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Abstract—Cloud computing has transformed data management
by offering scalable and flexible services to organizations. However,
its multi-tenant architecture, where users share physical hardware,
introduces critical security risks related to data isolation and
resource sharing. Among these, cache side-channel attacks
(CSCAs) represent a particularly dangerous threat. These attacks
exploit shared cache memory, using variations in cache access
times to extract sensitive information from co-located virtual
machines. The shared nature of cloud hardware and the difficulty
of detecting such attacks in real-time make cache side-channel
attacks especially challenging to address. Traditional security
measures, such as encryption and access control, fall short against
these threats, as they do not target vulnerabilities in the cloud
underlying hardware architecture. This research proposes a real-
time detection and mitigation framework leveraging machine
learning to address the pressing issue of cache side-channel attacks.
Key focuses of this study include designing an efficient feature
extraction mechanism to identify malicious cache behaviors and
selecting machine learning algorithms that provide high detection
accuracy with minimal latency. Additionally, the framework
incorporates real-time mitigation strategies designed to minimize
performance degradation in cloud environments.

Keywords-Cache side-channel attack; Hardware performance
counters; Machine learning; Cloud Computing.

I. INTRODUCTION

The rapid development of information technology has
significantly impacted industries, leading to the adoption of
cloud computing. However, this technology presents security
challenges, particularly in data segregation and resource allo-
cation [1]. Current detection systems struggle to distinguish
legitimate and malicious activity, leading to false alarms and
stealth attacks. An effective detection system must balance
real-time responsiveness with minimal system performance,
but prior frameworks such as [2][3], often lack precision or
require high resource consumption.

To address these challenges, this research aims to develop
a real-time detection and mitigation framework for cache
side-channel attacks in cloud environments. It explores how
machine learning can improve detection accuracy while keeping
system overhead low, and identifies mitigation strategies that
counter threats with minimal impact on cloud performance. The
framework integrates a hybrid model combining Random Forest
and XGBoost with an intelligent noise injection mechanism to

reduce performance degradation, achieving a balance between
security, accuracy, and efficiency for real-time applications.

- Hardware Performance Counters (HPCs) [4] Data: This
study uses hardware performance counters to collect features
associated with Cache Side-Channel-Attacks (CSCAs) under
various attack scenarios and load conditions. Using Greedy
Forward Selection and Pearson Correlation in Waikato Envi-
ronment for Knowledge Analysis (WEKA)[5], we identified
an optimal subset of features to inform the detection model.

- Unified Detection Model: Unlike previous studies that
analyze attacks in isolation, this paper establishes a unified
detection model for multiple CSCAs, including Flush+Reload
(FR) [6], Flush+Flush (FF) [7], Prime+Probe (PP) [8], and
Spectre [9], achieving high detection accuracy under different
system loads.

The structure of this paper is as follows: Section 2 provides
a detailed analysis of cache side-channel attacks and introduces
hardware performance counters, along with related work.
Section 3 describes the machine learning model’s setup. Section
4 discusses the experimental framework, including the selection
of optimal features and machine learning algorithms. Section
5 presents results across different system loads and evaluates
model performance. Finally, Section 6 offers a summary and
discussion of the research findings.

