relevant practices and
to recommend process customization using adequate rules. The
focus in this paper will be on the agile context characterization
using relevant, reusable and measurable elements structured in a
context metamodel. A purposely simple instantiation is proposed
to illustrate how customization rules would be inferred from the
context characterization.

Index Terms—agile software development; software process
customization; agile context; agile practice selection.

I. INTRODUCTION

Even though the benefits of agile methods have been proved
by successful implementations and experiences, the complex-
ity of adopting them is high and requires lots of effort: upper
management sponsorship, customer involvement, team em-
powerment, traditional organizational silos replacement with
cross-functional teams, deals with egos and resistance to
change, business model arrangement, etc.

To take advantage of the agility benefits and to overcome
these common issues, experts and practitioners highlight the
necessity to properly adapt practices, deliverables, activities
and any other process aspect to avoid unnecessary implemen-
tation costs and efforts and to better accommodate the team’s
specific context and needs.

The agile literature, as explained by Dybå et al. [1], provide
a broad picture of adaptation experiences and successful
agile implementation but most of them are hardly reusable
because they lack of structuring and are often based on experts
knowledge and intuitive reasoning: the adaptation decisions
are neither documented nor structured nor automated (see
section II).

The goal of the AMQuICk framework [2][3] is to provide
methods and tools to guide the adaptation of agile methods in
a more objective, structured and (at least partially) automated
way. To that end, it is necessary to record and formalize the
intuitive knowledge of agile experts regarding the adaptation
of methods to specific contexts so that decision-making may
be systematized.

A key to success in this endeavor lies in the exploitation
of a formalized and measured representation of the context of

an ongoing development process. Given an objective model of
the context (including measured attributes), the identification
of relevant process elements to recommend to the team maybe
more easily exploited by formalized recommendation rules
(paving the way towards a complete expert system).

This paper introduces an approach to context-modeling
designed to be exploited in such a way and demonstrates how
an agile context can be instantiated using relevant measurable
elements in order to infer customization rules. The main
questions underlying the approach are therefore: (1) how
can we model and compose agile processes using reusable
components?, (2) what defines an agile software development
context and how to model it?, (3) how to retrieve relevant
components regarding the context at hand?.

The remainder of this paper focus on context modeling
challenges and is structured as follows: Section II presents
the existing approaches and context models to guide the
customization process. Section III-A presents an overview
of the framework that we propose. Sections III-B and III-C
provide details on the process specification and context mod-
eling. Section III-D refers to the formalization of the process
engineering interpretation rules. An example is presented in
Section IV to illustrate the context metamodel instantiation
and how customization rules could be inferred from the context
characterization. Finally, Section V presents closing comments
and future work.

II. RELATED WORK

A. Agile Customization

Even though the literature abounds with valuable agile
methods tailoring experiences reports [1], most of them are
difficult to exploit, because too narrowly linked to a specific
situation and often based on experts’ knowledge and intu-
itive reasoning: neither documented nor structured nor tool-
supported.

There exist structured approaches that provide practical
road-maps to facilitate and guide through the implemen-
tation and tailoring process [4][5] but they definitely lack
automation: most of them are just documents with guidelines
and repeatable steps to follow for effective agile methods
implementation. Moreover, the problem with these approaches
is that each of them proposes a solution based on only few and
prefixed factors influencing the implementation. For example,
Cockburn [6] proposes to choose the agile methods among
the Crystal family methods according to the number of people
involved and criticality criteria .

228Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 247 / 512

Other approaches, such as Mnkandla [7], propose a toolbox
for only practices selection and not other process aspects.
Moreover, the linkage with project context is only allowed
through a predefined methodology selection matrix and project
taxonomy matrix. This kind of matrix synthesizes some
experts’ knowledge therefore preventing any possibility of
extension.

Finally, more formalized and tool-assisted approaches, such
as Mikulėnas et al. [8], aim to support agile methods adapta-
tion by providing users with rich practices composition mech-
anisms (e.g., merging, coupling, etc.). However, the choice of
suitable practices is only based on the user appreciation: the
adaptation decisions are not assisted or derived from context
attributes.

B. Agile Context Defined

The software development context refers to all the influen-
tial circumstances and variables that affect the work environ-
ment of all stakeholders involved in the project life-cycle, e.g.,:
market uncertainty, budget constraints, application domain,
project criticality, project duration, team size, familiarity with
the involved technology, etc.

Although the term context has an intuitive meaning for
agile practitioners, it’s hard to formalize the relevant context
variables to support software process adjustments.

Several contextual models to guide the adoption and adap-
tation of agile software development practices can be found
in the literature.

Cockbrun et al. in the crystal family of processes [6] define
different processes based on Product Size, Criticality, and
Skills.

Boehm et al. [9] define a home ground of agile vs. plan-
driven as associated to five critical factors namely, Product
Size, Criticality, Dynamism (i.e., requirements change rate),
Personnel (i.e., level of method understanding [10]) and Cul-
ture (of the team: thriving on chaos or on order).

Kuchten [11] defines 2 sets of factors that make up the
context: factors that apply at the level of the whole orga-
nization, and factors that apply at the level of the project.
The organization-level factors do influence heavily the project-
level factors which should drive the process to adopt. The
organization level factors are defined as: Business domain,
Number of instances, Maturity of the Organization, Level
of Innovation and Culture. Project-level context factors are:
Size, Stable Architecture, Business Model (contracting, money
flow, etc.), Team Distribution, Rate of Change, Age of System,
Criticality and Governance (management style).

S. W. Ambler [12], in the Agile Scaling Models (ASM)
framework, defines a range of 8 scaling factors for effec-
tive adoption and tailoring of agile strategies: Team size,
Geographical distribution, Regulatory compliance, Domain
complexity, Organizational distribution, Technical complexity,
Organizational complexity and Enterprise discipline.

Even though the context models reported above have been
defined for different purposes (i.e., Crystal family of methods
configuration, defining agile vs. plan-driven home grounds,

practices adoption guidance and scaling agility to larger
scopes), they seem to be more or less similar with only
minor variations. They are all composed of context “factors”
or “dimensions” at the higher levels refined in a set of
“properties” or “attributes” at the lower levels.

Based on this observation, our target was to find a way
to abstract context modeling in a common paradigm, so that
agile process engineers or facilitators (or any other equivalent
role) can design their own profile to contextualize process
components depending on their own perception. Indeed, the set
of relevant context elements to support the software process
adjustments is potentially different from an organization to
another.

The approach investigated in this paper is an attempt to
address the issues mentioned above. The following sections
provide an overview of the essential set of components re-
quired for context-driven adaptation.

III. AMQUICK FRAMEWORK

A. Overview

Figure 1: AMQuICk Basic Elements

In order to support the long-term vision of assisted adapta-
tion of agile development processes, it is crucial to comple-
ment existing agile tailoring approaches with more objective
and systematic guidelines. As explained in Section II, the
context appears as a missing link in the formalization process
regarding the tailoring of agile methods. The approach we
propose is therefore aiming at better formalization of the
context, so that it can be exploited further in the process
tailoring part of the approach. Practically, the approach relies
on a formal (and rule-based) mapping between process models
and the related context models.

As illustrated in Figure 1, our approach is model-driven
and complies to the Meta-Object Facility (MOF) architecture
[13]. At the M2-level lie the two required metamodels: the first
dedicated to the context specification, the second to process

229Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 248 / 512

modeling. The former is specifically designed for our purpose
while the latter takes advantage of the preexisting Essence
DSL to define the abstract syntax of agile processes (see
Sections III-B and III-C for further details).

While the M0-level is concerned with actual collected data
regarding the context and the process, the M1-level is the
cornerstone of the approach. At this level, two syntactic
instances of the metamodels may be compared and mapped
against each other from a semantic point of view. In other
words, at this level, a specific piece of context may call for
a specific piece of process. This relationship between context
and process must be guaranteed by rules derived from the body
of knowledge of agile experts referred to in Section III-D.

Implementing this approach is key regarding the elicitation
of objective decision-making elements that are needed to guide
the evolution and decide which process adjustments to include
at the right time. The components illustrated in Figure 1 form
the basis of a rule-based system so that the experts can define
the crucial context features that influence process adaptation
and the practitioners simply enter some information about the
project context (by instantiation of the latter features) and
get an indication of the most appropriate adaptations for that
project.

B. Process Modeling
As explained in Section I, the need for a better flexibility

of software engineering motivates the construction of tailored
processes to the situation at hand. This discipline is known as
Situational Method Engineering (SME).

The kernel of SME consists in composing contextual meth-
ods by reusing structured “components” of existing methods.
Various techniques can be used including Metamodeling,
Domain Specific Languages (DSL), Ontologies, etc.

For the needs of the previously described approach we in-
vestigated and compared some of them among which, ISO/IEC
24744 metamodel [14], Software Process Engineering Meta-
model (SPEM 2.0) [15] and the recently published DSL
Essence 1.0 [16].

The DSL Essence 1.0 (see Figure1) is a Kernel And
Language For Software Engineering Methods adopted by the
OMG. It was chosen because of its intuitiveness (graphical
notation, different level of abstraction: static and operational
view), usability at the team level, extensibility and finally
because the DSL has been developed among an active initiative
which aims to develop a software engineering kernel for both
agile and waterfall ways [17].

However, the Essence DSL has to be extended in order
to allow for a more structured definition of context-related
elements into the process modeling. As explained in [18],
quality-related information may be taken into account in order
to provide more objective (or a least more structured) elements
of context.

C. Context Modeling
In this section, we investigate the second problem intro-

duced in Section I, i.e., what attributes the agile software
development context encompass and how it can be captured?

Figure 2 depicts the designed metamodel for context speci-
fication. It defines all the concepts (and relationships between
them) that may be used in the definition of a context model.
The core elements for characterizing an agile context are:

• “Context Dimension”: includes the high-level key-
concepts of software engineering characterizing the con-
text. Possible instantiations are project, organization,
team, endeavor, customer, solution, etc. These instanti-
ations highly depends on the tacit knowledge of agile
experts.

• “Context Property”: the set of variables underlying a
context dimension. For example, the “requirements di-
mension” may be characterized by the “requirements
change” property.

The metamodel also includes concepts designed to describe
in details the measurable entities of the context and the
nature of the measures themselves (see Figure 2). This subset
of the metamodel results from the conceptual alignment of
various related works dedicated to define a unified terminology
of software measurement metamodels specifically ISO/IEC
SQuaRE [19] and the Model-Centric Quality Assessment
(MoCQA) [18].

As a result, the metamodel includes all the concepts required
to define a well-formed and coherent measurement method: it
relies on the notion of measurable entity for which a given
measurable attribute has to be mapped to a value (i.e., the
measure itself). In the context metamodel, those concepts are
replaced with the “ContextDimension” (measurable entity)
and the “ContextProperty” (measurable attribute).

In order to be conceptually correct and allow for the right
operation and comparison, the measure has to be identified by
a series of variables (i.e., type of value, unit, and scale) that
indicates how the sheer value must be understood, compared
to other measurement values and interpreted in fine.

The metamodel also emphasizes the difference between
sheer measurement values and so-called indicators. Indicators
are the key to the approach since they allow bridging the gap
between objectified (through measurement) context elements
and derived process elements. As explained in [18], indicators
are only as useful as their interpretation rules.

In a more traditional quality assessment context, the in-
terpretation associated to a given indicator determines the
action to be undertaken in the next steps of the development.
Building upon this notion, the AMQuICk approach proposes
to link the interpretation to process engineering rules (thanks
to “CustomizationRule”) so that the interpretation of the
indicator impacts directly the way the process is to be refined.

D. Rule-Based Process Engineering

Every time an organization is going to develop a project in
an agile way, a context profile has to be instantiated using the
context metamodel described in Section III-C.

However, a standalone context model has no meaning if
not linked with adequate customization abilities. Indeed, the
instantiated model only defines the structural properties of

230Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 249 / 512

Figure 2: Context Metamodel

the context. The behavioral mechanisms regarding the process
engineering have to be elicited.

To do so, the body of knowledge required in the engineering
process has to be gathered, i.e., the information about typical
project contexts involved in the previous developments of the
organization, the information sources of past agile experiences,
the tacit knowledge of experts (or experienced people), the
previous process configurations and adaptations, the tailoring
guidelines (if they exist), etc.

Then, this information has to be structured properly in order
to support process engineering decision-making. The relation-
ship between the context and process can be guaranteed by
transformation rules. The package “Process Customization”
of Figure 2 describes the abstract syntax of the interpretation
rules engine. “CustomizationRule” is associated to:

• a context “Indicator” which determines the action or
event to be undertaken,

• an input process element (“LanguageElement”),
• an output process element (“LanguageElement”),

The “CustomizationRule” may be of 3 types: an adaptation
rule (e.g., iteration length adaptation, start integration earlier,
write acceptance criteria before implementation, etc.), an ex-
tension rule (e.g., lean value stream map integration, start
iterations with model storming sessions, etc.) or a prohibition
rule (e.g., collective code ownership and pair-programming are
inapplicable in some contexts).

This part of the approach is to be further developed in
the future. At this stage of the research, the process cus-
tomization subset acts as a placeholder that will be refined
in the future so that the customization rule generation will
be automated, which would not be feasible with the actual
formalism. Language elements from the Essence 1.0 DSL in
particular “Extension Element” and “MergeResolution” can be
reused to compose the output process model [16][17].

IV. ILLUSTRATION

In order to illustrate an application of the AMQuICk contex-
tualizing approach, we propose a small example in Figure 3.
The example models the context features used to detect the
lack of customer involvement and an adequate adaptation rule.

The customer is here defined as a context dimension char-
acterized by the customer involvement context property. This
property may be measured in different ways:

• commitment time: base measure which refers to the
effective time of collaboration between the customer and
the development team. This measure is of type ratio and
is expressed in datetime,

• physical proximity: base measure which refers to the
geographical distance and is expressed in km,

• communication channel: base measure which refers to
the more frequent channel used in the communication
between the customer and the team. The measure is of
type nominal with a range of possible values, i.e., face-
to-face, video, phone, mail or documents.

The association between these measures in a relevant
analysis model (involvement analysis model) provides two
indicators of whether the customer involvement is satisfactory
or not. In the case of lack of customer involvement detection, a
possible process engineering rule to be undertaken is to extend
the process with the [Customer Proxy] practice [20] (Enhance
Customer Involvement rule).

The provided illustration in Figure 2 represents a purposely
simple context model. Although the ultimate goal of the
context model is not to be a visual representation, it is meant to
illustrate the kind of objective and measurable information that
could be captured by such a model. Similarly, the customiza-
tion rule provided herein is not meant to be used in such a
simplistic way. At this stage of the research, the customization

231Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 250 / 512

Figure 3: Illustration of a Context Model

rule acts as a placeholder that will be refined in the future so
that it can be automated (which would not be feasible with a
simple textual representation).

V. CONCLUSION AND FUTURE WORK

The approach we propose in this paper aims at supporting
decision making regarding agile process (or even any process)
evolution in a contextualized way. It relies on an explicit
modeling of relevant context-related aspects as well as the
use of measurement-based elements to provide objective hints
regarding the required process adaptation to undertake. At this
stage, the approach focus on the conceptual steps, that is,
defining relevant metamodels and conceptual elements.

These conceptual tools are required in order to make the
modeling of processes, context elements and process engi-
neering rules possible and coherent. Efforts regarding this
conceptual level is still required. For instance, the opportunity
to further align the proposed context metamodel with the
process metamodel in order to limit the conceptual complexity
should be investigated (e.g., the notion of “Alpha” from
Essence 1.0 and the notion of “Context Dimension” proposed
in our approach are similar and may be associated).

However, the main added value of this conceptual level
lies in the fact that it lays the foundation of a tool-supported
methodology. Indeed, the ultimate goal of the approach is
to provide an assisted methodology that relies on an expert
system. The conceptual approach described in this paper is
expected to enable the design of such a system. Indeed, the
approach assumes that by exploiting the available agile expe-
riences feedback, we would be able to extract significant and
useful knowledge for enhancing the decision-making ability
of agile professionals when composing a suitable process.

By exploiting these available agile experiences feedback and
linking them to context models, a knowledge database could

be populated and enhance the decision-making abilities of the
development team. Rules would not only be created by agile
experts, they would also be generated through an inference
engine.

In turn, this knowledge base could provide the basis of
a community-based approach, where continuous feedback,
cross-referenced with basic inferences rules, provides an ever
improving support for process related decision-making.

REFERENCES

[1] T. Dybå and T. Dingsøyr, “Empirical studies of agile software devel-
opment: A systematic review,” Information and software technology,
vol. 50, no. 9, pp. 833–859, 2008.

[2] H. Ayed, N. Habra, and B. Vanderose, “AM-QuICk: a measurement-
based framework for agile methods customisation,” in Software Mea-
surement and the 2013 Eighth International Conference on Software
Process and Product Measurement (IWSM-MENSURA), 2013 Joint
Conference of the 23rd International Workshop on. IEEE, 2013, pp.
71–80.

[3] H. Ayed, B. Vanderose, and N. Habra, “Supported approach for agile
methods adaptation: an adoption study,” in Proceedings of the 1st
International Workshop on Rapid Continuous Software Engineering.
ACM, 2014, pp. 36–41.

[4] K. Conboy and B. Fitzgerald, “Method and developer characteristics
for effective agile method tailoring: A study of xp expert opinion,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 20, no. 1, p. 2, 2010.

[5] I. Attarzadeh and S. H. Ow, “New direction in project management suc-
cess: Base on smart methodology selection,” in International Symposium
on Information Technology (ITSIM), vol. 1. IEEE, 2008, pp. 1–9.

[6] A. Cockburn, Crystal clear: a human-powered methodology for small
teams. Pearson Education, 2004.

[7] E. Mnkandla, “A selection framework for agile methodology practices:
A family of methodologies approach,” Ph.D. dissertation, Faculty of En-
gineering and the Built Environment, University of The Witwatersrand,
2008.

[8] G. Mikulėnas, R. Butleris, and L. Nemuraitė, “An appraoch for the
metamodel of the framework for a partial agile method adaptation,”
Information Technology And Control, vol. 40, no. 1, pp. 71–82, 2011.

[9] B. Boehm and R. Turner, Balancing agility and discipline: A guide for
the perplexed. Addison-Wesley Professional, 2003.

232Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 251 / 512

[10] A. Cockburn, “Selecting a project’s methodology,” IEEE Software,
vol. 17, no. 4, pp. 64–71, 2000.

[11] P. Kruchten, “Contextualizing agile software development,” Journal of
Software: Evolution and Process, vol. 25, no. 4, pp. 351–361, 2013.

[12] S. W. Ambler, “The agile scaling model (asm) : Adapting agile methods
for complex environments,” IBM, Tech. Rep., December 2009.

[13] ISO/IEC 19502:2005 Information technology - Meta Object Facility
(MOF), International Organization for Standardization and International
Electrotechnical Commission Std., 2005.

[14] ISO, ISO/IEC 24744: Metamodel for Development Methodologies, In-
ternational Organization for Standardisation (ISO) Std., 2007.

[15] SPEM (version 2.0): Software & Systems Process Engineering Meta-
model Specification, Object Management Group (OMG) Std., 2008.

[16] Essence (version 1.0): Kernel and Language for Software Engineering

Methods, Online at : http://www.omg.org/spec/Essence/1.0, Object Man-
agement Group (OMG) Std., November 2014.

[17] I. Jacobson, P.-W. Ng, P. McMahon, I. Spence, and S. Lidman, “The
essence of software engineering: the semat kernel,” Queue, vol. 10,
no. 10, p. 40, 2012.

[18] B. Vanderose, “Supporting a model-driven and iterative quality assess-
ment methodology: The MoCQA framework,” Ph.D. dissertation, Ph. D.
dissertation, University of Namur, 2012.

[19] W. Suryn, A. Abran, and A. April, “ISO/IEC SQuaRE: The second
generation of standards for software product quality,” in 7th IASTED
International Conference on Software Engineering and Applications,
2003.

[20] A. Alliance, “Agile alliance guide to agile practices,” Online at:
http://www.guide.agilealliance.org/. Last accessed 02/10/2015.

233Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 252 / 512

Kanban in Industrial Engineering and Software Engineering:

A systematic literature review

Muhammad Ovais Ahmad, Jouni Markkula, Markku Oivo, Bolaji Adeyemi

Dept. of information processing science

University of Oulu,

Oulu, Finland

e-mail: {Muhammad.Ahmad, Jouni.Markkula, Markku.Oivo}@ oulu.fi,

Bolaji.Adeyemi@student.oulu.fi

Abstract— There is a growing interest about Kanban in

software engineering due to its many advantages, such as,

reduced lead-time and improved team communication.

Kanban originates from Toyota manufacturing and in 2004 it

was introduced to software engineering. However, there is

lack of a clear explanation of its principles and practices in

software engineering. The objective of this study is to explore

Kanban in industrial engineering literature using systematic

literature review method. The search strategy revealed 1552

papers, of which 52 were identified as primary studies relevant

to our research. From the primary studies, five variations of

Kanban were identified together with implementation

principles and benefits. These were extracted and summarized

for the guidance of practitioners interested in adopting

Kanban for software development. The findings of this

literature review help researchers and practitioners to gain a

better understanding of the Kanban and its use in industrial

engineering in order to improve its usage in software

engineering.

Keywords- Kanban; software development; systematic

literature review; lean, agile, Kanban variants.

I. INTRODUCTION

In the last decade, lean approach in software
development is increasingly popular. The aim of the lean
approach is to deliver value to customers more effectively
and efficiently through the process of finding and eliminating
waste, which is a huge impediment to the productivity and
quality offered by an organization [39]. Lean approach was
first applied in manufacturing industry, devised at Toyota
and originally called the Toyota Production System (TPS).
According to Ohno [40] TPS was established based on two
concepts. The first is "automation with a human touch",
which means when a problem occurs, the equipment stops
immediately, preventing defective products from being
produced. The second concept is "Just-in-Time," which
means in each process produces only what is needed by the
next process in a continuous flow.

Kanban is a subsystem of TPS, created initially to control
inventory levels and the production and supply of
components and raw materials [2][14]. Kanban was created
to fulfil specific needs of Toyota Company, i.e., to work
effectively under specific production and market conditions.
Nowadays, Kanban is not only used in manufacturing
industries, but also in software development and services, the

health sector, and many more domains [2][13]. Kanban
facilitates high production volume, high capacity utilization,
and reduced production time and work-in-process [14].
Further, Kanban controls the flow of parts along down-
stream processing, which creates a “pull” action with
material required.

Kanban entered the software development field in 2004,
when David Anderson introduced it in practice while
assisting a software development team at Microsoft [1][2][3].
Kanban is used to visualise work, limit work in progress, and
identify process constraints to achieve flow and yet focus on
a single item at a given time [3]. In general, Kanban aims to
bring visibility to work, and to enhance communication,
collaboration, and integration between software developers,
testers, and support teams, resulting in rapid software
development and continuous delivery to the customer
[1][2][3][4][5][6][7][41]. In software development, the goal
of practising Kanban is to visualise and improve the flow of
value by optimizing a cycle time, while respecting work in
progress limits [1][11][41].

Kanban in software development uses cards to represent
work items. Software practitioners have implemented
Kanban techniques using physical materials such as sticky
notes on a board. Signals are mostly generated from a
software work tracking system [1], for example Agile Zen,
and Jira. In software development, Kanban has five core
principles: visualise workflow, limit work in progress,
measure and manage flow, make process policies explicit,
and use models to recognise improvement and opportunities
[1]. Kanban principles are applied using a board which
visualises the flow of activities of the process in various
columns. Cards are used for each working item on the
Kanban board to show its current state. The flow of work
items through the process is optimised by limiting the work
in progress in each activity column to a maximum number of
items that can be pulled into the column. In this manner, the
team effectively visualises their workflow, limits work in
progress items in each stage, and monitor the cycle time
from start to finish.

Kanban is becoming more popular in software

development. A strong practitioner-driven movement has

emerged supporting its use [3]. Recent studies [2][41] of it

in software development shows both benefits and challenges

in the adoption of Kanban. The benefits of using Kanban in

software development are: a better understanding of the

234Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 253 / 512

whole process, improved team communication and

coordination with stakeholders, and improved customer

satisfaction [2][3][41]. Currently, Kanban is being

increasingly adopted to complement Scrum and other agile

methods in software processes. With the growing number of

studies on Kanban in software development, some have

reported a number of challenges, such as hard to manage

work in progress, task prioritization, and misunderstanding

of core Kanban principles [2][7][8][9]. Notably, evidence of

challenges relating to both its implementation and

operationalization exist. As Kanban originated in

manufacturing industry, by investigate its features in the

industrial engineering field literature we can learn how its

basic idea is transformed to software engineering.

The purpose of this paper is to systematically review and

analyse the Kanban variations, benefits, characteristics, and

implementation principles from its industrial engineering

context, and to compare them with Kanban in software

engineering; in order to find ways to improve its

implementation in the software engineering field. To the

best of our knowledge, this is the first study that

systematically investigates Kanban in industrial engineering

and software engineering and how knowledge of Kanban

usage in industrial engineering could improve software

engineering.
 The rest of this paper is organized as follows. Section II

describes the research method employed in this study.
Section III, describes the results of the review, describes
analysis of the results, and provides discussion. Finally,
Section IV reports a conclusion and recommendations for
further research.

II. RESEARCH METHOD

We designed this systematic literature review by
following the guidelines of Kitchenham and Charters [10].
According to these guidelines, we undertook the review in
several steps:

 The development of review protocol,

 The identification of inclusion and exclusion criteria,

 A search for relevant studies,

 Data extraction, and

 Synthesis and reporting of results.

The review protocol was developed jointly by the authors
of this paper while also carrying out identification and
selection of the primary studies on adherence to the specified
protocol. All of the steps of the protocol are described below
in this section. The objective of the review was to answer the
following research questions:

 How does software engineering Kanban differ from

industrial engineering Kanban in terms of

characteristics?

 How are variants of Kanban and their characteristics

and benefits described in industrial engineering?

 How can industrial engineering Kanban

implementation principles be used in software

engineering?

A. Data Sources and Search Strategies

Four major databases were selected as literature sources:
Scopus, IEEE Xplore, Web of Science, and ACM. The
rationale for this choice is that these are the relevant
databases having large collections of high quality, peer
reviewed conferences and journal papers. Relevant studies
were searched in these databases by using the following
search strings, which were combined with the OR, operator:

1. Pull system AND Kanban
2. Toyota Production System AND Kanban
3. Kanban AND Inventory system
4. Lean AND Kanban
5. Kanban AND (Implementation OR Benefits OR waste
elimination)
6. Just-In-Time OR JIT AND Kanban

“Operation OR production” was added at the end of each
search string to focus the search to industrial engineering
literature.

B. Selection process and inclusion decisions

In Step 1, the titles, abstracts, and keywords of papers
were searched using the above mentioned search terms. In
Step 1 search resulted in a total of 1,552 papers. In Step 2,
duplicate papers were excluded.

In Step 3, two researchers sat together and went through
the titles of all studies that resulted from Step 2, to determine
their relevance. The systematic review included peer
reviewed qualitative, quantitative and simulation research
studies published from 1977 up to 2013. Only studies written
in English were included. Additionally, editorials, prefaces,
correspondence, discussions, lessons learned and expert-
opinion papers were also excluded.

In this step, we excluded studies that were clearly not
about Kanban in industrial engineering. However, titles are
not always clear indicators of what an article is about. In
such cases, the articles were included for review in the next
step.

In Step 4, each of the remaining papers was assessed with
regard to quality and relevance to our study. In assessing the
quality of studies, we developed a checklist outlining the
major quality criteria expected from the primary studies. We
built the list based on quality criteria adapted from
Kitchenham and Charters [10]. In this step, two researchers
independently reviewed 257 papers. All disagreements were
resolved by discussion that included two researchers before
proceeding to the next stage.

The evaluation was based on the following criteria:
objective of the study, context description, research design,
data collection and analysis, and justification of findings. Of
the evaluated 257 studies 52 were finally accepted and
included as the primary studies for our research. The rest of
the papers were excluded because they did not pass the
minimum quality threshold.

The following Table I present the systematic review
process, which was carried out through this study to identify
the primary studies, as well as the number of papers
identified at each stage.

235Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 254 / 512

TABLE I. STEPS OF THE STUDY SELECTION PROCESS.

Steps No. of studies

Step 1: Search of the bibliographic databases 1552

Step 2: Removing of the duplicates studies 1365

Step 3: Inclusion based on title and abstract 1138

Step 4: Inclusion based on full text scanning 257

Step 5: Quality evaluation based on full paper reading 52

C. Data extraction, synthesis and analysis

Based on the guidance provided in Cruzes and Dyba
[12], we extracted three types of data: Kanban description,
different variations of Kanban, and benefits of using Kanban.
We used a thematic analysis technique. Coding technique
was used manually to identify the relevant text in finally
included papers while reading the entire paper. All primary
studies were categorized by paying close attention to the type
of studies which are as follows: conceptual studies,
simulation studies, mathematical approaches, surveys,
literature reviews, and case studies. Data from all primary
studies were extracted by two authors in consensus meetings.

III. RESULTS

We identified 52 peer reviewed primary studies on
Kanban to address our research questions. Most of the
studies were published in journals (46 or 89%), while six
(11%) were published in conferences. The primary studies
were categorized on the basis of study type. Out of 52
primary studies 19 (38%) were conceptual studies, 18 (34%)
simulation studies, 3 (6%) mathematical approaches, 1 (2%)
survey, 7 (13%) reviews, and 4(8%) case studies. Primary
studies which are used in this paper are marked with asterisk
“*” in the reference list.

A. Kanban in industrial engineering

It appears the first academic paper describing Kanban
was published by Japanese researchers in 1977. The title of
the paper by Sugimori, Kusunoki, Cho, and Uchikawa [16]
is: “Toyota Production System and Kanban System:
Materialization of Just-In-Time and Respect-For-Human
System.” Describing Just in Time (JIT) as a central element
of TPS, Sugimori, Kusunoki, Cho, and Uchikawa [16]
suggest that JIT is a method whereby production lead times
are greatly shortened in order to allow “all processes to
produce the necessary parts at the necessary time and have
on hand only the minimum stock necessary to hold the
processes together”. Regarding JIT, Sugimori, Kusunoki,
Cho, and Uchikawa [16] consider the following three
defining characteristics:

 Levelling of production

 One piece production and conveyance

 Withdrawal by subsequent processes

Further, Sugimori, Kusunoki, Cho, and Uchikawa [16]
elaborate that TPS consists of two unique features. The first
feature is JIT, which aims to produce only the necessary
quantity products at the given time and keeping the inventory
(stock at hand) at a minimum level through Kanban. The

second feature is to promote respect-for-humans with the
ultimate goal of uncovering workers’ full potential, through
active participation.

Kanban is a Japanese word meaning card or signboard

[16], but it can also be a verbal instruction, a light, a flag, or

even a hand signal [17][21]. According to Huang and

Kusiak [26] Kanban is also known as a `pull’ system in the

sense that the production of the current stage depends on the

demand of the subsequent stages, i.e., the preceding stage

must produce only the exact quantity withdrawn by the

subsequent manufacturing stage. Typically a Kanban card

has information such as part name and part number, quantity

designated (the size of the container) in the production

process, input areas and output areas [17][18][21].

The key objective of a Kanban system is to deliver the

material JIT to the manufacturing workstations, and to pass

information to the preceding stage regarding what and how

much to produce [26]. According to Sugimori, Kusunoki,

Cho, and Uchikawa [16] reasons to use Kanban are: (1)

reduction in information processing cost, (2) rapid and

precise acquisition of facts, and (3) limiting surplus capacity

of preceding shops or stages.

All the primary studies reported that the original Kanban

used at Toyota had the following characteristics:

 Kanban system uses two types of signals. First

production signals (authorizes a process to produce a

fixed amount of product) and second transportation

signals (authorizes transporting a fixed amount of

product downstream). We use the code “PS” to

denote this characteristic.

 Pulled production: The production is pulled based on

the inventory level or the scheduling of the last

station. We use the code “PP” to denote this

characteristic.

 Decentralised control: The control of the production

flow is performed through visual control by the

employees of each step of the production process. We

use the code “DC” to denote this characteristic.

 Limited work in progress: the inventory level is

limited in each workstation, which means, buffer

capacity depend on the number of signals. We use the

code “LW” to denote this characteristic.

To implement original Toyota Kanban there are six

principles discussed by Huang and Kusiak [26] and

Sugimori, Kusunoki, Cho, and Uchikawa [16] in primary

studies, which are as follows:

 Level production (balance the schedule) in order to

achieve low variability of the number of parts from

one time period to the next [16]. Production levelling

can also be referred to reducing the waste. On a

production line, as in any process fluctuations in

performance can produce waste. When demand is

constant production levelling is easy, but when

demand fluctuates two approaches can be adopted to

handle it: i) demand levelling; and ii) production

236Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 255 / 512

levelling through flexible production [26]. To prevent

fluctuations in production, it is important to minimize

fluctuation in the final assembly line and make

production batches as small as possible.

 Avoid complex information and hierarchical control

systems on the company floor which creates

confusion and disturbs information flow [16]. In such

situations, following the Kanban pull system

becomes more complex and difficult [26].

 Do not withdraw parts without a Kanban card. Create

a strict environment where the Kanban pull system is

followed. Do not allow any associate within the

production site to withdraw the parts without the

Kanban card.

 Withdraw only the parts needed at each stage. In

every stage of production withdraw only the parts

which are needed for production at the given stage

[16][26]. Do not include any additional parts along

with the required parts in a production line.

 Do not send defective parts to the succeeding stages.

Sending the defective parts to the succeeding stages

will increases rework on same parts along with

rejection of finished products [16][26].

 Eliminate waste due to over-production, thus produce

the exact quantity of parts.

The primary studies reported a number of original Kanban

usage benefits, which are as follows:

 Reduced work in progress and Cycle Time:

Sugimori, Kusunoki, Cho, and Uchikawa [16] discuss

the automotive industry as consisting of multi-stage

processes; generally the demand for the items is

unpredictable as the process point is further removed

from the point of original demand for finished goods.

Preceding processes require having excess capacity,

and are liable to have waste by over-producing [16].

By limiting releases Kanban regulates work in

progress. By Little’s Law [15], this also translates

into shorter manufacturing cycle times. Kouri,

Salmimaa, and Vilpola [37] reported that limiting

work in progress helps to consume resources

efficiently at a given time. Further, Marek, Elkins,

and Smith [28] explained that controlling work in

progress helps reduce amount of reworks and

financial losses.

 Smoother Production Flow: By dampening

fluctuations in work in progress level, a steadier,

more predictable output can be achieved [16][26].

 Improved Quality: Working in short queues

challenges tolerance of rework because it will quickly

shut down the production line [19][20][28]. Short

queues reduce the time between creation and

detection of a defect. Consequently, Kanban applies

pressure for better quality and provides an

environment in which to achieve it [30][34][35][38].

 Reduced Cost: Kanban focusses on limiting work in

progress levels which eventually helps to reduce total

cost [16][19][20][27][38]. Each reduction in work in

progress also causes challenges (such as a setup is too

long, worker breaks are uncoordinated) in the form of

blocking of a line. Solving these problems by

lowering the inventory allows production to proceed.

This process was widely described via the analogy of

lowering the water (inventory) in a river to find the

rocks (problems) [16][30][35]. The end result is a

more efficient system with lower costs. Kanban

reduces inventory cost, inspection cost, unit product

cost, and administrative cost [27]. Furthermore,

according to Fearon [22] Kanban helps to identify

and prioritize problems and opportunities for

improvement, and enhances customer and supplier

communications.

The following Table II summarizes the five variations of
Kanban from primary studies, based on their similarities (in
terms of characteristics) mentioned above; and differences
(in terms of operationalization) from the original Toyota
Kanban. An operational difference will be based on the
following points:

1. Inventory variability: During production, quantity

of inventory can be varied. In the original Kanban,

the inventory level variation is not systematised

although some maximum quantities can change

between two different planning periods.

2. Physical cards are not used as signals.

3. Modification of the original concept of using two

signals, i.e., production and transportation signal.

4. Visual control: Compare to original Kanban use

different visual control to gather and apply

information related to inventory level and demand.

TABLE II. STEPS OF THE STUDY SELECTION PROCESS.

Variations of Kanban
Characteristics

(similarities)

Operational

difference

Generic Kanban PP, DC, LW 3

Generalised Kanban Control System PP, DC, LW 3

Extended Kanban Control System PP, DC, LW 3

Flexible Kanban System PP, DC, 1, 4

Electronic Kanban PP, DC, LW 2, 3, 4

Pulled production (PP), Decentralized control (DC), Limited work in
progress (LW), Kanban system (PS)

Generic Kanban was proposed by Chang and Yih in

1994 for non-repetitive production environments

[23][24][25]. It used generic signals which do not belong to

any one part, and thus can be attributed to any item in a

workstation. This system requires a waiting time since there

is no arbitrator work in progress between workstations.

There are signals that if removed do not initiate the

production of new parts automatically, instead they wait for

a new requirement [23]. Generic Kanban behaves similarly

to the push system except that it is more flexible with

237Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 256 / 512

respect to system performance and more robust as to the

location of the bottleneck [23]. Simulation results showed

that the generic Kanban is better than the original Kanban in

dynamic environments [23]. The advantage of generic

Kanban is that it can be used effectively in environments

with unstable demand, as well as in productive

environments with variability in processing times

[23][24][25].
Generalised Kanban Control System includes the

maintenance of buffers to meet the demand instantaneously,

and the use of signals to authorize the production and to

limit work in progress level [25][33]. The disadvantage of

this is the need to define and manage two control parameters

per stage, which are the buffer and the number of production

order signals [25][33]. The point of difference is that in the

Generalised Kanban Control System the transfer of a

finished part from a given stage to the next stage and the

transfer of demands to the input of this stage may be done

independently of one another, whereas in the original

Kanban they are done simultaneously [25]. The advantage

of Generalised Kanban Control System is that it works

effectively when the demand is unstable [25][33].

Extended Kanban Control System is a pulling system

proposed for multi-stage manufacturing environments,

which works like generalized Kanban with pull production

polices, Kanban control system, and base stock control

systems [29][32][34]. The difference is that, a work item

can only be received in a stage if both production order and

free cards are available [29][32][34]. The central idea of this

system is that when the demand arrives, it is instantaneously

announced to all stations, as in base stock. However, no part

is made available without an authorization from the

downstream stages [34]. The advantage of Extended

Kanban Control System is that it works effectively in an

environment with variability processing time [29][32][34].

Flexible Kanban System was introduced to cope with

uncertainties and planned/unplanned interruptions [31]. It

uses an algorithm to dynamically and systematically

manipulate the number of signals in order to offset the

blocking and starvation caused by uncertainty (mainly

related to demand and processing time) during a production

cycle. Gupta, Al-Turki, and Perry [31] summarises Flexible

Kanban System as: The idea behind it is to increase the flow

of production by judicially manipulating the number of

cards. It maintains a minimal number of base level Kanban

cards assigned to each station. Extra Kanban cards are

added only when needed to improve the system

performance and removed as soon as they are no longer

needed or when their presence will result in a lowered

system performance. That is, we want the extra Kanban

cards when the benefits of their presence (e.g., reduced

blocking and improved throughput) balance the costs (e.g.,

increased work in progress and operating costs) [31].

Electronic Kanban is a variation of Kanban with only

one modification—the substitution of physical signals by

electronic signals [36]. The goal of Electronic Kanban is to

introduce an effective means for properly changing the

number of cards in the Kanban system [36][37]. One of the

most important things in the practical implementation of the

system is properly changing the number of cards. Electronic

Kanban has many advantages over the original Kanban

system in reduced fluctuation and efficient change in the

number of cards, faster response to demand change, and

effective management of work in progress [36][37].

Electronic Kanban is resulting in improvements in supplier

relationships when the systems are used outside the

company, by evaluating the supplier's performance

instantaneously, and guaranteeing accuracy in acquisition

and transmission of amounts [36]. It can be used no matter

what the distance between production and operations; it

reduces the amount of the company's paperwork, reduces

the probability of error associated with signals handling,

reduces time to transfer and handle signals, and facilitates

new product introduction [36][37].

In the literature, the above variations to Kanban are

developed due to competitive industrial environments

reflecting unfavourably on the use of the original Kanban

system due to the need for greater variety of items,

operational standardising difficulties, and demand and

processing time instability. Electronic Kanban has more

advantages in that it can manage parts ordering and delivery

activities more efficiently and effectively than the other

variants of Kanban. Additionally, it minimizes operational

and logistics issues for a parts supplier or between work

stations and complex flow of materials.

B. Kanban learning from industrial engineering to

software development

Software development is not a manufacturing activity,

because in software development every time we create

something new with each development cycle, whereas

manufacturing produces the same product over and over

again. So, direct mapping of the manufacturing Kanban

concept to software development is not logical. In software

development, Kanban is used to visualise work, limit work

in progress, and identify process constraints to achieve flow

and focus on a single item at a given time [3]. The following

Table III, compares original Toyota Kanban and software

development Kanban characteristics.

TABLE III. COMPARISON OF TOYOTA KANBAN AND SOFTWARE

DEVELOPMENT KANBAN CHARACTERISTICS

Kanban Characteristics
Toyota Kanban

[16]

Software Development

Kanban [1]

Physical Yes Yes

Pull Yes Yes

Visual Yes Yes

Signal Yes Yes

Kaizen Yes Yes

Limited work in progress Yes Yes

Continuous flow Yes Yes

Self-directing Yes Yes

238Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 257 / 512

Table III, shows that Kanban in software development has

all those characteristics which are building blocks of Toyota

Kanban and electronic Kanban. Kanban in software

development and Toyota Kanban use physical cards to

visualise work items and signal the current work in

progress. The limited work in progress principle is used to

control the work in progress in given time so, as to not

exceed the capacity of a system or team. In software

development, limiting work in progress, continuous flow,

and pull characteristics are not attained by or of themselves.

In software development, Kanban focuses more on enabling

tasks visual and self-directing; so, as to help the team

members become autonomous and improve their own

process. To continuously improve the process of continuous

flow and to better understand team work in progress limits,

daily stand-up meetings are important in communicating

information.

In distributed software development teamwork, the

electronic Kanban makes it possible to visualise work of

remote teams and obtain up-to-date status of projects

instantaneously. For software maintenance work, Generic

Kanban will work effectively because maintenance teams

are dealing with a vast variety of unpredictable and critical

tasks, for example, work on isolated or short-time-frame

tasks which require quick responses. Generic Kanban has

the advantage that it works effectively in environments with

unstable demand as well as in productive environments with

variability in processing times.

The characteristics of Toyota Kanban in primary studies

can be translated in the software development as following:

 Each software development task is represented by a

card on Kanban board. Further, these cards signalling

the status of activity in the workflow.

 Pulled production: In software development it is

refers to trigger the process of producing items only

what the customer requested; while restricting to

produce the quantity that is required and only when it

is needed.

 Decentralised control: In software development,

Kanban empower each team member to freely pull

the items when their capacity allows. Additionally,

everyone is trying to maintain the flow.

 Limited work in progress: In each phase of software

development (i.e., development, testing) a limit on

work in progress is applied which shows the capacity

and signal when it is full or ready to pull upcoming

items.

In software development, we can implement the original

Toyota Kanban discussed by Huang and Kusiak [26] and

Sugimori, Kusunoki, Cho and Uchikawa [16] as follows:

 Kanban is a visual management tool that shares a

mental model; visualise the work, the workflow, and

the business risks to the whole team and or

organisation [1]. According to Al-Baik and Miller

[41] Kanban helps in enhancing visual control that

facilitated and supported the decision-making

process.

 To implement Kanban in software development is to

start with what you do now [1][41]. Avoid complex

information and hierarchical structure in assigning

the tasks. Use the Kanban board and allow the

development team to pull the tasks automatically.

Further, too much controlling of task assignment

should be avoided because it creates confusion,

disturb information flow and makes difficult to use

pull technique [1][11][41].

 Carefully apply work in progress limits on each stage

of software development (i.e., development, testing)

[1][41]. Limited work in progress is the means by

which we can create a pull system which balances

capacity and demand through the value stream [16].

Further, it implies that pull system is implemented to

the workflow. In software development, this means

that upstream work can be made available, but it is

the team member’s responsibility to decide when to

take it. The act of pulling the work is a signal for

more upstream work to be processed.

 A card needs to be assigned to every customer

request and should be visualised on a Kanban board

[1][41]. Do not withdraw tasks without a Kanban

card. Create a strict environment where the Kanban

pull system is followed. Do not allow any team

member within the development team to withdraw

the tasks without the Kanban card.

 Pull out only the tasks that are of high priority

[1][41].

 Do not send partially done tasks. By sending to

succeeding stages will increases rework on the same

task along with rejection of finished products

[1][11][41].

 Eliminate waste due to over-producing by working

on the exact tasks which are needed or requested by

the customer [1][41].

IV. CONCLUSION

Kanban is a subsystem of the Toyota Production System

(TPS), which was created to control inventory levels,

production, and supply of components. Kanban entered

software development in 2004, when David Anderson

introduced it in practice while assisting a software

development team at Microsoft.

To learn from industrial engineering examples of Kanban

usage, systematic review and analysis of Kanban variations,

benefits, and implementation principles was conducted.

Searches of the literature identified 1552 studies of which

53 were found to be studies of acceptable credibility and

relevance. Most of the primary studies (72%) are conceptual

or use simulation techniques to investigate Kanban in

industrial engineering.

239Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 258 / 512

This study reported the original Toyota Kanban and its

five variations from industrial engineering literature. Toyota

Kanban which is also adopted in software engineering has

the four basic characteristics: pulled production,

decentralized control, limited work in progress, and two

types of signals (i.e., production signals and transportation

signals). The Toyota Kanban and its five variations have

similar characteristics fundamentally concerned with signals

use and manipulation in terms of number or quantity. For

example, electronic Kanban has one modification—the

substitution of physical signals by electronic signals.

In software development work, the Toyota Kanban

concept is adopted. For distributed software development,

electronic Kanban is more suitable. Whereas, based on the

Generic Kanban characteristics, it is judged to be more

effective for work which has unstable demands and

variability in processing times (i.e., software maintenance

and support). In maintenance work, customers’ requests

come on a daily basis, and tasks are constantly prioritised

based on severity. The advantage of Generic Kanban is that

it works effectively when the demand is unstable. In

software development it is used to achieve better process

control (keeping continuous flow while limiting work in

progress) and better process improvement (makes the flow

visible and stimulates Kaizen). Kanban in both industrial

engineering and software engineering yields benefits such as

smoother production or development flow, reduced cycle

time, and improved quality.

 Future studies are needed to explore Kanban variation

limitations, disadvantages, and challenges in their usage.

Further, it is recommended to conduct detailed comparative

studies on Kanban variations along with the Kanban used in

software development.

ACKNOWLEDGMENT

 This research was carried out within the DIGILE Need
for Speed program, and partially funded by Tekes (the
Finnish Funding Agency for Technology and Innovation)
and a Nokia foundation scholarship.

REFERENCES

[1] D. J. Anderson, Kanban: Successful Evolutionary Change for Your

Technology Business. Blue Hole Press, 2010.
[2] M. O. Ahmad, J. Markkula, and M. Oivo, “Kanban in software

development: A systematic literature review”. Proceedings of the 39th

Euromicro Conference Series on Software Engineering and Advanced
Applications (SEAA 2013), pp. 9-16.

[3] M. O. Ahmad, J. Markkula, and M. Oivo, and P. Kuvaja, “Usage of

Kanban in Software Companies - An empirical study on motivation,

benefits and challenges”. Proceeding of the 9th International Conference on

Software Engineering Advances (2014). pp, 150-155.

[4] G. Concas, M. I. Lunesu, M. Marchesi and H. Zhang, "Simulation of
software maintenance process, with and without a work-in-process limit,"

Journal of Software: Evolution and Process (2013), vol. 25, pp. 1225-1248.

[5] D. I. Sjøberg, A. Johnsen and J. Solberg, "Quantifying the effect of
using Kanban versus Scrum: A case study," Software, IEEE, (2012), vol.

29, pp. 47-53.

[6] J. Prochazka, "Agile support and maintenance of IT services," in
Information Systems Development Anonymous Springer, (2011), pp. 597-

609.

 [7] X. Wang, K. Conboy and O. Cawley, "“Leagile” software

development: An experience report analysis of the application of lean
approaches in agile software development," J. Syst. Software, (2012)

vol.85, pp.1287-1299.

[8] E. Corona, and F.E. Pani, “A review of lean-kanban approaches in the
software development”. WSEAS Transactions on Information Science and

Applications, (2013), vol. 10(1), pp. 1-13.

[9] N. Nikitina, and M. Kajko-Mattsson,“Developer-driven big-bang
process transition from scrum to kanban”. Proceedings of the International

Conference on Software and Systems Process, (2011), pp. 159-168.

[10] B. Kitchenham, and S. Charters, “Guidelines for Performing
Systematic Literature Reviews in Software Engineering” EBSE Technical

Report, EBSE-2007-01.

[11] M. Burrows, Kanban from the inside. Blue Hole Press, Sequim,
Washington. 2014.

[12] D. S. Cruzes, and T. Dyba, Research synthesis in software

engineering: A tertiary study’, Information and Software Technology,
(2011) vol. 53, no. 5, pp. 440–455.

[13] Bennet Vallet (2014). Kanban at Scale – A Siemens Success Story,

InfoQ. [Online] Available from: http://www.infoq.com/articles/kanban-
siemens-health-services 2015.07.03

[14] C.S. Kumar, and R. Panneerselvam, Literature review of JIT-

KANBAN system. The International Journal of Advanced Manufacturing
Technology, (2007), 32(3-4), pp. 393-408.

[15] J. D. Little, and S.C. Graves, Little's law. In Building Intuition

Springer US. (2008), pp. 81-100.
[16] Y. Sugimori, K. Kusunoki, F. Cho, and S. Uchikawa, “Toyota

production system and kanban system materialization of just-in-time and
respect-for-human system”, The International Journal of Production

Research, (1977), vol. 15(6), pp. 553-564. *

[17] O. Kimura, and H. Terada, “Design and analysis of pull system, a
method of multi-stage production control”, The International Journal of

Production Research, (1981), vol. 19(3), pp. 241-253. *

[18] G.R. Bitran, and L. Chang, “A mathematical programming approach
to a deterministic kanban system”. Management Science, (1987), vol.

33(4), pp. 427-441. *

[19] H. Dyck, R.A. Johnson, and J. Varzandeh, “Transforming a traditional
manufacturing system into a just-in-time system with kanban”. Proceedings

of the 20th Conference on Winter Simulation, (1988), pp. 616-623. *

[20] M. Gravel, and W.L Price, “Using the kanban in a job shop

environment”. The International Journal of Production Research, (1988),

vol. 26(6), pp. 1105-1118. *

[21] Jr. Esparrago and R. A, “Kanban. Production and Inventory”
Management Journal, (1988), vol. 29(1), pp. 6-10. *

[22] P.A. Fearon, “Inventory controlled environment (I.C.E.) just-in-time at

national semiconductor”. Proceedings of the Advanced Semiconductor
Manufacturing Conference and Workshop, (1993), pp. 34-38. *

[23] T. Chang and Y. Yih, “Generic kanban systems for dynamic

environments”. The International Journal of Production Research, (1994),
vol. 32(4), pp. 889-902. *

[24] T. Chang and Y. Yih, “Determining the number of kanbans and

lotsizes in a generic kanban system: A simulated annealing approach”. The
International Journal of Production Research, (1994), vol. 32(8). *

[25] Y. Frein, M. Di Mascolo, and Y. Dallery, “On the design of

generalized kanban control systems”. International Journal of Operations
and Production Management, (1995), vol. 15(9), pp. 158-184. *

[26] C. Huang, and A. Kusiak, “Overview of kanban systems”.

International journal of computer integrated manufacturing, (1996), col.
9(3), pp. 169-189. *

[27] L. Sriparavastu and T. Gupta, ”An empirical study of just-in-time and

total quality management principles implementation in manufacturing firms
in the USA”. International Journal of Operations and Production

Management, (1997), vol. 17(12), pp. 1215-1232. *

[28] R.P. Marek, D.A. Elkins, and D.R. Smith, “Manufacturing controls:
Understanding the fundamentals of kanban and CONWIP pull systems

using simulation”. Proceedings of the 33nd Conference on Winter

Simulation, (2001), pp. 921-929. *
[29] J. Bollon, M. Di Mascolo, and Y. Frein, “Unified framework for

describing and comparing the dynamics of pull control policies”. Annals of

Operations Research, (2004), vol. 125(1-4), pp. 21-45. *

240Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 259 / 512

[30] E. Kizilkaya, and S.M. Gupta, “Material flow control and scheduling

in a disassembly environment”. Computers and Industrial Engineering,
(1998), vol. 35(1), pp. 93-96. *

[31] S.M. Gupta, Y.A. Al-Turki, and R.F. Perry, “Flexible kanban system”.

International Journal of Operations and Production Management, (1999),
vol. 19(10), pp. 1065-1093. *

[32] G. Liberopoulos, and Y. Dallery, “A unified framework for pull

control mechanisms in multi-stage manufacturing systems”. Annals of
Operations Research, (2000), vol. 93(1-4), pp. 325-355. *

[33] C. Duri, Y. Frein, and M. Di Mascolo, “Comparison among three pull

control policies: Kanban, base stock, and generalized kanban”. Annals of
Operations Research, (2000), vol. 93(1-4), pp. 41-69. *

[34] Y. Dallery, and G. Liberopoulos, “Extended kanban control system:

Combining kanban and base stock. IIE Transactions, (2000), vol. 32(4), pp.
369-386. *

[35] K. Takahashi, and N. Nakamura, “Decentralized reactive kanban

system”. European Journal of Operational Research, (2002), vo1. 39(2), pp.
262-276. *

[36] S. Kotani, “Optimal method for changing the number of kanbans in

the e-kanban system and its applications”. International Journal of
Production Research, (2007), vol. 45(24), pp. 5789-5809. *

[37] I. Kouri, T. Salmimaa, and I. Vilpola, “The principles and planning

process of an electronic kanban system”. Novel algorithms and techniques
in telecommunications, automation and industrial electronics, (2008), pp.

99-104. *

[38] M. Akturk, and F. Erhun, “An overview of design and operational
issues of kanban systems”. International Journal of Production Research,

(1999), vol. 37(17), pp. 3859-3881. *
[39] J.K. Liker, M. Hoseus, “Toyota culture: the heart and soul of the

Toyota Way”. (2008), McGraw-Hill, New York, USA

[40] O, Taiichi. “Toyota production system: beyond large-scale
production”. (1988), Productivity press.

[41] O. Al-Baik and J. Miller, “The kanban approach, between agility and

leanness: a systematic review” Empirical Software Engineering. (2014), pp.
1-37.

241Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 260 / 512

Efficient ETL+Q for Automatic Scalability in Big or Small Data Scenarios

Pedro Martins, Maryam Abbasi, Pedro Furtado
University of Coimbra

Department of Informatics
Coimbra, Portugal

email: {pmom, maryam, pnf}@dei.uc.pt

Abstract—In this paper, we investigate the problem of
providing scalability to data Extraction, Transformation, Load
and Querying (ETL+Q) process of data warehouses. In general,
data loading, transformation and integration are heavy tasks
that are performed only periodically. Parallel architectures and
mechanisms are able to optimize the ETL process by speeding-
up each part of the pipeline process as more performance
is needed. We propose an approach to enable the automatic
scalability and freshness of any data warehouse and ETL+Q
process, suitable for smallData and bigData business. A general
framework for testing and implementing the system was devel-
oped to provide solutions for each part of the ETL+Q automatic
scalability. The results show that the proposed system is capable
of handling scalability to provide the desired processing speed
for both near-real-time results and offline ETL+Q processing.

Keywords-Algorithms; architecture; Scalability; ETL; fresh-
ness; high-rate; performance; scale; parallel processing.

I. INTRODUCTION

ETL tools are special purpose software used to populate
a data warehouse with up-to-date, clean records from one or
more sources. The majority of current ETL tools organize
such operations as a workflow. At the logical level, the E
(Extract) can be considered as a capture of data-flow from
the sources with more than one high-rate throughput. T
(Transform) represents transforming and cleansing data in
order to be distributed and replicated across many processes
and ultimately, L(Load) convey by loading the data into
data warehouses to be stored and queried. For implementing
these type of systems besides knowing all of these steps,
the acknowledge of user regarding the scalability issues is
essential, which the ETL+Q (queries) might be introduced.

When defining the ETL+Q the user must consider the
existence of data sources, where and how the data is ex-
tracted to be transformed, loading into the data warehouse
and finally the data warehouse schema; each of these steps
requires different processing capacity, resources and data
treatment. Moreover, the ETL is never so linear and it is
more complex than it seems. Most often the data volume
is too large and one single extraction node is not sufficient.
Thus, more nodes must be added to extract the data and
extraction policies from the sources such as round-robin or
on-demand are necessary.

After extraction, data must be re-directed and distributed
across the available transformation nodes, again since trans-

formation involves heavy duty tasks (heavier than extrac-
tion), more than one node should be present to assure ac-
ceptable execution/transformation times. Consequently, once
more new data distribution policies must be added. After the
data transformed and ready to be load, the load period time
and a load time control must be scheduled. Which means
that the data have to be held between the transformation
and loading process in some buffer. Eventually, regarding
the data warehouse schema, the entire data will not fit into
a single node, and if it fits, it will not be possible to execute
queries within acceptable time ranges. Thus, more than one
data warehouse node is necessary with a specific schema
which allows to distribute, replicate, and query the data
within an acceptable time frame.

In this paper, we study how to provide parallel ETL+Q
scalability with ingress high-data-rate in big data and small
data warehouses. We propose a set of mechanisms and
algorithms, to parallelize and scale each part of the entire
ETL+Q process, which later will be included in an auto-
scale (in and out) ETL+Q framework. The presented results
prove that the proposed mechanisms are able to scale when
necessary.

Section II approaches the related work in the field. Section
III describes the proposed architecture. Section IV describes
the experimental setup and obtained results. Finally, Section
V concludes the presented work and introduces some future
research lines.

II. RELATED WORK

Works in the area of ETL scheduling includes efforts
towards the optimization of the entire ETL workflows [6]
and of individual operators in terms of algebraic optimiza-
tion, e.g., joins or data sort operations. However, many
works focus on complex optimization details that only
apply to very specific cases. Munoz et al. [3] focus on
finding approaches for the automatic code generation of ETL
processes which is aligning the modeling of ETL processes
in data warehouse with Model Driven Architecture (MDA)
by formally defining a set of Query, View, Transformation
(QVT) transformations. ETLMR [2] is an academic tool
which builds the ETL processes on top of Map-Reduce
to parallelize the ETL operation on commodity computers.
ETLMR does not have its own data storage (note that the

242Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 261 / 512

Figure 1. Automatic ETL+Q scalability

offline dimension store is only for speedup purpose), but
is an ETL tool suitable for processing large scale data in
parallel. ETLMR provides a configuration file to declare
dimensions, facts, User Defined Functions (UDFs), and other
run-time parameters. ETLMR toll has the same problem as
the MapReduce architectures, too much hardware resources
are required to guaranty basic performance.

In [5], the authors consider the problem of data flow
partitioning for achieving real-time ETL. The approach
makes choices based on a variety of trade-offs, such as
freshness, recoverability and fault-tolerance, by considering
various techniques. In this approach, partitioning can be
based on round-robin (RR), hash (HS), range (RG), random,
modulus, copy, and others [7].

In [1] the authors describe Liquid, a data integration stack
that provides low latency data access to support near real-
time in addition to batch applications.

There is a vast related work in ETL field. Although main
related problems studied in the past include the scheduling
of concurrent updates and queries in real-time warehousing
and the scheduling of operators in data streams management
systems. However, we argue that a fresher look is needed
in the context of ETL technology. The issue is no longer
the scalability cost/price, but rather the complexity it adds
to the system. Previews presented recent works in the field
do not address in detail how to scale each part of the
ETL+Q and do not regard the automatic scalability to make
ETL scalability easy and automatic. We focus on offering
scalability for each part of the ETL pipeline process, without
the nightmare of operators relocation and complex execution
plans. Our main focus is automatic scalability to provide
the users desired performance with minimum complexity
and implementations. In addition, we also support queries
execution.

III. ARCHITECTURE

In this section, we describe the main components of the
proposed architecture for ETL+Q scalability. Figure 1 shows
the main components to achieve automatic scalability.

• All components from (1) to (7) are part of the Extract,

Transform, Load and query (ETL+Q) process. All can
auto scale automatically when more performance is
necessary.

• The ”Automatic Scaler” (13), is the node responsible
for performance monitoring and scaling the system
when is necessary.

• The ”Configuration file” (12) represents the location
where all user configurations are defined by the user.

• The ”Universal Data Warehouse Manager” (11), based
on the configurations provided by the user and using
the available ”Configurations API” (10), sets the system
to perform according with the desired parameters and
algorithms. The ”Universal Data Warehouse Manager”
(11), also sets the configuration parameters for auto-
matic scalability at (13) and the policies to be applied
by the ”Scheduler” (14).

• The automatic scaler module (13), based on time
bounds configurations and limit amounts of resources to
use (mainly memory) scales the ETL pipeline modules.

• The ”Configuration API” (10), is an access interface
which allows to configure each part of the proposed
Universal Data Warehouse architecture, automatically
or manually by the user.

• Finally, the ”Scheduler” (14), is responsible for apply-
ing the data transfer policies between components (e.g.,
control the on-demand data transfers).

All these components when set to interact together are
able to provide automatic scalability to the ETL and to the
data warehouses processes without the need for the user to
concern about its scalability or management.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, we describe the experimental setup, and
experimental results to show that the proposed system,
AScale, is able to scale and load balance data in small and
big data scenarios for near real-time and offline ETL+Q.

The experimental tests were performed using 30 comput-
ers, denominated as nodes, with the following characteris-
tics: Processor Intel Core i5-5300U Processor (3M Cache, up
to 3.40 GHz); Memory 16GB DDR3; Disk: western digital
1TB 7500rpm; Ethernet connection 1Gbit/sec; Connection
switch: SMC SMCOST16, 16 Ethernet ports, 1Gbit/sec;
Windows 7 enterprise edition 64 bits; Java JDK 8; Net-
beans 8.0.2; Oracle Database 11g Release 1 for Microsoft
Windows (X64) - used in each data warehouse nodes; Post-
greSQL 9.4 - used for look ups during the transformation
process; TPC-H benchmark - representing the operational
log data used at the extraction nodes. This is possible
since TPC-H data is still normalized; SSB (star schema
benchmark) benchmark - representing the data warehouse.
The SSB is the star-schema representation of TPC-H data.
Data transformations consist loading from the data sources
the ”lineitem” and ”order” TPC-H data logs and besides
the transformation applied to achieve the SSB benchmark

243Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 262 / 512

Figure 2. Extract and transform without automatic scalability

star schema [4] we added some data quality verification and
cleansing.

A. Performance limitations without automatic scalability
In this Section, we test both ETL and data warehouse

scalability needs when the entire ETL process is deployed
without automatic scalability options. The system is stressed
with increasing data-rates until it is unable to handle the ETL
and query processing in reasonable time. Automatic scala-
bility which we evaluate in following sections, is designed
to handle this problem.

The following deployment is considered: One machine
to extract, transform data and store the data warehouse;
extraction frequency is set to perform every 30 seconds;
desired maximum allowed extraction time, 20 seconds; data
load is performed in offline periods.

Based on this scenario, we show the limit situation in
which performance degrades significantly, justifying the
need to scale the ETL (i.e., parts of it) or data warehouse.

Extraction & transformation: Considering only extrac-
tion and transformation, using a single node, Figure 2 shows:
in the left Y axis is represented the average extraction
and transformation time in seconds; in the right Y axis is
represented the number of discarded rows (data that was not
extracted and not transformed); in the X axis we show the
data-rate in rows per-second; white bars represent extraction
time; gray bars represent the transformation time; lines rep-
resent the average number of discarded rows (corresponding
values in the right axes). For this experiment, we generated
log data (data to be extracted) at a rate λ per second.
Increasing values of λ were tested and the results are shown
in Figure 2.

Extraction is performed every 30 seconds. This means that
in 30 seconds there is 30x more data to extract. Extraction

Figure 3. Loading data, one server vs two servers

must be done in 20 seconds maximum. As the data-rate
increases, a single node is unable to handle so much data. At
a data-rate of 20.000 rows per second, buffer queues become
full and data starts being discarded at sources because the
extraction time is too slow. The transformation process
is slower than transformation, requiring more resources to
perform at the same speed as the extraction.

Loading the data warehouse: Figure 3 shows the load
time as the size of the logs is increased. It also compares
the time taken with single single node versus two nodes.
All times were obtained with the following load method:
destroy all indexes and views, load data, create indexes,
update statistics and update views; data was distributed by
replicating and partition the tables. Differences are notice-
able when loading more than 10GB. When adding two data
warehouse nodes, performance improves and the load time
becomes almost less than half.
- The Y axis represents the average load time in seconds
and the X axis represents the loaded data size in GB.
- The black line represents two servers and the grey line
represents one server.

Query execution: Figure 4 shows the average query
execution time for a set of tested workload (using the SSB
benchmark queries): workload 1, 10 sessions, 5 Queries
(Q1.1, Q1.2, Q2.1, Q3.1, Q4.1); workload 2, 50 sessions,
5 Queries (Q1.1, Q1.2, Q2.1, Q3.1, Q4.1); workload 3,
10 sessions, 13 Queries (All); workload 4, 50 sessions, 13
Queries (All); for all workloads, queries were executed in a
random order; the desired maximum query execution time
was set to 60 seconds.

The Y axis shows the average execution time in seconds.
The X axis shows the data size in GB. Each bar represents
the average execution time per query fro each workload.
Note that, Y axis scale is logarithmic for better results
representation.

244Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 263 / 512

Figure 4. Average query time for different data sizes and number of
sessions

Figure 5. AScale for simple scenarios

Depending on the data size, number of queries and num-
ber of simultaneous sessions (e.g., number of simultaneous
users), execution time can vary from a few seconds to a
very significant number of hours or days, especially when
considering large data sizes and simultaneous sessions or
both. In these results, and referring to 10GB and 50GB,
we see that an increase of 5x of the data size resulted in an
increase of approximately 20x in response time. An increase
in the number of 5x resulted in an increase of approximately
2x in query response time.

B. Typical data warehouse scenarios

In this section we evaluate AScale in a scenario where
because of log sizes and limited resources, data load takes
too long to perform without scaling.

We start with only two nodes (two physical machines),
one for handling extraction and transformation, the other to
hold the data warehouse as shown in Figure 5. AScale is
setup to monitor the system and scale when needed.

Data is extracted from sources, transformed and loaded
only during a predefined period (e.g., night), to be available
for analysis the next day. The maximum extraction, trans-
formation and load time, all together cannot take longer
than 9 hours (e.g., from 0am until 9am). AScale was

Figure 6. AScale, 9 hours limit ETL time

configured with an extraction frequency of every 24 hours
and a maximum duration of 4 hours, a transformation queue
with a limit size of 10GB and data warehouse loads were
configured for every 24 hours, with a maximum duration
of 9 hours. Note that, the entire ETL process was set for a
maximum duration of 9 hours.

The experimental results form Figure 6 show the total
AScale ETL time using two nodes (two physical machines),
one for extract, transform, data buffer and data switch,
other for the data warehouse. Up to 10GB the ETL process
can be handled within the desired time windows. However,
when increasing to 50GB, 9 hours are no longer enough
to perform the full ETL process. In this situation, the data
warehouse load process (load, update indexes, update views)
using one node (average load time 873 minutes) and two
nodes (average load time 483 minutes) exceeds the desired
time window. When scaled to 3 nodes, by adding one data
warehouse node, the ETL process returns to the desired time
bound.

The extraction and transformation process were never
scaled, since they were able to perform within the desired
time, the same for the data buffer and data switch that were
able to handle all data within defined bounds.

C. ETL offline scalability with huge data sizes

In this section we create an experimental setup to stress
AScale under extreme data rate conditions. The objective is
to test scaling each part of the pipeline.

For this experiment we did the following configured:
E (extraction) was set to perform every 1 hour with 30
minutes maximum extraction time, T (transformation) queue
maximum size was configured to 500MB, and L (load)
frequency to every 24 hours with a maximum duration of 5
hours.

245Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 264 / 512

Figure 7. Extraction (60 minutes frequency and 30 minutes maximum
extraction time)

Figure 8. Offline, transformation scale-out

Extraction: Figure 7 shows the AScale extraction process
when using an extraction frequency of 60 seconds and 30
seconds for the maximum extraction time.

In Figure 7, we show the followings: the left Y axis the
number of rows, the X axis is represented the time in minutes
and the black line represents the total number or rows left
to be extracted at each extraction period. By analyzing the
results from Figure 7 we conclude that the extraction process
is able to scale efficiently when more computational power
is necessary. However, if the data rate increases very fast in
a small time window AScale requires additional extraction
cycles to restore the normal extraction frequency.

Transformation: In Figure 8 are shown the transforma-
tion scale-out tests based on nodes ingress data queue size.

Figure 9. Offline, load scale-out

Every time a queue fills-up until the maximum configured
size AScale automatically scale-out. This monitoring process
allows to scale-out very fast, even if the data rate increases
suddenly. Each scale out took only an average of 2 minutes,
referring to the copy and replication of the staging area.
Experimental results show that AScale transformation can
be scaled-out more than one node in a very short time frame.

Load: AScale load process is done at the end of each
load cycle that did not respected the maximum load time.
The number of nodes to add is calculated linearly based on
previews load time. For instance, if load time using 10 nodes
was 9 hours. To load in 5 hours we need x nodes, estimated
in equation 1.

loadT ime

targetT ime
× n (1)

Where ”loadTime” represents the last load time, ”target-
Time”, represents the desired load time and ”n” represents
the current number of nodes.

Figure 9 shows the data warehouse nodes scalability
time and data (re)balance time. We conclude that the data
warehouse nodes can be scaled efficiently in a relatively
short period of time given the large amounts of data being
considered.

D. Near-Real-time DW scalability and Freshness

In this section we assess the scale-out and scale-in abilities
of the proposed framework in near-real-time scenarios re-
quiring data to be always updated and available to be queried
(i.e., data freshness).

The near-real-time scenario was set-up with: E (extrac-
tion) and L (load) were set to perform every 2 seconds;
T (transformation) was configured with a maximum queue
size of 500MB; the load process was made in batches of

246Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 265 / 512

Figure 10. Near-real-time, full ETL system scale-out

Figure 11. Near-real-time, full ETL system scale-in

100MB maximum size. The ETL process is allowed to take
3 seconds.

Figures 10 and 11 show AScale, scaling-out and scaling-
in automatically, respectively, to deliver the configured near-
real-time ETL time bounds, while the data rate increases/de-
creases. The system objective was set to deliver the ETL
process in 3 seconds. The charts show the scale-out and
scale-in of each part of the AScale, obtained by adding
and removing nodes when necessary. A total of 7 data
sources were used/removed gradually, each one delivering a
maximum average of 70.000 rows/sec. AScale used a total
of 12 nodes to deliver the configured time bounds.

Near-real-time scale-out results in Figure 10 show that,
as the data-rate increases and parts of the ETL pipeline be-
come overloaded, by using all proposed monitoring mecha-
nisms in each part of the AScale framework, each individual
module scales to offer more performance where and when
necessary.

Near-real-time scale-in results in Figure 11 show the
instants when the current number of nodes is no longer
necessary to ensure the desired performance, leading to some
nodes removal (i.e., set as ready nodes in stand-by, to be used
in other parts).

V. CONCLUSIONS & FUTURE WORK

In this work we proposed mechanisms to achieve auto-
matic scalability for complex ETL+Q, offering the possibil-
ity to the users to think solely in the conceptual ETL+Q
models and implementations for a single server.

Tests demonstrate that the proposed techniques are able
to scale-out and scale-in when necessary to assure the
necessary efficiency. Future work includes real-time event
processing integration oriented to alarm and fraud detec-
tion. Other future work included making an visual drag
and drop interface, improve monitoring and scale decision
algorithms, and finally provide usability comparisons with
other academic tools. A beta version of the framework is
being prepared for public release.

REFERENCES

[1] N. Ferreira, P. Martins, and P. Furtado. Near real-time with
traditional data warehouse architectures: factors and how-to. In
Proceedings of the 17th International Database Engineering &
Applications Symposium, pages 68–75. ACM, 2013.

[2] X. Liu. Data warehousing technologies for large-scale and
right-time data. PhD thesis, dissertation, Faculty of Engineer-
ing and Science at Aalborg University, Denmark, 2012.

[3] L. Muñoz, J.-N. Mazón, and J. Trujillo. Automatic generation
of etl processes from conceptual models. In Proceedings of
the ACM twelfth international workshop on Data warehousing
and OLAP, pages 33–40. ACM, 2009.

[4] P. E. O’Neil, E. J. O’Neil, and X. Chen. The star schema
benchmark (ssb). Pat, 2007.

[5] A. Simitsis, C. Gupta, S. Wang, and U. Dayal. Partitioning
real-time etl workflows, 2010.

[6] A. Simitsis, P. Vassiliadis, and T. Sellis. Optimizing etl
processes in data warehouses. In Data Engineering, 2005.
ICDE 2005. Proceedings. 21st International Conference on,
pages 564–575. IEEE, 2005.

[7] P. Vassiliadis and A. Simitsis. Near real time etl. In New
Trends in Data Warehousing and Data Analysis, pages 1–31.
Springer, 2009.

247Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 266 / 512

The Role of People and Sensors in the Development of Smart Cities:
A Systematic Literature Review

Italberto Figueira Dantas
UFPI - Federal University of Piaui

Teresina, Brazil
Email: italberto@ufpi.edu.br

Felipe Silva Ferraz
CESAR - Recife Center for Advanced Studies and Systems

Recife, Brazil
Email: fsf@cesar.org.br

Abstract—Over the last few years, with rapid population growth
in the biggest cities of the world, issues like air pollution, water
scarcity, and intense traffic conditions, have become more evident.
Trying to mitigate them, the concept of Smart City was presented,
which uses technology and human resources to manage urban
resources in a sustainable manner. As new scientific researches
about this phenomenon are being carried out, the importance
of both human and technological resources remain implicit in
the development of Smart Cities. But, it is not clear what role
is occupied in the different stages of evolution, which leads a
city to be considered Smart. Given this context, in this paper we
used the SLR method to analyze scientific publications, and thus
to determine what is the role of the human factor, represented
by people, and technological, represented by sensors, in the
development of smart cities. We also created the overview of the
scientific research, and can identify the most and least studied
areas among those addressed in this study.

Keywords–Smart City; Sensors; IoT; People; Open Innovation.

I. INTRODUCTION

In the last century, the number of cities in the world with
more than 1 million inhabitants jumped from 20 to 450. In
2007, the number of people living in urban centers exceeded
50% of the world population and it is estimated that this
number will reach 70% by the year 2050 [1]. The fast growth
of the population in urban centers makes us face problems
like the deterioration of public transportation services, decrease
of air quality and increase of unemployment, etc. [2]. When
dealing with these issues, it is necessary to use creativity,
human resources, and cooperation between the different areas
of the society and good ideas [3].

Technology is a way to solve the problems caused by
the population growth in urban centers. Some, such as the
IoT (Internet of Things), are used in the context of Smart
cities due to their potential to improve the life quality of
the population [4]. Not only investments in technology should
be taken into account when thinking about sustaining Smart
Cities, but human and social capital must be used as a fuel for
economic growth and high quality of life by using the natural
resources in an intelligent way, through government policies
that involve the society [3].

In the current scenario, every initiative is important if
it helps understand the growth of great urban centers and
how it occurs, as well as what measures should be adopted
to extinguish the problems caused by it, from a scientific
and economic point of view. Through a Systematic Literature
Review (SLR), a panorama of the current scientific research
will be presented, dealing with the relationship between people

and sensors with the development of modern cities, which are
Smart Cities.

The problem considered in this work may be described the
following way: There is a large number of works approaching
the participation of people and the use of sensors in Smart
Cities. There is a need to visualize the current panorama of this
research line in a broad way in order to identify open issues,
as well as identifying researches to be used for accelerating
the studies of this field.

In this work, we intend to provide the current panorama
of the scientific researches made in the field of Smart Cities
that talk about their development based on the participation of
people and the use of sensors, based on the Systematic Review
methodology, according to what Kitchenham [5] proposed.

In this work, the term ”development” is used to identify
the initiatives of creation of new Smart Cities, as well as
the improvement of those that already possess management of
natural resources and monitoring of basic services and wish to
improve them. Also, the term ”sensors” includes sensors that
receive information on the environment, actors that execute
actions and transform the environment they live in and other
technologies related.

This work is organized as follows: Section II presents
the necessary concepts to understand the rest of the research;
Section III presents the methodology used; Section IV presents
the research protocol used; Section V exposes the results
obtained from the execution phase of the protocol and presents
the analysis of the results and finally, Section VI exposes the
conclusions, suggestions for future researches and the final
considerations.

II. SMART CITY

The term Smart City has been used for 20 years and it has
evolved due to concerns about the service supply and resource
consumption [6], which are increasing with the growth of
urban centers. According to Nam et al. [2], the term Smart
City can be approached according to three perspectives: (1)
Technological Elements: Hardware and software infrastructure;
(2) Human Elements: creativity, diversity and education; (3)
Institutional Elements: governance and politics. A city may
be considered as a smart one when investments in social
and human capital and Information Technologies infrastructure
transform environmental growth and improve quality of life
through participative governance [3].

The use of the word smart as a label for future cities is
not by chance. In marketing words, smartness focuses on the

248Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 267 / 512

perspective of the user [7], and it is related to a fast mind,
with efficient answers. Smart Cities need to adapt themselves
rapidly to the needs of their citizens and provide customized
interfaces [2]. Technology is a way to reach it. In this context,
Smart Cities can be defined, according to Kehua et al. [8],
as the use of information and technologies of communication
to measure, analyze and integrate the information of the
main services of a city. This way, Smart Cities may respond
intelligently to different types of need, including daily mainte-
nance, environmental protection, public safety and commercial
activities.

A. IoT
At the same time the access to the Internet becomes easier,

computer devices are getting smaller and more popular through
mobile devices with the evolution of the industry over the
years. IoT can be defined as a global network infrastructure
with the ability to self-set itself based on interoperable com-
munication patterns and protocols, through physical and virtual
things have an identity, physical attributes and smart virtual
interfaces integrated through an information network [9].

Smart Things networks promise to revolutionize the mon-
itoring of environments in a great variety of application do-
mains due to their reliability, efficiency, flexibility, low cost
and easy installation [10].

B. Smart City and People
The concept of Smart Cities only makes sense when we

talk about the presence of people as target audience of the
benefits achieved through the use of technology and other ways
to improve quality of life. According to Washburn et al. [11],
what makes a city smart is the use of technology to provide
basic services for the citizens in an efficient way.

Smart Cities are human cities with multiple opportunities
to explore the human potential and turn life into a more
productive life [2]. Technological issue, very present in the
current conception of smart cities, becomes secondary in the
views centered in the social and human part.

III. METHODOLOGY

In this section, we present the methodology used.
SLR is, almost always, the initial phase of any research

[12]. The purpose is to accumulate more knowledge about
the subject the research is about. SLR goes beyond a simple
literary review because it uses scientific methodology and
provides a way to integrate studies, creating generalizations
about the subject.

This modality of study is a way to identify, evaluate and
interpret a relevant part of the research about a specific matter
of the research, area or phenomena of interest [5].

According to Petersen et al. [13], the need to carry out
systematic reviews is that as a specific area matures, a lot of
research is made, which generates a great number of primary
works that need to be summarized.

Systematic review uses the review protocol as its main tool,
which defines a series of steps that must be followed in order
to get to a conclusion [12]. These steps must be very well
defined so other people can reproduce the same process to
validate the study.

The systematic review model used in this work, is based
on the proposal of Kitchenham [5] and performed by Oliveira
et al. [14], Budgen et al. [15] and Ribeiro et al. [16]. Biolchini
et al. [12] proposed a model used on the protocol.

The model is based on three main phases: (1) Planning:
the research objectives and the research question are defined;
(2) Execution: primary studies are identified, selected and
evaluated according to the criteria of inclusion and exclusion
defined during the Planning phase; (3) Presentation of Results:
presentation of the report with the information obtained during
the previous phase.

Described phases may seem sequential, however, many
tasks performed in each one of the phases can be started in
the Planning phase and concluded only during the Execution
phase.

Biolchini et al. [12] describe the three phases through a
chart, as seen in Figure 1.

Figure 1. Three stages SLR process.

According to them [12], the process of systematic review
can be divided into five steps:

• Problem formulation. Aims to define what kind of
evidences will be included in the review. On this step,
the criteria that will help the researcher define which
studies are relevant for his research should be set;

• Data collection. The objective is to define which will
be the sources to acquire evidence;

• Data evaluation. Aims to define which information
will be used in the research. Quality criteria must be
applied in order to distinguish the valid studies;

• Analysis and interpretation. Synthesizing data is the
main goal to create generalization about the researched
subject in order to determine if it can be solved or not;

• Conclusion and presentation of the results. The objec-
tive is to decide which information will be presented in
the final report, since not all the information obtained
in the data analysis are relevant for the research.

249Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 268 / 512

IV. PROTOCOL DEFINITION

Protocol definition is the first step of the research devel-
opment. Using the problem related in the Introduction of this
work, a research question was elaborated with the objective
of conducing the research procedures. We may define this
question as: Q01 (Question 01) What is the role of people
and sensors in the development of Smart Cities?

Novais et al. [17] suggests the division of the research ques-
tion into sub-questions in order to provide greater coverage.
Thus, Q01 was subdivided: Q1.1. What is the influence of
the participation of people or use of sensors in the study?;
Q1.2. What is the level of previous infrastructure so the study
proposal is viable?; Q1.3. What stage of social organization
the city needs to be in so the study is viable?; Q1.4. What
is the contribution of the study for the scientific community?;
Q1.5. How was the study validated?; Q.1.6. What was the
main feature of the city affected by the study?.

After defining what will be observed, the next step is
selecting the research bases of the research, which were:

• Compendex (CPE);
• IEEExplore (EXP);
• Science Direct (SDI);
• Scopus (SCO).

Besides the chosen research bases, a manual research
through the references of the publications was made, based
on the initial researches, restricted to articles, thesis and
dissertations in English.

A research expression was defined to be used in the
consultations in each one of the research bases, using the
research question as a guide. The expression used was: EX01
- (((digital OR smart) AND (city)) AND (development OR
creation OR expansion)) AND (iot OR ict) AND (people OR
citizen)).

After researching in the chosen bases, the results obtained
were exported and stored.

The approach to select the primary studies follows the
guidelines of Barcellos et al. [18], which suggest only the
need to define exclusion criterion in order to select relevant
studies. This way, four steps were defined and for two of them,
exclusion criterion were defined as well. Details are presented
in Table I. The stages can be described as follows:

• ST01. The search must be done in the selected bases
SCO, EXP, SDI and CPE using the search expression
EX01. Results obtained must be stored to facilitate
future consultation;

• ST02. This stage eliminates primary studies that do
not attend the purposes of this study;

• ST03. Publications not excluded on the previous step
will be re-evaluated based on their title, abstract or
full text;

• ST04. Search for referenced of the remaining publi-
cations must be made.

Data extraction consists in taking relevant information that
may help solving the research question through the reading of
the text and the metadata.

A test before the final protocol execution must be con-
ducted to assure it is correct, in order to identify possible

failures introduced during their definition. The test must be
carried out in a reduced portion of the total bases to be used
in the conduction of the research [18].

TABLE I. EXCLUSION CRITERIA.

Step Criteria Code Description
EC01 Repeated publications.

ST02 EC02 Publications of the same author presenting similar con-
tent.

EC03 Studies which text cannot be obtained.
EC04 The title indicates the study deals with a different subject

from this work.
ST03 EC05 The abstract indicates the study deals with a different

subject from this work.
EC06 The text indicates the study deals with a different subject

from this work.

A protocol test was conducted using the CPE and SDI bases
with this purpose. Results obtained in the execution of the test
were left out; however, they were satisfactory and enabled the
protocol execution to be conducted without any changes.

A. Quality Assessment
According to Kitchenham [5], quality criterion can be used

to help analyzing and resuming the data obtained, identifying
subgroups among the selected studies. This way, a checklist
was set with some items that must be applied to the selected
studies after executing the ST03 stage.

Quality assessment will help determine if the quality of the
analyzed studies influences on the results of the publications.
The assessment can be made in parallel to the activity of
reading publications.

Issues related to evaluating the quality of the studies are
presented in Table II.

TABLE II. QUALITY CRITERIA.

ID Question Answer
QC01 Are the objectives clear? Yes/No/NA
QC02 Was there a validation of the proposal? Yes/No/NA
QC03 Was data collection correctly made? Yes/No/NA
QC04 Is the purpose of the analysis clear? Yes/No/NA
QC05 Were the questions asked in the study answered? Yes/No/NA
QC06 Were the results reported negative? Yes/No/NA
QC07 Does the study explicitly explore the research question? Yes/No/NA

To ensure that the selection of publications is performed
correctly, each of which must be evaluated by more than one
researcher.

V. RESULTS

After the protocol approval, the other stages were executed.
The result can be seen in Table III. In this table we can notice
that, in the first stage ST01 the number of publications is rather
high, a total of 1121 publications, which were evaluated in the
following steps according to the selection criteria. In the stage
ST02, 61 publications were excluded and , in the stage ST03,
the number of excluded publications was 1030.

After applying the exclusion criterion, the manual search
for references of the selected publications was made and
the general results can be seen in Table IV, as well as
the manual search. This table presents a summary of the
selection of publications result. The publications included in
the stage ST01 were found, so as the publications included

250Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 269 / 512

in the stage ST04, matching with the manual search. The
exclusions realized in the stages ST02 and ST03 are also
detailed, classified according to the search tool that have been
used.

45 publications were obtained after executing all the steps.
Table V shows all the obtained publications. In this table, each
publication is identified by a code. The code of the search tool
used to find the publication, the stage in which the publications
are and the year of the publication is also showed.

TABLE III. PROTOCOL EXECUTION RESULTS OF THE FIRST
THREE STAGES.

Step Criteria SCO EXP SDI CPE
ST01 349 648 78 46

EXC EXC EXC EXC
CR01 1 38 1 2

ST02 CR02 0 0 0 0
CR03 4 12 2 1
CR04 297 531 69 38

ST03 CR05 22 46 5 3
CR06 5 14 0 0

Total Exclusion 329 641 77 44
Total Remaining 20 7 1 2

TABLE IV. TOTAL PUBLICATIONS BY DATABASE AND MANUAL
SEARCH.

SCO EXP SDI CPE MSC Total
Included 349 648 78 46 15 1136
Excluded 329 641 77 44 0 1091

Total 20 7 1 2 15 45

Results of the evaluation of the publications in each one
of the sub-questions were compared with the other results.
Therefore, deep analysis of the obtained data could be made,
once the isolated observation of the results is not enough for
the research question to be cleared.

Crossings between the research sub-questions are num-
bered in Table VI.

A. Question Q1.1 Analysis
During these two phases of development of the Smart

Cities, the Sensor element stands out in the Chaotic and
Managed levels of organization.

In the initial level of organization, the People element is
the one with more highlight. This happens due to the approach
of human resource in many publications as a collaborator in
data production, along with the sensors.

Last two levels of technological organization, Integrated
and Optimized, were the less approached levels among the
analyzed publications. A small amount of cities around the
world with characteristics that put them in these two last levels
is what partly explains this fact.

The first level of social organization, the Chaotic, was
the one that obtained the highest number of publications,
which is explained by crowdsensing and other data collection
techniques. In the last two levels, the People element obtained
a higher number of publications.

The result of this research points out that when a society
is not organized to sustain initiatives to create a Smart City,
Technology is the most expressive element to start the process,

TABLE V. SELECTED PUBLICATIONS.

Code Engine Step Pub. Year Pub.
PB10 CPE ST03 2013 [19]
PB13 CPE ST03 2014 [20]
PB52 SDI ST03 2014 [21]
PB136 SCO ST03 2015 [22]
PB144 SCO ST03 2014 [23]
PB159 SCO ST03 2014 [24]
PB165 SCO ST03 2014 [25]
PB170 SCO ST03 2014 [26]
PB171 SCO ST03 2014 [27]
PB192 SCO ST03 2014 [28]
PB195 SCO ST03 2014 [29]
PB210 SCO ST03 2014 [30]
PB323 SCO ST03 2013 [31]
PB334 SCO ST03 2013 [32]
PB341 SCO ST03 2013 [33]
PB375 SCO ST03 2012 [34]
PB389 SCO ST03 2012 [35]
PB410 SCO ST03 2012 [36]
PB430 SCO ST03 2011 [37]
PB436 SCO ST03 2011 [38]
PB438 SCO ST03 2011 [39]
PB453 SCO ST03 2010 [40]
PB467 SCO ST03 2010 [41]
PB504 EXP ST03 2013 [42]
PB518 EXP ST03 2010 [43]
PB638 EXP ST03 2012 [44]
PB708 EXP ST03 2014 [45]

PB1024 EXP ST03 2010 [46]
PB1042 EXP ST03 2013 [47]
PB1050 EXP ST04 2011 [48]
PB1127 MSC ST04 2011 [49]
PB1134 MSC ST04 2010 [50]
PB1135 MSC ST04 2011 [2]
PB1139 MSC ST04 2011 [51]
PB1141 MSC ST04 2011 [52]
PB1146 MSC ST04 2011 [53]
PB1148 MSC ST04 2012 [54]
PB1149 MSC ST04 2011 [55]
PB1150 MSC ST04 2013 [56]
PB1151 MSC ST04 2011 [57]
PB1152 MSC ST04 2013 [58]
PB1157 MSC ST04 2011 [59]
PB1158 MSC ST04 2013 [60]
PB1159 MSC ST04 2013 [61]
PB1160 MSC ST04 2011 [62]

TABLE VI. COMPARISON BETWEEN RESEARCH QUESTIONS.

Sub-Question Compared Sub-Question
Q1.1 1.2, Q1.3, Q1.4, Q1.5, Q1.6
Q1.4 Q1.5
Q1.6 Q1.2, Q1.3, Q1.4

generating more engagement of the population in the subse-
quent levels, when there is already a favorable environment.

Thus, the result obtained through the analysis of the charts
in Figures 2 and 3 indicate that in cities with no infrastructure
and control of their resources nor promote participation of the
population in the decision-making processes,the administration
of the city prefer to invest their efforts to acquire technologies
that allow us to go forward towards a Smart City. Then,
technology is an enabler of future innovation in the field of
the city.

When there are available infrastructure and the engagement
of the population in the city affairs, even if it is in a precarious
way, it is possible to notice that human resource is the most
discussed issue, indicating the influence it may have on the
development of the city.

Figure 4 presents the chart generated by the results of the

251Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 270 / 512

Figure 2. Result of questions Q1.1 and Q1.2.

Figure 3. Result of questions Q1.1 and Q1.3.

sub-questions Q1.1 and Q1.4. We can see the elements People
and Sensors in it, distributed according to the scientific con-
tributions made. Generally speaking, the technological issue
was the most influent in all categories, except the last two,
Environment and Natural Resources and Popular Participation.

The result presented reinforces the statement of Chourabi
et al. [63] that the study of people and communities is critical
in the context of Smart Cities, however, it is being neglected.

The element People presented a small advantage in the cat-
egory Environment and Human Resources, demonstrating the
human perception of the environment is being explored in the
monitoring of natural resources and urban environment, being
as important as the sensors in the information acquisition. The
same element was the most influential in the category Popular
Participation, an awaited result due to its direct relationship
between people and concepts, such as crowdsensing, open
innovation, crowdsourcing and open participation.

Figure 5 represents the chart from crossing the results of
the sub-questions Q1.1 and Q1.5. We can see the elements
People and Sensors in it, distributed according to the types of

Figure 4. Result of questions Q1.1 and Q1.4.

validation of each publication.

Figure 5. Result of questions Q1.1 and Q1.5.

The element People was the one with greater highlight in
the publications that adopted Implementation and Case Study
as a way of validation, obtaining only 1% (one percentage
point) more than Sensors in the Case Study way. This lower
number of the element Sensors related to human perspective is
because many publications about the technological perspective
maintained themselves in more theoretical subjects, with no
need of validation that would fit one of the two validation
categories defined in this work.

Figure 6 presents the chart from crossing the results of the
sub-questions Q1.1 and Q1.6. We can see the elements People
and Sensors distributed according to the areas of the Smart
Cities of the analyzed publications.

Data presented followed a trend. In the first four areas
(Economy, Environment, Mobility, Governance), sensors were
the most influent, while in the areas of Housing and People it
was the element People the most influent. Generally speaking,
results of the analysis of the combination of these two sub-
questions may indicate there should have more balance when
approaching both elements in every area. The least influenced

252Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 271 / 512

Figure 6. Result of questions Q1.1 and Q1.6.

area was Economy, while Mobility was the most. It can be
explained by the low event of publications about economical
matters, while there were many talking about technological
issues.

B. Question Q1.4 Analysis
Analyzing the chart of Figure 7 that presents the results of

the sub-questions Q1.4 and Q1.5 together, it is expected to be
able to determine which are the most used ways of validation
in each research area. Firstly, the greatest part of the non-
validated publications talked about the theme of this research
in a theoretical way or those about works in progress. Popular
Participation was the area with more validated publications
through implementation and case studies.

In a general way, Implementation was the most used way
to validate the efforts, which made it a little ahead the Case
Study. It may indicate that Implementation is the most used
way of validation because there are not many options to test
the previously available proposals, which made the researchers
responsible for developing their own tools to validate their
proposals. Testbeds and Living Labs are initiatives that may
help.

Analyzing the chart of Figure 8 presenting the results of
the sub-questions Q1.4 and Q1.6 together, the intention is to
identify the most researched areas of the Smart Cities and
those that need more attention, taking into account the defined
research areas.

Initially, it is possible to notice the concepts of the eco-
nomic elements were not explored. The research area of
Infrastructure did not emphasize technological elements of the
areas of Governance, People and Economy and there were
also no researches about services in the areas of Housing and
Environment. Those numbers suggest more research should be
developed in these areas.

Second, the result presents coherent numbers between the
two analyzed dimensions, like the cases of the areas of Envi-
ronment and Natural Resources and the area of Environment,
between the areas of Infrastructure and Mobility and between
the areas of Popular Participation and People.

As for the rest of the results, it is possible to observe that
concepts about all areas of Smart Cities were researched and

Figure 7. Result of questions Q1.4 and Q1.5.

Figure 8. Result of questions Q1.4 and Q1.6.

Popular Participation was also in their agendas. Economy was
the only exception in both cases, when it was not mentioned.

In a general way, it is possible to conclude that more
researches about the economic features of Smart Cities are
necessary.

C. Question Q1.6 Analysis
Due to the cross-analysis of the result of sub-question Q1.6

with sub-questions Q1.3 and Q1.3, it is expected to determine
which areas of the Smart Cities are more researched during
the phases of technological and social evolution.

Result of crossing sub-questions Q1.2 and Q1.6 is shown
in the chart of Figure 9. Governance was the area that received
more attention, followed by People, Mobility and environment,
as observed in the chart. Housing and Economy were not
mentioned. This result may point to a city in the Chaotic level
as Governance as the area that should get more attention, since
it deals with the decision making about the future of the city.

Only Governance was not mentioned in an initial level,
while Environment was the most discussed area followed by

253Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 272 / 512

People, Mobility, Housing and Economy. This result may
indicate that, in an initial level, Environment is the level that
should get more attention.

Mobility was the area that received more attention in a
Managed level, indicating that when there is infrastructure,
the trend is to try improving it.

Integrated and Managed levels were the least explored
among all the evaluated publications. For this reason, it is not
possible to conclude anything from the presented chart.

Figure 10 shows a chart that presents the result of the
crossing between sub-questions Q1.3 and Q1.6.

Through the chart is possible to notice that in the Chaotic
organization level there is more concern with the areas of
Governance, Mobility and Environment. However, the number
of studies about the People area in this level was zero.
According to its definition, in this stage the level of social
organization is zero, which demonstrates the evaluated studies
talk about an environment where the Popular Participation is
already in a more elevated level.

Figure 9. Result of questions Q1.2 and Q1.6.

Figure 10. Result of questions Q1.3 and Q1.6.

The initial level concentrates a bigger number of publica-
tions. In this level, Economy was the only area not explored
due to the low incidence of publications about this area. Most
explored areas in this level were Mobility and Environment,
indicating that caring for the environment and technology used
in the city are considered more important in this level.

D. Quality Analysis
As defined in the revision protocol, a qualitative evaluation

of the 45 selected publications was made in order to avoid
biases in the selected publications. Results of this analysis are
shown in Table VI.

TABLE VII. RESUME OF QUALITY ANALYSIS RESULTS.

Criteria Yes Not Not Applicable
CQ01 100% 0% 0%
CQ02 71,11% 0% 28,80%
CQ03 71,11% 0% 28,88%
CQ04 71,11% 0% 28,88%
CQ05 100% 0% 0%
CQ06 2,22% 97,77% 0%
CQ07 24,44% 97,77% 0%

Through the results analyzed it was possible to notice that
the quality of the selected publications was not good, which
did not influence negatively on the analysis of the publications.

VI. CONCLUSION AND FUTURE WORK

SLR was the method used in this work, to create a
panorama of the scientific research about the participation of
people and use of sensors to develop Smart Cities. Based on
the work of Kitchenham [5], a revision protocol was developed
so the SLR could be executed.

Results obtained during the protocol test show it could
be used in a consistent way to reach the objectives of this
study. Through the research sub-questions, defined during the
elaboration of the revision protocol, it was possible to direct the
analysis of the publications to reach the general and specific
objectives defined for this study.

The general objective was to provide the current panorama
of the scientific research made in the area of the Smart Cities
that explore their development based on the participation of
people and use of sensors. We reached it by making a bi-
dimensional analysis of the research sub-questions results. We
could notice that people and sensors have great importance
when developing Smart Cities. Their importance changes ac-
cording to the level of technological and social development
each city is in, as well as the needs each city defines as priority.

It was also possible to classify the studies based on
different technical and scientific criteria, as well as identifying
many areas that need more attention of the scientific area when
it comes to popular participation and use of sensors in the
development of Smart Cities. Results obtained can show a
direction for future researches in most needed areas.

The economic aspect was showed pretty deficient, from
almost all analyzed points of view. So, this theme needs to be
deeply analyzed, in order to understand better the relationship
with the cities technological and social elements.

This research was realized considering just a period of
five years of study. A new protocol execution can be made,
with a bigger range, in order to analyze the evolution of

254Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 273 / 512

the researched aspects with the development of new scientific
studies about Smart Cities, making it possible to enhance the
knowledge about how people and sensors influence the Smart
Cities development, drawing an evolutionary profile.

REFERENCES

[1] C. E. A. Mulligan and M. Olsson, “Architectural Implications of
Smart City Business Models : An Evolutionary Perspective,” IEEE
Communications Magazine, vol. 51, no. 6, Jun. 2013, pp. 80–85.

[2] T. Nam and T. A. Pardo, “Conceptualizing smart city with dimensions
of technology, people, and institutions,” in Proceedings of the 12th An-
nual International Digital Government Research Conference on Digital
Government Innovation in Challenging Times - dg.o ’11. New York,
New York, USA: ACM Press, 2011, pp. 282–291.

[3] A. Caragliu, C. Del Bo, and P. Nijkamp, “Smart cities in Europe,”
Journal of Urban Technology, vol. 18, no. 2, Apr. 2011, pp. 65–82.

[4] T. Yashiro, S. Kobayashi, N. Koshizuka, and K. Sakamura, “An Internet
of Things (IoT) architecture for embedded appliances,” in 2013 IEEE
Region 10 Humanitarian Technology Conference. IEEE, Aug. 2013,
pp. 314–319.

[5] B. A. Kitchenham, “Guidelines for performing Systematic Literature
Reviews in Software Engineering,” Keele University, Keele, Tech. Rep.,
2007.

[6] A. Bartoli, J. Hernández-Serrano, M. Soriano, M. Dohler, and A. Koun-
touris, “Security and Privacy in your Smart City,” in Proceedings of
Barcelona Smart Cities Congress 2011, 2011, pp. 1–6.

[7] C. Klein and G. Kaefer, “From Smart Homes to Smart Cities: Op-
portunities and Challenges from an Industrial Perspective,” in Next
Generation Teletraffic and Wired/Wireless Advanced Networking, ser.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, vol. 5174, pp. 260–260.

[8] K. Su, J. Li, and H. Fu, “Smart city and the applications,” in 2011
International Conference on Electronics, Communications and Control
(ICECC). IEEE, Sep. 2011, pp. 1028–1031.

[9] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé, Vision and
challenges for realising the Internet of Things, 1st ed., H. Sundmaeker,
P. Guillemin, P. Friess, and S. Woelfflé, Eds. Luxemburgo: Publications
Office of the European Union, 2010, no. 1.

[10] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, “A taxonomy of
wireless micro-sensor network models,” ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 6, no. 2, 2002, pp. 28–36.

[11] D. Washburn et al., “Helping CIOs Understand Smart City Initiatives,”
Cambridge University, Tech. Rep., 2010.

[12] J. Biolchini, P. G. Mian, A. Candida, and C. Natali, “Systematic Review
in Software Engineering,” Universidade Federal do Rio de Janeiro, Rio
de Janeiro, Tech. Rep. May, 2005.

[13] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic Map-
ping Studies in Software Engineering,” in 12th International Conference
on Evaluation and Assessment in Software Engineering, 2008, pp. 71–
80.

[14] L. B. R. Oliveira, F. S. Osório, and E. Y. Nakagawa, “A Systematic Re-
view on Service-Oriented Robotic Systems Development,” ICMC/Univ.
of So Paulo, Tech. Rep., 2012.

[15] D. Budgen, M. Turner, P. Brereton, and B. Kitchenham, “Using Map-
ping Studies in Software Engineering,” PPIG’08: 20th Annual Meeting
of the Psichology of Programming Interest Group, vol. 2, 2007, pp.
195–204.

[16] F. Ribeiro, F. S. Ferraz, M. Carolina, G. Henrique, and S. Alexandre,
“Big Data Solutions For Urban Environments A Systematic Review,”
ALLDATA 2015, The First International Conference on Big Data, Small
Data, Linked Data and Open Data, 2015, pp. 22–28.

[17] R. L. Novais, A. Torres, T. S. Mendes, M. Mendonça, and N. Zaz-
worka, “Software evolution visualization: A systematic mapping study,”
Information and Software Technology, vol. 55, no. 11, Nov. 2013, pp.
1860–1883.

[18] M. P. Barcellos, R. Falbo, and R. Rocha, “A Strategy for Measurement
of Software and Evaluation of Bases of Measures for Statistical Control
of Processes of Software at High Maturity Organizations,” Ph.D Thesis,
Federal Univ. of Rio de Janeiro, 2009.

[19] D. López-de Ipiña, S. Vanhecke, O. Peña, T. De Nies, and E. Mannens,
“Citizen-Centric Linked Data Apps for Smart Cities,” in Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2013, vol. 8276
LNCS, pp. 70–77.

[20] L. Roo et al., “Mobile Crowdsourcing Older People s Opinions to
Enhance Liveability in Regional City Centres,” no. April, 2014, pp.
21–24.

[21] L. Atzori, D. Carboni, and A. Iera, “Smart things in the social loop:
Paradigms, technologies, and potentials,” Ad Hoc Networks, vol. 18,
2014, pp. 121–132.

[22] C. Klonner, C. Barron, P. Neis, and B. Höfle, “Updating digital elevation
models via change detection and fusion of human and remote sensor
data in urban environments,” International Journal of Digital Earth,
vol. 8, no. 2, Feb. 2015, pp. 153–171.

[23] D. S. Gallo, C. Cardonha, P. Avegliano, and T. C. Carvalho, “Taxonomy
of Citizen Sensing for Intelligent Urban Infrastructures,” IEEE Sensors
Journal, vol. 14, no. 12, Dec. 2014, pp. 4154–4164.

[24] A. Cenedese, A. Zanella, L. Vangelista, and M. Zorzi, “Padova Smart
City: An urban Internet of Things experimentation,” in Proceeding of
IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks 2014. IEEE, Jun. 2014, pp. 1–6.

[25] S. Fang, L. D. Xu, Y. Zhu, J. Ahati, H. Pei, J. Yan, and Z. Liu,
“An Integrated System for Regional Environmental Monitoring and
Management Based on Internet of Things,” IEEE Transactions on
Industrial Informatics, vol. 10, no. 2, May 2014, pp. 1596–1605.

[26] E. Theodoridis, G. Mylonas, V. Gutiérrez, and L. Muñoz, “Large-
Scale Participatory Sensing Experimentation Using Smartphones within
a Smart City,” in Proceedings of the 11th International Conference on
Mobile and Ubiquitous Systems: Computing, Networking and Services.
ICST, 2014, pp. 178–187.

[27] J. Paradells, C. Gomez, I. Demirkol, J. Oller, and M. Catalan, “Infras-
tructureless smart cities. Use cases and performance,” in 2014 Interna-
tional Conference on Smart Communications in Network Technologies
(SaCoNeT). IEEE, Jun. 2014, pp. 1–6.

[28] H. Sun, “Research of an intelligent street-lamp monitoring system based
on the Internet of things,” L. Zhang, L. Yu, and Y. Zhao, Eds., Mar.
2014, pp. 681–686.

[29] M. Granath and K. Axelsson, “Stakeholders’ Views On ICT And
Sustainable Development In An Urban Development Project,” European
Conference on Information Systems (ECIS), 2014, pp. 0–14.

[30] C. Shiyao, W. Ming, L. Chen, and R. Na, “The Research and Implement
of the Intelligent Parking Reservation Management System Based
on ZigBee Technology,” in 2014 Sixth International Conference on
Measuring Technology and Mechatronics Automation, no. 1. IEEE,
Jan. 2014, pp. 741–744.

[31] E. Massung, D. Coyle, K. F. Cater, M. Jay, and C. Preist, “Using
crowdsourcing to support pro-environmental community activism,” in
Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems - CHI ’13. New York, New York, USA: ACM Press,
2013, p. 371.

[32] V. Gutiérrez et al., “SmartSantander: Internet of Things Research and
Innovation through Citizen Participation,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2013, vol. 7858 LNCS, pp. 173–186.

[33] D. Doran, S. Gokhale, and A. Dagnino, “Human sensing for smart
cities,” in Proceedings of the 2013 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining - ASONAM ’13.
New York, New York, USA: ACM Press, Aug. 2013, pp. 1323–1330.

[34] P. Marchetta et al., “S2-MOVE: Smart and Social Move,” in 2012
Global Information Infrastructure and Networking Symposium (GIIS).
IEEE, Dec. 2012, pp. 1–6.

[35] S. Roche and A. Rajabifard, “Sensing places’ life to make city smarter,”
in Proceedings of the ACM SIGKDD International Workshop on Urban
Computing - UrbComp ’12. New York, New York, USA: ACM Press,
Aug. 2012, p. 41.

[36] P. Mechant, I. Stevens, T. Evens, and P. Verdegem, “E-deliberation 2.0
for smart cities: a critical assessment of two ’idea generation’ cases,”
International Journal of Electronic Governance, vol. 5, no. 1, 2012,
p. 82.

255Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 274 / 512

[37] H.-N. Hsieh, C.-Y. Chou, C.-C. Chen, and Y.-Y. Chen, “The evaluating
indices and promoting strategies of intelligent city in Taiwan,” in 2011
International Conference on Multimedia Technology. IEEE, Jul. 2011,
pp. 6704–6709.

[38] F. Gil-Castineira et al., “Experiences inside the Ubiquitous Oulu Smart
City,” Computer, vol. 44, no. 6, Jun. 2011, pp. 48–55.

[39] D. Havlik et al., “From Sensor to Observation Web with Environmental
Enablers in the Future Internet,” Sensors, vol. 11, no. 12, Mar. 2011,
pp. 3874–3907.

[40] A. Botero and J. Saad-Sulonen, “Enhancing citizenship,” in Proceedings
of the 11th Biennial Participatory Design Conference on - PDC ’10.
New York, New York, USA: ACM Press, 2010, p. 81.

[41] J. Corchado, J. Bajo, D. Tapia, and A. Abraham, “Using Heterogeneous
Wireless Sensor Networks in a Telemonitoring System for Healthcare,”
IEEE Transactions on Information Technology in Biomedicine, vol. 14,
no. 2, Mar. 2010, pp. 234–240.

[42] K. Benouaret, R. Valliyur-Ramalingam, and F. Charoy, “CrowdSC:
Building Smart Cities with Large-Scale Citizen Participation,” IEEE
Internet Computing, vol. 17, no. 6, Nov. 2013, pp. 57–63.

[43] N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. Camp-
bell, “A survey of mobile phone sensing,” IEEE Communications
Magazine, vol. 48, no. 9, Sep. 2010, pp. 140–150.

[44] A. S. Pentland, “Society’s Nervous System: Building Effective Govern-
ment, Energy, and Public Health Systems,” Computer, vol. 45, no. 1,
Jan. 2012, pp. 31–38.

[45] S. E. Middleton, L. Middleton, and S. Modafferi, “Real-Time Crisis
Mapping of Natural Disasters Using Social Media,” IEEE Intelligent
Systems, vol. 29, no. 2, Mar. 2014, pp. 9–17.

[46] D. L. Estrin, “Participatory sensing,” in Proceedings of the 8th inter-
national conference on Mobile systems, applications, and services -
MobiSys ’10. New York, New York, USA: ACM Press, 2010, pp.
3–4.

[47] G. Cardone et al., “Fostering participaction in smart cities: a geo-social
crowdsensing platform,” IEEE Communications Magazine, vol. 51,
no. 6, Jun. 2013, pp. 112–119.

[48] R. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and
future challenges,” IEEE Communications Magazine, vol. 49, no. 11,
Nov. 2011, pp. 32–39.

[49] M. C. Domingo, “An overview of the Internet of Things for people with
disabilities,” Journal of Network and Computer Applications, vol. 35,
no. 2, Mar. 2012, pp. 584–596.

[50] M. F. Goodchild, “Citizens as sensors: The world of volunteered
geography,” GeoJournal, vol. 69, no. 4, 2007, pp. 211–221.

[51] M. N. Kamel Boulos et al., “Crowdsourcing, citizen sensing and sensor
web technologies for public and environmental health surveillance and
crisis management: trends, OGC standards and application examples,”
International Journal of Health Geographics, vol. 10, no. 1, 2011, p. 67.

[52] S. F. King and P. Brown, “Fix my street or else,” in Proceedings of
the 1st international conference on Theory and practice of electronic
governance - ICEGOV ’07. New York, New York, USA: ACM Press,
2007, p. 72.

[53] P. Meier, “New information technologies and their impact on the
humanitarian sector,” International Review of the Red Cross, vol. 93,
no. 884, Dec. 2011, pp. 1239–1263.

[54] D. Hasenfratz, O. Saukh, S. Sturzenegger, and L. Thiele, “Participatory
Air Pollution Monitoring Using Smartphones,” Mobile Sensing: From
Smartphones and Wearables to Big Data, 2012, pp. 1–5.

[55] E. DHondt, M. Stevens, and A. Jacobs, “Participatory noise mapping
works! An evaluation of participatory sensing as an alternative to stan-
dard techniques for environmental monitoring,” Pervasive and Mobile
Computing, vol. 9, no. 5, Oct. 2013, pp. 681–694.

[56] D. Richter, M. Vasardani, and L. Stirlng, Progress in Location-Based
Services, ser. Lecture Notes in Geoinformation and Cartography, J. M.
Krisp, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

[57] H. Achrekar, A. Gandhe, R. Lazarus, Ssu-Hsin Yu, and B. Liu,
“Predicting Flu Trends using Twitter data,” in 2011 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). IEEE,
Apr. 2011, pp. 702–707.

[58] S. Devarakonda et al., “Real-time air quality monitoring through mo-
bile sensing in metropolitan areas,” in Proceedings of the 2nd ACM
SIGKDD International Workshop on Urban Computing - UrbComp ’13.
New York, New York, USA: ACM Press, 2013, p. 1.

[59] M. Faulkner et al., “Demo abstract, the next big one: Detecting
earthquakes and other rare events from community-based sensors,”
in Proceedings of the 10th ACM/IEEE International Conference on
Information Processing in Sensor Networks. Chicago: IEEE, 2011,
pp. 13–24.

[60] G. Hancke, B. Silva, and G. Hancke, Jr., “The Role of Advanced
Sensing in Smart Cities,” Sensors, vol. 13, no. 1, Dec. 2012, pp. 393–
425.

[61] T. Sakaki, M. Okazaki, and Y. Matsuo, “Tweet Analysis for Real-Time
Event Detection and Earthquake Reporting System Development,” IEEE
Transactions on Knowledge and Data Engineering, vol. 25, no. 4, Apr.
2013, pp. 919–931.

[62] E. Aramaki, S. Maskawa, and M. Morita, “Twitter Catches The Flu :
Detecting Influenza Epidemics using Twitter The University of Tokyo,”
in Proceedings of the 2011 Conference on Emperical Methods in
Natural Language Processing, Stroudsburg, 2011, pp. 1568–1576.

[63] H. Chourabi et al., “Understanding Smart Cities: An Integrative Frame-
work,” 2012 45th Hawaii International Conference on System Sciences,
Jan. 2012, pp. 2289–2297.

256Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 275 / 512

A Knowledge Base for Electric Vehicles in Inner-City Logistics

Thomas M. Prinz, Johannes Kretzschmar, Paul Hempel, and Volkmar Schau

Chair of Software Technology
Friedrich Schiller University Jena, Germany

email: {Thomas.Prinz, Johannes.Kretzschmar, Paul.Hempel, Volkmar.Schau}@uni-jena.de

Abstract—Logistics companies depend on the new technology of
electric vehicles when inner-city low emissions zones and their
restrictions grow. The comprehensible utilization of electric vehi-
cles in such a time and resource critical domain however requires
an extensive software support regarding e-vehicle features. Since
there are several logistics software systems, there is the need for a
knowledge base for electric vehicles to allow a cross-application
implementation of those features. In this paper, we argue for
such a knowledge base and how it could basically look like.
Furthermore, we motivate this base with some use cases. At the
end, the paper closes with an exemplary knowledge base for the
inference of possible drivers for a specific vehicle type.

Keywords–Knowledge base; electric vehicles; logistics.

I. INTRODUCTION

The introduction of electric vehicles presents challenges
for everyday life since they rise complete new technologies
and handling. Otherwise, that introduction becomes more and
more important as most big cities. Especially Germany and
the Netherlands have low emissions zones restricting the type
of vehicles. Inner-city logistics companies depend on that new
technology to allow a supply in future as most conventional
logistics vehicles have high emissions.

In our research project Smart City Logistik Erfurt (SCL)
[1], we consider those challenges for the introduction of
electric vehicles in inner-city logistics exemplary on the area
of the city Erfurt. The major tasks are (1) a range forecast, (2)
the driver’s acceptance, (3) an open system architecture [2],
and (4) a knowledge base:

(1) The range prediction is necessary to enable a precise
tour planning since most tours in inner-city logistics
should be planned in such that a vehicle uses its full
range. Especially in the field of e-mobility, a solid
capacity is required to prevent batteries from damage.

(2) The driver’s acceptance is important as first tests have
shown that the new technology, for example the range
restriction of electric vehicles, makes drivers insecure.
As result, a system has to support the drivers to school
their handling to get a better time/costs ratio.

(3) Since the field of transport management systems offers
less open application interfaces, there is the need for
building an open system architecture to connect new
systems for the consideration of electric vehicles (e.g.,
a range prediction) to current transport management
systems. Before the introduction of electric vehicles
can be successful in inner-city logistics, that interac-
tion has to be implemented.

(4) Eventually, the knowledge base comprises necessary
information of and behaviour rules for electric vehicles

and inner-city logistics. Since there are currently a lot
of software systems for logistics, such a base enables
a cross-system implementation by system-independent
terminologies, interdependencies, and inferences. It is
therefore the base for all other mentioned topics and
the content of this paper.

Traditionally, the development of knowledge-based systems
consists of six steps (c.f. Figure 1): (1) identification, (2)
conceptualization, (3) formalization, (4) implementation, (5)
testing, and (6) revision [3]. Since there are diverse inter-
dependencies between range influencing factors, we have to
perform a knowledge acquisition as part of the identification
step. Knowledge acquisition in the field of electric vehicles and
inner-city logistics requires an analysis of the range influencing
parameters, the business processes of logistics companies, and
the participants as well as the resources in inner-city logistics,
e.g., the structure of delivery tours.

For this purpose, we have to use several knowledge
representations in our striven knowledge base. Detailed and
structural descriptions of each resource, object, participant in
inner-city logistics and in electric vehicles form the foundation.
These descriptions define a controlled vocabulary [4] and
follow a data-driven system approach [5]. Descriptions of
numeric values specify units and their interdependencies, i.e.,
they allow for an automatic transformation from a source unit
into a target unit. The structure of composed terms can be
described with groups (compositions), cardinalities (arrays),
optionalities, and polymorphisms [5]. Semantic annotations
like synonyms, acronyms, textual information, and keywords
allow for targeted searches and later comprehensive domain
modelling.

Based on that structural layer of information, the next
layer contains the interdependencies between the different
information (or concepts in terms of ontologies). Those in-
terdependencies define semantic information which allow for
the inference of new or not explicit described information. For
example, such a system can infer that a s-pedelec is subsumed
by the concept of a moped.

Such a conceptual layer builds an advanced ontology for
electric vehicles and inner-city logistics. However, the nature
of description logics ontologies does not simply and efficient
involve numerical interdependencies being the normal case in
this field of research. If we consider the classes of European
driving licences for example, then we see that one can receive
only the driving licence class B if that person is at least 18
years old. To represent such a rule, there is the need for an
additional layer — a rule base. The rule base includes the rules
given by the ontology and additional numerical rules.

257Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 276 / 512

1. Identification

2. Conceptualization

3. Formalization

4. Implementation

5. Testing

6. Revision

Figure 1. Expert system development after Buchanan et al. [3]

rule layer

conceptual layer

structural
layer

Figure 2. Approach for a knowledge base for electric vehicles

Our overall approach for a complete knowledge base for
electric vehicles in inner-city logistics is illustrated in Figure
2. It contains the three above mentioned layers in concentric
circles.

In this paper, we motivate some use cases for a knowledge
base for electric vehicles in inner-city logistics at first (cf.
Section II) and, afterwards in Section III, we consider the use
case in European driving licence classes in more detail and
demonstrate how we can use our three layer model to describe
it. Finally, we close our paper with a short outlook into future
work in Section IV.

II. USE CASES

The motivation for the construction of a knowledge base
for electric vehicles in inner-city logistics is each of the
following use cases, which arose from the SCL project: (1)
Infer missing measurement data, (2) infer company important
information, e.g., valid tours, drivers which are allowed to
drive a specific car, drivers whose driving licence class expires,
tour stops in valid time intervals, distances which are feasible
for an electric vehicle of the company, checks of driver’s rest
periods, or goods with the same (or a close) destination and
delivery time interval. Furthermore, a knowledge base may (3)
provide mechanisms for actual and consistent data, e.g., current
available electric vehicles.

In the remainder of this section, we consider these use
cases in more detail with regard to their need and an idea for
their solution with a knowledge base.

(1). Logistics software products and especially the range
prediction use measurement data like global positions (GPS),
current speeds, etc. for monitoring and optimization. However,
the size of measurement data should be as small as possible
without the loss of information. Sometimes, the system has
to handle incomplete or contradictory data. For this reason,

it (i.e., the knowledge base) has to be able inferring and
evaluating the missing data. This is possible for data with
physical correlations. For example, the average speed between
two measurement points (i.e., two successive received mea-
surement data) can be derived if the GPS positions and time
stamps of both measurement points are given. Naturally, in
some cases, there is a little loss of quality in the data since,
for example, the distance which can be calculated with the
help of two GPS positions may vary from the real distance.

Such an inference of measurement data is possible with
the help of formal data descriptions, especially the physical
correlations, which are defined in the structural layer of our
proposed knowledge base.

(2). Logistics companies have the same trend to temporary
workers, internationalization, globalisation, and optimization
as other companies. For this reason, such companies are
confronted with a wide heterogeneity of laws, structures, and
cultural characteristics of different countries. It is necessary to
collect all these (important) information to allow answers for
simple questions whose inference is complex. As mentioned
before, such questions could be: What is a good tour that
is valid for a specific vehicle and fits all orders? Who of
the drivers can drive that vehicle? Is it possible that a driver
reaches each tour stop within a valid delivery time interval?
When does a driver has to refresh its driving licence class to
be continuously usable? Does all drivers observe the legal rest
periods? Etc.

For such complex inferences, the structural layer must
describe all concepts which belongs to driver licences, drivers,
tours, goods, customers, vehicles, street maps, etc. Further-
more, the conceptual layer has to describe the relationships
between those concepts and, eventually, the rule layer defines
additional rules for those relationships. How such a knowledge
base could be implemented is shown exemplary in the next
section on the question ”Who of the drivers can drive that
vehicle?”.

(3). In this fast-moving time, it is important to keep up-to-
date. If the knowledge base uses standardized data descriptions
of concepts, it can automatically support eventual update
processes, by checking for consistency between comprehensive
domain ontologies. Often, new electric vehicles have a better
power performance and, therefore, save time and money. For
this reason, the structural, the conceptual and the rule layer
have to use standardized data formats or should be involved
in standardizations.

These use cases show that a knowledge base, which pro-
vides more functionality as a simple data base is useful in the
context of logistics software and electric vehicles. In the next
section, we present a cut-out of a possible knowledge base for
European driving licence classes.

III. A KNOWLEDGE BASE FOR EUROPEAN DRIVING
LICENCE CLASSES

In this section, we exemplary introduce (parts of) a knowl-
edge base for driving licence classes in the European Union.
The use-case for this knowledge base is to derive drivers who
can drive a specific vehicle type or vehicle types who can be
driven by a specific driver.

In the European Community, a lot of driving licence
classes exist. Figure 4 shows these classes and also a cut-
out of their interdependencies. As we see, there are multiple

258Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 277 / 512

Driver

+ age : number

Driving Licence

 › has

 0..1

1

Driving Licence Class

+ from the age of : int

› has

 1..*

1

Driving Licence Class B

Driving Licence Class C

Driving Licence Class C1

...

Vehicle Type

 ‹ needs

 1..*

*

Figure 3. Entities in the knowledge base

interdependencies between those driving licence classes, which
are difficult to know and to learn for an inexperienced user.
For this reason, a knowledge base would be profitable for
supporting logistic scheduler.

As argued in Section I, at first, we introduce the struc-
tural parts of our striven knowledge base. This structural
layer consists of data descriptions, i.e., the description of
the concepts. In our implementation, we have used an own
data description language, which structures these concepts in
groups, cardinalities, options, and entities as introduced in
Döbrich and Heidel [5]. Those data descriptions contain also
synonyms and textual descriptions as well as units. For a better
readability, we use an UML 2.0 class diagram [6] at this point
of view. That class diagram is illustrated in Figure 3.

The major concepts are the ones to represent a driver, a
driving licence, a vehicle type, and driving licence classes.
Naturally, several other concepts can be introduced to describe
those concepts in more detail.

Furthermore, there are some connected attributes for these
concepts. As start point, the concept driver consists of an age.
A driver has up to one driving licence, which has at least
one driving licence class. Such a class has a class-specific
driver’s age for which that class can be received of a person.
Furthermore, a driving licence class is needed to drive several
vehicle types. At last, there are some subtypes of driving
licence classes like driving licence class B.

After we have build the structural layer, we have to
introduce the conceptual layer. As mentioned in Section I,
the conceptual layer contains relations between these concepts.
Some of these relations are already defined in the structural
layer. At first, for each class in the class diagram, we include
an unary relation in our knowledge base. For this, in the
following, we use (to represent arbitrary instances) variables d
for representing a driver, c, c1, c2 for driving licence classes,
a, a′ for ages, dl for a driving licence, and finally v as an
arbitrary instance of a vehicle type:

Driver(d) (= D(d))

Driving Licence(dl) (= DL(dl))

Driving Licence Class(c) (= DLC(c))

Driving Licence Class C(c) (= DLC C(c))

Driving Licence Class C1(c) (= DLC C1(c))

Driving Licence Class B(c) (= DLC B(c))

V ehicle Type(v) (= V T (v))

Afterwards, we need the explicit binary relations in the
following equation, which are extracted from the associations

and the attributes of the class diagram:

From The Age Of(c, a) (= FTAO(c, a))

Age(d, a)

Has Driving Licence(d, dl) (= HasDL(d, dl))

Has Driving Licence Class(dl, c) (= HasDLC(dl, c))

Needs(v, c)

Eventually, we introduce the subclass-associations of the
class diagram as rules into our conceptual layer:

DLC C(c)→ DLC(c)

DLC C1(c)→ DLC(c)

DLC B(c)→ DLC(c)

Now, we have a stable structural and conceptual layer
for our knowledge base (for this cut-out). Like Figure 4
shows, there are many other interdependencies between driving
licence classes and the involved concepts. To represent those
dependencies, we have to create a rule layer, which contains
additional information.

As basic for our rule layer, we want to check whether an
arbitrary number (x ∈ R) is greater than or equal to another
number (y ∈ R):

GEq(x, y) = ”x ≥ y”

Whether two driving licence class instances belong to the
same driving licence class can be checked by Equal:

DLC C(c1) ∧DLC C(c2)→ Equal(c1, c2)

DLC C1(c1) ∧DLC C1(c2)→ Equal(c1, c2)

DLC B(c1) ∧DLC B(c2)→ Equal(c1, c2)

As shown in Figure 4, a driving licence class C includes
the driving licence class C1, i.e., one driver having a class C
can also drive vehicles, which needs class C1.

DLC C(c1) ∧DLC C1(c2)→ Includes(c1, c2)

Furthermore, the same figure shows, that both classes C
and C1 requires class B to be received. Thus, each driver with
class C, for example, can also drive vehicles with class B.

DLC C(c1) ∧DLC B(c2)→ Requires(c1, c2)

DLC C1(c1) ∧DLC B(c2)→ Requires(c1, c2)

Now, we can infer all driving licence classes, which are
available with a single one when we merge the Equal,
Include, and Requires rule to a single Contains rule:

Equal(c1, c2)→ Contains(c1, c2)

Includes(c1, c2)→ Contains(c1, c2)

Requires(c1, c2)→ Contains(c1, c2)

As a kind of validation, we check whether a specific age
is enough to allow the receiving of a driving licence class.
Therefore, we overload the rule Requires:

DLC(c) ∧ FTAO(c, a′) ∧GEq(a, a′)→ Requires(c, a)

To build a predicate that allows us the inference of the
drivers who can drive a specific vehicle type, we have to derive
the driving licence classes of a driver.

HasDL(d, dl) ∧HasDLC(dl, c)→ HasDLC(d, c)

259Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 278 / 512

Class A

Class AM

Mopeds

allows for

Class A1Class A2 containscontains

contains

Motor-
cycles

allows for

Motor
vehicles

contains Class B

allows for

Class BE

Class T

contains
[country = Finland]

Class F

Class G

contains
[country = Croatia]

contains
[country = Croatia]

contains
[country = Norway]

Class S

Class C1

Class C

requires

requires

requires contains

Class C1E

contains

requires

requires [or]

Class CE

requires

contains

Class D1

Large goods
vehicles

allows for

Class D

requires

requires contains

Class D1Erequires

requires

Class DE

contains

requires

[or]

Buses

allows for

Tractors

allows for
[country = Croatia]Heavy

Equipment

allows for
[country = Croatia]

Class H

Trams

allows for
[country = Croatia]

Class BF17

exchanges to
[age >= 18]

Snow-
mobiles

allows for
[country = Norway]

Motor
vehicles

allows for
[country = Germany]

allows for
[country = Bulgary or

Norway or Poland or Germany
or Finland]

Figure 4. European driving licence classes and their interdependencies

To be sure that a driving licence class is valid for a driver,
we introduce a rule that checks the age of the driver with
regard to a specific driving licence class:

D(d) ∧DLC(c) ∧HasDLC(d, c) ∧Age(d, a)

∧Requires(c, a)→ DHasDLC(d, c)

Finally, we can create a rule for our rule layer that allows
us to infer all vehicle types that can be driven by a driver and
all drivers that are allowed to drive a specific vehicle type:

V T (v) ∧Needs(v, c1)∧DHasDLC(d, c2) ∧ Contains(c2, c1)

→ DCanDriveV (d, v)

With a simple implementation of our knowledge base, e.g.,
in Prolog, we can infer our wanted information by replacing
a specific driver or vehicle with a variable, i.e., a place
holder. That functionality can be adapted to logistics software,
which automatically infer missing driving licence classes in
documents and possible drivers for a tour. So, a knowledge
base for electric vehicles is justifiable.

IV. CONCLUSION

In this work of progress paper, we have argued for a
knowledge base for electric vehicles in inner-city logistics.
Therefore, we have divided our knowledge base into three
layers: the structural, conceptual, and rule layer. Furthermore,
we have identified and explained some use cases for such a
knowledge base and, finally, showed that it is possible to create
such a knowledge base on an exemplary use case, which infers
drivers, who are allowed to drive a specific vehicle type.

With the help of such a knowledge base and the presented
use cases, it is possible to implement an intelligent software
user interface for logistics that helps to create a consistent

and complete data base. For example, if a company recruits
a driver, the system can infer all of its implied driver licence
classes although the driver stated the superordinate class C1.

In the future work, we have to extend our knowledge base
with additional concepts, relations, and rules to allow more use
cases and more safe inferences. Therefore, more knowledge
has to be derived from the practice of using electric vehicles.

V. ACKNOWLEDGEMENT

The project is funded by the German Federal Ministry for
Economic Affairs and Energy, BMWi.

REFERENCES
[1] V. Schau et al., “SmartCityLogistik (SCL) Erfurt: Deriving the main

factors that influence vehicle range during short-distance freight trans-
port when using fully electric vehicles,” in 10. GI/KuVS-Fachgespräch
”Ortsbezogene Anwendungen und Dienste”, pp. 101–108.

[2] S. Apel, T. M. Prinz, and V. Schau, “Challenging service extensions
for electric vehicles in massively heterogenic system landscapes,” in
Proceedings of the 7th Central European Workshop on Services and
their Composition, ZEUS 2015, Jena, Germany, February 19-20, 2015.,
pp. 44–50.

[3] B. G. Buchanan et al., “Constructing an expert system,” Building expert
systems, vol. 50, 1983, pp. 127–167.

[4] N. I. S. Organization, ANSI/NISO Z39.19 - Guidelines for the Construc-
tion, Format, and Management of Monolingual Controlled Vocabularies,
N. I. S. Organization, Ed. National Information Standards Organization,
May 2010, iSBN 978-1-880124-65-9.

[5] U. Döbrich and R. Heidel, “Datadriven Program Systems - a way out
from interface chaos.” Informatik Spektrum, vol. 35, no. 3, 2012, pp.
190–203.

[6] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language
Reference Manual, The (2nd Edition). Pearson Higher Education, 2004.

260Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 279 / 512

Building a Service Manager For a Smart City Archicture

Towards a service manager in an interoperable environment

Gutemberg Rodrigues Costa Cavalcante1, Felipe Silva Ferraz1,2, Guilherme Luiz Mario de Medeiros1

1CESAR

Recife Center for Advanced Studies and Systems

Recife, Brazil

gutembergrcc@gmail.com

fsf@cesar.org.br

guicaraciolo@gmail.com

2Informatics Center

Federal University of Pernambuco

Recife, Brazil

fsf3@cin.ufpe.br

Abstract - Cities are becoming more and more populous

and complex, and this growth is forcing them to better
administer their management services. As a result of this
growth, and of technological advances, cities are investing
in technology so as to become smarter, thereby obtaining
quicker results. This technological scenario has not only
produced benefits for cities but also fragilities in them.
Since the services that a city offers are vital and some of
these require confidentiality, the focus has shifted to
information security. To ensure their information is
covered, cities need specific technologies, such as City
Security Layer (CSL), in order to solve security problems
arising. This paper focuses on constructing a module that
complements CLS. This module is responsible for
managing the services available in a network controlled by
CSL.

Keywords- security; smart city; architecture; services.

I. INTRODUCTION

Cities are constantly growing. Nam et al. [1] assert that
they are becoming more and more populous and complex.
According to Dirks et al. [2], in the 20th century, less than 20
cities around the globe had more than one million citizens.
Today, this number has risen to 450 cities. Given this
demographic growth, cities are encountering new series of
risks, concerns and problems. According to Nam et al. [1], the
main problems will be: a deterioration in the quality of the air,
in traffic flows and an increase in economic risks, such as
greater unemployment and the challenge of ensuring the best
use of communication technologies so that it is possible to
offer citizens an infrastructure that will become more and
more prosperous [3][4].

With regard to the prosperity of cities, according to Sen et
al. [5], this could be achieved when the ways that people think
about health, security and economic issues are as important as
their thinking on tackling uncontrolled urban development.
According to Dirks et al. [2], to attend to these matters, the
main services that cities offer should become interconnected,
thus enabling new intelligence levels to be attained and,
therefore, able to meet their own demands and those of their
citizens.

In these cities, what is perceived is not only population
growth, but also, as Dirks et al. [2] point out, such cities
undergo a rise in their economic and technological activities.

On the other hand, for Sen et al. [5], it is important to state
that revolutionary change in communications is imminent.
Such breakthroughs are becoming a reality and arise out of the
services being created in cities.

Moreover, according to Sen et al. [5], the option to create
services forces and makes software programs even smarter
and more and more connected, to such an extent that they can
exchange information, thus allowing new solutions to be
created. The vision for smart cities is to see them as
interconnected urban areas [6][7], which are sustainable and
efficient, since all city services are crafted and maintained by
focusing on their sharing data with each other. Therefore, it is
possible for cities to gather information and take decisions
more quickly and reliably. This integration of and between
city services is not only a source of benefits, but it also is an
imminent point of problems or vulnerabilities when
information security is taken into account [8]. This is why
Bartoli et al. [8] affirms that one of the biggest challenges
when developing smart cities is related to the security of
systems.

According to Bartoli et al. [8], Information Security
should not only deal with deliberate attacks, such as those by
disgruntled employees or for the purposes of industrial
espionage, but also vulnerabilities such as that from a
malicious entity that has penetrated a network [5][8], and thus
has access to how software and data are controlled and,
therefore, it can modify and damage the entire system.

This study was prompted after noting the lack of research
studies on information security concepts with regard to the
peculiarities of urban environments or smart cities. Among the
few published papers, CSL stands out in the management of
identifiers of entities but there remains the need to extend this
solution to include the register of services that a smart city will
consist of.

This article is organized as follows: Section 2 addresses
how to define a smart city and the different services it may
offer. Section 3 defines the security challenges that smart
cities need to face up to. Section 4 discusses the CSL security
layer, how it is structured, and what challenges it tries to
overcome. Section 5 describes the Service Manager as a
solution for managing services of a smart city. Section 6 sets
out a validation of the Service Manager module with the CSL
layer. Finally, some conclusions are drawn and suggestions
made for future research studies in Section 7.

261Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 280 / 512

II. SMART CITY AND SERVICE DISTRIBUTION

According to Dirks et al. [2], rapid growth in population

creates a new set of challenges for the infrastructure services

of cities while, at the same time, creating new economic

opportunities and social benefits.

Washburn et al. [9] is of the opinion that as people migrate

to urban areas, resources become limited and badly managed.

As a result of this, Dirks et al. [2] point out that problems will

arise to do with high costs of living. For example, as to fresh

water, it is expected that it will increase 25% in price by the

mid-2030s. The high cost of living in some cities can already

be observed in terms of people looking to the private sector

due to the lack of some basic provisions in health and

education services by government.

For Dirks et al. [2], cities that are already facing these

challenges need to act by making using of new technologies

so as to transform their systems and, in so doing, they will

be better able to manage their resources and thus become

more competitive. In order to achieve this, Ferraz et al. [7]

and Kanter et al. [10] state that, when the tools and services

of cities are integrated into a network, they will contribute to

higher efficiency, since they will be able to use an enormous

range of information, thereby enabling them to be creative

and to make assertive decisions that are well-founded.

A city has different systems and distributed services. What

we understand as services and systems is the combination of

the complete range of resources for a specific function. Such

services may be represented as being part of a set, which

according to Ferraz et al. [7] can be separated and organized

into several categories: education, public safety, transport,

energy and water, health and governmental bodies.
According to Dirks et al. [2], we should note that what

these services comprise, may vary from city to city, and in the
number of citizens, since each city has its own characteristics,
but nevertheless within the groups presented and defined.
Dirks et al. [2] and Ferraz et al. [7], go on to state and
demonstrate that the effectiveness and efficiency of these
services will determine how successful the city that provides
them will be. In the next section, each category of service in a
smart city will be analyzed.

A. Types of Service

A city can offer different types of services. According to

Ferraz et al. [7], services can be in the following areas:

education, public safety, forms of transport, government

services, health, energy and water.

Education: This represents the services that are directly and

indirectly related to all educational services, such as, for

example, setting standards for student’s grades or educational

shills.

Public Safety: This represents the services that help cities to

respond quickly responds to emergencies, thus guaranteeing

safety in a city. With the help of these services, for example,

we are able to identify the rate of theft in certain areas.

