
ICIMP 2017

The Twelfth International Conference on Internet Monitoring and Protection

ISBN: 978-1-61208-564-7

June 25 - 29, 2017

Venice, Italy

ICIMP 2017 Editors

Eugen Borcoci, University "Politehnica" of Bucharest (UPB), Romania

Bernhard Tellenbach, Zurich University of Applied Sciences, Switzerland

 1 / 23

ICIMP 2017

Forward

The Twelfth International Conference on Internet Monitoring and Protection (ICIMP 2017),
held between June 25-29, 2017 in Venice, Italy, continued a series of special events targeting
security, performance, vulnerabilities in Internet, as well as disaster prevention and recovery.
Dedicated events focused on measurement, monitoring and lessons learnt in protecting the
user.

The design, implementation and deployment of large distributed systems are subject to
conflicting or missing requirements leading to visible and/or hidden vulnerabilities.
Vulnerability specification patterns and vulnerability assessment tools are used for discovering,
predicting and/or bypassing known vulnerabilities.

Vulnerability self-assessment software tools have been developed to capture and report
critical vulnerabilities. Some of vulnerabilities are fixed via patches, other are simply reported,
while others are self-fixed by the system itself. Despite the advances in the last years, protocol
vulnerabilities, domain-specific vulnerabilities and detection of critical vulnerabilities rely on the
art and experience of the operators; sometimes this is fruit of hazard discovery and difficult to
be reproduced and repaired.

System diagnosis represent a series of pre-deployment or post-deployment activities to
identify feature interactions, service interactions, behavior that is not captured by the
specifications, or abnormal behavior with respect to system specification. As systems grow in
complexity, the need for reliable testing and diagnosis grows accordingly. The design of
complex systems has been facilitated by CAD/CAE tools. Unfortunately, test engineering tools
have not kept pace with design tools, and test engineers are having difficulty developing
reliable procedures to satisfy the test requirements of modern systems. Therefore, rather than
maintaining a single candidate system diagnosis, or a small set of possible diagnoses,
anticipative and proactive mechanisms have been developed and experimented. In dealing with
system diagnosis data overload is a generic and tremendously difficult problem that has only
grown. Cognitive system diagnosis methods have been proposed to cope with volume and
complexity.

Attacks against private and public networks have had a significant spreading in the last
years. With simple or sophisticated behavior, the attacks tend to damage user confidence,
cause huge privacy violations and enormous economic losses.

The CYBER-FRAUD track focuses on specific aspects related to attacks and counterattacks,
public information, privacy and safety on cyber-attacks information. It also targets secure
mechanisms to record, retrieve, share, interpret, prevent and post-analyze of cyber-crime
attacks.

Current practice for engineering carrier grade IP networks suggests n-redundancy schema.
From the operational perspective, complications are involved with multiple n-box PoP. It is not
guaranteed that this n-redundancy provides the desired 99.999% uptime. Two complementary
solutions promote (i) high availability, which enables network-wide protection by providing fast

 2 / 23

recovery from faults that may occur in any part of the network, and (ii) non-stop routing.
Theory on robustness stays behind the attempts for improving system reliability with regard to
emergency services and containing the damage through disaster prevention, diagnosis and
recovery.

Highly reliable emergency communications are required by public safety and disaster relief
agencies to perform recovery operations or associated with disasters or serious network
events. Future advanced network development and evolution should take into consideration
these requirements through solutions: (a) Identification of suitable technologies, i.e.,
narrowband and broadband aspects, (b) Interoperability and interworking between emergency
communications capabilities and public networks, (c) Preferential access to communications
resources capabilities, applications, and facilities, (d) Preferential use of remaining operational
resources.

The conference had the following tracks:

 Monitoring with Web technologies

 Internet traffic surveillance and interception

We take here the opportunity to warmly thank all the members of the ICIMP 2017 technical
program committee, as well as all the reviewers. The creation of such a high quality conference
program would not have been possible without their involvement. We also kindly thank all the
authors that dedicated much of their time and effort to contribute to ICIMP 2017. We truly
believe that, thanks to all these efforts, the final conference program consisted of top quality
contributions.

We also gratefully thank the members of the ICIMP 2017 organizing committee for their
help in handling the logistics and for their work that made this professional meeting a success.

We hope that ICIMP 2017 was a successful international forum for the exchange of ideas
and results between academia and industry and to promote further progress in the field of
Internet monitoring and protection. We also hope that Venice, Italy provided a pleasant
environment during the conference and everyone saved some time to enjoy the unique charm
of the city.

ICIMP 2017 Chairs

ICIMP Steering Committee
Sathiamoorthy Manoharan, University of Auckland, New Zealand
Terje Jensen, Telenor, Norway
Christian Callegari, University of Pisa, Italy

ICIMP Industry/Research Advisory Committee
Daisuke Mashima, Advanced Digital Sciences Center, Singapore
Bernhard Tellenbach, Zurich University of Applied Sciences, Switzerland
Miroslav Velev, Aries Design Automation, USA
Pethuru Raj, IBM Global Cloud Center of Excellence, India

 3 / 23

ICIMP 2017
Committee

ICIMP Steering Committee

Sathiamoorthy Manoharan, University of Auckland, New Zealand
Terje Jensen, Telenor, Norway
Christian Callegari, University of Pisa, Italy

ICIMP Industry/Research Advisory Committee

Daisuke Mashima, Advanced Digital Sciences Center, Singapore
Bernhard Tellenbach, Zurich University of Applied Sciences, Switzerland
Miroslav Velev, Aries Design Automation, USA
Pethuru Raj, IBM Global Cloud Center of Excellence, India

ICIMP 2017 Technical Program Committee

Lasse Berntzen, University College of Southeast, Norway
Abdelmadjid Bouabdallah, Université de Technologie de Compiègne, France
Aymen Boudguiga, Institute for Technological Research SystemX, France
Christian Callegari, University of Pisa, Italy
Dimitra Georgiou, University of Piraeus, Greece
Stefanos Gritzalis, University of the Aegean, Greece
Quentin Jacquemart, I3S Laboratory | University Nice Sophia Antipolis, France
Terje Jensen, Telenor, Norway
Toshihiko Kato, The University of Electro-Communications, Japan
Ayad Ali Keshlaf, Industrial Research Center, Libya
Jaime Lloret Mauri, Universidad Politecnica de Valencia, Spain
Sathiamoorthy Manoharan, University of Auckland, New Zealand
Daisuke Mashima, Advanced Digital Sciences Center, Singapore
Michael J. May, Kinneret College on the Sea of Galilee, Israel
Yisroel Mirsky, Ben-Gurion University, Israel
Constantin Paleologu, University Politehnica of Bucharest, Romania
Pethuru Raj, IBM Global Cloud Center of Excellence, India
Jani Suomalainen, VTT Technical Research Centre of Finland, Finland
Bernhard Tellenbach, Zurich University of Applied Sciences, Switzerland
Rob van der Mei, CWI and VU University Amsterdam, Netherlands
Julien Vanegue, Bloomberg L.P., USA
Miroslav Velev, Aries Design Automation, USA
Arno Wagner, Consecom AG, Zurich
Wei Wang, Nanyang Technological University (NTU), Singapore
Muhammad Azfar Yaqub, Kyungpook National University, Korea

 4 / 23

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 5 / 23

Table of Contents

Development Model of a Public Safety Broadband Communications Network in Indonesia
Gerson Damanik and Denny Hendraningrat

1

Honey-Copy - A Concept and Prototype of a Generic Honeypot System
Olivier Favre, Bernhard Tellenbach, and Jan Alsenz

7

Security Testing over Encrypted Channels on the ARM Platform
Fatih Kilic, Benedikt Gessele, and Hasan Ibne Akram

12

Powered by TCPDF (www.tcpdf.org)

 1 / 1 6 / 23

Development Model of a Public Safety Broadband Communications

 Network in Indonesia

Gerson Damanik

Development Studies Doctoral Program

Satya Wacana Christian University

Salatiga, Indonesia

gerson@postel.go.id

Denny Kusuma Hendraningrat

National Standardization Agency of Indonesia

Center for Standards Development

Jakarta, Indonesia

denny_kh@bsn.go.id

Abstract — The Public and Private Partnership (PPP)

development model of a public safety broadband

network between cellular operators and public safety

agencies, such as the National Disaster Management

Agency, is a challenge for the government of Indonesia

to provide broadband access. Public safety agencies are

local governments, police agency, health agency, fire

brigades. Each agency built their networks

independently. In this study, the public safety

broadband network model in Indonesia is developed by

using an investment budget to build a broadband

network of each agency. The budget of each agency is a

function of compensation for the public safety, because

they do not build their own network separately, but they

rather share it with the cellular network. Public safety

users are included as cellular users who will be given

priority access or Quality of Service (QoS), but they are

not profitable users for cellular operators. So, a cellular

operator only receives infrastructure compensation

budget due to the addition of user traffic for public

safety, because this is part of the responsibilities of the

government. The feasibility of this model will be

measured by Net Present Value (NPV) calculations.

From a cellular operator perspective, it is concluded that

operators choose the 2x25 MHz option, which must

share bandwidth and network infrastructure with public

safety agencies. It has a higher NPV than the 2x20 MHz

option, which is only for commercial Long Term

Evilution (LTE). From a government perspective, the

NPV always has a positive value. So, it indicates that the

government needs to consider implementing a

development model of a public safety broadband

network with a sharing scheme between cellular

operators and public safety agencies.

Keywords — public safety broadband network, sharing

scheme, NPV, LTE

I. INTRODUCTION

Public safety is an activity comprised of prevention,
treatment, and protection against things that harm other
people who may be significantly affected or injured, or
experience a loss or damage, such as a crime or disaster. It
can be caused by human actions or a natural occurrence,
which is why it is important to create a secure and

comfortable condition in the community. By doing so, it can
support national stability [1].

Today, communication systems supporting public safety
agencies have different standards, such as using different
frequency ranges of 300 MHz – 800 MHz and using
different kinds of technology. The most widely used types of
technology are the conventional systems, trunking systems,
Public Switched Telephone Network (PSTN), and
commercial cellular networks. In fact, the condition of public
safety in Indonesia is still independent, which does not
support interoperability among agencies. It causes
coordination difficulties between agencies responding to
disaster. In addition, the public safety network in Indonesia
is still based on a narrowband system. The capital
expenditures (capex) and operational expenditures (opex)
will necessitate high investment costs when each of the
public safety agencies build their own broadband networks
independently. So, it will burden the government’s budget
while the public safety traffic is only used in emergency
conditions based on operational statistic data [2] and traffic
site summary information [3]. The average communication
channel occupation during emergencies or disasters is 31.32
percent from the total capacity or 7.52 hours/day [4].