II. RELATED WORK

Mushtaq et al. [2] analyze FF, FR, and PP attacks by counting
the different characteristics of the hardware counters. The
highest detection accuracy can reach 99.51% however, 12
different hardware performance events are used for modeling,
which is significantly different from the actual 4 hardware
counter interfaces and cannot be applied to real-time monitoring
of cache attacks. In 2016, Zhang et al. [3] established a
detection model by analyzing side-channel attacks based on
cross-virtual machine caching, namely FR and PP. The detection
method they proposed is to correlate the execution of encrypted
applications with the cache miss/hit rate of untrusted virtual
machines, but they did not consider whether it would affect
their detection success rate under different system loads;
moreover, only using the ratio of hits and misses of cache
as an indicator can provide too little information, and it is
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easy to misjudge some benign programs. S. Mahipal et al. [10]
introduced an innovative solution to detect and mitigate cache
side channel attacks within virtualized environments; their
approach leverages a softmax function grounded in machine
learning principles, complemented by an intelligent noise
addition technique for effective mitigation. This framework
relies primarily on central processing unit (CPU) counters to
function optimally; however, it is important to note that such
counters may not be universally accessible across all virtualized
environments. Li et al. [11] propose an online detection of
Spectre attack by monitoring microarchitectural features using
time series classification, however it only targets Spectre attack
and is not able to provide more comprehensive protection from
Side Channel Attacks. Allaf et al. [12] developed machine
learning models to identify attacks on FR and PP. The detection
success rate under no-load conditions can reach 97%, but under
load conditions, the detection success rate drops significantly,
even lower than 70%. Moreover, the above papers model
each type of attack separately, which loses the significance of
detection as the first door of protection in the actual application
process. The advantage of this paper is that, using as few
hardware events as possible to establish a unified model, the
final model can accurately find out whether there is any one
of the four cache side-channel attacks.

III. METHODOLOGY

A. Cache side attacks

Current processors run at high clock speeds, but their
performance is hindered by slow main memory access times,
leading to a bottleneck. High-speed caches, situated between
the processor and main memory, mitigate this issue by offering
a faster memory bandwidth. Modern cache structures include
three levels: Last-Level-Cache (LLC) (level 3), L2 (level 2), and
L1 (level 1, with L1 Data and L1 Instruction). While enhancing
efficiency, caches also present security risks, particularly
through techniques like Flush+Flush, Flush+Reload, Spectre,
and Prime+Probe, which exploit access time differences [13].
The described techniques exploit cache timing discrepancies to
extract sensitive information in virtualized environments. The
Prime+Probe [8] method allows attackers to gauge cache states
by measuring access times after filling the cache, indicating
whether the victim has accessed a specific cache line. In
contrast, Flush+Reload and Flush+Flush enhances [6][7] stealth
by relying solely on timing observations without memory
accesses, signaling victim interaction through execution time
increases. Specter attacks [9] exploit Central Processing Unit
(CPU) mispredictions to manipulate branch prediction, enabling
attackers to access otherwise restricted data and recover them
through side-channel methods.

B. Hardware Performance Counters (HPCs)

HPCs are system-specific registers built into x86 and Ad-
vanced RISC Machines(ARM) processors, originally designed
for software debugging and system performance analysis. They
now serve as a tool for detecting security risks and program
vulnerabilities, as they can detect features during program

execution, reducing performance overhead and making them
ideal for cache side-channel attacks.

C. Experimental Setup and Data Collection

All tests in this study were carried out on an 11th Gen
Intel(R) Core(TM) i5-1135G7 @ 2.40 GHz desktop computer
equipped with 8 cores, 8GB RAM, and a three-level cache
system. The victim applications and side-channel attacks were
selected from Mastik [14] and Xlate [15]. Moreover, the
MiBench [16] benchmark suite was employed to represent
benign applications. In this study, we utilized the Perf tool to
collect hardware performance counters from Model-Specific
Registers (MSRs). The recommended tool collects HPCs by
processor in microseconds with exclusive access to avoid
contamination from other processes, tackling the issues of
overcounting noted in a recent study [4]. This study considers
14 HPCs features from the table I for further analysis.

TABLE I
THE COLLECTED HPC FEATURES AND THEIR RANKING

Ranking HPC Name Ranking HPC Name
1 cache-references 8 L1-icache-load-misses
2 cache-misses 9 LLC-misses
3 CPU-cycles 10 iTLB-load-missses
4 instructions 11 LLC-store-misses
5 branches 12 LLC-loads
6 branch-misses 13 dTLB-load-misses
7 L1-dcache-load-misses 14 branch-instructions

HPCs data is collected using the four available HPCs
registers of the tested I5 processor, with readings taken at
50-microsecond intervals. Each instance of a Victim under No
Attack (VNA) and a Victim under Attack (VA) is executed
50 times under two distinct load conditions: No Load (NL)
and Full Load (FL). The "NL" scenario refers to a system
solely processing victim applications, while the "FL" scenario
involves the system handling victim applications on one core
while benign applications are executed on the remaining cores.
Afterward, the HPCs data from both VA and VNA executions
is consolidated to create the final dataset for analysis.