Transport: Transport services include the state of roads,

seaports, and airports. For example, controlling the volume

and flow of traffic on city roads.

Government: This represents each system which works

within governmental frameworks. For example, the control

of a city’s budget and expenditure.

Health: This represents services that help improve public

health. By using these services, users will be able to have a

shared medical record, that is always available, and which

will lead to quicker and more precise diagnoses.

The smart integration of those services in a smart city will

not only deliver benefits. One example is the evolution of the

health services, where paramedics or even patients can be

advised at a distance how to store and apply drugs. For

Verbauwhede [11], this evolution will only be possible when

there are strong privacy and user authentication policies. This

privacy and authentication can be supplied by providing

artefacts with protocols and cryptographed application

software, as will be seen in the following section.

III. SECURITY IN SMART CITIES

According to Bodei et al. [12], studies showed the need

for a new set of research studies focusing on improving

information security, when dealing with smart cities [5][8].

In the midst of the problems related to information

security, a subset of security questions is present in the

backdrop to smart cities, amongst which worthy of special

mention are access to information, tracking items of

information and citizens, loss of data and unauthorized access

to datacenters.

The issues above are dealt with in a broader study

undertaken by Ferraz et al. [7], and are presented here as a

way to illustrate points that smart cities will need to address.

These three issues are discussed in the following

subsections.

1) Issues related to access to information

The interaction between software and the network

involves data sharing. According to Sen et al. [5], this

interaction can represent a threat since the data from different

entities can become accessible. The traffic of packets from a

device to the network, and from the network to other devices

is a concern, since these packets can be intercepted when they

are being transferred.

2) Issues related to data tracking

One important characteristic in an interconnected

environment is the fact that a set of information used by one

system cannot be traced back to the originator of the data.

This kind of problem can destroy the anonymity that the

services supply.

3) Issue related to entity tracking related issues

Each smart city may have many distributed sensors to

capture data and facilitate the integration of systems. For Sen

262Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 281 / 512

et al. [5], information from these sensors must not be used to

track entities. More information can be found in [13][14].

All problems here described are related to access and

security matters. For Bartoli et al. [8], an alternative for

solving some of those problems is by using key management.

This means providing secure management of data encryption.

The author states such management will ensure users are

authenticated and authorized. According to Bartoli et al. [8]

and Li et al. [15], for effective protection in a smart city, a

series of security related problems needs to be addressed, and

a predefined plan or goal should be adhered to.

What this consists of will be discussed in the next section.

Similar solutions will be analyzed and a new layer will be put

forward that aims to solve the problem of controlling entities

and ensuring authenticity in smart cities.

IV. CSL

This section will discuss the CSL approach, as a solution

to identity security in a smart city. In the first topic, a brief

description of the problem will be given. The second topic

will present similar solutions and the third and final topic will

discuss the CSL.

A. Problem

In Section 2, the concept of a smart city was described as

comprising different services. Given the growing number of

such services and related entities, the complexity of security

problems has also kept growing.

Among the problems detected, attention is drawn to the

situation when the information service requests the service

provider to supply it with confidential personal information

on third parties.

According to Ferraz et al. [14], exchanging information

via a network is considered to be unreliable because messages

are subject to losses and interception when they are

transmitted, as set out under security in Section 3. In short,

the problem identified is based on guaranteeing the

anonymity of an entity within the environment of a smart city.

There are already some solutions on the market that

address these problems but none of them focuses on smart

cities, as will be shown in the next topic.

B. Similar solutions

Some of the problems mentioned in Section 3 can be

mitigated by some of the existing security solutions.

According to Ferraz et al. [17] approaches such as using Open

Authorization (OAuth), Security Assertion Markup

Language (SAML) and OpenID may help the process of

giving cover to some security flaws.

OAuth (Open Authorization), according to Yang et al.

[18], is an authentication protocol used for storing secure

data, whereby the owner of the storage does not need to

provide his access credentials. The Security Assertion

Markup Language (SAML), according to Saklikar et al. [19],

is an XML-based framework for exchanging authentications,

authorizations and data. By using SAML, a relationship of

trust between entities in a network environment can be

created. On the other hand, OpenID is an open technology in

which, according to Ferraz et al. [17], users are identified by

a URL. In systems using OpenID, users do not need to create

a new account to access them. Users only need to be

authenticated by an identity provider.

For Ferraz et al. [17], solutions like OpenID, SAML and

OAuth, are fundamental to ensure users’ security. However,

these protocols cannot cover all existing security problems.

Most of these concerns are related to the fact those solutions

are focused on authentication and authorization, which, in an

environment full of sensitive data, is not sufficient. CSL arose

with a view to having a solution for dealing with anonymity

between entities in a smart city and will be described in the

next topic.

C. CSL Solution

CSL represents a layer that should be placed on the

external border of a service, or a set of services, in smart

cities.

According to Ferraz et al. [20], the main objective of CSL

is to be the layer responsible for modifying the identifiers of

services when messages are exchanged. The new identifier

will be generated based on combining the previous identifier

with the service to be accessed.

For Ferraz et al. [20], by means of this process, it is

possible to ensure that an entity keeps itself anonymous

within the entire smart city environment, even when this

entity accesses multiple services, since the creation of the

identifier consists of combining two other identifiers. The

final access identifier will be different for each of the

services.

By using CSL, it is expected that there will be an increase

in security, since there will now be a layer which will provide

a unique identifier for each service. With this approach, the

real identity of the entity is preserved. On the other hand,

Ferraz et al. [20] stresses that CSL does not provide resources

to ensure authentication and authorization, which OAuth,

SAML and OpenID do. Therefore, making use of an extra

layer or solution to address vulnerabilities on this matter is

required.

Despite the limitations mentioned, the security problems

shown in Section 3 are partially covered by CSL. Table 1

illustrates the coverage of each item.

TABLE I. CSL COVERAGE

Risks Coverage

1. Data Access �

2. Data tracking �

3. Entity tracking �

According to Ferraz et al. [20], if any packets shared

between entities which go through CSL are intercepted, it

will be hard to identify and understand who is who, since the

interceptor will not know what the identifiers of these entities

are. This covers the first issue, described in Section 3.

263Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 282 / 512

When there is anonymity of the entities during

communication, the second issue is covered as well, since the

difficulty of identifying which information is associated with

which entity makes it hard to map the relationships. This

characteristic also covers the third issue, since the entities are

isolated.

The proposed approach has presented an efficient solution

for some of the issues mentioned. Also, another set of issues

is partially addressed by City Security Layer (CSL).

During the development of CSL, as presented in The First

International Conference on Advances and

Trends in Software Engineering in Barcelona – Spain, the

need for a service manager to manage connected services was

raised. The next section describes the specification and

definition of that component.

V. SERVICE MANAGER

After having understood the CSL, it is seen that there is a

demand for the Service Manager module. The module is

integrated above the security solution by orchestrating the

management of services. This section will detail the module

by describing its architecture and its functionalities.

A. Motivation

The Service Manager is a module for managing and

controlling services that are present in a smart city. This

module is characterized as a plug-in which, when added to

the CSL, will be responsible for controlling its services.

The need to have the service manager arises because the

CSL need to know all the services that can communicate with

each other in a smart city. The need for registering services is

met by obtaining and filling in the CSL hash table so that

organizations know who is available for them to

communicate with.

Figure 1 shows two levels of security depth where the

CSL and Service Manager are present.

CSL

Service Manager

OpenID SAML OAuth

Authentication / Authorization

Identity

Figure 1. Summary of the ideal security environment

OAuth, SAML and OpenID appear as similar solutions
that are on the same level of security of the CSL. After the two
levels of security, there are network protocols that helped
complement the solution.

B. API

The API provided by the Service Manager consists of the
entry points provided by the CSL. These are:

Registration of Services: This allows the insertion of
services that are part of the interoperable systems and
solutions of a city. For registration, the service information
that needs to be sent includes: name, description, public
identifier and the URL address. On entering the service,
negotiable validations are made to avoid replication of the
same services and mandatory data. If the registration of the
service satisfies the validation, the service is registered and
returned to whoever requested the registration.

Alterations of Services: Editing information of the
registered services. The alteration is carried out with
validations to avoid the inconsistency in the data of the
service. This precaution is taken because some data of the
service comprise the Table of identifiers that the CSL uses to
route information to the services.

Removal of Services: Exclusion of services that do not
take part in the environment of the city. This is only authorized
if the service has not taken part in any interaction in the city,
otherwise it should be disabled.

Listing of Services: Listing the information that make up
the services, such as: name, description, address of the service
and public id. The service assembles a dynamic table of the
services apt to play a part in an interaction in the city.

Loading of Services: The function guarantees the
possibility of migrations of the services from a city to the CSL.
To load the services, a file in text format will be requested, in
which a standard must be respected: {name, description,
public id, URL address}, {name, description, public id, URL}
... When the file is loaded, the services present in it will be
inserted if they respect the inclusion rules.

Address Resolver: This provides the URL address of the
service being requested to in order to send on the piece of data
of whoever asked for it to the party requested.

 C. Look and Feel

Figure 2 shows the main screen responsible for

maintenance services. On this screen, the user can manage

each service used by the CSL.

Figure 2. Main screen maintenance services

 Figure 3 presents the screen related to editing a registered

service.

Figure 3. Editing registered Services

 These two screens refer to the core parts of service

management. They also they play an important role in the

general functionality of CSL.

264Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 283 / 512

D. The Workflow of Service Manager

The workflow between CSL and the Service Manager is

described in Figure 2:

Figure 4. Sequence diagram with the workflow between CSL and Service

Manager

Description:

1. A service is registered on Service Manager;

1.1. The Service Manager returns the identifier to the

new service;

2. This identifier will be used for future requisitions;

3. CSL, by using the identifier of the required service,

makes requests to the Service Manager at the URL

for this service.

4. The entity will keep on requesting service

information by sending messages through CSL.

E. Technologies Used

The programming language in which the solution was
structured was Java. The choice was based on the fact that the
CSL was originally built with it, thus facilitating its
integration and because it has a large number of communities
which aim to facilitate development work by constructing
frameworks [21].

In the presentation layer of the Service Manager, Java
Server Faces (JSF) version 2.2 was used. JSF is a technology
which permits Java for Web applications to be created using
ready-made visual components so that the developer only has
to be concerned about its use [22]. Together with the JSF,
Primefaces was adopted. According to [23], this extension of
the JSF stands out due to its simplicity, performance and
template options.

The other technologies used in the CSL were not altered
so that the solution of the manager does not have an impact on
the existing security layer. For transactional control, the CLS
uses the Spring framework [24] which besides assisting
communication with the other layers aims to remove the
dependencies between entities with the injection of
dependency. In the data layer, use is made of the JPA
framework [25] which will orchestrate the transactions with
the database and avoid code repetition when dealing with the
persistence of data. The view of the layers can be seen below
in Figure 5.

Figure 5. Technologies used

The Java programming language contributed to the

creation of a modular environment and with independent

layers, whereby one layer provides a service to the one above

it. The CSL provides basic services to the Service Manager,

and delegates responsibility for validation, treatment and

manipulation of services.

The JSF helped in dealing with requests for

communication with the service layer of the CSL and dealing

with events. Primefaces was used to provide graphical

interface components, such as templates, buttons, and

dynamic tables.

VI. VALIDATION

The validation process will evaluate the Service Manager
incorporated into the CSL. To do so, it will count the time
spent on including, excluding, and requesting services on
CSL, with and without using this management module. By
using this measure, a stress test will be exclusively used to
validate performance.

A. The infrastructure for measurement

The validation environment was executed on an Intel Core
I5 computer, with 8GB memory RAM, which uses the
Windows 8 operating system.

B. Unity and count tool

The unit of measurement was milliseconds (ms). To draw

up the validation test for inclusions in, exclusions from and

requests to the CSL, the JMeter tool was used, which is a free,

open source tool by the Apache Foundation and used to test

the performance of software applications.

The metrics defined is a time-count of conducting 1000

samples of including, excluding, and consulting services.

This activity will consider the presence, or absence, of the

Service Manager, and will record a comparison of time-

counts before and after using the manager in the CSL

solution.

cmp SM - SCSL

«component»

JPA

«component»

Spring

«component»

JSF / Primefaces

265Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 284 / 512

C. Results and Analysis

The results obtained after applying the metrics of the

previous topic are shown in Tables II and III.

TABLE II. VALIDATION RESULT

 Median

Operation With

Service Manager

without

Service Manager

Include 4.000 3.850

Remove 2.9000 2.500

Query 3.800 3.600

TABLE III. VALIDATION RESULT IN PERCENTAGE

Operation Percentage Increase

Include 3.75 %

Remove 13.79%

Query 5.26%

As seen in the above tables, the addition of the Service

Manager, even when there is an interface and control layer

did not cause a significant increase in the basic operations of

addition, deletion and consultation of services.

VII. CONCLUSION

Cities grow constantly. This is caused by people migrating
to urban areas, or the growth of their own populations. This
growth is forcing cities to organize themselves better and
continuously, since people are demanding even more
resources and consuming even more services. It is also
obliging cities to invest in information technologies, and to
start to become smarter. The new technologies are helping
cities to obtain faster results and to attend to the demands of
their citizens.

By using these technologies, cities are starting to be called
smart cities. Nevertheless, this new technological scenario has
led to such cities having to face a set of fragilities. For
example, since the services that cities provide are extremely
vital, and some of these may require data to remain
confidential, the new focus is now on security in the smart
city.

Nowadays, there is a set of solutions that partially covers
these fragilities, as seen in this study, namely OAuth, SAML
and OpenID. Even though these solutions are focused on
authentication and authorization, throughout this article, it
was demonstrated that the issue of identity control in the smart
city has not been adequately addressed. It was as a solution for
this identity issue that CSL was conceived as a layer that
would be responsible for ensuring anonymous communication
between entities and services, thereby covering some of the
security problems of smart cities.

As a way of complementing CSL, this article puts forward
a structure for creating a service manager. As demonstrated,
CSL needs to know all the services that will be available for
communication purposes in a smart city, since CSL needs to
maintain a table of identifiers.

 Because of these needs, a service management module
was developed for CSL. To validate this module, a scenario
was built in which to test the performance of including, listing,

excluding services and requesting these services, with and
without this new module.

On analyzing the results, it was shown that adding a new
module to compare the time spent on each type of operation
leads to barely increasing the time spent on management, thus
showing this new module when plugged in to CSL is viable.

For future studies, more research on CSL will be needed
as CSL evolves, since its current scope only contemplates a
small set of security concerns. In addition, a future study
should contemplate using CSL with the service manager
module in a more complex smart city, to enable further
validations and metrics.

REFERENCES

[1] T. Nam and T. A. Pardo, “Conceptualizing smart city with

dimensions of technology, people, and institutions,” Proc. 12th

Annu. Int. Digit. Gov. Res. Conf. Digit. Gov. Innov. Challenging

Times - dg.o ’11, 2011, p. 282.

[2] S. Dirks and M. Keeling, “A vision of smarter cities: How cities

can lead the way into a prosperous and sustainable future,” IBM Inst.

Bus. Value. June, 2009.

[3] F. Duarte, “Smart Cities: technological innovation in urban

areas”, São Paulo em Perspect., vol. 19, 2005, pp. 122–131.

[4] J. Shapiro, “Smart cities: quality of life, productivity, and the

growth effects of human capital,” Rev. Econ. Stat., vol. v88(2,May),

2006, pp. 324–335.

[5] M. Sen, A. Dutt, S. Agarwal, and A. Nath, “Issues of Privacy

and Security in the Role of Software in Smart Cities,” 2013 Int.

Conf. Commun. Syst. Netw. Technol., 2013, pp. 518–523.

[6] Global Electronics Industry, “The IBM vision of a smarter home

enabled by cloud technology,” 2010, p. 16.

[7] F. Ferraz, C. Sampaio, and C. Ferraz, “Towards a Smart City

Security Model Exploring Smart Cities Elements Based on

Nowadays Solutions,” ICSEA 2013, 2013, pp. 546–550.

[8] A. Bartoli, M. Soriano, J. Hernandez-Serrano, M. Dohler, A.

Kountouris, D. Barthel, Security and Privacy in your Smart City , in

Proceedings of Barcelona Smart Cities Congress 2011, 29-2

December 2011, Barcelona (Spain).

 [9] D. Washburn, U. Sindhu, and S. Balaouras, “Helping CIOs

Understand ‘Smart City’ Initiatives,” Forrester, 2009.

[10] R. M. Kanter and S. S. Litow, “Informed and Interconnected :

A Manifesto for Smarter Cities Informed and Interconnected : A

Manifesto for Smarter Cities,” Working Paper 09-141, Havard

Business School, 2009.

[11] I. Verbauwhede, “Efficient and secure hardware, for

cryptographic algorithms on embedded devices,” 2012, pp. 1–4.

[12] C. Bodei, P. Degano, and G. L. Ferrari, “Formalising security

in ubiquitous and cloud scenarios,” In Proc. 11th IFIP TC 8

International Conference on Computer Information Systems and

Industrial Management, 2012, pp. 1-29.

[13] F. S. Ferraz and C. A. G. Ferraz, “More Than Meets the Eye In

Smart City Information Security: Exploring security issues far

beyond privacy concerns,” in IEEE computer science, UFirst-UIC

2014, 2014, pp. 677-685.

[14] F. S. Ferraz and C. A. G. Ferraz, “Smart City Security Issues:

Depicting Information Security Issues in the Role of an Urban

Environment,” in 2014 IEEE/ACM 7th International Conference on

Utility and Cloud Computing, 2014, pp. 842–847.

266Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 285 / 512

[15] W. Li, J. Chao, and Z. Ping, “Security Structure Study of City

Management Platform Based on Cloud Computing under the

Conception of Smart City,” 2012 Fourth Int. Conf. Multimed. Inf.

Netw. Secur., 2013, pp. 91–94.

[16] F. J. L. Ribeiro, J. C. R. Lopes, and A. C. P. Pedroza, “Analysis

of security processes in mobile third generation systems,” I Escola

Regional de Redes de Computadores, Porto Alegre, Brazil,

September 2003.

[17] F. S. Ferraz, C. Candido, B. Sampaio, C. André, and G. Ferraz,

“Information Security in Smart Cities Using OpenID , SAML and

OAuth to increase security in urban environment,” SOFTENG

2015 First Int. Conf. Adv. Trends Softw. Eng., 2015, pp. 7–13.

[18] F. Yang and S. Manoharan, “A security analysis of the OAuth

protocol,” IEEE Pacific RIM Conf. Commun. Comput. Signal

Process. - Proc., 2013, pp. 271–276.

[19] S. Saklikar, S. Saklikar, S. Saha, and S. Saha, “Next steps for

security assertion markup language (saml),” Proc. 2007 ACM

Work. Secur. web Serv., 2007, p. 65.

[20] F. S. Ferraz, C. Candido, B. Sampaio, C. André, and G. Ferraz,

“Towards A Smart-City Security Architecture Proposal and

Analysis of Impact of Major Smart-City Security Issues,”

SOFTENG 2015 First Int. Conf. Adv. Trends Softw. Eng., 2015,

pp. 108–114.

[21] “Java.” [Online]. Available:

https://java.com/pt_BR/about/whatis_java.jsp. [Accessed: 20-Oct-

2015].

[22] “JavaServer Faces.” [Online]. Available:

http://docs.oracle.com/javaee/5/tutorial/doc/bnaph.html.

[Accessed: 28-Oct-2015].

[23] “Primafaces.” [Online]. Available:

http://www.primefaces.org/whyprimefaces. [Accessed: 28-Oct-

2015].

[24] “Spring Framework.” [Online]. Available:

http://projects.spring.io/spring-framework/. [Accessed: 02-Mar-

2015].

[25] “JPA - Java Persistence API.” [Online]. Available:

http://www.oracle.com/technetwork/java/javaee/tech/persistence-

jsp-. [Accessed: 30-Apr-2015].

267Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 286 / 512

Intersection of MPS.BR-E and SPICE Models Focused on Projects for the
Automotive Industry

Vanessa Matias Leite, Jandira Guenka Palma, Emmanuel da C. Gallo
Department of Computer
Londrina State University

Londrina-PR
Email: vanessa.matiasleite@gmail.com, jgpalma@uel.br, emmanuelcgalo@hotmail.com

Abstract—The quality of software is an area of software
engineering, which aims to ensure a satisfactory performance in
the development of the final product through processes. With the
need for better structured processes, models were instituted to
steer organizations in their processes, however the adopted
models may differ from company to company, in some cases
companies become partners, or are suppliers of other, or no
merger of companies, so it is important to understand the
relationship between the models. This paper presents the
intersection of MPS.BR (Melhoria de Processo do Software
Brasileiro- Brazilian Software Process Improvement) and
Automotive SPICE (Software Process Improvement and
Capability dEtermination), in addition it relates the processes of
a company that adheres to the Brazilian quality model, with
automotive reference model. This paper provides a solution for
two companies, with different reference models, to work together.

Keywords- Automotive SPICE; MPS.BR; Software Quality.

I. INTRODUCTION

With the software market on the rise, it was necessary that
fashion models processes were established to provide products
with higher quality. Today there are various types of process
models and a company must analyze and choose a model that
will help it increase the quality of its products through changes
in their processes.

 Process models are not just about the certifications. Their
benefits go far beyond that, the institution of international
production standards allows higher visibility and gains
improving productivity of the company, as it reduces the time
and investment used in the projects. However it is important to
take note that these results come only upon the maturity of the
new companies with the established processes.

Many Original Equipment Manufacturers (OEMs) in the
automotive sector has factories in several countries in the
world, and many of them have adopted the Automotive SPICE
for the development of their products. These industries can hire
local suppliers to help them, but need to keep the same
instituted quality standards.

 In Brazil there is a reference model called MPS.BR. The
MPS.BR has seven maturity levels [1]. This model is adopted
mainly by small and medium enterprises, and these are even
beginning to institutionalize quality processes, and usually are
lower maturity levels G, F and E. The company's case study
was implementing the level and therefore this work was
compared to the level E.

This work will address two types of process quality models,
namely the MPS.BR and Automotive SPICE, which is a branch
of ISO / IEC 15504 (SPICE). The MPS.BR is a Brazilian
model which has as its main objective, the process
improvement, being aimed primarily at small and medium-
sized businesses. SPICE is an international model itself and its
main differential is the focus on improving the design process,
not the company as a whole. Many automotive companies use
SPICE and a specific aspect of this model was created for these
companies, called SPICE Automotive [2].

Given this scenario, the objective is to carry out a study of
the compatibility between models of software processes
MPS.BR level E and Automotive SPICE acting as a facilitator
for companies to see the potential in the Brazilian quality
model, and to also show the potential of the Brazilian company
to provide services to the automotive industry.

In Section 2 Theoretical Foundations will introduce all the
theoretical basis for understanding the work that will be
presented. Section 3 the intersection of Automotive SPICE
models with MPS.BR and the company will be addressed.
Results of analysis are exposed in Section 4. In Section 5 will
focus on the approached conclusion of all work.

II. THEORETICAL FOUNDATIONS

Software quality is fundamental for both customers and
suppliers, and process models, such as the MPS.BR and SPICE
act as guides that assist in improving the software production
processes, and thus a means of increasing the quality of the
final product.

With the increasing need for more elaborate software,
quality becomes an essential item. Pressman defines software
quality as conformance to functional requirements and
performance that have been explicitly declared, the
development patterns clearly documented, and the implicit
features that are expected of all software developed by
professionals [1]. According to Fuggetta, to guarantee the
quality of a software standardization of procedures should be
proposed, namely to establish processes that can be defined as
a coherent set of policies, organizational structures,
technologies, procedures and artifacts needed to devise,
develop, deploy and maintain a software product [3].

Due to the increasing demand for software with higher
quality, there is a need for more efficient processes. Pressman
defines processes as being the Foundation of software
engineering allowing the rational and timely software
development. He also claims that the software processes are the

268Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 287 / 512

basis for the managerial control of software projects and
establishes the content in which the technical methods are
applied, the work products (documents, data models, reports,
forms, etc.) are produced, the milestones are established, the
quality is ensured and the modifications are properly managed
[1]. Another definition of process is given by Wilson de Paula
Filho, that describes a process as something that can be defined
with more or less detail and that its stages may have a partial
ordering, thus allowing the parallelism between them [4]. As an
organization matures, its software processes become more
defined and consistent across the organization as a whole [5].
The quality of software is related only to a quality of the
product, not making connections the way it was produced, or if
there is a process that assisted in the manufacture of the same.
On the other hand, when one looks at the quality of a software
process, we seek to identify the ability of a software process to
produce a quality product [6].

However, it is important to notice that the mere existence of
a software process does not guarantee that a quality product
will be created. For the results to be achieved in a satisfactory
manner, it is necessary that the processes are well defined and
understood. The process adopted must be used in all projects of
the Organization, being appropriate to the particular
characteristics of each project [7].

The software process model is an abstract representation of
the architecture, design or definition of the software processes
[8]. This work focuses on two models of software processes,
the MPS.BR and Automotive SPICE. These models provide a
set of core activities to obtain a software within what was
proposed, however they do not specify a possible life cycle or
how to put into practice such activities, so it is up to the
Organization to model the processes within your reality[7][9].

Software process models are usually divided into maturity
levels, which can be defined as specific or generic practices
related to a pre-defined set of processes that improve the
overall performance of an organization [10].

From these definitions, it is possible to conclude that the
software processes are fundamental in an organization and the
implementation of the same provides benefits in various
sectors, mainly in the quality of the developed software.
However, the implementation of processes without well-
defined methods is usually a chore, this leads to process
models, which provide a set of policies, organizational
structures, procedures, among other elements that assist in this
task.

A. MPS.BR

The Brazilian Software Process Improvement also called
MPS.BR, is an evaluation model of software development
companies developed by SOFTEX in 2003 [11], in partnership
with the Brazilian federal government and the academic
community. The Brazilian model is independent, but
compatible with standards ISO 12207 and 15504, CMMI
(North American model of process improvement) [12].

The MPS.BR is of great importance for the Brazilian
scenario, since 94% of Brazilian companies are considered
small and medium businesses [13]. Therefore, for these
organizations a certification of an international model becomes
costly and often impractical. The Brazilian quality model
provides an effective way to process definition and certification
costs affordable to the local reality. The MPS.BR is divided

into seven levels of maturity. The maturity levels are: A, B, C,
D, E, F, G. Level A is the highest level of the reference model.
Each level of maturity has processes or activities that must be
performed. The processes contained until the level E are
reported in the Table I. With each new level of maturity,
process or improvement processes that have already been
established in previous levels are added. One advantage of the
Brazilian model being divided into several levels is the
deployment of more gradual fashion model, favoring its
adoption by small and medium-sized enterprises [14].

TABLE I. PROCESSES OF THE MPS.BR-E

Level Name Processes

G
Partially
Managed

Requirements management – GRE
Project management –GPR

F Managed

Measurement - MED
Quality assurance –GQA
Configuration management - GCO
Acquisition -AQU
Project Portfolio Management - GPP

E
Partially
Defined

Evaluation and Improvement of the
Organizational Process - AMP
Organizational process definition - DFP
Human resources management - GRH
Reuse management – GRU

B. SPICE

The SPICE or ISO/IEC 15504 was originally created as a
supplement to the ISO/IEC 12207, and it aims to guide the
assessment and self-evaluation of the ability of companies in
the processes and from this evaluation the improvement of its
processes is enabled [15]. This model of software quality
establishes a framework which is used for both the creation of
evaluation processes and the improvement of software
processes [16].

The ISO/IEC 15504 is structured in two dimensions. The
first is the dimension of processes in which the processes are
evaluated. The second is the capacity dimension that
determines the ability of the company to evaluate in each of
these processes [15].

The company does not need to execute all processes; the
organization can opt for a subset of processes that match their
needs. Thus, in an assessment, the processes can have different
levels [17].

The five major categories within the dimension of SPICE
processes are [15]:

 CUS: Customer/vendor relationship

 ENG: Engineering processes

 SUP: Support processes

 MAN: Management processes

 ORG: Organization processes

The SPICE capacity dimension possesses 6 levels [16]:
 0- Incomplete

 1- Process performed

 2- Managed process

 3- Process established

269Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 288 / 512

 4- Predictable Process

 5- Optimized Process

C. Automotive SPICE

Currently it is estimated that about 85% of the functionality
of an automobile are controlled by software. Auto companies
need these softwares more reliable thus avoiding future
problems like Recalls. For this reason, from a consensus among
the major automakers, the Automotive SPICE was created,
aiming to assist in the production of automotive software and
based on the ISO/IEC 15504 (SPICE) [18]. In addition to the
procedures defined by ISO/IEC 15504, the Automotive SPICE
defines alterations in the ISO processes and inserts other
suitable processes and a focus on the needs of the automotive
industry [19].

The groups of processes that the Automotive SPICE treats
and will be addressed in this paper are in Tables II-VIII. Each
process contains process outcomes and base practices to assist
in understanding and implementing processes.

TABLE II. ACQUISITION PROCESS GROUP (ACQ)

Acronym Name

ACQ.3 Contract agreemen

ACQ.4 Supplier monitoring

ACQ.11 Technical requirements

ACQ.12 Legal and administrative requirements

ACQ.13 Project requirements

ACQ.14 Request for proposals

ACQ.15 Supplier qualification

TABLE III. SUPPLY PROCESS GROUP (SPL)

Acronym Name

SPL.1 Supplier tendering

SPL.2 Product release

TABLE IV. ENGINEERING PROCESS GROUP (ENG)

 Nome

ENG.1 Requirement elicitation

ENG.2 System requirements analysis

ENG.3 System architectural design

ENG.4 Software requirements analysis

ENG.5 Software design

ENG.6 Software construction

ENG.7 Software integration test

ENG.8 Software testing

ENG.9 System integration test

ENG.10 System testing

TABLE V. SUPPORTING PROCESS GROUP (SUP)

Acronym Name

SUP.1 Quality assurance

SUP.2 Verification

SUP.4 Joint review

SUP.7 Documentation management

SUP.8 Configuration management

SUP.9 Problem resolution management

SUP.10 Change request management

TABLE VI. MANAGEMENT PROCESS GROUP (MAN)

Acronym Name

MAN.3 Project management

MAN.5 Risk management

MAN.6 Measurement

TABLE VII. PROCESS IMPROVEMENT PROCESS GROUP (PIM)

Acronym Name

PIM.3 Process improvement

TABLE VIII. REUSE PROCESS GROUP (REU)

Acronym Name

REU.2 Reuse program management

D. The company

 The company which processes were studied is a small
company located in the city of Londrina-PR, It works with
firmware development, test and validation to automotive
industry. With ten years of activity, this organization possesses
certification MPS.BR-F and comes pleading the level E of the
Brazilian model. In addition to these achievements, the
company also has MoProSoft certification, a Mexican model
of quality process [20].

III. LIST OF AUTOMOTIVE SPICE PROCESS WITH MPS.BR-E

AND WITH PROCESS COMPANY

In this section the relationship between the processes of
Automotive SPICE with the MPS.BR level E it will be
addressed, as well as the comparison with the already
established processes within the studied company. The
correlation between the two models of references was
developed considering each Automotive SPICE process and
checking the corresponding in MPS.BR. The same analysis
was performed with the company's processes, but only if the
company complied fully, partially or did not fulfill the
requirements presented in the templates.

This intersection was illustrated below through the
Automotive SPICE’s PIM.3 process and its compatibility with
the MPS.BR’s processes, and finally, the compatibility of the
PIM.3 with the company’s processes.

270Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 289 / 512

PIM.3 - Process Improvement
Process Purpose [18]: “The purpose of the Process

improvement process is to continually improve the
organization’s effectiveness and efficiency through the
processes used and aligned with the business need.”

Process Outcomes
As a result of successful implementation of this process:

1) commitment is established to provide resources to
sustain improvement actions;

2) issues arising from the organization's internal/external
environment are identified as improvement opportunities and
justified as reasons for change;

3) analysis of the current status of the existing process is
performed, focusing on those processes from which
improvement stimuli arise;

4) improvement goals are identified and prioritized, and
consequent changes to the process are defined, planned and
implemented;

5) the effects of process implementation are monitored,
measured and confirmed against the defined improvement
goals;

6) knowledge gained from the improvement is
communicated within the organization; and

7) the improvements made are evaluated and consideration
given for using the solution elsewhere within the organisation.

The compatibility of MPS.BR with each item listed above

is presented in the following:
1) It is not addressed in MPS.BR level E;
2) The identification of the organization's issues are

treated in AMP1;
3) The analysis of the current state is covered in AMP3;
4) The identification of improvements and prioritization

are treated in AMP5, already planning the implementation is
contained in AMP6;

5) The effect of improvement implemented is specified
AMP6;

6) It is treated with relevance in MPS.BR E;
7) Evaluations and considerations are discussed in AMP9.

 Compatibility with the Company:

1) It is not implemented by the company;
2) The company has a process called Definition and Process

Improvement, in which executes this request.
3) The company has a process called Definition and Process

Improvement, in which executes this request.
4) The company has a process called Definition and Process

Improvement, in which executes this request.
5) The company has a process called Definition and Process

Improvement, in which executes this request.
6) The company has a process called Definition and Process

Improvement, in which executes this request.
7) It is not implemented by the company;

All processes of the Automotive SPICE were related in
this same manner in Leite [21], as with MPS.BR as with the
company.
 These processes are summarized in the Tables IX-XV and
were created comparing the definitions employed by
standards of the Automotive SPICE [18] with the MPS.BR E
defined by SOFTEX guides [11], and with the processes of
the organization. The Tables relate the processes of
Automotive SPICE, the processes of the MPS.BR-E and if
there are processes in the company, being that this relationship
can be addressed in three ways: completely, partially or there
may not be processes in MPS.BR-E used by the company that
meets what is determined Automotive SPICE
 The following Tables with the intersection of processes.

TABLE IX. INTERSECTION OF MODELS AUTOMOTIVE SPICE , MPS.BR-E

AND ORGANIZATION PROCESSES FOR ACQ.

Automotive
SPICE
Process

Approached
by MPS.BR-

E?
MPS.BR-E Company

ACQ.3 Yes
AQU3, AQU4,
AQU6

No

ACQ.4 Yes AQU4, AQU6 No

ACQ.11 No No

ACQ.12 Partially AQU4 No

ACQ.13 No No

ACQ.14 No No

ACQ.15 No No

TABLE X. INTERSECTION OF MODELS AUTOMOTIVE SPICE , MPS.BR-E

AND ORGANIZATION PROCESSES FOR ENG.

Automotive
SPICE
Process

Approached
by MPS.BR-

E?
MPS.BR-E Company

ENG.1 Partially
GRE1, GRE4,
GRE5

Partially

ENG.2 Partially
GRE3, GER4,
GRE5

Partially

ENG.3 No Yes

ENG.4 No No

ENG.5 No Partially

ENG.6 No No

ENG.7 No No

ENG.8 No No

ENG.9 No No

ENG.10 No No

271Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 290 / 512

TABLE XI. INTERSECTION OF MODELS AUTOMOTIVE SPICE , MPS.BR-E

AND ORGANIZATION PROCESSES FOR SUP.

Automotive
SPICE
Process

Approached
by MPS.BR-

E?
MPS.BR-E Company

SUP.1 Partially
GQA1, GQA2,
GQA3, GQA4

Yes

SUP.2 No Yes

SUP.4 No Yes

SUP.7 No Partially

SUP.8 Yes
GCO1, GCO2,
GCO3, GCO5,
GCO6, GCO7

Yes

SUP.9 Partially GPR18, GPR19 Yes

SUP.10 Partially GCO5 Partially

TABLE XII. INTERSECTION OF MODELS AUTOMOTIVE SPICE , MPS.BR-E

AND ORGANIZATION PROCESSES FOR SPL.

Automotive
SPICE
Process

Approached
by MPS.BR-

E?
MPS.BR-E Company

SPL.1 Partially

GPR1, GPR2, GPR4,
GPR5, GPR6, GPR7,
GPR8, GPR9, GPR11,
GPR12

Yes

SPL.2 Partially
GCO1, GCO2,
GCO6, GCO7

Yes

TABLE XIII. NTERSECTION OF MODELS AUTOMOTIVE SPICE , MPS.BR-E

AND ORGANIZATION PROCESSES FOR MAN.

Automotive
SPICE
Process

Approached
by MPS.BR-

E?
MPS.BR-E Company

MAN.3 Partially
GPR1, GPR2,
GPR4, GPR8,
GPR13, GPR19

Yes

MAN.5 No Partially

MAN.6 Yes
MED1, MED2,
MED 5, MED6,
MED7

Partially

TABLE XIV. INTERSECTION OF MODELS AUTOMOTIVE SPICE , MPS.BR-E

AND ORGANIZATION PROCESSES FOR PIM.

Automotive
SPICE
Process

Approached
by MPS.BR-

E?
MPS.BR-E Company

PIM.3 Partially
AMP1, AMP3,
AMP5, AMP6,
AMP9

Partially

TABLE XV. INTERSECTION OF MODELS AUTOMOTIVE SPICE , MPS.BR-E

AND ORGANIZATION PROCESSES FOR REU.

Automotive
SPICE
Process

Approached
by MPS.BR-

E?
MPS.BR-E Company

REU.2 Partially GRU1 Partially

IV. ANALYSIS OF RESULTS

With the basis of the information presented in the Tables IX
to XV, one can extract some considerations. In Figure 1, the
result of the compatibility between the processes of the

MPS.BR are exposed and adopted by the Organization in
relation to the Automotive SPICE.

Figure 1. Processes Compability Results

These results show that the Brazilian quality model in the
level E was not as compatible with the automotive model.
However, it is noticed that the existing processes within the
company have a more significant compatibility.

The above report exposes a remarkable fact, the
organization, which should theoretically have a similar result
with the quality of Brazilian model, because it has implemented
the level E, got more processes completely addressed in
relation to the Automotive SPICE, it shows that even with the
certification of a quality model, the company has to fit and
supply what is needed and what is not exposed in the
implementation of a quality model guides

The factor that may have influenced the company to greater
compatibility with the SPICE is in fact the organization
provides services to the automotive industry for almost 10
years constantly, dealing with the high level of requirements of
certain customers. In addition, the company also has another
certification of quality model that is the MoProSoft.

Another analysis that can be extracted from this
compatibility is that the level E from MPS.BR has 11
processes, of which 8 were used at the intersection with the
Automotive SPICE. Based on this opinion, it can be concluded
that the majority of Brazilian model processes have been
addressed, so the level E from MPS.BR discussed in this work
brings a few contributions when compared to automotive
model.

V. CONCLUSION

This paper showed that quality is an important element
when it comes to software and processes tend to bolster its
development, granting in this way an accuracy and
standardization by assigning a higher quality to the final
product. Software process models provide guidance and
precepts that assist in the preparation and even implementing
processes.

With the analysis of the intersection between models and
company, it can be concluded that among the Automotive
SPICE and the MPS.BR-E the compatibility was little
expressive, when looking at the number of processes that were
addressed in the Brazilian model, it was concluded that the
level covered in this work is insufficient on automotive model
processes. Probably there will be greater compatibility when
compared with the higher maturity levels the MPS.BR.

The organization compatibility was more significant.
Domestic needs, customer requirements, certification of other

0

5

10

15

20

Yes Partially No

MPS.BR-E 4 11 16

Organization 9 9 13

A
p
p
ro
ac
h
e
d
?

272Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 291 / 512

quality model, providing services for the automotive area are
some of the factors that influence the company's processes, it
resulted in a more complete processes and therefore in greater
compatibility.

Through the analysis a question arises. Should the company
change its processes to meet the Automotive SPICE? As it was
exposed, the necessary changes to an organization that adopts
the MPS.BR-E would be rough, the company must analyze its
services, if the majority of its projects do not have the focus to
the automotive sector, the organization may choose to sell this
differential when needed, not changing its processes.

The big companies, or international certifications, will not
always be found in environments where industries are located,
so how to seek suppliers? It is concluded that suppliers with
certifications will be better able to provide services than those
without, as well as to assimilate/attend processes arising from
the contractor.

With the compatibility of quality models and the company
made throughout this work, it obtained a document that could
assist other organizations that might adopt the MPS.BR, and
become a facilitator so that a company can see its potential in
front of a model of international quality and provide services to
the automotive sector. Another factor that it is necessary to
emphasize, is that a company with this intersection relationship
has the possibility to analyze the processes that are not
addressed by the Brazilian model and adapt to the automotive
model without necessarily aiming at a certification, and thus a
differential in the market. Thus, it was concluded that the work
reached the objectives proposed, since it was held the
intersections of Automotive SPICE process with the MPS.BR-
E and with the process of an organization.

ACKNOWLEDGMENT

This work was supported by CNPQ (National Council for
Scientific and Technological Development -Conselho Nacional
de Desenvolvimento Científico e Tecnológico), in the project
ITI (Technological industrial Initiation) together with other
project productivity scholarship.

REFERENCES.

[1] S. Roger, Software Engineering (Engenharia de Software), 6a edition.
McGraw-Hill, 2006.

[2] M. Griesser, F. Schreiner, and S. Stölzl, “Applying Functional Safety
Management and SPICE for Automotive Functions”, Safety, vol. 2012,
2008, pp.03–21.

[3] A. Fuggetta, “Software Process: a Roadmap”, in Proceedings of the
Conference on the Future of Software Engineering.ACM2000, pp.25-34.

[4] W. d. P. Paulo Filho, Software Engineering: fundamentals, methods and
techniques (Engenharia de Software: fundamentos, métodos e técnicas).
Rio de Janeiro: LTC, 2003.

[5] M. Paulk, Capability Maturity Model for Software. Wiley Online
Library, 1993.

[6] G. A. García-Mireles, M. Ángeles Moraga, F. García, and M. Piattini,
“approaches to promote product quality within software process

improvement initiatives: A mapping study”, Journal of Systems and
Software, 2015.

[7] S. Weber, J. C. R. Hauck, and C. V. Wangenheim, “Establishing
software processes are micro and small enterprises” (“Estabelecendo
processos de software em micro e pequenas empresas”), SBQS-
Simpósio Brasileiro de Qualidade de Software, Porto Alegre, Brazil,
2005.

[8] P. H. Feiler and W. S. Humphrey, “Software process developmentand
enactment: Concepts and definitions”, in Software Process, 1993.
Continuous Software Process Improvement, Second International
Conference on the. IEEE, 1993, pp. 28–40.

[9] S. T. Acuña and X. Ferré, “Software process modelling”. in ISAS-SCI
(1), 2001, pp. 237–242.

[10] F. J. Pino, M. T. Baldassarre, M. Piattini, and G. Visaggio,
“Harmonizingmaturity levels from cmmi-dev and iso/iec 15504”,
Journal of Software Maintenance and Evolution: Research and Practice,
vol. 22, no. 4, 2010, pp. 279–296.

[11] SOFTEX, “General guide software” (“Guia Geral de Software”), 2012.
[Online]. Available: http://www.softex.br/wp-
content/uploads/2013/07/MPS.BR_Guia_Geral_Software_2012-c-ISBN-
1.pdf [retrieved: 09, 2015].

[12] Montoni, Mariano, et al. “Taba workstation: Supporting software
process deployment based on CMMI and MR-MPS.BR”, in Product-
Focused Software Process Improvement. Springer, 2006, pp. 249–262.

[13] ABES – Associação Brasileiro de Empresas de Software, “Brazilian
market of panorama software and trends” (“Mercado brasileiro de
software panorama e tendências”), 2006.

[14] K. C. Weber, E. Araújo, C. Machado, D. Scalet, C. F. Salviano, and A.
R. C. d. Rocha, “Reference model and evaluation method for improving
software-version 1.0 process (MR-MPS and MA-MPS)” (“Modelo de
referência e método de avaliação para melhoria de processo de software-
versão 1.0 (MR-MPS e MA-MPS)”), IV Simpósio Brasileiro de
Qualidade de Software. Porto Alegre-RS: Anais do SBQS, vol. 2005,
2005, p. 14.

[15] R. S. Wazlawick, Software Engineering: concepts and practices
(Engenharia de Software: conceitos e práticas). Rio de Janeiro: Elsevier,
2013.

[16] A. M. L. de Vasconcelos, A. C. Rouiller, C. Â . F. Machado, and T. M.
M. de Medeiros, “Introduction to software engineering and software
quality” (“Introdução à engenharia de software e à qualidade de
software”), 2006.

[17] K. E. Emam and A. Birk, “Validating the ISO/IEC 15504 measures of
software development process capability”, Journal of Systems and
Software, 2000.

[18] A. SIG, “Automotive SPICE, process reference model,” Jun. 2010.
[Online]. Available:
http://www.automotivespice.com/fileadmin/software-
download/automotiveSIG_PAM_v25.pdf [retrieved: 09, 2015].

[19] M. Mueller, K. Hoermann, L. Dittmann, and J. Zimmer, Automotive
SPICE in practice: surviving implementation and assessment. O’Reilly
Media, Inc, 2008.

[20] H. Oktaba, "3.2 MoProSoft®: A Software Process Model for Small
Enterprises." International Research Workshop for Process Improvement
in Small Settings. 2006.

[21] V. Leite, “Intersection of MPS.BR-E and SPICE models focused on
projects for the automotive industry " (“Intersecção dos Modelos
MPS.BR-E e SPICE
com foco em projetos para indústrias do setor automotivo”).Monograph,
2014.

273Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 292 / 512

Quality-Based Score-level Fusion for Secure and Robust Multimodal Biometrics-based

Authentication on Consumer Mobile Devices
Mikhail Gofman, Sinjini Mitra, Kevin Cheng, and Nicholas Smith

California State University, Fullerton, California, USA
Email: {mgofman, smitra}@fullerton.edu and {kevincheng99, nicholastoddsmith}@csu.fullerton.edu

Abstract—Biometric authentication is a promising approach to
access control in consumer mobile devices. Most current mobile
biometric authentication techniques, however, authenticate people
based on a single biometric modality (e.g., iPhone 6 uses only
fingerprints), which limits resistance to trait spoofing attacks
and ability to accurately identify users under uncontrolled con-
ditions in which mobile devices operate. These challenges can
be alleviated by multimodal biometrics or authentication based
on multiple modalities. Therefore, we develop a proof-of-concept
mobile biometric system which integrates information from face
and voice using a novel score-level fusion scheme driven by the
quality of the captured biometric samples. We implement our
scheme on the Samsung Galaxy S5 smartphone. Preliminary eval-
uation shows that the approach increases accuracy by 4.14% and
7.86% compared to using face and voice recognition individually,
respectively.

Keywords–Multimodal biometrics; quality; score-level fusion;
mobile

I. INTRODUCTION
Biometric authentication is the science of identifying peo-

ple based on their physical and behavioral traits, such as face
and voice. Recent advances in mobile technology have enabled
such authentication in consumer mobile devices. Although
generally regarded as more secure than passwords, most state-
of-the-art mobile biometric authentication approaches are uni-
modal: they identify people based on a single trait. To bypass
a unimodal system, an attacker only needs fabricate the single
trait the system uses for identification [1]. Unimodal mobile
biometric systems also have difficulty accurately recognizing
users in conditions known to distort the quality of biometric
images (e.g., poor lighting affecting the visibility of a face [2]).

We present the design, implementation, and performance
evaluation of a proof-of-concept system to demonstrate that
a promising approach to improve the security and robustness
of mobile biometric authentication is multimodal biometrics,
which uses multiple traits to identify people. Our contributions
are as follows:

1) We study the effects of face and voice sample quality
on recognition accuracy in mobile devices.

2) We develop a multimodal biometric system inte-
grating information from face and voice through a
novel quality-based score-level fusion scheme, which
improves recognition accuracy by letting the modality
with higher quality sample have a greater impact
on the authentication outcome. Such a scheme lets
the system adapt to varying background conditions,
which affect the quality of biometric images.

3) We evaluate the system using our database of face
and voice samples captured using a Galaxy S5 smart-
phone in a variety of background conditions. The
results indicate that the approach achieves higher
recognition accuracy than unimodal approaches based
solely on face or voice.

The rest of the paper is organized as follows. Section II
discusses the role of quality in mobile biometric authentica-
tion, Section III introduces multimodal biometric systems. We
present our quality-based score-level fusion scheme in Section
IV followed by the results in Section V. Finally, we conclude
in Section VI.

II. ROLE OF QUALITY IN MOBILE BIOMETRICS
A low-quality biometric sample, such as low resolution face

photograph or noisy voice recording, can cause a biometric
algorithm to incorrectly identify an impostor as a legitimate
user (false acceptance) or a legitimate user as an impostor
(false rejection). Capturing high-quality samples on mobile
devices is especially difficult because (i) people often operate
mobile devices in insufficiently lit and noisy environments
(e.g., malls and restaurants), choose less-than-optimal camera
angles, and might have dirty fingers [2]; and (ii) biometric
sensors in consumer mobile devices often trade sample quality
for portability and lower costs, leaving them vulnerable to trait
spoofing attacks [3]. We believe that these challenges can be
addressed via multimodal biometrics.

III. MULTIMODAL BIOMETRICS ON MOBILE DEVICES
Multimodal biometrics require users to authenticate using

multiple relatively-independent traits, which adds layers of
security by forcing attackers to fabricate multiple traits. Also,
identifying information from modalities with high-quality im-
ages can compensate for the missing/inaccurate identifying
information in low-quality images from other modalities.

In multimodal biometric systems, information from differ-
ent modalities can be consolidated (i.e., fused) at the decision-,
match score-, or feature-level [6]. We integrate face and voice
modalities using score-level fusion, because it is considered
more effective than decision-level fusion and less complex and
computationally expensive than feature-level fusion.

IV. QUALITY-BASED SCORE-LEVEL FUSION
Sample quality can drastically affect recognition accu-

racy; therefore we integrate it into our multimodal scheme.
We assess the quality of face images based on luminosity,
sharpness, and contrast [4] and use the signal-to-noise ratio
(SNR) approach [5] to assess the quality of voice samples.
Once assessed, the metrics are normalized using the z-score
normalization method. This particular method was selected
since it is a commonly used normalization method, is easy
to implement, and is highly efficient [9].

For face recognition, we use FisherFaces, which works
well when images are captured under varying conditions,
as is the case with mobile devices [7]. The algorithm uses
pixel intensities in the image as identifying features. For
voice recognition, we use Mel-Frequency Cepstral Coefficients
(MFCCs) as the identifying features in a Hidden Markov
Model (HMM)-based identification method [8]. After training

274Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 293 / 512

these algorithms with samples from users, they are used to
match samples supplied during authentication, and are the
basis of the score-level fusion scheme, as described below.

Let t1 and t2 denote the quality scores for the face
and voice samples in the training data, respectively. During
authentication, we calculate the quality scores Q1 and Q2

of the two biometrics from the test data and determine their
proximity to t1 and t2, respectively. We then compute the
weights of the face and voice modalities w1 and w2, as
wi = pi

p1+p2
, so that w1 + w2 = 1, where p1 and p2 are

percent proximities of Q1 to t1 and Q2 to t2, respectively.
The closer Qi is to ti, the greater is the weight assigned
to the corresponding modality, which ensures the effective
integration of quality in the final authentication process. Next,
the matching scores S1 and S2 are obtained from face and
voice recognition algorithms. The overall match score is then
computed using the weighted sum rule: M = S1w1 + S2w2.
If M ≥ T (T : pre-selected threshold), the system accepts
the person as authentic; otherwise, it declares the person an
imposter.

While using the above scheme, it is important to exercise
caution to ensure significant representation of both modalities
in the fusion process. For example, if Q2 differs greatly from
t2 but Q1 is close to t1, the face modality will dominate the
authentication process, resulting in a nearly unimodal scheme
based on the face biometric. Thus, a mandated benchmark is
required for each quality score to ensure that the system denies
access if the benchmarks for both scores are not met.

V. RESULTS
A. The Dataset

Due to the unavailability of a diverse multimodal mobile
biometric database, we created one with videos from 54
people of different genders and ethnicities. They held a phone
camera in front of their face while saying a certain phrase.
The videos were recorded in various real-world settings using
a Samsung Galaxy S5 smartphone. The faces display the
following variations: (1) four expressions: neutral, happy, sad,
angry, and scared; (2) three poses: front and sideways (left
and right); and (3) two illumination conditions: uniform and
partial shadows. The voices in videos have different levels of
background noise, from traffic noises to music and chatter,
and voice distortions like raspiness. Twenty popular phrases
were used (e.g., unlock and football). The database is still in
development and will be made available to researchers upon
completion.

B. Performance Results
We implemented our score-level fusion scheme on the

Android-based Samsung Galaxy S5 device. Table I shows
preliminary performance results. We measure recognition ac-
curacy using equal error rate (EER), which is traditionally used
in biometrics applications and is the value that produces the
best possible combination of the False Acceptance Rate (FAR)
and False Rejection Rate (FRR) (i.e., where FAR and FRR
are equal) [6]. The final results were obtained by selecting a
random set of five users from the database and training the face
and voice algorithms with 40 face images and 40 voice samples
of these users. Most samples were automatically extracted
from one good-quality video and few samples were extracted
from low-quality videos. For testing, we used 80 combinations
of randomly selected face frames and voice samples from

videos of varying quality. The experiment was repeated for
1000 different training/testing combinations of users, and the
face, voice, and score-level fusion EERs and training and
authentication execution times were average. According to the
table, our quality-based score-level fusion approach improves
accuracy by 4.14% and 7.86% compared unimodal face and
voice recognition approaches, respectively.

Note: Good-quality training samples are important because
their quality metrics provide a baseline for judging qualities
of samples supplied during authentication. Adding a few noisy
training samples also increases the chances of recognizing the
user in similar noisy conditions. Also, although the training
times are longer than authentication times (common in classi-
fication problems), training happens only once when the user
registers his/her training data with the device. Authentication
is real-time and should require less time, as is the case here.

TABLE I. QUALITY-BASED SCORE-LEVEL FUSION EER RESULTS.

Modality EER Training Time (sec) Auth. Time (sec)
Face 18.70% 575.491 0.2133
Voice 22.42% 295.692 0.0728

Score-level Fusion 14.56% 871.183 0.2861

C. Analysis of Sample Quality
We briefly discuss the quality of face and voice samples

in our database and its complex relationship to recognition
accuracy. We find that face luminosity and contrast metrics
exhibit bimodal distributions caused by different conditions,
such as shadows. Voice SNR exhibits normal distribution for
good-quality samples, sick voices, and voices with chatter
in the background. These distributions can provide useful
guidance for designing automatic sample quality enhancement
mechanisms in mobile devices. We also observe that variations
in luminosity and pose are greater challenges to minimizing
the face recognition EER, compared to sharpness and contrast.
However, there are important exceptions such as, images dis-
torted by motion blur, matching poorly due to the differences in
sharpness despite similar luminosity. These findings illustrate
the complex sample-quality challenges facing mobile biomet-
rics. They also lay the groundwork for devising a statistical
framework for predicting optimal modality weights in our
scheme and determining the quality thresholds for acceptable
error rates.

VI. CONCLUSIONS AND FUTURE WORK
The preliminary results show that multimodal biometrics

can improve biometrics-based authentication in consumer mo-
bile devices. Our next step is to refine the method to reduce
EER more and incorporate other modalities (e.g., ears and
fingerprints).

REFERENCES

[1] D. Smith, A. Wiliem, and B. Lovell, “Face recognition on consumer de-
vices: Reflections on replay attacks,” IEEE Transactions on Information
Forensics and Security, vol. 10, 2015, pp. 736–745.

[2] C. Bhagavatula, B. Ur, K. Iacovino, S. M. Kywe, L. F. Cra-
nor, and M. Savvides, “Biometric authentication on iPhone and
Android: Usability, perceptions, and influences on adoption,” pre-
sented at Proceedings of the NDSS Workshop on Usable Secu-
rity 2015 (USEC). San Diego, California, February 2015. URL:
http://www.blaseur.com/papers/usec15 talk.pdf [accessed: 2015-25-8].

[3] “The trouble with Apples Touch ID fingerprint reader, Wired.com, De-
cember 3, 2013, URL: http://www.wired.com/2013/12/touch-id-issues-
and-fixes/ [accessed: 2015-25-8].

275Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 294 / 512

[4] K. Nasrollahi and T. B. Moeslund, “Face Quality Assessment System in
Video Sequences,” Biometrics and Identity Management: First European
Workshop (BIOID), May 7-9, 2008 Roskilde, Denmark. Springer Berlin
Heidelberg, 2008, pp. 10–18, URL: http://dx.doi.org/10.1007/978-3-540-
89991-4 2 [accessed: 8-25-2015].

[5] M. Vondrášek and P. Pollak, “Methods for speech SNR estimation:
Evaluation tool and analysis of VAD dependency,” Radioengineering,
vol. 14, no. 1, 2005, pp. 6–11.

[6] A. K. Jain and A. Ross, “Multibiometric systems,” Communications of
the ACM, vol. 47, no. 1, 2004, pp. 34–40.

[7] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs.
Fisherfaces: Recognition using class specific linear projection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 19, 1997,
pp. 711–720.

[8] D. Hsu, S. M. Kakade, and T. Zhang, “A spectral algorithm for learning
Hidden Markov Models,” Journal of Computer and System Sciences, vol.
78, no. 5, 2012, pp. 1460–1480.

[9] A.K. Jain, K. Nandakumar, and A. Ross, “Score normalization in
multimodal biometric systems,” Pattern Recognition, 2005, Vol. 38, pp.
2270–2285.

276Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 295 / 512

An Approach for Sensor Placement to Achieve Complete Coverage

and Connectivity in Sensor Networks

Monia Techini

University of Gabes,
National Engineering School

of Gabes (ENIG),
Av. Omar Ibn El Khattab

Zerig-6029, Gabes, Tunisia
Email: moniatec@gmail.com

Ridha Ejbali and Mourad Zaied

REGIM-Lab: REsearch Groups
in Intelligent Machines

BP 1173, Sfax, 3038, Tunisia
Email: ridha_ejbali@ieee.org

Email: mourad.zaied@ieee.org

Abstract—The main objective required for a Wireless Sensor
Network (WSN) is the positioning of the sensor nodes to form
a WSN. There are two strategies for the positioning of nodes in
an area of interest where some phenomena are to be monitored:
deterministically or randomly. In this paper, our goal is to propose
a new sensor placement technique, which is based on random
distribution with coverage and connectivity constraints.

Keywords–Placement; Random; WSN; Coverage; Connectivity.

I. INTRODUCTION

Recent developments could not be achieved without a
change in the field of communication. Mainly Wireless Sensor
Networks (WSN) and mobile computing become more and
more popular. Control of environmental parameters can give
rise to several applications. In the monitoring area, the WSN
is deployed over a region where some phenomena have to be
monitored. The nodes can be equipped with sensors to measure
temperature, humidity, and gases.

A WSN consists of a number, often significant, of sensors
with limited perception and communication capabilities where
each node is connected to one (or sometimes several) sen-
sors. There exist two types of sensors: homogeneous sensors,
which possess the same communication and computation ca-
pabilities and heterogeneous sensors, which possess different
capabilities. Determining the sensor field architecture is a key
challenge in sensor resource management. Sensors have to be
placed at critical locations that provide sustainable coverage.

Many works for sensors and sensor placement were done.
In [1], Lin models the sensing field as a grid points. Then, he
explains how to place sensors on some grid points in order to
satisfy a particular quality of service based on the Simulated
Annealing approach. Using the genetic algorithm, the authors
in [2] propose an approach for the sensor placement problem.
In [3], the Improved Particle Swarm Optimization (IPSO)
algorithms have been employed to determine the optimal
sensors number and configurations.

Recent works focused on relay placement algorithm to de-
termine the set of positions which can guarantee connectivity.
The main objective of the work proposed in [4] is to reduce the
set of locations for the existing mobile nodes in the network
to the locations of relay nodes that would ensure connectivity
with the least count. A multi-objective mathematical model

is used to determine the best placement of mobile nodes for
different tasks [5]. In [6], Flushing proposes a combination
of exact method and heuristic method to solve the problem
mentioned below. Thus, his work was based on Mixed-Integer
Linear Programming (MILP) and a Genetic Algorithm (GA).

A related problem to the deployment in WSN is Art Gallery
Problem (AGP) addressed by the art gallery theorem [7]. The
AGP problem consists of determining the minimum number of
guards to cover the interior of an art gallery. Many researches
for the AGP have been discussed in literature. There exist some
similarities between our sensor placement problem and the
AGP, such that the guards (sensors in our case) are assumed
to have similar capabilities.

As we mentioned earlier, there exist two ways for the
placing of sensors with random placement or with grid-based
placement. The former one is defined as a technique where
nodes are deployed at random positions. The latter is defined
as the one where sensors are placed exactly at pre-engineered
positions. Figure 1 shows the different categories of node
placement strategies.

Figure 1. Sensor node placement methodologies

On the other side, the authors in [8] classify the place-

277Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 296 / 512

ment strategies into static and dynamic depending on whether
the optimization is performed at the time of deployment or
while the network is operational, respectively. In [8], Younis
assumes that the choice of the deployment scheme depends on
many properties. Thus, many researches assume that for some
cases, the random placement becomes the only option due to
environment characteres [1] and deployment cost and time [9].
This paper focuses on the implementation of an optimal node
deployment strategy based on a random placement method.
The remaining part of this paper is organized as follows:
Section 2 starts by summarising the problem of the sensor
placement. Our sensor placement approach is then presented
in Section 3. Section 4 shows the results of our procedure.
Section 5 provides our conclusions.

II. PROBLEM STATEMENT

The problem addressed in this paper has as objective to
determine minimum number of sensors when the maximum
of targets are covered. There are two strategies of sensor
node placement: deterministic or non-deterministic (random).
We assume our goal is to deploy the sensors in order to
provide the connectivity and the coverage of the service area.
Thus, the main objective of our approach is to ensure that the
maximum of the area is covered. The authors in [10] formulate
a constrained multivariable nonlinear programming problem
to deploy the sensors in their locations under constraints of
network lifetime and total power consumption. They propose
two optimal placement strategies to this problem.

The number of the sensors is determined by taking into
account both the coverage of the area of interest and the
communication between sensors in the WSN. Thus, communi-
cation in a WSN is an effective and practical way to improve
the system performance of WSN. This suggests that both
the network connectivity and the coverage are an essentiel
parameter which must be taken into account when positioning
sensors. Each deployed sensor should be able to cover an area
in order to increase the coverage in a defined region while
maintaining the connectivity in the WSN.

III. METHOD

Sensor placement can greatly impact the WSN perfor-
mances, such as coverage and connectivity. The former is
defined to quantify the quality of service (QoS). The latter
answers the questions about the communication network in a
WSN. Table I introduces the parameters used during our work.

TABLE I. PARAMETERS OF THE WSN.

Parameter Definition
Ci Node i
Rs Node sensing radius
Rc Node communication radius
A Network area
Ai Area of the Voronoi polygon for a sensor
N Number of sensor nodes in the network
C Coverage of the total area
Dij Distance between nodes i and j
Ne Maximim number of neighbors

Minimizing the number of deployed sensors and main-
taining higher sensor coverage when positioning the sensors
have always been a challenge, especially when the monitoring
region is unknown. The aims of the present article are to
implement an approach for the sensor placement problem with
coverage and communication constraints. The main goal of the
sensor placement approach is to determine the best placement
of the sensors. In addition, the proposed algorithm aims at
achieving high sensor coverage while maintaining network
connectivity.

We assume that a region A is covered if there exists a
sensor at position p with sensing radius Rs that contains the
region A completely [1]. Thus, the ability of detection varies
with the distance between the sensor Ci and the target Tj [11]
[12], mathematically speaking we have:

Di,j ≤ Rs (1)

where Di,j is the distance between the position of the sensor
Ci and the target Tj .

To guarantee node communication, The connectivity is
assumed to be full if the distance between two sensors is less
than the communication radius of the sensor. The distance is
defined as the Euclidean distance between two sensors. Figure
2 shows a pseudo code of the algorithm.

Figure 2. Algorithm for sensors placement

We begin by generating a random position for the first
sensor. Then, deploying the rest by taking into account a
maximum coverage and connectivity in the area of interest as
constraints. The number of neighbors of each deployed sensor
should be less than a defined number Ne in order to ensure a
sufficient distribution in the area.

Process node 1: deploys the first sensor randomly.
Process node i: node i is deployed if there is at least a link

with node j (0 ≤ j ≤ i − 1) and a sufficient coverage not
achieved yet.

278Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 297 / 512

The algorithm is iterative, and it places one sensor in the
sensor field during each iteration. It terminates either when a
sufficient coverage of the zone is achieved.

IV. SIMULATION AND RESULTS

The proposed method aims at defining the initial placement
of sensors. All sensors have the same deployment parameters
and have the same sensing coverage (Rc) and the same com-
munication range (Rs). The former helps in the detection of
the designed event. The latter is introduced for the connectivity
of nodes with their neighborhoods. Thus, depending on the
communication range the neighborhood of a node is defined.
We say that the probability of communication between two
nodes varies inversely with the distance between them.

We evaluate the proposed approach via simulations (NS2).
Our topology is a square with total area A = 20 x 20, Ai is
the area of the Voronoi polygon for a sensor for a full sensing
coverage and a full connectivity defined as [13]:

As(Cov,Con) = min(2R2
s, R

2
c) (2)

Twenty seconds is considered as the simulation time. It should
be mentioned that we assume that all links are bi-directional
during simulation. The sensing range is set to 2 while the
communication range is set to 4 and the maximum number
of neighbors (Ne) for each deployed sensor is set to 4. Thus,
each sensor must have a number of neighbors less than Ne

(fixed to 4 in our case).
We assume that the algorithm stops when the coverage C

is greater than 1, we define C as the ratio of the union of all
areas covered by each node and the area of the entire Region
Of Interest (ROI) [9]. The coverage C helps to ensure that
the region is entirely covered by the sensors when deploying
them. In this work, we try to take into account the overlapping
zone between nodes when calculating the area covered by the
sensors. Each node is characterized by a covered area which
is defined as the circular area within its sensing radius Rs.

C =
∪i=1..NAi

A
(3)

Where Ai is the area covered by the ith node,
N is the total number of nodes,
A stands for the area of ROI.
Our approach is used in order to determine a better

methodology for sensor placement problem in a WSN. As
for results, the number of sensors in the region of interest
varies from 51 to 57 providing full sensing coverage and
full network connectivity. We can observe that our approach
outperforms Max Avg Cov [14] [15] and MIN-MISS [15]
[16]. It is important to point out that in this work, we do
not take into account obstacles in the ROI.

V. CONCLUSION

In this paper, the sensor placement problem is studied. We
have formulated a new strategy for the initial sensor placement
problem. We start with a random distribution of nodes with
constraints of coverage and connectivity. As part of our future

work, we would extend this result to a case when there are
obstacles in the ROI. Thus, we assume that the above results
are practical and can be used in actual sensor network design.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial sup-
port of this work by grants from General Direction of Scientific
Research (DGRST), Tunisia, under the ARUB program.

REFERENCES
[1] F. Lin and P.-L. Chiu, “A near-optimal sensor placement algorithm to

achieve complete coverage-discrimination in sensor networks,” Com-
munications Letters, IEEE 9.1, vol. 9, 2005, pp. 43–45.

[2] L. T.-M. E. C. Ruben Leal, Jose Aguilar and A. Rios, “An Approach
for Diagnosability Analysis and Sensor Placement for Continuous Pro-
cesses Based on Evolutionary Algorithms and Analytical Redundancy,”
Applied Mathematical Sciences, vol. 9, no 43, 2015, pp. 2125–2146.

[3] M. Z. A. Bhuiyan, G. Wang, J. Cao, and J. Wu, “Sensor placement with
multiple objectives for structural health monitoring,” ACM Transactions
on Sensor Networks (TOSN), vol. 10, no 4, 2014, pp. 68–113.

[4] K. A. Izzet F. Senturk and F. Senel, “An effective and scalable
connectivity restoration heuristic for mobile sensor/actor networks,”
Global Communications Conference (GLOBECOM), 2012 IEEE, 2012,
pp. 518–523.

[5] F. Guerriero, A. Violi, E. Natalizio, V. Loscri, and C. Costanzo,
“Modelling and solving optimal placement problems in wireless sensor
networks,” Applied Mathematical Modelling, vol. 35, no 1, 2011, pp.
230–241.

[6] E. Flushing and G. Di Caro, “Exploiting synergies between exact and
heuristic methods in optimization: an application to the relay placement
problem in wireless sensor networks,” Bio-Inspired Models of Network,
Information, and Computing Systems, vol. 134, 2014, pp. 250–265.

[7] J. O’Rourke, Ed., Art Gallery Theorems and Algorithms. Oxford
University Press, 1987.

[8] M. Younis and K. Akkaya, “Strategies and techniques for node place-
ment in wireless sensor networks: A survey,” Ad Hoc Networks, vol.
6, no 4, 2008, pp. 621–655.

[9] N. Heo and P. K. Varshney, “An intelligent deployment and clustering
algorithm for a distributed mobile sensor network,” Systems, Man and
Cybernetics, 2003. IEEE International Conference on, vol. 5, 2003, pp.
4576–4581.

[10] P. Cheng, C.-N. Chuah, and X. Liu, “Energy-aware node placement
in wireless sensor networks,” Global Telecommunications Conference,
2004. GLOBECOM’04. IEEE, vol. 5, 2004, pp. 3210–3214.

[11] S. S. Dhillon, K. Chakrabarty, and S. Iyengar, “Sensor placement for
grid coverage under imprecise detections,” Information Fusion, 2002.
Proceedings of the Fifth International Conference, vol. 2, 2002, pp.
1581–1587.

[12] S. Adlakha and M. Srivastava, “Critical density thresholds for coverage
in wireless sensor networks,” Wireless Communications and Network-
ing, 2003. WCNC 2003. 2003 IEEE, vol. 3, 2003, pp. 1615–1620.

[13] Y. Wang, Y. Zhang, J. Liu, and R. Bhandari, “Coverage, Connectivity,
and Deployment in Wireless Sensor Networks,” Recent Development
in Wireless Sensor and Ad-hoc Networks, 2015, pp. 25–44.

[14] S. S. Dhillon and K. Chakrabarty, “Sensor placement for effective
coverage and surveillance in distributed sensor networks,” vol. 3. IEEE,
2003, pp. 1609–1614.

[15] S. M. Reda, M. Abdelhamid, O. Latifa, and A. Amar, “Efficient
uncertainty-aware deployment algorithms for wireless sensor networks,”
in Wireless Communications and Networking Conference (WCNC),
2012 IEEE. IEEE, 2012, pp. 2163–2167.

[16] Y. Zou and K. Chakrabarty, “Uncertainty-aware sensor deployment
algorithms for surveillance applications,” in Global Telecommunications
Conference, 2003. GLOBECOM’03. IEEE, vol. 5. IEEE, 2003, pp.
2972–2976.

279Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 298 / 512

Dynamic Symbolic Execution using Eclipse CDT

Andreas Ibing

Chair for IT Security
TU München

Boltzmannstrasse 3, 85748 Garching, Germany
Email: andreas.ibing@tum.de

Abstract—Finding software bugs before deployment is essential
to achieve software safety and security. The achievable code
coverage and input coverage with manual test suite develop-
ment at reasonable cost is limited. Therefore, complementary
automated methods for bug detection are of interest. This paper
describes automated context-sensitive detection of software bugs
with dynamic symbolic execution. The program under test is
executed in a debugger, and program execution is automatically
driven into all program paths that are satisfiable with any
program input. Program input and dependent data are treated
as symbolic variables. Dynamic analysis and consistent partial
static analysis are combined to automatically detect both input-
dependent and input-independent bugs. The implementation is a
plug-in extension of the Eclipse C/C++ development tools. It uses
Eclipse’s code analysis framework, its debugger services frame-
work and a Satisfiability Modulo Theories automated theorem
prover. The resulting dynamic symbolic execution engine allows
for consistent partially concrete program execution. Compared to
static symbolic execution, it transfers as much work as possible
to concrete execution in a debugger, without losing bug detection
accuracy. The engine is evaluated in terms of bug detection
accuracy and runtime on buffer overflow test cases from the
Juliet test suite for program analyzers.

Keywords–Testing; Program analysis; Symbolic execution.

I. INTRODUCTION

Software bugs in general are context-sensitive, so that a
context-sensitive algorithm is needed for accurate detection.
Symbolic execution [1] is an approach to automated context-
sensitive program analysis. In can be applied as static analysis,
in the sense of symbolic interpretation. Program input is
treated as symbolic variables, and operations on variables yield
logic equations. The satisfiability of program paths and bug
condition satisfiability are decided with an automated theorem
prover (constraint solver). Symbolic execution in principle is
applicable to all levels of software, i.e., models, source code,
intermediate code and binaries.

As code execution is in general faster than interpretation,
symbolic execution has also been applied as dynamic analysis
[2]. When certain software parts can not practically be treated
by static symbolic execution, this offers a way for dynamic
analysis by concretizing symbolic variables as approximation,
without introducing false positive bug detections (although
this leads to false negative detections) [2]. The software parts
which are treated symbolically (static) and which concretely
(dynamic) can be made selectable for a tool user in the sense of
selective symbolic execution [3]. A more detailed overview of
available symbolic execution tools and applications is available
in [4][5].

Symbolic execution relies on an automated theorem prover
as logic backend. The current state in automated theorem
proving are Satisfiability Modulo Theories (SMT) solver [6].
An example state of the art solver is described in [7]. A
standard interface to SMT solvers has been defined with the
SMTlib [8].

The different types of softwate bugs are classified in the
common weakness enumeration (CWE) [9]. Examples are
stack based buffer overflows with number CWE-121 and heap
based buffer overflows as CWE-122.

For the evaluation of automated software analyzers, test
suites have been developed. The evaluation criteria are the
number of false positive and false negative bug detections and
the needed run time. Currently, the most comprehensive test
suite for C/C++ is the Juliet suite [10]. It systematically tests
the correct detection of different common weakness types (as
baseline bugs) in combination with different data and control
flow variants which cover the available programming language
grammar constructs. The suite contains both ’good’ (without
bug) and ’bad’ (including a bug) functions in order to measure
false positive and false negative detections. The maximum
bug context depth of a flow variant are five functions in five
different source files.

This paper describes a dynamic symbolic execution ap-
proach, that combines static and dynamic checks in order to
detect both input-dependent and input-independent bugs. It
builds upon an existing purely static symbolic execution engine
described in [11]. The work at hand differs in that most of the
work is transferred to a debugger, which additionally allows for
consistent partially concrete program execution. The debugger
is automatically driven into all executable program paths, and
bugs are detected both during concrete execution and during
symbolic interpretation.

The remainder of this paper is organized as follows: Section
III gives an overview of the algorithm which is used to
traverse the program execution tree. Section IV describes the
implementation which extends the Eclipse C/C++ development
tools (CDT). In Section V the achieved bug detection accuracy
and run times are evaluated with buffer overflow tests from the
Juliet suite. Section II gives an overview of related work, and
Section VI discusses the obtained results.

II. RELATED WORK

There is a large body of work on symbolic execution
available which spans over 30 years [12]. Dynamic symbolic
execution is described in [2][13][14][15]. To reduce complex-
ity and increase analysis speed, as many variables as possible

280Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 299 / 512

« interface »
org.eclipse.cdt.codan.core.model.IChecker

1

n Checker

ProgramStructureFacade

org.eclipse.cdt.core.dom.ast.ASTVisitor

SMTSolver

Symbolic Memory
(symbolic partial
 program state)

Debugger Services
(full concrete

 program state)

CFGNodeProcessorSymbolic Execution
Engine

Figure 1. Architecture overview.

are regarded as concrete values. Only variables which depend
on program input are modelled as symbolic. The analysis
runs dynamically as long as all parameters are concrete, and
equation systems for the solver are smaller. In [13], single-
stepping is used together with a check whether a symbolic
variable is contained in the respective statement. Selective
symbolic execution is presented in [3]. It allows to choose
which parts of a system are executed symbolically. It uses the
qemu virtual machine monitor with an LLVM backend and
runs the engine from [15] on it.

The presented approach differs in several aspects. One
point is the tight IDE integration which might enable syn-
ergies with other Eclipse tools. Static and dynamic checks are
combined in order to also detect bugs which are not input
dependent. Breakpoints are set adaptively to interprete as few
code lines as possible without degrading bug detection accu-
racy, and complex dependencies between symbolic variables
are tracked.

III. ALGORITHM

The algorithm is basically depth-first search. It is used to
traverse the tree of satisfiable paths through the program under
test, which is commonly called the program execution tree.

Execution of a program path changes between concrete
execution in the debugger and symbolic interpretation. Debug-
ger breakpoints are used to switch from concrete execution to
symbolic interpretation. The debugger contains a full conrete
program state. The interpreter contains the partial variable set,
which needs to be symbolic, i.e., the values are logic formulas.
The full concrete program state and the partial symbolic state
are consistent, i.e., the concrete state satisfies the symbolic
state constraints.

C programs interact with their environment through func-
tions from the C standard library (libc). The symbolic execu-
tion engine can trace input and can determine a program path
by forcing corresponding input.

Certain library functions are defined a-priori to have sym-
bolic return variables. Correspondingly, initial breakpoints
are inserted at call locations to the specified functions. The
program argument vector is also treated as symbolic, i.e.,
breakpoints are set at locations where it is accessed. Break-
points are inserted only in the source files of interest.

For the first execution path, the engine traces program
input. In case of blocking functions, a direct return with a valid
error return value is forced. The argument vector is initially
set to be empty.

Concrete variables may become symbolic, i.e., when they
are assigned a formula. Then corresponding breakpoints at
access to the new symbolic variable are set. Symbolic variables
may become concrete, i.e., when they are assigned a concrete
value. Then, the corresponding breakpoints are removed.

Bug detection in concretely executed program parts is
performed with run-time checks, i.e., dynamic analysis. Bug
detection in interpreted parts, i.e., input dependent, is per-
formed using satisfiability queries to the solver.

After reaching the program end, program input is automat-
ically generated for the next path to explore. The solver and its
model generation functionality are used to generate concrete
input values, which are forced in the next program run. The
input determines that the next program run will take a different
branch, according to depth-first traversal of the execution tree.

IV. IMPLEMENTATION AS ECLIPSE CDT PLUG-IN

A. Architecture Overview
An overview of the architecture is given in Figure 1 as

class diagram. The symbolic execution engine performs tree-
based interpretation [16] for program locations which use
symbolic variables. The engine can be started from the CDT
GUI through an extension point provided by the code analysis
framework. The syntax files of interest are parsed into abstract
syntax trees (AST) with CDT’s C/C++ parser. Translation into
logic equations is performed according to the visitor pattern
[17] using CDT’s ASTVisitor class. The interpreter has a
partial symbolic memory store which contains the symbolic
variables (global memory and function space stack). For the
rest, CDT’s debugger services framework is used. A full
concrete program state is available in the debugger. For the
detection of input dependent bugs, the engine provides a
checker interface. Through this interface, checker classes can
register for triggers and query context information, which is
necessary for the corresponding solver satisfiability checks.

B. Short review of CDT’s code analysis framework
The code analysis framework (Codan [18]) is a part of

CDT. It provides GUI integration for checker configuration

281Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 300 / 512

...

... ... PlainNode

IBranchNodeIDecisionNode IPlainNode

...... IASTLiteralExpressionIASTIdExpression

IASTDeclarationIASTExpression

ICfgData
getData()

IASTNode
getFileLocation()

IBasicBlock
getOutgoingNodes()

Figure 2. Important data structures provided by CDT and its code analysis framework for CFG (left) and AST (right).

and result presentation using Eclipse’s marker framework. It
further provides a control flow graph (CFG) builder. Figure 2
illustrates important data structures for AST and CFG. There
are different CFG node types for plain nodes, decision nodes,
branch nodes, jump nodes etc. A CFG node (depending on
the type) typically includes a reference to the corresponding
AST subtree. Static program analysis normally evaluates paths
through CFGs [11]. Tree-based interpretation means that for a
CFG node the referenced AST subtree is interpreted. An AST
node provides a reference to the corresponding source location.

C. Short review of CDT’s debugger services framework
Debuggers typically feature a machine interface (MI) to

ease the development of graphical debugger frontends. CDT
includes a debugger services framework (DSF) [19], which is
an abstraction layer over debuggers’ machine interfaces. DSF
provides a set of asynchronous services. The main service
interfaces are illustrated in Figure 3. They are used to control
dynamic execution with the debugger (IMIRunControl) and
to insert breakpoints (IBreakpoints). The current program
location and variables can be queried. This comprises local
(IStack) and global variables (IExpressions).

D. Partial symbolic interpretation
The debugger stops at breakpoints or when it receives a sig-

nal. The symbolic execution engine then switches to symbolic
interpretation and tries to resolve the respective CFG node
and AST subtree. The source location (file and line number)
can be obtained from CDT (CDT’s CSourceLocator). In
order to enable CFG node resolution, a location map for the
source files of interest is pre-computed before analysis start.
The resolved CFG node is then followed to its AST subtree,
which is symbolically interpreted. Needed concrete values are
queried from the debugger The translation into logic equations
uses the SMTlib sublogic of arrays, uninterpreted functions
and bit-vectors (AUFBV).

E. Input-dependent branches
The debugger only breaks at a decision when the decision

contains a symbolic variable (input-dependent branch). Pos-
sible branch targets (CFG branch nodes and their children)
are obtained as children of the corresponding decision node.
The debugger is commanded to step, and the taken branch
is identified through the newly resolved CFG node. The
branch constraint is formulated as symbolic formula. Branch
constraints need to be remembered to enable input generation
for the next execution path. If there is already a breakpoint
set for the source location after stepping, then this location

is also symbolically interpreted. Otherwise the debugger is
commanded to resume execution.

F. Implementation of read/write watchpoints
Concrete execution must be breaked at read and write

accesses to symbolic variables. This means conceptually that
a very large number of read/write watchpoints is needed.
Software watchpoints would severely slow down debugger ex-
ecution and in general are only available as write watchpoints,
not read watchpoints [20]. Hardware watchpoints can also not
be used, since standard processors only support a handful
of them. The implementation therefore uses normal software
line breakpoints and determines the relevant locations using
the available source code. To this end, a map of language
bindings is pre-computed before analysis. The map contains
AST names with references to the corresponding source file
locations. When a variable becomes symbolic, the correspond-
ing breakpoints are inserted (through DSF’s IBreakpoints
interface, Figure 3).

For accurate bug detection it is additionally necessary to
trace pointer targets. Pointer assignments must be traced be-
cause there may be pointers to a target when the target becomes
symbolic. The initial breakpoints therefore also include breaks
on all pointer assignments (a pointer target map is then updated
accordingly). This requirement is illustrated in the experiments
section with Figure 5.

G. Controlling program input
In order to trace and force program input, the debugger

is set to break at calls to functions from the standard library.
Because the libc contains several functions for which the
debugger cannot step into or break inside (e.g., functions that
directly access the virtual dynamically shared object), these
functions are wrapped. For non-blocking functions on the
first program path, the step into and finish debugger
commands are used to trace the function’s return value. For
blocking functions or on later program paths, the program
input is set to the pre-determined value (or solver-generated
value respectively) with step into and return debugger
commands.

H. Bug detection
1) During concrete execution: Instrumentation and dy-

namic analysis are used to detect bugs during concrete execu-
tion. This paper uses the example of buffer overflow detection.
To dynamically detect buffer overflows, the available address
sanitizer from [21] is used. In [21], it is reported that the
instrumentation slows down execution by about 73% and

282Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 301 / 512

IExpressions

getExpressionData()

IStack

getFrames()

getLocals()

IMIProcesses IBreakpoints

insertBreakPoint()

IMIRunControl

resume()

step()

DsfExecutor

DsfSession

Figure 3. Main interfaces of CDT’s debugger service framework.

1 void CWE121 memcpy 01 bad () {
2 c h a r v o i d c v s t r u c t ;
3 c v s t r u c t . y = (void ∗)SRC STR ;
4 / / FLAW: o v e r w r i t e t h e p o i n t e r y
5 memcpy (c v s t r u c t . x , SRC STR ,
6 s i z e o f (c v s t r u c t)) ;
7 c v s t r u c t . x [(s i z e o f (c v s t r u c t . x) /
8 s i z e o f (char))−1]= ’\0 ’ ;
9 p r i n t L i n e ((char ∗) c v s t r u c t . x) ;

10 p r i n t L i n e ((char ∗) c v s t r u c t . y) ;
11 }

Figure 4. Buffer overflow detection during concrete execution. Example
from [22]

increases memory usage about 3.4 times. The source code
under test is compiled and statically linked with the address
sanitizer library. A breakpoint is set on the address sanitizer
error report function. In case the debugger breaks at this
location, the bug is localized by following the call stack back
into the source files of interest.

2) During symbolic interpretation: Input dependent bugs
are detected with solver queries during symbolic interpretation.
For buffer overflows, the bounds checker is triggered during
interpretation of array subscript expressions and pointer deref-
erences, when the index expression or pointer offset are sym-
bolic. The checker then queries the solver whether index/offset
can be smaller than zero or lerger than the buffersize.

I. Input generation

The parts of an execution path that are symbolically
interpreted can be denoted as symbolic execution path. To
generate input for the next execution path, the symbolic
execution path is backtracked to the last decision node. For any
unvisited child branch nodes, satisfiability of the backtracked
path constraint together with the respective branch constraint
is checked using the solver. If the constraints are satisfiable,
corresponding input values are generated using the solver’s
model generation functionality (get-model command). If
the constraints are not satisfiable, first the unvisited branch
siblings are tested, then the symbolic execution path is further
backtracked. Traversal of the symbolic execution tree (and
therefore also the execution tree) is complete when further
backtracking is not possible.

1void CWE121 fgets 32 bad () {
2i n t d a t a = −1;
3i n t ∗ d a t a p t r 1 = &d a t a ;
4i n t ∗ d a t a p t r 2 = &d a t a ;
5{ i n t d a t a = ∗ d a t a p t r 1 ;
6char i n p u t b u f [CHAR ARRAY SIZE] = ” ” ;
7i f (f g e t s (i n p u t b u f , CHAR ARRAY SIZE ,
8s t d i n) != NULL)
9{ d a t a = a t o i (i n p u t b u f) ; }
10e l s e
11{ p r i n t L i n e (” f g e t s () f a i l e d . ”) ; }
12∗ d a t a p t r 1 = d a t a ;
13}
14{ i n t d a t a = ∗ d a t a p t r 2 ;
15i n t b u f f e r [1 0] = { 0 } ;
16i f (d a t a >= 0) {
17/ / FLAW: p o s s i b l e b u f f e r o v e r f l o w :
18b u f f e r [d a t a] = 1 ;
19f o r (i n t i = 0 ; i < 1 0 ; i ++)
20{ p r i n t I n t L i n e (b u f f e r [i]) ; }
21}
22e l s e
23{ p r i n t L i n e (”ERROR: o u t o f bounds ”) ; }
24}
25}

Figure 5. Buffer overflow detection during symbolic interpretation. Example
from [22]

V. EXPERIMENTS

A. Test cases and test set-up
The used test set consists of 58 small buffer overflow test

programs from the Juliet suite [22]. The test programs are
analysed with the Eclipse plug-in, using Eclipse version 4.5
(CDT 8.8.0) on a i7-4650U CPU, on 64-bit Linux kernel
3.16.0 with GNU debugger gdb version 7.7.1 [20]. The test
set contains stack based buffer overflows with memcpy() (19
test programs) and with fgets() (39 test programs). The test
programs cover all 39 Juliet flow variants for C. The results
are illustrated in Figure 6. The figure contains run-times for
correct detection only (no false positives or false negatives).
Flow variants in [22] are not numbered consecutively in order
to allow for later insertions.

The test set contains bugs which are detected during
concrete execution (memcpy()) and with input-depending
branching (e.g., flow variant 12). It also contains input-
depending bugs (with fgets()), which are detected during
symbolic interpretation using the solver (bug condition satis-
fiability check).

283Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 302 / 512

0 0.5 1 1.5 2 2.5 3 3.5 4

runtime [s]

fl
o

w
v
a
ri

a
n

t

Figure 6. Analysis run-times for correct bug detection with dynamic symbolic execution.

B. Detection accuracy

The functionality is illustrated with two source code listings
from [22]. The listings have been slightly modified to be
shorter.

Figure 4 shows an example of bug detection during con-
crete execution in the debugger. The ’bad’ function contains a
baseline bug (simplest flow variant) with memcpy in line 6.
The bug is that the size of the complete struct is used where
only the size of a contained array is meant. The debugger
breaks on the address sanitizer’s error reporting function and
the bug is correctly localized.

Figure 5 illustrates the need for pointer tracing with flow
variant 32 (’data flow using two pointers to the same value
within the same function’ [22]). The ’bad’ function contains
three variables data (declared in lines 2, 5 and 14). An
initial breakpoint is set on the fgets function call in line
7. The second data variable becomes symbolic in line 9
due to the atoi library call, so that a breakpoint is set
in line 12 (read access to this data). With an assignment
through pointer dereference in line 12 the first data variable
(from line 2) becomes symbolic. This would have been missed
without tracing the pointer targets (here the pointer assignment
in line 3). In line 12, also data_ptr2 becomes symbolic,
because it points to the now symbolic first data. Therefore
also data_ptr2 is watched, i.e., a breakpoint is set on line
14. In line 14, the third data variable becomes symbolic and
is watched, so that the debugger breaks on lines 16 (where
a constraint is collected) and 18. In line 18, solver bounds
checks are trigged for the array subscript expression, and the
buffer overflow is detected because the solver decides that the
index expression might be larger than the buffer size.

Bug detection during concrete execution depends on the
available instrumentation and run-time checks. The address
sanitizer used as example first misses a buffer overflow with
flow variant 9 (’control flow depending on global variables’),
but then detects it through reception of a segmentation fault
signal from the operating system.

The bugs are correctly detected for all flow variants apart
from variant 21 (’control flow controlled by value of a static
global variable’). For this variant, the CFG builder misclassi-
fies a branch node as dead node. This leads to missing program
paths in the analysis and consequently to a false negative
detection.

C. Speed
Figure 6 shows analysis runtimes for the buffer overflow

test cases with memcpy on the left, and with fgets on
the right. The vertical axis shows the numbering of data and
control flow variants from Juliet [22]. The horizontal axis
shows the measured runtime (wall-clock time) in seconds. The
tool needs about 1-2s for each of the memcpy test cases, and
about 20s for each of the fgets test cases. An exception is
the fgets test with flow variant 12. It contains quite a few
concatenated decisions for which both branches are satisfiable.
This leads to exponential path explosion. In addition, the
debugger execution is restarted many times from the program
start. This means that overlapping start paths are re-executed
redundantly.

VI. CONCLUSION AND FUTURE WORK

This paper presents an Eclipse CDT plug-in for automated
bug detection with dynamic symbolic execution. Software bugs
are detected with combined static and dynamic checks. As
much work as possible is transferred to a debugger, whose
execution is driven into all executable program paths. The
presented approach is applicable with native and with cross
compilation. It can be applied, e.g., with the qemu virtual
machine monitor which contains a gdb server for the guest
virtual machine. The current implementation suffers from the
path explosion problem, i.e., the number of satisfiable paths
in general grows exponentially with program length. Ongoing
work therefore aims to improve the scaling behaviour by
implementing ways to detect and prune program paths, on
which the detection of new bugs is not possible.

ACKNOWLEDGEMENT

This work was funded by the German Ministry for Educa-
tion and Research (BMBF) under grant 01IS13020.

REFERENCES

[1] J. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, 1976, pp. 385–394.

[2] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in Conference on Programming Language Design and
Implementation, 2005, pp. 213–223.

[3] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform for in-
vivo multi-path analysis of software systems,” in Int. Conf. Architectural
Support for Programming Languages and Operating Systems, 2011, pp.
265–278.

284Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 303 / 512

[4] C. Cadar, K. Sen, P. Godefroid, N. Tillmann, S. Khurshid, W. Visser,
and C. Pasareanu, “Symbolic execution for software testing in practice
– preliminary assessment,” in Int. Conf. Software Eng., 2011, pp. 1066–
1071.

[5] C. Pasareanu and W. Visser, “A survey of new trends in symbolic
execution for software testing and analysis,” Int. J. Software Tools
Technology Transfer, vol. 11, 2009, pp. 339–353.

[6] L. deMoura and N. Bjorner, “Satisfiability modulo theories: Introduction
and applications,” Communications of the ACM, vol. 54, no. 9, 2011,
pp. 69–77.

[7] ——, “Z3: An efficient SMT solver,” in Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2008, pp. 337–340.

[8] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB standard version
2.0,” in Int. Workshop Satisfiability Modulo Theories, 2010.

[9] R. Martin, S. Barnum, and S. Christey, “Being explicit about security
weaknesses,” CrossTalk The Journal of Defense Software Engineering,
vol. 20, 3 2007, pp. 4–8.

[10] T. Boland and P. Black, “Juliet 1.1 C/C++ and Java test suite,” IEEE
Computer, vol. 45, no. 10, 2012, pp. 88–90.

[11] A. Ibing, “Symbolic execution based automated static bug detection for
Eclipse CDT,” Int. J. Advances in Security, vol. 1&2, 2015, pp. 48–59.

[12] C. Cadar and K. Sen, “Symbolic execution for software testing: Three
decades later,” Communications of the ACM, vol. 56, no. 2, 2013, pp.
82–90.

[13] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler, “EXE:
Automatically generating inputs of death,” in 13th ACM Conference on
Computer and Communications Security (CCS), 2006, pp. 322–335.

[14] P. Godefroid, M. Levin, and D. Molnar, “Automated whitebox fuzz
testing,” in Network and Distributed System Security Symp. (NDSS),
2008, pp. 151–166.

[15] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI), 2008, pp. 209–224.

[16] T. Parr, Language Implementation Patterns. Pragmatic Bookshelf,
2010.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[18] E. Laskavaia, “Codan- a C/C++ code analysis framework for CDT,” in
EclipseCon, 2015.

[19] P. Piech, T. Williams, F. Chouinard, and R. Rohrbach, “Implementing
a debugger using the DSF framework,” in EclipseCon, 2008.

[20] R. Stallman, R. Pesch, and S. Shebs, “Debugging with gdb,” 2011,
[retrieved: Sept., 2015]. [Online]. Available: http://sourceware.org/gdb/
current/onlinedocs/gdb.html

[21] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A fast address sanity checker,” in USENIX Annual Technical
Conference, 2012, pp. 28–28.

[22] Juliet Test Suite v1.2 for C/C++, United States National Security
Agency, Center for Assured Software, May 2013, [retrieved: Sept.,
2015]. [Online]. Available: http://samate.nist.gov/SARD/testsuites/
juliet/Juliet Test Suite v1.2 for C Cpp.zip

285Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 304 / 512

Evaluating the Usability of Mobile Instant Messaging Apps on iOS Devices

Sergio Caro-Alvaro, Antonio Garcia-Cabot, Eva Garcia-Lopez, Luis de-Marcos, Jose-Javier Martinez-Herráiz

Computer Science Department

University of Alcala

Alcala de Henares, Spain

sergio.caro@edu.uah.es; a.garciac@uah.es; eva.garcial@uah.es; luis.demarcos@uah.es; josej.martinez@uah.es

Abstract— Instant messaging apps are experiencing a

significant upturn in recent years in mobile devices. This paper

shows the results of applying a systematic evaluation of these

applications on iOS platform that was performed to identify

their main usability issues. As a result of this evaluation some

guidelines for improving the usability of these applications are

proposed, such as a carefully designing the interface or not

exceeding more than eight (and preferably not more than six)

interactions to perform the main tasks. The results and the

guidelines proposed will help in the future to create more

effective mobile applications for instant messaging.

Keywords- Instant messaging; mobile usability; keystroke

level modeling; mobile heuristic evaluation

I. INTRODUCTION

The increased use of mobile devices [1] has led to the
number of applications (apps) available in mobile markets
has also increased significantly in recent years, such as
instant messaging (IM) apps, which have become ubiquitous
in contemporary society. To increase the chances of an app
to be chosen by users among many others it is essential that
it has a good usability. It is important to study usability in
desktop applications, but it is even more important to study it
in mobile apps because mobile devices have some
limitations when compared to personal computers (PC) [2]
[3], such as small-sized screens, limited input mechanisms,
battery life, etc. These characteristics make necessary
studying usability for mobile devices separately from
usability for PCs.

A mechanism for systematic evaluation (also called
protocol) was created by Martin et al. [4] for studying
usability in existing mobile apps, and consists of five steps:
(1) Identify all potentially relevant applications, (2) remove
light or old versions of each application, (3) identify the
primary operating functions and exclude all applications that
do not offer this functionality, (4) identify all secondary
functionality and (5) test the main functionalities using the
following methods: Keystroke-Level Modeling (KLM) for
estimating the time taken to complete each task to provide a
measure of efficiency of the applications [5] [6] and Mobile
Usability Heuristics (MUH) for identifying more usability
problems using a usability heuristic evaluation.

Since mobile IM apps are becoming widely used in
recent years, it is especially important to study the most
common usability problems in this kind of apps, in order to

get some guidelines or good practices for developers of
mobile IM apps. This paper shows a systematic evaluation of
instant messaging apps and the results obtained during this
evaluation. Finally, some recommendations are proposed
from a viewpoint of mobile usability.

The paper is organized as follows: Section 2 shows the
evaluation carried out and the results obtained in the
systematic evaluation. Section 3 presents a discussion of the
results with previous work and, finally, Section 4 explains
the recommendations and conclusions obtained from the
results.

II. EVALUATION AND RESULTS

This section shows the systematic evaluation carried out
and the different results obtained in the steps. iOS platform
(an iPhone 4) was used along the evaluation steps.

A. Steps 1 to 4

In the first step, potential and relevant applications
available in the iOS app store were identified. The “instant
messaging” term was used to search in the app market. As a
result, 243 applications were classified as potential
applications.

In the second step, the applications that were not fully
functional (i.e., demos, lite or trials) were removed from the
list of potential applications. In all, 20 applications (8%)
were removed from the initial list.

An application can be considered as instant messaging
when it meets all the main functionalities, which were
defined in Step 3 as follows:

 Task 1 (T1). Send an instant message to a specific
contact ([7]).

 Task 2 (T2). Read and reply an incoming message
([7]).

 Task 3 (T3). Add a contact ([7]).

 Task 4 (T4). Delete/Block a contact (derived from [8]
and [9]).

 Task 5 (T5). Delete chats ([10]).
Once the main functionalities were detected and defined,

the applications that did not meet all these requirements were
discarded. As a result, only 39 (18%) applications met the
main functionalities to be considered as IM applications.

In the fourth step, it was necessary to discover the
secondary functionalities on the applications selected in the
previous step (11 apps were discarded because they ran

286Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 305 / 512

anomaly with unrecoverable errors). The most common
secondary functionalities detected were including a user
profile avatar (74.36%), sending pictures (66.67%) and
sending videos (64.10%), among others.

B. Step 5-A: Keystroke-Level Modeling

In this step, the remaining applications (28 apps in total)
were reviewed in order to count the number of interactions
(KLM) required to perform each of the main functionalities
established in Step 3.

TABLE I. TOP10 KLM RESULTS: NUMBER OF INTERACTIONS

REQUIRED FOR COMPLETING THE TASKS

App v. T1 T2 T3 T4 T5 Total

Surespot

encrypted

messenger

6.00 5 5 3 4 4 21

Hike

messenger
2.5.1 5 5 5 5 4 24

HushHush

App
1.0.3 6 6 4 4 4 24

Hiapp

Messenger
1.0.6 6 6 5 5 4 26

Kik

Messenger
7.2.1 5 5 5 6 5 26

Touch 3.4.4 7 5 5 5 4 26

WhatsApp

Messenger
2.11.8 5 6 5 5 6 27

BBM 2.1.1.64 6 5 7 6 4 28

iTorChat 1.0 7 6 5 5 5 28

XMS 2.31 6 6 6 6 4 28

Mean 6.54 5.75 6.25 5.96 5.36 29.85

Table 1 only shows the top 10 with the fewest

interactions; the minimum number of interactions for
completing all tasks was 21 (Surespot encrypted messenger)
and the app with maximum (39 interactions) was Spotbros
app, but obviously it is not shown in Table 1. An average of
6 interactions for each task can also be observed.

In order to send a new message (task 1), the apps with
fewer interactions (5 interactions) obtained these results by
showing the keyboard automatically, although only 6 apps
have this feature (WhatsApp, Tuenti, IM+ Pro7, Hike,
Surespot and Kik).

All analyzed apps required between 4 and 6 interactions
to reply to a given message (task 2), except Spotbros, which
required 8 interactions because chats were shown only when
a button was pressed. The similarity in the number of
interactions is because almost all applications had a section
that contained the active chats grouped.

The most variations were observed in task 3 (adding a
contact): from 3 interactions (Surespot encrypted messenger)
to 10 interactions (Tuenti and Spotbros). This is because
some applications (11 of all apps analyzed) used the agenda
of the mobile device and others used their own contact list,
causing alternative implementations of this process, thus
requiring extra data in some cases.

Finally, for task 5 (deleting a chat) most of the examined
apps required between 4 and 6 keystrokes, due to the similar
implementation of the process.

For the next step (5.B. heuristic evaluation), not all apps
were selected to continue in the process. As in previous
studies [11]-[13], the four applications with fewer
interactions were selected for the next step. In this case,
applications with the same number of interactions were
considered as one. Therefore, 7 applications in total were
selected: Surespot (21 interactions), Hike Messenger and
HushHushApp (both 24 interactions), Kik Messenger, Hiapp
Messenger and Touch (26) and WhatsApp Messenger (27).

C. Step 5-B: Mobile Usability Heuristics

In this step, the mobile usability evaluation using
heuristics was performed. Six (6) experts carried out the
evaluation with the 7 applications selected in the previous
step. As Bastien [14] and Hwang and Salvendy [15]
indicated, from 5 to 10 users participating in the evaluation is
enough to detect at least 80% of the usability issues in
software. The Mobile Heuristic Evaluation (MHE) method
[2] is based on a study in which each expert checks whether
each application meets or not a set of directives for usability,
which includes directives about usability features of the
application that the expert has to answer, expressing their
opinion with a numeric value from 0 to 4 (where 0 indicates
that there is no problem, and 4 indicates a catastrophic
problem), which is known as Nielsen’s five-point Severity
Ranking Scale [16], and they also had to justify their scores.
The eight heuristics used were [2]: A (visibility of system
status and losability / findability of the mobile device), B
(match between system and the real world), C (consistency
and mapping), D (good ergonomics and minimalist design),
E (ease of input, screen readability and glancability), F
(flexibility, efficiency of use and personalization), G
(aesthetic, privacy and social conventions) and H (realistic
error management).

The results of the evaluation are shown in Table 2.
Applications with lower values (i.e., more usable
applications) had mostly cosmetic problems (small
obstacles) or no problems. On the other hand, applications
with higher values had mainly minor and major problems,
obstacles that affect the functionality of the application in a
regular use.

TABLE II. RESULTS OF HEURISTIC EVALUATION ON APPLICATIONS

Mobile usability heuristics results

App A B C D E F G H Total

#1a 0.08 0.28 0.92 0.67 0.13 0.42 1.58 0.00 4.08

#2b 0.92 0.61 0.67 1.00 0.23 1.17 0.50 0.39 5.48

#3c 0.00 1.17 1.67 1.42 0.70 0.50 1.25 0.89 7.59

#4d 2.54 2.17 1.75 0.58 1.03 1.50 0.50 0.61 10.69

#5e 2.63 1.61 2.08 1.17 1.33 1.25 1.67 1.00 12.74

#6f 0.00 2.00 1.67 1.92 1.07 2.08 3.17 0.89 12.79

#7g 1.00 2.39 1.75 2.08 1.57 0.67 2.33 1.44 13.23

Mean 1.02 1.46 1.50 1.26 0.87 1.08 1.57 0.75 9.51
a. WhatsApp Messenger

b. HushHushApp
c. Hiapp Messenger

287Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 306 / 512

d. Surespot encrypted messenger
e. Kik Messenger

f. Touch
g. Hike Messenger

The mean of heuristics show that G heuristic is the one

that got the worst score (Table 2), due to a (generally) bad
interface design and the lack of privacy and security
information. The second worst heuristic was C heuristic,
mainly because in some apps some objects were not
expected on the interface. On the other hand, H heuristic got
the best results, thanks to the ease on editing incorrect inputs
and also the ease on recovering from errors. The E heuristic
was the second best rated because of the ease on entering
numbers, as well as it shows a back button on the screens
and (mainly) the ease on navigation through the screens.

Finally, it is worth mentioning that a low number of
interactions does not necessarily imply that the application
has not usability problems. For instance, Hike messenger had
24 interactions and was the second best app on KLM results,
whereas it was the worst app according to the MHE results.
This implies that both techniques should be applied in order
to evaluate the usability of an application.

III. DISCUSSION

In this section, the results and analysis carried out will be
discussed. Firstly, we could compare the results obtained
with those from two similar studies performed using a
similar method: one for spreadsheet apps [13] and another
one for diabetes management apps [12].

Step 1 (potentially relevant applications) produced 23
spreadsheet apps, 231 diabetes apps and we found 243 IM
apps. The low number of apps in the spreadsheet study may
be due to a more concrete term. Step 2 (delete light or old
versions) discarded 9 (4.05%) diabetes apps and we
discarded 20 (8.97%) IM apps. This variation may be due to
IM apps are more popular. The analysis for spreadsheet apps
does not indicate the number of discarded apps in step 2.
Step 3 (identify main functionalities) got 12 (52.17% from
step 1) spreadsheet apps, 8 (3.46%) diabetes apps and we
obtained 39 (16.04%) IM apps. This difference can be due to
the increasing number of applications or to the main
functionalities chosen (different for each type of application).

Step 5A (KLM analysis) revealed that, in average, the
tasks in spreadsheet apps took between 2.1 and 4
interactions, in diabetes apps they took between 3.16 and
6.33 interactions and in IM apps they took between 4.2 and
7.8 interactions.

Regarding the MHE (Step 5B), the study on spreadsheet
applications was not performed. In diabetes apps, the main
usability issues detected were related to heuristics G and H,
and related to IM apps were about heuristics B, C and G.
These results on the heuristics suggest that the design is
generally not good and it can be improved.

The methodology used has a number of advantages [4,
11], but it also has some disadvantages and limitations, for
instance: some steps take a long time and can be tedious to
perform, large number of elements in the initial stages,
results are time sensitive, etc. Furthermore, detecting all
usability issues in this kind of experiment is not possible

because the context of use is not taken into account [3] [14]
but, on the contrary, as a laboratory experiment there is more
control over the usability issues detected. An important
limitation of this study is that it was conducted only on the
iOS platform. On other platforms, different results could be
obtained.

IV. CONCLUSIONS AND FUTURE WORK

According to the results of the KLM, sending a message,
replying to a message and adding contacts are usually the
fastest functionalities to be completed. Moreover, deleting a
contact or a chat usually becomes a serious problem. The
applications with lower levels of interactions were (from
lowest to highest) Surespot encrypted messenger, Hike
Messenger, HushHushApp, Kik Messenger, Touch, Hiapp
Messenger and WhatsApp Messenger.

Regarding the Mobile Heuristic Evaluation with mobile
experts, almost all applications had usability problems in
performing the primary tasks. WhatsApp Messenger and
HushHushApp obtained the best usability ratings. On the
other hand, hike Messenger, Kik Messenger and Touch were
negatively evaluated and presented critical usability, but did
it well in KLM. This suggests that it is necessary to perform
both the KLM and Heuristic Evaluation methods because if
the results were based only in KLM the applications chosen
would have many usability problems.

After finishing the study, we can propose some
recommendations to improve the usability of instant
messaging apps in mobile devices. Firstly, based on the
KLM results, we can suggest the following
recommendations:

 Each task should not exceed more than 5 or 6
interactions. It was observed that more than 8
interactions cause confusion in performing a task.

 Specifying the ID of a contact (username, phone
number or email) should be enough for adding a
contact. Other options (extra data such as name, last
name, location, etc.) should be optional.

The heuristic evaluation results led us to propose the
following guidelines:

 The interface should be carefully designed to ensure
that all elements of the app are properly displayed in
any position.

 Do not tolerate unrecoverable errors. It is always better
displaying an error message than an unexpected
shutdown of the app.

The usability recommendations proposed are a valuable
resource for mobile app developers because they will
improve the usability of their IM apps in mobile devices,
thus achieving more downloads and users of their apps. As a
future work, a new analysis will be carried out on other
existing mobile platforms (e.g., Android) to compare results.
Finally, after that we are planning to develop a mobile
instant messaging application meeting the recommendations
proposed, which will solve the main usability problems
identified in existing applications.

288Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 307 / 512

ACKNOWLEDGMENT

Authors want to acknowledge support from the
University of Alcala (TIFYC and PMI research groups).

REFERENCES

[1] M. L. Smith, R. Spence, and A. T. Rashid, Mobile phones and

expanding human capabilities. Information Technologies &
International Development, 7(3), 2011, pp. 77-88.

[2] E. Bertini, et al., “Appropriating heuristic evaluation for
mobile computing,” International Journal of Mobile Human
Computer Interaction (IJMHCI), 1(1), 2009, pp. 20-41.

[3] D. Zhang, and B. Adipat, “Challenges, methodologies, and
issues in the usability testing of mobile applications,”
International Journal of Human-Computer Interaction, 18(3),
2005, pp. 293-308.

[4] C. Martin, D. Flood, and R. Harrison, “A Protocol for
Evaluating Mobile Applications,” Proceedings of the IADIS,
2011.

[5] E. Abdulin, “Using the keystroke-level model for designing
user interface on middle-sized touch screens,” in CHI'11
Extended Abstracts on Human Factors in Computing
Systems. ACM. 2011, pp. 673-686.

[6] D. Kieras, Using the keystroke-level model to estimate
execution times. University of Michigan, 2001.

[7] B. A. Nardi, S. Whittaker, and E. Bradner. “Interaction and
outeraction: instant messaging in action,” in Proceedings of
the 2000 ACM conference on Computer supported
cooperative work.. ACM. 2000, pp. 79-88.

[8] R. E. Grinter, and L. Palen. “Instant messaging in teen life,”
in Proceedings of the 2002 ACM conference on Computer
supported cooperative work. ACM. 2002, pp. 21-30.

[9] C. Lewis, and B. Fabos, “Instant messaging, literacies, and
social identities,” Reading research quarterly, 40(4), 2005, pp.
470-501.

[10] B. S. Gerber, M. R. Stolley, A. L. Thompson, L. K. Sharp, M.
L. Fitzgibbon, “Mobile phone text messaging to promote
healthy behaviors and weight loss maintenance: a feasibility
study,” Health informatics journal, 15(1), 2009, pp. 17-25.

[11] C. Martin, et al., “A systematic evaluation of mobile
applications for diabetes management,” in Human-Computer
Interaction–INTERACT 2011. Springer, 2011, pp. 466-469.

[12] E. Garcia,, C. Martin, A. Garcia, R.Harrison, D. Flood,
“Systematic Analysis of Mobile Diabetes Management
Applications on Different Platforms,” Information Quality in
e-Health, 2011, pp. 379-396.

[13] D. Flood,, R. Harrison, C. Martin, K. McDaid, “A systematic
evaluation of mobile spreadsheet apps,” in IADIS
International Conference Interfaces and Human Computer
Interaction. 2011.

[14] J. Bastien, “Usability testing: a review of some
methodological and technical aspects of the method,”
International Journal of Medical Informatics, 79(4) , 2010, pp.
e18-e23.

[15] W. Hwang, and G. Salvendy, “Number of people required for
usability evaluation: the 10±2 rule,” Communications of the
ACM, 53(5), 2010, pp. 130-133.

[16] E. DIN, 9241-11. Ergonomic requirements for office work
with visual display terminals (VDTs)–Part 11: Guidance on
usability. International Organization for Standardization,
1998.

289Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 308 / 512

Multi-Criteria Test Case Prioritization Using Fuzzy Analytic Hierarchy Process

Sahar Tahvili∗†, Mehrdad Saadatmand∗, Markus Bohlin∗

∗Swedish Institute of Computer Science (SICS), SICS Swedish ICT Västerås AB, Sweden
†Mälardalen University, Västerås, Sweden

Email: {sahart, mehrdad, markus.bohlin}@sics.se

Abstract—One of the key challenges in software testing today is
prioritizing and evaluating test cases. The decision of which test
cases to design, select and execute first is of great importance,
in particular considering that this needs to be done within tight
resource constraints on time and budget. In practice, prioritized
selection of test cases requires the evaluation of different test case
criteria, and therefore, test case prioritization can be formulated
as a multi-criteria decision making problem. As the number
of decision criteria grows, application of a systematic decision
making solution becomes a necessity. In this paper, we propose
an approach for prioritized selection of test cases by using the
Analytic Hierarchy Process (AHP) technique. To improve the
practicality of the approach in real world scenarios, we apply
AHP in a fuzzy environment so that criteria values can be
specified using fuzzy variables when precise quantified values
are not available. One of the advantages of the proposed decision
making process is that the defined criteria with the biggest and
most critical role in priority ranking of test cases is also identified.
We have applied our approach on an example case in which
several test cases for testing non-functional requirements in a
systems are defined.

Keywords–Software testing, Test case prioritization, MCDM,
Fuzzy AHP, NFR, Fault detection.

I. INTRODUCTION

As the role of software systems in our daily life grows, it
becomes more and more important to evaluate and guarantee the
quality of such products and ensure that they correctly operate
and provide their expected functionality. One way toward this
goal is testing of the software product before releasing it to the
customers. In simple terms, testing basically means execution
of the software system and code with controlled input, in order
to evaluate its quality and identify potential problems in it.
Through testing, we can increase our confidence in the quality
of the product.

In this context, it is reasonable to assume that the more tests
that are performed out of a diverse and high-quality test suite,
the greater should be our confidence in the product quality be.
But in practice, there is usually limited resources (in terms of
time, budget, personnel, etc.) available and allocated for testing
activities.

Among different testing activities, our focus in this paper,
is on the prioritization of test cases in a test suite, regardless of
how they are created (i.e., manually implemented, automatically
generated, or a mixed approach). Considering such resource
limitations, it becomes very important that from all possible
test cases that can be considered for a system, a good subset,
which fits the available resources will be selected. Selection of
appropriate test cases from a test suite can be done based on a
number of different criteria. Considering that in practice and
in industrial settings a test suite can consist of a large number

of different test cases, it is necessary to apply a systematic
approach for the selection of appropriate test cases (based on
the identified criteria) from the set of all test cases existing in
the test suite.

Generally, the term test case selection is used to refer to
the techniques which aim to reduce the number of test cases
that are executed. Test case prioritization techniques, on the
other hand, are used to order test cases in a way that the most
important ones, i.e., those which can lead to a higher and
increased rate of fault detection are run earlier [1]–[3]. Test
case prioritization can be particularly necessary in performing
regression testing which is also an expensive testing process [2],
[4] where (some) test cases are selected and executed several
times.

In [5], we have introduced an approach for prioritization
of test cases based on the result from model-based trade-
off analysis of non-functional requirements. In that approach,
by performing analysis on the model of non-functional re-
quirements, parts of the system that can have more severe
problems with respect to the satisfaction of such requirements
are identified. This is done by calculating a deviation indicator
value for non-functional requirements as part of the model
analysis.

Then, assuming that a cost-effort value for each test case and
a total cost-effort budget to perform testing activities are known,
we prioritize test cases that target requirements with higher
deviation indicator value (thus potentially more problematic
parts of the system) while fitting the total cost-effort budget
available (prioritization and selection).

In this paper, the test case prioritization part of our work
in [5] is extended to enable prioritization decisions based
on multiple criteria. To enable this, we apply the Analytic
Hierarchy Process (AHP) technique. The importance of multi-
criteria test case prioritization solutions is also recognized and
emphasized in the literature, see for example [6].

Since in practice it is generally hard or sometimes impos-
sible to provide precise values for different criteria [7] and
properties of a test case such as fault detection probability, we
apply AHP in a fuzzy environment so that users can specify
criteria values in the form of fuzzy variables (e.g., high, low,
etc.) and thus make the overall approach more practical and
usable in real scenarios.

The term decision making in a fuzzy environment means
a decision making process in which the goals and/or the
constraints, but not necessarily the system under control, are
fuzzy in nature. This means that the goals and/or the constraints
constitute classes of alternatives whose boundaries are not
sharply defined [8].

290Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 309 / 512

While in this paper a particular set of criteria are selected
based on which prioritization decisions are made, the fuzzy
AHP approach can be well used for any other set and number
of criteria. It should also be noted that in this context, our
test case prioritization approach in this paper, prioritizes and
orders test cases based on various criteria and not necessarily
and merely based on their early rate of fault detection, which
provides thus a broader scope of prioritization than what is
defined, for instance, in [1], [3] for test case prioritization.

Another important property of the approach is that the
most critical decision criterion, i.e., the criterion which has the
biggest role in the ranking of test cases, is also identified. The
main contributions of the paper are thus the following:

• a novel multi-criteria test case prioritization method
based on AHP,

• application of the method in a fuzzy environment to
relax the need of having precise values for criteria,

• an illustration of the method using a case study on
laptop customization, and

• a brief analysis and discussion of the results.

The remainder of the paper is structured as follows. In
Section I-A, the related literature is reviewed. Section II gives
the theoretical background for fuzzification and fuzzy multiple-
criteria decision-making. In Section III, the proposed approach
and suitable test-case properties are described. Section IV gives
an example of applying fuzzy AHP to the testing of non-
functional properties of a customized laptop computer system.
Finally, Section V gives conclusions and recommendation for
future research.

A. Related Work
In [3], [4] the initial problem has been assumed as a

single criterion decision making problem. In [4] test cases have
been prioritized by the rate of fault detection and the authors
used a weighted average of the percentage of faults detected,
which is not a direct measure of the rate of fault detection. In
[3] the authors used a code-coverage based greedy algorithm
for prioritizing the test cases. Since single criterion decision
making is hard to cover a larger or more complex problem,
we investigate multi-criteria prioritization in the present work.
Techniques of multi-criteria decision making are in contrast
able to cover a large number of criteria for several test cases.
We further define the initial problem in a fuzzy environment by
using the linguistic variables. The effect of the criteria on the
test cases have been interpreted as a fuzzy set which allows
the expression of imprecise properties.

II. BACKGROUND & PRELIMINARIES

Testing an embedded system is a costly activity in terms of
time and budget consumption. Considering these two limiting
factors in testing of a system and the aim of companies to reduce
time-to-market for their products, only a certain number of test
cases can be selected to execute. In this section, we introduce
AHP as a suitable decision making technique and redefine this
method in a fuzzy environment. The AHP applies a Decision
Support System (DSS) model in selection of alternatives. DSS
is a computer based information system which supports data
mining, decision modelling and prioritization to solve structured
and unstructured problems [9].

A. Fuzzification
Fuzzy truth represents membership in vaguely defined

sets, and variables over these sets are called fuzzy variables.
From a user perspective, fuzzy properties are often described
using linguistic variables. This section outlines the process of
transforming a linguistic value into a fuzzy value. For a full
introduction to fuzzy mathematics [10].

Definition 1: A linguistic variable indicates a variable
whose values are words or sentences in a natural or artificial
language [11].
As an example, a fuzzy property such as age could be described
using the values “young”, “fairly old”, and “middle-aged”.

Fuzzification consists of the process of transforming the
linguistic variables to fuzzy sets [12]. We use grade of
membership to associate a value, indicating the degree of truth,
to each linguistic term. Some basic concepts of fuzzy logic
which are relevant for this work is based on the definitions
provided by Zadeh [13], Yun Shi [12], Yang [14] and Kerre
[15], and are revisited here briefly.

Definition 2: A fuzzy set is a pair (A,mA) where A is a
set and mA : A→ [0, 1]; for each x ∈ A, mA(x) is called the
grade of membership of x in (A,mA).

The grades of membership of 0 and 1 correspond to the
two possibilities of truth and false in an ordinary set [13].

Let x ∈ A; then x is called fully included in the fuzzy set
(A,mA) if mA(x) = 1 and is called not included if mA(x) = 0.
The set {x ∈ A | mA(x) > 0} is called the support of (A,mA)
and the set is called a kernel, where x is a fuzzy member if
0 < mA(x) < 1 (see [14]).

One-dimensional membership functions have different
shapes such as triangular, trapezoidal or Gaussian shape. In
this paper, we use five triangular-shaped membership functions,
illustrated in Figure 1.

mA

0

1

1 3 5 7 9

Very Low Low Medium High Very High

Figure 1. The five fuzzy membership functions for the linguistic variables

Definition 3: A triangular fuzzy number (TFN) can be
defined as a triplet M = (l,m, u) where l,m, u are real
numbers and l indicates low bound, m is modal and u represents
a high bound [16].

B. Fuzzy Multiple Criteria Decision Making
Multi-criteria decision making (MCDM) for structuring

decision problems and evaluating alternatives provides a rich
collection of methods [17]. The decision maker’s role in the
decision making situations is to evaluate the effect of different
criteria on the existing alternatives to choose the best one
among them. In addition, the decision makers will need to
choose an appropriate technique for decision making, which
depends on the problem statement, limitation and constraints.

Since Zadeh and Bellman and a few years later Zimmer-
mann developed the theory of decision support systems in
a fuzzy environment, different techniques such as TOPSIS

291Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 310 / 512

(The Technique for Order of Preference by Similarity to Ideal
Solution), QSPM (Quantitative Strategic Planning Matrix), AHP
and etc., have been developed for solving various multi-criteria
decision making problems [18].

In the present work, we use the fuzzy analytic hierarchy
process (FAHP), for solving our problem. The AHP approach
is an example of a heuristic algorithm, which based on the
comparison matrix with triangular fuzzy numbers (TFN). Here,
we provide a summary of how AHP is extended in a fuzzy
environment.

As some other decision making techniques, AHP has also
some weak points. One of the disadvantages of AHP is possible
disagreement between decision makers. If, for example, more
than one decision maker is working on the decision support
system, different viewpoints about the linguistic variables of
each criterion can complicate matters [19]. Therefore, using
a TFN instead of a constant has been suggested as a good
solution. By using Table I, the decision makers are able to
interpret the linguistic variables in the form of TFNs.

TABLE I. THE FUZZY SCALE OF IMPORTANCE

Fuzzy number Description Triangular fuzzy scale Domain mA(x)

9̃ Very High (7, 9, 9) 7 ≤ x ≤ 9 (x − 7)/(9 − 7)

7̃ High (5, 7, 9) 7 ≤ x ≤ 9 (9 − x)/(9 − 7)
5 ≤ x ≤ 7 (x − 5)/(7 − 5)

5̃ Medium (3, 5, 7) 5 ≤ x ≤ 7 (7 − x)/(7 − 5)
3 ≤ x ≤ 5 (x − 3)/(5 − 3)

3̃ Low (1, 3, 5) 3 ≤ x ≤ 5 (5 − x)/(5 − 3)
1 ≤ x ≤ 3 (x − 1)/(3 − 1)

1̃ Very Low (1, 1, 3) 1 ≤ x ≤ 3 (3 − x)/(3 − 1)

As Table I represents, every linguistic variable has been
defined by a TFN. In some disagreement situations, the
geometric mean of the TFNs can be used as a final agreement.
As mentioned earlier, AHP is based on a series of pairwise
comparisons of alternatives and criteria.

In a fuzzy environment, the linguistic variables that we have
defined in Table I based on the standard 9-unit scale [16], are
used to make the pairwise comparisons. The fuzzy comparison
matrix A = (ãij)n×n can be formulated and structured as [20]:

A =


(111) ã12 . . . ã1n
ã21 (111) . . . ã2n

...
...

. . .
...

ãn1 ãn2 . . . (111)

 (1)

where ãij (i = 1, 2, ..., n, j = 1, 2, ...,m) is an element of the
comparison matrix and the reciprocal property of the compari-
son matrix is defined as ãij = ã−1ij . The pairwise comparisons
need to be applied on every criteria and alternatives, and the
values for ãij come from a predefined set of fuzzy scale value
as showed in Table I. Then ãij represents, a TFN in the form
of ãij = (lij ,mij , uij) and matrix A consists of the following
fuzzy numbers:

ãij =

{
1 i = j
1̃, 3̃, 5̃, 7̃, 9̃ or 1̃−1, 3̃−1, 5̃−1, 7̃−1, 9̃−1 i 6= j

After we create the comparison matrix A, we need to find a
priority vector of matrix A.

To make it, we need to calculate the value of fuzzy synthetic

extent S̃i for each row in matrix A by [16]:

S̃i =

m∑
j=1

ãij ⊗

[
n∑

i=1

m∑
j=1

ãij

]−1
(2)

where ãij is a TFN, ⊗ is the fuzzy multiplication operator and:

m∑
j=1

ãij =

(
m∑
j=1

lij ,

m∑
j=1

mij ,

m∑
j=1

uij

)
,∀i = 1, 2, ..., n, (3)

also[
n∑

i=1

m∑
j=1

ãij

]−1
=

(1
n∑

i=1

m∑
j=1

uij
,

1
n∑

i=1

m∑
j=1

mij
,

1
n∑

i=1

m∑
j=1

lij

)
(4)

now we can compute the degree of possibility for the TFNs.

Definition 4: Let ã1 = (l1,m1, u1) and ã2 = (l2,m2, u2)
be two TFNs, the degree of possibility of ã1 to ã2, V (ã2 ≥ ã1),
can be obtained as [16]:

V (ã2 ≥ ã1) =


1 if m2 ≥ m1,

0 if l1 ≥ u2,
l1 − u2

m2 − u2 +m1 − l1
otherwise.

(5)

then the degree of possibility for a convex fuzzy number can
be calculated by:

V (ã2 ≥ ã1) = hgt(ã1 ∩ ã2) =
l1 − u2

m2 − u2 +m1 − l1
= d (6)

where d is the ordinate of the highest intersection point between
ã1 and ã2 (see Figure 2) and the term hgt indicates the height
of fuzzy numbers on the intersection of ã1 and ã2 (see [16]).

0

1

V (ã2 ≥ ã1)

l2 m2 m1

ã2 ã1

d

u1xdl1 u2

Figure 2. The degree of possibility for ã2 ≥ ã1

Point xd in Figure 2 indicates the point in the domain of ã1
and ã2 where the ordinate d is found [16]. Finally, we measure
the weight vector for the criteria, assuming:

d′(Ai) = min V (S̃i ≥ S̃j), j = 1, 2, ..., n, j 6= i

where Ai(i = 1, 2, . . . ,m) are the m decision alternatives and
n is the number of criteria, then the weight vector is obtained
by [16]:

W ′(Ai) = (d′(A1), d
′(A2), ..., d

′(Am))T , Ai(i = 1, 2, ...,m)
(7)

By normalizing Eq. (7) we are able to compute the

292Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 311 / 512

normalized weight vectors [21]:

W (Ai) = (d(A1), d(A2), ..., d(An))
T (8)

where W is a non-fuzzy number and represents the arrangement
of the alternatives.

Also by dividing the normalized weight for every criteria
on the sum of the normalized weight vectors, we are able to
compute the importance degrees of the criteria:

WCj
=

W (Aj)∑n
i=1 W (Ai)

, j = 1, ..., n (9)

where WCj
represents the importance degrees of a criterion

and n is the number of criteria.
In the next section through an example, we use FAHP by

the mentioned equations for solving a multi criteria decision
making problem.

III. PROPOSED APPROACH

In this section, we describe our approach on how to use
FAHP to prioritize test cases. AHP serves as a powerful tool
in calculating weights to solve a multi-criteria decision making
problem, but this method is not able to handle uncertainty
in the decision problems and also ranking of AHP is partly
imprecise [22]. To solve decision making problems which
consist of uncertainty and vagueness, fuzzy sets provides a
pairwise comparison as an extension which provides a more
accurate description of the linguistic variables within the process
of decision making [22].

We summarize the steps of our approach for solving a
typical DSS problem in the following points:

1) Criteria Identification
2) Alternative Determination
3) Effect Measurement
4) Fuzzification
5) Apply AHP Technique for DSS

In the first step of the proposed approach, we need to identify
different criteria which have direct effect on the alternatives, a
typical decision making problem can be defined as single or
multiple criteria.

In the second step, we define and analyse some possible
solutions which are referred to the alternatives.

In the third step, we measure the effect of the criteria on
the every single alternatives, to perform this part, we can use
linguistic or numerical variables, which depends on the decision
making situation.

In the fuzzification part, we interpret our measurement into
a fuzzy set by using fuzzy rules and reasoning. Note that the
fuzzification part only applies to the linguistic variables, if we
have some numerical or sharp values for the effect measurement
part, we jump to the last step, which is applying a decision
making technique to solve the initial problem.

As last step, we suggest AHP technique for DSS, other
decision making technique such as TOPSIS, which covers the
fuzzy rules, can be applied in this part.

In our previous work [5], we assumed the cost-effort of the
test case as the only criterion in the decision making process.
The cost-effort estimation for a test case could, for example,

be the time, effort, and functional cost and budget that needs
to be spent to perform each test.

In the present work, we assume a multiple-criteria decision
making problem. The following set of test case properties are
considered in this work as the main criteria for prioritization
of test cases in the form of solving a DSS problem. The
approach is not, however, limited to any particular set of test
case properties as decision making criteria. In different systems
and contexts users can have their own set of key test case
properties based on which prioritization is performed.

• Cost efficiency (C1) is used to capture the cost of
a test case implementation, hardware setup cost, test
case configuration cost (environment parameters), etc.
The higher the cost efficiency degree of a test case,
the more favorable it is.

• Time efficiency (C2) is used to refer to a test case
total execution time, test environment setup time and
test case creation time. A test case with higher time
efficiency is considered less time-costly.

• Requirements coverage (C3) represents the number
of requirements tested and covered by the test case.

• Fault detection probability (C4) indicates the average
probability of detecting a fault by each single test case.

• Verdict Conclusiveness (C5) shows how conclusive
and informative the verdict and result of a test case is.
This is particularly interesting and more important for
extra-functional aspects of a system where the meaning
of a pass or fail result should be carefully investigated;
for instance, a failure for user-friendliness or scalability
[23].

• Deviation Indicator (C6) is not per se and directly
a property of a test case but that of a requirement.
We have defined it in our previous work in [5] as the
deviation degree of a requirement’s satisfaction level
from its ideal satisfaction level, i.e., when it is fully
satisfied. It is calculated during the analysis of the
requirements model. As it indicates which parts of a
system can potentially have more severe problems with
respect to the satisfaction of the requirements, we also
include and use this property as one of the decision
making criteria in the example case in this paper to
also prioritize for test cases that target requirements
with higher deviation indicator value.

IV. CASE SCENARIO

In this section, through an example, we show how it
becomes possible to use the result of model-based analysis to
guide testing efforts. Hence, test cases can be prioritized by
applying Fuzzy AHP. The application of the non-functional
requirements (NFR) profile in building and customizing a laptop
computer product, has been simulated by Figure 3. There are
several non-functional requirements that are defined for this
system such as low boot-up time, increased battery life and
security and to satisfy each, several features are used and
applied.

For example, to satisfy the security requirement, having the
option to use the BIOS password checking at start up time and
also finger print mechanism for authentication are considered.
However, the use of such features has also impacts on other
parts of the system. For example, using a password check during

293Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 312 / 512

Figure 3. Analyzed model of the laptop system (Case Scenario)

the boot-up process affects the requirement to have low boot-
up time negatively. Similarly, adding the finger print feature
will add to the energy consumption of the system and thus
affects the battery life time. These impacts and dependencies
are established using the NFRImpacts links which are shown
in red colour in Figure 3. The magnitudes of these impacts
are stated on each of these links through the impactValue
property. Customer preferences are captured by setting the
priority properties. To test this system, there are 10 various
test cases that target and cover its different requirements. As
first step in the proposed approach, we need to identify the
effective criteria and determine different alternatives.

Let A = {TC1, TC2, . . . , TC10} be the set of test cases
(alternatives) and C = {C1, C2, C3, ..., C6} represents a set of
the criteria that mentioned in proposed approach where C1 =
Cost efficiency, C2 = Time efficiency, etc.

Figure 4 illustrates the relationships between the criteria
and various test cases, as we see, the situation of decision
making is symmetric where every criteria have a direct effect
on every single test cases. The goal of this DSS problem is test
cases prioritization. In the third step, we measure the effect of

C1Criteria: C2

TC1Alternatives:

C3

TC2

Test Case PrioritizationGoal:

C4 C5 C6

TC3 TC10...

Figure 4. AHP hierarchy for prioritizing test cases

the criteria on the every single test cases. This effect has been
assumed by the linguistic variables (e.g., low, high, etc.) and
has been summarized in Table II.

TABLE II. THE PAIRWISE COMPARISON MATRIX FOR THE CRITERIA,
WITH VALUES VERY LOW(VL), LOW (L), MEDIUM (M), HIGH (H)

AND VERY HIGH (VH)

Test Case Req. ID C1 C2 C3 C4 C5 C6
TC1 RQ2 H H VH H VH H
TC2 RQ1 M M H M M VH
TC3 RQ1 M H H H VH L
TC4 RQ3 VL H M H H VH
TC5 RQ2 VH M M VH H VH
TC6 RQ3 L H VH H VH M
TC7 RQ1 M L L VH H H
TC8 RQ3 VL H H M M VH
TC9 RQ3 L VH VH M M L
TC10 RQ2 VH H M H VH M

The data in Table II are an empirical validation of the
criteria effects. In the fuzzification phase (step 4), we interpret
the effect of the various criteria on the test cases to a fuzzy
set, to do these, Figure 1 and Table I have been used. As last
step of the proposed approach, we apply AHP technique for
prioritizing the test cases by using Eqs. (1) to (8).
The fuzzy pairwise comparison matrices for the alternatives
and criteria becomes as follow by using Eq. (1):

C1 =



A1 A2 · · · A10

A1 1̃ 2̃ . . . 2̃−1

A2 2̃−1 1̃ . . . 3̃

.

.

.

.

.

.

.

.

.
. . .

.

.

.
A10 2̃ 3̃−1 . . . 1̃

 C2 =



A1 A2 · · · A10

A1 1̃ 2̃−1 . . . 5̃
A2 2̃ 1̃ . . . 3̃

.

.

.

.

.

.

.

.

.
. . .

.

.

.
A10 5̃−1 3̃−1 . . . 1̃



C3 =



A1 A2 · · · A10

A1 1̃ 4̃ . . . 1̃

A2 4̃−1 1̃ . . . 1̃

.

.

.

.

.

.

.

.

.
. . .

.

.

.
A10 1̃−1 1̃−1 . . . 1̃

 C4 =



A1 A2 · · · A10

A1 1̃ 6̃ . . . 2̃

A2 6̃−1 1̃ . . . 3̃

.

.

.

.

.

.

.

.

.
. . .

.

.

.
A10 2̃−1 3̃−1 . . . 1̃



C5 =



A1 A2 · · · A10

A1 1̃ 8̃ . . . 1̃

A2 8̃−1 1̃ . . . 2̃

.

.

.

.

.

.

.

.

.
. . .

.

.

.
A10 6̃−1 3̃−1 . . . 1̃

 C6 =



A1 A2 · · · A10

A1 1̃ 5̃ . . . 9̃

A2 6̃−1 4̃−1 . . . 7̃

.

.

.

.

.

.

.

.

.
. . .

.

.

.
A10 9̃−1 8̃−1 . . . 1̃



TFNs are calculated by using Eq. (3) as explained in the
background section:

n∑
i=1

m∑
j=1

ãij = (43.1, 72.4, 98.5)

and also Eq. (4) gives us the inverse of numbers: n∑
i=1

m∑
j=1

ãij

−1 = (0.023, 0.013, 0.010)

the value of fuzzy synthetic extent S̃i can be obtained by using
Eq. (2):

S1 = (0.01, 0.09, 0.11), S2 = (0.02, 0.0.24, 0.21)

S3 = (0.01, 0.02, 0.03), S4 = (0.06, 0.23, 0.24)

S5 = (0.03, 0.33, 0.36), S6 = (0.01, 0.15, 0.18)

we determine the weight rating for each criteria by using Eq. (5),

294Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 313 / 512

define Vij = V (S̃i ≥ S̃j) then:

V12 = 1, V13 = 1, V14 = 1, V15 = 1, V16 = 1

V21 = 0.67, V23 = 1, V24 = 1, V25 = 1, V26 = 1

...
V61 = 0.66, V62 = 0.48, V63 = 0.20, V64 = 0.90, V65 = 0.07

In this step, we compute the normalized and unnormalized
weights for the criteria by using Eqs. (7), (8). The results have
been summarized in Table III:

TABLE III. THE WEIGHT OF THE CRITERIA

Criteria Unnormalized Weight Normalized weight
C1 0.58 0.02
C2 0.67 0.25
C3 0.28 0.01
C4 0.97 0.36
C5 0.02 0.22
C6 0.07 0.10

In the next step we compare the weights for every single
criteria with the alternatives, to avoid lengthy calculations we
summarize the result in Table IV.

