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Forward

The Fifteenth International Conference on Autonomic and Autonomous Systems (ICAS
2019), held between June 02, 2019 to June 06, 2019 - Athens, Greece, was a multi-track event
covering related topics on theory and practice on systems automation, autonomous systems
and autonomic computing.

The main tracks referred to the general concepts of systems automation, and
methodologies and techniques for designing, implementing and deploying autonomous
systems. The next tracks developed around design and deployment of context-aware networks,
services and applications, and the design and management of self-behavioral networks and
services. We also considered monitoring, control, and management of autonomous self-aware
and context-aware systems and topics dedicated to specific autonomous entities, namely,
satellite systems, nomadic code systems, mobile networks, and robots. It has been recognized
that modeling (in all forms this activity is known) is the fundamental for autonomous
subsystems, as both managed and management entities must communicate and understand
each other. Small-scale and large-scale virtualization and model-driven architecture, as well
as management challenges in such architectures are considered. Autonomic features and
autonomy requires a fundamental theory behind and solid control mechanisms. These topics
gave credit to specific advanced practical and theoretical aspects that allow subsystem to
expose complex behavior. We aimed to expose specific advancements on theory and tool in
supporting advanced autonomous systems. Domain case studies (policy, mobility, survivability,
privacy, etc.) and specific technology (wireless, wireline, optical, e-commerce, banking, etc.)
case studies were targeted. A special track on mobile environments was indented to cover
examples and aspects from mobile systems, networks, codes, and robotics.

Pervasive services and mobile computing are emerging as the next computing paradigm in
which infrastructure and services are seamlessly available anywhere, anytime, and in any
format. This move to a mobile and pervasive environment raises new opportunities and
demands on the underlying systems. In particular, they need to be adaptive, self-adaptive, and
context-aware. Adaptive and self-management context-aware systems are difficult to create,
they must be able to understand context information and dynamically change their behavior at
runtime according to the context. Context information can include the user location, his
preferences, his activities, the environmental conditions and the availability of computing and
communication resources. Dynamic reconfiguration of the context-aware systems can generate
inconsistencies as well as integrity problems, and combinatorial explosion of possible variants
of these systems with a high degree of variability can introduce great complexity.

Traditionally, user interface design is a knowledge-intensive task complying with specific
domains, yet being user friendly. Besides operational requirements, design recommendations
refer to standards of the application domain or corporate guidelines.

Commonly, there is a set of general user interface guidelines; the challenge is due to a
need for cross-team expertise. Required knowledge differs from one application domain to
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another, and the core knowledge is subject to constant changes and to individual perception
and skills.

Passive approaches allow designers to initiate the search for information in a knowledge
database to make accessible the design information for designers during the design process.
Active approaches, e.g., constraints and critics, have been also developed and tested. These
mechanisms deliver information (critics) or restrict the design space (constraints) actively,
according to the rules and guidelines. Active and passive approaches are usually combined to
capture a useful user interface design.

We welcomed academic, research and industry contributions. The conference had the
following tracks:

 UNMANNED: Driver-less cars and unmanned vehicles

 Technologies for Real Robotic Autonomy

 Application of Neural Networks in Intelligent Autonomous Systems

 Autonomic computing and self-adaptability
We take here the opportunity to warmly thank all the members of the ICAS 2019 technical

program committee, as well as all the reviewers. The creation of such a high quality conference
program would not have been possible without their involvement. We also kindly thank all the
authors who dedicated much of their time and effort to contribute to ICAS 2019. We truly
believe that, thanks to all these efforts, the final conference program consisted of top quality
contributions.

We also thank the members of the ICAS 2019 organizing committee for their help in
handling the logistics and for their work that made this professional meeting a success.

We hope that ICAS 2019 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in the area of
autonomic and autonomous systems. We also hope that Athens, Greece provided a pleasant
environment during the conference and everyone saved some time to enjoy the historic charm
of the city.
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Abstract - Unmanned Aerial Vehicles (UAVs), due to their 

remarkable development, relatively low cost, and low risk to 

human are a prime candidate for the teaming with manned 

aircraft in performing complex missions. There are various 

challenges and techniques for manned-unmanned aircraft 

collaboration. This paper introduces the concept of manned-

unmanned aircraft teaming, as well as teaming architecture. 

The technical requirements for a manned-aircraft-leader, 

unmanned-aircraft-follower teaming are discussed. In addition, 

the teaming formulation, teaming laws, and sense-and-avoid 

system are developed. A particular teaming law and a guidance 

algorithm for a manned-aircraft-leader, unmanned-aircraft-

follower teaming architecture are developed. At the end, the 

success of the teaming architecture and performance of the 

sense-and-avoid and guidance systems are examined through 

various flight simulations. 

 
Keywords - Manned-Unmanned Teaming; Unmanned Aerial 

Vehicle; and Sense-And-Avoid. 

I. INTRODUCTION 

Today’s aircraft inventory includes a diverse mix of 
manned and unmanned systems. Unmanned aerial vehicles 
are a prime candidate for the teaming with manned aircraft in 
performing complex/dangerous missions. Unmanned aircraft 
systems are subject to regulation by the Federal Aviation 
Administration (FAA) to ensure safety of flight, and safety of 
people and property on the ground. Incidents involving 
unauthorized and unsafe use of small, remote-controlled 
aircraft have risen [16] dramatically. One of the main goals 
for the manned-unmanned teaming is to provide flexible and 
safe flight operations. Teaming a UAV system with manned 
systems will offer advantages to both. 

To achieve the full potential of unmanned systems at an 

affordable cost, efforts must be conducted to implement 

technologies and evolve tactics, techniques and procedures 

that improve the teaming of unmanned systems with the 

manned aircraft. An efficient teaming will create an 

environment such that both parties operate within their limits, 

while generating an unachievable goal by one party. The 

functions of a UAV in a team with manned aircraft depend in 

nature on the different UAV configurations and their 

characteristics.    

A literature survey has reflected that various technical 

documents have investigated many aspects of manned-

unmanned teaming.  Unmanned vehicle systems are being 

introduced into Army systems to extend manned capabilities 

and act as “force multipliers” [1]. Jameson et al. [2] have 

presented the collaborative autonomy for manned/unmanned 

teams. The researchers in [3] have explored the expansion of 

the envelope of unmanned aircraft systems operational 

employment for manned-unmanned teaming. Accuracy 

assessment of professional grade unmanned systems for high 

precision airborne mapping is investigated in [4]. Clough et 

al. [5] have presented a perspective on the autonomous 

control challenges for UAVs from a researcher's point of 

view.  Autonomous vehicle technologies for small fixed-

wing UAVs have been discussed in [6]. There is a number of 

consequences for UAV design requirements especially on 

UAV modeling and simulation, some of which have been 

investigated in [7]. The augmentations, motivations, and 

directions for aeronautics applications of man–machine 

integration design and analysis system have been explored in 

[8].   

The researchers in [9] developed new methodologies and 

quantitative measurements for evaluating human-robot team 

performance to achieve effective coordination between teams 

of humans and unmanned vehicles. Significant challenges 

facing a successful teaming are presented in the next section. 

A team of a manned aircraft and an UAV in a flight mission 

is a complex system [10] and requires the approach of 

multidisciplinary systems engineering. Fundamentals of 

manned-unmanned aircraft teaming are presented in [17]. 

In the literature survey, we did not find any publication 

that fully develops the manned-aircraft-leader, unmanned-

aircraft-follower teaming architecture. There is a number on-

going research projects by National Aeronautics and Space 

Administration (NASA) in this area employing various 

manned aircraft and UAVs. The major contributions of this 

paper are to provide a model for decision making within the 

realms of guidance, sense-and-avoid and teaming, as well as 

to provide a teaming formulation and a teaming law. 

The rest of the paper is structured as follows. In Section 

II, teaming problem formulation including three categories of 

teaming is presented. The line of sight guidance law to guide 

the UAV is developed in Section III. The UAV in turning 

flight has a couple of constraints and limits, these constraints 

and limits are introduced in Section IV. Collision avoidance 

is a primary concern in full integration of UAVs with manned 

aircraft; Section V presents the sense-and-avoid problem. 

Section VI introduces the manned-aircraft-leader, unmanned-

aircraft-follower teaming law. Finally, the success of the 

teaming architecture and performance of the sense-and-avoid 

and guidance systems are examined via flight simulations in 

Section VII. We conclude the paper in in Section VIII. 

II. TEAMING PROBLEM FORMULATION 

Formulation of manned-unmanned teaming problem 
basically requires mathematical modeling of UAV flight 
dynamics, human decision making process, and 
communication between human and autopilot. Fig. 1 
demonstrates the functional block diagram of a teaming flight 

1Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

                            13 / 92



operation. In principle, there are two independent decision 
makers: 1. Autopilot for UAV, and 2. Human pilot for the 
manned aircraft. Moreover, there are two separate 
trajectories, and two feedbacks. The teaming law creates 
command for both manned and unmanned aircraft. There is 
one group of input (mission parameters) and two outputs (i.e., 
trajectories). Both trajectories are fed back to the same point 
for comparison with the mission input. Any difference will 
create an error signal for the teaming law block. The teaming 
law will generate two signals: one for the pilot of maned 
aircraft, and one for the autopilot of the UAV.  

 
Figure 1. Functional block diagram of a teaming flight operation 

 

Fig. 1 contains information concerning dynamic 
behavior, but it does not include any information on the 
physical construction of the team. Each team member has a 
unique trajectory which is controlled by its controller (one by 
a pilot, and one by an autopilot). Both UAV and manned 
aircraft provide a feedback to another team member. The 
teaming law governs the relationship between team members 
in conducting a flight team mission. The Guidance, 
Navigation and Control (GNC) of the UAV is within the 
autopilot, while the pilot will guide and control the manned 
aircraft. 

The mathematical model of aircraft/UAV (dynamics 
model), and autopilot have been provided by [12]. In general, 
there are three categories of teaming, each governed by a 
distinct law: 1. UAV-leader, manned-aircraft-follower; 2. 
manned-aircraft-leader, UAV-follower; and 3. mixed leader-
follower. This paper is primarily focusing on category 2. 

Each teaming case has a number of advantages and 
disadvantages, and is suited for specific applications and 
flight missions. For instance, the teaming category 1 (i.e., 
UAV-leader, manned-aircraft-follower), is appropriate for a 
flight mission where the operation involves some hazards to 
human. Two examples for teaming category 1 are: 1. 
Observing a volcano, 2. Monitoring a target in the enemy 
zone for a military mission. In such a mission, the UAV takes 
the lead and the manned aircraft will follow suit. If any 
hazard arises, the UAV will be the first to face and handle it. 
This category will guarantee the safety of human plot in the 
manned aircraft. A pictorial representation of the functions 
performed by each team member in the category 2 is 
illustrated in Fig. 2.  

The UAV flight parameters are measured by both UAV 
avionics and manned aircraft measurement devices. Thus, the 
manned aircraft has two feedbacks; one from the UAV, and 
one from its own flight. The UAV will fly to accomplish the 
trajectory as the leader, while the manned aircraft will be 
guided and controlled based on the teaming law. However, 
the teaming category 2 is appropriate for a flight mission 
where the UAV acts as a reserve and no hazard is involved to 
human pilot. The teaming law for this category may be based 
on various techniques and guidance laws. 

 

 
Figure 2. Manned-aircraft-leader, UAV-follower teaming block 

diagram 
 

In the second category, the manned aircraft flight 
parameters are measured by both UAV avionics and manned 
aircraft measurement devices, as well as the pilot’s eyes. 
Thus, the UAV has two feedbacks; one from the manned-
aircraft-leader and one from its own flight. The manned 
aircraft (human pilot) will fly to accomplish the mission 
trajectory as the leader, while the UAV will be guided and 
controlled based on the teaming law. The pilot decision 
making process could be independent from the teaming law, 
as he/she plays the role of the leader. The mathematical 
formulations of control systems, guidance systems, and 
navigation systems are presented by many books and papers 
including [12].  

III. GUIDANCE LAW 

The UAV must employ a guidance law to follow the 
manned aircraft. Guidance is defined as the process of 
producing a trajectory based on what is received from the 
command subsystem and the feedback from the navigation 
system. The guidance subsystem produces the desired states 
which go to the control subsystem. The output of the 
guidance subsystem is sent to the control subsystem; based 
on the guidance law. The control system implements this 
command through actuators driving control surfaces such as 
the elevator, aileron, and rudder. Navigation system is mainly 
responsible for measuring the flight variables including the 
aircraft’s angles, the rate of change of the angles, and the 
body axis accelerations. The guidance system compares the 
location of the aircraft with the pre-determined reference 
trajectory, and modifies the autopilot commands to drive the 
error to zero. The guidance subsystem often produces an 
acceleration command. Thus, the guidance subsystem makes 
the necessary correction to keep the vehicle on course by 
sending the proper signal to the control system of an 
autopilot.  

