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Foreword

The Thirteenth International Conference on Internet Monitoring and Protection (ICIMP 2018),
held between July 22 - 26, 2018- Barcelona, Spain, continued a series of special events targeting
security, performance, vulnerabilities in Internet, as well as disaster prevention and recovery.

The design, implementation and deployment of large distributed systems are subject to
conflicting or missing requirements leading to visible and/or hidden vulnerabilities. Vulnerability
specification patterns and vulnerability assessment tools are used for discovering, predicting and/or
bypassing known vulnerabilities.

Vulnerability self-assessment software tools have been developed to capture and report critical
vulnerabilities. Some of vulnerabilities are fixed via patches, other are simply reported, while others are
self-fixed by the system itself. Despite the advances in the last years, protocol vulnerabilities, domain-
specific vulnerabilities and detection of critical vulnerabilities rely on the art and experience of the
operators; sometimes this is fruit of hazard discovery and difficult to be reproduced and repaired.

System diagnosis represent a series of pre-deployment or post-deployment activities to identify
feature interactions, service interactions, behavior that is not captured by the specifications, or
abnormal behavior with respect to system specification. As systems grow in complexity, the need for
reliable testing and diagnosis grows accordingly. The design of complex systems has been facilitated by
CAD/CAE tools. Unfortunately, test engineering tools have not kept pace with design tools, and test
engineers are having difficulty developing reliable procedures to satisfy the test requirements of
modern systems. Therefore, rather than maintaining a single candidate system diagnosis, or a small set
of possible diagnoses, anticipative and proactive mechanisms have been developed and experimented.
In dealing with system diagnosis data overload is a generic and tremendously difficult problem that has
only grown. Cognitive system diagnosis methods have been proposed to cope with volume and
complexity.

Attacks against private and public networks have had a significant spreading in the last years.
With simple or sophisticated behavior, the attacks tend to damage user confidence, cause huge privacy
violations and enormous economic losses.

The CYBER-FRAUD track focuses on specific aspects related to attacks and counterattacks, public
information, privacy and safety on cyber-attacks information. It also targets secure mechanisms to
record, retrieve, share, interpret, prevent and post-analyze of cyber-crime attacks.

Current practice for engineering carrier grade IP networks suggests n-redundancy schema. From
the operational perspective, complications are involved with multiple n-box PoP. It is not guaranteed
that this n-redundancy provides the desired 99.999% uptime. Two complementary solutions promote (i)
high availability, which enables network-wide protection by providing fast recovery from faults that may
occur in any part of the network, and (ii) non-stop routing. Theory on robustness stays behind the
attempts for improving system reliability with regard to emergency services and containing the damage
through disaster prevention, diagnosis and recovery.

We take here the opportunity to warmly thank all the members of the ICIMP 2018 Technical
Program Committee, as well as all of the reviewers. The creation of such a high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
who dedicated much of their time and efforts to contribute to ICIMP 2018. We truly believe that, thanks
to all these efforts, the final conference program consisted of top quality contributions.
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Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the ICIMP 2018 organizing committee
for their help in handling the logistics and for their work to make this professional meeting a success.

We hope that ICIMP 2018 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the field of Internet
monitoring and protection.

We are convinced that the participants found the event useful and communications very open.
We hope that Barcelona provided a pleasant environment during the conference and everyone saved
some time to enjoy the charm of the city.

ICIMP 2018 Chairs:

ICIMP Steering Committee
Sathiamoorthy Manoharan, University of Auckland, New Zealand
Terje Jensen, Telenor, Norway
Christian Callegari, University of Pisa, Italy

ICIMP Industry/Research Advisory Committee
Daisuke Mashima, Advanced Digital Sciences Center, Singapore
Bernhard Tellenbach, Zurich University of Applied Sciences, Switzerland
Miroslav Velev, Aries Design Automation, USA
Pethuru Raj, IBM Global Cloud Center of Excellence, India
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Applying Lomb Periodogram to Round-trip Time Estimation 

from Unidirectional Packet Traces with Different TCP Congestion Controls 

Toshihiko Kato, Xiaofan Yan, Ryo Yamamoto, and Satoshi Ohzahata 
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Tokyo, Japan 

e-mail: kato@is.uec.ac.jp, yanxiaofan@net.is.uec.ac.jp, ryo_yamamoto@is.uec.ac.jp, ohzahata@is.uec.ac.jp 

 
Abstract—Network operators often attempt to analyze traffic in 

the middle of their networks for various purposes.  In such 

traffic analysis, the estimation of Round-Trip Time (RTT) is 

indispensable.  Primarily, the RTT estimation is performed by 

consulting the relationship between a request and its response, 

such as a data segment and the associated ACK segment.  

However, in the middle of Internet, it is common that a network 

operator monitors traffic only in one direction.  In such a case, 

an operator is required to estimate RTT from unidirectional 

packet traces.  So far, several methods have been proposed for 

RTT estimation from unidirectional traces.  In this paper, we 

adopt the Lomb periodogram method and apply it to various 

TCP traces, collected through Ethernet or wireless LAN, with 

different congestion control algorithms.  As a result, the method 

can estimate RTT roughly, but the results are not accurate 

enough for subtle analysis, such as congestion window 

estimation.   

Keywords- Unidirectional Packet trace; Round-trip Time; 

Lomb Periodogram; Congestion Control. 

I. INTRODUCTION 

Traffic analysis in the middle of Internet is an important 
issue for network operators.  It can be applied the traffic 
classification, the traffic demand forecasting, and the 
malicious traffic detection.   In the previous paper, we 
proposed a method to infer TCP congestion control algorithm 
from passively collected packet traces [1].  It adopts the 
following approaches. 
(1) Focus on a specific TCP flow using source/destination IP 

addresses and ports. 
(2) From the mapping between data segments and 

acknowledgment (ACK) segments, estimating Round-
Trip Time (RTT) of the focused flow.   

(3) Estimate a congestion window size (cwnd) from the data 
size transferred during one RTT. 

(4) Obtain a sequence of cwnd values, and calculate a 
sequence of cwnd difference between adjacent cwnd 

values (we call ∆cwnd).   

(5) From the mapping between cwnd and ∆cwnd, infer a 

congestion control algorithm for the TCP flow.   
This method requires a bidirectional trace to obtain both data 
and ACK segments.   

In actual networks, however, it is often possible that only 
unidirectional traces are collected in the middle of networks.  
In this case, the above method cannot be applied.  So, in 
another previous paper, we tried to modify the above method 
to infer TCP congestion control algorithms from 
unidirectional traces [2].  In the modified method, a fixed time 

duration is used instead of RTT, and data size transferred 
during this duration was handled as cwnd.  As a result, 
congestion control algorithms were estimated in some cases, 
but not in other cases.  This is because our method depends 
largely on RTT value.   

On the other hand, the estimation of RTT from traces has 
been actively studied and there are several proposals [3]-[6].  
The RTT estimation methods proposed so far are classified 
into three categories.  One is a method called Data-to-ACK-
to-Data, which measures time between a data segment and the 
data segment sent just after the first data segment is ACKed 
[3]-[5].   This requires bidirectional packet traces and our first 
paper used it.  Next is a method based on the autocorrelation 
[4][5].  This method counts the number of data segments in a 
short interval, and makes an array of counts indexed by the 
normalized interval.  Then, it calculates the autocorrelation 
over the array and takes the maximum as a RTT.  This method 
can be applied to unidirectional packet traces.  The third one 
is use of spectral analysis [5][6].  A sequence of data segments 
are handled as a pulse function of time, which takes 1 when 
there is a data segment.  Then, the frequency characteristic of 
this function is analyzed and the inverse of first harmonic is 
taken as RTT.  Since the interval of data is irregular, the 
special analysis is performed by the Lomb periodogram [7].   

For the purpose of precise RTT estimation from 
unidirectional traces, we adopt the third method because it can 
work for various type of traffic [5].  In this paper, we apply 
the Lomb periodogram to the RTT estimation from 
unidirectional packet traces, which we used in our previous 
papers, including different TCP congestion control algorithms, 
and discuss the results in detail.  The rest of this paper is 
organized as follows.  Section II explains the related work, 
including the problems we suffered from in our second 
previous paper [2] and the conventional RTT estimation 
methods.  Section III describes a detailed scheme to estimate 
RTT using the Lomb periodogram.  Section IV gives the 
results of RTT estimation for different TCP congestion 
control algorithms.  In the end, Section V concludes this paper.   

II. RELATED WORK 

A. Problems on congestion window size estimation from 

unidirectional traces 

In our previous papers [1][2], we collected packet traces 
in the configuration shown in Figure 1.  A TCP data sender is 
connected with a bridge through 100 Mbps Ethernet.  The 
bridge inserts 100 msec RTT (50 msec delay for each 
direction) and 0.01% packet losses.  The bridge is connected 
with a TCP data receiver through IEEE 11g wireless LAN 

1Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-652-1
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(WLAN) or 100 Mbps Ethernet.  The packet trace is collected 
at the TCP sender side.  The collected traces include 
bidirectional ones, and in the unidirectional analysis, we 
picked up only data segments from the TCP sender to the TCP 
receiver.   

Figures 2 and 3 show the results for CUBIC TCP [8] and 
TCP Vegas [9].  In the analysis a from bidirectional trace, 

cwnd and ∆cwnd are estimated in the way described in Section 

I, and their relationship is given in the figures (by blue dots).  
In the analysis from a unidirectional trace, we assumed that 
RTT is 100 msec. The data size transferred during 100 msec 

and its difference are called sentData and ∆sentData, 

respectively, and shown in the figures by orange dots.  In the 
case of CUBIC TCP, both results show the similar graph, 

which is a function in the form of (√𝑐𝑛𝑤𝑑
3

)
2
 with decreasing 

and increasing parts [1].  This result means that the 
unidirectional analysis works well.  In the case of TCP Vegas, 
however, the results for bidirectional analysis and 
unidirectional analysis are significantly different.  According 

to the Vegas algorithm, ∆cwnd takes 1,460 bytes (one segment 

size), 0, or -1,460 bytes independently of cwnd values, which 
is represented by the blue dots [1].  But, in the result for 

unidirectional analysis, the ∆sentData values indicated by the 

orange dots are unstable.  So, the unidirectional analysis does 
not work well.   

In our experiment, the trace for CUBIC TCP is collected 
in the configuration that uses Ethernet between the bridge and 
the TCP receiver, and that for TCP Vegas is collected by use 
of WLAN.  This is one of the reasons.  Figure 4 shows 
examples of the time variation of TCP sequence number for 
CUBIC TCP and TCP Vegas.  In the case of CUBIC TCP, 
data segments are transferred in groups and there are idle time 
periods without any data transmissions.  Therefore, in the 
unidirectional analysis, a sequence of data segments sent 
within a congestion window can be traced by use of 100 msec, 
which is a RTT determined tentatively.  But, in the case of 
TCP Vegas, data segments are transmitted contiguously, and 
therefore, if RTT is not estimated correctly, a sentData value 
does not match the real cwnd value.   

There considerations mean that the RTT estimation is 
critical for inferring TCP congestion control algorithms.   

B. Related work on RTT estimation 

As described in Section I, the RTT estimation methods are 
classified into three categories; the Data-to-ACK-to-Data 
method, the autocorrelation based method, and the spectral 
analysis method.   

 
Figure 1.  Experiment configuration. 

 
Figure 2.  Result for CUBIC TCP [1][2]. 

 

Figure 3.  Result for TCP Vegas [1][2]. 
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Figure 4.  Sequence number vs. time. 
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The Data-to-ACK-to-Data method is illustrated in Figure 
5.  Since there is some transmission delay between a TCP data 
sender and a monitor capturing packet traces, the following 
procedure is used to estimate RTT between sender and 
receiver.  (1) A monitor focuses on a data segment, and 
remembers the time (t1).  (2) A monitor catches the ACK 
segment that acknowledges the data segment.  (3) A monitor 
detects the data segment sent by the sender just after the ACK 
segment in (2), and remember the time (t2).  (4) t2 – t1 is a 
RTT for this moment.  In order to detect data segment (3), the 
TCP time stamp option is used.   

In the autocorrelation based method, the RTT estimation 
is performed once per measurement interval T.  An array 𝑃[𝑛] 
maintaining the count of data segments is prepared using unit 

time ∆𝑡, where n is ranging from 0 to 𝑇 ∆𝑡⁄ − 1.  If a data 

segment is detected at an interval [𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 + 𝑚 ∙ ∆𝑡,
𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 + (𝑚 + 1) ∙ ∆𝑡), one is added to 𝑃[𝑚].  For all 
the data segments from start time to start time +T, the array 
𝑃[𝑛] is arranged.  After that, the autocorrelation function is 
defined as 

𝐴(𝑙) =  
1

𝑇
∆𝑡⁄ −𝑙

∑ 𝑃[𝑗] ∙ 𝑃[𝑗 + 𝑙]
𝑇

∆𝑡⁄ −𝑙

𝑗=1
.    (1) 

for lags 𝑙 = 0 ⋯ 𝑇 ∆𝑡⁄ − 1.  RTT is computed as max(𝐴).  

This method can be applied to the unidirectional analysis, and 
will work well for the cases that data segments are distributed 
unevenly in a trace, such as the case of CUBIC TCP in Figure 
4.  However, for an evenly distributed trace, such as the case 
of TCP Vegas in Figure 4, it is concerned that RTT cannot be 
estimated correctly.   

The spectral analysis method will be the most promising 
for RTT estimation among the three methods. Traditional 
spectral analysis, such as Fast Fourier Transform (FFT) 
assume that time domain data are regularly sampled [10].  
However, in the RTT estimation, the time domain data is 
packet inter-arrival time of a specific flow.  This data is 
sampled at each data packet capturing.  This means that the 
time domain data in this case is irregularly sampled.  In the 
case of the spectral analysis for irregularly sampled data, the 
Lomb periodogram is commonly used [6].  The details are 
shown in the next section.   

III. RTT ESTIMATION USING LOMB PERIDGRAM 

In the RTT estimation based on the Lomb periodogram, 
time sequence {𝑡𝑖} (𝑖 = 1, ⋯ )  is considered as an input, 
where 𝑡𝑖 corresponds to one data segment capturing time.  At 
a specific time 𝑡𝑘 , the frequency characteristic of this time 

sequence is calculated using N time samples 𝑡𝑘−𝑁+1, ⋯ 𝑡𝑘 in 
the following way (𝑁 > 𝑘) [6].   
 The minimum and maximum frequencies of the range for 

power spectrum are defined as  

𝑓𝑘
𝑚𝑖𝑛 =

1

𝑡𝑘−𝑡𝑘−𝑁+1
 and 𝑓𝑘

𝑚𝑎𝑥 =
𝑁

2
𝑓𝑘

𝑚𝑖𝑛 . 

Accordingly, the power spectrum is calculated for 
angular frequency  

𝜔𝑖 = 2𝜋𝑓𝑘
𝑚𝑖𝑛 + 𝑖∆𝜔  (𝑖 = 0, . . . 2𝑁 − 1), 

where ∆𝜔＝2𝜋
𝑓𝑘

𝑚𝑎𝑥−𝑓𝑘
𝑚𝑖𝑛

2𝑁
.   

 The power spectrum at angular frequency 𝜔𝑖 is defined 
as  

𝑃𝑘
𝑁(𝜔𝑖) =

1

2𝜎𝑘
2 {

[∑ (ℎ𝑘−𝑗−ℎ̅𝑘)𝑐𝑜𝑠𝜔𝑖(𝑡𝑘−𝑗−𝜏𝑘)𝑁−1
𝑗=0 ]

2

∑ 𝑐𝑜𝑠2𝑁−1
𝑗=0 𝜔𝑖(𝑡𝑘−𝑗−𝜏𝑘)

+

[∑ (ℎ𝑘−𝑗−ℎ̅𝑘)𝑠𝑖𝑛𝜔𝑖(𝑡𝑘−𝑗−𝜏𝑘)𝑁−1
𝑗=0 ]

2

∑ 𝑠𝑖𝑛2𝑁−1
𝑗=0 𝜔𝑖(𝑡𝑘−𝑗−𝜏𝑘)

}                      (2) 

where ℎ̅𝑘 and 𝜎𝑘
2 are the mean and variance of N samples 

of ℎ𝑘: 

 ℎ̅𝑘 =
1

𝑁
∑ ℎ𝑘−𝑗

𝑁−1
𝑗=0                                   (3) 

 𝜎𝑘
2 =

1

𝑁−1
∑ ℎ𝑘−𝑗

2 −
𝑁

𝑁−1
ℎ̅𝑘

2𝑁−1
𝑗=0 ,           (4) 

and where  is the solution of: 

 𝑡𝑎𝑛(2𝜔𝑖𝜏𝑘) =
∑ 𝑠𝑖𝑛2𝜔𝑖𝑡𝑘−𝑗

𝑁−1
𝑗=0

∑ 𝑐𝑜𝑠2𝜔𝑖𝑡𝑘−𝑗
𝑁−1
𝑗=0

.              (5) 

From the 2𝑁 − 1power spectrum values specified in an 
𝜔 − 𝑃(𝜔)  plane, local maximum values are calculated.  
Among the frequencies generating local maximum power 
spectrum values, the fundamental frequency 𝑓0  is estimated 
under the condition that other frequencies generating local 

maximum values are multiples of 𝑓0.  At last, 𝑇 =  1
𝑓0

⁄  is the 

estimated RTT.   

IV. RESULTS OF APLYING  PERIDGRAM TO VARIOUS 

CONGESTION CONTROL ALGORITHMS 

This section describes the results of RTT estimation for 
various types of TCP traces with different congestion control 
algorithms.  We use the packet traces used in our previous 
papers [1][2].  As described in Section II.A, these traces are 
collected at the sender side in the configuration shown in 
Figure 1.  Since packet losses are inserted at the bridge, we 
picked up a part of packet traces where no packet losses are 
detected, that is, where the sequence number of TCP segments 
keeps increasing.  The traces themselves have bidirectional 
packet information and only the capturing time of data 
segments is extracted to build unidirectional traces.  Together 
with the extraction, the real RTT is calculated from the 
mapping between data segments and ACK segments.   

A. Result for traces including TCP Reno  

TCP Reno is a classic congestion control method which 
adopts an additive increase and multiplicative decrease 
(AIMD) algorithm.  Here, cwnd is increased each time the 
TCP sender receives an ACK segment acknowledging new 

data.  The increase is 
1

𝑐𝑤𝑛𝑑
 segments during the congestion 

avoidance phase, and as a result, cwnd is expected to be 
increased by one segment during one RTT.   

 
Figure 5.  Data-to-ACK-to-Data method. 
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The Reno packet trace we used here is collected in the 
network configuration with Ethernet (see Figure 1), and we 
picked up a part from 27.010458 sec. to 45.99513 sec. in the 
trace, where there no retransmissions are detected for 7068 
data segments.  We used N = 500 in calculating the Lomb 
periodogram.   

Figure 6 shows a result of RTT estimation from the Reno 
trace.  Figure 6(a) is the result for periodogram at time 
28.156143 sec.  The horizontal axis is an angular frequency 
and the vertical axis is a periodogram.  This figure shows there 
are several peaks periodically.  Figure 6(b) zooms up the low 
angular frequency part of Figure 6(a).  It shows that there are 
harmonized frequencies such that there are large periodogram 
values at some frequencies which are integral multiple of a 

specific frequency (fundamental frequency 𝑓0).  In Figure 6(b), 
angular frequencies 60.069583, 120.117243, and 180.164902 
are those frequencies.  From this result, we can conclude that 
2π𝑓0 =  60.069583.  So, we obtain 𝑓0 =  9.56037123 and 

RTT =  1
𝑓0

⁄ = 0.10459845 sec.   

We conducted similar calculations for multiple points of 
time in the trace and obtained the estimated RTT as shown in 
Figure 6(c).  This figure also gives actual RTT values obtained 
from data and ACK segments in the original trace information.  
This result says that, although the actual RTT is extremely 
stable at 100 msec, the estimated RTT includes some errors in 
the order of 10 msec.  The reason that the actual RTT is stable 
is that this experiment is conducted through only Ethernet and 
that there are no large delay variations.  However, the RTT 
estimation by use of the Lomb periodogram cannot reflect this 
situation.   