Consistent with the issue of broadband public safety,
based on Ministerial Decree No. 22 of 2011, the Ministry of
Communications and Information Technology of Indonesia
has planned a migration of analog terrestrial television to
digital television services, which is targeted by 2018 [5]. In
Article 4 of Ministerial Decree No. 18 of 2005, it is declared
that in the case where government entities desire to use a
telecommunications network, they can lease it from the
network provider. On the other hand, especially in Article 7
of Ministerial Decree No. 18 of 2005, it is declared that
government entities networks are prohibited to collect
payments [6].

Based on the explanation above, a public safety
broadband network has the opportunity to integrate public
safety networks, in which some portions of the Asia Pacific
Telecommunity (APT) 700 MHz digital dividend bandwidth
can be allocated for LTE based technology to serve public
safety agencies [7]. In this study, public and private
partnerships are developed to deploy a public safety
broadband network in Indonesia based on the previous
model [8] [9], and it has been changed according to
Indonesia’s condition, based on Ministerial Decree No. 22 of
2011 and Ministerial Decree No. 18 of 2005. The model is
still being developed by using the existing public safety

1Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

 7 / 23

network. First, it will be deployed in the greater Jakarta area
and its satellite area because Jakarta, as the capital city of
Indonesia, serves the central government and economy with
a high population density, so it needs to have a public safety
broadband system.

II. METHODOLOGY

Based on previous experiences in other countries, the

Federal Communications Commission-United States (FCC-

US) adopted an order to create a nationwide broadband

network with a 2x10 MHz bandwidth for the Frequency

Division Duplex (FDD) that consists of 758-768 MHz for an

uplink and 788-798 MHz for a downlink, which is called “D

Block”. In America, the public safety spectrum is allocated

at 763-775 MHz for an uplink and 793-805 MHz for a

downlink, which consists of 2x5 MHz (763-768 MHz and

793-798 MHz) for a public safety broadband network using a

bandwidth shared with an LTE network and the other

spectrum allocated for a public safety narrowband network.

In March of 2008, the FCC attempted to auction the D Block

with public safety encumbrances but failed to attract a

winning commercial bidder [10]. This is caused by several

reasons, some of which include [11] [12]:

a. The 2x10 MHz bandwidth allocation in the D Block was
claimed to be too small to overcome the LTE user traffic.

b. The issue has been framed in such a way as to suggest
that allocations to the public safety community are at the
expense of commercial wireless providers.

c. Some of the business entities collapsed and the United
States (US) needs more commercial broadband network
capacity to remain competitive globally.

d. The inexact time of the auction which was followed by a
flurry of waiver petitions, public comments, and much
debate.

Ryan Hallahan [8] improved the broadband public safety
wireless communication based on the US situation, in which
public safety users were reputed as being profitable users or
commercial cellular customers who must pay for the use of
their traffic. He devised a handover scenario whereby a
handset must connect (roam) to a cellular operator if the user
moves to another location which does not have public safety
network coverage in Block D. In addition, APT modified
2x10 MHz of digital dividend to be allocated only for public
safety communications [13].

In this research, a different method from the USA is
deployed. In Indonesia, it is developed from a public
partnership model between cellular operators and public
safety agencies, where the public safety users are cellular
users that will be given priority access or quality of service
(QoS), but they are not considered as profitable users for
cellular operators. Public safety user traffic on a cellular
network will be converted to the additional costs (capex and
opex) of cellular network deployment. In a government
perspective, the investment cost payments should be
managed by the government, as the Ministry of Finance

should provide the budget for the public safety broadband
network agencies. In this study, those payments are defined
as a function of the government costs. This model developed
the investment cost utilization as a budget which is canceled
for each of the public safety agencies to build a public safety
broadband network independently. In this study, that
canceled budget is defined as a function of the government
value. The government should consider the expenditure
efficiency when deploying a model of a public safety
broadband network, so that the feasibility will be measured
from the NPV of a government perspective. From a cellular
operator perspective, the government cost is a portion of the
contributions to the cellular network as an operator value
function of the cellular operator NPV, besides the annual
revenue per user (ARPU) of commercial users. In this model,
the operator costs are calculated from the total investment
sharing network costs and annual spectrum fees.

III. NPV MODEL DEVELOPMENT

This model is developed from the previous studies of

Ryan Hallahan [8], John Ure [9], and Administrative

Incentive Pricing (AIP) recommended by Australian

Communication and Media Authority (ACMA) [14] with an

adoption of the conditions of Indonesia. An illustration of

this model can be viewed in Figure 1.
In this study, the NPV formula is based on a government

and cellular operator perspective and developed as a measure
of examining the feasibility of developing a public safety
broadband network based on the model proposed in this
study. The cellular operator NPV during the observation is
defined by t = i, as follows:

 (1)
Then, the government NPV is formulated as follows:

 NPVGov = GVi – GCi (2)

Where,

GVi = total investment cost
utilization as a budget,
which is cancelled by the
year-i for each of the
public safety agencies to
build a public safety
broadband network
independently. [USD/year]

GCi = total payment of the
investment costs by the i-
year which should be
prepared by the
government, as a
compensation for the
public safety user traffic
to the cellular operator. [USD/year]

SubCOMM,i = total number of
commercial subscriptions
by the year-i.

2Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

 8 / 23

RCOMM = monthly revenue from
commercial subscriptions. [USD/month]

Ci = amount of equipment per
element developed in the
i-year.

CTOT,i = total amount of
equipment per element
operating in the i year.

Capex = upfront cost to develop
the network per element. [USD]

Opex = annual cost to operate the [USD/year]

network per element.

SFi = Annual Spectrum Fee
(LTE 700 MHz) in the i-
year. [USD/year]

n = time horizon. [Years]
D = discount rate. [%]

Improving Public Safety Wireless

Communications: Analyzing the Cost of

Nationwide Network and Strategies for

Sharing Commercial Network

(Ryan Hallahan) [7]

Administrative Incentive Pricing of Radio

Frequency Spectrum

(Plum Consulting) [12]

Public Protection and Disaster Relief

(PPDR) Services and Broadband in Asia

and the Pacific: A Study of Value and

Opportunity Cost in the Assignment of

Radio Spectrum

(John Ure) [8]

Problems

· It is difficult to get exclusive spectrum

allocation like the agency in charge

PPDR

· Government agencies built their own

networks making less efficient use of

frequencies

· Low network utilities of government

agencies

Development Model of Broadband Public

Safety Communication in Indonesia

(Damanik, G & Hendraningrat. Denny K.)

Contributions

· Using the potential of the investment

costs which is substituted by

governments and utilization of

spectrum fee as PPDR development

costs in Indonesia.

· It is suitable, with the conditions of

developing countries that still apply the

granting of frequency allocations to

government agencies with Command

Control Spectrum approach.

On the other

hand, with a mobile spectrum sharing,

it is a good opportunity to optimize the

network.

· A new strategy in the development of

PPDR model based on Non-Profitable

users

· Identify potential losses from a disaster

· Analyze the cost benefit of broadband

PPDR implementation

· Development of the broadband PPDR

network based on Radio Network

Planning Method in the United States.

· Public Safety users and commercial

users are profitable users

· Public Safety users are charged

monthly as revenue for mobile

operators for using a mobile network.

· Identify potential spectrum fee

· Using spectrum fee for spectrum

refarming

Tools

· Using the potential of the investment costs and spectrum fee to compensate

network sharing cost between mobile operators.

· PPDR users are part of cellular users, have priority access and higher QoS

than commercial users, and they are not a profitable users.

· Using frequency and infrastructure sharing between PPDR and cellular

network.

i

Figure 1. Development Model of a Public Safety Broadband Network

IV. RESULTS AND FEASIBILITY ANALYSIS OF PUBLIC

SAFETY BROADBAND NETWORK COMMUNICATIONS IN

INDONESIA

The 3rd Generation Partnership Project (3GPP) has
identified a 2x45 MHz bandwidth allocation for the Asia
Pacific Region as a bandwidth allocation for Evolved
Universal Terrestrial Radio Access (E-UTRA) technology,

such as LTE technology [15]. In this study, the digital
dividend ecosystem is divided into commercial LTE and
public safety. LTE is more effective than Dual Carrier of
High Speed Packet Access (DC-HSPA) when using a 2x20
MHz bandwidth system [16]. This simulation is designed by
using 2 Mobile Network Operators (MNOs), where the
MNO that is willing to share bandwidth and network
infrastructure with the public safety agencies will be given a

3Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

 9 / 23

2x25 MHz bandwidth allocation and the other MNO will be
allocated 2x20 MHz.

In this model, public safety users are cellular users who
will be given priority access. The standard broadband QoS is
described by 2 Mbps user throughput [17]. The services
provided to the public safety broadband network include
voice, two-way video, and data transfer.

In this study, the feasibility of broadband public safety
communication is measured based on the NPV calculation,
both from the government and cellular operator perspectives
[18]. It consists of calculating the network (coverage and
capacity) planning and then calculating the network cost
deployment, so that the NPV can be determined.

A. Defining Network Planning for Public Safety

Communication

1) Coverage Planning: This computation focused on

performing a calculation of a maximum cell range of LTE

700 by QoS, which is outlined in Table I. In this study, it is

assumed that the use of broadband LTE is in a fixed outdoor

area. Based on the coverage planning method, the

propagation conditions are one of the main factors to

determine the cell size. In this study, link budget

simulations are conducted to know the number of LTE e-

Nodes B, which are needed to cover the planning area. The

cell range prediction is calculated by adopting Okumura

Hatta’s [19] propagation model. An example of an LTE link

budget calculation is shown in Table I.

TABLE I. LTE COVERAGE PLANNING

2) Capacity Planning: In a cellular network, capacity

planning is required for the network optimization to meet

the QoS requirements [20]. The calculation of capacity

planning is started with an LTE rollout plan and the user

prediction of the Indonesia cellular provider which has a

43% market share. So, the number of eNodes-B is

calculated using the following formula [21]:

 (3)

3) Defining Network Cost Deployment: Based on data

from the vendor, the network infrastructure costs were

calculated for the components, as shown in Table II.[22]

TABLE II. INFRASTRUCTURE COSTS

The total investment costs were calculated by multiplying
the results of the network planning with the price list, which
is shown in Table II. The total investment costs required to
build the LTE network with a sharing system (first option)
between a cellular operator and public safety is shown in
Figure 2.

Figure 2. Total Investment Costs

B. Defining NPV Calculation

The NPV calculation is developed on the basis of
revenues minus total expenses. From a government
perspective, the revenue or government value is the total
investment cost utilization as a budget which is cancelled by
public safety agencies to build a public safety broadband
network independently. On the other hand, the government
cost is the total payment of the investment costs by the year-i
which should be prepared by the government, as a
compensation for public safety user traffic to the cellular
operator. Figure 3 shows the calculation of government value
and government costs.