The guidance system may be based on categories; for this 
teaming formation, the Line-Of-Sight (LOS) seems a good fit 
which satisfies the teaming requirements. The basic principle 
in LOS guidance law is to guide the UAV on a LOS course 
in an attempt to keep it on a line joining the target and the 
ground station (tracking line). For a teaming of two, the line 
of sight is defined as the line joining the follower UAV and 
the leader UAV. In addition, the leader UAV is following a 
moving ground target. For this law, the target-tracking radar 
acquires the target shortly after take-off and then guides the 
UAV into the beam of the target-tracking radar. For the 

2Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

                            14 / 92



guidance command, the actual distance from the tracking line 
to the UAV is required. 

 
Figure 3. Line-Of-Sight (Top view) 

 

An imaginary line between the follower-UAV to the 
leader UAV is referred to as line-of-sight. The line of sight 

angle () is determined by forming a right triangle, when 
putting follower UAV and target, each at a corner. Then, the 
hypotenuse is along the line of sight. The line of sight angle 
is calculated by trigonometry from Fig. 3 as: 

𝜆 = 𝑡𝑎𝑛−1 (
𝑦𝑇−𝑦𝑈

𝑥𝑇−𝑥𝑈
)                       (1) 

where xT and xU represent the distance between target and 
UAV to a reference line along x-axis, and yT and yU represent 
the distance between target and UAV to a reference line along 
y-axis. If the reference is selected to be at the UAV location, 
both yU and xU will be zero. The instantaneous distance 
between UAV and the target will be: 

𝐷𝑇𝑈 = √(𝑦𝑇 − 𝑦𝑈)
2 + (𝑥𝑇 − 𝑥𝑈)

2       (2) 

The closing velocity (Vc) - the negative rate of change of 
separation between UAV and target - is obtained [11] by: 

𝑉𝑐 =
−(𝑉𝑇𝑈𝑥(𝑥𝑇−𝑥𝑈)+𝑉𝑇𝑈𝑦(𝑦𝑇−𝑦𝑈))

𝐷𝑇𝑈
     (3) 

where VTUx and VTUy are components of the relative velocity 
and are given by 

𝑉𝑇𝑈𝑥 = �̇�𝑇 − �̇�𝑈           (4) 

𝑉𝑇𝑈𝑦 = �̇�𝑇 − �̇�𝑈           (5) 

The instantaneous line-of-sight rate is computed by 
taking the derivative of the equation 1, which leads to: 

�̇� =
𝑉𝑇𝑈𝑦(𝑥𝑇−𝑥𝑈)−𝑉𝑇𝑈𝑥(𝑦𝑇−𝑦𝑈)

𝐷𝑇𝑈
2        (6) 

In the line-of-sight guidance law, the velocity of the 
follower UAV (Vn) perpendicular to the LOS should be equal 
to the LOS rate at that point. It is assumed that the LOS value 
is available from the use of onboard sensors (e.g., radar). 

 𝑉𝑛 = 𝐷𝑇𝑈�̇�                        (7) 

where �̇� is the rate of change of the line of sight angle, 
and DTU denotes the distance between the follower UAV and 
the target or leader UAV. Moreover, Vn is velocity of the 
follower UAV perpendicular to the LOS. Hence, the 
guidance command is perpendicular to the line of sight. The 
guidance system output in xy plane (VC) may be readily 

converted to a sideslip angle () command to control system. 
There is a relationship between this speed (i.e., in y-direction) 
and sideslip angle as: 

𝛽 =
𝑉𝑛

𝑉𝑜𝑈
                      (8) 

where VoU is the initial UAV airspeed. So, the follower 
UAV is guided so as to remain on the commanded LOS. As 
soon as the follower UAV is reached to the commanded circle 
around the target and stabilized, the guidance system will be 
activated to guide the aircraft such that to keep a constant 
line-of-sight angle. The LOS variables are available in both 
manned and unmanned aircraft from the use of onboard 
vision sensors. The guidance equations derived for the xy 
plane. However, similar governing equations are derived and 
used in xz plane. 

IV. MANEUVERABILITY CONSTRAINTS 

One of the basic maneuvers to make a flight smooth, and 
to correct the line of sight, is to turn around to follow the 
leader UAV. A turning flight has a couple of constraints, 

including: 1. Maximum turn rate (max), 2. Minimum turn 
radius (Rmin), 3. Maximum load factor (nmax), 4. Minimum 
and maximum airspeed (Vmin, Vmax), 5. Maximum bank angle 

(max). The following set of equations governs the relation 
between parameters of a turning flight. The load factor is a 
function of bank angle. The maximum allowable bank angle 
is limited by the load factor: 











 

max

1

max

1
cos

n
                       (9) 

     The turn radius (R) and turn rate () are functions of 

airspeed (V), and load factor (n): 

12

2




ng

V
R                      (10) 

V

ng 12 
                      (11) 

The stall speed during a turn is a function of bank angle:  

)cos(

2

max
 L

s
SC

mg
V

t
             (12) 

     where S denotes the wing area, m the UAV mass,  the air 

density, and CLmax the UAV maximum lift coefficient. 

When the theoretical airspeed corresponding to the minimum 

turn is less than the stall speed, the UAV has to turn with the 

corner speed (
V ):  

2

1

max

max

2














LSC

Wn
V


             (13) 

Moreover, a turn must be coordinated in order to keep the 
radius of turn constant. For the requirements of a coordinated 
turn, you may refer to references, such as [3]. The trajectory 
smoother must take into account all of these performance 
constraints to convert an initial path into a smooth trajectory. 

V. SENSE AND AVOID 

Collision avoidance is a primary concern and a critical 
challenge in full integration of unmanned aircraft systems. 
One of the major limitations to the widespread use of 
unmanned vehicles in teaming with manned aircraft has been 
the detect-and-avoid problem. When a group of UAVs (e.g., 
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three Reapers) are following a manned aircraft (e.g., F/A-18), 
a sense-and-avoid system will be needed to prevent collision 
between UAVs. 

In general, there are five functions required in a sense-
and-avoid system: 1. Detect the intruder/obstacle, 2. Track, 
3. Evaluate, 4. Calculation, 5. Command, 6. Execute. There 
is currently a large amount of research projects [16] being 
conducted in the area of sense-and-avoid.  In selecting a 
surveillance system, a number of factors should be evaluated. 
They are range, timeliness (update rate), field of view, 
simplicity, cost, design challenge, reliability, accuracy, size, 
weight, technology level, flexibility, and integration. 

When a conflict resolution algorithm is feasible, various 
guidance laws may be employed for a collision avoidance. 
For instance, the proportional navigation guidance with a 
proportional navigation constant less than one (i.e., N < 1). In 
such case, the UAV will be turning slower than the LOS, thus 
continuously falling behind the target (i.e., another aircraft). 
Another appropriate guidance law for a collision avoidance 
(as in a formation flight) is the line of sight guidance law. 
This law may be implemented by assuming the goal (i.e., 
target) of the follower UAV to be constantly at a desirable 
distance behind or at the side of the leader UAV. This paper 
is mainly focusing on the sense-and-avoid system of one 
UAV to follow a manned aircraft. 

VI. TEAMING LAW 

In order to begin the synthesis of the teaming law, the 
design requirements relative to both parties must be 
technically established. Based on handling qualities [14], and 
also airworthiness standards [15], the following items are 
typical design requirements to be used in the design process: 
cost, stability of the overall teaming system; output (or state 
tracking) performance; accuracy from command to response; 
overshoot; steady state error; rise time; and settling time.  In 
addition, the law must be robust with respect to aircraft type, 
communication elements, and mission. 

A fully autonomous UAV should be capable of trajectory 
tracking, defined as tracking a time-parameterized reference. 
However, for trajectory tracking there exist fundamental 
performance limitations that cannot be overcome by any 
control system. Moreover, to meet temporal specifications, 
the airspeed profile often needs to be controlled 
independently. To overcome this challenge, temporal 
constraints are not frequently imposed in path-following 
problems, and the vehicle is allowed to converge to and 
follow a path without imposing any temporal specifications. 
This will result in a smoother convergence to the path, and 
the control signals are less likely to be saturated. This 
approach must also avoid collision in multi-vehicle 
cooperative missions. 

In a path following problem, the designer is required to 
design an algorithm for a given path satisfying the given 
bounds such that the generalized error converges to a 
neighborhood of the zero. There are fundamental principles 
which govern an efficient teaming law; some of which are 
presented in this section. As the most important principle, the 
safety of the manned aircraft (in fact, the human pilot) is of 
much higher priority compared with the UAV airworthiness. 

Thus, the collision avoidance and sense or detect are two 
primary concerns to teaming success. Moreover, when the 
leader aircraft is out of sight of the follower, the follower 
aircraft must circle around to detect the leader. 

The teaming law is established based on three 
fundamental principles: 1. Keep the UAV at a line of sight, 
2. Keep UAVs at a safe distance from the leader aircraft and 
each other, 3. Each team member should fly within its safe 
flight envelope.  Sections IV, V, and VI provide the concept 
and governing equations for each principle. The guidance 
system will generate a command for the control system to 
maintain the LOS. Ref. [20] has presented a modeling and 
decentralized control for the multiple UAVs formation based 
on Lyapunov design. 

The sense-and-avoid system subsystem should make the 
necessary correction to keep the follower UAV at a safe 
distance (DTU) from leader aircraft (i.e., target) by sending the 
proper signal to the control system. 

𝐶1 ≤ 𝐷𝑇𝑈 ≤ 𝐶2                    (14) 

     In addition, the sense-and-avoid subsystem should make 

the necessary correction to keep the follower UAVs at a safe 

distance (DUU) from each other. 

𝐶3 ≤ 𝐷𝑈𝑈 ≤ 𝐶4                    (15) 
The C1, C2, C3, and C4, are constant values and are given 

by the designer. These constants are functions of many 
factors including UAV vision sensor features, the UAV 
maneuverability, weather conditions, and flight altitude. 
When the UAV is at a safe distance (DTU) from the leader 
aircraft, it must follow every flight maneuver of the leader 
aircraft. The only difference is that every maneuver is 
performed by the follower UAV after a time delay (Td), 
which is the ratio of the safe distance (DTU) to the target speed 
(UT): 

𝑇𝑑 =
𝐷𝑇𝑈

𝑈𝑇
              (16) 

For two reasons of 1. UAV airworthiness, and 2. 
Successful payload application (e.g., aerial photography); the 
trajectory must be smooth. A well-designed smooth 
trajectory has ideally no abrupt and significant changes on the 
movement of the UAV. The trajectory smoother should apply 
changes to make the assigned trajectory kinematically 
feasible in terms of constraints. 

A limitation of this algorithm is that the trajectory is 
composed of a number of time-stamped curves, which 
specify the desired location of the UAV at a specified time. 

Tracking the movement state estimation of an UAV 
basically concerns inferring the latent state of interest based 
on discrete time series noisy observations. The time of 
interest may be the past (namely, smoothing), the present 
(tracking) or the future (forecasting). 

VII. SIMULATION 

Two sets of simulations are presented to demonstrate the 
efficacy of the proposed algorithm and teaming law: 1. A 
UAV is following a manned aircraft in longitudinal plane 
(i.e., xz), 2. A UAV is following a maneuvering manned 
aircraft in the xy plane (i.e., turning flight). In the first 
simulation, the UAV (as the follower) with a conventional 
configuration, has a wing span of 20 m, length of 15 m, a stall 

4Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

                            16 / 92



speed of 70 knot, and a maximum speed of 250 knot. 
Moreover, the manned aircraft (as the leader), with a 
conventional configuration has a wing span of 15 m, length 
of 12 m, a stall speed of 100 knot, and a maximum speed of 
400 knot. For this formation flight, the UAV is required to 
stay behind and follow the manned aircraft and keep a safe 
distance. The distance between the UAV and the manned 
aircraft should be between 100 to 120 meters. Hence,  

mDm TU 120100   

Next, the UAV is required to follow a random trajectory 
(as if a manned aircraft is flying/leading) to simulate a 
manned-unmanned aircraft teaming flight. For this mission, 
the UAV is required to stay behind the manned aircraft at a 
safe distance. For the initial conditions, the leader aircraft is 
flying at a constant altitude with a velocity of 130 knot. The 
follower UAV is right behind the manned aircraft with a 
distance of 200 m, and an initial velocity of 120 knot. The 
UAV performance limits and constraints are tabulated in 
Table 1. 