B. Result for traces including CUBIC TCP  

As described in Section II.A, CUBIC TCP defines cwnd 
as a cubic function of elapsed time T since the last congestion 
event [8].  Specifically, it defines cwnd by (6). 

 𝑐𝑤𝑛𝑑 = 𝐶 (𝑇 − √𝛽 ∙
𝑐𝑤𝑛𝑑𝑚𝑎𝑥

𝐶

3
)

3

+ 𝑐𝑤𝑛𝑑𝑚𝑎𝑥  

Here, C is a predefined constant, 𝛽 is the decrease parameter, 
and 𝑐𝑤𝑛𝑑𝑚𝑎𝑥 is the value of cwnd just before the loss 
detection in the last congestion event.  Comparing with TCP 
Reno, cwnd increases faster in CUBIC TCP.   

We estimated RTT from the unidirectional packet trace 
including only data segments with CUBIC TCP.  The trace is 
collected in the configuration using only Ethernet.  We picked 
up a part in the trace from 23.483123 sec. to 38.348383 sec. 
for the RTT estimation.  By applying the Lomb periodogram 
similarly with the case of Reno, we obtained estimated RTT 
as shown in Figure 7.  This figure also gives actual RTT values.   

The results show that the actual RTT is stable at 100 msec. 
and, on the other hand, the estimated RTT changes a lot 
between 90 msec. and 140 msec.  The fluctuation is larger for 
CUBIC than TCP Reno.  Especially, the difference between 
the estimated RTT and the actual RTT becomes large when 
the time is between 36 sec. and 38 sec.  During this period, the 
cwnd value itself becomes large and the large cwnd value may 
give some bad influence to the RTT estimation.   

 
(a) periodogram at time 27.03713 sec. 

 
(b) zooming up low angular frequency part 

 
(c) estimated RTT and actual RTT 

Figure 6.  RTT estimation from Reno trace. 
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Figure 7.  RTT estimation from CUBIC trace.   
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C. Result for traces including TCP Vegas 

TCP Vegas estimates the bottleneck buffer size using the 
current values of cwnd and RTT, and the minimal RTT for the 
TCP connection, according to (7) [9].   

 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 = 𝑐𝑤𝑛𝑑 ×
𝑅𝑇𝑇− 𝑅𝑇𝑇𝑚𝑖𝑛

𝑅𝑇𝑇
 

At every RTT interval, Vegas uses this BufferSize to 
control cwnd in the congestion avoidance phase in the 
following way.   

 ⊿𝑐𝑤𝑛𝑑 = {

1         (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 < 𝐴)

  0  (𝐴 ≦ 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵)

−1        (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵)
 

Here, A = 2 and B = 4 (in unit of segment) are used in the 
Linux operating system.   

We estimated RTT from the unidirectional packet trace 
including only data segments with TCP Vegas.  In this case, 
in contrast with the above cases, the trace is collected in the 
configuration using WLAN.  We picked up a part in the trace 
from 37.988347 sec. to 59.699611 sec. for the RTT estimation.  
By applying the Lomb periodogram to this time sequence, we 
obtained estimated RTT as shown in Figure 8, with actual 
RTT values.   

In this case, the estimated RTT is stable around 100 msec, 
and on the other hand, the actual RTT values are scattered 
between 100 msec. and 140 msec.  That is, although the actual 
RTT is changing, the RTT estimated by the Lomb 
periodogram does not follow the fluctuation.  As we indicated 
in Section II.A, the timing of capturing data segments is 
almost uniformly distributed in this case.  As a result, it is 
considered that the Lomb periodogram method cannot detect 
the actual RTT.   

D. Result for traces including TCP Veno  

TCP Veno (Vegas and ReNO) is an example of hybrid 
type congestion control method, considering packet losses and 
delay.  It uses the BufferSize in (7) to adjust the growth of 
cwnd in the congestion avoidance phase as follows.  If 
𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵 (B is the Vegas parameter B), cwnd grows 
by 1/cwnd for every other new ACK segment, and otherwise, 
it grows in the same manner with TCP Reno.  That is, when 
the congestion status is heavy, i.e., the bottleneck buffer size 
is large, the increasing rate of cwnd is halved.   

We estimated RTT from the unidirectional Veno trace 
captured in the WLAN configuration in Figure 1.  We picked 
up a part in the trace from 37.684643 sec. to 52.653736 sec. 
including 23,360 data segments.  By applying the Lomb 
periodogram to this sequence, we obtained estimated RTT as 
in Figure 9, which also gives the actual RTT.   

Similarly with the case of TCP Vegas, the estimated RTT 
is rather stable around 100 msec., which is different from the 
actual RTT spreading in the rage between 100 msec. and 130 
msec.   

V. CONCLUSIONS 

This paper described the results of applying the Lomb 
periodogram method to estimating RTT from unidirectional 

packet traces including TCP segments with different 
congestion control algorithms, TCP Reno, CUBIC TCP, TCP 
Vegas, and TCP Veno.  Among them, the packet traces for 
TCP Reno and CUBIC TCP are collected in the network 
configuration using only Ethernet, and those for TCP Vegas 
and TCP Veno are from WLAN configuration.  The 
performance evaluation gave the following results.   

First of all, the Lomb periodogram method was possible to 
estimate an approximate RTT values from unidirectional 
packet traces. Strictly speaking, however, the estimated RTT 
values have some errors and they are not tolerable for the 
approaches that require accurate RTT estimation, such as our 
method to infer the TCP congestion algorithms from 
unidirectional packet traces [2].  Moreover, although the 
experiments adopted here added a fix delay, actual TCP 
communications suffer from variable delay like Bufferbloat 
[12].  So, the accurate estimation will be more difficult in real 
environments.   

The second point is that the estimation is affected largely 
by the network configuration, such as with Ethernet or with 
WLAN.  It is also affected somehow by the congestion control 
used in packet traces.  In our experiment, the traces of TCP 
Reno and CUBIC TCP were collected in an Ethernet 
configuration.  In this case, the actual RTT was stable and the 
estimated RTT was fluctuated.  In the CUBIC TCP trace, 
where the congestion control is more aggressive, the errors of 
the estimated RTT increased.  On the other hand, the traces of 
TCP Vegas and TCP Veno were collected in a WLAN 
configuration.  In this case, while the actual RTT was 

 
Figure 8.  RTT estimation from Vegas trace.   

 
Figure 9.  RTT estimation from VENO trace.   
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fluctuated, the Lomb periodogram method could not estimate 
this fluctuation and the estimated RTT was stable.   

Since it is difficult to estimate RTT correctly from 
unidirectional packet traces, we need to develop a new method 
to infer TCP congestion control algorithms from 
unidirectional traces.   
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Abstract—Volumetric Distributed Denial of Service (DDoS)
attacks have become a major concern for network operators, as
they endanger the network stability by causing severe congestion.
Access Control Lists (ACLs), and especially blacklists, have been
widely studied as a way of distributing filtering mechanisms at
network entry points to alleviate the effect of DDoS attacks.
Different blacklist generation approaches, as proposed in the
literature, are dependent on the information available on the
network traffic. Nonetheless, the collection of traffic information
comes at a cost that increases with the level of detail. To study
the impact of the level of detail available, we formulate three
scenarios. Each scenario describes a typical collection granularity
used by operators. We then define blacklist generation algorithms
corresponding to each granularity. Scenarios are evaluated with a
mix of real legitimate and generated attack traffic. The evaluation
shows that the amount of information does have an impact on the
attack filtering results, and that one should choose the blacklist
generation algorithms in regard of the available level of detail.
Experiments also show that having more information does not
always translate to more efficient filtering.

Keywords—volumetric DDoS; network monitoring; ACLs;
blacklists.

I. INTRODUCTION

The volume of bandwidth-depleting Distributed Denial of
Service (DDoS) attacks has repeatedly reached new records in
the recent years. In addition to disrupting the targeted service,
these attacks can cause congestion at different points upstream
from the actual target, creating wider perturbations.

Any mitigation solution downstream from a choke point will
be ineffective [1], [2], as the saturation of an upstream link
causes losses of legitimate traffic as well before it reaches the
mitigation solution.

A distributed deployment of mitigation solutions could
allow them to act before the funneling effect of attack traf-
fic converging towards the target becomes too important.
Although researchers have proposed distributed deployment
strategies [3]–[5], the financial cost associated with the large
number of nodes to deploy is often prohibitive.

Another option would be to use existing, widely deployed
equipment, e.g., routers, for mitigation. Routers, for example,
implement different mechanisms, such as FlowSpec and Ac-
cess Control List (ACL), that can be used to drop potentially
a large part of a volumetric DDoS attack, depending on the
attack characteristics and thus to alleviate the congestion. The

remaining part of the attack traffic may then be filtered with
a more precise, dedicated solution [6]. The coarse granular-
ity of filtering mechanisms available in network equipment
is likely to cause collateral damage, i.e., legitimate traffic
being filtered. Researchers have already worked on blacklist
generation algorithms to create efficient filtering lists aiming
at reducing collateral damage while maximizing the attack
traffic filtering [7]. These algorithms typically take as input
information on legitimate and malicious traffic, including lists
of legitimate client and attacker IPs.

In this paper, we focus on the impact of network visibility
on the blacklist generation problem. By network visibility we
mean the availability of traffic information, and to the best
of our knowledge, this impact has not been studied yet. We
define and examine several scenarios reflecting the different
levels of information a network operator has access to. We
study the efficiency of blacklists deployed on a single node
- distributed and/or collaborative filtering schemes are not
considered. Finally, we provide means to find a trade-off
between the level of visibility - increased visibility comes with
increased cost - and efficiency of filtering.

The rest of the paper is organized as follows, Section II
provides definition which our work is based on and the generic
blacklist assumption. The Section III is an overview of the
literature in the traffic filtering area. Section IV lays the
fundamental problem of information availability to generate
blacklists and formulate scenarios depicting levels of network
visibility. In Section V, we detail blacklist generation scheme
designed to fit in these scenarios. Section VI describes ex-
periments and discusses their results. Finally, Section VII
concludes the paper.

II. BACKGROUND

Our study is focused on the mitigation of bandwidth-
depleting DDoS attacks. This section provides definitions used
in the remainder of this paper, describes the threat landscape,
and states our underlying the assumptions.

A. Definitions

We will be using the following definitions in this paper.
Aggregate is a network address prefix aggregate as used in

route aggregation.
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Detection system is any system capable detecting volumetric
DDoS attack and reporting the source and destination ad-
dresses participating in the attack. A detection system can be
external to the network being monitored.

Monitoring system is any system providing network teleme-
try for the monitored system. For our needs, we expect the
telemetry to include at least traffic volumes between source
and destination addresses, eventually at some level of aggre-
gation.

IP flow (IPf) is a stream of packets, sharing the tuple
< source IP, destination IP >. Defined this way, the flow
includes only one direction of traffic and for example a TCP
connection will result in two IP flows.

Malicious aggregate (MALagg) is an aggregate of traffic,
defined as a set of one or more IPf that, according to a
detection mechanism, contains malicious traffic. It should be
noted that due to the coarse granularity of its definition, such
an IPf can also contain legitimate traffic.

Monitored aggregate (MONagg) is a set if one or more
IPf as observed by a monitoring system. Depending on the
monitoring system’s configuration, it reports MONaggs with
a particular granularity, eventually aggregating source and/or
destination addresses. In other words, MONagg are defined
by the source and destination network addresses (both using
CIDR), where the source and destination netmasks are fixed.

Rule denotes an aggregate of source IPs, one destination IP,
and an action for the matching traffic. In our case, the action
is always deny, i.e., packets matching a rule are dropped. We
call the tuple < network source prefix, destination IP > of a
rule a filtered aggregate (FILagg). Note that we use source
prefix aggregation as explained in Section V-A.

Access Control List (ACL) is a set of rules against which
traffic is matched by the filtering mechanism. Network equip-
ment often implement ACLs in hardware [8], for performance
reasons. On the other hand, hardware implementation becomes
with size constraints, and we denote the maximal number of
rules in an ACL with N .

B. Threat Landscape

Volumetric DDoS (i.e., bandwidth-depleting DDoS) attacks
aim at disrupting a service by consuming the incoming band-
width and causing congestion at the target, or upstream from
the final target.

From the victim (i.e., the final target or a congested network)
point of view, the attack sources can appear either as spoofed
or not. This means that the malicious traffic’s source addresses
are faked or real. In fact an attacker can, in some cases, falsify
the source IPs of the traffic. In this work, we only consider
non spoofed attacks. ghis is a reasonable statement for at least
two reasons.

Considering amplification DDoS attacks, which represent a
large portion of volumetric DDoS attack [9], massive part of
traffic (i.e., from amplifiers towards target) is unspoofed. In

fact, the source IP addresses match the sources of traffic, i.e.,
the amplifier’s IPs. Consequently, the number of sources seen
in the attack is limited by the number of amplifiers the attacker
can find and abuse.

In addition, current direct attacks using Internet of Things
(IoT) botnets pave the way to the use of protocols that required
non spoofed IP addresses. That is the case of the attack against
the Krebsonsecurity website [10] for which attackers made
use of the GRE protocol. Remarkably, some direct massive
attacks do not make use spoofed traffic, such as the one that
hit OVH [11]. The accumulated volume of malicious traffic at
each of its network entry points reached around 1Tbps. More
than 145k simultaneous non spoofed sources (particularly IoT
devices) have been identified as participant of this attack.

C. Assumptions

A prerequisite for blacklisting is the identification of the
items to block. In networking, an item refers to network
traffic, which can be identified with header fields such as
IP addresses, layer 4 protocol and ports. While the detection
of the attack is not in the scope of this paper, we expect
to obtain alerts containing an exhaustive list of IPfs, i.e.,
< source IP, target IP > tuples associated with the attack.
We consider that this IPf’s granularity is a trade-off between
the network requirements and mitigation capabilities. In fact, it
is coarse enough to be reasonable assumption for the majority
of network operator. Besides, it can be regarded as acceptable,
in regard to the mitigation, as Pack et al. [6] stated that ACLs
can be used as a coarse pre-filter in combination with a finer
grained mitigation, such as a middle-box. The middle-box
could then trigger an alert using DOTS [12] or IDMEF [13]
formats, so that it will include the identification of MALaggs.

III. STATE OF THE ART

Filtering traffic is an essential function in a network to
mitigate attacks with distributed sources. While some re-
searchers build workarounds to network equipment limitations,
the network industry improves the implementation of Access
Control Lists in off-the-shelf equipments. This section first
provides a review of traffic filtering methods and then we
detail the use of ACLs from academic and industrial points
of view.

A. Traffic Filtering

Middle-boxes, as proposed for example by Tan et al. [14],
aim at providing traffic filtering functions that routers do not
implement. Generally, these functions allow a finer-grained
filtering and/or are dedicated to mitigate a particular threat.
However, the use of a middle-boxe against volumetric DDoS
attacks often shifts the bottleneck from the target to the
middle-box. Indeed, the attack traffic converging towards the
middle-box is likely to cause saturation on the box’s upstream
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link. Qazi et al. [3] studied the deployment of such middle-
boxes to address this particular drawback and to dynami-
cally manage the mitigation resources. However, multiplying
middle-boxes within the network turns out to be costly.

The use of existing, already in place network equip-
ments to achieve a distributed first line of defense has also
been proposed by the industry. Blackholing, such as de-
scribed by Cisco [15], provides a simple and resource-efficient
method [16] to drop a collection of packets based on their
destination or source prefix. A destination-based blackhole
would, however, disrupt the service by entirely dropping the
traffic routed towards it. ACLs can be used for more precise
filters, compared to the coarse granularity of blackholing. On
routers, ACLs may match on IP header fields, for example
source and destination IPs, or the transport layer protocol.
Formerly, the major drawback of ACLs was the performance
of large ACLs tables. Vendors have fixed this performance
issue by implementing filtering in hardware instead of in the
router software [17]. The major drawback of the hardware
implementation in filtering lists is the limitation of the size of
the ACLs [18].

B. Blacklists Implementation and Usage

The use of list of filtering rules, i.e., either whitelists,
blacklists or a mix of both, within a constrained environment
has been widely studied in the literature. In fact, filtering lists
have to be optimized to fit equipment constraints. Industry
attempted to solve the CPU consumption issue of software-
based filters by implementing them in hardware [17]. However,
filtering lists are stored in a fast but expensive memory
(TCAM) which is size-limited [6]. Maccari et al. [19] propose
the use of a memory efficient structure (Bloom Filter [20]) to
reduce the size occupied by a whitelist. [6], [8], [21], [22]
considered the memory limitation and aimed at reducing the
size of lists using source prefix aggregation.

Several aggregation schemes have been proposed in the
literature. Network Aware Clusters [23] identify topologically-
closed sources using the BGP routing table. The Hierarchi-
cal Heavy Hitters [24] algorithm produces aggregates with
approximately equal rates (throughput, bandwidth, etc.) of
legitimate traffic. Pack et al. [6] study the capability of
filtering lists (whitelists, blacklists and a combination of
both) to filter malicious traffic while preserving legitimate
traffic. Aggregates are computed using a comparison between
a baseline period of traffic and the last period of traffic.
Goldstein et al. [21] also propose a history-based algorithm to
generate filtering rules using Bayesian decision theory. Soldo
et al. [8] develop a framework to build optimal ACLs, where
the definition of an optimum depends on the filtering goal, e.g.,
blocking all sources, some sources, preserving bandwidth, etc.
The aggregate computation and selection is driven by weights
(i.e., scores) assigned to each source. Although, they evoked a
different method to assign scores to sources, the importance of
these weights has not been assessed. In this paper, we evaluate
the impact of scores based on either flow count or volume,

depending on the amount of information about traffic we can
retrieve.

IV. BLACKLIST GENERATION PROBLEM
CHARACTERIZATION

Literature proposes to generate blacklists using the informa-
tion about the threat and network traffic. However, the attack
details depends on the equipment that detect it. Yet, detection
mechanisms do not provide equal level of details. Similarly,
the visibility that the operator has on his network (e.g., amount
of information, level of detail) is highly dependent on the
monitoring policy, equipment, etc. We therefore, define three
scenarios describing different network visibility levels and
illustrate them in Table I.

TABLE I. INFORMATION AVAILABILITY-DRIVEN SCENARIO

Scenario Description MALagg
identification

MALagg
telemetries

MONagg
telemetries

1
Minimum

requirement Yes No No

2
Enhanced
detection Yes Yes No

3
Full network

visibility Yes Yes Yes

The minimum requirement scenario describes the minimum
information required to generate a rule-based (cf. Section II-A)
blacklist, i.e., a list of malicious aggregates (MALaggs), cf.
Section II-C.

The enhanced detection scenario describes the context
where an operator has access to a more detailed information
about malicious traffic than solely the identification. He may
then be able to retrieve metrics for MALaggs, for example
from the detection mechanism. These metrics are collected at
the same granularity as the detection, i.e., the tuple < source
IP, destination IP >.

Our full network visibility scenario, evoked in Table I,
depicts the use of monitoring information to reduce the amount
of collateral damages. Monitoring information is provided for
monitored aggregates and, as such it does not differentiate le-
gitimate from malicious aggregates. Off-the-shelf mechanisms,
such as NetFlow [25], sFlow [26] or IPFIX [27], are able to
provide metrics such as volumetries for traffic aggregates (i.e.,
MONagg). However, because the granularity of MALaggs
is defined by the detection system, and since the MONagg
granularity depends on the monitoring system configuration,
both aggregate granularities are not always the same. We will
study the impact of information availability on the blacklist
efficiency in view of these scenarios.