TABLE IV. COMPARISON THE WEIGHTS OF ALTERNATIVES WITH
CRITERIA

Criteria C1 C2 C3 C4 C5 C6
Weight 0.02 0.25 0.01 0.36 0.22 0.10
A1 0.333 0.096 0.460 0.520 0.595 0.409
A2 0.123 0.010 0.121 0.012 0.009 0.203
A3 0.201 0.014 0.198 0.258 0.239 0.257
A4 0.224 0.023 0.332 0.402 0.321 0.298
A5 0.233 0.025 0.351 0.430 0.475 0.319
A6 0.205 0.017 0.207 0.261 0.237 0.252
A7 0.221 0.020 0.210 0.298 0.245 0.264
A8 0.144 0.012 0.132 0.022 0.111 0.218
A9 0.104 0.003 0.110 0.008 0.005 0.098
A10 0.226 0.015 0.232 0.309 0.311 0.248

By normalizing the values in Table IV, we are able to
prioritize the test cases, the result has been illustrated in
Figure 5:

Test case 9

Test case 2

Test case 8

Test case 3

Test case 6

Test case 7

Test case 10

Test case 4

Test case 5

Test case 11. (0.145)

2. (0.119)

3. (0.118)

4. (0.110)

5. (0.100)

6. (0.097)

7. (0.093)

8. (0.076)

9. (0.070)

10. (0.068)

Figure 5. Test cases prioritization result

As can be seen, test case number 1 has the highest weight
0.145 among the test cases and it tests the requirement number
2. The proposed DSS approach prioritizes the test cases as the
following set:

{TC1, TC5, TC4, TC10, TC7, TC6, TC3, TC8, TC2, TC9}.

Moreover, via Eq. (9), the importance degrees of the criteria
are computed and summarized in Table V.

TABLE V. CRITERIA IMPORTANCE

Criteria Importance
1. Fault Detection 0.37
2. Time Efficiency 0.26
3. Verdict Conclusiveness 0.22
4. Deviation Indicator 0.10
5. Cost Efficiency 0.02
6. Requirement Coverage 0.01

As can be seen, fault detection is identified as the most
critical decision criterion which has the highest weight 0.37
among all the criteria.

As mentioned earlier, the most critical criterion is the one
for which the smallest change in its current weight will alter
the existing ranking of the alternatives [24].

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a test case prioritization
approach based on the fuzzy AHP decision making technique.
Our approach enables to rank test cases based on a set of
criteria and is particularly necessary when there is a limitation
(due to resource constraints) in selection and execution of test
cases for a system and it is not possible to run all the test
cases. We demonstrated how the approach is applied using an
example set of test case properties including cost efficiency, time
efficiency, verdict conclusiveness, etc., that serve as criteria in
the prioritization process. The approach is not, however, limited
to this particular set of criteria. The extension and use of AHP in
a fuzzy environment allows to specify the degree of a criterion
in each alternative (i.e., a test case) using linguistic variables
which relaxes the need of the users of the approach to specify
precise quantified values. This can improve the practicality and
adoption of the approach; for instance, where only estimated
and imprecise data are available. As part of the decision making
process, it was also identified which of the chosen criteria has
a higher role in determining the ranking of the test cases. Use
of this information on importance degree of each criteria in
other analyses of test cases would be another interesting topic
to further investigate.

As a future work, we are also going to examine other multi-
criteria decision making techniques in prioritization of test cases.
As another research direction of this work, finding a solution to
apply a test case prioritization approach as part of the test case
generation process would be an ideal scenario. Having such a
solution would then enable to only generate a set of test cases
which are analysed and deemed as feasible to execute with
respect to the available resources for test execution. As for other
works on test case prioritization techniques in the literature,
generally fault detection rate is mainly used as the single
important criterion in prioritizing and ranking of test cases.
In this paper, we have considered test case prioritization in a
broader aspect covering various and multiple criteria. Also in the
application of the proposed approach, same priority level and
importance was considered for all the criteria. If in a different
context, one or more criteria are considered more important than
the others (e.g., fault detection), a higher importance degree can
be assigned to them during the pair-wise comparison process
of the criteria. Considering the dependencies that can exist
between test cases is also another extension of this work which
we are currently investigating. Such dependency information

295Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 314 / 512

can as well be used in prioritization and ordering the execution
of test cases. Therefore, there is the potential to combine and
include it as another criterion in the decision making solution
we proposed in this paper or use it in a separate step before or
after the prioritization based on the other criteria.

VI. ACKNOWLEDGEMENTS

This work was supported by VINNOVA grant 2014-03397
through the IMPRINT project and the Swedish Knowledge
Foundation (KKS) through the TOCSYC project. We would also
like to thank Stig Larsson, Wasif Afzal and Daniel Sundmark
for their constructive help and comments.

REFERENCES

[1] S. Yoo and M. Harman, “Pareto efficient multi-objective test case
selection,” in Proceedings of the 2007 International Symposium on
Software Testing and Analysis, ser. ISSTA ’07. New York, NY, USA:
ACM, 2007, pp. 140–150.

[2] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel, “The effects of time
constraints on test case prioritization: A series of controlled experiments,”
Software Engineering, IEEE Transactions on, vol. 36, no. 5, Sept 2010,
pp. 593–617.

[3] A. Z. Dario Di Nucci, Annibale Panichella and A. D. Lucia,
“Hypervolume-based search for test case prioritization,” in Proceed-
ings of the 2015 Symposium on Search-Based Software Engineering
(SSBSE’15). Bergamo, Italy: Springer, 2015, pp. 140–150.

[4] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Test case prioritiza-
tion: an empirical study,” in Software Maintenance, 1999. (ICSM ’99)
Proceedings. IEEE International Conference on, 1999, pp. 179–188.

[5] M. Saadatmand and M. Sjödin, “On combining model-based analysis
and testing,” in Information Technology:New Generations (ITNG), 10th
International Conference on, Las Vegas, USA, April 2013, pp. 260–266.

[6] M. Harman, “Making the case for morto: Multi objective regression
test optimization,” in Software Testing, Verification and Validation
Workshops (ICSTW), 2011 IEEE Fourth International Conference on,
March 2011, pp. 111–114.

[7] T. L. Saaty, “How to make a decision:the analytic hierarchy process,”
European Journal of Operational Research, vol. 48, no. 1, 1990, pp.
9–26.

[8] R. Bellman and L. Zadeh., “Decision making in a fuzzy environment,”
Management Science, 1970, pp. 141–164.

[9] H. Jantan, A.Hamdan, and Z. Othman, “Intelligent techniques for
decision support system in human resource management.” 2010.

[10] V. Novák, I. Perfilieva, and J. Mockor, Mathematical principles of fuzzy
logic. Springer Science & Business Media, 2012, vol. 517.

[11] D. Rabunal Dopico and Pazos, Encyclopedia of Artificial Intelligence.
University of A Coruna, Spain, 2009, vol. 3.

[12] Y. Shi, “A Deep Study of Fuzzy Implications,” Ph.D. dissertation, Ghent
University, 2009.

[13] L. Zadeh, “Fuzzy sets,” Information and Control, 1965, pp. 338–353.
[14] J. Yang and J. Watada, “Fuzzy clustering analysis of data mining:

Application to an accident mining system,” International Journal of
Innovative Computing, Information and Control, 2012, pp. 5715–5724.

[15] E. E. K. B. De Baets, “Fuzzy relational compositions,” Fuzzy Sets and
Systems, vol. 60, no. 1, 1993, pp. 109 – 120.

[16] Y.-C. Tang, “Application of the fuzzy analytic hierarchy process to the
lead-free equipment selection decision,” Business and Systems Research,
2011, pp. 35–56.

[17] J. Malczewski, Multiple Criteria Decision Analysis and Geographic
Information Systems, M. Ehrgott, J. R. Figueira, and S. Greco, Eds.
Springer US, 2010, vol. 142.

[18] C. Carlsson and R. Fuller, “Fuzzy multiple criteria decision making:
Recent developments,” Fuzzy Sets and Systems, vol. 2, no. 1, June 1996,
pp. 415–437.

[19] K. Shahroodi, S. Amini, E. Shiri, K. S. Haghighi, and M. Najibzadeh,
“Application of analytical hierarchy process (ahp) technique to evaluate
and selecting suppliers in an effective supply chain,” Arabian Journal
of Business and Management Review, vol. 1, no. 8, April 2012.

[20] T. Terano, Fuzzy Engineering Toward Human Friendly Systems.
Ohmsha, 1992, no. v. 2.

[21] D.-Y. Chang, “Theory and methodology applications of the extent
analysis method on fuzzy ahp,” European Journal of Operational
Research, 1996, pp. 649–655.

[22] G. Kabir and M. A. A. Hasin, “Comparative Analysis of AHP and Fuzzy
AHP Models for Multicriteria Inventory Classification,” International
Journal of Fuzzy Logic Systems, vol. 1, no. 1, 2011, pp. 87 – 96.

[23] R. M. Hierons, “Verdict functions in testing with a fault domain or test
hypotheses,” ACM Trans. Softw. Eng. Methodol., vol. 18, no. 4, Jul.
2009, pp. 14:1–14:19.

[24] E. Triantaphyllou, B. Kovalerchuk, L. Mann, and G. M. Knapp,
“Determining the most important criteria in maintenance decision making,”
Journal of Quality in Maintenance Engineering, vol. 3, no. 1, 1997, pp.
16–28.

296Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 315 / 512

Analysis of Optimization Requirement of Mobile Application Testing Procedure

Manish Kumar, Kapil Kant Kamal, Bharat Varyani, Meghana Kale
Centre for Development of Advanced Computing

Mumbai, India
email: kmanish@cdac.in, kapil@cdac.in, bharatv@cdac.in, meghanak@cdac.in

Abstract— The rapidly changing and demanding mobile
application ecosystem has resulted in explosion of mobile
applications among the users across the world. This behavior of
the mobile application ecosystem inspires the mobile industries to
make high availability of mobile application and development
over the different platforms like Android, iPhone, Windows,
BlackBerry, etc. The rapidly changing and demanding mobile
application ecosystem has made mobile application development
more complex and critical. A mobile application should be
responsive, stable and secure. This high expectation with mobile
application requires the right approach of testing. There are
various mobile application testing strategies available, and in the
current scenario of mobile application testing, we normally apply
all the available testing strategies for all the mobile applications
even which are not necessarily required. To optimize this bulky
mobile application testing, we have to first analyze the mobile
application and decide which testing strategies are required. In
this paper, we have described various mobile application
strategies available and have presented a classification of mobile
applications based upon which mobile application testing
procedure can be optimized.

Keywords — Mobile Application Testing; Optimization;
Graphic User Interface (GUI); SQLite.

I. INTRODUCTION

The rapidly changing and demanding mobile application
development ecosystem can be understood by the fact that the
number of mobile application download has increased by
around 3000% in 2014 with approximately 138 billion
downloads as compared to 4.5 billion downloads in 2010 [10].
The growing mobile application ecosystem has brought
revolution in the mobile application development and it has
made mobile application developers / providers to focus on
creating mobile application testing strategies and road maps
before releasing the mobile application for their users. It is
important to build an application with all features
and functionality required by the customer and which is
beneficial to the application user, but it is even more critical to
have a rigorous mobile testing plan before the mobile
application is deployed or made available to its customer [1].
A comprehensive testing plan gives the confidence that the
application will function as intended on different devices with
varying screen sizes, resolutions, internal hardware, operating
systems, and across any data transfer network. Today, there is
a wide variety of mobile devices with different mobile
operating systems, firmware updates and other possible
customization that creates impossibly large sets of testing
permutation and combination [8]. There is a large number of
testing strategies available that makes mobile application
testing more complex and a bulky procedure. Due to this
complex process, extra use of resources increases the cost and

time of complete testing. For optimization of mobile
application testing, the proposed classification of mobile
applications can help to broadly characterize the mobile
applications first and then, to choose appropriate testing
strategy.

The below mentioned goals can be achieved by using this
classification to optimize the mobile application testing:

1. Reduce the completion time of mobile application
testing life cycle.

2. Reduce the testing cost and overall application cost.

3. Faster release of mobile application in market.

4. Reduce the process involved in mobile application
testing with quality assured.

In this paper, we describe how classification of mobile
applications helps in optimizing the mobile application testing
procedure. In Section II, we describe some of the available
testing strategies in a mobile application testing life cycle. In
Section III, we propose classification of mobile applications to
optimize the mobile application testing procedure. In Section
IV, we describe how the proposed classification helps in
optimizing the mobile application testing procedure. In
Section V, we present our conclusion.

II. AVAILABLE TESTING STRATEGIES

Once a mobile application is developed, it undergoes
various testings before it is released. There is a large number
of testing strategies available today. Some of the mobile
application testings that are performed before a mobile
application is released, are described below.

A. Installation/Uninstallation Testing

Installation is one of the important strategies of the testing
activity. It is performed to verify if the software has been
installed with all the necessary components and the application
in the all targeted devices is working as expected. Installation
would be the first user interaction with the end users so it
should be perfect. To verify if installation testing is successful
or not, we perform the following two-step check: 1. if
application can be installed by following normal installation
procedure; 2. if application is seen in installed applications
list. To verify if uninstallation testing is successful or not, we
check if all the components of the application are removed as
expected during the uninstalling process [2].

B. User Interface Testing

User interface testing is required to examine how easy or
user friendly the application is, to use for the real users. It is
essential that a user interface is interactive and more relevant
to task of mobile application. The user interface testing is

297Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 316 / 512

performed on different devices with different form factor to
check if the screen (including text, images, etc) is displayed as
intended. This test also includes text visibility in the selected
language, navigation between screens and verification of
functionality online / offline, feedback from interaction with
the system, i.e., downloaded application should be prompt
with message [3].

C. Functionality Testing:

The objective of functionality testing is to measure the
quality of the functional components of the system. The
functional testing verifies that the system behaves correctly
from the user / business perspective and functions according to
the requirements, models, storyboards, or any other design
paradigm used to specify the application. The functional test
determines if each component or business event: performs in
accordance to the specifications, responds correctly to all
conditions that may be presented by incoming events / data,
moves data correctly from one business event to the next
(including data stores), and that business events are initiated in
the order required to meet the business objectives of the
system [2].

D. Compatibility Testing

Compatibility test involves validating the application with
different Mobile platforms, with different mobile devices,
screen sizes, hardware and resolutions as per requirements.
The compatibility test determines that the mobile application
works exactly as we want it to, across all supported devices,
platforms, screen sizes, OS versions.

E. Performance Testing

Performance testing, a non-functional testing technique
performed to determine the system parameters in terms of
responsiveness and stability under various workload.
Performance testing can be applied to understand the
scalability of mobile applications. Performance testing
includes the response time of application, application
behaviour in change of different available networks, battery
consumption and memory leaks, etc.

F. Security Testing

It includes the encryption/decryption techniques used for
sensitive data communication, checks for multi users support
without interfering with the data between them check for
access to file saved in the app by any unintended users detect
areas in tested application so that they do not receives any
malicious content [3]. Also, the screen lock technique is such
as Face Unlock, Voice Unlock, Pattern Unlock, Pin Unlock,
Password Unlock, etc. also used to ensure security of mobile
device.

G. Network Testing

It includes the testing of network availability, effect of
speed of network on application and at not availability of
network. We can check network testing in the scenario such as
Signal loss, data loss over network, bandwidth, network delay,
etc [5]. Unpredictable application behaviour, user-interface
related errors, database corruption and functional issues are

some of the impact on mobile application due to Network
variability.

H. Service Testing

The Service Testing process is responsible for planning
and coordinating tests to ensure that the specifications for the
service design are met and validated through delivery of the
service and, including co-operation with the Release and
Deployment process, to manage and limit risks that could
result from insufficient utility and warranty of the service in
operation [6].

III. PROPOSED CLASSIFICATION OF MOBILE APPLICATION

FOR OPTIMIZED TESTING STRATIGY

Systematic software engineering techniques should be
employed to maximize the probability of finding faults with
minimal resources, i.e., time and money. In the mobile
application testing lifecycle as shown in Figure 1, the first step
requirement/design analysis is very crucial and it needs to be
done carefully. It is important that all the aspects of the mobile
application are captured in the first step so that the further
steps can be optimized.

Figure 1. Mobile application testing Lifecycle

It is important to understand that mobile applications are
different from traditional desktop applications because of the
mobility, limited resources, context awareness, etc. [9].
Though the testing cycle may appear to be same for mobile
application as compared to traditional application, the testing
procedure for mobile application can be optimized if mobile
application can be classified based upon various aspects. The
mobile application runs on small screen size, limited resources
(such as power, computational capacity, screen size, etc) as
compared to a desktop. The mobile devices run on battery
whereas desktops have continuous power supply. So for the
optimization of mobile application testing, here we have
presented mobile application classification and have analyze
mobile applications on various aspects.

Test Planning

Test Design

Test Environment Setup

Test Execution

Test Report

Requirements/Design Analysis

298Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 317 / 512

Figure 2. Proposed Classification of Mobile application

Figure 2 shows the proposed classifications of mobile
application in perspective to optimize the mobile application
testing.

A. Mobile application With GUI-With Internal Database-No
Network[GIDNN]

It includes the mobile applications with Graphical User
Interface (GUI) with internal database (database within device
for example in Android SQLite) but no network requirement.
This type of application does not require data network. For
example, tic-tac game, which has the ability to store last scores
and save the previous state of the game played by user in the
past. Here, it is not required to test network and test the
security of data communication channel because the data
resides within the mobile device itself.

B. Mobile application With GUI-With Internal Database-
With Network[GIDN]

It includes the mobile applications with GUI with internal
database and also requires data network to submit the data to a
remote server to get some required response. For example the
application available on Mobile Seva AppStore named
Ministry directory [4], initialized with its own internal
database but when clicked on update it quickly repopulates its
internal database with response data received from the update
server. Another example is m-Indicator app on Google play
store which stores the data in device database and also if we
need exact location of express, rail alerts, etc. and then, it
requires network connectivity.

C. Mobile application With GUI-With External Database-
With Network[GEDN]

It includes mobile applications with GUI with external
database and also requires data network to submit the data to
remote server to store in external database. Mobile
applications such as compliant registration or feedback for
specific department need to store the data at department’s end,
so this type of application is GEDN. The mobile application of
state government for birth registration, available on Mobile
Seva AppStore [5], is another example of mobile application
classified under GEDN, where the data filled by user in the

GUI forms are sent over internet to state centralized server and
the data is stored in centralized database.

D. Service based Mobile application With Internal Database-
No Network[SIDNN]

These types of applications may or may not have any GUI.
They start in background and run as background process. For
example, in most of the smart phones there are various sensors
which capture various data based upon various parameters.
There are various internal applications which keep monitoring
these sensors and send s information to other application
which require information about these sensors. Internal
database is used to store the data of past running.

E. Service based Mobile application With Internal Database-
With Network[SIDN]

These types of mobile application may or may not have
any GUI, they start in background, and the captured data is
stored in internal database and may also communicate with
remote servers. Example is Map applications, in this the
latitude-longitude information is stored locally and location
details are obtained from external GIS providers and the
output is shown on map.

F. Service based Mobile application With External Database-
With Network[SEDN]

These types of mobile applications do not have GUI, they
capture data, send it to remote servers and the data is stored in
the database of the remote server. Example of such application
is version checking of mobile applications. If a new version or
update is found at the remote application server, then the new
version or the update is downloaded from the remote server
and the mobile application is updated.

G. Service based Mobile application-With GUI-With Internal
Database-With NoNetwork[SGIDNN]

These types of mobile applications have GUI to start or
stop the application, and then they run as background service
processes. For example the Contact application, which shows
all contacts, recently dialed, missed call, received call, etc.,
which stores the contact info in the internal database, also
shows time, duration and also there is no need of network in
this type of applications.

H. Service based Mobile application-With GUI-With Internal
Database-With Network[SGIDN]

These types of mobile applications have GUI to start or
stop the service; this type of application, store data in internal
database but require data network to communicate with the
remote server or application. Example location based services;
the maps application with Global Positioning System (GPS)
will start your route mapping service then update it with its
current locations and required data on map itself and also
stores it in the internal database.

I. Service based Mobile application-With GUI-With External
Database-With Network[SGEDN]

These types of mobile applications have GUI to start or
stop the service; these type of applications do not store data
internally and send the data collected to remote server. The
data is stored in the external database. Example of this type of

299Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 318 / 512

mobile application is Drop Box application in which it has
GUI from which we can see the data in our drop box and also
we store new data on external database, i.e., on cloud directly
through network connection.

IV. DISCUSSION

The paper presents a classification of mobile application
based upon various aspects such as graphical user interface,
data network requirement, database requirement, etc.. The
mobile application testing can be optimized by using this
classification and all the testing strategies may not be required
for all the mobile application. Table 1, as shown below,
describes various mobile application testing strategies which
are required for different categories of mobile applications.

TABLE I. OPTIMIZATION TABLE FOR MOBILE APPLICATION
TESTING USING PRPOSED CLASSIFICATION

As shown in Table 1, it is not required to apply each and every
testing approach for all the mobile applications but only those
testing strategies which are required should be applied. For
example, a mobile application classified under GIDNN
category does not require service testing, security testing and
network testing; so, these testings can be skipped from the
complete cycle of testing process. This will reduce the testing
time and cost. This in turn will reduce the overall cost of the
mobile application and the reduced testing time helps in faster
release of mobile application. There are some other aspects
such as energy consumption, memory requirement, context
awareness, etc., based upon which, the classification can be
enhanced further.

V. CONCLUSION & FUTURE SCOPE

The paper presents a combined study of various mobile
application testing strategies available and proposed
classification of mobile application based upon various aspects
such as graphical user interface, data network requirement,
database requirement, etc.. The classification is simple yet the
mobile application testing can be optimized by using this

classification. This helps in bringing down the overall mobile
application development cost and faster release of the mobile
application. The proposed classification is not concrete and the
classification can be further enhanced on other parameters.
Testing strategies can also be defined specific to each
classification to optimize the mobile application testing
procedure further. The performance and reliability of the
mobile application greatly depends upon the mobile device
resources. We have not included the memory and energy
requirements of mobile application which are crucial for
performance and reliability testing.

ACKNOWLEDGEMENT

We are thankful to all the members of Mobile Seva team of C-
DAC, Mumbai and Dr. Zia Saquib (Executive Director, C-DAC),
Department of Electronics and Information Technology, Govt. of
India for their direct as well as indirect contribution for this paper.
We also thank the anonymous reviewers for their valuable insights
and comments.

REFERENCES

[1] "Mobile Application Testing: Step by Step Approach",
Retrieved from http://www.rapidvaluesolutions.com/ mobile-
application-testing-step-by-step-approach/, accessed on 21 Sept
2015

[2] "Install / Uninstall Testing", Retrieved from
http://www.tutorialspoint.com/software_testing_dictionary/pdf/i
nstall_uninstall_testing.pdf, accessed on 21 Sept 2015

[3] B. Kirubakaran and Dr. V. Karthikeyani, "Mobile application
testing — Challenges and solution approach through
automation", 2013 International Conference on Pattern
Recognition, Informatics and Mobile Engineering (PRIME),
Feb. 2013, pp. 79-84

[4] M. Kumar and M. Chauhan, "Best practices in Mobile
application Testing", White Paper, Infosys

[5] "Mobile Seva Application store", https://apps.mgov.gov.in,
accessed on 21 Sept 2015

[6] M. Jandial, A. Somasundara and Karthikeyan, "Enhance Mobile
Application Performance with Successful Network Impact
Testing", White Paper, Infosys

[7] M. Ryder, "Service Validation and Testing: A CA Service
Management Process Map, Mar. 2010", Retrieved from
http://acolyst.com/wp-content/uploads/2010/12/itil-service-
validation-testing-tb-v2_234995.pdf, on 21 Sept 2015

[8] R. R. Nimbalkar, "Mobile Application Testing and Challenges",
International Journal of Science and Research (IJSR), India
Online ISSN: 2319-7064, Vol. 2 Issue 7, July 2013, pp. 56-58

[9] H. Muccini, A. D. Francesco and P. Esposito, "Software Testing
of Mobile Applications: Challenges and Future Research
Directions", 7th International Workshop on Automation of
Software Test (AST), June 2012, pp. 29-35

[10] "Number of mobile app downloads worldwide from 2009 to
2017", retrieved from http://www.statista.com/statistics/
266488/forecast-of-mobile-app-downloads/, on 30 Sept 2015

300Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 319 / 512

Property Based Verification of Evolving Petri Nets

Yasir Imtiaz Khan and Ehab Al-shaer

Department of Software and Information Systems
University of North Carolina at Charlotte

Charlotte, USA
Email: ykhan2,alshaer@uncc.edu

Abstract—Software evolution is inevitable in the field of informa-
tion and communication technology systems. Existing software
systems continue to evolve to progressively reach important
qualities such as completeness and correctness. Iterative re-
finements and incremental developments are considered to be
well suitable for the development of evolving systems among
other approaches. The problem with iterative refinements and
incremental development is the lack of support of an adequate
verification process. In general, all the proofs are redone after
every evolution, which is very expensive in terms of cost and
time. In this work, we propose a slicing based solution to
add an adequate verification process to iterative refinements
and incremental development technique. Our proposal has two
objectives, the first is to perform verification only on those parts
that may influence the property satisfaction by the analyzed
model. The second is to classify the evolutions and properties to
identify which evolutions require re-verification. We argue that
for the class of evolutions that requires re-verification, instead
of verifying the whole system only a part that is concerned by
the property would be sufficient. We use Petri nets as a modeling
formalism and model checking as a verification approach to show
the viability of the proposed approach.

Keywords–Software evolution; Re-verification; Model checking;
Iterative refinements; Slicing.

I. INTRODUCTION

Software systems are playing an important role in our
daily life. Companies are spending millions of dollars and
are dependent on them. The software development process
does not stop when a system is delivered, but continues
throughout the lifetime of software. In general, existing soft-
ware systems continue to evolve due to various reasons such
as the emergence of new requirements, performance may
need to be improved, business environment is changing [1]
. According to the survey report conducted by Erlikh [2],
90% of software costs are software evolution costs and about
75% of all software professionals are involved in some form
of evolution activity. These facts point out the importance of
software evolution and demand tools and techniques for its
better management.

Iterative refinements and incremental developments is
a commonly used technique for handling complex systems
in hardware and software engineering and is considered
well suitable for software development and managing its
evolution. The idea involves creating a new specification or
implementation by modifying an existing one [3]. In general,
the modeler provides a first model that satisfies a set of initial
requirements. Then, the model can undergo several iterations
or refinements until all the requirements are satisfied. In most
cases, it is desirable for the developer to be able to assess the

quality of model as it evolves.

The problem with the iterative and incremental
development is that there is no guarantee that after each
iteration or evolution of the model, it will still satisfy the
previously satisfied properties.

Considering Petri nets as a modeling formalism and model
checking as a verification technique all the proofs are redone
which is very expensive in terms of cost and time. In this

VERIFY SLICED
PETRI NET MODEL

PETRI NET
MODEL

PROPERTY

 SLICING NON-
EVOLVED &

EVOLVED PETRI
NET MODELS

RE-VERIFICATION
REQUIRED?

YESNOTIFICATION NO

EVOLUTION
TO

PETRI NET
MODEL

EXTRACTING
CRITERION PLACES

Figure 1. Process Flowchart property based verification of evolving Petri nets

work, we propose a solution to improve the verification and
re-verification of evolving systems by re-using, adapting and
refining state of the art techniques. Our proposal pursues two
main goals, the first is to perform verification only on those
parts that may affect the property a model is analyzed for
and the second is to classify evolutions, to identify which
evolutions require re-verification. We argue that for a class of
evolutions that require re-verification, instead of verifying the
whole system only a part that is concerned with the property
would be sufficient.

Figure 1, gives an overview using Process Flowchart of the
proposed approach, i.e., a slicing based verification of evolving
Petri nets. At first, verification is performed on the sliced Petri
net model by taking a property into an account. Secondly, we
build slices for evolved and non-evolved Petri nets models.
By comparing the resultant sliced models (i.e., Petri net and its
evolved model), it is determined if the evolution has an impact
on the property satisfaction and if it requires re-verification. In
the worst case, if an evolution has an impact on the property

301Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 320 / 512

satisfaction only the resultant sliced evolved Petri net model
would be used for the verification. The process can be iterated
as per Petri net evolution.

The rest of the paper is structured as follows: in Section II,
we give a informal and formal definition of Petri nets. In
Section III, we give formal and informal description of the
slicing algorithm and all the steps of slicing based verification
of Petri nets. In Section IV, a slicing based solution is given
for re-verification of evolving Petri nets. Details about the
underlying theory and techniques are given for each activity
of the process. In Section V, we discuss related work and a
comparison with the existing approaches. In Section VI, we
draw the conclusions and discuss future work concerning to
the proposed work.

II. INFORMAL AND FORMAL DEFINITION OF PETRI NETS

Petri nets are a very well known formalism to model and
analyze concurrent and distributed systems indroduced by C.A.
Petri in his Ph.D. Dissertation [4].

p1 p4

p2 p5
p3

t1

t2

t3

t4

1

1
1

3

22
1

1

Figure 2. Example of a Petri net model

A Petri net is a directed bipartite graph, whose two
essential elements are places and transitions. Informally,
Petri nets places hold resources (also known as tokens) and
transitions are linked to places by input and output arcs,
which can be weighted. Usually, a Petri net has a graphical
concrete syntax consisting of circles for places, boxes for
transitions and arrows to connect the two. Formally, we can
define :

Definition 1. Petri net: A Petri Net is: PN =
〈P, T,w,m0〉 consist of
◦ P and T are finite and disjoint sets, called places and

transitions, resp.,
◦ a function w : (P ×T)∪ (T ×P)→ N, assigns weights

to the arcs,
◦ a marking function m0 : P → N .
The semantics of a Petri net expresses the non-deterministic

firing of transitions in the net. Firing a transition means
consuming tokens from a set of places linked to the input
arcs of a transition and producing tokens into a set of places
linked to the output arcs of a transition. A transition can be
fired only if its incoming places have a token quantity greater
or equal to the weight attached to the arc. As shown in Figure
2, transitions t1 and t2 are enabled from the initial marking
and non-deterministically any one of them can fire. Let us
consider that if t1 fires, the result of transition firing will

remove a token from place p1 and adds a token to place p2.

Definition 2. (Pre(resp.Post) set places(resp.transitions)
of PN): Let pn =< P, T, f, w,m0 > be a Petri net, p ∈ P
a place then, preset and postset of p, noted •p and p•, are
defined as follows:
•p = {t ∈ T/w(t, p) > 0}.
p• = {t ∈ T/w(p, t) > 0}.
Analogously •t and t• are defined. We also note •P and

P• representing pre(resp.post) set of transtions of all the
places in set P . •T and T• are defined Analogously.

III. ABSTRACT SLICING

Petri net slicing is a syntactic technique, which is used
to reduce a PN model based on a given criteria. A criteria
is a property for which the PN model is analyzed for. A
sliced part is equal to only that part of a PN model that may
affect the criteria. Considering a property over PN model,
we are interested to define a syntactically smaller PN model
that could be equivalent with respect to the satisfaction of
the property of interest. To do so the slicing technique starts
by identifying the places directly concerned by the property.
Those places constitute the slicing criterion. The algorithm
then, keeps all the transitions that create or consume tokens
from the criterion places, plus all the pre-set places for those
transitions. This step is iteratively repeated for the latter places,
until reaching a fixed point. (It is important to note that the
proposed slicing algorithms preserve certain specific properties
as we intentionally do not capture all the behaviors to generate
a smaller sliced net). Many algorithms are proposed for slicing
Petri nets and their main objective is to generate reduced sliced
net [5]–[11]. The first slicing algorithm to generate reduced
sliced net was proposed by Astrid Rakow by introducing a
notion of reading and non-reading transitions. Later, this idea
was adapted by Khan et al in the context of Algebraic Petri
nets (i.e., an advancement of Petri nets) [6], [10].

Informally, reading transitions do not change the marking
of a place, meaning they consume and produce the same
token. On the other hand, non-reading transitions change the
markings of a place (see Figure 3), meaning they consume and
produce different tokens. A reduced sliced net can be generated
by discarding the reading transitions (as reading transitions
do not impact the behavior of Petri net) and to include only
non-reading transitions. Formally, we can define reading and
non-reading transitions:

Definition 6. (Reading(resp.Non-reading) transitions of
Petri nets): Let t ∈ T be a transition in a PN. We call t a
reading-transition iff its firing does not change the marking of
any place p ∈ (•t ∪ t•) , i.e., iff ∀p ∈ (•t ∪ t•), w(p, t) =
w(t, p). Conversely, we call t a non-reading transition iff
w(p, t) 6= w(t, p).

We extend the slicing proposal of Rakow and Khan et
al by introducing a new notion of neutral transitions. The
abstract slicing algorithm preserves properties expressed in
CTL∗−X formulas, we refer the interested reader to [12] for
the detailed proofs. Informally, a neutral transition consumes
and produces the same token from its incoming place to an
outgoing place. The cardinality of incoming (resp.) outgoing
arcs of a neutral transition is strictly equal to one and the

302Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 321 / 512

cardinality of outgoing arcs from an incoming place of a
neutral transition is equal to one as well. Another restriction
is that the cardinality of outgoing arcs from the incoming
place of a neutral transition is strictly equal to one and the
reason is that we want to preserve all possible behaviors
of the net. We may loose some behaviors when we merge
incoming and outgoing places if we allow more outgoing arcs
from the incoming place of a neutral transition. The idea is
to use reading transitions and neutral transitions to generate
smaller sliced net.

Definition 7. (Neutral transitions of Petri nets): Let t ∈
T be a transition in a PN. We call t a neutral-transition iff it
consumes token from a place p ∈• t and produce the same
token to p′ ∈ t•, i.e., t ∈ T ∧ ∃p∃p′/p ∈• t ∧ p′ ∈ t• ∧ |p•| =
1 ∧ |•t| = 1 ∧ |t•| = 1 ∧ w(t, p) = w(t, p′).

t1
1

P21
P1

t1
2P1

2

Neutral Transition Reading Transition

Figure 3. Neutral and Reading transitions of PN

1) Abstract Slicing Algorithm:: The abstract slicing algo-
rithm starts with a Petri net model and a slicing criterion
Q ⊆ P containing place(s). We build a slice for an Petri net
based on Q by applying the following algorithm:

Algorithm 1: Abstract slicing algorithm
AbsSlicing(〈P, T, f, w,m0〉, Q){
T ′ ← {t ∈ T/∃p ∈ Q∧t ∈ (•p∪p•)∧w(p, t) 6= w(t, p)};
P ′ ← Q ∪ {•T ′} ;
Pdone ← ∅ ;
while ((∃p ∈ (P ′ \ Pdone)) do

while (∃t ∈ ((•p ∪ p•) \ T ′) ∧ w(p, t) 6= w(t, p)) do
P ′ ← P ′ ∪ {•t};
T ′ ← T ′ ∪ {t};

end
Pdone ← Pdone ∪ {p};

end
while (∃t∃p∃p′/t ∈ T ′ ∧ p ∈• t ∧ p′ ∈ t• ∧ |•t| =
1 ∧ |t•| = 1 ∧ |p•| = 1
∧p 6∈ Q ∧ p′ 6∈ Q ∧ w(p, t) = w(t, p′)) do

m(p′)← m(p′) ∪m(p);
w(t, p′)← w(t, p′) ∪ w(t, p);
while (∃t′ ∈• t/t′ ∈ T ′) do

w(p′, t)← w(p′, t) ∪ w(p, t′);
T ′ ← T ′ \ {t ∈ T ′/t ∈ p• ∧ t ∈• p′};
P ′ ← P ′ \ {p};

end
end
return 〈P ′, T ′, f|P ′,T ′ , w|P ′,T ′ ,m0|

P ′
〉;

}

In the Abstract slicing algorithm, initially T ′ (representing
transitions set of the slice) contains a set of all the pre and post
transitions of the given criterion places. Only the non-reading
transitions are added to T ′. P′(representing the places set of

the slice) contains all the preset places of the transitions in
T ′. The algorithm then, iteratively adds other preset transitions
together with their preset places in the T ′ and P ′. Then, the
neutral transitions are identified and their pre and post places
are merged to one place together with their markings.

Considering an example Petri net model shown in figure
4, let us now apply our proposed algorithm on two example
properties (i.e., one from the class of safety properties and
one from liveness properties). Informally, we can define the
properties:

φ1 : “The cardinality of tokens inside place P3 is always
less than 5”.

φ2 : “Eventually place P3 is not empty”.

Formally, we can specify both properties in the CTL as:
φ1 = AG(|m(P3)| < 5).
φ2 = AF(|m(P3)| = 1).
For both properties, the slicing criterion Q = {P3}, since

P3 is the only place concerned by the properties. The resultant
sliced Petri net can be observed in figure4, which is smaller
than the original Petri net.

P1

C

t1 t3

t2

t5

t4
P3

P4

P5

P6

P7

P2

2

2
1 1

2
2

11

1

1

1

11

P12
t2 t4

P3

Example PN-Model

Resultant Sliced PN-Model

1 1 1

Figure 4. Petri net model and resultant sliced model after applying Abstract
slicing algorithm

Let us compare the number of states required to verify
the given properties without slicing and after applying abstract
slicing. The total number of states required without slicing is
985, whereas with the sliced model number of states is 15.

IV. CLASSIFICATIONS OF EVOLUTIONS

The behavioral model of a system expressed in terms of
Petri nets is subject to evolve, where an initial version goes
through a series of evolutions generally aimed at improving
its capabilities. Informally, Petri nets can evolve with respect
to the structural changes such as: add/remove places, tran-
sitions, arcs, tokens and terms over the arcs. By notation,
different Petri nets will be noted with superscripts such as
pn′ = 〈P ′, T ′, f ′, w′,m′0〉. As there is no guarantee that
after every evolution of a Petri net model, it still satisfies the
previously satisfied properties. A naive solution is to repeat
model checking after every evolution, which is very expensive
in terms of time and space.

303Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 322 / 512

We propose a slicing based solution to improve the repeated
model checking. Since it has already been proved that a
sliced net is sufficient to verify properties. (Note: We refer
the interested reader to [10], [12], [13] for the detailed proofs
of all the theorems used in this paper and for slicing algo-
rithms). According to our proposed approach, at first, slices

pn pnSl

pn’Sl

re-verif

pn'

NO YES

(re-verify on sliced net)

build slice

build slice

evolution

Figure 5. Overview

are generated for evolved and non-evolved Petri nets models
with respect to the property by the abstract slicing algorithm
as shown in Figure 5. Then, by comparing both sliced nets
it is decided whether re-verification is required or not. If the
answer is no then, re-verification is not required, whereas if the
answer is yes, then, re-verification is performed on the sliced
net. The good thing is that in both cases re-verification cost is
improved. To decide for which evolutions re-verification is not
required, we divide the evolutions into two major classes (by
comparing both sliced Petri nets models as shown in the Figure
6), i.e., the evolutions that are taking place outside the slice, the
evolutions that are taking place inside the slice. Furthermore,
we divide the evolutions that are taking place inside the slice
into two classes, i.e., the evolutions that disturb and those that
do not disturb the previously satisfied properties.

A. Evolutions taking place outside the Slice:
The aim of slicing is to syntactically reduce a model in

such a way that of the best reduced model contains only
those parts that may influence the property the model is
analyzed for. And if something is happening outside those
parts of the system, then, it is guaranteed that previously
satisfied properties are still true. We can generalize the notion,
for all the evolutions that are taking place outside the slice
do not influence the property satisfaction. Consequently,
re-verification can be completely avoided for these evolutions.
We formally specify how to avoid the verification if the
evolutions are taking place outside the slice.

EVOLUTIONS TO
PETRI NETS

EVOLUTIONS TAKING
PLACE INSIDE SLICE

EVOLUTIONS TAKING
PLACE OUTSIDE SLICE

EVOLUTIONS THAT
DISTURB PROPERTY

(VERIFICATION)

EVOLUTIONS THAT DO
NOT DISTURB PROPERTY

(NO-VERIFICATION)

EVOLUTIONS DO NOT
DISTURB PROPERTY
(NO-VERIFICATION)

Figure 6. Classification of evolutions to Petri nets

Theorem 1: Let pnsl = 〈P, T, f, w,m0〉 be a sliced Petri
net model and pn′sl = 〈P ′, T ′, w′,m′0〉 be an evolved sliced
Petri net model w.r.t the property φ. pnsl |= φ⇔ pn′sl |= φ if
and only if

pnsl = pn′sl
Informally, this theorem states that if an evolution is taking

place outside the slice then, the evolved Petri net model
preserves the previously satisfied properties. According to the
conditions imposed by the theorem, both the sliced net and
evolved sliced net are same and if the Petri net model satisfy
a given property then, this property will also be true in its
evolved model. Conversely, if the Petri net model does not
satisfy a given property then, this property will be false in its
evolved model.

Let us recall the Petri net model and example property
given in the section III. The example property is following
AG(|m(P3)|) < 5). Figure 7, shows some possible examples
of the evolutions to Petri nets model that are taking place
outside the slice. All the places, transitions and arcs that
constitute a slice with respect to the property are shown
with the blue doted lines (remark that we follow the same
convention for all examples). In the example evolution, weight
attached to the arc between transition t2 and place P4 is
changed and shown with the red color. For all such kind of
evolutions that are taking place outside the slice, we do not
require verification because they do not disturb any behavior
that may impact the satisfaction of the property.

Evolved Petri net model "changing the weight over the arc and its sliced net"

Petri net model and its sliced net

P1

C

t1 t3

t2

t5

t4
P3

P4

P5

P6

P7

P2

2

2
1 1

2
2

11

1

1

1

11

C

t3

t2

t5

t4
P3

P4

P5

P6

P7

P12 1 1

2
2

11

1

1

1

11

C

t3

t2

t5

t4
P3

P4

P5

P6

P7

P12 1 1

3
2

11

1

1

1

11

P1

C

t1 t3

t2

t5

t4
P3

P4

P5

P6

P7

P2

2

2
1 1

3
2

11

1

1

1

11

Figure 7. Evolutions to Petri net model taking place outside the slice

B. Evolutions taking place inside the slice:

For all the evolutions that are taking place inside the
slice, we divide them into two classes, i.e., evolutions that
require verification and the evolutions that do not require re-
verification. Identifying such class of evolutions is extremely
hard due to non-determinism of the possible evolutions. Specif-
ically, in Petri nets small structural changes can impact the
behavior of the model. It is also hard to determine whether
a property would be disturbed after an evolution or it is still
satisfied by the model.

304Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 323 / 512

To identify evolutions that are taking place inside the
slice and do not require re-verification, we propose to use
the temporal specification of properties to reason about
the satisfaction of properties with respect to the specific
evolutions. For an example, for all the safety properties
specified by the temporal formula AG(ϕ) or ∃G(ϕ), if ϕ an
atomic formula, using the ordering operators ≤ or < between
the places and their cardinality or tokens inside places, then,
all the evolutions that decrease the tokens from places do
not require re-verification because they do not impact the
behavior required for the property satisfaction.

Theorem 2: Let pnsl = 〈P, T, f, w,m0〉 be a sliced Petri
net and pn′sl = 〈P ′, T ′, w′,m′0〉 be an evolved sliced Petri
net model (in which tokens are decreased from places) w.r.t
the property φ. For all the safety properties specified by
temporal formulas, i.e., AG(φ) or ∃G(φ), and φ a formula
using ≤ or < ordering operator between the places and their
cardinality or tokens inside places. pnsl |= φ ⇒ pn′sl |= φ if
and only if

∀p ∈ (P∩P ′)/m0(p) ≥ m′0(p)∧T = T ′∧f = f ′∧w = w′

Let us recall the Petri net model and example property
given in the Section III. The example property is following
AG(|m(P3)| < 5), we can avoid the re-verification for several
evolutions even if they are taking place inside the slice. Some
possible examples of the evolutions are shown in Figure 8. In
the first example, tokens are decreased from a place and in
the second example, tokens are decreased from an arc, but the
property is still satisfied.

Evolved Petri net model "decreasing the token from place and its sliced net"

Petri net model and its sliced net

P1

C

t1 t3

t2

t5

t4
P3

P4

P5

P6

P7

P2

2

2
1 1

2
2

11

1

1

1

11

C

t3

t2

t5

t4
P3

P4

P5

P6

P7

P12 1 1

2
2

11

1

1

1

11

C

t3

t2

t5

t4
P3

P4

P5

P6

P7

P12 1 1

2
2

11

1

1

1

11

P1

C

t1 t3

t2

t5

t4
P3

P4

P5

P6

P7

P2

2

2
1 1

2
2

11

1

1

1

11

Figure 8. Evolutions to Petri net model taking place inside the slice

For all the liveness properties specified by a temporal
formula ∃ F(ϕ), and if ϕ a formula using the ordering
operators (≥ or >) the places and their cardinality or tokens
inside places and their values, then, for all the evolutions that
increase the token count, it is not required to verify them as
they do not impact the behavior required for the property
satisfaction.

Theorem 3: Let pnsl = 〈P, T, f, w,m0〉 be a sliced Petri
net and pn′sl = 〈P ′, T ′, w′,m′0〉 be an evolved sliced Petri

net model (in which tokens are increased from places) w.r.t
the property φ. For all the liveness properties specified by a
temporal formula ∃F(φ), and φ is using the ordering operators
≥ or > between the places and their cardinality or tokens
inside places and their values. pnsl |= φ ⇒ pn′sl |= φ if and
only if

∀p ∈ (P∩P ′)/m0(p) ≤ m′0(p)∧T = T ′∧f = f ′∧w = w′

Evolved Petri net model "increasing the tokens in place and its sliced net"

Petri net model and its sliced net

P1

C

t1 t3

t2

t5

t4
P3

P4

P5

P6

P7

P2

2

2
1 1

2
2

11

1

1

1

11

C

t3

t2

t5

t4
P3

P4

P5

P6

P7

P12 1 1

2
2

11

1

1

1

11

C

t3

t2

t5

t4
P3

P4

P5

P6

P7

P12 1 1

2
2

11

1

1

1

11

P1

C

t1 t3

t2

t5

t4
P3

P4

P5

P6

P7

P2

2

2
1 1

2
2

11

1

1

1

11

Figure 9. Evolutions to Petri net model taking place inside the slice

Let us consider again Petri net model given in the Sec-
tion III , if we are interested to verify the example property
such as: ∃F(|P3| > 3), verification can be avoided completely
for several evolutions even if they are taking place inside the
slice. Some possible examples of the evolutions are shown
in Figure d9. In the first and second examples, tokens are
increased but the property is still satisfied.

We identified above that for several specific evolutions and
properties verification could be completely avoided, and for the
rest of evolutions we can perform verification only on the part
that concerns the property by following Section ??. Even in
this case we significantly improve the verification of evolution.

V. RELATED WORK

Slicing is a technique used to reduce a model syntactically.
The reduced model contains only those parts that may affect
the property the model is analyzed for. Slicing Petri nets is
gaining much attention in the recent years [5]–[11], [13].
Mark Weiser [14] introduced the slicing term, and presented
slicing as a formalization of an abstraction technique that ex-
perienced programmers (unconsciously) use during debugging
to minimize the program. The first algorithm about Petri net
slicing was presented by Chang et al [5]. They proposed an
algorithm on Petri nets testing that slices out all sets of paths,
called concurrency sets, such that all paths within the same
set should be executed concurrently. Astrid Rakow developed
two slicing algorithms for Petri nets, i.e., CTL∗−X slicing and
Safety slicing in [10]. We introduced the Algebraic Petri net
slicing for the first time [6], [12]. We adapt the notion of
reading and non-reading transitions defined by Rakow [10] in
the context of low-level Petri nets and applied to Algebraic
Petri nets [6]. We extend the previous proposal by introducing

305Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 324 / 512

a new notion of neutral transitions and applied to Algebraic
Petri nets [12]. In this work, we designed abstract slicing
algorithm in the context of low-level Petri nets and used to
reason about the re-verification. To the best of your knowledge
this is the first proposal to use slicing to improve the re-
verification of Petri nets models.

Most of the work regarding the improvement of the re-
verification of evolving Petri nets is oriented towards the
preservation of properties. Padberg and several other authors
published extensively on the invariant preservation of APNs by
building a full categorical framework for APNs, i.e., rule-based
refinements [15]–[17]. Padberg consider the notion of a rule-
based modification of Algebraic high level nets preserving the
safety properties. The theory of a rule-based modification is an
instance of the high-level replacement system. Rules describe
which part of a net are to be deleted and which new parts are
to be added. It preserves the safety properties by extending the
rule-based modification of Algebraic Petri nets in contrast to
transition preserving morphisms in [15]. These morphisms are
called the place preserving morphisms by allowing transferring
of specific temporal logic formulas expressing net properties
from the source to the target net. Lucio presented a prelimi-
nary study on the invariant preservation of behavioral models
expressed in Algebraic Petri nets in the context of an iterative
modeling process [16]. They proposed to extend the property
preserving morphisms in a way that it becomes possible to
strengthen the guards without loosing previous behaviours.

In contrast to the property preservation, the scope of our
work is broader. At first, we try to find out which evolutions
require re-verification independent of the temporal represen-
tations of properties. Secondly, we focus on the specific
properties and evolutions to improve the re-verification. We
do not restrict the type of evolutions and properties to give
more flexibility to a user. It is important to note that our
proposed technique can further refine the previous proposals
about the property preservation. The proposal is to preserve
the morphisms restricted to the sliced part of the net.

VI. CONCLUSION AND FUTURE WORK

In this work, we developed an approach to improve the
verification and re-verification of systems modeled in Petri
nets. At first, a Petri net model is syntactically reduced based
on the given temporal property. The reduced model which
we call a sliced model constitutes only that part of a model
that may affect the property satisfaction. The sliced model
preserves CTL∗−X properties. Secondly, we classify evolutions
and properties to determine whether re-verification is required
or not. We do not restrict the types of evolutions and the
properties to give more flexibility to the user. Our results show
that slicing is helpful to alleviate the state space explosion
problem of Petri nets model checking and the re-verification
of evolving Petri nets.

The future work has two objectives; first is to implement
the proposed approach. A tool named SLAPN (a tool for
slicing Algebraic Petri nets) is under development [18]. It is
important to note that the SLAPN tool is a generic tool over
the Petri net classes such as Petri net, Algebraic Petri nets. It
provides a graphical interface to draw a Petri net or Algebraic
Petri net model together with the temporal description of
properties. It contains the implementation of different slicing
algorithms and a user can select any of them to generate a

sliced Petri net model. The future work consists of imple-
mentation of the classification of evolutions and properties
to automate the proposed approach. The second objective of
future work is concerned to enhance the theory of preservation
of properties. The aim is to develop a property preserving
domain specific language for the evolving Petri nets based on
the slicing and the classification of evolutions and properties
proposed in this work.

REFERENCES
[1] I. Sommerville, Software Engineering: (Update) (8th Edition) (Interna-

tional Computer Science Series). Addison Wesley, June 2006.
[2] L. Erlikh, “Leveraging legacy system dollars for e-business,” IT Pro-

fessional, vol. 2, no. 3, pp. 17–23, May 2000.
[3] C. Larman and V. Basili, “Iterative and incremental developments. a

brief history,” Computer, vol. 36, no. 6, pp. 47–56, 2003.
[4] C. A. Petri, “Kommunikation mit automaten,” Ph.D. dissertation, Uni-

versität Hamburg, 1962.
[5] J. Chang and D. J. Richardson, “Static and dynamic specification

slicing,” in In Proceedings of the Fourth Irvine Software Symposium,
1994.

[6] Y. I. Khan and M. Risoldi, “Optimizing algebraic petri net model
checking by slicing,” International Workshop on Modeling and Business
Environments (ModBE’13, associated with Petri Nets’13), 2013.

[7] M. Llorens, J. Oliver, J. Silva, S. Tamarit, and G. Vidal, “Dynamic
slicing techniques for petri nets,” Electron. Notes Theor. Comput.
Sci., vol. 223, pp. 153–165, Dec. 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.entcs.2008.12.037

[8] A. Rakow, “Slicing petri nets with an application to workflow
verification,” in Proceedings of the 34th conference on Current trends
in theory and practice of computer science, ser. SOFSEM’08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 436–447. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1785934.1785974

[9] ——, “Slicing and reduction techniques for model checking petri nets,”
Ph.D. dissertation, University of Oldenburg, 2011.

[10] ——, “Safety slicing petri nets,” in Application and Theory of
Petri Nets, ser. Lecture Notes in Computer Science, S. Haddad
and L. Pomello, Eds., vol. 7347. Springer Berlin Heidelberg,
2012, pp. 268–287. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-31131-4_15

[11] W. J. Lee, H. N. Kim, S. D. Cha, and Y. R. Kwon, “A slicing-based
approach to enhance petri net reachability analysis,” Journal of Research
Practices and Information Technology, vol. 32, pp. 131–143, 2000.

[12] Y. I. Khan and N. Guelfi, “Slicing high-level petri nets,” International
Workshop on Petri Nets and Software Engineering (PNSE’14)
associated with Petri Nets’14), vol. 2, no. 3, pp. 201–220, 2014.
[Online]. Available: http://ceur-ws.org/Vol-1160/

[13] Y. I. Khan, “Property based model checking of structurally evolving
algebraic petri nets,” Ph.D. dissertation, University of Luxembourg,
2015.

[14] M. Weiser, “Program slicing,” in Proceedings of the 5th international
conference on Software engineering, ser. ICSE ’81. Piscataway, NJ,
USA: IEEE Press, 1981, pp. 439–449.

[15] J. Padberg, M. Gajewsky, and C. Ermel, “Rule-based refinement of high-
level nets preserving safety properties,” in Fundamental approaches to
Software Engineering. Springer Verlag, 1998, pp. 22 123–8.

[16] M. A. Q. Z. Levi Lucio, Eugene Syriani and H. Vangheluwe, “Invari-
ant preservation in iterative modeling,” Proceedings of the ME 2012
workshop, 2012.

[17] S. P. Er, “Invariant property preserving extensions of elementary petri
nets,” Technische Universitat Berlin, Tech. Rep., 1997.

[18] Y. I. Khan and N. Guelfi, “Slapn: A tool for slicing algebraic petri
nets,” International Workshop on Petri Nets and Software Engineering
(PNSE’14) associated with Petri Nets’14), vol. 2, no. 3, pp. 343–345,
2014.

306Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 325 / 512

Dynamic Evolution of Source Code Topics

Khaled Almustafa
College of Engineering
Prince Sultan University

Riyadh 11586, Saudi Arabia
Email: kalmustafa@psu.edu.sa

Mamdouh Alenezi
College of Computer and Information Sciences

Prince Sultan University
Riyadh 11586, Saudi Arabia

Email: malenezi@psu.edu.sa

Abstract—Open-source projects continue to evolve that result in
so many versions. Analyzing the unstructured information in the
source code is based on the idea that the unstructured information
reveals, to some extent, the concepts of the problem domain of
the software. This information adds a new layer of source code
semantic information and captures the domain semantics of the
software. Developers shift their focus on which topic they work
more in each version. Topic models reveal topics from the corpus,
which embody real world concepts by analyzing words that
frequently co-occur. These topics have been found to be effective
mechanisms for describing the major themes spanning a corpus.
Previous Latent Dirichlet Allocation (LDA) based topic analysis
tools can capture strengths evolution of various development
topics over time or the content evolution of existing topics over
time. Regrettably, none of the existing techniques can capture
both strength and content evolution. In this work, we apply
Dynamic Topic Models (DTM) to analyze the source code over
a period of 10 different versions to capture both strength and
content evolution simultaneously. We evaluate our approach by
conducting a case study on a well-known open source software
system, jEdit. The results show that our approach could capture
not only how the strengths of various development topics change
over time, but also how the content of each topic (i.e., words
that form the topic) changes over time which shows that our
approach can provide a more complete and valuable view of
software evolution.

Keywords–Open source; Source code; LDA; Topic extraction;
Software evolution.

I. INTRODUCTION

Program comprehension is an essential activity in the
course of software maintenance and evolution [1]. Typically,
developers spend around 60% of their working hours compre-
hending the system while doing software maintenance tasks
[1], especially the source code. Monitoring, visualizing and
understanding the evolution of a large system are essentially
challenging tasks.

Comprehending how source code topics evolve over time
can be a great help for project stakeholders and managers to
observe and understand activities and efforts performed on a
software repositories over time. For instance, project managers
can observe what feature the development team is working on
by consulting the source code repository and developers can
observe a specific feature evolution by consulting the same
source code repository as well [2]–[4].

Several LDA-based techniques were proposed with the aim
of supporting software projects stakeholders, managers, and
developers to comprehend software evolution. Thomas et al.
[4] used the Hall model [5] to study the history of source

code to find out the strengths (i.e., popularity) of the change
of several topics over time. They applied LDA one time on all
versions of a specific software project to extract the topics and
computed different metrics to show the strength of each topic
for each version. Their approach can capture the development
evolution strength. However, the content of a topic (i.e., the set
of words that form a topic), never changes across the versions.
Differently, Hindle et al. [6] used the Link model [7] that runs
a separate LDA for each time window and used a different step
to link similar topics. Their approach can capture changes in
the content of each topic over time (i.e., content evolution).
Unfortunately, their approach was not able to recover the
strength of a topic across all time windows because of the
lack of available information (time windows). Consequently,
none of the current approaches can capture both strength and
content evolution.

As we have seen, current approaches on understanding
source code topics evolution emphasized on the strength of the
evolution or the content evolution. However, both strength and
content of the evolution are essential for developers to entirely
comprehend how software evolves. For instance, project man-
agers want to figure out how much effort is dedicated to feature
X at a specific time, which can be attained by calculating
topic strength. They may also want to figure out what kind
of effort was done on feature X at a specific time point. By
itself, topic strength will not assist project managers with this
kind of information. Instead, the content of a specific topic
can give some insights and shed some light on activities which
performed on feature X at a specific point of time.

In this work, we propose a new approach to capture
source code evolution from two different dimensions: strength
and content. We apply Dynamic Topic Models (DTM) [8]
on the source code of a software repository. After that, we
capture topic strength evolution by calculating the Normalized-
Assignment metric at each software release to represent the
strength of a topic for that time. We capture topic content
evolution by extracting the top 10 words that characterize a
topic for each software release.

We conduct an empirical study on the source code of a
well-known open source software system, jEdit. The results
show that the new approach can capture both strength and
contents of different source code topics over time, which cor-
responds to meaningful description of the whole development
iteration, hence, a more complete view of software evolution.

An essential step towards comprehending and understand-
ing the functional behavior of any system is to find and
recognize business topics that exist in the source code of

307Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 326 / 512

 Word Distribution

 DTM

 Time Sequences

Filter Language

Keywords

Tokenize Connected

Words

Remove Stopwords

Prune the Vocabulary

 T1

 T2

T3

 T1

 T2

T3

Document-Topic Matrix

Topic-Term Matrix

Visualization of

Strength and Content

Source Code

Figure 1. The Proposed Approach

the system. These business domain objects are modeled as
high level components and then realized in the implementation
and transformed into code. For example consider an UML
modeling application that models UML diagrams and deals
with objects, figures, relationships, and cardinality. When a
maintainer with no application knowledge wants to add a new
feature or modify one of the features, he/she will find it very
difficult before comprehending and understanding the main
functionality of the application. Extracting business topics
from the source code and establishing the relationship between
them would be a huge support in finding related data structures,
methods, classes. This will eventually help the developer or the
maintainer productivity, especially when dealing with a large
system with little documentation.

The rest of the paper is organized as follows: Section II
discusses topic evolution models in more depth. Section III dis-
cusses the approach used in this work. Section IV presents the
experimental evaluation and discussions. Section V discusses
threats to the validity of the study. Section VI discusses some
related work to this work. Section VII concludes the paper.

II. TOPIC EVOLUTION MODELS

Topic evolution model is taking into consideration the time
while modeling the topics. It models how certain topics evolve
and change over time. For a specific topic, the strength of that
topic can change several times over time (spikes and drops)
during the lifetime of a corpus. Furthermore, a specific topic
content may likewise change over time, designating different
aspects of the evolution within a specific topic. As we have
seen in the introduction section, numerous topic evolution
models were proposed in the literature.

1) The Link Model, which was proposed by Mei et
al. [7]: Hindle et al. [6] were the first ones who
applied this approach to analyze the topic evolution
of commit messages. They utilized topic modeling
(LDA) separately for each time. Then they used a
post-processing phase to link similar topics across
successive time interval.

2) The Hall model, which was proposed by Hall et al.
[5]: Linstead et al. [9] were the first ones who applied

this approach to analyze source code evolution. The
same approach was used and validated by Thomas
et al. [10] to model source code changes. The Hall
model applies LDA to the whole versions of the
software corpus (all releases included in the study).
Then a post-processing phase is used to separate
corpus at different versions and different metrics are
calculated to represent how much the contribution of
this topic in a specific version.

3) Dynamic Topic Models (DTM), which was proposed
by Blei et al. [8]: DTM is what is used in this work.
It models a topic evolution as a discrete Markov pro-
cess with normally distributed changes between time
periods that allows only steady changes over time.
It uses time-sequentially organized documents of the
corpus to capture the topics evolution and creates a
document-topic matrix and topic-term matrix at each
time period. Document-topic matrix represents each
document as multi-membership mixture of topics to
show the topic strength evolution. Topic-term matrix
represents each topic as a multi-membership mixture
of terms to show the topic content evolution

III. THE PROPOSED APPROACH

Figure 1 shows a high-level overview of our approach. We
first obtain the source code of the studied systems. Second,
we filter out noisy data by applying a number of preprocessing
steps on the corpus. Third, we determine the optimal number of
topic for this corpus. Fourth, we obtain word distributions and
the releases into time sequences. These distributions and se-
quences are used as input for DTM to produce document-topic
matrix and topic-term matrix at each release. Our approach is
very similar approach to Hu et al. [11] but it is different than
their approach in two main aspects: the target of the topic
modeling (commits vs source code) and choosing the number
of topics (random vs well-established method).

A. Data Preprocessing
A number of pre-processing steps are applied to the source

code [4]. These pre-processing steps are common in most

308Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 327 / 512

information retrieval techniques [1]. First, syntax and program-
ming language keywords are filtered out. Second, each word is
then tokenized according to well-known naming practices, for
instance, underscores (first name) and camel case (firstName).
Third, common English terms are removed (stop words) to
eliminate noise. The final step is to prune the vocabulary. The
number of terms that can end up the bag-of-words is very
large, which usually would cause a problem in most text-
mining applications. In order to select the most useful subset,
a filter has been applied to remove the overly common terms
that appear in too many documents (=90%), as they can be
seen as a non-informative and background terms.

B. Choosing K
Choosing how many topics to use in topic models is still a

research problem not only for the source code domain. Topic
excerption in textual documents also encounters the same
problem. In this work, we adopted a well-known method for
determining the number of topics [12]. This method specifies
that the number of topics K can be determined by running
LDA for different values of K with freezing the LDA hyper-
parameters. For each value of K, they estimate the symmetric
Kullback-Leibler divergence [13] between the singular values
of the topic-word matrix and the document-topic matrix using
the following equation:

Measure = KL(CM1||CM2) +KL(CM2||CM1) (1)

The method calculates the symmetric Kullback-Leiber diver-
genece of the Singular value distributions of of two matrices
M1 and M2. In this equation, CM1 represents the singular
values distribution of the topic word matrix, CM2 represents
the distribution obtained by normalizing the vector L*M2
where L is a one-dimensional vector of documents lengths in
the corpus and M2 is the document topic-matrix. To determine
K, choose K where the minimum value of the measure is. It
is noteworthy that these distributions CM1 and CM2 are in
sorted order.

C. Running Dynamic Topic Models
After we filtered noisy words in the corpus by applying the

pre-processing steps, we use DTM to generate the document-
topic matrix and topic-term matrix for each release after we
feed the DTM the word distribution and the time sequences.
Dynamic topic modeling applies these steps using several
sequential time slices in the data set. We wrote an R script
that applies our approach. We used the ’topicmodel’ package
version 0.2-1 in the R language version 3.1.12. The LDA
parameters were chosen based on the recommendation of the
literature [14]. The used parameters are = 50/K and = 0.01
where K is the number of topics.

D. Visualization of Strength and Content
After applying our approach, we visualize the results using

the document-topic matrix and topic-term matrix. We calculate
several topic metrics to symbolize both the strength and content
of topics evolutions. We measure how the topic strength
changes over time by computing a normalized assignment
metric at each time point. This metric is the average value
of the topic memberships of all documents in that topic at
a time, which indicates the total presence of the topic in that
time. The strength evolution of a topic is a time-indexed vector

of normalized assignment values for that topic. Then, for the
topic content, which includes the words and their distributions,
it contains two parts: the word and its frequency within a
topic. We choose the top 10 most frequent words to illustrate
a topic and measure how the topic content changes over time
by computing Term-Frequency (TF) at each time point.

IV. RESULTS

In this section, we applied our approach to the repository
of jEdit. We show the example topics and the captured infor-
mation of version 3 of jEdit in Table I. We discuss our results
and the empirical data in detail. The results are demonstrated
in Figure 2, Figure 3, and Figure 4. These figures display a
number of top words from selected topics in each version based
on the term frequency (TF) value of each word in that topic. By
looking at the figures, we observe the topic strength evolution
by mapping the assignment value of topics to versions as well
as the topic content evolution by mapping TF values of several
top words to versions.

We applied our approach to the repository of jEdit from
2002 to 2012, which includes 10 main releases (3.0, 3.1, 3.2,
4.0, 4.1, 4.2, 4.3, 4.4.1, 4.5, 5.0). We found that most topics’
strength evolution fluctuated greatly during the studied time
period, which indicates that development topics are varied and
distributed in each version. Furthermore, we observed that the
top two words across different topics are add and plugin, which
represents the active growth of plugins, an essential feature of
jEdit. We studied each topics strength and content. We found
three important topics:

Selection. Topic 1 relates heavily to selections done in
jEdit. We found that the most frequent words contained in this
topic were line, text, selection, length and area. The topic’s
strength reaches to peak (8%) in version 9 (4.5), and before
that time it varies from 3.1% to 5.8% and fluctuates greatly.
We looked in more details at the top words in version 9,
and found that the TF of these words seems to decline after
version 9. This was the real content evolution trend of this
topic, because we found that the top words rarely appeared in
previous versions.

Formatting. In topic 5, words such as color, window, font,
height and width are common throughout the whole selected
versions, which clearly represent the continuing availability of
these features in jEdit. The topics strength varies from 1.9% to
8% and also experiences great fluctuation. The peak strength
was reached in version 2, but after other functionalities, which
implies other development topics, the strength fell down in
consecutive versions.

GUI. In topic 7, words such as border, handler, action,
button, panel, area and event are common during the whole
time, meaning that several components relate to GUI. The
topic’s strength reaches to peak (about 15%) in version 8 and
we found that about 20% of the top matching words come
from this version. We also found that border is a notable GUI
feature provided by jEdit because the word border is almost
the top frequent term within this topic from the beginning to
end.

There are other development topics, such as bug fixing and
feature requests, directory for plugins, buffer and bufferset,
regular expressions, build system files and code cleanup.

309Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 328 / 512

line
offset
start
caret
end
text

length
get

selection
area

Version 1

line
offset
caret
start
end
text

selection
length

get
area

Version 2

line
offset
caret
start

selection
end

param
count

pre
since

Version 3

line
caret

selection
offset
start
end

since
pre
text

param

Version 4

line
caret
offset

selection
start
end

since
pre
text

param

Version 5

line
start

offset
end

caret
selection

buffer
end
text
pre

Version 6

line
buffer

selection
start

offset
param
caret
end
text

since

Version 7

line
start

selection
offset
buffer
param
caret
end
start
area

Version 8

line
selection

caret
text

offset
pre

since
end
start
area

Version 9

line
selection

caret
text

offset
since
pre

param
start
area

Version 10

color
window

name
font

param
highlight

style
dimension
property

width

Version 1

color
font

highlight
style

request
abbrev
thread
jeditget

size
property

Version 2

color
highlight

font
width
line

enabled
height
length

text
dimension

Version 3

color
font
style

highlight
extension

height
width

enabled
size

thread

Version 4

color
font

property
width
height

enabled
extension
highlight

style
text

Version 5

color
font
key

width
height

extension
highlight

style
enabled
param

Version 6

color
font
style

param
height
width

enabled
extension
highlight

text

Version 7

color
font
style

enabled
param
width
text

height
highlight
context

Version 8

color
font
style

height
width
thread

highlight
extension
request
enabled

Version 9

color
font
style

height
width
enable

highlight
extension

paint
gutter

Version 10

border
label

handler
panel

button
selected
layout
jpanel
empty
action

Version 1

border
handler

label
selected

panel
empty

size
button
jpanel
layout

Version 2

border
label

handler
button
layout
name
panel

window
event
size

Version 3

handler
border

selected
label

action
button
event
index
box

panel

Version 4

handler
action

size
label

button
border
layout

selected
box

panel

Version 5

handler
event

border
action
button

selected
index
layout
panel
dialog

Version 6

handler
event

selected
button
action
panel
layout
border
listener
index

Version 7

selected
handler
button

list
index
label
event
model
action
pane

Version 8

model
selected
handler

index
event

list
button
listener
border
panel

Version 9

selected
handler
action

list
button
event
index
dialog

property
label

Version 10

Figure 2. 10 Top Words Evolution for Topics.

TABLE I. EXAMPLE TOPICS AND THE CAPTURED INFORMATION OF VERSION 3 OF JEDIT

Topic Top 10 Words
Selection line, offset, caret, start, selection, end, param, count, pre, since

Formatting color, highlight, font, width, line, enabled, height, length, text, dimension
Menu border, label, handler, button, layout, name, panel, window, event, size

V. THREATS TO VALIDITY

In this section, we discourse some limitations to our study.
The approach of this work depends on the quality of comments
and identifier names found in the code. jEdit is known for
its robust designs, extensive documentation, strict coding and
naming conventions. In addition, a previous study revealed
that majority of java systems have good comments and good
identifiers names, which make them sufficient for such topic
analyses [15].

Regarding pre-processing steps, we performed four differ-
ent steps on the source code. However, there is no consensus
in the literature on which steps are essential or beneficial. Re-
garding parameter values, we used a well-established approach
to find the optimal number of topics, which is much better
than previous work in which they randomly selected a number
of topics. We have focused on one open source Java-based
systems. however, we cannot generalize the results. Additional

case studies are needed to investigate closed-source and other
programming languages systems.

VI. RELATED WORK

Mining software repositories is booming in the software
engineering research community these recent years [16]–[18].
We discuss some of the related work on mining software
repositories efficiently to help software maintenance tasks.

Sun et al. [19] proposed an approach based on LDA to find
out what kind of historical information is needed to support
software maintenance. They evaluated their approach by a new
study on another important software maintenance task, i.e.,
feature location. Furthermore, their benchmarked their studies
with more subject programs and metrics.

Herzig et al. [21] conducted empirical studies of tangled
changes, which introduce noise in software repositories [20].
Their results were promising in which they showed that about

310Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 329 / 512

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 2 3 4 5 6 7 8 9 10

(a) Selection

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 2 3 4 5 6 7 8 9 10

(b) Formatting

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 3 4 5 6 7 8 9 10

(c) GUI

Figure 3. Topic Strength (Normalized Assignment).

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

line

offset

start

caret

end

text

get

selection

area

(a) Selection

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

color

window

name

font

param

highlight

style

dimension

property

width

(b) Formatting

0.000

0.005

0.010

0.015

0.020

0.025

border

label

handler

panel

button

selected

layout

jpanel

empty

action

(c) GUI

Figure 4. Topic Content (TF values of top words within software versions).

20% of all bug fixes consist of multiple tangled changes.
Keivanloo et al. proposed a collaborative platform for the
purpose of sharing software datasets. Their platform supports
data extraction, integration from various version control, issue
tracking, and quality evaluation repositories. Their main focus
was the integration of the information in software repositories.

Thomas et al. [4] proposed to use LDA to study the
software evolution. They investigated whether the topics from
the LDA corresponded well with actual code changes. Their
results showed the effectiveness of using topic models as tools
for studying the evolution of a software system. Furthermore,
Their studies provided a good motivation for other researchers
to use the topic model to mine the topics from software
repositories.

VII. CONCLUSION

Available topic evolution models address only strength
evolution or content evolution of the unstructured software
repositories, not both like our approach. Having both the
content evolution and the strength evolution will provide more
comprehensive and complete results in order to understand
the evolution of the source code than either one of them.
In this work, we applied the Dynamic Topic Models to the
source code to represent both their topic strength and content
evolution. An empirical analysis of one well-known and open
source projects, jEdit was conducted. We found that DTM
produce complete and comprehensive view of software evolu-
tion, which is useful for a variety of stallholders to understand
the changes of development topics from different aspects in a
version. A future direction would be choosing more finest pre-
processing steps. Another direction is to apply this approach on
more software systems and conduct more comparative studies

ACKNOWLEDGMENT

The Authors would like to thank Prince Sultan University
(PSU), Riyadh, K.S.A. for partially supporting this project.

REFERENCES

[1] M. Alenezi, “Extracting high-level concepts from open-source systems,”
International Journal of Software Engineering and Its Applications,
vol. 9, no. 1, 2015, pp. 183–190.

[2] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “How to effectively use topic models for software engi-
neering tasks? an approach based on genetic algorithms,” in Proceedings
of the 2013 International Conference on Software Engineering. IEEE
Press, 2013, pp. 522–531.

[3] L. R. Biggers, C. Bocovich, R. Capshaw, B. P. Eddy, L. H. Etzkorn,
and N. A. Kraft, “Configuring latent dirichlet allocation based feature
location,” Empirical Software Engineering, vol. 19, no. 3, 2014, pp.
465–500.

[4] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Studying
software evolution using topic models,” Science of Computer Program-
ming, vol. 80, 2014, pp. 457–479.

[5] D. Hall, D. Jurafsky, and C. D. Manning, “Studying the history of
ideas using topic models,” in Proceedings of the conference on empirical
methods in natural language processing. Association for Computational
Linguistics, 2008, pp. 363–371.

[6] A. Hindle, M. W. Godfrey, and R. C. Holt, “What’s hot and what’s not:
Windowed developer topic analysis,” in Software Maintenance, 2009.
ICSM 2009. IEEE International Conference on. IEEE, 2009, pp. 339–
348.

[7] Q. Mei and C. Zhai, “Discovering evolutionary theme patterns from text:
an exploration of temporal text mining,” in Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in
data mining. ACM, 2005, pp. 198–207.

[8] D. M. Blei and J. D. Lafferty, “Dynamic topic models,” in Proceedings
of the 23rd international conference on Machine learning. ACM, 2006,
pp. 113–120.

311Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 330 / 512

[9] E. Linstead, C. Lopes, and P. Baldi, “An application of latent dirichlet
allocation to analyzing software evolution,” in Seventh International
Conference on Machine Learning and Applications, ICMLA 2008.
IEEE, 2008, pp. 813–818.

[10] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Validating
the use of topic models for software evolution,” in 10th IEEE Working
Conference on Source Code Analysis and Manipulation (SCAM), 2010.
IEEE, 2010, pp. 55–64.

[11] J. Hu, X. Sun, D. Lo, and B. Li, “Modeling the evolution of development
topics using dynamic topic models,” in 22nd IEEE International Con-
ference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2015, pp. 3–12.

[12] R. Arun, V. Suresh, C. V. Madhavan, and M. N. Murthy, “On finding
the natural number of topics with latent dirichlet allocation: Some
observations,” in Advances in Knowledge Discovery and Data Mining.
Springer, 2010, pp. 391–402.

[13] T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley & Sons, 2012.

[14] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proceedings
of the National academy of Sciences of the United States of America,
vol. 101, no. Suppl 1, 2004, pp. 5228–5235.

[15] S. Haiduc and A. Marcus, “On the use of domain terms in source code,”

in The 16th IEEE International Conference on Program Comprehension,
ICPC 2008. IEEE, 2008, pp. 113–122.

[16] K. Somasundaram and G. C. Murphy, “Automatic categorization of bug
reports using latent dirichlet allocation,” in Proceedings of the 5th India
Software Engineering Conference. ACM, 2012, pp. 125–130.

[17] M. Alenezi, K. Magel, and S. Banitaan, “Efficient bug triaging using
text mining,” Journal of Software, vol. 8, no. 9, 2013, pp. 2185–2190.

[18] M. Alenezi and K. Magel, “Empirical evaluation of a new coupling
metric: Combining structural and semantic coupling,” International
Journal of Computers and Applications, vol. 36, no. 1, 2014.

[19] X. Sun, B. Li, Y. Li, and Y. Chen, “What information in software
historical repositories do we need to support software maintenance
tasks? an approach based on topic model,” in Computer and Information
Science. Springer, 2015, pp. 27–37.

[20] K. Herzig and A. Zeller, “The impact of tangled code changes,” in 10th
IEEE Working Conference on Mining Software Repositories (MSR).
IEEE, 2013, pp. 121–130.

[21] I. Keivanloo, C. Forbes, A. Hmood, M. Erfani, C. Neal, G. Peristerakis,
and J. Rilling, “A linked data platform for mining software repositories,”
in 9th IEEE Working Conference on Mining Software Repositories

(MSR). IEEE, 2012, pp. 32–35.

312Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 331 / 512

Model Transformation Applications from Requirements Engineering Perspective

Sobhan Yassipour Tehrani, Kevin Lano
Department of Informatics, King’s College London, London WC2R 2LS, U.K.

E-mail: {sobhan.yassipour tehrani,kevin.lano}@kcl.ac.uk

Abstract—Requirements Engineering (RE) is an essential pro-
cess in the development of effective software systems, and it
is the basis for subsequent development processes. At present,
the focus of Model Transformation (MT) is mainly on the
specification and implementation stages. Transformations are not
using engineering principles, which may not be an issue within
a small project, but it will be problematic in large scale industry
projects. One of the main reasons that hinders a systematic
RE process to be used before starting the development could
be the false assumption that it is a waste of time/cost and
would delay the implementation. The goal of this paper is to
evaluate model transformation technology from a requirements
engineering process point of view. We identify techniques for the
RE of MT, taking into account specific characteristics of different
categories of model transformations.

Keywords- model transformations; requirements engineer-
ing; requirements engineering framework.

I. INTRODUCTION

Requirements engineering has been a relatively neglected
aspect of model transformation development because the em-
phasis in transformation development has been upon specifi-
cations and implementations. The failure to explicitly identify
requirements may result in developed transformations, which
do not satisfy the needs of the users of the transformation.
Problems may arise because implicitly-assumed requirements
have not been explicitly stated; for instance, that a migration
or refactoring transformation should preserve the semantics of
its source model in the target model, or that a transformation
is only required to operate on a restricted range of input
models. Without thorough requirements elicitation, important
requirements may be omitted from consideration, resulting in
a developed transformation which fails to achieve its intended
purpose.

We use the RE process model proposed by Kotonya and
Sommerville [1] and adapt it according to our specific needs.
This process model is widely accepted by researchers and
professional experts. The following are the most important
phases of RE, which have to be applied: domain analysis and
requirements elicitation, evaluation and negotiation, specifica-
tion and documentation, validation and verification.

In this paper we focus on the specification stage, which
makes precise the informal requirements agreed with the
stakeholders of the proposed development. By providing a
comprehensive catalogue of model requirement types, this
paper can help transformation developers to ensure that all
requirements of a transformation are explicitly considered.

Section 3 gives a background on requirements engineering
for model transformations as well as transformation semantics
and its nature. We also identify how formalised requirements

can be validated and can be used to guide the selection of
design patterns for the development of the transformation. In
Section 4 we examine some published requirements statements
of model transformation to identify their gaps and subsequent
consequences on the quality of the solutions. In Section 5
we give a case study to illustrate the benefits of systematic
requirements engineering for model transformations.

II. STATE OF THE ART

As Selic [2] argues, “we are far from making the writing of
model transformations an established and repeatable technical
task”. The software engineering of model transformations has
only recently been considered in a systematic way, and most
of this work [3][4][5] is focussed upon design and verification
rather than upon requirements engineering. The work on
requirements engineering in transML [3] is focussed upon
functional requirements, and the use of abstract syntax rules
to express them. Here, we consider a full range of functional
and non-functional requirements and we use concrete syntax
rules for the initial expression of functional requirements.

In order to trace the requirements into subsequent steps,
transML defines a modelling language, which represents the
requirements in the form of Systems Modeling Language
(SysML) [6] diagrams. This would allows the transformer(s)
to link requirements of a model transformation to its corre-
sponding analysis and design models, code and other artifacts.
Having a connection amongst different artifacts in the model
transformation development process enables the transformer(s)
to check the correctness and completeness of all requirements
[7]. At present, transformations are not using engineering prin-
ciples which may not be an issue within a small project, but it
will be problematic in large scale industry projects. Jumping
straight to an implementation language might be possible for
simple transformations, however it would be problematic for
large ones. Transformations should be constructed by applying
engineering principles especially if they are to be used in an
industry. Therefore, the development of the transformation’s
life-cycle should include other phases in addition to coding
and testing, namely, requirements engineering process [3].

In this paper, we describe a requirements engineering pro-
cess for transformations based on adaptions of the RE process
model, and specialisations of RE techniques for transforma-
tions.

III. REQUIREMENTS FOR MODEL TRANSFORMATIONS

Requirements for a software product are generally divided
into two main categories: functional requirements, which iden-
tify what functional capabilities the system should provide,

313Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 332 / 512

and non-functional requirements, which identify quality char-
acteristics expected from the developed system and restrictions
upon the development process itself.

The functional requirements of a model transformation τ :S
→T, which maps models of a source language S to a target
language T are defined in terms of the effect of τ on model
m of S, and the relationship of the resulting model n of
T to m. It is a characteristic of model transformations that
such functional requirements are usually decomposed into a
set of mapping requirements for different cases of structures
and elements within S. In addition, assumptions about the
input model should be identified as part of the functional
requirements.

It can be observed in many published examples of model
transformations that the initial descriptions of their intended
functional behaviour is in terms of a concrete syntax for the
source and target languages, which they operate upon. For
instance in [8], the three key effects of the transformation
are expressed in terms of rewritings of Unified Modeling
Language (UML) class diagrams. In [9], the transformation
effects are expressed by parallel rewritings of Petri Nets and
statecharts. In general, specification of the intended func-
tionality of the transformation in terms of concrete syntax
rules is more natural and comprehensible for the stakeholders
than is specification in terms of abstract syntax. However,
this form of description has the disadvantage that it may be
imprecise; there may be significant details of models, which
have no representation in the concrete syntax, or there may be
ambiguities in the concrete syntax representation. Therefore,
conversion of the concrete syntax rules into precise abstract
syntax rules is a necessary step as part of the formalisation of
the requirements.

Requirements may be functional or non-functional (e.g.,
concerned with the size of generated models, transformation
efficiency or confluence). Another distinction, which is useful
for transformations is between local and global requirements:

• Local requirements are concerned with localised parts of
one or more models. Mapping requirements define when
and how a part of one model should be mapped onto a
part of another. Rewriting requirements dictate when and
how a part of a model should be refactored/transformed
in-place.

• Global requirements identify properties of an entire
model. For example that some global measure of com-
plexity or redundancy is decreased by a refactoring trans-
formation. Invariants, assumptions and postconditions of
a transformation usually apply at the entire model level.

Figure 1 shows a taxonomy of functional requirements for
model transformations based on our experience of transforma-
tion requirements.

We have also created a taxonomy of the non-functional
requirements that one has to consider during the RE process.
Figure 2 shows a general decomposition of non-functional
requirements for model transformations. The quality of service
categories correspond closely to the software quality charac-

Figure. 1. A taxonomy of functional requirements

teristics identified by the IEC 25010 software quality standard
[10].

Figure. 2. A taxonomy of non-functional requirements for MT

Non-functional requirements for model transformations
could be further detailed. For instance, regarding the perfor-
mance requirements, boundaries (upper/lower) could be set
on execution time, memory usage for models of a given size,
and the maximum capability of the transformation (the largest
model it can process within a given time). Restrictions can also
be placed upon the rate of growth of execution time with input
model size (for example, that this should be linear). Taxono-
mizing the requirements according to their type not only would
make it clearer to understand what the requirements refer to,
but also by having this type of distinction among them will
allow for a more semantic characterization of requirements.

Maturity and fault tolerance are a subset of reliability re-
quirements for a transformation. Depending on its history and
to the extent to which a transformation has been used, maturity
requirements could be measured. Fault tolerance requirements
can be quantified in terms of the proportion of execution
errors, which are successfully caught by an exception handling
mechanism, and in terms of the ability of the transformation
to detect and reject invalid input models.

As depicted in the above figure, the accuracy characteristic
includes two sub-characteristics: correctness and complete-
ness. Correctness requirements can be further divided into the
following forms [11]:
• Syntactic correctness: a transformation τ is syntactically

correct when a valid input model m from source language
S is transformed to target language T, then (if it termi-
nates) it produces a valid result, in terms of conformation
to the T’s language constraints.

• Termination: a transformation τ will always terminate if
applied to a valid S model.

• Confluence: all result models produced by transformation
τ from a single source model are isomorphic.

• Model-level semantic preservation: a transformation τ
is preserved model-level semantically, if m and n have
equivalent semantics under semantics-assigning maps
SemS on models of S and SemT on models of T.

314Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 333 / 512

• Invariance: some properties Inv should be preserved as
true during the entire execution of transformation τ [11].

An additional accuracy property that can be considered is
the existence of invertibility in a transformation σ : T → S
which inverts the effect of τ . Given a model n derived from
m by τ , σ applied to n produces a model m′ of S isomorphic
to m. A related property is change propagation which means
that small changes to a source model can be propagated to the
target model without re-executing the transformation. A further
property of verifiability is important for transformations which
is part of a business-critical or safety-critical process. This
property identifies how effectively a transformation can be
verified. Size, complexity, abstraction level and modularity are
contributory factors to this property. The traceability property
is the requirement that an explicit trace between mapped
target model elements and their corresponding source model
elements should be maintained by the transformation, and be
available at its termination. Under interface are requirements
categories of User interaction (subdivided into usability and
convenience) and software interoperability. Usability require-
ments can be decomposed into aspects, such as understand-
ability, learnability and attractiveness [12]. Software interop-
erability can be decomposed into interoperability capabilities
of the system with each intended environment and software
system, with which it is expected to operate.

Based on [12], we define suitability as the capability of
a transformation approach to provide an appropriate means
to express the functionality of a transformation problem at an
appropriate level of abstraction, and to solve the transformation
problem effectively and with acceptable use of resources
(developer time, computational resources, etc.). In [8] we
identified the following subcharacteristics for the suitability
quality characteristic of model transformation specifications:
abstraction level, size, complexity, effectiveness and develop-
ment effort.

Requirements of single transformations can be documented
using the SysML notation adopted in [3], but with a wider
range of requirement types represented. Use case diagrams
can be used to describe the requirements of a system of
transformations. Each use case represents an individual trans-
formation which may be available as a service for external
users, or which may be used internally within the system as
a subtransformation of other transformations.

We have investigated a specific functional requirements
taxonomy according to the characteristic of model transforma-
tions (Table I). All types of functional requirements for model
transformations including: mapping, assumptions and post-
conditions requirements could be formalized as predicates or
diagrams at the concrete and abstract syntax levels. Concrete
syntax is often used at the early stages (RE stages) in the
development cycle in order to validate the requirements by
stakeholders since the concrete syntax level is more conve-
nient, whereas abstract syntax rule, is often used in the im-
plementation phase for developers. However, there should be
a direct correspondence between the concrete syntax elements

TABLE I. TRANSFORMATION REQUIREMENTS CATALOGUE

Refactoring Refinement Migration
Local
Functional

Rewrites/
Refactorings

Mappings Mappings

Local Non-
functional

Completeness(all
cases considered)

Completeness (all
source entities,
features considered)

Completeness
(all source
entities,
features
considered)

Global
Functional

Improvement in
quality measure(s),
Invariance of
language
constraints,
Assumptions,
Postconditions

Invariance,
Assumptions,
Postconditions

Invariance,
Assump-
tions,
Postcondi-
tions

Global
Non-
functional

Termination,
Efficiency,
Modularity,
Model-level
semantic
preservation,
Confluence, Fault
tolerance, Security

Termination,
Efficiency,
Modularity,
Traceability,
Confluence, Fault
tolerance, Security

Termination,
Efficiency,
Modularity,
Traceability,
Confluence,
Fault
tolerance

in the informal/semi-formal expression of the requirements,
and the abstract syntax elements in the formalised versions.

IV. APPLICATION OF RE IN MT

In model transformation, requirements and specifications
are very similar and sometimes are considered as the same
element. Requirements determine what is needed and what
needs to be achieved while taking into account the different
stakeholders, whereas specifications define precisely what is
to be developed.

Requirements engineering for model transformations in-
volves specialised techniques and approaches because trans-
formations (i) have highly complex behaviour, involving non-
deterministic application of rules and inspection/ construction
of complex model data, (ii) are often high-integrity and
business-critical systems with strong requirements for relia-
bility and correctness.

Transformations do not usually involve much user inter-
action, but may have security requirements if they process
secure data. Correctness requirements which are specific to
transformations, due to their characteristic execution as a series
of rewrite rule applications, with the order of these applications
not algorithmically determined, are: (i) confluence (that the
output models produced by the transformation are equivalent,
regardless of the rule application orders), (ii) termination
(regardless of the execution order), (iii) to achieve specified
properties of the target model, regardless of the execution order
which is referred to as semantic correctness.

The source and target languages of a transformation may be
precisely specified by metamodels, whereas the requirements
for its processing may initially be quite unclear. For a migra-
tion transformation, analysis will be needed to identify how
elements of the source language should be mapped to elements
of the target. There may not be a clear relationship between
parts of these languages, there may be ambiguities and choices
in mapping, and there may be necessary assumptions on the

315Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 334 / 512

input models for a given mapping strategy to be well-defined.
The requirements engineer should identify how each entity
type and feature of the source language should be migrated.

For refactorings, the additional complications arising from
update-in-place processing need to be considered and the
application of one rule to a model may enable further rule ap-
plications which were not originally enabled. The requirements
engineer should identify all the distinct situations which need
to be processed by the transformation such as arrangements
of model elements and their inter-relationships and significant
feature values.

A. Application of RE Techniques for MT

A large number of requirements elicitation techniques have
been devised. Through the analysis of surveys and case studies,
we have identified the following adaption of RE techniques for
MT.

The following techniques are the most suitable RE tech-
niques to use during the requirements elicitation stage, which
have been adapted according to the nature of model transfor-
mation technology.

Structured interviews: in this technique the requirements
engineer asks stakeholders specific prepared questions about
the domain and the system. The requirements engineer needs
to define appropriate questions which help to identify issues
of scope and product (output model) requirements, similar
to that of unstructured interviews. This technique is relevant
to all forms of transformation problems. We have defined a
catalogue of MT requirements for refactorings, refinements
and migrations, as an aid for structured interviews, and as a
checklist to ensure that all forms of requirements appropriate
for the transformation are considered.

Rapid prototyping: in this technique a stakeholder is asked
to comment on a prototype solution. This technique is relevant
for all forms of transformation, where the transformation can
be effectively prototyped. Rules could be expressed in a con-
crete grammar form and reviewed by stakeholders, along with
visualisations of input and output models. This approach fits
well with an Agile development process for transformations.

Scenario analysis: in this approach the requirements en-
gineer formulates detailed scenarios/use cases of the system
for discussion with the stakeholders. This is highly relevant
for MT requirements elicitation. Scenarios can be defined for
different required cases of transformation processing. The sce-
narios can be used as the basis of requirements formalisation.
This technique is proposed for transformations in [3]. A risk
with scenario analysis is that this may fail to be complete and
may not cover all cases of expected transformation processing.
It is more suited to the identification of local rather than global
requirements.

Regarding the requirements evaluation and negotiation
stage, prototyping techniques are useful for evaluating require-
ments, and for identifying deficiencies and areas where the
intended behaviour is not yet understood. A goal-oriented anal-
ysis technique such as Knowledge Acquisition in automated
specification (KAOS) or SySML can be used to decompose

requirements into sub-goals. A formal modelling notation such
as Object Constraint Language (OCL) or state machines/state
charts can be used to expose the implications of requirements.
For transformations, state machines may be useful to identify
implicit orderings or conflicts of rules which arise because
the effect of one rule may enable or disable the occurrence
of another. Requirements have to be prioritized according to
their importance and the type of transformation. For instance,
in a refinement transformation, the semantics of the source and
target model have to be equivalent as the primary requirement
and to have a traceability feature as a secondary requirement.
Also, there should be no conflict among the requirements. For
instance, there is often a conflict between the time, quality
and budget of a project. The quality of the target model
should be satisfactory with respect to the performance (time,
cost and space) of the transformation. Several RE techniques
exist which could be applicable to the transformation of RE
during the requirements specification phase in which business
goals are represented in terms of functional and non-functional
requirements. In the following Table 2, requirements have been
categorised according to the type of the transformation.

TABLE II. REQUIREMENTS PRIORITY FOR DIFFERENT
TRANSFORMATIONS

Category Primary requirement Secondary
requirement

Refactoring

Model quality improvement
Model-level semantic preservation Invariance
Syntactic correctness Confluence
Termination

Migration
Syntactic correctness Invertibility
Model-level semantic preservation Confluence
Termination Traceability

Refinement

Syntactic correctness

TraceabilityModel-level semantic preservation
Confluence
Termination

Techniques for requirements specification and documenta-
tion stage include: UML and OCL, structured natural lan-
guage, and formal modelling languages. At the initial stages
of requirements elicitation and analysis, the intended effect of
a transformation is often expressed by sketches or diagrams
using the concrete grammar of the source and target languages
concerned (if such grammars exist), or by node and line
graphs if there is no concrete grammar. A benefit of concrete
grammar rules is that they are directly understandable by
stakeholders with knowledge of the source and target language
notations. They are also independent of specific MT languages
or technologies. Concrete grammar diagrams can be made
more precise during requirements formalisation, or refined
into abstract grammar rules. An informal mapping/refactoring
requirement of the form of

“For each instance e of entity type E, that satisfies
condition Cond, establish Pred ”

can be formalised as a use case postcondition such as:

316Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 335 / 512

E::
Cond′ ⇒ Pred′

where Cond′ formalises Cond, and Pred′ formalises Pred.
For requirements verification and validation stage, the for-

malised rules can be checked for internal correctness prop-
erties such as definedness and determinacy, which should
hold for meaningful rules. A prototype implementation can
be generated, and its behaviour on a range of input models
covering all of the scenarios considered during requirements
elicitation can be checked. When a precise expression of the
functional and non-functional requirements has been defined,
it can be validated with the stakeholders to confirm that it
does indeed accurately express the stakeholders intentions
and needs for the system. The formalised requirements of
a transformation τ : S → T can also be verified to check
that they are consistent; the functional requirements must be
mutually consistent. The assumptions and invariant of τ , and
the language constraints of S must be jointly consistent. The
invariant and postconditions of τ , and the language constraints
of T must be jointly consistent. Each mapping rule Left-Hand
Side (LHS) must be consistent with the invariant, as must each
mapping rule Right-Hand Side (RHS).

These consistency properties can be checked using tools
such as Z3 or Alloy, given suitable encodings [13], [14].
Model-level semantics preservation requirements can in some
cases be characterised by additional invariant properties which
the transformation should maintain. For each functional and
non-functional requirement, justification should be given as to
why the formalised specification satisfies these requirements.
For example, to justify termination, some variant quantity Q :
Integer could be identified which is always non-negative and
which is strictly decreased by each application of a mapping
rule [11]. Formalised requirements in temporal logic could
then be checked for particular implementations using model-
checking techniques, as in [15].

V. RE PROCESS ON REFACTORING TRANSFORMATION

Refactoring is a type of model transformation. The general
idea behind refactoring is to improve the structure of the
model to make it easier to understand, and to make it more
maintainable and amenable to change. According to Fowler,
refactoring could be defined as “changing a software system in
such a way that it does not alter the external behaviour of the
code, yet improves its internal structure” [16]. We describe an
example [17] of an in-place endogenous transformation which
refactors class diagrams to improve their quality by removing
redundant feature declarations. Figure 3 shows the metamodel
of the source/target language of this transformation.

In this section, we are going to apply RE on a refactoring
[18] transformation case study. The properties for this type
of transformation are: endogenous, model-to-model, many-to-
many (source to target model), horizontal, semantics preser-
vation, explicit control/rule application scoping, rule iteration,
traceable and that it is a unidirectional transformation. The
following general requirements for refactoring transformations
should be satisfied:

Figure. 3. Class diagram metamodel [18]

• Functionality: suitability, accuracy, interoperability, secu-
rity, functionality compliance

• Reliability: maturity, fault tolerance, recoverability, relia-
bility compliance

• Usability: understandability, learnability, operability, at-
tractiveness, usability compliance

• Efficiency: time behaviour, resource utilisation, efficiency
compliance

• Maintainability: analysability, changeability, stability,
testability, maintainability compliance

• Portability: adaptability, installability, co-existence, re-
placeability, portability compliance

1) Requirements elicitation for Refactoring: The initial
requirements statement is to refactor a UML class diagram to
remove all cases of duplicated attribute declarations in sibling
classes (classes which have a common parent). This statement
is concerned purely with functional behaviour. Through struc-
tured interviews with the customer (and with the end users
of the refactored diagrams and the development team) we
can further uncover, non-functional requirements as follows:
efficiency, the refactoring should be able to process diagrams
with 1000 classes and 10,000 attributes in a practical time (less
than 5 minutes), correctness, the start and end models should
have equivalent semantics, minimality: the number of new
classes introduced should be minimized to avoid introducing
superfluous classes into the model, confluence, would be
desirable but is not mandatory.

The functional requirements can also be clarified and more
precisely scoped by the interview process. A global functional
requirement is the invariance of the class diagram language
constraints meaning that there is no multiple inheritance,
and no concrete class with a subclass. It is not proposed to
refactor associations because of the additional complications
this would cause for the developers. Only attributes are to be
considered. Through scenario analysis using concrete grammar
sketches, the main functional requirement is decomposed into
three cases: (i) where all (two or more) direct subclasses of
one class have identical attribute declarations, (ii) where two
or more direct subclasses have identical attribute declarations,
(iii) where two or more root classes have identical attribute
declarations.

2) Evaluation and negotiation for Refactoring: At this
point we should ask whether these scenarios are complete
and if they cover all intended cases of the required refactor-

317Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 336 / 512

ings. Through the analysis of the possible structures of class
diagrams, and by taking into account the invariant of single
inheritance, it can be deduced that they are complete. Through
exploratory prototyping and execution on particular examples
of class diagrams, we can identify that the requirement for
minimality means that rule 1 Pull up attributes should be
prioritised over rule 2 Create subclass or 3 Create root class.
In addition, the largest set of duplicated attributes in sibling
classes should be removed.

3) Requirements formalisation for Refactoring: To for-
malise the functional requirements, we express the three
scenarios in the abstract grammar of the language. Rule1: If
the set g = c.specialisation.specific of all direct subclasses of
a class c has two or more elements, and all classes in g have
an owned attribute with the same name n and type t, add an
attribute of this name and type to c, and remove the copies
from each element of g. Rule 2: If a class c has two or more
direct subclasses g = c.specialisation.specific, and there is a
subset g1 of g, of size at least 2, all the elements of g1 have
an owned attribute with the same name n and type t, but there
are elements of g - g1 without such an attribute, introduce a
new class c1 as a subclass of c. c1 should also be set as a
direct superclass of all those classes in g which own a copy
of the cloned attribute. Add an attribute of name n and type t
to c1 and remove the copies from each of its direct subclasses.
Rule 3: If there are two or more root classes all of which have
an owned attribute with the same name n and type t, create
a new root class c. Make c the direct superclass of all root
classes with such an attribute, and add an attribute of name n
and type t to c, and remove the copies from each of the direct
subclasses.

4) Validation and verification for Refactoring: The func-
tional requirements can be checked by executing the prototype
transformation on test cases. In addition, informal reasoning
can be used to check that each rule application preserves
the invariants. For example, no rule introduces new types, or
modifies existing types, so the invariant that type names are
unique is clearly preserved by rule applications. Likewise, the
model-level semantics is also preserved. Termination follows
by establishing that each rule application decreases the number
of attributes in the diagram, i.e., Property.size. The efficiency
requirements can be verified by executing the prototype trans-
formation on realistic test cases of increasing size.

VI. CONCLUSION AND FUTURE WORK

We have identified ways in which requirements engineer-
ing can be applied systematically to model transformations.
Comprehensive catalogues of functional and non-functional
requirements categories for model transformations have been
defined. We have examined a case study which is typical of
the current state of the art in transformation development,
and identified how formal treatment of functional and non-
functional requirements can benefit such developments. In
future work, we will construct tool support for recording
and tracing transformation requirements, which will help to
ensure that developers systematically consider all necessary

requirements and that these are all formalised, validated and
verified correctly.

We are currently carrying out research into improving
the requirements engineering process in model transforma-
tion. We will investigate formal languages to express the
requirements, as formalised rules can be checked for internal
correctness properties, such as definedness and determinacy,
which should hold for meaningful rules. Temporal logic can
be used to define the specialised characteristics of particular
transformation and to define transformation requirements in a
formal but language-independent manner languages as model
transformation systems necessarily involve a notion of time.
Finally, we will be evaluating large case studies in order to
compare results with and without RE process.

REFERENCES

[1] I. Sommerville and G. Kotonya, Requirements engineering: processes
and techniques. John Wiley & Sons, Inc., 1998.

[2] B. Selic, “What will it take? a view on adoption of model-based methods
in practice,” Software & Systems Modeling, vol. 11, no. 4, 2012, pp.
513–526.

[3] E. Guerra, J. De Lara, D. S. Kolovos, R. F. Paige, and O. M. dos Santos,
“transml: A family of languages to model model transformations,” in
Model Driven Engineering Languages and Systems. Springer, 2010,
pp. 106–120.

[4] K. Lano and S. Kolahdouz-Rahimi, “Model-driven development of
model transformations,” in Theory and practice of model transforma-
tions. Springer, 2011, pp. 47–61.

[5] K. Lano and S. Rahimi, “Constraint-based specification of model trans-
formations,” Journal of Systems and Software, vol. 86, no. 2, 2013, pp.
412–436.

[6] S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML:
the systems modeling language. Morgan Kaufmann, 2014.

[7] T. Yue, L. C. Briand, and Y. Labiche, “A systematic review of trans-
formation approaches between user requirements and analysis models,”
Requirements Engineering, vol. 16, no. 2, 2011, pp. 75–99.

[8] S. Kolahdouz-Rahimi, K. Lano, S. Pillay, J. Troya, and P. Van Gorp,
“Evaluation of model transformation approaches for model refactoring,”
Science of Computer Programming, vol. 85, 2014, pp. 5–40.

[9] P. Van Gorp and L. M. Rose, “The petri-nets to statecharts transformation
case,” arXiv preprint arXiv:1312.0342, 2013.

[10] I. Iso, “Iec 25010: 2011,,” Systems and Software EngineeringSystems
and Software Quality Requirements and Evaluation (SQuaRE)System
and Software Quality Models, 2011.

[11] K. Lano, S. Kolahdouz-Rahimi, and T. Clark, “Comparing verification
techniques for model transformations,” in Proceedings of the Workshop
on Model-Driven Engineering, Verification and Validation. ACM, 2012,
pp. 23–28.

[12] I. O. F. S. E. Commission et al., “Software engineering–product quality–
part 1: Quality model,” ISO/IEC, vol. 9126, 2001, p. 2001.

[13] K. Anastasakis, B. Bordbar, and J. M. Küster, “Analysis of model trans-
formations via alloy,” in Proceedings of the 4th MoDeVVa workshop
Model-Driven Engineering, Verification and Validation, 2007, pp. 47–
56.

[14] L. de Moura and N. Bjørner, “Z3–a tutorial,” 2006.
[15] S. Yassipour Tehrani and K. Lano, “Temporal logic specification and

analysis for model transformations,” in Verification of Model Transfor-
mations, VOLT 2015, 2015.

[16] C. Ermel, H. Ehrig, and K. Ehrig, “Refactoring of model transforma-
tions,” Electronic Communications of the EASST, vol. 18, 2009.

[17] K. Lano and S. K. Rahimi, “Case study: Class diagram restructuring,” in
Proceedings Sixth Transformation Tool Contest, TTC 2013, Budapest,
Hungary, 19-20 June, 2013., 2013, pp. 8–15.

[18] S. Kolahdouz-Rahimi, K. Lano, S. Pillay, J. Troya, and P. Van Gorp,
“Evaluation of model transformation approaches for model refactoring,”
Science of Computer Programming, vol. 85, 2014, pp. 5–40.

318Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 337 / 512

Analyzing the Evolvability of Modular Structures:

a Longitudinal Normalized Systems Case Study

Philip Huysmans, Peter De Bruyn, Gilles Oorts,
Jan Verelst, Dirk van der Linden and Herwig Mannaert

Normalized Systems Institute
University of Antwerp

Antwerp, Belgium
Email: {philip.huysmans,peter.debruyn,gilles.oorts,

jan.verelst,dirk.vanderlinden,herwig.mannaert}@uantwerp.be

Abstract—The evolvability of organizations as a whole is de-
termined by the evolvability of different enterprise architecture
layers. This paper presents a longitudinal case study, performed
within an infrastructure monitoring company, on how Normalized
Systems Theory enables this evolvability, at least, at the level of its
information systems. By describing the different versions of the
case organization’s information system throughout time, we are
able to analyze the characteristics of the system which facilitate
this goal. In particular, the increasingly fine-grained structure
of the system allows for multiple dimensions of variability. This
analysis is then generalized and described in terms of modular
systems. Based on this generalization, several implications for
other enterprise layers are presented.

Keywords–Normalized Systems; modularity; evolvability; case
study

I. INTRODUCTION

In today’s ever-changing and competitive markets, enter-
prises need to be able to respond ever so quickly to changing
market demands. One could argue that this evolvability is one
of the main requirements for an enterprise to be competitive in
the current global economy. Certain scholars have argued that
in order to create a sustainable competitive advantage, changes
need to be applied at a constant rate [1]. This, however, means
an organization is in a constant state of flux, and a fixed
baseline on which new changes can be etched is ever absent.
This considerably complicates the implementation of changes
and the agility of organizations.

An additional challenge to organizational evolvability is
that evolvability is required at multiple enterprise layers. For
example, to attain a truly evolvable enterprise, its organiza-
tional structure, business processes and information systems
need to be able to easily implement changes. As all these layers
are intertwined, a single change in one of these layers will
insurmountably result in multiple changes in one or more of
the other layers. As a result, it is clear one should always study
organizational evolvability as the accumulation of evolvability
within all these inseparable layers. Likewise, enterprises should
always strive for organizational evolvability within all layers.

Most enterprise architecture approaches propose a generic
way of working towards evolvability. For example, Ross et al.
[2] propose that, after a team and vision are established, an
AS-IS architecture is developed. Next, a TO-BE architecture

should be defined which enables the established vision. The
transition between AS-IS and TO-BE architectures then needs
to be planned and executed. Most frameworks do not provide
a more concrete way of working [3].

At the lower organizational levels however, more detailed
progress has been made in enabling evolvability. This is es-
pecially true for the lowest level, i.e., the information systems
that support the other enterprise layers in the execution of their
tasks. In this regard, Normalized Systems (NS) theory was
introduced as an approach to build evolvable artifacts, such as
information systems [4]. Although this approach is proven to
be theoretically sound [5] and practically viable [6], [7], few
cases have been published.

In this paper, we will therefore document a case to illustrate
how Normalized information systems support organizational
evolvability by allowing rapid and extensive changes to the
software. The specific case is chosen because it concerns a
software application that evolved extensively throughout time
and allows to clearly illustrate why NS theory requires a fine-
grained modular structure. NS theory has also proven to be
relevant to design artifacts in other organizational layers as
well [3], [8], [9]. Therefore, we will generalize the findings
and reflect on the potential implications for modular structures
in later sections of the paper.

The paper is structured as follows: first we introduce the
Normalized Systems theory in Section II. Next, we describe
the case study and the evolution of the discussed application in
detail in Section III. The case reflections, generalizations and
implications are discussed in the Discussion in Section IV,
followed by a Conclusion in Section V.

II. NORMALIZED SYSTEMS

The case that is discussed in this paper is based on the body
of thought of Normalized Systems (NS) theory. Therefore, we
will briefly introduce this theory in this section. For a more
comprehensive description, we refer to previous publications,
such as [4], [5], [10], [11].

The NS theory is theoretically founded on the concept of
stability from systems theory. According to systems theory,
stability is an essential property of systems. For a system to
be stable, a bounded input should result in a bounded output,
even if an unlimited time period T → ∞ is considered. For

319Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 338 / 512

information systems, this means that a bounded set of changes
(selected from the so-called anticipated changes within NS
theory) should result in a bounded impact to the system,
even for T → ∞ (i.e., an unlimited systems evolution
is considered). In other words, stability reasoning expresses
how the impact of changes to an information system should
not depend on the size of the system, but only on size and
property of the changes that need to be performed. If this is not
the case, a so-called combinatorial effect occurs. It has been
formally proven that any violation of any of the following
theorems will result in combinatorial effects that negatively
impact evolvability [5]:
• Separation of Concerns, which states that each con-

cern (i.e., each change driver) needs to be encapsulated
in an element, separated from other concerns;

• Action Version Transparency, which declares an action
entity should be updateable without impacting the
action entities it is called by;

• Data Version Transparency, which indicates a data
entity should be updateable without impacting the
action entities it is called by;

• Separation of States, which states all actions in a
workflow should be separated by state (and called in
a stateful way).

The application of the NS theorems in practice has shown
to result in very fine-grained modular elements which may, at
first, be regarded as complex. Although it quickly becomes
clear to developers how every element is constructed very
similarly, it is very unlikely to attain these strictly defined
elements without the use of higher-level primitives or patterns.
Therefore NS theory proposes a set of five elements (action,
data, workflow, connector and trigger) that serve as patterns.
Based on these elements, NS software is generated in a
relatively straightforward way through the use of the NS
expansion mechanism. For this purpose, dedicated software
(called NS expanders) was built by the Normalized Systems
eXpanders factory (NSX).

III. CASE STUDY

The case we discuss in this paper is that of an organi-
zation which provides hardware and software for infrastruc-
ture monitoring (e.g., power supplies, air conditioning, fire
detection systems and diesel generators). The infrastructure
is monitored and managed from a central site called the
Network Operating Center (NOC). In this center, status in-
formation from different facility equipment of geographically
dispersed sites is gathered. The status information is sent by
controllers which are embedded in the infrastructure. Different
types of these controllers are developed and marketed by
the organization. For example, the Telecom Site Controller
(TSC) is developed specifically for telecom infrastructure, and
the Monitoring Control Unit (MCU) is developed specifically
for DC power supplies which contain AC/DC converters and
batteries to handle power failures. The organization argued
that the software to perform and manage the infrastructure
monitoring could not be purchased as a commercial off-the-
shelf package, because of the extensive customizations needed
for the proprietary controllers and protocols. Consequently,
a custom application was developed. We will describe the
evolution of this application as a longitudinal case study by
means of four phases the system has gone through.

A. Phase 1: SMS v1

Functionality and technology: The original version of
the Site Management System (which we refer to as SMS v1)
was deployed at the organization itself for a client from the
railroad sector, as well as on-site for different clients from,
a.o., the fiber glass sector. Initially, SMS v1 only supported
the proprietary TSC controllers developed by the organization
itself. Later on, MCU controllers were added, but only for
certain clients. After initial deployment, more sites were added,
and the application provided monitoring of around 280 sites.

SMS v1 was developed using Visual Basic and MS Access
technology. The lack of a client-server architecture in the
technology stack forced the organization to adopt suboptimal
solutions for using the system in a distributed way: the MS Ac-
cess database was remotely accessed through a network drive,
and remote usage of the Visual Basic application was done by
using a Virtual Network Computing (VNC) connection.

Structure: An explicit and deliberate structure of the
application did not exist. Rather, the application was regarded
as one single monolithic module, which relied on a database
module. As a result, no code reuse was present: application
code was duplicated in an unstructured way for every deploy-
ment instance.

Evolvability: The coarse-grained structure of the applica-
tion resulted in certain quality deficiencies. The evolvability of
SMS v1 was hard to determine: changes made to a certain code
base were not always introduced in other code bases, which
resulted in distinct (inconsistent) code bases. As a result, any
change could have a different impact on a specific SMS v1
code base.

The arduousness of changing the code base was aggravated
by the amount of configuration parameters which were hard-
coded. For example, it was assumed that all TSCs in a network
were configured in the same way (e.g., the alarms from the air
conditioning system are registered on input 1). This resulted in
a lack of flexibility during deployment. Moreover, the growth,
increased usage, and multi-user access of the application
resulted in performance issues. The used technology was not
designed for scalability, and was focused on single-user access.

B. Phase 2: SMS v2

Functionality and technology: As the initial version
of SMS provided adequate functionality, the need for a new
version was largely motivated by non-functional requirements.
As reported above, the scalability and flexibility of the original
application was unsatisfactory. In 2005, an external software
development company was approached. Based on the existing
functionality, a new application was developed from scratch
and deployed in 2006. We will refer to this application as Site
Management System version 2 (SMS v2).

Because the lack of a client-server architecture was expe-
rienced as an obstacle for a scalable, flexible and multi-user
application, a radical change of the application architecture
was adopted. Instead of using the proprietary Microsoft tech-
nologies of SMS v1, a standard and web-based architecture
was adopted. More specifically, the Java 2 Enterprise Edition
(J2EE) platform was used, with Enterprise JavaBeans version
2.1 (EJB2) and Cocoon framework as characterizing compo-
nents.

320Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 339 / 512

Structure: SMS v2 was developed following industry best
practices, which imposed a certain structure: different concerns
need to be implemented in different constructs (e.g., java
classes). For example, EJB2 prescribes that for each bean, local
and home interfaces need to be defined, and that RMI-access
to the bean must be provided by an agent class. Similarly,
a certain structure was imposed by the Cocoon framework,
which was employed for the web tier of the application.
The actual business logic (e.g., checking the status of a TSC
controller) was also implemented by separate classes. This
prevents the inclusion of business logic in framework-specific
classes: the controller class contains the actual description of
the controller, such as the IP address and port, protocol, or
phone number for dial-up access. Consequently, the parameters
for each controller were clearly separated from other concerns,
and could be configured separately, providing the required
flexibility.

This way of working leveraged existing knowledge in the
software engineering field, which is distributed in several ways.
First, design patterns describe generally accepted solutions on
how code should be structured in certain situations. For exam-
ple, the Strategy pattern from the Gang of Four pattern catalog
describes a structure to implement a “family of algorithms”,
and make them interchangeable [12, p. 315]. This structure was
applied in the SMS v2 application, and enabled the loading of
the correct implementation class of a specific controller (e.g.,
TSC or MCU). Second, the usage of frameworks enforces
certain industry best practices. For example, the Model-View-
Controller design pattern [13] can be implemented in any
object-oriented language by the programmer. Frameworks such
as Cocoon enforce programmers to adhere to this pattern,
thus eliminating a certain design freedom. Similarly, the usage
of EJB2 also encourages a programmer to separate certain
concerns. For example, by using object-relational mapping, a
separation between logic and persistence is enforced.

These examples illustrate how applying existing software
engineering knowledge enabled non-functional requirements
such as flexibility and scalability by prescribing a finer-grained
structure of software constructs. However, the application
exhibited an even finer-grained structure than prescribed by
the design patterns and frameworks. For example, a specific
class was created to trigger certain tasks at certain intervals
(e.g., checking if an alarm was generated). Separating this
functionality is not prescribed by design patterns or frame-
works: by considering it as business logic, it could be included
in the implementation classes. Nevertheless, separating this
rather generic functionality in its own constructs allowed the
reuse its code in different contexts. As a result, the structure
of software primitives for various entities started to exhibit a
similar structure.

Evolvability: While developing SMS v2, NS theory was
not yet formulated and the expanders were not yet developed.
As a result, the recurring code structure (which contained
many constructs) needed to be recreated manually. While still
requiring some effort, this was relatively easy as each particular
controller was rather similar.

Using a recurring structure resulted in other advantages
as well. Due to experience with similar code structures used
for other controllers (or even, similar code structures in other
applications), the performance of the application under dif-
ferent loads (e.g., number of status messages sent) could be

accurately estimated. As a result, scaling the application across
different sites could be managed.

C. Phase 3: PEMM v1
Functionality and technology: Around 2007, SMS

needed to support new functional requirements. First, the range
of supported controllers was to be extended. For example,
support was added for OLE for Process Control (OPC) servers.
An OPC server groups communication from multiple con-
trollers, which allows easier hardware setup. Second, specific
functionality for certain controller types was to be supported.
For example, a TSC controller provides configuration manage-
ment for physical site access control. By sending configuration
messages, access codes for specific sites with keypad access
can be set. Third, various output options were to be provided.
In case of certain alerts, an SMS could be sent to the operator,
in addition to the regular monitor-based output. Because of the
size of the new functional requirements, the application was
renamed in Power Environmental Monitoring and Management
(PEMM). We will refer to it as PEMM v1.

The technology stack of PEMM v1 was similar to the tech-
nology stack of SMS v2: a J2EE architecture with EJB2 and
Cocoon framework. The versions of the different components
were updated to more up-to-date versions.

Structure: The consistent and systematic separation of
different concerns in several projects had resulted in a recurring
software structure. For example, gathering and persisting data
for certain entities required several constructs for creating
a Create-Read-Update-Delete-Search (CRUDS) interface (i.e.,
jsp and html pages), java classes for the application server,
and relation database table specifications. As a result, the
required constructs in use could be reused for every new
instance. In order to facilitate this reuse, a set of pattern
expanders was created, which create the software constructs
based on a configuration file. For example, the constructs
for the data entities are created by the data element pattern
expander. Parameters for the data entity are specified in a
XML configuration file, also called a descriptor file. For a
data element, for following parameters need to be defined:
• Basic name of the data element instance.
• Context information (i.e., package and component

name)
• Data field information (i.e., names and data types for

the various attributes of the entity)
• Relationships with other elements

For the PEMM v1 application, such descriptor files were
created for, e.g., controllers, alarms, sites, etc.

After such pattern expansion, the application can be com-
piled and deployed, similar to a regular application. Pattern
expansion allows developers to quickly create a software
structure which separates many concerns. Developing such
structure from scratch would imply a disproportionate effort
when compared to the effort required for programming the
actual business logic. As a result, separating many concerns
is often omitted, which results in code of poorer quality. Such
pattern expansion is only feasible when every data element has
an identical structure.

Evolvability: Because of identical structures within the
code base, applying changes to the code becomes predictable,
or even deterministic. We discuss four main groups of changes.

321Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 340 / 512

First, functional changes could be added to existing el-
ements by marginal expansion. For example, adding a data
attribute for a controller could be specified in an additional
data descriptor. A marginal expansion recognizes the element
for which the additional descriptor is specified, and adds
the necessary code in the existing code base. As a result,
certain functional changes can be made without overwriting
customizations, and are coined anticipated changes [10, p. 95]:

• an additional data field;
• an additional data entity;
• an additional action entity;
• an additional version of a task.

In PEMM v1, an example of a marginal expansion was the
addition of a comment field to an alarm data element. Adding
the comment field through marginal expansion not only adds
a field in the database table, but also adds that field in the java
bean, in all CRUDS screens, etc.

Second, new functionality can be added to the application
by generating new elements. These can be integrated in the
existing code base by providing relations to the existing
elements in the descriptor files. In PEMM v1, the following
functionality was added by expanding new elements into the
existing application:

• FAQs: a FAQ element allows customers to input
knowledge concerning specific alarms. These FAQs
are made available to operators who need to monitor
and manage the alarms.

• Asset management: in order to keep track of various
assets, an asset element was added to allow a techni-
cian to add the serial number of used or newly added
assets to a certain site.

• Service log: a service log element records the history
of all service interventions made on a particular site.

Third, functionality which cannot be implemented by ex-
panding new elements or by applying anticipated changes,
needs to be realized through customizations. Non-standard
functionality, such as user interface screens, reporting or au-
thentications needs to be programmed separately. Implementa-
tion classes for actions (e.g., checking a controller) are typical
examples of such customizations, which are added to the code
base as separate files. Another example for PEMM v1 is the
reporting functionality, which is an implementation class for an
action element which generates a file to import alarm data in
reporting tools. Separate files which are necessary in the code
base (such as the implementation classes) can be easily located
by programmers, since they always occur at the same location
within the element structure. However, customizations can also
be made by overwriting code in the generated files. Such
customizations are harder to track, as white-box inspection or
separate documentation is required to know where they are
located. In PEMM v1, the following customizations in the
expanded code needed to be made:

• Authorization: in an NS application, a base compo-
nent is added to configure user authorizations. In the
PEMM application, custom business rules were added
based on these configurations. For example, certain
users could acknowledge collections of alarms, instead

of acknowledging each alarm separately. In multi-
tenant deployments of PEMM, this ability needed to
be restricted to alarms from certain sites.

• User Interface: examples of user interface screens
which were added to the PEMM application as cus-
tomization are: (1) trending charts, which show certain
measurements over time; (2) Alarm overview screens:
color-coded tables which provide a high-level view
of active alarms; (3) Map view: a map which shows
sites with active alarms. This map view is linked to
the alarm overview screens.

D. Phase 4: PEMM v2
Functionality and technology: Around 2012-2013, the

organization decided to switch from the proprietary TSC
and MCU controllers and protocols towards industry-standard
controllers (Beckoff) and protocols (SNMP, Modbus over IP
and OPC DCOM DA). The introduction of these requirements
triggered an update of the PEMM application using newer
versions of the NS expanders (now called PEMM v2), which
incorporated a new mechanism to facilitate the extraction
(harvesting) and addition (injection) of customizations. While
the functional changes could have been implemented in PEMM
v1 without combinatorial effects, they required customizations
which would need to be redone in the case of a regeneration
at a later point in time. Therefore, the decision was made to
migrate to the new version of expanders. As the new version
of expanders can use the same descriptor files and expand
a similar source code structure, porting the application to a
new expander version required much less effort in comparison
with a rewrite. Using the new expander versions also implied
the incorporation of new frameworks (e.g., Knockout) and
new versions of the existing frameworks (e.g., Struts 2),
compilers (JDK) and servers (e.g., Jonas application server)
with their accompanying fixes and functional enhancements.
Moreover, the programming team changed: a developer of the
infrastructure monitoring organization, familiar with these new
frameworks, was appointed to work on the new application.

Structure:
Again, a large portion of the code base could be generated

using the expanders resulting in a very similar general structure
as before. This time however, anchors were added to the struc-
ture, which allow the harvesting/injection mechanism to work.
This mechanism solves the issue of overwriting customizations
in case of regeneration. Customizations to the code base (e.g.,
GUI elements) can now be made in three ways:

• insertions: customizations are put between predefined
anchors in the expanded code base;

• extensions: customizations are contained within sep-
arate files, added in the file structure in predefined
directories;

• overlays (discouraged): customizations overwriting
expanded files, but not being captured by the harvest-
ing/injection mechanism.

In case of a regeneration, the harvesting mechanism checks
the anchors for insertions and predefined directories for exten-
sions, which are both stored (“harvested”). This allows the
harvested code changes to be injected in the newly expanded
code base, and extended files to be added in the appropriate

322Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 341 / 512

directories. The harvesting mechanism therefore leads to a
clean separation between the expanded code base and its
customizations. Given the recurrent structure of the expanded
code base, the main complexity of the application becomes
determined by the customizations, rather than the expanded
code base itself. In PEMM v2, customizations only represent
a small fraction of the overall code base: 5 percent.

Evolvability: The harvesting/injection mechanism enabled
new dimensions of evolvability: as customizations could be
applied to a newly generated code base, both could start to
evolve independently. The obsoleteness of marginal expansions
illustrates the usefulness of the mechanism. Additional data
attributes could now be simply added to the descriptors,
upon which a completely new code base (including injected
customizations) could be generated. Similarly, a new code base
could be generated based on new technology versions. For
example, when a new version of the presentation framework
provides new features which are included in the expanders,
a new code base could be generated and injected with the
customizations. The application is then enhanced with the new
features, without requiring additional effort. As a result, the
technologies used in the application could easily be kept up to
date.

IV. DISCUSSION

In this section, we respectively discuss some case reflec-
tions (Section IV-A), introduce a generalization of the four
case phases (Section IV-B) and discuss the implications of the
case findings for other enterprise layers (Section IV-C).

A. Case Discussion
Certain noteworthy reflections in relation to the current

state-of-the-art in software engineering can be made based on
the case documented in the previous section.

First, a tendency has been observed to deprecate or “throw
away” large portions of code when functional requirements
or team members change. This “not invented here syndrome”
[14] typically results in a lot of rework and little reuse. An
illustration of this phenomenon is the redevelopment of the
application after phase 1. The case further illustrates how, in
subsequent phases, this inclination can be mitigated by apply-
ing a fine-grained, reusable code structure. Many functional
changes have been implemented, and different programmers
have been working on the application, without the need to
deprecate the existing code base. This reuse enabled a focus
on applying functional changes, rather than reworking archi-
tectural aspects of the code. As a result, the application has
been updated regularly during 7 years, without requiring large
code deprecations.

Second, the contrast between the widely used design pat-
terns and software elements as proposed by NS Theory should
be noted. While design patterns might incorporate substantial
design knowledge regarding evolvability, their concrete imple-
mentation is still left to the programmer. Applying multiple
design patterns simultaneously results in a complex structure,
which, if created by hand, is error-prone and difficult to
maintain. This has been acknowledged by various scholars
reviewing the state-of-the-art of design patterns: “general
design principles can guide us, but reality tends to force trade-
offs between seemingly conflicting goals, such as flexibility
and maintainability against size and complexity” [15, p. 88].

...

Phase 1 Phase 2 Phase 3 Phase 4

...

Legend: * grey = module-specific part
 * white = recurring part

Figure 1. 4 phases, each one with their distinct variability dimensions.

Phase 2 of the case, where the code structure needed to be
recreated manually, illustrates this. However, in subsequent
phases, code reuse was enabled by the expansion mechanism.
As a result, manual coding was no longer required to apply
existing design knowledge, leading to a consistent and correct
application of the accumulated knowledge. The mechanism of
applying design knowledge through the use of expanders has
been discussed in [16].

Third, the lack of an expansion mechanism jeopardizes true
black-box reuse of software modules. As argued in [4, p.178]:
“in many cases, the problem is not that the component cannot
be found in a repository, or cannot be reused at this point in
time, the main problem is that this would create dependencies
of which the future implications are highly uncertain.” This
implies that white-box inspection remains necessary in order
to safely reuse modules in an evolving system, since not all
dependencies of a module can be considered to be visible in
its interface (i.e., hidden dependencies exist). The expansion
mechanism allows a one-time inspection of a modular structure
and, because of the systematic duplication of that structure,
a deterministic construction (guaranteeing the absence of ad-
ditional dependencies) of (re-)expanded code. Moreover, re-
expansions, such as illustrated in PEMM v2, even allow
the removal of newly discovered hidden dependencies in the
elements within older NS-based applications.

B. Generalizing the four phases to modular structures
The four versions of the SMS/PEMM system as described

in Section III can actually be analyzed in terms of general
modularity structures as well. That is, in each of the four
phases, a more NS-like approach was adopted in which the
software code was modularized in a more fine-grained way.
Reflecting on the essence of each of these phases may help us
in applying NS reasoning to modular systems in general and
to other application domains, such as modular organizational
artifacts. Figure 1 provides a visual overview of these four
phases in general modularity reasoning. We will now briefly
discuss each of them separately, while paying specific attention
to the variability dimensions and recombination potential in
each of the phases. The former specifies the dimensions along
which the evolution of the system takes place. The latter
quantifies the number of different ways in which the system
can be arranged, based on its modular structure.

1) Phase 1: one monolithic block.: In the first phase, the
application could more or less be considered as one monolithic
block. While any application itself obviously consists out of
a set of modular primitives as provided by the programming
language used (e.g., functions, structs, classes), no special
attention was given to a purposeful delineation of parts within

323Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 342 / 512

the overall application. This is similar to a general system in
which no deliberate modularization is introduced. Flexibility
in such design is clearly limited as the recombination potential
basically only equals 1. This means that no parts of the
system can be re-used (within one system or between several
systems) or separately adapted and combined with other parts.
As a consequence, adaptations are mostly not contained into
one well-defined part of the overall system. Therefore, the
variability dimension is the system as a whole and Figure 1
therefore only represents one grey box for this phase.

2) Phase 2: identifying a first set of modules.: In the second
phase, the application was more purposefully structured, i.e.,
different parts were deliberately separated (e.g., classes for
local interfaces, home interfaces and agents). As the modular-
ization was already quite fine-grained and similar functionality
was required several times, a certain repetitiveness in the code
base became clear. Therefore, in order to clarify this way of
working in general modularity reasoning, the second column
of Figure 1 first of all represents a system as consisting out
of several subsystems or modules. Additionally, this phase
already exhibits a special kind of modularity as each of
these modules consists out of a manually constructed (mostly)
recurring part (i.e., the white part) and a part specific for that
module (i.e., the grey part). This means that the variability
dimension is redirected towards the set of individual modules:
the goal of modularity is that each of the modules can be
adapted (e.g., upgraded to a newer version) and be plugged
in into the system as a whole (i.e., recombined with one
another). Based on such modular design, the recombination
potential becomes kN when having N modules with each k
versions. Increasing N or k therefore significantly increases
the recombination potential of such system.

However, it needs to be mentioned that subdividing a
system and creating versions of each of these subsystems in
order to increase the recombination potential is only successful
if done wisely. That is, problems arise due to coupling at the
intramodular level if content is duplicated among modules.
Coupling at the intermodular level may arise if dependency
rippling occurs. Regarding the former, applying a change to a
duplicated part requires each of the modules (in which the
duplicated part is embedded) to be adapted. Regarding the
latter, ripple effects may cause that a change in one modules
requires all other modules (using this first module) to change
as well in order to be still able the use first module. The
NS theorems formulated in general modularity reasoning can
therefore be argued to focus on designing systems which
eliminate both such intramodular coupling (e.g., via Separation
of Concerns) and intermodular coupling (e.g., via Version
Transparency) [9].

3) Phase 3: reusing modular structures in a systematic
way.: As from the third phase, the software developers stopped
creating the recurring part manually and started generating
these recurring parts. Therefore, the left part of the third
column of Figure 1 shows general and explicitly predefined
parts which can be used as the “background” for modules.
More specifically, predefined structures for three types of
modules are provided in this example (e.g., in a software
context: an empty data, action, and flow element). In the right
part of the third column, the “background” of the module is
combined with the module-specific part in order to arrive at
a fully functional module. When analyzing the recombination

potential in this case, one has to consider both the versions
of the predefined modules (e.g., an ameliorated predefined
structure to encapsulate processing functions), as well as the
versions of the module-specific parts (e.g., an updated pro-
cessing function with a new encryption algorithm). Therefore,
in case we consider only one predefined module type j, the
recombination potential becomes l×kN when having l versions
of the predefined module type j, N instantiated modules of
type j, and k versions of each module-specific part. It should
be noticed that, for each new version of a predefined modular
structure applied to an already existing module, the module-
specific part should again be incorporated into this modular
“background” manually. Therefore, this recombination poten-
tial cannot fully be realized at this stage of modularization
yet.

4) Phase 4: expanding elements and harvesting customiza-
tions.: In the last phase, depicted in the fourth column
of Figure 1, the module-specific parts can be isolated and
separately stored (i.e., harvested, as represented in the right
side of the column) before a regeneration of the recurring
predefined modular structures is performed. Therefore, the
module-specific parts do not have to be incorporated manually
in this modular “background” any longer. Instead, these parts
are automatically injected into the general parts at predefined
locations. This enables to achieve the mentioned recombination
potential in the previous phase in reality. Stated otherwise, two
different variability dimensions have to be considered. First,
we have the different versions of the module-specific parts.
Second, there are different versions of the module-generic
parts. This means that classical version numbering in such
cases becomes rather useless: it does not make a lot of sense
anymore to consider a fixed “version” of the modular system as
it is the result of the combination of two different variability
dimensions (i.e., all general parts and module-specific parts
can have different versions).

C. Implications for other enterprise layers
While the core of this paper discussed how NS Theory

specifically modularizes the software layer within an enterprise
architecture, the previous subsections reflected on the implica-
tions for the software engineering field and modular systems
in general. Based on these reflections, some preliminary im-
plications for other enterprise layers can be discussed.

First, the case illustrates how software evolvability was
enabled by allowing changes to small modules, rather than
updating one large, monolithic design (cfr. removing the need
for code deprecation), as discussed in Section IV-A. In current
enterprise architecture approaches, AS-IS and TO-BE versions
are typically designed. Here, the focus is mainly directed
to two separate, monolithic designs as opposed to gradual
changes to small, individual modules. For truly evolvable
enterprise architecture layers, the evolution of smaller modules
should be addressed.

Second, the usage of repetitive structure instantiations
through expanders was contrasted with the documentation of
more generic design patterns (cfr. Section IV-A). On different
organizational layers, recurring structures or patterns have been
proposed as well [17]. Initial explorations of organizational
patterns (“elements”), conform with NS Theory, have already
been presented [3], [9]. For instance, De Bruyn [9] conceptu-
ally suggests a set of possible cross-cutting concerns and ele-

324Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 343 / 512

ments at this level. Currently, these approaches have however
not yet been implemented in practice and should be further
elaborated in future research. Ultimately, this would lead to
the interesting phenomenon of clearly described variability di-
mensions within organizational layers, which provides decision
makers with clear options for evolving the organization [18].

Third, we discussed how NS Theory demonstrates the diffi-
culty of designing truly black-box modules (cfr. Section IV-A).
It has been argued by various scholars that several other layers
within organizations can be considered as modular structures
as well [19]. Based on these arguments, several attempts have
been made in the past to apply NS reasoning to such layers,
such as business processes and enterprise architectures [8],
[3], [9]. These efforts mainly concentrated on identifying and
proving the existence of combinatorial effects in a diverse set
of organizational layers and functional domains [8], [3], [20],
[21], demonstrating a similar issue: it is hard to create truly
black-box, fine-grained modules on these levels as well.

Fourth, the concept of recombination potential demon-
strates the relevance of addressing the difficult research chal-
lenges outlined in the previous implications. Achieving a
larger recombination potential in organizational artifacts such
as products, processes and departments would (1) enable mass
customization of products, which currently still results in high
costs and a large complexity [22]; (2) provide a systematic
approach to versioning artifacts, which is a large issue when
implementing innovation at a steady pace [1]; and (3) aid in
executing complex mergers and acquisitions, by considering
organizational departments as modular options [18].

V. CONCLUSION

In this paper, we discussed a longitudinal case study of
an NS application. We focused on how an increasingly fine-
grained software structure enabled different types of evolvabil-
ity. Such a description contributes to the NS knowledge base,
since it illustrates the theoretical implications of NS Theory.
Following this description, we generalized our findings towards
generic modular structures. Since different enterprise architec-
ture layers have been considered as modular structures before,
we applied the resulting insights to other layers. This effort
contributes to ongoing research in the Enterprise Engineering
field, by integrating the current paper with previous research,
and exploring future research challenges.

REFERENCES

[1] A. Van de Ven and H. Angle, An Introduction to the Minnesota
Innovation Research Program. New York, NY: Oxford University
Press, 2000.

[2] J. W. Ross, P. Weill, and D. C. Robertson., Enterprise Architecture as
Strategy – Creating a Foundation for Business Execution. Harvard
Business School Press, Boston, MA, 2006.

[3] P. Huysmans, “On the feasibility of normalized enterprises: Applying
normalized systems theory to the high-level design of enterprises,”
Ph.D. dissertation, University of Antwerp, 2011.

[4] H. Mannaert and J. Verelst, Normalized Systems—Re-creating Infor-
mation Technology Based on Laws for Software Evolvability. Kermt,
Belgium: Koppa, 2009.

[5] H. Mannaert, J. Verelst, and K. Ven, “Towards evolvable software
architectures based on systems theoretic stability,” Software: Practice
and Experience, vol. 42, no. 1, January 2012, pp. 89–116. [Online].
Available: http://dx.doi.org/10.1002/spe.1051

[6] G. Oorts, P. Huysmans, P. De Bruyn, H. Mannaert, J. Verelst, and
A. Oost, “Building evolvable software using normalized systems the-
ory: A case study,” in System Sciences (HICSS), 2014 47th Hawaii
International Conference on, Jan 2014, pp. 4760–4769.

[7] G. Oorts, K. Ahmadpour, H. Mannaert, J. Verelst, and A. Oost, “Easily
evolving software using normalized system theory - a case study,” in
Proceedings of ICSEA 2014 : The Ninth International Conference on
Software Engineering Advances. Nice, France: ICSEA, 2014, pp. 322–
327.

[8] D. Van Nuffel, “Towards designing modular and evolvable business
processes,” Ph.D. dissertation, University of Antwerp, 2011.

[9] P. De Bruyn, “Generalizing normalized systems theory: Towards a
foundational theory for enterprise engineering,” Ph.D. dissertation,
University of Antwerp, 2014.

[10] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
2011, pp. 1210–1222.

[11] P. Huysmans, G. Oorts, and P. De Bruyn, “Positioning the normalized
systems theory in a design theory framework,” in Proceedings of the
Second International Symposium on Business Modeling and Sofware
Design (BMSD), Geneva, Switzerland, July 4-6 2012, pp. 33–42.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[13] G. E. Krasner and S. T. Pope, “A cookbook for using the model-view
controller user interface paradigm in smalltalk-80,” J. Object Oriented
Program., vol. 1, no. 3, Aug. 1988, pp. 26–49. [Online]. Available:
http://dl.acm.org/citation.cfm?id=50757.50759

[14] R. Katz and T. J. Allen, “Investigating the not invented here (nih)
syndrome: A look at the performance, tenure, and communication
patterns of 50 r & d project groups,” R&D Management, vol. 12, no. 1,
1982, pp. 7–20. [Online]. Available: http://dx.doi.org/10.1111/j.1467-
9310.1982.tb00478.x

[15] G. Hohpe, R. Wirfs-Brock, J. W. Yoder, and O. Zimmermann, “Twenty
years of patterns’ impact,” Software, IEEE, vol. 30, no. 6, Nov 2013,
pp. 88–88.