TABLE 1. UAV PERFORMANCE LIMITS AND CONSTRAINTS 

No  Parameter  Value Remarks  

1 Maximum load 

factor 

2 Structural limit 

2 Maximum bank 

angle 

60 deg Structural limit 

3 Maximum 

airspeed 

250 

knot 

Engine limits 

4 Minimum  

airspeed 

1.2 Vs Airworthiness, 

stall 

5 Maximum bank 

angle 

60 deg Structural limit, 

camera view 

6 Maximum possible 

turn rate  

20 

deg/sec 

Fastest turn limit 

7 Minimum turn 

radius  

50 m Tightest turn 

limit 
 

A linear state-space dynamic model for both the manned 
aircraft and the UAV have been employed. For both vehicles, 
typical stability and control derivatives for a dynamically 
stable vehicle are utilized. 

DuCxy

BuAxx






           (17) 

The A, B, C, and D matrices are generated by a matlab 
code. The four state-variables are airspeed (V), climb angle 

(), heading angle (), and sideslip angle (). Furthermore, 

four control-variables are throttle (T), elevator (E), aileron 

(A), and rudder (R). Thus, the state variables are: x = [V, , 

, ]T and input variables are u = [T, E,A,R]T. 
Four PID control laws (one for each controller) are 

employed for controlling the UAV in the three dimensional 
space. A Simulink model (Fig. 9) is developed to model all 
subsystems of both the follower UAV and the leader manned 
aircraft including LOS, navigation, guidance and control 
systems. 

A. LONGITUDINAL FLIGHT TEAMING 

The first simulation is to examine a team of one follower 
UAV and a manned leader aircraft in a 50 second longitudinal 
flight maneuver (cruise/climb/cruise). The leader aircraft will 
cruise for 20 seconds, and then, climb to 100 meters in 
another 20 seconds.  

Fig. 4 shows velocities, distance, and heights of UAV and 
manned aircraft for this teaming flight operation. The top 
Figure shows the velocities of UAV and manned aircraft, and 
the middle Figure demonstrates the heights of UAV and 
manned aircraft. The bottom Figure illustrates the distance 
between UAV and manned aircraft. As the Fig. 5 
demonstrates, the follower UAV is perfectly following the 
leader aircraft, and performs every flight operation by a delay 
of 1.5 seconds.  

As the simulation results indicate, the UAV accelerates in 
the beginning to reduce the distance of 200 m to the desired 
value of 100 m. Then, it will keep the velocity equal to the 
velocity of the leader aircraft. Due to the desired distance of 
100 m, and the velocity of the leader aircraft (130 knot), the 
time delay is about 1.5 seconds (i.e., 100/(130×0.5144)). 

Fig. 5 illustrates the elevator deflections and throttle 

settings of the UAV for this teaming flight operation. The 

initial elevator angle is -2 deg, but during the flight, it varies 

to maintain the longitudinal trim. The initial throttle setting is 

20 deg, but during the flight, it varies to maintain the forward 

velocity. 

 

 

 
Figure 4. Velocities, distance, and heights of UAV and manned aircraft in a 

teaming flight for a longitudinal flight maneuver 
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Figure 5. Elevator deflections and throttle settings of the UAV in a teaming 

flight for a longitudinal flight maneuver 
 

Both UAV elevator and engine throttle are varying to 

change the velocity and altitude to follow the manned leader 

aircraft. 

 
a. Elevator deflections 

 

 
b. Aileron deflections 

 
c. Rudder deflections 

 
d. Throttle setting 

Figure 6. Control surfaces of UAV in a teaming flight for a turning flight 
maneuver 

B. TURNING FLIGHT TEAMING 

     The second simulation is to examine a team of one 
follower UAV and a manned leader aircraft in a 60 second 
turning (lateral-directional) flight. The leader aircraft will 
cruise for 20 seconds, and then, have a 360 level turn to the 
left (one full turn in 40 seconds). Fig. 6 shows control 
surfaces (i.e., elevator, aileron, and rudder) deflections and 
throttle settings of the UAV in a teaming flight for a turning 
flight maneuver. 

 

 
a. Bank angle 

 
b. Angle of attack 

Figure 7. Control surfaces and flight parameters of UAV in a teaming flight 
for a turning flight maneuver 

 

The UAV accelerates in the beginning to reduce the 
distance of 200 m to the desired value of 100 m. Then, it will 
decelerate to keep the velocity equal to the velocity of the 
leader aircraft. 

 
Figure 8. Flight parameters of UAV and manned aircraft in a teaming flight 

for a turning flight 

 

During the turn, the UAV bank angle is about 40 degrees 
(Fig. 7), while the angle of attack is about 3 degrees. Fig. 8 
illustrates the flight path of both UAV and leader aircraft. As 
the Figure demonstrates, the follower UAV is perfectly 
following the leader aircraft, and performs every flight 
operation by a delay of 1.5 seconds. 

As the flight simulations indicate, both teaming 
operations are successful, and the UAV is tracking and 
following the manned aircraft for both longitudinal and 
direction flight maneuvers. In both flight missions, the UAV 
continuously keeps a distance of 100 m from leader aircraft 
to avoid a collision.  In all flight motions, the UAV 
maneuverability constraints were observed, and the UAV did 
not fly beyond the flight envelope.  

The simulation employs a UAV linear state-space 
dynamic model with four PID controllers. However, in 
reality, the dynamics of a UAV is nonlinear. Moreover, other 
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control laws (e.g., robust nonlinear) may offer better 
outcomes. The objective of the paper is to present the 
fundamentals of the teaming technique with an application. 
This technique may employ UAV nonlinear model with more 
complex control laws. Each dynamic model and each control 
law has unique advantages and disadvantages. The current 
application is simple and efficient, but may not handle 
nonlinearities. 

VIII. CONCLUSION AND FUTURE WORK 

This paper explores the manned-aircraft-leader, 

unmanned-aircraft-follower teaming architecture. There are 

various challenges and techniques for manned-unmanned 

aircraft collaboration. This paper develops the concept of 

manned-unmanned aircraft teaming, as well as teaming 

architecture. The technical requirements for a manned-

aircraft-leader, unmanned-aircraft-follower teaming are 

discussed. In addition, the teaming formulation, teaming 

laws, and sense-and-avoid system are presented. A particular 

teaming law and a guidance algorithm for manned-aircraft-

leader, unmanned-aircraft-follower teaming architecture are 

developed.  

At the end, the efficacy of the teaming architecture and 

performance of the sense-and-avoid/guidance systems are 

examined through formation flight simulations. The 

simulation results confirm that the suggested teaming law is 

applicable and efficient in following the flight team mission 

and in avoiding any obstacle. In future, the teaming law will 

be redesigned to improve the efficiency of the team. 

Moreover, the future work will include a team of three UAVs 

to follow a manned aircraft in 3d flight maneuvers. 
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Figure 9. Simulink model for subsystems of the follower UAV and the leader manned aircraft 
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Abstract—The proliferation of unmanned vehicle technologies
has drastically increased their use in multiple domains. In the
maritime domain, unmanned surface vehicles often pose special
requirements for on-board health monitoring and fault mitigation
due to long endurance, which increases the likelihood of failures
when operating without human oversight. Whereas such vehicles
can be equipped with numerous on-board sensors, detecting
actual or impending failures is often more complicated than
simply thresholding values of a sensor reading. In this paper,
we will consider the use of Linear Temporal Logic (LTL) as
a means to specify and then evaluate in real-time, the health
status of an unmanned surface vehicle. This is accomplished
by capturing nominal conditions in LTL formulas and then
evaluating these formulas in real-time. The advantage of LTL
is that it allows capturing value-based as well as time-based
expectations for sensor readings when evaluating system status.
We define a formal language which is an extension of LTL,
and a corresponding software evaluation method with bounded
performance. An example demonstration of the feasibility of the
process is presented.

Keywords–Linear Temporal Logic; safety; logic; model checking

I. INTRODUCTION

Monitoring the on-board status of unmanned maritime
vehicles can prove challenging, for many reasons. Maritime
vehicles operate in a relatively difficult environment in which
debris, water spray, corrosion and other factors can degrade
the performance of the system in ways that are not always
immediately apparent. Furthermore, the use of automatic con-
trollers often hides the onset of problems by compensating for
such errors. Addressing such issues is often done by installing
sensors that monitor for error conditions; however, there are
difficulties in properly interpreting their readings. For example,
consider an engine temperature gauge with a pre-set maximum
safe limit. Shutting down the system based on that reading
alone runs the risk of making an incorrect choice should the
gauge itself fail and provide erroneous readings. A different
but equally problematic scenario is gauge failure that displays
a nominal temperature even though the actual temperature
exceeds the safe limit. Because of the propensity of individual
sensor failures, it is necessary the cross reference multiple
sensor readings over time before making a determination of
a fault. When under human supervision, sensor information
is typically aggregated by the vehicle and transmitted to a
monitoring/control station that displays all sensor readings,
pushing the responsibility for making fault assessments and
evaluating mission readiness to the human operator. Not only

is this a difficult task for a human, but it is not transferable to
unsupervised operations during which a vehicle must be able
to make a determination of its ability to accomplish its mission
autonomously.

Our approach is based on using Linear Temporal Logic
(LTL) formulas Section III as a means of capturing nominal
performance of the overall system. One advantage of LTL over
other approaches is that LTL can capture the element of time in
addition to fixed-in-time reading. Use of LTL formulas hence
allows evaluating the behavior of the system over time and as-
sessing if it operates within nominal parameters based on richer
information when compared to point-in-time sensor readings.
A key contribution of the paper is an efficient approach to
evaluating the LTL formulas allowing their evaluation to be
performed on-board the unmanned vessel.

The remaining of the paper is organized as follows: Sec-
tion II overviews related work, Section III describes the LTL
formalism in general and the specific portion used in our
proposed system. Section IV outlines the method by which
LTL formulas are evaluated in real-time based on sensor
readings. Section V presents a test case of using LTL formulas
to identify a nuanced failure in a maritime unmanned system
and Section VI concludes.

II. RELATED WORK

LTL has been used to model correctness properties of
low-level software programs [1] and robotic motion planning
[2] [3]. Safety properties can be falsified but not proved in
general, as in sufficiently complex systems these statements are
undecidable [4]. In practice, this is avoided by using a bounded
variant of LTL known as metric temporal logic. This has been
used to find the trajectory of safety properties over time [5].
Effectively, the decidability problem is avoided by evaluating
safety expressions on a single system trajectory (i.e., a trace)
in real-time.

On-board fault detection is also accomplished by using
Bayesian networks [6], which consider the probability of the
actual fault event as well as the reliability of the sensor, and
thus makes a probabilistic estimate of a fault based on multiple
sensor readings. One drawback is that a priori probability
estimates of faults are needed, as well as relative sensor
reliability weightings.

Another common approach for safety monitoring is the
“residual method”, whereby a real-time simulated version of
the system is compared against the real system [7]. The
residual (e.g., squared error) between the simulated and real
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system is computed; if the residual is too large, this indicates
that some non-optimal state has been reached. A drawback of
the residual approach is that you must model the system, and
any errors in doing so, whether arising from system complexity
or computational difficulty, may lead to false-positives. As
well, it is not obvious how one would in general detect the
exact problem that has occured solely from the residual, and
indeed that problem has been an area of active research.

Our implementation is an alternative to both the residual
and Bayesian methods, whereby one explicitly specifies invari-
ants of how system variables must temporally relate to one
another. In this “LTL approach”, an explicit system model or
simulation is not necessary, allowing it to be applied to systems
intractable or uneconomic to explicitly model.

III. LTL OVERVIEW

LTL is essentially a generalization of Boolean logic, which
adds a capability to model “propositions whose truth or falsity
may depend on time” [8]. Practically, this adds a number
of operators which specify temporal relationships between
propositions. One way of thinking about temporal logic is that
unlike first-order logic, it operates on countably infinite ordered
sets [9] (i.e., sequences). In convention with the literature, we
use the term trace to refer to these sequences, and the term
finite trace when the sequence in question has finite size.

Since LTL is a generalization of Boolean logic, it inherits
by default all of the common logical connectives intrinsic to
that logic, which are enumerated by Table I. The so-called
“application syntax” refers to the form used in application,
chosen due to programming convention, as opposed to the
symbolic form used in presentation of this document.

TABLE I. COMMON LOGICAL CONNECTIVES

Operator Symbol Application Syntax
Not ¬p !p
And p ∧ q p && q
Or p ∨ q p || q

In that predicate logic models quantification (e.g., ∀, ∃),
temporal logic models temporal relationships (e.g., A:, E:).The
best way to understand the LTL formalism is by example.
The arguably simplest temporal operation is A:(p), such that
p is an arbitrary boolean proposition with values across time
(i.e., a trace). This expression is read as “always”, and simply
specifies that p is always true across the trace. Figure 1 shows
a case where A:(p) evaluates to true or false, respectively. In
the first example, A:(p) evaluates to false because there exists
a time in the past where p was false. In the second example,
A:(q) evaluates to true for the opposite reason.