V. PROPOSITION

We propose a filtering scheme that deals with the problems
raised in Section II-B and the context exposed in Section IV.
As the number of rules in a blacklist is limited, the capability
of the ACL to filter malicious traffic depends on the ability of
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the generation process to aggregate malicious flows, so that the
amount of filtered attack traffic is maximized. A workaround
would be to increase the amount of traffic to be filtering
among the whole traffic, e.g., by shortening the length of the
rules source prefix. However, this also probably induces more
collateral damage. Consequently, the ACL generation should
also tend to minimize the false positives, i.e., legitimate traffic
that is being included by the ACL. For example, a DNS server
used by the target may also be abused in an amplification
attack.

Fig. 1. Workflow of ACL generation

The ACL generation process is depicted in Figure 1. First,
we compute all possible malicious aggregates (MALaggs) for
IP flows IPf included in the alert (cf. Section V-A). Traffic
to each destination IP address is treated separately, so that
regardless of the filtering granularity, i.e., either based on
source IP or both source and destination IPs, only the source IP
of malicious flows is aggregated. Second, a score is computed
for each of the MALagg (cf. Section V-B) by using aggregated
malicious IPf telemetries if they are available (scenario 2
and 3) and monitored aggregates (MONagg) telemetries in
scenario 3. Third, the top N MALagg are selected as rules
to form the blacklist (cf. Section V-C). Then, the scores are
regularly recomputed to maintain up-to-date blacklists, for
example every time an alert is received from the detection
system.

A. Source Prefix Aggregation

As widely approved by the literature ( [7], [21], [24], [28],
[29]), we reduce the number of ACL rules using aggregation
of source IP addresses for a given destination IP. We thus
maintain a separate list of sources for each target.

We define the aggregation limit (AL) as the minimal source
prefix length of potential aggregates, so that aggregates have
a source prefix length between the AL and 32. Figure 2
shows an example of computed source aggregates for a
given destination IP. Considering an AL of 26, an alert
that contains the following source IPs [ 1.66.180.12,
1.66.180.13, 1.66.180.50, 1.66.180.60, 1.66.180.201 ] for
a single target results in the following list of possible
source aggregates [ 1.66.180.12/32, 1.66.180.13/32,
1.66.180.50/32, 1.66.180.60/32, 1.66.180.201/32,
1.66.180.12/31, 1.66.180.48/28, 1.66.180.0/26], shown
in green in Figure 2. The aggregate 1.66.180.0/24 is not
included in the MALaggs as the netmask length exceeds the
AL.

Fig. 2. Example of source aggregation tree for a given destination

B. Malicious Aggregates Scoring

We define three main strategies, for scoring MALaggs that
aim at dealing with scenarios that only include information
about malicious traffic (cf. scenarios 1 and 2, Table I). A fourth
strategy, concerns the last scenario that includes monitoring
telemetries. For all strategies, aggregates with high scores are
more likely to be added to the ACL. We do not claim that these
simple strategies are better than the state of the art. They aims
at reflecting how network information can be used and how
level of information impacts the filtering.

Scenario 1.a aggregate scoring is relevant to scenario 1
where network operators can only retrieve a list of MALaggs.
The generation scheme scores possible aggregates by only
taking into account the length of the aggregate’s source IP
prefix p, as shown in (1). Aggregates with a shorter source
IP prefix length get a higher score and are more likely to be
inserted in the ACL, such that scores are narrowed between 0
and 32.

score1.a(p) = 32− length(p) (1)

Scenario 1.b aggregate scoring also focuses on scenario 1
where operators only get a list of malicious contributors. The
score is equal to the ratio between the number of malicious
sources (MS) within an aggregate and the complement to 32
of the aggregate’s source netmask length, to which has been
added 1 so that /32 prefixes does not result in a division by 0.
In that case potential aggregates which include larger number
of malicious sources and/or whose source prefix is small get
a higher score to be put first in the blacklist, so that we try to
minimize collateral damages. As a result, score rated between
0 and 232 − 1 is expressed in (2). In fact, as scored prefixes
always contain malicious traffic null score is never reached.

score1.b(p) =
|MS ∩ p|

(32− length(p)) + 1
(2)

Scenario 2 aggregate scoring also takes the malicious IPf
telemetries as input. Since we aim at mitigating volumetric
attacks and their congestion effect on the network, we consider
the volumetry as the ground metric to assess the impact of
aggregates. The aggregate score - expressed in bytes in (3) -
refers to the volume of malicious traffic towards the target,
which source IPs (MS) are included in the aggregate source
prefix p. The malV ol(ip) function depicts the byte sum of
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malicious traffic from ip towards the target reported during
the last period. As such, the score ranges from 0 to the total
volume of attack traffic.

score2(p) =
∑

ip∈MS∩p
malV ol(ip) (3)

Scenario 3 aggregate scoring depicts the use of MONagg
telemetries. MALagg’s scores - also expressed in bytes and
ranged from 0 to sum of volumes of all malicious IPfs -
are obtained by multiplying the score obtained in scenario
2 and the ratio between the volume of malicious traffic and
an estimation of the overall traffic within the aggregate p
(overallV ol(p)), as expressed in (4).

score3(p) = score2(p)×
score2(p)

overallV ol(p)
(4)

This is an estimation because the length of source prefix of
potential rules may not always be equal to the prefix length
of source prefix of monitored aggregates . In fact, the length
of source prefix (p) of the potential aggregates to filter varies
between the aggregation limit and 32, while the source prefix
(pm) length of MONagg is fixed by the monitoring system
configuration (cf. Section IV). The estimation depends on the
value of the source prefixes’ length as can be seen in (5).

overallV ol =
∑

pm⊂p monV ol(pm) for length(p) < length(pm)

monV ol(p) for length(p) = length(pm)

(monV ol(pm)−malV ol(p))

× nbHosts(p)
nbHosts(pm) +malV ol(p) otherwise

(5)

If the prefix of a MONagg is larger than the prefix to
filter, the estimation of is equal to the sum of the volume
of all monitoring aggregates (monV ol) included in the source
prefix to filter p, The estimation is equal to the volume of the
monitoring aggregate when the length of the aggregate to filter
is equal to configured prefix length of monitoring aggregates.
Otherwise, we estimate the volume of legitimate traffic within
the source prefix p towards a given destination. We first assume
that remaining traffic volume (i.e. monV ol(pm)−malV ol(p))
is evenly distributed on the highest number of hosts in a subnet
of size length(pm) expressed in (6). Then, we add the volume
of these sources included in the prefix p to the volume of
malicious traffic for this aggregate.

nbHosts(pm) = 232−length(pm) (6)

C. Rules Selection

Finally, we select the top N rules among all scored potential
aggregates to form the blacklist. The process is depicted in
Figure 3. The potential aggregates are sorted according to their

scores in descending order. In the example, scores between
parentheses have been set arbitrarily. However, it is possible
that the aggregate 1.66.180.12/32 has a higher score than
one of its parent aggregate, e.g., 1.66.180.12/30. A legitimate
client (e.g., 1.66.180.14) with a large volumetry may reduce
the 1.66.180.12/30 aggregate score. Then, the top N (N = 3
in Figure 3) are used to generate the ACL. Considering the
aggregation mechanism, an overlap is possible only if an
aggregate is included another. Consequently, to avoid wasting
rules, an ACL has to be exclusive. Then, when we try to insert
in the top N an aggregate that includes or is included in an
already inserted aggregate, we keep the aggregate with the
smallest prefix length and remove the other. In the example,
1.66.180.50/32 and 1.66.180.48/28 are both in the top 3
aggregates. However, as the second aggregate includes the first
one, only 1.66.180.48/28 is kept in the final blacklist.

VI. EXPERIMENTS

Blacklists are widely used to mitigate DDoS attacks. How-
ever, while literature has proposed algorithms to generate such
filters with a realistic number of rules, they do not evaluate the
efficiency of their approach in regard of amount of information
on the network available. These proposed algorithms, however,
are not applicable in all networks due to the requirements in
terms of information availability. In this paper, we formulated
three scenarios describing different network visibility levels
and proposed basic blacklist generation strategies for each sce-
nario. We conduct simulation in which we generate blacklists
using scenario related strategies and apply resulting filters on
traffic captures. We then compare results for each scenario-
driven strategy. It allows us to study the impact of the levels
of available information on the filtering efficiency, i.e., the
ability to drop malicious traffic while preserving legitimate
flows.

A. Metrics and Variables

We rely on two commonly used metrics when dealing with
filtering, the true positive rate (TPr, also known as sensitivity
or recall) and the false positive rate (FPr) in order to assess
the scoring strategies. The TPr evaluates the proportion of
malicious traffic that is being filtered by the mechanism,
how the filter is able to correctly drop malicious traffic. The
generation strategies have been designed to maximize this
percentage. Conversely, the FPr measures the proportion of
collateral damages. This allows validating the use of monitor-
ing information to reduce the collateral damages. Both metrics
are then well fitted to assess the twofold definition of the
efficiency.

The TPr is obtained as the ratio between the number of
filtered malicious IPf and the total amount of malicious flows.
Correspondingly, the false positive rate (FPr) is the ratio
between the number of filtered legitimate flows and the sum
of legitimate flows.

The blacklist construction is tuned using two parameters, the
maximal number of rules in a filter (N ) and the aggregation
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Fig. 3. Selection of top 3 rules among potential source aggregates for a given destination

limit (AL). Soldo et al. [8] used from few hundreds to few
thousands rules. We then execute experiments with different
values of N between 10 and 500 maximum filtered aggregates
in the filter. Aggregation limit is fixed to either /24 or /8 to
study its impact with a short and a long filtered aggregates
prefix length. An AL of /0 and /32 have not been considered
here, as a filtered aggregate /0 will result in dropping the whole
traffic. Conversely, filtering with the whole IP (/32 prefix)
instead of an aggregate, with at most 500 rules cause at most
0.25% of malicious IPf to be filtered which we can consider
as pointless. In fact, this depends on how aggressive are these
IPfs. However, for reasons of clarity, we decided not to include
/32 prefixes.

We consider two configurations for the MONagg’s granu-
larity reported by the monitoring system. The first one define
records for destination IPs, i.e. traffic metrics are reported for
< /0 source prefix, /32 destination prefix > aggregates. This
kind of monitoring configuration may be used for networks
where each customer is identified by the destination IP such
as data centers. The second finer granularity is defined by the
tuple < /24 source prefix, /32 destination prefix >. That can be
used, for example, by ISPs, so that records match the largest
common inter-AS BGP prefixes advertisements [30].

B. Results

The behavior of ACL-based filtering, as described in Sec-
tion V-B, is studied for each scenario defined in Section IV.
We use real legitimate traffic from the MAWI data set [31] as
legitimate traffic superimposed with generated attack traffic.
Traffic has been captured on February 2017 during 15 minutes
on a transit link and has been cleaned from attack traffic 1.
The inbound part of this capture has an average packet rate of
51,000 packet per second (295 Mbps). In parallel, we generate
10 different attack traffics.

In order to consistently run experiments with the MAWI
capture and one of the 10 attack traffic, we follow the
procedure below. We select 1000 legitimate sources from
the MAWI capture that will also send attack traffic. The
remaining malicious sources are randomly chosen such that
they are not seen in the legitimate capture. In total, 200,000

1MAWI capture is available at http://www.fukuda-lab.org/mawilab/v1.1/
2017/02/03/20170203.html

malicious sources are selected. We generated a constant bit
rate attack traffic with a bandwidth of 1.3Gb/s. While the
overall number of attack sources is realistic [10], [11], the
overall volume fall short of the most massive current attacks
due to computational constraints. Each of the MALagg has
also a constant throughput throughout the attack, which is
randomly chosen between 0.6 and 1.4 the average per flow
bit rate. More realistic source dynamics will be considered
in future works. Scores are regularly re-computed (e.g. every
60 seconds in Table II) to update the variation of legitimate
traffic. Figure 4 shows the average true and false positive rates
(TPr and FPr) for each scoring function with multiple ALs
(depicted in columns) and varying values of N (x-axis).
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Fig. 4. Comparison of scoring functions

1) Scenario 1 - Minimum Requirements: For the Scenario
1.a score function, the TPr shows odd trends. For example, in
Figure C, the TPr has a small increase for N varying from 10
to 50. This growth increases for a number of rules greater than
50. In fact the strategy does not succeed in selecting the top
N rules. This is due to the fact that a lot of filtered aggregates
(more than 190,000) have the same score. However, the score
function has to select the top N , where N is less than 500.
There is therefore no rational method to select the top N rules.
This results in a pseudo random selection of filtered aggregates
.

The Scenario 1.b scoring function (in orange) grows linearly
from 10 to 50 rules in the filter for each sub-figure. In
fact, the number of malicious IPf added per rule linearly
decreases considering a maximum rule count greater than 50.
However, the TPr of Scenario 1.b score function shows a
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much larger increase for N = 10 to 50. This is also due to
the distribution of traffic, where the top N rules contain very
dense malicious aggregates with significantly high volumetry.
The Scenario 1.b scoring function is then correctly choosing
the top 10 to 50 rules. This large increase for small N values
does not appear in sub-figure 4.B, as malicious sources are
more evenly distributed among the source aggregates for small
prefixes. In other words, in Figure B, traffic aggregated in /24
source prefixes emphasizes some aggregates with high impact.
However, these /24 aggregates with high score are diluted in
/8 aggregates.

C. Scenario 2 - Enhanced Detection

The TPr and FPr of the Scenario 2 scoring function (in
violet) coincides with the Scenario 1.b from N = 10 to 50
in Figures A and C. Using malicious IPf telemetries provide
no added value given a small number of rules in a filter.
Conversely, from N = 50 to 500 in Figure A, the TPr of
the Scenario 2 grows faster than for the baseline scenario.
For example, given N = 500 (cf. Table II), the number of
dropped malicious flows in Scenario 2 is just over twice for
the Scenario 1.b, and the same proportion applies considering
the filtered volumetry. The drawback is that the FPr also
grows faster (cf. Figure C), resulting in an increase of the
collateral damages. Table II shows that, for N = 500, the
legitimate dropped traffic in Scenario 2 is around 4 and 5 times
the Scenario 1.b statistics expressed respectively in terms of
number of flows and volumetry. Both behavior are mostly due
to the fact that the scores of Scenario 1.b are devalued when
the source prefix of the MALagg grows, that also induces an
increase of the probability to include legitimate traffic. The
Scenario 2 does not try to reduce the collateral damages.
However, the chosen scenario scoring functions is not so
efficient with an AL of /24, as only 1.50% of malicious traffic
is filtered.

When we shorten the AL, e.g., from Fig A to B, the
Scenario 2 and 1.b display similar trends. In fact, a large
part of malicious IPf is quite dispersed, so that long source
prefixes only aggregate a small part of malicious traffic. As a
consequence, in Figure A, the Scenario 1.b scoring function
favor malicious flows over malicious aggregates. In contrast,
shorter source prefix (i.e. up to /8) aggregates more malicious
traffic, so that they get by the Scenario 1.b a higher score than
longer prefix aggregates. As a consequence, filtered aggregates
selected by the Scenario 1.b scoring function matches the ones
selected by the Scenario 2 and the FPr curves coincide, cf.
Figure B. Both Scenario 1.b and 2 scoring functions allow
filtering around 30% of malicious traffic (in terms of number
of flows and volumetry), using solely 500 rules with an average
of 1% of filtered legitimate traffic (Table II).

1) Scenario 3: The curves of Scenario 3 scoring function
configured with a /32 destination prefix granularity (depicted
in red) coincide for all sub-figures with the results of the
Scenario 2. Considering an AL of /24 (Figure A), this is
due to the fact that very few filtered aggregates contain both

legitimate and malicious traffic, so that introducing monitoring
information is not been able to provide much value-addition.
For an AL of /8, cf. Figure B, the reason is that legitimate
and malicious traffics are highly distributed among filtered
aggregates , so that scores get similar results for the rules. This
also explains the fact that the FPr trends of the Scenario 3
configured with < /24 source prefix, /32 destination prefix >
granularity (shown in green) results almost similar to the
Scenario 2 false positive rate. While this means that it does
not reduce the efficiency of the blacklist in terms of malicious
traffic filtering, this does not help in preserving legitimate
traffic.

The Scenario 3 that uses< /24 source prefix, /32 destination
prefix > MONagg granularity, depicts an improvement of the
FPr compared to the Scenario 2 in Figure C. Although this
seems small when expressed in terms of number of flows (i.e.,
0.01% of legitimate flows preserved, cf. Table II), results are
a little more significant when the FPr is expressed in terms
of volume (0.2%).

D. Discussion

Experiments with attack traffic without variations show the
basic efficiency and behavior of scoring functions for the con-
sidered scenarios. First, considering the hardware limitations
of the number of rules in a router, the Scenario 1.a scoring
function is irrelevant. In fact, the strategy does not allow
choosing correctly the top N rules, as more than N rules
obtain the best score. In order to use it effectively, routers
would require at least around 190k rules for an AL of /24. This
minimum number of rules is dependent on the malicious traffic
distribution, i.e., poorly distributed malicious traffic would
require fewer rules to be aggregated. The Scenario 2 reaches
the highest efficiency when it comes to only filtering malicious
traffic. However, as we increase the AL, the Scenario 1.b
scores results similar to the Scenario 2. In other words, the
optimal efficiency in the scenario 1 is at the same level as the
efficiency of a scenario with a higher level of detail (scenario
2), assessed in terms of the number of dropped flows.

Our evaluation is based on the assumption that the malicious
traffic is not spoofed, as explained in Section II-B. If it were
not the case, DDoS mitigation with blacklists could cause
more collateral damage, as spoofed attack traffic could overlap
more easily with legitimate traffic and increase the number of
MALagg that also contain legitimate traffic. We configured an
IPf-level overlap of 1,000 over 200,000, which seems in most
cases far above reality. For example, considering amplification
attacks, this means that the target legitimately connect with
1,000 amplifiers (DNS servers, . . . ). This may be the case
when the target is a proxy or a NAT gateway. However the
overlap is exacerbated using source aggregation.

In our approach, we also supposed that the list of malicious
aggregates, e.g., contained in the alert, is exhaustive. This is
not true in all cases, as the detection mechanisms are not
perfect and/or do not report attack sources exhaustively due
to the potentially large number of sources in DDoS attacks.
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TABLE II. AVERAGE STATISTICS OF DROPPED TRAFFIC FOR EACH SCENARIO CONSIDERING A BLACKLIST GENERATION EACH 60S (N = 500)

Scenario 1.a Scenario 1.b Scenario 2
Scenario 3

(source prefix /24,
destination prefix /32)

Scenario 3
(destination prefix /32)

A
L

=
/2

4

malicious
traffic

#IPfs 2222 (1.11%) 1234 (0.62%) 3136 (1.57%) 3107 (1.55%) 3136 (1.57%)
std 50 55 25 28 25

MBytes 108.5 (1.11%) 60.28 (0.62%) 154.89 (1.59%) 153.68 (1.58%) 154.89 (1.59%)
std 2.63 2.81 1.38 1.47 1.38

legitimate
traffic

#IPfs 1222 (0.2%) 462 (0.08%) 1730 (0.29%) 1687 (0.28%) 1729 (0.29%)
std 814 266 1010 2012 1010

MBytes 8.06 (0.37%) 2.89 (0.13%) 14.68 (0.67%) 10.45 (0.48%) 14.67 (0.67%)
std 1.73 0.91 3.42 2.69 3.42

A
L

=
/8

malicious
traffic

#IPfs 38291 (19.15%) 57822 (28.91%) 57722 (28.86%) 57020 (28.51%) 57713 (28.86%)
std 164 168 172 226 171

MBytes 1866.1 (19.14%) 2819.38 (28.92%) 2824.54 (28.97%) 2790.21 (28.62%) 2824.02 (28.96%)
std 8.34 8.67 8.48 11.18 8.46

legitimate
traffic

#IPfs 1437 (0.24%) 6195 (1.03%) 6191 (1.03%) 6096 (1.02%) 6182 (1.03%)
std 29 1657 1656 1665 1657

MBytes 0.22 (0.01%) 32.16 (1.47%) 32.16 (1.47%) 32.02 (1.46%) 31.62 (1.45%)
std 0.01 5.25 5.23 5.03 5.27

However, to be efficient, a detection mechanism is likely to
provide top malicious aggregates, i.e., the aggregates with
most impact, e.g., the aggregates with the highest data rate
as we deal with volumetric DDoS. The malicious aggregates
not included in the alert are thus likely have only a small effect
in the network congestion.