[16] P. De Bruyn, P. Huysmans, G. Oorts, D. Van Nuffel, H. Mannaert,
J. Verelst, and A. Oost, “Incorporating design knowledge into the
software development process using normalized systems theory,” In-
ternational Journal On Advances in Software, vol. 6, no. 1 and 2, 2013,
pp. 181–195.

[17] J. Dietz, Enterprise Ontology: Theory and Methodology. Springer,
2006.

[18] C. Y. Baldwin and K. Clark, “The option value of modularity in design,”
Harvard NOM Research Paper, vol. 3, no. 11, 2002.

[19] C. Campagnolo and A. Camuffo, “The concept of modularity within
the management studies: a literature review,” International Journal of
Management Reviews, vol. 12, no. 3, 2010, pp. 259–283.

[20] J. Verelst, A. Silva, H. Mannaert, D. A. Ferreira, and P. Huysmans,
“Identifying combinatorial effects in requirements engineering,” in
Advances in Enterprise Engineering VII, ser. Lecture Notes in Business
Information Processing, H. Proper, D. Aveiro, and K. Gaaloul, Eds.
Springer Berlin Heidelberg, 2013, vol. 146, pp. 88–102.

[21] E. Vanhoof, P. Huysmans, W. Aerts, and J. Verelst, “Evaluating ac-
counting information systems that support multiple gaap reporting using
normalized systems theory,” in Advances in Enterprise Engineering VIII
- Fourth Enterprise Engineering Working Conference (EEWC 2014),
ser. Lecture Notes in Business Information Processing, D. Aveiro,
J. Tribolet, and D. Gouveia, Eds., vol. 174. Springer, 2014, pp. 76–90.

[22] J. H. Gilmore and B. J. Pine II, “The four faces of mass customization.”
Harvard Business Review, vol. 75, no. 1, 1997, pp. 91 – 101.

325Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 344 / 512

Applying ISO 9126 Metrics to MDD Projects

Ricardo Muñoz-Riesle, Beatriz Marín

Facultad de Ingeniería

Universidad Diego Portales

Santiago, Chile

e-mail: rm.riesle@gmail.com; beatriz.marin@mail.udp.cl

Lidia López

Software and Service Engineering Group

Universitat Politècnica de Catalunya

Barcelona, Spain

e-mail: llopez@essi.upc.edu

Abstract— The Model Driven Development (MDD) paradigm

uses conceptual models to automatically generate software

products by means of model transformations. This paradigm is

strongly positioned in industry due to the quickly time to market

of software products. Nevertheless, quality evaluation of software

products is needed in order to obtain suitable products.

Currently, there are several quality models to be applied in

software products but they are not specific for conceptual models

used in MDD projects. For this reason, it is important to propose

a set of metrics to ensure the quality of models used in MDD

approaches in order to avoid error propagation and the high cost

of correction of final software applications. This paper analyzes

the characteristics and sub-characteristics defined in the

ISO/IEC 9126 quality model in order to reveal their applicability

to MDD conceptual models.

Keywords-Quality Model; Model-Driven Development; Metrics;

ISO 9126; Conceptual models

I. INTRODUCTION

Software production processes based on Model Driven
Development (MDD) generate software products automatically
or semi-automatically from conceptual models by means of
model transformations [1][2]. To do this, well-defined
modeling constructs, model-to-model transformations and
model-to-code transformations are needed. Therefore, MDD
approaches uses as input conceptual models and models
transformations in order to generate the programming code of
software products. This type of development is strongly
positioned in the software development industry [3] due to the
automatic generation of code, which speed the time to market
and avoids error propagation and the high cost of correction of
human errors in manual programming.

The MDD software process is supported by the Model
Driven Architecture (MDA) [4] standard. MDA defines four
abstraction levels for the models used to generate a software
product that goes from the higher abstraction level to the lower
abstraction level. These levels correspond to the computation
independent model (CIM), the platform independent model
(PIM), the platform specific model (PSM), and the
implementation model (IM). Therefore, the conceptual models
used by MDD approaches at any level become an essential
resource in the process of software generation due to they are
the main input for code generation. In other words, CIM
models are used to generate PIM models, PIM models are used
to generate PSM models, and PSM models are used to generate
the IM model, which corresponds to the code in a specific
programming language.

The quality evaluation of these conceptual models is of
paramount importance since it allows an early verification of
final software products. However, there is no standard defined
to evaluate the quality of conceptual models used at MDD
environments. The ISO 9126 standard [5] presents a set of
characteristics and sub-characteristics that allows the
evaluation of the quality of a software product by using
different quality metrics proposed for each characteristic.
However, these metrics are applied to measure artifacts
obtained in later stages of software development cycles,
increasing the cost of detecting and correcting defects.

We advocate that it is possible to apply the standard ISO
9126 to evaluate software products that have been developed
under an MDD approach. Thus, this paper analyzes the ISO
9126 characteristics, sub-characteristics and their metrics in
order to fit an MDD development process, and therefore,
evaluate the quality of MDD projects using the metrics defined
by ISO 9126. To do this, an exploratory study about the
applicability of the defined metrics to conceptual models at
different abstraction levels of MDD approaches has been
performed. Thus, the main contribution of this work is the
selected set of metrics that can be applied to the conceptual
models that are specified at the different abstraction levels
regarding MDA. This set of metrics composes, therefore, a
quality model that allows an early evaluation of software
generated in MDD environments.

This contribution is useful for both practitioners and
researchers. Practitioners can use this set of metrics in order to
evaluate early the quality of models used for the generation of
their software products, aligning this evaluation with the
standard ISO 9126. Researchers can use this set of metrics in
order to integrate it to other quality evaluation techniques used
at early phases in the software development cycle.

The rest of the paper is organized as follows: Section 2
presents the related work. Section 3 presents an exploratory
study about the ISO 9126 quality model in order to evaluate the
applicability of the defined metrics at MDD projects. Section 4
presents the application of the set of selected metrics of the
quality model to a case study. Finally, Section 5 presents an
overall analysis and some conclusions from the results
obtained.

II. BACKGROUND AND RELATED WORK

This section introduced the ISO 9126 standard in order to
facilitate the understanding of later sections. Afterwards, a
discussion about relevant related works is presented.

326Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 345 / 512

A. ISO/IEC 9126 standard

The ISO/IEC 9126 standard consists of four parts: the
quality model [5], the external metrics [6], the internal metrics
[7] and the metrics for quality in use [8]. The first part
describes in detail six quality characteristics for software
products (functionality, reliability, usability, efficiency,
maintainability, and portability), and their corresponding sub-
characteristics (see Figure 1).

Figure 1. ISO 9126 characteristics and sub-characteristics.

In order to determine the level of quality of software
products, it is necessary to evaluate these characteristics by
applying a set of well-defined metrics. Thus, the second, third
and fourth part of ISO 9126 describes metrics to assess the
software quality. These metrics are focused on measuring
artifacts obtained in later phases of the software development
cycle, complicating the detection and correction of problems at
early stages, which are propagated to later stages.

B. Related Work

The quality evaluation of software products is the
paramount importance. For software products that are
developed using an MDD approach, the quality evaluation can
be performed at the conceptual models that are used as input
for the automatic code generation.

There are several works that are focused in the quality
evaluation of software products generated in an MDD
approach. A mapping study of works that are focused in quality
at Model-Driven Engineering (MDE) was presented in [9]. The
main concerns presented in this study are (1) the studies do not
provide an explicit definition of quality in model-driven
contexts; (2) studies that are focused in UML models are not
aligned with MDD approaches; and (3) there is a lack of
analysis that indicates when a metric may or may not be
applied to an MDD approach.

An approach to integrate usability evaluations of ISO 9126
into Model-Driven Web Development was presented at [10].
This study shows how the final user interface can provide
feedback about changes in order to improve usability issues at
intermediate artifacts of MDD projects (PIM and PSM
models). This paper presents a similar way to us to analyze if
the ISO 9126 metrics can fit into the MDD approach.

In [11], a quality model for MDD projects was presented.
This model allows the verification of conceptual models by
using a set of rules to detect defects related to data, process and
interaction perspectives.

As summary, even though there are several model-driven
proposals defined, and also there are several works that are
focused on quality evaluation of MDD projects, there is a lack
of a standard method to evaluate the quality at the different
abstraction levels in model-driven approaches. For this reason,
we decided to analyze the overall software quality framework
presented by the ISO 9126 in order to identify if the metrics

presented can be applied to the conceptual models defined at
the different abstraction levels of MDD approaches.

III. EXPLORATORY ANALYSIS OF ISO 9126

This section presents an analysis of each characteristic of
ISO 9126 and their corresponding sub-characteristics,
considering if they are or not suitable to be applied to software
products developed by using an MDD approach. In addition,
the abstraction level of each presented metric has been
identified.

A. Functionality

Functionality has been defined as the capability of a
software product to provide the functions that meet the stated
and implied needs when the software is used under specific
conditions [5]. Requirements specifications are used to define
the functions that meet the needs of users. Thus, to evaluate
functionality it is necessary to focus in this kind of
specifications.

In MDD projects, the requirements specifications can be
performed by using CIM models, for instance i* models [12]
[13], use-case diagrams [14], or BPMN diagrams [15]. Later,
these models are transformed into PIM models (such as class
diagrams) in order to continue with the process of code
generation by using an MDD approach. These transformations
are performed by different MDD approaches with their
supporting tools, such as [16][17]. Thus, it is possible to
evaluate the functionality of a software product generated in an
MDD environment by using the CIM models that correspond to
the requirements models. In other words, it is possible to
evaluate if the software provide the functions stated in
requirements by using CIM models and the traceability [18] of
these models to the final programming code.

Functionality is comprised of the following sub-
characteristics: suitability, accuracy, interoperability, security
and conformance. For all the metrics, the closer to 1, the better:

1) Suitability: It corresponds to the capability to provide an
appropriate set of functions for specific objectives [5]. In this
context, the appropriateness is understood as the ability to
correctly select a set of functions that meet the user needs. This
verification process can be performed comparing the CIM with
the PIM, or the CIM with the IM generated. The following
metrics has been defined to evaluate the suitability [6]:

 Functional Adequacy (FA): This metric evaluates how
adequate are the functions by using the formula
presented in (1). This metric is useful for MDD
approaches since it can be used at CIM or PIM. To do
this, it is necessary to apply inspection techniques to
find problems in the functions specified at CIM or
PIM. For instance, if an MDD approach uses a class
diagram as PIM, it is possible to identify defects in the
defined functions by using for example a list of
possible defects [19][20].

1 FA = 1-(Number of functions in which problems are
detected/Number of functions evaluated) (1)

 Functional Implementation Completeness (FIC): This
metric evaluates how complete is the implementation
according to requirement specifications using the

327Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 346 / 512

formula presented in (2). This metric allows the
identification of missing functions, based on the
requirement specifications. Note that in MDD
approaches the requirements are specified at CIM.
Thus, the verification process can be performed by
evaluating if the functions specified at CIM are present
at PIM after the transformation from CIM to PIM, and
also, it can be performed by evaluating if the functions
specified at PIM are present at IM after the
transformation process. For example, if an MDD
approach uses i* models as CIM, it is possible to apply
rules to verify that all the elements specified in the i*
models are in the class diagram by using [21].

 FIC = 1-(Number of missing functions detected/Number of
functions described in Req Spec) (2)

 Functional Implementation Coverage (FICo): This
metric evaluates how correct is the functional
implementation using the formula presented in (3).
This metric identifies those functions that have been
incorrectly implemented or have not been implemented
instead they have been specified in requirements
models. In MDD projects, the code (IM) is
automatically generated by the compilers, so that, to
use this metric it is necessary to evaluate the CIM and
the IM. Note that to go from CIM to IM it is necessary
to go from CIM to PIM, then from PIM to PSM, and
later for PSM to IM.

 FICo = 1-(Number of incorrectly implemented or missing
functions/Number of functions described in Req Spec) (3)

2) Accuracy: Corresponds to the capability of the software
product to provide the right or agreed results or effects [5]. In
order to measure the accuracy, it is necessary to define the
concepts of trueness and precision. Trueness refers to the
closeness of the mean of the measurement results to the true
value; and precision refers to the closeness of agreement within
individual measurement results. Therefore, according to the
ISO standard, the term accuracy refers to both trueness and
precision [22].

In order to measure the accuracy, two metrics has been
defined [6]: Accuracy to expectation (AE) and Computational
accuracy (CA). AE evaluates the actual results against the
reasonable expected results in the operation time. CA evaluates
how often the user found inaccurate results during the
operation time. In both cases, to evaluate the accuracy is
necessary to have the user executing the code. Thus, these
metrics are used in later phases of the software development, so
that, they do not contribute to the early quality evaluation of
MDD projects.

3) Interoperability: Corresponds to the capability of a
software product to interact with one or more specified systems
[5]. The interoperability of a software product can be specified
at the conceptual models that are used as input in an MDD
approach. To do this, interfaces with other systems must be
defined in the conceptual model to specify the data inputs and
outputs.

The following metric is defined to evaluate the

interoperability in [6]:

 Data Exchangeability (DE): This metric evaluates how
correctly have been specified the exchange functions
for specific data transfer using the formula presented in
(4). To evaluate this metric it is necessary to specify
the data formats that are exchanged with other systems
and then apply inspection techniques to verify that the
functions defined to exchange data are correctly
defined. This metric can be evaluated at PIM of MDD
approaches, where it is possible to specify the
interaction with other systems. For instance, the MDD
OO-method approach [23] allows the specification of
Legacy Views, which corresponds to the abstraction of
a software component that is represented by a class.
The specification of the attributes and services of a
legacy view requires the characterization of the
functions or procedures that effectively carry out the
corresponding function at other systems. By doing this,
it is possible to identify whether software functions are
compatible with the software that is specified by using
the MDD approach. In addition, if the other system it is
also specified by using an MDD approach, then, it is
possible to specify the interactions between both
systems at the metamodel level [24]. Thus, to verify
this metric it is necessary to inspect the models
following the syntax, semantics and restrictions
specified in the metamodels.

DE = (Number of data formats which are approved to be
exchanged successfully with other software or system
during testing on data exchanges/Total number of data
formats to be exchanged) (4)

4) Security: Corresponds to the capability of the software
product to protect information in order to avoid unauthorized
people or systems to read or modify them; and to provide
authorized people or systems to have access to them [5]. The
MDD approaches allow the specification of the users of the
generated software. For instance, the OO-Method MDD
approach allows the specification of agents at PIM, which have
access to perform specific tasks and to read specific data.

The following metrics have been defined to evaluate the
security [6]: Access Auditability (AA), Access Controllability
(AC), and Data Corruption Prevention (DCP). AA, AC and
DCP are calculated by using information of the user access at
the operation time. Therefore, they do not contribute to the
early evaluation of the quality of MDD projects. Nevertheless,
it is important to note that in MDD projects the code is
automatically generated from an input conceptual model. Thus,
if an erroneous access is found in the access to the
functionality, it can be corrected at PIM, and then regenerate
the code.

B. Reliability

Reliability corresponds to the capability of the software
product to maintain a specified level of performance when it is
used under specified conditions [5]. To evaluate the
performance it is necessary to execute the software, so that it
cannot be simulated at design time of software, and it is

328Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 347 / 512

necessary to use the IM model, which corresponds to the code
automatically generated by the MDD approach.

C. Usability

Usability corresponds to the capability of the software
product to enable the user to understand whether the software is
suitable, and how it can be used for particular tasks and
conditions of use [5]. This characteristic and its sub-
characteristics are usually used once the software is executed,
but we advocate that it is possible to measure this characteristic
at early stages of the software development cycle by using an
MDD approach. To do this, it is necessary that the conceptual
model of the MDD approach has a holistic representation of the
system, i.e., including the specification of the structure of the
system, the behavior of the system, and the graphical user
interface.

In [25], a new sub-characteristic of usability is presented:
Complexity, which can be applied to MDD approaches. Two
metrics have been defined to evaluate the complexity in the use
of interfaces and operations in software.

 Complexity: This metric provides an indicator that
measures the average number of operations per offered
interface [25] using the formula presented in (5). For
MDD projects, this metric can be evaluated by using
the specification of the graphical user interfaces
defined in the presentation model and the services that
are accessed from these interfaces. Thus, this metric
can be applied at the PIM of MDD approaches. This
parameter can be compared with the user's opinion on
how hard it is to use all the operations of a specific
interface. This would indicate the perceived level of
complexity if the system has high complexity or low
complexity by using the IM model in order to define
the acceptable value of this metric.

 Interface Defects Avoidance (IEA): This metric defines
the level of understanding of a user after a defect
occurs. The closer to 1, the better. IEA uses the
average number of graphic operations failed
recognized by the user in comparison to the total
defects pre-defined by the developers. Thus, this metric
is evaluated when the software is executed, so that it
does not contribute to the early quality evaluation of
MDD projects.

 Complexity = (Operations in all offered interfaces/Offered
interfaces) (5)

D. Efficiency

Efficiency corresponds to the capability of the software
product to provide appropriate performance, relative to the
amount of resources used, under stated conditions [5].

Unfortunately, there are many external factors, such as
bandwidth, hardware, and number of users connected, which
cannot be known at early stages of the software development
cycle since they cannot be specified in the conceptual model.
These factors are only known when the software is executed, so
that this characteristic cannot contribute to the early evaluation
of quality of MDD projects.

E. Maintainability

Maintainability corresponds to the capability of the
software product to be modified. Modifications may include
corrections, improvements or adaptation of the software, and
also, in requirements and functional specifications [5].

The maintainability can be evaluated in the conceptual
models used by MDD approaches. An MDD approach allows
the automatic generation of code by using as input a conceptual
model, thus facilitating the detection of defects in the final
product, and the corresponding corrections at the conceptual
model. In addition, the automatic code generation allows
software analysts to easily return to the initial steps of the
software development cycle in order to include improvements
or adaptations in the conceptual model. For this reason, the
sub-characteristics of maintainability are also analyzed.

1) Analyzability: Corresponds to the capability of the

software product to be diagnosed for deficiencies or causes of

failures in the software, or for the parts to be modified to be

identified [5]. The metrics defined in [6] are focus to measure

analyzability by observing the user's behavior, so that they do

not make a contribution as a quality metric for MDD

approaches.

2) Changeability: Corresponds to the capability of the

software product to enable a specified modification to be

implemented [5]. One of the main advantages of MDD

approaches is the ease of change. This is due to the great

advantage of the automatic generation of code that allows the

quick return to any stage of the development cycle, and

therefore, correct the problem by redefining the models of the

software.
The metrics defined in [6] are not useful to define a quality

model for MDD approaches regarding the changeability,
because these metrics are focused on the user behavior using
the software at a specific time, instead of measuring the
behavior of the software itself. Despite this, we found a metric
in [25], which has been defined to evaluate the changeability:

 Customizability Ratio (CR): This metric provides an
indicator of the ability of modification of the software
using the formula presented in (6). If the software
offers few interfaces and many parameters, normally it
would be very modifiable, though difficult to handle,
while one with many interfaces and few parameters is
slightly modified. This metric can be evaluated by
using the PIM of an MDD approach.

 CR = (Number of parameters/Number of interfaces offered) (6)

3) Stability: Corresponds to the capability of the software

product to minimize unexpected effects from modifications of

the software [5]. In [6], there are defined metrics focused on

user's behavior so that they do not perform a contribution for

the early quality evaluation of MDD.

4) Testability: Corresponds to the capability of the

software product to enable modified software to be validated

[5]. Software developed by MDD approaches can be easily

tested by the automatic generation of code and test cases [26].

This allows testing the software model based on the software

329Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 348 / 512

requirements specification. If a problem occurs, it can be

solved by returning to the initial stages of software

development cycle.

For this reason, the metrics defined in [6], do not contribute to

the early quality evaluation of MDD projects because they are

focused on user's behavior.

F. Portability

Portability corresponds to the capability of a software
product to be transferred from one environment to another [5].
In MDD approaches, the software products are developed
under specific requirements, using models such as PSM [3].
Therefore, the same conceptual model can be used on different
platforms assuring portability. Unfortunately, metrics defined
in [6] doesn't help to evaluate the quality for MDD approach.
This is because the metrics defined by the ISO 9126 are
focused on reuse of the software developed. In contrast, MDD
approaches allow going one step back and re-compile the
conceptual model to different technological platforms by using
different PSM and compilers.

G. Other Metrics of ISO 9126

The metrics presented with their formula are focused on
measuring quality for MDD approach at an early stage of
software development. Nevertheless, there are other metrics
defined in the ISO 9126 standard that cannot be used to
measure the quality of models used at MDD approaches, since
they are used in final stages of software development, i.e., they
need the execution of the software to be tested or they are
focused on the user's behavior.

These metrics are (1) Functional Specification Stability
(FSS), which counts the number of functions changed after
entering in operation; (2). Precision (P), which counts the
number of results with a level of precision different from
required during the operation time; (3) Data exchangeability
by the user (DEu), which counts the number of cases in which
user failed to exchange data with other software or systems.

IV. CASE STUDY

This Section exemplifies how the metrics are used at a
software development project using an MDD approach. To do
this, we present a system called SICOVE, which corresponds to
a vehicle trading system that supports the process of managing
vehicles, premises, revenues and costs undertaken by a buy-sell
generic vehicle company (accounting and taxes processes
associated are excluded). Figure 2 shows the conceptual model
for SICOVE system.

This conceptual model has been specified using OO-
Method approach and the Integranova [27] tool, which is able
to compile the conceptual model and automatically returns the
generated code compiled to different platforms. To do this, the
OO-Method conceptual model is comprised of four
complementary views: the static view, the functional view, the
dynamic view and the presentation view. The static view is
specified in a class diagram, which allows the specification of
the structure of the final system. The functional view is
specified in a functional model, which allows the specification
of the change of values of the attributes when a service is
executed. The dynamic view is specified in a state transition
diagram, which allows the specification of the valid lives of an

object. The presentation view is specified in a presentation
diagram, which allows the specification of the graphical user
interface. We have selected this tool to apply the set of metrics
since it is an MDD tool that has more than 10 years of
successful usage in industry.

Figure 2. SICOVE Conceptual Model

Figure 2 shows the structural view of SICOVE system. All
the functions of SICOVE have been specified by using the
functional model (e.g., see Figure 3, which presents the
specification of create_client). In Figure 3 it is possible to see
the inbound arguments and the data type of each argument of
the service.

Figure 3. Example of SICOVE functional view

The generated code allows the testing of some of the
functions of SICOVE system, for example create_client. In
order to create a client we need to enter the following data into
the system: id_client, name, last_name, rut, address, phone,
email, date of birth, city (e.g., see Figure 4, which presents the
attributes for the class client). Once entered the data, the system
verifies that the user is not registered in the database in order to
add it.

The SICOVE system has been used to evaluate the
applicability of the metrics proposed in Section III. To do this,
an analysis of all the functions defined in the specification of
the system was performed in order to evaluate each metric
proposed for MDD.

Table I shows the results obtained by applying the proposed
metrics to the SICOVE system. This data was calculated by
using the mathematical formulas described before, the
requirements specification of the vehicle trading system that

330Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 349 / 512

was performed by using the IEEE 830 standard, and the
conceptual model defined by the OO-Method approach, which
correspond to the PIM abstraction level of MDA.

Figure 4. Example of SICOVE attributes

Regarding the functionality, FA, FIC and FICO metrics
obtain a value less than one. This means that there are some
functions that have been specified in the requirements but they
do not have been generated at PIM. A summary of the
functions defined in the requirements specification are
presented in Table II. As this table shows, there is some
functionality that is not fully present at the PIM conceptual
model, such as Generate Quotation, Set Vehicle for Sale and
Sell Vehicle. Thus, from a total of 17 functions defined for the
SICOVE system, 3 of them are not fully implemented (e.g., see
Figure 5). The result obtained after applying the mathematical
formulas is 0.8 for each metric, which indicates that are some
functions of the SICOVE system are not implemented. If the
value of these metrics had been 1 this would indicate that all
functions were correctly implemented.

Figure 5. Functions specified for SICOVE system

TABLE I. RESULTS

Characteristic Sub- Characteristic Metric Result

Functionality Suitability FA 0.8

FIC 0.8

FICo 0.8
Interoperability DE -

Usability Complexity Complex 5.3
Maintainability Changeability CR 7.1

TABLE II. FUNCTIONS FOR SICOVE SYSTEM

ID
Functions of

SICOVE system
Defined

Functions
ID

Functions of

SICOVE

system

Defined

Functions

1

Login to the

system Yes 10 Sell vehicle No

2 Create user Yes 11
View vehicle
history Yes

3 Edit user Yes 12

View user

history Yes

4 Remove user Yes 13 See income Yes

5 Add local Yes 14 View users Yes

6 Modify local Yes 15 View all local Yes

7 Remove Local Yes 16

View all

vehicles Yes

8
Set vehicle for
sale No 17

Generate
quotation No

9

Modify vehicle

in system Yes

For DE metric, the SICOVE system works without requires

inputs from other system. This means that is not dependant on
other systems to perform their functions, so the connection
between the SICOVE and other systems is not applicable.
Thus, it is not possible to apply this metric in this case study.

For Complex and CR metrics, we identified 10 interfaces
offered by SICOVE, 53 operations, and 71 parameters on all
the graphical user interfaces offered, giving a result of 5.3 for
Complex and 7.1 for CR metrics. In addition, the presentation
view has been specified (e.g., see Figure 6, which presents the
patterns to create the graphical user interface of new client
service). The services with the arguments owned specified in
Figure 3 are specified in Figure 5 as service interaction units.
These results give us an indication of the current status of
Complex and CR of the SICOVE system. These results
indicate a normal level of complexity and customizability ratio
to this system, due to it has the basic functions and parameters
for the system to work.

Figure 6. Example of SICOVE presentation view

All these metrics were applied manually to study the
SICOVE system, which was automatically generated by the
Integranova tool. Even though the case is small, and
consequently the data delivered by not too big, it is enough to

331Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 350 / 512

understand the applicability of the ISO 9126 metrics to a
particular MDD project. Thus, in this section we have
exemplified the application of ISO 916 metrics to an MDD
project, so that we verify the applicability of the selected
metrics of ISO 9126 to an MDD project.

V. CONCLUSIONS AND FURTHER WORK

Software quality involves a strategy towards the production
of software that ensures the user satisfaction, the absence of
defects, the compliance with the budget and time constraints,
and the application of standards and best practices for the
software development. Thus, different techniques can be
applied to the different artifacts used along the software
development process. The ISO 9126 standard is a well-known
quality model for software systems, so that in this paper we
present an analysis of ISO 9126 regarding their applicability to
MDD projects.

In particular, this paper presents an exploratory analysis of
the ISO 9126 metrics that was performed in order to identify
the metrics that could be used at early stages of software
development cycle by analyzing the abstraction level of the
conceptual models at which these metrics can be used. These
early stages correspond to the specification of conceptual
models for the analysis and design of software systems. In
MDD projects, these conceptual models are located at different
abstraction levels, which are the CIM, PIM, PSM or IM. In
addition, these metrics have been used in an MDD project in
order to evaluate their applicability. To calculate these metrics,
the conceptual models of an industrial MDD approach were
used. So that, we can conclude that these ISO 9126 metrics
allow the early evaluation of quality of MDD projects, i.e.,
these metrics are useful for MDD projects.

Nevertheless, in MDD approaches there are many edges
where is still possible to make a contribution to improve the
quality evaluation of MDD projects, for instance extending the
analysis to modeling languages, modeling tools, and modeling
transformations, i.e., evaluating the quality of projects
generated in MDE environments. Thus, immediate future work
considers the inclusion of other metrics in order to have a well-
defined set of metrics that conforms the basis of a quality
model for MDD. And, later, further work considers the quality
evaluation of MDE projects. We are aware that additional
evaluation of our proposal to real development scenarios is
necessary. Therefore, we consider as future work the
development of empirical studies to evaluate the effectiveness
and benefits of using these metrics under MDD approaches in
real MDD projects.

ACKNOWLEDGMENT

This work was funded by Universidad Diego Portales and the

FONDECYT project TESTMODE (Ref. 11121395, 2012-

2015).

REFERENCES

[1] O. Pastor, J. Gómez, E. Insfrán, and V. Pelechano, "The OO-Method

Approach for Information Systems Modelling: From Object-Oriented
Conceptual Modeling to Automated Programming", Information Systems,
vol. 26, 2001, pp. 507–534.

[2] B. Selic, "The Pragmatics of Model-Driven Development", IEEE
Software, vol. 20, 2003, pp. 19–25.

[3] OMG. MDA Products and Companies. Available: [retrieved: October,
2015] http://www.omg.org/mda/committed-products.htm

[4] OMG, "MDA Guide Version 1.0.1", 2003.

[5] ISO/IEC, "ISO/IEC 9126-1, Software Eng. – Product Quality – Part 1:
Quality model", 2001.

[6] ISO/IEC, "ISO/IEC 9126-2, Soft. Eng. – Product Quality – Part 2:
External metrics", 2003.

[7] ISO/IEC, "ISO/IEC 9126-3, Soft. Eng. – Product Quality – Part 3:
Internal metrics", 2003.

[8] ISO/IEC, "ISO/IEC 9126-4, Soft. Eng. – Prod. Qual. – Part 4: Quality-in-
Use metrics", 2004.

[9] F.D. Giraldo, S. Espana, and O. Pastor, "Analysing the concept of quality
in model driven engineering literature: A systematic review". IEEE
Eighth International Conference on Research Challenges in Information
Science (RCIS), 2014, pp 1–12.

[10] A. Fernandez, E. Insfran, and S. Abrahão, "Towards a Usability
Evaluation Process for Model-Driven Web Development", I-USED'09,
Uppsala, Sweden, 2009, pp.1-6.

[11] B. Marín, G. Giachetti, O. Pastor, and A. Abran, "A Quality Model for
Conceptual Models of MDD Environments", Advances in Software
Engineering, vol. 2010 - Article ID 307391, 2010, pp. 1-17.

[12] S. Abdulhadi, "i* Guide version 3.0", 2007.

[13] i*. Wiki Web Page. Available: [retrieved: October, 2015] http://istar.rwth-
aachen.de/

[14] OMG, "Unified Modeling Language (UML) 2.4.1 Superstructure
Specification " 2011.

[15] OMG, "Business Process Model and Notation (BPMN) 2.0", 2011-01-03
2011.

[16] M. Kardoš and M. Drozdová, "Analytical method of CIM to PIM
transformation in Model Driven Architecture (MDA)", Journal of
Information and Organizational Sciences, vol. 34, 2010, pp. 89-99.

[17] B. Brahim, E. B. Omar, and G. Taoufiq, "A methodology for CIM
modelling and its transformation to PIM", Journal of Information
Engineering and Applications, vol. 3, 2013, pp. 1-21.

[18] M. Ruiz, Ó. P. López, and S. E. Cubillo, "A Traceability-based Method to
Support Conceptual Model Evolution", CEUR-WS.org, 2014, pp-1-8.

[19] B. Marín, G. Giachetti, O. Pastor, "Applying a Functional Size
Measurement Procedure for Defect Detection in MDD Environments"
16th European Conference EUROSPI 2009, Vol. CCIS 42, Springer-
Verlag, 2009, pp. 57-68

[20] B. Marín, G. Giachetti, O. Pastor, and T. E. J. Vos, "A Tool for
Automatic Defect Detection in Models used in Model-Driven
Engineering", 7th International Conference on the Quality of Information
and Communications Technology (QUATIC), Oporto, Portugal, 2010, pp.
242-247.

[21] G. Giachetti, B. Marin, and X. Franch, "Using Measures for Verifying
and Improving Requirement Models in MDD Processes", 14th
International Conference on Quality Software (QSIC), 2014, pp. 164-173.

[22] ISO, "ISO 5725-2 – Accuracy (trueness and precision) of Measurements
Methods and Results – Part 2: Basic Method for the Determination of the
Repeatability and Reproducibility of a Standard Measurement Method",
1994.

[23] O. Pastor and J. C. Molina, Model-Driven Architecture in Practice: A
Software Production Environment Based on Conceptual Modeling, 1st
edition ed. New York: Springer, 2007.

[24] O. Pastor, G. Giachetti, B. Marín, and F. Valverde, "Automating the
Interoperability of Conceptual Models in Specific Development
Domains", in Domain Engineering: Product Lines, Languages, and
Conceptual Models, Springer, 2013, pp. 349-374.

[25] A. Mattsson, B. Lundell, B. Lings, and B. Fitzgerald, "Linking model-
driven development and software architecture: a case study", IEEE
Transactions on Software Engineering, vol. 35, 2009, pp. 83-93.

[26] P. Baker, Z. R. Dai, J. Grabowski, Ø. Haugen, I. Schieferdecker, and C.
Williams, Model-Driven Testing: Using the UML Testing Profile:
Springer-Verlag 2008.

[27] Integranova. (2015). Web Page. [retrieved: October, 2015]
http://www.integranova.com

332Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 351 / 512

Evaluation of a Security Service Level Agreement

Chen-Yu Lee, Krishna M. Kavi,

Department of Computer Science and Engineering, University of North Texas
1155 Union Cir, Denton, TX 76203, United States

Email: cychrislee@ieee.org, Krishna.Kavi@unt.edu

Abstract—Data breaches are the most serious security breaks
among all types of cybersecurity threats. While Cloud hosting
services provide assurances against data loss, understanding the
security service level agreements (SSLAs) and privacy policies
offered by the service providers empowers consumers to assess
risks and costs associated with migrating their information
technology (IT) operations to the Cloud. We have developed
ontologies to represent security SLAs so that consumers can
understand cybersecurity threats, techniques for mitigating the
risks, and their roles and responsibilities and those of the service
provider in terms of protecting IT systems. Our ontological
representation of security services offered by a provider allows
the customer to evaluate the level of compliance with respect
to federal regulations such as Health Insurance Portability and
Accountability Act (HIPAA). In this paper, we also describe ways
to quantitatively assess the strength of compliance and the quality
of protections offered by an SSLA. We hope that our approach
can lead to negotiated SSLAs.

Keywords–service level agreement; SLA; security; SSLA; cloud
computing.

I. INTRODUCTION

In 2014 and 2015, we have seen numerous and significant
data breaches. In September 2014 Home Depot suffered a
data breach of 56 million credit card numbers [1] and in
October 2014, 1.16 million customer payment cards were
stolen from Staples [2]. In February 2015, CareFirst Blue-
Cross BlueShield announced that it was the target of a cyber
attack that compromised the information of about 1.1 million
current and former consumers [3]. Compromised information
included consumer user names for CareFirsts website, as
well as names, birth dates, email addresses and subscriber
identification numbers. Most recently (June 2015), the US
Office of Personnel Management revealed a data breach that
lead to a foreign nation having access to millions of US federal
employee records [4]. These incidents show that data breaches
(or an unauthorized person gaining access to data) are the
most prevalent types of security attacks. Some of these attacks
involved very sophisticated techniques to circumvent several
levels of cybersecurity protections.

The Federal Risk and Authorization Management Program
(FedRAMP) is a government-wide program that describes a
standardized approach to security assessment, authorization,
and continuous monitoring of Cloud IT products and services.
FedRAMP is the result of close collaborations among cyberse-
curity and cloud experts from the General Services Administra-
tion (GSA), the National Institute of Standards and Technology
(NIST), the Department of Homeland Security (DHS), the
Department of Defense (DOD), the National Security Agency
(NSA), the Office of Management and Budget (OMB), and

Figure 1. Ontology for SLA

the Federal Chief Information Officers (CIO) Council. The
assessment process is based on a standardized set of require-
ments in accordance with the Federal Information Security
Management Act (FISMA). The NIST Special Publication
(SP) 800-53 [5] controls security authorizations. NIST is also
working on new guidance, SP 800-174, which will address the
distribution and placement of security controls for cloud com-
puting environments. The new guidance will list the controls
needed for capabilities (or services), and displays how a cloud
capability (or service) should be correctly and completely
secured. Finally, the NIST Cloud Computing program plans
to define security SLAs, security metrics, security intelligence
and continuous monitoring based on previous documents SP
500-299 [6], SP 500-307 [7], SP 800-173, and SP 800-174.
The Security Service Level Agreement (SSLA) can be used to
improve the credibility and verifiability of security and privacy
commitments made by cloud providers.

In general, Service Level Agreements (SLAs) written by
a Cloud provider are very difficult to understand, and it is
even more challenging to quantitatively compare the SLAs of
different providers. To capture and present requirements for
both providers and consumers, Modica et al. proposed an SLA
ontology that captures the definition of a semantic domain of
knowledge for the cloud business (see Figure. 1) [8]. Based
on the ontology knowledge base, providers can customize their
offerings according to their business strategy, and consumers
can request the resources and services consistent with their
needs. However, this work does not cover security service
levels, which led to our development of ontologies specifically
for SSLAs.

This paper extends our previous work that proposed ontolo-
gies for SSLAs that could be used to understand the security

333Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 352 / 512

agreements of a provider and to audit the compliance of service
levels with respect to federal regulations, such as HIPAA [9]
[10]. We enrich the ontology models and propose an SSLA
assessment system to evaluate the strength of agreements in
terms of protecting IT assets. Our approach can be used to
negotiate desired levels of security. The rest of the paper is
organized as follows. Section II discusses research that is
closely related to ours. The SSLA ontology framework is
introduced in Section III. Our approach for assessing SSLAs
is described in Section IV and we illustrate how this approach
can be used for negotiating SSLAs in Section V. Section VI
includes a discussion of our current research and our plans for
extending the framework.

II. RELATED WORKS

A. Service Level Agreement
A SLA is a documented legal agreement between a service

provider and a consumer and identifies services and levels of
service targets based on the ISO 2000 standard for service
management systems [11]. A Cloud Service level agreement
is a document that states the services offered, performance
levels and promises made by the cloud provider.

B. Security Service Level Agreement
The Security Service Level Agreement (SSLA) for spec-

ifying the security service requirements of an enterprise was
first proposed by Henning [12]. Monahan et al. considered
the issues of meaningful security SLAs and discussed how a
security SLA embodies certain legal and contractual elements
to satisfy two basic requirements: separation and compart-
mentalization [13]. In 2013, the terms SSLA and security
service-oriented agreement were proposed by Takahashi et
al. [14]. The authors proposed a non-repudiatable security
service-oriented agreement mechanism that describes security
requirements for users and capabilities of service providers.
Rong et al. described some cloud security challenges including
resource location, the multi-tenancy, authentication and trust of
acquired information, system monitoring, and cloud standards
[15]. Hale et al. built an XML-based compliance vocabulary
compatible with the WSLA schema [16]. However, there are no
prior attempts to describe SSLAs formally. Currently SSLAs
are described informally in English, and it is very hard to
evaluate or negotiate the strength of such informal descriptions.
Previously we proposed an ontology for SSLA that covers the
security issues required to meet most security regulations [9]
[10]. This paper expands our previous ontology and proposes
to evaluate the strength of an SSLA.

III. ONTOLOGY FOR SSLA
As an alternative to the traditional SLAs, written in natural

languages, an XML-based SLA is more useful for automated
processing. Previously we defined several different ontologies
including ontologies for vulnerabilities, attacks and Security
SLAs ([9] [10] [17]). Our ontology for Security Service Level
Agreements (or SSLAs) are based on the design concepts of a
trustworthiness ontology proposed in [18] and also extends
Hale’s work [16]. To increase the coverage of our SSLA
ontology, we take into account the challenges in covering all
control domains specified by the Cloud security alliance (CSA)
Cloud Control Matrix (CCM) v3 [19] and the properties of
some security frameworks, such as HITRUST [20].

Figure 2. All classes in SSLA

Figure 3. Audit class in SSLA

In this paper we extend our previous SSLA ontology so
that SSLAs can be evaluated for their strengths. Our SSLA
ontology facilitates an understanding of security concerns in
service level agreements and allows one to match the security
requirements of a customer with the SSLAs offered by service
providers. Summarizing, our SSLAs offer these benefits.

• SLA agreements are easier to understand, particularly
those related to security.

• During negotiations, consumers can compare the
SLAs offered by different providers and choose the
one that best fits their needs.

• It will be easier to monitor (or audit) the compliance
of securities levels offerred by service providers with
security requirements of federal regulations.

For completeness sake we introduce our SSLA
ontology first. Without loss of generality, here we
represent fourteen classes in our SSLA ontology,
including Networking, Vulnerability,
Transparency, DisasterDetectionRecovery,
DataPossession, CryptoSpec, AccessControl,
Processing, Compliance, Audit, Selectable,
Subcontractor3rdPartyApp, and Equipment
Maintenance as shown in Figure 2. Each class is described
below. The ontology can be modified by removing or adding
additional classes.

• Networking: This class organizes the agreements
about the networking environment such as traffic isola-
tion (TrafficIsolation subclass); IP and band-
width monitoring (BandwidthMonitoring and
IPMonitoring subclasses). These subclasses can
be used to define functions such as allocating band-
width and blacklisting (or whitelisting) IP addresses.

334Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 353 / 512

• Vulnerability: This class defines assurances in
terms of detecting and patching known vul-
nerabilities. PatchPolicyComplianceRate and
ScanFrequency subclasses can be used for speci-
fying policies on how often the system is scanned for
malware, and how soon a known patch is applied to
remove vulnerabilities.

• Transparency: This class regulates the transparency of
the information related to the security management
processes used by the provider. The SSLA should
record the responsible office that will provide the
information regarding all security breaches and actions
taken when requested.

• Disaster detection and recovery: This class describes
the contingency plans and the security incident proce-
dures, and details disaster detection and the recovery
steps in the event of a breach. It may also define
data backup functions because data is usually the most
valuable asset for consumers.

• Data possession: This class controls data storage pro-
cedures and verification methods, and how often they
are applied to ensure data authenticity. This class can
be used to specify the ownership and the location of
the storage.

• Audit: This class describes the processes for inter-
nal and external audits of the architecture, man-
agement, and services of providers, and the certifi-
cates obtained (listed in Certification) to build con-
sumer trust in the providers as shown in Figure 3.
InternalAudit and ExternalAudit subclasses
also define the respective audit plans. Log is the
most important evidence of behaviors of attackers,
consumers, and providers. To protect the security of
the log, the Log subclass regulates the secure storage
and retention of the logs. The RiskManagement
subclass describes the risk management and data
risk assessment programs. The system administra-
tors of the providers’ systems have the highest level
of privilege. They can perform any action on any
object. Thus, the ViabilityOfProvider sub-
class defines what level of consumer data secu-
rity is appropriate for a specific person and un-
der what conditions. In addition, the class outlines
the real time monitoring mechanisms, the acceptable
percentage and types of security exceptions, secu-
rity reviews, and the protection of consumer privacy
in RealtimeMonitor, PercentOfSecExcept,
PercentOfSecReview and ConsumerPrivacy
subclasses.

• Subcontractor and third party application: This class
clarifies the rights and duties with respect to security
of the subcontractor and the third party application
providers.

• Cryptography specification: Some providers offer en-
cryption services. It is useful to optimize consumer
data encryption while also reducing the associated
computational complexity. Thus the level or type of
encryption technique can be specified here.

• Access control: Access control of the instance control
panel directly impacts the security of the instance.

Figure 4. Compliance class in SSLA

This class defines the access authentication, authoriza-
tion, accounting schemes, including access using mo-
bile devices. This class also can be used to specifiy the
responsibility of the consumer in terms of permitting
accesses within their user groups.

• Processing: This class covers the security demands
for building a secure run time environment for virtual
machine migration, queue service capability, virtual
firewalls, isolation, portability and integrity of appli-
cations. Systems relying on hardware trusted platform
modules may be viewed as providing higher levels of
trust and this can be indicated in this class.

• Compliance: Some specific services must be certified
as compliant with security and privacy standards,
and practices as required by law. For example, user
services that involve warehousing or mining of elec-
tronic Protected Health Information (ePHI), electronic
Personally Identifiable Information (ePII), or Health
Insurance Portability and Accountability Act (HIPAA)
data must comply with all associated federal and local
standards [21]. There are many subclasses defined in
Compliance as shown in Figure 4. An SSLA can
indicate the subclasses (or specific rules of the law)
for which the provider is compliant.

• Equipment Maintenance: Keeping equipment main-
tained and upgraded may lead to fewer exploitable
weaknesses. This class of our SSLA ontology defines
the state of equipment, software versions and all
upgrades since the installation.

IV. SSLA ASSESSMENT SYSTEM

During the process of purchasing cloud services, a review
of the service level agreement is the necessary phase where
customers agree to a binding contract in term of the services
received and payments made. At present, the agreement lists
service guarantees and responsibilities of the provider. Often
they are biased in favor of the provider; in many cases the
customer is not afforded a chance to negotiate service levels.
This is particularly the case when it comes to security levels
offered by the provider. There is very little opportunity for
the customer to explore whether the security is sufficient, or

335Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 354 / 512

if a lower or higher level security option is available. More
importantly, the customer cannot evaluate the security levels
using meaningful and quantitative measures.

Our SSLA ontology described in Section III contains
fourteen classes and several subclasses that cover most of the
security issues of interest. We feel that this allows one to map
a SSLA contract to our ontology and evaluate the strength
of security provided by the SSLA. In this section, we outline
some potential ways for quantitatively assessing the strength
of SSLAs.

A. Regulation Compliant
In general, a regulation describes rules, such as spec-

ifications, policies, standards, or law, especially the public
regulations that apply in particular fields. Some examples of
regulations include PCI-DSS [22], HIPAA and others shown in
Fig.4. Each regulation defines different rules, but many rules
in the regulations are similar. Therefore, an SSLA is stronger
if it complies with more regulations.

B. Types of metrics
To evaluate an SLA, each individual (or a subclass) in our

ontology has to be examined. Each entity should be quantified
and we offer three different types of measurements for this
purpose.

• Boolean measures (α): This type of quantification
allows us to assess if a specific requirement (such as a
specific HIPAA regulation or rule) is satisfied or not.
Service providers will be fined if the provider fails to
show that specific federal requirements are met. Note
that different regulations (e.g., HIPAA, ENISA [23],
PCI) may define different security requirements, and
this translates to different subclasses (or individuals)
in our ontology for meeting the requirements.

• Level measures (β): It should be possible to assess the
strength of an agreement using qualitative measures
as High, Medium, Low (or some other such levels).
For example, in terms of the strength of encryption
offered, one can say that using encryption algorithm
Triple DES [24] is classified as low, but if one
uses AES-128 [25] then the level may be viewed as
medium, and the level is considered High if AES-
192 or AES-256 are used for encryption. These are
subjective assessments and we hope a consensus on
the measurement can be reached through standards
committees.

• Range measures (γ): These types of assessments can
be used to define minimum threshold guarantees. For
example, a user requires that the Cloud provider scan
the systems for malware at least once every 12 hours.
Any scanning rate below that can be viewed as less
than satisfactory, and a value (say a percentage) may
be assigned as a qualitative strength for the individual
(or subclass).

C. Estimation of the security strength
We propose a quantitative analysis approach to estimate the

security strength of each service level agreement. The process
can follow the following outline.

Step 1: Prepare an ontology graph for the SSLA. Nor-
mally the ontology data can be stored in OWL or
RDF format. The first step is to parse the ontology
file as a graph for further query, e.g., RDFLib [26]
in Python.

Step 2: Traverse all the individuals using SPARQL query.
To examine each rule in the SSLA ontology, the
approach traverses each individual with a recur-
sive SPARQL query from the root through a class
to each instance. SPARQL is a semantic query
language for databases. It is used to retrieve and
manipulate data stored in Resource Description
Framework (RDF) format.

Step 2a: When visiting an individual (or a subclass), a
score is assigned using the three types of mea-
surement stated above.

P (α) =

{
1 if α is satisfied
0 otherwise

(1)

P (β) =


scorehigh if β is given a HIGH
scoremedium if β is given a MEDIUM
scorelow if β is given a LOW

(2)

P (γ) =
{
scorerange if γ is given scorerange

(3)
where 0 ≤ scorerange, scorehigh, scoremedium,
scorelow ≤ 1 and the mapping scores from HIGH,
MEDIUM, and LOW grades can be defined by the
security committee.

Step 2b: The total score of a given SLA is Scoretotal.

Scoretotal =

n∑
i=1

classi (4)

classi =

n∑
j=1

(Pj(α) + Pj(β) + Pj(γ))wi,j (5)

where wi,j is the weight of the jth measurement
of the ith class and it can also be defined by
security committee based on the emphasis level.
The default value of wi,j is 1. Weights can be
used to customize the measurements for individual
needs. We describe the customization in the next
section.

V. CUSTOMIZED AGREEMENT

With our assessment system it is possible to compare
SSLAs during the negotiation phase. An SSLA that scores
highest is the optimal SSLA. This also means that the provider
is held to very high levels of responsibility and liabilities, and
this in turn can translate into higher cost to the customer. A
customer should be able to understand the trade-offs between
cost and the strength of an SSLA.

Figure 5 shows a comparison of two different types of
companies. Figure 5(a) is a medical service provider that
emphasizes compliance, access control, and audit classes of
our ontology since these aspects of an SSLA are most im-
portant to their business. Other classes, such as networking or

336Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 355 / 512

encryption level are not as significant to their business (and
does not interfere in demonstrating compliance with HIPAA
regulations). On the other hand, Figure 5(b) is a company
that offers online or downloadable games. Such a company
is more interested in the security with on-line transactions
(including payment transactions) and must be compliant with
PCI DSS regulations. The company would also have significant
interest in the access control, networking and infrastructure
security. These examples are for illustration purposes only
and the classes of companies used here are generic examples.
More detailed analysis of each users requirements is needed
to customize SSLA measurements. These two examples show
that different types of companies may pay attention to the
different classes of security needs. When negotiating SSLA,
which part should be strengthened can be determined through
the evaluation methods we describe in this paper. We assume
that consumers will negotiate their customized SSLAs, instead
of a generic SSLA offered by the provider. A generic SSLA
may not be optimal in terms of cost and the level of security
offerred. However, the generic SSLA may suffice for most
customers.

VI. DISCUSSION

This paper expands the SSLA ontology to cover more secu-
rity regulations and security frameworks including HITRUST
Cyber Security Framework (CSF). Therefore, in the next
subsections, we first describe the implementation issue for the
evaluation system for an SSLA based on the SSLA ontology.
The system provides a quantitative result for the assessment
that can be used to SSLA comparison and negotiation. Also,
the coverage of HITRUST CSF is explained in subsection VI-B

A. Implementation
We implemented an SSLA assessment system to compute

scores of the given agreement based on the approaches in-
troduced in Section IV. Figure 6 is a snapshot of estimating
HIPAA compliance in our assessment system. The program
first shows each rule of the law for the consumer so that
the consumer can understand the requirement. The quantitative
scoring of the SSLA is based on the answers provided by the
consumer. Current SSLAs are described in a natural language
(i.e., English) and may be difficult to map onto our ontology.
We require some input from the customer and service provider
to interpret the SSLAs and map them to our ontologies.
We hope future SSLAs will rely on more formal ontological
definitions.

B. HITRUST Cyber Security Framework
The HITRUST Cyber Security Framework (CSF) is based

on the Cyber Security Framework released by the National In-
stitute of Standards and Technology (NIST) in February 2014.
HITRUST CSF is a certifiable framework that provides organi-
zations with a comprehensive, flexible and efficient approach
to demonstrate regulatory compliance and risk management.
Although HITRUST CSF is not a regulation, it provides for
more security and privacy than HIPAA compliance. Figure 7
shows the fact that the HITRUSgrT properties subsume HIPAA
rules related to access authorization. Thus if a provider satisfies
the HITRUST CSF framework, the provider is also compliant
with HIPAA regulations, as far as the access authorization
class of our ontology is concerned. Likewise one can map the
compliance with respect to other classes of the SSLA ontology.

C. Scoring system

The assessment system evaluates the SSLA quantitatively.
In general, each mapped individual in our model is assigned
one point; thus an SSLA with more points is assumed to be
better as it satisfies more classes of our ontology. The weight
valuable wi,j can be used to allow one to ignore some classes
and place more emphasis on other classes.

D. Benfits of our Scoringe system

• For Cloud infrastructure provider: Since an ontology
is a useful means for describing knowledge, a Cloud
provider can employ our SSLA ontology to present
the security levels guaranteed. Additionally, the SSLA
ontology provides for negotiated agreements. With
respect to HIPAA, the Cloud infrastructure provider
must make sure that the Cloud environment is secure
enough at least for known vulnerabilities and can resist
known attacks. Moreover, the provider can use some
vulnerability evaluation systems (like OKB [17]) to
evaluate the security risks of its resources to define the
most appropriate security guarantees, or price different
levels of negotiated security agreements.

• For Cloud infrastructure users (primarily service
providers): When service providers employ a Cloud
environment, they can utilize our SSLA ontology
framework to negotiate better levels of security guar-
antees from the infrastructure provider. Additionally,
the service provider can use our framework to under-
stand compliance issues about the services they offer.

VII. CONCLUSION

In this paper, we have developed an SSLA ontology frame-
work that can be used to understand the security agreements
of a provider and to audit the compliance of a provider with
respect to federal regulations. The SSLA assessment system
can be used to quantitatively measure the security strength
of an SSLA, and can be used in the negotiation phase. In this
paper, we are limited by the lack of accessible SSLAs of cloud
providers such as Google, Amazon or Microsoft. We were
only able to outline how HITRUST and HIPAA regulations
translate into security requirements of individual IT systems
and policies. It is our hope that the new federal guidelines
and standards will force service providers to disclose details
of their security SLAs. We will then be able to evaluate actual
SSLAs of providers.

For future work, we plan to design SSLA templates for dif-
ferent types of industries with various levels of budgets based
on the evaluation of collected agreements. These templates can
be used to negotiate SSLAs with providers.

ACKNOWLEDGMENT

This research is supported in part by the NSF Net-centric
and Cloud Software and Systems Industry/University Cooper-
ative Research Center and NSF award 1128344. The authors
want to thank David Struble for his editorial contributions to
this paper.

337Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 356 / 512

Access Control
20%

Audit
15%

Compliance
20%

Crypto Spec
5%

Data Possession
5%

Disaster Dection & Recovery
10%

Equipment
Maintenance

0%

Networking
5%

Processing
5%

Subcontractor and 3rd party App
5%

Transparency
0%

Visibility for Provider
0%

Vulnerability
10%

AAA Medical Service

(a) The proportion of the classes in a medical service’s SSLA

Access Control
20%

Audit
5%

Compliance
20%

Crypto Spec
10%

Data Possession
0%

Disaster Dection & Recovery
5%

Equipment Maintenance
0%

Networking
10%

Processing
10%

Subcontractor and 3rd party App
10%

Transparency
0%

Visibility for Provider
0%

Vulnerability
10%

BBB Game company

(b) The proportion of the classes in a game company’s SSLA

Figure 5. The proportion of the classes in SSLA

338Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 357 / 512

Figure 6. Snapshot of our SSLA assessment system. For estimating HIPAA compliance, the system first shows the rule of law, and the estimation is based on
the administrators answer.

REFERENCES

[1] M. Backman, “Home depot: 56 million cards exposed in breach,”
Sep 2014, URL: http://money.cnn.com/2014/09/18/technology/security/
home-depot-hack [accessed: 2015-09-15].

[2] J. Tom Huddleston, “Staples: Breach may have affected 1.16 mil-
lion customers’ cards,” Dec 2014, URL: http://fortune.com/2014/12/19/
staples-cards-affected-breach/ [accessed: 2015-09-15].

[3] D. Bowman, “Hack attack on carefirst compromises info for 1.1
million consumers,” May 2015, URL: http://www.fiercehealthit.com/
story/hack-attack-carefirst-compromises-info-11-million-consumers/
2015-05-20 [accessed: 2015-09-15].

[4] “Office of personnel management data breach,” June
2015, URL: http://www.c-span.org/video/?326593-1/
hearing-office-personnel-management-data-breach [accessed: 2015-09-
15].

[5] Security and Privacy Controls for Federal Information Systems and
Organizations, SP 800-53, NIST, U.S. Department of Commerce Std.,
Rev. 4, Apr. 2013, URL: http://dx.doi.org/10.6028/NIST.SP.800-53r4
[accessed: 2015-09-15].

[6] NIST Cloud Computing Security Reference Architecture, SP 500-299
Draft, NIST, U.S. Department of Commerce Std., May 2013.

[7] Cloud Computing Service Metrics Description, SP 500-307 Draft, NIST,
U.S. Department of Commerce Std., 2015, URL: http://dx.doi.org/10.
6028/NIST.SP.307 [accessed: 2015-09-15].

[8] G. D. Modica, G. Petralia, and O. Tomarchio, “A business ontology
to enable semantic matchmaking in open cloud markets,” in Proc.
SKG2012, Beijing, China, Oct. 2012, pp. 96–103.

[9] C. Y. Lee, P. Kamongi, K. M. Kavi, and M. Gomathisankaran, “Op-
timus: Framework of vulnerabilities, attacks, defenses and sla ontolo-
gies,” International Journal of Next-Generation Computing, 2015.

[10] C. Y. Lee, K. M. Kavi, R. A. Paul, and M. Gomathisankaran, “Ontology
of secure service level agreement,” in Proc. HASE 2015, Jan 2015, pp.
166–172.

[11] Information technology. Service management. Service management
system requirements, ISO/IEC 20000-1:2011, Std., 2011.

[12] R. R. Henning, “Security service level agreements: quantifiable security
for the enterprise?” in Proc. NSPW 1999, Ontario, Canada, Sep. 1999,
pp. 54–60.

[13] B. Monahan and M. Yearworth, “Meaningful security slas,” HP Labo-
ratories, Tech. Rep. HPL-2005-218R1, 2008.

[14] T. Takahashi and et al., “Tailored security: Building nonrepudiable
security service-level agreements,” IEEE VT Mag., vol. 8, no. 3, Sep.
2013, pp. 54–62.

[15] C. Rong, S. T. Nguyen, and M. G. Jaatun, “Beyond lightning: A
survey on security challenges in cloud computing,” Comput. Electr.
Eng., vol. 39, no. 1, 2013, pp. 47–54.

[16] M. Hale and R. Gamble, “Building a compliance vocabulary to embed
security controls in cloud slas,” in Proc. SERVICES 2013, Jun. 2013,
pp. 118–125.

[17] P. Kamongi, S. Kotikela, K. Kavi, M. Gomathisankaran, and A. Singhal,
“Vulcan: Vulnerability assessment framework for cloud computing,” in
Proc. SERE 2013, 2013, pp. 218–226.

[18] R. Paul and et. al., “An ontology-based integrated assessment framework
for high-assurance systems,” in Proc. ICSC 2008, Aug 2008, pp. 386–
393.

[19] “Cloud controls matrix version 3.0,” Cloud Security Alliance.
[20] HITRUST Cyber Security Framework, URL: https://hitrustalliance.net/

[accessed: 2015-09-15].
[21] HIPAA Administrative Simplification, U.S. Department of Health and

Human Services Office for Civil Rights Std., Mar. 2013, URL: http://
www.hhs.gov/ocr/privacy/hipaa/administrative/ [accessed: 2015-09-15].

[22] Payment Card Industry Data Security Standard: Requirements and Secu-
rity Assessment Procedures, PCI Security Standards Council Std., Rev.
3.0, Nov. 2013, URL: https://www.pcisecuritystandards.org/security
standards/ [accessed: 2015-09-15].

[23] Procure Secure: A guide to monitoring of security service levels in
cloud contracts, European Union Agency for Network and Information
Security (ENISA) Std.

[24] FIPS PUB 46-3 Data Encryption Standard (DES), National Institute of
Standards and Technology Std.

[25] FIPS PUB 197 Advanced Encryption Standard (AES), National Institute
of Standards and Technology Std.

[26] RDFLib Python library, URL: https://github.com/RDFLib/rdflib [ac-
cessed: 2015-09-15].

339Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 358 / 512

Figure 7. Individuals for both HIPAA and HiTrust in the AccessAuthorization class. The left side is for HiTrust and the right side is for HIPAA.

340Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 359 / 512

Towards Systematic Safety System Development with a Tool Supported Pattern

Language

Jari Rauhamäki, Timo Vepsäläinen and Seppo Kuikka

Department of Automation Science and Engineering

Tampere University of Technology
Finland

Email: {jari.rauhamaki, timo.vepsalainen, seppo.kuikka}@tut.fi

Abstract—Design patterns illustrate qualities and features that

would suit well in current understanding of safety system

development, design and documentation. However, though a

number of design patterns for safety system development have

been proposed, the focus has been on individual quality

attributes such as fault tolerance and reliability. The

systematic use of design patterns in the development process

has received less attention. In this paper, we discuss and

illustrate extended usage possibilities for design patterns as

part of safety system development. We discuss a design pattern

language that we are developing to cover, e.g., safety system

architecture, scope minimization and co-operation with basic

control systems. Use of patterns for documentation purposes,

tool support for using patterns, and rationale for the pattern
approach are discussed as well.

Keywords-safety system; software; design pattern; safety

standard; tool support

I. INTRODUCTION

Design patterns are a means to systematically promote
the re-use of design and proven solutions to recurring
problems and challenges in design. Each design pattern
represents a general, reusable solution to a recurring problem
in a given context. Triplets of problems, contexts and
solutions are also the essential pieces of information in
patterns. In addition, pattern representation conventions can
include, among others, relations to other patterns. With such
relations describing, for example, rational orders to use
patterns, patterns can be combined to collections and to
pattern languages. Depending on patterns, the natures of their
solution parts can vary too, for example, from source code
templates to text and Unified Modeling Language (UML)
illustrations.

Software safety functions are software parts of usually
multi-technical systems, the purpose of which is to ensure
the safety of controlled processes and plants. Unlike many
other software systems, safety systems are developed
according to standards. The standards govern the
development lifecycle activities, as well as techniques and
applicable solutions of such systems. However, although
design patterns have been specified also for safety system
development, their systematic use has not been researched in

the domain. This is surprising because the use of patterns
could facilitate both design and documentation activities,
which are equally important in safety system development.

In this paper, we address the aforementioned issues. The
contributions of the paper are as follows. We rationalize how
and why design patterns, which have already shown their
value in software development, in general [1], could be
especially useful in safety system development. We discuss a
design pattern language for safety systems, which has been
developed and published iteratively and is to be finalized
during DPSafe project in collaboration with Forum for
Intelligent Machines (FIMA) in the machinery domain.
Lastly, we discuss and rationalize the role of tool support in
facilitating the use of patterns and in benefitting from
patterns.

The rest of this article is organized as follows. Section 2
reviews work related to design patterns and the use of design
patterns in safety system development. Section 3 presents a
view on the development of software safety systems and
rationalizes why and how design patterns could be
beneficial. In Section 4, we discuss a design pattern language
for safety system development that has been developed at the
Tampere University of Technology. Before conclusions,
Section 5 discusses the role of tool support when trying to
benefit from patterns.

II. RELATED WORK

The design pattern concept was originally presented by
Alexander [2][3] in the building architecture domain to refer
to recurring design solutions. In software development,
design patterns begun to attract interest after the publication
of the Gang of Four (GoF) patterns [4]. Thereafter,
collections of design patterns have been gathered and used
for various purposes in various domains. Results from their
use have included, among others, improvements in quality of
code, as well as improved communication through shorthand
concepts [1].

Design patterns have also been developed for special
purposes and application domains, including critical [5] and
distributed [6] control systems. In the functional safety
domain, especially, patterns already cover many solutions
and techniques that are recommended by standards, such as
IEC 61508 [7] and ISO 13849 [8]. For example, related to

341Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 360 / 512

architecture design in [7], there are patterns to implement
redundancy [9] and recovery from faults [10].

Pattern languages, on the other hand, aim to provide
holistic support for developing software systems by using
and weaving patterns and sequences of patterns [11]. For
embedded safety system development, for example, a large
collection of (both software and hardware) patterns for
various problems is listed in [5]. However, the multi-
technical collection is not regarded as a pattern language, per
se.

Partially because of reasons to be discussed in the next
section, documentation is of special importance in safety
system development. A developer of a software safety
system needs to be able to prove the compliance of the
application to standards. Otherwise, the application cannot
be used in the safety system. However, certifiable safety
applications are not made by coincidences but by designing
the systems and applications systematically, with
certifiability in mind. As such, also the software parts need to
be specified (modeled) prior to their implementation. On the
other hand, the suitable solutions (patterns) that are used in
the applications should already be visible in the models.
Otherwise, the use of the patterns would not be documented
in the models and valuable information could be lost.

It is thus clear that the systematic use of design patterns
in safety application development requires tool support for
the patterns already in the modeling phase. This is regardless
of whether or not the models can be used in producing
(automatically) executable code as, e.g., in Model-Driven
Development (MDD). Using and applying patterns in UML,
which is currently the de-facto software modeling language,
has been addressed in several publications. For example,
work has been published to specify patterns in a precise
manner [12], to apply patterns to models [13, 14], to detect
pattern instances [15, 16] and to visualize pattern instances in
models and diagrams [17]. However, without extensions the
support for patterns is still weak in UML [18].

III. PATTERNS IN SAFETY SYSTEM DEVELOPMENT

The development of safety functions is governed by
standards, such as IEC 61508 [7], IEC 62061 [19], and EN
ISO 13849-1 [8]. These standards guide the development of
safety systems involving electric, electronic and
programmable electronic control systems in their operation.
Regardless of the variety of standards, we outline a generic
development process for safety systems common to the
aforementioned standards. The simplified process is
illustrated in Figure 1.

The development process begins by the definition of the
concepts and scope of the system to be developed. This
includes forming an overall picture of the system and
defining the boundaries of the system/machine to be
analyzed or made safe. The next step is to carry out a hazard
analysis and risk assessment. The role of this phase is centric
as only known risks can be consciously mitigated. Otherwise
risk mitigation measures have no justification. Typically, risk
assessment includes hazard identification, risk estimation
and evaluation. The former provides an indicator for the risk
and the latter assess the impact of the risk, that is, is the risk

tolerable or not. Intolerable risks need to be mitigated or
made tolerable otherwise.

As the risks are assessed, the requirements considering
the system safety can be justifiably made. In this phase,
suitable risk reduction methods are selected and their
requirements are documented. In the context of this paper it
is assumed that the risk reduction method is a protective
measure depending on a control system to implement the
required functionality. In addition, the allocation of the
measures is done. That is, to allocate the measures for
dedicated functions.

The next phase is the development (realization in IEC
61508 terminology) of the safety functions allocated in the
previous phase. The development process starts with
compiling a requirement specification for the safety
functions. The specification should include both functional

Concept and scope definition

Risk assessment

System safety requirements definition and
allocation

Development of safety function

Safety function requirement
specification

Hardware design Software design

Safety function system integration

Validation of safety function
performance

Overall installation, commissioning and safety
validation

All safety functions implemented? No

Yes

Modification or new
 hazard gererated?

Yes

Figure 1. Simplified safety system development process according to EN

ISO 13849-1 [8] and IEC 61508 [7]

342Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 361 / 512

descriptions, what the functions need to do, and non-
functional descriptions, how or within which restrictions the
functions need to operate.

Quite often, the non-functional descriptions include the
specification of performance or integrity levels for the
functions. When the requirement specification is completed,
the hardware and software design can begin. In this state the
hardware and software parts of the safety function are
designed, potentially with separation between the design
teams. Thus, hardware and software integration needs to take
place along the design process. At this point, a functional
entity can be constructed including both the hardware and
software to be used in the final system. Finally, the results of
the safety function development are verified to match the
safety function requirements and required
performance/integrity levels. If unimplemented safety
functions exist, the development process is reinitialized for
the next safety function.

A. Utilization of patterns in safety system development

In the context of safety system development and design,
design patterns can be used to capture and provide solution
models for techniques and applicable solutions that are
recommended and/or required by applicable standards. In
this case, a design pattern captures the solution that is used in
order to fulfill the requirements and recommendations of a
standard. Such design patterns can be linked to the parts of
the standards for which the design patterns provide a
complete or partial fulfillment or help to achieve to fulfill the
standard requirements. This kind of approach also supports
building the libraries of named solutions. That is, the patterns
support the awareness and usage of the solutions.

One can justifiably argue that standard solutions to
recurring problems have been applied in safety system
development and other domains of engineering for years –
without necessarily calling them patterns. However, their
unconscious use may not have eased the task of documenting
the systems. Since design patterns provide names for
solutions, they can be used in communication, too [1].
Though initially applicable to discussions and face-to-face
communication, design patterns can be used as a part of
written and diagrammatic documentation. This is achieved
by referring to the solution illustrated by a pattern with the
name of the pattern that should be both illustrative and
related to the application context.

The documentation aspect can be achieved by marking
the patterns in, e.g., diagrams that are used as a part of the
system documentation. This can enhance traceability
between the standard solutions and their practical
applications in systems. For a pattern-aware person, this may
increase the understandability and traceability of the design
decisions, too. To take further advantage of this setup,
statistics could be gathered to see which patterns are used the
most and in which kind of situations. It can also be noted that
the quality attributes understandability and traceability are
similarly components of systematic integrity acknowledged
by IEC 61508 [7].

Other viewpoints supporting the utilization of design
patterns in safety system development include for instance
[20]:

 Patterns document well-tried solutions and thus
condense experience on proven solutions, which is
of special importance in the domain. The approach
resembles, for instance, the proven in use concept
defined by IEC 61508.

 Patterns can alleviate bureaucracy by providing
practical solutions and approaches to fulfil
requirements given to safety system development in,
for example, standards. Bridging the gap between
the requirements and design and implementation
eases the burden of designers.

 Patterns create the vocabulary of solutions to
domains. Assuming that the patterns are known by
both the developer and maintainer of a system,
patterns can help to communicate the structural and
operational principles of the system. This aspect thus
improves the communicability and maintainability of
the system.

B. Safety system patterns

In the context of this paper, we are especially interested
in design patterns for safety system development, called
safety system patterns here. These patterns are, or at least
they are meant to be, most useful in the development of
(functional) safety systems. This does not indicate that the
patterns could not be used for other purposes as well.
However, the contexts of the patterns relate them to the
safety system development. It is up to the readers or appliers
of the patterns to judge whether the solutions are applicable
outside the indented contexts of the patterns, too.

It should be noted that a pattern does not necessarily
illustrate the cleverest or the most innovative solution or
approach to the defined problem. Instead, the preferable
approach is to provide proven solutions and approaches that
have been utilized successfully in practice, in real projects
and systems. This is, on one hand, targeted to provide
assurance on the applicability of the solution, for instance, in
the eyes of an inspector. On the other hand, the most
innovative solutions might promote other quality attributes
than simplicity, which is one of the most important driving
qualities behind a safety system development.

So, which parts does a safety system pattern consist of?
In our work, we have used a slightly modified canonical
pattern format [21]. That is, each pattern documents the
context, problem and solution. They are complemented with
forces, consequences, example, known usages and related
patterns, see Figure 2. The triplet of context, problem and
solution provides the main framework for the patterns. These
aspects should provide sufficient information to apply a
given pattern. However, the other aspects, for instance,
support the selection of the most suitable pattern and help to
identify other potentially applicable patterns. The former
aspect is achieved through the definition of forces and
consequences. Forces relate to the context, refine the
problem, and direct the solution to the one selected to be
illustrated on the pattern. On the other hand, consequences

343Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 362 / 512

provide hints to select a solution proposed by a certain
pattern. Presumably one wants to select a pattern or a
solution that has the most positive consequences and/or the
least negative consequences produced by the solution.

In addition to the mentioned pattern aspects, safety
system patterns could be complemented with an aspect
indicating the applicable performance level (PL), safety
integrity level (SIL), or similar quantity. This is to indicate
for which purposes or levels (as defined in standards) the
pattern can be used. [21]. For certain patterns or solutions
such indicators can be given directly and for others such
indicators are indirect or cannot be given at all. For instance,
a pattern implementing cyclic execution behavior could be
recommended or highly recommended on all safety integrity
levels (as defined on IEC 61508-3:2010 table A.2 [7]).

How and where can design patterns then be obtained?
Foundationally, design patterns document recurring
solutions. The basic assumption is that at least three known
usages for a solution need to be obtained to call a solution a
design pattern [22]. Keeping this in mind at least the
following pattern mining approaches can be considered.

As standards, such as the mentioned IEC 61508 and EN
ISO 13849-1, provide requirements considering safety
system design and development, they are potential
candidates as source information. One potential approach is
to take requirement clauses or required techniques or
methods and search and provide practical solutions to fulfil
the requirements. Depending on the standard and case, the
standard may or may not provide instructions on how to
actually apply and use required methods, techniques and
clauses. Thus treating such elements as problems yields a
way to found similar solutions and format them as patterns.
For instance, one could consider graceful degradation, which
is at least recommended on all SIL levels (as defined by IEC
61508-3:2010 table A.2), and mine patterns to design and
implement graceful degradation on software. Using this
approach, the integrity (or performance or similar quantity)
levels can be directly linked to the patterns.

Literature and similar sources provide a feasible source
for pattern mining. Solutions found from different literature
sources can be considered pattern input. However,

potentially the most credible sources for pattern mining are
existing systems and their documentation. In the context of
safety system patterns, such sources would be safety
systems, their documentation and developers. To provide
additional credibility for the mined safety system patterns (at
least from the standard point of view), the patterns should be
mined from inspected and approved systems. Such merit
supports the patterns as the solution has been used as a part
of an approved system. It should be noted, however, that a
pattern originating from an inspected system does not
directly implicate that the new system in which the pattern is
applied, would be automatically approved. Nevertheless,
such a pattern provides support and trust to believe that the
solution is approvable in similar context.

Thus, ideally safety system patterns are mined from
existing, inspected, and approved safety systems. As such,
the solutions should be applicable on similar integrity level
systems and also on lower levels although this is not always
the case. Actually, by looking for instance IEC 61508-3
Annex A, this is not always the case. There are methods and
techniques highly recommended, e.g., on SIL 3-4 and only
recommended on SIL 1-2. Apparently the method or
technique is still applicable, but it may be considered too
heavy-weight or expensive for the lower integrity levels. To
complement this approach, the inspection process and results
could be systematically used to document the approved
solutions in the form of patterns. During the process, the
inspector approves and declines some of the solutions,
approaches, and design decisions, which should be
considered valuable input for future work. In the end, the
inspections cost money and other resources to the customer
so it is rational to try to minimize the process and to learn
from mistakes and successful designs. Such work would
support one of the purposes of patterns in the first place, that
is, the systematic reuse of solutions.

IV. A PATTERN LANGUAGE FOR SAFETY SYSTEMS?

First of all, what do we mean by a pattern language? A
pattern language is in our case a set of patterns that consider
the same domain and are interconnected through relations.
According to Eloranta et al., a pattern language is a concept
“guiding the designer in building a coherent whole using
patterns as building blocks” [6]. In this context, building
block mindset, pattern relations and shared domain context
between the patterns is seen centric to form the grammar to
use the patterns. In practice, the pattern language defines
restrictions, rules and suggestions on how to compose the
designs of the provided building blocks. [6]. A collection of
patterns, in contrast to a pattern language, does not have to
have grammar or relations between the patterns.

The relations promote co-usage of the patterns as they
guide a designer through the language by providing her with
links indicating patterns that can be considered next,
alternative, specialized and incompatible solutions related to
the pattern that has been recently applied. Although the
described approach may ease decision making, it may also
narrow the designer viewpoint. A pattern language cannot
include all possible solutions and the ones that are included,

Problem

Solution Context

Forces

ExampleKnown uses

Consequences

illustrate
validate

has

direct

refine

relate

Related
patterns

point alternative,
next to consider,

specialisation, etc.

may
indicate

new

Figure 2. The pattern structure used in our safety system patterns.

344Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 363 / 512

do not necessarily introduce the best alternative for a
problem or situation under consideration.

One way to utilize the pattern language in design work
was described above. The mentioned pattern relation based
language walkthrough approach is a rather optimistic view at
least if a large context is considered. Safety system
development as well as other system development is a
process consisting of multiple phases. Covering all of these
with a single language of patterns is a large scale problem
itself not to mention how to parse a meaningful language by
establishing the pattern relations and interconnections. Still,
patterns can provide pinpointed solutions to encountered
problems and the related patterns may offer ideas during the
design process. From our perspective, this is a more feasible
use case for a safety system pattern language. To support the
usage of the language, the patterns should be, however,
grouped so that they resemble the corresponding design
phases. That is, architectural patterns would benefit
architecture design phase issues and implementation patterns
(or idioms) the implementation phase issues.

The safety system design pattern language developed at
the Tampere University of Technology has currently some
50 patterns and/or pattern candidates and some of them have
been discussed in the workshops of patterns conferences
[23]-[27]. (Pattern candidates are initial pattern ideas that do
not yet have three known uses, that is, they are under
construction. We have found writing pattern candidates an
excellent way to communicate the ideas and find new known
usages for the pattern candidates.)

In its current state, relations have not been specified for
all the patterns of the language, but there are relations
between the individual patterns. For example, patterns can
specialize more general solutions in stricter contexts. Thus
one could say the language lies somewhere between a pattern
language and a collection of patterns at the moment.
However, our purpose is to develop a full pattern language
for safety system development.

We started the work in 2010 and the patterns have been
collected, developed and published under various projects
such as SULAVA, ReUse, and currently under DPSafe
project. In the DPSafe project, we are working with several
companies involved one way or another in safety systems
design and development in the context of machinery
applications. The target of the project is to mine and
document design patterns considering software based safety
functions and systems as well as gain new known uses for
the existing patterns and identified pattern candidates. The
participating companies include machinery producers,
engineering offices, as well as software houses so there is
potential to have different relevant views on the subject.

The patterns are targeted to safety system development.
Currently, the language includes patterns and pattern
candidates considering, for instance:

 development process

 risk mitigation strategies

 architecture and principles in terms of
o software
o hardware
o system

 co-existence with control system

 scope reduction
In contrast to, for example, redundancy, diversity and

other fault tolerance related matters, the sub domains
mentioned above seemed to have less attention by pattern
community. Thus our purpose is to extend the pattern
approach to cover larger part of the safety system
development outside the fault tolerance aspect. According to
our work carried out in the DPSafe project, there seems to be
a clear need for such an approach.

V. ON TOOL SUPPORT FOR DESIGN PATTERNS

Whereas some of the benefits of patterns described in
Section 3 could be achievable in any case, it is clear that tool
support for patterns could increase their benefits
significantly. For example, even without tool support, pattern
names can become a part of the developer vocabulary [1].
Without a doubt, recurring solutions have also been used in
the domain. However, using patterns to improve the
traceability of standards solutions, for instance, would
certainly benefit from automated functions already during
the specification and modeling of the applications.
Unfortunately, the support for patterns is in current software
modeling tools restricted, at best. The purpose of this section
is to discuss opportunities and challenges related to pattern
tool support in safety system development. When
appropriate, lessons learned from the previous work of the
authors [18] will also be provided.

A. On Pattern Modeling

As mentioned, tool support for patterns is currently weak.
For example, the pattern concepts of UML, structured
collaborations [28], restrict patterns to describe the contents
of the UML classifiers only. Thus, elements such as
components and packages that would be useful in describing
architectural patterns (for instance) cannot be used in
patterns in UML [18]. The variety of published patterns in
literature, however, covers problems on different levels of
design and for various purposes. It cannot be said that all the
patterns would be related to classifiers (classes) when all
patterns are not even related to software systems. The origin
of the (pattern) concept is in building architectures [2, 3] and
there are also, for example, multi-technical pattern
collections (such as [5]) with both software and hardware
aspects. It is thus clear that the UML pattern concepts are
currently too restricting, by nature.

With respect to the modeling of multi-technical patterns
mentioned above, they could be used in SysML models,
which are not restricted to software. However, the use of
patterns would not have to be limited to modeling languages
at all. For example, patterns could be equally useful in, for
example, Computer Aided Design (CAD) tools and software
Integrated Development Environments (IDE), in aiding
practical design and programming work. Similarly to
software engineering, also other engineering disciplines most
certainly have recurring problems with known solutions.

While acknowledging this, in our work [18] the focus in
developing tool support has been on safety systems and their
UML and Systems Modeling Language (SysML) based

345Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 364 / 512

modeling in a Model-Driven Development (MDD) context.
With new pattern modeling concepts and by integrating them
into both UML and SysML, the aim has been to support
hardware aspects in addition to software and UML modeling.
Safety systems are also systems that are developed and
approved as a whole. Good practices and documentation are
needed not only for software parts but for all parts of the
systems, regardless of their implementation technologies.
However, while the developed approach [18] currently
allows pattern definitions and instances to consist of
practically any modeling elements, the approach suffers from
the drawback of not being easily portable to standard tools.

B. On Pattern Instances

In addition to (more or less) formal approaches, e.g., that
of UML, modeling tools could support patterns also in an
informal manner. Informal support has been developed into,
e.g., MagicDraw that enables instantiating patterns from
libraries by copying modeling elements. This functionality is
not restricted to classifiers as is the case with standard UML.
However, copying patterns (informally) can support mainly
the aspect of using the solutions and not necessarily using the
information about the use of the solutions. Copying model
elements may not enable storing information about the
elements being part of a pattern instance so that the
information could be used for, e.g., documentation purposes.

There is existing research, e.g., [15] and [16], on
detecting pattern instances in design models by searching for
model structures that are similar to pattern definitions.
However, it is questionable whether the use of such work
would be an appropriate solution in safety system
development. A developer does not use a design pattern by a
coincidence. Instead, developers decide to apply patterns
because they are facing challenges that they aim to solve
with the solutions of the patterns. As such, it is natural that
the decisions, which are architectural decisions, should be
documented. Why should one try to guess whether a pattern
has been applied when the decision could have been
explicitly marked in the model when applying the pattern?

Identifying pattern instances based on markings could
also be more reliable by nature than trying to detect instances
with, for example, the mentioned comparison techniques.
When patterns are used in design, they are applied to
contexts in which it is feasible to use context specific names
and to include additional properties. For example, a non-
trivial subject (in an Observer [4] instance) should probably
have properties (etc.) that the observer would be interested
in. With context specific names, properties and surroundings
(in the model), the results of comparisons could be less
reliable. However, by marking pattern instances explicitly,
the information should be as reliable as documentation is in
general. In the end, it would be about the reliability of the
developer that marks the pattern instances.

It is thus clear that the information on pattern occurrences
should be stored (i.e., the pattern occurrences marked) when
they are created. This is also the case in the approach of the
authors [18]. Patterns, however, could be in general
instantiated both manually and in a tool-assisted manner and

the initiatives (to instantiate patterns) could come from either
a developer or a tool.

C. On Instantiating Patterns

In a simple, conventional case, pattern instances can be
assumed to be always created manually. In this case, it is
natural to assume the markings (about the pattern instances)
to be created manually, too. Otherwise, a tool would need to
– somehow - know about a pattern being applied although
the task would be performed by a developer. A tool could
also include support for marking the pattern instances -
without assisting in the pattern application task itself.
However, also in this case the responsibility over the
(possibly easily forgotten) marking task should be taken by
the developer who knows about the pattern being applied.

Assuming that the pattern application process would be
assisted by the tool, also the markings could be on the
responsibility of the tool because the tool would know about
the application. This thinking has also been used in our work
[18]. When patterns are created with an interactive wizard, a
developer can justifiably expect the tool to handle the
markings. However, markings can be edited (and created)
also manually. For example, functions to manually edit
markings are needed when deleting or editing a pattern
instance.

D. On Initiatives to Instantiate Patterns

In order to actively suggest a design pattern to be applied,
the tool should have the ability to identify both the context
and the problem at hand (in the design task) and to notice
that they correspond to the context and problem of the
pattern. If the active party was the developer, the tool would
not necessarily need to have all the abilities. A set of
suggested patterns, to be shown as a response to a user
activity for example, could be narrowed down from all
possible patterns based on the identification of context or
problem. Naturally, with less information, not all the
suggestions could be appropriate. However, it would still be
up to the developer to make the decision.

Detecting a context of a pattern to match that at hand
could be done based on a graph or semantic techniques, for
example. However, there could still be challenges in
formalizing contexts of many existing patterns that have
been defined mainly with text. Identifying a problem, what
the developer would like the system to be like, could be even
more difficult to automate, and prone to errors.

If the active party to initiate an activity to apply a pattern
would be the developer, also key words and search functions
could be used to filter suggested patterns. This would not be
possible if the active party would be the tool, so that the
initiative would come prior to any user activity, i.e., prior to
typing the key words. In addition, with the key words would
come the problem of using different words to describe
similar aspects. Nevertheless, key words could provide a
sufficiently practical solution for suggesting patterns.

When suggesting patterns to use, a tool could also take
advantage on information included - not in the patterns
themselves - but in the pattern languages and collections that
the patterns appear in. For example, when noticing a pattern

346Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 365 / 512

to follow a recently used pattern in a pattern language and
the problem of the pattern to match the context at hand, the
pattern could be (at least) raised in a list of suggested
patterns. Similarly, relations in pattern languages that
indicate patterns solving the resulting problems of other
patterns could be used in an automated manner to facilitate
the work of developers.

In our work [18], pattern suggestions currently based on
comparing the patterns that are used in models to collections
of patterns that have been formed to correspond to the
recommendations of standards. In the domain, this is
meaningful since the standards govern and restrict the
practical solutions that can (or should) be used by
developers. However, the patterns are not yet suggested in
any specific phase and the initiative to use patterns comes
always from the developer. On the other hand, suggestions
do not rely on the identification of either context or problem
at hand. This could, however, be a possible future research
direction.

In the domain, there can be also competence
requirements for developers. As such, it can be assumed that
appropriate solutions (patterns) are known by developers and
that tool support for suggesting patterns would not even be a
necessity. Nonetheless, automated functions can be useful in
gathering information on the use of the patterns when there is
reliable information about their presence available.

E. On Using Pattern Instances

When pattern instances are reliably detected (marked),
the information can be collected from models for analysis
purposes or to present it in a tabular, compact form.
Especially this can be used to support traceability between
solutions and their use, as demonstrated in [18]. Traceability
is also a good example property in the (safety) domain
because it is a property of systematic integrity and required
from safety system development. As discussed in Section 3,
the development process of software safety systems and
applications consists of phases during which developers
should apply appropriate techniques and measures that are to
ensure the quality of the applications. Documentation is,
though, needed to indicate how and where the techniques
and measures have been used.

With pattern marks, it is also possible to automate
different kinds of consistency checks, in addition to
supporting traceability. For example, it can be made sure that
patterns are appropriate for the safety levels required from
the safety function or application. Naturally, this requires
information on the applicability of the solutions to different
levels of safety.

VI. DISCUSSION AND CONCLUSIONS

This paper has discussed the role of design patterns in
facilitating the development of software safety systems and
applications. Design patterns, which are essentially triplets of
contexts, problems and solutions, are a means to
systematically re-use design and proven solutions to
recurring problems and needs. Their systematic use in the
safety system development, however, has not been

researched extensively although the re-use of recommended
solutions is a general virtue in the domain.

Reasons why design patterns could, in general, benefit
safety system development are various. Patterns document
proven solutions, which provide designer support on
selecting the solution to be used in the safety system under
design. Known usages and ideally known usages from
inspected and approved systems build this support. Patterns
can illustrate practical approaches and solutions to alleviate
the requirements considering safety system development
given in standards, etc. This eases the burden of the designer
by bridging the gap between standards and safety system
design and implementation. In relation to this, patterns can
be used as a part of documentation.

To provide designers with the patterns to be used in
safety system design and development, we have mined and
documented a set design patterns and pattern prototypes. The
patterns consider various aspects of the safety system design
including the development process, architecture, co-
existence with basic control systems and scope minimization
aspects. The work considering the pattern collection is in
progress and current effort is to extend the collection to
software based safety functions. New known usages for the
existing patterns and pattern candidates are also being
collected.

The development of safety systems is a systematic
process that is governed by standards. Phases of the process
build on information produced in the previous phases so that,
for example, safety function requirements are specified to
treat previously identified hazards and their associated risks.
In the implementation phases of the process, developers are
required to apply solutions, techniques and measures that are
recommended by the standards and can be assumed to result
in sufficient quality. However, in safety system development,
it is not enough to apply the required techniques and
solutions. Developers need to be able to prove the
compliance of the applications to standards. This is where
appropriate documentation - including information on the
usage of the solutions - is needed.

Clearly, certifiable software parts of safety systems are
not built by coincidences but by designing them
systematically, with the use of appropriate solutions and
techniques. As such, the applications need to be specified
prior to their implementation, which usually includes at least
their partial modeling. Unfortunately, the support for patterns
is in UML, the de-facto software modeling language,
restricted at best.

When developing pattern modeling approaches, however,
patterns should be specified with dedicated modeling
concepts and pattern instances marked in the models. In this
way, reliable information on patterns could be used for
documentation purposes and to automate consistency checks.
In the future, tool support could be developed also for
assisting developers in selecting patterns to use. However,
this task should perhaps consider not only information
included in the patterns themselves but also the information
included in pattern languages and collections of patterns.
Such collections could then be developed with the
requirements of safety standards in mind.

347Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 366 / 512

REFERENCES

[1] K. Beck, et al., "Industrial experience with design patterns,"
in Proceedings of the 18th International Conference on
Software Engineering, 1996, pp. 103-114.

[2] C. Alexander, S. Ishikawa, and M. Silverstein, Pattern
languages. Center for Environmental Structure, vol. 2, 1977.

[3] C. Alexander, The timeless way of building. Oxford
University Press, 1979.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[5] A. Armoush, Design Patterns for Safety-Critical Embedded
Systems. Ph.D. thesis, Aachen University, 2010. Available
http://darwin.bth.rwth-
aachen.de/opus3/volltexte/2010/3273/pdf/3273.pdf
[referenced 25.6.2015].

[6] V. Eloranta, J. Koskinen, M. Leppänen, and V. Reijonen,
Designing Distributed Control Systems: A Pattern Language
Approach. Wiley Publishing, 2014.

[7] IEC, 61508: functional safety of
electrical/electronic/programmable electronic safety-related
systems. International Electrotechnical Commission, 2010.

[8] ISO, 13849-1:2006 Safety of machinery - Safety-related parts
of control systems - Part 1: General principles for design.
International Organization for Standardization, 2006.

[9] B. P. Douglass, Real-Time Design Patterns: Robust Scalable
Architecture for Real-Time Systems. Addison-Wesley, 2003.

[10] R. Hanmer, Patterns for Fault Tolerant Software. John Wiley
& Sons, 2013.

[11] F. Buschmann, K. Henney, and D. Schimdt, Pattern-Oriented
Software Architecture: On Patterns and Pattern Language.
John Wiley & Sons, 2007.

[12] R. B. France, D. Kim, S. Ghosh, and E. Song, "A UML-based
pattern specification technique", Software Engineering, IEEE
Transactions On, vol. 30, 2004, pp. 193-206.

[13] P. Kajsa and L. Majtás, "Design patterns instantiation based
on semantics and model transformations", in SOFSEM 2010:
Theory and Practice of Computer Science, Springer, 2010, pp.
540-551.

[14] R. France, S. Chosh, E. Song and, D. Kim, "A metamodeling
approach to pattern-based model refactoring," IEEE Software,
vol. 20, 2003, pp. 52-58.

[15] A. Pande, M. Gupta, and A. K. Tripathi, "A new approach for
detecting design patterns by graph decomposition and graph
isomorphism," in Contemporary Computing, Springer, 2010,
pp. 108-119.

[16] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T.
Halkidis, "Design pattern detection using similarity scoring,"
Software Engineering, IEEE Transactions on, vol. 32, 2006,
pp. 896-909.

[17] D. Jing, Y. Sheng, and Z. Kang, "Visualizing design patterns
in their applications and compositions", Software

Engineering, IEEE Transactions on, vol. 33, 2007, pp. 433-
453.

[18] T. Vepsäläinen and S. Kuikka, "Safety patterns in model-
driven development," The 9th International Conference on
Software Engineering Advances (ICSEA 2014), Nice, France,
2014, pp. 233-239. ISBN: 978-1-61208-367-4.

[19] IEC, 62061: Safety of machinery - Functional safety of
safety-related electrical, electronic and programmable
electronic control systems. International Electrotechnical
Commission, 2005.

[20] J. Rauhamäki, T. Vepsäläinen, and S. Kuikka, "Patterns in
safety system development", The Third International
Conference on Performance, Safety and Robustness in
Complex Systems and Applications (PESARO 2013), 2013,
pp. 9-15.

[21] B. Appleton, “Patterns and software: Essential concepts and
terminology”, Object Magazine Online, vol. 3, no. 5, 1997,
pp. 20-25.

[22] C. Kohls and S. Panke, “Is that true...?: thoughts on the
epistemology of patterns”. In Proceedings of the 16th
Conference on Pattern Languages of Programs (PLoP '09).
ACM, New York, NY, USA, Article 9, 2009, 14 pages.
http://doi.acm.org/10.1145/1943226.1943237.

[23] J. Rauhamäki and S. Kuikka, Strategies for hazard
management process. The 19th European Conference on
Pattern Languages of Programs (EuroPLoP 2014), 9.-
13.7.2014, Irsee, Germany, ACM New York, NY, USA 2014.
Article 31. DOI: 10.1145/2721956.2721966. ISBN: 978-1-
4503-3416-7.

[24] J. Rauhamäki and S. Kuikka, Patterns for Sharing Safety
System Operation Responsibilities between Humans and
Machines. The VikingPLoP 2014 Conference, 10.-13.4.2014,
Vihula, Estonia, 2014. ACM New York, NY, USA, 2014, pp.
68-74.

[25] J. Rauhamäki and S. Kuikka, Patterns for control system
safety. The 18th European Conference on Pattern Languages
of Program, EuroPLoP 2013, Irsee, Germany, July 10-14,
2013. ACM, 2013, Article 23. DOI:
10.1145/2739011.2739034, ISBN 978-1-4503-3465-5.

[26] J. Rauhamäki, T. Vepsäläinen, and S. Kuikka, Patterns for
safety and control system cooperation. In: Eloranta, V.-P.,
Koskinen, J. & Leppänen, M. (eds.). Proceedings of
VikingPLoP 2013 Conference, Ikaalinen, Finland 21.3. -
24.3.2013.Tampere University of Technology. Department of
Pervasive Computing. Report 2, 2013, pp. 96-108.

[27] J. Rauhamäki, T. Vepsäläinen, and S. Kuikka, Functional
safety system patterns. In: Eloranta V.-P., Koskinen, J.,
Leppänen M. (eds.). Proceedings of VikingPloP 2012
Conference, 17.-20.3.2012. Tampere University of
Technology. Department of Software Systems. Report.
Nordic Conference of Pattern Languages of Programs vol. 22,
Tampere, Tampere University of Technology. 2012, pp. 48-
68. Available: http://URN.fi/URN:ISBN:978-952-15-2944-3.

[28] OMG, Unified Modeling Language Specification 2.4.1:
SuperStructure. Object Management Group, 2011.

348Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 367 / 512

An Analysis of Seven Concepts and Design Flaws in Identity Management Systems

João José Calixto

Cesar.edu

CESAR – Center for Advanced Studies and Systems

Recife, Brazil

e-mail:calixtounicap@gmail.com

Felipe Silva Ferraz

Informatics Center

Federal University of Pernambuco

Recife, Brazil

e-mail:fsf3@cin.ufpe.br

Abstract –Identity management uses models to accredit,

manage and use digital identities. These models connect

isolated islands of authentication and authorization systems in

a federated system. However flaws in the design and concept of

these models, such as identity theft and even users’ lack of

confidence in truly using these models, can lead systems that

use its benefits to being non-successful on the market. This

article presents an analysis of seven design and concept flaws

of the identity management model of the main tools on the

market, including Security Assertion Markup Language

(SAML), OpenID, Microsoft CardSpace and an academic

framework called Inter-Cloud Identity Management

(ICEMAN).

Keywords-Identity Management; flaws; Identity; design;

Security.

I. INTRODUCTION

The huge transformation that cloud computing prompted

within the IT industry made software development as a

service more attractive [1]. This large-scale paradigm cut

out the need for large investments [2]. The transparency of

the services provided by the cloud is a key point of this

supply-side paradigm [3].

Cloud computing combines virtualization and service-

oriented architecture (SOA) in order to provide shared

services with regard to computing, data storage, software,

applications or for a business [4][5]. However, the resource

capacity of a single cloud is finite, so cloud computing has

been migrating to a perspective of InterClouds, namely an

environment in which several clouds can be configured that

can communicate with each other and share data and

services.

There are identification mechanisms for each service

hosted in cloud computing environments and these make

use of solutions for user authentication. However, this

approach leads to user fatigue as users must memorize

logins and passwords [6]. A study in 2007 on password

habits showed that typical web users have on average 27

accounts that require a password, and they type eight

passwords per day [7]. Therefore this results in users

registering similar or even identical logins and passwords

for different types of services [7]–[9]. Another problem

associated with user authentication and identification is the

disclosure of users’ personal information after they are

successfully identified in a service.

In this scenario, the identity management (IdM) is

needed to mitigate and resolve some of these issues. IdM is

a set of technologies and processes that enable computer

systems to distribute identity information and delegate tasks

by using one or more domains with more security [4][10].

Identity management in cloud computing environments is

primarily responsible for authenticating users and

supporting access based on his/her attributes. IdM for

InterClouds can be represented by a single authentication

system can be deployed in heterogeneous clouds [11].

Identity management systems are complex and offer all

parties involved, powerful features so as to facilitate the

mechanism for identities, credentials, personal information,

and to present such information to third parties. These

systems can bring about potential failures [12].

This article studies major flaws in the concept, usability

and design of the most popularly successful identity

management systems on the market, namely OpenID [13],

Security Assertion Markup Language (SAML) [14],

Microsoft CardSpace InfoCards [15] and an academic

framework called Inter-Cloud Identity Management

(ICEMAN) [16].

The paper is organized as follows. Section 2 gives a

short overview of identity management. Section 3 describes

the seven flaws of design in identity management systems,

while Section 4 discusses the identity models themselves

and their flaws are the topic of Section 5. Finally, in Section

6, conclusions are drawn and recommendations outlined.

II. IDENTITY MANAGEMENT

An identity is defined by an entity or group of entities (a

person, computer, organization, etc.) represented solely

within a specific scope. Yet much can be derived from the

definition. Which are entities and how each identity be

uniquely identified? Entities may be objects, or, as in most

cases a personal identity.

In each context we have different attributes that make up

the identity of how we ourselves are identified. What

identifies us are the attributes we possess. Different

attributes of identity lead to different entities being

identified. In such contexts, we can assume an identity, such

as a driver's license number coupled with an the 2-letter

code of a Brazilian state. Another simple example is our

national, Brazilian ID, which has a numeric record and a

349Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 368 / 512

fingerprint. All these identities cited are merely a set of

attributes that if not inserted in a context and certified lose

their objective, which is assertively to identify the user who

gives such information is who that user purports to be. In

this scenario, we can perform an analogy with our digital

identities, which consist of identifying attributes such as

login and password, which, if not inserted in the correct

context, are not valid.

Identity management, or IdM, consists of the process

and all technologies associated with this to accredit,

manage, and use digital identities [17]. In the most common

models for an identity management, three parties are

highlighted: users, identity providers (IdP) and relying

Parties (RP) [4][18].

There are centralized identity models, ie where there is

only one authority as IdP that performs authentication and

authorization actions and there are also decentralized

models, which have more than one IdP [19]. Some examples

of decentralized identity management systems are the

OpenID, SAML and Microsoft CardSpace. In this article,

we will focus on non-centralized identity management

systems because they do not require a previous relationship

between RP and IdP.

III. SEVEN FLAWS OF CONCEPT AND DESIGN

To be successful in the market, identity management

systems must win the trust of users and RPs. For this to

occur, the systems must improve security, simplify the

control of the flow of personal information, and most

important of all, simplify process for authenticating,

identifying and checking credentials. The seven failures

presented below are topics that should be addressed so that

the public absorbs the use of identity management systems

to a greater extent [12].

A. Identity management is not the main goal

 A user simply wants to utilize the functionality of

his/her website. Identity management systems should aim to

facilitate those tasks by including features such as security

and privacy, but these features that are aggregated with an

IdP are considered secondary. Usually functions that offer

long-term gain are less valued [20]. Some identity

management systems offer time saving features, such as

automated form-filling, simplification such as single sign-

on, or high-value reputation, all of which can be leveraged

across many sites. However, these benefits are often

perceived as “secondary” [20].

B. Users follow the path of least resistance

The key to maximizing the direct cost is to construct

systems that are easily adopted. This includes processes of

authentication and interface with the password, which

should become easier compared to current standards. When

the technology interferes with desired activities, users tend

to create shortcuts to circumvent the security embedded in

the process [21][22]. For the success of identity

management systems to be successful, users should find

them easy, accurate and safe to use them and configure

them.

C. Cognitive Scalability is as equally important as

technical scalability

Today users undergo so-called password fatigue. They

have approximately 25 accounts and they can type 8

passwords a day [7]. To avoid burdening their memory in

this way, users generally choose the same logins and similar

passwords for various accounts they use [23]. Focusing on

cognitive scalability is one of the keys to success. Designing

the application only by thinking of one IdP should be

avoided. Instead, the designer should analyze the system as

a whole.

D. The user's consent may lead to maximum

disclosure of information

Many identity management schemes describe

themselves user-centric, whereby users or customers have to

give their consent so that certain transactions may occur

[24]. However, surveys show that when warning messages

are displayed consecutively to users, they only read them

only superficially and move quickly on so as to achieve

their goals, thus jeopardizing their privacy and possibly

disclosing unnecessary information to third parties [25]–

[27].

An identity management system should provide the uses

with more control of the data that they are disclosing,

without overloading them and even less without doing so in

an uncontrolled way.

E. There is a need for mutual authentication (not just user

authentication)

Many identity management models focus mainly on

authenticating the user [12]. These types of models can be

susceptible to phishing attacks [22]. With software support,

attackers can easily simulate the interface of a web site, put

in sections that require authentication and steal the user’s

credentials [28].

In this scenario, what is needed is to authenticate both

the RP and the IdP, thereby performing a mutual

authentication. This indicates that possibly the conduct of

spoofing and phishing attacks can be hampered.

F. RPs want to control the user’s experience

In general, for the purposes of monitoring or tracking of

users’ activities RPs tend to want to control the actions that

users perform. However, when an identity management

system is used, these steps can be lost and there can be a

marked difference between the RP layout and that of the

IdP.

To make this transition smooth, it is possible to use the

IdP before entering the RP layout, thus hiding that there is

communication between the RP and the Idp. The Verisign's

OpenID Seatbelt use this strategy.

350Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 369 / 512

G. Trust must be earned

The decision on to whom users may entrust sensitive

data is an extremely difficult one. Various models lead to

different authentication requirements and assignments of

responsibility. Even the IdP of large corporations may

contain vulnerabilities or may be poorly implemented.

There are differing privacy policies and business models.

No organization can guarantee a completely secure system.

Systems designers should have their applications evaluated

by specialized security companies before launching systems

on the market.

IV. IDENTITY MANAGEMENT SYSTEMS

This section gives a general description of the main flow

of authenticating the identity management systems

examined in the article.

A. SAML

SAML is an XML-based framework for representing

and exchanging of security information [29]. The use of

SAML for an identity management system follows a flow

that differs from the current identification process based on

login and password. An RP that groups several services

wants the user of each service offered to be identified and

authorized. Therefore, the RP must have an IdP and from

that moment on, all users must register and identify

themselves to that IdP.

Figure 1. Authentication-flow with SAML.

The IdP will consult a database containing information

about the user and will return a SAML token that represents

the user identified. This token have the user’s attributes such

as his/her age, gender and name [30]. Figure 1 illustrates the

authentication flow with SAML.

B. OpenId

Also based on the Single Sign On (SSO) is the OpenId

identity management model [31]. In this model the RP must

rely on information from the OpenId provider (OP), the IdPs

of the OpenId. Each identifier is represented by a URL,

which is unique to each OP so as to reduce collisions

between identical URLs [32]. The base authentication flow

in the OpenId has the following steps:

1. The user wants to login with RP and inserts his/her

OpenID identifier.

2. Using information contained in the handle the RP

discovers the OP of the Original.

3. RP connects to the OP using a secret shared

between the two parties.

4. RP redirects the user to the OP, which checks its

information and redirects to the RP.

5. The user cross-checks information shared with the

OP in step 3 with data that the user obtains after

step 4.

Figure 2 illustrates the base authentication flow of OpenID.

Figure 2. Base authentication flow of OpenId.

C. Microsoft Card Space

Microsoft CardSpace (formerly known as InfoCard) was

built to give users a conscious digital identity [33]. Since

CardSpace is an XML-based framework, CardSpace plug-

ins for browsers other than Microsoft Internet Explorer can

also be developed, such as the Firefox Plug-in [34]. The

framework is based on the identification process users

experience in the real world when using physical

identification cards CardSpace uses collections of cards,

presented in software, which has a similar design to that of a

portfolio called identity selector [5]. Each card represents an

identity. When an SP searches for an identity the user

chooses which card he/she will use from the identity

selector [35]. When the SP requires an attribute of the

identity, a set of data corresponding to the user's choice is

sent to the SP [33].

Figure 3. CardSpace Flow.

Figure 3 provides a simplified sketch of the CardSpace

framework. In step 1, de the CardSpace enables the user

agent or the Service Requestor. In step 2, using a public key

the RP identifies itself. After recognizing that the RP is

CardSpace- enabled, the CardSpace Enable User Agent

(CEUA) retrieves the RP security policy in step 3. In step 4,

351Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 370 / 512

the CEUA matches the RP’s security policy with the

InfoCards that the user has. The user performs an

authentication process with the IdP in step 5. If the

authentication process succeeds, step 6 takes place, in which

the CEUA asks the IdP to provide a security token that

holds an assertion of the truth of the claims listed within the

selected InfoCard. Finally, the CEUA forwards the security

token to the RP in step 7, and, if the RP verifies it

successfully, the service will be granted in step 8 [34].

D. ICEMAN

ICEMAN differs from the traditional approach, which

has only one IdP for an SP or RP, which is an unreal

environment in interclouds. This academic framework

proposes a more suitable scheme for interclouds. ICEMAN

provides a high interoperability mechanism between any

pattern of identity thus facilitating the management of the

life flow of the authentication [12]. However, this

architecture is still being developed, thus preventing further

analysis of the seven failures. Nevertheless, the ICEMAN

model for identity management was included in the article

as it has a mechanism that can come to add more than one

identification and authorization model. Such an approach

may ultimately unite existing models, which may be able to

mitigate weaknesses and strengthen strong points [16].

V. IDENTIFYING FAULTS IN IDENTITY

MANAGEMENT MODELS

We have chosen four Identity Management Systems for

our analysis and seven de design flaws which either have

dominant positions in Identity Management scenarios or

introduced a novel concept which is worth exploring.

1. Identity management is not the main goal:
The MS CardSpace model was considered to have the

first flaw since it adds a new software to the user's standard

way to access information and services. Microsoft has

discontinued their CardSpace project. However, we have

opted to include it into our analysis because of its

fundamentally novel concept of how Identity is presented.

2. Users follow the path of least resistance:

It was considered that all models display some difficulty

when it comes to installing and configuring them for use.

The very concept of the SAMU follows an alternative flow

that does not allow the user to follow the path of least

resistance.

3. Cognitive Scalability is as equally important as

technical scalability:

Cognitive scalability in all but the ICEMAN is adequate.

The ICEMAN is a framework for better integration of

identity management in InterClouds. The scalability of

technical cognition scalability does not follow the average

of the other models presented.

4. The user's consent may lead to maximum

disclosure of information:

On the consent of the information to be passed to the

user MS CardSpace user is well ahead. However, it is

important to emphasize that the type of approach to

maintain management of cards can be stressful for users and

can generate a new kind of dissatisfaction with the tool. In

the case of SAML, in the basic flow of authentication there

is nowhere that will say what information can be accessed

by the service.

5. There is a need for mutual authentication (not

just user authentication):

There is the possibility of phishing and spoofing in the

identity models. Therefore, it was considered that all

configuration management models contain such flaws,

which leads the parties involved to add other security

mechanisms to mitigate these vulnerabilities [35].

6. RPs want to control the user’s experience:

No model analyzed initially presents monitoring of the

user’s actions on the site and the transition between the

layout of authentication between IdP and the Client is not

specified in any model. Thus, it was assumed that all flows

present this flaw.

7. Trust must be earned:

On models with greater maturity and interaction with the

market, it has been identified that users place greater trust in

these. It was considered that the ICEMAN has such a flaw.

However, according to research carried out on regular

Internet users, it was shown that there is still no confidence

in service providers that use MS CardSpace [34].

Table 1 illustrates the results of a comparison between flaws

and models.

TABLE I. RESULTS OF A COMPARISON BETWEEN MODELS AND FLAWS.

Flaw MS Card OpenId SAML ICEMAN

1  X X partial

2 partial   

3 X X X 

4 partial   

5    

6    

7  X X 

VI. CONCLUSION

Identity management systems are not just systems for

authenticating and authorizing identities but are also a set of

methods and procedures that can contribute to greater user

immersion within a system which uses, for example, the

single sign on. However, some identity management

systems failed at least partly because they ignored the topics

discussed in this paper.

An overview was given of the most popular identity

management systems in the market, namely: OpenId, MS

CardSpace, SAML and an academic framework called

ICEMAN. Seven flaws in the concept and design of identity

management in these systems were analyzed. The flaws

352Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 371 / 512

found in the models were compared in a critical analysis of

the study of their concept study and how the user can

achieve greater reliance on the technology, and the identity

management process.

In this article, problems to do with the lack of control in

the process of identifying and authorizing users were listed,

in addition to flaws in the concept of identity management

systems. The study found that the lack of commitment to

dealing with the flaws can result in large projects being

poorly received by the current market. Strategies to mitigate

and solve the problems discussed in the article were also

discussed.

Finally, we intend to examine flaws in identity

management in greater depth in future studies, which will

focus on aspects of privacy, availability and integrity. We

would also like to add new systems to the market and to put

forward new academic frameworks.

 REFERENCES

[1] A. Acquisti and J. Grossklags, “Privacy and

rationality in individual decision making,” IEEE

Secur. Priv. Mag., vol. 3, no. 1, pp. 26–33, Jan.

2005.

[2] G. Pallis, “Cloud computing: The new frontier of

internet computing,” IEEE Internet Computing, vol.

14, no. 5. pp. 70–73, 2010.

[3] A. Gopalakrishnan, “Cloud Computing Identity

Management Online security concerns are on the

rise and what cloud needs now,” vol. 7, no. 7, pp.

45–55, 2009.

[4] D. Núñez, I. Agudo, P. Drogkaris, and S. Gritzalis,

“Identity Management Challenges for Intercloud,”

pp. 198–204.

[5] E. Maler and D. Reed, “The venn of identity:

Options and issues in federated identity

management,” IEEE Secur. Priv., vol. 6, no. 2, pp.

16–23, 2008.

[6] “Password fatigue - Wikipedia, the free

encyclopedia.” [Online]. Available:

http://en.wikipedia.org/wiki/Password_fatigue.

[Accessed: 12-Oct-2015].

[7] F. , N. , and H. Shannon. "Technology Corner:

Brute Force Password Generation--Basic Iterative

and Recursive Algorithms." Journal of Digital

Forensics, Security and Law 6.3 (2011): 79-86.

[8] S. Gaw and E. W. Felten, “Password management

strategies for online accounts,” in Proceedings of

the second symposium on Usable privacy and

security - SOUPS ’06, 2006, p. 44.

[9] R. Chow, Ori Eisen, et al. "The future of

authentication." IEEE Security & Privacy 1 (2012):

22-27.

[10] E. Maler and D. Reed. "The venn of identity:

Options and issues in federated identity

management." IEEE Security & Privacy 2 (2008):

16-23.

[11] A. Celesti, F. Tusa, M. Villari, and A. Puliafito,

“Security and Cloud Computing: InterCloud

Identity Management Infrastructure,” 2010 19th

IEEE Int. Work. Enabling Technol. Infrastructures

Collab. Enterp., pp. 263–265, 2010.

[12] R. Dhamija and L. Dusseault, “The seven flaws of

identity management: Usability and security

challenges,” IEEE Secur. Priv., vol. 6, no. 2, pp. 24–

29, 2008.

[13] “Final: OpenID Authentication 2.0 - Final.”

[Online]. Available: http://openid.net/specs/openid-

authentication-2_0.html. [Accessed: 12-Oct-2015].

[14] “XACML SAML Profile Version 2.0.” [Online].

Available: http://docs.oasis-open.org/xacml/xacml-

saml-profile/v2.0/xacml-saml-profile-v2.0.html.

[Accessed: 06-Nov-2015].

[15] K. Cameron and J. Michael. "Design rationale

behind the identity metasystem

architecture." ISSE/SECURE 2007 Securing

Electronic Business Processes. Vieweg, 2007. 117-

129.

[16] G Dreo, M Golling, et al. "ICEMAN: An

architecture for secure federated inter-cloud identity

management." Integrated Network Management (IM

2013), 2013 IFIP/IEEE International Symposium

on. IEEE, 2013.

[17] G. Alpár and J. H. Johanneke, “The Identity Crisis

Security , Privacy and Usability Issues in Identity

Management,” pp. 1–15, 2011.

[18] D. W. Chadwick, “Federated Identity

Management,” vol. 5705, pp. 96–120, 2009.

[19] S. Dongwan , A. Gail-Joon and S. Prasad, “Ensuring

information assurance in federated identity

management,” in IEEE International Conference on

Performance, Computing, and Communications,

2004, 2004, pp. 821–826.

[20] A. Acquisti and J. Grossklags, “Privacy and

rationality in individual decision making,” IEEE

353Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 372 / 512

Secur. Priv. Mag., vol. 3, no. 1, pp. 26–33, Jan.

2005.

[21] A. Adams and M. A. Sasse, “Users are not the

enemy,” Commun. ACM, vol. 42, no. 12, pp. 40–

46, Dec. 1999.

[22] U. C. Berkeley, “Why Phishing Works,” 2006.

[23] B. M. Gross and E. F. Churchill, “Addressing

Constraints: Multiple Usernames, Task Spillage and

Notions of Identity,” in CHI ’07 extended abstracts

on Human factors in computing systems, 2007, pp.

2393–2398.

[24] A. Cavoukian, “7 Laws of Identity - The Case for

Privacy-Embedded Laws of Identity in the Digital

Age,” Technology, no. 30 January 2008, p. 24,

2006.

[25] N. Good, R. Dhamija, J. Grossklags, D. Thaw, S.

Aronowitz, D. Mulligan, J. Konstan, and S. Hall,

“Stopping Spyware at the Gate : A User Study of

Privacy , Notice and Spyware Definition of

Spyware,” pp. 1–10.

[26] J. Grossklags and N. S. Good, “Empirical Studies

on Software Notices to Inform Policy Makers and

Usability Designers,” in Financial Cryptography

and Data Security, 2008, pp. 341–355.

[27] D. A. Norman, “Design rules based on analyses of

human error,” Commun. ACM, vol. 26, no. 4, pp.

254–258, Apr. 1983.

[28] S. E. Schechter, R. Dhamija, A. Ozment, and I.

Fischer, “The Emperor’s New Security Indicators,”

2007 IEEE Symp. Secur. Priv. (SP ’07), 2007.

[29] A. Armando, R. Carbone, L. Compagna, J. Cuellar,

and L. Tobarra, “Formal Analysis of SAML 2.0

Web Browser Single Sign-on: Breaking the SAML-

based Single Sign-on for Google Apps,” Proc. 6th

ACM Work. Form. Methods Secur. Eng., pp. 1–10,

2008.

[30] P. Arias Cabarcos, F. Almenarez Mendoza, A.

Marin-Lopez, and D. Diaz-Sanchez, “Enabling

SAML for Dynamic Identity Federation

Management,” Wirel. Mob. Networking, Proc., vol.

308, pp. 173–184, 2009.

[31] “Pros and Cons of OpenID - O’Reilly Radar.”

[Online]. Available:

http://radar.oreilly.com/2007/02/pros-and-cons-of-

openid.html. [Accessed: 08-Nov-2014].

[32] “What is OpenID?.” [Online].

Availablehttps://openid.net/get-an-openid/what-is-

openid. [Accessed: 05-Nov-2015].

[33] S. Gajek, J. Schwenk, M. Steiner, and C. Xuan,

“Risks of the cardspace protocol,” in Lecture Notes

in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2009, vol. 5735 LNCS, pp. 278–

293.

[34] W. A. Alrodhan and C. J. Mitchell, “Addressing

privacy issues in CardSpace,” in Third International

Symposium on Information Assurance and Security,

2007, pp. 285–291.

[35] V. Bertocci et al.,Understanding Windows

CardSpace An Introduction to the Concepts and

Challenges of Digital Identities Technical

Reviewers.

354Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 373 / 512

ATM Security

A Case Study of a Logical Risk Assessment

Johannes Braeuer
Dept. of Information Systems

Johannes Kepler University

Linz, Austria

email: johannes.braeuer@jku.at

Bernadette Gmeiner
Banking Automation

KEBA AG

Linz, Austria

email: gmb@keba.com

Johannes Sametinger
Dept. of Information Systems

Johannes Kepler University

Linz, Austria

email: johannes.sametinger@jku.at

Abstract—Automated Teller Machines (ATMs) contain con-

siderable amounts of cash and process sensitive customer data

to perform cash transactions and banking operations. In the

past, criminals mainly focused on physical attacks to gain ac-

cess to cash inside an ATM’s safe. They captured customer

data on the magnetic strip of an ATM card with skimming

devices during insertion of the card. These days, criminals

increasingly use logical attacks to manipulate an ATM’s soft-

ware in order to withdraw cash or to capture customer data.

To understand the risks that arise from such logical attacks,

we have conducted a risk assessment of an ATM platform that

is running in a real banking environment. The result of this

assessment has revealed the main issues that are responsible

for vulnerabilities of an ATM platform. In this paper, we dis-

cuss the findings of our risk assessment as well as counter-

measures to mitigate serious risks in order to ensure a secure

banking environment. The risk assessment has revealed effec-

tive countermeasures and has additionally provided a prioriti-

zation of activities for ATM manufacturers.

Keywords-automated teller machines; ATM security; embed-

ded systems; risk assessment.

I. INTRODUCTION

Automated Teller Machines (ATMs) have their roots
back in the late 1930s, but they began to revolutionize the
banking environment in the 1960 [1]. With the integration of
real-time terminals, ATMs have been developed to data pro-
cessing units that contained commercially available comput-
ers. Today, almost all three million ATMs around the world
are running on operating system (OS) Windows [2]. On top
of Windows, the ATM platform controls all peripheral de-
vices and uses the OS to communicate with device drivers.
The ATM platform also provides an interface to multi-
vendor ATM software, i.e., bank applications that utilize the
platform’s functionality. Besides Windows, ATMs use the
Internet Protocol (IP) for communication in the banking
network [3]. Consequently, the ATM network is part of the
banking network, which in turn is part of the Internet. ATMs
have developed from stand-alone equipment with simple
cash dispensing capabilities to a network of connected devic-
es for bank transactions. ATMs contain a remarkable amount
of cash for their daily operation. Thus, they have always
been an attractive target for thieves and fraudsters [4]. Also,
they were available around the clock and often located off-
premises [5]. Fraudulent activities are not only attracted by
cash, but also by data that is required to conduct full bank

transactions. Risk assessments provide information to select
adequate countermeasures and controls for mitigating the
likelihood or impact of risks. We have conducted such a risk
assessment concentrating on logical risks of an existing
ATM platform. The proposed method can easily be extended
to physical risks and risks resulting from card and currency
fraud.

In this paper, we will first provide an overview of attacks
to ATMs as well as their countermeasures. We will then
evaluate the countermeasures for logical attacks by a risk
assessment. As a result, we can confirm that suggested coun-
termeasures work for the identified risks. Additionally, we
can prioritize these countermeasures and provide a guideline
for those responsible for ATM security. The paper is struc-
tured as follows. In Section II, we describe criminal activities
in the context of ATMs and discuss traditional attacks and
countermeasures. Section III concentrates on logical ATM
security. Section IV presents a risk assessment approach,
which is then used in Section V to determine the risks of an
ATM platform. Findings are discussed in Section VI. Relat-
ed work and a conclusion follow in Sections VII and VIII,
respectively.

II. AUTOMATED TELLER MACHINES

An ATM is a cash dispensing machine with the capabil-
ity to credit or debit a customer account without human in-
tervention [1]. The term ATM has been used synonymously
for cash machines, cash dispensers or cash recyclers. How-
ever, the designation ATM is inappropriate when a machine
cannot perform a complete financial transaction initiated by
the customer. Thus, ATMs support synchronous or asyn-
chronous electronic data processing operations in an online
and real-time manner [1]. ATMs have revolutionized the
banking sector. Their widespread dissemination has grown to
a world-wide use of around 2.8 million ATMs. This number
is expected to reach 3.7 million by 2018 [6]. ATMs have
always been an attractive target for thieves [4]. Reinforced
by the fact that ATMs are typically available 24/7 and often
located off-premises, they are vulnerable to cash thefts [5].
However, ATM crime, including ATM fraud, goes beyond
stealing cash. Illegally obtaining customer's personal infor-
mation, such as bank account data, card number and PIN is
an additional security issue that is related to ATMs [5][7].
These digital assets do not provide an immediate profit, but
they can be sold on illegal credit card data markets on the
Internet [8].

355Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 374 / 512

There are three different types of attacks, i.e., card and
currency fraud, physical attacks and logical attacks [9][10].
Various Information Technology (IT) security standards
have been developed and vendors have recommended securi-
ty concepts pertaining to ATMs [11]. The goal is to secure an
entire ATM and its environment. Similar to ATM crime,
ATM security can be divided into the three different core
areas card and currency protection, physical security, and
logical security. The former two will be described in the next
subsections. Logical ATM security will follow in Section III.

A. Card and Currency Fraud

Card and currency frauds include direct attacks to steal
cash or cards as well as indirect attacks to steal sensitive
cardholder data that is later used to create fake cards for
fraudulent withdrawals [10]. The target of these attacks is a
single ATM, which may be physically manipulated for
skimming, card fishing and currency trapping. Skimming is
the approach to install an additional device, called a card
skimmer, to capture the card’s information on the magnetic
strip. Lower tech card fishing and currency trapping focus on
either card or cash capturing, typically using thin plates, thin
metallic stripes, transparent plastic film, wires and hooks [5].
There are several security methods that deal with this threat
category. Jitters, for example, vary speed and movement of
cards or introduce motion. In other words, it distorts the
magnetic stripe details and makes it difficult for the skimmer
to read data while the card reader pulls the card into the
ATM [12]. A further approach of an anti-skimming module
is a jammer with the aim to disrupt a skimmer attached to the
ATM dashboard. Instead of working on a mechanical level, a
jammer uses an electromagnetic field to protect the cards’
magnetic strips. Hence, the card reader can generate an error
code that can be traced by remote monitoring tools [5].

B. Physical Attacks

Attacks that result in the physical damage of the entire
ATM or a component thereof primarily focus on stealing
cash from the safe [10]. But, some of these attacks are also
conducted to prepare a further malicious activity on a single
ATM. Vulnerable and easy targets for such attacks are off-
site ATMs that are open to the public, less protected and
lighter compared to bank-located machines [13]. Physical
security guidelines recommend seismic detectors, magnetic
contacts, alarm control panels, access control and heat sen-
sors as alarm equipment [14]. Seismic detectors indicate
abnormal vibrations and can cry havoc if an ATM is about to
be raided. Heat sensors detect any form of unnatural temper-
ature rise. Volumetric detectors on the wall can detect
movements in the ATM's surrounding area. Intelligent bank
note neutralization or degradation systems use bank note
staining. A trigger becomes activated in case an inapprop-
riate movement of the cassettes takes place. As a result, sto-
len banknotes get marked with a degradation agent or a dye.

III. LOGICAL ATM SECURITY

Logical attacks have become more sophisticated and their
execution has typically been well organized [5][7][8][15].
Thus, recent examples, such as Skimer [16], Ploutus [17],

Stuxnet [18] and a logical attack demonstrated at the chaos
computing club congress [19] are indicators that these at-
tacks bring up new methods and approaches to ATM crime.
ATM malware is designed to steal cardholder data and PINs
or to withdraw cash [9][13][15]. Typically, malware hides in
the system to remain undetected as long as possible. It im-
pairs confidentiality, integrity and authenticity of transaction
data for its particular intention [5][10]. ATM networks are
based on the Internet protocol and face the same attacks as
other IP-related networks, e.g., denial of service (DoS), sniff-
ing, man-in-the-middle attacks, or eavesdropping [3][10].
Communication between ATM and host can be used as entry
point to launch remote attacks [5]. Even network devices like
routers and switches can be targeted [3]. Logical security
focuses on maintaining a secure network, protecting the OS
and designing a system so that intruders cannot threaten
cardholder's data and software components [5][10]. Subse-
quent subsections describe such measures.

A. Cardholder Data Protection

Sensitive data is the main target of logical attacks [20].
The Payment Card Industry (PCI) Data Security Standard
(DSS) is for the protection of sensitive cardholder and au-
thentication data. It proposes a set of twelve requirements
divided into six areas [20]. Based on these requirements we
have identified four security controls, which are needed to
protect cardholder data:

 Change control, to guarantee that necessary and
wanted changes are made only

 Data masking, to disguise cardholder data

 User access control, to restrict permsissions

 Password policy, to hamper password guessing

B. Host-based Firewall

To operate a secure ATM network, logical ATM security
systems must be in place [5]. A firewall and a monitoring
system to analyze and authenticate connection attempts are
recommended in order to build such a layer of defense [5].
Instead of installing a central firewall, an integrated firewall
on the ATM is feasible, controlling network communications
on the processes, protocols and ports level [8].

C. Application Control

Traditional security software like antivirus software is
used on desktop PCs to prevent unauthorized software exe-
cution. But, antivirus software requires processing power
that often goes beyond the capabilities of an ATM and relies
on a signature database that needs periodic updates. These
updates can only provide protection against known malware.
Consequently, malware prevention must operate within the
limited resources and with a minimal “footprint” to avoid
complications with ATM software [8]. Whitelisting restricts
software running on an ATM to a known set of applications
[8] that are tested and approved for execution. Unapproved
software outside the list and malware are prohibited.

D. Full Hard Disk Encryption

Some logical attacks bypass security protection by boot-
ing the ATM from an alternative medium, such as a USB

356Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 375 / 512

stick or CD-ROM. This circumvention provides the possibil-
ity to manipulate configurations or to put malware in place
[21]. As a countermeasure, the ATM hard disk can be pro-
tected with full hard disk encryption [21]. In addition, it is
recommended to encrypt data on an ATM's hard disk to
make it unreadable in case of theft or unauthorized access
[10]. Physically protecting the hard disk is an additional
safeguard, because data access becomes more difficult.

E. Patch Management

Logical security includes the handling of software vul-
nerabilities by patch management to ensure the efficiency
and security of ATMs in a timely and efficient manner [22].
Continuous patch management provides protection against
viruses, worms and known vulnerabilities within an OS [22].
An example in this context is the Slammer virus, which was
responsible for network outages of different systems, such as
ATMs with Windows [23]. The incident could have been
prevented because Microsoft had provided a patch covering
the exploited vulnerability six month before the virus spread
out [23]. Needless to say, precautions have to be taken to
avoid malicious misuse of update mechanisms.

F. Device-specific Requirements

Depending on the actual installation of ATMs, additional
security controls are required for a higher level of defense.
Examples of countermeasures include secure test utilities and
device controls. Test utilities that are built in an ATM plat-
form must be protected via access control mechanisms. Ex-
ternally available devices, especially USB ports, must be
controlled on BIOS or OS level.

IV. RISK ASSESSMENT

Risks must be controlled by countermeasures or
safeguards [24]. Risk management is an important part of an
organization’s security program. It provides support in man-
aging information security risks associated with an
organization's overall mission [25]. Risk management must
repeatedly be conducted in periodical time spans [26]. Each
iteration begins with risk assessment [26], which is initiated
at a predefined time, e.g., once a year or after a major IT
change [27]. It results in the identification, estimation and
prioritization of IT risks based on confidentiality, integrity
and availability [24]. The result represents a temporary view
that will be used for further risk management decisions [26].

A. Risk Model

The risk model specifies key terms and assessable risk
factors including their relationships [24]. It defines all factors
that directly or indirectly determine the severity and level of
a particular risk, such as assets, threat source, threat event,
likelihood, impact and countermeasure. Assets represent
resources of value that need to be protected [28]. Thus, a
person, physical object, organizational process or imple-
mented technology can represent an asset. A threat is the
potential for a malicious or non-malicious event that will
damage or compromise an asset [28], e.g., unauthorized
modification, disclosure or destruction of system compo-
nents and information [24]. Depending on the degree of de-

tail and complexity, it is possible to specify a threat as a sin-
gle event, action or circumstance; or as a set of these entities
[24]. A vulnerability is a weakness in the defense mechanism
that can be exploited by a threat to cause harm to an asset
[26][28]. This weakness can be related to security controls
that either are missing or have been put in place but are
somehow inefficient [24].

The likelihood of a risk consists of two aspects, i.e., the
likelihood of occurrence (initiation of an attack) and the like-
lihood of success [24]. The likelihood of occurrence demon-
strates the probability of a threat to exploit a vulnerability or
a set of vulnerabilities [24]. Factors that determine this like-
lihood value are predisposing conditions, the presence and
effectiveness of deployed countermeasures and the consider-
ation of how certain the threat event is to occur. The likeli-
hood of success expresses the chance that an initiated threat
event will cause an adverse impact without considering the
magnitude of the harm [24]. The impact describes the magni-
tude of expected harm on an organization [28]. To determine
the impact, it is important to understand the value of the asset
and the value of an undamaged system. Besides, it is advisa-
ble to consider an impact not only as a one-time loss because
it can have relationships to other factors that cause conse-
quential damage [24]. A risk is a combination of the likeli-
hood that an identified threat will occur and the impact the
threat will have on the assets under review [24]. Risk factors,
such as threat, vulnerability, likelihood and impact determine
the overall risk. Impact and likelihood are used to define the
risk level [27].

B. Risk Assessment Process

Different risk assessment processes, frameworks and
methodologies build on the same underlying process
structure, which may vary in abstraction level and granu-
larity [24][26]. These steps, which are listeted below, do not
have to be strictly adhered to in sequential order. For
example, it is useful to perform threat and vulnerability
identification side by side to cover all risk possibilities. Also,
some step iterations are necessary to get representative
results [24].
1. Definition of Assets - No action can be taken unless it is

clarified what the assets are. Asset definition seeks to
identify the processes, applications and systems that are
highly important and critical to an organization's daily
operation [28].

2. Identification of Threat Sources and Events - Threat
sources can be characterized based on their capability, in-
tent and target to perform a malicious activity [24]. Once
the list of sources is complete, threat events must be iden-
tified that can be initiated by a threat source. Predefined
checklists are an easy way to verify whether the listed
threat events can occur in the context of the assessment.
But, an exclusive use of checklists can negatively influ-
ence the outcome because it may impair the free flow of
creative thinking and discussing. An important step is the
determination of the relevance of each threat event. If
considered relevant, an event will be paired with all pos-
sible threat sources that can initiate it.

357Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 376 / 512

3. Identification of Vulnerabilities and Predisposing Condi-
tions - Next, we have to identify vulnerabilities that can
be exploited as well as the conditions that may increase
or mitigate susceptibility. Tool support is feasible for this
task. For example, vulnerability scanners automatically
test internal and external system interfaces in order to
find known and obvious weaknesses.

4. Determination of Overall Likelihood - The overall likeli-
hood represents the probability that the threat exploits
vulnerabilities against an asset [28]. To get an adequate
value and to keep focused on specific aspects, the overall
value is divided into likelihood of initiation/occurrence
and likelihood of success. These are an assessment of the
probability that a non-adversarial threat happens or an
adversarial threat source launches an attack [24]. In con-
trast, the likelihood of success is the probability that an
initiated threat event results in an adverse impact [24].

5. Determine Magnitude of Impact - It is necessary to de-
termine the impact the event will have on the organiza-
tion [28]. For this task, the values of reviewed assets are
an important input because they show the potential harm
and the severity of the impact in case of a full or partial
loss. The harm can be expressed in terms of monetary,
technical, operational or human impact criteria [27].

6. Determine Risk - The risk level is determined by comb-
ing impact and overall likelihood [24][27]. It shows the
degree to which an organization is threatened [24].
Formulas, matrices or methods that are used for merging
likelihood and impact must be consistent and precisely
defined.

V. CASE STUDY

The aim of this case study is a risk assessment to
establish a baseline assessment of risks that are faced by an
ATM platform of a specific manufacturer. Thus, the risk
assessment identifies all threats, vulnerabilities and impacts
that cause a risk to an ATM asset. The focus on the ATM
platform limits our investigation to software aspects. Thus,
we mainly focus on logical risks. We’d like to mention at
this point that we have to refrain from describing attacks in
too much detail, because this would provide valuable
information to potential attackers. However, the given
information is sufficient for readers to follow the conclusions
that we will draw.

A. System Characterization

The logical system structure of an ATM consists of three
layers as shown in Figure 1. On the bottom end is the OS,
which is on top of the hardware layer (not considered here)
and builds the base for all layers above. The second layer is
the ATM platform that uses the functionalities of the OS in
order to communicate with hardware components. The ATM
platform provides a public interface to multi-vendor ATM
software and bank applications that depict the third layer.
The ATM platform is designed to run on various releases of
Microsoft Windows. Some of these releases are optimized
for point of sale solutions, i.e., Embedded POSReady. The
ATM platform implements the eXtension for Financial Ser-
vices (XFS) interface specification defined in [29]. XFS does

not differ between a multi-vendor ATM software and a bank
application, but considers both forms of an ATM software as
a Windows-based XFS application [29]. The key element of
XFS is the definition of an Application Programming Inter-
face (API) and a corresponding Service Provider Interface
(SPI). The API provides access to financial services for
Windows-based XFS applications. The SPI is similar to the
API, but is utilized for the direct communication with ven-
dor-specific service providers. Each of the service providers
represents a peripheral device of the ATM. The XFS manag-
er handles the overall management of the XFS subsystem.
Thus, this component is responsible for establishing and
mapping the communication between API and SPI.

Figure 1. Logical System Structures of an ATM

B. Logical Risk Assessment

The risk assessment conducted in this case study is based
on the risk assessment published in [24]. The focus of the
assessment is on the ATM platform, i.e., from the ATM
manufacturer’s perspective. The operating system and any
bank applications or other ATM software have not been
considered in the evaluation (the bank’s perspective).
1. Assets - The main assets are sensitive data, cash and the

company's reputation. Cash can be more precisely de-
fined as real cash represented by bills and coins as well
as book money transferred from one bank account to an-
other. The general term of sensitive data summarizes data
and information that refers to an individual or is required
to secure the system. For instance, card data, personal
identification number (PIN), account data or secret keys
belong to this category.

2. Threat Sources and Events - We have derived threat
sources by interviewing ATM platform engineers and
customer solutions employees. The resulting sources are:
attacker (or hacker), thief, cash in transit (CIT) employee,
IT specialist (in data center), bank clerk, helpdesk em-
ployee, service technician and employee of ATM manu-
facturer. Threat events were identified in form of brain-
storming sessions. Threats were grouped to categories,
which were derived from the primary objective of the
threat events or an important key passage in an entire sce-
nario:

 Denial of Service, making the ATM platform una-
vailable to a customer by dominating some of its
resources.

358Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 377 / 512

 Malicious Software Injection, injecting malicious

software, such as Trojan horses, viruses or worms

at the OS level or the ATM platform level.

 Sensitive Data Disclosure, gathering unprotected
cardholder data.

 Configuration File Modification, changing configu-
ration files of the ATM platform.

 Privilege Settings Modification, modifying configu-
ration files, focusing on the change of the user ac-
cess control model to gain more privileges.

 Software Component Modification, modifying an
executable or an assembly of the ATM platform,
assuming the adversary can decompile the target
file.

 Test Utility Exploitation, exploiting test utilities
used by service technicians, IT specialists and ATM
platform engineers for maintenance.

 Eventually, the events were connected to threat sources
and logically ordered to create entire scenarios. As a re-
sult, a directed graph was designed for each threat group.
Figure 2 shows a snippet of the graph regarding the dis-
closure of sensitive data. With this graphical visualization
on the table, the relevance of all threat scenarios was as-
sessed and classified as either confirmed, likely, unlikely
or not applicable. This is shown in Figure 2 by a label
next to the threat source.

3. Vulnerabilities - In order to disclose vulnerabilities in the
ATM platform, we have analyzed the threat scenarios
based on countermeasures recommended in Section III.
For instance, as is shown in Figure 2 by the second of the
two lock symbols, missing hard disk encryption may al-
low a thief or service technician to access and read data
on an ATM’s hard disk.

4. & 5. Likelihood and Magnitude of Impact - We have de-
rived the likelihood of occurrence from the characteris-
tics of particular threat sources. These characteristics had
been determined in discussions with employees from the
ATM manufacturer and included capabilities of threat
sources as well as intent and targeting, see (24). The like-
lihood of success has been determined by the vulnerabili-
ties of the ATM platform. Results of threat scenarios,
which were linked to the three assets of the ATM, were
assessed as very high (10) or high (8), because they
caused an immediate loss when they get stolen or dam-

aged. Harm to the ATM manufacturer is evaluated as
high (8) and the impact of indirect harm is considered as
moderate (5). The latter is weighted as moderate because
a further threat scenario is necessary to actually cause an
impact.