Figure 3. Government Perspective

4Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

 10 / 23

From the cellular operator perspective, the operator

revenue (operator value) is the annual revenue per user
(ARPU) of commercial users plus the compensation costs
from the government (government costs). On the other hand,
the operator costs are calculated from the total investment
sharing network costs and annual spectrum fees. In the first
year, the government value has a high value obtained from
the capex (core networks) of public safety agencies to build a
public safety broadband network independently. In the
second year, the public safety network is not required to
build core networks (only towers and e-NodeB). In the sixth
year, the public safety network only requires maintenance
fees (opex). So, if the Ministry of Finance diverts the costs of
public safety agencies to build a public safety broadband
network independently to become a sharing model, then it
will be advantageous for the government. Figure 4 shows the
calculation of operator value and operator cost.

Fig 4. Cellular Operator Perspective

Figure 4 shows that the operator NPV has a positive

value after the 5th year of LTE deployment. A cellular
operator’s revenue always increases after the 5

th
 year of LTE

deployment. It is concluded that cellular operators need to
consider implementing the LTE technology.

C. Simulation Results of NPV Calculations

1) Cellular Operator Perspective: In this scenario, the

cellular operator is only given two options of bandwidth

allocation. This simulation will compare the results of the

NPV calculation between these two options. In the first

option, the operator using 2x25 MHz must share the

bandwidth and network infrastructure with the public safety

agencies. Based on the APT recommendation [16], public

safety agencies will be given 2x10 MHz dedicated only for

public safety communication. However, in this development

model, it is designed with 2x10 MHz for sharing between

public safety and commercial LTE and 2x15 MHz only for

commercial LTE. In other words, the maximum bandwidth

allocation is 2x25 MHz for commercial LTE and 2x10 MHz

for public safety communication. In the second option, the

operator only uses 2x20 MHz for commercial LTE. Figure 5

shows the NPV results for the first option (2x25 MHz) and

second option (2x20 MHz) while setting a discount rate at

5% [18].

Figure 5. Cellular Operator NPV

Figure 5 shows that the NPV results for first option are
higher than the second option. It is concluded that a cellular
operator will obtain more benefits if the first option is taken
rather than the second option.

2) Government Perspective: In this model, the Ministry

of Communications and Information Technology acts as a

grantor of the sharing policy between cellular operators and

public safety agencies. On the other hand, the Finance

Ministry acts as the owner of the budget for financing public

safety broadband network implementation with a sharing

concept between cellular operators and public safety

agencies. Figure 6 shows the NPV results based on the

government’s perspective.

Figure 6. Government NPV

Figure 6 shows that the NPV results have a positive value

with the implementation of this sharing model. This

suggests that the government needs to consider

implementing the development model of broadband public

safety through a sharing scheme between cellular operators

and public safety agencies.

5Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

 11 / 23

V. CONCLUSION

In this study, a public and private partnership model is
developed to deploy the public safety network through a
sharing model with commercial cellular operators. In this
model, the investment cost utilization is a budget which is
canceled for each of the public safety agencies to build a
public safety broadband network independently. This study
contributes to the cost savings of public safety network
development.

The feasibility of this model is measured by net present
value (NPV) calculations. From the cellular operator
perspective, it is concluded that operators prefer the 2x25
MHz option, which must share bandwidth and network
infrastructure with the public safety agencies. It has higher
NPV than the 2x20 MHz option only for commercial LTE.
From a government perspective, the NPV always has a
positive value. So, it indicates that the government needs to
consider implementing Development Model of a Public
Safety Broadband Communications Network through a
sharing scheme between cellular operators and public safety
agencies.

REFERENCES

[1] G. Eason, B. Noble, and I. N. Sneddon, “On Certain
Integrals of Lipschitz-Hankel Type Involving
Products of Bessel Functions,” Phil. Trans. Roy. Soc.
London, vol. A247, pp. 529–551, April 1955.

[2] G. Damanik, “Determining the Number of e-Node B
for Digital Dividend Public Safety Communication in
Jakarta Area,” ECTI International Journal. Thailand.

[3] Jakarta Local Government., “Operational Statistic of
Trunking Analog,” Jakarta, Indonesia. 2013.

[4] Polda Metro., “Traffic Site Summary of Land Mobile
Radio (LMR)”. Jakarta, Indonesia.

[5] Regulation of the Minister of Communications and
Information Technology of Indonesia No. 22 of 2011.

[6] Regulation of the Minister of Communications and
Information Technology of Indonesia No. 18 of 2005.

[7] ITU-R M. 2015 Frequency Arrangements for Public
Protection and Disaster Relief Radiocommunication
Systems in UHF Bands in Accordance with
Resolution 646 (Rev.WRC-12).

[8] R. Hallahan, “Improving Public Safety Wireless
Communications: Analyzing the Cost of Nationwide
Network and Strategies for Sharing Commercial
Network,” Carnegie Mellon University. 2011.

[9] J. Ure, “Public Protection and Disaster Relief (PPDR)
Services and Broadband in Asia and the Pacific: A
Study of Value and Opportunity Cost in the
Assignment of Radio Spectrum,” TPRC Corporate.
2013.

[10] M. L. Goldstein, “Emergency Communication-
Various Challenges Likely to Slow Implementation
of a Public safety Broadband Network,” United
Stated Government Accountability Office.

[11] Hatfield and Dawson, “Discussion of 700 MHz
Spectrum Policy Issues for Public Safety in King
Country,” NetCity Inc. 2010.

[12] T. Takai and M. Bettenhausen, “California Public
Safety Radio Communications Strategic Plan,” The
Great Seal of The State of California. 2010.

[13] T. Welter, “Assessing the Potential of The 700 MHz
Band For PPDR,” Amsterdam. 2014.

[14] Plum Consulting., “Administrative Incentive Pricing
of Radio Frequency Spectrum,” London. 2008.

[15] 3GPP TS 36.101 V9.4.0, “Technical Spesification
Group Radio Access Network; Evolved Universal
Terrestrial Radio Access (E-UTRA); User Equipment
(UE) Radio Transmission and Reception.”

[16] H. Holma and A. Toskala, “LTE for UMTS-OFDMA
and SC-FDMA based Radio Access,” John Wiley &
Sons Ltd. 2009.

[17] D. Setiawan, D. Sirat, and D. Gunawan, “Feasibility
of LTE 700 MHz Digital Dividend for Broadband
Development Acceleration in Rural Areas,” ITB
Journal of Information and Communication
Technology. 2012.

[18] D. Setiawan, D. Sirat, and D. Gunawan,
“Acceleration Model of Digital Dividend
Implementation in Indonesia,” University of
Indonesia. 2013.

[19] D. K. Hendranigrat, N. F. Adriansyah,. U. K. Usman
and D. Setiawan, “Refarming Analysis of 700 MHz
Frequency Band for Long Term evolution (LTE)
Implementation In Indonesia Using Link Budget
Calculation,” International Conference on Electrical
Engineering and Informatics (ICEEI). Bandung,
Indonesia; ISSN : 2155-6822. ISBN : 978-1-4577-
0753-7. volume 3: page.1688-1692, 2011.

[20] D. K. Hendraningrat, “Analysis of Slot Spectrum
Selection For Long Term Evolution (LTE),” The 5th
International Conference TSSA. Bandung, Indonesia.
ISBN : 978-1-4577-1441-2. 2009.

[21] S. A. Basit, “Dimensioning of LTE Network
Descripttion of Model and Tool, Coverage and
Capacity Estimation of 3GPP Long Term Evolution
Radio Interface,” Helsinki University of Technology.
2009.

[22] D. Setiawan, and D. K. Hendraningrat, “Digital
Dividend Implementation Acceleration in Indonesia,”
The 8th International Conference TSSA. Bali,
Indonesia. ISBN : 978-1-4799-4774-4. 2014.

6Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

 12 / 23

Honey-Copy - A Concept and Prototype of a Generic Honeypot System

Olivier Favre∗, Bernhard Tellenbach∗, Jan Alsenz†
∗Zurich University of Applied Sciences, Switzerland

†Oneconsult AG, Switzerland
email: {favr,tebe}@zhaw.ch∗, jan.alsenz@oneconsult.com†

Abstract—In this paper, we present Honey-Copy, a concept and
prototype for a honeypot system that can pinpoint modifications
caused by attacks or intrusion for any honeypot. To achieve this,
we track modifications without having to install any additional
tools on them. We make use of cloning to identify whether or
not a modification has been caused by the honeypot itself or an
attacker or intruder. We briefly present our initial prototype and
discuss the challenges to be solved toward a more complete and
feature rich version of our prototype.

Keywords–Honeypot; Detection; Security; Monitoring;

I. INTRODUCTION

Honeypots are decoy computer resources whose value lies
in being probed, attacked or compromised [1]. The main
difference between a normal computer resource and a honeypot
is that the honeypot is not part of the production infrastruc-
ture [2]. One notable exception is the concept of Shadow
Honeypots presented in [3]. As a consequence, attack detection
methods do not have to cope with arbitrary production activity
and the extraction of traces of attacks or intrusions is much
simpler. After all, the traces do not submerge in production ac-
tivities [2]. Honeypots are therefore a valuable tool to improve
detection and reaction. However, since they do not protect a
production infrastructure directly, they must be integrated with
traditional security controls [4].

The lack of off-the-shelve products and solutions that allow
automated and easy creation and monitoring of honeypots
might be one of the reasons why the list of security controls
used by a company does rarely contain one. Another reason
might be that even though there exists many different kinds of
honeypot systems and methodologies to analyze data produced
by them, there is no system that satisfies all of the following
four properties [2]: (1) the honeypots are not recognizable as
such, (2) they are easy to configure and deploy, (3) the system
reports activities related to attacks and intrusions only, (4) the
core mechanisms (deployment, reporting of activities) work for
any honeypot. Properties one and three are probably the most
important ones. If these are not met, the system is of limited
use since it would be easy to detect and it would be difficult to
extract useful information from its reports. Properties two and
four are relevant from an operational and business perspective.
One of the major challenges is finding a solution to the
problem of reporting activities related to attacks and intrusions
without having to craft honeypot-specific algorithms or rules.
At first glance, assuming that any activity on the honeypot is
suspicious and should therefore be reported seems like a simple
solution to this problem. After all, there is no production
activity on a honeypot. While this often-made assumption
might hold for activities like incoming network connections,
it does not fit activities like the creation of a process or the
modification of a file. Depending on the honeypot itself, we
might see a significant amount of activity even on an ”idle”

system. This includes things like automated software updates,
an application-specific timed or event-based tasks (e.g., sync
or cleanup tasks) or log entries from arbitrary scheduled tasks.
Furthermore, when considering property four, the assumption
about incoming network connections might be wrong too - a
honeypot might do updates using active FTP or it might run a
distributed service that sees incoming connections from other
parts of the service from time to time. It is therefore crucial
to have a generic way to distinguish between activities of type
self and third party with the former including any activity
triggered (or expected) by the honeypot itself.