We focused in this paper continuous per IPf throughput. The
impact of more dynamic attack traffic will be studied later. We
expect that the efficiency would be affected by new parameters
such as the monitoring records collection period, and the
blacklist refresh period. Moreover, history-based algorithm
should be studied, such as Exponentially Weighted Moving
Average (EWMA) used in [7], [32], to generate blacklists
which handle temporal trends of malicious IPf contributions.

VII. CONCLUSION

We presented an evaluation of simple blacklisting algo-
rithms, from the perspective of an operational constraint, i.e.,
level of information an operator can retrieve from the network.
The assessment scenarios considered the fact that operators
do not have equal level visibility on their networks, depend-
ing on the functionality and configuration of the monitoring
system. The minimal requirement for blacklist generation
is the identification of source IPs of attack traffic. From
there on, additional traffic information, such as volumetries
of attack and legitimate traffic, can be used to improve the
efficiency of the blacklists. Experiments highlighted that a
generation algorithm does not fit well in all scenarios and it
should be carefully chosen in regard of the available network
information. Furthermore, in some situations providing more
detailed information improved the filtering results only up to a
given point, suggesting that the algorithms’ behaviors should
be evaluated in the context in which they are to be used.

We also considered in this paper the aggregation of mon-
itored traffic (i.e., generation of monitored aggregates) as a
possible optimization of the monitoring system, although it
will degrade the quality of flow reporting. We acknowledge
that this is not the only possible configuration parameter a

network operator is able to leverage to optimize network
monitoring system, for example flow sampling is another
widely used optimization. While the impact of flow sampling
on the attack detection [33], [34] has been studied, its effect
could also be studied in regard of the scenario 3. As a
consequence, efficiency of filtering can be assessed in the light
of the cost of monitoring collection, in term of storage, flow
records bandwidth consumption.
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Abstract— Internet of Things (IoT) are globally connected 

devices which are able to collect and exchange information. The 

increasing usage of IoT-devices in industrial and private 

environments result in the need for higher security and constant 

surveillance of such devices. Since 2016 novel botnets, consisting 

only of IoT-devices, where observed to execute major 

Distributed Denial of Service (DDoS) attacks. Due to the 

autonomous nature of these IoT devices, a compromised device 

might never be detected by system administrators. This creates 

the need for continuous monitoring of IoT network traffic. A 

possible solution for this problem is the permanent monitoring 

of anomalies within the network traffic of the IoT devices. 

Anomaly Detection Systems (ADS) monitor the behavior of a 

system and flag significant deviations from the normal activity 

as anomalies. This paper presents a new three step approach for 

anomaly detection in unsupervised communication meta data 

by cascading X-means clustering, decision tree, and statistical 

analysis, in order to monitor and protect IoT networks. 

Keywords-anomaly detection; internet of things; unsupervised 

machine learning; intrusion detection and prevention 

I.  INTRODUCTION 

The Internet of Things (IoT) could be defined as a huge set 
of sensors and actuators, embedded in physical objects, which 
are linked through wired and/or wireless networks, often using 
the same Internet Protocol (IP), that connects the Internet [6]. 
The basic idea is that devices (things = sensors and actuators) 
perform tasks independently from human interaction and are 
connected to the Internet [7]. IoT devices work to a large 
extent with information from their immediate surroundings. 
This is to support people in their everyday life or in their work. 
As a rule, IoT devices behave as predictable as possible, since 
they are based on fixed implemented algorithms, and human 
influence on the devices is therefore minimal to non-existent. 

The use of IoT is becoming increasingly widespread 
worldwide. It is estimated that by 2020 more than 30 billion 
devices of this kind will be in use around the world. The 
rapidly developing market and the high price pressure on 
manufacturers often result in insufficient investment in the 
security features of the IoT devices. Software is usually 
updated only rarely or not at all. This and the easy accessibility 
of the IoT devices via the Internet increases the risk of possible 
compromise by attackers. At the end of 2016, IoT botnets 
were first widely used in Distributed Denial of Service (DDos) 
attacks around the world. One of these attacks on the provider 
Dyn reached a bandwidth of 1.2 Terabits per second (TBps) 

and temporarily crippled platforms like Twitter, Amazon, 
CNN, PayPal and many other sites. Therefore, the 
vulnerability of these IoT devices has therefore often been 
criticized by IT security experts and researchers in the past. 
However, the lack of security of IoT devices is not only a 
danger for potential targets of botnets, the owners of the 
devices also have a great interest in anticipating a 
compromise. Especially in industrial environments, IoT 
devices are playing an increasingly important role in business 
processes, for example as production machines, part of the 
infrastructure or as sensors. These devices could also be 
sabotaged or misused by attackers for espionage purposes. As 
the number of IoT devices in use increases, so does the threat 
to businesses and the global threat posed by botnets. It is 
therefore essential for companies to monitor their IoT devices 
to detect possible compromises. Anomaly Detection Systems 
(ADS) [8] monitor the behavior of the IoT system and flag 
significant deviations from the normal activity as anomalies 
[11]. This paper presents a new approach for anomaly 
detection in unsupervised communication meta data of IP-
based IoT devices by cascading X-means clustering, decision 
tree, statistical analysis, and the computation and monitoring 
of trust values for the monitored individual IoT devices. 

The paper is structured as follows. In Section II, the focus 
of work, field of application and validity, as well as a short 
overview of the requirement specifications and the restrictions 
of the new anomaly detection approach is given. Section III 
presents some related work. In Section IV, the concept and 
used methods are discussed in more detail, including the 
following topics: Anomaly-based intrusion detection and 
prevention,  unsupervised machine learning, the collection of 
meta data, the communication model and cascading three step 
approach, as well as computational trust. The overall 
conclusion  of the new approach for anomaly detection in 
unsupervised communication meta data by cascading X-
means clustering, decision tree, statistical analysis, is given in 
Section V. The paper ends with an outlook on future work, 
and points to an additional planned paper. 

II. FOCUS OF WORK AND PREREQUISITES 

Due to the wide variety of IoT devices and corresponding 
communications protocols, the focus on application and range 
of use of the new anomaly detection monitor for IoT devices 
will be specified in detail. In addition, all prerequisites and 
restrictions of the concept will be discussed. First of all it 
should be mentioned, that the new approach focuses on the 
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monitoring of internet protocol-based (IP-based) IoT devices 
only. Other network communication protocols will be 
neglected and are not taken into account. 

A second very important prerequisite and restriction of the 
new approach is the focus on request/response application 
protocols only. The two most important request/response 
application protocols are the Hypertext Transfer Protocol 
(HTTP) and the Constrained Application Protocol (CoAP) 
[12]. Other application layer protocols, which use, e.g., the 
Publish/Subscribe principle, will be neglected and are not 
taken into account for the new approach. 

The  Constrained Application Protocol (CoAP) [12] is a 
specialized web transfer protocol, made for communication 
with constrained nodes and constrained networks in the 
Internet of Things. The CoAP is mainly designed for machine-
to-machine (M2M) [5] applications, such as smart energy, 
intelligent buildings, home automation, smart grid, and smart 
factory applications. CoAP was developed as an Internet 
Standards Document, RFC 7252. CoAP is designed to use 
minimal resources, both on the device and on the network. 
Instead of a complex transport stack, CoAP use the User 
Datagram Protocol (UDP) over IP. Like HTTP, CoAP is based 
on the wildly successful Representational State Transfer 
(REST) model: Which means, servers make resources 
available under a Uniform Resource Locator (URL), and 
clients access these IoT resources using methods such as GET, 
PUT, POST, and DELETE. Since HTTP and CoAP share the 
REST model, both application protocols can easily be 
connected by using application-agnostic cross-protocol 
proxies. A Web client may not even notice that it just accessed 
a IP-based sensor resource. CoAP and HTTP can carry 
different types of payloads, and can identify which payload 
type is being used. CoAP and HTTP integrates with 
Extensible Markup Language (XML), JavaScript Object 
Notation (JSON), and many other data formats.  

Additional assumptions: It will be assumed that the IP-
based IoT devices show a normal communication behavior 
and behave predictably. Furthermore, it will be assumed that 
no tagged training meta data of the normal behavior of the 
individual IoT devices are available. In practice, it is very 
often the case, that no tagged trainings data are available for 
the particular IoT devices. The most important assumption is 
the following one: It will be assumed that the capable normal 
communication behavior of an individual IoT device can be 
observed and monitored, without compromising by malware, 
during a certain training time period. 

As short overview, the new anomaly detection approach 
and concept has the following prerequisites and requirements:  

 
 The IoT devices, to be monitored, communicate via the 

internet protocol (IP) and an IP network.   
 The anomaly detection approach shall have a good 

performance and may require little storage space.   
 The anomaly detection system should synchronize 

recognized connections with signatures.   
 A compromise of an IoT device should be detected by 

anomaly detection.   
 Payload of the data packets is ignored.  
 The training data are not labeled. 

 It is assumed that the monitored IoT devices work 
without human interaction and their behavior is largely 
predictable.   

 For the monitoring and detection of anomalies, the 
metadata of the individual connections between end 
devices is considered only. 

 Network traffic should be monitored both online and 
offline.  

 A separate communication model is trained for each new 
IP-based IoT device type.  

 Any anomalies that occur are saved and can be viewed by 
the system administrator.  

 A computational trust value shall be displayed to the 
managing system administrator for each device, which is 
to serve as an indicator of the trustworthiness of this 
particular IP-based IoT device. 

III. RELATED WORK  

Gaddam et al. [1] developed a two-stage algorithm that 
uses K-means and Iterative Dichotomiser 3 (ID3) decision 
tree algorithm. For this, they used labeled training data where 
each data set is marked as attack or normal traffic. In the first 
phase, the test data is divided into k clusters. Based on the data 
vectors assigned to a cluster, a decision tree is then trained via 
ID3. This avoids two main disadvantages of K-means:  

(1) forced assignment: If the value for k is smaller than 
there are real groups, dissimilar data vectors are 
assigned to the same cluster.  

(2) class dominance occurs when a cluster contains a 
large part of the data vectors. 

In theory, this two-step process should result in the trained 
tree recognizing more subclasses in the clusters. In order to 
decide whether a new connection represents an anomaly when 
applying the model, two rules are applied to the new data 
vector: First the nearest neighbor (cluster) is found and then 
the most similar rule of the corresponding ID3 tree is 
searched. Thereby, especially the decision tree algorithm ID3 
needs labeled training data. The authors of this method state 
that an accuracy of 96.24 percent in detection of attacks was 
achieved with a network anomaly data test (Network 
Anomaly Data NAD-1998 dataset) with a false positive rate 
of 0.03 percent.  

Meidan, Y. et. al. [14] presented how supervised machine 
learning can be applied to analyze network traffic data in order 
to detect unauthorized IoT devices by manual labeling. 

The new cascading three step approach discussed in the 
following sections would like to overcome the restriction of 
supervised learning and labeled training data.  

IV. CONCEPT AND USED METHODS 

Intrusion detection is the monitoring of networks with the 
aim of detecting security-relevant events. These can be 
breaches of security rules or malware transmitted over the 
network. Such rules, also called security policy, are rules laid 
down by system administrators to which users of a network 
must adhere. They are designed to prevent users from 
unknowingly making their devices vulnerable to malware or 
trying to obtain rights that they are not entitled to.  
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An Intrusion Detection System (IDS) [3] automates the 
process of this intrusion detection by permanently monitoring 
network traffic for communication typical of such actions. An 
Intrusion Prevention System (IPS) has the same capabilities as 
an IDS and can still prevent detected events [4]. 

 
The main tasks of an IDS are: 
 Recording information about discovered events.  
 Inform system administrators about events.  
 Creating reports. 
 

While IDS focuses on detecting suspicious events, one of 
the tasks of an IPS is to additionally prevent certain events.  

 
This can be done in various ways: 
 Stopping the attack.   
 Customize the security configuration.   
 Manipulating the attack. 
 
During anomaly-based intrusion detection, all network 

traffic is synchronized with a communication model that 
represents normal network traffic. If a significant deviation 
from the model is found, an intrusion report is triggered. This 
model can be configured for a network, user or computer. 
Statistical methods are often used for the comparison with the 
model. The advantage of Anomaly-Based Intrusion Detection 
is the ability to detect previously unknown attacks that could 
not be detected using a signature. 

A model representing the normal traffic of a network, user 
or computer is configured either manually or automatically 
during a training period. Training times can be static or 
dynamic. A static model remains unchanged during its useful 
life and can only be replaced with a new model. 

Dynamic models adjust their configuration during 
runtime. Both methods can cause problems over time, because 
networks change over time, and so the communication 
behavior of the network, computer or user can change. Static 
models therefore generate more false positive over time. 
Dynamic models do not have this problem, but are more 
susceptible to slow takeover by an attacker. This could only 
start with a small number of compromising network requests 
and increase them over time. A dynamic model would adapt 
to the behavior without triggering alarms. 

A. Unsupervised Machine Learning 

Unlike supervised machine learning, unsupervised 
machine learning does not require labeled training data.  In the 
context of anomaly detection, these algorithms are based on 
two assumptions: First, that the entire network traffic is 
normal, and only a small proportion of traffic are attacks.  
Second, abnormal traffic differs from normal traffic based on 
statistical data. Widespread Unsupervised Machine Learning 
algorithms are, e.g., the K-Means, k-Nearest Neighbor (k-NN) 
algorithm. 

Many unsupervised machine learning algorithms are 
based on clustering. During clustering, data vectors are 
grouped together based on their similarities. It is used in 
exploratory data mining, so it is an exploratory measure that 
examines and clustered the similarity of the data vectors. 

Depending on the algorithm used, outliers can also be 
detected. Outliers are individual data vectors that cannot be 
assigned to an existing cluster. Outliers could be anomalies in 
our context here. 

K-means clustering is one of the most commonly used 
clustering algorithms. K-means divides all data vectors into k 
clusters and guarantees that data within a cluster are similar. 
Here, the center of a cluster is determined, a "centroid", to 
which the distances of the individual data vectors are 
calculated. The distance function is the Euclidean distance. 
This method determines related data vectors. K-Means groups 
N data vectors into k clusters, where k < N must apply.  

The standard k-Means algorithm can only be used with 
numerical data, but has better performance than other 
comparable clustering algorithms. However, the parameter k 
must be set manually. Pelleg and Morre [9] therefore 
developed the "X-Means" method, in which the k-means 
algorithm is tested with different k's and the resulting clusters 
are tested using a density function. The parameter k, which 
generates the clusters with the highest density, is then 
recommended for cluster training. With given training data, 
the optimal value for k is therefore found with this algorithm 
without having to be configured manually in advance. The X-
Means algorithm will be used for the unsupervised machine 
learning and clustering of related data vectors into centroids. 

B. Collection of Meta Data  

Network metadata will be collected in the area of network 
administration for analysis purposes. For this purpose, the 
entire traffic of a network is observed and metadata about 
individual connections is recorded. In most cases, therefore, 
this is done at a central communication point, for example at 
a gateway. 

For the collection of meta data the Bro Network Security 
Monitor (IDS) [13] will be used. Bro IDS [15] is an open 
source network monitoring framework based on Unix, which 
has been extended by some IDS-typical functions. Bro IDS 
processes observed network traffic in two steps:  

 
(1) Event Engine: The Event Engine analyzes the observed 

network traffic live and detects events. The trigger for 
these events is defined in an associated enhancement. It 
is possible to collect further information about this event 
using these enhancements. Bro comes preinstalled with 
some extensions, such as signature and connection logs, 
but also application protocol events, like , e.g.,  Domain 
Name Service (DNS) and Dynamic Host Configuration 
Protocol (DHCP). 

 
(2) Policy Script Engine: Uses events triggered by the Event 

Engine to perform custom actions. Here further analyses 
of the generated data can be carried out and dependent 
behavior can be implemented. 

 
The Event Engine will be used to create connection logs. 

This information contains metadata for each detected 
connection. They consist of a mixture of numerical and 
categorical data, such as the number of transmitted packets, 
the contacted port, the IP addresses involved and much more. 
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In Bro IDS it is also possible to define signatures. If a 
recognized connection corresponds to the behavior of a 
defined signature, a corresponding event is triggered and a 
signature log is created.  

Bro IDS is able to monitor a network live at a central 
communication point, for example as a gateway.  However, 
there is also the option to analyze recorded network traffic.  
This would fulfill the requirement to be able to operate both 
online and offline. 

C. Communication Model and Cascading 3 Step Approach 

A communication model is the basis on which an ADS or 
IDS analyzes observed network traffic and detects anomalies. 
Based on the above requirements, a categorizing 
communication model is designed for the new anomaly 
detection approach. This means that all recognized connection 
metadata will be divided into categories. During the training 
phase, these categories are learned automatically using the 
procedure described below. If the assignment of new 
connection metadata to a category is not possible after the end 
of the training, during the application phase, the 
communication behavior is not known and therefore 
represents an anomaly. The new anomaly detection approach 
in unsupervised communication meta data of IP-based IoT 
devices is characterized by cascading X-means clustering, 
decision tree, and statistical analysis. The cascading three step 
approach works like this: 
 

Step (1): X-means clustering (see Figure 1): In the first 
step, unsupervised training meta data will be collected and 
categorized based on the numerical data it contains about 
clustering. Therefore selected numerical data tn from the 
connection metadata are used to categorize the training data 
into k clusters using k-means clustering. For the k-means 
algorithm, the parameter k, which determines the number of 
clusters to be formed, must be set. However, since the number 
of clusters is not known in advance, k must first be found. X-
means clustering is used for this. Additionally, the system 
administrators should be given the option to set the k 
parameter manually.  

 

 
Figure 1.  X-means Clustering  

After the clustering of the training data has been 
completed, only the centroids of the clusters are stored 
persistently. For the later classification of metadata on during 
the application phase, only the k centroids are required to 
determine the affiliation of a data vector to a cluster. Since a 
trained model should not change, moving the centroids as in 
the k-means algorithm is no longer necessary. The tn data 

vectors are therefore not needed for future use and can be 
deleted. 

 
Step (2): Generation of decision trees (see Figure 2): For 

all data within a cluster, categorical values of the connection 
metadata will be stored in a decision tree structure to divide 
the observed connections into further subcategories. As a 
result, the recognized categories are further subdivided by 
generating trees from the categorical data. Proven in practice 
and used in the approach are the following decision tree 
structure (from root to leaf): Transmission Protocol => 
Service => Port Number => IP Address. 

 

 
Figure 2.  Generation of Decision Trees by Categorical Parameters 

Step (3): Statistical evaluation (see Figure 3): The 
allocation of the connection metadata, collected during the 
training time to the individual categories, will be calculated 
proportionately in order to enable a statistical analysis later. 
As result of the statistical analysis, the distribution of the 
individual categories of the clusters and tree paths are 
calculated proportionately. 

 

 
Figure 3.  Statistical Distribution of the individual subcategories of the 

generated clusters and tree paths (an arbitrary example) 

D. Training data, parameters, and analysis 

The whole of all training data for a particular machine is 

referred to in this section as Ti, where i represents a particular 

machine. Ti consists of a series of data tuples t, each of which 

represents a connect log and contains all metadata of a 

connection. The objects in t consist of different data types: 

numeric (numbers) and categorical (characters and strings). 

 Not all metadata provided by logging frameworks are 

relevant for training communication models. Therefore, a 

series of data are selected from t, which are used for model 

creation. The numerical data is referred to as tn and the 

categorical data as tk. When the course is finished, the system 
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switches to the application phase. New metadata is 

recognized online or offline and applied to the 

communication model. Such a Conn log to be checked has 

the same design as t ∈ Ti and is called a  ∈ Ai. Ai is the set 

of recognized connection metadata during the application 

phase of a device identified by i. The communication model 

trained with the training data Ti is used to check the tuples a 

∈ Ai. An subset of a contains the same selected numerical 

data as tn, the same applies to ak subset of a and tk. 