The second most basic operator is E:(p), which is the
dual of A:(p). It is read as “eventually”, and has much the
same mathematical meaning: E:(p) is true if p was true at any
point in time. These two operators are dual due to the relation
¬A:(p) ⇔ E:(¬p). This should make intuitive sense: p was
not always true if, and only if, there was a point at which
p was false. That operator relationship is a salient similarity
between temporal and first-order logic. In much the same way,
Figure 2 exemplifies a set of traces where E:(p) evaluates to
true or false, respectively.

The full set of temporal operators considered in our appli-
cation is described in Table II. In addition to the ones already

A:(p) ⇔ False

T T T T T F T T T...

A:(q) ⇔ True

T T T T T T T T T...

Trace of (p)

Trace of (q)

Figure 1. Always Operator on Two Example Traces.

E:(p) ⇔ True

F F T F F F F F F...

E:(q) ⇔ False

F F F F F F F F F...

Trace of (p)

Trace of (q)

Figure 2. Eventually Operator on Two Example Traces.

described, there exist three other operators whose illustrated
explanation we will omit.

TABLE II. LISTING OF TEMPORAL OPERATORS

Operator Syntax Description
Next N: p p was true one time-step ago.
Always A: p p was always true.
Eventually E: p p was eventually true at some point.
Until p U: q p was true up until just before q was true.
Release p R: q q was true up until p was true, after which q was false.

A. Introduction of Boolean Combinations
The true expressiveness of LTL arises from the ability to

nest logical connectives and temporal operators in arbitrary
ways. Referring back to Figure 1, the result of A:(p ∨ q) is
true, because for every false entry in the trace of p, there exists
a corresponding q entry that is true at the same time. The
expression acted upon by a temporal operator may be any LTL
expression, including other temporal operators. For example,
in Figure 3, we see the intermediate values involved in the
expression E:(A:(p)) operating upon a finite trace. A finite
trace for this example was chosen only to keep the example
simple; it works for general traces equivalently.

The key to understanding this nested temporal expression
is that each temporal operator possesses its own trace (Boolean
values through time), corresponding to whether or not the
subsequence formed by taking the past at each point would
result in a true value. However, the proper result of a temporal
expression is the last value of the trace; This is indicated by the
bottom arrow in Figure 3. A conceptual justification for this
is that the last value of the trace is what the value is “now”.
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T T F F F T T F FT

A:(E:(p)) ⇔ True

T T F F F F F F FT

Finite Trace of (p)

Finite Trace of A:(p)

T T T T T T T T TT

Finite Trace of E:(A:(p))

Figure 3. Nested Operator on Finite Trace.

It is important to note that this interpretation is not unique; it
is equally as valid to take the first value of the trace as “now”
and consider all other trace values to be future values.

B. Introduction of Metric Temporal Logic

A common way to introduce real-time in the (LTL) syntax
is by “replacing the unrestricted time operators by time-
bounded versions” [10]. This allows for temporal operators to
factor a metric of time, and to have essentially a time-bounded
range of concern. In addition to making the logic much more
expressive, it also has important considerations for real-time
evaluation of the logic for practical applications.

We utilize MTL operators by defining some slightly mod-
ified syntax. For example, the time-bounded version of “al-
ways” is A:ts(p) where s, t ∈ Z≥. In our formulation, the 0th

entry corresponds to “now”, and all other entries incrementally
refer to past values. Table III defines the application syntax and
mathematical symbology used to denote the metric temporal
operators.

TABLE III. SYNTAX OF METRIC TEMPORAL OPERATORS

Operator Symbol Application Syntax
Always A:ts(p) A:s:t,(p)
Eventually E:ts(p) E:s:t,(p)
Until pU:tsq p U:s:t, q
Release pR:tsq p R:s:t, q

C. Introduction of State Variables

The final extensions we include in our formalism are basic
arithmetic and relational operations, as well as numerical state
variables. State variables are real numbers which possess a
real-valued trace (i.e., values through time). Effectively, this
allows us to construct expressions which model the temporal
relationship of real-valued variables through time. These values
can represent sensor readings or other on-board state varibles.
A comprehensive example of this capability is illustrated by
Figure 4, which shows the intermediate values associated with
evaluating E:(A:20(x > y)), given that x, y ∈ R. This expres-
sion is equivalent to the existence of a three-unit contiguous
time region during which x is larger than y.

1.5 2 2 1.5 1 0.25 0 0 0.251

E:(A:0:2,(x>y))⇔ True

Finite Trace of (x)

T T T T T T

Finite Trace of E:(A:0:2,(x>y))

1.75 1.5 1.5 2 2.5 1 ­1.5 6 7.51.25

Finite Trace of (y)

F T T T F F T F FF

Finite Trace of x>y

F F F T F F F F FF

Finite Trace of A:0:2,(x>y)

F F FF

Figure 4. Bounded Temporal Expression on State Variables.

IV. METHOD

Real-time evaluation of the LTL formalism described by
Section III was implemented via a Robot Operating System
(ROS) package developed for the purpose. ROS is a commonly
used middleware for developing robotics applications, provid-
ing algorithms and visualization tools. Some of the basic func-
tionality provided is message-passing, which is implemented
through so-called “ROS topics”, and serves as the basis of the
application.

Given user-specified LTL formulas and associated topic
names, the program parses and evaluates the formulas, pub-
lishing the truth result to the rest of the ROS system. The flow
of inputs and outputs involved in this process is illustrated in
Figure 5. Dotted arrows represent external interfaces to the
system.

ROS

LTL Parser

LTL
Evaluator

User­supplied
LTL Formulas

RPN StackState Variable
Subscription

LTL Truth Value

Terminal Output

Figure 5. System Diagram of LTL Parser and Evaluator.
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The evaluation of an LTL expression occurs in two steps,
as illustrated in Figure 6. Of note is that explicit construction
of the abstract-syntax tree is not performed during parsing, but
is provided here only for explanation.

1) The expression is parsed while converting from infix
to RPN.

2) Variable tokens are replaced with the corresponding
data, and the stack machine is executed.

E:0:60,(A:(x>y)) && A:15:45,(y+x>z)

&&

E: A:

A:

>

>

x y

+

x y

z

&& E: A: > + x y z A: ...

Result ∈ {T,F}

Figure 6. Generation of RPN Stack Machine.

Parsing is performed via Dijkstra’s shunting-yard algo-
rithm, converting the expression string to an array of Reverse
Polish Notation (RPN) tokens. The evaluator then, on each
arrival of new data, evaluates the RPN expression using a
stack-based postfix evaluation algorithm. Each element of the
stack is a trace, and each operator is a function of one or more
traces.

When a real number is encountered in the execution, it is
interpreted as a trace consisting solely of that real number.
Hence, when a variable is introduced and compared to that
number, the result is a boolean trace representing the result of
that comparison over time. For all arithmetic, relational, and
logical operators the result is simply that operator applied pair-
wise to each element of the two corresponding traces. In the
case of 1-arity operators e.g., !p, the operator is simply applied
to each element of the trace. For temporal operators, each trace
element’s result is a function of the previous elements in the
same way as described in Section III. Each element of every
trace is of real type, and is automatically type cast depending
on the operator.

The internal procedure used to calculate the ’Always’ op-
erator is described by Algorithm 1. If a boundedness operator

Algorithm 1: ’Always’ operator. Resultant array is
true up until xi is false.
1 function A (x);

Input : Array of reals x of size n
Output: Array of reals, size n

2 boolean : α = true;
3 α = false;
4 for xi ∈ x do
5 α = xi ∧ α;
6 xi = R(α);
7 end
8 return x;

is applied the procedure described by Algorithm 1 will operate
only on a contiguous subsequence of the input trace. All non-
zero real numbers (approximated by floating point) are type
cast to true if acted upon by a boolean operator.

We achieve bounded performance by allowing the user
to specify the maximum trace size for each LTL formula.
Once the trace reaches that size, all LTL formulas, whether
they are ultimately bounded or not will only act upon data
within the specified time window of the current time. This is
to ensure that the computation required to evaluate a given
LTL formula is sublinear with respect to the current time of
operation. One future work considered is automatic generation
of an appropriate maximum trace size given an LTL formula.

V. RESULTS

This method was applied to an autonomous sea vessel in
order to detect motor misalignment conditions, which occur
when there exists an offset between the steering control value
and the angle between the vessel and one, or both, of the
motors. The control interface is a four-vector, with each
element controlling the rotation (with respect to the craft)
and effort of each of the two motors respectively. We use the
term “effort” a percentage of the total power available to the
system for acceleration that abstracts away physical details.
For context, a simplified diagram of the physical placement of
the motors can be seen in Figure 7. The controls values are
subject to the constraints defined by (1) and (2).

−100 ≥ EN ≤ 100 (1)

−90◦ ≥ θN ≤ 90◦ (2)

The method was implemented as a configurable ROS com-
ponent, which subscribes to the topics necessary to detect the
suboptimal condition. The implementation allows for multiple
LTL formulas each corresponding to a set of ROS topics.
(3) specifies the LTL formula written to detect the motor
misalignment condition, where |x| specifies the absolute value
operation.

A:0:60,(EL = ER ∧ |SL| < 3 ∧ |SR| < 3 ∧ Vyaw > 0.3) (3)

We may break (3) into three logical clauses. If the follow-
ing three conditions are true for the last sixty time units, the
motor is misaligned.
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Motor 1 Motor 2

θ1, E1  θ2, E2 
­90° +90°­90°+90°

Figure 7. Diagram of Autonomous Vessel in Overhead View.

1) The efforts from both motors are equal.
2) The steering angles from both motors are less than 3

degrees, and...
3) The yaw-velocity of the craft is above a certain

threshold.

The LTL formula was applied to two simulations of the
autonomous vessel, each under an equivalent control trajectory.
In the first (control) simulation, both motors are correctly
aligned. In the second, the left motor is misaligned by 10◦.
The resultant angular velocity of both 10-second simulations
is illustrated by Figure 8. The difference in yaw velocity, and
particularly the spike at 2 seconds in the misaligned case can
be attributed to the alignment discrepancy.

The control trajectory applied was generated by a simple
driver code. For 2 seconds, an effort value of 50 and 100
was applied to the left and right motors respectively. Then,
for the next 2 seconds, an effort value of 100 was applied to
both motors for 2 seconds. Finally, the vehicle was allowed to
coast under no effort. The control trajectory was chosen to be
deterministic and not unlikely to occur during user operation.
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Figure 8. Angular Velocity of Nominal vs. Misaligned Case.

The resultant boolean signal for both the nominal case and
misaligned case is seen in Figure 9. Due to the to the structure
of the LTL formula used, there is a delay present in the result.
It is possible to decrease the delay, but at risk of causing false-

positives. As in most forms of signal processing, a tradeoff in
delay and accuracy is present.
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Figure 9. LTL Signal of Nominal vs. Misaligned Case.

Instead of integrating the squared error between what is
expected to happen (via a physics model) with what was ob-
served, i.e., the “residual method”, we write specific temporal
scenarios, which would only occur if the condition is present.
The LTL approach allows us to both be more specific about
error detection, and can be deployed in scenarios where an
accurate physics model is intractable to compute.

VI. CONCLUSION AND FUTURE WORK

Autonomous systems require ways to detect, interpret, and
even anticipate problems. On-board sensors provide informa-
tion, but unless there is a trivial interpretation (i.e., battery
voltage dropping below a threshold), it is difficult to make
a singular assessment about on-board status based on several
sensor readings. Furthermore, proper interpretation of sensors
cannot be done only for a single time, but must be done over
a history. Proper sensor values may be temporally correlated
in non-trivial ways. LTL is a convenient formalism for cap-
turing the expected behavior of the system via mathematical
modeling. Failures in the system can be directly inferred from
evaluating these LTL expressions.

In this paper, we have demonstrated a practical LTL
evaluation method that has bounded performance with respect
to temporal formula evaluation at given time-points. For tele-
operated systems, we view this as a compression scheme to en-
code high-dimensional temporal data into a form parsable by a
human operator controlling the system. For on-board systems,
this method effectively addresses the problem of autonomously
capturing the nominal performance of the overall system.

There are three major directions planned for future work
of this method. Currently, maximum trace size is manually
set in order to provide bounded performance. However, it
seems possible to automatically derive the maximum trace
size from a provided LTL formula. As well, memoization of
certain intermediary values may improve on the computational
complexity of the method. Finally, a large part of the effort
expended in using this method is coming up with a LTL
formula that captures the desired behavior. Supervised machine
learning techniques could be used to automatically generate
an appropriate LTL formula given examples of nominal and
“problem” mission trajectories, enabling rapid development of
status assessment systems.
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Abstract—The European industry is becoming more customer 

centric in an approach to meet the varying customers’ demand 

and minimize the costs of large inventories. The optimized 

production capacity that is achieved by the fixed production 

model can no longer guarantee the sustainability inside a 

fluctuating market that constantly requests new models. This 

creates the need to deploy flexible production systems 

exploiting the capabilities of multiple resources including both 

robots and human operators. Motivated by this need, this 

paper introduces the usage of mobile dual arm robots that are 

able to autonomously navigate in different workstations to 

undertake multiple operations, acting as assistants to human 

workers. A digital world model infrastructure for enabling this 

dynamic performance achieving process level reconfiguration, 

through robot’s behavior adaptation is discussed. This system 

is based on a multiple sensor data synthesis mechanism that 

facilitates the real time shopfloor status digital representation. 