In this paper, we present the main idea and concept of
Honey-Copy, a system that should overcome most of the
limitations of today’s honeypot systems. Our main contribution
is a generic method to distinguish between activities of type
self and third party and its integration in a general concept for
a honeypot system. First, we provide an overview of Honey-
Copy and discuss the basic idea of our generic approach to
identify whether or not an activity is triggered by the honeypot
itself or a third party (Section II) and we explain why an
implementation of such a system is likely to be limited to
high-interaction honeypots. Next, we introduce our prototype
and discuss its implementation and evaluation (Section III). We
then conclude our paper with a section on the challenges and
next steps toward a more advanced version of our prototype
(Section IV). A discussion of relevant related work can be
found at the end of the paper (Section V).

II. HONEY-COPY - BASIC CONCEPT

The core idea of Honey-Copy is to make a clone of a
honeypot and to put it behind a firewall that blocks incoming
network connections. Since the clone cannot be accessed by
third-parties, it exhibits activities of type self only. It should
therefore be possible to identify and filter those activities from
the reports of the honeypot system exposed to the attackers.
Unfortunately, things like applications that create (temporary)
files with random filenames or software updates that happen
at different points in time make it difficult to implement an
accurate and timely matching. This is why Honey-Copy can
make up to n clones of a honeypot. By comparing them,
patterns like random filenames can be identified and the chance
that honeypot and clone(s) exhibit a certain activity of type self
within a short time span can be increased. Hence, it should be
possible to satisfy property (3).

Figure 1a shows the basic building blocks and setup of
Honey-Copy. It consists of physical machines that make use
of virtualization to run a host system and potentially many
guest systems. The use of virtualization enables Honey-Copy
to clone and deploy anything that can be provided in the
form of a virtual machine image. This meets property (4)
with respect to deployment. But this is not the only benefit of

7Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

 13 / 23

Host System

Host System

Snapshot
Archive

Internet

Deployment, Management and Analysis

VM Snapshot
Taker

VM

VM

VM

Network
Traffic Dumper

Network
Traffic Data

Image
Repository

Honeypot

Copies

(a)

cloning

prepare
system image

(from image db or
custom image)

install
application(s)

(.msi, .rpm, .deb,)

deployment
data collection

(network traffic,
filesystem,,...)

compare
data

deviation?

abort?
classification &

notification
shutdown and

archive

YES

NO

YES

NO

(b)

Figure 1. (a) Shows the basic setup of the Honey-Copy system and (b) the basic procedure it uses to deploy and manage a honeypot.

virtualization. Its use enables us to do the tracking of activities
in the guest systems without installing any additional software
and change to their configuration. In contrast to other honeypot
systems, the honeypots deployed can be virtually identical to
the production system they pose as. Hence, Honey-Copy can
be said to satisfy property (1); the honeypot system itself does
not make its honeypots more recognizable as such by itself.

The other two components running on the host system
are the VM Snapshot Taker and the Network Traffic Dumper.
The former can take snapshots of the guest systems, for
example file-system or memory snapshots. The later can dump
information about their network activity, for example full
packet traces or flow level information only. This data can
be captured and added to the Snapshot Archive or the Network
Traffic Data Archive. It is then analyzed by the Deployment,
Management and Analysis component, the heart of Honey-
Copy. With the data available about the systems, different kinds
of information like file or registry changes, running processes
or network traffic can be checked for changes. From a data
analysis point of view, the problem of identifying activities of
type self by comparing this data from the firewalled clones
and the honeypot itself is largely independent of the actual
honeypot. The component has to learn or identify activities of
type self from the clones and filter them from those reported
by the honeypot. Hence, since the deployment mechanism as
well as the activity-reporting works for any honeypot, Honey-
Copy can be said to satisfy property (4).

In addition to the analysis task, it is also responsible
for managing an Image Repository and for customizing and
deploying images upon request. Unfortunately, it seems diffi-
cult to implement this in a generic and easy-to-use way for
arbitrary honeypot types and configurations. One option to
satisfy property (2) is to implement Honey-Copy for high-
interaction honeypots only. In contrast to low- and medium
interaction honeypots, these are real systems and not (partially)
emulated or simulated ones. It seems, for example, practical
to create a repository of images for many different operating
systems and to use their software packaging and configuration
mechanisms to quickly make and deploy a system that is
a copy of a production web server or any other server or

computer in a company network. In a corporate environment
it would also be possible to use production server templates
and mechanisms as a basis for this process.

Figure 1b illustrates the basic procedure to setup and
manage an arbitrary high-interaction server honeypot in the
Honey-Copy system. The first step is to choose an image from
the Image Repository or to provide a custom image via an
upload function. Next, additional applications and services can
be installed and configured by providing them as package in
the packaging format of the operating system, for example .msi
for Windows or .deb for Debian Linux images or by using the
configuration or packaging tool used by the organization. The
packaging must allow for a fully automated installation of the
application or service. Now that the image is ready, it can be
cloned n-times and the honeypot and its clones can be deployed
on the same or multiple physical hosts as outlined in Figure 1a.
Data collection starts at the same time as the honeypot and its
clones are turned on and does not stop until this honeypot is
shutdown. In regular intervals, the data collected by the clones
and the honeypot is compared and if deviations are found, they
are classified and notifications are sent to those that subscribed
to them. It is then checked whether the deviation found requires
taking the honeypot offline, for example because it was hacked
and the intruder started to attack 3rd parties in the Internet.

III. PROTOTYPE

In theory, the Honey-Copy concept meets all of the four
desired properties. However, it is unclear whether or not it can
be put into practice. To understand the related problems and
challenges better, we built a an initial prototype of Honey-
Copy.

A. Implementation
Our prototype consists of some Python scripts and a set of

tools orchestrated by them. To manage and deploy the honey-
pots and their clones, we make use of Vagrant [5], a tool that
is often used to create and configure lightweight, reproducible,
and portable development environments. To deploy a honeypot,
we first create a configuration file that specifies the type of
machine to be used, the software that needs to be installed, and

8Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

 14 / 23

the way to access it. Based on this file, Vagrant can then create,
deploy and launch an image for VirtualBox [6], a hypervisor
that integrates well with Vagrant. When doing so, our prototype
makes sure that the honeypot is cloned and that data capturing
and the processes to detect activities other than self are in
place and started.

For now, data capturing consists of recording full packet
traces with tcpdump and snapshots of the file systems ev-
ery T=3600 seconds. This interval of one hour was chosen
mainly to investigate the longer-term deviations between the
clones and provide examples for activities of type self. For
an actual detection setup, a much smaller interval is expected
to be put in place. Whenever a new set of snapshots has
been taken, the file systems of the honeypot and the clones
are reconstructed, mounted and then scanned for differences
using rsync. The reconstruction is required because we take
differential snapshots to save storage space. In parallel to the
file-system analysis, Pyshark with custom filters and rules (IP-
Addresses, DNS-Names) is used to scan the network traffic
dumps to extract communication partners that have not been
seen by the clones. The result of the detection process is a
report consisting of the differences in the file systems and the
communication parters that are unique to the honeypot.

B. Evaluation
For an initial evaluation of our prototype, we deployed and

tested the system with Linux and Windows based clones of
typical web servers. For the evaluation, we compare the current
status of the system to a perfect implementation of the Honey-
Copy concept in terms of stealthiness, ease of deployment,
attack detection and generic core mechanisms:

Stealthiness: The only two limitations of the prototype
are that taking a file system snapshot of a virtual machine
requires to suspended it and that the honeypots and clones are
not physical but virtual machines. An attacker could detect the
former using well-timed queries to the machine and the later
might be achieved using fingerprinting methods like [7]. But
the virtualization solution also supports snapshots of running
machines, which could be implemented to mitigate the first
limitation and as most organizations are using virtual machines
at least in parts of their production infrastructure, this fact
cannot be used as a sole indicator for a honeypot. Additionally,
the only trace of Honey-Copy in the guest system is Puppet,
an open-source software configuration management tool for
Windows and Unix-like systems which is installed on them
by Vagrants provisioning system. However, unlike honeypot
specific logging and monitoring tools, its presence is not telling
very much and it can be easily replaced with other tools. Other
limitations exist but they are not introduced by the prototype
itself but depend on how the system and its environment is
configured and operated. For example, a public hostname like
honeypot.company.com could be suspicious when used for a
web server. And a system running a discussion forum with
no activity in it might also look suspicious. As these factors
are outside of the control of our solution and can be highly
application specific, we consider them as out of scope for the
prototype.

Ease of deployment: The prototype comes with the basic
mechanisms and capabilities required to implement a user-
friendly and easy-to-use interface to configure and deploy hon-
eypots. However, for now it, the only interface is a command

line interface. Furthermore, the Image Repository contains a
few base images only.

Attack detection: The current mechanisms used for fil-
tering activities of type self produces a significant number
of false positives. One reason for this is that the prototype
compares the file systems of the honeypot and its clones using
the most recent snapshot only. For example, we observed many
false positives because of automated software updates that
did not happen or finish within the same snapshot interval.
Another reason is that the comparison uses exact file matching.
This turns files that are semantically the same but that have
a different filename (e.g., temporary files with random file-
names) or content (e.g., logfiles) into false positives. Another
limitation is linked to the report generated from comparing
the network traffic to the honeypot and the clones. This report
lists communication partners seen by the honeypot but not its
clones. Unfortunately, it contains a lot of entries that are not
really interesting. This includes for example legitimate partners
like search engine bots or Shodan [8] or illegitimate ones doing
reconnaissance using known methods and tools. Furthermore,
because the comparison of communication partners is done
using exact matching, it cannot cope well with endpoints like
content distribution networks.

Generic core mechanisms: Management and deployment
works with any honeypot that is based on Windows or a
Unix-like systems since these are the systems supported by
Vagrant/VirtualBox. The same is true for the data capturing
and comparison mechanisms since it does not depend on the
actual system run in VirtualBox. Note that Unix-like includes
most Linux distributions, Android and Mac OS.