In order to guarantee the accuracy of the model, different 

methods suitable for the properties of the data types are used 

for learning the subcategories. 

Numerical parameter: Numeric values are used to rank 

the scope of a connection.  For this purpose, five elements 

from t are used, which are summarized in a new tuple tn:  

1. Duration: duration of the connection.  2. OrigPkts: Number 

of sent packets of the connection initiator.  3. RespPkts: 

Number of packets received by the connection initiator.  4. 

OrigBytes: number of bytes sent.  5. RespBytes: number of 

received bytes. 

Categorical parameter: In contrast to numerical 

parameters, categorical parameters can only take a defined 

number of possible values. In this approach, the following 

four objects are transferred from t to tk:  

1. Transmission protocol: The used Layer 4 protocol (UDP 

or TCP). 2. Used Service: If detected, the application protocol 

used (like , e.g., DNS or DHCP) 3. Target port: The contacted 

target port. 4. Internet protocol destination address: The 

contacted IP address. 

Since it can be assumed that IoT devices behave 

predictably, the observed categorical values can be regarded 

as complete in all tk with sufficiently long training time. This 

means that all possible combinations of categorical values 

occur at least once during the training phase. Using the 

exploratory measure in the previous step, k categories for link 

metadata were found. Each cluster contains at least one t  ∈ 

Tix, where Tix represents a certain subcategory. Whose 

categorical values can be learned further in order to find 

further subcategories within a cluster. These categorical 

values must now be learned in such a way that it can be 

efficiently checked whether there is a matching tk for a given 

ak where ak = tk. Tree structures are suitable for this. All tk are 

grouped in a tree bj  ∈ Bi. Bi contains all the trees of a 

communication model, where i represents a specific device. 

Where j stands for the cluster for which this tree is trained.  

Each element of the tuple tk corresponds to a node in tree bj.  

The depth of the tree corresponds to | tk |. Please note that the 

tree levels are selected in such a way that an optimal tree 

structure is generated.  

For the categorical values selected above, this order is 

(from root to leaf): Transmission Protocol (TCP or UDP) => 

Service => Port Number => IP Address. The reason for this 

is that successive values must always be in a 1:n relationship. 

A transmission protocol such as TCP or UDP can be used 

by several services, one service can use several ports and 

several IP addresses can be addressed via the same port. 

Saving the different combinations of categorical values in 

trees removes redundant elements and simplifies matching 

with new data sets. Trees are generated for each 

communication model. Each leaf of the trees represents its 

own communication category. 

E. Computational Trust 

The anomaly detection generates positive and negative 

experiences. These are summarized in a trust model and used 

to calculate a computational trust value for every individual 

IoT device in the network. This value allows system 

administrators to evaluate the behavior of an IoT device at a 

glance. 

The concept of trust in a social context is well known from 

everyday life. Trust allows people to delegate tasks and 

assess whether information should be shared with another 

individual. Trust also enables us to evaluate information 

shared with us. Computational Trust raises the social 

construct of trust in the field of computer science to build 

trust or distrust between agents (devices or people). A 

practicable definition of trust has been specified by the 

sociologist Diego Gambetta [2]: “Trust (or, symmetrically, 

distrust) is a particular level of the subjective probability with 

which an agent assesses that another agent or group of agents 

will perform a particular action, both before he can monitor 

such action (or independently of his capacity ever to be able 

to monitor it) and in a context in which it affects his own 

action.” So trust is treated as something subjective, which is 

always associated with some form of prediction and 

expectation of behavior. Another important element of trust 

is reputation. 

During the application phase, the communication model 

generates positive and negative experiences based on the 

observed connection metadata and the results of anomaly 

detection. If it is possible to assign the received Conn log (a) 

to a category, a positive experience is saved. If this is not 

possible or if a distribution anomaly is triggered, a negative 

experience is stored. These experiences are persistently 

stored and used by a computational trust model, to calculate 

a trust value for each device. 

This value is the subjective probability value E, which 

indicates the probability with which future experiences with 

a device can be rated positive. The higher this value, the more 

trustworthy is an IoT device. This allows system 

administrators to control the behavior of an IoT device by 

checking a simple numerical value x ∈ [0, . . . 1] to evaluate. 

If the confidence value of a device decreases unexpectedly 

quickly, it can be assumed that the device will be 

compromised because the device triggers a high number of 

anomalies. 

However, not all triggered anomalies actually indicate a 

compromise of the IP-based IoT device. The particularly 

rigid communication model can lead to an increase in false 

positives. However, by calculating trusted information based 

on experience, these individual false positives do not have a 
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strong impact on trustworthiness, which does not 

unnecessarily upset the system administrator. Only with a 

compromise of the IoT device can be expected with an 

increased number of anomalies, whereby the trust value 

decreases permanently. Computational Trust is therefore 

used to find and eliminate the false positive anomalies 

triggered by anomaly detection. 

As trust model the proof-of-concept implementation will 

use Certain Trust, developed by Sebastian Ries [10], which 

allows to represent trust for ubiquitous computing and P2P 

systems in a way, which can be interpreted and updated by 

software agents as well as by users. A key feature of Certain 

Trust is that it is capable of expressing the certainty of a trust 

opinion, depending on the context of use. 

V. CONCLUSION AND OUTLOOK 

This paper has presented and discussed a new cascading 
three step approach for anomaly detection in unsupervised 
communication meta data of IP-based Internet of Things 
devices. The new approach cascades X-means clustering, 
decision tree, and statistical analysis (see Figure 4 below), in 
order to monitor and protect IoT networks. The new approach 
is restricted to IP-based IoT devices, and request/response 
application protocols. The cascading three step approach is 
designed for anomaly detection in unsupervised CoAP and 
HTTP communication meta data. Additionally a trust model 
has discussed in order to allow system administrators to 
control the behavior of an IoT device by simply checking the 
trust value of this particular IoT device. 

It is planned to write an additional research paper on the 
real proof-of-concept implementation of the presented three 
step anomaly detection approach for the next International 
Conference on Cyber-Technologies and Cyber-Systems. 
Additionally, a detailed evaluation of CoAP and HTTP 
communication meta data of IP-based IoT devices, including 
a verification of the false positive rate, shall be done. 

This work was supported by the Center for Research in 
Security and Privacy (CRISP), Darmstadt, Germany. 
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Abstract—Using automated web application vulnerability scan-
ners so that they truly live up to their potential is difficult.
Two of the main reasons for this are limitations with respect
to crawling capabilities and problems to perform authenticated
scans. In this paper, we present JARVIS, which provides technical
solutions that can be applied to a wide range of vulnerability
scanners to overcome these limitations. Our evaluation shows
that by using JARVIS, the vulnerability detection performance
of five freely available scanners can be improved by more than
100% compared to using them in their basic configuration. As
the configuration effort to use JARVIS is small and the con-
figurations are scanner-independent, JARVIS also allows to use
multiple scanners in parallel in an efficient way. In an additional
evaluation, we therefore analyzed the potential and limitations
of using multiple scanners in parallel. This revealed that using
multiple scanners in a reasonable way is indeed beneficial as
it increases the number of detected vulnerabilities without a
significant negative impact on the reported false positives.

Keywords–Web Application Security; Vulnerability Scanning;
Vulnerability Detection Performance.

I. INTRODUCTION

Security testing is important to achieve security and trust-
worthiness of software and systems. Security testing can be
performed in different ways, ranging from completely man-
ual methods (e.g., manual source code analysis), to semi-
automated methods (e.g., analyzing a web application using
an interceptor proxy), to completely automated ways (e.g.,
analyzing a web service using a vulnerability scanner).

Ideally, at least parts of security testing should be auto-
mated. One reason for this is that it increases the efficiency of
a security test and frees resources for those parts of a security
test that cannot be easily automated. This includes, e.g., access
control tests, which cannot really be automated as a testing
tool doesn’t have an understanding of which users or roles
are allowed to perform what functions. Another reason is that
automating security tests allows to perform continuous and
reproducible security tests, which is getting more and more
important in light of short software development cycles.

There are different options how to perform automated
security testing. The most popular approaches include static
and dynamic code analysis and vulnerability scanning. Vulner-
ability scanners test a running system “from the outside” by
sending specifically crafted data to the system and by analyzing
the received response. Among vulnerability scanners, web
application vulnerability scanners are most popular, as web
applications are very prevalent, are often vulnerable and are
frequently attacked [1]. Note also that web applications are

not only used to provide typical services such as information
portals, e-shops or access to social networks, but they are
also very prevalent to configure all kinds of devices attached
to the Internet, which includes, e.g., switches, routers and
IoT devices. This further undermines the importance of web
application security testing.

At first glance, using web application vulnerability scanners
seems to be easy as they claim to uncover many vulnerabilities
with little configuration effort – as a minimum, they only
require the base URL of the application to test as an input.
However, their effective application in practice is far from
trivial. The following list summarizes some of the limitations:

1) The detection capability of a scanner is directly
dependent on its crawling performance: If a scanner
can’t find a specific resource in a web application, it
can’t test it and won’t find vulnerabilities associated
with this resource. Previous work shows that the
crawling performance of different scanners varies
significantly [2], [3].

2) To test areas of a web application that are only reach-
able after successful user authentication, the scanners
must authenticate themselves during crawling and
testing. While most scanners can be configured so
they can perform logins, they typically do not support
all authentication methods used by different web
applications. Also, scanners sometimes log out them-
selves (e.g., by following a logout link) during testing
and sometimes have problems to detect whether an
authenticated session has been invalidated. Overall,
this makes authenticated scans unreliable or even
impossible in some cases.

3) To cope with these limitations, scanners usually pro-
vide configuration options, which can increase the
number of detected vulnerabilities [4]. This includes,
e.g., specifying additional URLs that can be used by
the crawler as entry points, manually crawling the
application while using the scanner as a proxy so it
can learn the URLs, and specifying an authenticated
session ID that can be used by the scanner to reach
access-protected areas of the application if the au-
thentication method used by the web application is
not supported. However, using these options compli-
cate the usage of the scanners and still do not always
deliver the desired results.

4) With respect to the number and types of the reported
findings, different vulnerability scanners perform dif-
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ferently depending on the application under test [5].
Therefore, when testing a specific web application,
it’s reasonable to use multiple scanners in parallel
and combine their findings. However, the limitations
described above make this cumbersome and difficult,
as each scanner has to be configured and optimized
differently.

The goal of this paper is to overcome these limitations and
to evaluate how much this improves the vulnerability detection
performance of web application vulnerability scanners. To
achieve this goal, we developed JARVIS, which provides
technical solutions to overcome limitations 1 and 2 in the
list above. Using JARVIS requires only minimal configuration,
which overcomes limitation 3. And finally, JARVIS and its
usage are independent of specific vulnerability scanners and
can be applied to a wide range of scanners available today,
which overcomes limitation 4 and which provides an important
basis to use multiple scanners in parallel in an efficient way.

JARVIS was then applied to several vulnerability scanners
to evaluate its effectiveness and to learn more about the
potential and limitations of combining multiple scanners. In
this analysis, the five freely available scanners listed in Table I
were used.

TABLE I. ANALYZED WEB APPLICATION VULNERABILITY SCANNERS

Scanner Version/Commit URL
Arachni 1.5-0.5.11 http://www.arachni-scanner.com
OWASP ZAP 2.5.0 https://www.owasp.org/index.php/

OWASP Zed Attack Proxy Project
Skipfish 2.10b https://code.google.com/archive/p/

skipfish/
Wapiti r365 http://wapiti.sourceforge.net
w3af cb8e91af9 https://github.com/andresriancho/w3af

The choice for using freely available scanners was mainly
driven by the goal to evaluate the performance of using multi-
ple scanners in parallel. This is a much more realistic scenario
with freely available scanners as commercial ones often have
a hefty price tag. Also, previous work concluded that freely
available scanners do not perform worse than commercial
scanners [2], [3]. Arguments for using the scanners in Table I
instead of using others include our previous experience with
these scanners, that these scanners are among the most popular
used scanners in practice, and that they perform well in general
according to [3].

The main contributions of this paper are the following:

• Technical solutions to improve the crawling coverage
and the reliability of authenticated scans of web appli-
cation vulnerability scanners. In contrast to previous
work (see Section IV), our solutions cover both as-
pects, can easily be applied to a wide range of scanners
available today, and require only minimal, scanner-
independent configuration.

• An evaluation that demonstrates how much the vulner-
ability detection performance of five different scanners
is improved when using these technical solutions.

• An evaluation that demonstrates the benefits and lim-
itations when using multiple scanners in parallel.

The remainder of this paper is organized as follows:
Section II introduces the technical solutions to overcome the

limitations of today’s scanners and Section III contains the
evaluation results. Related work is covered in Section IV and
Section V concludes this work.

II. TECHNICAL APPROACH OF JARVIS
One way to improve the vulnerability detection perfor-

mance of scanners is to directly adapt one or more current
scanners. However, the main disadvantage of this approach is
that this would only benefit one or a small set of scanners
and would be restricted to scanners that are provided as
open source software. Therefore, a proxy-based approach was
chosen that is independent of any specific scanner, that does
not require adaptation of current scanners, and that can be used
with many scanners that are available today and most likely
also with scanners that will appear in the future. The basic
idea is illustrated in Figure 1.

JARVIS
(Proxy)

HTTP
Requests

HTTP
ResponsesComputer of Tester

Scanner
Web 

Application 
under Test

Figure 1. Proxy-based Approach of JARVIS.

A proxy-based approach means that JARVIS, which pro-
vides the technical solutions to overcome the limitations of
the scanners, acts as a proxy between the scanner and the web
application under test. This gives JARVIS access to all HTTP
requests and responses exchanged between scanner and web
application, which allows to control the entire crawling and
scanning process and to adapt requests or responses as needed.
This proxy-based approach is possible because most scanners
are proxy-aware, i.e., they allow to configure a proxy through
which communication with the web application takes place.
Note that JARVIS can basically be located on any reachable
host, but the typical scenario is using JARVIS on the same
computer as the scanner (e.g., on the computer of the tester).

As a basis for JARVIS, the community edition version
1.7.19 of Burp Suite [6] is used. Burp Suite is a tool to support
web application security testing that allows to record, intercept,
analyze, modify and replay HTTP requests and responses.
Therefore, Burp Suite already provides many basic functions
that are required to implement JARVIS. In addition, Burp Suite
provides an application programming interface (API) so it can
be extended and JARVIS makes use of this API.

JARVIS consist of two main components. The first is
described in Section II-A and aims at improving the test
coverage of scanners. This component should especially help
scanners that have a poor crawling performance. The second
component, described in Section II-B, aims at improving the
reliability of authenticated scans and should assist scanners
that have limitations in this area. Finally, Section II-C gives
a configuration example when using JARVIS to demonstrate
that the configuration effort is small.

A. Improving Test Coverage
Improving test coverage could be done by replacing the

existing crawler components of the scanners with a better
one (see, e.g., [7]–[9]). While this may be helpful for some
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scanners, it may actually be harmful for others, in particular
if the integrated crawler works well. Therefore, an approach
was chosen that does not replace but that assists the crawling
components that are integrated in the different scanners. The
idea is to supplement the crawlers with additional URLs
(beyond the base URL) of the web application under test.
These additional URLs are named seeds as they are used to
seed the crawler components of the scanners. Intuitively, this
should significantly improve crawling coverage, in particular
if the integrated crawler is not very effective. To get the
additional URLs of a web application, two different approaches
are used: endpoint extraction from the source code of web
applications and using the detected URLs of the best available
crawler(s).

Endpoint extraction means searching the source code (in-
cluding configuration files) of the web application under test
for URLs and parameters. The important benefits of this
approach are that it can detect URLs that are hard to find
by any crawler and that it can uncover hidden parameters of
requests (e.g., debugging parameters). To extract the endpoints,
ThreadFix endpoint CLI [10] was used, which supports many
common web application frameworks (e.g., JSP, Ruby on
Rails, Spring MVC, Struts, .NET MVC and ASP.NET Web-
Forms). In addition, further potential endpoints are constructed
by appending all directories and files under the root directory
of the source code to the base URL that is used by the
web application under test. This is particularly effective when
scanning web applications based on PHP.

Obviously, endpoint extraction is only possible if the source
code of the application under test is available. If that’s not
the case, the second approach comes into play. The idea here
is to use the best available crawler(s) to gather additional
URLs. As will be shown later, Arachni provides good crawling
performance in general, so Arachni is a good starting point as
a tool for this task. Of course, it’s also possible to combine
both approaches to determine the seeds: extract the endpoints
from the source code (if available) and get URLs with the best
available crawler(s).

Once the seeds have been derived, they must be injected
into the crawler component of the scanners. To do this,
most scanners provide a configuration option. However, this
approach has its limitations as such an option is not always
available and usually only supports GET requests but no POST
requests. Therefore, the seeds are injected by JARVIS. To do
this, four different approaches were implemented based on
robots.txt, sitemap.xml, a landing page, and the index page.

Using robots.txt and sitemap.xml is straightforward. These
files are intended to provide search engine crawlers with infor-
mation about the target web site and are also evaluated by most
crawler components of scanners. When the crawler component
of a scanner requests such a file, JARVIS supplements the
original file received from the web application with the seeds
(or generates a new file with the seeds in case the web
application does not contain the file at all). Both approaches
work well but are limited to GET request.

The other two approaches are more powerful as they
also support POST request. The landing page-based approach
places all seeds as links or forms into a separate web page
(named landing.page) and the scanner is configured to use
this page as the base URL of the web application under test

(e.g., http://www.example.site/landing.page instead of http:
//www.example.site). When the crawler requests the page,
JARVIS delivers the landing page, from which the crawler
learns all the seeds and uses them during the remainder of
the crawling process. One limitation of this approach is that
the altered base URL is sometimes interpreted as a directory
by the crawler component of the scanners, which means the
crawler does not request the landing page itself but tries to
fetch resources below it. This is where the fourth approach
comes into play. The index page-based approach injects seeds
directly into the first page received from the web application
(e.g., just before the </body> tag of the page index.html).
Overall, these four approaches allowed to successfully seed
all scanners in Table I when used to test the web applications
in the test set (see Section III-A).

As an example, the effectiveness of the landing page-based
approach is demonstrated. To do this, WIVET version 4 [11]
is used, which is a benchmarking project to assess crawling
coverage. Table II shows the crawling coverage that can be
achieved with OWASP ZAP (in headless mode) and Wapiti
when they are seeded with the crawling results of Arachni via
a landing page.

TABLE II. CRAWLING COVERAGE

Raw Coverage when seeded with
Scanner coverage the crawling results of Arachni
Arachni 92.86%
OWASP ZAP 14.29% 96.43%
Wapiti 48.21% 96.43%

Table II shows that the raw crawling coverage of Arachni
is already very good (92.86%), while Wapiti only finds about
half of all resources and OWASP ZAP only a small fraction.
By seeding OWASP ZAP and Wapiti with the crawling results
of Arachni, their coverage can be improved drastically to
96.43%. This demonstrates that seeding via a landing page
indeed works very well.

B. Improving Authenticated Scans

Performing authenticated scans in a reliable way is chal-
lenging for multiple reasons. This includes coping with various
authentication methods, prevention of logouts during the scans,
and performing re-authentication when this is needed (e.g.,
when a web application with integrated protection mechanisms
invalidates the authenticated session when being scanned) to
name a few. It is therefore not surprising that many scanners
have difficulties to perform authenticated scans reliably.