D. Customized Features based Classifier

The proposed classification based on customized features
consists of two main steps as shown in Figure 1: 1) feature
selection and 2) features reduction due to a limited number of
registers for effective real-time detection of attacks.

For feature selection, the raw data will be transformed from a
time-based subsequence into a feature vector for classification
purposes. To identify the most relevant features for attack
detection, we applied the Greedy Forward Selection algorithm
[17][18]. This method starts with an empty set of features
and incrementally evaluates the impact of adding each feature.
At each iteration, the algorithm incorporates the feature that
results in the greatest improvement in model performance, as
measured by metrics such as accuracy.

For feature reduction, detecting cache side-channel attacks us-
ing machine learning requires low-level feature representation,
resulting in high-dimensional data that complicates processing
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Figure 1. Data Collection and Features Engineering.

and increases computational overhead. An excessive number of
features can negatively affect the accuracy and performance of
the classifier, making effective feature reduction essential [19].
Our objective is to identify a limited set of significant HPCs
that can be gathered in real-time from low-end processors
with minimal disruption. We utilized the Correlation Attribute
Evaluation method in WEKA to compute Pearson correlation
coefficients [20], retaining only features that exceed a specified
correlation threshold (e.g., 0.4).

The Pearson correlation coefficient (adapted from [21])
between each attribute and class is calculated, as given below:

ρ(i) =
cov(Xi, Y )√

var(Xi) · var(Y )
(1)

where:
ρ is the Pearson correlation coefficient.
Xi is the input dataset of event i (where i = 1, . . . , 14).
Y is the output dataset containing labels, i.e., “attack” or

“no attack” in this case.
cov(Xi, Y ) measures the covariance between input data and

output data.
var(Xi) and var(Y ) measure the variance of both input and

output datasets, respectively.
The sum score of each HPC feature will be calculated and
HPCs will be ranked according to sum score as shown in Table
1.

E. ML Classifiers

1) Random Forest (RF): RF [22] is a widely used machine
learning classification model consisting of Decision Trees (DTs)
based on specific parameters. DTs struggle with data fluctu-
ations, but RF incorporates independent DTs with randomly
generated datasets. Low correlation between trees improves
output accuracy, as high correlation can lead to incorrect
decisions. The majority of trees decide the final outcome, with
their vote determining it.

2) Extreme Gradient Boosting (XGBoost): XGBoost repre-
sents an ensemble learning technique founded on gradient boost,
frequently used by researchers to predict distributed denial-of-
service (DDoS) attacks. XGBoost combines a linear model with
a boost tree model, leveraging not only the first derivative, but
also the second derivative of the loss function for second-order
differentiation. This strategy speeds up convergence to global

optimality, improving the overall efficiency of the model’s
solution [23].

After experimenting with RF and XGBoost algorithms for
CSCAs detection, it was apparent that the obtained results were
not satisfactory. As a result, we opted for an ensemble approach
to develop a detection system for CSCAs based on an ensemble
learning technique. This technique involves combining multiple
machine-learning models to improve the overall accuracy of the
detection system. This model consisted of two machine learning
algorithms, namely RF and XGBoost. The voting mechanism
used was ’Soft’, where the final prediction is determined by
the average vote of the constituent models.

F. Attack mitigation

An algorithm known as Intelligent Noise Addition for Attack
Mitigation (INA-AM) (which was first introduced and adapted
from [10]), is defined to mitigate the effect of different kinds
of side-channel attacks. As depicted in Figure 2, it takes cache
hits and cache misses vectors as inputs and gives noisy cache
hits and noisy cache misses as outputs to confuse attackers
and mitigate cache side-channel vulnerabilities.

Figure 2. Intelligent Noise Addition for Attack Mitigation (INA-AM).