6. Risk - Risk determination has the aim to aggregate all as-
sessed aspects of the risk factors to the risk level. We
have used a likelihood impact combination matrix for
that purpose, see [24]. Table I shows the distribution of
threat sources for risks assigned to the seven threat
groups. The numbers do not represent individual scenari-
os, but threat sources of such scenarios. For example, in
Figure 2 we have one threat scenario with two different
threat sources, i.e., thief and service technician. Table II
changes the perspective and shows how countermeasures
affect risks of different risk levels. The Roman numerals
I to VI on the left correspond to sections III.A through
III.F as well as to sections VI.A through VI.F. Thus, this
table helps in identifying security controls that are useful
to mitigate multiple risks at once. Similar to Table I, the
numbers do not represent single threat scenarios but
threat sources.

VI. DISCUSSION

The discussion about countermeasures in the literature
reflects the result of the assessment in our case study. The
case study additionally highlights security approaches and
technologies, which were identified as most appropriate for
dealing with logical ATM risks.

A. Cardholder Data Protection

We have identified change control and efficient user
access control as most appropriate for protecting cardholder
data and also for threat scenarios that focus on settings
changes or software components of a running ATM plat-
form. The main purpose is to guarantee that neither unneces-
sary nor unwanted changes are made. A change control sys-
tem also supports the documentation of modifications, en-
sures that resources are used efficiently and services are not
unnecessarily disrupted. With reference to ATMs, it can be
additionally applied for ensuring PCI compliance because
the change control system provides an overview of software
that is deployed within the ATM environment. Although data
masking is activated by default by the investigated ATM
platform, there are threat sources capable to disable this

Figure 2. Snippet from Threat Diagram: Sensitive Data Disclosure

359Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 378 / 512

TABLE I. DISTRIBUTION OF RISKS

Threat Group

Risk Level

very
high

high mod low
very
low

Denial of Service - - - 2 -

Malicious Software

Injection
- 7 40 19 -

Sensitive Data Disclosure 2 8 13 - -

Configuration File

Modification
1 7 13 7 -

Privilege Settings

Modification
- 1 15 14 -

Software Component

Modification
1 7 37 - -

Test Utility Exploitation - 6 12 - -

TABLE II. DISTRIBUTION OF COUNTERMEASURES

Countermeasure

Risk Level

very
high

high mod low
very
low

I

Change Control 1 7 13 7 -

Data Masking - 1 3 - -

User Access Con-

trol
- 1 15 14 -

Password Policy - 1 3 - -

II
Host-based Fire-

wall
2 6 4 1 -

III
Application Con-
trol

1 9 38 - -

IV
Full Hard Disk

Encryption
- 9 55 19 -

V Patch Management - 2 9 7 -

VI

Securing Test

Utilities
- 4 8 - -

Device Control

(for USB Port)
- 2 1 6 -

feature. Consequently, the approach of obfuscating data be-
comes inadequate if user access control is not in place. The
most efficient way of implementing a user access control
mechanism is by applying the user management that comes
with the OS. Not a technical but an organizational counter-
measure is the implementation of a password policy, which
enforces a periodical change of passwords that are either
used for locking user accounts or for switching to the
maintenance mode of the ATM platform.

B. Host-based Firewall

Malicious use of the network interface can be mitigated
through a host-based firewall. Such a firewall has to work on
the level of protocols, ports and processes, i.e., the configura-
tion of the firewall must specify protocols and ports that can
be used by a particular process for outgoing connections. The
same applies for incoming traffic. All ports and protocols
that are not in use must be blocked by default.

C. Application Control

Protection against unauthorized software on ATMs has to
focus on whitelisting, where the execution of applications
and executables is limited to a predefined set. This set in-
cludes files that are required to run the OS and the ATM
platform. All other executable files not in the whitelist can-
not be launched, even if not malicious. As a consequence,
threat scenarios that install known or tailored malware on the
ATM platform fail in the execution of the malicious soft-
ware. Whitelisting solutions offer a simple device control by
removing the device’s driver from the whitelist.

D. Full Hard Disk Encryption

Hard disk encryption is a powerful countermeasure
against alternatively booting the system for malicious activi-
ties. Several threat events require access to an ATM's com-
puter to boot the system from an alternative medium. Al-
though launching an alternative OS would work because the
environment is running in the RAM, access to the encrypted
hard disk fails. As a result, an adversary is not able to search

for sensitive data, to drop malicious files, to collect executa-
bles and dynamic link libraries from the ATM platform or to
change the privileges of restricted objects. Hard disk encryp-
tion tones down threat scenarios that concentrate on stealing
or exchanging a hard disk as encrypted hard disks cannot be
used on another system. A Trusted Platform Module (TPM)
chip, which is mounted on a computer's main board, can be
used to establish this connection. Other approaches do not
require additional hardware, but can compute the encryption
key based on unique characteristics of installed hardware
components or network location of the ATM.

E. Patch Management

A fundamental base for an effective patch management is
appropriate hardening of a system. Compared to a firewall
that works at the network side, system hardening focuses on
the OS level and removes or disables all unnecessary appli-
cations, users, logins and services. For instance, non-
essential applications, which may offer useful features to a
user at a workstation, must be removed because they could
provide a backdoor to an ATM environment. Next to harden-
ing, a rule policy with defined user privileges must be in
place. The reason is that managing a distributed system like
an ATM network still provides a vector for the installation of
malware by maintenance staff. Based on that groundwork, a
continuous patch management allows a financial institute to
provide protection against known viruses, worms and vul-
nerabilities within an OS.

F. Device-specific Requirements

For dealing with the potential danger arising from test
tools used by ATM platform engineers, service technicians
and IT specialists, it is important that these tools function
only under certain circumstances. Especially, when the ATM

360Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 379 / 512

is in maintenance mode, the tools should support the activi-
ties on the ATM. But, in all other cases they must be disa-
bled. Device control comes into play when the USB ports of
an ATM represent possible entry points for a malicious ac-
tivity. Similar to the concept of application control, device
control can be implemented by whitelisting solutions too.
Instead of blocking an application, a whitelisting solution
can block the USB driver resulting in disabled USB ports.

VII. RELATED WORK

DeSomer demonstrates that card skimming provides the
highest ATM risk [30]. In order to detect a card skimming
device or the installation of a camera for PIN capturing, the
author highlights risk mitigation measures, such as jitter de-
vices, lighting improvements or fraudulent device inhibitors.
A survey about ATM security highlights that some of the
security measures are obsolete and inadequate [31]. Thus,
fraudulent activities can be easily performed on an ATM.
The work proposes improvements in the authentication pro-
cess by installing a finger vein technology or a facial recog-
nition system. Bradbury has conducted ATM security from a
logical point of view [15]. He concludes that logical fraud
activities on ATMs are increasing and executed as organized
and highly sophisticated attacks. Adversaries are capable to
manipulate the software inside of ATMs to directly withdraw
money. The severity of this issue is underlined by the fact
that both banks and customers are facing heavy losses. Ra-
siah discusses the topic of ATM risk assessment from the
same perspective as we did [32]. The author adapts a non-
technical approach and investigates risk management and
controls by defining general ATM security goals. The paper
provides a general overview on ATM risk related topics.

VIII. CONCLUSION

We have discussed various aspects of ATM security, i.e.,
card and currency fraud, physical attacks as well as logical
attacks. Logical risks of a specific ATM have been assessed
in a case study to evaluate and prioritize appropriate coun-
termeasures. The risk assessment has provided information
about countermeasures in general and their importance in
particular. This allows the ATM manufacturer to better plan
resources for security and concentrate on the most important
countermeasures first. Also, we have found out that coun-
termeasures suggested in the literature are effective for the
identified risks. By multiplying risk levels and the number of
threat sources of Table II, we have identified application
control, full hard disk encryption, and user access control to
be most effective, as they provide protection to most identi-
fied risks. A host-based firewall is also a must for ATM se-
curity, as it protects against very high risks.

REFERENCE

[1] B. Batiz-Lazo and R. Reid, “The Development of

Cash-Dispensing Technology in the UK,” IEEE Ann.

Hist. Comput., vol. 33, no. 3, 2011, pp. 32–45.

[2] T. Kaltschmid, “95 percent of ATMs run on Windows

XP,” heise online. [Online]. Available:

http://www.heise.de/newsticker/meldung/95-Prozent-

aller-Geldautomaten-laufen-mit-Windows-XP-

2088583.html [retrieved: 08, 2015].

[3] C. Benecke and U. Ellermann, “Securing ’Classical IP

over ATM Networks’,” presented at the Proceedings

of the 7th conference on usenix security symposium

(SSYM ’98), Berkeley, CA, USA, 1998, pp. 1–11.

[4] R. T. Guerette and R. V. Clarke, “Product Life Cycles

and Crime: Automated Teller Machines and Rob-

bery,” Secur. J., vol. 16, no. 1, 2003, pp. 7–18.

[5] Diebold, “ATM Fraud and Security,” Diebold, 2012.

[Online]. Available:

http://www.diebold.com/Diebold%20Asset%20Librar

y/dbd_atmfraudandsecurity_whitepaper.pdf

[retrieved: 08, 2015].

[6] RBR, “Global ATM Market and Forecasts to 2018,”

Retail Bank. Res., 2013.

[7] ENISA, “ATM Crime: Overview of the European

situation and golden rules on how to avoid it,” 2009.

[8] GMV, “Protect your automatic teller machines

against logical fraud,” 2011. [Online]. Available:

http://www.gmv.com/export/sites/gmv/DocumentosP

DF/checker/ WhitePaper_checker.pdf [retrieved: 08,

2015].

[9] R. Munro, “Malware steals ATM accounts and PIN

codes,” theInquirer, 2009. [Online]. Available:

http://www.theinquirer.net/inquirer/news/1184568/ma

lware-steals-atm-accounts-pin-codes [retrieved: 08,

2015].

[10] S. Chafai, “Bank Fraud & ATM Security,” InfoSec

Institute, 2012. [Online]. Available:

http://resources.infosecinstitute.com/bank-fraud-atm-

security/ [retrieved: 08, 2015].

[11] PCI, “Information Supplement PCI PTS ATM Securi-

ty Guidelines,” PCI Security Standards Council,

2013. [Online]. Available:

https://www.pcisecuritystandards.org/pdfs/PCI_ATM

_Security_Guidelines _Info_Supplement.pdf

[retrieved: 08, 2015].

[12] F. Lowe, “ATM community promotes jitter technolo-

gy to combat ATM skimming,” ATMMarketplace,

2010. [Online]. Available:

http://www.atmmarketplace.com/article/178496/ATM

community-promotes-jitter-technology-to-combat-

ATM-skimming [retrieved: 08, 2015].

[13] T. Kitten, “ATM Attacks Buck the Trend,” BankIn-

foSecurity, 2010. [Online]. Available:

http://www.bankinfosecurity.com/atm-attacks-buck-

trend-a-2786 [retrieved: 08, 2015].

[14] ATMSWG, “Best Practice For Physical ATM Securi-

ty,” ATM Security Working Group, 2009. [Online].

Available: http://www.link.co.uk/ SiteCollectionDoc-

uments/Best_practice_for_physical_ATM_security.pd

f [retrieved: 08, 2015].

[15] D. Bradbury, “A hole in the security wall: ATM hack-

ing,” Netw. Secur., vol. 2010, no. 6, 2010, pp. 12–15.

361Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 380 / 512

[16] DrWeb, “Trojan.Skimer.18 infects ATMs,” Doctor

Web. [Online]. Available: http://news.drweb.com/

?i=4167&c=5&lng=en&p=0 [retrieved: 08, 2015].

[17] J. Leyden, “Easily picked CD-ROM drive locks let

Mexican banditos nick ATM cash,” BusinessWeek:

Technology. [Online]. Available:

http://www.theregister.co.uk/2013/10/11/mexico_atm

_malware_scam/ [retrieved: 08, 2015].

[18] Metro, “Stuxnet worm ‘could be used to hit ATMs

and power plants,’” Metro. [Online]. Available:

http://metro.co.uk/2010/11/25/stuxnet-worm-could-

be-used-to-hit-atms-and-power-plants-591077/

[retrieved: 08, 2015].

[19] 30C3, “Electronic Bank Robberies - Stealing Money

from ATMs with Malware,” presented at the 30th

Chaos Communication Congress (30C3), 2013.

[20] PCI, “PCI DSS - Requirements and Security Assess-

ment Procedures,” PCI Security Standards Council,

2013. [Online]. Available:

http://de.pcisecuritystandards.org/_onelink_/pcisecurit

y/en2de/minisite/en/docs/PCI_DSS_v3.pdf

[retrieved: 08, 2015].

[21] J. J. Leon, “The case of ATM Hard Disk Encryption,”

RBR Bank. Autom. Bull., vol. 318, 2013, pp. 11–11.

[22] Diebold, “Patch Management Considerations in an

ATM Environment,” Diebold, 2012. [Online]. Avail-

able: http://www.diebold.com/Diebold%20Asset

%20Library/dbd_softwaredatamanagement_whitepap

er.pdf [retrieved: 08, 2015].

[23] H. Cavusoglu, H. Cavusoglu, and J. Zhang, “Econom-

ics Of Security Patch Management,” in Proceedings

of the The Fifth Workshop on the Economics of In-

formation Security (WEIS 2006), Cambridge, United

Kingdom, 2006.

[24] “NIST Special Publication 800-30 Revision 1, Guide

for Conducting Risk Assessments,” National Institute

of Standards and Technology, 2012. [Online]. Avail-

able: http://csrc.nist.gov/publications/nistpubs/ 800-

30-rev1/sp800_30_r1.pdf [retrieved: 08, 2015].

[25] G. Stoneburner, A. Y. Goguen, and A. Feringa, “SP

800-30. Risk Management Guide for Information

Technology Systems,” National Institute of Standards

& Technology, Gaithersburg, MD, United States,

2002.

[26] R. K. Rainer, C. A. Snyder, and H. H. Carr, “Risk

Analysis for Information Technology,” J. Manag. Inf.

Syst., vol. 8, no. 1, 1991, pp. 129–147.

[27] ENISA, “Risk Management: Implementation princi-

ples and Inventories for Risk Management/Risk As-

sessment methods and tools.,” 2006. [Online].

Available: http://www.enisa.europa.eu/activities/risk-

management/current-risk/risk-management-

inventory/files/deliverables/risk-management-

principles-and-inventories-for-risk-management-risk-

assessment-methods-and-tools [retrieved: 08, 2015].

[28] T. R. Peltier, Information Security Fundamentals,

Second Edition. Boca Raton, FL, USA: CRC Press,

2013.

[29] CEN, “Extensions for Financial Services (XFS) inter-

face specification Release 3.20 - Part 1: Application

Programming Interface (API) Service Provider Inter-

face (SPI) Programmer’s Reference.,” European

Committee for Standarization, 16-Apr-2014. [Online].

Available:

ftp://ftp.cenorm.be/PUBLIC/CWAs/other/WS-XFS/

CWA16374/CWA16374-1-2011_December.pdf [re-

trieved: 08, 2015].

[30] F. DeSomer, “ATM Threat and Risk Mitigation,”

Thai-American Business, vol. 2, 2008, pp. 28–29.

[31] F. A. Adesuyi, A. A. Solomon, Y. D. Robert, and O.

I. Alabi, “A Survey of ATM Security Implementation

within the Nigerian Banking Environment,” J. Inter-

net Bank. Commer., vol. 18, no. 1, 2013, pp. 1–16.

[32] D. Rasiah, “ATM Risk Management and Controls,”

Eur. J. Econ. Finance Adm. Sci., vol. 21, 2010, pp.

161–171.

362Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 381 / 512

Applications of Security Reference Architectures in Distributed Systems: Initial

Findings of Systematic Mapping Study

Sajjad Mahmood, Muhammad Jalal Khan and Sajid Anwer

Information and Computer Science Department

King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

e-mail: [smahmood, g201408880, g201303950]@kfupm.edu.sa

Abstract—There is an increase in use of reference architectures

to support software development activities for building

distributed systems. Reference architectures are helpful tools

to understand and specify functionalizes of a distributed system

at a higher abstraction level. From a security standpoint, a

distributed system’s reference architecture is one of the

potential starting point to study security threats and their

characteristics. Both academia and industry have proposed a

number of Security Reference Architectures (SRAs), which are

reference architectures specifying a conceptual model of

security for a system and they provide a mechanism to specify

security requirements. The main objective of this work is to

investigate and better understand how security reference

architecture support building secure distributed software

applications. In order to meet our goal, we conducted a

systematic mapping study to identify the primary studies

related to SRA for distributed software development. We used

customized search terms, derived from our research question,

to identify literature on SRA for distributed systems. We

identified that a significant number of SRAs have been

developed first for defense against one or few specific types of

security attacks. There is also a focus on developing SRAs to

satisfy a security objective during development of distributed

systems. Based on the systematic mapping study results, we

suggest that there is a need to develop SRAs that help system

developers simultaneously enumerate different types of

security threats and systematically help to decide where we

should add corresponding security patterns to mitigate them.

Keywords-security reference architecture; reference

architecture; distributed systems; systematic mapping study.

I. INTRODUCTION

The past several years have seen tremendous changes in
distributed software development due to introduction of web
2.0 technologies [14], service oriented architectures [15] and
cloud computing systems [16]. These distributed system
development technologies have brought with them several
new and complex security threats and challenges. To
holistically study security of these large and complex
distributed systems, we need to start our security analysis
from their security reference architectures [1].

A security reference architecture is a reference
architecture where security mechanisms have been added in
appropriate places to provide some degree of security [1].
Furthermore, a reference architecture is an abstract system
architecture that describes system functionalities without any
implementation details [1]. Reference architectures are useful
to specify main features of a system.

A number of SRAs have been proposed by both academia
and industry vendors. For example, Chonka et al. [2] report a
technique that is used to observe and discover denial of
service attacks against cloud systems. Okuhara et al. [3]
report Fujitsu’s security architecture, which logically
separates computational environments, authentication and
identify management. Similarly, Oracle developed a SRA
[4], which addresses data security, fraud detection and
compliance with reference to their products.

The literature on SRAs provides a wealth of information
on how to analyze security of a system for individual attacks,
model system for a security objective(s) or how to help
systems meet security compliance requirements of a
government organization. For example, Bahmani et al. [5]
compared different enterprise information security
architecture frameworks with reference to interoperability
feature. Lately, Modi et al. [6] presented a survey of intrusion
detection techniques in cloud computing systems.

However, there is a lack of systematic investigation of the
literature covering SRA in distributed systems. The aim of
this systematic mapping study is to collate knowledge to
better understand how SRAs have supported system security
and identify in what ways it has been applied in the industry.

The remaining of this paper is organized as follows:
Section II presents the related work. The research
methodology is outlined in Section III. In Section IV, we
present and discuss the initial results. Section V discusses the
limitation of our study. Finally, the conclusion is presented in
Section VI.

II. RELATED WORK

Security is a fundamental concern in any distributed
system and a number of security reference architectures have
been proposed by industry and researchers’ community.
Majority of security reference architectures have been
proposed for a particular attack type. There has been
significant focus on developing SRAs to mitigate attacks
such as denial of service [22], Internet protocol spoofing and
denial of service [23].

On the other hand, researchers have also focused on
developing security objective specific SRA. For example,
Hafner et al. [10] have used enterprise patterns to develop
secure services for cloud computing systems. Lombardi and
Pietro [11] used virtualization to propose an architecture for
cloud protection that monitors middleware integrity.

Even though extensive research has been carried out in
the security reference architecture domain, it is necessary to

363Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 382 / 512

assess the current state of research and practice, and provide
practitioners with evidence that enables fostering future
research directions. To the best of our knowledge, there is a
lack of systematic investigation of the literature covering
SRA in distributed systems.

III. RESEARCH METHODOLOGY

In order to address the research question, we applied
Systematic mapping study and literature review [7] approach.
A systematic mapping study and literature review is a
technique to identify, analyze and interpret relevant
published primary studies with reference to a specific
research question. Systematic mapping studies are
recommended as a review methodology [7] because they
allow the researchers to systematically summarize existing
evidence from literature, identify research gaps and provide
a framework to position future research activities [13].

A systematic mapping study protocol consists of five
main phases, as shown in Figure 1. In the first phase of our
study, we formulated a research question as follows:

RQ1: How is security reference architecture supporting

development of distributed systems?

Next, we constructed the search strategy in line with our

research question and performed the search for relevant
publications. In the third phase, the identified relevant
publications were scrutinized to ensure their relevance. In the
fourth phase, the selected studies were evaluated based on the
quality assessment criteria. In the last phase, data was
extracted from selected studies for further analysis and
assessment.

A. Search Strategy

The search strategy for the systematic mapping study is
based on the steps as follows:

 Derive the search terms from population,
intervention and outcomes.

 Identify alternative spellings and synonyms for
major terms.

 Use Boolean ‘OR’ and ‘AND’ operators.

 Verify the derived search term in major academic
repositories.

Figure 1. Systematic Mapping Study Major Process Phases.

We constructed the following search terms based on our
search strategy:

 POPULATION: Distributed systems, Cloud
systems, Service-oriented Architecture.

 INTERVENTION: Security Methodology.

 OUTCOME OF RELEVANCE: Different
techniques to mitigate security in reference
architecture, classification of SRAs.

 EXPERIMENTAL DESIGN: Systematic literature
reviews and empirical studies.

We validated our search terms in major academic
databases in a scoping study. The following search terms
show potential relevance to the research question as follows:

 SECURITY REFERENCE ARCHITECTURE:
Security Architecture OR Security Reference
Architecture OR Security Design OR Security
Architecture Design, Security Patterns; AND

 DISTRIBUTED SYSTEM: Distributed Systems OR
Cloud Systems OR Service-oriented Architecture
OR Grid Systems; AND

 TECHNIQUE: Technique OR Method OR Model
OR Design.

The relevant studies retrieved through the initial search

string were used as a guide for the development and
validation of the final search string. In the scoping study, we
used some relevant publications, which we had previously
identified to cross check the validity of the search terms. A
broad search was conducted between February 2015 and May
2015 to identify relevant articles published (or available on-
line) up to May 2015.

B. Publication Selection

The following inclusion criteria were used:

 Peer-reviewed studies.

 Papers focus on answering our research question.

 Papers published in English.

We applied the exclusion criteria as follows:

 Papers that are not published in English.

 Papers with no link with the research question.

 Grey publications, that is, papers without
bibliographic information.

 In the case of duplicate papers, the most complete
version published.

Next, each paper was evaluated against the quality

assessment criteria shown in Table 1. Each quality
assessment criterion has two answers: ‘Yes’ or ‘No’ with
scores of ‘1’ and ‘0’, respectively. The sum of the quality
criteria resulted in the quality score for a particular paper. In
this study, we only consider publications with a quality score
greater than 75%. As a result, 58 papers were finally selected,
which met the inclusion and quality assessment criteria.

364Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 383 / 512

TABLE I. QUALITY ASSESSMENT

Quality Criteria Possible Answers

Is there a rationale for why the study

was undertaken? [8]

Yes =1

No =0

Are the research goals clearly stated?
Yes =1

No =0

Is the proposed technique clearly

described?

Yes =1

No =0

Is the research empirically validated?
Yes =1

No =0

Are the limitations of this study

explicitly discussed? [9]

Yes =1

No =0

Is the study supported by a tool?
Yes =1

No =0

Initially, when synthesizing the data, data was extracted

from the final selection of papers as follows: study details,
study research methodology, assessment details and study
findings.

IV. RESULTS AND DISCUSSION

The total number of results retrieved using the search
terms in the electronic databases are shown in Table 2. After
the initial round of screening by reading the title and abstract,
seventy one studies belonging to different electronic research
databases were selected. After full text readings in the second
screening and quality assessment, 58 primary studies were
finally selected. Figure 2 shows temporal view of the selected
articles from the systematic review, sorted by year of
publication. Appendix A presents the primary studies in the
review.

TABLE II. SEARCH EXECUTION

Resource Total

Results

Initial

Selection

Final

Selection

ACM 200 11 10

IEEE Xplore 427 36 27

Science Direct 350 18 15

Springer 61 6 6

Total 1038 71 58

To answer the research question, the data was carefully

extracted and synthesized from the 58 finally selected
primary studies. We classified SRAs into four main
categories as shown in Table 3.

In our study, the most highly cited category is ‘attack
specific SRA’ (60%). Distributed system infrastructure uses
virtualization techniques and provide their services through
standard internet protocols [6]. Distributed systems are
vulnerable to traditional security attacks such as Internet
protocol spoofing, routing information protocol attacks,
denial of service attacks, etc. Hence, there has been a
significant focus on developing SRAs to incorporate specific
attack detection and prevention mechanisms in distributed
system infrastructure to mitigate security attacks. Table 4
shows a list of popular types of attacks addressed by
researchers and industry practitioners.

Figure 2. Temporal view of studies

‘Security objective specific SRA’ is the second highly
cited category (reported by 34 % of the articles selected from
the systematic mapping study and review). Researchers have
also considered developing SRAs oriented to some specific
security objectives. For example, Hafner et al. [10] have used
enterprise patterns to develop secure services for cloud
computing systems. Lombardi and Pietro [11] used
virtualization to propose an architecture for cloud protection
that monitors middleware integrity. Lately, Fernandez et al.
[1] presented a method to build a SRA for cloud systems
using security patterns and misuse patterns.

TABLE III. LIST OF SRAS CATEGORIES

Categories Studies Count %

Attack Specific

SRA

A1, A3, A4, A5, A6,

A7, A8, A9, A10,

A11, A12, A13,

A15, A17, A18,

A21, A23, A24,

A25, A27, A28,

A30, A37, A39,

A40, A41, A42,

A46, A47, A49,

A53, A54, A55,

A57, A58

35 60.30

Security

Objective

Specific SRA

A2, A14, A19, A22,

A29, A31, A32,

A33, A34, A35,

A36, A38, A43,

A44, A45, A48,

A50, A51, A52, A56

20 34.48

Industry Specific

SRA

A21, A26 2 3.44

Vendor Specific

SRA

A16 1 1.72

Furthermore, less frequently cited categories are ‘industry

specific SRA’ and ‘vendor specific SRA. There has been
couple of SRAs developed for a specific industry. For
example, Cohen [12] developed a SRA for industrial control
systems. Similarly, Bahmani et al. [5] discussed five
enterprise security reference architectures, namely, Gartner

0

2

4

6

8

10

12

14

1
9
9
4

1
9
9
7

1
9
9
9

2
0
0
1

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

365Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 384 / 512

framework [17], SABSA [18], roadmap for information
security across the enterprise framework [19], agile
governance model based model [20] and intelligent service-
oriented enterprise security architecture [21].

TABLE IV. LIST OF POPULAR TYPES OF ATTACKS

Attack Type %

Authentication/Authorization 45

Denial of Service 22

Injection 20

Denial of Service 20

Man in the Middle Attack 14

Data Tempering 11

Brute Force 5

It is important to note that over the years, a significant

number of SRAs have been developed by industry vendors.
All major industrial vendors like IBM, Microsoft, Oracle,
Cisco, VMware and Amazon have developed SRAs for their
product range. However, in our study, we have not included
them as primary studies because most of vendor specific
SRAs are available in form of white papers, which do not
satisfy our inclusion criteria, as mentioned in Section 2.
Hence, we have included only on primary study regarding
Fujistu’s SRA reported by Okuhara et al. [3].

V. LIMITATIONS

Similarly to any systematic mapping study and literature
review, our results also depend on the used keywords and the
limitations of the search engines. In order to limit the risk of
incompleteness in keywords lists, we used alternative
spellings and synonyms to build the search terms.

Application of inclusion, exclusion criteria and primary
study selection process are also subject to threats to validity
of the study. In order to mitigate this threat, all systematic
mapping study phases were carried out iteratively with
continuous feedback from authors of the paper.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we conducted a systematic mapping study
to investigate the use of SRA to support development of
distributed systems. Fifty eight studies were finally included,
which were further classified into four categories, namely,
‘attack specific SRA’, ‘security objective specific SRA’,
‘industry specific SRA’ and ‘vendor specific SRA’.

Through this systematic mapping study, we identified that
researchers have mainly focused on developing SRAs for one
or group of individual security attacks. There also has been a
focus on developing SRAs oriented to security objectives
such as monitoring data and using security patterns to add
security mechanisms at appropriate components of a system.

We believe that the results presented in our systematic
mapping study and review can be useful for software
engineering community as it provides an initial body of
knowledge regarding SRAs. In the future, we intend to
expand this systematic review to further analyze individual
categories and discuss highly cited types of attacks and
security objectives in the literature. Another area for future
work is to empirically study different industry vendor SRAs

and their impact on improving security of distributed
systems.

 ACKNOWLEDGMENT

The authors would like to thank King Fahd University of
Petroleum and Minerals, Dhahran, Saudi Arabia for
continuous support in research. This research is supported by
the Deanship of Scientific Research at KFUPM under
research grant IN131013.

REFERENCES

[1] E. B. Fernandez, R. Monge, and K. Hashizume, "Building a security
reference architecture for cloud systems," Requirements Engineering,
2015, pp. 1-25.

[2] A. Chonka, Y. Xiang, W. Zhou, and A. Bonti, "Cloud security defence
to protect cloud computing against HTTP-DoS and XML-DoS
attacks," Journal of Network and Computer Applications, vol. 34,
2011, pp. 1097-1107.

[3] M. Okuhara, T. Shiozaki, and T. Suzuki, "Security architecture for
cloud computing," Fujitsu Sci. Tech. J, vol. 46, 2010, pp. 397-402.

[4] M. Wilkins, "Orcale Reference Architecture: Cloud Foundation
Architecture " Technical Report E24529-01 - Orcale Corporation,
2011.

[5] F. Bahmani, M. Shariati, and F. Shams, "A survey of interoperability
in Enterprise Information Security Architecture frameworks," in
Information Science and Engineering (ICISE), 2010 2nd International
Conference on, 2010, pp. 1794-1797.

[6] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, and M. Rajarajan,
"A Survey of Instrusion Detection Techniques in Cloud," Journal of
Network and Computer Applications, vol. 36, 2013, pp. 42-57.

[7] B. Kitchenham and C. Charters, "Guidelines for Performing
Systematic Literarature Reviews in Software Engineering," Keele
University and Durham University Joint Report, 2007.

[8] S. Mahdavi-Hezavehi, M. Galster, and P. Avgeriou, "Variability in
quality attributes of service-based software systems: A systematic
literature review," Information and Software Technology, vol. 55,
2013, pp. 320-343.

[9] W. Ding, P. Liang, A. Tang, and H. Van Vliet, "Knowledge-based
approaches in software documentation: A systematic literature
review," Information and Software Technology, vol. 56, 2014, pp.
545-567.

[10] M. Hafner, M. Memon, and R. Breu, "SeAAS - A Reference
Architecture for Security Services in SOA," Journal of Universal
Computer Science, vol. 15, 2009, pp. 2916-2936.

[11] F. Lombardi and R. Di Pietro, "Secure virtualization for cloud
computing," Journal of Network and Computer Applications, vol. 34,
2011, pp. 1113-1122.

[12] F. Cohen, "A Reference Architecture Approach to ICS Security,"
presented at the 4th International Symposium on Resilient Control
Systems, 2011, pp. 9-11.

[13] J. M. Verner, O. P. Brereton B. A. Kitchenham, M. Turner, and M.
Niazi, "Systematic Literature Reviews in Global Software
Development: A Tertiary Study" in proceedings of the 16th
International Conference on Evaluation and Assessment in Software
Engineering, 2012, pp. 2-11.

[14] U. Sivarajah, Z. Irani, and S. Jones, "Application of Web 2.0
Technologies in E-Government: A United Kingdom Case Study", in
proceedings of 7th Hawaii Inernational Conference on System
Sciences, 2014, pp. 2221-2230.

[15] D. Krafzig, K. Banke, and D. Slama, "Enterprise SOA: Service-
Oriented Architecture Best Practices", Pearson Education, 2005.

[16] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, "A Survey of Mobile
Cloud Computing: Architecture, Applications and Approaches",
Wireless Communications and Mobile Computing, vol. 13, 2013, pp.
157-1611.

366Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 385 / 512

[17] T. Scholtz, "Structure and Content of an Enterprise Information
Security Architecture", Gartner, 2006.

[18] J. Sherwood, A. Clark, and D. Lynas, "Enterprise Security
Architecture: A Business-Driven Approach", CMP Books, 2015.

[19] J. A. Aderson and V. Rachamadugu, "Managing Security and Privacy
Integration Across Enterprise Business Process and Infrastrucutre", in
proceedings of IEEE International Conference on Service Computing,
2008, pp. 351-358.

[20] J.J. Korhonen, M. Yildiz, and J. Mykkanen, "Governance of
Information Security Elements in Service-Oriented Enterprise
Architecture in Pervasive Systems", in proceedings of 10th
International Symposium on Algorithms and Networks, 2009, pp.
768-773.

[21] J. Sun and Y. Chen, "Intelligent Enterprise Information Security
Architecture Based on Service Oriented Architecture", in proceedings
of International Semiar on Future Information Technology and
Management Engineering, 2008, pp. 196-200.

[22] W. Itani and A. Kayssi, "SPECSA: a scalable, policy-driven,
extensible, and customizable security architecture for wireless
enterprise applications," Computer Communications, vol. 27, 2004,
pp. 1825-1839.

[23] G. Yang et al., "Analysis of security threats and vulnerability for
cyber-physical systems," in proceeding of 3rd International
Conference on Computer Science and Network Technology
(ICCSNT), 2013, pp. 50-55.

APPENDIX A: SYSTEMATIC MAPPING STUDY PRIMARY

STUDIES

A1: S. Muftic and M. Sloman, "Security architecture for distributed
systems," Computer Communications, vol. 17, pp. 492-500, 1994.

A2: M. Moriconi, Q. Xiaolei, R. A. Riemenschneider, and G. Li, "Secure
software architectures," in Security and Privacy, 1997.

A3: R. Molva, "Internet security architecture," Computer Networks, vol. 31,
pp. 787-804, 1999.

A4: M. S. Olivier, "Towards a configurable security architecture," Data and
Knowledge Engineering, vol. 38, pp. 121-145, 2001.

A5: V. Varadharajan and D. Foster, "A Security Architecture for Mobile
Agent Based Applications," World Wide Web, vol. 6, pp. 93-122,
2003/03/01 2003.

A6: W. Itani and A. Kayssi, "SPECSA: a scalable, policy-driven, extensible,
and customizable security architecture for wireless enterprise
applications," Computer Communications, vol. 27, pp. 1825-1839,
2004.

A7: M. Debbabi, M. Saleh, C. Talhi, and S. Zhioua, "Security Analysis of
Mobile Java," in Database and Expert Systems Applications, 2005.
Proceedings. Sixteenth International Workshop on, 2005, pp. 231-
235.

A8: D. Gabrijelčič, B. J. Blažič, and J. Tasič, "Future active Ip networks
security architecture," Computer Communications, vol. 28, pp. 688-
701, 2005.

A9: G. Gousios, E. Aivaloglou, and S. Gritzalis, "Distributed component
architectures security issues," Computer Standards & Interfaces, vol.
27, pp. 269-284, 2005.

A10: A. Vorobiev and J. Han, "Secrobat: Secure and Robust Component-
based Architectures," in Software Engineering Conference, 2006.
APSEC 2006. 13th Asia Pacific, 2006, pp. 3-10.

Proceedings., 1997 IEEE Symposium on, 1997, pp. 84-93.

A11: C. Lu, T. Zhang, W. Shi, and H.-H. S. Lee, "M-TREE: A high
efficiency security architecture for protecting integrity and privacy of
software," Journal of Parallel and Distributed Computing, vol. 66, pp.
1116-1128, 2006.

A12: T. Fægri and S. Hallsteinsen, "A Software Product Line Reference
Architecture for Security," in Software Product Lines, T. Käköla and
J. Duenas, Eds., ed: Springer Berlin Heidelberg, 2006, pp. 275-326.

A13: C. Martin and K. A. Abuosba, "Utilizing a Service Oriented
Architecture for Information Security Evaluation and Quantification,"

in Business-Driven IT Management, 2007. BDIM '07. 2nd IEEE/IFIP
International Workshop on, 2007, pp. 114-115.

A14: V. S. Sharma and K. S. Trivedi, "Quantifying software performance,
reliability and security: An architecture-based approach," Journal of
Systems and Software, vol. 80, pp. 493-509, 2007.

A15: R. Shioya, K. Daewung, K. Horio, M. Goshima, and S. Sakai, "Low-
Overhead Architecture for Security Tag," in Dependable Computing,
2009. PRDC '09. 15th IEEE Pacific Rim International Symposium on,
2009, pp. 135-142.

A16: M. Okuhara, T. Shiozaki, and T. Suzuki, "Security architecture for
cloud computing," Fujitsu Sci. Tech. J, vol. 46, pp. 397-402, 2010.

A17: J. Li, X. Lu, and G. Gao, "A mobile ad hoc network security
architecture based on immune agents," in Communication Systems,
Networks and Applications (ICCSNA), 2010 Second International
Conference on, 2010, pp. 224-227.

A18: S. Donglai, W. Yue, W. Tian, L. Yang, L. Ning, and T. Junhua,
"Design and Construction of a Prototype Secure Wireless Mesh
Network Testbed," in Advanced Information Networking and
Applications Workshops (WAINA), 2010 IEEE 24th International
Conference on, 2010, pp. 345-350.

A19: R. G. Addie and A. Colman, "Five Criteria for Web-Services Security
Architecture," in Network and System Security (NSS), 2010 4th
International Conference on, 2010, pp. 521-526.

A20: H. Xu, F. Wan, H. Zheng, and M. Xu, "A Security Architecture Model
of CSCW System," in Management and Service Science (MASS),
2010 International Conference on, 2010, pp. 1-4.

A21: F. Bahmani, M. Shariati, and F. Shams, "A survey of interoperability
in Enterprise Information Security Architecture frameworks," in
Information Science and Engineering (ICISE), 2010 2nd International
Conference on, 2010, pp. 1794-1797.

A22: M. Asgarnezhad, R. Nasiri, and S. Sahebhonar, "Analysis and
Evaluation of Two Security Services in SOA," in Internet and Web
Applications and Services (ICIW), 2010 Fifth International
Conference on, 2010, pp. 562-568.

A23: A. M. Rossudowski, H. S. Venter, J. H. P. Eloff, and D. G. Kourie, "A
security privacy aware architecture and protocol for a single smart
card used for multiple services," Computers & Security, vol. 29, pp.
393-409, 2010.

A24: G. Dini and I. Savino, "A Security Architecture for Reconfigurable
Networked Embedded Systems," International Journal of Wireless
Information Networks, vol. 17, pp. 11-25, 2010/06/01 2010.

A25: T. Yuan, S. Biao, and H. Eui-Nam, "Towards the Development of
Personal Cloud Computing for Mobile Thin-Clients," in Information
Science and Applications (ICISA), 2011 International Conference on,
2011, pp. 1-5.

A26: F. Cohen, "A reference architecture approach to ICS security," in
Resilient Control Systems (ISRCS), 2011 4th International
Symposium on, 2011, pp. 21-25.

A27: L. Xiaoli, C. Jinhua, and L. Min, "A Simple Security Model Based on
Cloud Reference Model," in Distributed Computing and Applications
to Business, Engineering and Science (DCABES), 2011 Tenth
International Symposium on, 2011, pp. 155-159.

A28: H. Abie and I. Balasingham, "Risk-based adaptive security for smart
IoT in eHealth," presented at the Proceedings of the 7th International
Conference on Body Area Networks, Oslo, Norway, 2012.

A29: D. Allam, "A unified formal model for service oriented architecture to
enforce security contracts," presented at the Proceedings of the 11th
annual international conference on Aspect-oriented Software
Development Companion, Potsdam, Germany, 2012.

A30: A. Sharma, V. Fusenig, I. Schoen, and A. Kannan, "Bridging the
security drawbacks of virtualized network resource provisioning
model," presented at the Proceedings of the 1st European Workshop
on Dependable Cloud Computing, Sibiu, Romania, 2012.

A31: S. Rangarajan, M. Verma, A. Kannan, A. Sharma, and I. Schoen,
"V2C: a secure vehicle to cloud framework for virtualized and on-
demand service provisioning," presented at the Proceedings of the
International Conference on Advances in Computing,
Communications and Informatics, Chennai, India, 2012.

367Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 386 / 512

A32: Y. F. Wang, W. M. Lin, T. Zhang, and Y. Y. Ma, "Research on
application and security protection of Internet of Things in Smart
Grid," in Information Science and Control Engineering 2012 (ICISCE
2012), IET International Conference on, 2012, pp. 1-5.

A33: G. Mathew, "Security considerations and reference architecture of a
cyber computing infrastructure for online education," in E-Learning,
E-Management and E-Services (IS3e), 2012 IEEE Symposium on,
2012, pp. 1-6.

A34: Y. Chenghua, Z. Qi, and Z. Zhiming, "Study on Information Security
Assurance Architecture in Internet," in Computer Science and
Electronics Engineering (ICCSEE), 2012 International Conference
on, 2012, pp. 293-296.

A35: J. Montelibano and A. Moore, "Insider Threat Security Reference
Architecture," in System Science (HICSS), 2012 45th Hawaii
International Conference on, 2012, pp. 2412-2421.

A36: T. Okubo, H. Kaiya, and N. Yoshioka, "Mutual Refinement of
Security Requirements and Architecture Using Twin Peaks Model,"
in Computer Software and Applications Conference Workshops
(COMPSACW), 2012 IEEE 36th Annual, 2012, pp. 367-372.

A37: L. Lan, "Study on security architecture in the Internet of Things," in
Measurement, Information and Control (MIC), 2012 International
Conference on, 2012, pp. 374-377.

A38: J. Li, B. Li, T. Wo, C. Hu, J. Huai, L. Liu, and K. P. Lam,
"CyberGuarder: A virtualization security assurance architecture for
green cloud computing," Future Generation Computer Systems, vol.
28, pp. 379-390, 2012.

A39: A. Talib, R. Atan, R. Abdullah, and M. Murad, "Ensuring Security
and Availability of Cloud Data Storage Using Multi Agent System
Architecture," in Knowledge Technology. vol. 295, D. Lukose, A.
Ahmad, and A. Suliman, Eds., ed: Springer Berlin Heidelberg, 2012,
pp. 343-347.

A40: W. Scacchi and T. A. Alspaugh, "Processes in securing open
architecture software systems," presented at the Proceedings of the
2013 International Conference on Software and System Process, San
Francisco, CA, USA, 2013.

A41: M. Shtern, B. Simmons, M. Smit, and M. Litoiu, "An architecture for
overlaying private clouds on public providers," presented at the
Proceedings of the 8th International Conference on Network and
Service Management, Las Vegas, Nevada, 2013.

A42: M. Almorsy, J. Grundy, and A. S. Ibrahim, "Automated software
architecture security risk analysis using formalized signatures,"
presented at the Proceedings of the 2013 International Conference on
Software Engineering, San Francisco, CA, USA, 2013.

A43: A. Guerrieri, L. Geretti, G. Fortino, and A. Abramo, "A service-
oriented gateway for remote monitoring of building sensor networks,"
in Computer Aided Modeling and Design of Communication Links
and Networks (CAMAD), 2013 IEEE 18th International Workshop
on, 2013, pp. 139-143.

A44: W. Ruoyu, Z. Xinwen, A. Gail-Joon, H. Sharifi, and X. Haiyong,
"ACaaS: Access Control as a Service for IaaS Cloud," in Social
Computing (SocialCom), 2013 International Conference on, 2013, pp.
423-428.

A45: G. Yang, P. Yong, X. Feng, Z. Wei, W. Dejin, H. Xuefeng, L. Tianbo,
and L. Zhao, "Analysis of security threats and vulnerability for cyber-
physical systems," in Computer Science and Network Technology
(ICCSNT), 2013 3rd International Conference on, 2013, pp. 50-55.

A46: A. Masood, "Cyber security for service oriented architectures in a
Web 2.0 world: An overview of SOA vulnerabilities in financial
services," in Technologies for Homeland Security (HST), 2013 IEEE
International Conference on, 2013, pp. 1-6.

A47: D. Gros, M. Blanc, J. Briffaut, and C. Toinard, "PIGA-cluster: A
distributed architecture integrating a shared and resilient reference
monitor to enforce mandatory access control in the HPC
environment," in High Performance Computing and Simulation
(HPCS), 2013 International Conference on, 2013, pp. 273-280.

A48: L. Zhang, Q. Wang, and B. Tian, "Security threats and measures for
the cyber-physical systems," The Journal of China Universities of
Posts and Telecommunications, vol. 20, Supplement 1, pp. 25-29,
2013.

A49: A. De Santis, A. Castiglione, U. Fiore, and F. Palmieri, "An intelligent
security architecture for distributed firewalling environments,"
Journal of Ambient Intelligence and Humanized Computing, vol. 4,
pp. 223-234, 2013/04/01 2013.

A50: E. B. Fernandez, R. Monge, and K. Hashizume, "Building a security
reference architecture for cloud systems," Requirements Engineering,
pp. 1-25, 2015.

A51: O. E. C, E. B. Fernandez, Ra, #250, and l. M. A, "Towards Secure
Inter-Cloud Architectures," presented at the Proceedings of the 8th
Nordic Conference on Pattern Languages of Programs (VikingPLoP),
Vihula, Estonia, 2014.

A52: Y. Tonghao and Y. Bin, "Study of cryptography-based cyberspace
data security," in Computing, Communication and Networking
Technologies (ICCCNT), 2014 International Conference on, 2014, pp.
1-7.

A53: M. Jouini, L. B. A. Rabai, and A. B. Aissa, "Classification of Security
Threats in Information Systems," Procedia Computer Science, vol. 32,
pp. 489-496, 2014.

A54: H. Suleiman, I. Alqassem, A. Diabat, E. Arnautovic, and D.
Svetinovic, "Integrated smart grid systems security threat model,"
Information Systems, 2014.

A55: S. Sicari, C. Cappiello, F. De Pellegrini, D. Miorandi, and A. Coen-
Porisini, "A security-and quality-aware system architecture for
Internet of Things," Information Systems Frontiers, pp. 1-13,
2014/11/04 2014.

A56: A. K. Dwivedi and S. K. Rath, "Incorporating Security Features in
Service-Oriented Architecture using Security Patterns," SIGSOFT
Softw. Eng. Notes, vol. 40, pp. 1-6, 2015.

A57: J. Maerien, S. Michiels, D. Hughes, C. Huygens, and W. Joosen,
"SecLooCI: A comprehensive security middleware architecture for
shared wireless sensor networks," Ad Hoc Networks, vol. 25, Part A,
pp. 141-169, 2015.

A58: P. Karpati, A. L. Opdahl, and G. Sindre, "Investigating security threats
in architectural context: Experimental evaluations of misuse case
maps," Journal of Systems and Software, vol. 104, pp. 90-111, 2015.

368Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 387 / 512

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1 369

Cif: A Static Decentralized Label Model (DLM) Analyzer

to Assure Correct Information Flow in C

Kevin Müller
and Sascha Uhrig

Airbus Group Innovations
Munich, Germany

Email: Kevin.Mueller@airbus.com
Sascha.Uhrig@airbus.com

Michael Paulitsch

Thales Austria GmbH
Vienna, Austria

Email: Michael.Paulitsch@
thalesgroup.com

Georg Sigl

Technische Universität München
Munich, Germany

Email: sigl@tum.de

Abstract—For safety-critical and security-critical Cyber-Physical
Systems in the domains of aviation, transportation, automotive,
medical applications and industrial control correct software
implementation with a domain-specific level of assurance is
mandatory. Particularly in the aviation domain, the evidence
of reliable operation demands new technologies to convince
authorities of the proper implementation of avionic systems
with increasing complexity. Two decades ago, Andrew Myers
developed the Decentralized Label Model (DLM) to model and
prove correct information flows in applications’ source code.
Unfortunately, the proposed DLM targets Java applications and is
not applicable for today’s avionic systems. Reasons are issues with
the dynamic character of object-oriented programming or the in
general uncertain behaviors of features like garbage collectors
of the commonly necessary runtime environments. Hence, highly
safety-critical avionics are usually implemented in C. Thus, we
adjusted the DLM to the programming language C and developed
a suitable tool checker, called Cif. Apart from proving the
correctness of the information flow statically, Cif is also able
to create a dependency graph to represent the implemented
information flow graphically. Even though this paper focuses on
the avionic domain, our approach can be applied equally well to
any other safety-critical or security-critical system.

This paper demonstrates the power of Cif and its capability
to graphically illustrate information flows, and discusses its utility
on selected C code examples.

Keywords–Security, High-Assurance, Information Flow, Decen-
tralized Label Model

I. INTRODUCTION

In the domain of aviation, software [1] and hardware [2]
development has to follow strict development processes and re-
quires certification by aviation authorities. Recently developers
of avionics, the electronics on-board of aircrafts, have imple-
mented systems following the concepts of Integrated Modular
Avionics (IMA) [3] to reduce costs. For security aspects, there
are recent research activities in the topic of Multiple Inde-
pendent Levels of Security (MILS) [4][5]. Apart from having
such architectural approaches to handle the emerging safety
and security requirements for mixed-criticality systems, the de-
velopers also need to prove the correct implementation of their
software applications. For safety, the aviation industry applies
various forms of code analysis [6][7][8] in order to evidently
ensure correct implementation of requirements. For security, in
particular secure information flow, the aviation industry only
has limited means available, which are not mandatory yet.

Here, the Decentralized Label Model (DLM) [9] that was de-
veloped two decades ago, is a promising approach as it is able
to prove correct information flows according to a defined flow
policy by introducing annotations into the source code. These
annotations allow the modeling of the information flow policy
directly on source code level avoiding additional translations
between model and implementation. In short, DLM extends
the type system of a programming language and ensures that
the defined information flow policy using label annotations of
variables is not violated in the program flow.

DLM is currently available only for Java [10]. Hence, our
research challenge is to adapt this model to the C programming
language for being able to use it for highly critical avionic
applications. We believe annotated source code allowing to
check the information flow against the formally proven DLM
will help to achieve future security certifications following the
framework of Common Criteria with assurance levels beyond
EAL 4 [11][12][13] or equivalent avionics security levels. In
this paper, we focus our contributions 1) on demonstrating the
powerful features of our DLM instantiation for the C language
called Cif, 2) including the ability of graphically represent the
information flows in C programs, and 3) on presenting and
discussion common use case examples presented in C code
snippets. The instantiation of DLM to C extends its field of
use to verify information flow properties to high-assurance
embedded systems. The great importance of this research
can only be acknowledged if safety software development of
aerospace systems and its (in-)ability to use Java has been fully
understood. Java is a relatively strongly typed language and,
hence, appears at first sight as a very good choice. Among
others, the dynamic character of object-oriented languages
such as Java introduces additional issues for the certification
process [14]. Furthermore, common features such as the Java
Runtime Environment introduces potentially unpredictable and
harmful delays during execution, which are not acceptable
in high-criticality applications requiring high availability and
real-time properties like low response times (e.g., avionics).

The remainder of this paper is organized as follow: Sec-
tion II discusses recent research papers fitting to the topic of
this paper. In Section III, we introduce the DLM as described
by Myers initially. Our adaptation of DLM to the C language
and the resulting tool checker Cif are described in Section IV.
In Section V, we discuss common code snippets and their
verification using Cif. This also includes the demonstration

 388 / 512

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1 370

of the graphical information flow output of our tool. Finally,
we conclude our work in Section VI.

II. RELATED WORK

Sabelfeld and Myers present in [15] an extensive survey on
research of security typed languages within the last decades.
The content of the entire paper provides a good overview
to frame the research contribution of our paper. Myers and
Liskov present in [9] their ideas of the decentralized trust
relation in program information flows called DLM. The authors
instantiated DLM to the programming language Java. Known
applications (appearing to be of mostly academic nature) using
Jif as verification method are:

• Civitas: a secure voting system
• JPmail: an email client with information-flow control
• Fabric, SIF and Swift: being web applications.

In this paper, DLM is adapted to the programming language
C for extending the field of use to high-assurance embedded
systems. In [16] Nielson et al. present their research work
on the application of DLM and propose improvements to
the model that have been identified as useful during the
application activities. Both research groups, Nielson’s one and
the author’s one, have been in close exchange in the recent
years, particularly discussing the application of DLM to C and
discovering related use cases.

Greve proposed in [17] the Data Flow Logic (DFL). This
C language extension augments source code and adds security
domains to variables. Furthermore, flow contracts between
domains can be formulated. These annotations describe an
information flow policy, which can be analyzed by a DFL
prover. DFL has been used to annotate the source code of a
Xen-based Separation Kernel [18]. Compared to this approach
of using mandatory access control, we used a decentralized
approach for assuring correct information flow in this paper.
The decentralized approach introduces a mutual distrust among
data owners, all having an equal security level. Hence, DLM
avoids the automatically given hierarchy of the approaches of
mandatory access control usually relying on at least one super
user.

Khedker et al. published a book [19] on several theoretical
and practical aspects of data flow analysis. However, Khedker
does not mention DLM as technology. Hence, the DLM
research extends his valuable contributions.

III. DECENTRALIZED LABEL MODEL (DLM)
A. General Model

The DLM [9] is a language-based technology allowing to
prove correct information flows within a program. The model
uses principals to express flow policies. By default a mutual
distrust is present between all defined principals. Principals
can delegate their authority to other principals and, hence, can
issue a trust relation. In DLM, principals own data. On this data
they define read (confidentiality) and write (integrity) policies
for other principals in order to grant access to it. Confidential-
ity policies are expressed by owners->readers. Integrity
policies use the syntax: owners<-writers. The union of
owners and readers or writers respectively defines the effective
set of readers or writers of a data item. DLM offers two special
principals:

1) Top Principal *: As owner representing the set of all
principals; as reader or writer representing the empty set
of principals, i.e. effectively no other principal except the
involved owners of this policy

2) Bottom Principal _: As owner representing the empty set
of principals; as reader or writer representing the set of
all principals.

Additional information on this are provided in [20]. In
practice, DLM policies are expressed by labels that annotate
variables in the source code. An example is:

i n t {Al ice−>Bob ; Al ice<− } x ;
i n t {∗−> ; ∗<−∗} y ;

Listing 1. Declaration of a DLM-annotated
Variable

This presents a label definition using curly braces as token.
The remainder will use the compiler technology-based term
token and the DLM-based term annotation as synonyms. In
the example of Listing 1, the principal Alice owns the data
stored in the integer variable x for both the confidentiality
and integrity policy. The first part of the label Alice->Bob
expresses the confidentiality or readers policies. In this exam-
ple, the owner Alice allows Bob to read the data. The second
part of the label Alice<-_ defines that Alice allows all other
principals write access to the variable x. For the declaration of
y, the reader policy expresses that all principals believe that
all principals can read the data and the writer policy expresses
that all principals believe that no principal has modified the
data. Overall, this variable has low flow restrictions.

In DLM, one may also form a conjunction of princi-
pals, like Alice&Bob->Chuck. This confidentiality policy
is equivalent to Alice->Chuck;Bob->Chuck and means
that both, the beliefs of Alice and Bob, have to be fulfilled [21].

B. Information Flow Control

Using these augmentations on a piece of source code,
a static checking tool is able to prove whether all beliefs
expressed by labels are fulfilled. A correct information flow
is allowed if data flows from a source to an at least equally
restricted destination. In contrast, an invalid flow is detected if
data flows from a source to a destination that is less restricted
than the source. A destination is at least as restricted as the
source if:

• the confidentiality policy keeps or increases the set of
owners and/or keeps or decreases the set of readers, and

• the integrity policy keeps or decreases the set of owners
and/or keeps or increases the set of writers

Listing 2 shows an example of a valid direct information
flow from the source variable x to the destination y. Apart from
these direct assignments, DLM is also able to detect invalid
implicit flows. The example in Listing 3 causes an influence on
variable x if the condition y == 0 is true. Hence, depending
on the value of y the data in variable x gets modified, i.e., by
observing the status of x it is possible to retrieve the value of
y. However, y is more restrictive than x, i.e., x is not allowed
by the defined policy to observe the value of y. Thus, the flow
in Listing 3 is invalid.

 389 / 512

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1 371

i n t {Al ice−>Bob ; Al ice<− } x = 1 ;
i n t {A l i c e&Bob−>∗; A l i ce<− } y = 0 ;

y = x ;

Listing 2. Valid Direct Information Flow

i n t {Al ice−>Bob ; Al ice<− } x = 1 ;
i n t {A l i c e&Bob−>∗; A l i ce<− } y = 0 ;

i f (y == 0)
x = 0 ;

Listing 3. Invalid Implicit Information Flow

To analyze those implicit flows, DLM also examines each
instruction against the current label of the Program Counter
(PC). Using Jif as template, the PC represents the current
context in the program and not the actual program counter
register [22]. A statement is only valid if the PC is no more
restrictive than the involved variables of the statement. The PC
label is calculated for each program block and re-calculated at
its entrance depending on the condition the block has been
entered.

IV. DECENTRALIZED LABEL MODEL (DLM) FOR C
LANGUAGE (CIF)

A. Extending the C Language with DLM Annotations
1) Type Checking Tool: The first step of our work was to

define C annotations in order to apply DLM to this language.
An annotated C program shall act as input for the DLM
checker, in the following called C Information Flow (Cif).
Cif analyzes the program according to the defined information
flow policy. Depending on the syntax of the annotations, the
resulting C code can no longer be used as input for usual C
compilers, such as the gcc. To still be able to compile the
program, three major possibilities for implementing the Cif
are available:

1) a Cif checking tool that translates the annotated input
source code into valid C code by removing all labels

2) a DLM extension to available compilers, such as gcc
3) embedding labels into compiler-transparent comments

using /* label */

We decided for Option 1. We did not consider Option 2 to
avoid necessary coding efforts for modifying and maintaining
a special C compiler. We also did not take Option 3, due to the
higher error-proneness resulting from the fact that our checker,
additionally, had to decide whether a comment’s content is a
label or a comment. If a developer does not comply with the
recognition syntax for labels, the checker could interpret actual
labels as comments and omit their analysis. In worst-case the
checker indicates that a program’s information flow is correct
without verification of labels. Hence, it would introduce the
risk of false-positives.

For being able to analyze the C source code statically, the
first step in the tool chain is to resolve all macro definitions and
to include the header files into one file. Fortunately, this step
can be performed by using the gcc, since the compiler does not
perform a syntax verification during the macro replacement.
The resulting file then is used as input for our Cif checking
tool. If Cif does not report any information flow violation, the
tool will create a C-compliant source code by removing all

annotations. This plain C source file can be used as input file
for further source code verifications, e.g., by Astrée [7], or as
input for the compilation of the final binary.

2) Syntax Extension of C Language: For the format and
semantics of annotations, we decided to adapt the concepts of
Java Information Flow (Jif) [22], the DLM implementation for
Java. We use curly braces as token for the labels. For variable
declarations, these labels have to be placed in between the
type indicator and the name of the variable (cf. Listing 1).
Compared to the reference implementation of Jif, in Cif we
additionally had to deal with pointers of the C language. We
annotate and handle pointers the same way as usual variables,
i.e. when using a pointer to reference to an array element or
other values, the labels of pointer and target variable have
to match accordingly to DLM. However, pointer overflows
reasoned by pointer calculations are not further monitored by
Cif. We expect that such coding errors can be covered by
additional tools, such as Astrée [7]. This tool is already used
successfully for checking code of avionic equipment.

In addition to the new label tokens, we extended the syntax
of the C language with five further tokens:

principal p1, ..., pn: This token announces all used principals
to the Cif.

actsFor(p, q): This token statically creates a trust relation that
principal p is allowed to act for principal q in the entire
source code.

declassify(variable, {label}): This token allows to loosen a
confidentiality policy in order to relabel variables if re-
quired. Cif checks whether the new confidentiality policy
is less restrictive than the present one.

endorse(variable, {label}): This token allows to loosen an in-
tegrity policy in order to relabel variables if required. Cif
checks whether the new integrity policy is less restrictive
than the present one.

PC bypass({label}): This token allows to relabel the PC label
without further checks of correct usage.

3) Function Declaration: In the C language functions
can have a separate declaration called prototype. For the
declaration of functions and prototypes, we also adapted the
already developed concepts from Jif. In Jif a method (the
representation for a function in object-oriented languages) has
four labels:

1) Begin Label defines the side effects of the function like
access to global variables. The begin label is the initial
PC label for the function’s body. From a function caller’s
perspective the current caller’s PC label needs to be no
more restrictive than the begin label of the called function.

2) Parameter Labels define for each parameter the corre-
sponding label. From a caller’s perspective these param-
eter labels have to match with the assigned values.

3) Return Label defines the label of the return value of the
function. In Cif a function that returns void cannot have a
return label. From a caller’s perspective the variable that
receives the returned value needs to be at least equally
restrictive as the return label.

4) End Label defines a label for the caller’s observation how
the function terminates. Since C does not throw excep-
tions and functions return equally every time, we omitted
verifications of end labels in our Cif implementation.

 390 / 512

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1 372

Figure 1. Legend for Flow Graphs

return label︷ ︸︸ ︷ polymorph begin label︷ ︸︸ ︷ parameter label︷ ︸︸ ︷ end label︷ ︸︸ ︷
i n t {Al ice−>Bob} f unc {param} (i n t {Al ice−>∗} param) : {Al ice −>∗};

Listing 4. Definition of a function with DLM annotations in Cif.

Listing 4 shows the syntax for defining a function prototype
with label annotations in Cif.

The definition of function labels regarding their optional
prototype labels needs to be at least as restrictive, i.e. Cif
allows functions to be more restrictive than their prototypes.
All labels are optional augmentation to the C syntax. If the de-
veloper does not insert a label, Cif will use meaningful default
labels that basically define the missing label most restrictively.
Additionally, we implemented pseudo-polymorphism, i.e. it
is possible to inherit the real label of a caller’s parameter
value to the begin label, return label or other parameter labels
of the function. This feature is useful for the annotation of
system library functions, such as memcpy(...) that are used
by callers with divergent parameter labels and can have side
effects on global variables. At this stage Cif does not support
full polymorphism, i.e. the inheritance of parameter labels to
variable declarations inside the function’s body.

V. USE CASES

This section demonstrates the power of Cif by showing
some real-world code snippets. For all examples Cif verifies
the information flow modeled with the code annotations. If the
information flow is valid according to the defined policy, Cif
will output an unlabeled version of the C source code and a
graphical representation of the flows in the source code. The
format of this graphical representation is “graphml”, hence,
capable to further parsing and easy to import into other tools
as well as documentation. Figure 1 shows the used symbols and
their interpretations in these graphs. In general, the # symbol
shows the line of the command’s or flow’s implementation in
the source code.

A. Direct Assignment
The first use case presented in Listing 5 is a sequence of

normal assignments.

1 p r i n c i p a l Al i ce , Bob , Chuck ;
2
3 void main { −> ;∗<−∗} ()
4 {
5 i n t {Al ice−>Bob , Chuck} x = 0 ;
6 i n t {Al ice−>Bob} y ;
7 i n t {Al ice−>∗} z ;
8
9 y = x ;

10 z = y ;
11 z = x ;
12 }

Listing 5. Sequence of Valid Direct Flows

In this example x is the least restrictive variable, y the second
most restrictive variable and z the most restrictive variable.
Thus, flows from x → y, y → z and x → z are valid. Cif
verifies this source code successfully and create the graphical
flow representation depicted in Figure 2.

Figure 2. Flow Graph for Listing 5

B. Indirect Assignment
Listing 6 shows an example of invalid indirect information

flow. Cif reports an information flow violation, since all flows
in the compound environment of the true if statement need to
be at least as restrictive as the label of the decision variable
z. However, x and y are less restrictive and, hence, a flow to
x in the assignment is not allow. Additionally, this example
shows how Cif can detect coding mistakes. It is obvious that
the programmer wants to prove that y is not equal to 0 to
avoid the Divide-by-Zero fault. However, the programmer puts
the wrong variable in the if statement. Listing 7 corrects
this coding mistake. For this source code, Cif verifies that
the information flow is correct. Additionally, it generates the
graphical output shown in Figure 3.

1 p r i n c i p a l Al i ce , Bob ;
2
3 void main { −> ;∗<−∗} ()
4 {
5 i n t {Al ice−>Bob} x , y ;
6 i n t {Al ice−>∗} z = 0 ;
7
8 i f (z != 0) {
9 x = x / y ;

10 }
11 z = x ;
12 }

Listing 6. Invalid Indirect Flow

 391 / 512

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1 373

1 p r i n c i p a l Al i ce , Bob ;
2
3 void main { −> ;∗<−∗} ()
4 {
5 i n t {Al ice−>Bob} x , y ;
6 i n t {Al ice−>∗} z = 0 ;
7
8 i f (y != 0) {
9 x = x / y ;

10 }
11 z = x ;
12 }

Listing 7. Valid Indirect Flow

Figure 3. Flow Graph for Listing 7

Remarkable in Figure 3 is the assignment operation in line 9,
represented inside the block environment of the if statement
but depending on variables outside the block. Hence, Cif
parses the code correctly. Also note, that in the graphical
representation z depends on input of x and y, even if the
source code only assigns x to z in line 11. This relation is also
depicted correctly, due to the operation in line 9, on which y
influences x and, thus, also z indirectly.

Another valid indirect flow is shown in Listing 8. In-
teresting on this example is the proper representation of
the graphical output in Figure 4. This output visualizes the
influence of z on the operation in the positive if environment,
even if z is not directly involved in the operation.

1 p r i n c i p a l Al i ce , Bob ;
2
3 void main { −> ;∗<−∗} ()
4 {
5 i n t {Al ice−>Bob} x , y , z ;
6
7 i f (z != 0) {
8 x = x + y ;
9 }

10 }
Listing 8. Valid Indirect Flow

C. Function Calls

A more sophisticated example is the execution of func-
tions. Listing 9 shows a common function call using pseudo-
polymorph DLM annotations. The function is called two times
with different parameters on line 14 and line 15. The graphical
representation of this flow in Figure 5 identifies the two
independent function calls by the different lines of the code in
which the function and operation is placed.

Figure 4. Flow Graph for Listing 8

1 p r i n c i p a l Al i ce , Bob ;
2
3 f l o a t {a} f unc (i n t {Al ice−>Bob} a ,

f l o a t {a} b)
4 {
5 re turn a + b ;
6 }
7
8 i n t {∗−>∗} main { −> } ()
9 {

10 i n t {Al ice−>Bob} y ;
11 f l o a t {Al ice−>Bob} x ;
12 f l o a t {Al ice−>∗} z ;
13
14 x = func (y , x) ;
15 z = func (y , 0) ;
16
17 re turn 0 ;
18 }

Listing 9. Valid Function Calls

Figure 5. Flow Graph for Listing 9

D. Declassify, Endorse and Bypassing the PC
1) Using Declassify and Endorse: Strictly using DLM

forces the developer to model information flows from a low
restrictive source to more restrictive destinations. This unavoid-
ably runs into the situation that information will be stored in
the most restrictive variable and is not allowed to flow to some
lower restricted destinations. Hence, sometimes developers
need to manually declassify (for confidentiality) or endorse

 392 / 512

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1 374

(for integrity) variables in order to make them usable for some
other parts of the program. These intended breaches in the
information flow policy need special care in code reviews and,
hence, it is desirable that our Cif allows the identification
of such sections in an analyzable way. Listing 10 provides
an example using both, the endorse and declassify statement.
To allow an assignment of a to b in line 9 an endorsement
of the information stored in a is necessary. The destination
of this flow b is less restrictive in its integrity policy than
a, since Alice believes that Bob is not allowed to modify
b anymore. In line 10, we perform a similar operation with
the confidentiality policy. The destination c is less restrictive
than b, since Alice believes for b that Bob cannot read the
information, while Bob can read c.

The graphical output in Figure 6 depicts both statements
correctly, and marks them with a special shape and color in
order to attract attention to these elements.

1 p r i n c i p a l Al i ce , Bob ;
2
3 void main { −> ;∗<−∗} ()
4 {
5 i n t {Al ice−>∗; A l i ce<−Bob} a ;
6 i n t {Al ice−>∗; A l i ce <−∗} b ;
7 i n t {Al ice−>Bob ; Al ice <−∗} c ;
8
9 b = e n d o r s e (a , {Al ice−>∗;

A l i ce <−∗}) ;
10 c = d e c l a s s i f y (b , {Al ice−>Bob ;

Al ice <−∗}) ;
11 }

Listing 10. Endorse and Declassify

Figure 6. Flow Graph for Listing 10

2) Bypassing the PC label: In example of Listing 11 we
use a simple login function to prove a user-provided uID
and pass against the stored login credentials. If the userID
and the password match, a global variable loggedIn shall
be set to 1 to identify other parts of the application that
the user is logged in. This status variable is owned by the
principal System and only this principal is allowed to read
the variable. The input variables uID and pass are both
owned by the principal User. The interesting lines of this
example are lines 16–18, i.e., the conditional block that checks
whether the provided credentials are correct and change the
status variable loggedIn. Note, that this examples also presents
Cif’s treatment of pointers on the strcmp function. Due to
the variables in the if statement, the PC label inside the

following block is System-> & User->. However, this PC
is not more restrictive than the label of loggedIn labeled
with System->. Hence, Cif would report an invalid indirect
information flow on this line. To finally allow this actual
violation of the information flow, the programmer needs to
manually downgrade or bypass the PC label as shown in
line 17. In order to identify such manual modifications of
the information flow policy, Cif also adds this information in
the generated graphical representation by using a red triangle
indicating the warning (see Figure 7). This shall enable code
reviewers to identify the critical sections of the code to perform
their (manual) review on these sections intensively.

1 p r i n c i p a l User , System ;
2
3 i n t {System−>∗} l o g g e d I n = 0 ;
4
5 i n t {∗−>∗} s t r c mp {∗−>∗}

(c o n s t char {∗−>∗} ∗ s t r 1 ,
c o n s t char {∗−>∗} ∗ s t r 2)

6 {
7 f o r (; ∗ s t r 1 ==∗ s t r 2 && ∗ s t r 1 ; s t r 1 ++ ,

s t r 2 ++) ;
8 re turn ∗ s t r 1 − ∗ s t r 2 ;
9 }

10
11 void checkUser {System−>∗}

(c o n s t i n t {User−>∗} uID ,
c o n s t char {User−>∗} ∗ c o n s t p a s s)

12 {
13 c o n s t i n t {System−>∗} regUID = 1 ;
14 c o n s t char {System−>∗} c o n s t

r e g P a s s [] = ” ” ;
15
16 i f (regUID == uID &&

! s t r c mp (r e g P a s s , p a s s)) {
17 PC bypass ({ System−>∗}) ;
18 l o g g e d I n = 1 ;
19 }
20 }

Listing 11. Login Function

Figure 7. Flow Graph for Listing 11

 393 / 512

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1 375

VI. CONCLUSION

In this paper we presented C Information Flow (Cif), a
static verification tool to check information flows modeled
directly in C source code. Cif is an implementation of the
Decentralized Label Model (DLM) [9] for the programming
language C. To the best of our knowledge this is the first time
DLM is applied to the C language. During the application of
DLM to C, we tried to stick to the reference implementation
of Java/Jif. However, we had to discuss and solve some
language-specific issues, such as pointer arithmetic or the
absence of exceptions. Additionally, we added the possibility
of defining annotations to function prototypes only, in case a
library’s source code is not available for public access. We
then also introduced rules for differing annotations of function
prototypes compared to function implementations.

In various code snippets, we discussed information flows
as they appear commonly in C implementations. Cif is able
to verify all of these examples successfully. In case of valid
information flows through the entire source code, Cif generates
a graphical representation of the occuring flows and dependen-
cies. This covers direct assignments of variables, logical and
arithmetic operations, indirect dependencies due to decision
branches and function calls. DLM also introduces operations
to intentionally loosen the strict flow provided by the model.
These methods are called endorsement and declassification.
Cif also implements these possibilities and specially marks
them inside the graphical representation. Since DLM-annotated
source code shall reduce the efforts of manual code reviews,
these graphical indications allow to identify critical parts
of the source code. Such parts usually require then special
investigation during code reviews.

We also used Cif to implement and verify a larger inter-
nal demonstrator project. For high assurance and verification
reasons, the demonstrator uses a loosely coupled software
design (inspired by [5]) composed of several components with
local, analyzable security services working together to pro-
vide the software’s services. The information flow modeling
using annotations helped us to concentrate the implementation
on the component’s functional purposes only. Furthermore,
the information flow evaluation of the component identified
several issues in the source code and, finally, could increase
the code quality significantly. Particularly, the visualization
of indirect flows, e.g., Listing 7 or Listing 8, and function
calls, e.g., Listing 9, was very useful during the evaluation.
Additionally, this activity showed that Cif is able to cover
larger projects, too.

Finally, Cif allows to verify information flows in appli-
cation implementations with a high level of assurance. This
pioneers to create sufficient evidence for security evaluation
on high assurance levels, e.g. EAL 7 of the Common Criteria.

ACKNOWLEDGMENT

This work was supported by the ARTEMiS Project
SeSaMo, the European Union’s 7th Framework Programme
project EURO-MILS (ID: ICT-318353), the German BMBF
project SiBASE (ID: 01IS13020) and the project EMC2 (grant
agreement No 621429, Austrian Research Promotion Agency
(FFG) project No 84256,8 and German BMBF project ID
01IS14002). We want to express our gratitude to our project
partner at the Danish Technical University, in particular Flem-
ming Nielson. We also thank Kawthar Balti for her input.

REFERENCES
[1] EUROCAE/RTCA, “ED-12C/DO-178C: Software Considerations in

Airborne Systems and Equipment Certification,” European Organisa-
tion for Civil Aviation Equipment / Radio Technical Commission for
Aeronautics, Tech. Rep., 2012.

[2] ——, “ED-80/DO-254, Design Assurance Guidance for Airborne Elec-
tronic Hardware,” European Organisation for Civil Aviation Equipment
/ Radio Technical Commission for Aeronautics, Tech. Rep., 2000.

[3] H. Butz, “The Airbus Approach to Open Integrated Modular Avionics
(IMA): Technology, Methods, Processes and Future Road Map,” Ham-
burg, Germany, March 2007.

[4] J. Rushby, “Separation and Integration in MILS (The MILS Constitu-
tion),” SRI International, Tech. Rep. SRI-CSL-08-XX, Feb. 2008.

[5] K. Müller, M. Paulitsch, S. Tverdyshev, and H. Blasum, “MILS-Related
Information Flow Control in the Avionic Domain: A View on Security-
Enhancing Software Architectures,” in Proc. of the 42nd International
Conference on Dependable Systems and Networks Workshops (DSN-W).
Boston, MA, USA: IEEE, Jun. 2012, pp. 1–6.

[6] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K. Rierson, “A
Practical Tutorial on Modified Condition/Decision Coverage,” NASA,
Tech. Rep. May, 2001.

[7] D. Kästner, S. Wilhelm, S. Nenova, P. Cousot, R. Cousot, J. Feret,
A. Miné, X. Rival, L. Mauborgne, A. Angewandte, I. Gmbh, S. Park,
and D. Saarbrücken, “Astrée: Proving the Absence of Runtime Errors,”
in Proc. of the Embedded Real Time Software and Systems (ERTS2’10),
Toulouse, France, 2010, pp. 1–9.

[8] J. C. King, “Symbolic Execution and Program Testing,” Communica-
tions of the ACM, vol. 19, no. 7, pp. 385–394, Jul. 1976.

[9] A. C. Myers and B. Liskov, “A Decentralized Model for Information
Flow Control,” in Proc. of the 16th ACM symposium on Operating
systems principles (SOSP’97). Saint-Malo, France: ACM, 1997, pp.
129–142.

[10] A. C. Myers, “JFlow: Practical Mostly-Static Information Flow Con-
trol,” in Proc. of the 26th ACM Symposium on Principles of Program-
ming Languages (POPL’99). ACM, Jan. 1999, pp. 228–241.

[11] Common Criteria, “Common Criteria for Information Technology Se-
curity Evaluation - Part 1: Introduction and general model,” 2009.

[12] ——, “Common Criteria for Information Technology Security Evalua-
tion - Part 2: Security functional components,” 2009.

[13] ——, “Common Criteria for Information Technology Security Evalua-
tion - Part 3: Security assurance components,” 2009.

[14] EASA, “Notification of a Proposal to Issue a Certification Memoran-
dum: Software Aspects of Certification,” EASA, Tech. Rep., Feb. 2011.

[15] A. Sabelfeld and A. C. Myers, “Language-Based Information-Flow
Security,” IEEE Journal on Selected Areas in Communications, vol. 21,
pp. 5 – 19, Jan. 2003.

[16] H. R. Nielson, F. Nielson, and X. Li, “Disjunctive Information Flow,”
DTU Compute, Technical University of Denmark, Denmark, 2014.

[17] D. Greve, “Data Flow Logic: Analyzing Information Flow Properties
of C Programs,” in Proc. of the 5th Layered Assurance Workshop
(LAW’11). Orlando, Florida, USA: Rockwell Collins, Research
sponsored by Space and Naval Warfare Systems Command Contract
N65236-08-D-6805, Dec. 2011.

[18] D. Greve and S. Vanderleest, “Data Flow Analysis of a Xen-based
Separation Kernel,” in Proc. of the 7th Layered Assurance Workshop
(LAW’13). New Orleans, Louisiana, USA: Rockwell Collins, Research
sponsored by Space and Naval Warfare Systems Command Contract
N66001-12-C-5221, Dec. 2013.

[19] U. P. Khedker, A. Sanyal, and B. Karkare, Data Flow Analysis: Theory
and Practice. CRC Press, 2009.

[20] S. Chong and A. C. Myers, “Decentralized Robustness,” in Proc. of
the 19th IEEE Computer Security Foundations Workshop (CSFW’06).
Washington, D.C, USA: IEEE, Jul. 2006, pp. 242–253.

[21] L. Zheng and A. C. Myers, “End-to-End Availability Policies and Non-
interference,” in Proc. of the 18th IEEE Computer Security Foundations
Workshop (CSFW’05). IEEE, Jun. 2005, pp. 272–286.

[22] S. Chong, A. C. Myers, K. Vikram, and L. Zheng, Jif Reference Man-
ual, http://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html, Feb 2009,
jif Version: 3.3.1; [retrieved: Sept, 2015].

 394 / 512

Minimizing Attack Graph Data Structures

Peter Mell

National Institute of Standards and Technology

Gaithersburg, MD United States

email:peter.mell@nist.gov

Richard Harang

U.S. Army Research Laboratory

Adelphi, MD United States

email:richard.e.harang.civ@mail.mil

Abstract— An attack graph is a data structure representing

how an attacker can chain together multiple attacks to expand

their influence within a network (often in an attempt to reach

some set of goal states). Restricting attack graph size is vital for

the execution of high degree polynomial analysis algorithms.

However, we find that the most widely-cited and recently-used

‘condition/exploit’ attack graph representation has a worst-

case quadratic node growth with respect to the number of

hosts in the network when a linear representation will suffice.

In 2002, a node linear representation in the form of a

‘condition’ approach was published but was not significantly

used in subsequent research. In analyzing the condition

approach, we find that (while node linear) it suffers from edge

explosions: the creation of unnecessary complete bipartite sub-

graphs. To address the weaknesses in both approaches, we

provide a new hybrid ‘condition/vulnerability’ representation

that regains linearity in the number of nodes and that removes

unnecessary complete bipartite sub-graphs, mitigating the edge

explosion problem. In our empirical study modeling an

operational 5968-node network, our new representation had 94

% fewer nodes and 64 % fewer edges than the currently used

condition/exploit approach.

Keywords- attack graph; complexity analysis; data

structures; minimization; representation; security.

I. INTRODUCTION

An attack graph is a representation of how an attacker
can chain together multiple attacks to expand their influence
within a network (often in an attempt to reach some set of
goal states) [1]. Among other things, an attack graph can be
used to calculate the threat exposure of critical assets,
prioritize vulnerability remediation, optimize security
investments, and as a tool to guide post-compromise forensic
activities. Restricting attack graph size is vital for both
human visualization of sub-graphs and the execution of high
degree polynomial analysis algorithms. Early attack graph
research used a ‘state enumeration’ representation [2] that
would record all possible orderings by which an attacker
could exploit a set of vulnerabilities, and hence grow at a
factorial rate (exponential with some modifications). This
rapid growth was mitigated in 2002 by a ‘condition-oriented’
approach providing a linear number of data objects with a
quadratic worst-case number of relationships (with respect to
the number of hosts in the original network) [3]. A major
tenet of this approach was the assumption of ‘monotonicity’,
which stated that an attacker would never lose a privilege
once it was gained and any increase in privilege would not
negate other gained privileges. This removed the need to

account for the order in which attacks are initiated, and so
reduced the complexity of the representation.

Subsequent research modified this model to make it
attack- focused and enable humans to visually follow the
steps within an attack more easily [2]. This hybrid
‘condition/exploit’ model [4] has been used extensively since
2003 for attack graph research. Unfortunately, we find that
this model results in redundant data encodings, under which
the worst-case graph size become quadratic in the number of
nodes. Thus, over a decade of attack graph research has used
a quadratic representation when a linear one was available in
the literature.

However, even had the node linear condition-oriented
approach been adopted, we find that it suffers from avoidable
edge explosions (the creation of unnecessary complete
bipartite sub-graphs) under certain conditions. These edge
explosions add a quadratic factor to worst-case edge growth
based on the maximum number of attacker privileges on any
one host.

These size complexity issues are not always readily
apparent from visual inspection of small example graphs.
Example attack graphs in the literature to date have often
contained a small number of dissimilar hosts with limited
per-host attack surfaces and thus do not reveal the worst-case
growth in both nodes and edges that we have observed. In
large enterprise networks, however, where hosts have both
large and diverse attack surfaces and are vulnerable to high-
level compromise (thus yielding a high number of post-
conditions), these complexity issues become much more
evident.

To address these weaknesses, we provide a new hybrid
‘condition/vulnerability’ representation that regains linearity
in the number of nodes and that does not suffer from the
edge explosion problem. In our empirical study of a network
model derived from an operational 5968-node network, our
new representation had 94 % fewer nodes and 64 % fewer
edges than the most widely cited recent approach in our
surveyed literature (the condition/exploit model).

This reduced graph size will increase the speed of
automated analysis, even making some algorithms tractable
under certain scenarios. This can be true for higher
polynomial complexity algorithms such as the cubic
algorithms in [3] and certainly for metrics derived from
attack graphs that grow either exponentially or with high
polynomial degree [5]-[8] (as often occurs when graphs
containing cycles must be rendered acyclic for the purposes
of probabilistic modeling). The reduced size can also aid in
human visualization and analysis of select sub-graphs of
interest.

376Copyright (c) The Government of United States, 2015. Used by permission to IARIA. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 395 / 512

The development of the work is as follows. In Section 2,
we survey past attack graph representations and describe
them in terms of four major categories (while citing minor
variations). For each category, we provide a description,
theoretical analysis of worst-case growth, and an example
graph from previously published work. Section 3 then
provides our two new representations that improve upon the
worst-case node and edge growth of the other
representations. Section 4 provides a theoretical analysis of
set of analyzed approaches. Section 5 provides empirical
results using a network model based on an operational
network where we compare the attack graph sizes using the
different approaches. Section 6 concludes the paper.

II. SURVEY OF ATTACK GRAPH REPRESENTATIONS

Papers discussing some abstraction of the attack graph
idea began appearing as early as 1996 [9]-[12]. The first
widely used representation was the ‘state enumeration’
approach ([2] and [13]-[16]) that had the unfortunate
characteristic that it could grow faster than exponential. In
2002, the ‘condition-oriented’ approach was published with
the express purpose of reducing the graph representation size
down to polynomial complexity [3]. In 2003, the ‘exploit-
oriented’ approach was published [17] to enhance the human
readability of the graphs compared to the condition-oriented
approach [2]. While not discussed in the literature, we will
show that the exploit-oriented approach suffers high
polynomial growth rates. This may explain why, in the same
year, our surveyed literature moved to a more efficient
hybrid ‘condition/exploit-oriented’ approach [4] (which we
find still has a growth rate higher than that of the condition-
oriented approach). Our literature survey shows that this
approach has been used extensively since 2003 and is the
predominant representation (e.g., [1], [4], [7], and [18]-[20]).
The following subsections discuss each of these approaches
in detail. It should be noted that each representation
encapsulates the same underlying knowledge but using a
different abstraction. For each type of representation, we
analyze the worst-case growth rate of a resulting attack graph
with respect to the number of nodes and edges. We define h
to be the number of hosts in the associated physical network,
v to be the maximum number of vulnerabilities on any one
host, and c to be the maximum number of attacker privileges
that can be achieved on any one host from the set of
available vulnerabilities. For the graph size complexity
analyses, we assume that there is a unique set of pre-
conditions for each attack.

A. State Enumeration

State enumeration was the first widely used attack graph
approach. Its distinguishing feature is that it explicitly
accounts for the different orderings in which an attacker may
launch attacks. There are two types. One type uses nodes to
represent attacks and edges to represent post-conditions
resulting in attacker privilege [13]-[15]. The other type uses
nodes to represent attacker privilege and edges to represent
attacks ([2] and [16]).

The graph design contains multiple layers of nodes,
regardless of the particular node and edge semantics. The

initially available set of conditions or attacks are presented at
the top layer. Each subsequent lower layer represents the
possible decisions that an attacker could make. Directed
edges connect the nodes at one layer to the available nodes at
the next lower layer. There are no edges between nodes at a
particular layer. An attack scenario begins at the top layer
and works its way down with the node chosen in each layer
representing an attacker’s next decision.

1) Complexity Analysis
Assume that v and c equal 1. At the top layer (labelled 0),

any of h hosts may be selected as the first node in the attack
path. At layer 1, there are h-1 hosts that can be attacked from
each of the h start nodes. For each node at layer 2 there are
h-2 hosts that can be attacked, and so forth. This creates a
rapidly expanding tree where the number of nodes and edges
increases as O(h!), yielding a worst-case factorial growth
rate for state enumeration graphs.

Most approaches attempt to prune this tree to focus only
on subtrees of interest (e.g., those leading to some goal
state). This can limit the growth, allow limited reuse of
nodes, and can migrate the structure from a tree to a
hierarchical directed graph with no loops (see Figure 1).
Despite such optimizations, the growth rate of this approach
is still worst-case exponential [2].

From an empirical perspective, such graphs become too
large to be practical. For example, a network with just 5
hosts and 8 available exploits produced an attack graph with
5948 nodes and 68 364 edges [15].

Figure 1. Example State Enumeration Attack Graph

Figure 1 shows an example pruned state enumeration

attack graph, from [2], derived from an example with 2 target
hosts running 2 services each, a single attacking host, and 4
unique attack types. Notice that the representation uses the
previously discussed modifications to avoid factorial growth
rate. The large red arrows highlight a remaining inefficiency
by showing an example of path duplication in the graph
(discussed in [2]).

Additional variations include [21]-[24].

B. Condition-Oriented

The condition-oriented approach was introduced in [3] as
a method to reduce the representational complexity of the
state enumeration approach by using the assumption of
attacker privilege ‘monotonicity’. This assumption implies
that an attacker never loses a privilege once it is gained, and
any increased privilege will not negate any other privileges.
In practice, it means that (unlike in the state enumeration
approach) there is no longer any need to track the order in
which attacks are initiated. This assumption has been found

377Copyright (c) The Government of United States, 2015. Used by permission to IARIA. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 396 / 512

to be reasonable in most cases [2] and has been adopted by
almost all subsequent attack graph representations.

The work of [2] introduced a graphical representation to
the approach. Each ‘condition node’ represents some state of
attacker privilege (e.g., execute as superuser on host x). An
edge from node a to node b with label c represents that pre-
condition a is necessary (but not necessarily sufficient) for
attack c to provide privilege b. Sufficiency to gain privilege
b is obtained if the pre-conditions of all edges into node b,
labeled with c, are satisfied. By grouping the in-edges to
each node by their edge labels, we can see that each group
represents a possible attack, and each node is thus expressed
in a variant of disjunctive normal form (DNF): in-edges
within a group provide conjunctional logic and the distinct
groups form logical disjunctions. Note that unlike general
DNF statements, negation is not represented.

One limitation of the approach in [3] is that a single
attack on a host that can be instantiated by different sets of
pre-conditions must be represented by multiple attack
instances named differently (using the edge names) to enable
disjunctional logic. Distinct attack instances, involving
different hosts, may be named similarly with no ambiguity.

1) Complexity Analysis
The condition-oriented approach achieves linearity in the

number of nodes, significantly reducing the complexity
compared to the state enumeration approach. An attacker
may have up to c distinct condition states on each of the h
hosts, and thus the number of nodes is bounded by hc.
Unfortunately, as each of the hc condition nodes can be
connected to all hc other nodes, and each connection
between two nodes may have up to v edges to represent
exploiting each available vulnerability, we obtain up to
hc×hc×v=h2c2v edges in the graph. Normally, h is much
larger than c or v for a large network (as c and v are the
maximums per node, not totals) and thus we can treat c and v
as constants for the complexity analysis. Thus, the condition
approach is O(h) in nodes and O(h2) in edges, representing
an enormous improvement over the exponential state
enumeration approach. However, note the multiplicative c2
term in the number of edges. This is the result of unnecessary
complete bipartite sub-graphs forming under certain
conditions. We analyze these edge explosion situations in
more detail in Section 4.

Figure 2. Example Condition-Oriented Attack Graph

Figure 2 shows an example condition-oriented attack
graph, from [2], derived from a network with 2 target hosts, a
single attacking host, and 3 unique attack types. Note the
reduced complexity compared to Figure 1 although, as stated
previously, these small example graphs are primarily
intended to illustrate the methods, and do not demonstrate
the differences in worst-case size complexities.

Additional variations include [21] and [25].

C. Exploit-Oriented

The exploit-oriented approach represents attacks as nodes
and states of attacker privilege as edges ([2] and [17]) to ease
visual analysis compared to the condition-oriented approach.
Note that each ‘attack node’ is labeled with the host
launching the attack and the host receiving the attack (which
can be the same host for local attacks). This dual labeling on
attack nodes will cause significant representational
inefficiencies. The in-edges to a node represent the pre-
conditions for launching an attack and the out-edges
represent the post-conditions of the exploit. All out-edge
post-conditions of a node are satisfied if and only if all the
in-edge pre-conditions are satisfied.

Explicit representation of disjunction is not available and
so in the presentation in the literature, attacks that can be
instantiated by distinct sets of pre-conditions must be
represented by multiple nodes. However, by applying a
similar edge grouping approach as in the condition-oriented
approach, this duplication of nodes can be avoided. Since the
edges in this approach are already labeled with the post-
condition names they must be additionally labeled with a
grouping name (a name for the group of pre-conditions that
will enable exercising the related exploit). While this
modification is not discussed in the literature, we assume this
optimization to represent the approach as efficiently as
possible. Without this optimization, the number of nodes
would increase by a factor of c.

1) Complexity Analysis
We now examine the worst-case growth rate of some

arbitrary attack graph. With respect to nodes, the graph can
grow as large as h2v. Each of the h hosts can attack all h
hosts with v different attacks (assuming just one attack per
vulnerability) resulting in h2v nodes. With respect to edges,
the graph can grow as large as h3v2. Consider a single node
where b represents the attack target. This node can have a
connection to each node where the attack source is b. There
will be hv nodes with attack source b. Each connection
though can be made up of c edges. Thus, each node can
create hvc out-edges. Since the number of nodes is h2v, this
leads us to h2v×hvc=h3v2c edges. Treating c and v as
constants compared to h, the exploit approach is O(h2) in
nodes and O(h3) in edges. This is an enormous increase in
graph size from the condition approach, however it still
outperforms the exponential state enumeration approach.

Figure 3 shows an example exploit-oriented attack graph,
from [2], derived from the same network as Figure 2. The
example condition-oriented graph has 11 nodes and 12 edges
while the example exploit-oriented graph as 6 nodes and 13
edges. Despite the reduction in graph size demonstrated in
this example, we will empirically show that the exploit-

378Copyright (c) The Government of United States, 2015. Used by permission to IARIA. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 397 / 512

oriented graphs can grow much larger than the condition-
oriented graphs in enterprise networks.

Figure 3. Example Exploit-Oriented Attach Graph

D. Hybrid Condition/Exploit-Oriented

The hybrid condition/exploit-oriented approach uses two
distinct types of nodes ([1], [4], [7], and [18]-[20])
representing both attacks and the states of attacker privilege,
while the edges are unlabeled. The ‘attack nodes’ and
‘condition nodes’ have the same semantics as those in the
exploit-oriented graphs and the condition-oriented graphs,
respectively.

This structure produces a directed bipartite graph, with
attack nodes having edges to condition nodes and vice versa.
However, the interpretation of the in-edges varies per type of
node. Attack nodes and their post-condition out-edges are all
satisfied if and only if all in-edges are satisfied (conjunction
as with the exploit-oriented graphs). Condition nodes and
their out-edges are satisfied if at least one in-edge is satisfied
(disjunction as with multiple groups of in-edges in the
condition-oriented graphs).

As in the exploit-oriented representation, the problem of
a single exploit that can be instantiated with multiple sets of
pre-conditions is not well addressed in the literature. In a
naïve implementation, a single exploit must be divided into
multiple attack node instances, one for each distinct set of
pre-conditions. However, by applying the same optimization
as before (again, not previously presented in the literature)
where we allow condition node to attack node edges to be
labeled with a group name, we can avoid this multiplication,
and we assume this optimization throughout. As in the
condition approach, the interpretation is disjunction among
the groups and conjunction within a group. Without this
optimization, the worst-case number of attack nodes would
increase by a factor of c (as with the exploit approach).

1) Complexity Analysis
We now examine the worst-case growth rate of some

arbitrary attack graph. With respect to nodes, the graph can
grow as large as hc+h2v. There will be hc condition nodes as
derived in Section 2.2.1 and there will be h2v attack nodes as
derived in Section 2.3.1. With respect to edges, the condition
and attack nodes form a directed bipartite graph. We first
explore the set of attack to condition node edges. Each attack
node has a single target host as discussed in Section 2.3.

Each attack node then can at most activate c condition nodes
on the target host where each activation creates an attack to
condition node edge. Since there are up to h2v attack nodes,
we can then have up to h2v×c=h2vc attack node to condition
node edges. Similarly, each condition node is mapped to a
host, say a, and thus may have an edge to any of the hv
exploit nodes where the attack source is a. Since there are hc
condition nodes and up to hv edges per node, we get a total
of hc×hv=h2vc condition to exploit node edges. Summing the
two types of edges, we get h2vc+h2vc=2h2vc.

Figure 4. Example Condition/Exploit-Oriented Attack Graph

Figure 4 shows a condition/exploit-oriented attack graph

from an example provided in [4]. This was derived from the
same network as in Figure 1. The circled nodes are the attack
nodes and the un-circled nodes are the condition nodes.
Notice the relative simplicity in comparison with the state
enumeration approach in Figure 1. Again though, the size of
these small examples doesn’t demonstrate complexity
growth on large enterprise networks.

Additional variants include [26]-[28].

III. VULNERABILITY-BASED REPRESENTATIONS

Our contribution is the idea of representing the
vulnerabilities on specific hosts explicitly within attack
graphs. From a visualization point of view, this makes it easy
to see how a chain of vulnerabilities (and hosts) can be
compromised. From a graph complexity point of view, the
vulnerability nodes replace the use of the attack nodes
thereby lowering node complexity to linear (from quadratic).
Intuitively, where exploit nodes must contain references to
both the source and target hosts in an attack step, and thus
grow potentially quadratically in highly connected networks,
the vulnerability nodes only reference the exploitable host,
and so grow only linearly. We represent attacks within the
edges where they can take advantage of the fact that edges
inherently have sources and targets (similar to the condition
approach).

This approach leads to two new representations that build
upon one another. We first describe a vulnerability-oriented
approach where we replace the attack nodes from the
exploit-oriented approach with vulnerability nodes. This
reduces node complexity from quadratic to linear and edge

379Copyright (c) The Government of United States, 2015. Used by permission to IARIA. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 398 / 512

complexity from cubic to quadratic. We then point out how
the vulnerability-oriented approach suffers from similar
quadratic edge explosion scenarios as the condition approach
(but this time relative to v, not c).

We then build upon the vulnerability approach to provide
a hybrid condition/vulnerability representation that has a
linear number of nodes, quadratic number of edges, and that
does not suffer from quadratic edge explosion (in either v or
c). It also, like the hybrid condition/exploit approach,
improves on the human readability of the condition-oriented
approach.

A. Vulnerability-Oriented

Our first approach is analogous to the exploit-oriented
approach except that we replace the attack nodes with
vulnerability nodes. A vulnerability node is labeled with a
vulnerability name and the relevant location in the network
(usually but not necessarily a hostname). Edges represent
attacker privilege, just like in the exploit-oriented approach.
In cases where multiple sets of pre-conditions can activate a
particular vulnerability, we handle it with the edge grouping
optimization we’ve presented previously. A set of pre-
conditions that will activate a vulnerability are represented
by a set of in-edges to a node that all have a common group
name. Thus we represent attacks using groups of commonly
named edges just like in the condition approach. Each node
is thus expressed in DNF: in-edges within a group provide
conjunctional logic and the distinct groups form logical
disjunctions.

1) Complexity Analysis
We now examine the worst-case growth rate of some

arbitrary attack graph. With respect to nodes, the graph can
grow as large as hv because each of the h hosts can have v
vulnerabilities. With respect to edges, each node can have hv
outgoing connections to other nodes. Each connection can be
made up of at most c edges. Thus, the total number of edges
is at most hv×hv×c=h2v2c.

A disadvantage of this approach is the v2 term in the
number of edges. This is the result of unnecessary complete
bi-partite sub-graphs forming under certain conditions. We
analyze this edge explosion in more detail in Section 4.

Figure 5. Example Vulnerability-Oriented Attack Graph

Figure 5 shows an example of a vulnerability-oriented

graph, derived from the representation in Figure 4. For the
sake of readability, edge grouping labels are omitted. Note

that the number of nodes is reduced with respect to Figure 4,
and all vulnerabilities are in exactly one node instead of
replicated over multiple nodes with different attack sources
(e.g., the attacks targeting the ftp rhosts vulnerability on node
1 in Figure 4).

B. Hybrid Condition/Vulnerability-Oriented

Our second novel approach is a hybrid approach
combining condition nodes with our new vulnerability
nodes. The condition nodes are analogous to those in the
condition-oriented approach. The vulnerability nodes are
identical to those in our vulnerability-oriented representation.
We represent attacks by labeling the condition node to
vulnerability node edges with the attack instances being used
(including source and destination hostnames/IPs where
applicable); this edge labeling is similar to that in the
condition-oriented graphs. We then connect the vulnerability
nodes to the condition nodes with unlabeled edges showing
which post-conditions emerge as a result of exploiting the
relevant vulnerability instance.

As with the hybrid condition/exploit graph, this structure
produces a directed bipartite graph. For condition nodes, they
and all of their attack labeled out-edges are satisfied if at
least one in-edge is satisfied (disjunction). For vulnerability
nodes, they and all of their unlabeled out-edges are satisfied
if and only if a group of identically labeled in-edges are
satisfied (conjunction within a group and disjunction
between the groups). This distributed implementation of
disjunctions and conjunctions enables the same DNF logic of
the condition-oriented approach.

A single attack that can be instantiated with multiple sets
of pre-conditions can be represented by using a different
group name for each set of instantiating pre-conditions.

1) Complexity Analysis
We now examine the worst-case growth rate of an

arbitrary attack graph. With respect to nodes, the graph can
grow as large as h(c+v). There will be hc condition nodes as
derived in Section 2.2.1 and hv vulnerability nodes as
derived Section 3.1.1. Thus, there are at most hc+hv nodes
total. With respect to edges, there can be as many as
h2cv+hvc. First, for the set of edges that point from
vulnerability nodes to condition nodes, each of the hv
vulnerability nodes can activate up to c condition nodes
(since each vulnerability pertains to a host with up to c
conditions), creating hvc edges. In the other direction, each
of the hc condition nodes could allow an attack to all hv
vulnerability nodes, producing hc*hv edges. Thus, the total
number of edges is hvc+hc*hv=h2cv+hvc.

Treating c and v as constants compared to h, the
condition/vulnerability approach is O(h) in nodes and O(h2)
in edges. This is a major improvement over the quadratic
growth in the number of nodes caused by attack nodes in the
exploit and condition/exploit approaches. While the
complexity of the number of nodes is of the same order
between the condition, vulnerability, and
condition/vulnerability graphs, we note that there is no v2 or
c2 term in the edge growth equation for the
condition/vulnerability graph. This is indicative of the fact
that this approach does not suffer from the quadratic edge

380Copyright (c) The Government of United States, 2015. Used by permission to IARIA. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 399 / 512

explosion problem of the condition and the vulnerability-
oriented approaches in either v or c. This is discussed in
detail in Section 4.

Figure 6. Example Condition/Vulnerability-Oriented Attack Graph

Figure 6 shows an example of the condition/vulnerability

graph displaying the same attack graph data as in Figure 4
and Figure 5. In this example with just 3 nodes and relatively
diverse attack surfaces, this data actually has a more compact
representation in the vulnerability graph format. We
demonstrate in Section 5 on larger scale real-world data that
this advantage is not general, and in fact the
condition/vulnerability graph provides significant size
advantages in such cases.

IV. THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of the
worst-case behavior of the representations. Note that we do
not analyze the state enumeration approach given its known
exponential growth rate (previously discussed). We begin
with a review of the big-O complexity of each graph type
and show the advantages of the condition, vulnerability, and
condition/vulnerability approaches. We then follow with an
analysis of the terms within the actual worst-case growth
equations. These equations reveal quadratic terms in both v
and c that cause the edge explosion scenarios in the condition
and vulnerability approaches, respectively. We then explore
in more detail when and why these avoidable edge explosion
scenarios occur. We end the section with a discussion of
edge explosion scenarios that are unavoidable in all of our
analyzed representations (and that may reflect an inherent
limit in reducing graph sizes).

A. Big-O Complexity Graph Growth Comparisons

In an attack graph, h is expected to grow much larger
than v or c for a typical enterprise network. Note that v and c
are the maximums per host (not the total number of
vulnerability and conditions) and thus are usually miniscule
compared to h. For this reason, we treat v and c as constants
to derive overall complexity of each representation. These
big-O measurements were derived in Sections 2 and 3 and
are summarized in Table 1. The calculations showing the
largest growth rates are bolded. Note, if h is not large relative

to v or c, use the below Table 2 instead of Table 1 to
determine the most efficient representation.

TABLE 1. COMPLEXITY MEASUREMENT OF ATTACK GRAPH

REPRESENTATION

Representation Nodes Edges

Condition O(h) O(h2)

Exploit O(h2) O(h3)

Vulnerability O(h) O(h2)

Condition/Exploit O(h2) O(h2)

Condition/Vulnerability O(h) O(h2)

The quadratic node growth of the exploit and

condition/exploit approaches is much larger than the linear
node growth of the condition and condition/vulnerability
approaches. With respect to edges, the cubic edge growth of
the exploit approach is larger than the quadratic growth of
the other approaches. Thus, the condition, vulnerability, and
condition/vulnerability approaches are the best approaches in
limiting worst-case graph growth with respect to h.

To intuitively understand why the exploit and
condition/exploit node growth is quadratic, consider that an
exploit node must necessarily contain two host name labels:
the attack source and the attack target. If a set of hosts A can
attack a set of hosts B using a single attack, then the number
of exploit nodes representing this will be |A|*|B| (i.e.,
quadratic growth). Contrast this to the
condition/vulnerability approach where there will be only a
single vulnerability node per host in B resulting in |B|
vulnerability nodes (i.e., linear growth).

One optimization is to reduce graph size by consolidating
groups of identical hosts (those with identical security value,
vulnerabilities, and permitted connectivity) into single hosts
when building the attack graph. This essentially reduces h
and thus minimizes the graph size, but we note that it does
not change the big-O complexity results nor the outcome of
our comparative analyses.

B. Worst-Case Equations Graph Growth Comparisons

We now look at the actual worst-case equations that we
derived in Sections 2 and 3 in order to further refine our
comparison between the approaches. These equations are
summarized in Table 2. The terms specifically discussed in
our analysis are bolded.

TABLE 2. WORST-CASE GROWTH OF ATTACK GRAPH REPRESENTATIONS

Representation Nodes Edges

Condition hc h2vc2

Exploit h2v h3v2c

Vulnerability hv h2v2c

Condition/Exploit hc+h2v 2h2vc

Condition/Vulnerability hc+hv h2vc+hvc

We focus our analysis on the condition, vulnerability,

and condition/vulnerability approaches since the other two
approaches were shown to have larger big-O node
complexities in Table 1.

With respect to node growth, the condition and
vulnerability approaches will always have fewer nodes than
the condition/vulnerability approach due it having the sum of

381Copyright (c) The Government of United States, 2015. Used by permission to IARIA. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 400 / 512

the former two. However, it should be noted that this
increase is a small linear factor.

With respect to edge growth, however, both the condition
and vulnerability graphs grow quadratically in c and v,
respectively. It is these quadratic terms (not present in the
condition/vulnerability edge equation) that reflect edge
explosion scenarios where unnecessary complete bipartite
sub-graphs are formed. We claim that they are unnecessary
because the condition/vulnerability approach provides a
linear representation of the same data. Visually, the condition
and vulnerability approaches use complete bi-partite sub-
graphs where, for the same data, the condition/vulnerability
approach uses star topologies (explained in detail in the next
section).

Thus overall, our theoretical analysis indicates that our
condition/vulnerability approach will result in achieving the
most compact attack graphs. The exploit approach was the
worst (excluding the naïve state enumeration approach),
suffering from cubic edge growth. The condition/exploit
approach (the most commonly used in recent research in our
surveyed literature) suffered from quadratic node growth in
our largest term, h. Finally, the condition and vulnerability
approaches suffered from quadratic edge explosions (in c
and v, respectively) as a result of the creation of complete bi-
partite sub-graphs that our condition/vulnerability approach
converts to linear growth star topologies. We now explore in
detail the edge explosion scenarios.

C. Avoidable Edge Explosion Scenarios

We define an edge explosion as the creation of a
complete bipartite sub-graph within an attack graph due to
some specific scenario. Some scenarios cause edge
explosions regardless of which of our analyzed attack graph
representations is used. We call these scenarios
‘unavoidable’ (with respect to our set of representations) and
thus they are not useful for a comparative analysis. We
discuss such unavoidable scenarios in the next section.

This section focuses on avoidable scenarios that create
quadratic edge explosions in the condition and vulnerability
representations, which are converted to linear star
representations in the condition/vulnerability approach. The
condition/exploit approach has similar representational
advantages with respect to edge explosion scenarios.
However, we do not specifically analyze this for the
condition/exploit approach due to its worse quadratic node
complexity but we do note that it is the dual node type
representations that enable the reduction (i.e., the ‘hybrid’
node design).

Avoidable edge explosion can occur in both the condition
and vulnerability graphs as shown by their worst-case
quadratic growth in c and v, respectively. These upper
bounds are approached in condition graphs whenever a
single attack has multiple pre-conditions and multiple post-
conditions. This also happens in vulnerability graphs when
some set of vulnerabilities on a host allows subsequent
exploitation of some other set of vulnerabilities (on the same
or other hosts).

Both cases can be viewed in terms of directed
hyperedges, representing the multi-way relationships. For

example, an attack with multiple pre-conditions and post-
conditions can be represented by a single directed hyperedge
with the pre-conditions at the tail of the edge and the post-
conditions at the head. In standard directed graphs,
representing this requires the creation of a complete directed
bipartite sub-graph with the pre-conditions in the edge ‘tail’
set and the post-conditions in the ‘head’ set. The
representation of these hyperedges by the corresponding
complete bipartite graphs is then responsible for the
quadratic explosion in the number of edges. Similarly, given
a set of vulnerabilities on a host where each one enables an
attacker to exploit some other common set of vulnerabilities
can be represented by a single directed hyperedge. In a
vulnerability graph, this hyperedge would require a directed
complete bipartite graph with the enabling vulnerabilities in
the edge ‘tail’ set and the newly available vulnerability nodes
in the edge ‘head’ set.

Hybrid node graphs, such as the condition/vulnerability
and the condition/exploit graphs, represent these directed
hyperedges more efficiently (i.e., linearly). To see this,
consider that in the condition/vulnerability graph, each
vulnerability node may represent a directed hyperedge that
links multiple pre-conditions to multiple post-conditions.
Each condition node may also represent a directed hyperedge
that links multiple vulnerabilities on a single host to a set of
common target vulnerabilities. This representational
approach of a directed hyperedge forms a star graph for each
hyperedge. It is then easy to see that star graphs grow
linearly in the number of edges while the complete bipartite
sub-graphs grow quadratically, thus enabling the size
complexity advantage of the hybrid node approaches.

For the purposes of illustration, consider Figure 7 below.
Conditions C1 to C4 form the tail of a hyperedge
corresponding to a vulnerability Va, while conditions C5 to
C8 for the head. The resulting condition graph is complete
bipartite, as each of C1 to C4 must be linked to each of C5 to
C6 (Figure 7, left); by contrast, using a separate class of node
to represent the vulnerability-related hyperedge in the
condition/vulnerability approach allows for a much more
compact representation in the form of a star graph (Figure 7,
right).

Figure 7. Unnecessary complete bipartite structures in the condition-

oriented graph

Vulnerability graphs have a directly analogous

representation, where a condition node may represent a
hyperedge, as shown in Figure 8.

382Copyright (c) The Government of United States, 2015. Used by permission to IARIA. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 401 / 512

Figure 8. Unnecessary complete bipartite structures in the vulnerability-

oriented approach

In the vulnerability graph, each vulnerability (V1 to V4)

on a single host must have an edge to each vulnerability that
is now accessible for attack (V5 to V8). In the
condition/vulnerability graph, a single condition node Ca
represents the attacker privileges gained by exploiting V1 to
V4. Condition node Ca then allows exploitation of V5 to V8.
The addition of Ca creates a linear growth star graph in place
of the quadratic complete bipartite graph in the vulnerability
representation.

D. Unavoidable Edge Explosion Scenarios

There are cases where the condition/vulnerability graph
will still contain complete bipartite components and it is
direct to see that the related condition or vulnerability graph
will also exhibit such a component. Thus, such scenarios are
unavoidable (with our set of analyzed representations).
While we can’t prove nonexistence of a linear representation
here, we believe it unlikely and that we are pushing against
inviolable data representational boundaries in trying to
further reduce the size of the attack graph.

Consider a scenario where multiple distinct hyperedges
have identical head or tail sets in either the condition- or
vulnerability- oriented approach. This will naturally result in
complete bipartite components in the condition/vulnerability
representation; however, it is straightforward to see that such
cases also produce complete bipartite graphs in the condition
and vulnerability representations as well.

See, for example, the condition/vulnerability graphs in
Figure 9. The leftmost panel depicts a situation in which two
distinct vulnerabilities have identical head and tail sets (such
as two identical vulnerabilities on two different hosts that
each enable a common set of vulnerabilities on a third); the
center depicts a situation in which the head sets are distinct
but the tail sets are identical (perhaps granting host-specific
post-conditions), and the rightmost pane depicts identical
head sets with distinct tail sets (such as would be expected
from host-specific pre-conditions with global post-
conditions). In each case, it is straightforward to see that a
path exists from each pre-condition to each post-condition,
and so the resulting condition-oriented graph will be a
complete bi-partite graph.

Figure 9. Condition/Vulnerability Graph Scenarios

The situation is functionally identical for vulnerability-

oriented graphs. Similar complete bipartite sub-graphs within
a condition/vulnerability graph will result in a completely
connected bipartite sub-graphs in the related vulnerability
graph.

Looking at the underlying equations, note that in the
condition/vulnerability graph the number of edges is
bounded as the product of c and hv, rather than being
quadratic in c, thus requiring both v and c to grow
simultaneously for a comparable edge explosion. Note that
this doesn’t reflect a unique weakness for the
condition/vulnerability approach as both the condition and
vulnerability approaches also contain h, c, and v in their edge
equations (but there with a quadratic c or v). This worst-case
scenario is only realized in the leftmost panel of Figure 9,
while all three panels result in complete bipartite sub-graphs
in the case of the condition-oriented graph.

V. EMPIRICAL RESULTS

We now provide an example to illustrate the performance
between the different approaches using a network model.
Our network model (derived in part from data from an
operational network) has 5968 hosts and 7825
vulnerabilities. The vulnerabilities consist of 41 distinct
types mapped to two different severity levels. We mapped
7791 vulnerability instances to confidentiality breaches and
34 instances to providing user level access.

With respect to attack post-conditions, a vulnerability
was modeled as producing two post-conditions: the severity
level mapped to the host name and a designator indicating
that the host had some specific vulnerability exploited. This
models the situation where a single attack can produce
multiple post-conditions.

With respect to connectivity, we modeled all nodes as
being logically connected to each other. For a start node in
the attack graph, we designated one of the hosts as hostile
(using one with no vulnerabilities) to represent an insider
threat situation.

Table 3 provides the empirical results given the above
stated scenario. To derive these results, we created an attack
graph simulator using Python 2.7.6 that calculates the graph
sizes using all of our analyzed representations. Note that
these results are not based on the equations from Table 2 as
those equations represent worst-case attack graph sizes. Here
we analyze the actual sizes given the network model
described above.

383Copyright (c) The Government of United States, 2015. Used by permission to IARIA. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 402 / 512

TABLE 3. EMPIRICAL RESULTS

Graph Type Nodes Edges

Condition 5140 436 290

Exploit 218 146 7 189 929

Vulnerability 7825 272 920

Condition/Exploit 223 285 654 435

Condition/Vuln. 12 964 233 795

As expected from the theoretical analysis, the number of

nodes for the exploit and condition/exploit representations
was much larger than the other approaches due to the O(h2)
growth rate. The number of edges in the condition graph is
almost twice that of the condition/vulnerability graph,
attributable to the O(c2) growth rate of the edges. Thus based
on these empirical results, the vulnerability and
condition/vulnerability approaches appear the best for our
scenario and are comparable (with the vulnerability approach
having fewer nodes and the condition/vulnerability approach
having fewer edges).

Note how in this example our condition/vulnerability
approach had 94 % fewer nodes and 64 % fewer edges than
the widely cited and commonly used condition/exploit
approach. This illustrates how an adjustment in
representation can have dramatic results in graph size.

However, if we model each attack as producing exactly
one post condition, then the advantages of the
condition/vulnerability approach disappear relative to the
condition graph (see Table 4).

TABLE 4. SINGLE POST CONDITION EMPIRICAL RESULTS

Graph Type Nodes Edges

Condition 2584 218 145

Exploit 218 146 7 189 929

Vulnerability 7825 272 920

Condition/Exploit 220 728 436 290

Condition/Vuln. 10 408 225 970

Here the condition graph has an advantage on the number

of nodes while roughly matching the number of edges of the
conditional/vulnerability approach. Thus, use of the
vulnerability/condition approach does not guarantee a
smaller graph than the condition representation. However, it
guarantees a linear growth rate with respect to c, allowing for
tighter representations given arbitrary scenarios.

Note that the vulnerability approach statistics stay the
same in both Table 3 and Table 4. This is because the
removed post conditions were not ones that enabled an attack
to be launched (we just removed the flag that a host had a
specific vulnerability exploited).

The widely-cited and used condition/exploit model was
much larger in all of our scenarios because it suffers from
both the O(h2) growth rate in the nodes (this is true also of
the exploit approach). Had we modeled a network where the
logical connectivity of the hosts was much more restricted,
the node disadvantage of the condition/exploit approach
would have been minimized. However, many operational
networks (including this one) have large numbers of hosts

with significant logical connectivity (e.g., approaching
complete sub-graphs).

VI. CONCLUSIONS

For the last decade, the condition/exploit-oriented
approach was the most commonly used representation in our
literature survey. However, we found it to have node growth
quadratic in the number of hosts on the network. This will
slow down analysis algorithms that have a high polynomial
degree while making visualization for humans more difficult
(simply from the increased size). Interestingly, we found the
previously published condition approach provided a much
more compact linear node representation, but it wasn’t
widely adopted. This may have been because it was
confusing to visually analyze since attacks are represented by
collections of edges. We also discovered that it suffers from
quadratic edge explosions based on the number of possible
attacker privileges on a host.

To address these problems, we proposed using a
vulnerability-based approach for nodes in attack graphs. This
eliminates the inefficiency of the attack nodes (taking us
from a quadratic to a linear node representation) while it
makes the graph more intuitive to read compared to the
condition approach (since any attack results in compromising
a single vulnerability node as opposed to activating multiple
condition nodes). Surprisingly, we found this approach to
also contain an edge explosion problem but this time relative
to the number of vulnerabilities on a host.

We thus developed the hybrid condition/vulnerability
approach with the following advantages: linear node growth,
elimination of avoidable edge explosion issues, and an easy
to understand representation (due to the use of the
vulnerability nodes). For arbitrary graphs, our
condition/vulnerability approach provides better size
guarantees with respect to edge growth while only having a
small linear penalty on node growth.

Despite this, the condition and vulnerability approaches
are still viable representation options (linear in node growth
and quadratic in edge growth). Even with the quadratic edge
explosion possibilities, they can be used when it is known
that a particular scenario will not suffer significantly from
this problem. Perhaps the best argument for using these two
approaches is simply that they have a single interpretation
for the nodes. This should facilitate the application of
standard graph algorithms for analysis, something not
available with the currently used hybrid condition/exploit
approach or our hybrid condition/vulnerability approach.
Given the simple interpretation of our vulnerability
approach, it is a candidate for exploration in this area, which
may be addressed in future work.

Lastly and most importantly, we emphasize that the
research community should move away from using attack
nodes (as found in both the exploit representation and the
hybrid condition/exploit representation) since the attack
nodes add a quadratic factor to the worst-case node growth
equations. Moving to a much more compact node linear
representation (regardless of the specific choice) may
catalyze the research community by opening the door to

384Copyright (c) The Government of United States, 2015. Used by permission to IARIA. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 403 / 512

previously intractable algorithmic analyses and facilitating
human analysis of specific features.

REFERENCES

[1] A. Singhal and X. Ou, "Security Risk Analysis of Enterprise

Networks Using Probabilistic Attack Graphs," National

Institute of Standards and Technology Interagency Report

7788, 2011.

[2] S. Noel and S. Jajodia, "Managing Attack Graph Complexity

Through Visual Hierarchical Aggregation," in Workshop on

Visualization and Data Mining for Computer Security,

Fairfax, 2004, pp. 109-118.

[3] P. Ammann, D. Wijesekera and S. Kaushik, "Scalable, Graph-

Based Network Vulnerability Analysis," in ACM Conference

on Computer and Communications Security, Washington,

D.C., 2002, pp. 217-224.

[4] S. Noel, S. Jajodia, B. O'Berry and M. Jacobs, "Efficient

Minimum-Cost Network Hardening Via Exploit Dependency

Graphs," in Computer Security Applications Conference, Las

Vegas, 2003, pp. 86-95.

[5] M. Frigault, L. Wang, A. Singhal and S. Jajodia, "Measuring

Network Security Using Dynamic Bayesian Network," in

Proceedings of the 4th ACM Workshop on Quality of

Protection, 2008, pp. 23-30.

[6] L. Wang, T. Islam, T. Long, A. Singhal and S. Jajodia., "An

Attack Graph-Based Probabalistic Security Metric," in Data

and Applications Security XXII, Springer, 2008, pp. 283-296.

[7] N. Idika and B. Bhargava, "Extending Attack Graph-Based

Security Metrics and Aggregating Their Application," IEEE

Transactions on Dependable and Secure Computing, vol. 9,

no. 1, 2012, pp. 75-85.

[8] J. Homer, X. Ou and D. Schmidt, "A Sound and Practical

Approach to Quantifying Security Risk in Enterprise

Networks," Kansas State University Technical Report, 2009.

[9] M. Dacier, Y. Deswarte and M. Kaaniche, "Quantitative

Assessment of Operational Security: Models and Tools,"

LAAS Research Report 96493, 1996.

[10] I. Moskowitz and M. Kang, "An Insecurity Flow Model," in

New Security Paradigms Workshop, 1997, pp. 61-74.

[11] C. Meadows, "A Respresentation of Protocol Attacks for Risk

Assessment," Network Threats, DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, vol. 38,

1998, pp. 1-10.

[12] C. Phillips and L. Swiler, "A Graph-Based System for

Network-Vulnerability Analysis," in Proceedings of the 1998

Workshop on New Security Paradigms, Charlottesville, 1998,

pp. 71-79.

[13] R. Ortalo, Y. Deswarte and M. Kaaniche, "Experimenting

with Quantitative Evaluation Tools for Monitoring

Operational Security," IEEE Transactions on Software

Engineering, vol. 25, no. 5, 1999, pp. 633-650.

[14] L. Swiler, C. Phillips, D. Ellis and S. Chakerian, "Computer-

Attack Graph Generation Tool," in DARPA Information

Survivability Conference, Anaheim, 2001, pp. 307-321.

[15] O. Sheyner, J. Haines, S. Jha, R. Lippman and J. Wing,

"Automated Generation and Analysis of Attack Graphs," in

IEEE Symposium on Security and Privacy, Washington D.C.,

2002, pp. 273-284.

[16] S. Jha, O. Sheyner and J. Wing, "Two Formal Analyses of

Attack Graphs," in IEEE Computer Security Foundations

Workshop, Cape Breton, 2002, pp. 49-63.

[17] S. Jajodia, S. Noel and B. O'Berry, "Topological Analysis of

Network Attack Vulnerability," in Managing Cyber Threats:

Issues, Approaches and Challenges, Kluwer Academic

Publisher, 2003, pp. 247-266.

[18] S. Noel and S. Jajodia, "Measuring Security Risk of Networks

Using Attack Graphs," International Journal of Next-

Generation Computing, vol. 1, no. 1, 2010, pp. 135-147.

[19] J. Pamula, P. Ammann, S. Jajodia and V. Swarup, "A

Weakest-Adversary Security Metric for Network

Configuration Security Analysis," in Workshop on Quality of

Protection, Alexandria, 2006, pp. 31-38.

[20] L. Wang, S. Noel and S. Jajodia, "Minimum-Cost Network

Hardening Using Attack Graphs," Computer

Communications, 2006, pp. 3812-3824.

[21] B. Schneier, "Attack trees," Dr. Dobb’s journal, 1999, pp. 21-

29.

[22] B. Kordy, S. Mauw, S. Radomirović and P. Schweitzer,

"Foundations of attack–defense trees," in Formal Aspects of

Security and Trust, Springer , 2011, pp. 80-95.

[23] V. Gorodetski and I. Kotenko, "Attacks against computer

network: Formal grammar-based framework and simulation

tool," in Recent Advances in Intrusion Detection, 2002, pp.

219-238.

[24] R. W. Ritchey and P. Ammann, "Using model checking to

analyze network vulnerabilities," in 2000 IEEE Symposium

on Security and Privacy, 2000, pp. 156-165.

[25] J. Dawkins and J. Hale, "A systematic approach to multi-stage

network attack analysis," in Proceedings, Second IEEE

International Information Assurance Workshop, 2004, pp. 48-

56.

[26] N. Poolsappasit, R. Dewri and I. Ray, "Dynamic security risk

management using bayesian attack graphs," IEEE

Transactions on Dependable and Secure Computing, 2012,

pp. 61-74.

[27] D. Koller and N. Friedman, Probabilistic graphical models:

principles and techniques, MIT Press, 2009.

[28] S. J. Templeton and K. Levitt, "A requires/provides model for

computer attacks," in Proceedings of the 2000 Workshop on

New Security Paradigms, 2001, pp. 31-38.

[29] R. Lippmann, K. Ingols, C. Scott and K. Piwowarski,

"Validating and Restoring Defense in Depth Using Attack

Graphs," in Military Communications Conference,

Washington, D.C., 2006, pp. 1-10.

[30] S. Nanda and N. Deo, "A Highly Scalable Model for Network

Attack Identification and Path Prediction," in SoutheastCon,

Richmond, 2007, pp. 663-668.

385Copyright (c) The Government of United States, 2015. Used by permission to IARIA. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 404 / 512

Reliability-Aware Design Specification for Allowing Reuse-Based Reliability Level

Increment

Work in progress

Patricia López

Tekniker

Eibar, Spain

e-mail:patricia.lopez@tekniker.es

Leire Etxeberria, Xabier Elkorobarrutia

Electronics and Computing Department

Mondragon Unibertsitatea, Engineering Faculty

Mondragon, Spain

e-mail:{letxeberria,xelkorobarrutia}@mondragon.edu

Abstract— The development of safety-critical systems

is expensive and reuse can be seen as a way of reducing
the development cost of safety-critical systems. In this
context, models could be helpful for safety-critical system
development and also to facilitate safe reuse. In this
paper, an approach for allowing the reuse-based
reliability level increment is presented. This approach is
based on a holistic reliability-aware design specification
which is related to reliability levels using a knowledge
base.

Keywords-Reliability; safety; reuse; model-based .

I. INTRODUCTION

Cyber-Physical Systems (CPS) are embedded ICT
systems that are interconnected, interdependent,
collaborative, and autonomous. They provide computing and
communication, monitoring/control of physical
components/processes in various applications including
safety critical. Safety is a key aspect of Safety-critical CPSs.
A safety-critical CPS is a CPS whose failure or malfunction
may result in death or serious injury to people, loss or severe
damage to equipment/property or environmental harm.

The cost of developing safety-critical CPSs is much
higher than the cost of developing other kind of software. “A
commonly accepted rule of thumb is that development of
safety-certified software costs roughly 10 times, as much as
non-certified software with equivalent functionality” [1].
Moreover, CPSs have usually real-time constraints and this
increases the complexity, “the cost of developing safety-
critical software is likely to be 20 to 30 times the cost of
developing typical management information software” [1].

Evolution of products is also more costly in safety-
critical systems as the re-certification may imply very time-
consuming re-doing activities such as re-design, re-
verification and re-validation.

Reuse can be seen as a way of reducing development
(and specially re-development) costs of safety-critical
systems. However, reuse is quite challenging in safety-
critical domains as safety must be guaranteed.

Safety-critical systems are developed following domain-
specific safety standards that rule what kind of techniques
must be used depending on the reliability level to be obtained

and safety argumentation is made based on a specific
context. And reuse implies to change the context or
reliability level.

Models could be helpful for safety-critical system
development and also for facilitate reuse. Model-Driven
Engineering (MDE) refers to the systematic use of models as
primary engineering artifacts throughout the engineering
lifecycle. The complexity of system engineering is increasing
and model-driven engineering helps to deal with this
increasing complexity. For the development of safety-critical
systems, MDE could be used for different purposes [2][3]:

 MDE-based development of safety-critical systems:
MDE used during the development process of systems
for development, verification and validation purposes.

 MDE-based safety certification: MDE for managing
safety evidences, MDE for supporting the verification of
compliance to safety standards, etc.

This paper presents a model based approach for

supporting the reuse of safety critical systems with a special
focus on facilitating the increment of reliability level when a
product is reused.

Section II presents the state of the art in the area, section
III presents the Model-based Approach for Reuse-based
Reliability level Increment, section IV addresses the case
study that has been used and to finish the conclusions and
future work section.

II. STATE OF THE ART

A. Reuse in safety-critical systems

Reuse in safety-critical systems is a research topic that
has received quite attention lately. European projects, such
as Safety Certification of Software-Intensive Systems with
Reusable Components (SafeCer) or Open Platform for
EvolutioNary Certification Of Safety-critical Systems
(Opencoss) have been focused on reusability of safety
critical systems.

There are different reuse scenarios in safety: Intra-
standards when reuse is done in the same domain and to
meet the same standard or inter-standard or cross domain

386Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 405 / 512

when a component or system is reused in another domain
and must meet another standard.

In the intra-standard scenario, the reason of reusing could
be also different: evolutionary scenario when a system or
component changes and we need to assure that is safe, a new
product with slightly different requirements, a family of
products, when the standard evolve (new version of the
standard), when we want to increment the reliability level,
etc.

Different kinds of artifacts could be reused as well:
requirements [4], components [5], system, safety
argumentation, safety case [6][7][29], hazard analysis
[8][9]… Depending on what is reused, the phase of the life
cycle where is reused is also different; mainly two broad
phases could be distinguished: Reuse during construction of
the system according to the safety requirements or Reuse
during accreditation and certification of the system:
providing evidence.

B. Reliability levels

“Traditionally, certification standards have been process-
oriented, i.e., where a hazard analysis is performed to
identify the severity and risks associated in functional failure
for determining a Safety Level, which in turn is used to
choose and customize the process applied” [10]. This safety
level specifies a target level of risk reduction.

These safety or reliability levels are different depending
on the domain-specific standard. IEC 61508 standard, who is
intended to be a basic functional safety standard applicable
to all kinds of industry, defines the Safety integrity levels
(SIL). There are four discrete integrity levels associated with
SIL with SIL 4 the most dependable and SIL 1 the least. The
SIL can be assigned to any safety relevant function or system
or sub-system or component. The

The SIL allocation is made taking into account the rate of
dangerous failures and tolerable hazard rate of the function,
system, sub-system or component. In the standard each SIL
level is associated to a set of measures to be implemented
into the design during the design process.

The standards derived from IEC 61508 such as the
standards for industrial processes (IEC 61511), or railway
industry (EN 50126/EN 50128 /EN 50129) also use SIL.

Other standards specified other levels. In the automotive
domain (ISO 26262), the Automotive Safety Integrity
Level (ASIL) is used, a risk classification scheme that is an
adaptation of the SIL for the automotive industry. The ASIL
is established by performing a risk analysis of a potential
hazard by looking at the Severity, Exposure and
Controllability of the vehicle operating scenario. The safety
goal for that hazard in turn carries the ASIL requirements.
There are four ASILs identified by the standard: ASIL A,
ASIL B, ASIL C, ASIL D. ASIL D dictates the highest
integrity requirements on the product and ASIL A the
lowest.

For airborne systems (the DO-178C and DO-254
standards) Design Assurance Levels (DAL) are proposed.
The DAL is determined from the safety assessment process
and hazard analysis by examining the effects of a failure
condition in the system. There are five levels of compliance,

A through E, which depend on the effect a failure will have
on the operation of the aircraft. Level A is the most stringent,
defined as "catastrophic" (e.g., loss of the aircraft), while a
failure of Level E will not affect the safety of the aircraft.

The different kind of levels could be compared as they
have some similarities, but they have also differences; there
is not a one-to-one mapping.

Apart from standards, at OPENCOSS project they have
developed the concept of Assured reliability and Resilience
Level (ARRL) of components [11]. It is an approach that is
not applied at system level but at component level, which
helps to compose safe systems from components. It is based
on the Quality of Service of a component, which is a more
generic criterion that takes the trustworthiness as perceived
by users better into account. This concept complements the
Safety Integrity Level concept.

C. Reliability or Certification-aware design specification

As stated in [12] “Unfortunately, little work has been
done to date on accommodating the additional demands that
certification imposes on how the design of systems should be
expressed. Our experience indicates that certification is often
(incorrectly) viewed as an after-the-fact activity. This can
give rise to various problems during certification, because a
large fraction of the safety evidence necessary for
certification has to be gathered during the design phase and
embodied in the design specification. Failing to make the
design “certification-aware” will inevitably lead to major
omissions and effectively make the design “unauditable” for
certification purposes.”

In [12], they propose a methodology and guidelines for
modeling Software-Hardware Interfaces using SysML
(Block Definition Diagrams, Internal Block Diagrams,
Activity Diagrams and Requirement Diagrams). The goal is
to describe the design and establish the traceability (link
requirements and design).

Although [12] introduced the concept of “certification-
aware design specification” and proposed a methodology,
not all the aspects needed to get a reliability-aware design
specification are covered. To the best of our knowledge,
there is not a holistic approach for specifying a reliability-
aware specification.

This design specification should be Product-aware and
also Process-aware. Product-aware specification should
provide aspects, such as requirements-design traceability,
test case-requirements traceability, the applied fault tolerance
techniques reflected in the design, failure modes linked to
design elements, properties and contracts (formal methods)
linked to design elements and requirements…

The process-aware specification should include
information about the safety standards that have been
applied, the reliability level, the used techniques in the
phases of the life cycle and the link to the results of the
applied techniques (some aspects specified in the product-
aware part, testing results, results of formal proofs…).

There are approaches that cover part of the needs of a
holistic reliability-aware design specification:

For requirement analysis and modeling requirement
traceability [12][13][14][15][16], etc. For adding formal

387Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 406 / 512

properties or contracts to the specification: [17][18]. There
are a lot of approaches for relating safety analysis concepts
and design specification or transforming the design in safety
analysis concepts: [19][20][21][22], etc. For specifying fault
tolerance techniques, safety patterns could be used [23]
presents an approach for representing Safety Patterns in a
design. Regarding Process aware specification, [24] presents
a domain model of IEC 61508 concepts: Domain model for
SIL activities, Domain model for certification, Domain
model for communication, etc. And [25][26] present a
conceptual model of evidences for safety cases.

III. MODEL-BASED APPROACH FOR REUSE-BASED

RELIABILITY LEVEL INCREMENT

Our approach is based on the following hypothesis:

 To provide a “reliability-aware” design specification
helps to reason about the reliability level of a system or
component. This can facilitate certification process, the
reuse of components and reliability increasing process.

 It is possible to define reliability levels of components
and systems and relate this reliability levels to
techniques applied during design. Therefore, it is
possible to define a decision system that helps to decide
which techniques to apply to increase reliability.

Figure 1. Architecture of the approach

The approach proposes to use a reliability-aware design
specification in combination with a reliability-level
classification and a knowledge base that relates the levels
and the techniques applied and modeled in the specification
(see Figure 1).

The main goal of the approach is to facilitate the
increment of the reliability level of a system. In industry
often it is required to develop a new system with same
functionalities as a previous one but with a higher reliability
level. The approach will help to reuse the design,
verification, validation and certification artifacts of the
existing system to a point avoiding expensive re-design and
re-certification activities from scratch.

A. Reliability-aware design specification

The proposed specification is based on SysML and
existing approaches has been reviewed, selected and
combined to support a holistic reliability-aware view.
System Modeling Language (SysML) is a graphical
modeling language for System Engineering. It can be
considered as an extension of UML2 for systems. It supports
the specification, analysis, design, verification, and
validation of systems that include hardware, software, data,
personnel, procedures, and facilities. SysML is a Critical
Enabler for Model Driven System Engineering. SysML
could be considered the de-facto standard for systems
engineering [27]. Moreover, SysML is rapidly becoming the
notation of choice for developing safety-critical systems
[13].

The specification has two differentiated parts: the
Product-aware specification and the Process-aware
specification.

For the Product-aware specification, the following
aspects are modeled:

Structural modeling is done using Block Definition
Diagrams (bdd) and Internal block diagrams (ibd) of SysML.
SysML employs the concept of blocks to specify hierarchies
and interconnection within a system design. A BDD
describes the system hierarchy and system/component
classifications; it lets you describe relationships between
blocks, such as composition, association, and specialization.
Whereas the IBD describes the internal structure of a system
in terms of its parts, ports, and connectors. Interfaces are
described using the Port concept of ibds.

For requirements, the SysML Requirements diagram is
used. Requirements diagram is an extension of the class
diagram that allows the modelling of detailed system
requirements. It represents the system requirements and their
relationships. Traceability links are gathered in the diagram:
among requirements, among requirements and test cases,
among requirements and design and among requirements and
other model elements (use cases…). Test cases are modeled
as special blocks with <<Test Case>> stereotypes to allow
the traceability to requirements and design blocks.

Formal properties proven using formal methods are also
modeled using an adaptation of the proposal of [17].
Properties are traced to design elements and requirement
blocks.

Fault tolerance techniques such as monitors or
replication are modeled using safety patterns [23].

And design elements are trace to failure modes.

The Process-aware specification includes:

 The reliability level assigned to the component or
system

 The standard applied

 The list of techniques applied in each phase

 And links to the product-aware part and results
(testing results, results of formal proofs…).

388Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 407 / 512

Meta-data in the Sysml model is used for specifying
process-aware information for example using attributes with
stereotypes in a block (see figure 2).

B. Reliability levels

Reliability levels will be defined for components and
systems. This will be done based on ARRL [11] as it
provides the reliability level at component level and SIL
levels.

C. Decision system for increasing reliability

A decision system is being developed that will support
reuse, especially increasing reliability level of a
component/system.

Based on the reliabilility-aware design specification is
possible to know the applied techniques and results and
assign a reliability level.

A knowledge base will be developed for being able to
relate reliability levels and techniques and guide the
increment of reliability. This base will help to answer the
following questions:

 Which techniques should be applied to increase
reliability?

 Which is the current level of reliability of a design?

 …

IV. CASE STUDY

The approach is being applied to a case study. As first
case study, an educational use case has been selected [28].
This educational demonstrator has been previously used in
lectures related to safety, real-time, software engineering and
embedded system development. It is based on an elevator
system control. The elevator system is composed of 2 or
more elevators and they lift or bring down a load in a
coordinated way. Each elevator has attached a motor, up and
down sensor and shaft rotation sensor that is used to infer
position and speed.

Each elevator is controlled by an ElevatorCtrl software
component. It reads from its sensor, actuates on its motor and
announces its state to the main controller. All elevator
coordination is in charge of ElevatorSystemCtrl. The one
that commands all the elevators on response to an operator.
The operator has an interface for commanding the system.