IV. CHALLENGES AND NEXT STEPS

In summary, we can identify two main challenges that
the next version of our Honey-Copy must address. First, the
system must provide a user-friendly and easy-to-use interface
to configure and deploy honeypots. This can be done by writing
an graphical user interface that compiles settings like the base
images and the applications to be used by the honeypot into a
suitable Vagrant file. The second challenge is more difficult to
address. The mechanisms to identify files that are not modified
by activities of the honeypot itself have to be able to detect files
that are identical from a semantic point of view but that differ
in content and/or have a different file name. To achieve this,
generic heuristics that can detect patterns in file names or in
the content of the files could be used. Another option would
be to employ machine learning to search for such patterns.
Furthermore, to cope for changes that might happen at different
points in time on the honeypot and the clones, the mechanism
must consider multiple snapshots from different points in time.
What this means in terms of a delayed reporting and alerting
is an important point of the evaluation of such an approach.
While the focus is clearly on the file system part, there is
also room for improvement with respect to the communication
partners (attackers) reported by Honey-Copy. Endpoints like
Windows update servers should not be reported as problematic
because the honeypot and the clones use a different server for
the update. The main challenge here is to make the matching
mechanism aware of content distribution networks and similar
behavior, for example by using third party tools, domain name
resolution analysis or URL based heuristics to detect them.

9Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

 15 / 23

We plan to address these challenges in the next version of our
prototype.

When these have been addressed, there are still many more
ways that the Honey-Copy prototype could be improved. If
we consider that activities of category third party can be
subdivided further into benign, attack and intrusion, it becomes
clear that depending on the purpose of the honeypot, it could
be required that Honey-Copy can filter activities of type benign
and maybe even attack. benign activities are triggered acciden-
tally or without malicious intent. This includes scanning from
legitimate sources like Shodan HQ [8] or search engine bots,
connection attempts that are the result of someone mistyping
an IP address or URL and backscatter [9] traffic. Activities
of type attack are triggered by an attempt to compromise the
honeypot, for example using the Metasploit framework [10]
and those of type intrusion are triggered by a successful
compromise of the honeypot. To identify them, it could be
useful to correlate network and file system activities and to
employ an intrusion detection systems like Snort or Bro to
fingerprint known attacks. We plan to research whether and
how this could be done without having to sacrifice the generic
nature of Honey-Copy when moving toward the third version
of our prototype. Any other improvements like for example the
addition of memory snapshots to the sources of information,
is left to prototypes beyond version three.

V. RELATED WORK

High-interaction honeypot systems that have similar goals
in terms of stealthiness, attack detection, ease of deployment
and honeypot configurations (operating system, applications
etc.) are HI-HAT [11], HoneyBow [12], and Sebek [13]. Like
Honey-Copy, these systems are server honeypot systems. In
addition, we review a number of projects in the client honeypot
sphere that are interesting because of the way they approach
the problem of differentiating between real attacks and other
activities.

HI-HAT [11] implements a system which converts normal
PHP web applications into usable server honeypots. Their
solution mainly consist of two components: The first compo-
nent converts an arbitrary PHP application into a honeypot
by adding monitoring capabilities to functions that handle
requests from the outside. The second component consists
of a GUI which lets an operator analyze the data gathered
by the honeypot. To decrease the amount of false positives
(generated by web crawler or other legitimate requests) the
system makes use of white- and blacklisting based on general
attack patterns. Furthermore, it allows the creation of custom
filters to take into account different behavior of applications.
Similar to Honey-Copy, it implements a way to deal with false
positives generated by generic PHP applications.

HoneyBow [12] on the other hand is a high-interaction
server honeypot which is designed for generic applications. It
makes use of virtual honeypots to automate the management
and monitoring of the system. In order to collect the necessary
data to detect an attack, it implements three different tools
(MwWatcher, MwFetcher, MwHunter) that search for malware
binaries in the virtual filesystem and the network flow. Similar
to the methods used in Honey-Copy, the MwFetcher compo-
nent compares the content of the honeypot filesystem to the one
of a clean copy that was taken at the start of an operation. The
files which were new or altered and are flagged as executables

are then further processed as malware. MwWatcher on the
other hand is installed on the honeypot itself and can detect
changes to the filesystem in real time. MwHunter finally in-
spects the network traffic for packages that contain executable
malware. Each of the tools used in Honeybow has its own
advantages and limitations. The MwWatcher component for
example can be easily detected and disabled by an attacker.
While this approach increases the chance of detecting an attack
it also decreases the number of attacks since the system can
be easily identified as a honeypot. Furthermore, it cannot deal
with updates on the honeypot since that would likely change
a number of executables compared to the clean copy.

Sebek [13] is another popular high interaction server hon-
eypot system. It provides a data capture tool which monitors
all actions of an intruder by capturing all sys_read calls.
Furthermore, it tries to capture and send the logged data as
stealthy as possible. Nevertheless, there have been a number
of publications, notably [14], which show a way to detect and
even disable Sebek. Another limitation of the tool is that there
is no filter for the captured data. A manual analysis is required
to distinguish a real attack from a false positive caused by
normal system activity.

In the area of client honeypots Capture-HPC [15] and
Capture Bat [16] present similar ideas. Both systems are high-
interaction honeypots that make use of exclusion and inclusion
lists. The former specifies acceptable non-suspicious activities
to be ignored by the detection mechanisms. The later contains
activities that are considered to be malicious. Such lists can be
created for resources like the Windows registry, the file system,
or processes. Capture-HPC also supports regular expressions
to group a number of exemptions together. Currently, these list
have to be created by hand and both systems run on Windows
only. Another limitation of the approach is that any change to
the honeypot (software updates, different mix of applications,
etc.) is likely to require a modification of the exclusion list.
UW-Spycrawler [17] on the other hand, makes use of trigger
conditions (blacklists) which are specific to the browser used
in the client honeypot setup. These conditions define activities
which cannot be caused by the browser itself. Similar to the
use of whitelists, these lists have to be created manually for
a specific application (browser). Shelia [18] on the other hand
takes a different approach to the problem without white- or
blacklisting. The researcher behind the project proposes a
system where the focus is on a reduction of false positives.
It gathers data of an attack by monitoring the registry changes
and file system actions generated by a process. The detection
of said attack is done by analyzing from which memory
address an API call was invoked. Once this address is obtained,
it is checked whether it points to an executable memory
location. If this is not the case an alarm is generated. This
method allows to detect buffer and heap overflows that are
exploited by an attacker. The downside of such a system
is that it produces a higher number of false negatives since
there are ways to circumvent the detection [19]. Pwnypot [20]
take this idea even further by implementing more methods
to detect arbitrary shellcode. It can detect ROP-Exploits and
ASLR/DEP-Bypasses used by attackers.

VI. CONCLUSION

The main contribution of this paper is a concept and an
initial prototype of Honey-Copy, a system that uses cloning

10Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

 16 / 23

to address the problem of distinguishing activities of the
honeypot itself from those of attackers. We explain why and
how our concept could be used to build a honeypot system
that comes close to a perfect one in terms of stealthiness, ease
of deployment, reporting of activities triggered by attackers
and independence of the core mechanisms from the actual
honeypots to be deployed. Other systems violate at least one
of these properties. Our evaluation of the prototype shows that
the basic mechanisms of our concept work and allow for a
stealthy and generic implementation of the system. However,
to satisfy all of the properties, the current method to compare
the state of the clones to the state of the honeypot has to
be replaced by a more sophisticated one and an easy-to-use
graphical interface to configure and deploy a honeypot has to
be developed.

REFERENCES

[1] L. Spitzner, “The Honeynet Project: trapping the hackers,” IEEE Secu-
rity Privacy, vol. 1, no. 2, Mar 2003, pp. 15–23.

[2] M. Nawrocki, M. Wählisch, T. C. Schmidt, C. Keil, and J. Schönfelder,
“A Survey on Honeypot Software and Data Analysis,” e-print
arXiv:1608.06249, Aug. 2016.

[3] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos,
and A. D. Keromytis, “Detecting Targeted Attacks Using Shadow
Honeypots,” in Proceedings of the 14th Conference on USENIX
Security Symposium - Volume 14, ser. SSYM’05. Berkeley, CA,
USA: USENIX Association, 2005, pp. 9–9. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251398.1251407

[4] E. Vasilomanolakis, S. Karuppayah, P. Kikiras, and M. Mühlhäuser,
“A Honeypot-driven Cyber Incident Monitor: Lessons Learned and
Steps Ahead,” in Proceedings of the 8th International Conference
on Security of Information and Networks, ser. SIN ’15. New
York, NY, USA: ACM, 2015, pp. 158–164. [Online]. Available:
http://doi.acm.org/10.1145/2799979.2799999

[5] “Vagrant,” HashiCorp, URL: https://www.vagrantup.com/ [accessed:
2017-02-14].

[6] “VirtualBox,” Oracle, URL: https://www.virtualbox.org/ [accessed:
2017-02-14].

[7] C. Jämthagen, M. Hell, and B. Smeets, “A Technique for Remote
Detection of Certain Virtual Machine Monitors,” in Proceedings of the
Third International Conference on Trusted Systems, ser. INTRUST’11.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 129–137. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-32298-3 9

[8] J. C. Matherly, “SHODAN the computer search engine,” URL:
http://www.shodanhq.com [accessed: 2017-01-30].

[9] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage,
“Inferring Internet Denial-of-service Activity,” ACM Trans. Comput.
Syst., vol. 24, no. 2, May 2006, pp. 115–139. [Online]. Available:
http://doi.acm.org/10.1145/1132026.1132027

[10] “Metasploit,” Rapid7, URL: https://www.metasploit.com/ [accessed:
2017-01-30].

[11] M. Mueter, F. Freiling, T. Holz, and J. Matthews, “High Interaction
Honeypot Analysis Tool,” URL: https://sourceforge.net/projects/hihat/
[accessed: 2017-02-14].

[12] J. Zhuge, T. Holz, X. Han, C. Song, and W. Zou,
“Collecting Autonomous Spreading Malware Using High-interaction
Honeypots,” in Proceedings of the 9th International Conference on
Information and Communications Security, ser. ICICS’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 438–451. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1785001.1785045

[13] “Know Your Enemy: Sebek, A kernel based data capture tool,”
The Honeynet Project, Last Modified: 17. November 2003, URL:
http://old.honeynet.org/papers/sebek.pdf [accessed: 2017-02-14].

[14] M. Dornseif, T. Holz, and C. N. Klein, “NoSEBrEaK - attacking hon-
eynets,” in Proceedings from the Fifth Annual IEEE SMC Information
Assurance Workshop, 2004., June 2004, pp. 123–129.

[15] M. Puttaroo, P. Komisarczuk, and R. C. de Amorim, “Challenges in
Developing Capture-HPC Exclusion Lists,” in Proceedings of the 7th
International Conference on Security of Information and Networks, ser.
SIN ’14. New York, NY, USA: ACM, 2014, pp. 334:334–334:338.
[Online]. Available: http://doi.acm.org/10.1145/2659651.2659717

[16] C. Seifert, “Capture-bat download page,” URL:
https://www.honeynet.org/node/315 [accessed: 2017-02-14].