Vectors H’ and M’ are initialized to store noisy cache hits
and misses in Step 2 and Step 3 having a smart noise function
is crucial in order to confuse the attacker, who relies on
distinguishing between low latency cache hits and high latency
cache misses. In Step 4 and Step 5, the number of cache hits
and cache misses are calculated. In Step 6, the noise function
is calculated to assist in adding necessary noise. The noise
function is used for an iterative process from Step 7 to Step 12
to introduce noise into cache hits. Similarly, a different iterative
method is employed to introduce noise to cache misses ranging
from Step 13 to Step 18. In conclusion, the algorithm generates
noisy hits and misses vectors to prevent successful attacks.
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IV. RESULTS

A. Ensemble Model Evaluation

As previously discussed in this paper, we employed a hybrid
model that integrates both RF and XGBoost classifiers. To
thoroughly assess the performance of our model, we first
evaluated each classifier independently. Figure 3 illustrates the
accuracy and false alarm rate achieved by the two classifiers,
providing a clear comparison of their individual performance
metrics.

Figure 3. Accuracy and FAR for RF and XGBoost.

The bar chart illustrates the accuracy and False Alarm Rate
(FAR) of RF and XGBoost in side-channel attack detection.
Random Forest achieves 92% accuracy, while XGBoost reaches
93%. Both models exhibit a significant false alarm rate of 24%,
leading to misclassification of benign processes as attacks.
This high FAR can cause disturbances and poor performance,
highlighting the need for better detection reliability while
minimizing false alarms.

In Figure 4 we will see the comparison between the two
classifiers and the hybrid model.

Figure 4. Comparison of Accuracy and FAR for the three Models.

RF achieves an accuracy of 92% with a FAR of 24%, while
XGBoost improves slightly with the accuracy of 93%, but
maintains the same FAR of 24%. In contrast, the hybrid model
significantly outperforms both individual models, achieving the
highest accuracy of 96% and drastically reducing the FAR to
11%. This indicates that the hybrid model not only enhances

detection accuracy but also substantially reduces false positives,
making it a more effective and reliable solution for real-time
CSCAs detection in cloud environments.

B. Customized Features vs Normal Features

Figure 5. Comparison of Customized Features and Normal Features of the
Model.

The graph in Figure 5 illustrates the clear benefits of
customized features over normal features in detecting CSCAs.
The model with customized features achieves 96% accuracy,
surpassing the 94% of the normal features model. Though the
accuracy difference is minimal, it highlights the importance
of customized features in enhancing precision, particularly
for real-time attack detection. Additionally, false alarm rates
decrease significantly from 22% to 11%, demonstrating the
effectiveness of customized features in improving detection
reliability and overall system efficiency.

After training a machine learning model, the next step is to
assess how effective the model is. There exist various metrics
which can be used to evaluate a machine learning-based trained
model for binary and multi-class classification problems. These
metrics include precision, precision, True Positive Rate (TPR),
False Positive Rate (FPR), F1 score, Area Under Curve (AUC),
and Receiver Operating Characteristic (ROC).

The performance indicators for this model are shown in
Table II.

TABLE II
PERFORMANCE EVALUATION METRICS

Evaluation Metrics Environment
NL FL

Precision 0.98 0.98
F1-score 0.99 0.98
True Positive Rate (TPR) 1.00 0.98
False Alarm Rate (FAR) 0.11 0.11

Figures 6 and 7 below show the ROC curve of the ensemble
model, illustrating their ability to diagnose four types of attacks
under variable load conditions.

The ROC curve illustrates the true positive and false positive
rates in the ensemble classification model. The AUC metric
evaluates model performance, with a higher AUC indicating
better classification. The model’s AUC values are 0.95 for NL
and 0.94 for FL, both nearing 1 under various loads, reflecting
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Figure 6. ROC Curves for Model under NL.

Figure 7. ROC Curves for Model under FL.

excellent classification performance. Thus, the detection model
is effective both in actual load conditions and in no load
conditions.