Static objects and moving obstacles, as well as human presence 

are identified inside this model enabling the robots’ behavior 

adaptation through reasoning upon them. The suggested 

infrastructure has been deployed and tested in a case study 

from the automotive industry. 

Keywords-Mobile robots; flexibility; perception; digital 

world; sensor data synthesis. 

I.  INTRODUCTION 

Robots have been considered as a major enabler for 

autonomous assembly systems. However, in current robot-

based production systems, flexibility [1] and reconfiguration 

are still constrained due to [2]: a) the rigidity of the used 

stationary robotic units, b) the use of fixed and product 

model dedicated equipment, c) the use of fixed robot control 

logic and d) the absence of perception abilities that would 

allow the robots to dynamically adapt their behavior to the 

production needs.  

Overcoming these limitations may be realized through 

the introduction of flexible robot workers enabling 

autonomy and collaboration between all production 

resources (including human operators and robot resources). 

Mobility both in resources and product level can play a vital 

role towards the realization of such production concepts as 

discussed in [3]. To this end, a hybrid and dynamically 

reconfigurable shopfloor is suggested employing mobile 

dual arm workers, namely Mobile Robot Platforms (MRP), 

and human operators.  

The last decades, extensive research has been made in the 

field of mobile robotic systems, either in the field of mobile 

robot manipulators or simple mobile platforms [4]. 

However, existing applications have limited perception 

capabilities not allowing real time adaptation of the system 

and robot behavior to dynamic environments [5][6]. Most of 

the manipulators are restricted to performing off-line 

programmed tasks only when they are in fixed positions, 

thus not fully exploiting their mobility.  

On the other hand, digital representation and simulation 

of the production environment and process have emerged 

over the last decades as a means of partially handling the 

optimization of the production system performance [6]. In 

this era of digitalization in manufacturing, the Digital Twin 

concept has gained a lot of attention given the advantages 

that it may offer in terms of system autonomy [7]. The main 

principle of this concept relies on the digital representation 

of the physical world using multiple data input formats, 

such as Computer aided design – CAD files or other unified 

formats [8] as well as real time update of the virtual world 

based on real-time data (e.g., shopfloor/resource sensors, 

process related data, etc.). This is a very promising approach 

for providing perception and cognition abilities towards 

more autonomous and intelligent robotic systems [9].  

Existing applications of dynamic robot control based on 

digital modelling and sensor data for ensuring collision free 

paths are based on the functionalities provided by Robot 

Operating System (ROS) [10]. The latter provides a rich 

content of data types and formats to virtually represent 

various hardware devices and multi-sensor data as well as a 

network of services and topics for broadcasting the captured 

knowledge.  However, existing infrastructures are not 

mature enough to support the representation of the discussed 

hybrid production paradigm given the complexity of the 

various automated devices used, such as multiple mobile 

dual arm workers and products as well as human operators.  

To overcome the existing limitations, this paper 

introduces a Digital World model infrastructure for 

supporting the effective introduction of MRPs in assembly 

environments. A unified semantic representation of the 
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geometrical and the workload state on top of the ROS 

provided data structures is proposed so for the model to be 

able to support real time planning and MRP behavior 

optimization based on the shopfloor status.  
The paper is organized as follows: Section II discusses 

the MRPs structure and capabilities while section III is 
focusing on the Digital World model description. In Section 
IV, the implementation of the robot’s behavior adaption in 
different levels is presented. The performance of the system 
is analyzed on an automotive case study in Section IV. The 
last section is dedicated to drawing the conclusions and 
providing an outlook towards future work. 

II. MOBILE ROBOT PLATFORMS (MRPS) 

The present work considers as flexible robotic assembly 

lines the production paradigm presented by Kousi et al. [3]. 

Under this paradigm, mobile dual arm workers are 

introduced as the main enables for the flexibility of the 

system. These so-called MRPs can autonomously navigate 

inside the shopfloor localizing themselves into different 

workstations for a) performing multiple assembly 

operations, such as handling, insertion, screwing, drilling, 

etc. and b) acting as assistants to human operators. Figure 1 

presents MRPs’ hardware structure. 

The main hardware components integrated under the 

MRPs can be summarized as follows: 

• Two collaborative robot arms undertaking the 
assembly tasks execution; 

• An omnidirectional mobile platform enabling the 
autonomous navigation; 

• A torso adding two degrees of freedom to the robot 
arms in terms of rotation and elevation; 

 

Figure 1.  Mobile Robot Platforms (MRPs). 

• Safety certified 2D laser scanners allowing the single 
plan obstacle detection, and 

• Depth sensors allowing the 3D environment 
understanding.  

These components aim to provide the hardware 

infrastructure allowing the safe navigation and localization 

of the robot into the different workstations as well as 

flexibility in terms of the process by dynamically 

identifying the product variants that need to be processed. 

III. DYNAMIC DIGITAL WORLD MODEL 

To enable the dynamic behavior and communication 
among these MRPs, the discussed Digital World model aims 
to provide the infrastructure for enabling the shopfloor data 
acquisition as well as combine them in a common 
representation to be consumed by the different decision-
making mechanisms involved in the execution. A continuous 
feedback from the actual shopfloor (using resource and 
sensor data) will enable the dynamic update of digital twin 
involving two main functionalities: 

 

Figure 2.  Digital World model-based system. 
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• Virtual representation of the shopfloor using 
multiple sensor data combination and CAD models. 
The digital shopfloor is rendered in the 3D 
environment using the capabilities provided by ROS. 

• A unified data model will be implemented in order 
to semantically represent the geometrical as well as 
the workload state. This data model should be 
generic enough in order to be able to address 
multiple cases as well as to be consumed by multiple 
components inside execution system. 

The overall system structure is presented in Figure 2. 

A. 3D environment constructor – sensor data synthesis 

The 3D environment constructor, composed by a set of 
sub-components, is responsible for registering the various 
entities included in the assembly, such as resources, parts, 
equipment, sensors, etc. A dedicated monitoring mechanism 
records the online location of these entities. These locations 
are used for constructing the complete working environment 
under a global world frame. This construction is performed 
based on the  ROS Tf library [11] as visualized in Figure 3. 
The involved software components were developed on top of 
ROS provided functionalities enabling the scalable network 
communication and easy integration with existing robotic 
applications. In more detail, existing ROS interfaces for 
various robot models and sensor types make the developed 
infrastructure re-usable in multiple robotic systems. 

During the set-up phase, the configuration of the 
resources, sensors and static objects takes place. In 
particular, the Resource configuration sub-component is 
managing the registration of the existing resources in the 
system. A set of attributes describing the resources have been 
defined as a universal resource model, such as transform 
configuration (.urdf format), path (.yaml format) and motion 
(.srdf format) configuration, payload, velocity, location, etc. 
These are populated for each resource instance introduced in 
the system. In a similar way, the involved Sensors are 
registered in the system through interfacing with the ROS 
drivers and recording their configuration data. The multiple  
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Figure 3.  3D environment constructor.  

sensor data are shared with the robots’ motion and path 

planners though dedicated topics following a predefined 

naming convention for each new sensor.  Collecting the data 

from the available sensors, a data synthesis mechanism is 

responsible for publishing the 2D–3D combined sensor data. 

In that way, the 3D scene is reconstructed based on the 

sensors and this scene is consumed as a cost map for the 

standards motion and path planning algorithms (e.g., 

gmapping, amcl, ompl). The static objects, are loaded in .sdf 

that is uses by robot simulators, such as GAZEBO [12].  

During the real-time execution phase, a Resource 

location and status monitoring sub–component is deployed 

for regularly publishing this online information on the 

digital twin. These data are retrieved through dedicated 

interfaces in each resource controllers. Nevertheless, apart 

from the static parts whose position is defined at the 

configuration phase, there are also moving objects and 

obstacles whose position is not well fixed and need to be 

identified during the execution. 

 

Figure 4.  Unified semantic world model. 
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B. Unified semantic model  

To handle the complexity of hybrid production systems, 
this study suggests a structured way to model the process and 
the environment following the principles of hierarchical 
modelling as shown in Figure 4.   

IV. ROBOT BEHAVIOR ADAPTATION 

Under this study robot behavior is specified as the set of 

low-level actions, such as navigation, move arm actions that 

the robot needs to perform for performing a task such as 

pick and place of an object. Thus, the concept of adapting 

robot behavior relies on the realization of ad-hoc changes in 

the MRP’s planned navigation and motion paths so that it 

may perform the high-level task successfully.  

A lot of research has been done related to the avoidance 

of collisions among resources and unmapped obstacles 

inside the shopfloor environment. Exploiting existing 

algorithms, the Digital twin provides interfaces with robot’s 

path and trajectory planners, to achieve online re-planning 

based on fused real-time information from shopfloor.  The 

MRP structure has been modelled through a ROS based 

description file describing the link the inter-robot 

connections among the robot arms, the platform and the 

torso. Thus, inter-robot conflicts such as collision of the 

robot with itself are not allowed. 

A. MRP platform online path planning 

MRP online path planning is implemented based on ROS 
navigation stack for mobile robots, thence, is essential the 
use of ROS Topics for sending transforms using tf, 
publishing odometry information, publishing sensor data. 
Digital World model resource manager handles the 
appropriate information for the correct configuration of each 
MRP unit as follows:    

• Transform configuration: The transform tree for 
every coordinate frame of each resource is described 
inside the .urdf file. Worlds model’s repository 
contains all the URDF files for each resource.  

• Sensor and Odometry Information: Resource 
manager is responsible for defining which sensors 
are used by each robot. 

• Map: Inside world model’s repository 2D and 3D 
maps of the shopfloor are stored. In case of simple 
2D navigation as visualized in Figure 5, the 
map_server node publishes periodically the map data 
in /map2d topic.  

• Planner Configuration:  For the MRP’s navigation 
two planners are responsible based on the ROS 2D 
SLAM navigation module. The first is the global 
planner and is responsible for finding a minimum 
cost plan from a start point to an end point. The 
second is the base local planner, which is responsible 
for computing velocity commands to send to the 
mobile base of the robot given a high-level plan 
from global planner.  

 

Figure 5.  Digital World Model – 2D map. 

B. MRP robot arm online motion planning 

For the motion planning and controlling of the MRP 
arms ROS MoveIt! [13] is used. MoveIt! communicates with 
the MRP through ROS and it requires the existence of a 
dedicated ROS package for its configuration. The resource  
manager for the registration of a robot, such as MRP needs 
three type of information in order to setup the motion 
planning and export the MoveIt! package.  

• Robots Universal Robot Description File (URDF); 

• Robots Semantic Robot Description Format (SRDF) 
file created from MoveIt! setup assistant tool, and 

• MoveIt! configuration files including among others 
joint limits, kinematics, motion planning, perception. 

The digital world model through the Sensor Manager 

provides to MoveIt! the configuration for the occupancy 3D 

map created in occupancy grid using the OctoMap library as 

represented in Figure 6. This map is used as cost map with 

real time obstacles. Enhancing the environment knowledge 

with the occupancy map, the online motion planning 

component is aware of the existing objects / obstacles and 

uses this knowledge to ensure a collision-free trajectory 

planning.   

V. CASE STUDY 

The proposed Digital World model infrastructure has 

been implemented and tested through a case study coming 

from the automotive sector. In particular, the pilot case 

scenario involves the assembly of a passenger’s vehicle 

suspension. This assembly scenario involves a set of 

assembly operations in three different workstations: a) the 

damper pre-assembly area, b) the damper compression area 

and c) the damper assembly on the disk area.  

Following the analysis made in [3], an MRP is 

introduced in this assembly line, navigating among these 

 

Figure 6.  Digital World model – 3D map. 
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Figure 7.  Assembly enviroment simulation. 

workstations for performing a) the transferring of the 

damper from the pre-assembly to the compression area, b) 

small parts assembly on the compression area and b) the 

assembly of the compressed damper on the disk. In parallel, 

one human operator is working on the same workspace 

performing the pre-assembly of the damper as well as a set 

of cabling operations on the disk assembly area. 

To be able to test the application in a realistic robotics set 

up in terms of 3D layout, a GAZEBO ROS-based 

simulation was set up replicating the assembly environment 

as shown in Figure 7. The digital models of the MRP 

(URDF) and human (CAD) where added in the simulation 

integrating the human side interface and robot controller in 

the backend. Figure 8 visualizes the Digital World model of 

the assembly environment based on the sensor data: a) two 

laser scanners located in the mobile platform of the MRP 

and b) one Kinect located on its torso. A Station Controller 

mechanism is responsible for dispatching the assigned tasks 

to the MRP, as well as the human operator and monitoring 

their progress so to coordinate the execution.  