[17] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy, “A Crawler-
based Study of Spyware in the Web,” in Proceedings of the Network
and Distributed System Security Symposium, NDSS 2006, San Diego,
California, USA. The Internet Society, 2006.

[18] J. R. Rocaspana, G. Portokalidis, P. Homburg, and H. Bos,
“Shelia: a client-side honeypot for attack detection,” 2009, URL:
http://www.cs.vu.nl/˜herbertb/misc/shelia/ [accessed: 2017-02-14].

[19] J. Butler, “Bypassing 3rd Party Windows Buffer Overflow Protection,”
URL: http://phrack.org/issues/62/5.html [accessed: 2017-02-14].

[20] S. Jalayeri and T. Jarmuzek, “PwnyPot, High Interaction Client Honey-
pot,” URL: https://github.com/shjalayeri/pwnypot [accessed: 2017-02-
14].

11Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

 17 / 23

Security Testing Over Encrypted Channels on the ARM Platform

Fatih Kilic
Chair for IT-Security

Technical University of Munich
Garching near Munich, Germany

e-mail: kilic@sec.in.tum.de

Benedikt Geßele
Department Secure Operating Systems

Fraunhofer AISEC
Garching near Munich, Germany

e-mail: benedikt.gessele@aisec.fraunhofer.de

Hasan Ibne Akram
Safety & Security Lab

Matrickz GmbH
Unterscheissheim near Munich, Germany

e-mail: hasan.akram@matrickz.de

Abstract—Security Testing has been applied for many years to
detect vulnerabilities in applications. With the increasing demand
for encryption to protect the confidentiality of network data,
the requirements have changed. When proprietary, closed source
software uses end-to-end encryption, security testing tools which
are fuzzing the application layer over network with plaintext
data will eventually fail. The Intrusion Detection Framework
for Encrypted Network Data (iDeFEND) framework circumvents
this problem without violating the security of the end-to-end
encryption. Unfortunately, the framework cannot be used on
the Advanced RISC Machines (ARM) platform, since it uses
architecture depended features of x86. In this paper, we transfer
iDeFEND to the ARM architecture and thereby, make it suitable
for testing applications on embedded devices. In addition, we
discuss the limitations of the current framework and improve
it with novel methods to provide a more generic approach for
security testing. We present a generic method for inspecting
data on encrypted channels. Our approach does not require any
knowledge of the structure of the wrapper function for receiving
and decrypting like iDeFEND. Furthermore, we present a solution
to test and inspect applications that are using packet queues.
Finally, we evaluate our approach on popular mobile applications.

Keywords–security testing; network security; reverse engineer-
ing; encrypted communication; embedded security.

I. INTRODUCTION

Nowadays, a wide variety of applications use encryption to
protect their confidential data in network communications. En-
crypting the network traffic prevents attackers from accessing
sensitive data, but cannot stop them from exploiting security
flaws in the implementation to achieve crashes, intrusion or
code execution on the system. Security testing is responsible
for detecting these vulnerabilities at an early stage. However,
even powerful testing frameworks are blind when end-to-
end encryption is applied and can only randomly generate
or mutate packets. Additionally, the encryption layer makes
it difficult for security testers to validate the remote program
which increases the risk of missing faults. Solutions to this
issue usually require a high amount of reverse engineering,
since most of the target applications are closed source. Other
solutions add an additional node to the encryption (e.g., a
proxy server) and use it to access the plaintext data. This makes
the communication more insecure. End-to-end encryption is
designed to only terminate at the destination application to
fulfil its required security. As a consequence, the plaintext
can only be accessed by reverse engineering of the encryption
algorithm and key, which is in general highly complex and
time-consuming and thus, not feasible.

Another solution is presented by the generic framework
iDeFEND [1]. The framework sustains the end-to-end en-

cryption and leaves the communication channel untouched by
extracting the plaintext data directly from process memory.
It automates the reverse engineering process of applications
by only relying on the detection and hooking of network and
encryption functions. As a result, even closed source software
can be handled at a much smaller effort. Although the frame-
work has a generic design, it still has limitations. iDeFEND
was implemented and evaluated for the x86 architecture, but
nowadays most of the networking applications are running on
mobile devices like smart phones or tablets whose processors
are primarily designed by ARM. Since the framework uses
hardware dependant features, its concept must be adapted to
the specifics of the new platform.

Additionally, mobile applications tend to buffer network
packets in a queue before sending them. This compensates
bad connectivity, but results in a conflict with the current
approach of iDeFEND. Furthermore, the framework relies on
the presence of a specific wrapper function to inspect the
received, unencrypted network data. In practice, this function
can be more complex than expected by the framework and
requires additional reverse engineering.

We overcome these shortcomings and extend the iDeFEND
system. We provide a framework that allows to use common
security testing tools for encrypted network applications. In
summary, our contributions are the following.

• Security testing over encrypted channels on ARM
We provide the same features of iDeFEND for ARM
as it already does for x86. This means, we enable
security testing on ARM devices when the target
applications are communicating over an encrypted
channel.

• Improving iDeFEND to support applications with
packet queues
We improve the current approach of iDeFEND with a
new feature that makes it capable of handling appli-
cations with packet queues. Our new method allows
to inject plaintext data into the packet queue and thus,
into the encrypted communication channel.

• Improving iDeFEND with a generic method for
data inspection
We extend the concept of iDeFEND by a generic
method for extracting received network data. We
describe how this method enables the inspection of
server responses without reverse engineering the func-
tion in detail.

The remainder of this paper is structured as follows. First,
we present related work in Section II. In Section III, we
summarize and describe the approach of the existing iDeFEND

12Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

 18 / 23

framework. How the framework is used for security testing
is explained in Section IV. In Section V, we present the
limitations of the current concept and introduce our design
improvements. In Section VI, we discuss the conceptual trans-
fer of iDeFEND from x86 to ARM. The implementation of
iDeFEND on ARM follows in Section VII. In Section VIII,
we evaluate our framework and summarize the paper in Section
IX.

II. RELATED WORK

Many different fuzzing frameworks exist that facilitate
the security testing of network communicating applications.
Gascon et al. [2] present a fuzzing framework for propri-
etary network protocols which uses inference to create a
generative model for message formats. Their approach relies
on unencrypted network traffic, similar to many other smart
automated model-based [3][4][5] and grammar-based [6][7]
fuzzing techniques. Nowadays, there is also a vast amount
of powerful commercial fuzzing and vulnerability scanning
frameworks like Defensics [8], Nessus [9], beSTORM [10],
Peach Fuzzer [11], honggfuzz [12] and american fuzzy lop
[13] on the market available. They provide very complex
and sophisticated algorithms to cover many different areas of
fuzzing and vulnerability testing, but overall also lack proper
support of encrypted network communications.

Biyani et al. [14] address this issue and present a solu-
tion by extending the SPIKE fuzzing framework to support
encrypted protocols. They add a SSL wrapper to the existing
plaintext fuzzer which allows to communicate with the target
test application over an encrypted tunnel. This way, the fuzzer
can inject its plaintext test data into the encrypted channel and
test the target application for vulnerabilities. This approach,
however, is limited to Secure Sockets Layer (SSL) encryptions
which only represent a small part of proprietary software
products. Another drawback is that their implementation is
customized and only applicable for the open source fuzzer
SPIKE. Tsankov et al. [15] introduce a different solution that
allows a more generic fuzzing of encrypted protocols. Their
approach is based on the knowledge of the encryption key and
algorithm which is problematic from a security point of view.

As of yet, there is no good solution to testing of ap-
plications with encrypted network traffic. Our approach is
different. We use the iDeFEND framework [1] to have a layer
between test program and test framework. This additional
layer makes the encryption transparent without violating the
security of end-to-end encrypted communications. This way,
we reduce the problem of testing encrypted protocols to the
testing plaintext protocols and thus, enable the usage of many
already existing testing tools.

III. DESIGN OF IDEFEND
In this section, we summarize the iDeFEND [1] framework

and describe how the framework enables inspection and injec-
tion of plaintext data in encrypted communications. We also
show why the approach is well suited for security testing.

Usually, applications implement encrypted communication
with the help of two wrapper functions. One takes plaintext
data, encrypts it and sends it over the network. This function
is labelled EnCrypt & Send (CaS). The other one, Receive
& DeCrypt (RaD), is responsible for the reversed process.
It receives ciphertext data from the network and decrypts

it afterwards. Together, these functions form the transition
between plaintext and encrypted network data in our target
applications. The iDeFEND framework uses this property to
get access to the unencrypted network data by detecting and
hooking both wrapper functions. This way, the application
itself serves as an abstraction of the encryption implementation
and allows us to inspect the plaintext communication without
knowing the encryption algorithm, key or even source code of
the application.

Controlling the wrapper functions empowers us to inspect,
intercept, modify and inject new plaintext messages into the
encrypted channel. For security testing, especially fuzzing,
the tester primarily wants to send test data to the remote
application and thus, heavily relies on the injection of packets.
Since the CaS wrapper function takes a plaintext data pointer
as argument, encrypts it and sends it over the network, test
data can be injected by passing its pointer to the CaS. This
can be realized in two different ways. Either active by code
injection to the target process and calling CaS directly or
passive by hooking calls to CaS inside the application (e.g.,
with a debugger) and replacing the input plaintext pointer with
a pointer to the test data. In both scenarious, the test data is
sent to the remote application, the response is extracted at the
RaD and the test case can be evaluated.

The functionality of iDeFEND is logically split into three
modules: a detector, a collector and a monitor module. The
detector module is responsible for locating the wrapper func-
tions in memory. Afterwards, the collector module hooks the
located wrapper functions and passes the plaintext data to the
monitor module. The monitor module simply is an interface
for external programs. The detector module is a debugger that
is specifically geared towards the automated reverse engineer-
ing of the wrapper functions. In general, applications with
encrypted network traffic implement the functions crypt, send
and receive. Send and receive are public library functions of the
operating system and thus, getting their addresses is simple.
The crypt function, depending on the underlying algorithm,
can either be one or two functions. In case it is part of a
library, getting the addresses is simple. They can be extracted
by looking at the export table. In case it is not, the paper for
interactive function identification [16] introduces an approach
that facilitates the identification. By definition, the wrapper
functions successively call the pairs encrypt and send, and
receive and decrypt, respectively. iDeFEND uses this property
of CaS and RaD to identify the wrapper functions through
backtracking with a debugger. The backtracking is realized
with breakpoints on send, receive, enrypt and decrypt. When
the debugger notices a break on one of the function pairs,
it can determine the wrapper functions from the call stack.
Sometimes data is only encrypted for internal purposes and
never sent over the network. In order to filter those cases, iDe-
FEND compares the data pointers between the function calls
and validates the data flow. Data for network communication
is detected, for instance, if the output pointer of the encryption
matches the input pointer of the send. Otherwise, the calls of
encrypt and send were independent and did not originate from
the wrapper function, but from an internal encryption.