The system is assigned next safety requirements:

 If one crane/elevator stops, the others must stop within
50 millisecond.

 The difference of position between two elevators can’t
be greater than 10 mm.

Depending on the context where this system will be used,

the required reliability level could vary. A first version of the
design has been specified using the reliability-aware design
specification.

This specification gathers the design of the system
(components, interfaces, ports, etc.) using SysML. The
traceability information has been also captured: requirements
traced to other requirements (some requirements are derived
from the “If one elevator stops, the others must stop within
50 milliseconds” requirements), requirements traced to the
test cases that verify the requirement and requirements trace
to the design elements (components, ports…) that satisfy the
requirement. Formal properties such as safety contracts that
have been used for verification of timing have been also
specified.

Safety patterns applied to the design are showed
explicitly such as the Monitor pattern of the Communication
Supervisor used in the system.

Finally, metadata is used to add information about the
process such as the required reliability level and the used
techniques.

The figure 2 is an excerpt of the reliability-aware design
specification (concepts that were captured in different
diagrams have been mixed for presentation purposes).

One of the benefits of having a reliability-aware design
specification is that it facilitates the reuse of the system’s
design, the reuse of verification & validation artifacts and
also the reuse of certification artifacts.

As next step, a scenario of reusing with an increment of
reliability level is foreseen.

V. CONCLUSIONS AND FUTURE WORK

First results, especially of the reliability-aware design
specification show interesting findings. The approach could
be useful for reusing the design with different purposes not
only for incrementing reliability. Moreover, the approach is
also useful for novel safety engineers or companies that start
developing safety-critical systems but they have not so much
experience with standards.

However, we have only preliminary results with an
educational case study. Further work is needed to see the
applicability of the approach in industry.

389Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 408 / 512

 bdd [Package] System [System]

«testCase»

TestCase1

«testCase»

TC1: Elev ator 1

reaches the top

position and stops

(before elev ator 2

has reached the

destination)

«block»

System

«VerificationTechique»

- verification Technique :Tecnique

«Reliabil ity Level»

- level :int

«requirement»

If an elev ator does not

receiv e any message in 10

miliseconds, it should stop

(fail-safe state)

«requirement»

If one elev ator stops, the

others must stop within 50

milliseconds

«requirement»

Each elev ator must

communicate status to Main

Control «requirement»

The Main control must send stop

commands to the elev ators if any

of them is stopped or has not

receiv ed status of any of them

«testCase»

TC2: Communication fails

and elev ator 1 does not

receiv e the message

sent by Main Control

«flowPort» status «flowPort» command

ec01 : ElevatorCtrl

«flowPort» status «flowPort» command
«flowPort» status «flowPort» command

ec02 : ElevatorCtrl

«flowPort» status «flowPort» command

«flowPort» in_e1 status

«flowPort» out_e1 status

«flowPort»

in_e2 status

«flowPort»

out_e2 status
«flowPort» in_e1 command

«flowPort»

out_e1 command

«flowPort»

out_e2 command

«flowPort»

in_e2 command

 : CanBus«flowPort» in_e1 status

«flowPort» out_e1 status

«flowPort»

in_e2 status

«flowPort»

out_e2 status
«flowPort» in_e1 command

«flowPort»

out_e1 command

«flowPort»

out_e2 command

«flowPort»

in_e2 command

«flowPort»

e1 status
«flowPort»

e2 status

«flowPort»

e1 command

«flowPort»

e2 command

 : MainCtrl«flowPort»

e1 status
«flowPort»

e2 status

«flowPort»

e1 command

«flowPort»

e2 command
ui : UI

«Monitor»

Communication

Superv isor

Each ElevatorCtrl and

the MainCtrl has a

communication

supervisor that monitors

the message incoming.

If a valid message has

not arrived in 10 ms, it

orders the controller to

stop.

«Safety Contract»

Timing

«requireme...

Reaction times

«deriveReqt»

«deriveReqt»

«deriveReqt»

«verify»

«verify»

«verify»

«satisfy»«satisfy»

«satisfy»

«satisfy»

«satisfy»

«satisfy»

«deriveReqt»

«verify»

Figure 2. Excerpt of the reliability-aware design specification of the case study

390Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 409 / 512

REFERENCES

[1] K. Nilsen, Certification Requirements for Safety-Critical
Software, RTC magazine, 2004,
http://www.rtcmagazine.com/articles/view/100010, retrieved:
October, 2015.

[2] J. L. de la Vara et al, Towards a model-based evolutionary
chain of evidence for compliance with safety standards.
In “Proceedings of the 2012 international conference on
Computer Safety, Reliability, and
Security (SAFECOMP'12)”, F. Ortmeier and P. Daniel (Eds.).
Springer-Verlag, Berlin, Heidelberg, 2012, pp.64-78.

[3] R. K. Panesar-Walawege, Using model-driven engineering to
support the certification of safety-critical systems, Doctoral
thesis, University of Oslo, 2012

[4] J. Dehlinger and R.R. Lutz. 2005. A product-line
requirements approach to safe reuse in multi-agent systems.
“SIGSOFT Softw. Eng. Notes” 30, 4, 2005,pp. 1-7.

[5] R. Land, M. Åkerholm, and J. Carlson. 2012. Efficient
software component reuse in safety-critical systems - an
empirical study. In “Proceedings of the 31st international
conference on Computer Safety, Reliability, and Security
(SAFECOMP'12)”, F. Ortmeier and P. Daniel (Eds.).
Springer-Verlag, Berlin, Heidelberg, 2012, pp. 388-399.

[6] P. Fenelon, T. P. Kelly, and J. A. McDermid, Safety Cases for
Software Application Reuse. In the “proceedings of
SAFECOMP '95”, 1995, pp. 419-436

[7] D. Bush, Towards Formalising Reuse in Safety Cases,
“Proceedings of the INCOSE UK Spring Symposium”,
Tolleshunt Knights, Essex, 2002.

[8] S. Baumgart, Investigations on hazard analysis techniques for
safety critical product lines, “IDT Workshop on Interesting
Results in Computer Science and Engineering (IRCSE)”,
2012.

[9] L. Grunske, B. Kaiser, and R. H. Reussner, Specification and
evaluation of safety properties in a component-based software
engineering process. In “Component-Based Software
Development for Embedded Systems”, C. Atkinson, C.
Bunse, H. G. Gross, and C. Peper (Eds.). Springer-Verlag,
Berlin, Heidelberg, 2005, pp. 249-274.

[10] SafeCer project (Safety Certification of Software-Intensive
Systems with Reusable Components), http://safecer.eu/,
retrieved: October, 2015.

[11] E. Verhulst and B. H. C. Sputh, , ARRL: A criterion for
compositional safety and systems engineering: A normative
approach to specifying components, “Software Reliability
Engineering Workshops (ISSREW)”, 2013 IEEE International
Symposium on , vol., no., 4-7 Nov. 2013, pp.37-44

[12] M. Sabetzadeh, S. Nejati, L. Briand, and A. H. Evensen Mills,
Using SysML for Modeling of Safety-Critical Software-
Hardware Interfaces: Guidelines and Industry Experience.
In Proceedings of the 2011 IEEE 13th International
Symposium on High-Assurance Systems Engineering (HASE
'11). IEEE Computer Society, Washington, DC, USA, 2011,
pp.193-201.

[13] S. Nejati, M. Sabetzadeh, D. Falessi, L. Briand, and T. Coq.
2012. A SysML-based approach to traceability management
and design slicing in support of safety certification:
Framework, tool support, and case studies.” Inf. Softw.
Technol.” 54, 6, 2012, pp. 569-590.

[14] D. Falessi, S. Nejati, M. Sabetzadeh, L. Briand, and A.
Messina, SafeSlice: a model slicing and design safety
inspection tool for SysML. In “Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on
Foundations of software engineering (ESEC/FSE '11)”. ACM,
New York, NY, USA, 2011, pp. 460-463.

[15] A. Albinet, J.-L. Boulanger, H. Dubois, M.-A. Peraldi-Frati,
Y. Sorel, and Q.-D. Van, Model-based methodology for

requirements traceability in embedded systems, in
“Proceedings of 3rd European Conference on Model Driven
Architecture Foundations and Applications, ECMDA'07”,
Haifa, Israel, 2007.

[16] P. Colombo, F. Khendek, and L. Lavazza, Requirements
analysis and modeling with problem frames and SysML: a
case study. In “Proceedings of the 6th European conference
on Modelling Foundations and Applications (ECMFA'10)”,
T. Kühne, B. Selic, M.-P. Gervais, and F. Terrier (Eds.).
Springer-Verlag, Berlin, Heidelberg, 2010, pp.74-89.

[17] J.-F. Pétin, D. Evrot, G. Morel, and P. Lamy, Combining
SysML and formal models for safety requirements
verification, “ICSSEA 2010”, 2010.

[18] S. Tonetta, Contract-based design of safety-critical software
components, “International Workshop on Critical Software
Component Reusability and Certification across Domains
(CSC 2013)”, ICSR13 workshop, June 18 2013

[19] K. Thramboulidis and S. Scholz, Integrating the 3+1 SysML
view model with safety engineering, “Emerging Technologies
and Factory Automation (ETFA)”, 2010 IEEE Conference on
, vol., no., 1,8, 2010, pp.13-16

[20] G. Li and B. Wang, SysML aided safety analysis for safety-
critical systems. In “Proceedings of the Third international
conference on Artificial intelligence and computational
intelligence - Volume Part I (AICI'11)”, H. Deng, D. Miao, J.
Lei, and F. L. Wang (Eds.), Vol. Part I. Springer-Verlag,
Berlin, Heidelberg, 2011, pp. 270-275.

[21] F. Mhenni, N. Nguyen, H. Kadima, and J. Choley, Safety
analysis integration in a SysML-based complex system design
process, “Systems Conference (SysCon)”, 2013 IEEE
International, vol., no., 2013, pp.70-75

[22] J. Xiang, K. Yanoo, Y. Maeno, and K. Tadano, Automatic
Synthesis of Static Fault Trees from System Models, “Secure
Software Integration and Reliability Improvement (SSIRI)”,
2011 Fifth International Conference on, 2011, pp.127-136

[23] P. Antonino, T. Keuler, E.Y. Nakagawa, , Towards an
approach to represent safety patterns, “The Seventh
International Conference on Software Engineering Advances,
ICSEA”, 2012.

[24] D. Kuschnerus, F. Bruns, T. Musch, A UML Profile for the
Development of IEC 61508 Compliant Embedded Software,
“Embedded Real Time Software and Systems - ERTS² “,
2012.

[25] R. K. Panesar-Walawege, M. Sabetzadeh, and L. Briand,
Using UML Profiles for Sector-Specific Tailoring of Safety
Evidence Information, “30th International Conference, ER
2011”, Brussels, Belgium, October 31 - November 3, 2011,
pp.362-378

[26] R. K. Panesar-Walawege, M. Sabetzadeh,L. Briand, T. Coq,
Characterizing the Chain of Evidence for Software Safety
Cases: A Conceptual Model Based on the IEC 61508
Standard, “Software Testing, Verification and Validation
(ICST)”, 2010 Third International Conference on , vol., no.,
6-10 April 2010,pp.335-344

[27] W. Schafer, and H. Wehrheim, The Challenges of Building
Advanced Mechatronic Systems, “Future of Software
Engineering, FOSE '07”, 23-25 May 2007, pp.72-84

[28] M. Illarramendi, L. Etxeberria, and X. Elkorobarrutia, Reuse
in Safety Critical Systems: Educational Use Case First
Experiences. In “Proceedings of the 2014 40th EUROMICRO
Conference on Software Engineering and Advanced
Applications (SEAA '14)”. IEEE Computer Society,
Washington, DC, USA, 2014, pp. 417-422.

[29] I. Sljivo, Facilitating Reuse of Safety Case Artefacts Using
Safety Contracts, Doctoral thesis, Mälardalen University,
2015

391Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 410 / 512

Best Practices for the Design
of RESTful Web Services

Pascal Giessler
and Michael Gebhart

iteratec GmbH
Stuttgart, Germany

Email: pascal.giessler@iteratec.de,
Email: michael.gebhart@iteratec.de

Dmitrij Sarancin, Roland Steinegger,
and Sebastian Abeck

Cooperation & Management
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
Email: dmitrij.sarancin@student.kit.edu,

Email: roland.steinegger@kit.edu,
Email: sebastian.abeck@kit.edu

Abstract—The trend towards creating web services based on the
REpresentational State Transfer (REST) is unbroken. Because of
this, several best practices for designing RESTful web services
have been created in research and practice to ensure a certain
level of quality. But, these best practices are often described
differently with the same meaning due to the nature of natural
language. In addition, they are not collected and presented in
a central place but rather distributed across several pages in
the World Wide Web, which impedes their application even
further. In this article, we identify, collect, and categorize several
best practices for designing RESTful web services and illustrate
their application on a real system to show their application.
For illustration purpose, we apply the best practices on the
CompetenceService, an assistance service of the SmartCampus
system developed at the Karlsruhe Institute of Technology (KIT).

Keywords–REST; RESTful; best practices; collection; catalog;
design; quality; research and practice

I. INTRODUCTION

Over the years, more and more web services based on the
architectural style REST were developed, which uses existing
functionality from the application layer protocol Hypertext
Transfer Protocol (HTTP) [1] [2]. This results in an increasing
interest compared to traditional web services with Simple
Object Access Protocol (SOAP), which can be shown in a
Google Trend Analysis with the keywords REST and SOAP
or in the increasing usage of REST- instead of SOAP-based
web services [1]. Also big companies, such as Twitter or
Amazon, are using REST-like interfaces for their services,
which are shown in their Application Programming Interface
(API) documentations.

Despite this trend, there are still no standards or guidelines
about how to develop a RESTful web service. Instead of
this, several best practices in research and practice have been
developed and were published in a range of articles, magazines
and pages in the World Wide Web (WWW). But, these
best practices were often described differently with the same
semantics due to the nature of natural language [3]. This results
in several obscurities and misconceptions by applying these
best practices.

To overcome these issues, we have collected, categorized
and formalized several best practices in a way that they can

be easily applied during the development of RESTful web ser-
vices , as well as for analyzing existing RESTful web services.
More precisely, we have defined eight different categories and
found an amount of 23 best practices that will be described
in this paper. These best practices provide guidelines for the
design of RESTful web services to support certain quality
goals such as the usability of the Web API. Furthermore, their
usage also results in an increasing consistency of web services.

For illustration, we have used this set of best practices
for the development of the CompetenceService as part of
the SmartCampus system at the KIT. The SmartCampus is
a system which provides functionality for students, guests and
members of an university to support their daily life. Today,
the SmartCampus already offers some services, such as the
ParticipationService to support the decision-making process
between students, professors and members of the KIT with
a new approach called system-consenting [4]. The developed
services at the SmartCampus are based on REST, so that
they can be used for several different devices as a lightweight
alternative to SOAP.

The current paper is structured as follows: In Section II,
the architectural style REST will be described in detail to lay
the foundation for this paper. Afterwards, existing papers and
articles will be discussed in Section III to show the necessity
of identification, collection, and categorization of existing best
practices for RESTful web services. The CompetenceService
is used to illustrate the best practices will be presented in
Section IV. In Section V, the best practices for RESTful web
services will be presented in detail so that they can be easily
applied during the design phase of such web services. Finally,
a summary of this paper and an outlook on further work will
be given in Section VI.

II. FOUNDATION

REST is an architectural style, which was developed and
first introduced by Fielding [5] in his dissertation. According
to Garlan and Shaw [6], an architectural style can be described
as follows: “an architectural style determines the vocabulary
of components and connectors that can be used in instances of
that style, together with a set of constraints on how they can
be combined.” [6, p. 6].

392Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 411 / 512

For the design of REST, Fielding [5] has identified four
key characteristics, which were important for the success
of the current WWW [7]. To ensure these characteristics,
the following constraints were derived from existing network
architectural styles together with another constraint for the
uniform interface [5]: 1) Client and Server, 2) Statelessness,
3) Layered Architecture, 4) Caching, 5) Code on Demand and
6) Uniform Interface. The latter one represents the Web API
of RESTful web services and can be seen as an umbrella
term, since it can be decomposed into four sub-constraints [7]:
6.1) Identification of resources, 6.2) Manipulation of resources
through representations, 6.3) Self-descriptive messages and
6.4) Hypermedia.

If all of these constraints are fulfilled by a web service,
it can be called RESTful. The only exception is “Code on
Demand”, since it is an optional constraint and has not to be
implemented by a web service.

III. STATE OF THE ART

This section discusses different articles, magazines and
approaches in the context of RESTful best practices, which
respect the architectural style REST and its underlying con-
cepts.

In Fielding [5], Fielding presents the structured approach
for designing the architectural style REST, while it remains
unclear how a REST-based web service can be developed in a
systematic and comprehensible manner. Furthermore, there is
also a lack of concrete examples of how hypermedia can be
used as the engine of the application state, which can be one
reason why REST is understood and implemented differently.

Mulloy [8] presents different design principles and best
practices for Web APIs, while he puts the focus on “pragmatic
REST”. By “pragmatic REST” the author means that the
usability of the resulting Web API is more important than
any design principle or guideline. But, this decision can
lead to neglecting the basic concepts behind REST such as
hypermedia.

Jauker [9] summarizes ten best practices for a RESTful
API, which represent, in essence, a subset of the described
best practices by Mulloy [8] and a complement of new best
practices. Comparable with [8], the main emphasis is placed
on the usability of the web interface and not so much on the
architectural style REST, which can lead to the previously
mentioned issue.

Papapetrou [10] classifies best practices for RESTful APIs
in three different categories. However, there is a lack of
concrete examples of how to apply these best practices on
a real system compared to the two previous articles.

In Vinoski [11], a checklist of best practices for developing
RESTful web services is presented, while the author explicitly
clarifies that REST is not the only answer in the area of
distributed computing. He structures the best practices in four
sections, which addressing different areas of a RESTful web
service such as the representation of resources. Despite all
of his explanations, the article lacks in concrete examples to
reduce the ambiguousness.

Richardson et. al [7] cover in their book as a successor
of [12], among other topics, the concepts behind REST and
a procedure to develop a RESTful web service. Furthermore,
they place a great value on hypermedia , as well as Hypermedia

As The Engine Of Application State (HATEOAS), which is not
taken into account by all of the prior articles. But, the focus of
this work is the comprehensive understanding of REST rather
than providing best practices for a concrete implementation to
reduce the complexity of development decisions.

In Burke [13], Burke presents a technical guide of how to
develop web services based on the Java API for RESTful Web
Services (JAX-RS) specification. But, this work focuses on the
implementation phase rather than the design phase of a web
service, where the necessary development decisions have to be
made.

IV. SCENARIO

The SmartCampus is a modern web application, which
simplifies the daily life of students, guests, and members at the
university. Today, it offers several services, such as the Partic-
ipationService for decision-making [4], the SmartMeetings for
discussions or the CampusGuide for navigation and orientation
on the campus. By using non-client specific technologies, the
services can be offered to a wide range of different client
platforms, such as Android or iOS.

The CompetenceService is a new service as part of the
SmartCampus to capture and semantically search competences
in the area of information technology. For easier acquisition
of knowledge information, the CompetenceService offers the
import of competence and profile information from various
social networks such as LinkedIn or Facebook. The resulting
knowledge will be represented by an ontology, while the profile
information will be saved in a relational database. SPARQL
Protocol And RDF Query Language (SPARQL) is used as
the query language for capturing and searching knowledge
information in the ontology.

In Figure 1, the previously described CompetenceService
is illustrated in the form of a component diagram. For im-
plementation of the CompetenceService, the Java framework
Spring was used.

Relational
database

Ontology
database

Competence
Server

use

SQ
L

useSPARQL

Competence
Client

REST-based
API

REST-based
API

REST-based
API

Facebook

LinkedIn

Google+

XING

Figure 1. Component model of the CompetenceService.

To demonstrate the benefits of this service, a simple use
case will be described in the following. A young startup
company is looking for a new employee, who has competences
in “AngularJS” and “Bootstrap”. For that purpose, the startup
company uses the semantics search engine of the Compe-
tenceService to search for people with the desired skills. The
resulting list of people will be ordered by relevance so that the
startup company can easily contact the best match.

393Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 412 / 512

V. BEST PRACTICES FOR
RESTFUL WEB SERVICES

This section presents eight different categories of best prac-
tices for designing RESTful web services, whereby each one is
represented by a subsection. The contained best practices have
to be seen as recommendations to design and improve such
services rather than as strict guidelines. So, it is fine, if not
all of the given best practices are fulfilled by a RESTful web
service so long as an understandable reason for not considering
one can be given. Furthermore, it is important to point out
here that the fulfillment of the following best practices does
not guarantee the compliance of the mentioned constraints in
Section II. For this, the Richardson Maturity Modell (RMM)
can be used to analyze the preconditions of a RESTful web
service [14].

A. No Versioning
Versioning of a Web API is one of the most important

considerations during the design of web services since the API
represents the central access point of a web service and hides
the service implementation. This is why a web interface should
never be deployed without any versioning identifier according
to Mulloy [8]. For versioning, many different approaches exist
such as embedding it into the base Uniform Resource Identifier
(URI) of the web service or using the HTTP-Header for
selecting the appropriate version [8]. But, web services based
on REST do not need to be versioned due to hypermedia.

That is why, RESTful web services can be compared with
traditional websites that are still accessible on all web browsers
when modifying the content of the websites. So, no additional
adjustment is necessary on the client side. Furthermore, ver-
sioning also has a negative impact on deployed web services,
which Fielding states as follows: “Versioning an interface is
just a polite way to kill deployed applications” [15] since it
increases the effort for maintaining the web service.

B. Description of resources
The description of resources correlates with the usability

of the web service since the resources represent or abstract the
underlying domain model. For this category, five best practices
could be identified:

1) According to Vinoski [11], Papapetrou [10] and Mul-
loy [8], nouns should be used for resource names.

2) The name of a resource should be concrete and
domain specific, so that the semantics can be inferred
by a user without any additional knowledge [8] [10].

3) The amount of resources should be bounded to limit
the complexity of the system, whereby this recom-
mendation depends on the degree of abstraction of
the underlying domain model [8].

4) The mixture of plural and singular by naming re-
sources should be prevented to ensure consistency [8]
[9].

5) The naming convention of JavaScript should be con-
sidered since the media type JavaScript Object No-
tation (JSON) is the most used data format for the
client and server communication by this time [2] [8]
[16].

Figure 2 illustrates the first, second and third best practice of
this category.

1 /* ProfileController */
2 @RestController
3 @RequestMapping(value = "/profiles")
4 public class ProfilesController {
5 ...
6 @RequestMapping(method = RequestMethod.GET)
7 public List<Profile> getProfiles() {...}
8 ...
9 }

10
11 /* CompetenceController */
12 @RestController
13 @RequestMapping(value = "/competences")
14 public class CompetenceController {
15 ...
16 @RequestMapping(method = RequestMethod.GET)
17 public List<Competence> getCompetences() {...}
18 ...
19 }

Figure 2. Example for description of resources.

C. Identification of Resources
According to Fielding [5], URIs should be used for unique

identification of resources. For this constraint, we have found
four best practices:

1) An URI should be self-explanatory according to the
affordance [8]. The term affordance refers to a design
characteristic by which an object can be used without
any guidance.

2) A resource should only be addressed by two URIs.
The first URI address represents a set of states of the
specific resource and the other one a specific state of
the previously mentioned set of states [8].

3) The identifier of a specific state should be difficult
to predict [10] and not references objects directly
according to the Open Web Application Security
Project (OWASP) [17], if there is no security layer
available.

4) There should be no verbs within the URI since this
implies a method-oriented approach such as SOAP
[8] [9].

Figure 3 illustrates the second best practice of this category.
Note that there are no verbs within the URIs, hence the fourth
best practice is also fulfilled.

1 /* Set of profiles */
2 competence-service/profiles
3
4 /* Specific profile with identifier {id} */
5 competence-service/profiles/{id}

Figure 3. Example for identification of resources.

D. Error Handling
As already mentioned, the Web API represents the central

access point of a RESTful web service, which is comparable
with a provided interface of a software component [18]. Each
information about the implementation of the service is hidden
by the interface. Therefore, only the outer behavior can be

394Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 413 / 512

observed through responses by the web service, which is why
well-known software debugging techniques such as setting
exception breakpoints can not be applied.

For this reason, the corresponding error message has to be
clear and understandable so that the cause of the error can be
easily identified. With this in mind, we could identify three
best practices:

1) The amount of used HTTP status codes should be
limited to reduce the feasible effort for looking up in
the specification [8] [9].

2) Specific HTTP status codes should be used accord-
ing to the official HTTP specification [19] and the
extension [20] [9] [11] [10].

3) A detailed error message should be given as a hint for
the error cause on client side [8] [9]. That is why, an
error message should consist of four ingredients: 3.1)
a message for developers, which describes the cause
of the error and possibly some hints how to solve
the problem, 3.2) a message that can be shown to the
user, 3.3) an application specific error code and 3.4) a
hyperlink for further information about the problem.

Figure 4 illustrates the mentioned ingredients of an error
message according to the third best practice of error handling.

1 HTTP/1.1 404 NOT FOUND
2 /* More header information */
3 {
4 "error" : {
5 "responseCode" : 404,
6 "errorCode" : 107,
7 "messages" : {
8 "developer" : "The resource ’profile’

could not be found.",
9 "user" : "An error occurred while

requesting the information. Please
contact our technical support."

10 },
11 "additionalInfo": ".../competence-

service/errors/107"}
12 }

Figure 4. Example for detailed error message.

E. Documentation of the Web API

A documentation for Web APIs is a debatable topic in the
context of RESTful web services since it represents an out-
of-band information, which should be prevented according to
Fielding: “Any effort spent describing what method to use on
what URIs of interest should be entirely defined within the
scope of the processing rules for a media type” [21]. This
statement can be explained with the fact that documentation
is often used as a reference book in traditional development
scenarios. As a result of this, it can lead to hardcoded hyper-
links in the source code instead of interpreting hyperlinks of
the current representation following the HATEOAS principle.
Also business workflows will be often implemented according
to the documentation. In this case, we call it Documentation
As The Engine Of Application State (DATEOAS). As a result
of this, we have developed a new kind of documentation in

consideration of HATEOAS to give developers a guidance for
developing a client component.

The new documentation consists of three ingredients: 1)
Some examples which show how to interact with different
systems according to the principle of HATEOAS due to the
fact that some developers are not familiar with this concept
[21], 2) an abstract resource model in form of a state diagram,
which defines the relationship and the state transitions between
resources. Also a semantics description of the resource and
its attributes should be given in form of a profile such as
Application-Level Profile Semantics (ALPS) [22], which can
be interpreted by machines and humans and 3) a reference
book of all error codes should be provided so that developers
can get more information about an error that has occurred.

Figure 5 illustrates an abstract resource model of the
CompetenceService. Based on this model, it can be derived
which request must be executed to get the desired information.
For example to get all competences of a specific profile, we
have to first request the resource profiles. This results in a set of
available profiles, whereby each profile contains one hyperlink
for further information. After following the hyperlink by
selecting the desired profile, the whole information about the
profile will be provided , as well as further hyperlinks to related
resources such as competences.

profiles
competencies

competencies

self self

profiles

Figure 5. Example for documentation of the Web API.

F. Usage of Parameters
Each URI of a resource can be extended with parameters to

forward optional information to the service. In the following,
we are focusing on four different use cases since they will
be supported by several web services offered by Facebook or
Twitter.

1) Filtering: For information filtering of a resource either
its attributes or a special query language can be used. The
election for one of these two variants depends on the neces-
sary expression power of the information filtering. Figure 6
illustrates how a special user group can be fetched by using a
query language [9].

1 GET /profiles?filter=(competencies=java%20and%20
certificates=MCSE_Solutions_Expert)

Figure 6. Filtering information by a using query language.

2) Sorting: For information sorting, Jauker [9] recom-
mends a comma separated list of attributes with “sort” as
the URI parameter followed by a plus sign as a prefix for
an ascending order or a minus sign for a descending order.
Finally, the order of the attributes represents the sort sequence.
Figure 7 illustrates how information can be sorted by using the
attributes education and experience.

395Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 414 / 512

1 GET /profiles?sort=-education,+experience

Figure 7. Sorting a resource by using attributes.

3) Selection: The selection of information in form of
attributes reduces the transmission size over the network by
responding only with the requested information. For this
purpose, Mulloy [8] and Jauker [9] recommend a comma sepa-
rated list of attributes and the term fields as the URI parameter.
Figure 8 represents an example how the desired information
can be selected before transmitting over the network.

1 GET /profiles?fields=id,name,experience

Figure 8. A selection of resource information.

4) Pagination: Pagination enables the splitting of
information on several virtual pages, while references for the
next (next) and previous page (prev) exist , as well as for
the first and last page (first and last). As URI parameter,
offset and limit were recommended, whereby the first one
identifies the virtual page and the last one defines the amount
of information on the virtual page [8] [9]. A default value
for offset and limit can not be given since it depends on the
information to be transmitted to the client, which Mulloy
stated [8] as follows: “If your resources are large, probably
want to limit it to fewer than 10; if resources are small, it
can make sense to choose a larger limit” [8, p. 12]. Figure 1
illustrates a request using pagination on the resource profiles.

1 GET /profiles?offset=0&limit=10

Listing 1. Requesting 10 profiles by using pagination.

G. Interaction with Resources
By using REST as the underlying architectural style of a

system, a client interacts with the representations of a resource
instead of using it directly. The interaction between client and
server is built on the application layer protocol HTTP, which
already provides some functionality for the communication.
For the interaction with a resource, we could identify three
different best practices:

1) According to Jauker [9] and Mulloy [8], the used
HTTP methods should be conform to the method’s
semantics defined in the official HTTP specification.
So, the HTTP-GET method should only be used by
idempotent operations without any side effects. For a
better overview, Table I sums up the most frequently
used HTTP methods and their characteristics. These
characteristics can be used to associate the HTTP
methods with the correct Create Read Update Delete
(CRUD)-operation [11].

2) The support of HTTP-OPTIONS is recommended if
a large amount of data has to be transmitted since it
allows a client to request the supported methods of

the current representation before transmitting infor-
mation over the shared medium. But, this additional
HTTP-OPTIONS request is only necessary, if the
supported operations were not written explicitly in
the representation.

3) The support of conditional GET should be consid-
ered during the development of a service based on
HTTP since it prevents the server from transmitting
previously sent information. Only if there are mod-
ifications of the requested information since the last
request, the server responds with the latest represen-
tation. For the implementation of conditional GET,
there are two different approaches that are already
described by Vinoski [11].

TABLE I. CHARACTERISTICS OF THE MOST USED HTTP METHODS.

HTTP method safe idempotent

POST No No

GET Yes Yes

PUT No Yes

DELETE No Yes

H. Support of MIME Types
Multipurpose Internet Mail Extensions (MIME) types are

used for the identification of data formats, which will be
registered and published by the Internet Assigned Numbers
Authority (IANA). These types can be seen as representation
formats of a resource. For this category, we could identify the
following four best practices:

1) At least two representation formats should be sup-
ported by the web service, such as JSON or Extensi-
ble Markup Language (XML) [8].

2) JSON should be the default representation format
since its increasing distribution [8].

3) Existing MIME types should be used, which already
support hypermedia such as JSON-LD (JSON for
Linking Data), Collection+JSON and Siren [11].

4) Content negotiation should be offered by the web
service, which allows the client to choose the rep-
resentation format by using the HTTP header field
“ACCEPT” in his request. Furthermore, there is the
opportunity to weight the preference of the client with
a quality parameter [11].

VI. SUMMARY AND OUTLOOK

In this article, we identified, collected, and categorized
best practices for a quality-oriented design of RESTful web
services. More precisely, based on existing work 23 best
practices could be identified and classified into eight different
categories. The intention of this article was not to reinvent
the wheel. For this reason, the best practices of this article
were reused from existing work. Focus of the work presented
in this article was their collection, categorization, and thus
unification. We illustrated the best practices by means of
the CompetenceService developed at the KIT. By applying
the best practices, the CompetenceService could be designed
in a quality-oriented manner. Any time during the design
or afterwards, the quality of the design could be systemat-
ically evaluated. The clear set of best practices enabled to

396Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 415 / 512

perform the evaluation by different developers. Furthermore,
the repeatability of the analysis and the comparability of the
results were guaranteed. As result, design weaknesses of the
CompetenceService could be identified and rapidly corrected
and the time spent making design decisions could be reduced.

The best practices and their categorization and unification
help software architects and developers to design RESTful
web services in a quality-oriented manner. As best practices
are distributed across several existing work, until now, a
systematic analysis of RESTful web services regarding their
design quality has been a complex task. In most cases, software
architects and developers have a basic understanding about
how to create well-designed web services. However, a common
understanding about how to evaluate web services is missing.
The unification of best practices introduced in this article
reduces the necessity to lookup best practices in literature.

In the future, we plan to investigate the impact of such
best practices on the development speed. To evaluate the
usefulness of the best practices for RESTful web services,
we consider setting up two teams of students, Team A and
Team B, with the requirement to develop two services as part
of the SmartCampus at the KIT of similar complexity. Both
teams are expected to have similar experiences in developing
software systems and both teams should not have knowledge
about the quality-oriented design of RESTful web services.
However, Team A will be equipped with our catalog of best
practices for RESTful web services. We expect that Team A
will spend much less time searching appropriate design rules
and design agreements. The best practices will provide Team A
with guidelines about how to design the services. Furthermore,
the design of the resulting service supports certain quality
goals. However, we expect that the more sophisticated design
will result in a more complex implementation phase. Figure 9
shows the expected results.

2 4 6 8

Team B

Team A

Week

Requirements
Design

Implementation
V erification

Figure 9. Duration of the development phases in weeks.

In addition, we plan to describe the best practices by means
of technology-independent metrics. In a next step, we plan
to map these technology-independent metrics onto concrete
technologies, such as Java and JAX-RS. This mapping consti-
tutes the basis for an automated application of the metrics on
concrete design or implementation artifacts. We are currently
working on a software tool, the QA82 Analyzer [23] [24].
This tool enables the automatic evaluation of software artifacts
regarding best practices. This tool is available as open source
to support the quality-oriented design of RESTful web services
in practice, teaching, and research.

REFERENCES
[1] R. Mason, “How rest replaced soap on the web: What it means to you,”

October 2011, URL: http://www.infoq.com/articles/rest-soap [accessed:
2015-02-20].

[2] A. Newton, “Using json in ietf protocols,” the IETF Journal, vol. 8,
no. 2, October 2012, pp. 18 – 20.

[3] IEEE, “Std 830-1998: Recommended Practice for Software Require-
ments Specifications,” 1998.

[4] M. Gebhart, P. Giessler, P. Burkhardt, and S. Abeck, “Quality-oriented
requirements engineering for agile development of restful participation
service,” Ninth International Conference on Software Engineering Ad-
vances (ICSEA 2014), October 2014, pp. 69 – 74.

[5] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[6] D. Garlan and M. Shaw, “An introduction to software architecture,”
Pittsburgh, PA, USA, Tech. Rep., 1994.

[7] L. Richardson, M. Amundsen, and S. Ruby, RESTful Web APIs.
O’Reilly Media, 2013.

[8] B. Mulloy, “Web API Design - Crafting Interfaces that Developers
Love,” March 2012, URL: http://pages.apigee.com/rs/apigee/images/
api-design-ebook-2012-03.pdf [accessed: 2015-04-09].

[9] S. Jauker, “10 Best Practices for better RESTful API,” Mai 2014,
URL: http://blog.mwaysolutions.com/2014/06/05/10-best-practices-
for-better-restful-api/ [accessed: 2015-02-19].

[10] P. Papapetrou, “Rest API Best(?) Practices Reloaded,” URL: http://
java.dzone.com/articles/rest-api-best-practices [accessed: 2015-02-26].

[11] S. Vinoski, “RESTful Web Services Development Checklist,” Internet
Computing, IEEE, vol. 12, no. 6, 2008, pp. 94–96. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs\ all.jsp?arnumber=4670126

[12] L. Richardson and S. Ruby, Restful Web Services. O’Reilly Media,
2007.

[13] B. Burke, RESTful Java with JAX-RS 2.0. O’Reilly Media, 2013.
[14] J. Webber, S. Parastatidis, and I. Robinson, REST in Practice: Hyper-

media and Systems Architecture. O’Reilly Media, 2010.
[15] R. T. Fielding, “Evolve’13 - The Adobe CQ Community Technical

Conference - Scrambled Eggs,” 2013, URL: http://de.slideshare.net/
royfielding/evolve13-keynote-scrambled-eggs [accessed: 2015-09-23].

[16] A. DuVander, “1 in 5 APIs Say “Bye XML”,” 2011, URL: http:
//www.programmableweb.com/news/1-5-apis-say-bye-xml/2011/05/25
[accessed: 2015-02-20].

[17] OWASP, “Testing for insecure direct object references (otg-authz-004),”
2014, URL: https://www.owasp.org/index.php/Testing for Insecure
Direct Object References (OTG-AUTHZ-004) [accessed: 2015-05-
12].

[18] J. Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product-line Approach, ser. ACM Press Series. Addison-
Wesley, 2000.

[19] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Rfc 2616, hypertext transfer protocol – http/1.1,”
http://tools.ietf.org/html/rfc2616, 1999.

[20] M. Nottingham and R. Fielding, “Rfc 6585, additional http status
codes,” 2012, URL: http://tools.ietf.org/html/rfc6585 [accessed: 2015-
02-18].

[21] R. T. Fielding, “REST APIs must be hypertext-driven,” October 2008,
URL: http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-
driven [accessed: 2015-02-20].

[22] M. Amundsen, L. Richardson, and M. W. Foster, “Application-Level
Profile Semantics (ALPS) ,” Tech. Rep., August 2014, URL: http://
alps.io/spec/ [accessed: 2015-04-09].

[23] M. Gebhart, “Query-based static analysis of web services in service-
oriented architectures,” International Journal on Advances in Software,
2014, pp. 136 – 147.

[24] QA82, “QA82 Analyzer,” 2015, URL: http://www.qa82.org [accessed:
2015-02-27].

397Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 416 / 512

Criteria of Evaluation for Systems Using Sensor as a Service

A discussion about repositories and search engines on S²aaS systems

Anderson Brasiliense de Oliveira Brito

Diretoria de Tecnologia da Informação

Instituto Federal do Amapá, IFAP

Macapá, Brasil

Email: anderson@ifap.edu.br

Felipe Silva Ferraz

Centro de Informática

Universidade Federal de Pernambuco, UFPE

Recife, Brasil

Email: fsf3@cin.ufpe.br

Abstract—This document proposes an approach to the criteria

settings for evaluation of systems that use sensors as a service

through the analysis of sensor repository and search engine

data. The sensor paradigm as a service is a branched concept

of cloud computing, which is still evolving. Thus, to achieve the

end user’s expectation for this type of service, it is necessary to

define clear parameters for the evaluation of the delivery of it.

The proposal presented in this paper provides an analysis

based on the type of sensors and how its owner groups them in

a multiuser system.

Keywords- sensor as a service; sensors repository; search

engine data.

I. INTRODUCTION

The society has seen an expansion of emerging
technologies for the Internet. This phenomenon is a
favorable environment for several factors, among which are:
the emergence of IPv6 as a protocol with the possibility of
enabling many devices connected to a network, the price of
sensors, processors and network devices which have their
price declined over time, as well as the wireless network for
computers, WiFi, which served as input for connecting
devices both at home and in offices.

From this scenario, the market expects an environment
called "Industrial Internet" will provide 10-15 trillion dollars
in the next 20 years. Based on this forecast, it was created an
economic value, called "Internet of Everything" until 2020
[1].

The cloud becomes the most suitable environment to
support the great mass of devices that will be connected to
this global communication network, with a forecast of 50 to
100 billion of connected devices in the aforementioned
period [2], and in this scenario, the type node or sensor
devices will account for 60% of the total available on the
Internet [3].

The delivery of this information is a challenge,
considering that there is no standard interface for sensor
communication. Another difficulty would be how to manage
repository sensors so that it can be qualified and can provide
useful data to a system.

The analysis of a sensor repository would enable decision
making by the system based on its business model. In an
environment of service to the end user where the supply
would be the sensor data, the repository qualification will be

crucial, because the expectation in the search data held by
the user will depend directly of the sensors that the
repository provides.

Considering paradigms such as Smart Cities, where the
citizen is inserted in this context with the intention to shape
innovation and urban development through their
participation [4], delivery of these services, which in part can
be supplied from sensor data, should take into consideration
the repository where such devices are contained. In this
sense, mean repository as sensors virtualization that provides
data feeds on one or more systems.

This model proved to be very efficient for the market,
because companies would not need to invest part of their
capital in IT assets, transferring this responsibility and risks
to third parties [5].

Some authors [15] propose a modelling for smart cities,
in which four layers are defined, namely of 1) sensors and
sensor owners, 2) sensor publishers, 3) extended service
providers, and 4) sensor date consumers.

The purpose of this article is to provide the analysis of
layers 1 and 2. These layers were used as the basis for the
delivery service, because they are the basis of data
consumption. Without them, the others would not receive
data for end users.

Manzoor [16] proposes criteria for quality context QoC,
based on the quality information analysis from data obtained
from sensors.

Thus, the approach in the definitions of a sensor
repository and the data delivery engine will be discussed
through evaluation of sensors.

The remainder of this paper is structured as follows. In
Section 2, the cloud computing concepts will be addressed.
Section 3 will discuss the criteria as well as analyze the
results obtained from the queries generated in the sensor
repository. Section 4 concludes the paper.

II. CLOUD AND SENSORS

The Cloud Computing began to be broadcast in October
2007, when IBM and Google decided to establish a
partnership to create a new model for computing, based on
current characteristics of cloud computing with high
availability, computational resiliency, resources on demand,
from a high quality system [5].

Many authors [5]-[9] group the cloud computing model
into three distinct classes, as follows:

398Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 417 / 512

 Infrastructure-as-a-Service (IaaS) - class that is
characterized with hardware virtualization on the
supply side.

 Platform-as-a-Service (PaaS) - the infrastructure is
abstracted from a layer between the hardware and
applications through an interface feeding. The Azure
and Google App platforms are examples of this
class.

 Soſtware-as-a-Service (SaaS) - it aims virtualization
of local computer applications to the cloud. This
class is the highest level of abstraction, getting under
the supplier's responsibility to maintain, update and
support from both the hardware and the software,
leaving the end user only the service consumption.

However, these classes are subject to change or develop
their own concepts, because, according to the National
Institute of Standards and Technology (NIST) cloud
computing is defined as a paradigm in development and thus
their definitions, case use, technologies, risks and benefits
will be redefined, based on interactions between the public
and private sectors [10]. From this view, other terms have
been introduced to the academic community. They include
the Sensing and Actuation as a Service (SAaaS), Sensor
Event as a Service (SEaaS) sensor as a Service (SenaaS),
DataBase as a Service (DBaaS) Data as a Service (DaaS),
Ethernet as a Service (AAS), Identity and Plicy Management
as a Service (IPMaaS) and Video Suveillance as a Service
(VSaaS) [11].

Many of these terms have acronyms identical with other
terms and that can be confusing. For example, Image as a
Service(IaaS) [12] has the same acronym as Infrastructure as
a Service and Sensing as a Service (SaaS) [11] has the same
acronym as Software as a Service, which is also represented
as S²aaS [13]. Thus, a broader class could incorporate all
other through the Everything as a Service (XaaS) [14].

III. DEFINITION OF ANALYSIS CRITERIA

From an environment where everything can be offered as
a service, cloud enables a favorable site for the sensors
expansion through their systems virtualization and
subsequent delivery to the end user.

A. Analysis about sensor

To be able to define the repository quality criteria, it will
be necessary to assess, first, the characteristics of sensors
that compose it. Among the listed characteristics to evaluate
a sensor, five were selected and used by [16]:

1) Correction: as the sensor ability to measure the

actual value close to the real.

The measurement error was proposed by [17], using the

equation,

E = M – T (1)

where E is the measurement error represents by the

difference between the actual value T and the value

measured by sensor M.

Thus, a physical sensor may have its accuracy value

calculated by the equation,

C=

 (2)

where C is the correction value, E the error value and T,

the real value. The correction is obtained by subtracting the

relative error of 1.

2) Accuracy: the ability of a sensor to provide the same

reading on the same measurement on equal terms. Unlike

the correction which has a proximity to a true value, the

accuracy shows the sensor proximity of successive readings,

which can be represented by the equation:

 (3)

where P is the accuracy value, true positives number

represents the cases that have been correctly recognized as

positives, and false positives those that have been

incorrectly recognized as positive [16].

3) Time period: is the time interval between two

measurements.

4) Sensor State: is related to the environment where the

sensor is installed, and can be static (in the case of fixed

sensors, such as temperature measurements) or dynamic, in

case of integrated sensors on people or mobile device

5) Range: refers to the maximum distance that a sensor

can collect a context measurement.

B. Analysis about Repository

The analysis of the repository is performed taking into
consideration the sensors quality and the access level of its
slices.

Regarding data access level we have the following:

 Public slice: in this type profile, all sensors arranged in
this repository will be made available to any user in the
system;

 Private slice: in the private slice, the sensor network
manager does not allow access to users freely. In this
way, only the users created by him or who have
requested access by invitation will be able to access the
data on these devices;

 Mixed slice: in this profile, the network manager can
provide part of the sensors of your slice for any user.
The other sensors will not be visible.

Regarding sensor quality we have the following:
The criteria selected to define the sensor quality will be

based on correctness and accuracy, since they are objective
data and not properly linked to the context.

The sensors will be classified by the sum of correction
value with the accuracy value, by equation,

Qdt= C+P (4)
where Qdt is the sensor quality content, C is the

correction value and P the accuracy value.
The total quality of the repository sensors is calculated by

equation:

399Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 418 / 512

Figure 1. General representation of sensors repository

Below, we find the calculation to assess the repository
where Fpu is the public slice and represents total public
sensors, being responsible for delivering the information
from the sensors contained in this slice for any system user,
and U, which represents the total sensors contained in the
repository. The universe of sensor system is the sum of all
the slices, represented by equation,

 (6)

where QftRep represents the quality of slices repository.
From these formulas, it is possible to set criteria in order

to assess the repository based on the slices and the sensors
characteristics, by equation:

 (7)

Qrep represents the repository quality through the sums
of the sensors qualities and the slices divided by 2. Thus, a
higher quality repository is one in which Qrep is closer to 1.

In Figure 1, it is possible to observe the sensors and their
respective slices together. Each manager would be
responsible for one of the numbered slices. These could be
exclusively private (F05), exclusively public (F01 and F04),
mixed (F02, F03 and F04) or empty (F06).

For quality of the sensors, will be applied the following
values, as shown in Table 1.

TABLE I. TABLE SENSOR CHARACTERISTICS

Item Access level Correction Accuracy Index

Sensor01 Private 0,3 0,4 0,7

Sensor02 Private 0,9 0,9 1,8

Sensor03 Public 0,5 0,8 1,3

Sensor04 Public 0,9 1,0 1,9

Sensor05 Public 0,5 0,5 1

Sensor06 Public 0,5 0,5 1

Sensor07 Public 0,8 0,8 1,6

Sensor08 Public 1,0 0,8 1,8

Sensor09 Public 1,0 1,0 2

Sensor10 Private 1,0 1,0 2

Sensor11 Private 0,5 0,9 1,4

Sensor12 Private 0,8 0,8 1,6

Sensor13 Public 0,8 0,8 1,6

Sensor14 Private 0,2 0,6 0,8

Sensor15 Public 0,9 0,9 1,8

Sensor16 Public 0,5 0,8 1,3

Sensor17 Private 1,0 1,0 2

Sensor18 Private 1,0 1,0 2

Sensor19 Private 1,0 1,0 2

Total 29,6

From this scenario, it is possible to assess this repository

and the system can assign value to it.
Applying the formulas for the scenario presented in

Figure 1, we have the following data in Table 2:

TABLE II. SCENARIO

Equations Aplication Index

0,78

0,53

0,66

The closer to 1 value, the better the repository quality,

from the characteristics of each sensor as the access level
assigned to them by means of each slice.

C. Analysis about data search engine

The search engine is the service responsible for the
search of sensors available for each user profile. This search
is made in slices, where the user has access. By default, any
user can receive research data from the primary slice. The
search will retrieve data from other slices only if their
available sensors are marked as public.

In the survey, the user can enter a sentence with the
parameters that are related to desired data. For example, if he
wants air humidity data in a particular city, the sentence
could be "humidity Sao Paulo." The search interface then
looks for the repository data based on this query.

As a proposal for a model of sensor channels, a
representation of this channel was implemented, as the class
in Figure 2. From this implementation, it is possible to define
the search engines on their attributes.

Figure 2. Sensor channel class

400Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 419 / 512

Search engines perform an analytical research on the
unit, name and annotation attributes of the channel object.

Among the attributes of these objects, these three were
chosen because they represent the measurement
characteristics. The attribute unit refers to the measurement
unit used by the channel, e.g., °C (degree Celsius) for
temperature

The name field refers to a measurement identification
name such as "TEMP". Finally, the annotation field serves as
a comments field about this sensor channel, where the sensor
manager could enter comments about it, as "Temperature
capture in the Boa Vista neighborhood in Recife".

The analytic research is done by Hirbenate Search library
implementation, which is a tool that integrates the Apache
Lucene technology of complete search engine for text, with
implementation by Index Hibernate by domain from notes,
index database synchronization through objects [18].

The implementation of this library is made on the object
channel by setting the unit, name and annotation attributes,
with the definition of the Ngram type parameters, which is a
feature of this API for data analysis, filtering search of words
with 3 letters at least. This way, the rates analyzers can
recover data even from typing error. In the option used by
the application, if the word search is temperature, the
analysis could be made to tem, emp, mpe, per, era, rat, atu,
tur and ura.

Another definition was chosen so that, regardless of
typing the whole search was made in lowercase. Thus, if the
word is "Temperature" the system switches to "temperature"
and will do the analytical search

Figure 3. Sensor searcg screen

In Figure 3, it can check the implementation of the search
functionality in use. In this example, the search word has
"humidity". The search returns an objects list according to
the relevance of what was searched. Thus, the first item in
the list returned is a sensor named "humidity." As there were
two registered, which has more fields of relevance is listed
first. The first object contains both the word humidity in the
name field, as in the annotation, while the second object only
has this word in the name field.

The other results are listed by the analytical filter Ngram.
The "Brightness" channel returned from the search "umi",
"dad" and "ade", because this words combination is in the
name field of this object, while the value "Temperature" was
returned in the search because in its annotation field there is
the word "city" that contains the Ngram, "dad" and "ade"
atributes.

Therefore, with the library implementation, it is possible
to perform the search of the measurement channels
represented by the channel object in the database by
analytical research into text.

D. Validation and Results

The final analysis and more important for class SaaS was
sensors search. The parameter used to test was the response
time and research relevance, as well as the data indexing
time in the bank.

Three distinct databases were created for each scenario,
to evaluate the sensor search performance, which is the main
functionality for the end user, because it will serve as a data
source for the sensors consumption as a service.

The scenarios were created as follows: scenario 1, with
the amount of 9 sensors and 15 channels; scenario 2, with the
amount of 99 908 sensors and 202 625 channels; and
scenario 3, at the amount of 300,000 sensors and 3,000,000
sensor channels.

The search response time will serve directly to the end
user because it will measure the time between the data
request and the return of the time, which will influence the
user experience relative to the solution.

The term "sensor recife" surveyed in Google returns a
data set around 400,000 items, with the seek time of 650
milliseconds. This time was used as a reference to act on the
user experience about extensively used service.

The time was classified into five levels, as follows:

 T1: simple search, with 1 word in 1 channel fields;

 T2: composed search, with 2 words in 1 channel fields;

 T3: composed search, with 2 words in 2 channel fields;

 T4: simple search, with 1 word with highest incidence
in 1 channel fields;

 T5: composed search, with 2 words with highest
incidence in 2 channel fields.

The search relevance analyses if the request returned to
the user the data expected for him in the query.

The indexing time is a system parameter for assessing the
time that the solution takes to index data in the database with
the use of indexing through Hibernate Search. Table 3 shows
the data obtained from the scenarios presented.

TABLE III. INDEXED QUERY SCENARIOS

Scenarios T1 T2 T3 T4 T5

Scenario 1 8ms 15ms 16ms 11ms 16ms

Scenario 2 16ms 20ms 32ms 99ms 145ms

Scenario 3 21ms 28ms 41ms 139ms 283ms

The search time in three scenarios was well below the
reference value for the proposal made for the solution. Thus,
the user would receive your request, in the worst scenario, in
283ms.

401Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 420 / 512

The relevant factor is related to the quality of the data
found with what the user was really looking for. Based on
fuzzy feature, which delivers the term equal or similar to
what was requested, it was asked to an users group a
questionnaire that contained a description of the search task
of sensing. Based on the results, the user would answer the
questionnaire and then analyze it as shown in Table 4, with
the following information, based on criteria listed below:

 Low: does not contain the requested data;

 Medium: contains the data similar to the requested;

 High: contains exactly the requested data.

TABLE IV. SEARCH RETURN RELEVANCE BY THE USER

Relevance level P1 P2 P3

Low 0 0 0

Medium 0 1 0

High 7 6 7

Based on the data presented in the research referred to as
P1, P2 and P3, the user found the requested data in the
search.

The indexing time is a system parameter that influences
indirectly in the sensors search. By means of this feature, the
sensors are indexed and may be consumed by the search
service more efficiently, through a text search. At the time,
the solution is indexing only on its startup, however other
strategies can be made so that this occurs at other times as
well. The problem with indexing is that when it occurs, it
consumes a lot of server performance, in addition to disable
access to the base. One solution would be to perform
indexing in minor peak times. However, as it is a cloud
application and it can be accessed anywhere in the world,
this time could not meet the solution, since the data flow in a
particular location could be lower, but in another could be
higher. The most recommended would be selective indexing,
with the inclusion of new data as they were entering the base,
but, over time, a full indexing would be required to keep the
data as possible optimized on record.

TABLE V. SENSORS INDEX DATA

Scenarios
Total indexing

time

Average indexed documents

per second

Scenario 1 < 1ms 15

Scenario 2 57.025ms 3552,82

Scenario 3 280.234ms 3858,21

The indexing data were summarized in Table 5 with the
following analysis:

 In scenario 1, the value was negligible, due to the low
amount of data and, therefore, this value was expected

 Scenarios 2 and 3 showed indexing time values
proportional to the size data in the database. Thus, the
larger the database, the greater is the time for which
such data to index.

These scenarios showed values close when considering
the average of indexed documents per second. Such value is
close because it is influenced by the server computing
resources, as disk access time and processing. This value can
be optimized by improving the cloud hardware.

IV. CONCLUSION

This paper presented a proposal for analysis in systems
that work with sensors as a service, upon evaluation of the
repository and data engine consumption. From this approach,
it is possible to qualify systems that operate in this paradigm,
setting a quality level and therefore provide the user with a
better service. As future work other criteria can be added to
assess the repository as characteristics related to
performance, security, large amounts of data among others.
This would increase the range of solutions that could be met
from these analyses.

REFERENCES

[1] G. Press, "Internet of Things By The Numbers : Market

Estimates And Forecasts",

http://www.forbes.com/sites/gilpress/2014/08/22/internet-of-

things-by-the-numbers-market-estimates-and-forecasts/, 2014

[retrieved: 03, 2015].

[2] H. Sundmaeker and A. Saint-exupéry, De, "Vision and

Challenges for Realising the Internet of Things", CERPIoT,
Luxembourg, 2010.

[3] ABI Research, "More Than 30 Billion Devices Will Wirelessly

Connect to the Internet of Everything in 2020",

https://www.abiresearch.com/press/more-than-30-billion-

devices-will-wirelessly-conne, [retrieved: 11, 2014].

[4] H. Schaffers, N. Komninos, and M. Pallot, "Smart Cities as

Innovation Ecosystems Sustained by the Future Internet",
Fireball White Paper, EU, 2012.

[5] M. F. Catela, C. D. Pedron, and B. A. Macedo, "Service level

agreement em cloud computing: um estudo de caso em uma
empresa portuguesa". Univ. Gestão e TI. 4, 2014.

[6] N. W. Khang, "CLOUD COMPUTING SOLUTIONS: IAAS,

PAAS, SAAS", http://wptidbits.com/techies/cloud-computing-
solutions-iaas-paas-saas/, [retrieved: 08, 2014].

[7] G. Aceto, A. Botta, W de Donato, and A. Pescapè, "Cloud

monitoring: a survey", Comput. Networks. 57, 2013, pp. 2093–
2115.

[8] C. A. Kamienski, D. F. H. Sadok, E. M. Azevedo, R. A. M. B.

K. Simões, and S. F. de L. Fernandes, "Um Modelo Integrado

de Composição em Nuvem Computacional Conteúdo", Recife
2011.

[9] J. Simão and L. Veiga, "A classification of middleware to

support virtual machines adaptability in IaaS", Proc. 11th Int.
Work. Adapt. Reflective Middlew. - ARM ’12, 2012, pp. 1–6.

[10] F. R. C. Sousa, L. O. Moreira, and J. C. Machado, "Cloud

Computing: Concepts, Technologies, Applications and

Challenges ", Escola Regional de Computação Ceará -
Maranhão - Piauí., Parnaíba, 2009, pp. 25.

402Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 421 / 512

[11] A. Botta, W. Donato, V. Persico, and A. Pescap, "On the

Integration of Cloud Computing and Internet of Things",
FiCloud. Barcelona, 2014, pp. 8.

[12] A. A. Gavlak, L. Muratori, and D. A. Graça, " Image as a

Service (IaaS): satellite images digital processing ZY-3 via

web ". XXVI Congresso Brasileiro de Cartografia e V

Congresso Brasileiro de Geoprocessamento. Gramado-RS
2014.

[13] X. Sheng, X. Xiao, J. Tang, and G. Xue, "Sensing as a

service: A cloud computing system for mobile phone
sensing". 2012 IEEE Sensors, 2012, pp. 1–4.

[14] P. Banerjee, C. Bash, R. Friedrich, P. Goldsack, B. A.

Huberman, and J. Manley, "Everything as a service:

Powering the new information economy", Computer (Long.
Beach. Calif). 44, 2011, pp. 36–43.

[15] C. Perera, A. Zaslavsky, P. Christen, and D.

Georgakopoulos, "Sensing as a Service Model for Smart

Cities Supported by Internet of Things", Trans. Emerg.

Telecommun. Technol. 2013, pp. 1–12.

[16] A. Manzoor, "Quality of Context in Pervasive Systems :

Models, Techniques and Applications" Tu, Wien. 2010, pp.
155.

[17] J. G. Webster, "The measurement, instrumentation, and
sensors handbook", CRC Press, 1999.

[18] JBoss, "Hibernate Search",

http://docs.jboss.org/hibernate/search/3.4/reference/en-

US/html_single/#preface, [retrieved: 01, 2015].

403Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 422 / 512

Middleware Applied to Digital Preservation: A Literature Review

Eriko Brito, Paulo Cesar Abrantes, Bruno de Freitas Barros
Recife Center for Advanced Studies and Systems (CESAR)

Recife – PE, Brazil
E-mails: eriko.brito@outlook.com, {pc.abrantes, barrosbruno}@gmail.com

Abstract — Maintaining digital collections available for
humanity use at long term is a big challenge for the areas of
digital preservation, management policies of curator centers
and technologies for data reproducibility. This paper performs
a literature review to investigate middleware options for digital
preservation, listing its main features and applications. Seven
solutions were found and it was concluded that the cataloged
technological bases are mature enough, which indicates an
optimistic future for the digital curation area.

Keywords—Digital Curation; Digital Preservation;
Reproducibility; Middleware.

I. INTRODUCTION
Research and solutions in the digital preservation area

have evolved significantly in recent decades establishing
their technological, methodological and political apparatus.
Brito et al. [1] point out that compared to the physical
collections preservation, digital content brings an
association, almost paradoxically, between a great potential
risk and a great potential for protection. The potential risk is
represented by the ephemerality of digital storage that can be
irretrievably lost because of technical or human failure much
more easily and quickly than in the case of physical
representations of content. The potential for protection, in
turn, is anchored in the fact that digital collections can be
endlessly reproduced and stored with full fidelity and
integrity.

The continuity of digital collections depends, mostly, on
implementing strategies that take full advantage of the
potential for protection, attempting to neutralize its inherent
potential risk. However, the challenge can represent much
more of a social and institutional problem than a purely
technical issue, because, particularly concerning digital
preservation, it depends on institutions that undergo changes
of direction, mission, administration and funding sources, as
Arellano defends [2].

Concomitantly, in the information technology area,
distributed systems are established as an information-sharing
pattern. That leads us to cloud computing that, according to
Mell et al. [3], is a ubiquitous, convenient and on demand
model for sharing computing resources that can be managed
and made available with minimal effort.

Applying the distributed processing principles and cloud
computing to the maturity scenario of digital preservation
seems to be an only natural option. Wittek et al. [4] relates
distributed systems to distributed digital preservation,
pointing out that it can ensure the replication of digital
artifact copies between geographically separated servers. It is

important to say that distributed digital preservation is not
only the act of ensuring the backup of digital artifacts, but
also the possibility to access the data over the years and to
reuse it.

Among the distributed systems and the digital
preservation, there is the middleware, which, for Rocha et al.
[5], is the group of components located between the
operating system and the application, promoting generic
services to support the execution of distributed applications.
For this Literature Review (LR), the presented concept of
middleware is extended to a layer situated between the
business rules of the curator center and the supporting IT
infrastructure of digital preservation.

The remainder of the paper is structured as follows.
Section 2 presents the review planning with its goals. In
Section 3, an overview of the middleware options found is
presented. Section 4 will show a detailed analysis of each
option and, finally, Section 5 presents conclusion and
register for future work.

II. REVIEW PLANNING
This review follows the guidance of Kitchenham et al.

[6] in its structure. It contains the objectives of the review,
the research questions to be presented, the criteria used for
the negative scope of the research, the strategy that will be
used and the way it will be conducted. It is expected that in
this way, other researchers can repeat the procedure
according to their own definitions.

A. Objectives
The goal of this LR is to identify existing options in

literature of middleware solutions used in digital
preservation processes of curation centers. The result of this
work can provide the discovery of challenges and trends in
this research field.

B. Research Question
The research question that guides this LR is: what

middleware options for digital preservation are currently
available in the literature?

C. Exclusion Criteria
For the established research question, it was decided that

some productions will be excluded from the scope of this
LR. Specifically, scientific productions that:

• Are in proposal stage;
• Present the state of art for the research question;
• Were published before the year of 2010.

404Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 423 / 512

D. Research Strategy
The research strategy consists in establishing the

premises that will be considered by the LR to achieve its
goals. Thus, in this section, will be elicited the sources of the
research project, base language and keywords to be used in
the search engines listed at the sources. These assumptions
are defined as follows:

Sources: IEEE Xplorer, Science Direct, ACM Digital
Library, Compendex and Scopus.
Language: the English language will be used as
reference for the LR, as it is considered the most popular
in the scientific world.
Keywords: Middleware to digital preservation,
Distributed systems for digital preservation, Electronic
Records Archives capabilities, reproducibility.

E. Review Conduction
This paper was planned and produced in May 2015 in

response to the approval requirements of the discipline of
Systems Interoperability of the Professional Master's degree
in Software Engineering at CESAR.EDU. The sources were
found by using search strings formed by logical
combinations of keywords presented as follows:

(“digital preservation” OR “digital curation” OR
reproducibility OR cloud OR “distributed systems”) AND
middleware

The collection of articles was obtained by reading the
abstracts, guided by the research question and exclusion
criteria presented. As a result of this approach, there were
seven relevant papers to the theme of this LR, which are
presented in Section 3.

In summary, the results obtained from the data sources
were:

a) IEEE Xplorer returned 37 works, out of which 3 were
considered aligned to the research question.
b) ACM Digital Library returned 47 results, some of
them also found in IEEE Xplorer, and 4 of them were
more relevant to this LR.
c) In Science Direct 20 results were located.
d) In Scopus, 7 and,
e) In Compendex, 5 results.

Results c, d and e were classified as outside of the LR

scope either because they match the exclusion criteria or
because the abstracts were not aligned with the research
question.

III. OVERVIEW OF SELECTED OPTIONS
This section is dedicated to present the summarized

results that are the most relevant to this LR. The following
seven subsections are identified by the titles of the papers.
They describe relevant aspects of each result and its
purpose.

A. Digital Preservation in Grids and Clouds: A
Middleware Approach
Digital preservation can be seen as an effort to retain, as

long as necessary, digital material for future use on research,
consultations or any other form of knowledge management.

Several of the current digital preservation systems are
backed in the computational grid technology, but the advent
of cloud computing and its potential has become a strong and
attractive possibility [4].

Placed in the business layer of the SHAMAN model, the
proposal made by Peter Wittek and Sandor Daranyi suggests
a middleware which is flexible enough to enable a quick and
transparent switching between cloud computing and grid
computing, in compliance with business rules and
requirements of the entity that needs to preserve its digital
collection [7]. Figure 1 shows the proposed architecture that
includes, on the left, an archive layer governed by a set of
pre-established policies and, on the right, computational
scalability components in clouds or grids.

Figure 1. Overview of the Peter and Sándor’s proposal

The considerations of the authors suggest that small
businesses can be the biggest beneficiaries of the switching
flexibility, by replacing servers or grid acquisitions with
service level agreements with computing service providers in
the clouds.

B. Content server system architecture for providing
differentiated levels of service in a Digital Preservation
Cloud
Quyen L. Nguyen and Alla Lake [8] write about storage

challenges and resulting preservation of the rapidly growing
volume of digital records and the need for some companies
and industries to stick to directives such as Sarbanes-Oxley
Act. It is important to note that digital preservation covers
the need of keeping information available and accessible
regardless of the hardware and features that originated it.

In this context, and to the authors, preservation in the
clouds is a simple and economical option for models such as
the Open Archive Information System (OAIS), as seen in
Figure 2, which requires great engineering effort and
planning.

405Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 424 / 512

Figure 2. The OAIS Model

In the LDPaaS proposal, the Ingest layers, Preservation,
Archival Storage and Access are abstracted and offered as
individual services in the clouds. With this arrangement the
proposal provides differentiated service levels for the various
needs of long term digital preservation.

C. Biopolis, long term preservation of digital user content
The purpose of the Biopolis is that the digital contents of

its users can be replicated in the clouds, commercially or not.
With regard to copyright, the design ensures the ultimate
relationship between the author and the maintainer of the
digital material.

Differently from systems like Google Panoramio and
Flirk, in which, as Sardis et al. [10] state, time stamps are not
present, the Biopolis project supports time attribute and is
prepared to offer, in the coming years, scalable storage,
preservation and organization through libraries and semantic
searches if needed, stamping data with its registration time.

Through the Internet, the users can add their digital
content via the web interface of the Biopolis system, by
logging the geographic position of upload and copyrights for
appropriate action. After the content for retention time
setting is filtered, storage, procurement, distribution,
preservation, recovery and reuse options are provided.

In terms of middleware, the Biopolis project has levels
with its own API functions, which are used as clients in a
common runtime environment providing scalability, high
availability and routing messages. Figure 3 shows the
middleware components.

Figure 3. Biopolis Middleware

D. PDS cloud: Long term digital preservation in the cloud
The Preservation DataStores (PDS) proposal is a

preservation cloud based on the OAIS model, developed by
Ccsds [9] as an infrastructure component of the European
Union ENSURE. It employs multiple heterogeneous
providers and embodies the concept of object-informational
preservation.

The authors conducted a gap analysis concluding that
"just throwing" the data in a cloud is not the solution for
preservation repositories. Instead, a more professional
approach is expected. The main features of PDS Cloud
includes: a) multiple clouds storage support, b) enhancement
of future understandability of content by supporting data
access using cloud based virtual appliances and, c) advanced
services based on the OAIS model.

As shown in Figure 4, the PDS Cloud architecture is
implemented as a middleware, composed by a broker that
OAIS interconnects between multiple entities and the cloud.
On the front-end, PDS Cloud exposes to the client a set of
OAIS-based preservation services such as ingest, access,
delete and preservation actions on OAIS Archival
Information Packages (AIPs).

Figure 4. PDS Cloud Architecture

On the back-end, it leverages heterogeneous storage and

computes cloud platforms from different vendors. AIPs may
be stored on multiple clouds simultaneously to exploit
different storage cloud capabilities and pricing structures,
and to increase data survivability.

In the conclusions, Rabinovici-Cohen et al. [11] point out
that the main purpose of PDS Cloud is to keep the
responsiveness of long term digital material by adhering to
the changes of technological scenarios.

E. Rule-based curation and preservation of data: A data
grid approach using iRODS
In this paper, Hedges et al. [12] present the

implementation of a data management layer to support a
system of preservation research data. For data storage, the
authors suggest the use of the e-Science technology and grid
computing middleware, presenting how integrated Rule-
Oriented Data Management System (iRODS) can be used to
implement complex strategies of digital preservation.

The contextualization involves the consideration that the
Storage Resource Broker (SRB) developed by the San Diego

406Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 425 / 512

Supercomputer Center (SDSC) is the most widely used data
management middleware for digital preservation. The
iRODS, open source, is presented as its successor, also
developed by SDSC, with significant evolution especially in
the political representation of capacity in terms of rules.

This feature of the iRODS middleware allowed the
authors to explore two key points:

• preservation actions taken when a digital

resource is ingested into an iRODS data grid;
• post-ingest management of the integrity and

authenticity of curated digital resources.

In its conclusion, the paper exalted the iRODS skills, such
as the flexibility to implement the rules in a sequence of
actions to be executed in particular contexts or when certain
events like the ingest of the file into the grid, or a timer
occur.

F. New Roles for New Times: Digital Curation for
Preservation
The work of the authors was to examine tools and

techniques used to automate the exchange of significant data
volumes between MetaArchieve Cooperative, which uses
“Lots of Copies Keep Stuff Safe” (LOCKSS) and the
Chronopolis preservation system, which uses the Storage
Resource Broker (SRB). It is expected that this work enable
the use of preservation systems to share data between these
two preservation networks in the United States of America
[13].

Staff from the MetaArchive and Chronopolis are
investigating technologies that allow data exchange between
LOCKSS and iRODS, based on real-world, practical
implementations within MetaArchive, Chronopolis and
CDL. Three methods of exchange are being developed and
evaluated.

The first method uses BagIt and related technologies to
package and transfer large collections efficiently and
reliably. A second more, sophisticated tool, allows the user
to identify an existing BagIt bag, transfer its contents, ingest
these objects into a storage zone and perform quality
assurance testing for the whole process. The third proposed
method utilizes a LOCKSS plugin. LOCKSS has its own
technical architecture that can be enhanced by the use of
custom-created, XML-based plugins, which allows data to be
manipulated according to defined rules. They will create
plugins that will allow the LOCKSS system to interact with
an iRODS system.

In its conclusion, the paper emphasizes the importance of
the project that will integrate two major digital data
preservation platforms and, by doing so, improve multi-
disciplinary and multi-institutional scientific exploration that
is highly data-driven. An integrated LOCKSS/iRODS
infrastructure will better support the growing diversity in
formats, visualization, and analytical tools that empower
researchers to utilize information and data more effectively.

G. Semantic Middleware for E-science Knowledge Spaces
Futrelle et al. [14] present in his paper a middleware

called Tupelo, which implements Knowledge Spaces. It
enables scientists to find, use, relate and discuss data and
metadata work in a distributed environment. Its construction
is based on a combination of semantic web technology for
data management and workflow. The main benefit of Tupelo
middleware is the simplification of interoperability by
providing the Knowledge Space view of heterogeneous
resources distributed in institutional repositories.

In architecture terms, Tupelo is based on an abstraction
called “context”, which represents a kind of semantic view of
distributed resources. Context implementations are
responsible for performing as “operators”, which are atomic
descriptions of requests to either retrieve or modify the
contents of a context. Two primary kinds of operations are
provided:

1. Metadata operations, including asserting and retracting

statements (i.e., RDF statements) and searching for
statements that match a query; and

2. Data operations, including reading, writing, and
deleting binary large objects (BLOB’s), each of which is
identified with a URI.

In its closing remarks, the paper suggests that Tupelo’s

interoperability-based architecture allows it to be used to
connect, without replacing or displacing, existing software
stacks to add context and help integrate the heterogeneous
aspects of large-scale scientific work, including observation,
analysis, organization, and publication.

Another significant consideration was related to reducing
the development effort required to support scientific
domains, allowing an active view of scientific work with
strong guarantee of reusability, based on explicit semantics
and declarative descriptions of analytic processes, opening
new opportunities for more effectively disseminating and
preserving the fruits of ongoing, evolving scientific
discovery.

IV. CONCLUSION
This paper presented a literature review of middleware

available for the area of digital preservation. The main
objective was to list options available for this context and to
present their main characteristics and applicability.

It was possible to observe the complexity of the long-
term digital preservation process, and that this is still an
evolving model. It was contextualized the term middleware
as a layer placed between the business rules of the curator
center and the supporting IT infrastructure of digital
preservation.

Thus, it was possible to map the following results as the
most cited middleware related to digital curation and
preservation:

a) The Storage Resource Broker (SRB), developed by the
San Diego Supercomputer Center (SDSC);

407Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 426 / 512

b) iRODS, open-source, presented as its successor and
also developed by SDSC, and the;
c) LOCKSS Program as an open-source, library-led
digital preservation system built on the principle that
“lots of copies keep stuff safe”.

Table 1 shows an overview of the solutions found, being

organized by the name of the paper, the model used as the
base of the solution, the use of grids or clouds and its main
characteristics.

TABLE 1. SOLUTIONS OVERVIEW

Paper Title Base
model

Grid Cloud Main
Characteristic

Digital
Preservation in
Grids and
Clouds: A
Middleware
Approach

SHAMAN Yes Yes Allows a
transparent
switching
between cloud
computing and
grid computing

Content server
system
architecture for
providing
differentiated
levels of service
in a Digital
Preservation
Cloud

OAIS No Yes Abstracts the
layers and offers
them as individual
services in the
clouds.

Biopolis, long
term
preservation of
digital user
content

None No Yes Provides
scalability, high
availability and
routing messages.

PDS cloud:
Long term
digital
preservation in
the cloud

OAIS No Yes Supports multiple
clouds storage and
provides data
access using cloud
based virtual
appliances

Rule-based
curation and
preservation of
data: A data grid
approach using
iRODS

SRB Yes No Implements a
rule-oriented data
management layer
to support a
system of
preservation
research data

New Roles for
New Times:
Digital Curation
for Preservation

LOCKSS
and
iRODS

Yes Yes Allows data
exchange between
LOCKSS system
and iRODS

Semantic
Middleware for
E-science
Knowledge
Spaces

None Yes No Simplifies the
interoperability by
providing the
Knowledge Space
view of
heterogeneous
resources
distributed in
institutional
repositories

Although Brito et al. [1] claim that the digital

preservation area is still in the early stages of its formation
and that the technological, methodological and political
apparatus to preserve digital information is still being built, it

was found mature middleware options related to digital
preservation and access to long term information.

After this research, it was realized that information
security applied to digital curation is an area that can be
explored, so as future work is suggested a review of the
literature to list the existing solutions.

ACKNOWLEDGMENT
To the CESAR.EDU teaching staff that contributed with

methodological guidance for the development of this paper.
We also appreciate the patience and dedication of our
families that unconditionally supported the work that has
been done so far.

REFERENCES
[1] E. Brito, R. Costa, A. Duarte, P. De Pós-graduação, and I.

Ppgi, “The adoption of model canvas in data management
plans for digital curation in research projects,” 2012.

[2] M. Arellano, “Digital Preservation Criteria of Scientific
Information,” Brazil: University of Brasilia, 2008, p. 50.

[3] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing Recommendations of the National Institute of
Standards and Technology,” Natl. Inst. Stand. Technol. Inf.
Technol. Lab., vol. 145, 2011, p. 7.

[4] P. Wittek and S. Darányi, “Digital Preservation in Grids and
Clouds: A Middleware Approach,” J. Grid Comput., vol. 10,
no. 1, 2012, pp. 133–149.

[5] V. H. Rocha, F. S. Ferraz, H. N. De Souza, and C. A. G.
Ferraz, “ME-DiTV  : A middleware extension for digital TV,”
International Conference on Software Engineering Advances,
2012, pp. 673-677.

[6] B. Kitchenham, et al., “Systematic literature reviews in
software engineering – A tertiary study,” Inf. Softw. Technol.,
vol. 52, no. 8, Aug. 2010, pp. 792–805.

[7] P. Innocenti, et al., “Assessing digital preservation
frameworks: the approach of the SHAMAN project,”, 2009,
pp. 412–416.

[8] Q. L. Nguyen and A. Lake, “Content server system
architecture for providing differentiated levels of service in a
Digital Preservation Cloud,” Proc. IEEE 4th Int. Conf. Cloud
Computing, 2011, pp. 557–564.

[9] Ccsds, “Reference Model for an Open Archival Information
System (OAIS),” Forsp. Data Syst., no. January, 2002, pp. 1–
148.

[10] E. Sardis, A. Doulamis, V. Anagnostopoulos, and T.
Varvarigou, “Biopolis, long term preservation of digital user
content,” IEEE 10th Int. Conf. on e-Business Engineering,
Sept. 2013, pp. 478-483.

[11] S. Rabinovici-Cohen, J. Marberg, K. Nagin, and D. Pease,
“PDS cloud: Long term digital preservation in the cloud,”
Proc. IEEE Int. Conf. Cloud Eng. IC2E, 2013, pp. 38–45.

[12] M. Hedges, A. Hasan, and T. Blanke, “Management and
preservation of research data with iRODS,” in Proceedings of
the ACM first workshop on CyberInfrastructure: information
management in eScience - CIMS ’07, 2007, p. 17.

[13] T. Walters and K. Skinner, "New Roles for New Times:
Digital Curation for Preservation," Washington: Association
of Research Libraries, 2011.

[14] J. Futrelle, et. al., “Semantic middleware for e-Science
knowledge spaces,” Concurr. Comput. Pract. Exp., vol. 23,
no. 17, 2011, pp.2107-2117

408Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 427 / 512

Middleware For Heterogeneous Healthcare Data Exchange: A Survey

Carlos Andrew Costa Bezerra 1 2 , André Magno Costa de Araujo 1 3, Bruno Sacramento Rocha 2, Vagner Barros

Pereira 2, Felipe Silva Ferraz 2 3

ITPAC – President Antonio Carlos Tocantinense Institute Araguaina, Brazil 1; CESAR – Recife Center for Advanced Studies

and Systems Recife, Brazil 2; Federal University of Pernambuco Recife, Brazil 3

e-mail: andrew@r2asistemas.com.br, amcaraujo@gmail.com, bdsr74@gmail.com, vagnerbarrospereira@gmail.com,

fsf@cesar.org.br, amca@cin.ufpe.br, fsf3@cin.ufpe.br

Abstract — In this paper, we present a survey for data exchange

middleware in health based on the HL7 standard. HL7 is an

international standard, grounded on the Open System

Intercommunication model (OSI), which standardizes exchange

and transportation of information between healthcare

organizations. Based on this standard, we examine examples of

middleware selected during an exploratory research in the

repositories of the Association for Computing Machinery

(ACM) and Institute of Electrical and Electronics Engineers

(IEEE). This article provides an overview of features present in

the selected middleware.

Keywords - Middleware; Healthcare; Data Exchange;

Interop; Heterogeneous Data; HL7; EHR;

I. INTRODUCTION

Healthcare systems produce a huge amount of health data.
In most cases, information is spread among public and private
institutions, clinics, care centers, laboratories, etc. One of the
big challenges in the medical area is to provide access to
patient’s clinical data, regardless of where they were
generated [1]–[3]. There are architectural models which
standardize storage and communication of electronic
healthcare records (EHR) – e.g. OpenEHR [4] and EN 13606
[5][6]. However, even solutions that have their working
repositories implemented based on one of the previously
mentioned models use different types of database or
technologies, are in different versions or have other
particularities that make them different from the others [7].

In the data exchange domain, there are various
technologies that address the task of exchanging information
between heterogeneous databases, such as Web-Services [8]
and Cloud Services [9]. However, according to Xianyong Liu
[10], middleware represents a technology that takes charge of
communication and bridges lower-level Data Transfer Units.

For this paper, we discuss the already available HL7-based
middleware, ongoing research projects and solutions under
development for HL7-based healthcare information exchange.
We conducted a literature review and selected two works
which and will be henceforth named Middleware A and B.
The other middleware analyzed represent solutions that are
present on the IT market, which are Mitre hData, Mirth
Connect and IBM Websphere [11]–[13]

Health Level-7 (HL7) refers to a set of international
standards to transfer clinical and administrative data between
software applications used by various healthcare providers.

These standards focus on the application layer, which is "layer
7" in the OSI model [14][15]

The main objective of this work is to discuss the already
available HL7-based middleware, as well as ongoing research
projects and solutions under development for HL7-based
healthcare information exchange. Section II discusses some
aspects related to HL7 and healthcare systems. Section III
presents the types of middleware and indications of use for
each one. Section IV discusses projects and applications of
HL7-based middleware and shows a comparison between
them. Finally, conclusions and future developments of this
research are presented in Section V.

II. HL7 AND HEALTHCARE SYSTEMS INTEGRATION

HL7 was founded in 1987 with the objective of defining
standards for information exchange between health systems.
It is a non-profit institution approved in 1994 by the American
National Standards Institute (ANSI) [16]. The standard
follows the conceptual definition of the application interface
model, represented by the seventh layer of the OSI model,
providing support to plug-and-play functionalities when used
to integrate two or more health systems [17].

The HL7 standard provides specifications aiming to
standardize the exchange and transportation of information
between health systems, with the objective of making such
systems interoperable [18]. HL7 is highly recommended to
organizations seeking interoperability between internal and
external systems of public health. The standard provides
quality, efficiency and effectiveness in the delivery and
sharing of medical information [17].

The HL7 standard encompasses groups of specification,
like the ones exemplified below:

 Message protocols for the information exchange
between health systems;

 Clinical Document Architecture (CDA) for document
exchange.

A. Tools that use the HL7 standard

HL7 can be used for diverse implementations of health
systems integration. Some of them were identified and
described as follows:

 Implementation of test middleware to validate the
formats of messages in the HL7 standard, allowing for
the identification of a system that does not comply
with the HL7 standard [19];

409Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 428 / 512

 Implementation of an emergency medical system
using the Open Services Gateway Initiative (OSGi)
service platform, enabling sharing information
between medical systems and emergency services.
This system uses the HL7 standard to format
messages;

 Implementation of a mobile app that receives data
from medical sensors and converts them to the HL7
standard so they can be sent later through the Wireless
Local Area Network (WLAN) or Bluetooth. It can
receive diagnoses and prescriptions later;

 Implementation of middleware to standardize the
communication between different types of medical
devices and health systems. It is made possible by
converting the IEEE 1073 standard, when the medical
devices follow the HL7 standard [17];

 Application that receives data from devices that
measure vital signs, such as blood pressure,
heartbeats, levels of glucose and body temperature.
These pieces of data are received by the
communication interfaces of the device, i.e. Universal
Serial Bus (USB), Bluetooth or WLAN. All data is
received by the application in different formats and
then sent to the telemedicine central in the HL7
standard to be analyzed. When it becomes possible to
provide more detailed care, the central activates a
videoconference to detail and explain the situation to
the caretakers in charge [20].

III. MIDDLEWARE

As a way to solve issues related to health information
exchange, we analyze the middleware technology. It is a
technology for distributed applications, able to hide details of
the network and deal with a great amount of important
functionalities for development, implantation, execution and
interaction of applications [21]. The main idea is to be
between two layers enabling communication between the
connected parts. It is not only a network application which
connects two sides, but also a means to promote the
interoperability between the applications, protecting
implementation details of functionalities and providing a set
of interfaces to the customer [10].

There are various types of middleware that can be
implemented with the objective of providing the exchange of
health information, e.g. transactional, procedural, message-
oriented and object-oriented.

A. Transactional Middleware

The transactional middleware (TM) is designed to provide
synchronous distributed transactions [22]. It consists of a
transactional monitor that coordinates simultaneous
transactions between customers and servers, reducing the
overload, response time and Central Processing Unit (CPU)
costs between the components by guaranteeing the Atomicity,
Consistency, Isolation and Durability properties (ACID).
However, they offer unnecessary and undesirable warranties
through the ACID properties. When a customer is performing

a long processing, it may prevent other customers from
following up with their requests [22].

As there is always the need to exchange a great number of
health messages, each customer will always have a great
amount of information to be shared, rendering this
middleware inappropriate for this objective.

B. Procedural Middleware

The procedural middleware (PM) was developed by SUN
Microsystems around the decade of 1980 and became known
as the Remote Procedure Call (RPC). Its implementation is
supported by various computing environments; however, they
do not offer good communication because they do not support
asynchronous transmission, replication or load balancing [22].

C. Message-Oriented Middleware

Message-oriented middleware (MOM) allows for
distributed applications to communicate and exchange
information by sending and receiving messages [23]. The
essential elements for a message-oriented middleware are
clients, messages and the MOM provider, as seen in Figure 1,
which depicts an API and administration tools [23]. This
middleware exchanges information asynchronously.

Figure 1. MOM-Based System [23]

This way of working provides the customer with the
means to continue working even if a message has been sent –
it doesn’t make customer wait for a response. However, it
might run out of message storage resources, which can
generate a failure in the component. The HL7 international
protocol predicts the exchange of information through
asynchronous messages, which makes this type of middleware
the best for implementing a solution for the health information
exchange. Some examples that may illustrate this modality are
Microsoft Message Queuing (MSMQ) by Microsoft, [24] and
MQSeries by IBM [25].

D. Object-Oriented Middleware

The object-oriented middleware (OOM) allows
applications to communicate and exchange information by
invoking methods [26]. It works precisely like the local
method invocation. Its communication is synchronous, which
means an object invokes a middleware method and awaits the
response of said method. Similarly to Peer-to-Peer and
Remote Procedure Call (RPC) communications, this

410Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 429 / 512

workflow prevents the client from using the system while the
invoked object is working.

Figure 2. Synchronous call [26]

Figure 3. Asynchronous call [26]

A great advantage of the object-oriented middleware is the
fact that it accepts the invocation of methods written in
different programming languages [26]. Moreover, some OOM
support both synchronous and asynchronous messages; this is
an attempt to mitigate the limitations caused by one form of
communication. Other OOMs also implement types of
message exchange control in order to use resources more
efficiently, by making use of threads and timeouts [26].
Figures 2 and 3 illustrate this behavioral change in Messaging.

IV. HL7-BASED MIDDLEWARE ANALYSIS

The middleware analysis based on characteristics present
in the construction of each middleware was separated into ten
categories:

 Synchronous: when the middleware supports
synchronous messaging;

 Asynchronous: when it supports asynchronous
messaging;

 Type of Middleware: if the middleware is TM, PM,
OOM or MOO;

 Web Bases: when the middleware runs uses web
architecture;

 HL7 v2.x: when it supports any version 2 of HL7;

 HL7 v3.x: when it supports any version of HL7;

 HFIR: when it supports HL7 HFIR versions that
combine the best features on v2, v3 and CDA;

 Parsing: when it offers the process to message
syntactic analysis;

 Validating: when it offers the process of verifying the
message conformance;

 Transmitting: when it offers the process of submitting
the message to other client.

A. Middleware A

In [16], Liu et al. proposed an extensible HL7-based
middleware, as shown in Figure 4, to provide a
communication channel between different healthcare
information systems that either did not support HL7 messages
exchange or had not implemented an interface for it yet.

Figure 4. HL7 middleware architecture

 This middleware has three deployment options: client-
side, server-side and independent deployment., although only
the independent deployment uses all the HL7 functions.

B. Middleware B

Ko et al. [27] presents a middleware framework developed
for the National Taiwan University Hospital (NTUH). Figure
5 shows that it consists in a multi-tier service oriented
architecture (SOA). It uses the message and event type to
identify the required service and invoke the correspondent
sub-routine. HL7 messages are used to format all information
exchanged across systems.

Figure 5. NTUH HIS system architecture Note

Besides the conventional middleware presented above,

there are extensible libraries and components that address the
complexities of HL7 encoding and decoding rules along with
acknowledgements, allowing for the application developer to
focus on underlying business logic and workflow, such as
Merge HL7 and HAPI-Fast Healthcare Interoperability

411Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 430 / 512

Resources (FHIR) toolkits. Furthermore, there are specific
tools for parsing and transmitting HL7 messages, e.g. HL7Spy
and HL7 Analyst [28]–[30].

C. Mitre hData

Donald W. Simborg created the Level 7 protocol
originally (in 1977), which later turned into the well-known
HL7 standard version 2. He was developing departmental
systems at the Johns Hopkins University, in Baltimore, MA,
and was programming in the APL language. He continued to
develop systems at the University of California in San
Francisco (UCSF) in 1976, where his CIO was. Besides, he
also worked for Mitre Corporation, a think-tank company of
California where he acquired a lot of experience in the pioneer
use of LANs and High Level Protocols (HLP) protocols [13].

hData is a standard for electronic health data exchange
which is WEB-based and very light. Formulated in 2009 by
MITRE and a non-profit organization, it has since evolved
through the cooperation of the leaders in the health industry.
The hData standard is the first one developed for RESTful
health data exchange. Figure 6 explains the composition of
hData.

Figure 6. Relationship between the different components of hData [13]

The hData Registry Format (HRF) specifies the format of
the hData Hierarchy (HDH). HDH is based on models of
logical resources provided externally by experts in the domain
or partners in the exchange of information, e.g. FHIR. HDH
may be satisfied with one or more hData Content Profiles
(HCPS), which are guides for the implementation and use of
hData in specific domains. The server that hosts the HDH
instance provides a service interface for the customers to
interact with the HDH resources, placing information in
persistent data storage. The hData RESTful Transport (HRT)
standard specifies these services if there is a REST
implementation.

D. Mirth Connect

Created by Mathias LIN, it is a middleware considered the
Swiss army knife of the integration engines of health
information. It is specialized and designed to exchange
messages in the HL7 standard and counts on tools to develop,

test and monitor interfaces [31]. Figure 7 illustrates an
architectural vision of a system that uses Mirth Connect.

Figure 7. Architecture of a system using Mirth Connect as a Middleware

[11] .

The following functionalities are available:

 A rich interface channel development and monitoring
environment using an intuitive drag-and-drop
template-based editor;

 Real-time connection monitoring through a
dashboard;

 Message reprocessing;

 An integration server that supports a variety of
protocols to connect to external systems, and diverse
database options.

E. IMB WebSphere Message Broker

The IMB WebSphere Message Broker (WMB) is
considered a product of business integration and used to
integrate applications of general purpose by applying message
transformation, enrichment and routing. It supports health
applications even if they were built in other languages, such
as .NET, C or Java. Figure 8 depicts the architecture of a
WMB application.

WMB offers:

 Models of message used to analyze, route and
transform HL7 messages;

 Input and Output nodes to integrate HL7 clinical
applications;

 Integration with medical devices;

 Integration with Digital Imaging and
Communications in Medicine (DICOM);

 Specific standards of medical assistance;

 Operational monitoring of data transmission for
medical applications;

 Generation of events of Audit Trail and Node
Authentication (ATNA) auditing to support

412Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 431 / 512

confidentiality of patient information, data integrity
and provision;

 Ability to extract information from medical assistance
data in message flows, and sending information.

Figure 8. Architecture of a health system using WMB [12]

The selected characteristics of the presented middleware

are summarized in Table I.

TABLE I. CHARACTERISTICS OF PRESENTED MIDDLEWARE

Characteristics Mid A Mid B Websphere Mirth

Connect hData

Synchronous x x x x -

Asynchronous - - x x x

Middleware type MOM MOM MOM MOM MOM

Web-based - x x x x

HL7 v2.x x x x x -

HL7 v3.x x - x x -

HFIR - - x x x

Parsing x x x x x

Validating - x x x x

Transmitting x x x x x

Table I shows the features supported by each middleware

evaluated in this work. Observing the results obtained, it is
possible to highlight the following points: i) all middleware
analyzed are MOM types, ii) all of them encompass all
methods of parsing and transmitting, iii) only the market
middleware supports HFIR and asynchronous message
exchange.

V. CONCLUSION AND FUTURE WORK

In this paper, we have analyzed and compared different
middleware for healthcare data exchange. This study showed
the extensibility of HL7 standards and the ongoing HL7-based

projects and research. The comparison analysis provided an
insight into the strengths and weaknesses of the middleware
architecture, the compatibility with HL7 versions, operating
systems, architecture, features and connection type. Based on
the survey, we found that the Mirth Connect and Mitre hData
middlewares are the most appropriate for exchanging health
data. This is due to the fact that they present features which
are more compatible with the HL7 standard, as both
middlewares are specifically meant to be used in health
applications. The Websphere middleware, for general
purposes, may also be used in health data exchange. However,
the lack of alignment with the HL7 standard would increase
the complexity of the developed solution.

 In future works, we will use a HL7-based toolkit to
implement, test and measure a middleware to integrate
different healthcare solutions and consolidate patient data in a
big-data repository using HL7 messages. Then, we will
compare the results with the existing middleware and,
depending on the results, propose a new HL7-based
middleware architecture.

VI. REFERENCES

[1] P. Silva-Ferreira, J. Patriarca-Almeida, P. Vieira-Marques, R. Cruz-
Correia, “Improving expressiveness of agents using openEHR to
retrieve multi-institutional health data: Feeding local repositories
through HL7 based providers.” Inf. Syst. Technol. (CISTI), 2012 7th
Iber. Conf. on. IEEE, 2012, pp. 1-5.

[2] R. Cruz-Correia, J. C. Nascimento, R. D. Sousa, and H. O’Neill,
“eHealth key issues in Portuguese public hospitals” Proc. - IEEE
Symp. Comput. Med. Syst, 2012, pp. 1-6.

[3] L. Ribeiro, J. P. Cunha, and R. Cruz-Correia, “Information systems
heterogeneity and interoperability inside hospitals: A survey,” Heal.
2010, pp. 337–343.

[4] T. Beale and S. Heard, “openEHR - Architecture Overview,”
OpenEHR Found., 2007, pp. 1–79.

[5] ISO, “ISO 13606-1:2008 Health informatics — Electronic health
record communication — Part 1: Reference model,” 2008. [Online].
Available: ISO 13606-1:2008(en). [Accessed: 06-Jun-2015].

[6] ISO, “ISO 13606-2:2008 Health informatics Electronic healthcare
record communication Part 2: Archetype interchange specification.
International Organization for Standardization,” 2008. [Online].
Available: http://www.iso.org/iso/home/store/catalogue_
tc/catalogue_detail.htm?csnumber=50119. [Accessed: 06-Jun-2015].

[7] S. Frade, S. M. Freire, E. Sundvall, J. H. Patriarca-Almeida, and R.
Cruz-Correia, “Survey of openEHR storage implementations,” Proc.
CBMS 2013 - 26th IEEE Int. Symp. Comput. Med. Syst., 2013, pp.
303–307.

[8] X. Ma, L. Qian, and X. Lin, “WSXP:A universal data exchange
platform based on Web Services,” Inf. Sci. Eng. (ICISE), 2010 2nd Int.
Conf., pp. 4815 - 4818, 2010.

[9] B. Li, L. Sun, and R. Tian, “Multi-source Heterogeneous Data
Exchange System for Cloud Services Platform Based on SaaS,” Inf.
Sci. Control Eng. (ICISCE), 2015 2nd Int. Conf., pp. 327-331, 2015.

[10] X. Liu, L. Ma, and Y. Liu, “A middleware-based implementation for
data integration of remote devices,” Proc. - 13th ACIS Int. Conf. Softw.
Eng. Artif. Intell. Networking, Parallel/Distributed Comput. SNPD
2012, pp. 219–224.

[11] S. Ngamsuriyaroj, C. Sirichamchaikul, S. Hanam, and T.
Tatsanaboonya, “Patient information exchange via web services in HL
7 v3 for two different healthcare systems,” Proc. 2011 8th Int. Jt. Conf.
Comput. Sci. Softw. Eng. JCSSE 2011, pp. 420–425.

[12] IBM, “IBM Message Broker 8.” [Online]. Available: http://www-
01.ibm.com/support/knowledgecenter/SSKM8N_8.0.0/com.ibm.healt
hcare.doc.

413Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 432 / 512

[13] MITRE Corporation, “Project hData.” [Online]. Available:
http://www.projecthdata.org. [Accessed: 21-Jun-2015].

[14] H. L. S. International, “Health Level Seven,” 2007. [Online].
Available: http://www.hl7.org/. [Accessed: 06-Jun-2015].

[15] ISO/IEC, “Information technology - Open Systems Interconnection -
Basic Reference Model: The Basic Model,” vol. 1, p. 69, 1994.

[16] L. Liu and Q. Huang, “An extensible HL7 middleware for
heterogeneous healthcare information exchange,” 2012 5th Int. Conf.
Biomed. Eng. Informatics, BMEI 2012, no. Bmei, 2012, pp. 1045–
1048.

[17] H. C. Tung Tran, Hwa-Sun Kim, “A Development of HL7 Middleware
for Medical Device Communication,” in Fifth International
Conference on Software Engineering Research, Management and
Applications, 2007, pp. 485–492.

[18] M. Hussain, M. Afzal, H. F. Ahmad, N. Khalid, and A. Ali, “Healthcare
applications interoperability through implementation of HL7 web
service basic profile,” ITNG 2009 - 6th Int. Conf. Inf. Technol. New
Gener., 2009, pp. 308–313.

[19] D.-M. L. D.-M. Liou, E.-W. H. E.-W. Huang, T.-T. C. T.-T. Chen, and
S.-H. H. S.-H. Hsiao, “Design and implementation of a Web-based
HL7 validation system,” Proc. 2000 IEEE EMBS Int. Conf. Inf.
Technol. Appl. Biomed. ITAB-ITIS 2000. Jt. Meet. Third IEEE EMBS
Int. Conf. Inf. Technol, 2000, pp. 1–6.

[20] S. C. Lin, Y. L. Chiang, H. C. Lin, J. Hsu, and J. F. Wang, “Design and
implementation of a HL7-based physiological monitoring system for
mobile consumer devices,” Dig. Tech. Pap. - IEEE Int. Conf. Consum.
Electron., 2009, pp. 1-2.

[21] N. Ibrahim, “Orthogonal classification of middleware technologies,”
3rd Int. Conf. Mob. Ubiquitous Comput. Syst. Serv. Technol.
UBICOMM 2009, 2009, pp. 46–51.

[22] H. Pinus, “Middleware: Past and present a comparison,” pp. 1–5, 2004.

[23] Oracle, “Message-Oriented Middleware (MOM),” 2010. [Online].
Available: http://docs.oracle.com/cd/E19798-01/821-
1798/aeraq/index.html. [Accessed: 02-Jun-2015].

[24] Microsoft, “Message Queuing (MSMQ),” 1999. [Online]. Available:
https://msdn.microsoft.com/en-us/library/ms711472(v=vs.85).aspx.
[Accessed: 05-Jun-2015].

[25] IBM, “IBM MQ,” 2011. [Online]. Available: http://www-
03.ibm.com/software/products/en/ibm-mq. [Accessed: 05-Jun-2015].

[26] M. Henning, “A new approach to object-oriented middleware,” IEEE
Internet Comput., vol. 8, no. 1, pp. 66–75, 2004.

[27] L. Ko et al. “HL7 middleware framework for healthcare information
system,” Heal. 2006 8th Int. Conf. e-Health Networking, Appl. Serv.,
2006, pp. 152–156.

[28] University Health Network., “HAPI FHIR.” [Online]. Available:
http://hl7api.sourceforge.net/.

[29] Inner Harbour Software, “HL7Spy.” [Online]. Available:
http://hl7spy.ca/hl7-spy/. [Accessed: 21-Jun-2015].

[30] J. Reagan, “HL7 Analyst.” [Online]. Available:
http://hl7analyst.codeplex.com/downloads/get/250522?releaseId=685
24. [Accessed: 21-jun-2015]

[31] Meta Healthcare, “Mirth Connect - HL7 Middleware.” [Online].
Available: http://www.metahealthcare.com/solutions/mirth/.
[Accessed: 21-Jun-2015].

414Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 433 / 512

Teaching Robotics and Mechanisms
with MATLAB

Daniela Marghitu

Computer Science and Software Engineering Dept.
Auburn University

Auburn, Alabama 36830
Email: marghda@auburn.edu

Dan Marghitu

Mechanical Engineering Dept.
Auburn University

Auburn, Alabama 36830
Email: marghdb@auburn.edu

Abstract—Engineering mechanics involves the development of
mathematical models of the physical world. Mechanisms and
robots address the motion and the dynamics of kinematic links.
MATLAB is a modern tool that has transformed mathematical
methods because MATLAB not only provides numerical cal-
culations but also facilitates analytical or symbolic calculations
using the computer. The intent is to show using an R(rotation)-
R(rotation)T(translation)R(rotation) chain the convenience of
MATLAB for theory and applications in mechanisms. The dis-
tinction of the study from other projects is the use of MATLAB
for symbolic and numerical applications. This project is intended
primarily for use in dynamics of multi-body systems courses. The
MATLAB graphical user interface enables students to achieve
mechanisms programming helping this way the retention in
engineering courses. The project can be used for classroom
instruction, for self-study, and in a distance learning environment.
It would be appropriate for use as an undergraduate level.

Keywords–MATLAB; symbolic calculations; kinematic chain.

I. INTRODUCTION

In this paper, MATLAB is considered for a mathemati-
cal equations of a three moving link kinematic chain. The
achievements in the robot starting with the development of the
recursive Newton-Euler algorithm are given in [1]. Algorithms
and equations can be developed using Kane’s equations [2]
and are of great value. The system kinematics are computed
from experimental measurements in [3]. The method for the
kinematics of rigid bodies connected by three degrees of
freedom rotational joints uses the position measurements.
The kinematics of a simulated three-link model and of an
experimentally measured motion of human body during flight
phase of a jump are discussed. The use of Mathematica and
MATLAB for the analysis of mechanical systems is developed
in [4] [5] [6]. Educational robotics research studies [7] and
our experience of teaching robotics has shown robotics to be
one of the best context for teaching computational thinking
and problem solving. Habib presented the methodology of
integrating MATLAB/Simulink into mechanical engineering
curricula [8]. The benefits of integrating MATLAB are the
basic concepts, the graphical visualization, and the mathe-
matical libraries. MATLAB software packages for biomedical
engineers including nonlinear dynamics and entropy-based
methods were presented in [9] and are suitable for an upper-
level undergraduate course.

This paper describes the systematic computation of motion
for a three link chain using MATLAB. The software combines

symbolical and numerical computations and can be applied to
find and solve the motion for humans, animals, and robotic
systems.

II. POSITION ANALYSIS

The planar R-RTR chain is considered is shown in Figure 1.
The driver link is the rigid link 1 (the link AB). The following
numerical data are given: AB = 0.10 m, and CD = 0.18 m.
The angle of the driver link 1 with the horizontal axis is φ =
45◦. The constant angular speed of the driver link 1 is 100 rpm.
A Cartesian reference frame xy is selected. The joint A is in

x (m)
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

y
(m

)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

A

B

C

D

φ

1

2

3

Figure 1. R-RTR chain.

the origin of the reference frame, that is, A ≡ O,

xA = 0 and yA = 0.

The coordinates of the joint C are given

xC = 0.05 m and yC = −xC .

Position of joint B
The unknowns are the coordinates of the joint B, xB and yB .
Because the joint A is fixed and the angle φ is known, the
coordinates of the joint B are computed from the following

415Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 434 / 512

expressions

xB = AB cosφ,

yB = AB sinφ. (1)

The MATLAB commands for joints A, C, and B are:

AB = 0.10 ; % (m)
CD = 0.18 ; % (m)
phi = pi/4; % (rad)
xA = 0; yA = 0;
rA_ = [xA yA 0];
xC = 0.05; % (m)
yC = -xC;
rC_ = [xC yC 0];
xB = AB*cos(phi);
yB = AB*sin(phi);
rB_ = [xB yB 0];

Angle φ2
The angle of link 2 (or link 3) with the horizontal axis is
calculated from the slope of the straight line BC:

φ2 = φ3 = arctan
yB − yC
xB − xC

. (2)

Position of joint D
The unknowns are the coordinates of the joint D, xD and yD

xD = xC + CD cosφ3,

yD = yC + CD sinφ3. (3)

The MATLAB commands for the position of D are:

phi2 = atan((yB-yC)/(xB-xC));
phi3 = phi2;
CB = norm([xB-xC, yB-yC]);
ux = (xB - xC)/CB;
uy = (yB - yC)/CB;
xD = xC + CD*ux; yD = yC + CD*uy;
rD_ = [xD yD 0];

The components of the unit vector of the vector −−→CD are ux
and uy. The numerical results are:

% phi = phi1 = 45 (degrees)
% rA_ = [0.000, 0.000,0] (m)
% rC_ = [0.050,-0.050,0] (m)
% phi2 = phi3 = 80.264 (degrees)
% rD_ = [0.080, 0.127,0] (m)

The position simulation for a complete rotation of the driver
link 1 (φ ∈ [0, 360◦]) is obtained with the MATLAB using
a loop command and the graphical representation is shown in
Figure 2.

III. VELOCITY AND ACCELERATION ANALYSIS

The velocity of the point B1 on the link 1 is

vB1 = vA + ω1 × rAB = ω1 × rB , (4)

where vA ≡ 0 is the velocity of the origin A ≡ O.
The angular velocity of link 1 is

ω1 = ω1 k̂ =
πn

30
k̂ =

π(100)

30
k̂ rad/s. (5)

x (m)
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

y
(m

)

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 2. MATLAB representation of the R-RTR chain for a complete
rotation of the driver link.

The position vector of point B is

rAB = rB − rA = xB ı̂ + yB ̂ + zB k̂. (6)

The velocity of point B2 on the link 2 is vB2 = vB1 because
between the links 1 and 2 there is a rotational joint. The
velocity of B1 = B2 is

vB1 = vB2 =

∣∣∣∣∣∣
ı̂ ̂ k̂
0 0 ω
xB yB 0

∣∣∣∣∣∣ . (7)

The acceleration of the point B1 = B2 is

aB = aB1
= aB2

= aA +α1 × rB + ω1 × (ω1 × rB)

= −ω2
1rB . (8)

The angular acceleration of link 1 is α1 = ω̇1 = 0. The
MATLAB commands for the velocity and acceleration of B1 =
B2 are

vB1_ = vA_ + cross(omega1_,rB_);
vB2_ = vB1_;
aB1_ = aA_ + cross(alpha1_,rB_) - ...

dot(omega1_,omega1_)*rB_;
aB2_ = aB1_;

The numerical results are:

% vB1_ = vB2_ =[-0.740, 0.740,0] (m/s)
% aB1_ = aB2_ =[-7.754,-7.754,0] (m/sˆ2)

The velocity of the point B3 on the link 3 is calculated in
terms of the velocity of the point B2 on the link 2

vB3
= vB2

+ vrel
B32

= vB2
+ vB32

, (9)

where vrel
B32

= vB32 is the relative acceleration of B3 with
respect to a reference frame attached to link 2. This relative
velocity is parallel to the sliding direction BC, vB32 ||BC, or

vB32
= vB32

cosφ2̂ı + vB32
sinφ2 ̂, (10)

where φ2 is known from position analysis. The points B3 and
C are on the link 3 and

vB3
= vC + ω3 × rCB = ω3 × (rB − rC), (11)

416Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 435 / 512

where vC ≡ 0 and the angular velocity of link 3 is ω3 = ω3k̂.
Equations (9), (10), and (11) give∣∣∣∣∣∣

ı̂ ̂ k̂
0 0 ω3

xB − xC yB − yC 0

∣∣∣∣∣∣ =

vB2
+ vB32

cosφ2̂ı + vB32
sinφ2 ̂. (12)

Equation (12) represents a vectorial equations with two scalar
components on x-axis and y-axis and with two unknowns ω3

and vB32

−ω3(yB − yC) = vBx + vB32
cosφ2,

ω3(xB − xC) = vBy + vB32 sinφ2. (13)

The vectorial equation (12) is obtained in MATLAB with:

omega3z=sym(’omega3z’,’real’);
vB32=sym(’vB32’,’real’);
omega3u_ = [0 0 omega3z];
vB3B2u_ = vB32*[cos(phi2) sin(phi2) 0];
vC_ = [0 0 0]; % C is fixed
vB3_ = vC_ + cross(omega3u_,rB_-rC_);
eqvB_ = vB3_ - vB2_ - vB3B2u_;
eqvBx = eqvB_(1); eqvBy = eqvB_(2);

The solutions of the system are obtained with:

solvB = solve(eqvBx,eqvBy);
omega3zs=eval(solvB.omega3z);
vB32s=eval(solvB.vB32);
omega3_ = [0 0 omega3zs];
omega2_ = omega3_;
vB3B2_ = vB32s*[cos(phi2) sin(phi2) 0];

The numerical results are:

% omega2_ = omega3_ = [0,0, 6.981](rad/s)
% vB32_ = [-0.102,-0.596,-0] (m/s)

The acceleration of the point B3 on the link 3 is calculated in
terms of the acceleration of the point B2 on the link 2

aB3
= aB2

+ arelB3B2
+ acorB3B2

= aB2
+ aB32

+ acorB32
, (14)

where arelB3B2
= aB32

is the relative acceleration of B3 with
respect to B2 on link 3. This relative acceleration is parallel
to the sliding direction BC, aB32 ||BC, or

aB32
= aB32

cosφ2̂ı + aB32
sinφ2 ̂. (15)

The Coriolis acceleration of B3 realative to B2 is

acorB32
= 2 ω3 × vB32

= 2 ω2 × vB32

= 2

∣∣∣∣∣∣
ı̂ ̂ k̂
0 0 ω3

vB32
cosφ2 vB32

sinφ2 0

∣∣∣∣∣∣ =

2(−ω3vB32 sinφ2̂ı + ω3vB32 cosφ2 ̂). (16)

The points B3 and C are on the link 3 and

aB3
= aC +α3 × rCB − ω2

3rCB , (17)

where aC ≡ 0 and the angular acceleration of link 3 is α3 =
α3k̂. Equations (14), (15), (16), and (17) give∣∣∣∣∣∣

ı̂ ̂ k̂
0 0 α3

xB − xC yB − yC 0

∣∣∣∣∣∣− ω2
3(rB − rC)

= aB2
+ aB32

(cosφ2̂ı + sinφ2 ̂) + 2 ω3 × vB32
.(18)

Equation (18) represents a vectorial equations with two scalar
components on x-axis and y-axis and with two unknowns α3

and aB32

−α3(yB − yC)− ω2
3(xB − xC)

= aBx + aB32
cosφ2 − 2ω3vB32

sinφ2,

α3(xB − xC)− ω2
3(yB − yC)

= aBy + aB32
sinφ2 + 2ω3vB32

cosφ2. (19)

The MATLAB commands for the calculating α3 and aB32
are:

aB3B2cor_ = 2*cross(omega3_,vB3B2_);
alpha3z=sym(’alpha3z’,’real’);
aB32=sym(’aB32’,’real’);
alpha3u_ = [0 0 alpha3z];
aB3B2u_ = aB32*[cos(phi2) sin(phi2) 0];
aC_ = [0 0 0]; % C is fixed
aB3_=aC_+cross(alpha3u_,rB_-rC_)- ...
dot(omega3_,omega3_)*(rB_-rC_);
eqaB_ = aB3_ - aB2_ - aB3B2u_ - ...
aB3B2cor_;
eqaBx = eqaB_(1); eqaBy = eqaB_(2);
solaB = solve(eqaBx,eqaBy);
alpha3zs=eval(solaB.alpha3z);
aB32s=eval(solaB.aB32);
alpha3_ = [0 0 alpha3zs];
alpha2_ = alpha3_;
aB32_ = aB32s*[cos(phi2) sin(phi2) 0];

and the vectorial solutions are:

% alpha2_=alpha3_=[0,0,-17.232](rad/sˆ2)
% aB3B2_=[0.505, 2.942,0] (m/sˆ2)

The velocity of D is

vD = vC + ω3 × rCD = ω3 × (rD − rC) =∣∣∣∣∣∣
ı̂ ̂ k̂
0 0 ω3

xD − xC yD − yC 0

∣∣∣∣∣∣ . (20)

The acceleration of D is

aD = aC +α3 × rCD − ω2
3rCD =

α3 × (rD − rC)− ω2
3(rD − rC) =∣∣∣∣∣∣

ı̂ ̂ k̂
0 0 α3

xD − xC yD − yC 0

∣∣∣∣∣∣
−ω2

3 [(xD − xC)̂ı + (yD − yC)̂] . (21)

The velocity and acceleration of D are calculated in MATLAB
with:

vD_ = vC_ + cross(omega3_,rD_-rC_);
aD_=aC_+cross(alpha3_,rD_-rC_)-...
dot(omega3_,omega3_)*(rD_-rC_);

417Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 436 / 512

IV. DYNAMIC FORCE ANALYSIS

The force of gravity, G1, the force of inertia, Fin1, and the
moment of inertia, Min1, of the link 1 are calculated using the
MATLAB commands:

m1 = rho*AB*h*d;
G1_ = [0,-m1*g,0];
Fin1_ = -m1*aC1_;
IC1 = m1*(ABˆ2+hˆ2)/12;
IA = m1*(ABˆ2+hˆ2)/3 ;
alpha1_ = [0 0 0];
Min1_ = -IC1*alpha1_;

For the links 2 and 3 there are similar MATLAB statements.
The joint forces are calculated using Newton-Euler equations
of motion for each link, as depicted in Figure 3. The dynamic

A

B

C

B

D

B

G2

C3

2
F12

C1

F21

(a)

F03

D

F23

M23

(b)

(c)

F32M32

Me

Mm

C

G3

G1
F01

3

1

Figure 3. Free body diagrams for each link.

force analysis starts with the last link 3 because the given
external moment acts on this link. For link 3, the unknowns
are:

F23x=sym(’F23x’,’real’);
F23y=sym(’F23y’,’real’);
F23_=[F23x, F23y, 0];
M23z=sym(’M23z’,’real’);
M23_=[0, 0, M23z];

Because the joint between 2 and 3 at B is a translational joint
the reaction force F23_ is perpendicular to the sliding di-
rection BC: eqF23 = (rB_-rC_)*F23_.’; A moment
equation for all the forces and moments that act on link 3 with
respect to the fixed point C can be written:

eqM3C_ = cross(rB_-rC_,F23_)+....
cross(rC3_-rC_,G3_)+M23_+Me_-IC*alpha3_;
eqM3z = eqM3C_(3);

There are two scalar equations %(1) and %(2) with three
unknowns F23x, F23y, M23z. The force calculation will
continue with link 2. For link 2, a new unknown force, the
reaction of link 1 on link 2 at B, is introduced:

F12x=sym(’F12x’,’real’);
F12y=sym(’F12y’,’real’);
F12_=[F12x, F12y, 0];

The Newton-Euler equations of motion for link 2, are written
as:

eqF2_ = F12_+G2_+(-F23_)-m2*aC2_;
eqF2x = eqF2_(1);
eqF2y = eqF2_(2);
eqM2_ = -M23_ - IC2*alpha2_;
eqM2z = eqM2_(3);

Now there are 5 equations with 5 unknowns and the system
can be solve using MATLAB:

sol23=solve(eqF23,eqM3z,eqF2x,eqF2y,eqM2z);
F23xs=eval(sol23.F23x);
F23ys=eval(sol23.F23y);
F12xs=eval(sol23.F12x);
F12ys=eval(sol23.F12y);
M23zs=eval(sol23.M23z);

The motor moment, M_, required for the dynamic equilibrium
of the mechanism is determined from:

Mm_=IA*alpha1_-(cross(rC1_,G1_)+...
cross(rB_,-F12s_));

V. CONCLUSION

The paper presented a modern tool to teach robotic systems
using MATLAB. MATLAB provides numerical and symbolical
calculations for an R-RTR kinematic chain. This study is
intended for use in mechanism and robotic courses for the
undergraduate level.

REFERENCES
[1] R. Featherstone and D. Orin, “Robot dynamics: Equations and algo-

rithms,” in IEEE International Conference Robotics & Automation, San
Francisco, CA, 2000, pp. 826–834.

[2] T. Kane and D. Levinson, “Kane’s dynamical equations in robotics,”
International Journal of Robotics Research, vol. 2(3), 1983, pp. 3–21.

[3] J. Lee, H. Flashner, and J. McNitt-Gray, “Estimation of multibody
kinematics using position measurements,” Journal of Computational and
Nonlinear Dynamics, vol. 6(3), 2011, p. 9 pages.

[4] D. Marghitu, Mechanical Engineer’s Handbook. Academic Press, San
Diego, CA, 2001.

[5] ——, Kinematic Chains and Machine Component Design. Elsevier,
Amsterdam, 2005.

[6] D. Marghitu and M. Dupac, Advanced Dynamics: Analytical and Nu-
merical Calculations with MATLAB. Springer, 2009.

[7] J. Davis, B. Wellman, M. Anderson, and R. M., “Providing robotic
experiences through object-based programming (preop),” in Proceedings
of 2009 Alice Symposium in cooperation with SIGCSE, ACM, Durham,
NC, 2009.

[8] M. Habib, “Enhancing mechanical engineering deep learning approach
by integrating matlab/simulink,” Int. J. Engng. Ed., vol. 21, 2005, pp.
906–914.

[9] J. Semmlow and B. Griffel, Biosignal and Medical Image Processing.
CRC Press, 2014.

418Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 437 / 512

 Case of Enterprise Architecture in Manufacturing Firm

Alicia Valdez, Griselda Cortes, Sergio Castaneda

Research Center

 Autonomous University of Coahuila

Coahuila, Mexico

Email: aliciavaldez@uadec.edu.mx,

griselda.cortes@uadec.edu.mx,

sergiocastaneda@uadec.edu.mx

Gerardo Haces, Jose Medina

Research Center

Autonomous University of Tamaulipas

Tamaulipas, Mexico

Email: ghaces@uat.edu.mx, jmedina@uat.edu.mx

Abstract— The small and medium enterprises (SME’s)

have a low level of survival and are facing serious

problems like access to financing, weak management

capacity, poor information about market opportunities,

limited information about access to innovation and

research funds, new technologies and methods of work

organization, the integration of its key processes into

information and communication technologies (ICT’s). The

methodology of Enterprise Architecture (EA) can provide

a model of integration supported with strategic planning,

integrated by partial architectures like business, data,

applications and technology. In this study case, we are

providing information that was collected from different

sources of a medium manufacturing firm to design and

implement an EA. As a result we get to the identification

of strategic changes supported by the methodology, the

assessment of option for change, and a change plan for the

adoption of the methodology in their processes; those

processes must improve their competitiveness and

productivity.

Keywords-Enterprise architecture; Strategic planning;

Manufacturing companies.

I. INTRODUCTION

The EA is a methodology which is looking to

provide a framework for the companies, for the use of

the information in the processes of the business [1]. EA

consist of methodological frameworks, architectural

frameworks, technologies and standards [2]. The

identification of the key processes of the companies in

the manufacturing sector located in the areas of

marketing, engineering, logistics, productivity and

business management, will provide important

guidelines for the design of the EA. Studies conducted

by researchers in Germany indicate that the

administration of the EA is a factor that leads to

changes in the companies. They found the impact of 5

dimensions to take advantage of the benefits derived

from the EA [3]:

 Quality of the EA

 Quality of the infrastructure of the EA

 Quality of service of EA

 Culture of EA

 Use of the EA

The five dimensions are important to achieve a

successful EA, with the realization of benefits measured

by the EA Benefit Realization Model (EABRM) [3].

EA is used as a strategic tool and a mechanism to

support the alignment between business strategy and

ICT’s. It also represents a change in the organizational

learning, and not just a change of intellectual learning,

but learning to cooperate and share information across

the entire enterprise [4]. It enables companies to

achieve a logical balance between technological

efficiency and innovation seeking competitive

advantages. Therefore it is necessary to create strategic

solutions to enhance the capabilities of enterprises and

respond with agility to the challenges, be they business

or technology, that today's markets require.

The SME’s are major generator of employment in

Mexico (7 of 10 jobs are provided by them) [5]. The

design and implementation of EA in support of the

strategy of SME’s in the manufacturing business sector,

will increase the competitiveness and productivity of

these companies.

The main purpose of this article is designing and

implementing an EA for SME’s for the manufacturing

sector that support the innovation and competitiveness

in the national and global market through

methodologies, frameworks, technologies, and,

standards. This research can be replicated in SME’s in

the manufacturing sector of metalworking.

This paper is structured as follows: In Section II the

state of the art is presented. In Section III, partial

architectures, business, application, and technology are

described. Also, the values of the company for the study

are stated. Section IV describes the principal findings of

the study application of each partial architecture and

their final recommendations. Section V presents

conclusion and future work.

419Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 438 / 512

II. STATE OF THE ART

Porter defines innovation as the creation of new

products, processes, knowledge or services by using

existing, or new scientific, or technical knowledge.

Furthermore, Porter also mentions that firms are

evolving into value chains based on intangible assets,

such as knowledge, technology, intellectual property,

and others [6].

Afua also defines “innovation as the use of new

technological knowledge, market knowledge, and

business models that can deliver a new product, or

service, or product/service combinations to customers

who will purchase at prices that will provide profits”

[7].

Consequently, the "Innovation Economy" involves

the production and generation of knowledge, and its

application in products, processes, and services. Thus, it

has become the main asset for developing dynamic

competitive advantages [8].

Innovation is the most important topic required for

companies to grow successfully. In addition, some

factors are changing the environment where the

companies are competing. Among these factors include

[9]:

 Access to Knowledge: Permit to companies

has access to the best ideas, technologies, research

resources, and experts at low cost.
 Trade Barriers: Are rapidly being dismantled,

thus opening up all markets to global suppliers.
 Access to Capital: The funds may now seek

opportunities on a global basis, and companies must

compete internationally for capital.
 Technological Obsolescence: Market life

cycles are now less than product development

cycles. In addition, companies are developing new

methods to reduce their product development times.
A study by the Centro de Tecnologia Avanzada A.C.

(CIATEQ) developed in 2008, found insufficient

capacity of SME’s for the production of knowledge

and technology, little demand for them, and the

disconnection between demand and possible public

offering [10]. The study reflects that SME’s had greater

difficulties in order to integrate into the productive

chains. In addition, there is a lack of coordination

between the system of technological innovation and the

technological demand from firms.

In the adoption of new methods for the organization

of work and innovation, the EA methodology was

placed into consideration. EA is a methodology that

aims to provide companies with a framework for the

use of the information in business processes in ways

that support their business strategy [4], and provides the

strategic alignment between the business strategy and

the ICT’s.

Some frameworks have been created for providing a

guide or method for the establishment of the EA. These

are:

 The Zachman Framework.

 The Department of Defense

Architecture Framework (DoDAF).

 The Open Group Architecture

Framework (TOGAF).

The Zachman Framework [11] was created by John

Zachman in the early 60’s at the International Business

Machines (IBM) Corporation. Consequently, he

developed the framework to define the information

systems. This combines rows and columns that

represent the perspectives, views, and descriptions

types. The perspectives include scope, business model,

systems model, technology model, detailed

representations, and company’s performance.

The description types are data, function, network,

people, time, and motivation. Therefore, Figure 1 shows

the Zachman Framework with its elements. Each cell

contains a set of elements that represent diagrams or

documents on the specific architecture and the level of

details. For example, in the column of the functions or

processes with line of objectives and scope, the cell has

a list of processes which run the business.

Ylimaki and Halttunen say that all the columns and

rows are important because they form the abstractions

of the company [12]. Thus, each cell must include a

primitive graphical model which describes the company

from the viewpoint of the perspective that it is

analyzing.

The Zachman Framework established the basis for

the next generations of frameworks. This includes

DoDAF, which later became TOGAF, which is based

on the Architectural Development Method (ADM).

Figure 1. The Zachman Framework Extended [13]

420Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 439 / 512

In Figure 2, nine phases were represented.

Therefore, these phases are preliminary analysis,

architecture vision, business architecture, information

systems architectures, technology architecture,

opportunities and solutions, migration plan,

implementation of governance, and architecture change

management. All these components of TOGAF

generate deliverables in the form of diagrams,

flowcharts, structures, definitions, and other artifacts.

 Figure 2. Phases of TOGAF [14]

Every framework has a common factor. They aim to

empower the company through the ICT’s search which

helps to increase the productivity and the

competitiveness of the company.

With the increment of complexity in the companies,

the needs of data processing are increasing [13]. In this

case, references about TOGAF and Zachman

Framework has been taken [11]. This is used to

construct the design proposal of the architecture. In

addition, software designing tools like Essential

Architecture Manager and the editor Protégé Ontology

Editor Version 3.4, have been used in the management

of the data in the architecture design.
Other researchers have developed advanced

applications of EA, as Bernard [15] who has defined

EA as a holistic management, planning, and

documentation activity, and has introduced the EA

Cube Framework and implementation methodology.

Where lines of business were defined as five sub-

architectures: Strategic initiatives, business services,

information flows, systems and applications, and

technology infrastructure.

 “Newer approaches as business services,

exemplifies how EA can link strategy, business, and

technology components across the enterprise within a

service bus that encompasses platform independent

horizontal and vertical EA components” [15].

Ahlemann, Stettiner, Messerschmidt, and Legner

establish that the Enterprise Architecture Management

(EAM) is a driver of strategic architecture initiatives as:

The implementation of reference models and industry

norms, with the goal of adopting best practices,

standardization and harmonization, with the goal of

reducing the heterogeneity and complexity of business

processes, applications, data, infrastructure technology,

service oriented and modularization , with the goal of

creating reusable services and modules [16].

III. PARTIAL ARCHITECTURES

Research and studies in Europe indicate that the EA

is a driver for transformations in companies [3].

Orantes, Gutierrez and Lopez mentioned that

companies should be constantly evolving, redefining

business processes to achieve business architecture

(BA) which is the basis for subsequent architectures [2].

The data flow of the study is shown in Figure 3.

With these premises, partial architectures have been

constructed. However, the first is the BA.

Figure 3. Data flow of the EA

A. Business Architecture

The purpose of the BA is to define the business,

document organizational structure, identify and define

business functions and processes, relying on strategic

planning with their areas of interest [17]. The BA

involves some elements of the company like the

mission, vision, objectives, goals, values and policies;

business processes, procedures and functions, and

organizational structure, situational analysis, customers,

markets, products, and long, medium, and short

strategies.

421Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 440 / 512

The company of the study case is a medium

enterprise that provides raw material to the large steel

companies in northeast of Mexico. This company was

established in 1982 to meet the needs of the industry in

the manufacture and machining of metal parts.

Consequently, the machined parts are made through

computerized numerical control machines (CNC). The

main products which were manufactured are generally

forklift parts, rotating joints, plates thousand holes

(clamps, screws, etc.), and various mechanical

equipment parts and assembly work. The company has

65 employees. Figure 4 presents some data for the BA.

The structure of the company has 4 levels,

corresponding to the CEO and Sales manager at the top

position. As follows, these levels include Head of

production machining, Head buyer, Head finance, and

Human resource manager. Other levels have

Supervisors for machining and pailer areas.

Figure 4. Elements of the Business Architecture

The company competes in the regional market of

Mexico, and has a local quality certification. Their

strategy is to produce high quality metals that the

markets are demanding for.

B. Applications Architecture

The Applications Architecture (AA) contains the

software products that the company has for the support

of the processes. The objectives, principles, and

capabilities that govern this architecture are presented

in Table I.

The objective of AA is defined as the best kinds of

applications to manage data and support business

processes with the minimum packaged applications. As

a result, the capabilities for the management of the AA

are the analysis, design, programming and

implementation of information systems, search

packaged solutions tailored towards the needs of the

SME’s, and providing technical support for software

and hardware in all the company. Some of the current

applications are presented in Table II. In this case, the

applications are related to the processes that supports

the firm.

TABLE I. BASIS FOR THE APPLICATIONS

ARCHITECTURE
AA Name Description

Objective Define the best kinds of

applications to manage

data and support

business processes.

Define the best applications that

support the business processes.

Principle Customizing minimum

packaged applications.

Minimize app package, customization

will improve the ability to ensure

ongoing maintenance and maximum

value obtained from the adoption of a

package solution.
Capabilities Analysis, design,

programming and

implementation of

information systems.

Search packaged

solutions tailored to the

needs of the SME’s

Provide technical

support for software

and hardware

throughout the

company.

Domain in the analysis, design,

programming and implementation of

information systems.

Domain in search packaged solutions

tailored to the needs of the SME’s

Domain to provide technical support

for software and hardware.

TABLE II. VALUES FOR INSTANCES OF

APPLICATIONS ARCHITECTURE
Name Description Domain of App Performed by

business

processes

Stock
Information
System

Management

of the inputs
and outputs of

the company

general store.

Update catalog of

items, articles
inventory processing.

Registry

inputs and
outputs of

goods and raw

materials.

Quality Spreadsheets
records

quality of

finished
products.

Data of finished
products according to

production plan.

Verify the
manufacturing

process

according
specifications

with

production.

Client IS Manage

Client
Portfolio.

Update Clients

Portfolio, Electronic
Billing.

Client

Portfolio.

Financial

IS

General

Financial

System.

Update chart of accounts,

sub and sub-sub. Update

Cost-Centers.policies for

debit and credit accounts.

Update the information

of credit banks.

Accounting

Manager.

C. Technology Architecture

The Technology Architecture (TA) represents the

computational equipment that supports the applications

for the operation of the company. The objectives,

422Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 441 / 512

principles, and capabilities of TA are displayed in Table

III.

The consolidation of the technology infrastructure is

the main objective, with minimun diversity for

maintenance purposes. The capabilities are complex

because TA manages communications and networks.

Also, it provides technical support and various services

like platforms integration and monitoring. Thus, Figure

5 presents the equipment.

Figure 5. The computational equipment

The company has one server with 9 computers in

the local area network. However, one shared printer

provides the printing services. Other areas as quality,

purchasing, sales, production, design, finances, human

resources, and the CEO are supported by the equipment.

TABLE III. BASIS FOR THE TECHNOLOGY

ARCHITECTURE
TA

Name Description

Technology

Principle

Minimun diversity of technological products

Objective Technology

infrastructure

consolidation

The technology infrastructure will be

consolidated in the company

Principle Minimum diversity

of technology

products

Minimum diversity for better

maintenance of equipment

Capabilities Software

management

services, hardware

platform services,

security services,

technical support,

communication and

networking services

Ability to acquire, install and

configure networking and

communication.

Ability to detect and correct faults in

computer equipment.

Ability to manage all software.

Ability to manage hardware

platforms.

Therefore, one equipment can be used to run various

applications.

Table IV summarizes the results of the architectures

integration with the processes, applications, and

technology that supports the application.

TABLE IV. RESULTS OF THE INTEGRATION

IV. RESULTS

After the design of the partial architectures in this

firm, the results show that two processes are not

completely supported by applications and technology.

These include Training and Shipment.

E-commerce which could improve the sales volume

and increase productivity is highly recommended when

rethinking a strategic planning of the company.

Therefore, quality and production processes are

supported by spreadsheets.

The Microsip Manufacturing System [18] is a

solution designed for SME’s that do not have

applications in the production areas. Also, the study of

EA confirms the need that had already been detected to

automate production processes. Thus, the advantages of

the software are:

 Planning and control of production.

 Calculation of production.

 Prioritize work orders.

 Monitoring of workers.

 Monitoring of machines.

 Simulation of production orders.

 Production reports.

423Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 442 / 512

 Tracking production.

 Dynamic queries with access to all

production data.

 Control of shipments.

 Conversion to graphics.

 Integration with other installed modules of

Microsip brand.

With this special solution, SME’s control of the

shipments of finished products will be achieved.

Information systems are used in training areas in

order to manage the main elements, such as courses,

facilitators, identifying the needs of the plant for

training, and the proposed dates.

The activities of internal or external training

generate a dynamic company that leads to improved

productivity and competitiveness.

Regarding the proposal to integrate e-commerce

firm on a long term, the following activities were

proposed:

 Development of a dynamic website to

promote the manufactured products.

 Investment in ICT’s could increase

competitiveness and growth into new

domestic and international markets.

 Establish a definition of roles, functions,

and policies for recategorizing.

 Get an open line of credit to finance the

expansion plan and the purchase of

equipment and machinery.

 Competition is intense in the sector of this

industry. Thus, achieving a better position

in the market is necessary to identify and

select new potential customers, increase

advertising in all media, expand their sales

channels, and follow up through customer

service.

 Fostering a culture of total quality in the

whole company.

 The change plan is long term, and it

includes management activities to close

gaps encountered and the acquisition and

implementation of information systems and

technology.
In addition, this project helps in meeting the needs of

SME’s companies to propose affordable solutions that
use business management resources and technology, to
solve problems. This study is limited to manufacturing
SME’s.

Other findings in terms of improvement show that
SME’s have demonstrated alignment with business
strategy to drive a strong organizational culture and
technological infrastructure.

V. CONCLUSION AND FUTURE WORK

In this paper, the EA methodology was designed

and applied in a medium manufacturing company with

information provided from different sources of the firm,

where the applications and technology that support their

business processes were analyzed, linking them through

tables and charts. As a result we found that the

company requires an ICT’s investment in production

and quality processes, which would integrate the

information that is obtained in real time and would

expedite the processes of decision-making, as well as

the integration of e-commerce to the sales strategy. This

can help increase the productivity of the company.
The advantage of this approach lies in that the

company is analyzed holistically, especially in its core
processes.

Given the importance for EA, organizations will
increasingly support their EA efforts as a virtual
reporting structure with collaboration of all people to
deliver substantial business value.

REFERENCES

[1] S. Spewak and S. Hill, ”Enterprise architecture planning,

developing a blueprint for data, application and
technology”, Wiley publisher, USA, 1992, pp. 1-6.

[2] S. Orantes, A. Gutierrez, and M. Lopez,” Enterprise
architectures: Business processes management vs
Services oriented architectures, are they related?”,
Redalyc, 2009, pp. 136-144, vol. 13.

[3] M. Lange, J. Mandling, and J. Recker, “Realizing benefits
from enterprise architecture: A measurement model” ,
ECIS 2012 Proceedings, 2012, A.E. Library, Barcelona,
Spain.

[4] J. Poutanen, “The social dimension of enterprise
architecture in government”, Journal of Enterprise
Architecture, 2012, pp. 19-29, vol 8.

[5] Secretary of Economy, ”SMEs
news”,http://economia.gob.mx/ [retrieved: 04-2013].

[6] M. Porter, "The Competitive Advantage of Nations", ed
P. y Janes, Mexico, 1991.

[7] A. Afua, “Innovation management: strategies,
implementation, and profits 2003”, Oxford University
Press, New York, USA, 2003.

[8] M. Porter, “On competition”, Harvard Business Press,
Boston, MA, USA, 2008.

[9] A. Warren and G. Susman, “Review of innovation
practices in small manufacturing companies”, Small
College of Business, Pennsylvania State University, USA,
2013.

[10] V. Lizardi, F. Baquero and H. Hernandez, "Methodology
for a diagnosis on transfer of technology in Mexico",
ADIAT, Concyteg editor, Mexico D.F., 2008.

[11] J. Zachman, “A framework for information systems
architecture”, IBM systems journal, 1987, pp. 276-292
vol 26.

[12] T. Ylimaki and V. Halttunen, “Method engineering in
practice: A case of applying the Zachman framework in
the context of small enterprise architecture oriented
projects”, Information Knowledge Systems Management,
2006, pp. 189-209, vol. 5.

424Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 443 / 512

[13] J. Sowa and J. Zachman, “Extending and formalizing the
framework for information systems architecture”, IBM
Systems Journal, 1992, pp. 590-616, vol. 31.

[14] The Open Group,
”TOGAF”,http://www.opengroup.org/togaf/ [retrieved:
05-2015].

[15] S. Bernard, “Enterprise architecture linking strategy,
business, and technology”, AutorHouse, Third edition,
USA, 2012, pp. 25-31.

[16] F. Ahlemann, E. Stettiner, M. Messerschmidt, and C.
Legner, “Strategic Enterprise Architecture Management” ,
Springer, Germany, 2013, pp. 5-16.

[17] W. Bruls, M. Steenbergen, R. Foorthius, R. Bos, and S.
Brinkkemper, “Domain architectures as an instrument to
refine enterprise architecture”, Communication of the
association for information systems, 2010, pp. 517-540,
vol. 27.

[18] Microsip Co, “Microsip manufacturing for SME’s”,
http://www.microsip.com, [retrieved: 05-2015].

425Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 444 / 512

An Empirical Investigation on the Motivations for the Adoption of Open Source
Software

Davide Taibi
Faculty of Computer Science

Free University of Bolzano-Bozen
Bolzano-Bozen, Italy

Email: davide.taibi@unibz.it

Abstract— Open Source Software has evolved dramatically in
the last twenty years and now many open source products are
considered similar, or better, than proprietary solutions. The
result is that the trustworthiness of some open source products
is now very high and the motivations for adopting an open
source product over a proprietary product has changed in the
last ten years. For this reason, we ran a mixed research
approach, composed of three empirical studies, so as to identify
the motivations for the adoption of open source products. The
goal is to take a snapshot of the state-of-the-art in FLOSS
motivation’s adoption. Results show that the economical
aspects and the freedom of some type of licenses are not the
main adoption drivers any more while other motivations such
as the ease of customization and ethical reasons are currently
considered more important.