For the efficient execution of the scenario, the MRP 

needs to perceive the: a) damper and working tables to 

compensate the localization errors that cannot be foreseen 

offline, using a Kinect depth sensor, b) static obstacles and 

moving humans / obstacles for ensuring collision free 

navigation, using 2D laser scanner data. 

 

 

Figure 8.  Digital World model visualization. 

 

Figure 9.  MRP 2D SLAM navigation. 

Each time the robot is re-located by the Station 

Controller to a different workstation it needs to 

autonomously navigate from its current location to the new 

one. 2D SLAM based navigation is an existing solution for 

resolving the path generation aspects as visualized in Figure 

9. 

In this specific use case, the Digital World model 

provides the 2D map based on the combined sensor data 

from the two laser scanners located on the MRP platform. 

This map includes the static obstacles existing during the 

map creation procedure.  Nevertheless, as mentioned in 

Section II, apart from the static obstacles recorded during 

the map creation procedure, during actual execution several 

other moving obstacles may be in conflict with MRP’s 

navigation path. The dynamic nature of the Digital World 

model allows the real time update of the planning scene, so 

for the navigation planners to consider in the local plan 

generation the new, unmapped obstacles. Figure 10 presents 

an instance where the human operator interferes to MRP’s 

planned path. The respective visualization of the Digital 

World model instance during this case is also presented. 

 

 

Figure 10.  Collision avoidance with moving obstacles – humans. 
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 In that way, the MRP may avoid collision with humans in a 

dynamic way while both are in motion. 

VI. CONCLUSIONS AND FUTURE WORK 

Shopfloor uncertainty is a key aspect that limits the 

flexibility potential of nowadays manufacturing systems. 

Modular robotic systems are considered as a main enabler 

for production system reconfigurability. However, their 

fixed control logic, based on pre-programmed operations, 

does not allow the effective exploitation of their capabilities. 

Robots’ perception abilities and reasoning upon the 

perceived environment so to adapt their behavior are key 

prerequisites for overcoming the existing limitations. To this 

end, this work, introduces the deployment of a dynamic 

Digital World model enabling the a) multiple sensor data 

synthesis into a common scene and the online update of the 

scene based on the real time data, b) the integration of the 

involved resources and hardware components allowing the 

robots to understand the real time environment and apply 

cognition techniques to transform the sensor based scene 

into useful information for optimizing their behavior.  

The discussed infrastructure has been tested in an 

assembly case study form the automotive sector, employing 

one MRP and one human operator. The deployment of the 

Digital World model allowed the reconfiguration of robot 

behavior by compensating the real – world uncertainty. 

Combining 2D and 3D sensor data information increases 

shopfloor’s real time knowledge and eventually leads to 

higher accuracy in robot actions. 

Considering a production system with more workstations 

and more humans and MRPs the complexity and 

unpredictability of the system increases a lot. In these cases, 

the suggested Digital World model may have a greater 

impact when applied in the completed manufacturing 

system. To achieve that, technical issues such as the 

computational requirements for processing big amounts of 

data need to be overcome as a future step. In addition, under 

the era of Industry4.0 data security is an important aspect to 

be addressed. Future version of this platform needs to be 

enhanced a secure communications framework that can 

ensure that connections between resources and systems are 

private (or secure) by using approaches such as symmetric 

cryptography. 

Nevertheless, the validation of the developed 

infrastructure under a physical set up involving the actual 

MRP is already an ongoing work by the authors. Future 

work should also focus on the integration of a higher-level 

decision-making mechanism that will be able to 

dynamically re-distribute the work among the available 

robot and human resources based on their capabilities and 

the production needs.  
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Abstract—Robotic platforms have been widely recognised as po-
tential tools for mitigating the aftermath of natural catastrophes.
However, their ineffectiveness in traversing highly unstable and
irregular terrains is a key bottleneck in their deployment and
usage in real world scenarios. In this work, a Polyurethane
Foam depositing system is proposed to allow ground vehicles
to overcome obstacles and navigate on challenging substrates.
The proposed system is designed as in independent modular
mechanism that can be attached to various robotic platforms
to enable material deposition and thus to increase their ability in
overcoming obstacles. The materials used are inexpensive and
their properties can be tuned on board by a simple control
system, allowing the device to vary its output type according
to situational requirements. Four different deposit types have
been characterized, with expansion ratios varying from 20× to
33×, compressive strengths from 0.16MPa to 2MPa, and full
expansion and set times below 6 minutes, allowing application in
real-time. The system has been fitted to a tracked rover equipped
with some basic sensors to allow autonomous responses when
faced with obstacles. The system allows successful traversing of
previously insurmountable obstacles such as large frontal objects
and chasms. The results show that the amount of foam deposited
can be well controlled and multiple layers can be stacked on top
of each other to significantly increase altitude.

Keywords–Robotics; Overcoming Obstacles; Disaster Scenario.

I. INTRODUCTION

A natural catastrophe is an unexpected event caused by
nature, which results in a great deal of suffering, damage and
death. These include but are not limited to events such as,
tornadoes, hurricanes, earthquakes, etc. According to a U.N.
report [1], since 1995 over 600, 000 people have been killed,
4.1billion injured or left homeless and $2trillion in economic
damages have been caused by such natural catastrophes. When
natural disasters strike, the primary concern is human life and
therefore it is critical to reach the victims and the survivors
as soon as possible. People left stranded in the wake of
these events are often stuck for days without food, water
or medicines. They find themselves cut off from all support,
typically due to collapsed infrastructure, making it impossible
for teams to easily and safely reach them. This results in
first responders being some of the most at risk during any
relief efforts [2], often entering highly unstable areas with little
knowledge of the interiors.

It is widely acknowledged that robotic platforms will play
a key role in mitigating the after effects of such disasters.
Major progress has been made in the developments of aerial,

TABLE I. SYNTHETIC COMPARISON OF LOCOMOTION SYSTEM
FEATURES, TAKEN FROM [8]. LeW = LEGGED WHEELED, LeT =

LEGGED TRACKED, WT = WHEELED TRACKED, L=LOW,
M=MEDIUM and H=HIGH

W T Leg LeW LeT WT
maximum speed H M/H L M/H M M/H
obstacle crossing L M/H H M/H H M
step climbing L M H H H M
slope climbing L/M H M/H M/H H M/H
soft terrain L H L/M L/M M/H H
uneven terrain L M/H H H H M/H
energy efficiency H M L M/H M M/H
system complexity L L H M/H M/H L/M

terrestrial and maritime robotic platforms specifically designed
for use for disaster relief, search and rescue and salvage
operations [3]. This is because robots can be deployed quickly
in areas deemed too hazardous for human operation. Terrestrial
platform specifically can be used to collect interior data,
deliver supplies and support first responders. Many projects
have been developed in recent years to achieve some of these
functions, see for example [4]–[6]. However, when taking
ground based platforms from the even surface of a lab to the
unpredictable and often unstable terrain expected in disaster
zone environments, they typically encounter major difficulties.

Numerous robotic architectures have been developed for
the very purpose of overcoming rough terrain. Current ap-
proaches can be classified into roughly five categories accord-
ing to [7]: single-tracked, multi-tracked, wheeled, quadruped-
platforms (or biologically inspired systems) and humanoid.
Each of these unique solutions can perform well in particular
conditions, but there is no one of these categories that performs
exceptionally in every circumstance. As a result of this, more
focus has been recently put on the development of hybrid
platforms to maximise the advantages of multiple architectures.
However, such systems are expensive and their added benefits
often limited. A comparison of tracked, wheeled, humanoid
and their respective hybrids was performed in [8] and is
reported in Table I. This overlooks quadruped and biologically
inspired platforms as these represent a very diverse array of
systems which are difficult to generalise. Table I shows that
no architecture nor hybrid system can tackle all of the con-
sidered environments, therefore development of one particular
locomotion style will not result in a system that is the most apt
in all scenarios. Due to this, material deposition systems have
been suggested as methods for augmenting robotic platforms
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to increase their ability of navigating uneven terrain.
In this paper, a novel Polyurethane (PU) Foam deposition

system is proposed to increase a robotic platforms ability
to traverse uneven terrains and overcome obstacles. The pa-
per is structured as follows. In Section II, an overview of
Polyurethane foam and the related works are given. In Section
III, a brief description of the design for the depositing module,
a characterisation of the deposited material and the integration
with a tracked rover is reported. Section IV contains an illus-
tration of the experimental setup used to test the effectiveness
of the depositing systems, whereas the results obtained in
these experiments are discussed in Section V. Finally, some
final remarks and suggestions for further work are reported in
Section VI.

II. BACKGROUND

A. Polyurethane Foam
Polyurethane Foam (PU) is a synthetic resin in which the

polymer units are linked by urethane groups; when combining
the two part constituents, the mix quickly expands and then
sets rigid. The ratio between these two parts alters the final
properties of the PU foam and therefore maximum values for
such properties are the best way to characterise the material.
Two key material characteristics for the purpose of this paper
are:

• Compressive strengths - over 2MPa are possible,
which can easily support the weight of a human
standing thereon.

• Expansion ratios - over 30× the original volume,
meaning 25dm3 of final structure foam can be gener-
ated from 840cm3 of the two part liquid constituents
[9].

The final properties depend largely on two factors: the mix
ratio and the mix style. Therefore, different mixing mecha-
nisms, such as manual stirring, syringe pumping and aerosol
deposition, will result in very different final material prop-
erties. The importance of this will be further discussed in
Section II-B. The final material form is a closed-cell and thus,
water-proof foam when set and all mix types are lighter than
water, yet strong enough to support the weight of a human.
Additionally, these foams attach to a variety of materials
including wood, iron, and concrete, among others. Based on
these characteristics, this material is deemed suitable for use
in disaster scenarios in real-time.

B. Related Work
Two projects have utilised a robotic PU foam depositing

system for traversing obstacles. The first platform was pro-
posed in [10] and utilised a motorised syringe prefilled with
the two parts of PU. As the syringe is actuated, the two
parts are driven through a series of static mixing chambers
to increase turbulence and initiate reaction. This allows the
system to deposit small amounts of PU foam to create a
ramp which allowed it to traverse an object larger than its
original capability. There are several major drawbacks of this
system. Firstly, the style of deposition provides little mixing
and thus very low expansion ratio of the foam, meaning a
significant amount of material extrusion was needed to create
the desired ramps. This low expansion ratio, coupled with the
single rigid nozzle deposit system, resulted in a very complex

build requirement, which would be difficult to implement
autonomously and was thus manually controlled by a human
operator. Further, continuous deposition was required if the
syringe was to remain unblocked before using all of the
material. For the ramp demo shown in this project, multiple
syringe cartridges and mixing devices were manually replaced
on the system to allow continuous usage.

An alternative approach was proposed in [9], where a
robotic platform utilised an aerosol depositing system mounted
on a gimbal, with both single part and two part PU tested.
The two part PU resulted in much more effective outputs
and a more flexible deposition than [10], and therefore an
autonomous ramping system was possible upon detecting an
object. However, the use of aerosol depositing system gives
little control over the material being deposited, as the mix
ratio and outlet speed are determined with the systematic
design and cannot be controlled by the platform or even altered
simply offline. Also, the use of prepackaged aerosols bring into
questions how well this system could be scaled.

To overcome the drawbacks of existing platforms, this
paper proposes an on board system to drive the two part liquids
of PU foam to reaction. The proposed approach provides
complete control over the deposition process and over the final
material properties of the PU foam, thus eliminating the issues
described above.

III. DESIGN

A. PU Foam Deposit System

The proposed PU foam deposit device is illustrated in
Figure 1. Separate reservoirs are used to contain the required
components: PU part one, PU part two. Pumps are used to
drive PU parts one and two to an external mixing chamber.
This chamber ensures the two parts are fully diffused without
increasing turbulence to induce reaction. This is a necessary
step when multiple outlets are required as in the platform
described in this paper, otherwise the flows would not mix
and develop into separate channels due to the viscous nature
of the individual parts, see Figure 2. The now combined
PU is separated toward two different static mixers acting as
depositing nozzles.

Figure 1. Schematic representation of the PU depositing device: PU part 1
and PU part 2 reservoirs are connected to a mixing chamber (light cyan

octagon) via pumps (represented by white double triangles). The resultant
mixture is then fed to static mixers (dark blue cylinders) that act as nozzles

for depositing PU foam.

The proposed design results in a number of benefits when
compared to systems available in the literature:
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Figure 2. Illustration of PU parts one and two not mixing, which occurs
without a suitable mixing chamber.