The collector module hooks the detected wrapper functions
and extracts the network data. It is either part of the debugger
or a module that is injected into the target application.

• Collector Module as a Debugger

13Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

 19 / 23

Extracting the plain text with a debugger is simply
achieved by inserting breakpoints on the wrapper func-
tions CaS and RaD and extracting the data from their
function arguments and return values, respectively.
Since the debugging procedure is comparably slow, the
target application is slowed down to a certain degree.

• Collector Module as an Injected Module
A faster solution is to directly place code in the
target application with a module injection. An as-
sembly hook that is placed at the function prologue
of the wrapper functions CaS and RaD redirects the
execution to the injected code. The hook consists
of a machine instruction like a jump or a call that
substitutes the first few bytes of the function prologue
and a function stub that is executed by the jump.
The extracted plain text data then is passed via Inter
Process Communication (IPC) to the monitor module.

IV. SECURITY TESTING WITH IDEFEND
In this section, we present an use case of the iDeFEND

framework and explain how it enables security testing of
encrypted network applications.

The iDeFEND framework is designed to support security
testing of proprietary, closed source software. This type of
testing is referred to as black box testing, since we examine the
functionality of the programs under test without knowing de-
tails on the development, program internals or implementation.
Even though the program is a blackbox, security analysts still
can use powerful fuzzing tools to test for commonly known
vulnerabilities. They can, for example, test a server against
blind format string attacks [17]. In this scenario, a security
analyst sends strings to the server application and afterwards
validates the response and thereby, the outcome of the test
case. For applications that use an encrypted communication
channel, this approach of security testing inevitably fails. Since
no information about implementation and design of the target
application are available, also the internals of the encryption
are unknown. As a result, there are only two possible responses
of the target application to plaintext test messages from the
security analyst. Either the test message does not fulfil the
specification of the protocol and thus, the decryption fails and
the test data is rejected. Or the decryption handles the test
data, but changes it arbitrarily and is interpreted differently to
the intentions of the tester. In both cases testing fails. Figure
1 illustrates this scenario with the orange arrow representing
the test string data. The diverging arrow heads symbolize the
misinterpreted test data after decryption that does not trigger
the intended functionality any more.

client app server app

iDeFEND security analyst

encrypted channel

‘‘%n‘‘
‘‘%n‘‘

‘‘%n‘‘

?
?

Figure 1. Security testing of encrypted communications.

If the security analyst wants to test the server application
as intended, he can use the iDeFEND framework. Using the
framework for testing circumvents the issue of encryption.

It provides an interface for the security analyst to the client
application and thus, access to the encrypted channel. This
way, the security analyst can pass the plaintext test data to
the framework interface which uses the client application to
encrypt and send the data. The sent data then is decrypted
correctly at the server application and eventually triggers the
intended functionality. Figure 1 shows the flow of the plaintext
test data with the dashed, green arrow. The security analyst
passes the data to iDeFEND which injects it into the encrypted
channel. The test data enters the server application and is
decrypted correctly.

V. IMPROVEMENTS OF IDEFEND
In this section, we discuss the limitations of the current

iDeFEND approach for software testing and present our im-
provements. We put focus on the conceptual weaknesses of
the framework and separately address the transfer to ARM in
the following section VI.

Currently, iDeFEND implements the identification of the
wrapper functions with backtracking. Therefore, the call stacks
at successive calls to the logic function pairs are intersected.
Knowing, for example, that wrapper CaS is responsible for
calling encrypt and send, means that the call stacks of encrypt
and send must have an intersection at the wrapper function.
This approach introduces a weakness. The wrapper functions
can only be detected when they successively call encrypt and
send. For applications that use a message queue in network
communication, this assumption is never met.

Additionally, iDeFEND defined the RaD wrapper function
to return the decrypted plaintext packet. It inspects the plaintext
data by hooking the function at its return instruction. This
requires detailed knowledge about the structure of RaD and
obviously the presence of a RaD.

In the following subsections we propose solutions to those
two problems.

A. Test Data Injection into Packet Queues
Applications that use a packet queue construct the packet,

encrypt it and then append it to the queue. At any other point
in the program the encrypted packet is taken from the queue
and sent over the network. As a result, the call graphs of
encrypt and send do not intersect at the CaS, because there is
no CaS any more. This introduces a weakness of the iDeFEND
framework. Without the detection or presence of the wrapper
function, the framework cannot inspect, intercept or inject data
into the communication. This means, for applications that use
packet queues it is not possible to use iDeFEND for security
testing. We addressed this issue and analysed the program
structure of such applications and came up with a solution.
Even though the applications do not implement a CaS function,
they still have a function that takes the plaintext data, encrypts
it and appends it to the queue. This function can be used in
the same manner as the CaS to inspect, intercept and inject
data to the communication. The only difference is that the
sending is delayed in time, which is irrelevant to our scenario
of testing. Figure 2 illustrates the control flow graph for this
new function type EnCrypt & EnQueue (CaQ). Identifying
the address of this wrapper function requires a new approach.
Usually, programs implement protocols that construct different
packets for many different purposes. This means that for each
packet the wrapper function is called from a different calling

14Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

 20 / 23

context, but their call stacks always intersect at the CaQ. For
this reason, our solution to the issue of identifying the CaQ
function is to record all call stacks at encrypt and intersect
them to find the wrapper function. In order to validate network
traffic in this scenario, it is also necessary to use a different
procedure to the previous. Since the data is copied to the queue,
the pointers at send and encrypt vary. We handle this problem
by not saving the pointer itself, but the whole buffer. At the
validation of the data flow we simply compare the contents.

The CaQ function can be identified as soon as at least two
call stacks from different calling contexts are collected. The
intersection of the collected call stacks identifies the wrapper.

This proposed method extends iDeFEND to support appli-
cations that implement packet queues.

Debugger

CaQ

crypt send

Application

Detector

event1 event2 event3event3

Collector

queue

Figure 2. Control Flow Graph (CFG) for wrapper function CaQ.

B. Generic Approach for Data Inspection
The second problem of iDeFEND is that the current

approach assumes the existence of a specially structured RaD
function which in general is not the case. The RaD is assumed
to return the decrypted plaintext data. iDeFEND hooks the RaD
at the return and extracts the plaintext data. However, many
applications do not implement this type of wrapper function.
In general, the receiving wrapper function is a loop that never
returns. It calls receive and passes the data to a parsing unit
that finally decrypts the data. Furthermore, without knowing
the structure of the RaD, the current iDeFEND cannot inspect
the plaintext data. The correct offset and the information about
the correct register or data pointer have to be known at this
point.

We analysed this issue and came up with generic solution.
Our approach is based on the assumption that data that is
received over network is always decrypted at any later point
in the program. Therefore, we store all incoming data at the
function receive and wait for it to be decrypted. When the
decryption function is accessing the data, we can extract the
plaintext after the decryption has completed. This way, we
do not need the presence of wrapper functions or knowledge
about the function structure, but only require the presence of
the the basic functions decrypt and receive. Additionally, our
improved approach does not even rely on frame pointers.

Similar to the original approach, we also break on receive
and decrypt. However, we identify data that is received from
the network not by comparing the pointers of data, but by

comparing the content of input and output buffer between
receive and decrypt. The idea is the same as it was for
validating data that is going to be send over the network for the
CaQ. When the decrypt function returns and we validated that
the encrypted data was received from the network previously,
we extract the plaintext data from the returned buffer. The
extracted data then can be passed to the tester for inspection.

With this method we extended iDeFEND to allow the
inspection of unencrypted server responses, even though the
application does not implement a wrapper function and use
frame pointers.

VI. TRANSFER TO THE ARM ARCHITECTURE

In this section, we discuss the transfer of iDeFEND to
the ARM platform. We present the key differences between
x86 and ARM with respect to debugging with hardware
breakpoints, data extraction at function calls, call stack recon-
struction from the stack and hooking of functions on machine
code level.

A. Using Hardware Breakpoints for Debugging
Both architectures x86 and ARM implement both hardware

and software breakpoints. Hardware breakpoints offer a better
performance, do not require modification of the executable
code and thus, are less obvious to detect. This makes them
perfectly suited for implementing the detector module of
iDeFEND.

In general, only a few hardware breakpoints are available
per processor, but this is no limitation, since the specification of
x86 offers up to four and ARM up to 16 hardware breakpoints.
Implementing the detector requires at most four breakpoints.
On x86, each debug register represents a breakpoint and
holds the target address. A shared control register holds flags
to enable, disable and configure each breakpoint. On ARM,
hardware breakpoints consist of two registers: a control and a
value register [18]. The value register stores the address of the
breakpoint and the control register contains breakpoint options
that allow, for example, to link different breakpoints, enable
or disable them, specify the privilege and exception level the
breakpoint debug event is generated on.

B. Extracting Data from Procedure Calls
The collector has to extract data from the function param-

eters on breaks. Since we break on function prologues, which
means on the first instruction of the routine, we can access
the passed parameters as specified by the underlying calling
convention.

ARM, in contrast to x86, specified its own procedure call
standard [19]. On ARM, the first four parameters are always
passed in the first four registers R0 to R3. Every additional
parameter is pushed to the stack. Since the Stack Pointer
register always holds the address of the top of the stack, the
arguments five and higher can be accessed with help of the
stack pointer register and the argument offset.

In case the output buffer is passed through the return value
of a function, the Link Register can be used to access it. The
Link Register is dedicated to hold the return address of the
current function. The return value is passed through register
R0.

15Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

 21 / 23

TABLE I. PRESENCE OF STACK POINTERS WITH DIFFERENT
COMPILER SETTINGS

GCC Flag Optimization Offset to next
O0 O1 O2 O3 frame pointer (FP)

no flags X FP - 4
-mapcs-frame X X X X FP - 12
-fno-omit-frame-pointer X X X X FP - 4
-mapcs-frame

X X X X FP - 12fno-omit-frame-pointer

C. Call Stack Reconstruction
In order to identify the wrapper functions CaS and RaD,

we want to intersect the call stacks and therefore, have to
reconstruct them from the program stack. In a program every
function call pushes a frame to the stack and pops it on return.
The call stack can be reconstructed by unwinding the stack
frame by frame. On ARM, unwinding the stack is complex.
In general, the architecture does not provide a dedicated frame
pointer register for the address of the first frame. Depending on
the optimization level of the underlying compiler, frame point-
ers might not even be present on the stack. This is problematic,
since it is highly complex to reconstruct stack frames without
having frame pointers, as it requires a sophisticated analysis of
the stack. Table I illustrates the effects of different settings on
the generation of stack frames for the GCC compiler. The flags
mapcs-frame and fno-omit-frame-pointer force the compiler to
preserve stack pointers throughout all optimization levels. The
only difference is that the pointer offsets vary. Without them,
the compiler only generates stack pointers for optimization
level O0, which means no optimization. In the default case,
without any particular flag specified, frames are properly build
by the compiler.