Keywords-Open Source Adoption; Empirical Study; Open
Source Quality.

I. INTRODUCTION
Previous research on the adoption of Free/Libre Open

Source Software (FLOSS) has mainly focused on adoption
models, such as MOSS [1], Open BQR [2], QSOS [3], and
others based on the evaluation of a set of information usually
considered by potential users when they select a new FLOSS
product.

Some works highlight economic or technological reasons
[4][5][6] but, to the best of our knowledge, only a few of
these studies investigated the factors considered during the
adoption of FLOSS by different organization[6][7].
Therefore, the goal of this study is to understand the current
reasons that drive the adoption of FLOSS in IT companies,
using a research approach that promises to obtain a more
complete picture of the motivations for FLOSS adoption.
This led to the definition of the following research question:

RQ1: What are the motivation drivers behind the choice
of a specific FLOSS product over proprietary software?

In order to answer our research question, we designed a
mixed research approach, composed of three empirical
studies. We started with a first round of interviews to
identify the high level motivations for the adoption. Then,
the motivations were refined and clustered by means of a
focus group with experts in FLOSS adoption. Finally, we
conducted a survey to understand the importance of the
motivations identified from the adopter’s point of view.

Results of this work show that the motivations for the
adoption of FLOSS have evolved in the last years and
economical aspects and the license type are not as important

as in the past [6] while other motivations, such as the ease of
customization and ethical reasons are considered more
important.

The rest of this paper is organized as follows. Section II
describes the related works. Section III addresses the
research approach used. Section IV describes the results
obtained. In Section V, we discuss results and in Section IV
we present threats to validity. Finally, in Section VI we draw
conclusion and future studies.

II. RELATED WORKS
In our previous work [6], we conducted a survey with

151 FLOSS stakeholders, with different roles and
responsibilities, about the factors that they consider most
important when assessing whether FLOSS is trustworthy.
Here, we did not ask the motivations for the adoption of a
FLOSS product or a proprietary one, but we asked for the
factors considered to compare two FLOSS products.

We identified 37 factors, clustered in five groups:
economic, license, development process, product quality,
customer-oriented requirements. The product reliability and
the degree to which a FLOSS product satisfies functional
requirements turned out to be the most important factors for
a trustworthy product, immediately followed by
interoperability, availability of technical documentation,
maintainability, standard compliance and mid-/long-term
existence of a user community. Economic factors, such as
Return on Investment (ROI) and Total Cost of Ownership
(TCO), and the availability of a solid maintainer organization
were far from being considered as relevant, as was widely
publicized.

Yan et al [9] ran a survey with students as participants, to
identify the motivations for the adoption of FLOSS in
Malaysia, China, Singapore, Thailand and Vietnam,
collecting 264 questionnaires for FLOSS adopters and 212
for non-adopters. They identified a set Intrinsic Motivation
(to know, to accomplish, and to experience stimulation), and
extrinsic motivations (identified regulation, “introjected
regulation” and external regulation).

Previous works discuss some economic motivations
[4][10], suggesting TCO and ROI as the most important
driver for FLOSS adoption.

Other motivations can be derived by the information
required by the FLOSS adoption models. These models are
based on the evaluations of a set of information, weighted for
their importance. Some models allow users to define the
importance of some information, and to evaluate the product

426Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 445 / 512

they are willing to adopt. The most important methods in this
category are the Open Business Readiness Rating
(OpenBRR)[13], the Open Source Maturity Model
(OSMM)[12], the Qualification and Selection of Open
Source Software (QSOS)[3] and the Open Business Quality
Rating (OpenBQR)[2] that summarizes the benefits of the
previous three models. All these models, suggest to evaluate
economic factors, license, development process, product
quality but only QSOS and OpenBQR add customer related
factors, such as the degree of which a product satisfies the
customer requirement. Other evaluation models are based on
a set of predefined weight for each information and allow
predicting the trustworthiness or the likelihood of the
adoption of a specific FLOSS product. An example is the
MOSS model[1], based on the results obtained in [6].

Also in case of the evaluation models, there is an
indication on the information that should be evaluated, but
the motivations of the choice are not clearly identified.

Finally, a Gartner’s report [17] shows that the top three
reasons for using FLOSS from manager’s point of view are
the Total Cost of Ownership (TCO), the improved security
and the strategic and competitive advantages.

III. THE RESEARCH APPROACH
In this section, we introduce the research approach and

the study design of our work.
The goal of this work is to understand the motivations for

the adoption of FLOSS software. To avoid to bias the results,
based on the results available in the literature, we decided to
collect the motivations from scratch by means of a first
round of interviews, and then a second run of interviews to
analyze qualitative and quantitative results.

This work has been composed by 3 empirical studies, as
depicted in Figure 1: 1) Interviews 2) Focus group and 3)
Group Interviews.

The first round of interviews has been carried out by
means of a questionnaire based on open-ended questions, so
as to not drive the interviewee to a predefined set of answers.
Then, the focus group has been designed to cluster the
answers provided by the participants in smaller sets. Finally,
the survey has been conducted by means of a second
questionnaire, composed by closed-answer questions, based
on the motivations group identified in the focus group.

A. Interviews
The goal of this study was to identify the motivations that

influence the adoption of FLOSS.
The interviews are addressed to assessing the current

situation in the FLOSS adoption. The idea is to take a
snapshot of the state-of-the-art in FLOSS motivation’s
adoption according to developers, managers and custom

integrators. For this reason, we designed a semi-structured
interview with open-ended questions.

Semi-structured interviews tend to be much more highly
interactive and allow us to clarify questions for respondents
and probe unexpected responses. Moreover, in order to
collect a set of reliable answers, all interviews were carried
out in person, by the same interviewer. We believe this is
the most effective way to elicit information and establish an
effective communication channel with the interviewees.

The semi-structured questionnaire was composed of three
sections. After a brief first section, to profile the interviewee,
and the company the interviewee belongs, we asked to list
and rank the motivation for the adoption of FLOSS software,
based on their importance, on a 0-to-10 scale, where 0 meant
“totally irrelevant” and 10 meant “fundamental”. During the
second section, the interviewer, also took note of the
description of the motivation, so as to ease the clustering
process to be carried out in the focus group. In the third
section of the questionnaire, since we wanted to understand
if the factors identified in [6] influence the adoption of
FLOSS, the interviewer asked to rank the factors identified
in [6], not listed as motivations during the second section of
the questionnaire.

B. Focus Group
The focus group has been carried out to discuss the

results of the interviews and draw qualitative conclusions on
the results, summarizing and clustering the motivations. The
clustering part is needed, since several users can define
similar but not identical motivations.

The focus group event has been planned to last three
hours. We invited five participants; four researchers with
experience in FLOSS quality, adoption models and FLOSS
development and the author of the paper that acted as
moderator.

During the focus group we did not report the importance
of each motivation to the participants, so as to avoid biased
results by this value.

Before the beginning of the focus group, we provided an
overview of the objectives of the study, and described how
participants should discuss and act during the session. Then,
we presented the motivations elicited in the survey and we
wrote them on a set of post-it notes.

In order to better understand the difference among
similar motivations, the moderator, who also carried out the
interviews in person, reported the description of the
motivation reported by the interviewees. Then, we asked the
participant to organize the post-it notes on a white board
using the affinity grouping technique[16].

C. Group Interviews
The final study has been designed to be executed in a

group interview, with the support of a closed-ended
questionnaire.

In this case, the interviewer explained each question to
the participants who answered to the questions on a paper-
based questionnaire.

The interviewer distributed the questionnaires to the
participants before the beginning of the workshop and then,

Figure 1. The Study Process

427Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 446 / 512

after a short introduction of the motivation of the study, he
asked to fill in the questionnaire, taking care that participants
were not influenced in their answers from each other’s.

We believe this method is more effective than online
questionnaires, since participants have the possibility to
make questions or to ask for more details.

We organized the questions in the questionnaire in two
sections, according to the types of information we sought to
collect:

• Personal information, and role in relation to
FLOSS: helps to profile the interviewee and the
company.

• Motivations: here we asked to list and rank the
motivation for the adoption of FLOSS software,
based on their importance, on a 0-to-10 scale,
where 0 meant “totally irrelevant” and 10 meant
“fundamental”.

The motivations included both the motivation identified
in the interviews and the missing factors identified in [6].
Moreover, to improve the readability of the questionnaire,
we grouped the motivations in five groups: License,
Development process, Product quality issues, Customer
requirements.

IV. RESULTS
Here we report the results of the three studies, together with
a short discussion and interpretation.

In order to answer to our research question, we first
analyze the results of the group interviews and then we
compare the results with those obtained in the first
interviews after the clustering carried out in the focus group.

Finally, we compare the list of motivations with the
factors highlighted in our previous survey [6].

A. Interviews
The sample of interviewees was not determined in

advance. A preplanned sample would have allowed for a
more controlled result analysis, but it would also have
limited the possibility to add interviewees to the set in an
unanticipated manner. We are fully aware that this may have
somewhat influenced our results.

Here we first provide information about the sample of
respondents, which can be used to better interpret the results
and then, we show the collected results with a concise
analysis of the responses obtained, with insights gained by
statistical analysis.

TABLE I. INTERVIEWEER COMPANY SIZE

Company Size Percentage
SMEs (<250 employees) 47.5%
Medium Enterprise (250-500 employees) 17.5%
Industry (>500 employees) 35.0%

Table I contains the distribution of companies where our
interviewees belong, while Table II show the percentages of
the roles for four organizational roles identified in the
questionnaire. Note that roles may not necessarily be
mutually exclusive.

TABLE II. INTERVIEWEES ROLES

Role or title Percentage
Manager 35%
Developer 27.5%
Custom integrator 52.5%
End user 20%

TABLE III. THE MOTIVATIONS OBTAINED FROM THE INTERVIEWS

Reason #Answers Freqency %
Ethic 13 34.21
Customization Easiness 9 23.68
Personal Enrichment 4 10,53
Synergy 6 15.79
Quality 6 15.79
Economic 7 18.42
Community support 5 13.16
Support 6 15.79
Flexibility 6 15.79
Free 9 23.68
Innovation 4 10.53
Documentation 3 7.89
Works better than CSS 6 15.79
Personal Productivity 3 7.89
Company decision 4 10.53
Maturity 4 10.53
Better Solution than CSS 4 10.53
Adaptability 5 13.16
Competitiveness 6 15.79
Community Enrichment 3 7.89
Avantgarde 1 2.63
Free Availability 1 2.63
Completeness 1 2.63
Customer requirement 1 2.63
Customer need 1 2.63
Economic model 2 5.26
Fast Evolution 1 2.63
Freedom 1 2.63
Internal Management 1 2.63
Independence from other SW 1 2.63
Platform Independence 2 5.26
Long-term investment 1 2.63
License Cost 2 5.26
Reduced investment for clients 1 2.63
Partnership 2 5.26
Professional Support 1 2.63
Reuse 1 2.63
Standards 1 2.63
Multiplatform development 1 2.63
Vendor lock-in 2 5.26
Training 1 2.63
Free updates 2 5.26
Higher consultancy value 1 2.63
Trustworthy 4 10.53

428Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 447 / 512

We interviewed a total of 38 participants. collecting 52
different motivations with an average of 4.32 motivations
listed per interviewee, a minimum of 3 and a maximum of 12
motivations. After a first screening on synonyms (eg.
“Ethic” and “Ethical reasons”) we reduced the total number
of motivations to 33.
In Table III, we report the list of reasons together with their
frequencies, ordered by #answers. Column Frequency %
reports the answer’s frequency (#Answers/Total number of
Answers).

The first immediate result is that, compared to our
previous survey [6], several new motivations have been
identified while others are not considered. Unexpectedly,
most of the development factors, license issues, and quality
aspects such as complexity, performance and usability are
not considered as good motivations for FLOSS adoption.

 However, since several motivations identified in this
first round of interviews are pretty similar, the identification
of similarities and difference will be analyzed after the
results of the focus group.

B. Focus Group
During the focus group we discussed how to cluster

similar motivations, and how to compare them to those
highlighted in our previous survey [6].

The clustering, carried out with the affinity group
technique, allowed to reduce the motivations to 21, on which
13 are common with the factors identified in [6] and 8 are
new: ethic, personal productivity, freedom, partnership,
competitiveness, innovation, flexibility, project maturity.

Table VI shows the list of motivations after the clustering
process carried out, together with the results obtained in the
next study. For reason of space, Table IV do not report the
motivations not considered by our interviewees.

Based on the clustering results, we were also able to
calculate the ranking of each motivation reported in the
interviews. For reason of space, we do not report the results
but we only describe the differences with the results obtained
in the group interviews, in the next section.

C. Final Group Interviews
As for the interviews, the sample of interviewees was not

determined in advance.
The survey has been executed during FOSDEM 2013

workshop “An Interactive Survey on marketing and
communication strategies”[14]. We distributed 47
questionnaires, obtaining 21 valid questionnaires.
Participants were FLOSS experts, developers and
practitioners. No students or non-experienced participants
were considered in the analysis of the results. Table IV
contains the distribution of companies where our
interviewees belong while Table V shows the percentages of
the roles for four organizational roles. Note that, in this case,
roles are mutually exclusive, since we asked our
interviewees to answer to the questions based on the selected
position.

Even if the sample was not determined in advance, the roles
of our interviewees are well distributed among managers,
developers and custom integrators, while no end-users filled
in the questionnaire in this group.

TABLE IV. Company Size

Company Size Percentage
SMEs (<250 employees) 33.3%

Medium Enterprise (250-500 employees) 42.8%
Industry (>500 employees) 23.9%

TABLE V. ROLE

Role or title Percentage
Manager 9.5%

Developer 52.4%
Custom integrator 38.1%

End user 0%

A statistical analysis of the responses lets us partition the
factors into importance groups, which we show in Table VI’s
columns “entire dataset,” “managers”, “developers” and
“customer integrators”.

As for Table III, the column “Frequency %” reports the
answer’s frequency (#Answers/Total number of Answers)
while column “rank” report the weighted average of ranking,
using the importance of each motivation as the weight while
column “[6]” shows if the motivation has an higher or lower
importance than the relative factor identified in [6].

Let’s first discuss the column “entire dataset, where we
identified eight importance groups, from 1 (least important)
to 8 (most important). The ordered grouping indicates a
statistically significant importance ranking between
motivations belonging to different groups, but no such
ordering within each group. For instance, the motivation
“customization easiness” belongs to group 8, so it’s ranked
as more important than quality and just as important as
“Economic” and “Personal Productivity” which are in group
6. The number of groups depends on the portion of the
population considered. For “Managers”, the statistical
analysis led to nine groups while for “Developers and
“Custom Integrators” to eight groups.

The motivation “customization easiness” is considered,
by all groups, as the most important driver for the adoption
of FLOSS. Compared to our previous survey [6], this
motivation gained several positions, moving from group 4
(out of 8) to group 8.

Ethical motivations, not included in [6], seems to be very
important for our interviewees while the overall product
quality is at the same level of personal productivity, and
economic.

Other motivations such as freedom, community support
and potential partnership are relatively important (group 4)
while all other motivation are definitely not relevant, lying in
groups 1, 2 or 3.

429Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 448 / 512

TABLE VI. FINAL SET OF MOTIVATIONS (GROUP INTERVIEWS)

Reason
Entire Dataset Managers Developers Custom Integrators

Rank freq% [6] Rank freq% [6] Rank freq% [6] Rank freq% [6]

Customization Easiness 8 61.90 ! 7 0.14 ! 8 0.78 ! 8 1.00 !

Ethic 7 66.67 7 0.29 8 0.78 7 1.00

Quality 6 71.43 " 6 0.43 " 6 1.00 " 8 0.60 "

Personal Productivity 6 47.62 1 0.29 7 0.89 7 0.60

Economic 6 52.38 ! 9 1.00 ! 2 0.56 " 4 0.60 "

Freedom 4 38.10 5 0.67 3 0.40

Support (community) 4 42.86 ! 2 0.29 " 3 0.89 " 6 0.80 !

Partnership 5 33.33 7 0.57 4 0.80

Competitiveness 2 28.57 3 0.71 2 0.80

Security 2 19.05 " 2 0.33 " 3 0.80 "

Innovation 2 23.81 3 0.43 2 0.20

Multiplatform devel. 2 9.52 " 2 0.43 " 3 0.22 "

Flexibility 2 23.81 2 0.60

Imposed by the company 1 14.29 = 1 0.29 = 1 0.22 =

Maturity 1 14.29 1 0.11 2 0.60

Reliability 1 9.52 " 1 0.21 " 1 0.60

No Vendor Lock-in 1 9.52 = 1 0.14 = 2 0.11

Customer Requirement 1 4.76 = 1 0.14 =

Free Updates 1 4.76 " 1 0.29 "

Training 1 0.00 0 0.00

Reuse 1 0.22 " 0 0.00 2 0.22 "

When considering the different roles. few noticeable

differences emerge.
As expected, managers consider Economic of higher, but

developers and Custom Integrators consider its importance
substantially below average. Unexpectedly, managers have a
different view of Ethic and personal productivity considering
both motivations of little importance compared to the other
groups. Moreover, managers are not interested to freedom at
all.

Custom integrators consider only a smaller set of
motivations compared to the other groups, with quality,
customization easiness, ethic and personal productivity as the
most important motivations.

Developers’ motivations are similar to the average.
Merging the result of the first set of interviews with those

obtained in the group interviews, we will obtain a final
dataset composed by 59 participants (38 from the one-to-one
interviews and 21 from the group-interviews).

In this case, results do not change significantly, showing
a similar trend as in Table VI. For reason of space, we report
only the variations respect to the results presented in Table
VI.

The only differences are in three motivations where Ethic
move down to group 5, personal productivity moves up to
group 6 and community support moves up to group 5.

We believe that this is due to the population of the
interviewees, that in the interviews mainly belong to medium
enterprises while in the group interviews to SMEs.

V. RESULTS DISCUSSION
The first immediate result of the study is that several

development, economical and quality factors, usually
considered important to evaluate a FLOSS product [6] are
not considered as good motivations that drive the adoption of
FLOSS.

Our interviewees prefer FLOSS since they can easily
customize it, without dealing with proprietary issues and
being able to provide the higher value as possible to their
customers.

Ethical motivations gained a very high importance. We
believe that this is due to the population of our interviewees,
since we carried out the interviews during FOSDEM.

As expected, quality and economic are always considered
very important while new motivations as personal
productivity. Freedom, potential partnerships are also
considered as adoption key drivers.

VI. THREATS TO VALIDITY
Due to the number of subjects we were able to obtain

necessary power for performed statistical tests. Before
performing test preconditions (normality, independence of
variables, etc.) were checked to make sure that they are
satisfied.

To get reliable measures questionnaires were checked by
an expert on empirical studies.

Subjects have similar background and knowledge about
FLOSS.

Although we ask the participant of the survey to provide
individual answers, the results could be partially affected

430Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 449 / 512

since they were seated together in the same room. In the first
two studies we employed only high skilled participants with
a good experience on FLOSS while in the survey, we only
analyzed the answers provided by experts. However, since
we ran the survey during a FLOSS conference results could
be biased in favor of FLOSS.

VII. CONCLUSION
In this work, we reported on a mixed research approach

composed of three empirical studies, with the overall goal to
characterize the motivations for the adoption of FLOSS
products.

We first provided an overview on the existing proposal
and studies investigating the motivations, including our
previous survey [6] where we analyzed the factors
considered by the users when they need to compare two or
more FLOSS products.

Then, we conducted a first round of semi-structured
interviews of 38 FLOSS users, so as to identify the high level
motivations and to understand if the factors identified in [6]
can also be considered motivations. Results of this first study
show that most of the quality and economic factors are not
driving the choice of FLOSS among proprietary software.
The motivations were then clustered in groups, reducing the
set to 21 motivations.

Finally, we conducted a structured group interview,
based on a closed-answer questionnaire, where we asked our
interviewees to rank the motivations they consider key
drivers for the FLOSS adoption.

Results show that FLOSS users currently consider new
motivations. Ease of customization is the most important
motivator to adoption of a FLOSS product since it allows
companies to better adapt the product to their customers.

Ethics is also a very important motivation. Several users
consider it more ethical to adopt FLOSS instead of
proprietary software.

Finally, quality, economic and personal productivity are
also considered of middle importance with some variations
in different groups. For instance, managers are most
interested in economics, with less emphasis on ethics, as also
confirmed by Gartner in [17], while customer integrators
consider product quality as the most important motivation.

Although we designed both studies to minimize threats to
validity, it was difficult to obtain good statistical
significance for each group of users. We plan to replicate the
study with a larger set of users so as to validate the results
and to improve its statistical significance.

REFERENCES
[1] V. Del Bianco, L. Lavazza, S. Morasca, D. Taibi, and D. Tosi,

“Quality of Open Source Software: The QualiPSo
Trustworthiness Model.” In: proc. 5th IFIP WG 2.13
International Conference on Open Source Systems, OSS 2009,
Skövde, Sweden, pp.199-212, June 3-6, 2009

[2] D.Taibi, L.Lavazza, and S. Morasca, “OpenBQR: a
framework for the assessment of OSS.” Open Source
Development, Adoption and Innovation. pp.173-186, 2007.

[3] Atos Origin, “Method for Qualification and Selection of
Open Source software (QSOS), version 1.6”,
http://www.qsos.org/download/qsos-1.6-en.pdf

[4] B. Buffett, “Factors influencing open source software
adoption in public sector national and international
statistical organisations.” Meeting on the Management of
Statistical Information Systems (MSIS 2014), Dublin,
Ireland and Manila, Philippines

[5] V. Del Bianco, L. Lavazza, V. Lenarduzzi, S. Morasca, D.
Taibi, and D. Tosi, “A study on OSS marketing and
communication strategies” 8th IFIP International
Conference on Open Source Software, OSS 2012,
Hammamet. vol. 378, pp. 338-343, 2012.

[6] V. Del Bianco, L. Lavazza, S. Morasca, and D. Taibi, “A
Survey on Open Source Software Trustworthiness.”
Software, IEEE. Vol.28, pp.67-75, 2011.

[7] R. Dirk, “The economic motivation of open source
software: Stakeholder perspectives.” Computer. Vol. 40(4),
pp.25–32, April 2007

[8] V. Del Bianco, L. Lavazza, S. Morasca, and D. Taibi, “The
QualiSPo approach to OSS product quality evaluation.”
Workshop on Emerging Trends in FLOSS Research and
Development (FLOSS-3). Cape Town, South Africa pp.23-
28, 2010 .

[9] Y. Li, C. H. Tan, H. Xu, and H. H. Teo, “Open source
software adoption: motivations of adopters and
amotivations of non-adopters.” ACM SIGMIS Database.
Vol.42, pp.76-94, 2011.

[10] V. Lenarduzzi, “Towards a marketing strategy for open
source software” Proceedings of the 12th International
Conference on Product Focused Software Development and
Process Improvement. Pp. 31-33, 2011.

[11] V. Kumar, B. R. Gordon, and K. Srinivasan,” Competitive
Strategy for Open Source Software. Marketing Science.
Vol. 30, pp1066-1078, 2011.

[12] B.Golden “Making Open Source Ready for the Enterprise:
The Open Source Maturity Model”, from “Succeeding with
Open Source”, AddisonWesley, 2005

[13] “Business Readiness Rating for Open Source - A Proposed
Open Standard to Facilitate Assessment and Adoption of
Open Source Software”, BRR 2005 RFC 1,
http://www.openbrr.org.

[14] E. Petrinja, R. Nambakam, and A. Sillitti, “Introducing the
OpenSource Maturity Model.” In Proceedings of the 2009
ICSE Workshop on Emerging Trends in Free/Libre/Open
Source Software Research and Development (FLOSS '09).
IEEE Computer Society, Washington, DC, USA.Pp.37-41,
2009.

[15] D.Taibi, and V.Lenarduzzi, “An Interactive Survey on
marketing and communication strategies” FOSDEM’13.
Bruxelles, February 2013.

[16] S.Mizuno, “Seven New Tools for QC: For Managers and
Staff Promoting Company-wide Quality Control”, 1979.
Mikka Giren

[17] M.Cheung, and L. F. Wurster, “Open-Source Software
Adoption and Governance, Worldwide, 2014” Gartner
Report feb. 2015. G00272505

431Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 450 / 512

Gamifying and Conveying Software Engineering Concepts
for Secondary Education: An Edutainment Approach

Roy Oberhauser
Computer Science Dept.

Aalen University
Aalen, Germany

roy.oberhauser@hs-aalen.de

Abstract—Because of its abstract nature, software engineering
faces image, perception, and awareness challenges that affect
its ability to attract sufficient secondary school age students to
its higher education programs. This paper presents an
edutainment approach called Software Engineering for
Secondary Education (SWE4SE), which combines short
informational videos and a variety of simple digital games to
convey certain SE concepts in an entertaining way. Our
realization mapped various SE concepts to seven digital games,
and results from an evaluation with secondary students
showed that a significant improvement in the perception,
attractiveness, and understanding of SE can be achieved within
just an hour of play. Thus, we suggest that such an
edutainment approach is economical, effective, and efficient
for reaching and presenting SE within secondary school
classrooms.

Keywords-software engineering education; software
engineering games; game-based learning; digital games.

I. INTRODUCTION
The demand for software engineers appears insatiable,

and computer science (CS) faculties and the software
engineering (SE) discipline appear to be steadily challenged
in attracting and supplying sufficient students to fulfill the
demand. While it may appear to each higher education
institution and country to be a local or regional problem, the
challenge may indeed be more common and broader in
nature. For example, in the United States in 2005, after a
boom beginning around 2000, a 60% decrease over 4 years
in the number of freshmen specifying CS as a major was
observed [1]. And US bachelor degrees in CS in 2011 were
roughly equivalent to that seen in 1986 both in total number
(~42,000) and as a percentage of 23 year olds (~1%) [2]. As
another example, Germany also observed a negative trend
from a record number of CS students in 2000, and one 2009
news article [3] blamed the negative image of CS among the
young generation. While the number of starting CS
undergrads in Germany has since increased, roughly 33,000
software developer positions remain unfilled in 2014 [4]. In
addition, the forecast demographic effects in certain
industrial countries imply a smaller younger population
available to attract, reducing the overall supply and thus
increasing the competition between disciplines to attract
students and workers. It is thus a critical and continual
worldwide issue to attract young women and men to SE.

Concerning SE's image, according to D. Parnas [5] there
is apparently confusion in higher education institutions as to
the difference between CS and SE, and we assert this affects
secondary education as well. The CS equivalent term in
Germany, informatics, is much more publically known and
marketed as a discipline or field of study than is SE. Thus,
SE programs struggle in the overall competition between
disciplines to attract secondary students for this critical area
to society, since SE must first raise awareness about its field.

The concepts inherent in SE, as exemplified in the
SWEBOK [6], tend themselves to be abstract and to deal
with abstractions. Thus, they are difficult to convey,
especially to secondary school students who have not
significantly dealt with such abstractions, and cannot thus
practically imagine what they mean. Furthermore, secondary
school teachers and institutions are challenged in teaching
CS, and have likely themselves not been introduced to SE.

Learning is a fundamental motivation for all game-
playing, as game designer C. Crawford [7] once stated. With
this in mind, this paper contributes an SE edutainment
approach we call SWE4SE for gamifying and conveying SE
concepts with secondary school students as the target
audience. It describes the principles in the solution concept
and example mappings of SWEBOK concepts onto
relatively simple digital games, demonstrating its viability,
and the evaluation with secondary students showed that
combining short informational videos and a variety of simple
digital games can be economical, effective, and efficient for
improving SE awareness, perception, and attractiveness.

The paper is structured as follows: Section II describes
related work. Section III describes the SWE4SE solution
principles, our game design, and the incorporated SE
concepts. Section IV describes our realization. Section V
details the evaluation, followed by a conclusion.

II. RELATED WORK
Serious games [8] have an explicit educational focus and

tend to simulate real-world situations with intended
audiences beyond secondary education. [9] performed a
literature search of games-based learning in SE and "found a
significant dearth of empirical research to support this
approach." They examine issues in teaching the abstract and
complex domain of requirements collection and analysis and,
more generally, SE. Using a constructivism paradigm, the
role-playing client-server-based SDSim game has a team
manage and deliver multiple SE projects. The systematic

432Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 451 / 512

survey on SE games by [10] analyzed 36 papers, all of which
had targeted undergraduate or graduates. Regarding
secondary education, whereas initiatives for teaching
programming are more common, conveying SE concepts in
general and gamifying SE has not hitherto been extensively
studied, nor has the educational value of explicitly "non-
serious" (or fun) games for this population stratum.

Concerning the perception and attractiveness of CS
among secondary students, the study by [11] of 836 High
School students from 9 schools in 2 US states concluded that
the vast majority of High School students had no idea what
CS is or what CS majors learn. This conclusion can most
likely be transposed to the lesser known discipline of SE.

In contrast, SWE4SE is targeted not towards higher
education, but rather secondary school students with an
explicit non-serious game approach. Our results compare
with [11], but go further in showing that an edutainment
approach can improve the perception and attractiveness of
SE. Compared to other learning game approaches, it
explicitly makes the tradeoff to value entertainment more
and education less in order to retain student engagement and
enjoyment. It also explicitly includes short informational and
entertaining video sequences to enhance the experience
beyond gaming alone.

III. SOLUTION
SWE4SE consists of a hybrid mix of short informational

and entertaining videos and a variety of relatively simple
digital games. Our solution is necessarily based on certain
assumptions and constraints. For instance, we assumed that
the players may not only be playing in a compulsory
classroom setting, but may play voluntarily on their own
time, meaning that they could choose to stop playing if it
becomes boring or frustrating and discard the game for some
more interesting game. Thus, the edutainment is considered
to be "competing" with available pure entertainment options.
However, we expect that the game may be promoted to
secondary school teachers where they would introduce
students to the game, meaning that our concept must not
necessarily compete solely with commercial products and
other entertainment. We also assumed that the motivational
factors for students in the SWE4SE are curiosity,
exploration, discovering different games, and finding fun
areas.

A. Solution Design Principles
Web-browser Principle (P:Web): To broadly reach the

target audience (secondary students ages 12-18), we chose to
focus our initial design and implementation on a web-based
game solution and avoid the installation of components on
game or various OS platforms. This constrains the available
game options, but increases the reachable population.

Engagement / Enjoyment Principle (P:En): We want to
keep the students engaged and to emotionally enjoy the
experience. To reduce the likelihood of a player
discontinuing due to lack of fun, we chose to value and
prioritize the fun aspect more than pushing the learning of
SE educational concepts. We are thus aware of the fact that
less of the SE material may be conveyed and retained, but by

retaining engagement over a longer timeframe, further
possibilities for SE concept conveyance result.

Game Reuse Principle (P:GR): Leverage known games
and game concepts (repurposing) when possible, such as
those in [12]. Players may thus already know the basics of
how the original game works - reducing the time to become
proficient, and they may find the new twist involving SE
concepts interesting. Also, more time and cognitive capacity
may be available for the mapping of SE concepts to the game
elements when compared with completely unfamiliar games.

Simple Game Principle (P:SG): Utilize relatively simple
games when not utilizing already known games (cp. P:GR).
This reduces the overall effort required to acquire game
proficiency and to acquire the SE concepts.

SE Concept Reinforcement via Game Action Principle
(P:GA): during the games, immediate feedback messages
that reinforce game associations to SE concepts are given,
e.g., "Correct, the quality was OK" or "Oops, the component
was released with quality defects" for a software quality
assurance (SQA) game. This makes it more transparent how
choices and actions are reflected in SE concepts.

B. Edutainment Elements and SE Concept Mappings
We believe that certain aspects of SE cannot be conveyed

well solely with games and should thus be supplemented.
Text components: a brief amount of onscreen text was

used to introduce the topic area, relevant SE concepts, and
the game objective and major game elements. Such a short
text that can be clicked away does not overly interfere with
the experience, and can be read or skimmed rather quickly.
Using these, later bonus-level text questions can reference
some prior text or video as a way to verify comprehension.

Video components: a short 5-minute informational video
described how prevalent code is, society's dependence on
software, and how important software development and
software engineers are. The ability to include relevant
videos, and the ability for users to explore and discover such
videos, adds to the "adventure".

Game components: Various concepts from SWEBOK
were chosen, with the selection subjectively constrained by
our project resources, technical and game engine constraints,
and how well a concept might map to a game concept. The
selection, mapping, and prioritization of what to realize was
subjectively reflected and decided on as a team, which is
summarized in Table I.

TABLE I. SE CONCEPT TO GAME MAPPING

SE Concept
Analogous

Common Game
SWE4SE

Game Variant
1) Processes Pac-Man ProcMan
2) Quality assurance Pinball Q-Check
3) Requirements Tower Defense ReqAbdeck
4) Testing Angry birds Angry Nerds
5) Construction Angry birds Reverse Angry Nerds
6) Defect remediation Space invaders Bug Invaders
7) Project management Maze Path Management

The mapping should be interpreted as exploratory and

not prescriptive; our intention here is rather to demonstrate
the possibilities available in such an edutainment approach.

433Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 452 / 512

IV. REALIZATION
Scirra Construct 2 was used to develop the games.

Layouts and Event sheets were used, and each game object
type is given properties with certain states and behavior.
Sounds and music were integrated. The web browser
requires HTML5 and Javascript support. Text components
were initially German, but could be readily internationalized.
For brevity, details on how points are earned, bonus levels,
speed changes, or lives lost in each game are omitted.

A. Conveying SE Concepts in the Various Games
For each SE concept below, how the analogous common

game was mapped to corresponding primary game goals is
described and depicted.

1) SE Processes: to convey an engineering process, we
chose to introduce sequential activities common to many
engineering processes. Based on the waterfall process, these
were Analysis, Design, Implementation, Testing, and
Operations (ADITO, or equivalently AEITB in German).
We also provided a test-driven development (TDD) variant
where the Testing occurs before Implementation (ADTIO).

ProcMan: this game is analogous to the well-known
Pac-Man game (see Figure 1), with a twist that, whereas in
PacMan one got points by traveling everywhere in the maze
in any order, the goal here for the player is to follow a given
SE process sequence by making ProcMan consume the
distributed letters in the given order while avoiding ghosts.

Figure 1. ProcMan game conveys SE processes (screenshot).

2) Software quality assurance: SQA differs on the type
of software component being inspected (e.g., GUI, database,
business logic). Quality awareness and attention to detail
matter, and the appropriate QA tools and testing procedures
must be chosen.

Q-Check: this game is loosely analogous to pinball (see
Figure 2). Software components (SoCos) portrayed as
colored shapes spin and drop into a funnel, while a cannon
(blue on the left) automatically shoots them individually after
a certain time transpires (indicated via a decreasing green bar
on the cannon). The player's goal is to select the process
(tunnel on the right) that matches the SoCo type currently in

the cannon based on both color and shape, or reject it for
rework (yellow) if it is defective, improving the future error
rate.

Figure 2. Q-Check game conveys SE quality assurance (screenshot).

3) Software requirements: this concerns itself with the
SE concept of requirements coverage, for instance not
overlooking a requirement, determining which requirements
to fulfill how and when (different requirement types need
different specialized competencies), which requirements to
jettison (e.g., due to insufficient business value).

ReqAbdeck: (Abdeckung in German means "coverage")
this game is analogous to the popular game Tower Defense
(see Figure 3), whereby here waves of "reqs" (requirements
as colored triangles) flow from left to right, and towers in
various colors that cover (fire) only at their requirement
color must be dragged to the appropriate vicinity before the
"reqs" reach the gate. The towers disappear after a short time
indicated on their border. Thus, one is not covering critical
requirements in time with the matching implementation,
ignoring or forgetting a requirement, or not dropping via a
gate those requirements without business value (denoted by
black circles). One example action message here is "Great,
requirement was covered by a suitable realization.

Figure 3. ReqAbdeck conveys SE requirement coverage (screenshot).

434Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 453 / 512

4) Software testing: the focus here is determining where
to test to find deficiencies in some software construct.

Angry Nerds: this game is loosely analogous to the
popular game Angry Birds (see Figure 4). For various
reasons we chose to depict hardware-like testing here of
children's blocks, since it was not obvious to us how to
convey code-based testing in an obvious manner without
necessitating extra explanations. The player's goal in this
case is to test a given construct of slabs surrounding PCs by
determining where and how hard to throw a mouse at it to
knock it completely over. They realize that multiple tests are
necessary to discover its weaknesses.

Figure 4. AngryNerds conveys SE testing (screenshot).

5) Software construction: the point here is to engineer
or build the software such that it exhibits resiliency.

Reverse Angry Nerds: this is a bonus level of the
previous game, and reverses the role as shown in see Figure
5, having the player now try to build a resilient construct by
dragging and placing slabs in such a way that it withstands
the automated testing (cannonball shot at it).

Figure 5. Reverse AngryNerds game conveys SE construction (screenshot).

6) Software defect remediation: the learning focus is
that different defect types require different remediation
techniques and countermeasures applied accurately.

Bug Invaders: in this game, analogous to space invaders,
a matching remediation technique (ammunition color in the
lower shooter) and firing accuracy are needed to destroy
exactly that specific bug type that drops down before it
creates project damage (see Figure 6).

7) Software project management: here we convey that
multiple choices towards optimizing project costs exist.
With appropriate planning, the project goal can be reached
with the allotted resources, while unexpected problems can
be overcome but cost unplanned resources.

Path Management: in this game a player must manage a
starting budget in points efficiently (see Figure 7). From the
project start (green triangle) a path selection is made to take

it to the end (red circle). Red blocks depict possible steps,
blue steps the currently available choices, and green the
current position. Each step costs 100 points, while randomly
generated problems (black circles) add to the planned costs.

Figure 6. Bug Invaders convey SE defect remediation (screenshot).

Figure 7. Path Management conveys SE project management (screenshot).

B. Realization of SE Exploration Concept
To tie it all together, the realization includes a SE

universe to navigate to and discover various SE planets.
Figure 8 shows the spaceship navigating in two dimensions.
A shield level, reduced when colliding with asteroids, is
shown as a colored line next to the ship. The game ends
when the shields are lost or on collision with the sun. The
bottom right of the screen shows a navigation map with the
location of all planets (red first, green when visited, and
violet for the home planet, and the spaceship as an arrow.

When arriving at a planet (Figure 9), a short text about
SE concepts that relates to the game is shown, which when
understood, can later be used to answer bonus questions at a
gate. The portal to the game is shown on the left. The brown
gate and fence shows a darkened advanced level area only
accessible by successfully passing a gate requiring that SE
challenge questions be answered correctly. This then enables
passage and undarkens the upper bonus region top.

435Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 454 / 512

Figure 8. Spaceship navigating the SE universe (screenshot).

Figure 9. Example of a uniquely named SE game planet (screenshot).

On the home planet, a TV tower shows the video.
The realization is economical in that it can be widely

distributed (P:Web) without client installation costs or large
cloud server investments (it runs locally in the browser).

V. EVALUATION
The convenience sampling technique [13], common in

educational settings, was selected to evaluate our SE
edutainment approach due to various constraints otherwise
inhibiting direct access to a larger random population sample
of the target population stratum. These constraints include
logistical and marketing effort and budget, privacy issues,
and acquiring parental consent for school age children.

Setting: Two teachers gave us access to 20 students in
informatics interest groups for 90 minutes at two different
public university preparatory (secondary) schools in the local
region. Setting A using an alpha version of the software
tested with a group of 8 males, and a later setting B using a
beta version in a different city with 6 females and 6 males

students. Figure 10 shows the age and gender distribution,
and Figure 11 indicates their current game usage frequency.

0
1
2
3
4
5
6
7
8
9

15 16 17 18

N
um

be
r o

f s
tu

de
nt

s

Age

females

males

Figure 10. Student age and gender distribution.

0
1
2
3
4
5
6
7

Very
frequently

Frequently Sometimes Hardly Never

N
um

be
r o

f s
tu

de
nt

s

Game usage

females

males

Figure 11. Prior game usage frequency distribution.

Questionnaire: While we considered utilizing the GEQ
[14], it appeared more appropriate for more immersive
games. Hence, due to the player ages, the limited time they
had for playing multiple different short games (7 games in
one hour), and the limited time, attention, and incentives for
filling out pre- and post-questionnaires (10 minutes
respectively), only a few questions about their state before
and after with regard to negative or positive affect were
included. They were asked but not compelled to answer all
questions, so some fields were left blank by some students,
which could be interpreted to mean they did not understand
the question, did not know how to answer, or did not care to
answer the question. Blank answers were thus omitted.

Session: The empirical evaluation consisted of 90-minute
sessions held in two different settings A and B. The first 5
minutes consisted of a short introduction as to the purpose of
our visit and what to expect, involving no teaching. Students
were then given 10 minutes to fill out anonymous printed
questionnaires in German that provided us with initial basic
data. When all were done, they began their one-hour
edutainment experience. In the 10 minutes directly
thereafter, monitors were turned off and they completed the
second part of their questionnaire, which focused on their
experience and understanding, after which we held a 5-
minute group feedback session.

Results: We observed that all students were engaged with
the software for the entire hour and appeared to enjoy the
experience (P:En), and occasionally interacted excitedly
with fellow students. Below is our analysis of the
questionnaire results. Unless otherwise indicated, averages
were based on a scale of 1 to 5 (1 being very good, 5 bad):

• Overall experience: 2.1 (good); relates to P:En
• Game enjoyment: 2.0 (good); relates to P:En
• Helpful conveying several SE concepts via different

games: yes (17), no (1); relates to P:SG and P:GR

436Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 455 / 512

• Success rate in correctly recalling the SE concepts
associated with each named game (open answers):
62%; relates to P:GA and Text components. Note
that the game names in the questions could serve as
a hint, but these did not include the complete and
explicit SE concept nor was the game accessible.

Video:
• Watched the video attentively: yes (20)
• Video and its quality (good/bad): good (20)
• Video length 5 minutes: keep (19), lengthen (1)
Table II shows the change in perception, attractiveness,

and understanding of SE after the experience.

TABLE II. CHANGE IN SE PERCEPTIONS

Change in responses Before After Improvement
Importance of SE for societya 1.7 1.2 33%
Attractiveness of SE as a personal
career pathb 3.3 2.7 16%
Ability to define what SE isc 2.9 2.3 20%

a. Scale of 1 to 3 (1=very important, 3=not important); 2 wrote "don't know" in the prequestionnaire.
b. Scale of 1 to 5 (1=very attractive, 5=not attractive)
c. Answer graded (1 excellent, 2 very good, 3 satisfactory, 4 sufficient) for B group only.

As to interpreting the results, a convenience sample can
obviously contain a number of biases, including under- or
overrepresentation. Our supervision of the evaluation process
and physically observing that the software was actually used
for an hour by each of the students separately, and that each
questionnaire was individually filled out, removed certain
other kinds of threats to validity.

The evaluation showed the effectiveness of the approach:
because students in this age group had previous familiarity
with gaming, they had no difficulty rapidly discovering and
playing the games intuitively without training or help, they
understood the intended mapping of SE concepts onto game
elements, and the perception, attractiveness, and
understanding of SE improved significantly without
discernable gender differences. It was efficient in achieving
these effects in the relatively short span of an hour of usage.

In summary, an edutainment approach with short videos,
short text components, and a variety of simple games
appears promising for effectively and efficiently improving
the awareness about and image SE, at least for our target
population stratum.

VI. CONCLUSION AND FUTURE WORK
We described SWE4SE, an edutainment approach for

gamifying and conveying software engineering concepts to
secondary school students. Various principles used of the
edutainment approach were elucidated, and it was shown
how various SE concepts could be mapped and realized with
various digital game concepts and elements. The evaluation
showed that an edutainment approach, combining short
videos and text elements, and a variety of simple digital
games, can be promising for improving SE awareness in our
target population stratum. Since this target age group is
already familiar with gaming and utilizes gaming relatively
frequently, the approach appears reasonable for reaching a
larger populace.

A challenge remains in making secondary students aware
of the availability the edutainment and motivating them to
utilize it on a direct or individual basis. While social
networks appear feasible for raising awareness, in the face of
the abundance of entertainment and game options available,
we believe that the most promising approach will likely be
informational publicity campaigns towards informatics
teachers in secondary schools where groups (i.e., interest
groups or classrooms) utilize the software together in a
structured setting.

Future work will include public access on the university
website, enabling integrated data collection and web
analytics to provide further insights into how users became
aware of the edutainment, which games were utilized for
how long, the number of return visitors, and the inclusion of
online surveys. Additionally, the SE pool of questions will
be expanded and question and answer placement
randomized. A point and badge ranking of top players may
provide a separate incentive and motivation for certain player
types.

ACKNOWLEDGMENT
The author thanks Carsten Lecon, Christian Wilhelm,

Flamur Kastrati, and Lisa Philipp for their assistance with the
concepts, realization, and graphics.

REFERENCES
[1] J. Vegso, "Interest in CS as a Major Drops Among Incoming

Freshmen," Computing Research News, vol. 17, no.3, 2005.
[2] B. Schmidt, http://benschmidt.org/Degrees/ 2015.07.04
[3] U. Hanselmann, "Die große Kraft," Engl: "The major force",

Die Zeit, No. 22, 2009. http://www.zeit.de/2009/22/C-
Faecherportraet-Informatik/komplettansicht 2015.07.04,

[4] Bitkom, "In Deutschland fehlen 41.000 IT-Experten," 2014.
https://www.bitkom.org/Presse/Presseinformation/Pressemitte
ilung_1704.html 2015.07.10

[5] D. Parnas, "Software engineering programs are not computer
science programs," Software, IEEE, 16(6), pp. 19-30, 1999.

[6] P. Bourque and R. Fairley, "Guide to the Software
Engineering Body of Knowledge (SWEBOK (R)): Version
3.0," IEEE Computer Society Press, 2014..

[7] C. Crawford, "The art of computer game design," McGraw-
Hill/Osborne Media, 1984.

[8] C. Abt, "Serious Games," The Viking Press, 1970.
[9] T. Connolly, M. Stansfield, and T. Hainey, "An application of

games-based learning within software engineering," British
Journal of Educational Technology, 38(3), pp. 416-428, 2007.

[10] C. Caulfield, J. Xia, D. Veal, and S. Maj, "A systematic
survey of games used for software engineering education,"
Modern Applied Science, 5(6), 28-43, 2011.

[11] L. Carter, "Why students with an apparent aptitude for
computer science don't choose to major in computer science,"
SIGCSE Bulletin, ACM, vol. 38, no. 1, Mar. 2006, pp. 27-31.

[12] S. Kent. "The Ultimate History of Video Games," Three
Rivers Press, 2001.

[13] L. Given (Ed.), "The Sage encyclopedia of qualitative
research methods," Sage Publications, 2008.

[14] W. IJsselsteijn, K. Poels, and Y. De Kort, "The Game
Experience Questionnaire: Development of a self-report
measure to assess player experiences of digital games," TU
Eindhoven, Eindhoven, The Netherlands, 2008.

437Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 456 / 512

Using Cloud Services To Improve Software Engineering Education for Distributed

Application Development

Jorge Edison Lascano
1,2

, Stephen W. Clyde
1

1
Computer Science Department, Utah State University, Logan, Utah, USA

2
Departamento de Ciencias de la Computación, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador

email: edison_lascano@yahoo.com, Stephen.Clyde@usu.edu

Abstract—Software-engineering education should help

students improve other development skills besides design and

coding. These skills, referred to here as A2R (Analysis to

Reuse), include analysis, technology evaluation, prototyping,

testing, and reuse. The need for improved A2R skills is

particularly pronounced in advanced areas like distributed

application development. Hands-on programming assignments

can be an important means for improving A2R skills, but only

if they focus on the right details. This paper presents a case

study of programming assignments offered in a graduate-level

class on distributed application development, where the

assignments required the students to use cloud services and

programming tools that were heretofore unfamiliar to the

students. Direct observation by the instructor and a post-class

survey provided evidence that the assignments did in fact help

students improve their A2R skills. The post-class survey also

yielded some interesting insights about the potential impact of

well-designed programming assignments, which in term led to

ideas for future research.

Keywords-computer science education; software-engineering

education; cloud computing; virtual environments; distributed

systems.

I. INTRODUCTION

Imagine yourself at a worktable with four or five of your
peers. In the center of the table is a pile of seemingly random
objects, including two dozen sheets of paper, paper clips, a
small roll of tape, pins, and several small wooden sticks. A
quick glance around the room reveals a dozen other groups
just like yours with similar piles in front of them. An
individual, who is introduced as your customer, stands at the
front of the room and says that you have 30 minutes to build
a “great” tower. What do you do first? How do you put all
that you know about paper, clips, tape, wooden sticks, etc.
into practice to satisfy the customer’s request for a tower and
do so within 30 minutes?

Such is the typical scene on the first day of class in the
undergraduate introductory course on software engineering
at Utah State University (USU). In general, all the students
have a good working knowledge of objects at their disposal
and even some inkling on how they may combine several of
them to create new more structural useful objects. Most
groups succeed in creating something that stands on its own
and roughly resembles a tower within 30 minutes. However,
at the end of that time, the customer surprises the students by
giving them a few more objects, e.g., more paper and tape,
and asks them to take 15 more minutes to make their towers

taller or stronger. Many groups fail to do so in the limited
allotted time. In fact, about half of them end up destroying
their original towers in the attempt.

Afterwards the instructors and students discuss the
experience in terms of what worked well for the group,
particular difficulties that hindered progress, how the group
organized itself, and how they decided on an overall
approach. The discussion usually leads to some very
interesting comparisons with common aspects of software
engineering, such as group work, tool evaluation,
prototyping, design patterns, testing, extensibility, reuse, and
more. Over the years, one of the authors, who is a long-time
instructor for this introductory software engineering course,
has observed the following:

1. Virtually no student or group ever asks the
customer what a “great” tower means. Most assume
that they already know and proceed to build without
each researching the requirements.

2. Virtually no student or group ever looks around to
see what other groups have done or are doing,
evaluates the ideas they see, and then tries to adapt
or improve on them.

3. Only a small percentage of the groups try
prototyping an idea to explore its characteristics.

4. Only rarely does a group test the properties (e.g.,
stability or strength) of a component or the whole
tower and then try to make modifications to
improve those properties.

5. Only a few groups try to establish patterns or “best
practices” either in their building processes or the
components they create, and then reuse those ideas.

Each of these observations represents a potential
engineering pitfall or negative practice that can lead to
inefficiency or failure. Software-engineering education needs
to help students avoid these and other related pitfalls by
connecting theory with best practices in the context of real
non-trivial problems [1]. Doing so goes well beyond
teaching the “How To’s” of a specific technology, like a
programming environment. Instead, it requires educators and
students alike to address the “How To’s” of the overall
development process, including:

1. How do we know when we understand the
customer’s problem sufficiently?

2. How can we benefit from existing technology or
from what others have tried in the past?

3. How can we prototype part of a problem or
alternative solutions to answer critical questions?

438Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 457 / 512

4. How can we test what we build?
5. How can we find good solutions to reoccurring

problems and reuse that knowledge?
More concisely, software-engineering education needs to

help students make analysis, technology evaluation,
prototyping, testing, and reuse an effective and integral part
of their development activities [1]. Here, we’ll refer to these
as Analysis to Reuse (A2R) skills.

The need for better A2R skills is prevalent in every
software-engineering domain, but is pronounced in the
development of distributed applications. Distributed-
application development, or distributed-system development
at large, has all of the challenges of traditional software
development, plus the complexities introduced by inter-
process communications, concurrency, the potential of
partial failure, and replication that exist for performance
improvements or fault tolerance [2].

Now let us roll our classroom scene forward several
years to a graduate software-engineering class that focuses
on distributed applications. Students entering in this class
have solid foundations in software-engineering
fundamentals, programming languages, inter-process
communications using sockets, and many other areas of
computer science. Yet, they still need to strengthen their
A2R skills, especially in the context of distributed
applications, and the best way to do that is through hands-on
experience [3]. So, from an education perspective, the
challenge is to provide realistic and engaging assignments
that will strengthen the A2R skills and are doable within the
allotted time.

Because distributed applications are relatively complex
[4] by their very nature, there are two negative tendencies for
program assignments in this area: a) abstracting away too
many interesting aspects of the problem and b) getting
bogged down with unnecessary application-domain details.

The first tendency is very common in advanced CS
courses, because simpler assignments are more manageable,
teachable, and easier to fit within a given allotted time.
Advanced courses usually have to operate within same time
constraints as introductory courses. Even though, they are
more complex, it is essential that advanced assignments
include reasonable limits on the expected time and effort [4].
Simplicity in their design is a necessity and by itself is not a
problem. Focusing on the wrong details and abstracting away
all interesting parts of the problem, however, is a serious real
pitfall. For example, scalability is a real and very common
aspect of most distributed applications [2]. Even though
removing scalability requirements would simplify an
assignment, it would rob the students of a valuable
opportunity to improve A2R skills in a relevant area.

The second tendency is to allow an assignment to get
bogged down in application-domain details, shifting focus
away from the learning objectives. Assignments in advanced
courses, like distributed-application development, work best
if they are grounded in a meaningful real-world domain.
However, most distributed applications and their domains
are relatively complex. If not careful, an instructor could
easily use all available time explaining the sample
application domain, instead about the core course topics.

Keeping assignments focused on a small set of functional
requirements that require minimal application-domain
knowledge, is essential to making sure that they are doable
within time limits and achieve the learning objectives.

This paper describes a case study of programming
assignments conducted in an advanced software-engineering
class on distributed-application development, where all of
the assignments required students to use cloud resources for
their execution environment. The hoped-for result was that
the assignments provided students significant opportunities
to improve their A2R skills, while introducing them to new
concepts and development tools. Section 2 describes the
course’s programming assignments in terms of their learning
objectives, the application domains that act as backdrops,
and their requirements. Section 2 also explains the tools and
technologies introduced for each assignment. Section 3
summarizes the instructor’s observations made throughout
the semester and assignment design learnings. To evaluate
the effectiveness of the assignments, we conducted a post-
class survey. Section 4 describes this survey and presents the
resulting raw data. Since the class was a second-year
graduate class, the enrollment was small. So, we cannot
make many generalizations from the survey data.
Nevertheless, they do lead us to some interesting insights.
We share those insights in Section 4.B. Section 5 explores
related work in software-engineering education using cloud
resources and hands-on learning. Finally, Section 6 provides
conclusions, along with ideas for future research that could
further advance software-engineering education relative to
A2R skill development.

II. PROGRAMMING ASSIGNMENT FOR A DISTRIBUTED

APPLICATION DEVELOPMENT COURSE

CS 6200 at USU is a second-year graduate course in
software engineering that focuses on the development of
distributed applications. Its prerequisite, CS 5200, provides
students with a strong foundation in inter-process
communication, protocols, concurrency, and communication
subsystems. CS 5200 is also a programming intensive
course, which means that students who successfully
complete it have confidence in their ability to implement
non-trivial software systems. The overall learning objectives
for CS 6200 are as follows:

 Master theoretical elements of distributed
computing, including: models of computation and
state, logical time, vector timestamps, concurrency
controls, and deadlock;

 Become familiar with the provisioning and use of
virtual computational and storage resources in a
cloud environment;

 Become familiar with cloud-based tools for
processing large amounts of data efficiently; and

 Become familiar with distributed transactions and
resource replication.

For the Spring 2015 semester, the homework was broken
down into five assignments, each lasting two to three weeks.

439Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 458 / 512

A. Assignments 1 & 2 – Disease Tracking System

For the first two assignments, the student implemented a set

of processes that worked together to form a disease tracking

and outbreak monitoring system. They had to deploy

multiple processes on EC2 instances within Amazon Web

Services (AWS) cloud. The first type of processes were

simulations of Electronic Medical Records Systems

(EMR’s) that randomly generated notifications of diagnoses

for infectious diseases, like influenza. The EMR’s sent these

disease notifications to Health District Systems (HDS’s),

which collated diagnoses and then sent periodic disease

counts to Disease Outbreak Analyzers (DOA’s). Each DOA

monitored outbreaks for a single type of disease. See Figure

1. The specific learning objectives for these two

assignments included:

 Review inter-process communications;

 Become familiar with vector timestamps and how
they behave in a distributed system under varied
conditions;

 Become familiar with setting up and using
computational resources in a cloud, e.g., AWS; and

 Become familiar with setting up a simple name
service.

The students were asked to learn and use Node.js as the
primary programming framework [5][6]. Because Node.js
was new to all the students, some class time was dedicated to
teaching Node.js, but only enough to get them started. Their
unfamiliarity with Node.js was also the reason this first
system was split into two assignments. They built and tested
approximately half of the functionality in the first assignment
and the remainder in the second.

To deploy their systems to EC2 instances on AWS, the
students had to learn about security on AWS, create security
keys, and setup their own user accounts using Amazon’s
Identity and Access Management (IAM). They also had to
setup and learn the AWS’s command-line language interface
(AWSCLI), so they could automate the deployment and
launching of their systems.

B. Assignment 3 – Twitter Feed Analysis

In this assignment, the students explored how to process
big data using MapReduce on AWS and how to configure
cloud resources using AWS’s Cloud Formation tools.
Specifically, they were to capture tweets through Twitter’s
API and then analyze them for positive or negative sentiment
relative to some key phrase, like “health care”. The learning
objectives for this assignment were as follows:

 Become familiar with setting up and using
MapReduce with a cloud-based distributed file
system;

 Become familiar with tools for provisioning
collections of resources that are needed for a
distributed system; and

 Explore the types of problems that are well suited
for a MapReduce solution

To complete this assignment, students setup and learned
how to use AWS’s S3, MapReduce, and Cloud Formation
services. Some also used this assignment to learn about a
Node.js module for working directly with AWS; while others
strengthened their knowledge of AWSCLI.

C. Assignment 4 – Distributed Election

In this assignment, the students implemented a
distributed system consisting of dozens of processes that
shared access to common data files, which were collectively
treated as one large shared resource, like a database. One of
the processes played the role of Resource Manager (RM) and
accessed the common data files in response to requests from
the other processes. If RM died, then the other processes had
to detect that failure and elect one of the remaining processes
to be the new RM seamlessly. The learning objectives for
this assignment were:

 Master at least one distributed election algorithm;

 Master the concept of resource managers for
controlling access to share resources; and

 Become more familiar with tools for provisioning
collections of resources in a cloud.

To complete this assignment, we allowed students to use
any of the tools they had learned thus far, but they had to
deploy their systems to multiple EC2 instances and
demonstrate that the system would elect a new RM if the
current one was stopped. They had to show that the system
has as a whole, lost no work.

D. Assignment 5 – Distributed Transactions

In this assignment, the students had to build a simple
transaction management system with locking capabilities.
Like Assignment 4, this system had to support multiple
concurrent worker processes, but went a step further in
requiring multiple shared resources and multiple concurrent
RM’s. Each RM had to keep track of a single resource and
support lock, read, write, and unlock operations on that
resource. The system also had to include a transaction
manager that supported starting, committing, and aborting of
transactions. Assignment 5’s learning objectives included:

 Become familiar with locking; and

Figure 1. Programs built as part of Assignments 1 & 2, plus an

illustration of sample processes.

Electronic
Medical Record

Simulator

Disease
Outbreak
Analyzer

Health District
System

Disease Notifications
(webservice) Disease Counts (UDP)

Output Alerts (webservice)

EMR - P0

EMR - P1

EMR - P2

EMR - P3

EMR - P4

EMR - P5

EMR - P6

EMR - P7

HDS - P9

HDS - P10

HDS - P11

DOA - P12

DOA - P13

DOA - P14

EMR - P8

P
ro

gr
am

s
Sa

m
p

le
 P

ro
ce

ss
e

s

Outbreaks  Alerts
(webservice)

440Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 459 / 512

 Become familiar with transaction management in a
distributed system.

Like Assignment 4, the students could use any of the tools
that they learned to this point in completing Assignment 5.

III. INSTRUCTOR OBSERVATIONS

Seven students took CS 6200 in the Spring 2015

semester: 5 who were registered for credit and 2 who

audited the class. It’s impossible to recap all that took place

during the semester, but we summarize a few observations

prior to presenting the post-class survey to help set the stage

for the survey and our conclusions.

First, we observed that all of seven students started the

class with roughly equivalent software-engineering

backgrounds and programming skills, even through they

were not all seeking the same degree nor did they have the

same programs of study. None of the students had used

Node.js before and only one had any exposure to cloud

computing, and that was only a light exposure.

Second, we observed that requiring students to setup and

managing their own cloud resources not only helped them

with core concepts and development skills, but it also

allowed them to improve their A2R skills relative to

figuring out what the most important requirements were,

tool evaluation, and testing. For example, in the first two

assignments, the students had to deploy their system to EC2

instances. For most of the students, this was the first time

deploying something that they built to an execution

environment different from their development environment,

along an execution environment consisting of multiple

virtual machines. It opened their eyes to new challenges,

such as firewall issues, file permissions, and missing

dependencies. Time was made available in every class

period for them to talk about the challenges that they were

facing and get ideas from other students or the instructor

about how to address those challenges. Similar discussion

also took place on an online forum. By the end of

Assignment 2, the classroom and online discussions showed

that the students had stepped up their efforts to understand

the assignment requirements, evaluate the tools available to

them, and test their work.

Even though the purposes of Assignments 4 and 5 were

considerably different from the first three, they possessed

some of the same challenges, like resource name resolution

and deployment into a cloud environment. It was

encouraging to see that the students solved these problems

by adapting techniques used in the earlier assignments and

improving upon them – evidence of them practicing A2R

skills.

We were happy to see that the students learned some

unexpected, but very relevant lessons. For example, one

student stored his access keys in a text file and committed

that file to a public Git repository. It wasn’t long before

someone hacked his AWS account. Amazon and the student

caught the problem relatively quickly and simultaneously,

but not before the hacker had used over $600 of resources.

He ended up taking extra time learning more about security

from unauthorized use. Thankful, Amazon worked with him

to recover the expenses, so he did not have to pay for the

lost out of pocket. Still, it proved to be a valuable learning

experience that he will not forget.

With respect to the selected cloud AWS, we observed

that it provided a mature and full-featured set of services for

the students to learn from. In some areas, AWS’s learning

curve was steeper than necessary, but with supplementary

examples and good discussions, it was manageable. From an

education perspective, a good thing about AWS is that it has

features in three main categories: Infrastructure as a Service

(IaaS), Software as a Service (SaaS), and Platform as a

Service (PaaS) [2].

One negative experience with AWS occurred during

Assignment 3, which depended on an Amazon-provided

template for setting up a MapReduce cluster. That template

was changed by its authors in the middle of assignment,

causing several of the students not to complete all of the

requirements. To avoid this problem in the future, the

instructors will make private copies of public or external

resources, so changes to them will not affect assignments in

progress.

A. Assignment Design Learning

When instructors design assignments oriented to

networking or distributed applications, they need to consider

distribution concepts, but at the same time bear in mind the

limitations for the students’ capabilities and hardware

environment. Before cloud resources became available, this

typically consisted of one computer [7] or small number of

computers on a local area network (LAN) in a school lab.

Assignments that work well on one computer or a LAN may

not allow the students to gain appreciation for more realistic

networking challenges, performance issues, and reliability

problems [8]. With cloud resources, assignments can now

be designed having a broad range of resources in mind,

while still considering good software-engineering practices

for analysis, technology evaluation, testing, deployment and

even reuse.

IV. POST-CLASS SURVEY

To assess the value of the programming assignments for
CS 6200, we designed a post-class survey and conducted that
survey with two populations: students registered in CS 6200
for credit and students who just audited the class. Those
registered for credit had to complete all of the assignments to
receive a grade; those just auditing the class did not. In fact,
it is important to note that none of the second group
completed any assignment.

A. Survey design

We organized the survey into two parts. The first part
asked students to rate their knowledge and skills in areas
related to the course and the assignments, as they were
before the class started, using a 1-to-5 scale. The second part
asked them to do the same relative to the end of class. Table

441Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 460 / 512

and Table list the concepts (knowledge areas) and skills
respectively covered in both parts of the survey. The survey
used a Matrix Table format, with the concepts and skills as
rows and possible ratings as columns. See Figure 2 for
partial view of the survey instrument for Part 1.

The difference between each individual’s answers to
corresponding questions from two parts provides a glimpse
of that person’s perceived change in knowledge or skill
levels as a consequence of the course.

We could have administered a pre-class survey similar to
the first part, but considerable differences in each student’s
personal rating scheme would likely have evolved over the
semester, making it difficult to assess perceived change. We
could have also administered pre and post exams to measure
their proficiency objectively, but there was no common
knowledge basis for a pre exam. So, the study would have
degenerated into the interpretation of just post exam results.

TABLE I. KNOWLEDGE SURVEY QUESTIONS.

No Knowledge/Concept Acronym

Q1.1 Inter-process communications patterns, like

Request-Reply, Request-Reply Acknowledge,

and Reliable Multicasts

IPC

Q1.2 Partial ordering of events in a distributed
system, as represented by mechanism like

Vector Timestamps

VTS

Q1.3 Message serialization/deserialization S/D

Q1.4 Intra-process concurrency IntraPC

Q1.5 Computation resources in a cloud-computing

environment, such as AWS

AWS

Q1.6 Namespaces, name services, and name

resolution

NS

Q1.7 Deployment, execution and testing
techniques in a distributed environment

Deploy

Q1.8 Deployment, execution and testing

techniques in the cloud.

Testing

Q1.9 Distributed election algorithms DEA

Q1.10 Resource managers RM

Q1.11 Fault tolerance in a distributed environment. FT

Q1.12 Tools for provisioning collection of resources

needed for a distributed system.

Tools

Q1.13 Cloud Computing resources CCR

Q1.14 Infrastructure as a Service (IaaS) IaaS

Q1.15 Platform as a Service (PaaS) PaaS

Q1.16 Inter-process concurrency InterPC

TABLE II. SKILLS SURVEY QUESTIONS.

No Skill Acronym

Q2.1 AWS Users and key pairs (Identity and

Access management -IAM)

AWS-IAM

Q2.2 AWS Virtual PC Instances (EC2) AWS-EC2

Q2.3 AWS Storage (S3, EBS) AWS-

S3,EBS

Q2.4 AWS-CLI (Command Line Interface) AWS-CLI

Q2.5 AWS SDK (Software Development Kit) AWS-SDK

Q2.6 Managing instances in AWS:
creating/launching, starting, stopping,

terminating

EC2-
Instances

Q2.7 AWS Billing AWS-Billing

Q2.8 Using Node.js to Develop Distributed

Systems

Node.js_DS

Q2.9 Using Node.js to deploy and run
Distributed Systems in the cloud

Node.js_Clo
ud

Q2.10 Designing and developing TCP/UDP/Web

Services-based systems with Node.js

Node.js_C/S

Q2.11 Writing scripts to Deploy/execute
applications in distributed environments

DS_Scripts

Q2.12 Designing and Developing Resource

Managers

RM_DD

Q2.13 Designing and Developing Distributed
Election Algorithms

DEA_DD

B. Survey Results

All seven students completed both parts of the survey.
Figures 3 and 4 show averages of the students’ raw estimates
of their knowledge and skill levels for before and after class.
The blue lines represent the levels before and the red lines
after. The (a) graphs are for the first population, namely the
students who registered for credit and the (b) graphs are for
the auditing students. Figure 5 shows the average net change
in the levels, broken down by the two populations.

One interesting result that is worth pointing out
immediately, is that the first group of students, in general,
rated their before-classes level lower than the second
population. We believe that this can be contributed to the
common adage, “You don’t know what you don’t know”.
The first group of students did the assignments and soon
discovered how much they really didn’t know, whereas the
second group did not come to the same realization. For
example, the auditors’ perception about their AWS and
Node.js skills was that they knew those technologies
relatively well before starting the class; meanwhile the first
group of students came to realize that their skills were almost
nil.

Next, notice that the estimated pre-class knowledge
levels are higher than the estimated pre-class skill levels. In
general, the students felt they had a conceptual
understanding of the course concepts, including AWS, which
only one student had exposure to before class. From this, we
can see that students (and perhaps all people) tend to believe
that they are able to generalize conceptual knowledge into
new areas that they have not seen before.

Figure 2. Partial view of the survey.

442Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 461 / 512

Figure 5 shows evidence that the first group of students
truly improved their skills. Their net change for every skill
was higher than the net change for the second group.
Interestingly, the same is not true in the knowledge area. At

first glance, this might seem odd, but considering the timing
and relative nature of the self-made estimates, there is a
possible explanation. Specifically, the students who didn’t do
the assignments naturally felt that their biggest growth was
in increase of conceptual knowledge.

V. RELATED WORK

Other higher-education institutions are using cloud
computing resources in courses that focus on distributed
applications or network programming. Clearly, these
platforms allow the students to use realistic testing and
production environments. Moreover, there are large research
universities that have implemented private clouds on their
campuses and use them in the classroom. For example,
Syracuse University provides a local virtual machine lab
used to form virtual networks for security projects [9]. North
Carolina State University supplies computing resources over
the Internet with their Virtual Computing Lab [10], Arizona
State University developed V-lab for Networking Courses
[3], and Okanagan College and King’s university College
talk about using a cloud for educational collaboration [11].
Nevertheless, these private solutions are often not
economically viable for many universities [7], and therefore
they can only consider public cloud solutions.

Programming assignments that use public or private
clouds can add value to the learning experience and increase
students’ skills directly related to possible professional
careers [4] in network programming [7], distributed systems
[11], systems administration [4], security [4][9], data
processing [12], among others. Furthermore, a major benefit
is that students do not need to simulate network

Figure 3. Before and After Knowledge Levels.

Figure 5. Perception of acquired knowledge: differences between the

after and the before.

Figure 4. Before and After Skills Levels.

443Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 462 / 512

communications over a localhost interface [7]; instead, they
can use multiple virtual machines and real network
communications to better understanding the distributed
system components, their roles, and the related concepts.

Using a public cloud for hands-on activities offers
benefits such as scalability, flexibility, security, cost-
efficiency and accessibility [7], which all are key
characteristics of distributed systems [2]. Public clouds also
add an interesting and valuable dimension to the execution
and debugging of distributed applications [12], without
needing huge budgets for private-cloud or physical-machines
infrastructure. Most of the public cloud providers, e.g.,
Amazon, Google, Microsoft, IBM, offer grants for academic
institutions that want to use their resources for educational
purposes. For example, at the time of this study, Amazon
offered grants up to $100 per students [13]. Other benefits to
public clouds include ready access to different operating-
system platforms, communication protocols, development
tools, open-source code, public forums, and more.

VI. CONCLUSIONS AND FUTURE WORK

For this small case study, we conclude that programming

assignments with requirements to use cloud resources were

successful in helping the CS 6200 students to improve their

A2R skills, as well as their core distributed-application

development skills. Both the instructor’s observations and

the post-class survey provide anecdotal evidence of their

improvement.

We also found some evidence that students are willing

and even excited to learn new tools and skills, especially if

they can see how it lets them put theory into practice. Even

though the assignments were based on carefully crafted and

sanitized requirements, they were realistic enough for the

students to experience real problems and see how theoretical

concepts, like vector timestamps and distributed election,

could be used to solve those real problems.

Some important design criteria for assignments included:

a) hiding unnecessary details, like all the other capabilities

of an EMR beside the generation of disease notifications, b)

focusing on requirements that put theory into practice, like

the election of an RM in Assignment 4, c) including non-

trivial non-functional requirements, like scalability, and d)

wherever possible allow students to reuse components or

knowledge acquired in previous assignments.

The survey data also opened some doors to possible

future research. Specifically, we would like to conduct a

broader experiment across multiple software-engineering

classes of various kinds and at different levels, to explore

specific ways that the design of assignments can improve

A2R skills in general. From that, we hope to publish more

concrete guidelines for programming-assignment design for

software-engineering classes at all levels.

ACKNOWLEDGMENT

We would like to thank Amazon for providing funding
for the students to use AWS resources for this class.

REFERENCES

[1] C. Ramamoorthy, "Computer Science and Engineering Education,"

IEEE Transactions on Computers, Vols. C-25, no. NO. 12, December
1976, pp. 1200-1206.

[2] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed

Systems: Concepts and Design, 5th ed., Boston, MA: Addison-Wesley
Publishing Company, 2011, p. 1008.

[3] L. Xu, D. Huang, and W.-T. Tsai, "A Cloudbased Virtual Laboratory

Platform for Hands-On Networking Courses," in ITiCSE '12 the 17th
ACM annual conference on Innovation and technology in computer

science education, New York, 2012, pp. 256 - 261.

[4] C. Leopold, Parallel and distributed Computing, New York: John
wiley & Sons, Inc., 2001.

[5] C. Gonzalez, C. Border, and T. Oh, "Teaching in Amazon EC2," in

SIGITE'13, Special Interest Group for Information Technology
Education, Orlando, Florida, 2013, pp. 149-150.

[6] D. Howard, Node.js for PHP Developers, S. S. L. a. M. Blanchette,

Ed., Sebastopol, CA: O'Reilly Media, Inc, 2012.

[7] node.js, "node.js," Joyent, 2015. [Online]. Available:

https://nodejs.org/. [Accessed 28 04 2015].

[8] W. Zhu, "Hands-On Network Programming Projects in the Cloud," in
SIGCSE '15 Proceedings of the 46th ACM Technical Symposium on

Computer Science Education, New York, 2015, pp. 326-331.

[9] j. Cappos, I. Beschastnikh, A. Krishnamurthy, and T. Anderson,
"Seattle: A Platform for Educational Cloud Computing," in 40th ACM

technical symposium on Computer science education SIGCSE'09,
New York, 2009, pp. 111-115.

[10] W. Du and R. Wang, "SEED: A Suite of Instructional Laboratories for

Computer Security Education," Journal on Educational Resources in
Computing (JERIC), vol. 8, no. 1, March 2008, pp. 3:1-3:24.

[11] H. E. Schaffer, S. F. Averitt, M. I. Hoit, A. Peeler, E. D. Sills, and M.

A. Vouk, "NCSU's Virtual Computing Lab: A Cloud Computing
Solution," Computer, vol. 42, no. 7, July 2009, pp. 94 - 97.

[12] Y. Khmelevsky and V. Voytenko, "Cloud computing infrastructure

prototype for university education and research," in WCCCE '10, 15th
Western Canadian Conference on Computing Education, New York,

2010.

[13] A. Rabkin, C. Reiss, R. Katz, and D. Patterson, "Using clouds for
MapReduce measurement assignments," ACM Transactions on

Computing Education (TOCE), vol. 13, no. 1, January 2013, pp. 2:1-

2:18.

[14] AWS, "AWS in Education Grants," Amazon, [Online]. Available:

http://aws.amazon.com/grants/. [Accessed 01 07 2015].

444Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 463 / 512

Controlled Variability Management for Business
Process Model Constraints

Neel Mani

ADAPT Centre for Digital Content Technology
Dublin City University, School of Computing

Dublin, Ireland
Email: nmani@computing.dcu.ie

Claus Pahl

ADAPT Centre for Digital Content Technology
Dublin City University, School of Computing

Dublin, Ireland
Email: cpahl@computing.dcu.ie

Abstract—Business process models are abstract descriptions that
are applicable in different situations. To allow a single process
model to be reused, configuration and customisation features can
help. Variability models, known from product line modelling and
manufacturing, can control this customisation. While activities
and objects have already been subject of similar investigations,
we focus on the constraints that govern a process execution. We
report here on the development a rule-based constraints language
for a workflow and process model. The aim is a conceptual defini-
tion of a domain-specific rule variability language, integrated with
the principles of a common business workflow or process notation.
This modelling framework will be presented as a development
approach for customised rules through a feature model. Our use
case is content processing, represented by an abstract ontology-
based domain model in the framework.

Keywords–Business Process Modelling, Process Constraints,
Variability Model, Domain-specific Rule Language.

I. INTRODUCTION

Business process models are abstract descriptions that
can be applied in different situations and environments. To
allow a single process model to be reused, configuration and
customisation features help. Variability models, known from
product line engineering, can control this customisation. While
activities and objects have already been subject of customisa-
tion research, we focus on the customisation of constraints
that govern a process execution here. Specifically, the recent
emergence of business processes as a services in the cloud
(BPaaS) highlights the need to implement a reusable process
resource together with a mechanism to adapt this to consumers.

We are primarily concerned with the utilisation of a
conceptual domain model for business process management,
specifically to define a domain-specific rule language for
process constraints management. We present a conceptual
approach in order to define a Domain Specification Rule Lan-
guage (DSRL) for process constraints [1] based on a Variability
Model (VM). To address the problem, we follow a feature-
based approach to develop a domain-specific rule language,
borrowed from product line engineering. It is beneficial to
capture domain knowledge and define a solution for possibly
too generic models through using a domain-specific language
(DSL). A systematic DSL development approach provides the
domain expert or analyst with a problem domain at a higher
level of abstraction. DSLs are a favourable solution to directly

represent, analyse, develop and implement domain concepts.
DSLs are visual or textual languages targeted to specific prob-
lem domains, rather than general-purpose languages that aim
at general software problems. With these languages or models,
some behaviour inconsistencies of semantics properties can be
checked by formal detection methods and tools.

Our contribution is a model development approach using
a feature model to bridge between a domain model and
the domain-specific rule extension of a business process to
define and implement process constraints. The feature model
streamlines the constraints customisation of business processes
for specific applications. The novelty lies in the use of software
product line technology to customise processes.

We choose content processing here as a specific domain
context to illustrate the application the proposed domain-
specific technique (but also look at the transferability to other
domains in the evaluation). We use a text-based content process
involving text extraction, translation and post-editing as a
sample business process. Note that we have also investigated
the subject in the context of e-learning processes, which we
will also address later on. We also briefly discuss a prototype
implementation. However, note that a full integration of all
model aspects is not aimed at as the focus here is on models.
The objective is to outline principles of a systematic approach
towards a domain-specific rule language for content processes.

The paper is organised as follows. We review process
modelling and constraints in Section 2. In Section 3, we
content processing from a feature-oriented DSL perspective.
Section 4 introduces rule language background and ideas for a
domain-based rule language. We then discuss formal process
models into with the rule languages can be integrated.

II. BUSINESS PROCESS MODELS AND CONSTRAINTS

At the core is a process model that defines possible
behaviour. This is made up of some frame of reference for
the system and the corresponding to the attributes used to
describe the possible behaviour of the process. The set of
behaviours constitutes a process referred to as the extension
of the process and individual behaviours in the extension are
referred as instances. Constraints can be applied at states of the
process to determine its continuing behaviour depending on the
current situation. The rules combine a condition (constraint) on
a resulting action. The target of our rule language (DSRL) is

445Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 464 / 512

Figure 1. Workflow design of content process.

a standard business process notation (as in Fig. 1). Rules shall
be applied at the processing states of the process.

Our application case study is intelligent content processing.
Intelligent content is digital content that allows to users to cre-
ate, curate and consume content in a way that satisfies dynamic
and individual requirements relating to task design, context,
language, and information discovery. The content is stored,
exchanged and processed by a Web architecture and data will
be exchanged, annotated with meta-data via web resources.
Content is delivered from creators to consumers. Content fol-
lows a particular path which contains different stages such as
extraction and segmentation, name entity recognition, machine
translation, quality estimation and post-editing. Each stage in
the process has its own challenges and complexities.

We assume the content processing workflow as in Figure
1 as a sample process for the rule-based instrumentation of
processes. Constraints govern this process. For instance, the
quality of a machine-based text translation decides whether
further post-editing is required. Generally, these constraints
are domain-specific, e.g., referring to domain objects, their
properties and respective activities on them.

III. DOMAIN AND FEATURE MODEL

Conceptual models (CM) are part of the analysis phase of
system development helping to understand and communicate
particular domains [1]. They help to capture the requirements
of the problem domain and, in ontology engineering, a CM is
the basis for a formalized ontology. We utilise a conceptual
domain model (in ontology form) to derive a domain-specific
process rule language. A domain specific language (DSL)
is a programming or specification language that supports a
particular application domain through appropriate notation,
grammar and abstractions [2]. DSL development requires both
domain knowledge and language development expertise. A
prerequisite for designing DSLs is an analysis that provides
structural knowledge of the application domain.

A. Feature Model
The most important result of a domain analysis is a feature

model. A feature model covers both the aspects of software
family members, like commonalities and variabilities, and
also reflects dependencies between variable features. A feature

diagram is a graphical representation of dependences between
a variable feature and its components. Mandatory features
are present in a concept instance if their parent is present.
Optional features may be present. Alternative features are a
set of features from which one is present. Groups of features
are a set of features from which a subset is present if their
parent is present. Mutex and Requires are relationships that
can only exist between features. Requires means that when
we select a feature, the required featured must be selected too.
Mutex means that once we choose a feature the other feature
must be excluded (mutual exclusion).

A domain-specific feature model can cover languages,
transformation, tooling, and process aspects of DSLs. For
feature model specification, we propose the FODA (Feature
Oriented Domain Analysis) [3] method. It represents all the
configurations (called instances) of a system, focusing on the
features that may differ in each of the configurations [4]. We
apply this concept to constraints customisation for processes.
The Feature Description Language (FDL) [5] is a language
to define features of a particular domain. It supports an
automated normalization of feature descriptions, expansion to
disjunctive normal form, variability computation and constraint
satisfaction. It shall be applied to the content processing use
case here. The basis here is a domain ontology called GLOBIC
(global intelligent content), which has been developed as part
of our research centre. GLOBIC elements are prefixed by gic.

Feature diagrams are a FODA graphical notation. They can
be used for structuring the features of processes in specific
domains. Figure 2 shows a feature diagram for the GLOBIC
content extraction path, i.e., extraction as an activity that
operates on content in specified formats. This is the first step in
a systematic development of a domain-specific rule language
(DSRL) for GLOBIC content processing use case. The basic
component gic:Content consists of a gic:Extraction element,
a mandatory feature. A file is a mandatory component of
gic:Extraction and it may either be used for Document or
Multimedia elements or both. The closed triangle joining the
lines for document and multimedia indicates a non-exclusive
(more-of) choice between the elements. The gic:Text has
two mandatory states Source and Target. Source contains
ExtractedText and Target can be TranslationText. Furthermore,
expanding the feature Sentence is also a mandatory component
of ExtractedText. The four features Corpora, Phrase, Word

446Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 465 / 512

Figure 2. Workflow design of content process.

and Grammar are mandatory. On the other side of gic:Text,
a TranslationText is a mandatory component of Target, also
containing a mandatory component Translation. A Translation
has three components: TranslationMemory and Model are
mandatory features, Quality is an optional feature. A Model
may be used as a TranslationModel or a LanguageModel or
both models at same time. An instance of a feature model
consists of an actual choice of atomic features matching the
requirements imposed by the model. An instance corresponds
to a text configuration of a gic:Text super class. The number
of possible gic:Text feature combinations is 512 for the given
model, structured and made accessible through the model.

The feature model might include for instance duplicate ele-
ments, inconsistencies or other anomalies. We can address this
situation by applying consistency rules on feature diagrams.
Each anomaly may indicate a different type of problem. The
feature diagram algebra consists of four set of rules [4]:
• Normalization Rules - rules to simplify the feature

expression by redundant feature elimination and nor-
malize grammatical and syntactical anomalies.

• Expansion Rules - a normalized feature expression can
be converted into a disjunctive normal form.

• Satisfaction Rules - the outermost operator of a dis-
junctive normal form is one-of. Its arguments are
All expressions with atomic features as arguments,
resulting in a list of all possible configurations.

• Variability Rules - feature diagrams describe system
variability, which can be quantified (e.g. number of
possible configurations).

The feature model is the key element. Thus, checking internal
coherence and providing a normalised format is important
for its accessibility for non-technical domain experts. In our
setting, the domain model provides the semantic definition for
the feature-driven variability modelling.

B. Domain Model
Semantic models have been widely used in process man-

agement [6,7]. This ranges from normal class models to
capture structural properties of a domain to full ontologies
to represent and reason about knowledge regarding the ap-
plication domain or also the technical process domain [8,9].
Domain-specific class diagrams are the next step from a feature
model towards a DSL definition. A class is defined as a
descriptor of a set of objects with common properties in terms
of structure, behaviour, and relationships. A class diagram
is based on a feature diagram model and helps to stabilise
relationship and behaviour definitions. Note that there is an
underlying domain ontology here, but we use the class aspects
(subsumption hierarchy only).

In the content use case, class diagrams of gic:Content and
its components based on common properties are shown in Fig-
ure 3. The class diagram focuses on gic:Text. The two major
classes are Text (Document) and Movie files (Multimedia),
consisting of different type of attributes like content : string,
format : string, or frame rate : int. Figure 3 is the presentation
of an extended part of the gic:Content model. For instance,
gic:Text is classified into the two subclasses Source and Target.
One file can map multiple translated texts or none. gic:Text is
multi-language content (source and target content).

447Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 466 / 512

Figure 3. Domain model for global content.

IV. CONSTRAINTS RULE LANGUAGE

Rule languages typically borrow their semantics from logic
programming [12]. A rule is defined in the form of If-then
clauses containing logical functions and operations. A rule lan-
guage can enhance ontology languages, e.g., by allowing one
to describe relations that cannot be described using for instance
description logic (DL) underlying the definition of OWL. We
adopt Event-Condition-action (ECA) rules to express rules on
content processing activities. The rules take the constituent
elements of the GLOBIC model into account:

• Content objects (e.g., text) that are processed.
• Content processing activities (e.g., extraction or trans-

lation) that process content objects.

An example shall illustrate ECA rules for extraction as the
activity. Different case can be defined using feature models:

• We can customise rules for specific content types (text
files or multimedia content).

• We can also vary according to processing activities
(extraction or translation).

Three sample rule definitions are:

• On uploading file notification from user and if filetype
is valid, then progress to Extraction

• On a specific key event and Text is inputted by
user and if text is valid then progress Process to
Segmentation

• On a specific key event and Web URL input by user
and if URL is valid then progress to Extraction and
Segmentation

We define the rule language as follows using GLOBIC
concepts (examples here):

gicRule ::= [gic:Event] ‖ [gic:Cond] ‖ [gic:Action]
gic:Event::= {Upload} ‖ {Translate} ‖ {Extract}
While the rule syntax is simple, the important aspect is that

that the syntactic elements refer to the domain model, giving
it semantics and indicating variability points. Variability points
are, as explained, defined in the feature model. The above three
examples can be formalised using this notation. Important here
is thus the guidance in defining rules that a domain expert gets
through the domain model as a general reference framework
and the feature model definition the variability points.

V. IMPLEMENTATION

While this paper focuses on the conceptual aspects, a
prototype has been implemented. Our implementation (cf.
Fig. 4) provides a platform that enables building configurable
processes for content management problems and constraints
running in the Activiti workflow engine. In this architecture,
a cloud service layer perform data processing and avail of
different resources using the Content Service Bus (based on
the Alfresco content management system) to perform activities.

Every activity has its own constraints. The flow of entire
activities is performed in a sequential manner so that each
activitys output becomes input to the next. The input data is
processed through the content service bus (Alfresco) and the
rule policy is applied to deal with constraints. The processed
data is validated by the validation & verification service layer.
After validation, processing progresses to the next stage of the
Activiti process - e.g., if Segmentation & Extraction data is
validated, then it will automatically move to the Name Entity
Recognition stage, otherwise sent for reprocessing.

Reasons to architecturally separate a Service Layer include:
• To provide the capability of grouping, interlinking and

coupling services within components.

448Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 467 / 512

Figure 4. Prototype implementation architecture.

• To share data across multiple component of an appli-
cation at any time.

• To execute long running operations without over-
loading the engine, as each component may have
individual specific services.

• To use the common content management bus and
provisioning infrastructure provided by the Service
layer.

• To provide a common policy engine service for the
entire platform to reduce the code complexity and
improve maintainability.

• To monitor workflow, process executions and record
task names, execution durations and parameters use
through a provenance service.

The architecture of the system is based on services and
standard browser thin clients. We follow the Toolkit script
of JavaScript functions that can be used to deploy entire
application on a Tomcat web server. The application can
be hosted on a Tomcat web server and all services could
potentially and be hosted on cloud-based server.

A. Discussion
Explicit variability representation has benefits for the mod-

elling stage. The feature and domain models control the
variability, i.e., add dependability to the process design stage.
It also allows formal reasoning about families of processes.

Furthermore, the general utility can be demonstrated. The
domain and feature models here specifically support domain
experts. We have worked with experts in the digital media
and language technology space as part of our research centre.

Their qualitative feedback, based on expert interviews as the
mechanism, confirms the need to provide a mechanism to
customise business processes in a domain-specific way. Using
the feature model, rule templates can be filled using the
different feature aspects guided by the domain model without
in-depth modelling expertise. The majority of experts (more
than 2/3) in the evaluation have confirmed simplification or
significant simplification in process modelling.

In addition, we looked at another process domain to assess
the transferability of the solution. In the learning domain,
we examined learner interaction with content in a learning
technology system [30,31,32]. Again, the need to provide
domain expert support to define constraints and rules for
these processes became evident. Here, educators act as process
modellers and managers, specifically managing the educational
content processing as an interactive process between learners,
educators and content. Having been involved in the develop-
ment of learning technology systems for years, tailoring these
to specific courses and classes is required.

VI. RELATED WORK

Current open research concerns for process management
includes customisation of governance and quality policies and
the non-intrusive adaptation of processes to policies. Today,
one-size-fits-all service process modelling and deployment
techniques exist. However, their inherent structural inflexibility
makes constraints difficult to manage, resulting in significant
efforts and costs to adapt to individual domains needs.

We discuss related work in the field of constraints and pol-
icy definition and adaptive BPEL processes. While a notation
such as BPMN is aimed at, there is more work on WS-BPEL
in our context. Work can be distinguished into two categories.

• BPEL process extensions designed to realize platform-
independence: Work in [23] and [25] allows BPEL
specifications to be extended with fault policies, i.e.,
rules that deal with erroneous situations. SRRF [13]
generates BPEL processes based on defined handling
policies. We do not bind domain-specific policies into
business processes directly, as this would not allow to
support user/domain-specific adaptation adequately.

• Platform-dependent BPEL engines: Dynamo [3] is
limited in that BPEL event handlers must be statically
embedded into the process prior to deployment (recov-
ery logic is fixed and can only be customised through
the event handler). It does not support customisation
and adaptation. PAWS [1] extends the ActiveBPEL
engine to enact a flexible process that can change
behaviour dynamically, according to constraints.

Furthermore, process-centricity is a concern. Recently,
business-processes-as-a-service (BPaaS) is discussed. While
not addressed here as a cloud technology specifically, this per-
spective needs to be further complemented by an architectural
style for its implementation [20].

We have proposed a classification of several quality and
governance constraints elsewhere [30]: authorisation, account-
ability, workflow governance and quality. This takes the BPMN
constraints extensions [22,23] into account that suggest con-
tainment, authorisation and resource assignment as categories
into account, but realises these in a less intrusive process
adaptation solution.

449Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 468 / 512

The DSRL is a combination of rules and BPMN. Moreover,
DSLR process based on BPMN and ECA rules is the main
focus on the operational part of the DSRL system (i.e., to check
conditions and perform actions based on an event of a BPMN
process). There is no need for a general purpose language in
a DSLR, though aspects are present in the process language.
[33,34,35] discuss business process variability, though primar-
ily from a structural customisation perspective. However, [33]
also uses an ontology-based support infrastructure.

VII. CONCLUSION

In presenting a variability and feature-oriented develop-
ment approach for a domain-specific rule language for business
process constraints, we have added adaptivity to process mod-
elling. We can provide domain experts with a set of structured
variation mechanisms for the specification, processing and
management of process rules as well as managing frequency
changes of business processes along the variability scheme
at for notations like BPMN. The novelty of our variability
approach is a focus on process constraints and their rule-based
management, advancing on structural variability.

Cloud-based business processes-as-a-service (BPaaS) as an
emerging trend signifies the need to adapt resources such as
processes to different consumer needs (called customisation of
multi-tenant resources in the cloud). Furthermore, self-service
provisioning of resources also requires non-expert to manage
this configuration.

We see the need for further research that focuses on how to
adapt the DSRL across different domains and how to convert
conceptual models into generic domain-specific rule language
which are applicable to other domains. So far, this translation is
semi-automatic, but shall be improved with a system that learns
from existing rules and domain models, driven by the feature
approach, and to result in an automated DSRL generation.

ACKNOWLEDGMENT

This material is based upon works supported by the Science
Foundation Ireland under Grant No. 07/CE/I1142 as part of the
Centre for Global Intelligent Content (www.cngl.ie) at DCU.

REFERENCES
[1] Ö. Tanrver and S. Bilgen, ”A framework for reviewing domain specific

conceptual models,” CompStand & Interf, vol. 33, pp. 448-464, 2011.
[2] M. Mernik, J. Heering, and A. M. Sloane, ”When and how to develop

domain-specific languages,” ACM computing surveys, vol. 37:316-344,
2005.

[3] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
”Feature-oriented domain analysis (FODA) feasibility study,” DTIC.
1990.

[4] A. Van Deursen and P. Klint, ”Domain-specific language design requires
feature descriptions,” Jrnl of Comp and Inf technology, vol. 10, pp. 1-17,
2002.

[5] M. Acher, P. Collet, P. Lahire, and R. B. France, ”A domain-specific
language for managing feature models,” in ACM Symp on Applied
Computing, 2011, pp. 1333-1340.

[6] C. Pahl and Y. Zhu, ”A semantical framework for the orchestration and
choreography of web services,” Electronic Notes in Theoretical Computer
Science, vol. 151(2), pp. 3-18, 2006.

[7] C. Pahl, ”Semantic model-driven architecting of service-based software
systems,” Information and Software Technology, vol. 49(8), pp. 838-850,
2007.

[8] C. Pahl, ”An ontology for software component matching,” International
Journal on Software Tools for Technology Transfer, vol 9(2), pp. 169-
178, 2007.

[9] M.X. Wang, K.Y. Bandara, and C. Pahl, ”Integrated constraint violation
handling for dynamic service composition,” IEEE International Confer-
ence on Services Computing, 2009, pp. 168-175.

[10] Y.-J. Hu, C.-L. Yeh, and W. Laun, ”Challenges for rule systems on the
web,” Rule Interchange and Applications, 2009, pp. 4-16.

[11] A. Paschke, H. Boley, Z. Zhao, K. Teymourian, and T. Athan, ”Reaction
RuleML 1.0” in Rules on the Web: Research and Applications, 2012, pp.
100-119.

[12] H. Boley, A. Paschke, and O. Shafiq, ”RuleML 1.0: the overarching
specification of web rules,” Lecture Notes in Computer Science. 6403,
162-178, 2010.

[13] T. Soininen and I. Niemel, ”Developing a declarative rule language for
applications in product configuration,” in practical aspects of declarative
languages, ed: Springer, 1998, pp. 305-319.

[14] D. Curry, H. Debar, and B. Feinstein, ”Intrusion detection message
exchange format data model and extensible markup language (xml)
document type definition,” IDWG, 2002.

[15] K. Williams, M. Brundage, P. Dengler, J. Gabriel, A. Hoskinson, M. R.
Kay, et al., Professional XML databases: Wrox Press, 2000.

[16] E. Wilde and D. Lowe, XPath, XLink, XPointer, and XML: A practical
guide to Web hyperlinking and transclusion, 2002.

[17] L. Wood, V. Apparao, L. Cable, M. Champion, M. Davis, J. Kesselman,
et al., ”Document object model (DOM) specification,” W3C recommen-
dation, 1998.

[18] E. R. Harold, Processing XML with Java: Addison-Wesley, 2002.
[19] R. Mohan, M. A. Cohen, and J. Schiefer, ”A state machine based

approach for a process driven development of web-applications,” in
Advanced Information Systems Engineering, 2002, pp. 52-66.

[20] S. Van Langenhove, ”Towards the correctness of software behavior in
uml: A model checking approach based on slicing,” Ghent Univ, 2006.

[21] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps, ”Generic
semantics of feature diagrams,” Computer Networks, vol. 51, pp. 456-
479, 2/7/ 2007.

[22] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, ”FORM: A
feature-oriented reuse method with domain-specific reference architec-
tures,” Annals of Software Engineering, vol. 5, pp. 143-168, 1998.

[23] M. L. Griss, J. Favaro, and M. d’Alessandro, ”Integrating feature
modeling with the RSEB,” in Intl Conf Software Reuse, 1998, pp. 76-85.

[24] K. Czarnecki and U. W. Eisenecker, ”Generative programming,” 2000.
[25] D. Beuche, ”Modeling and building software product lines with pure

variants,” in Intl Software Product Line Conference-Volume 2, 2012, pp.
255-255.

[26] D. Benavides, S. Segura, P. Trinidad, A. R. Corts, ”FAMA: Tooling a
framework for the automated analysis of feature models,” VaMoS, 2007.

[27] M. Antkiewicz and K. Czarnecki, ”FeaturePlugin: feature modeling
plug-in for Eclipse,” Workshop on Eclipse Techn, 2004, pp. 67-72.

[28] A. Classen, Q. Boucher, and P. Heymans, ”A text-based approach to
feature modelling: Syntax and semantics of TVL,” Science of Computer
Programming, vol. 76, pp. 1130-1143, 2011.

[29] A. v. Deursen, P. Klint, and J. Visser, ”Domain-specific languages: an
annotated bibliography,” SIGPLAN Not., vol. 35, pp. 26-36, 2000

[30] C. Pahl and N. Mani. Managing Quality Constraints in Technology-
managed Learning Content Processes. In: EdMedia’2014 Conference on
Educational Media and Technology. 2014

[31] S. Murray, J. Ryan, C. Pahl. A tool-mediated cognitive apprenticeship
approach for a computer engineering course. 3rd IEEE Conference on
Advanced Learning Technologies, 2003.

[32] X. Lei, C. Pahl, and D. Donnellan, ”An evaluation technique for content
interaction in web-based teaching and learning environments.” The 3rd
IEEE International Conference on Advanced Learning Technologies
2003, IEEE, 2003.

[33] M.X. Wang, K.Y. Bandara, and C. Pahl, ”Process as a service distributed
multi-tenant policy-based process runtime governance.” IEEE Interna-
tional Conference on Services Computing (SCC 2010), IEEE, 2010.

[34] Y. Huang, Z. Feng, K. He, Y. Huang: Ontology-based configuration for
service-based business process model. In: IEEE SCC, pp. 296303. 2013

[35] N. Assy, W. Gaaloul, B. Defude: Mining configurable process fragments
for business process design. DESRIST. LNCS 8463, pp. 209224. 2014

450Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 469 / 512

Several Issues on the Model Interchange Between Model-Driven Software

Development Tools

Una Ieva Zusane, Oksana Nikiforova, Konstantins Gusarovs

Faculty of Computer Science and Information Technology

Riga Technical University

Riga, Latvia

{una.zusane, oksana.nikiforova, konstantins.gusarovs}@rtu.lv

Abstract — Models are widely used and are one of the advanced

tools of software engineering. There is a necessity to export

software models from one software development tool or

environment and to import them into another tool or

environment, especially actual this task is within the Model-

Driven Software Development. Despite of the popular model

description standard XML Metadata Interchange (XMI), which

can be used to perform the task of the model interchange,

several problems according to information loss still are

appearing. The research is devoted to the comparison of the

tools’ abilities to exchange the software model presented in the

form of Unified Modeling Language (UML) diagrams with

other tools, based on a set of test cases suitable to check the

completeness of the model description according to XMI

standard. Authors open the discussion about the dependency

between tools correspondence to the XMI standard and tool’s

ability of model interchange.

Keywords – model interchange; UML diagrams; model-driven

software development tool.

I. INTRODUCTION

In software development projects, models are wildly used
because they are not only visually easier comprehensible in
requirement gathering and design phase, but also model
transformations turn them into useable artefacts in
implementation phase. Models are usually portrayed as
diagrams [1], however they can also be written in a textual
modeling language.

Model Driven Software Development (MDSD) uses
abstractions provided by models to develop software systems
[2]. The development process begins with higher level of
abstraction, which is continuously transformed to more
detailed levels of abstraction until final system is developed.

During the process there may be a need for model
interchange between modeling tools. One scenario is that
computation independent model may be designed in one
modeling tool, and further work on platform specific model
should continue in another tool. Another scenario may be a
change of modeling tools in the software development
lifecycle due to tools’ pricing or available options.

XMI [3] is a popular model interchange standard, which is
implemented by many modeling tools. XMI was developed
by Object Management Group to improve model interchange
abilities between different modeling tools. UML [4] models
that are portrayed visually in MDSD support tools, can be
converted to text conforming to XMI standard.

In an ideal world model, interchange process should be
straight forward, if two tools use the same standard for model
interchange. The standard could define precise requirements
for interchangeable metadata structures, so that there would
be little or no variation for possible. This would provide
foundation for errorless model interchange process. However,
often there is still a loss of data during the model interchange
process. This is caused by different interpretations of the XMI
standard, as well as tools’ wish to extend XMI with model
layout information and different other extensions.

The goal of the research is to evaluate whether there is a
dependency between the amount of warnings and errors
discovered in MDSD support tools exported XMI file and a
modeling tools’ XMI model interchange ability. Research
consists of two parts. Firstly, tools’ ability to export files
conforming to XMI standard is evaluated. Secondly, models
for three test cases are practically exchanged between tools.

The rest of the paper is structured as follows. Section II
describes the importance of model interchange in the MDSD
process. In Section III, the National Institute of Standards and
Technology (NIST) XMI validation tool is considered as a
way to determine the quality of MDSD tools’ exported XMI
model. The next Section analyses the results of practical
model interchange between the modeling tools. Related work
is considered in Section V. In the conclusion Section, the
results of the research are summarized and the directions of
future research are suggested.

II. THE TASK OF THE MODEL INTERCHANGE WITHIN THE

MODEL-DRIVEN SOFTWARE DEVELOPMENT

Model is an integral part of MDSD [2], because it can
portray different levels of abstraction [1]. MDSD support
tools need to have a reliable model interchange ability in
order to preserve their users. If a tool cannot cooperate with
other development tools, users will have to do a lot of
unnecessary manual work, which may lead them to choose
another tool for modeling.

Models usually are portrayed visually and saved in
MDSD support tools in different formats, which depend on
the technology used in the building process of a tool. Some
modeling tools can generate XMI files for models, which
mean transforming visual models to text. Other tools have an
ability to import XMI files, transforming a model from a text
file to tools native form of a model. This process is restricted
by modeling standards (e.g., UML) and XMI standard rules.

451Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 470 / 512

XMI standard provides a set of rules how to write a
models’ metadata information in Extensible Markup
Language (XML) [3]. XML was introduced in 1996 by World
Wide Web Consortium [5] with a goal of simplifying data
exchange process between different software tools.

In research, three MDSD support tools are reviewed in
order to evaluate their ability of model interchange –
Enterprise Architect [6], Magic Draw [7] and Modelio [8].
These tools were selected by Model Interchange Working
Group in 2011 as ones to be evaluated by Model Interchange
Tests [10].

Enterprise Architect is developed by Sparx Systems and
has more than 350 000 users in 160 countries [6]. It is a visual
modeling tool, which is based on Model Driven Architecture
approach developed by Object Management Group. There are
numerous modeling standards available in this tool, for
example, UML, Business Process Model and Notation
(BPMN) and System Modeling Language (SysML). The user
interface in Enterprise Architect is user friendly and intuitive,
which boosts the usage productivity. The current edition of
Enterprise Architect is 12.

Magic Draw is a modeling tool developed by No Magic
[7] in order to support object-oriented systems analysis and
design. The tool incorporates such industry standards as
UML, SysML and BPMN. Magic Draw supports code
generation from models to different programming languages
(Java, C++, C# and CORBA IDL). The current edition of
Magic Draw is 18.1.

Modelio is an open source modeling tool developed by
Modeliosoft [8]. The tool is designed for business and system
analysts, as well as software developers. Tool consists of
modules that can be added to default version of the tool
according to user needs. The tool supports code generation
from models to Java language. The current edition of Modelio
is 3.3.1.

It is possible to export models in XMI format files from
Enterprise Architect and Modelio. On the other hand, Magic
Draw can export Models only in XML file. This means that
all three exported models are written in XML language and
more or less conforms to XMI standard. The model
interchange problems arise when tool A does not have
appropriate transformation rules for XML structures, which
are used in tool B.

As an example of differences in tools’ interpretation of
XMI standard and the way of generating models for
interchange purposes, we will look at a small example. In an
UML class there is an attribute with name “attribute 1”. It is
type “Boolean” and can take values from 0 to 1.

In the right part of Figure 1, a fragment of class diagram
export from Enterprise Architect can be seen. In addition to
previously mentioned characteristics attribute 1 has some
more metadata, which are included in Enterprise Architect
models.

In the left part of Figure 1 the same fragment of attribute1
exported from Modelio can be seen. This fragment is
considerably shorter, as Modelio by default doesn’t create as
many additional characteristics for an attribute. It is also
unclear what the value restriction for this attribute is – this
will be considered as a difference between the uploaded XMI
file and the “valid XMI” for the test case by NIST validation
tool.

Magic Draw exported a file with an extension .xml for
class diagram. This tool wildly uses extensions, which make
the text form of attribute1 in Figure 2 differ even more from
other discussed tools. However, when NIST validation tool
compares Magic Draw XML’s canonical XMI form to “valid
XMI” in Section III the results are good and the amount of
discovered validation errors is low in comparison with other
tools.

Figure 1. Comparison of XMI atribute1 in Enterprise Architect and Modelio

452Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 471 / 512

Figure 2. XMI atribute1 in Magic Draw

All three MDSD support tools discussed in this paper

have different ways of writing an attribute from a class
diagram in XML language. When it comes to more
complicated parts of models, these differences become
increasingly important in the context of model interchange.

III. NIST VALIDATION TOOL

In 2009, Object Management group announced the
creation of Model Interchange Working Group (MIWG) [11].
MIWG has created a test suit, which consists of 40 test cases
[9]. The test suit allows demonstrating model interchange
abilities of several modeling tools. 25 of the tests are defined
for UML 2.3 standard. Each test case consists of one or more
diagrams and according XMI file, which conforms to XMI
standard and is considered as a “valid XMI” for the model.
This XMI file is used in the validation process, when the
exported XMI files from modeling tools are compared to it.

USA National Institute of Standards and Technology
(NIST) [12] has developed a validation tool that can validate
an XMI file exported from a modeling tool against the “valid
XMI” for a chosen test case. XMI is compared in its
canonical form. There are various ways how model can be
represented in XMI, which all conform to XMI standard [9].
Canonical XMI has additional points in its specification that
eliminates variation. There is only one way in which a model
can be correctly represented in the canonical form. Usage of
canonical XMI makes it possible to compare two XMI
models expressed in it to find the differences. No tools used
in the research exports canonical XMI form directly. NIST
validation tool converts uploaded XMI files to their canonical
form before comparing them to the “valid XMI”.

After the validation of an XMI file the summary or results
is displayed to the user. In the heading there is information
about XMI file: XMI version, object count in the XMI file,
used meta-model. It is followed by a list of warnings, which
arises when XMI does not fully conform to the Object
management groups’ developed standard. Warnings may
cause problems with model interchange, because the
importing modeling tool may not interpret these parts of XMI
correctly.

There are two parts of validation errors discovered by the
NIST validation tool [12]:

 General errors;

 Differences between the uploaded XMI file and
the “valid XMI” for the test case.

If an XMI that is independent from all test cases provided
by MIWG is validated by NIST validation tool, only general
errors will be displayed.

In order to see differences in the tools’ ability to export
models, we compared tools in two dimensions.

Firstly, there are several XMI files available from MIWG
interchange tests in 2011 [10]. They were exported from
MDSD support tools described in the previous Section. All
the tools have developed new versions since then, so it is
possible to compare the older version of a tool with the new
one. Version numbers for tools described in this paper are
shown in Table 1.

TABLE I. MODELING TOOL VERSIONS

Enterprise
Architect MagicDraw Modelio

Year 2011 9.1 17.0 2.4.19

Year 2015 12.0 18.1 3.3.1

Secondly, all the tools have exported models from the

same test cases. This gives the grounds to compare the
number of validation errors discovered by the NIST
validation tool between the different MDSD support tools.

The comparison of tools in this Section uses three test
cases for UML diagrams: class diagram [13], activity diagram
[14] and use case diagram [15]. The choice of test cases
covers both behavioral and structural UML diagrams.

Class diagrams describe structure of a system showing
objects used in a system as classes. Each class can have
attributes (characteristics of an object) and methods (actions
that an object can do). Classes are linked with each other with
different relationships, e.g., association and generalization.

Activity diagrams are used for business process modeling.
They display the sequence of activities in a workflow and
decisions resulting from activities.

Use case diagrams show user interaction with the system.
Users are portrayed as actors and they are connected to use
cases by using different links to specify the relation.

Class diagram is the first test case to be analyzed. The
comparison of MDSD support tools and data from the tools’

453Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 472 / 512

versions from years 2011 and 2015 is shown in Figure 3. The
amount of validation errors discovered by the NIST
validation tool for the class diagram is displayed there.

Figure 3. Comparison of validation errors in the class diagram

In the 12.0 version of Enterprise Architect the exported
XMI conforms better with the XMI standard than the version
9.1. The amount of validation errors has decreased three
times. In the Magic Draw version 17.0 there are 33 validation
errors, but in the version 18.1 NIST validation tool did not
discover any errors. In Modelio the trend is reversed. In the
version 2.4.19 there were 8 validation errors, but in the
version 3.3.1 the NIST validation tool discovered 47
validation errors in the exported XMI of the class diagram
test case. When making a comparison between different tools,
the best in class diagram test case is Magic Draw, which is
followed by Enterprise Architect and Modelio. The amounts
of validation errors in these tools are increasingly higher.

Activity diagram is the second test case to be analyzed.
The comparison of MDSD support tools and data from the
tools’ versions from years 2011 and 2015 can be seen in
Figure 4. The amount of validation errors discovered by the
NIST validation tool for the activity diagram is displayed in
Figure 4.

Figure 4. Comparison of validation errors in the activity diagram

When comparing older and newer versions of Enterprise
Architect an increase by one validation error can be seen in
the version 12.0. Magic draw in newer version 18.1 has 18
validation errors less than version 17.0. Modelio, similarly as
Enterprise Architect, in the version 2.4.19 has one validation
error more than there was in the version 3.3.1. In the export of
activity diagrams Magic Draw has the best results with 13
validation errors discovered in the current tool’s version.
Modelio has approximately three times more validation errors
than Magic Draw, but the highest amount of validation errors
belongs to Enterprise Architect.

Use case diagram is the third test case to be analyzed. The
comparison of MDSD support tools and data from the tools’

versions from years 2011 and 2015 can be seen in Figure 5.
The amount of validation errors discovered by the NIST
validation tool for the use case diagram is displayed in Figure
5.

Figure 5. Comparison of validation errors in the use case diagram

The use case diagram XMI file, which is exported from
Enterprise Architect version 12.0, has 83 validation errors.
That is by 8 validation errors less than Enterprise Architect
version 9.1. There is even better improvement in Magic Draw
– the amount of validation errors from 50 in version 17.0 has
decreased to only 2 in version 18.1. For Modelio, similarly as
in the case of class and activity diagrams, an increase in the
amount of validation errors for the newer version 3.3.1. can
be seen. Magic Draw with its 2 validation errors has the
lowest amount of errors for the use case diagram. It is
followed by Modelio (22 validation errors) and Enterprise
Architect (83 validation errors).

There were various validation errors discovered by NIST
validation tool. In the error messages user uploaded XMI file
is referenced as “User.xmi” and preloaded XMI for the test
case is referenced as “Valid.xmi”. The most frequent
validation errors were:

 User.xmi is missing an element present in Valid.xmi;

 User.xmi contains an element not present in Valid.xmi;

 An object property value in User.xmi differs from that
of Valid.xmi, for example in User.xmi class visibility is
defined as “Public”, but in Valid.xmi the value is null;

 User object missing a value specified in Valid.xmi.
The highest amount of general errors was about the

serialization of a default value.
The summary of all the amounts of validation errors from

three test cases for each tool is shown in Figure 6. Summary
is made for the tool versions in year 2015.

Figure 6. Summary of model validation errors

Enterprise Architect has 175 validation errors, which adds
up to 61% from the total amount of validation errors. The
majority of validation errors were about the serialization of a

454Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 473 / 512

default value. Enterprise Architect specifies the visibility of a
public class, where in XMI it is considered a default value for
class visibility and should not be specified.

Modelio has half the amount of validation errors. Modelio
has a mentionable trend to become less conformant with the
XMI standard in the newer version. In all test cases, the
amount of validation errors for Modelio version 3.3.1 was
higher than for version 2.4.19.

In each test case Magic Draw had the lowest amount of
validation errors. Only 5% of the total amount of validation
errors was created by Magic Draw.

IV. RESULTS OF THE MODEL INTERCHANGE BETWEEN

THE TOOLS

In order to evaluate, whether a model exported form one
of described tools can be used in other tools, we tested model
interchange practically. In a perfect scenario model
interchange should provide a possibility to export a model
from one tool and import model in another tool without losing
any elements, links and layout.

For each test case analyzed in Section III we practiced
model interchange between the described tools and evaluated
it according to these criteria:

0 points – model from one tool cannot be imported in
another tool;

1 point – model can be imported from tool A into tool B,
but it is missing some elements or links;

2 points - model can be imported from tool A into tool B
and it has all elements and links;

3 points - model can be imported from tool A into tool B
and it has all elements, links and layout.

Results for each test case are displayed in the tables
below. Tools named in listed exported diagrams that were
imported in tools listed in rows.

TABLE II. CLASS DIAGRAM MODEL INTERCHANGE

From Enterprise
Architect

Magic-
Draw Modelio To

Enterprise Architect X 3 2

MagicDraw 2 X 2

Modelio 1 0 X

Model interchange results for class diagram are shown in

Table 2. Modelio was missing some elements in the diagram
exported from Enterprise Architect and could not import
model from Magic Draw at all. Enterprise Architect could
retrieve model layout exported by Magic Draw.

TABLE III. ACTIVITY DIAGRAM MODEL INTERCHANGE

From
Enterprise
Architect

Magic-
Draw Modelio To

Enterprise Architect X 3 2

MagicDraw 1 X 2

Modelio 2 0 X

Model interchange results for activity diagram are shown
in Table 3. Model did not have all the elements and links in
interchange between Enterprise Architect and Magic Draw.
Other tools received complete model from Modelio, but did
not get the layout.

TABLE IV. USE CASE DIAGRAM MODEL INTERCHANGE

 From Enterprise
Architect

Magic-
Draw Modelio To

Enterprise Architect X 3 2

MagicDraw 2 X 2

Modelio 2 0 X

Model interchange results for use case diagram are shown

in Table 4. All model interchanges that were functional
transported complete models from one tool to another. The
only interchange that did not work was from Magic Draw to
Modelio.

All the obtained points for both import and export of three
test case models are summarized in Figure 7.

Figure 7. Comparison of practical model interchange

According to previously raised criteria Enterprise
Architect has the best ability of model interchange with other
modeling tools used in this research. Tools option to import
files in XMI, as well as XML formats and ability to take
model layout is an advantage.

Modelio has 7 points less than Enterprise Architect.
Modelio is best evaluated for the ability to export a model,
which can be imported in all other tools with high accuracy.

Modelio is followed by Magic Draw. Tools biggest flaw
was its inability to import models layout. Magic Draw offers
its users a variety of automatic layout options for models,
during practical tests it was recognized that it was not enough.
The automatic layout option did not work for use case
diagram.

V. CONCLUSION

In this paper the UML model interchange capabilities of
three modeling tools were analyzed. The tools are: Enterprise
Architect, Magic Draw and Modelio. Three test cases
designed by MIWG were used: class diagram, activity
diagram and use case diagram.

With the NIST validation tool the largest amount of
validation errors were discovered in the XMI files of
Enterprise Architect, but the smallest amount of validation

455Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 474 / 512

errors were in Magic Draw exported models. When analyzing
the trends of development from older to newer versions of
tools it can be seen that there is improvement in the amount
of validation errors in Enterprise Architect and Modelio. Both
tools in year 2015 have less validation errors than they had in
year 2011.

In practical model interchange Enterprise Architect is
recognized as the most precise of the analyzed tools. It is
followed by Modelio and Magic Draw. This result seems to
be counterintuitive: Enterprise Architect has the highest
amount of validation errors discovered by NIST validation
tool, yet it has the best model interchange ability. This could
be explained by the tools import abilities, which cannot be
evaluated by NIST validation tool. It is also evident that not
all validation errors have negative impact on tools ability of
model interchange.

In conclusion, the dependency between the amount of
XMI validation errors and tools’ practical model interchange
ability is not evident. The amount of XMI validation errors
discovered by NIST validation tool is not enough to
determine, whether a MDSD support tool will have good
model interchange ability.

One explanation for this result is that only the quality of
exported XMI files can be tested by NIST validation tool.
Unfortunately, a good conformance to XMI standard does not
insure that other modeling tools will import the file
successfully. When testing a tools ability of model
interchange, both the quality of the export XMI and import to
other tools should be examined.

The research can be continued in two directions. Firstly,
more MDSD support tools can be compared using the same
test cases for UML diagrams. Secondly, the validation errors
discovered by NIST validation tool can be analyzed in order
to determine, which have significant impact on model
interchange.

ACKNOWLEDGMENT

The research presented in the paper is supported by
Latvian Council of Science, No. 342/2012 "Development of
Models and Methods Based on Distributed Artificial
Intelligence, Knowledge Management and Advanced Web
Technologies".

REFERENCES

[1] T. Kuhne, What is a Model? Internat. Begegnungs-und
Forschungszentrum für Informatik. 2005

[2] S. Beydeda, M. Book, and V. Gruhn, Model-Driven Software
Development, Springer, 2005.

[3] XML Metadata Interchange (XMI) Specification. Available:
http://www.omg.org/spec/XMI/ [retrieved: July, 2015].

[4] Unified Modeling Language (UML) Resource Page.
Available: http://www.uml.org/ [retrieved: July, 2015].

[5] Extensible Markup Language (XML) 1.0 (Fifth Edition).
Available: http://www.w3.org/TR/2008/REC-xml-20081126/,
[retrieved: July, 2015].

[6] Enterprise Architect. Available:
http://www.sparxsystems.com/products/ea/ retrieved: July,
2015].

[7] MagicDraw. Available:
http://www.nomagic.com/products/magicdraw.html retrieved:
July, 2015].

[8] Modelio. Available: https://www.modelio.org/about-
modelio/features.html retrieved: July, 2015].

[9] Model Interchange Wiki. Available:
http://www.omgwiki.org/model-interchange/doku.php?id=
[retrieved: July, 2015].

[10] UML/SysML Tool Vendor Model Interchange Test Case
Results Now Available. Available:
http://www.omg.org/news/releases/pr2011/12-01-11.htm,
retrieved: July, 2015].

[11] S. Covert, OMG Announces Model Interchange Working
Group. Available:
http://www.omg.org/news/releases/pr2009/07-08-09.htm,
retrieved: July, 2015].

[12] NIST XMI validator. Available: http://validator.omg.org/se-
interop/tools/validator, retrieved: July, 2015].

[13] Test Case 1 - Simple Class Model. Available:
http://www.omgwiki.org/model-
interchange/doku.php?id=test_case_1_uml_2.3, retrieved:
July, 2015].

[14] Test Case 4 - Simple (fUML) Activity Model. Available:
http://www.omgwiki.org/model-
interchange/doku.php?id=test_case_4_uml_2.3, retrieved:
July, 2015].

[15] Test Case 8 - Use Cases. Available:
http://www.omgwiki.org/model-
interchange/doku.php?id=test_case_8_uml_2.3, retrieved:
July, 2015].

456Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 475 / 512

Testing Smart Cities Through an Extensible Testbed
A Testbed Framework For Smart Cities Validations

Guilherme Luiz Mario de Medeiros1, Felipe Silva Ferraz1,2, Gutemberg Rodrigues Costa Cavalcante1

1CESAR
Recife Center for Advanced Studies and System

Recife, Brazil
guicaraciolo@gmail.com

fsf@cesar.org.br
gutembergrcc@gmail.com

2Informatics Center
Federal University of Pernambuco

Recife, Brazil
fsf3@cin.ufpe.br

Abstract—Urban areas around the world are being crowded
and, in some cases, over populated. This leads to a new set of
modern life problems, like traffic jams and natural resource
depletion. Information technologies, under the alias of smart
city or Internet of things, play a very important role helping
analyze, understand, and solve these problems. The present
work discusses the need for testing on smart cities and Internet
of things field of study. Following this line of thought, it goes
through how other researchers are testing and validating their
projects. Finally, it presents an easy to use and customize way
of generating cheap data mass for project validation.

Keywords-Testbed; Data Mass; Smart Cities; Internet of
Things

I. INTRODUCTION

The growing number of citizens in urban areas is creating
a new range of modern problems to humankind. Resource
distribution, government transparency, security, mobility,
and life quality are just a small set of these new challenges
[1]. Some of these problems can be seen worldwide. For
example, it is easy to think of at least one name of a city
suffering from traffic jams [3], which is one of many
mobility problems.

In addition, there is a set of invisible problems related to
the growth of population on Earth. Urgent problems like
pollution and the depletion of natural resources are already a
huge concern in the modern society. The number of people
in cities, and how those people behave, affects not only that
small location on Earth, but also the entire planet [3][4].

Modern human life has a helpful ally on fighting all of
those problems. The increasing power of computational
devices and the amount of data gathered about, almost,
everything, can help researchers and scientists understand
how those problems appear and behave and simulate tools
and scenarios, trying to find ways to solve or prevent those
problems [4].

The main problem of computational tools is the need to
test it. Researchers need to ensure their tools are working as
expected, under any circumstance. In Computer Science and
software engineering, there are different concepts and tools
to test hardware and software, which are being used

worldwide by the tech industry. Relying on those tools and
techniques would give researchers the certainty their solution
may be on the right tracks [5][6].

There are different ways to ensure that software works as
expected. One of them is by using a testbed. A testbed
comprehends a huge set of tools. In this set, there are tools
that behave as a real environment, where other software can
be executed in it, “thinking” they are executing on the real
environment. In addition, in this set of tools, there are data
generators, which simulate a real environment, as the
previous testbed, but instead of executing the test subject in
it, it outputs a dataset from the simulated environment, which
can be used as input for the software the researcher wants to
test [5][6][7].

The present work introduces a data simulation testbed,
which can simulate the desired target area, and return an
almost unique data set. More than that, the final product of
this research is a framework to construct testbeds for data
mass generation to help testing smart cities and internet of
things applications. The main reason of this research is to
provide to other researchers a simple to use and extend tool.

The current paper is divided on the following sections:
Section II describes the concept of a smart city and what
researchers are doing with it; Section III shows how other
researchers are trying to solve the lack of smart cities testing
tools; Section IV presents how the proposed framework was
constructed, the idea and architectural decisions behind it’s
functionalities; Section V displays the framework validation;
Section VI holds a final discussion about this work.

II. SMART CITIES

The expansion of urban areas and the growing number of
people on those spaces are creating new problems to
humankind like resource distribution or service management.
Solving these problems is not simple, which is leading
scientists into looking for solutions on, but not exclusively,
smart cities [8].

The concept of smart city may vary by researcher,
university, or book, but the main idea is the same: try to
solve urban problems, save governments money and improve
life quality by using Information Technologies (software,
hardware, networks, and sensors) [9][14]. However, like any

457Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 476 / 512

other research field, smart city also needs validation. For
this, the best way of validation is gathering real data from
urban area and replicate it to test the solution. The main
problem is gathering real world information, which can be
expensive, for not mentioning administrative barriers. This
can delay the development of a good idea for a long time. In
addition, after gathering the desired data, it can disprove the
project; meaning money and time were wasted. By exposing
this thought, it is easy to understand the need for a reliable
and cheap data mass for initial validations on smart cities
projects to avoid time and money being wasted [9][10].

Nowadays, it is starting to be common to find public data
masses and Application Program Interfaces (APIs), provided
by governments for researchers. Nevertheless, those data
does not show how citizens behave. For security and
bureaucratic reasons, most public data masses relate to
government controlled resources usage. Even though these
data sets can be helpful and insightful, they are not suitable
for all researches [9][10].

To circumvent those problems, researchers are
developing testbeds based on real data and observations to
generate good data masses for project validations. This may
not represent the real world behavior, but such low cost
approach is helping researchers to test and validate their
ideas early on initial stages.

III. RELATED WORK

In this section, there are enumerated some works and
researches that identified the same problem, by quickly
explaining their approach to solve it.

A. Simulating Smart Cities with Deus

The study introduces a testbed able to create data mass to
test wireless communications infrastructure in a smart city.
Its data mass is generated by the frequency probability of a
series of discrete events and distributing those events along a
time period, using a deterministic algorithm. In this testbed, a
discrete event is any state change or communication between
nodes – which can be citizens or sensors. The proposed
testbed can generate a high amount of data in a small period.
On the other hand, it does not offer easy ways to configure
data generation [11].

B. Smarty City Application Testbed

This work proposes a testbed for data generation through
simulating citizens and resource usage. The application
developed provides a way to input configuration options and
the testbed tries to simulate behaviors and generate data
based on the user input. It seems to be a good idea to enable
the test of specific scenarios. The proposal cannot be
extended, which means other researchers will not be able to
add more modules or entities to the tool simulation, being
limited to its generation capabilities [7].

C. Smart City – Platform For emergent Phenomena Power
System Testbed Simulator

Differently from the two previous testbeds, this proposal
is not about generating data to validate smart cities solutions.

The paper proposal is to create a virtual environment where
Power Grids (Electrical Grids) projects for smart cities
projects can be tested. The main idea is to develop the
desired solution in this simulator; while it generates usage
patterns and unpredictable events (like natural disasters).
This represents a good approach for specific problems
especially smart systems that may need to take quick
measures without human intervention [5].

D. SmartSantander: The Meeting Point Between Future
Internet Research and Experimentation and the Smart
Cities

Smart Santander [6][12][15] is a testbed for smart city
projects running in a real live city. Researchers can
implement their projects and analyze how it would behave in
the real world. The architecture is based on different Tiers,
and the communication between components among them.
Each Tier communicates with a capillary network that
carries information to application servers. To facilitate the
implementation of new solutions, this architecture is based
on only four subsystems, with simple interfaces to use and
access.

This project is a major milestone in the field of smart
cities. It is hard to point downsides on the proposal since
they can also represent new reasons for studies, as the
scenario is the most suitable for such.

E. IoT Testbed Business Model

The study presented by Silva et al. [15] is a business
model for internet of things testbed deployment on a real
environment. It is a derivation of the business ideas and
commercialization principles behind Smart Santander
[6][12][15]. The model considers four main aspects of a
business: infrastructure; value proposition; customers; and
financials. Finally, it shows how to detect key partners, key
activities, cost structures, and revenue streams, so
governments, private corporates or universities can try to
implement their own “Smart Santander”.

IV. FRAMEWORK FOR DATA GENERATION

The final product of the present paper is a framework to
enable other researchers to create their own testbeds. Those
testbeds will generate data mass by simulating a virtual city.
For this to happen, the study considered two different
configuration moments: simulator configuration and
execution profiles. The simulator configuration deals with
what the final testbed will simulate and is achieved by
adding, removing, or modifying simulation modules.
Researchers can use those modules to enable different
behaviours to their simulated city. On the other hand, the
execution profiles modifies how the simulator will behave.
While the simulator just shapes a city, the execution profiles
describes how much resources the city will consume during
its simulation, which can modify all modules behaviours.

458Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 477 / 512

The proposed framework is based on three different parts
(as shown on Figure 1): data storage, a Web based Guide
User Interface (GUI) and the core application. After
generating data, the framework produces a single JavaScript
Object Notation (JSON) file, which can be used to validate
any smart city project.

A. Data Storage

The main goal of the data storage is to hold execution
variables and information, removing this responsibility from
the core application. This means the testbed being developed
does not need to deal with memory swap, indexing or
language garbage collector. Also, abbiding to this
architecture decision enables the framework to outsource this
concern to another process or software, parallelizing
memory management and input and output blocking
operations.

For this task, the framework relies on MongoDB - a cross
platform document-oriented database, adopted by a number
of the most popular websites and services. It focuses on
giving fast reading and writing operations. To achieve this, it
indexes data into hashes on memory. On the other hand, it
does not provide the most common relational operations, like
JOIN statements or transactions.

B. Web GUI

The core part of the proposed framework can accept user
input, as execution profiles, to generate data mass for
specific scenarios. To enable this, the framework provides a
stand-alone application, which can behave like a HTTP Web
server. Then, the application can connect to the Data Storage
(previously described), to save new execution profiles or to
download JSON files generated by previous executions. To
be able to access all of its functionalities, the user just need
to connect to it with a common Web Browser.

C. Core Application

The core application is subdivided in two parts: the
Execution Manager and the Simulator. Figure 2 shows how
the Core Application and all of its parts behave.

1) Execution Manager
The Execution Manager is capable of connecting to the

Data Storage, verify if there are execution profiles to
simulate and, for each one of them, raise a new instance of
the Simulator. In addition, this Manager holds the
responsibility to generate JSON files at the end of each
simulation execution.

2) Simulator
The simulator exposes two methods for developers, and

comes bundled with a set of simple basic modules.
a) Initialization Method

This method exists for importing and initializing user
created and basic modules into the Simulator. By default, it

imports and initializes all the basic modules that came
bundled with the final application.

This method receives as input the current execution
profile, which should be used to initialize the modules that
execution method will execute.

b) Execution Method
Three tick events compose the execution method: day
changed; hour changed; minute changed. Developers must
use at least one of these events to configure and execute
these simulation modules. Since the entire execution
environment exists on each of these events, everything can
be used as input parameter for each module execution
method. By doing this, it is easy to inject the current
execution date time, or even all the existing citizens, into the
module execution.

The goal of splitting the Execution Method into tick
events is to facilitate the identification of sets of actions each
module may need to perform according to the time of the
day. More than that, it helps overhead reduction by avoiding
unnecessary method calls. For example, the “traffic module”
needs to be simulated each minute, so it can generate data as
real as possible. On the other hand, “education access
module” can be simulated once a day, may be at the end of
the day (day changed event), since it may only need to
simulate students score based on its frequency. In addition,
adopting this architecture enables modules to have different
execution methods for each tick event, improving readability
on module’s code.

Notice that, like the real world, time is an incremental
value, being orchestrated by the smallest time unit, which is,
for the proposed framework architecture, the minute unit.
The default real world, and framework, behavior is always
increment the smallest unit by one. For the framework, the
incremental value can be modified (in the Initialization
Method) to make the simulation better suit the target project
needs. For example, instead of incrementing by the default
value, it could increment the minute unit by ten, reducing the
number of minute tick events, decreasing generation time.

Figure 1. Three Parts Architecture.

459Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 478 / 512

Figure 2. Core Application Workflow.

Finally, this architecture opted for not using parallel
module execution, like threads or sub-process. This decision
relates to the passage of time and each module execution
state. Using threads or sub-process would force the
framework and its modules to implement execution signals
to ensure that different modules are still executing the same
simulation moment. In addition, since modules can be used
as parameters for other modules executions, using parallel
processing could damage this concept, since injected
modules could change their own execution state in the
middle of the execution of the dependant module, making
the chain execution fail.

c) Default Basic Modules
The framework comes bundled with three basic modules,

which represents basic components of a city. Even though
those modules can be used to generate data, their only
purpose is to serve for this paper validations.

The bundled modules are:
• The City Manager – capable of generating a

city. The size of the output city is based on user
input (from the WEB GUI). The final city is
randomly generated based on a predefine

probability for each created block: 65% chance
to be a home block; 25% chance to be a
workplace; 1% chance to be a hospital; 1%
chance to be a police station; 3% chance to be a
school; 5% chance to be a leisure block and 1%
chance to be a university block.

• The Citizen Manager – generates citizens for the
simulation, gives those homes and jobs, and
makes them walk through the city. Jobs and age
distribution is based on a set of predefined
“citizens profile”, where each profile has a
chance of service consumption. The Citizen
Manager tries to distribute this profiles based on
input for service access.

• The Transport Manager – can only be initialized
by injecting a city into it. At each iteration,
receives a list of citizens that want to move to
another location, tries to move them, and
remove from this list the citizens that got to
their destination.

460Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 479 / 512

V. VALIDATION

To validate the framework, three different scenarios were
created: a simple village; Espinheiro; and Boa Viagem.
While the village scenario tries to represent a fictional small
village, which will help to validate the framework speed for
small inputs, both Espinheiro and Boa Viagem scenarios try
to mimic two huge neighborhoods from Recife (a city in
Brazil). For validation and testing, data about those
neighborhoods were gathered from [13]. Since this data
source only deals with area size and number of citizens, and
the framework needs to have an execution profile in order to
work, for service consumption behaviour, random numbers
were used. Even though these numbers may not represent
real world services usage, they are good enough to validate
the framework. The input data for each execution scenario
can be found in Table 1. For these validations, the
framework’s default modules were used. Because of that,
since the city generation module, created to validate the
framework, only deals with blocks of buildings, for
Espinheiro and Boa Viagem scenarios, a block was
considered as having 100m2. Finally, each scenario was
executed three times. A summary of each execution can be
found on Table 2.

To execute these validations, a Virtual Private Server
(VPS) were used, with the following environment
specifications:

• One Virtual CPU with 2GHz.
• 1 GB RAM
• 30 GB SSD Hard Drive

• Ubuntu 14.04x64
• Python 2.7.6
• MongoDB 3.0.2.

Analyzing the summary output, it is easy to understand
the impact the execution profile has on execution time and
generated file size. Since for each scenario the input grew on
city size, number of citizens and service consumption, the
output for them also grew on execution time and generated
file size. This means that a testbed generated by the
framework is reusable for different city behaviours in the
same virtual city, which means one of the two configuration
moments, described in section IV, was achieved.

TABLE I. VALIDATION SCENARIOS

Input
Scenarios

Village Espinheiro Boa Viagem

City Width 10 72 251

City Height 10 100 251

N. of Citzens 2000 10000 130000

N. of Days to Simulate 90 90 90

Total Education Service 35000 30000 130000

Total Health Service 41000 80000 877500

Total Transport Service 280000 2250000 12090000

TABLE II. EXECUTION OUTPUT

Output
Village Espinheiro Boa Viagem

First Second Third First Second Third First Second Third

Execution Time (Seconds) 865.26 832.18 813.12 5479.79 5798.20 5272.86 32308.51 32420.90 32511.08

Data Mass File Size (MB) 63.8 60 59.2 397 396 387 1.7 GB 1.7 GB 1.7 GB

Home Blocks 73 57 66 4560 4636 4648 40826 40766 40802

Work Places Blocks 18 26 20 1857 1785 1822 15603 15704 15651

Hospital Blocks 1 2 1 68 87 62 617 637 694

School Blocks 5 6 2 220 217 210 1946 1813 1976

University Blocks 1 1 2 39 40 30 303 285 301

Police Station Blocks 1 2 1 74 70 56 643 646 647

Leisure Blocks 1 6 8 382 365 372 3063 3150 3109

School Citzens 72 94 103 851 849 831 366 364 364

Graduate Citzens 110 104 102 831 822 854 344 382 382

Gratuate-worker Citzens 112 88 87 826 819 785 356 349 349

Postgrad-worker Citzens 95 103 97 826 844 864 379 350 350

Worker Citzens 955 972 979 6666 6666 6666 64631 64667 64667

Retired Citzens 656 639 632 0 0 0 63924 63888 63888

Avarage Citzens Age 50 49 49 35 35 35 58 58 58

461Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 480 / 512

Continuing with the summary analysis, it is also clear
how biased is the default module for city generation.
Previously, it was mentioned that the default module has a
probability for each block creation. Taking the “police
station” and “hospital” probability as example, which is a 1%
chance, and looking at the results, we can visualize the
number of blocks for theses block types is always near 1%.
Even though their coordinates may be very different, which
may affect traffic related studies, the way blocks are being
generated for different size of cities may not represent a city
growth behavior.

In addition, the chosen framework architecture may not
suit for larger simulations, since it does not deal with
parallelism. The effect of this decision can be seen on the
execution times presented in Table 2. The smaller scenario
took fourteen minutes to process and the biggest scenario
took eight hours. However, the proportion between each
configuration entry for their execution profiles is not higher
than sixty times. Even though execution time may be
reduced by using a powerful CPU and more RAM memory,
the gain may not be perceived on large simulation scenarios.

Finally, these validations prove that the framework really
works, that it can be customized by different service
modules, and also show how the execution profiles may
affect the execution time and final file size. Even though the
default modules work well and may be used for some use
cases, they only exist to show how modules work inside the
proposed framework and, as this validation shows, it is
highly recommended that researchers extend or replace the
default modules, or even add more city service modules.

VI. CONCLUSION

The effort of testing a solution is compensated by finding
problems as soon as possible. Finding problems on tools in
the early stages of a development, means fixing the solution
early, when it is easier and cheaper. Also, battle testing the
software or hardware being developed reduces the chance of
an unknown problem being released worldwide. Even
though this is common in the tech industry, the reasoning of
using tests can be easily related to Smarty Cities and Internet
of Things research.

The result of this paper is a framework for data
generation through cities simulation. The generated data can
be used in any smart cities or internet of things research. In
addition, the proposed tool means a cost reduction, since
researchers do not need to waste money on gathering real
environment data until it is necessary. As shown in the
validation section, researchers can simulate ninety days in
only eight hours, which is a precious time saving. However,
this time could be decreased if the framework supported
parallel processing.