1) Basing the system around pumping mechanisms re-
sults in a fixed amount of liquid being driven at
any one time. The amount of liquid being actuated
is independent of the reservoir size from which it
is being drawn. This, unlike syringe and aerosol
driven designs [9], [10], allows significant scaling of
reservoirs with no system alteration.

2) The system can use pumps to independently control
the flow rate of each PU part. This allows complete
control over the mix ratio and therefore the final
mechanical properties of the deposited PU foam.
For example, increasing the ratio of PU part two
would increase expansion ratio; this could be used
to maximise volumetric output if material was low.
Conversely, if the system required a harder deposit,
it could autonomously increase the ratio of PU part
one to the mix.

3) Flow rate control allows control of fluid turbulence
within the mixing devices. Increasing overall flow ve-
locity increases the turbulence with which the chemi-
cals are mixed, thus reducing the time taken to begin
expansion. This has the potential to allow outputted
material to be less fluid-like and more immediately
sticky, where obvious applications would be to allow
foam deposition on vertical walls. However, making
the deposit more liquid-like on exit allows the sub-
stance to be deposited into crevices and cracks which
would not be possible for syringe or aerosol deposited
systems.

4) Finally, the system allows two pumps to drive the
liquids to two outlets, although it is possible to
increase this number. The importance of this will be
mentioned in Section III-C.

B. Foam Characterisation
To demonstrate the control ability on the final material

properties of the PU foam, four different PU foam types have
been characterised according to: mix ratio, expansion ratio,
initial compressive strength, final compressive strength, rise
time and set time. Higher compressive strengths and expansion
ratios are possible from this deposition system. However,
mixes that result in higher expansion ratios, for example, result
in compressive strengths that are too low to be considered
useful for the envisaged applications, and vice versa.

PU foam is a high ductility material, hence it tends
to experience large shape deformation instead of exhibiting
brittle cracking behaviour under load. Therefore, two non

standard definitions of compressive strength are used: ini-
tial compressive strength and final compressive strength. The
former is defined as the pressure applied before permanent
plastic deformation occurs, whereas the latter is defined as the
pressure at which the height of the deposit is reduced by 70%.
Beyond this value the deposit is considered to have failed.
Controlled compression tests were conducted on an extracted
cubic test sample from a free rise foam deposit. Force and
compression/tension were measured with a material testing
machine (Instron 3345) loading the specimens at a rate of
2mm/min.

Set time is measured from initial deposition until the foam
has fully solidified, and is calculated by removing multiple
samples at set times and recording their compressive strength.
Full set time is considered the point at which compressive
strength no longer increases with increased reaction time.

Whilst absolute values of the properties have been mea-
sured and are of importance per se, the relative differences
are the primary quantities of interest, as they demonstrate the
capability of the proposed system to deliver enhanced control
characteristics. A summary of properties of the deposited
foams are reported in Table II, where each foam is defined
by the mix ratio of part one to part two. Such table shows, for
example, that the proposed device can create PU foams with
compressive strengths ranging from 0.56MPa to 2MPa.

C. Robotic Platform
The modular design proposed for the depositing system

allows easy deployment on already existing robotic platforms,
enabling their increased range of operation. For the purposes
of testing, the simple low cost ground rover shown in Figure 3
was used. This platform is a two-tracked vehicle with a track
height of 100mm and a track length of 300mm. The maximum
pressure exerted by the rover on the terrain is about 0.02MPa
(15kg rover on the total surface area of its tracks), therefore
the PU foam can easily sustain the weight of the whole
platform. The rover is driven by two large stepper motors (RB-
Phi-266, Robotshop) controlled by a central Arduino Mega
2560 board which actuates the motor speeds via two Arduino
Nano boards and the pumping systems via another Arduino
Mega 2560. A digital compass is connected to the central
control board to feed orientation information back to the
controller and positional information is estimated based on
encoder information from the motors. The PU Foam depositing
system was mounted on top of the rover with the two outlets
positioned directly behind the tracks. As the rover moves,
the foam will be deposited, forming two distinct extrusions
which are aligned with the rovers tracks. Once the foam has
expanded and solidified, the rover can simply climb on said
extrusions to increase or maintain altitude. When depositing
foam in a straight line, controlling either deposit speed or rover
speed allows the platform to create ramp structures as will
be demonstrated in Section IV. This is an efficent approach
compared to the complex depositing mechanism proposed in
[9] and to the complicated ramp structure required in [10].

IV. EXPERIMENTAL SETUP

Two main simulated scenarios are designed to demonstrate
the effectiveness of the proposed PU foam depositing system
in allowing ground vehicles to navigate in a disaster scenario:
obstacle climbing and chasm traversing. To this end, the
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TABLE II. CHARACTERISATION OF FOUR TYPES OF PU FOAM DEPOSITION.

Low Density Medium-Low Density Medium-High Density High Density
Mix Ratio (one:two) 1 : 0.74 1 : 1 1 : 1.4 1 : 1.6
Expansion Ratio 33× 29× 25× 20×
Initial Compressive Strength 0.16MPa 0.25MPa 0.41MPa 0.76MPa
Final Compressive Strength 0.56MPa 0.74MPa 1.37MPa 2MPa
Rise Time 37 seconds 46 seconds 52 seconds 55 seconds
Set Time 210 − 270 seconds 240 − 300 seconds 270 − 340 seconds 310 − 380 seconds

Figure 3. Images of the rover platform used for testing.

Figure 4. Illustration of the frontal obstacle detection system and ramp
building process. Panels 1-5 show process used when a single ramp is

enough to allow the robot to climb on the obstacle, whereas panels 6-9 show
the procedure used to build higher ramps by depositing several PU layers on

top of each other until sufficient height is reached.

robotic platform described in Section III-C was fitted with
ultrasonic distance sensors (HC-SR04) pointing in the direction
of travel and toward the ground to detect obstacles and/or
chasms. If the sensors detect a scenario that would prevent
the ground vehicle from proceeding on the planned path, a PU
foam deposition protocol is initiated.

A. Frontal Obstacle Detection and Climbing
Frontal obstacles are defined as objects that are placed on

the rover planned path and are too high to be overcome by the
vehicle itself. Through testing, it was determined that the rover
cannot overcome obstacles that are above half the rover track
height. The frontal ultrasound sensor was then placed at this
height and, once an obstacle is detected, the rover initiates a
ramp depositing procedure in order to climb onto the obstacle.
In particular, following detection of an obstacle, the rover will
begin to move forward at a low motor torque to align the rover
front face with the straight edge of an object upon contact. The
ramp building protocol, schematically represented in Figure 4
is then initiated, giving rise to the creation of a ramp that the
rover can use to climb onto the obstacle.

Figure 5. Illustration of the chasm detection and filling system.

B. Chasm Detection and Filling

A chasm is defined as a gap in the floor that is long enough
to prevent the rover from moving over it without falling in.
Through testing it was determined that the rover can overcome
chasms of up to 100mm (one third of the total length) without
falling into said gap. Longer gaps would prevent the vehicle
to move along the planned path. Two ultrasound sensors
were then placed on the underside of the chassis, pointing
to the ground. One sensor was positioned at the front of the
undercarriage and another one was placed at one third of the
length from the front, in other words 100mm behind. These
two sensors are necessary as some gaps in the floor, of less
than 100mm in length, can be overcome by the rover without
need for material deposition. However, if both undercarriage
sensors detect a continuous gap, the rover will stop moving
and initiate a void filling procedure. At first, the rover uses
depth measurements of the chasm to estimate the amount of
deposit required. However, if it is under deposited (for example
if the foam expanded less than expected) then it would once
again detect the chasm and repeat the filling procedure. Over-
depositing typically leads to foam overflowing the chasm, but
the extra amount is usually trivial for the rover to overcome.
An illustration of the autonomous response to chasms is shown
in Figure 5. Of course, chasm detection is overridden when
climbing a ramp produced by the system described in Section
IV-A.

V. RESULTS

Three experiments were carried out with both detection
systems being operational. In all experiments, the rover is
instructed to move in a straight line and the detection systems
will determine whether or not they should activate the PU
foam deposit procedures in order for the rover to continue to
navigate along its planned path. All experiments require the
on-board autonomous decision system to:

1) Identify an obstacle or a chasm preventing forward
movement.
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Figure 6. Small obstacle test: the stages of the rover detecting a 60mm high
block and depositing a foam ramp to climb onto the obstacle.

2) Deposit the PU foam to overcome said obstacle
according to the procedures described in Section IV.

3) Wait an appropriate amount of time for the PU foam
to set.

4) Climb onto the obstacle or move over the filled chasm
using the deposited PU foam.

The mix ratio of PU Part one:Part two was fixed at 1 : 1
(Medium-Low Density foam) for all three tests. The first two
experiments consider frontal obstacles and the third considers
chasm detection. In all the scenarios the vehicle could not
navigate along the planned path without the aid of the PU foam
depositing system. For the frontal obstacles, the rover would
either topple or slip when trying to climb on the objects. In
the case of the chasm, the rover would simply fall into it.

A. Small Frontal Obstacle Test
The first experiment considered a 60mm high block - 60%

of the 100mm rover height - blocking the rovers path. As can
be seen from Figure 6, the rover detected the object using the
embedded ultrasound sensor and initiated its ramp creation
procedure. The system created a sloped ramp by controlling
flow rate according to the distance from the obstacle. The
system then waited for the foam to expand and solidify before
using the deposit to climb onto the obstacle. The total time to
run this experiment was 6 minutes and 42 seconds.

B. Large Frontal Obstacle Test
In the second experiment, a 130mm high block - 130%

times the rover height - was placed along the planned path.
Upon successfully detecting the object, the rover initiated the
ramp building procedure as in the previous scenario. However,
upon climbing the ramp, it detects the object again. The
system, knowing it has previously created a ramp, then starts
a different ramp creation procedure aimed at depositing a
second layer that is longer than the first ramp, as shown in
Figure 7. After curing, the platform used the two-layer ramp
to climb onto the obstacle. Total time for this experiment was
13 minutes and 42 seconds.

C. Chasm Test
In the final experiment, a 160mm long chasm was placed

along the rovers path - over half the 300mm rover tracks
length. The chasm was 80mm deep and 400mm wide. Once

the forward undercarriage sensor detected a gap, the rover
reduced its speed to ensure it had sufficient time to detect
a potential chasm. Once the second sensor detected the same
continuous gap, the decision logic inferred that no flooring is
present between the two sensors, hence the chasm filling proce-
dure was initiated. The material depositing system estimated
the amount of material to be deposited from the knowledge
of the depth of the chasm (measured by the undercarriage
sensors), performed the deposit and then waited for this to
expand and solidify. The rover successfully filled the chasm
and traversed the gap as shown in Figure 8. Total time for this
experiment time was 5 minutes and 50 seconds.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, an inexpensive and easy-to-use PU foam
depositing system is proposed. The system is designed as an
independent module that can easily be integrated into existing
robotic platforms to broaden their navigation capabilities on
uneven terrains. This system does not require any complicated
control systems, but it allows significant obstacles and chasms
to be overcome. The primary benefit of this system when
compared with others available in the literature is the complete
control over the mix ratio and the deposit process. This
allows control over the mechanical properties of the deposited
material, allowing the PU foams expansion ratio and final
compressive strength to be altered autonomously according to
the situational requirement. The proposed device mitigates the
main obstacle for using ground robots in disaster scenarios:
traversing uneven terrain. Future developments may include
the development of intelligent algorithms for optimising mix
ratios according to the situation detected by sensors, scaling of
system for increased range of applications, and collaborative
robotics to tackle more complex and large scale efforts.
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Abstract—This work explores a way to achieve high precision in
the positioning of a 250-class aerial drone by means of only on-
board sensors. The proposed technology is still in development,
and its basic idea is to compensate the errors of the sensors
by fusing together strongly correlated data streams. The main
players are a 6 Degrees of Freedom (DoF) Inertial Measurement
Unit (IMU) and a computer vision system, arranged to work
together as a “virtual sensor” providing the pose of the drone
relative to one or more markers acting as reference points of
known position and orientation. The proposed advance sensing
exploits complementary filters to merge inertial and visual data.
Such a refined positioning is then used to feed a custom con-
trol strategy acting as auto-pilot for implementing autonomous
navigation. Preliminary results on the developed technologies are
reported.

Keywords–Advance sensing; Drone; Computer Vision; Sensor
Fusion.