To further evaluate the effectiveness of our proposed detec-
tion framework, we conducted tests against stealth attacks,
which are known for their ability to evade traditional de-
tection mechanisms. As shown in Table III, our framework

TABLE III
INFORMATION LEAKAGE AGAINST STEALTH ATTACK

Attack Detection Method Information Leakage due to one
Stealth Attack (bits)

ICM in [24] 246
Method on AES Encryption in [25] 345
HPC method in [2] 195
Proposed Detection Model 0

demonstrated superior resilience to these attacks compared
to several state-of-the-art methods. Although other detection
techniques, such as the Unsupervised Deep Learning (UDL)
[26], Intel Cache Monitoring Technology (ICM) [24], Hardware
Performance Counters (HPC)-based models [2] and AES
Encryption in [25], exhibited significant levels of information

leakage during a single stealth attack, ranging from 189 to 345
bits. our approach effectively prevented information leakage
achieving a measured leakage of zero bits.

C. Comparison with the state of art

The proposed attack detection method has been thoroughly
compared with advanced techniques, including Unsupervised
Deep Learning (UDL) [26], Intel Cache Monitoring Technology
(ICM) [24], Hardware Performance Counters (HPC), AES
encryption-based methods [25], and standard HPC approaches
[2]. The analysis emphasizes data generation tools, performance
counters, detectable cache side-channel attacks, and the ability
to identify stealth attacks, showcasing the advantages of the
proposed framework.

Table IV illustrates various methods employing distinct
tools and performance counters for attack detection. The
UDL method utilized the Intel Performance Counter Monitor
(PCM), with l1 cache hits and misses as performance counters,
successfully identifying flush-reload and prime-probe attacks.
Similarly, the ICM and HPC methods employed the CMT
tool to detect the same attacks using l1 and llc cache misses.
An AES encryption method also used Cache Monitoring
Technology (CMT) for the dataset. The HPC method adopted
the Linux perf tool but focused solely on llc cache misses for
attack detection.

TABLE IV
PERFORMANCE COMPARISON AMONG DIFFERENT SIDE-CHANNEL ATTACK

DETECTION MODELS

Attack
Detec-
tion
Method

The tool
used to
Generate
the Dataset

Used Per-
formance
Counters

Cache Side-
Channel
Attacks
Detected

Ability
to
Detect
Stealth
Attack?

UDL
method
in [26]

PCM tool
from Intel

L1-INST-
MISS L1-
INST-HIT
LLC-MISS

Flush-
Reload
Prime-Probe

N

ICM and
HPC
method
in [24]

CMT tool
from Intel

L1-MISS
LLC-MISS

Flush-
Reload
Prime-Probe

N

Method
on AES
Encryp-
tion in
[25]

CMT tool
from Intel

L1-MISS
LLC-MISS

Flush-
Reload
Prime-Probe

N

HPC
method
in [2]

perf tool in
Linux

LLC-MISS Flush-
Reload
Prime-Probe

N

Proposed
Detec-
tion
Model

perf tool in
Linux

LLC-MISS
instructions
branches
branch-
instructions

Flush-
Reload
Prime-
Probe
Flush-Flush
Spectre

Y

In contrast, the proposed method utilizes the perf tool,
incorporating four performance counters and machine learning,
enabling it to detect all attack types, including stealth.
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V. CONCLUSION AND FUTURE WORK

As cloud computing expands, security challenges such as
CSCAs in multi-tenant environments have become a growing
concern. These attacks exploit microarchitectural vulnerabilities,
often bypassing traditional security measures. This research
introduced a machine learning-based framework for real-time
detection and mitigation, combining RF and XGBoost for
improved accuracy and employing an intelligent noise injection
mechanism to minimize data leakage with minimal performance
overhead. While the framework demonstrated promising results,
challenges remain. The FAR highlights the need for further
model optimization, and its scalability across different cloud
architectures requires further evaluation. Future research will
focus on integrating deep learning to enhance detection
capabilities, developing adaptive mechanisms for dynamic
threat response, and conducting large-scale testing to ensure
real-world applicability. Additionally, strategies for managing
software updates and long-term system maintenance will be
explored. Addressing these challenges is key to strengthening
cloud security and advancing real-time attack mitigation.
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