D. Hooking Functions
Injecting the collector module into the target process

requires a redirection of the control flow from the original
code to the injected module. Therefore, a hook is placed in
the executable code at the prologue of the target function.
Generally speaking, this means substituting the first bytes of
the function prologue with a branch instruction. The replaced
code must be backed up and executed later on, before jumping
back to the original function.

On ARM, instructions have a fixed length of four bytes,
which makes substitution of instructions simple. However,
multiple types of prologues exist. This is problematic when
the first instruction is program counter dependant and thus,
cannot be moved. This happens on ARM, for example, when
compilers use constant pools. Otherwise, when the instruction
is independent of the program counter, the instruction can be
moved and a hook is possible.

The actual branch can be implemented with a memory load
that allows to target the full 32 bit address space. Since it
modifies the program counter directly, the hook consists of
only one instruction plus memory space that is holding the
target address. Since compilers use multiple bytes of padding
between two procedures in memory, this padding is a suitable
location to place the address.

VII. IMPLEMENTATION

We implemented the improved iDeFEND framework on
an ARM device that is running a Linux operating system. We

chose Linux, as most of the target ARM devices like smart
phones, tablets or embedded boards are either running Linux
or Android, which is also based on the Linux Kernel. We
used a Raspberry Pi 2 embedded board that is equipped with
a 900MHz quad core ARM Cortex-A7 processor and 1GB
RAM. It was running a Linux distribution Raspbian 4.1.13-
v7 as operating system. For the sake of efficiency, portability
to Windows and independence of other programs and their
implementations, we decided to write our prototype as a stand
alone C program.

The implementation consists of two parts. First we present
the detector module, followed by the implementation of the
collector module.

A. The Detector Module - a Debugger based on ptrace
We implemented the detector on top of the ptrace debug-

ging API by setting four hardware breakpoints for each of the
target functions.

1) Finding addresses of Send and Receive: Since Linux
maps the whole binary object to memory, the virtual addresses
of send and receive can be calculated by adding the offsets in
the binary to the base address of the module process space.
We retrieve the base address and path to the binary on disk
from the directory /proc. We then use the utility nm to find the
offsets inside the binary.

2) Detecting Successive Calls to Function Pairs and Lo-
cating the Wrapper Functions: In order to locate the wrap-
per functions, we identify successive calls by extracting the
function arguments at encrypt and at receive, and see if they
match the input pointers at send and decrypt. For the special
CaQ case, we copy the whole buffer instead of only pointers.
We track the data per thread, together with a time stamp.
A 15 seconds time out prevents internal encryptions to stay
infinitely long in memory. We implemented stack unwinding
for applications compiled with -mapcs-frame. As described in
Table I, each frame pointer minus twelve then points to the
previous pointer. After reconstruction, we intersect two call
stacks by searching for the first frame that appears in both call
stacks.

B. The Collector Module - Speed Up with Module Injection
We implemented the collector in both variants debugger

and injected module. For injection, we implemented a call to
dlopen that uses the dynamic loader of Linux to load objects at
runtime. Finally, we placed the hooks at the wrapper functions
and detoured the execution to the injected module.

VIII. EVALUATION

We have evaluated our improved iDeFEND framework for
five applications. Beside the required criterion of encrypted
network communication, we wanted to have at least one
messenger, one file transfer and one secure shell application.
These types implement different network protocols which
handle text messages, binary files and customized commands.
Furthermore, we wanted to have at least one test application
that is single-threaded, multi-threaded, uses the console for
user interaction and implements an own Graphical User Inter-
face (GUI). In order to have ground-truth information of the
wrapper functions, we used open source applications. Table
II gives an overview of the selected applications telegram-
cli (v1.4.1), uTox (v0.7.1), PLINK (v0.67), PSFTP (v0.67)

16Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

 22 / 23

TABLE II. DESCRIPTION OF THE OPEN SOURCE TEST
APPLICATIONS THAT RUN ON A RASPBERRY PI 2

Name Type Data Category UI Threading
telegram-cli Messenger Text Console Multi
uTox Messenger Text GUI Multi
PLINK Secure Shell Commands Console Single
PSFTP File Transfer Files Console Single
PSCP File Transfer Files Console Single

TABLE III. EVALUATED APPLICATIONS

Name Send Receive Wrapper Type
telegram-cli Write Read CaQ
uTox SendTo RecvFrom CaS
PLINK Send Recv CaS
PSFTP Send Recv CaS
PSCP Send Recv CaS

and PSCP (v0.67). The second column states the type of the
application. The third column shows the type of data that is
primarily transferred by the protocol. The last two columns
indicate whether the application implements a GUI or is multi
or single threaded, respectively.

Table III summarizes the results of our evaluation. The
first column contains the names of the applications. The
columns send and receive state the system library functions
the application used to communicate over the network. The
column Wrapper-Type states whether a CaS or CaQ function
is implemented. Briefly summarized, we were able to inspect,
intercept and inject data for all five applications. Except
for Telegram, all applications implement the CaS function.
Telegram implements a message queue and therefore, uses
the CaQ. With the improved approach we were able to detect
it and use it for packet injection. We were also able to use
code injection and hooking of the wrapper functions on all
five applications.

IX. CONCLUSION

With the rising demand for confidentiality and thus, en-
cryption in consumer level and commercial software, security
testing faces new challenges. Currently, existing testing tools
only have poor or no support at all for encrypted network
communications. That is precisely the reason why we proposed
a generic solution to this issue by using the iDeFEND frame-
work. The framework makes the encryption transparent and
thereby, does not violate the security of end-to-end encryption.
Since iDeFEND cannot be used on the ARM platform and
nowadays many network applications are from the mobile
sector and thus, use ARM processors, we transferred it to the
this architecture. Additionally, we pointed out the limitations of
the current framework and introduced improvements to it. Our
novel methods provide a more generic approach for security
testing. We introduced a method that allows to inject test
data into network applications that use message queues. Our
solution detects and hooks the function that is responsible for
encrypting and enqueuing packets.

Furthermore, we introduced a generic method to inspect
the incoming unencrypted network data. Our method does not
rely on the presence of a receive and decrypt wrapper function
or even frame pointers.

With the extended iDeFEND framework we provide an
interface to the encrypted channel of an application that allows

already existing testing tools to work as intended, also on the
ARM platform. Our improved framework decouples the testing
of software from the actual encryption.

REFERENCES
[1] F. Kilic and C. Eckert, “idefend: Intrusion detection framework for

encrypted network data,” in Proceedings of the 14th International
Conference on Cryptology and Network Security (CANS 2015), ser.
Lecture Notes in Computer Science. Springer International Publishing,
2015, vol. 9476, pp. 111–118.

[2] H. Gascon, C. Wressnegger, F. Yamaguchi, D. Arp, and K. Rieck,
Pulsar: Stateful Black-Box Fuzzing of Proprietary Network Protocols.
Cham: Springer International Publishing, 2015, pp. 330–347.

[3] T. Kitagawa, M. Hanaoka, and K. Kono, “Aspfuzz: A state-aware
protocol fuzzer based on application-layer protocols,” in Computers and
Communications (ISCC), 2010 IEEE Symposium on, June 2010, pp.
202–208.

[4] G. Banks et al., SNOOZE: Toward a Stateful NetwOrk prOtocol fuzZEr.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 343–358.

[5] S. Gorbunov and A. Rosenbloom, “Autofuzz: Automated network
protocol fuzzing framework,” IJCSNS, vol. 10, no. 8, 2010, p. 239.

[6] D. Yang, Y. Zhang, and Q. Liu, “Blendfuzz: A model-based framework
for fuzz testing programs with grammatical inputs,” in 2012 IEEE 11th
International Conference on Trust, Security and Privacy in Computing
and Communications, June 2012, pp. 1070–1076.

[7] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’08.
New York, NY, USA: ACM, 2008, pp. 206–215.

[8] Codenomicon. Defensics. [Online]. Available:
www.codenomicon.com/defensics/ 2016.04.26

[9] T. N. Security. Nessus. [Online]. Available: www.tenable.com/de/nessus
2016.04.26

[10] B. Security. bestorm software security testing tool. [Online]. Available:
http://www.beyondsecurity.com/bestorm.html 2016.04.26

[11] Peach fuzzer. [Online]. Available: http://www.peachfuzzer.com/
2016.04.26

[12] honggfuzz: A general-purpose, easy-to-use fuzzer with interesting anal-
ysis options. [Online]. Available: https://github.com/google/honggfuzz
2016.04.26

[13] M. Zalewski. American fuzzy lop: a security-oriented fuzzer. [Online].
Available: http://lcamtuf.coredump.cx/afl/ 2016.04.26

[14] A. Biyani et al., “Extension of spike for encrypted protocol fuzzing,”
in 2011 Third International Conference on Multimedia Information
Networking and Security, Nov 2011, pp. 343–347.

[15] P. Tsankov, M. T. Dashti, and D. Basin, “Secfuzz: Fuzz-testing security
protocols,” in Automation of Software Test (AST), 2012 7th Interna-
tional Workshop on, June 2012, pp. 1–7.

[16] F. Kilic, H. Laner, and C. Eckert, “Interactive function identification
decreasing the effort of reverse engineering,” in Proceedings of the
11th International Conference on Information Security and Cryptology
(Inscrypt 2015). Springer International Publishing, 2016, pp. 468–487.

[17] F. Kilic, T. Kittel, and C. Eckert, “Blind format string attacks,” in
Proceedings of the 10th International Conference on Security and
Privacy in Communication Networks (SecureComm 2014), ser. Lecture
Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering. Springer International Publishing,
2015, vol. 153, pp. 301–314.

[18] ARM Architecture Reference Manual - ARMv8, for ARMv8-A archi-
tecture profile. ARM Limited, Jun. 2016.

[19] Procedure Call Standard for the ARM Architecture. ARM Limited,
Nov. 2015, document Version: ARM IHI 0042F, current through ABI
release 2.1.

17Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

Powered by TCPDF (www.tcpdf.org)

 23 / 23

http://www.tcpdf.org