To deal with these challenges, several modules were im-
plemented in JARVIS. The first one serves to handle vari-
ous authentication methods, including modern methods based
on HTTP headers (e.g., OAuth 2.0). The module provides
a wizard to configure authentication requests, can submit
the corresponding requests, stores the authenticated cookies
received from the web applications, and injects them into
subsequent requests from the scanner to make sure the re-
quests are interpreted as authenticated requests by the web
application. The main advantages of this module are that it
enables authenticated scans even if a scanner does not support
the authentication method and that it provides a consistent way
to configure authentication independent of a particular scanner.
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Furthermore, a logout prevention module was implemented
to make sure a scanner is not doing a logout by following
links or performing actions which most likely invalidate the
current session (e.g., change password or logout links). This
is configured by specifying a set of corresponding URLs
that should be avoided during the scan. When the proxy
detects such a request, it blocks the request and generates a
response with HTTP status code 200 and an empty message
body. In addition, a flexible re-authentication module was
developed. Re-authentication is triggered based on matches of
configurable literal strings or regular expressions with HTTP
response headers (e.g., the location header in a redirection
response) or with the message body of an HTTP response
(e.g., the occurrence of a keyword such as login).

C. Configuration Example
To give an impression of the configuration effort needed

when using JARVIS, Table III lists the parameters that must
be configured when scanning the test application BodgeIt (see
Section III-A). In this example, the seeds are extracted from
the source code.

TABLE III. EXAMPLE CONFIGURATION WHEN SCANNING BODGEIT

Parameter Value(s)
Base URL http://bodgeit/
Source code ∼/bodgeit/
Authentication mode POST
Authentication URL http://bodgeit/login.jsp
Authentication parameters password=password

username=test@test.test
Out of scope http://bodgeit/password.jsp

http://bodgeit/register.jsp
http://bodgeit/logout.jsp

Re-auth. search scope HTTP response body
Re-auth. keywords Login, Guest, user
Re-auth. keyword interpretation Literal string(s)
Re-auth. case-sensitive True
Re-auth. match indicates Invalid session
Seeding approach(es) Landing page, robots.txt,

sitemap.xml

The entries in Table III are self-explanatory and show
that the configuration effort is rather small. In particular,
the configuration is independent of the actual scanner, which
implies that when using multiple scanners in parallel (see
Section III-D), this configuration must only be done once and
not once per scanner.

III. EVALUATION

This section starts with a description of the evaluation
setting. Then, the results of the evaluation of the vulnerability
detection performance is presented when the scanners are used
with and without the improvements described in Section II. In
the final step, the benefits and limitations of using multiple
scanners in parallel is evaluated.

A. Evaluation Setting
Table IV lists the web applications that were used to

evaluate the scanners (Cyclone Transfers and WackoPicko do
not use explicit versioning).

All these applications are deliberately insecure and well
suited for security training and to test vulnerability scanners.
The main reason why the applications in Table IV were chosen
is because they cover various technologies, including Java,
PHP, Node.js and Ruby on Rails.

TABLE IV. WEB APPLICATIONS USED FOR THE EVALUATION

Application Version URL
BodgeIt 1.4.0 https://github.com/psiinon/bodgeit
Cyclone Transfers – https://github.com/thedeadrobots/bwa cyclone

transfers
InsecureWebApp 1.0 https://www.owasp.org/index.php/Category:

OWASP Insecure Web App Project
Juice Shop 2.17.0 https://github.com/bkimminich/juice-shop
NodeGoat 1.1 https://github.com/OWASP/NodeGoat
Peruggia 1.2 https://sourceforge.net/projects/peruggia/
WackoPicko – https://github.com/adamdoupe/WackoPicko

The evaluation uses four different configurations that are
listed in Table V.

TABLE V. CONFIGURATIONS USED DURING THE EVALUATION

Config. The scans are executed...
-/- ...without seeding and non-authenticated (i.e., using the basic

configuration of the scanners by setting only the base URL)
S/- ...with seeding and non-authenticated (i.e., using the technical

solution described in Section II-A)
-/A ...without any seeding and authenticated (i.e., using the

technical solution described in Section II-B)
S/A ...with seeding and authenticated (i.e., using both technical

solutions described in Sections II-A and II-B)

As the source code of all these applications is available,
the endpoint extraction approach described in Section II-A is
used for seeding in configurations S/- and S/A.

The test applications were run in a virtual environment that
was reset to its initial state before each test run to make sure
that every run is done under the same conditions and is not
influenced by any of the other scans.

B. Overall Evaluation
The first evaluation analyzes the overall number of vul-

nerabilities that are reported by the scanners when using the
four different configurations described in Table V. Figure 2
illustrates the evaluation results.

The first observation when looking at Figure 2 is that some
scanners identify many more vulnerabilities than others. For
example, Skipfish reports about ten times as many findings as
Arachni or w3af. However, this doesn’t mean that Skipfish is
the best scanner, because Figure 2 depicts the “raw number
of vulnerabilities” reported by the scanners and does not take
into account false positives, duplicate findings, or the criticality
of the findings. For instance, about 80% of the vulnerabilities
reported by Skipfish are rated as info or low (meaning they
have only little security impact in practice) while the other
scanners report a much smaller fraction of such findings.

More importantly, Figure 2 shows that the technical solu-
tion to improve test coverage works well with all scanners and
all test applications included in the evaluation. The number
of vulnerabilities reported when seeding is used is nearly
always greater than without seeding. For instance, Arachni
reports 64 vulnerabilities in Juice Shop in configuration S/-
compared to 47 in configuration -/-. Similarly, when using
authenticated scans, Arachni reports 39 findings in BodgeIt
in configuration S/A compared to 12 in configuration -/A.
The same is true when adding up the vulnerabilities of a
specific scanner over all test applications: Configuration -/-
always reports fewer findings than configuration S/- (e.g., 162
vs. 254 with Arachni) and configuration -/A always reports
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-/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A
Arachni OWASP ZAP Skipfish Wapiti w3af

WackoPicko 39 50 36 54 101 137 79 117 313 484 526 617 14 21 14 20 28 55 26 34
Peruggia 4 20 4 20 79 98 62 78 25 81 27 69 1 17 2 18 2 14 2 7
NodeGoat 22 24 44 42 83 84 79 80 235 327 262 293 3 32 23 49 9 14 19 25
Juice Shop 47 64 47 60 29 29 49 49 20 229 33 104 19 19 19 19 4 7 4 8
InsecureWebApp 11 24 7 26 59 102 58 75 66 128 130 183 9 36 8 31 19 30 15 22
Cyclone Transfers 20 23 28 32 58 85 90 103 154 359 183 886 62 102 119 158 11 25 12 31
BodgeIt 19 49 12 39 126 149 102 125 51 145 90 252 70 89 134 110 74 94 70 92
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Figure 2. Reported Vulnerabilities per Scanner and Test Application.

fewer findings than configuration S/A (e.g., 178 vs. 273 with
Arachni).

Likewise, Figure 2 demonstrates that the technical solution
to improve authenticated scans also works well. For instance,
when scanning Cyclone Transfer, Wapiti reports 62 findings
in configuration -/- and 119 findings in configuration -/A.
Also, scanning in configuration S/- delivers 102 vulnerabilities,
which can be increased to 158 in configuration S/A. And
finally, this also holds true over all applications, as for most
scanners, the bars in Figure 2 are higher in configuration -
/A compared to -/- and in configuration S/A compared to S/-.
Note that to make sure that authenticated scans were carried
out reliably, the involved requests and responses were analyzed
after each scan. This showed that it was indeed possible to
maintain authentication during the entire scan, which further
undermines that the technical approach is sound.

Intuitively, additionally seeding a scanner or performing
authenticated scans should always also report all vulnerabilities
that are detected when scanning without additional seeding
or without authentication. However, this is not the case. To
demonstrate this, it was analyzed how many of the vulnerabil-
ities reported in the basic configuration are also found when
scanning in other configurations. To do this, the reports of the
scanners were first processed with ThreadFix [12]. ThreadFix
allows to normalize reports of different scanners, to eliminate
duplicates, and to compare the results of different scanners or
different runs by the same scanner. Figure 3 shows the results
of the analysis for the findings reported by Arachni. Note that
because of the processing with ThreadFix and in contrast to
Figure 2, the bars now represent the number of unique findings
that were reported.

First of all, Figure 3 undermines what was observed above:
Additional seeding and authenticated scans result in a greater
number of reported findings, as can be seen by comparing the
heights of the bars. In addition, as the bars represent unique
vulnerabilities, the additional findings are not just duplicates
of already detected findings, but they are truly new findings.
Beyond this, Figure 3 confirms that when using additional
seeding and/or authenticated scans, not all vulnerabilities that
are reported in the basic configuration -/- are detected again.
For example, considering BodgeIt, Arachni reports 16 findings
in configuration -/-. When using configuration S/-, then 21
findings are reported in total, of which 10 are “new” findings
compared to -/- (indicated by the green part of the bar). How-
ever, only 11 of the 16 vulnerabilities reported in configuration
-/- are detected again (“old” findings, indicated by the gray part
of the bar) and 5 are missing. The same can be observed with
the other configurations and with all test applications, which
means that in general, additional seeding and/or authenticated
scans deliver a significant number of new findings, but also
misses several of the findings that are reported in the basic
configuration. Note that the same behavior can be observed
with all scanners, but only the results of Arachni are included
due to space restrictions.

Determining the exact reasons for this behavior would
require a detailed analysis of the crawling components of the
scanners and the web applications in the test set, which is be-
yond the scope of this work. Therefore, only a few arguments
are given that show the observed behavior is reasonable:

• Providing the crawler component of a scanner with
additional seeds has a direct impact on the order
in which the pages are requested. A different order
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Figure 3. Reported Unique Vulnerabilities by Arachni and per Test Application.

implies different internal state changes within the web
application under test [7], which typically leads to a
different behavior of the web application and therefore
to different findings.

• When doing authenticated scans, some of the re-
sources that do not require authentication are often no
longer reachable, e.g., registration, login and forgotten
password pages. As deliberately insecure web appli-
cations often use these resources to place common
vulnerabilities, this has a major impact in this test
setting.

The consequence of this observation is that when scanning
a web application, the scanners should be used in all four
configurations to maximize the number of reported findings.
And obviously, although this was not analyzed in detail, when
an application provides different protected areas for different
roles, scanning should be done with users of all roles.

C. Detailed Evaluation
The evaluation in Section III-B demonstrates that when

considering just the number of reported vulnerabilities,
JARVIS works well. However, its still unclear whether there’s
a true benefit in practice because it may be that the additionally
found vulnerabilities are mainly false positives or non-critical
issues.

To get a better understanding, a more detailed analysis
focusing on SQL injection (SQLi) and cross-site scripting
(XSS) vulnerabilities was done. To do this, all reported vul-
nerabilities of these types were manually verified to identify
them as either true or false positives. This required a lot of
effort, which is the main reason why the focus was set on
these two types. Nevertheless, this serves well to evaluate the
true potential of JARVIS as both vulnerabilities are highly
relevant in practice and highly security-critical. In addition,
the test applications contain several of them, which means
SQLi and XSS vulnerabilities represent a meaningful sample
size. Figure 4 shows the results of this analysis. Just like in
Figure 3, the bars represent the number of unique findings that
were reported.

Looking only at the true positives (green bars), Figure 4
confirms that JARVIS indeed works well in the sense that using
additional seeding and authenticated scans allows the scanners
to detect highly relevant and security-critical vulnerabilities
that are not reported in the basic configuration, which is true
for all scanners. The results also undermine that it’s important

to perform scans in all four configurations (named configu-
ration All), as the sums of the detected vulnerabilities (bars
labeled with All) are always greater than the vulnerabilities
detected in any of the other configurations. Furthermore, the
results demonstrate that for each of the five scanners, com-
bining the results of all configurations yields more than twice
as many vulnerabilities (true positives) as when performing
scans only in the basic configuration -/-, so JARVIS results in
an improvement of over 100%.

In addition, Figure 4 shows that scanners that tend towards
reporting false positives (red bars) do so also in the advanced
configurations, but overall, the fraction of false positives re-
mains more or less constant independent of the configuration.
That’s an important results as it demonstrates that the technical
improvements result in more true findings without an increased
percentage of false positives. And finally, Figure 4 allows
to compare the scanners. In particular, based on the test
applications and focusing on SQLi and XSS vulnerabilities, it
shows that Arachni performs best (without producing a single
false positive) and Skipfish performs quite poorly, especially
with respect to false positives. This also puts into perspective
the results of the first evaluation (see Figure 2), where Skipfish
reported many more vulnerabilities than the other scanners.

D. Combining Multiple Scanners

In the final evaluation, the benefits of using multiple
scanners in parallel are analyzed. Figure 5 shows the com-
bined unique true and false positives when using individual
scanners and different combinations thereof and when using
the scanners in the basic configuration -/- or in configuration
All. The results are ranked from left to right according to the
number of true positives that are identified in configuration All.

Looking at the results in configuration All, the rightmost
bar combines the results of all five scanners, which obviously
delivers most true positives (51), but which also delivers most
false positives (86). The results also show that in this test
setting, Arachni performs very well on its own, as it finds 41
true positives (without a single false positive), which means
that the other four scanners combined can only detect 10
true positives that are not found by Arachni. Looking at
combinations of scanners, then Arachni & Wapiti (Ar/Wa)
perform well and identify 45 of the 51 true positives with-
out any false positive. Combining Arachni, OWASP ZAP &
Wapiti (Ar/OZ/Wa) is also a good choice as it finds 47 true
positives with only a few false positives. This demonstrates
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Figure 4. Reported Unique SQLi and XSS Vulnerabilities per Scanner, over all Test Applications.
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Figure 5. Reported Unique SQLi and XSS Vulnerabilities using different Scanner Combinations, over all Test Applications.

that combining multiple scanners is beneficial to increase the
number of detected true positives without a significant negative
impact on the number of reported false positives. However,
blindly combining as many scanners as possible (e.g., all five
scanners used here) is not a good idea in general as although
this results in most true positives, it also combines all false
positives. Finally, comparing the results in configuration All
with the ones in configuration -/- demonstrates that even when
combining multiple scanners, configuration All increases the
number of detected true positives always by more than 100%,
which again undermines the benefits of JARVIS.

Note that since seven test web applications that cover
several technologies are used, the results are at least an indica-
tion that the combinations of scanners proposed above should
perform well in many scenarios. However, this is certainly no
proof and it may be that other combinations of scanners are
better suited depending on the web application under test. This
means that in practice, one has to experiment with different
combinations to determine the one that is best suited in a
specific scenario.

IV. RELATED WORK

Several work has been published on the crawling coverage
and detection performance of web application vulnerability
scanners. In [2], more than ten scanners were compared, with
the main results that good crawling coverage is paramount to
detect many vulnerabilities and that freely available scanners
perform as well as commercial ones. The same is confirmed by
[3], which covers more than 50 free and commercial scanners

and which is updated regularly. In [4], Suto concludes that
when carefully training or configuring a scanner, detection
performance is improved, but this also significantly increases
the complexity and time effort needed to use a scanner.
Furthermore, Bau et al. demonstrate that the eight scanners
they used in their analysis have different strengths, i.e. they
find different vulnerabilities [5].

Other work specifically aimed at improving the coverage
of vulnerability scanning. In [7], it is demonstrated that by
taking into account the state changes of a web application
when it processes requests, crawling and therefore scanning
performance can be improved. In [8], van Deursen et al.
present a Selenium WebDriver-based crawler called Crawljax,
which improves crawling of Ajax-based web applications. The
same is achieved by Pellegrino et al. by dynamically analyzing
JavaScript code in web pages [9].

Our work presented in this paper builds upon this previous
work as it delivers practical and effective technical solutions to
overcome the limitations and exploit the potential identified by
others. What sets our approach apart from other work is that
it addresses not only crawling coverage but also the reliability
of authenticated scans, that it is scanner-independent, and
that it can easily be applied to most vulnerability scanners
available today. In addition, we provide a detailed evaluation
using several scanners and several test applications that truly
demonstrates the benefits and practicability of our technical
solutions.
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V. CONCLUSION

In this paper, we presented JARVIS, which provides tech-
nical solutions to overcome some of the limitations – notably
crawling coverage and reliability of authenticated scans – of
web application vulnerability scanners. As JARVIS is inde-
pendent of specific scanners and implemented as a proxy,
it can be applied to a wide range of existing vulnerability
scanners. The evaluation based on five freely available scanners
and seven test web applications covering various technologies
demonstrates that JARVIS works well in practice and that
the vulnerability detection rate (true positives) of the scanners
can by improved by more than 100% compared to using the
scanners in their basic configuration.

The configuration effort to use JARVIS is small and the
configurations are scanner-independent. Therefore, JARVIS
also provides an important basis to use multiple scanners
in parallel in an efficient way. The provided analysis shows
that combining multiple scanners is indeed beneficial as it
increases the number of true positives, which is not surprising
as different scanners detect different vulnerabilities. However,
it was also demonstrated that blindly combining as many
scanners as possible is not a good idea in general because
although this results in most true positives, it also delivers
the sum of all false positives reported by the scanners. In the
evaluation, the combination of Arachni & Wapiti or Arachni,
OWASP ZAP & Wapiti yielded the best compromise between a
high rate of true positives and a low rate of false positives. As a
representative set of web application technologies was used in
the evaluation, it can be expected that these combinations work
well in many scenarios, but this is no proof and in practice, one
has to experiment with different combinations to determine the
one that is best suited in a specific scenario.
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Abstract—Dynamic analysis solutions are applied to prevent
malicious applications from bypassing Android sandbox using
dynamic payload techniques. However, such dynamic analysis
methods are vulnerable to malware that use Anti-Analysis
and Anti-Emulator techniques. Malicious applications use Anti-
Emulation techniques to archive sensitive information that can
be used to distinguish between sandbox and real device. Upon
identifying sandbox environment, malicious applications may
implement several of evasion techniques to avoid from being
analyzed. The main problem, however, is that it can be easy
for even a novice user to get sensitive information provided by a
sandbox with just a little effort. Although there are work-around
solutions for solving the problem by directly updating the sensitive
information before building the sandbox, they are still containing
some limitations in practice. Firstly, it is inconvenient to change
the sensitive information after the sandbox or instrumentation
module are deployed. Secondly, the updated information can
be inconsistent and illogical. To provide a flexible approach
for these issues, this paper proposes a dynamic approach that
updates the sensitive information based on Sensitive Information
Provider server that is located outside the sandbox. The Sensitive
Information Provider (SIP) could be a collector that retrieves
and processes sensitive information from one or more seeder
mobile devices or could be a set of mobile devices. Because of
the device-based information, the proposed approach provides
a consistence and logic output when it is compared with other
solutions. Furthermore, since the proposed solution separates the
source of sensitive information from the sandbox, it is possible
to update the sensitive information even after the sandbox was
deployed. However, the proposed approach sacrifices performance
to flexibility and thus it is only suitable to specific environments.
The implementation section also analyzes the use-cases which are
suitable to apply the proposed solution.

Keywords–Android Analysis; Sensitive Information Provider;
Anti-Analysis

I. INTRODUCTION

There are three main analysis methods that have been used
by Android sandboxes to analyze an application: 1) Static anal-
ysis; 2) Dynamic analysis and 3) Hybrid analysis [1]. Static
analysis (also known as Source code analysis) technique works
by extracting and analyzing information based on the given
android application package (APK) file. AndroidManifest.xml,
resources and Dalvik bytecode are the most useful information
for analysis since they contain the structure of the application,
permissions for the application, and behavior of the application
(through the byte-code). Representatives for static analysis
approach are FlowDroid [2], Droid Intent Data Flow Analysis

for Information Leakage (DIDFAIL), AndroSimilar [3]. Unlike
static method that performs analysis through śtatic(́or non-
running) source code, dynamic approach performs application
analysis by running the application inside a customized sand-
box. Behaviors of an analyzed application are recorded and
inspected to check for malicious activity. A hybrid solution
is the combination of both static and dynamic methods. On
the other hand, Android malware families also evolve them-
selves in order to avoid being scanned by the analyzer and
to bypass the sandbox system. Dynamic payload techniques
are usually used by an Android malware to deal with static
analysis. With dynamic payload techniques, a malicious code
can be encrypted or obfuscated within the Android package
to go undetected by the analyzer. However, such dynamic
payload techniques are futile against dynamic analysis sandbox
since the analyzed application is installed and run directly on
the sandbox environment. To handle with dynamic analysis
sandbox, cybercriminals usually perform anti-analysis tech-
niques to avoid detection [4]. There are workaround solutions
for solving the problem of sensitive information. Sandbox
provider can modify the sensitive information before building
the sandbox or takes advantage of dynamic instrumentation
tools like Xposed and Frida to provide a fixed manipulation
scenario. However, it is troublesome to rebuild the whole
source code in order to change the manipulation scenario.
Moreover, the function does not always work since the return
of sensitive value sometimes needs to be logic and consistent.
In order to archive better flexibility of sensitive information,
this paper introduces a dynamic approach to separate between
the sensitive information provider and sandbox environment.
The proposed model is aimed at increasing the flexibility of
sensitive information inside analysis sandboxes. The rest of
the paper is organized as follows. Section 2 provides more
information and examples about the analysis methods, anti-
emulation techniques. Section 3 introduces proposed approach.
Section 4 shows the implementation result with analysis of the
new proposed model. Last section summaries the contribution
and future research for the research topic.