For future works, there is a need to research more on the
framework modules. Implementing new modules for specific
set of city and world functionalities would be helpful for
other researchers. In addition, in the software engineering
field, there is a need to find ways of optimizing the time the
framework takes to generate data, but keeping it easy to use
and customize. It would be great to see researches and

projects on Smart Cities and Internet of Things using the
testbed framework as one of its tools for project test and
validation.

REFERENCES
[1] C. Harrison et al., “Foundations for Smarter Cities,” IBM J.

Res. and Dev., Jul. 2010, pp. 1-16, ISSN: 0018-8646.
[2] G. Coulson et al., “Flexible Experimentation in Wireless

Sensor Networks”, in Magazine Communications of the
ACM, Volume 55 Issue 1, Jan. 2012, pp. 82-90, doi:
10.1145/2063176.2063198

[3] S. Dirks and M. Keeling, “A vision of smarter cities: How
cities can lead the way into a prosperous and sustainable
future,” IBM Inst. Bus. Value, in Executive Report, June,
2009.

[4] Forrester. Helping CIOs Understand “Smart City” Initiatives.
[Online]. Available from http://www-
935.ibm.com/services/us/cio/pdf/forrester_help_cios_smart_ci
ty.pdf 2015.10.28

[5] L. Lugaric, G. S. Member, S. Krajcar, and Z. Simic, “Smart
City - Platform for Emergent Phenomena Power System
Testbed Simulator,” IEEE, Innovative Smart Grid
Technologies Conference Europe (ISTG Europe), Oct. 2010,
pp. 1–7, doi:10.1109/ISGTEUROPE.2010.5638890.

[6] D. Carboni, A. Pintus, A. Piras, A. Serra, A. Badii, and M.
Tiemann, “Scripting a Smart City: The CityScripts
Experiment in Santander,” 2013 27th Int. Conf. Adv. Inf.
Netw. Appl. Work., IEEE, Mar. 2013, pp. 1265–1270,
doi:10.1109/WAINA.2013.85.

[7] D. Silva, F. Ferraz, and C. Ferraz, “Smart City Applications
TestBed Towards a service based TestBed for smart cities
applications,” in SOFTENG 2015 : The First International
Conference on Advances and Trends in Software Engineering
Information, Apr. 2015, pp. 104–107, ISBN: 978-1-61208-
449-7.

[8] F. Ferraz, C. Sampaio, and C. Ferraz, “Towards a Smart City
Security Model Exploring Smart Cities Elements Based on
Nowadays Solutions,” ICSEA 2013, The Eight International
Conference on Software Engineering Advances, 2013, pp.
546–550.

[9] T. Nam and T. a. Pardo, “Conceptualizing smart city with
dimensions of technology, people, and institutions,” Proc.
12th Annu. Int. Digit. Gov. Res. Conf. Digit. Gov. Innov.
Challenging Times - dg.o ’11, Jun. 2011, pp. 282, doi:
10.1145/2037556.2037602.

[10] W. Da Silva el al., “Smart cities software architectures”, in
Proceedings of the 28th Annual ACM Symposium on Applied
Computing - SAC ’13, 2013, pp. 1722, doi:
10.1145/2480362.2480688.

[11] M. Picone, M. Amoretti, and F. Zanichelli, “Simulating Smart
Cities with DEUS,” Proc. Fifth Int. Conf. Simul. Tools Tech.,
2012, pp. 172-177, ISBN: 978-1-4503-1510-4.

[12] L. Sanchez et al., “SmartSantander: The meeting point
between Future Internet research and experimentation and the
smart cities,” Future Network and Mobile Summit
(FutureNetw), Jun. 2011, pp. 15-17, ISBN: 978-1-4577-0928-
9.

[13] Recife Open Data Website. [Online] Available from:
http://dados.recife.pe.gov.br/ 2015.09.30

[14] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi,
“Internet of Things for Smart Cities,” IEEE Internet of Things
Journal, Vol. 1, No. 1, Feb. 2014, pp. 22-32

[15] E. Silva and P. Maló, “IoT Testbed Business Model,”
Advances in Internet of Things, 4, 2014, pp. 37-45,
doi:10.4236/ait.2014.44006

462Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 481 / 512

Implementing the Observer Design Pattern as an Expressive Language Construct

Taher Ahmed Ghaleb, Khalid Aljasser and Musab Al-Turki

Information and Computer Science Department
King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia
Emails: {g201106210, aljasser, musab}@kfupm.edu.sa

Abstract—Observer is a commonly used design pattern as it
carries a lot of reusability and modularity concerns in object-
oriented programming and represents a good example of design
reuse. Implementing the observer design pattern (and several
other design patterns) is known to typically cause several prob-
lems such as implementation overhead and traceability. In the
literature, several approaches have been proposed to alleviate
such problems. However, these approaches only considered the
implementation of a specific scenario of the observer pattern,
which is concerned with having a single subject with multiple
observers. In addition, the code used to implement this pattern
was scattered throughout the program, which complicated imple-
menting, tracing and reusing them. In this paper, we: A) provide
a systematic classification of all possible scenarios of the observer
design pattern and B) introduce a novel approach to implement
them using an expressive and easy-to-use construct in Java. The
proposed observer construct is built as a language extension
using the abc extensible compiler. We illustrate through several
observer scenarios how the construct significantly simplifies the
implementation and improves reusability.

Keywords–Design Patterns; Aspect-Oriented Programming; Ex-
tensible Compiler; Language Extension; Observer Pattern.

I. INTRODUCTION
Object-oriented (OO) design patterns [1] are reusable so-

lutions that reorganize OO programs in a well-structured and
reusable design. They originally were implemented using OO
features, such as polymorphism and inheritance. After Aspect-
oriented (AO) programming languages emerged, researchers
started to employ AO constructs to make the implementation
more reusable and modular.

Despite the wide range of applications of design patterns,
manually implementing them may lead to several problems
including most notably implementation overhead, traceability
and code reusability [2]. A programmer may be forced to write
several classes and methods to achieve trivial behaviors, which
leads to a sizable programming overhead, scattering of actions
everywhere in the program, and reducing program understand-
ability. Although design patterns make design reusable, the
code (or at least part of the code) used to implement them
cannot be reused later.

Although the observer pattern has been widely used in
practice, a systematic investigation of methods of its imple-
mentation considering all the potential observing behaviors
was missing in the literature. In particular, the only imple-
mented scenario of the observer pattern in the literature is the
one having a single subject with multiple observers, where
the association of observers to subjects is subject-driven. For
instance, implementations of the observer design pattern in
[3] and [4] were illustrated using the example of having Line,
Point and Screen classes, where the observing protocol is

implemented in a way that a single subject can have a list of
observers. This particular example actually shows a different
case where many subjects (i.e., Lines and Points) can be
observed by a single observer (i.e., Screen). Another issue
of conventional implementations of the observer pattern is
concerned with the indirect way of implementing the pattern.
In other words, programmers in such approaches cannot deal
with the pattern as a recognizable unit in programs. Instead,
they are required to build an observing protocol and apply it
to each instance interested in observing a particular subject,
which leads to increased dependencies in the programmer’s
code.

Motivated by this, we aim in this paper to address these
issues while making two main contributions. First, we system-
atically study and classify the possible scenarios of applying
the observer design pattern. This classification is essential for
gaining a comprehensive understanding of the structure, design
and usage of the observer pattern. Second, we introduce a novel
approach to implement the observer design pattern (with all
its possible scenarios) as an identifiable language construct.
This approach is implemented as a language extension pro-
viding a very expressive and easy-to-use observer construct.
The implementation of the observer pattern in this approach
becomes more explicit and is significantly simplified as shown
in the typical examples presented in the paper. Consequently,
this implementation approach promotes code correctness by
reducing chances of making programming errors (both in the
implementation of the pattern and the code using the pattern),
resulting in increased productivity, enhanced modularity, and
reduced dependencies between modules.

The rest of the paper is organized as follows. Section
II describes the observer pattern and presents a systematic
classification of its possible scenarios. Section III describes
the syntax and semantics of the proposed construct of the
observer design pattern and how it can be applied. In Section
IV, we discuss the characteristics of our approach and present
some potential improvements to be considered in the future.
Related work is then presented in Section V. Finally, Section
VI concludes the paper and suggests possible future work.

II. SCENARIOS OF THE OBSERVER DESIGN PATTERN
The observer design pattern allows monitoring changes in

some components of the program, called subjects, to notify
other parts of the program, called observers. It consists of
two main components: subjects and observers. In general,
the observer pattern may define a many-to-many dependency
between subjects and observers, in which changes in the
states of subjects cause all their respective dependents (i.e.,
observers) to be notified and updated automatically.

463Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 482 / 512

(Subject : Observer)

A) 1 : 1

B) 1 : m

(B1) (B2)

C) m : 1

(C1) (C2)

D) m : m

Figure 1. Scenarios of the observer design pattern
[small shape = instance, big shape = class]

Typically, however, the observer pattern represents the case
in which a subject maintains a set of observers, and notifies
them whenever it has changes in its state [1] (i.e., one subject -
many observers). This case is actually limited to one scenario
in which the association of observers to subjects is made on
basis of subjects. In other words, observing a list of subjects
by an observer requires each of these subjects to utilize an
individual observing protocol containing a single observer in
its list. The proper alternative way to implement such a case
would be to have another observing protocol that can associate
a list of subjects for any interested observer (i.e., an observer-
oriented protocol). Another problem of this implementation is
the instance-level application in which every instance of an
observer class has to explicitly be assigned to the observed
subject. This would be better achieved using a class-level
association of observers to subjects. This means that a subject
can be observed by a class, and then all instances of that
class will implicitly be assigned to the list of observers of
that subject.

Below, we present a systematic classification of the differ-
ent scenarios of using the observer design pattern.

A. Single Subject - Single Observer
In this case, an observer can only observe a single subject,

and the subject can only be observed by one observer as
shown in Figure 1(A). This kind of observing is said to be
a 1 : 1 association, where a notification of a state change
of the intended subject is sent to the corresponding observer.
This scenario is also viable when a certain subject has many
attributes, and a certain observer is interested in observing a
single attribute of that subject. Therefore, the association of the
observer to the subject in this case is also considered as one-
to-one. This association of a single observer to a single subject
can be applied using an instance-level observing. However, it
can also be applied using a class-level observing provided that
the observing and observed classes are singletons (i.e., each
of them has a single instance).

B. Single Subject - Multiple Observers
This is the common scenario of the observer pattern that

describes the case where a single subject can be observed by
a set of observers of different types (Figure 1(B)). This means

that whenever the subject changes its state, all its dependent
observers are notified. For example, when a central database
has changes in its data, all dependent applications to this
database are notified. In addition, observing a single attribute
of a certain subject by many observers is another case of this
scenario. This scenario can be applied at two different levels:

1) Class-level: This case happens when a single subject
is observed by many observing classes (each with a single
instance or multiple instances) as shown in Figure 1(B.B1). The
association of the subject to all corresponding observer classes
is said to be 1 : m. The other case of this scenario occurs
when a single subject instance or an attribute of that subject
is observed by an observing class with multiple instances as
shown in the same sub-figure where the subject is observed
by the circle class. This leads to the implicit application of
the observing logic to all instances of that class to have an
association of 1 : m as well.

2) Instance-level: Here, a subject instance/attribute can
have a list of observing instances (either of the same or
different class types) in a 1 : m association (demonstrated in
Figure 1(B.B2)). In this case, every instance should explicitly
be listed as an observer to the corresponding subject. It should
be noted that some instances of the same class may be
interested in observing the intended subject while the others
may not.
These two levels of association can actually happen together,
where a subject can be observed by different class types and
at the same time by instances of other classes. Moreover, the
class-level observing can be applied when all instances of an
observing class need to participate in the observing, whereas
it is required to apply an instance-level observing when only
some of the instances are interested in observing that subject.

C. Multiple Subjects - Single Observer
It is common to have one observer that has the respon-

sibility of observing several subjects at the same time. For
example, a weather station class may observe different classes
for temperature, humidity, wind, etc. As presented in Figure
1(C), this association can be represented as m : 1 where
the multiple subjects can either be of the same class or
different classes. Similar to the previous scenario, class-level
and instance-level observing can be applied in this scenario
as shown in Figure 1(C.C1) and (C.C2), respectively. Here, an
observer instance can observe either a single subject class (all
instances of that class are implicitly observed), a list of subject
classes, a list of subject instances (from same or different class
types), or a set of attributes of a certain subject.

D. Multiple Subjects - Multiple Observers
This scenario encompasses all the previous cases in an

m : n association. This kind of association is demonstrated
in Figure 1(D) and occurs when several observers intend to
observe many subjects. This can also be applied as a class-
level observing or an instance-level observing or both together.
When subjects (same or different class types) have more than
one attribute to observe, then we might have a combination of
several scenarios. An example of this scenario can be described
by having a set of class and instance observers interested in
observing a class subject, an instance subject and an attribute
of a subject.

464Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 483 / 512

III. OBSERVER AS A LANGUAGE CONSTRUCT

In this paper, we propose a novel approach for implement-
ing the observer design pattern as a language extension. This
language extension conveys the idea of having an expressive
construct that allows explicit application of the pattern using
recognizable easy-to-use statements. Actually, such an exten-
sion can be built on top of any AO programming language by
means of extensible compilers.

In this work, the implementation of the language extension
is conducted using the abc extensible compiler [5]. Abc em-
ploys Polygot [6] (a Java extensible compiler framework) as a
frontend, and extends it with AspectJ constructs. This allows
programmers to extend the compiler’s syntax and semantics
of both: Java and AspectJ. The immediate concrete implemen-
tation of the observer construct is based on AO constructs,
which is automatically generated using the parameters passed
through the construct statements. This implementation is more
modular compared with pure OO implementations in Java
since it uses the crosscutting facilities provided in AspectJ
[7][8]. Modularity in our approach is improved with the use of
the high-level and parametrized observer construct that makes
using this pattern more expressive and intuitive. At its final
stages, abc transforms AspectJ Abstract Syntax Tree (AST)
into Java AST while preserving the aspect information, and
then performs all required weaving with the help of the Soot
analysis and transformation framework [9] that is used as a
backend.

A. Syntax
The observer pattern language construct is designed to be

as abstract and modular as it could possibly be while maintain-
ing high accessibility to programmers and users. Moreover, the
construct allows applying all possible scenarios of the observer
pattern expressively with the least amount of code. Its syntax
is defined using the following EBNF notation:

<LetObserve>::= "let" <annotated_id_list>
"observe" <extended_id_list>
["exec" <method_invocation>] ";"

The observer construct consists of three parts: (1) a
list of one or more observers specified by a comma-
separated list of class and/or object identifiers given by
<annotated_id_list>; (2) a list of one or more sub-
jects given by <extended_id_list> specified by a comma-
separated list of any combination of class and object
identifiers and attribute names or even the wildcard (*)
to refer to all attributes within the subject to be ob-
served; and finally (3) a single optional notification method
given by the <method_invocation> non-terminal. Each
of the two non-terminals <annotated_id_list> and
<extended_id_list> has its own production rules defined in
our extension (as shown below). The <method_invocation>
and <name> non-terminals are already defined in the Java
1.2 parser for CUP [10] employed by abc. The production
rules that define the non-terminal <annotated_id_list> are
given as follows:

<annotated_id_list>::= <id> {"," <id>}
<id>::= ("class" <name> | <name>)

; where the class keyword is used to distinguish between
class and object identifiers (especially when declared with
the same names). The non-terminal <extended_id_list>

defines an extension to the non-terminal <id>. This extension
allows programmers to assign subject names, determine certain
attributes of them to observe, or use the wildcard (*) to refer
to all attributes within a subject to be observed, as follows:

<extended_id_list>::= <ext_id> {"," <ext_id>}
<ext_id>::= <id> ["(" ("*" | <attrib_list>) ")"]
<attrib_list>::= <name> {"," <name>}

As an example statement that can be generated by this
syntax, the following statement:
let screen1, class Log observe line1(length), class Point(*);

sets up an object screen1 and a class Log as observers for
changes in length attribute of object line1, and any change
in state of any object of class Point. From now on, we refer
to such statements that can be generated by this syntax as
‘let− observe− exec’ statements.

In general, the construct can directly support the applica-
tion of all the scenarios of the observer pattern as described
in Section II above (with both: class-level and instance-level
observing). In its current implementation, however, scenarios
involving mixed usage of instance- and class-level observing
can be specified by multiple separate ‘let − observe − exec’
statements, rather than a single statement, which is to be
improved upon in future versions of the implementation (See
Section IV-C).

B. Application
To show the implementation of the observer construct and

how it can be applied, we define three Java classes and several
instances of them in Table I: Line and Point as subjects
while Screen as an observer. In the Application class, we
create some instances of these classes to utilize them in the
instance-level application of the construct. Some scenarios
of the observer pattern require all instances of a class to
observe subjects (i.e., class-level observing), while some others
need every instance to have its own observing logic (i.e.,
instance-level observing). The observer construct provides both
class- and instance-level observing. The general structure of
the observer construct is as follows: observers (classes and
instances) are placed after the let keyword, subjects (classes
and instances) after the observe keyword, and, optionally, the
notification method after the exec keyword.

1) Class-level Observing: The class-level observing can be
applied as follows:
let class Screen observe class Line, class Point; (-1-)

In this kind of observing, programmers can indicate that
one class is observing a subject class or a set of subject classes.
Consequently, all instances of the observing class will be
notified when any instance of the subject(s) has state changes.
This application shows a case of the class-level version of
Multiple Subjects - Multiple Observers scenario that is applied
using only one statement.

2) Instance-level Observing: The observing logic in the
instance-level version of the observer pattern is accomplished
instance-wise. This means that each constructed object of the
observing class may observe various subjects with a different
number of attributes of each subject. One form of this kind of
observing is to observe a single attribute of a single subject,
as follows:
let screen1 observe line(length) exec resize(length); (-2-)

465Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 484 / 512

TABLE I. FOUR JAVA CLASSES: TWO SUBJECTS, AN OBSERVER, AND AN
APPLICATION

First Subject Class Second Subject Class
class Line {

Color color;
int length;
void setLength(int len){

this.length = len; }

void setColor(Color c){
this.color = c; }

}

class Point {
int x, y;
void setPos(int x, int y){

this.x = x;
this.y = y; }

}
//
//
//

Observer Class
class Screen {

public void resize(int len){
System.out.println("Resizing

with the new length: " + len); }
public void display(String str){

System.out.println(str); }
}

Application
Line line = new Line();
Point point = new Point();
Screen screen1, screen2, screen3 = new Screen();

This case refers to the Single Subject - Single Observer
scenario in which the programmer has to specify the observing
instance, the subject and the notification method that will
receive the change of the state of the specified attribute of
the subject and send it directly to the corresponding observer.
Another form is to observe multiple attributes of single subject
by one observing instance. This form represents the Multiple
Subjects - Single Observer scenario with the case of observing
many attributes of a subject using one statement, as shown in
the following application:
let screen2 observe line(color,length) exec display; (-3-)

The restriction of this application is that the programmer
has to define only one notification method (with a String-
type parameter) to refresh the observing instance with the
state changes of all attributes of the subject. If the programmer
did not specify the notification method, the compiler is built
to assume that there exist a method called ‘display’ in the
observing class will do the job.

Last form is to observe multiple subjects with all their
attributes using one statement as shown below. This form also
represents the Multiple Subjects - Single Observer scenario but
now with the case of having many subjects with either single
or multiple attributes per each. This could be accomplished
by either not specifying the attributes at all, or by using the
wildcard (*) to refer to all attributes. With respect to specifying
the notification method, cases of the previous form also apply
here.
let screen3 observe line, point(*); (-4-)

C. Semantics and Code Translation
After parsing ‘let − observe − exec’ statements and

matching them with the given syntax of the construct, the
compiler then moves into other compilation passes that
are concerned with the construct semantics. During these
passes (with the help of the type system), the compiler starts
recognizing class types, instances, attributes and methods
used in the construct application by carrying out scoping
and type-checking operations. If such checking is passed
successfully, the compiler then carries out the code conversion
(or rewriting). Otherwise, a semantic exception is generated
by the compiler.

1) Variable Scoping: The compiler checks the validity of
each element of the observer construct (i.e., classes, instances,
attributes and the notification method) to see whether they are
not defined or out-of-scope. The compiler in such cases will
generate a semantic exception. Another check is conducted
when the construct is applied without specifying a notification
method. In this case, a programmer has to define a notification
method named display in the observing class to be responsible
for refreshing it with the changes happened. If such a method
is not defined, the compiler will also produce a semantic
exception.

2) Type checking: In this process, the compiler is going to
pick the class included in the observer construct, and checks
its eligibility. For instance, when the programmer uses an
observer construct for primitive types, the compiler will check
and produce an appropriate alert message showing that only
classes or instances can be applied. Also, when programmer
use the instance-level observing form, then the argument type
of the notification method must match the type of the observed
attribute. For the case of applying the construct with a default
notification method, the compiler would expect programmers
to define a method called display in observing class that
accepts the changes as a String type.

3) Node Translation and Code Conversion: After achieving
all checks successfully, the compiler starts converting LetOb-
serve nodes into their corresponding aspect declaration nodes
that the original AspectJ compiler can deal with. This node
translation is actually executed through a code conversion pass
of the compiler where each ‘let− observe− exec’ statement
is converted into a specialized aspect that contains the proper
crosscutting concerns of the observing statement as shown in
Table II.

Every auto-generated aspect is assigned a name of the
form ‘ObserverProtocol_#’, where the hash symbol refers
to a sequence number that will be assigned for each auto-
generated observing aspect. The newly generated node (i.e.,
the aspect declaration) is created outside the class that contains
the application of the observer construct. Indeed, aspects
generated for class-level observing purposes have a different
implementation style from the ones used for instance-level.

• Class-Level Observing: As shown in Table II.A, an
aspect is generated for the ‘let − observe − exec’
statement (1). This aspect implements the observing
logic for all instances of the supplied observer class
in the statement. Therefore, a list of observers (Line
3) is employed to hold a reference copy for every
newly created object of that observer class. Object
construction joinpoints are crosscutted using the point-
cut declared in Lines 5-6 and are advised in Lines 8-
10. Whenever a subject has changes on its associated
attributes, the subjectChange pointcut (declared in
Lines 12-14) will be executed. Consequently, every
instance of that observing class will be notified (this
task is accomplished by the advice declared in Lines
16-24). After a successful generation of the desired
aspects, the compiler replaces ‘let− observe− exec’
statements by empty statements (i.e., semicolons ‘;’).

• Instance-Level Observing: In instance-level observ-
ing, an aspect is also generated for the ‘let−observe−
exec’ statement (2) as shown in Table II.B. This aspect

466Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 485 / 512

TABLE II. AUTO-GENERATED ASPECT FOR THE OBSERVER PATTERN CONSTRUCT

A. Class-level Observing B. Instance-level Observing

.

1 protected privileged aspect ObserverProtocol_1
2 {
3 private List observers = new ArrayList();
4 //---
5 protected pointcut newInstance(Screen obs):
6 execution(Screen.new(..)) && target(obs);
7
8 after(Screen obs): newInstance(obs){
9 observers.add(obs);

10 }
11 //---
12 protected pointcut subjectChange() :
13 set(* Line.*) ||
14 set(* Point.*) ;
15
16 after(): subjectChange() {
17 Iterator it = observers.iterator();
18 while (it.hasNext()){
19 Screen obs = (Screen)it.next();
20 obs.display(
21 thisJoinPoint.getSignature() +
22 " changed..");
23 }
24 }
25 }

1 protected privileged aspect ObserverProtocol_2
2 {
3 private Screen obs;
4
5 public void addObserver(Screen obs) {
6 this.obs = obs;
7 }
8 //--
9 public interface Subject {}

10
11 declare parents: Line implements Subject;
12
13 protected pointcut subjectChange(Subject s) :
14 (
15 set(* Line.length)
16) && target(s);
17
18 after(Subject s): subjectChange(s) {
19 obs.resize(((Line) s).length);
20 }
21 }

has only one observer field (Line 3) that holds a
reference copy of the observing instance that will be
assigned via the addObserver method, which will be
invoked at the client application (In particular, at the
line(s) where the ‘let − observe − exec’ statement
is written in the source code). Once the subject has
changes in its attributes, the subjectChange pointcut
declared in Lines 13-16 is executed. As a result, the
observing instance is notified (the advice declared in
Lines 18-20 will do this task) using the notification
method that was already associated with the statement
of the observer construct. In addition, this aspect
has a public Subject interface (Line 9) that will be
implemented by all observed (Subject) classes. This
interface can then used in place of subject classes
to capture changes of any subject implementing it.
After generating this aspect successfully, the ‘let −
observe − exec’ statement is replaced by a method-
call statement, as follows:

ObserverProtocol_2.aspectOf().addObserver(screen1);

IV. RESULTS AND DISCUSSION
After implementing our language extension to the examples

presented in this paper, we have addressed some of the
issues discussed in the literature related to modularity and
implementation overhead, and describe how they are handled
(at least partially) in our approach. Furthermore, we could
identify the characteristics of the proposed observer construct
in addition to some future improvements to it.

A. Addressed issues
1) Implementation Overhead: This issue was occurred with

several traditional implementations of design patterns (such
as, the use of OO or AO constructs) as programmers have
to have in mind how the implementation of design patterns
should work with their functional code. In our approach, the
programmer is not concerned about the concrete implementa-
tion of the pattern since it is automatically generated by the
extended compiler based on the parameters provided via the
pattern construct statements. This lets programmers save time

and space and, subsequently, focus on their functional parts of
the code (i.e., enhanced productivity). Through the examples
illustrated in this paper (and other not reported examples), we
strongly believe that our approach will outperform other imple-
mentations of the observer pattern proposed in the literature in
terms of lines of code (LOC) if applied to larger applications.

Although in Meta-AspectJ [11] programmers can abstract
the overall implementation of the observer pattern in AspectJ
with fewer lines of code, this would end up with a complex
(not expressive) abstraction that imposes users to be aware
of the aspects that would be generated. In our approach,
programmers are not aware of what is happening inside the
aspects. All what they need in our approach is to specify the
observing/observed classes or instances along with the desired
attributes and notification methods.

2) Modularity: In our approach, modularity is witnessed by
separating the implementation of the observer design pattern
from the implementation of the actual logic of the application.
This means that the actual implementation of the observer
pattern is not visible to the programmer and it is also isolated
from one application to another. This allows programmers (at
different clients) extend, alter and maintain their applications
of this design pattern modularly without being aware of what
is happening in the background.

It can be observed that our implementation of the observer
design pattern satisfies all modularity properties (i.e., locality,
reusability, composition transparency, and (un)pluggability)
firstly used by Hannemann and Kiczales [3], and thereafter
used by Rajan [4], Sousa and Monteiro [12], and Monteiro and
Gomes [13]. Our implementation is localized since the overall
implementation code of the observer pattern is automatically
generated in the compiler background, which means that it
is totally separated from the pattern application. It is also
reusable because it can be applied to various scenarios without
the need to duplicate the source code. Composing a class or
an instance in our observer construct will not interfere at all
with other classes or instances. Finally, adding (plugging) or
removing (unplugging) an application of the observer pattern
in a given system using the proposed construct will not require
programmers to do changes on other parts of that system.

467Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 486 / 512

B. Features
1) Hybrid approach: Our approach combines different

features of the approaches proposed in the literature under
one roof. It is implemented as a Java/AspectJ extension that
summarizes plenty of code in few-keywords constructs, just
like meta-AspectJ [11]. Additionally, it automatically generates
aspects according to the information provided as parameters in
applied construct, adapted from the parametric aspects [14].

2) Expressiveness: The syntax of design patterns is clear,
concise and expressive in a way it does not require importing
packages, building classes (or aspects), or worrying about
something missing in the design principle of the design pattern.
All what programmers need to learn in our approach is the
construct syntax used for implementing the observer pattern,
and also how to apply each scenario using that construct. Fur-
thermore, the readability and writeability is highly improved
as the written code becomes shorter and more self-explanatory.
So, the absence of dependencies makes it very easy to revise
the code for the sake of maintenance.

3) Supporting different levels of application: Supporting
different levels of applications of the constructs helps program-
mers decide where and how to apply constructs. The class-level
application is beneficial if all instances of a certain class needs
to apply the observing functionality, whereas instance-level
application is useful when certain instances of a class need
to apply the observing logic, or when each instance needs to
have its own logic.

C. Improvement Considerations in the Future
1) Optimization: As described in the paper, our extended

compiler creates a separate aspect for each application of
the pattern construct. This potential duplication of generated
aspects would require more processing from the compiler,
since each aspect node can contain a set of internal AST
nodes, which may lead to more compiler passes to be executed.
This problem can be resolved in the future by generating a
single observer-protocol aspect to handle the implementation
of all applications of the observer construct, by employing a
particular pointcut and advice for every construct application.

2) Application of the other scenarios: Although the ob-
server construct itself is general enough to capture any ob-
serving behavior directly, the current implementation of it does
not allow intermixing class-level and instance-level observing
scenarios in a single statement. This means that the imple-
mentation requires such scenarios to be specified by more
than one ‘let − observe − exec’ statement). For example, if
observing one subject by multiple observers is needed, then
the programer will have to apply the observer construct to
each observer with the intended subject (i.e., it will be applied
as a set of one-to-one scenarios). Alternatively, the construct
should be improved in future to support the other scenarios
using single-statement applications.

3) Disabling of pattern application: In our approach, pro-
grammers can apply constructs anywhere in their programs.
However, to disable a pattern for a certain target, programmers
are required to search for the construct application in the
program and then comment or remove it. This kind of disabling
suffers from a traceability overhead, as the efficient way to this
end is to have disable/enable constructs in the future that can
automate this action.

V. RELATED WORK
Hannemann and Kiczales [3] used AO constructs to im-

prove the implementations of the original 23 design patterns
using AspectJ. They provided an analysis and evaluation of the
improvement achieved to the implementation of the patterns
according to different metrics, which also have been addressed
later by Rajan [4] using Eos extended with the classpect
construct that unifies class and aspect in one module. When
compared with Hannemann’s implementation in terms of lines
of code and the intent of the design patterns, Rajan observed
that Eos could efficiently outperform AspectJ in implementing
7 of the design patterns, while being similar for the other
16 patterns. In addition, the instance-level advising feature
supported by Eos classpects was another advantage over
AspectJ. This feature allows a direct representation of runtime
instances without the need to imitate their behavior. Another
work was also done by Sousa and Monteiro [12] with CaesarJ
that supports family polymorphism. Their approach employs
a collaboration interface that can hold a set of inner abstract
classes, and some second level classes: the implementation and
binding parts. Also, their results demonstrated positive influ-
ence of the collaboration interface on modularity, generality,
and reusability over those with AspectJ. Gomes and Monteiro
[15] and recently in [13] introduced the implementation of 5
design patterns in Object Teams compared with that in Java
and AspectJ. Regardless of Object Teams goals, it showed a
powerful support in implementing design patterns efficiently,
and with more than one alternative. The entire conversion
of aspects into teams was described in detail in their work.
The common issue with all these different approaches is that
they suffer from the implementation overhead and traceability
problems as the concrete implementation of design patterns is
required to be manually written by programmers, which may
reduce their productivity.

Another approach was introduced by Zook et al. [11].
This approach uses code templates for generating programs
as their concrete implementation, called Meta-AspectJ (MAJ).
Development time is reduced in this approach since it enables
expressing solutions with fewer lines of code. With respect to
design patterns, MAJ provides some general purpose constructs
that reduce writing unnecessary code. However, programmers
cannot explicitly declare the use of design patterns at certain
points of the program, which may also lead to a traceability
problem.

Another trend, which is close to our approach, was intro-
duced by Bosch [2], who provided a new object model called
LayOM. This model supports representing design patterns in
an explicit way in C++ with the use of layers. It provides
several language constructs that represent the semantics of 8
design patterns and can be extended with other design patterns.
Although LayOM could resolve the traceability problem and
enhance modularity, it lacks expressiveness as it has a compli-
cated syntax consisting of message forwarding processes that
might confuse programmers. Our approach seems to provide
a similar power to LayOM, but, in contrast, the observer
construct in our approach has a more concise, expressive, easy-
to-use and easy-to-understand syntax.

Hedin [16] also introduced a new technique that is slightly
similar to LayOM but using rules and pattern roles. The
rules and roles can be defined as a class inheritance and
specified by attribute declarations. Doing so, it enables the

468Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 487 / 512

extended compiler to automatically check the application of
patterns against the specified rules. However, the creation of
rules, roles, and attributes has a complex syntax that lacks
expressiveness and requires an extensive effort to learn and
build them.

Another extensible Java compiler is PEC, which was
proposed by Lovatt et al. [17]. Design patterns in PEC were
provided as marker interfaces. A class must implement the
proper ready-made interface in order to conform to a certain
design pattern. After that, the PEC compiler will have the
ability to check whether the programmer follows the structure
and behavior of that pattern or not. However, the PEC compiler
does not reduce the effort needed to implement design pat-
terns (i.e., it suffers from implementation overhead). Instead,
it allows programmers to assign the desired design pattern
to a given class and then implement that pattern manually.
Eventually, the compiler will just check the eligibility of that
implementation.

Budinsky et al. [18] introduced a tool that automates design
pattern implementation. Each design pattern has a certain
amount of information like name, structure, sample code, when
to use, etc. The programmer can supply information about
the desired pattern, then its implementation (in C++) will be
generated automatically. This approach allows programmers
to customize design patterns as needed, but the modularity
and reusability is missed, and it suffers from the traceability
problem as well.

VI. CONCLUSION
This paper introduces two contributions in regards to the

observer design pattern. Firstly, it presents a detailed classi-
fication of all possible scenarios of the observer pattern that
might be utilized in various kinds of applications. Secondly, a
new approach for implementing the observer pattern in Java is
proposed to cover a partial set of the scenarios introduced. This
approach is developed as a language extension (Java/AspectJ
extension) using abc. The syntax, semantics and application
of the proposed observer construct are illustrate in detail,
and by means of typical examples, we demonstrate how the
implementation of the observer pattern using this approach has
been simplified and has become conciser, more expressive and
more modular. The capabilities and advantages of the proposed
approach seem promising and we anticipate that our approach
will supersede current approaches.

We hope in the future to improve this approach by follow-
ing the recommendations provided in the paper. This includes
supporting the application of other scenarios of the observer
pattern using a single statement rather than many. Resolving
current issues of the observer pattern implementation such
as optimization and application disabling will also be taken
into account in the future. Furthermore, an evaluation of
our proposed approach compared to with other approaches
proposed in the literature is another important objective that
we hope to achieve in future. Moreover, we aim to develop
constructs for implementing other software design patterns to
make their implementations more expressive and modular.

REFERENCES
[1] J. Vlissides, R. Helm, R. Johnson, and E. Gamma,

“Design patterns: Elements of reusable object-oriented
software,” Reading: Addison-Wesley, vol. 49, 1995, p.
120.

[2] J. Bosch, “Design patterns as language constructs,” Jour-
nal of Object-Oriented Programming, vol. 11, no. 2,
1998, pp. 18–32.

[3] J. Hannemann and G. Kiczales, “Design pattern imple-
mentation in Java and AspectJ,” in ACM Sigplan Notices,
vol. 37. ACM, 2002, pp. 161–173.

[4] H. Rajan, “Design pattern implementations in Eos,” in
Proceedings of the 14th Conference on Pattern Languages
of Programs. ACM, 2007, pp. 9:1–9:11.

[5] P. Avgustinov et al., “abc: An extensible aspectj com-
piler,” in Transactions on Aspect-Oriented Software De-
velopment I. Springer, 2006, pp. 293–334.

[6] N. Nystrom, M. R. Clarkson, and A. C. Myers, “Polyglot:
An extensible compiler framework for Java,” in Compiler
Construction. Springer, 2003, pp. 138–152.

[7] A. Mehmood and D. N. Jawawi, “Aspect-oriented model-
driven code generation: A systematic mapping study,”
Information and Software Technology, vol. 55, no. 2,
2013, pp. 395–411.

[8] N. Cacho et al., “Blending design patterns with aspects:
A quantitative study,” Journal of Systems and Software,
vol. 98, 2014, pp. 117–139.

[9] R. Vallée-Rai et al., “Optimizing java bytecode using the
soot framework: Is it feasible?” in Compiler Construc-
tion. Springer, 2000, pp. 18–34.

[10] “Java 1.2 parser for CUP.” [Online]. Avail-
able: https://github.com/Sable/abc/blob/master/aop/abc/
src/abc/aspectj/parse/java12.cup Last access: September
15, 2015.

[11] D. Zook, S. S. Huang, and Y. Smaragdakis, “Generat-
ing AspectJ programs with meta-AspectJ,” in Generative
Programming and Component Engineering. Springer,
2004, pp. 1–18.

[12] E. Sousa and M. P. Monteiro, “Implementing design
patterns in CaesarJ: an exploratory study,” in Proceedings
of the 2008 AOSD workshop on Software engineering
properties of languages and aspect technologies. ACM,
2008, pp. 6:1–6:6.

[13] M. P. Monteiro and J. Gomes, “Implementing design
patterns in Object Teams,” Software: Practice and Ex-
perience, vol. 43, no. 12, 2013, pp. 1519–1551.

[14] K. Aljasser and P. Schachte, “ParaAJ: toward reusable
and maintainable aspect oriented programs,” in Proceed-
ings of the Thirty-Second Australasian Conference on
Computer Science-Volume 91. Australian Computer
Society, Inc., 2009, pp. 65–74.

[15] J. L. Gomes and M. P. Monteiro, “Design pattern imple-
mentation in Object Teams,” in Proceedings of the 2010
ACM Symposium on Applied Computing. ACM, 2010,
pp. 2119–2120.

[16] G. Hedin, “Language support for design patterns us-
ing attribute extension,” in Object-Oriented Technologys.
Springer, 1998, pp. 137–140.

[17] H. C. Lovatt, A. M. Sloane, and D. R. Verity, “A pattern
enforcing compiler (PEC) for Java: using the compiler,”
in Proceedings of the 2nd Asia-Pacific conference on
Conceptual modelling-Volume 43. Australian Computer
Society, Inc., 2005, pp. 69–78.

[18] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S.
Yu, “Automatic code generation from design patterns,”
IBM Systems Journal, vol. 35, no. 2, 1996, pp. 151–171.

469Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 488 / 512

Supporting Tools for Managing Software Product Lines:
a Systematic Mapping

Karen D. R. Pacini
and Rosana T. V. Braga

Institute of Mathematics and Computer Sciences
University of São Paulo
São Carlos, SP, Brazil

Email: karenr@icmc.usp.br, rtvb@icmc.usp.br

Abstract—In order to successfully design and build a Software
Product Line (SPL), besides the difficult task of making a
good domain engineering based on a solid knowledge – both
theoretical and practical – about the subject domain, it is still
necessary to consider other barriers such as lack of computational
support, lack of documentation available and the complexity or
unavailability of existing supporting tools. These are some of the
reasons that may discourage the adoption and wide usage of SPL
in organizations. In this context, this paper presents a Systematic
Mapping (SM) of supporting tools for managing SPLs. This SM
was performed in order to identify, gather and classify existing
solutions in the literature that offer support for managing product
lines both in single or multiple phases, since conception until
product derivation and evolution of the SPL. The information
gathered about the solutions selected is presented in the results.
This information comprises the completeness of the solutions,
their complexity and quality, and also points out their benefits
and limitations. It is expected as the result of this SM an overview
of SPL management solutions in order to support developers and
SPL engineers to find suitable options to apply in their projects,
in addition to highlight gaps on the research area and suggest
future works.

Keywords—Software Product Line Management; Systematic
Mapping.

I. INTRODUCTION

The software industry has been adapting to the large
increase of demand arising from the constant evolution of
technology. The concept of software reuse gets an important
role on this new way of software manufacturing, in which
development time is reduced, while quality is improved [1].
Over time, many approaches have emerged trying to achieve
this goal, such as: object-oriented paradigm, component-based
development, service-oriented architecture, among others.

Software product lines (SPL) emerged in this context, to
support reuse by building systems tailored specifically for the
needs of particular customers or groups of customers. Reuse
in SPL is systematic, it is planned and executed for each
artifact resulting from the development process. According
to Ezran et al. [2] these artifacts encapsulate knowledge and
are very valuable to the organizations, because they are an
interrelated collection of software products that can be reused
across applications.

The most common SPL development approaches, such
as Product Line UML-Based Software Engineering (PLUS)
[3], Product Line Practice (PLP) [1], etc., are focused on

the process to support the domain engineering and/or the
application engineering, without considering the computational
tools that support the process. Thus, the choice and use of tools
are apart from the process and strongly associated to phases of
definition of the feature models and its mapping to the artifacts
that implement them. Some examples of these tools include
Pure::Variants [4], Gears [5], and GenArch [6].

Supporting tools offer the developers a complete environ-
ment for development and maintenance of the product line,
aiming at facilitating its adoption. When supporting tools are
employed for SPL management, from conception to evolution,
developers can dedicate more attention to the development
itself, i.e., to domain and application engineering. This can
help improving production quality for both the product line
and its generated products, deviating the focus from the
development environment or other more specific management
questions. Although there is a huge variety of existing tools, it
is not possible to ensure that the needs of SPL engineers are
being fulfilled. It is necessary to better investigate the scope,
the availability and the specificity of these supporting tools in
order to identify gaps to be filled.

Therefore, this paper presents a Systematic Mapping (SM)
of supporting tools for managing SPLs in order to identify and
analyse the solutions that exist in the literature. The identified
solutions can support the management of SPL from conception
to development, maintenance and evolution phases. The analy-
sis proposed in this paper intends to offer an updated overview
of the existing supporting tools and identify perspectives of
researches related to product lines.

Section II presents some relevant related works that re-
semble this work in terms of searching for tools that support
somehow the development of SPL. Section III presents the
process of the SM, with the corresponding phases: planning,
conducting and reporting. Section IV presents the summariza-
tion and the data analysis observed from the studies selected
from the SM. Section V presents a discussion about the
analysis of the gathered solutions, pointing out its benefits and
limitations. Finally, Section VI presents the conclusions of this
research.

II. RELATED WORKS

SPLs have become a popular concept nowadays. Despite
the difficulty on its adoption, there are big investments and
research improvements in this area. Therefore, there are many

470Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 489 / 512

attempts to catalogue the whole resources available, as surveys,
SMs and systematic reviews. Each performed research has a
set of requirements for the search that defines the focus and
the granularity of the target tools. In this section, we present
three related works that resemble this work, but with some
differences in their purpose and nature of the search.

Lisboa et al. [7] performed a systematic review on support-
ing tools for domain analysis only. The findings were evaluated
according to the type of the offered support, its completeness
and quality, as well as if it fulfills all that is expected.
This work followed the process proposed by Kitchenham [8]
to perform a systematic review of the literature, with 19
tools selected. The evaluation of these tools considered the
provided functionality, documentation, interface, user guide,
among others. As the result, this review provided to the user
a guideline to find the supporting tool that suits expectations
regarding domain analysis, however it is limited to this phase.

Munir et al. [9] performed a survey to identify and evaluate
supporting tools for development and maintenance of SPLs
according to a predefined set of requirements. The study
resulted in 13 tools, but only two were chosen for evaluation
considering quality factors. As the result, some gaps were
highlighted on this area, besides a set of available tools with
free or commercial licenses. However, this work is a little
outdated (2010) and does not provide a comparison between
all selected tools, showing only a brief description of each one.

Djebbi et al. [10], on the other hand, performed an industry
survey in order to find supporting tools for the management
of product lines, very similar to the proposal of this paper.
The survey considered requirements, quality and open issues
for a case study and evaluation. However, in this survey,
they considered only relevant tools in the industry context,
thus, only four tools were selected. For each tool evaluation,
preselected criteria were applied in case studies using the tool.
As a result, the evaluation of each tool is presented, which
highlights its priorities and application context guiding the
stakeholders’ choice for the most suitable tool regarding their
necessity.

Therefore, this paper proposes a research of the state of
the art regarding the solutions that support the management of
SPLs, considering the type of support provided, the coverage of
phases, the specificity, among others. Solutions that contribute
to the management, even if they are still in design, were
considered and no constraint regarding the context has been
established. As the result, statistics of the findings are provided.

III. SYSTEMATIC MAPPING

SM, according to Kitchenham et al., is a broad review of
primary studies in a specific topic area that aims to identify
what evidence is available on the topic [11]. It is very similar
to another process proposed by same author called Systematic
Literature Review (SLR) [8]. Although mapping studies use
the same basic methodology as SLRs, its main purpose is
to identify all research related to a specific topic rather than
addressing the specific questions that SLRs address [12].
Thus, mapping studies can be of great potential importance to
software engineering researchers by providing an overview of
the literature in specific topic areas [13], where the quantity
of the selected studies, their type, the available results, the
frequency of publications through time, among others, can be
observed [14].

This SM followed the same process proposed by Kitchen-
ham for SLRs [8], which contains three main phases: 1-
Planning: the research objectives and the SM protocol are
defined; 2-Conducting: the primary studies are identified, se-
lected, and evaluated according to the inclusion and exclusion
criteria previously established; and 3-Reporting: a final report
is organized and presented according to the data extraction and
analysis.

A tool for supporting the SM process called StArt (State of
the Art through Systematic Review) [15] was used to manage
the whole execution of this SM. Figure 1 illustrates how StArt
deals with the several SM phases. The full protocol and SM
StArt File with the full process, all outcomes (including the
list of the 1046 works, where the 50 selected ones appear
in the respective Extraction phase), filled forms and other
details can be found elsewhere for further reference [16]. This
extra material allows the reproduction of the study whenever
necessary, e.g., to update it or to evolve it to a SLR.

Figure 1. Using StArt to support the SM.

The next subsections present the three main phases of the
SM process in detail.

A. Planning
In this phase, the SM protocol is established, which con-

sists of: research objectives; research questions, range, and
specificity; sources selection criteria; studies definition; and
procedures for studies selection.

1) Objective: This SM aims to investigate the state of the
art with respect to computational support to the SPL man-
agement, regarding the phases of development, maintenance
and evolution of SPL, in order to identify the quantity and
the quality of the solutions currently available, considering
its completeness and complexity, as well as highlighting its
benefits and limitations.

2) Research Question: Aiming at finding possibly all pri-
mary studies to understand and summarize evidences about ex-
isting solutions for SPLs management, the following research
question (RQ) was established:

RQ1: What are the existing solutions in the literature that
present a computational support to the management of
SPL?

471Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 490 / 512

a) Does the presented solution use patterns or known
standards?

b) What is the technology used for SPL management
presented by the solution?

c) Which phases of the SPL life cycle are supported
by the solution?

By management we mean inclusion, modification, removal,
or search of all the artifacts produced during the SPL engineer-
ing (domain engineering or application engineering), as well
as its evolution after the SPL is delivered.

3) Inclusion and Exclusion Criteria: The Inclusion Criteria
(IC) and the Exclusion Criteria (EC) make it possible to
include primary studies that are relevant to answer the research
questions and exclude studies that do not answer them. Thus,
the inclusion criteria of this SM are:

• IC1: Studies that present a tool, approach, technique,
process, method or any other software engineering
resource that offers a solution for management of one
or more phases of the SPL life cycle.

• IC2: Studies that present a proposal of a solution for
managing one or more phases of the SPL life cycle,
even if it is yet in the project phase.

Criteria IC2 reinforces that any practical solution that could
effectively help the SPL management, even if the solution is
still in project, is included, as it could give us insights about
important issues to consider. The term practical, in this context,
does not mean a concrete solution, but purely a solution that
directly helps the SPL management.

Non-relevant studies with respect to the objectives of this
SM are discarded applying one of these four defined exclusion
criteria:

• EC1: Studies that do not present a solution, consol-
idated or not, for the management of one or more
phases of the SPL life cycle.

• EC2: Studies that are short versions of a published
full work.

• EC3: Studies that are incomplete, unavailable and/or
duplicated (multiple instances of same document).

• EC4: Studies that describe events, or are an event
index or schedule.

For studies classification, i.e., inclusion or exclusion, it is
mandatory to apply one of the defined criteria above. However,
if more then one criteria is applicable to a particular study, this
formula is used: ((IC1) OR (IC2)) AND NOT ((EC1) OR
(EC2) OR (EC3) OR (EC4)).

4) Sources Selection Criteria Definition: The sources
choice was made considering their relevance in the software
engineering area and also a specialist opinion in cases of
conferences, books and workshops that are not indexed in
the search engines. The specialist opinion included in several
activities relied on the participation of the co-author of this
paper. For the search engines, we considered those with an
updated content, with availability of the studies, with an
advanced search mechanism, with quality results and with
flexibility to export the findings. Thus, the following search
engines were selected: IEEE Xplore, ACM Digital Library,
Science Direct, Scopus and Web of Science.

5) Search String Construction: From a group of studies
selected by the specialist, called in the SM process the ’control
group’, in addition to the objective of this SM, the search string
was defined according to Table I and resulted in: (A) AND (B)
AND (C) AND (D).

TABLE I. TERMS, KEYWORDS AND SYNONYMS.

Term Keyword Synonym

A Product Line
”SPL”, ”Product Lines”, ”Product Family”, ”Product
Families”, ”Product-Line”, ”Product-Lines”, ”Product-
Family”, ”Product-Families”

B Tool ”tools”, ”tool-supported”, ”support”, ”supported”,
”supporting”

C Management ”manage”, ”managing”, ”storage”, ”repository”
D Software -

B. Conducting
This phase was performed right after the protocol definition

and was divided into two phases of selection. It was carried out
between November, 2013 and January, 2014. The first phase is
called studies identification, and it defines the group of studies
that will be used as base to the second phase, which is called
studies selection. In the first phase of our SM, the search was
performed using five search engines (ACM Digital Library,
IEEE Xplore, Science Direct, Scopus, and Web of Science),
according to the previously defined string. The specific syntax
was used in each search base considering only the title, the
keywords and the abstract. This resulted in 1046 works.

In the second phase, we applied the inclusion and exclusion
criteria defined in the SM research protocol. After the selection
is performed, a refined group of studies is obtained according
to the context of the SM for the data extraction.

The selection phase of this SM was divided into three parts.
In the first selection the inclusion and the exclusion criteria
were applied to the base group of identified studies considering
only title and abstract, which resulted in the inclusion of 95
studies and the exclusion of 951 studies. Among the excluded
studies, 366 were marked as duplicated and 585 were excluded
by other exclusion criteria, resulting in 95 studies. In the
second selection, the full text was considered, and 41 studies
were included while 54 were excluded. The third selection
used the specialist opinion in order to validate the selected
studies and therefore, 9 previously excluded studies were
included again by consensus. The Figure 2 and the Figure 3
present the total application of inclusion and exclusion criteria,
respectively, in the selection of studies by search engine.

After the selection of the studies included in the SM, it is
possible to proceed to the next phase of the process, where
data extraction is performed.

C. Reporting
This phase aims to extract and analyse the data in order

to organize and present a final report about the findings. The
data extraction summarizes the data of the selected studies for
further analysis. For the data extraction performed in this SM,
an extraction form filled after reading each paper was used.

This form is intended to help answering the research
questions of this SM. In addition to collecting the basic
information about the studies, such as title, author, year and
type of publication (journal, conference, etc.,), the form also

472Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 491 / 512

Figure 2. Included studies by search base x inclusion criteria

Figure 3. Excluded studies by search base x exclusion criteria

collects specific information useful for this research. Among
the specific information, we can mention the type of solution
presented by the study, a brief description of the solution, with
its benefits and limitations, its specificity, the handled phases,
the software engineering resources used in the solution, the
use of patterns/standards, validation and managed parts.

IV. RESULT ANALYSIS

After a careful data extraction, sufficient information was
gathered to perform an analysis of the results. The analysis of
the selected studies was divided according to the characteristics
described in the extraction form.

A. Full Analysis of the Studies
The analysis was divided into two parts, the first considers

all solutions observed in the phase of data extraction, while
the second part performs a more detailed review only on the
most complete solutions.

1) Frequency of Publication: It was observed that the
frequency of publications of solutions for the management
of SPLs has increased significantly from 2008 to its peak in

2011, and then remained stable. This trend can be graphically
observed in Table II, indicating that this is an area of current
research interest.

TABLE II. SUMMARIZATION OF STUDIES DIVIDED BY YEAR OF
PUBLICATION.

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

To
ta

l

1 0 1 3 2 1 3 2 9 5 6 9 5 3 50

2) Specificity: A great part of the solutions found are
specific to support only a particular cycle of SPL management,
as can be observed in Table III. Among the specificity, we can
highlight the variability management. In fact, most solutions
available both commercially and freely are geared to support
variability management, providing processes, models, meth-
ods, approaches, tools, among others. Examples are KobrA
[17] and COVAMOF [18].

TABLE III. SUMMARIZATION OF STUDIES DIVIDED BY SPECIFICITY OF
THE SOLUTION.

Architecture Asset Compatibility Configuration/
Derivation

1 1 1 4
Evolution Extraction Feature MultipleSPL

5 1 7 2
Requirement Variability Versioning None

1 18 1 10

3) Patterns/standard Use: Among the observed solutions
the lack of pattern/standards used during the development
becomes evident, as shown in Table IV. This may hinder
the flexibility of the solution, and even its adoption and
integration with other existing solutions. Although the use of
patterns or standards may generate an additional effort, their
use to develop a solution is strongly recommended, as the
effort would be rewarded in the future with enhanced system
maintenance and evolution.

TABLE IV. SUMMARIZATION OF STUDIES DIVIDED BY USAGE OF
PATTERNS OR STANDARDS.

RAS OCL CVL ADL CVA
1 2 3 1 1

MOF OVM VML QVT None
2 1 1 2 40

The standards identified in the solutions presented in Ta-
ble IV are: Reusable Asset Specification (RAS) [19], Ob-
ject Constraint Language (OCL) [20], Common Variabil-
ity Language (CVL) [21], Architecture description language
(ADL) [22], Commonality and Variability Analysis (CVA)
[23], Meta-Object Facility (MOF) [24], Orthogonal Variability
Model (OVM) [25], Variability Language VML [26] and
Query/View/Transformation (QVT) [27].

4) Phases Supported: From the 50 studies selected, only 17
offer support to both development phases (domain engineering
and application engineering), in the remainder, five support
only application engineering and 28 only domain engineering.

The information extracted from these 17 more relevant
studies, which support both phases of development, are pre-
sented in detail in Table V, and are evaluated more specifically
in the second phase of the analysis.

473Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 492 / 512

B. Selected Studies Analysis
Among the 17 solutions presented by the studies, 15 offer

support to the development of the SPL, while two offer support
only to maintenance and evolution of existing SPL. From
the 15 solutions that support the development phase, one
supports only this process and 14 offer support to maintenance
too. Among these 14 solutions, three support only these two
activities, one supports also the evolution of the SPL, one
supports also the derivation of products and nine additionally
offer a visualization of the SPL with its variability. Among
these nine, only one also offers support for evolution.

Only two solutions offer support from the development to
the maintenance and evolution of product lines, and only one
of them offers an overview of the variability and the produced
assets.

Thereby, the lack of solutions that support all phases of
development and evolution of SPL is evident, which highlights
a gap to be investigated.

V. DISCUSSION

The existing solutions in the literature for computational
support to SPLs were identified in the SM performed in this
work. In addition, it was possible to identify and analyse the
major benefits and limitations of the overall solutions selected.

Among the benefits observed, we highlight that most of the
solutions intend to provide guidance to resolve the problem or
part of it, besides providing an execution flow to achieve a
goal. These flows are presented as a process or even wizards,
which allows users, both beginners and experts, to operate in
a particular management area, such as SPL development or
evolution, ensuring that the process was correctly executed and
that its results are consistent, since the provided management
is explicit and organized.

Besides that, seven solutions support the user when mak-
ing decisions and understanding the process. Regarding the
decision making support, six solutions provide the users both
overviews and specific views from the current state of the SPL,
highlighting the chosen objects to be observed.

Maintaining the consistency is also an issue treated by
most solutions found (13 solutions), some establish constraints,
inspections and validations, some even provide the tracking of
the assets, which supports also the SPL evolution.

It is also worth to mention the great reduction of costs and
effort provided by the nine solutions that offer various auto-
mated functionality to support the management. Five solutions
even offer resources to significantly reduce the complexity of
tasks that would be very laborious to perform manually.

The leverage of reuse is also an issue treated by 12 solu-
tions. These solutions often provide configuration, importation
and exportation options, compatibility with others tools and
sharing of assets among product lines, which promotes the
interoperability and leverage the reuse, both inside the solution
itself and out of it.

However, despite the many benefits observed, it was pos-
sible to identify many limitations that often can discourage
the use of the solution. Among the main limitations, the lack
of complete solutions to manage SPLs is highlighted. Most
of the analysed solutions (16 solutions) are focused on the
resolution of a single issue, that is, provide support only to

manage a specific area. Besides that, six solutions have a very
marked limitation regarding the scope to address an area and
can be very specific, for example, manage only requirements,
and furthermore do not offer the possibility of extension or
parametrization to generalize their use.

The authors of seven solutions declare that their use may
be more complex than desired because, to use the solution,
the user needs to study and master its specifications, which
very often discourage its adoption. Besides the complexity, a
barrier to be also considered is that most solutions analysed
(10 solutions) need a great intervention of a specialist that
understands the models and specifications and performs many
manual procedures.

One of the limitations strongly considered as motivation for
the adoption of a solution is the lack of a graphical interface,
or an interface that is very complex or poor, as occurs in four
solutions. One of the solutions does not even support version
control, which makes the SPL maintenance and evolution very
difficult.

A great barrier, mostly at the academy, is the fact that
various solutions are private [37][40]. Unfortunately, those are
the solutions that provide the most complete group of solutions
for SPL management, as well as user support and validation.
Some freely available solutions analysed have not been even
validated or implemented yet.

VI. CONCLUSION AND FUTURE WORKS

This work aimed to identify and evaluate existing solutions
in the literature to support the management of SPLs. For this,
a SM was performed, in which the research protocol was
defined and followed for conducting the research. From the
data extracted from the selected studies, it was possible to
gather enough information to answer the research questions
proposed in this paper.

The outcomes of the research present 50 existing solutions
in the literature that provide computational support for at
least one phase of SPL management, which represents a very
reduced offer of solutions to support the management of
SPL. Most of the existing solutions do not offer a complete
support, not covering the whole phases of the development,
maintenance and evolution of the SPL and even not providing
a great usage of the whole reuse potential that artifacts and
features may offer.

The contribution of this paper is interesting both to the
academic and to the professional segment. In the academic
environment, this research helps to highlight the lack of
complete solutions in this area, in addition to highlight the
lack of standards on these existing solutions and the lack of
validation, which hinders its use. In the professional context,
this research helps professionals to find potential tools that will
help them deploy a product line or even help them manage
existing product lines.

The gaps pointed out in this SM suggest perspectives of
future works, of which we can highlight:

• Leverage of reuse: Among all the presented solutions,
only one [30] allows the sharing of the assets in
the repository between SPLs. An approach where the
stored assets may not be bounded into a specific SPL
and could be available to be freely used in any context

474Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 493 / 512

TABLE V. DATA ANALYSIS OF THE MOST RELEVANT STUDIES

Title Year Search Base Type of Solution Va
ri

ab
ili

ty
M

an
ag

em
en

t

O
th

er
Sp

ec
ifi

ci
ty

U
se

s
Pa

tt
er

n/
St

an
da

rd

Va
lid

at
ed

D
ev

el
op

m
en

t
Su

pp
or

t

M
ai

nt
en

an
ce

Su
pp

or
t

E
vo

lu
tio

n
Su

pp
or

t

An approach to variability management ... [28] 2012 Scopus Tool • • •
Automated software product line engineering ... [29] 2007 IEEE Tool • • •
Automating software product line development... [30] 2010 IEEE Tool • • • •
Automating the product derivation process ... [31] 2012 ACM Approach • • • • • •
Evolving KobrA to support SPL for WebGIS development [17] 2011 IEEE Tool • • • • •
Feature model to product architectures ... [32] 2009 Scopus Process • • • •
FLiP: Managing Software Product Line Extraction ... [33] 2008 Scopus Tool • •
Holmes: a system to support software product lines [34] 2000 Scopus Tool • •
Involving Non-Technicians in Product Derivation ... [35] 2007 Web of Science Tool • • • •
Modeling and Building Software Product Lines with Pure ... [36] 2008 IEEE Tool • • •
New methods in software product line development [37] 2006 Web of Science Method • •
Support for complex product line populations [38] 2011 Scopus Tool • • •
Supporting heterogeneous compositional multi software ... [39] 2011 Scopus Tool • • •
The BigLever Software Gears Unified Software Product ... [40] 2008 Web of Science Framework • • •
The COVAMOF derivation process [18] 2006 IEEE Framework • • • •
Toward an Architecture-Based Method for Selecting ... [41] 2010 Web of Science Framework • • •
UML support for designing software product lines ... [42] 2010 IEEE Tool • • • • •

would leverage the reuse not just inside the SPL itself
but widely.

• Use of patterns/standards: The lack of use of stan-
dards was evidenced in this research. A solution de-
signed taking into account standards or patterns could
provide more safety and organization for the user,
besides promoting the flexibility and interoperability
with other tools. As an example of the use of standards
in solutions focused on SPLs, we highlight RAS [19]
and CVL [21].

• Use of services: The service-oriented usage is also a
good option in order to promote the interoperability
among tools and facilitate the access to the func-
tionality of the solution. This is a resource that was
not found in most solutions analysed, except for the
solution proposed by S. Khoshnevis [28].

• A free complete solution to support SPL management:
The creation and provision of a free and complete
approach to support the management of SPLs, with
validation, documentation and adequate support could
rise the community interest in adoption of the SPL
concept, both for developing and usage.

• Possibility of extending the SM towards a complete
SLR: The SM main goal was to identify all research
related to a specific topic. Based on the resulting
complete protocol that is publicly available [16], a
complete SLR can be performed to address specific
questions.

The solutions that can be built as a result of this SM
could incentive the adoption of SPL in both academical and
professional environments, in addition to leveraging the reuse
of assets in contexts other than SPL. As the next step of this
research, it is planned to analyse existing solutions, by running
performance and quality tests in order to compare and evaluate
them through a full systematic review about supporting tools
for the management of SPLs. Then, if none of the solutions

are considered adequate, we aim to propose a new solution
that fulfills developers needs.

ACKNOWLEDGMENTS

Our thanks to Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior (CAPES) and University of São Paulo (USP)
for financial support.

REFERENCES

[1] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison Wesley Professional, 2002, the SEI series in software
engineering.

[2] M. Ezran, M. Morisio, and C. Tully, Practical software reuse. Springer,
2002.

[3] H. Gomaa, “Designing software product lines with uml 2.0: From use
cases to pattern-based software architectures,” in Reuse of Off-the-Shelf
Components. Springer, 2006, pp. 440–440.

[4] D. Beuche, “Modeling and building software product lines with pure::
variants,” in 16th International Software Product Line Conference-
Volume 2. ACM, 2012, pp. 255–255.

[5] R. Flores, C. Krueger, and P. Clements, “Mega-scale product line
engineering at general motors,” in 16th International Software Product
Line Conference-Volume 1. ACM, 2012, pp. 259–268.

[6] E. Cirilo, U. Kulesza, and C. J. P. de Lucena, “A product derivation tool
based on model-driven techniques and annotations.” J. UCS, vol. 14,
no. 8, 2008, pp. 1344–1367.

[7] L. B. Lisboa, V. C. Garcia, D. Lucrédio, E. S. de Almeida, S. R.
de Lemos Meira, and R. P. de Mattos Fortes, “A systematic review of
domain analysis tools,” Information and Software Technology, vol. 52,
no. 1, 2010, pp. 1–13.

[8] B. Kitchenham, “Procedures for performing systematic reviews,” pp.
1–28, 2004.

[9] Q. Munir and M. Shahid, “Software product line: Survey of tools,”
Master’s thesis, Linköping University, Department of Computer and
Information Science, 2010.

[10] O. Djebbi, C. Salinesi, and G. Fanmuy, “Industry survey of product
lines management tools: Requirements, qualities and open issues,” in
15th IEEE International Requirements Engineering Conference (RE).
IEEE, 2007, pp. 301–306.

475Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 494 / 512

[11] S. Keele, “Guidelines for performing systematic literature reviews in
software engineering,” in Technical report, Ver. 2.3 EBSE Technical
Report. EBSE, 2007.

[12] D. Budgen, M. Turner, P. Brereton, and B. Kitchenham, “Using map-
ping studies in software engineering,” in 20th Annual Workshop on
Psychology of Programming Interest Group (PPIG), vol. 8, 2008, pp.
195–204.

[13] B. A. Kitchenham, D. Budgen, and O. P. Brereton, “The value of
mapping studies: a participantobserver case study,” in 14th international
conference on Evaluation and Assessment in Software Engineering.
British Computer Society, 2010, pp. 25–33.

[14] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic map-
ping studies in software engineering,” in 12th International Conference
on Evaluation and Assessment in Software Engineering, vol. 17, 2008,
p. 1.

[15] A. Zamboni, A. Thommazo, E. Hernandes, and S. Fabbri, “Start
- uma ferramenta computacional de apoio à revisão sistemática,”
Proc.: Congresso Brasileiro de Software (CBSoft’10), Salvador,
Brazil, 2010, pp. 91–96, [English title] StArt - A Computational
Supporting Tool for Systematic Review. [Online]. Available:
http://homes.dcc.ufba.br/ flach/docs/Ferramentas-CBSoft-2010.pdf

[16] K. D. R. Pacini and R. T. V. Braga. Protocol of the systematic
mapping on supporting tools for managing software product lines.
[Online]. Available: https://goo.gl/RvAh2T [Retrieved: Sep, 2015]

[17] J. b. Moreno-Rivera, E. Navarro, and C. Cuesta, “Evolving KobrA to
support SPL for WebGIS development,” LNCS (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), vol. 7046 LNCS, 2011, pp. 622–631.

[18] M. Sinnema, S. Deelstra, and P. Hoekstra, “The COVAMOF derivation
process,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), vol. 4039 LNCS, 2006, pp. 101–114.

[19] O. M. Group, “Reusable asset specification,” OMG, 2005. [Online].
Available: http://www.omg.org/spec/RAS/2.2 [Retrieved: Sep, 2015]

[20] ——, “Object constraint language,” OMG, 2014. [Online]. Available:
http://www.omg.org/spec/OCL/2.4 [Retrieved: Sep, 2015]

[21] ——, “Common variability language,” OMG, 2012. [Online]. Available:
http://www.omgwiki.org/variability/lib/exe/fetch.php?id=start&cache=
cache&media=cvl-revised-submission.pdf [Retrieved: Sep, 2015]

[22] M. Leclercq, A. E. Ozcan, V. Quema, and J.-B. Stefani, “Supporting
heterogeneous architecture descriptions in an extensible toolset,” in 29th
International Conference on Software Engineering (ICSE). IEEE, 2007,
pp. 209–219.

[23] D. M. Weiss and C. T. R. Lai, Software Product-line Engineering: A
Family-based Software Development Process. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1999.

[24] O. M. Group, “Meta object facility,” OMG, 2014. [Online]. Available:
http://www.omg.org/spec/MOF/2.4.2 [Retrieved: Sep, 2015]

[25] F. Van Der Linden and K. Pohl, “Software product line engineering:
Foundations, principles, and techniques,” 2005.

[26] N. Loughran, P. Sánchez, A. Garcia, and L. Fuentes, “Language
support for managing variability in architectural models,” in Software
Composition. Springer, 2008, pp. 36–51.

[27] O. M. Group, “Query/view/transformation,” OMG, 2014. [Online].
Available: http://www.omg.org/spec/QVT/1.2 [Retrieved: Sep, 2015]

[28] S. Khoshnevis, “An approach to variability management in service-
oriented product lines,” in 34th International Conference on Software
Engineering (ICSE), 2012, pp. 1483–1486.

[29] H. Gomaa and M. Shin, “Automated software product
line engineering and product derivation,” 2007. [Online].
Available: http://www.scopus.com/inward/record.url?eid=2-s2.0-
39749091282&partnerID=40&md5=34bd6a13ca7198265f69a098d6a0a7e0

[30] S. Miranda Filho, H. Mariano, U. Kulesza, and T. Batista,
“Automating software product line development: A repository-
based approach,” 2010, pp. 141–144. [Online]. Available:
http://www.scopus.com/inward/record.url?eid=2-s2.0-78449273654
&partnerID=40&md5=d23375c54254dd7a8a1f1c92b42c7932

[31] E. Cirilo, I. Nunes, U. Kulesza, and C. Lucena,
“Automating the product derivation process of multi-agent
systems product lines,” Journal of Systems and Software,

vol. 85, no. 2, 2012, pp. 258 – 276. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0164121211001075

[32] D. Perovich, P. Rossel, and M. Bastarrica, “Feature model to product ar-
chitectures: Applying MDE to software product lines,” in Joint Working
IEEE/IFIP Conference on Software Architecture/European Conference
on Software Architecture WICSA/ECSA, 2009, pp. 201–210.

[33] V. Alves, F. Calheiros, V. Nepomuceno, A. Menezes, S. Soares, and
P. Borba, “FLiP: managing software product line extraction and reaction
with aspects,” in 12th International Software Product Line Conference
(SPLC), 2008, pp. 354–354.

[34] G. Succi, J. Yip, E. Liu, and W. Pedrycz, “Holmes: A system to support
software product lines,” in 22nd International Conference on Software
Engineering. New York, NY, USA: ACM, 2000, pp. 786–786.
[Online]. Available: http://doi.acm.org/10.1145/337180.337641

[35] R. Rabiser, D. Dhungana, P. Grunbacher, K. Lehner, and C. Federspiel,
“Involving non-technicians in product derivation and requirements en-
gineering: A tool suite for product line engineering,” in 15th IEEE
International Requirements Engineering Conference (RE), 2007, pp.
367–368.

[36] D. Beuche, “Modeling and building software product lines with
pure::variants,” in 12th International Software Product Line Conference
(SPLC), Sept 2008, pp. 358–358.

[37] C. Krueger, “New methods in software product line development,” in
10th International Software Product Line Conference (SPLC), 2006, pp.
95–99.

[38] S. El-Sharkawy, C. Kröher, and K. Schmid, “Support for
complex product line populations,” in 15th International Software
Product Line Conference, Volume 2, ser. SPLC ’11. New
York, NY, USA: ACM, 2011, p. 47:1–47:1. [Online]. Available:
http://doi.acm.org/10.1145/2019136.2019191 [Retrieved: Sep, 2015]

[39] ——, “Supporting heterogeneous compositional multi software
product lines,” in 15th International Software Product Line
Conference, Volume 2, ser. SPLC ’11. New York,
NY, USA: ACM, 2011, p. 25:1–25:4. [Online]. Available:
http://doi.acm.org/10.1145/2019136.2019164 [Retrieved: Sep, 2015]

[40] C. Krueger, “The BigLever software gears unified software product line
engineering framework,” in 12th International Software Product Line
Conference (SPLC), 2008, pp. 353–353.

[41] M. Tanhaei, S. Moaven, and J. Habibi, “Toward an architecture-based
method for selecting composer components to make software product
line,” in 7th International Conference on Information Technology: New
Generations (ITNG), 2010, pp. 1233–1236.

[42] M. Laguna and J. Marqués, “Uml support for designing software
product lines: The package merge mechanism,” Journal of Universal
Computer Science, vol. 16, no. 17, 2010, pp. 2313–2332.

476Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 495 / 512

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1 477

Recovering Lost Software Design with the Help of
Aspect-based Abstractions

Kiev Gama
Centro de Informática

Universidade Federal de Pernambuco (UFPE)
Recife, PE

email: kiev@cin.ufpe.br

Didier Donsez
Laboratoire d’Informatique de Grenoble

University of Grenoble
Grenoble, France

email: didier.donsez@imag.fr

Abstract— In this paper, we propose an unconventional usage of
aspect-oriented programming, presenting and discussing a novel
approach for recovering layered software design. It consists of a
reengineering pattern based on aspect abstractions that work as a
strategy for recovering software design. By using our approach it is
possible to employ general purpose aspects that represent software
layers. This is useful for capturing such design in systems where a
layered architecture exists but was not documented or where it has
been inconsistently translated from design to code. The pattern is a
generalization of our initial validation performed in a case study on
the Open Service Gateway Initiative (OSGi) service platform. We
could verify that its software layers are well defined in the
specification and design, however when analyzing the actual
Application Programming Interface (API), such layers are
completely scattered over interfaces that inconsistently accumulate
roles from different layers. By extracting the layered design into
separate aspects, we were able to better understand the code, as
well as explicitly identifying the affected layers when applying
dependability crosscutting concerns to a concrete aspect solution on
top of three different implementations of the OSGi platform.

Keywords-Software architecture; Software layers; Software
reengineering; Aspect-oriented programming.

I. INTRODUCTION
Reverse engineering, Reengineering and Restructuring are

close terms, with subtle differences. Definitions from [3]
indicate reengineering as the examination and alteration of a
system to reconstitute it to a new form, while restructuring
consists of transforming the system code keeping it at the same
relative abstraction level, and preserving its functionality.
Reverse engineering would consist of analyzing a system in
order to identify its components and to create abstract
representations of it.

Recovering lost information (e.g., design) and facilitating
reuse are important reasons for reengineering [3]. Other reasons
[4] leading to reengineering a software system are: insufficient
documentation, improper layering, lack of modularity,
duplicated code or functionality are among the coarse-grained
problems. As a part of the reengineering process, one may
employ techniques, such as refactoring [7] as a form of code
restructuring. Refactoring consists of “the process of changing a
software system in such a way that it does not alter the external
behavior of the code yet improves its internal structure”. Aspect-
oriented programming (AOP) [15] is a paradigm that is very
useful when restructuring and reengineering systems. It allows
changing the system without actually changing the system's

source code. It is possible to keep cross-cutting concerns
separate from the target system code at development time. Such
concerns can be later integrated by “weaving” them to the target
application either at compile time or during runtime.

Typical usages of AOP are straightforward solutions that
either refactor crosscutting concerns out of the system code or
introduce crosscutting concerns in the form of aspects woven in
the system. Sometimes it may not be clear which system layers
are being crosscut by which aspects, especially in systems with
weak design or where the implemented design differs from
documentation. In this paper, we propose the usage of aspects
for providing another level of indirection that helps
understanding systems that are reengineered with AOP. We
provide an AOP refactoring pattern that helps capturing system
design by aspectizing software layers, which can be reused by
aspects that are applying concrete aspects as concerns that
crosscut such layers (and consequently the system). Such
abstractions we propose are useful for better understanding
software architectures in systems with weak design (e.g.,
monolithic systems) or where design has been badly translated
from the specification during its implementation. Therefore, the
contributions of this paper are: 1) an approach for using aspects
as an abstraction for capturing lost architectural design; 2) the
refactoring of specific aspects that will target such abstractions
instead of coding the aspects directly against the target system
code; and 3) a reengineering pattern that guides through the
process of extracting such design.

The pattern described here was validated in a case study of
the OSGi [17] service platform. We present an architectural
perspective that is useful in the context of reverse engineering
for recovering lost design information, as well as in the context
of reengineering when applying changes to the system and
reusing the definitions of such abstractions that recover lost
design. The remainder of this paper is organized as follows:
Section 2 provides an overview of the problem, Section 3
describes the reengineering pattern, Section 4 details the case
study in the OSGi platform, Section 5 discusses related work,
followed by Section 6 that concludes this article.

II. OVERVIEW
Software layers [1] are an architectural pattern extensively

used for grouping different levels of abstraction in a system. By
employing such pattern for layered architectures, it is a good
practice to design a flat interface that offers all services from a
given layer. In a purist layer design, a layer of a system should
only communicate with its adjacent layers, via such flat

 496 / 512

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1 478

interfaces. Such type of design gives a commonly used
architectural view of systems. We find cases where the system is
well designed in terms of layering, but the corresponding
implemented code does not represent explicitly such
architecture. In other (worst) cases, the system lacks good
abstraction during design, resulting in a monolithic
architecture which is hard to understand.

From now on in this article, the term reengineering will be
employed as a general task – which may involve reverse
engineering and restructuring – for improving system code and
design. By reengineering the code, it is possible to arrive at a
system whose architecture is more transparent, and easier to
understand. In [4], extracting the design is considered as a first
step for performing new implementations. Either if
reimplementing the system or just applying the required
changes, this step is very important.

A. Aspect-oriented Programming
The principle of Aspect-oriented Programming [15] is a

paradigm that improves the modularity of applications by
employing the principle of Separation of Concerns (SoC)
advocated by Dijkstra [6]. In SoC, one should focus on one
aspect of a problem at a time, as a way to have a better reasoning
on a specific aspect of a system. An aspect should be studied in
isolation from the other aspects but without ignoring them.

Putting these concepts into practice, AOP allows the
separation of concerns (e.g., logging, transactions, distribution)
that crosscut different parts of an application. These crosscutting
concerns are kept separate from the main application code
instead of being scattered over different parts of the system, as
illustrated in Figure 1. A source file (e.g., module, class) may
also have code that accumulates different responsibilities not
necessarily related, giving an impression of tangled code.

Figure 1. Illustration of how aspects are maintained outside the target

application code, and then are intermixed with it.

AOP employs its own terminology, from which we briefly

clarify some of the commonly used expressions that are going to
be frequently cited throughout this article. Join points are
constructs that capture specific parts of program flow (e.g.,
method call, constructor call). Pointcuts are elements that pick
one or more specific join points in the program flow. The code
that is injected into pointcuts during the weaving process is
called advice in AOP terminology.

B. Lost Design
AOP is useful in the context of reengineering either to apply

changes to code by introducing new crosscutting concerns, or by

refactoring out from code existing crosscutting concerns into
aspects. When in such AOP usage, we propose to give more
semantics to pointcuts in a way that it is possible to represent
part of the system design, by grouping the pointcuts in
meaningful abstractions (e.g., layers) that could be reused. Our
proposition does not involve changes in the aspect language
level, but rather relies on existing constructs for building such
abstract representations. Figure 2 illustrates an example where
aspects are applied directly to the system code, and later layers
are introduced as reusable aspects that contain more semantics.

Figure 2. Aspects defining pointcuts (circles) on the reengineered system that are
logically grouped in intermediary abstractions (layers as apects) that can be used
to “visualize” the system’s layers.

In a typical utilization of aspects, we define pointcuts using

join points that directly reference the code of the target system,
without any intermediary abstractions. This may end up with
redundant pointcut definitions, especially in larger systems or in
systems where aspects represent a significant part of the code.
This redundancy is illustrated in Figure 2 by the pointcuts B, H,
I and M, which are used by more than one aspect. If each
definition involves several join points (e.g., method calls,
method executions, instantiations), it may be difficult to give
some reusable semantics to it. In addition, if the same set of join
points is to be used in another aspect, we end up with redundant
code. Indeed, we can give aliases to pointcuts for better
expressiveness and reuse within the same aspect as we illustrate
further.

C. Approach
At large, what we propose is to logically group pointcuts in

general purpose aspect definitions that do not provide advices

Aspect Weaver

Application
code

Woven code

Aspects

 497 / 512

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1 479

but only pointcut definitions. That gives more semantics to the
aspects, allowing us to logically represent software layers that
were not correctly (or not at all) represented in the original
system. In the case from our example, the monolithic design of
the target system is now represented with aspects that mimic
layers (e.g., data access layer, GUI layer). They provide a new
abstraction that captures such design concept. We also avoid
redundant definitions of pointcuts. For instance, instead of
aspects A2 and A3 having to write pointcut B twice, such
pointcut is going to be logically grouped together with B in an
aspect layer (AL2). The code from A2 and A3 can then reuse the
pointcuts from AL2. After this change we now know explicitly
that aspects A2 and A3 crosscut the layer represented by AL2.
Another conclusion that can be drawn is that layer AL4 is
crosscut by all aspects.

To clarify this proposition, we provide some code illustrating
our approach. By taking the example of Figure 2 (a), the origin
of the links toward the pointcuts (A through M, in the figure)
denotes where the corresponding pointcut definitions are
located. In such approach, it is normal to have the same pointcut
definitions that may be present in different aspects, which
represents redundant code as exemplified in Figure 3. The
anonymous pointcut definition in A2 is the same used in A4 but
cannot be reused, working as a sort of ad hoc pointcut. In
contrast, the pointcut X of aspect A4 can be used by different
advices just by referring to its name. Based on that reuse
possibility, we suggest reusable pointcut definitions logically
grouped, providing the semantics of a software layer.

In Figure 2 (b), our approach proposes the introduction of an
intermediary abstraction that uses aspects for gathering cohesive
pointcuts that would refer to join point in the same software
layer. We can use these groupings to represent software layers
and also to reuse the pointcut definitions with more semantics.
Whenever reusing a pointcut, one would know which layer it
refers to. In the example, each aspect layer (AL) illustrated will
just group pointcut definitions (A to M) that belong to the same
software layer, thus providing a representation of that layer as an
aspect. The actual crosscutting concerns should be coded in
aspects that refer to the pointcut definitions of these layer
aspects, instead of repeating them in their code.

The code in Figure 4 that illustrates the layers is presented in
Figure 2 (b) where we provide the example of the aspect layer
AL3, which represents an architectural layer (e.g., data access
layer) that was “captured” using two pointcuts. The other two
aspects of the example, A2 and A4, reuse the definition of the
pointcut M. It is clear that both aspects A2 and A4 crosscut the
layer represented by AL3. In the case of aspect A4, one can
easily identify just by reading the code that it also crosscuts the
layer represented by AL4. The illustrated advice of AL4 will be
used whenever the program flow reaches the join points defined
by pointcuts AL3.M or AL4.K.

III. PROPOSED PATTERN
A reengineering pattern is more related with the discovery

and transformation of a system, than with the design structure
[4]. It is important to note, however, that our proposed
reengineering pattern describes a discovery process that involves
the identification of a design element (an architectural pattern).

In the next subsections, we employ a similar organization
(intent, problem, solution, tradeoffs) to the patterns defined in
the Object Oriented reengineering patterns book [4] for
describing our pattern named as “Aspectize the Software
Layers”.

A. Intent
Utilizing reusable aspects for extracting the layered design of

the system and clarifying where (and which) are such software
layers.

B. Problem
Common usages of AOP are basically employed in two

ways. The first one consists of refactoring crosscutting concerns
out of the system code. The second case consists of introducing
previously non-existent crosscutting concerns into the system, in
the form of aspects. Both cases typically employ straightforward

public aspect A2 {

 void around(): execution(void Foo+.set*(..))
 || execution(void Bar.setFoo(Foo)){

 //advice code

 }}

public aspect A4 {

 pointcut X(): execution(void Foo+.set*(..))
 || execution(void Bar.setFoo(Foo));

 void around(): X() {

 //advice code

 }}

Figure 3. The same pointcut definition in the form of an anonymous
pointcut in aspect A2 and as a named pointcut in aspect A4.

public aspect AL3 {

 pointcut J(): /* */

 pointcut M(): execution(void Foo+.set*(..))
 || execution(void Bar.setFoo(Foo));

}

public aspect A2 {

 void around(): AL3.M() {

 //code

 }

}

public aspect A4 {

 void around(): AL3.M() || AL4.K(){

 //code

 }

}

Figure 4. Layer aspect AL3 defines the redundant pointcut of previous
example.

 498 / 512

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1 480

solutions that do not use intermediary abstractions. It is not clear
which system layers are being affected (i.e., crosscut), especially
in systems with weak design (e.g., monolithic systems) or where
design has been badly translated from the specification during its
implementation. In larger solutions, pointcuts tend to be repeated
where reuse could be possible. An extra level of indirection
could introduce more semantics and pointcut reuse.

C. Solution
Introduce general purpose aspects (i.e., without advices)

logically grouping correlated pointcuts, allowing to provide
representations of the software layers used in the systems. The
pointcut can be reused with better semantics than previously.

Before actually executing the necessary steps, it is important
to understand the system being refactored. Applying some of the
reverse engineering patterns defined in [4] can help:
• Speculate about design. It will allow making hypotheses

about existing design so we are able to understand which
ones are the existing layers.

• Refactor to understand. This is important to understand
the code; even if these performed refactorings are not
taken into account later (it might be the case when
changing existing code is not desired).

• Look for the contracts. The proposed intent of this
pattern is to infer the usage of class interfaces by
observing how client code uses it. In the context of our
pattern, this may be the case when contracts are not
specific.

After identifying which are the layers and which to be

abstracted, it is necessary to create their corresponding aspects.
Each aspect will define the pointcuts that represent the services
provided by a layer. The granularity level depends on the usage
or what is necessary to be represented. For example, a data
access layer abstraction could include pointcuts defining the
general CRUD (create, read, update, delete) operations as the
layer’s services.

The layer aspects themselves do not provide any code for
advices; therefore alone they are useless. The layer aspects
should be reused by advices from other aspects that apply
crosscutting concerns (e.g., logging, transactions, distribution) to
the target system. In the case where such crosscutting concerns
already exist in the form of aspects, it is necessary to apply the
look for the contracts pattern in order to understand how these
aspects use the target system. Wrapping the aspectized layers as
a library that can be imported by the concrete aspects consists of
a good reuse practice that should be employed whenever
possible.

D. Trade-Offs
Following the format proposed in [4], the following trade-

offs can be considered.
Pros:
• Higher level abstractions
• Clarification of the existing architecture through the

extracted design
• Reusable pointcut definitions
Cons:

• Depending on the coverage of the aspects (e.g.,
crosscuts only parts of the system) the resultant design
that was extracted may not completely describe the
system architecture

• Poor knowledge of the system may also result in an
incomplete representation

IV. CASE STUDY
Our initial validation of the proposed pattern was performed

on the OSGi Service Platform [17], a dynamic environment
where components may be installed, started, stopped, updated or
unloaded at runtime. The API is standardized and the common
point for different implementations. When aspects target the API
they become applicable to any of the implementations. In the
case of OSGi, we could verify this in our experiment involving
the open source implementations of that API: Apache Felix,
Equinox and Knopflerfish. We initially applied dependability
aspects that were scattered over layers. Our approach used
Aspect-J and the Eclipse IDE for defining and weaving the
aspects in those implementations. An important fact to be
pointed out is that the OSGi implementations in question did not
use any aspect-oriented language prior to our intervention.

When we needed to identify which layers were being
affected by which aspects, we could not easily tell because the
way the specification presents the layers is much cleaner and
less entangled that the reality in the API. The next subsections
show the steps taken for applying our reverse engineering
pattern.

A. Disentangling OSGi layers
As part of our analysis (speculate about design and look for

the contracts) we have noted that useful concepts described in
the OSGi specification are not well represented in its API,
making it difficult to distinguish the layers in the specification
from their counterparts in the API. The OSGi specification
proposes a layered architecture, as depicted in the gradient boxes
in Figure 5. The service, lifecycle, module and security layers
are provided by the OSGi implementations, while the bundles
layer represents the third party components that are deployed
and executed on the OSGi platform. However, the software
layers specified by OSGi are scattered over different interfaces,
which accumulate roles from different layers.

Figure 5. The proposed aspects simulate a single point of access (dashed

ellipse) for each layer in OSGi's pseudo-layered architecture.

We found no single entity to describe individual layers in

OSGi neither single access points for accessing the services
provided by each layer. However, with such layer concept lost
when a specification is translated into an API, we lose
modularity as well. In the OSGi platform, the bundles layer

Hardware/OS

Execution Environment

Module S
ec

ur
ityLife Cycle

Service
Bundles

 499 / 512

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1 481

freely accesses the other three layers (Figure 5). But, in practice,
such access in OSGi is not done through a single interface per
layer. Actually, there is no such flat interface for explicitly
representing layers in OSGi’s API. The functionality of each
layer is scattered over different interfaces which may accumulate
roles from different layers. In our case study targeting OSGi we
have employed our pattern for abstracting the Service, Lifecycle
and Module layers, and then refactoring the dependability
patterns to use it. We have not handled the security layer
because it is an optional layer in OSGi implementations. The
“aspectization” of the lifecycle layer (service and module layers
were left out due to space limitations) is illustrated in Figure 6
and is a result of the next step when applying our pattern. The
refactor to understand pattern was also helpful, and in our case it
happened previously, at the time we applied the dependability
aspects.

In Figure 6, the methods and transitions that concern bundle

lifecycle are scattered across four interfaces (Bundle,
BundleContext, BundleActivator, PackageAdmin) that already
have roles other than lifecycle management. The different state
transitions of a bundle’s lifecycle are scattered over different
interfaces. The install state transition is actually fired in the
BundleContext interface. The resolve transition is defined in the
PackageAdmin service interface, while the update and uninstall
can be found in the Bundle interface. The refresh transition is
part of the package admin, which is not part of the core API but
rather declared in the PackageAdmin. The start and stop are both
located in the Bundle and BundleActivator interfaces. In case of

a Bundle having a BundleActivator, those calls are delegated to
it. In the LifeCycle aspect we have rather called it as activation
and deactivation, respectively.

A simple illustration of the lifecycle layer aspect being
reused is shown in the advice from Figure 7, which provides a
practical usage of an aspect targeting that layer by reusing the
Lifecycle aspect (i.e., an aspect that abstract a software layer).
The semantics of the code becomes clearer with a higher level
concept. Although the original definition of the start pointcut
involves only one join point in the Bundle interface, other cases
that involve long pointcut definitions would gain more in terms
of reuse and semantics gain.

B. Discussion

Reverse engineering is a fundamental part of the
reengineering process, since understanding the system is an
important step before changing or reconstructing it. The usage of
our pattern allowed us to recover lost information (the translated
design) in OSGi, and also facilitated the reuse of that
abstraction, thus achieving essential goals of reengineering.
Although this article focuses only on one architectural pattern,
software layers, we could illustrate how to use aspects to capture
an architectural abstraction without needing to restructure the
code, which in addition can be reused to apply other crosscutting
concerns. The lack of an automated approach was a major
drawback that required the manual analysis of the target system
code. This would represent an obstacle for applying such
approach in systems with significant size. Therefore, the
development of auxiliary tools for applying that reengineering
pattern would significantly improve the efficiency of using such
approach.

V. RELATED WORK
Other approaches, such as [5][12][14][16] and [20],

employed pattern-based reverse engineering, which consists of
detecting design patterns in software. An important motivation
for providing such mechanisms is that patterns provide a
common idiom for developers. Therefore by understanding what
patterns where employed, the effort necessary to understanding
the whole software will be reduced [20]. These approaches help
identifying the architectural elements based on the recognition of
patterns. Although a method for software architecture
reconstruction is discussed in [12], the process is based on
design patterns recognition. In summary, most of the above
strategies try to automate the lookup of the more traditional

public aspect LifeCycle {

 pointcut install():
 execution(Bundle
BundleContext+.installBundle(String,..));

 pointcut stop():
 execution(void Bundle+.stop(..));

 pointcut start():
 execution(void Bundle+.start(..));

 pointcut uninstall():
 execution(void Bundle+.uninstall());

 pointcut update():
 execution(void Bundle+.update(..));

 pointcut resolve():
 execution(boolean
 PackageAdmin+.resolveBundles(Bundle[]));

 pointcut refresh():
 execution(void
 PackageAdmin+.refreshPackages(Bundle[]));

 pointcut activate():
 call(void
 BundleActivator+.start(BundleContext));

 pointcut deactivate():
 call(void
 BundleActivator+.stop(BundleContext));
}

Figure 6. Aspect representing OSGi’s lifecycle layer

public aspect ComponentIsolation {
void around(Bundle b): LifeCycle.start()
 && !cflowbelow(LifeCycle.start())&&
 this(b){
 if (!PlatformProxy.isSandbox() &&
 PolicyChecker.checkIsolation(b)){
 PlatformProxy.start(b.getBundleId());
 } else {
 proceed();
 }
 }
}

Figure 7. Example of layer aspect being reused

 500 / 512

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1 482

design patterns [9], with tools inferring patterns based on graph
analysis and visual tools showing such relationships and pattern
match.

The work in [5] slightly differs from such approaches
because it allows looking for anti-patterns and “bad smells” that
may negatively affect the architecture recovery. In contrast to
our work, although the previously mentioned approaches
provide a sort of (semi-) automated discovery of patterns, they
are rather focused on a fine grain perspective of patterns (i.e.,
design patterns), while we intend to employ a strategy that gives
us a coarse grain perspective of an architectural pattern
(currently limited do software layers).

The relationship between patterns and AOP that we found in
literature mainly deals with the implementation of design
patterns with the help of AOP [13], and studies that analyze
impacts and drawbacks of such implementations [2][11][23].
Under the perspective of software architectures, for instance,
some research efforts focused on establishing a way to represent
aspects in the software architecture early in the design phase,
using aspect-oriented architectural models [8] – sometimes
identifying them even earlier, during the requirements elicitation
phase [22] – and more specific forms of expressing them such as
the definition of representations of aspects using the Unified
Modeling Language (UML), as found in [18] and [25]. Another
example in the architectural level is that of specific Architecture
Description Languages [10][19][21] that are able to express
aspects and other crosscutting concerns. However, the above
cases of aspect usage focus on how to represent in the
architecture the aspects that crosscut the system elements (e.g.,
components, modules, subsystems), while our approach uses an
aspect abstraction to mimic an architectural pattern.

Specifically talking about the layers architectural pattern, the
only study we have found explicitly dealing with software layers
and AOP was performed in [24]. However, that report deals with
software layers and aspects using a perspective that differs from
our work. Their approach consists in the assessment of the
impact of using AOP on layered software architectures.

VI. CONCLUSIONS AND FUTURE WORK
The reengineering of systems may be motivated by different

reasons, such as lack of modularity, improper layering, duplicate
code or functionality. Refactoring with the help of aspect-
oriented programming provides a way of performing
reengineering by employing the separation of concerns principle.
It allows cross-cutting concerns to be separated from the
application, allowing better maintenance and readability.

This article proposed the usage of aspects in a novel way. It
was used to provide an abstraction that provides a correct
perspective of a layer architecture that was not well represented
in the system code. It refactors specific aspects in order to use
such abstractions instead of targeting the system code, and we
also propose a reengineering pattern describing such process.
In the case study, the usage of aspects allowed us to abstract
logical layers that were scattered over the OSGi API, providing a
vision that disentangles the OSGi layers from the interfaces and
classes that accumulate responsibilities from different layers.
The resulting aspectized layers were reused for applying
concrete aspects that concerned dependability. Since analyzing a
single case study may be a limitation of the generalized

perspective provided in this article, for future work we plan to
apply this pattern in other systems for evaluating its occurrence,
as well as getting a deeper understanding of its advantages and
drawbacks. Another interesting path to take is to evaluate how
employ aspects to recover and represent other architectural
patterns.

ACKNOWLEDGEMENT
This work was supported by INES - Instituto Nacional de

Ciência e Tecnologia para Engenharia de Software
(http://www.ines.org.br/) - with financial support from CNPq
(CNPq grant #573964/2008-4). Kiev Gama was also supported
by the CNPq grant #485420/2013. The work presented here was
initially carried out as part of the ASPIRE project, co-funded by
the European Commission under the FP7 programme, contract
#215417.

REFERENCES

[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M.
Stal, “Pattern-Oriented Software Architecture: A System of
Patterns”, Wiley, 1996, ISBN: 978-0-471-95869-7

[2] N. Cacho, C. Sant'Anna, E. Figueiredo, A. Garcia, T. Batista, and
C. Lucena, “Composing design patterns: a scalability study of
aspect-oriented programming“. In Proceedings of the 5th
international conference on Aspect-oriented software development.
ACM, 2006, pp. 109-121, ISBN:1-59593-300-X,
doi:10.1145/1119655.1119672

[3] E. Chikofsky and J. Cross II, “Reverse Engineering and Design
Recovery: A Taxonomy”. IEEE Software 7, 1, January 1990, pp.
13-17, ISSN:0740-7459, doi:10.1109/52.43044

[4] S. Demeyer, S. Ducasse, and O. Nierstrasz, “Object Oriented
Reengineering Patterns”. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2002, ISBN: 978-3952334126

[5] M. Detten and S. Becker, “Combining clustering and pattern
detection for the reengineering of component-based software
system” Joint ACM SIGSOFT conference -- QoSA and ACM
SIGSOFT symposium -- ISARCS on Quality of software
architectures -- QoSA and architecting critical systems. ACM,
New York, NY, USA, 2011, pp. 23-32, ISBN: 978-1-4503-0724-6,
doi:10.1145/2000259.2000265

[6] E. Dijkstra, “On the role of scientific thought”, EWD 447, 1974,
appears in E.W.Dijkstra, Selected Writings on Computing: A
Personal Perspective, Springer Verlag, 1982

[7] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
“Refactoring: Improving the Design of Existing Code”. Addison
Wesley, 1999, ISBN: 978-0201485677

[8] R. France, I. Ray, G. Georg, and S. Ghosh, “Aspect-oriented
approach to early design modeling” Software, IEE Proceedings-
Vol. 151, No. 4, 2004, pp. 173-185, doi: 10.1049/ip-sen:20040920

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design
Patterns: Elements of Reusable Object-Oriented Software”,
Addison-Wesley, Menlo Park, CA, 1995, ISBN: 978-0201633610

[10] A. Garcia, C. Chavez, T. Batista, C. Sant’Anna, U. Kulesza, A.
Rashid, and C. Lucena, “On the modular representation of
architectural aspects” Software Architecture, Springer Berlin

 501 / 512

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1 483

Heidelberg, 2006, pp. 82-97, ISBN 978-3-540-69272-0 doi:
10.1007/11966104_7

[11] A. Garcia et al. “Modularizing design patterns with aspects: a
quantitative study” Transactions on Aspect-Oriented Software
Development I, 2006, pp. 36-74, ISBN: 1-59593-042-6
doi:10.1145/1052898.1052899

[12] G.Y Guo, J. M. Atlee, and R. Kazman, “A software architecture
reconstruction method”. In Proceedings of the TC2 First Working
IFIP Conference on Software Architecture (WICSA1), Kluwer,
The Netherlands, 2006, pp. 15-34, ISBN:0-7923-8453-9

[13] J. Hannemann and G. Kiczales, “Design pattern implementation in
Java and AspectJ”. Object-Oriented Programming, Systems,
Languages & Applications (OOPSLA ’02), ACM SIGPLAN
Notices, 2002, pp. 161-173, ISBN:1-58113-471-1
doi:10.1145/582419.582436

[14] R. K. Keller, R. Schauer, S. Robitaille, and P. Page, “Pattern-
Based Reverse-Engineering of Design Components” 21st
International Conference on Software Engineering, IEEE
Computer Society Press, May 1999, pp 226–235, ISBN: 1-58113-
074-0

[15] G. Kiczales, G., et al. “Aspect-Oriented Programming” European
Conference on Object-Oriented Programming (ECOOP), Springer-
Verlag, Finland, 1997, ISBN: 978-3-540-69127-3, doi:
10.1007/BFb0053381

[16] J. Niere, W. Shafer, J. P. Wadsack, L. Wendehals, and J. Welsh,
“Towards pattern-based design recovery” International Conference
on Software Engineering, IEEE Computer Society Press, May
2002, pp. 338–348, ISBN: 1-58113-472-X

[17] OSGi Alliance. OSGi Service Platform. http://www.osgi.org
[retrieved: 09, 2015]

[18] R. Pawlak, L. Duchien, G. Florin, F. Legond-Aubry, L. Seinturier,
and L. Martelli, “A UML notation for aspect-oriented software
design” Proceedings of the AOM with UML workshop at AOSD,
Vol. 2002.

[19] N Pessemier, L. Seinturier L., T. Coupaye, and L. Duchien, “A
model for developing component-based and aspect-oriented
systems” Software Composition. Springer Berlin Heidelberg,
2006, pp. 259-274, ISBN: 978-3-540-37659-0, doi:
10.1007/11821946_17

[20] I. Philippow, D. Streitferdt, M. Riebisch, and S. Naumann, “An
approach for reverse engineering of design patterns” Software
Systems Modeling, 2005, pp. 55–70, ISSN: 1619-1374 , doi:
10.1007/s10270-004-0059-9

[21] M. Pinto and L. Fuentes, “AO-ADL: An ADL for describing
aspect-oriented architectures”. Early Aspects: Current Challenges
and Future Directions, 2007, pp. 94-114, doi:10.1007/978-3-540-
76811-1_6

[22] A. Rashid, P. Sawyer, A. Moreira, and J. Araújo, “Early aspects: A
model for aspect-oriented requirements engineering” IEEE Joint
International Conference on Requirements Engineering, 2002, pp.
199-202, ISSN: 1090-705X, doi: 10.1109/ICRE.2002.1048526

[23] C. Sant'Anna, A. Garcia, U. Kulesza, C. Lucena, and A. V. Staa,
“Design patterns as aspects: A quantitative assessment” Journal of
the Brazilian Computer Society, 10(2), 2004, pp. 42-55, ISSN:
1678-4804, doi: 10.1007/BF03192358

[24] J. Saraiva, F. Castor, S. and Soares, “Assessing the Impact of
AOSD on Layered Software Architectures” ECSA 2010, LNCS
6285, 2010, pp. 344–351, doi: 10.1007/978-3-642-15114-9_27

[25] J. Suzuki and Y. Yamamoto, “Extending UML with aspects:
Aspect support in the design phase” Lecture Notes in Computer
Science, Springer-Verlag London, UK, 1999, pp. 299-300,
ISBN:3-540-66954-X

 502 / 512

Networking-based Personalized Research Environment : NePRE

Heeseok Choi, Jiyoung Park, Hyoungseop Shim, Beomjong You

Division of Advanced Information Convergence

Korea Institute of Science and Technology Information

Daejeon, South Korea

email: {choihs, julia.park, hsshim, ybj}@kisti.re.kr

Abstract—With advancement in information technologies and

a better mobile environment, the paradigm of service is

shifting again from web portals to individual applications

based on any network. On the other hand, as more investment

is being made in R&D, the efforts to enhance R&D

productivity are becoming important. This study proposes a

service model of Networking-based Personalized Research

Environment (NePRE) for developing the tool to assist

researchers in their R&D efforts. It can be easily utilized by

researchers in their R&D information activities. To do this, we

compare services and tools in terms of information activities in

R&D. And we also analyze changes of information environment

in terms of personalization. Subsequently, we design a service

model of NePRE. Finally, we define its key functions to assist

researchers with respect to their six information activities in

R&D life-cycle.

Keywords-research support; persoanlization; R&D life-cycle.

I. INTRODUCTION

With advancement in information technologies and a
better mobile environment, the paradigm of service is
shifting again from web portals to individual applications
based on any network. On the other hand, as more
investment is being made in R&D, efforts to enhance R&D
productivity of researchers are becoming more important.
Light-weight applications are already being developed and
disseminated to assist researchers in their R&D efforts.
Unfortunately, however, the utilized data are limited to
overseas database with a weak linkage to domestic academic
information resources. Furthermore, it is not still easy to
perform information-aid R&D since users have to access
each service individually. In addition, recent changes to
information environment makes personalized service more
important for convenient information usage by researchers.

This study proposes a service model of networking-based
personalized research environment for developing the tool to
assist researchers in their R&D efforts. It can be easily and
conveniently utilized by researchers in their R&D
information activities.

This paper is organized as follows. In Section 2, we
describe existing science and technology information
services, and discuss changes in information environment.
Section 3 introduces our design of a networking-based
personalized research environment. Subsequently in Section

4, we define six key informative functions to assist
researchers in R&D. Finally in Section 5, we discuss
conclusions and future works.

II. RELATED WORKS

A. Existing Science and Technology Information Services

Services and tools were already developed and being

made good use of assisting researcher’s R&D activities.
They provide useful information ranging from papers,
patents or other academic information to that on projects or
researchers. Furthermore, they also offer research support
features through bibliographic information management.
Representative services and tools are as follows.

 SciVal Suite [1]: This provides a critical information

about performance and expertise to help enable
informed decision-making and drive successful
outcomes. It is composed of SciVal Spotlight,
SciVal Strata, and SciVal Experts. It helps decision
makers responsible for research management to
assess institutional strengths and demonstrable
competencies within a global, scientific landscape of
disciplines and competitor. And it helps decision
makers to identify researcher expertise and enable
collaboration within the organization and across
institutions. And it also helps them to measure
individual or team performance across a flexible
spectrum of benchmarks and measures.

 Mendeley [2]: This is a reference manager and
academic social network. It makes your own fully-
searchable library in seconds, cite as you write, and
read and annotate your PDFs on any device. It
manages bibliographic information, and helps
researchers generate references when they write
them in a paper. In addition, it helps finding
collaborative researchers of the world, and supports
composing community with them.

 RefWorks [3]: This is an online research
management, writing and collaboration tool. It is
designed to help researchers easily gather, manage,
store and share all types of information, as well as

484Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 503 / 512

generate citations and bibliographies. If researchers
need to manage information for any reason whether
it is for writing, research or collaboration, RefWorks
is the good tool.

 National Digital Science Library (NDSL) [4]: This is
an integrated science and technology information
service including paper, patent, and research reports
by KISTI of Korea. It provides the specialized
search service and integrated search to 0.1 billion of
contents. It promotes efficient access to quality
science and technology information based on
cooperation networks.

 National Science and Technology Information
Service (NTIS) [5]: This has been built as a national
R&D knowledge portal for providing information
regarding national R&D projects in connection with
each ministry and institution. In NTIS, standard
metadata are connected and managed by
systematically, which needs joint use thereof in the
cross-ministerial level, for example, avoiding
redundant similar projects in advance. Each ministry
builds a system which supports real project
management for the process from receiving R&D
projects to outcome management, connects and just
provides standard information to the NTIS.

 Research Information Center (RIC) [6]: This is a
virtual research environment being jointly developed
by the Technical Computing Group at Microsoft and
The British Library. The purpose of the RIC is to
support researchers in managing the increasingly
complex range of tasks involved in carrying out
research. Specifically, to provide structure to the
research process, easy access to resources, guidance
and tools to manage information assets, along with
integrated collaboration services.

 ResearchGate [7]: This allows researchers around
the world to collaborate more easily. It discovers
scientific knowledge, and makes your research
visible. For a common purpose of advancing
scientific research, it links researchers from around
the world. It is changing how scientists share and
advance research in digital age.

Nevertheless, overseas bibliographic management tools

lack linkages and utilization of diverse academic information
resources, while domestic information services still remain at
information search for R&D activities and don’t have
sufficient means for sharing individual information resources.

B. Changes in Information Environment

Recent information environment can be considered in

terms of service personalization as follows.

 Open expansion of information and data: the demand
for publicly available information and data is
increasing due to government’s 3.0 and activation

policies of creative economy in Korea. Furthermore,
there are more projects for publishing and sharing
public data. In addition, there are an increasing
number of data standardization as Linked Open Data
(LOD) and LOD construction.

 Enhancement of personal information protection:
people are more aware of protecting personal
information and leakages of personal information in
terms of the society and technology. Therefore,
regulations and institutions are improved for
enhancing personal information protection, and
people involved therein have studied how to further
enhance the technology. In particular, as the
Personal Information Protection Act is enforced
since 2011, collecting, using, providing, processing
and managing personal information is strictly
regulated to minimize personal information leakage.
In addition, because increasing open and shared data
contribute to combining and integrating the data to
form information to identify personal identity, more
efforts are required to protect personal information.

 Popularization of social networking service: a
popular trend is currently to make a connection
between online users about common subjects to
share and use information and knowledge. Various
social networking services and platforms, for
example, facebook, youtube, twitter, Kakaotalk,
LinkedIn, and ResearchGate are now used. The
outlook is that they are connected with web portals
or mobile services to further enhance social
networking services.

 Very big contents: big data and IoT (Internet of
Things) technology is developing fast, and services
using them are appearing. Data are now more
abundant and diversified than before, and non-
literature data as well as literature-centered data will
be more importantly handled.

 Advances in web platform technology: as web
technology develops, services in various formats
have been developed and distributed, for example,
mobile apps and web apps. In particular, web-based
application S/W based on web standard HTML 5 is
even more valued, that can be installed and used in
all devices from smartphones to smart TVs where
web browsers operate.

Table 1 summarizes implications and direction toward

good services when we look into changes of information
environment in terms of service’s personalization. That is,
linking opened and standardized data is more important than
directly constructing many contents. Also personal services
should depend on personal participation rather than
collecting personal information. For contents curation from
very big contents, social networking is becoming more
important in order to utilize group intelligence. Since web
applications are based on the web, they can be operated just
by web browsers. That is, web applications can be easier
than web portals for personal usage on any device.

485Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 504 / 512

TABLE 1. CHANGES OF INFORMATION ENVIRONMENT

Division Implication As-Is→To-Be

Open

expansion of

information

and data

․useful contents are more plentiful

and various

․link and usage of open contents are

possible

․link is possible by standardized

methods(API, LOD)

Construction

→Link

Enhancement

of personal

information

․collection of personal information

from web become difficult

․construction of personal profile

information in web is difficult

Usage of

personal

information→

Personal

partiipation

Popularization

of social

networking

service

․information link is possible and

important

․share of information is important

․easy collaboration

․participation of community is

important

Personal

intelligence →

Group

intelligence

Very big

contents

․curation is important

․topic-based information link and

statistical analysis are important

․variety and instantaneity of useful

contents

Search →

Analysis

Advances in

web platform

technology

․services independent from devices

and web browsers is important

․resources usage of cloud

environment is important

Web portal →

Web

application

With open expansion of information and data,

enhancement of personal information is a challenging status
to the personalization of services. Fortunately, social
networking services were already popular over the world,
and they were enhanced to communicate and to collaborate
each other on any subject. Therefore, social networking can
be used to realize personalization of a service.

III. DESIGN OF A NETWORKING-BASED PERSONALIZED

RESEARCH ENVIRONMENT

We first established three views of personalized research
environment. First of all, in the function view, functions are
defined through how information is used to retrieve, collect,
analyze, collaborate, store and writhe outcomes - in the R&D
process [8][9][10] from the step of ideas & planning to the
step of outcomes. The functions can be summarized as in

Table 2.
Next, the contents view defines what information can be

utilized concerning service functions required in a relevant
R&D process. In order to satisfy the requests listed on Table
2, it is essential to share and use information resources held
by individual researchers in addition to domestic and
overseas scientific technology information. Individual
knowledge tools should allow users to utilize various

information resources - involving domestic and overseas
information resources and individually held one.

TABLE 2. FUNCTION VIEW OF SERVICE

Activities R&D Activities Function requirements

Search

․Identification of research

trends, core patents

․identification of research-

related topic and concept

․discovery of research topic

․store of academic search

results

․Categorization and

management of searched

results

․Expert recommendation

․recommendation of

research topic

․categorization and

management of academic

search results

Collect ․Collection of bibligraphy

and its original literature

․Auto-management of

bibliographic information

․recommendation of

materials related to

concerning topic

․articles viewing based on

bibliometric information

Analyze

․analysis of technology

ripple effect

․Statistical analysis

․analysis of citation relation

among technology groups

․Technology trend, topic

analysis

․Data statistics

․provision of relation map

Collaborate

․Researcher network

analysis

․Management of personal

R&D profile

․data share with

collaborative researchers

․construction and

collaboration of

community

․writing memos in

document and sharing

them

Store ․store of academic

information resources

․ categorization and

management of academic

information resources

Publish

․Organization of research

results

․writing papers

․Support writing document

based on template

Table 3 summarizes the contents that NePRE manages

and uses for supporting researchers.

TABLE 3. CONTENTS VIEW OF SERVICE

Division Description

External

resources

paper, research report, patent, fact information, R&D

project information, standard, trend/analysis information,

bibliographic information, organization information

Internal

resources

paper, research report, patent, memos, images, personal

profile, web resources

Finally, the operation view defines how to link and take

advantage of information resources in individual knowledge
tools. Table 4 shows the operation view. It defines data

486Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 505 / 512

categorization and relationships based on bibliographic
information such as patent and research reports. The tools are
designed in a structure to offer information assisting R&D
activities and at the same time to get feedbacks of and save
information resources created in that process.

TABLE 4. OPERATION VIEW OF SERVICE

Division Description

Platform-

based

Link overseas and domestic S&T information

resources by using KISTI science and technology

knowledge platform as hub

Biobliometric

-based

Categorize, store, search by using bibliographic

information Such as paper, patent, research report

Bi-directional
link

Provide, store, and manage bidirectional information
between tool and researchers

IV. SIX KEY FUNTIONS IN NEPRE

In this paper, we present conceptual model and design

principles on a personal research environment that can be
easily used with installation on various device environment
of each individual researcher in Figure 2. Researchers
perform various R&D information activities that are ‘search’,
‘collect’, ‘analyze’, ‘collaborate’, ‘store’, ‘publish’ in R&D
process.

Figure 1. Conceptual model of personalized research environment

Both opened S&T information resources and researchers’

personal resources can be converged and used. That is, it is
essential to integrate and use individual researcher’s
information resources as well as Korea’s and overseas
science and technology information resources in order to
facilitate various information activities carried out in R&D
by researchers. The aforementioned personal knowledge tool
must be able to be installed and operated in various types of
device environment preferred by each researcher [11]. In
addition, they must be connected in a standardized manner to
use national and overseas information resources.

The NePRE provides a collection of functions to support
the R&D life-cycle of researchers as follows.

 Search. The NePRE provides researchers with a
easy access to better resources based on statistical
analysis of citation. For example, the resources
having many references from other resources are
selected preferentially, or the resources strongly
referenced by similar researchers are selected. The
search operation executes contents curation over
simple search via participation of other researchers.
The contents curation finds high quality of resources
that can be more reliable using similar researchers’
experience while simple search just finds the
resources closely matched to input keyword.

 Collect. A number of information resources have
been already identified due to national and
international policy of data open. The NePRE
provides means to gain access to and leverage
content. The user can automatically receive updates
from specific resources sites, using e-mail and RSS
feeds. Good articles can be recommended or
identified by some researchers involved to similar
topics. This suggests that open and shared resources
are managed centered on individual user. The
NePRE provides a link to the content supplier’s site
for share. The underlying content sources are defined
as the Korea Institute of Science and Technology
Information, academic community, publishers, or
third party. All users would have subscriptions to all
commercial resources likely to be available.

 Analyze. The NePRE provides an insight about
technologic trends, competition relationship, and
promising technologies. The NePRE supports
analysis of technology’s ripple effect, researcher
network, convergence relationships between
technology groups. And the NePRE helps us finding
research topics, identify key patents, and understand
status of technology development based on
technology keywords. In addition the NePRE
provides opinions of feasibility or necessity of any
research.

 Collaborate. The NePRE is designed to make it
easy to identify potential collaborators, create
community, and share the results of other researcher
like other tools [7][12]. Both national and
international information resources are outlined and
summarized via the participation of other researchers.
The NePRE encourages researchers to work together
to develop and populate their research results like
RIC and ResearchGate. For collaborative research,
community participation and enhancements are very
important. Therefore, the NePRE provides means to
encourage communities such as following
researchers, following research, categorization for
community customized services, sharing calendars
per community, and personalization via a following
function like SNS.

 Store. The NePRE offers an enhanced function to
allow the researcher to save searches on cloud
environment for seamless usage from any device.

487Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 506 / 512

The NePRE supports clipping or scrapping searched
results. The cloud storage stores metadata associated
with the documents, together with links to the full-
text where permitted. When the resources are stored
on a cloud environment, they are automatically
related other resources each other and identified to
be unique. The user can also easily access to all
resources across various kinds of devices. Each user
accesses to individual storage on cloud environment
via an online account. Manage information resources.
In addition, each user accesses to the resources of
third party or local databases. It categorizes
resources according to personal criteria.

 Publish. The NePREl supports publication life-cycle,
from literature search and retrieval, papers
annotation, and bibliography management to self –
archiving like RIC [6]. The NePRE supports making
template-based document such as papers, patents,
and research reports. The NePRE supports
automatically managing and listing up references,
and helps researchers finding sources of resources.
The NePRE supports writing short memos within
documents and it helps share them with colleagues
or in community.

V. CONCLUSION AND FUTURE WORK

This study suggests a service model of networking-based
personalized research environment for developing personal
knowledge tools researchers can use easily in their R&D. To
do this, we first compared services and tools in terms of
information activities in R&D. And we also analyzed
changes of information environment in terms of
personalization. In the suggested model, functions required
for each information use type in R&D are defined. Contents
concerned are extended and defined to integrate and use
individual researchers’ information resources as well as
national and overseas science and technology information
resources. The connection focusing on personal tools, not
web portal-centered connection, is employed, and the

method of operation is defined to facilitate connection and
integration of information by using bibliography information
of various information resources. Finally, we presented the
outlook of six key informative functions of NePRE in R&D
life-cycle.

In the future, we will compare NePRE to other tools
through case study. In addition, future studies will focus on
establishing a method of efficient connection and use of
science and technology information resources by means of
personal knowledge tools. It is necessary to study how to
facilitate efficient classification and storage of individual
researchers’ information resources, and integration with
connected data. It is necessary to study how to design light-
weight personal knowledge tools.

REFERENCES

[1] Elsevier SchVal Suite, www.info.scival.com, August, 2015.

[2] Mendeley, www.mendeley.com, August, 2015.

[3] RefWorks, www.refworks.com, August, 2015.

[4] NDSL, www.ndsl.kr, August, 2015.

[5] NTIS, www.ntis.go.kr, August, 2015.

[6] R. S. Barga, "A Virtual Research Environment (VRE) for
Bioscience Researchers", International Conference on
Advanced Engineering Computing and Applications in
Sciences, 2007, pp.31-38.

[7] ResearchGate, www.researchgate.net, August, 2015.

[8] H. Kim, N. Kwon, E. Jung, J. Lee, H. Choi, “Korean
Scientists’ R&D Life-Cycle Study”, KISTI knowledge report,
2011.

[9] Y. Y. Yao, “A Framework for Web-based Research Support
Systems”, Proceedings of the 27th International Computer
Software and Applications Conference (COMPSAC), 2003,
pp.1-6.

[10] S. Kim and J. Yao, “Mobile Research Support Systems”, 26th
IEEE Canadian Conference of Electrical and Computer
Engineering (CCECE), 2013, pp.1-5.

[11] JISC briefing paper, “Digital Information Seekers”,
www.jisc.ac.kr/publications/reports/2010, August, 2015.

[12] D. D. Roure, “myExperiment: Defining the Social Virtual
Research Environment”, 4th IEEE International Conference on
Science, 2008, pp.182-189.

488Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 507 / 512

Decision Making and Service Oriented Architecture for Recruitment Process.
Using the New Standard Decision Model and Notation (DMN)

Fatima Boumahdi

LRDSI Laboratory, Sciences Faculty
Saad Dahlab University

BP 270 Soumaa Road Blida, Algeria
Email: F_boumahdi@esi.dz

Houssem Eddine Boulefrakh

University Mouloud Mammeri
Tizi Ouzou, Algeria

Email: h_boulefrakh@esi.dz

Rachid Chalal

LMCS Laboratory
Higher National School of Computer Science

ESI, Oued-Smar (Algiers), Algeria
Email: r_chalal@esi.dz

Abstract—Various models and methods are used to support the
design process of SOA (Service Oriented Architecture), but still
after many years of practice, there are a lot of questions and
unsolved problems that cause the failure of SOA development
projects. One of the reasons is that rapid changes in the business
environment make it necessary to introduce the decision design,
which should be efectively supported by SOA. Indeed, it is a
big challenge to create a system that help the human resource
development in industry to make their work easier without
missing an opportunity to get a best employee. The objective of
this study is to develop a decision making and Service Oriented
Architecture for employee recruitment using analytic hierarchy
process. This study explored the relationship between SOA and
decision making during the recruitment process. To achieve
our goal, we use the new method SOA+d to develop the SOA
architecture. Also we provide the decision using the new standard
Decision Model and Notation (DMN). The novelty of the proposed
approach is in the a) the formal definition of a complete set of
proposed services b) the uses of standards language and notation
in each dimension of approach c) the specification of the mappings
rules to identify a set of services. We illustrate the proposed
approach with a real case study of the Recruitment and Selection
in SAAD DAHLAB University.

Keywords–SOA; SOA+d; DMN; SoaML, AHP.

I. INTRODUCTION

While organizations are trying to become more agile to
better respond the market changes, and in the midst of rapidly
globalizing competition, they are also facing new challenges.
It is primarily a question of ensuring the decisional aspect
of the information system by adopting the services oriented
architecture (SOA) like a support architecture.

Also,the Human Resources Area needs to carry out differ-
ent activities in order to find a person with the skills, abilities,
experience and knowledge to fill a vacancy. This process is
usually time-consuming whereby a lot of manual work is
required and it is necessary to coordinate many people in the
different stages of the process. The Recruitment and Selection
process covers:

• Requesting a person with certain skills and abilities to
fill a vacancy.

• Advertising the vacancy internal and external.
• Scheduling psych technical test, interviews, medical

exams, etc.
• Collecting result of test and interviews.

• Updating the candidate list.

The decision environment consists of what a basic
interview necessitates. The interviewer is the major decision-
maker who chooses the right candidate for the vacancy.
Decision period depends mainly on the corporate needs. The
immediacy of the need of an employee, the time needed to
fulfill the procedural requirements of the recruitment process
together with the time that the interviews take (this may
change depending on the number of the candidates) are the
major factors that shape the decision period [1].

Additionally, in order to enable a vendor independent
formalization of decision designs with a common
understanding and tool support, the Object Management
Group (OMG) decided to work on a standardized meta-model
and a profile that enables the modeling of decision making
and their elements [2]. The result of this effort is the Decision
model notation Decision Model and Notation (DMN), which
is currently released in version 1.0. Today, DMN gains
increasing tool support, even IBM decided to integrate the
DMN in their proprietary IBM Blueworks [3]. Therefore, the
proposed architecture uses this new standard for modeling the
decision view, and present the principal contribution of our
work in decision field.

To develop a Service Oriented Architecture for the recuite-
ment process, we must use the new approach SOA+d [4] which
integrates a decision aspect in SOA.

The SOA+d approach comprises four phases [4] (a) Anal-
ysis phase: it contains three activities, each activity presents
a view of SOA+d and supported by standard modeling that
reinforces key view. Therefore, the UML standard is used to
analyse IS level. We use the BPMN standard for the business
analysis, and we use the new DMN standard to specify decision
view. (b) Identify and categorize services: in this phase, the
applicable mapping rules for service identification based on
the use case, BPMN and DMN are defined. (c) The service
design phase,, in which a set of service designs has to be
designed and modeled using the standard Service oriented
architecture Modeling Language (SoaML). d) The realization
services phase present the realization services using existing
tools.

489Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 508 / 512

A. Problem statement
Given the conventional technique of interviewing for a

vacancy in a company, the need of a more systematic approach
is obvious. There are some criteria to be met while the decision
is made. The recruitment decision should be based on:

• A consistent set of satisfaction of the requirements
• A clear and objective decision making environment
• A well defined and documented list of the require-

ments expected to be met by the candidates.

The main goal of our research is to design a new SOA
to support the decision making in the recuitement process. In
order to solve the main problem and develop a research plan
of action, the following sub-problems were identified:

• What recruitment and selection strategies are sug-
gested in the literature?

• To what extent does old methods utilise the recruit-
ment and selection of strategies suggested in the
literature?

• How the competent are sales managers in using the
suggested recruitment and selection tools?

The recruiting process is typically intended to realize the
following among other objectives:

• To provide an equal opportunity for potential candi-
dates to apply for vacancies.

• To systematically collect information about each ap-
plicants ability to meet the requirements of positions.

• To attract highly qualified individuals.
• To select candidates who will be successful in per-

forming the tasks and meeting the responsibilities of
the position.

• To emphasize active recruitment of traditionally under-
represented groups, i.e. individuals with disabilities,
minority group members and women in order to
resolve historical recruitment imbalances.

B. Paper Organization
In Section II, the DMN notation (Section II-A) and An-

alytical Hierarchical Process (Section II-B) are presented.
These concepts are used in our work for defining the new
architecture. In Section III, we illustrate the different phases
of SOA+d approach. Section IV presentes the development of
the case study by using the New standard DMN and SOA+d

in Recuitement process. Finally, we conclude the paper by
proposing some future works (Section V).

II. BACKGROUND

In order to ensure comprehension, the following terms,
related to this study, are briefly defined.

A. Decision Model and Notation
The OMG has recently standardized the DMN, which

enables the abstract formalization of decision designs [5].
The goal of DMN is to standardise notations (and associated
metamodel) for decision modelling. DMN will provide
constructs spanning both decision requirements and decision
logic modeling.

The decision requirements level consists of a Decision
Requirements Graph (DRG) depicted in one or more Decision
Requirements Diagrams (DRDs). A DRG models is a domain
of decision making, that shows the most important elements
involved in it and the dependencies between them [5]. The
elements modeled are decisions, areas of business knowledge,
and the input data.

Decision logic level : The components of the decision
requirements level of a decision model may be described, as
they are above, using only business concepts. This level of
description is often sufficient for business analysis of a domain
of decision-making, to identify the business decisions involved,
their interrelationships, the areas of business knowledge and
data required by them, and the sources of the business knowl-
edge [5]. Below are the reasons of using a DMN:

• DMN creates a standardized bridge for the gap be-
tween the business decision design and decision im-
plementation [5].

• DMN, as an IT specification, is a confirmation that
there is demand for a new kind of software product
aimed at decision modeling and management.

• Common notation that is readily understandable by
all business users, from the business analysts needing
to create initial decision requirements and then more
detailed decision models, to the technical developers
responsible for automating the decisions in processes,
and finally, to the business people who will manage
and monitor those decisions.

B. Analytical Hierarchical Process
AHP is a method for ranking decision alternatives and

selecting the best one when the decision maker has multiple
criteria [6]. It answers the question, Which one?. With AHP,
the decision maker selects the alternative that best meets his
or her decision criteria developing a numerical score to rank
each decision alternative based on how well each alternative
meets them.

The application of the AHP to the complex problem usually
involves four major steps:

• Step 1 : Break down the complex problem into a num-
ber of small constituent elements and then structure
the elements in a hierarchical form.

• Step 2: Make a series of pair wise comparisons
among the elements according to a ratio scale.

• Step 3 : Use the eigenvalue method in order to
estimate the relative weights of the elements.

• Step 4 : Aggregate these relative weights and synthe-
size them for the final measurement of given decision
alternatives.

III. SOA+D APPROACH

SOA+d method based on SoaML and DMN will be
used. In the literature, several authors proposed approach of
the Service Oriented Architecture (SOA) services [7]–[15].
According to the followed vision, each one proposes a set of
steps. SOA+d proposes a new approach for the development
of the SOA. It considers three views that must be analyzed in

490Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 509 / 512

order to develop SOA. The Business and Information vision
are inspired from the works of [9] [11] [13] [14] [16] [17].
SOA+d method contribution consists on the proposal of the
third vision which is: Decision.

SOA+d follows a downward approach to discover the
services. SOA+d articulate around four phases: Analysis, Iden-
tification and categorize service, Services modeling and Real-
ization pahse.

A. Phase 1: The analysis
includes three steps: information system analysis, business

analysis and decision analysis steps [4].

B. Phase 2: Identify and categorize services
Is based on the cartographies already worked out to identify

the services (business, information and decision services) [18].
As we already underlined, we identify three service types:
services which exist on the business level, information system
and decision services.

C. Phase 3: Services Modeling
In this step the services must be modeled with formalism.

We adopt a specification at the base of the SoaML language
[19] which offers a high level of abstraction, then it is
necessary to refine the services to make them specific to a
given platform.

D. Phase 4: The realization
Proposes to develop the services and to deploy them to be

called upon. The technical choice (data base management sys-
tem, development environment, application server, processes
business Management system, etc.) must be done in this phase.

IV. RECRUITMENT AND SELECTION

This research is based on the process of Recruitment and
Selection of SAAD DAHLAB University, located in the north
region of Algeria. The recuitment process covers:

• Requesting a person with certain skills and abilities to
fill a vacancy.

• Advertising the vacancy internal and external.
• Scheduling psych technical test, interviews, medical

exams, etc.
• Collecting results of tests and interviews.
• Updating the candidates list.

A. Phase 1: The analysis phase
The Recruitment process begins when a Personnel

Requisition is made. If the job description does not exist, it
is created by a Human Resources Analyst. If the person who
made the request does not have the level of authority, the
process continues to approve request task.

The Recruitment process includes two sub processes :

• Job Vacancy Advertisement Sub process : The
Human Resources area must arrange and place the
advertisements in an appropriate medium. The adver-
tisements can be placed internal or externally; the

proposed architecture gives the flexibility to choose
between them.

• The selection process : evaluates possible candidates
for a vacancy; the sub process includes test and
interview scheduling, enter their results and select the
person.

Figure 1 shows the Recruitment business process with the
BPMN (Business Process Management Notation) language.

Figure 1. The Recruitment and Selection Process BPMN

B. Phase 2: Identify and categorize services

After the use of the analysis defined through the phase 1
to the Recruitment process, we found the services of Business,
Information and Decision levels; this is shown in Figure 2.

The Business Process entity is Recruitment; it holds in-
formation about the personnel requisition such as Job Title,
Number of vacancies needed, Area, and other information
about the position. The entity is related to the Job Descrip-
tion, Advertisement and Candidates entities. The relationship
between Recruitment and Candidates is from one of many;
it is necessary to include several candidates in a Selection
Process. The main attributes of the Job Description are: Title,
Code, Responsibilities, Abilities, Experience and Job Descrip-
tion. The Advertisement entity includes Job Title, Location,
Company Description, Contact Details, and Ideal Candidates.
The Candidates entity includes Name, Last Name, CV file,
Email.

Selecting a candidate is a complex problem involving
qualitative and quantitative multi-criteria. The first step in any
candidate rating procedure is to find the appropriate criteria
to be used for assessing the candidate. To comply with the
criteria for candidate selection and their importance, required
data were collected.
In order to select the right candidate, the Analytic Hierarchy
Process (AHP) [6] approach has been adopted. The AHP is
a theory of measurement through pairwise comparisons and
relies on the judgements of experts to derive priority scales.
Figure 2 shows the services of decision level.

491Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 510 / 512

Figure 2. Decision level of Recruitment Process

C. Phase 3: Services Modeling
The mapping from BPMN diagram to SoaML model

requires first and foremost a correspondence between the
elements of BPMN and SoaML elements. For this, we use
the mapping defined in the research work already done [7]
[17] [20] and [21].

After performing the transformation rules we obtain the
services modeling of Recruitment Process illustrate in Figure
3 and Figure 4.

Figure 3. SoaML contratdiagram

Figure 4. SoaML architecture diagram

D. Phase 4: The realization
Figure 5 summarizes the Services Integration in Recruit-

ment Process.

Figure 5. Services Integration

As shows Figure 6, during the Selection Process a Candi-
date must attend several interviews with different people. For
each interview it is necessary to include the results.

Figure 6. Preselection

Afterwards, the person who made the requisition must
select the final candidate to fill the vacancy. As shows Figure 7,
if the selected candidate accepts a salary offer the sub process
ends.

Figure 7. Select the final candidate

492Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 511 / 512

V. CONCLUSION AND FUTURE WORK

The increasingly globalized world necessitates to choose
the best employee for the company, otherwise, both sides
have to overcome several losses. This project was prepared
with the aim to shed light on Blida University about effective
recruitment process.

In this paper, we developed a system that works automati-
cally to find the most suitable candidate for vacancy according
to AHP model and using the new standard DMN. The various
contributions carried out in our work are summarized as
follow:

• Introduction of the decision aspect into the SOA
Services Oriented Architecture The new approach,
that we developed, extended the principles of the SOA
on the totality of the company system. It brought new
concepts and it restructures the company architecture
in a manner that it is nimbler and able to take part in
decisions from a request.

• Proposed solution based on standards languages
and notation: in this paper we have presented a
detailed approach using existing modeling languages
such as UML, BPMN and SOAML. The proposed
approach helps in specification, design and realiza-
tion of a new type of service to depict the decision
components in SOA.

• A new approach of SOA uses DMN: SOA ar-
chitecture, that is developed is the first architecture
of SOA that considers the modeling of the decision
making aspect by the use of DMN; it extends the
principles of the SOA , on the totality of the entrprise
system. The decision introduced in SOA+d is defined
by the use of DMN. It is worth to note here that the
suggested and modelled decision in SOA+d contains
more information than SOA approaches proposed in
literature. As it was mentioned previously, the decision
model that is obtained from the DMN notation is
complete and shows how to automate the decision.

In our future work, we envisage the tool developement for
proposed architecture to obtain a framework. Moreover, we are
working on the implementation of the mapping rules defined
within the framework, and more specifically those that allow
us to obtain (as automatically as possible) services details from
real Computational Independent models. Moreover, since our
approach follows an MDE approach for the Service Oriented
Development of SOA, we are currently working on the code
generation from the models for different Web Services plat-
forms. In the light of all these, we shall be able to complete the
integration process between high level SOA and the decision
implementation.

REFERENCES

[1] N. Djenni.Rezoug, F. Nader, and F. Boumahdi, “A new approach
to supporting runtime decision making in mobile olap,” International
Journal of Information and Communication Technology, 2015 In press.

[2] J. Taylor, A. Fish, J. Vanthienen, and P. Vincent, “Emerging standards
in decision modeling,” BPM and Workflow Handbook series, 2013.

[3] M. Thorpe, J. Holm, G. van den Boer et al., Discovering the Decisions
within Your Business Processes using IBM Blueworks Live. IBM
Redbooks, 2014.

[4] F. Boumahdi, R. Chalal, A. Guendouz, and K. Gasmia, “Soa+d:
a new way to design the decision in soabased on the new
standard decision model and notation (dmn),” Service Oriented
Computing and Applications, 2014, pp. 1–19. [Online]. Available:
http://dx.doi.org/10.1007/s11761-014-0162-x

[5] O. DMN, “Decision modeling notation,” OMG,
http://www.omg.org/spec/DMN/1.0/Beta1/PDF, Tech. Rep., 2014.

[6] T. L. Saaty, “Decision making with the analytic hierarchy process,”
International journal of services sciences, vol. 1, no. 1, 2008, pp. 83–
98.

[7] J. Amsden, “Modeling with soaml, the service-oriented architecture
modeling language.” IBM, Tech. Rep., 2010.

[8] R. Börner and Goeken, “Identification of business services,” in 15th
Americas Conference on Information Systems (AMCIS), 2010.

[9] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy, and
K. Holley, “Soma: A method for developing service-oriented solutions,”
IBM systems Journal, vol. 47, no. 3, 2008, pp. 377–396.

[10] A. T. Rahmani, V. Rafe, S. Sedighian, and A. Abbaspour, “An mda-
based modeling and design of service oriented architecture,” in Com-
putational Science–ICCS 2006. Springer, 2006, pp. 578–585.

[11] T. Erl, Service-Oriented Architecture: Concepts, Technology, and De-
sign. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2005.

[12] B. Berkem, “From the business motivation model (bmm) to service
oriented architecture (soa).” Journal of Object Technology, vol. 7, no. 8,
2008, pp. 57–70.

[13] M. P. Papazoglou and W.-J. Van Den Heuvel, “Service-oriented design
and development methodology,” International Journal of Web Engineer-
ing and Technology, vol. 2, no. 4, 2006, pp. 412–442.

[14] S. Chaari, F. Biennier, J. Favrel, and C. Benamar, “Towards a service-
oriented enterprise based on business components identification,” in
Enterprise Interoperability II. Springer, 2007, pp. 495–506.

[15] K. Mittal, “Build your soa, part 3: The service-oriented unified process,”
IBM developer Works, www.ibm. com/developerworks/library/ws-soa-
method1.html, Tech. Rep., 2006.

[16] V. De Castro, E. Marcos, and J. M. Vara, “Applying cim-to-pim model
transformations for the service-oriented development of information
systems,” Information and Software Technology, vol. 53, no. 1, 2011,
pp. 87–105.

[17] C. Casanave, “Enterprise service oriented architecture using the omg
soaml standard, a model driven solutions,” ModelDriven.org, Tech.
Rep., 2012.

[18] F. Boumahdi and R. Chalal, “Extending the service oriented
architecture to include a decisional components,” in Intelligent
Decision Technology Support in Practice, ser. Smart Innovation,
Systems and Technologies, J. W. Tweedale, R. Neves-Silva, L. C.
Jain, G. Phillips-Wren, J. Watada, and R. J. Howlett, Eds. Springer
International Publishing, 2016, vol. 42, pp. 185–199. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-21209-8 11

[19] S. OMG, “Service oriented architecture modeling version 1.0.1.” OMG,
http://http://www.omg.org/spec/SoaML/1.0.1/PDF, Tech. Rep., 2012.

[20] B. Elvesæter, A.-J. Berre, and A. Sadovykh, “Specifying services using
the service oriented architecture modeling language (soaml)-a baseline
for specification of cloud-based services.” in CLOSER, 2011, pp. 276–
285.

[21] B. Elvesaeter, D. Panfilenko, S. Jacobi, and C. Hahn, “Aligning business
and it models in service-oriented architectures using bpmn and soaml,”
in Proceedings of the First International Workshop on Model-Driven
Interoperability. ACM, 2010, pp. 61–68.

[22] B. OMG, “Business process modeling notation (bpmn),” OMG,
http://www.omg.org/spec/BPMN/2.0/PDF, Tech. Rep., 2011.

[23] F. Boumahdi and R. Chalal, “Soada: A new architecture to enrich soa
with a decisional aspect,” International Journal of Systems and Service-
Oriented Engineering (IJSSOE), vol. 4, no. 2, 2014, pp. 13–27.

493Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Powered by TCPDF (www.tcpdf.org)

 512 / 512

http://www.tcpdf.org