II. RELATED WORKS

In this section, in order for the reader to easily reach to the
subject mentioned in the proposed models, we introduce the
basic knowledge related to the analysis. In addition, solutions
related to anti-analysis are also mentioned, along with related
articles for providing knowledge about traditional methods of
checking sandbox environment.
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A. Analysis Methods
Analysis methods aim at assessing the application vulnera-

bility as well as analysis an application for malicious code. The
analysis methods consists of: 1) Static analysis; 2) Dynamic
analysis and 3) Hybrid analysis. The following subsections
describe detail about each approach.

1) Static Approach: Static method analyzes an application
without actually executing the APK file. Most of static analysis
methods are usually depend on the decompilation technique
to repackage the APK file. There are various types of static
analysis methods including: Resources-based and Bytecode-
based analysis. Basically, resources-based analysis extracts
the configuration and resources files for detecting abnormal
information. An application are considered abnormal either
when it contains patterns that match with a specific malware
signature or when it requests a combination of sensitive
permissions [5]–[8]. Bytecode-based analysis extracts classes,
methods or instructions and applies control-flow analysis to
check for malicious actions. Taint analysis that uses to keep
track the data that propagate from a source of sensitive
information to sink [9] [10]. Data propagation tracking method
usually applied in bytecode-based analysis to detect privacy
leakage. Since there is no requirement to deploy and execute
application, the performance of static analysis is quite fast.
However, static analysis can be easily bypassed by using
dynamic payload technique like code encryption, dynamic
loading, or reflection technique. There are many applicants for
static analysis including Androguard, AndroSimilar, APKIn-
spector, Drozer (also known as Mercury).

2) Dynamic Approach: In dynamic analysis, an application
is installed and run within a customized sandbox. In order to
collect behaviors of an application, the sandbox or android
framework running inside sandbox has to be modified. In
order to interact with the applications, tools that generate
events have been used. One of the example for generating
random events are monkey tool that is provided together with
the Android SDK. There are various methods that applied to
the sandbox to check for malicious application, but they are
useless if the application refuses to execute all of its code.
Because of that reason, the most challenge point in deploying
a dynamic analysis sandbox is to prevent an application from
performing Anti-Emulation techniques. Because an application
needs to be run and inspected inside the sandbox, dynamic
analysis is a trade-off between performance and efficiency. The
representatives for dynamic analysis are Andromaly, Bouncer,
TaintDroid, Droidbox and various of research topics about
dynamic sandbox [5], [11]–[15].

3) Hybrid Approach: Hybrid approaches take advantage of
both static and dynamic analysis. [1] has proposed a hybrid
approach for Android malware analysis where both static
analysis and dynamic analysis are performed and outputs are
analyzed to check for suspicion behaviors. Although there are
not many representatives for the hybrid approach, this idea
could be a new direction for anti-malware researchers.

B. Anti-Emulation Methods
Anti-Emulation methods are used by cybercriminals to

check for the execution environment and to avoid being
scanned by the sandbox. This paper divides Anti-Emulation
techniques into two type of methods: 1) Sandbox Evasion

and 2) Sandbox Detection. The following subsections describe
detail about each approach.

Sandbox evasion technique is the method of hiding a part
of source code until one or more conditions are met [16] [17].
An evasion technique that requires human interactions can
be solved by tools that generate random events like Monkey
tool [18]. It is note that not all applications that use evasion
technique are malicious, some applications that related to
financial or banking environment usually use evasion technique
to avoid being run on the rooted device. Some applications that
contain Easter egg, which is a hidden message or feature, also
use evasion technique for hidden features. On the other side,
malicious applications also depend on the evasion technique
to hide their malicious code. Since both benign and malicious
applications sometimes use the same evasion techniques, it
is difficult for the sandbox to determine between the benign
and malicious application. There are various type of evasion
technique. One of the simplest methods is to configure the
execute time. In the time configuration method, a malicious
code will be executed whenever a certain time condition is met.
The time configuration technique is effective for sandboxes
that only spend fix amount of time to do analysis. The other
evasion technique is human behaviour configuration. In human
behaviour configuration, a specific code will be execute only
if a specific human action is detected, for example: touch
or scroll onto the screen. Sandbox evasion technique can be
solved by simply satisfying the condition given by application.
For example, a time configuration method can be circumvented
by updating the sleep duration using repackaging technique or
manipulating the clock of sandbox. Repackaging technique al-
lows sandbox to decode and make modification before rebuild
the source code. An evasion technique that requires human
interactions can be solved by tools that generate random events
like Monkey tool [18]

A more aggressive use of evasion techniques is actively de-
tection of analysis sandbox. Sandbox detection techniques are
based on the fact that sandbox is not a real mobile device [4],
[19]. This paper calls the information that used to distinguish
between a sandbox and real device as sensitive information.
A sandbox is made by various system layers including: 1)
Application layer and 2) Virtualization layer. Because of that
reason, there are various type of sensitive information that
can be achieved through those sandbox layers. In application
layer, users (both malicious and benign) can get sensitive
information through API call provided by Android framework.
For example: getDeviceId call from TelephonyManager object
return a device registration number of a mobile device, but
it is return null in sandbox like Android Virtual Device. In
Virtualization layer, sensitive information are information that
related to different of network information, process difference,
or caching.

III. PROPOSED MODEL

This section describes the hybrid approach as a work-
around solution for sandbox detection technique. The word
hybrid means a combination between sandbox and mobile
device. The main motivation is to separate between sandbox
and sensitive information source. Figure 1 illustrates the design
for our approach.

The proposed approach creates an interceptor module
called Sensitive Information Interceptor (SI Interceptor) that

31Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-652-1

ICIMP 2018 : The Thirteenth International Conference on Internet Monitoring and Protection

                            38 / 48



Figure 1. Hybrid Sandbox Architecture

stays between application and application framework. The SI
Interceptor will check all request for information of sandbox
and intercept sensitive requests. Sensitive request is a request
that is expected to return a sensitive data. The sensitive
request is forwarded to Sensitive Information Provider (SIP).
Upon receiving the request to communicate, the SIP create
an SI Application to handle the request. After get the request
information, an SI Application processes and queries to the
Sensitive Information Pools (SI Pools) for the related sensitive
information. After getting the sensitive information, the SI
Application send sensitive response to SI Interceptor that will
return the data back to the requested application.

There are some points that must be considered for this
architecture: 1) Feasibility, 2) Performance, and 3) Security.
Because new interceptor module is added into the sandbox,
it is obvious that the performance will be reduced. There
are some factors that are related to performance problems
including the cost of interception, network, and SI request.
The SI request cost is depending on the difference between SIP
side and sandbox. However, since the SIP server can provide
information for many applications as well as sandboxes at the
same time, SIP server can apply caching technique to some
or all sensitive information. Network cost can be reduced by
setup the sandbox and SIP server in the same gateway. The

TABLE I. LIST OF HYBRID API

Type API name Return Type

TelephonyManager getDeviceId String

TelephonyManager getLine1Number String

TelephonyManager getSubscriberId String

TelephonyManager getSimCountryIso String

TelephonyManager getNetworkCountryIso String

TelephonyManager getSimSerialNumber String

TelephonyManager getSimState Integer

TelephonyManager getNetworkType Integer

LocationManager getLastKnownLocation Location

ConnectivityManager getNetworkInfo NetworkInfo

interception cost is depending on the intercept method that is
applied to the system.

The security also needs to be considered. Since the sen-
sitive request will be sent out to the network, it should be
protected in a way that it can not be manipulated by Android
applications. However, in case if the request for network
information is considered as sensitive, the Android application
will receive information from SIP server, which will not
exposed the sandbox network information. The second security
consideration is the security of SIP server. If SIP server is not
a server that collect mobile information but a mobile device, it
could be harm by the malicious sensitive request. In this case,
the SI Interceptor should wisely decide which request could
be considered as sensitive information.

IV. IMPLEMENTATION

This paper analyses the effects of hybrid architecture
on 28 malware samples that are known to include anti
emulator techniques that check for sensitive information.
The samples are provided by VirusShare. We decided to
use only a small samples set since the main purpose of
this implementation is to demonstrate the possibility of
our design. Furthermore, since the approach is only at the
prototype stage, the API covered by this implementation
is also limited. The SIP server is a mobile device with
Universal Subscriber Identity Module (USIM) setup. The
authors have chosen 3 android API packages that are usually
used by malware to check the sensitive information. These
packages are 1) android.telephony.TelephonyManager,
2) android.location.LocationManager, and 3) an-
droid.net.ConnectivityManager. List of hybrid API is
shown in the Table I.

Table II shows the result between Log API and Hybrid
API when executing all apps in android VM. Log API means
that the authors only log the API call and do nothing with the
result. Some apps need to run with UI tool to simulate user
behaviours. The result shows hybrid solution could reveal more
information called by the malware in some cases.

A. Performance Problem
In the second implementation, the author chose one method

to be intercepted is ”getDeviceId” that class by the object
of TelephonyManager class. This function will return the
device ID of a mobile device. In case of the sandbox envi-
ronment, the ”getDeviceId” method will return a null value
or 00000000000000 since the value is fixed before sandbox
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TABLE II. LOG API AND HYBRID API

Number Process name Log Only Hybrid

1 nang.dv (with UI tool) 8 8

2 com.googleapi.cover 1 1

3 com.software.application 1 1

4 com.hou.jokescreen 7 9

5 com.mobi.screensaver.fzllove1 1 1

6 com.liuwei.XiaopinClub 17 33

7 net.xfok.info.liujialing 2 4

8 com.readnovel.book 32415 6 11

9 com.xiaoyangrenworkroom.facerecognize 15 25

10 ru.android.apps 3 3

11 Jk7H.PwcD 5 5

12 com.bratolubzet.stlstart 2 2

13 ngjvnpslnp.iplhmk 8 8

14 com.zhuaz.bugaishipdq 0 0

15 com.soft.install 1 1

16 install.app (with UI tool) 0 7

17 com.android.mmreader739 5 5

18 com.googleapi 2 2

19 com.hdc.bookmark1566 1 2

20 com.outfit7.talkinggingerfree 9 10

21 com.sinosoft.duanxinwzw 39 62

22 com.android.system 0 6

23 com.tencent.token 12 12

24 com.baoyi.meijiaba 19 43

25 com.unitepower.mcd33305 6 16

26 azbc88881.jingdian10 6 25

27 com.android.kmax.tie 13 22

28 com.androidbox.lz3net2 1 1

TABLE III. 1ST TIME REQUEST BETWEEN HYBRID AND NO
HYBRID

Number of 1st Times Request Hybrid No Hybrid

1 210 0

2 205 0

3 403 1

4 31 0

5 149 0

6 103 0

7 79 0

8 96 1

9 130 0

10 104 0

is built. On the other hand, if the method is called by an
application in a mobile phone, the return value is the device ID
of that mobile. This demo involves the mobile phone as SIP
server and a Virtual Machine (VM) run Android OS. Both VM
and mobile phone connect to the same gateway. Also, a simple
application is installed inside Android OS.

After the implementation, with 20 requests sent to the SIP
server, the average time is only 7 milliseconds with caching
from SIP server. The application shows a very slow response
from the first request. Table III shows the cost (in milliseconds)
for each 1st time request (by clearing the cache of SIP server
for each try).

It is easy to notice that only the first request cost much
performance, about 151 milliseconds for each request. Because

of that reason, system with distributed SIP applications may
reduce the average time more closely to the performance of
non-intercepted sandbox.

Based on the implementation result, the effectiveness for
one application with one method in proposed model could be
calculated as follows:

δ =

{
TI + TN + TR if 1st request
TI + TN + TC if not 1st request

Where δ is the average performance per request. TI ,
TN , TR, and TC are the performance cost for interception,
networking, request of SI information (in the SIP server), and
cost for getting information from cached.

And the effectiveness for one application with n methods
will be calculated as follows:

δ =

T (1)I+T (1)N+T (1)R+
n∑

i=2

(T (i)I+T (i)N+T (i)C)

n

At last, the effective of m applications with n methods is:

δ =

T (1)I+T (1)N+T (1)R+m∗
n∑

i=2

(T (i)I+T (i)N+T (i)C)

n∗m

As m goes larger, the SI request time will get smaller. In
this case, the performance of proposed approach will depend
on the time cost for intercept a method and cost for request
transmit to the network. In a LAN network (SIP and sandbox
have same gateway), the cost of request transmit could be very
small. In an idea condition, the different between performance
of proposed approach and non-intercepted approach is only
depending on the interception algorithm.

B. Pre-initialize Solution for SIP server

The main problem of proposed approach is that it takes
the first sensitive request a long time to response. Since an
application may usually call a method for one time only
during its life-cycle, the performance will be very slow if the
sensitive result have not been cached. In order to solve the
problem, the SIP server could run pre-initiate function that
caches common and high frequency sensitive methods before
establishing communication channel with any SI interceptor.
By doing the pre-initiate method, the effective of common
sensitive methods could be improved into:

δ =

n∑
i=1

(T (i)I+T (i)N+T (i)C)

n

C. Discussions Of The Approach

The solution can be applied as an additional module
for supporting dynamic analysis. The experiments focus on
feasibility and performance overhead of the method before
further development. Since it is only at the prototype stage,
a small number of dataset were applied. According to the
performance test result, there is a delay for the first request
of sensitive information in which a malicious app can use as a
fingerprint for sandbox detection. However, for the second time
or if there is another app already request the same information,
the delay is the same as provided by existing instrumentation
method.
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V. SUMMARY AND FUTURE WORK

The existing solutions for manipulating sensitive informa-
tion are through instrumentations and modification of An-
droid source code. However, those existing approaches often
provide fixed manipulation scenario with illogical informa-
tion. Because of the above problem, this paper proposed
an instrumentation-based approach for a sandbox to improve
quality of sensitive information. Basically, the proposed model
provides an intercept-based module for handling the request
for sensitive information and forward to a remote Sensitive
Information Provider (SIP) server. The SIP server has the
responsibility to process and returns the value that is similar to
a sensitive information of the mobile device. The performance
result shows a close to non-intercepted from the second request
of the same method. In the future, more research will be done
in order to provide depth analysis of security problems and to
optimize the architecture.
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Abstract—Evaluating a security product requires the ability to
conduct tests to assert that the product reacts as expected, both
in terms of scalability and semantics. However, the production
of evaluation data at a large scale with a high semantic is very
costly with current methods. Load tests are semantically poor
and semantic tests require a testbed environment to be deployed
at a large scale. Evaluation data from real world activity need
to be anonymized and a compromise must be made between
the request of the evaluator and the interest of the real world
organization. Moreover, to evaluate the full scope of a security
product, the evaluator needs multiple test methods. In this paper,
we describe a new methodology to produce evaluation data with
a customizable level of realism and the possibility to be deployed
at a large scale with lower resource requirements for a network
support than a testbed environment. Our prototype relies on this
method to generate realistic activity for up to 250 simulated users
interacting with a real-world webmail server.

Keywords–cybersecurity; simulation; evaluation.

I. INTRODUCTION

Security products can be defined as all services and prod-
ucts designed to protect a service, machine or network against
attacks. Like other products, they must be tested to guarantee
adherence to specifications. Tests can be divided into two
categories: semantic tests – tests of capability that require data
with a high-level of semantic; and load tests – tests that subject
the product to a large amount of data.

With current testing methods [1], load tests are seman-
tically poor, thus not realistic. Meanwhile, semantic tests
either require vast amount of resources to reach large scales
(e.g., testbed environments), or rely on real life captures with
their own set of challenges (e.g., elaboration of the ground
truth and privacy concerns). Moreover, a complete evaluation
of a security product tests several properties of the product
and the evaluator needs to select different methods with the
right granularities. The granularity of interactions of the data
corresponds to the level of control or precision of the data.
For an evaluator, the right granularity for a testing method is
a granularity that is fine enough to test specific vulnerabilities
or properties. Rather than relying on several methods with
different granularities, we aim to elaborate a method to produce
data with a customizable granularity and the possibility to
achieve large scale generation with appropriate semantic.

In this paper, we present a methodology to produce simu-
lated evaluation data with different granularities independently

of the network support. To achieve variable granularity of
our model, we formally define two concepts. First, a Data
reproducing function represents the level of realism of the
simulation (the property of the data to reproduce) and decides
the level of control over the data. Second, elementary actions
correspond to the most atomic actions the evaluator can
simulate, the basis upon which the experimental scenario will
be built. We also develop a prototype of our methodology and
validate our approach with a series of experiments.

The remainder of this paper is organized as follows. Section
II reviews the related work on the production of evaluation
data and their limits. Section III defines the concepts of our
methodology and uses those concepts to introduce our model.
Section IV explains the different choices we made for the
implementation of our prototype and shows the experiment
results to validate our model. Finally, we conclude our work
in Section V.

II. RELATED WORK

A. Semantic tests
Semantic tests generate evaluation data with high semantic

value. Their goal is to generate realistic workloads to produce
real-life reactions of the security product or to test specific
functionalities and vulnerabilities of the product. One of the
approaches to obtain data with the highest semantics is to
use real world data, which can come from several sources:
provided by organizations doing real world productions, or
obtained from honeypots where actors from the real world
were tricked into interacting with a recording system to learn
about the current trends (ex: generation of intrusion detection
signatures using a honeypot [2]).

However, the evaluator does not have a complete knowl-
edge of the content of the data. Some of it can be misidentified
or the intent behind some actions misinterpreted. Moreover,
real world data are difficult to obtain. Organizations are reluc-
tant to provide data that can damage their activity, and data
anonymization has the drawback of deleting relevant informa-
tion (e.g., challenges of anonymization [3] and desanonymiza-
tion techniques [4]). As for honeypots, the evaluator can never
know beforehand how many data he can obtain or what kind
of data he will gather.

Another way to obtain high semantic data is to generate
them according to a defined scenario, relying on tools and

35Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-652-1

ICIMP 2018 : The Thirteenth International Conference on Internet Monitoring and Protection

                            42 / 48



scripts to produce specific and calibrated data. Those scripts
can be homegrown scripts, exploits, or software testing scripts
that try every function of a software to validate its specifica-
tions. Manually generating the data (e.g., video transcoding
[5], file copy operations [6], compiling the Linux kernel [7],
etc.) offers the greatest control over the interactions inside
the data, but the automation of the activity generated through
scripts with tools like exploit databases (Metasploit [8], Nikto
[9], w3af [10], Nessus [11]) also offers good control.

However, those methods are quite time-consuming or re-
quire in-depth knowledge of the evaluated product. Moreover,
the available tools are not necessarily appropriate for cus-
tomized generation.

B. Load tests
Load tests create stress on the tested product [12]. The

most common tests use workload drivers like SPEC CPU2000
[7], ApacheBench [13] [14], iozone [14], LMBench [15] [7],
etc. They produce a customizable workload with a specific
intensity. The evaluator can also manually start tasks or pro-
cesses known to stimulate particular resources (e.g., kernel
compilation [13] [15], files download [16], or execution of
Linux commands [16]). Those methods are designed to test
particular resources of a system (like I/O, CPU and memory
consumption) or produce large amount of workload of a spe-
cific protocol. For example, SPEC CPU 2017 generates CPU-
intensive workloads while ApacheBench generates intensive
HTTP workloads. However, the semantics of the workloads
are low: the generated data are characteristic of the driver used
and do not closely resemble real life data.

C. Deployment of semantic tests at a large scale
Evaluators prefer tests that are both intensive and with a

high semantic, as the performance of security products like
intrusion detection systems often deteriorate at high levels of
activity [17]. Methods for semantic tests are deployed on a
large scale network support like a testbed environment where
a large amount of resources and contributors are gathered to
create a large-scale test. Evaluators must either have access to
a testbed environment with enough resources to deploy large-
scale experiments or use the results of other organizations that
conducted large-scale experiments and made their data publicly
available for the scientific community (DARPA/KDD-99 [18],
CAIDA [19], DEFCON [20], MawiLab [21], etc.).

However, publicly available datasets, on top of often con-
taining errors [1], are not designed for the specific needs
of each evaluator. The evaluator needs to have an in-depth
knowledge of the characteristics of the activities recorded in
the dataset to avoid having an incorrect interpretation of the
results of studies using those datasets. Finally, those large-scale
experiments produce one-time datasets that can be quickly
outdated.

III. OUR EVALUATION DATA PRODUCTION METHOD

Our goal is to generate evaluation data at a large scale with
a customizable level of realism and semantic richness. The
main weakness of large scale semantic test’s method lies in
the testbed environment. A testbed environment requires large
resources and a lot of contributors to set up, use, maintain
and return to a previous state. The virtual machines used to
support the data generation methods are costly and the light

virtual machines are currently too limited for the requirements
of semantic methods. We propose a new production method
that generates controlled activity data from short traces inde-
pendently of the network support. It can be implemented on
a testbed environment or on a network support with lower
requirements like a lower end network simulator.

We also want our method to meet the need of evaluators to
generate tests with a rich variety (different systems, properties
of the data, etc.) and to devise hybrid tests, both semantic
and load oriented. In our methodology, the simulated data is
not produced by the execution of activity functions of the
host system but by a generic Data generating function that
represents a level of realism required of the simulated data.
A simulated activity is comprised of a single Data generating
function that is provided with a set of Model data extracted
from the execution of specific Elementary actions and used
to create a Script of the activity. In the following section, we
define concepts on which we build a formal description of our
methodology.

A. Concepts and definitions

1) Elementary action: In our methodology, we distinguish
real activity – not issued from our simulation method – (R)
and simulated activity – issued from our simulation method
– (S) in Elementary actions. We call Elementary action (A)
a short ordered set of interactions that represents an action
between two actors of the activity. Those actors are a Host – a
source of generated data – or a Service – a set of functionalities
available to a Host. A Service can be an external server or an
internal service.

For each Elementary action, we acquire Model data that
are the captured data of the execution of this Elementary action
during real activity. The goal of Elementary actions is to divide
the activity we simulate in individual actions that correspond
to an entry of the ground truth, such as ”connection to the
web interface of a webmail server”. The ground truth is an
exact representation of the activity generated. So a finer set of
Elementary actions for an activity means a finer representation
of the simulated activity and a finer control of the activity
model for the evaluator.

Model data take different forms (traces, logs, values, etc.),
and to label the ground truth, Model data are classified by
the evaluator. The evaluator can use that classification to label
the resulting Simulation data. For example, the evaluator can
create two classes of Model data to represent malicious activity
and benign activity, respectively. In other contexts, such as
generating activity for the evaluation of administration tools
of a network, the actors to consider are different (security:
attacker/user, administration: admin/user/client) and the evalu-
ator will have to define classes of data accordingly.

After capturing Model data for every Elementary action
relevant for the evaluation, the resulting set of Model data is
then given to a Data generating function.

2) Data generating function: A Data generating function
(f ) creates Simulation data from Model data. Simulation data
(dsimulation) is created from the execution by a Host (H) of
an Elementary action (A) during a simulated activity. It is
the output of a Data generating function and we express our
demands for Simulation data as Equivalence.
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We call Equivalence (∼) the fact that two activity data have
the same properties.

dactivityA ∼ d′ activityA

⇐⇒
Properties(dactivityA ) = Properties(d′ activityA )

The properties of the data are of different forms: acknowl-
edgement of the data by the Service, size of sent packets, value
of a measure, etc. and they represent the level of realism chosen
by the evaluator. The evaluator selects a set of Elementary
actions to decide the finesse of control over the simulation
and he chooses a Data generating function to reproduce the
properties of the data he requires. If the Data generating
function that produces Simulation data from a dataset of Model
data cannot produce data with the same properties, it is useless
for the evaluator. Thus, we define the following verification
property of Data generating functions:

Property 1: a Data generating function f is said to be
useful to a set of Model data D if all Simulation data
generated by f from any Model data that belong to D is
equivalent to the data used as model.

∀ d ∈ D and f /f(d) = dsimulation

⇒ f is useful to D, if ∀d ∈ D, d ∼ dsimulation

The evaluator can select the Data generating function
that is useful to his Model data with Simulation parameters
(psimulation) and provide the Data generating function with
additional parameters called Elementary action parameters
(pA). Elementary action parameters allow the evaluator to
modify the behavior of the Data generating function to match a
larger dataset of Model data (e.g. services accepting the same
credentials but with different identifiers, such as ”id=” and
” id=”) or provide a finer control (e.g. possibility to change
the credentials in the submit form).

Data generating functions are selected with Simulation
parameters by the evaluator for the properties they preserve
and the evaluator adapts or controls the Simulation data with
Elementary action parameters. The data exchanged by the
program that controls the simulation and the Host that runs a
Data generating function is the Control data (dcontrol) and is
essentially the ground truth of the simulation. The compilation
of the Control data informs us of all the actions taken during
the simulated activity.

3) Scenario and Scripts: We finally define a Script, which
is the representation of a realistic behavior of a Host. A
Script is an ordered set of actions coupled with Elementary
action parameters. These actions can be Elementary actions
or actions that do not generate activity data (e.g. ”wait X
seconds”). A Script (ScriptH ) is defined for each individual
Host and describes the activity it must generate during the
simulation. The set of defined Scripts is called the Scenario
(Sce) of the simulation.

A Script can be represented as a graph of actions, as
illustrated in Figure1.

4) Our model: Figure 2 is a representation of our model.
In that figure, the evaluator provides the simulation control
program with the Simulation parameters (psimulation) and the
Scenario (Sce):

Sce = {ScriptH0
, ScriptH1

} = {([A, pA], . . . ), ([A, p′A], etc.)}

A0, p
A0 A1, p

A1 A2, p
A2 . . .

Figure 1. Example of a Script

Simula'on	
control	
program	

Sce dcontrol (ground truth)

psimulation,A, pA
Host	0	

dA
model

f p
simulation

dA
simulation

Host	1	

psimulation,A, ʹp A
ʹdA
simulation

psimulation

dA
model

f p
simulation

Figure 2. Generation of simulated activity from short traces

The simulation control program interprets the Scenario and
the Simulation parameters and deduces the number of Hosts
in the current simulation. It instructs the Hosts H0 and H1

to reproduce the Elementary action (A) with the parameters
psimulation and pA. Then, each Host retrieves the Model data
associated to the Elementary action and executes the Data
generating function (f ) selected in the Simulation parameters.
That function produces Simulation data, which is sent to a
Service. The use of different Elementary action parameters by
H0 and H1 results in the generation of different Simulation
data even when the Data generating function and the Model
Data are the same:

dsimulation
A = fpsimulation

(dmodel
A , pA)

d′ simulation
A = fpsimulation

(dmodel
A , p′A)

}
6⇒

dsimulation
A = d′ simulation

A

After the Hosts inform the simulation control program that they
finished simulating the Elementary action A, they await the
next simulation orders from the simulation control program.

The model we presented is the situation where all the Hosts
are simulated and the Services are real services. If some Hosts
also acted as Services, they could also initiate the generation
of Simulation data according to requests received from other
Hosts in the form of other Simulation data.

In our model, the ground truth is built upon the Control
data of Hosts simulated by our model. Therefore, no data from
Hosts unrelated to the simulation are processed.

Lastly, we must present one of the major issues of our
model: the parameterization of the Elementary actions. In-
deed, in accordance with the required level of realism of
the simulation, the parameterization must allow the Data
generating function to preserve various data properties. The
higher the level of realism, the more complex the reproduction
of Elementary actions becomes. Therefore, designing a Data
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generating function for a highly realistic simulation, where not
only packet size is preserved but also data acknowlegement,
requires to consider three main aspects:

• typing: identification and generation of short-lived
data like tokens, identifiers of session, etc.

• semantics: modification of inputs with a high seman-
tic value in the Model data: credentials, mail selection,
mail content, etc.

• scalability: a large scale execution of the Data gener-
ation function can have consequences on the previous
aspects and requires additional changes (e.g., creation
of multiple user accounts in the Service database).

These three aspects are integrated to the Elementary action
parameters. However, a few in-depth issues still require further
consideration and development in order to elaborate a model
able to adapt to various test situations without the intervention
of the evaluator. The typing issue can be solved with methods
based on machine learning, but others may require specific
methodologies according to the context of the evaluation. For
example, in the case of real-life network reproduction, the
semantic and scalability issues can be solved by identifying
and using inputs with a high semantic value recorded during
a long Model data acquisition period.

IV. IMPLEMENTATION OF THE PROPOSED METHOD

In this section, we describe the implemention of a prototype
that follows the requirements of our model, and we show
that simulations based on that prototype are both scalable and
realistic.

This prototype uses Mininet [22] as the network support of
our simulation. Mininet is an open-source network simulator
that deploys lightweight virtual machines to create virtual
networks, and able to create hundreds of lightweight virtual
machines in a short amount of time.

A. Model of the prototype
Our prototype contains several Data generating functions

that conserve each of these properties: execution time, packet
size, acknowledgement of the data by the Service. Based on
these Data generating functions we simulate the activity of
50 to 200 Hosts representing regular employees of a small
company interacting with the Service of a webmail server
Roundcube on a Postfix mail server. A simulation control
program follows the Script described in Figure 3 for all the
Hosts of the simulation. In Figure 3, the Elementary actions
are in italics while actions that do not generate activity data are
in a regular font. The Host can simulate two different series
of Elementary actions after a waiting period of X seconds
each time. The intensity of the Script can be modulated by
modifying the value of X .

To make sure that our method improves the existing
methods, it must meet these two requirements:

• Scalability: ability to generate evaluation data pro-
portionally to the scale of the simulation, up to a few
hundreds of hosts.

• Realism: closeness of the generated data to the the
referential Model data.
Our Data generating functions are designed to pre-
serve specific data properties (cf. Property 1), thus

Wait X seconds

Connect to webmail

Read last email

Disconnect

p = 0.5

Wait X seconds

Connect to webmail

Read last email

Send email

Disconnect

p = 0.5

p = 0.2

p = 0.8

Figure 3. Generation of simulated activity from short traces

matching different levels of realism. The following
experiments aim at proving that these properties are
still preserved in the context of a Scenario with an
increasing number of hosts.

B. Experiments on the prototype
The validation of our prototype is conducted with two

separate experiments, which aim to prove that our model leads
to both scalable and realistic data generation.

The first experiment is a control experiment. We deploy
5 virtual machines on the network simulator Hynesim [23]
and make them generate the activity of our simulation. We
script the Elementary actions of the Script described in Figure
3 with the web driver Selenium [24] and make the virtual
machines use their browser to interact with the webmail server.
This experiment provides referential values for our second
experiment. To prove the scalability of our prototype, we
expect proportionality between these values and the results of
our simulation, with respect to the number of Hosts.
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Figure 4. Network traffic of the webmail server for a single experiment (50
Hosts)

In the second experiment, we simulate different number of
Hosts (5, 50, 100, 150, 200 and 250) and make them generate
the activity of regular users using a webmail service for 30
minutes. We measure the activity at three different points:
the webmail server, the network simulator Mininet and the
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TABLE I. NUMBER OF LINES IN THE WEBMAIL LOG FILES.

5 VMs 5 Hosts 50 Hosts 100 Hosts 150 Hosts 200 Hosts 250 Hosts
Filenames avg stdev avg stdev avg stdev avg stdev avg stdev avg stdev avg stdev
userlogins 90 9 112 10 1032 36 2084 45 3085 52 4121 53 5118 74
imap 43245 5070 57775 5306 487883 22742 984642 28820 1450507 27792 1933823 21117 274825 235985
sql 4955 525 6703 563 56081 1886 113031 2452 167138 2964 223427 2906 265354 4688

server hosting the simulation. Every 30 seconds, we measure
four parameters: CPU usage, memory usage, network I/O, and
disk I/O. Figure 4 is an example of the measured activity. It
represents the network traffic received and sent by the webmail
server with 50 simulated Hosts. Each Host follows the Script
described in Figure 3, with X = 30.

We also retrieve the logs produced by the webmail server
during both experiments. The quantity and content of the logs
is analyzed in Table I and Table II.

In the second experiment, we use the Data generating func-
tion with the highest level of realism: the adapted replay. That
Data generating function preserves the data acknowledgement
by the Service and allows Elementary action parameters to
modify the inputs of submitted forms. Concretely, it means
that a server cannot distinguish the adapted replay from an
interaction with a real user. Also, with the help of Elemen-
tary action parameters, the evaluator can freely change the
credentials replayed to the webmail server.

The analysis of the results aims at proving that the data
generated in the second experiment are consistent with those
obtained from the first experiment, in terms of both quantity
and semantics.

Table I represents the quantity of logs produced by the
webmail server during both experiments. We express the
average number of lines in the log files of the webmail and
their standard deviation. The first column is the name of the
main log files produced by the server: ”userlogins” logs every
connection (successful or not), ”imap” logs every instruction
from the server that uses the IMAP protocol, and ”sql” logs
every interaction between the server and its database. The
entries under the name ”5 VMs” correspond to the results of
the control experiment while the other entries are the results
of the simulation experiment.

The number of lines in ”userlogins” represents the number
of connections during the experiments (one line per connec-
tion) and can be used to calculate the number of sessions
created during both experiments. Figure 5 shows the average
number of sessions created during the second experiment and
its standard deviation according to the number of simulated
Hosts. We also estimate the average number of sessions
inferred from the results of the control experiment, based on
proportionality (avg(”5 VMs”)× number of Hosts

5 ).

We observe that the number of sessions created during the
second experiment is close to our estimation. Our simulation
produces more sessions than expected but it can be explained
by the fact that our Data generating function reproduces the
Model data of an Elementary action faster than the browser
of the virtual machines. Hence, in a period of 30 minutes, the
simulated activity has gone through more cycles of the Script
than the control experiment. A projection of the number of
lines of the other log files (”imap” and ”sql”) displays similar
results.
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Figure 5. Number of sessions created during simulation (blue)
compared to estimation (black)

These results establish that the simulated activity produces
a consistent amount of logs. In Figure 6, we examine the net-
work traffic produced by our simulated activity. The blue and
red parts represent the average number of bytes, respectively,
received and sent by the webmail server every 30 seconds,
along with the standard deviation. For comparison, the black
lines correspond to the estimation of the expected results based
on the control experiment. As before, the results of the second
experiment are close to our estimation. The deviation can be
justified with the same explanation regarding the activity speed
difference. This deviation is also partly due to the cached data.
Since these data are stored on the host after the first connection,
the amount of exchanged data during the first connection is
higher than during subsequent sessions.

However, our Data generating function does not take
cached data into account. Therefore, our simulated connections
request more data from the webmail server than estimated. This
observation is part of the parametrization issues of the Data
generating function raised at the end of Section III. Adding
Elementary action parameters to modify the behavior of the
function can solve this issue as we did for previous typing
and semantic issues. However, the addition of new Elementary
action parameters is made from empiric observation and could
be improved by adding new methods to our model like machine
learning.

Despite those issues, we have shown that the simulated
activity of the second experiment generated a large network
activity proportionally to the number of simulated Hosts, as
expected. We now focus on proving that the activity semantics
was also preserved.
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TABLE II. SIGNATURE LOG ENTRIES.

5 VMs 5 Hosts 50 Hosts 100 Hosts 150 Hosts 200 Hosts 250 Hosts
Signatures Actions avg stdev avg stdev avg stdev avg stdev avg stdev avg stdev avg stdev
imap.sign1 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign2 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign3 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign4 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign5 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign6 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign7 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign8 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign9 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4873 88
imap.sign10 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4873 88
sql.sign1 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
sql.sign2 disconnect 90 9 122 10 1032 36 2079 44 3085 52 4121 53 5118 74
imap.sign11 open 89 9 122 10 1028 36 2069 44 3059 52 4090 53 4808 91
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Figure 6. Network traffic of the webmail server

For each Elementary action of the activity Script, we look
for log entries that could act as signatures for the action. By
comparing these signatures in both experiments, we obtain the
results displayed in Table II.

From Table II, the following observations can be made:

• the number of signatures for the ”connect” Elementary
action is slightly inferior to the number of sessions
(the number of lines from ”userlogins”) observed for
150 Hosts and above. It is explained by the fact that
the signatures correspond to the number of successful
connections to the webmail server. If we remove the
number of lines in the ”userlogins” file that correspond
to failed connections, we find the exact number of
signatures for the ”connect” Elementary action.

• the number of signature for the ”disconnect” Ele-
mentary action corresponds to the exact number of
sessions observed in Table I.

• the number of signatures for the ”open” Elementary
action is slightly inferior to the number of signatures
for the ”connect” Elementary action for 50 Hosts and
above. It is likely due to the experiment ending before
the last Script cycle ended for a few Hosts.

• no characteristic entry for the ”send an email” Ele-
mentary action could be found in the ”userlogins”,
”imap” and ”sql” log files.

The failure of several connections in our simulation may
also be due to the parameterization of the Data generating
function. The adapted replay Data generating function was
designed to modify short-lived information from the Model
data like the token or the session identifier according to the
server reply from the requests. However, such modification was
not included in the first request. The webmail server possibly
refused some connections because they contained the same
information at the same time. Therefore, an improvement of
the typing of the adapted replay Data generating function
should raise the number of successful connections with a
high number of simulated Hosts. Table II shows that for each
successful session in our simulated activity, the webmail server
correctly interpreted the Elementary actions.

To sum up the results analysis, our prototype generates a
simulated activity that produces a realistic amount of network
traffic and logs from the webmail server. Moreover, the web-
mail server produces the appropriate number of logs reflecting
the correct semantics. Therefore, our prototype succeeds in
providing scalable and realistic data generation, thus validating
our model.

V. CONCLUSION

In this paper, we establish a new methodology to generate
realistic evaluation data on a network support (Mininet) with
far fewer requirements than the common network testbeds.
This methodology takes into consideration the need for an
evaluator to test different properties and evaluate different
vulnerabilities in a security product. Therefore, an evaluator
can select the Data generation function that matches the
properties of the product that need to be tested. The evaluator
also has a control on the granularity of the activity Elementary
actions. The finesse of the simulated activity can be improved
by introducing new Elementary actions or adding Elementary
action parameters to the Data generation function.

We validate our model with a prototype able to generate
realistic activity up to 250 users interacting with a webmail
server. The traffic can be customized in terms of Hosts numbers
as well as Scripts content. Therefore, it will be possible to use
this prototype to develop more complex activity scenarios ded-
icated to the evaluation of security products such as intrusion
detection systems.

However, our prototype still has a few limitations. The
existing Data generating functions mostly focus on the creation
of network activity and does not generate system activity for
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host-based security products. The parametrization for more
realistic Data generating functions also raises additional issues
that need to be addressed with further work. Finally, our
prototype is currently limited to the simulation of Hosts. In
parallel with the testing of network-based intrusion detection
systems based on our prototype, the next steps of our work will
focus on extending our prototype to include the simulation of
Services and develop new Data generating functions that focus
on the generation of system data rather than network data.
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