I. INTRODUCTION

Thanks to their versatility, small drones like multirotor
Unmanned Aerial Vehicles (UAVs) have received more and
more interest over the last few years, both in the academic
and industrial communities. In the scientific literature the
use of drones is getting very popular and applications are
increasing in pace with the technological development of these
systems. Moreover, recent advances in microelectronics have
made single-board microcontrollers and embedded systems
economically affordable, making their use widespread to add
advanced features in many small and medium-sized systems
such as drones. In the context of UAV systems, for example,
the availability of these advanced single-board computers is
important in applications where extreme positioning precision
is required. In this regard, interesting applications that have
been proposed recently concern precision agriculture, where
drones equipped with Real-Time Kinematic Global Navigation
Satellite Systems (GNSSs-RTK) [1] are used to minimize
human intervention [2] [3]. Other recent usage scenarios see
drones equipped with specific scientific equipment, for exam-
ple for the reconstruction of 3D environments through LIDAR
(Laser Remote Sensing) techniques [4], or for monitoring road
traffic [5]. These systems often use Vision-Based Navigation
(VBN) algorithms to improve positioning accuracy [6]–[8].
However, currently in the scientific literature there are no
direct references to the precision achieved by these multirotor
systems, since in almost all of today’s applications high
precision specifications are not required, while for applications
that require it, alternative solutions are sought. In particular,

at the current technological level there are no drones capable
of following trajectories with sub-centimetric precision and
this precludes the use of these drones in many potential novel
applications.

The main purpose of this work consists in the develop-
ment of a high-precision positioning system for UAV multi-
rotors, which makes these devices usable in a wide class of
applications where high accuracy is the main requirement.
To increase the level of accuracy of the currently available
solutions, the proposed approach integrates and extends the
performance of computer vision and inertial sensor navigation
techniques, where position, velocity and attitude data extracted
simultaneously from video streams and inertial sensors are
merged together by filter fusion algorithms for error compen-
sation. The above task involves the development of software
and hardware dedicated to video processing. In particular,
by exploiting a single camera mounted on-board, the main
task is based on the identification of specific markers in the
environment, from which it is possible to extract with high
precision the information of attitude and position relative to
the drone. Through appropriate algorithms, it is then possible
to determine in real-time the 3D coordinates of the drone
with respect to the marker, which can be used as a position
virtual sensor for controlling the drone trajectory. This visual
sensor has been designed to be employed as an on-board
autonomous navigation system add-on for commercial drones.
Indeed, the developed prototype has been implemented on
a low-cost hardware board (Raspberry PI), which is able to
process video and inertial sensor data to autonomously pilot a
250-class multirotor for tracking specific trajectories.

The rest of the paper is structured as follows. In Section II,
the hardware and software architectures are illustrated. In
Section III, the computer vision technique developed for the
advanced sensing of the drone’s position is presented. We
conclude the paper in Section IV reporting some preliminary
results.

II. PROTOTYPE ARCHITECTURE

A. Hardware
The DART prototype is a 250-class aerial drone developed

at the Systems & Control Lab of the Department of Informa-
tion Engineering of the University of Florence (see Figure 1).
The drone features a flight controller CC3D Revo running the
open-source LibrePilot software as low-level interface to the
hardware. This very basic architecture has been extended by

27Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

                            39 / 92



(a)

(b)

Figure 1. (a) DART prototype. (b) Zoom of the camera suspension support.

two additional board: A Raspberry PI 3 B+ and a Arduino
nano. The first board is equipped with an Pololu 2739 IMU and
a Raspicam camera module, and it implements the autonomous
driving commands based on image processing and data from
the onboard IMU. The second board, instead, implements a
Pulse Position Modulation mixer (PPM-mixer) between the
commands coming from the 2.4 GHz receiver, and those
generated by the autonomous driving module. The mixer
allows also for hybrid driving modes, and it is responsible of
the safety during transitions from manual to autonomous flight
modes and vice-versa. Figure 2 illustrates the related functional
scheme. The Raspberry module communicates with the PPM-
mixer via a bidirectional Universal Asynchronous Receiver
Transmitter (UART) protocol, while the commands from the
receiver arrive to the Arduino nano via its native PPM protocol.
PPM is also the kind of signal expected by the LibrePilot
interface, and so this has to be the nature of the mixer output,
thus explaining its name. Regarding the commands from the
receiver, then, the mixer operates just as a pass-through, while
the commands from the autonomous driving module have to
be transformed into proper PPM signals. In the Raspberry
board, API V4L2 are exploited to handle the signals from the
connector of the camera, whereas data from the IMU arrive

via I2C bus.

B. Software
All the necessary software runs on the three boards de-

scribed in the previous subsection according to the following
scheme. The CC3D Revo board executes the LibrePilot soft-
ware [9], which provides access to the drone IMU sensors
and motors, thus acting as low-level interface to each single
device on the drone. The Raspberry module, instead, executes
the software for image processing, and it is also responsible
for generating the commands of the autonomous driving. In
particular, the developed computer vision software is based on
OpenCV [10] and Visp [11] libraries. In the proposed version,
the computer vision software is designed to recognize special
markers. Figure 3 depicts the result of the image processing
that allows the module to detect the marker, and to compute
its orientation. The autonomous driver implements an in-house
control algorithm, described in more details later. The Arduino
nano board, finally, runs UART and PPM protocols specifically
designed for it objective function, i.e. the hardware switch.

C. Control algorithm
The autonomous driving module computes the commands

in the same form of those coming from the receiver, i.e., as
proper reference values for roll, pitch, yaw and thrust. At this
stage of the project, they are simply conceived to have the
drone maintaining a desired position Q with a zero yaw angle
ψ = 0, such that the drone is facing the marker. The image pro-
cessing module provides both relative orientation and relative
position with respect to the marker. This information is further
integrated by means of a fusion algorithm with data coming
from the onboard IMU to improve the estimate of the image
processing. It is worth stressing that with the implemented
algorithm and hardware platform the image processing module
works at about 30-40 Hz, while the IMU can provide data at
higher frequency. Therefore, the sensor fusion algorithm also
synchronizes the two different information streams in order to
use the right samples from each sensor. The final result is a
refined estimate of the drone position Q with respect to the
marker, whose details will be described in the next section.
The extension to multiple markers is still under development,
but early results are promising.

The information on the drone pose errors (Q − Q) and
(0 − ψ) are used to feed four distinct controllers, which
generate the driving commands as references for roll and pitch
angles, yaw angular velocity, and thrust. Such a preliminary
solution is not expected to provide the best performance,
since it does not consider the mutual connections between
the drone pose components, but it allows one to design the
autonomous driver by composition of simpler modules. The
resulting control architecture is illustrated in Figure 4.

III. ADVANCED SENSING

A. Virtual sensor
The vision algorithm takes care of detecting one or more

known markers present in the environment in order to obtain
their poses (positions and orientations) with respect to the
camera reference frame (body frame). To achieve this task, the
algorithm computes the gradient for each pixel of the image
such that pixels with similar gradient directions are grouped
into sets. The latter sets identify edges in the image from which
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Figure 2. Hardware configuration and dependencies.

Figure 3. Marker as seen from the image processing module.

the algorithm searches for the correct sequence that recognizes
the two-dimensional position (u, v) of each marker in pixel
coordinates.

The marker coordinates (xm, ym, zm) in body frame can
be computed through the relations for barrel distortion

ym/zm =
(v − v0)(1 + kudR

2)

py
(1)

where
R2 =

(u− u0)2

p2x
+

(v − v0)2

p2y
, (2)

(u0, v0) represents pixel coordinates of the image center,
whereas parameters px e py are the focal length to pixel
dimension ratios. Finally, kud and kdu are parameters needed
to correct lens distortions. Therefore, kud, kdu, px and py are
intrinsic camera parameters which can be obtained through
an iterative evaluation process that involves the acquisition of
frames of a known image in different poses.

If the geometrical properties of the marker are known, it is
possible to retrieve additional information such as the distance
zm and orientation of the marker itself which, in turn, provide
the full pose of the marker frame with respect to the body
or camera frame. Indeed, the following change of coordinates
provide the drone 3D-position Q with respect to the marker
frame

Q =

[
x
y
z

]
= RXY Z(Φ)

[
xm
ym
zm

]
(3)

where

Φ =

[
ϕ
θ
ψ

]
(4)

is the vector of the roll, pitch and yaw angles between the
frames (computed in the experiments by using the Homogra-
phy method), and

RXY Z(Φ) =

[
cϕcψ cϕsψsθ + sϕcθ −cϕsψcθ + sϕsθ
−sϕcψ −sϕsψsθ + cϕcθ sϕsψcθ + cϕsθ
sψ −cψsθ cψcθ

]
is the corresponding rotation matrix.

B. Sensor fusion
The use of an addition 6-DoF IMU makes it possible to

merge the information of the drone attitude with the estimate
provided by the vision, considerably increasing performance,
especially at high frequencies.

At first, the algorithm running on the software platform
prefilters both the attitude and position data coming from
the vision and the angular velocities measured by the IMU
gyroscope. Then, to improve the estimation accuracy, at each
iteration k the attitude vector Φk computed by the vision
system is fused with the angular velocities Ωk measured by
the gyroscope, through the use of the following first order
complementary filter

Φ̂k+1 = ρ(Φ̂k + TkΩk) + (1 − ρ)Φk (5)
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where Tk is the actual sample interval and

Ωk =

[
p
q
r

]
(6)

is the vector of the angular velocities around the three main
drone axes. The new orientation estimate Φ̂ of equation (5)
can now be employed in the coordinates transformation (3)
providing a refined position estimate Q. The schematic of
the complete filtering and estimation process is depicted in
Figure 5.

IV. CONCLUSION AND FUTURE DEVELOPMENTS

In this section, some preliminary results will be reported
and commented. A depiction of the next development of the
project will be illustrated, as well.

Figure 6 depicts how the sampling time varies during a
test flight. It is worth observing that its average is around the
already mentioned 34ms (i.e., about 30Hz) with a sufficiently
narrow standard deviation less than 2.5ms. Nevertheless, since
the control board in not meant for real-time computing, the
varying computational burden and the variable power supply
to the processor generate relatively small oscillation of the

Figure 6. Measured sample interval of the navigation system.

sampling time. In Figure 7, the trend of positions x, y, and z
are shown as they evolve during a test flight in auto-piloting
mode. The experiment is meant to provide a glimpse of the
output coming from the virtual sensor based on computer
vision techniques. The comparison with the real position of
the drone would require a special environment (such as a
set of ground cameras), which will be developed later in the
project to assess the final result quality. Still, a simple visual
inspection of the diagrams suggests that the virtual sensor may
be able to catch sufficiently rapid variations of the position
without introducing relevant noise. In this respect, Figure 8
reports the position estimate while the drone stands still on a
test bench. Since the position is constant, the plot shows the
trend of the estimation errors and it provides a good graphical
representation of the system intrinsic noise (appraisable in only
few centimeters for a 2.72m distant marker) and its related
power. Looking at Figure 8, the result turns out particularly
encouraging once the absence of a gimball for the camera
is stressed, since such a solution would strongly reduce the
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Figure 7. Drone detected position during an autonomous flight.

Figure 8. Drone detected position in static conditions.

compensation needed to refine the pose estimate. The addition
of a gimball is planned as one of the next improvements.

Other tests have already been planned to check the reliabil-
ity of the proposed technology up to this stage of the project.
Experiments aimed at testing the auto piloting functionality,
instead, are scheduled later on, because they are more com-
plicated to perform due to the many precautions needed to
ensure the drone safety during an autonomous flight. Most
likely, better performance could be achieved by using model
based controllers. Therefore, an accurate physical model of the
drone will be top priority for the continuation of the project.
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Abstract—Effective and safe maintenance of offshore infrastruc-
ture is hampered by its remote location. Robotic inspection can
provide a retrofit solution, improving safety for human personnel
by removing them from a potentially hazardous environment, and
also reduce operational costs. There are three primary challenges
for navigation around an offshore substation: low visibility, high
electromagnetic fields and the absence of Global Positioning
System (GPS) signals. This paper details a navigational system
that enables Unmanned Aerial Vehicles (UAVs) to operate within
a dark and GPS-denied environment.

Keywords–Robotics In Hazardous Fields; Aerial Robotics;
SLAM; Sensor-based Control.

I. INTRODUCTION

The remote inspection and asset management of offshore
wind farms and the connection to shore will be worth up to 2
billion pounds annually by 2025. However, current methods of
inspection are dangerous for human personnel and introduce
high costs for the industry as a whole [1].

Currently, Supervisory Control and Data Acquisition
(SCADA) systems and thermal imaging inspections are being
used in data management to inform substation operations
and maintenance. However, the limited number of qualified
inspectors coupled with the high demand leads to common
unexpected failures. Automation could potentially alleviate this
by increasing inspection frequency and standardizing proce-
dures [2].

Robotic inspection platforms have the potential to ensure
the maintenance of vital infrastructure, reducing associated
expenditure and hazards [1]. However, this endeavour presents
unique challenges that must be overcome for it to become a
viable commercial method. Considering the offshore substation
environment in the context of a navigational system, the
inherently symmetrical nature coupled with the occlusion of
GPS signal may attribute to difficulty ascertaining an accurate
estimation of the robot’s global 6 Degree of Freedom (DoF)
pose. The high electromagnetic fields necessitate the use of
shielding, limiting external sensor hardware [3]. The presence
of high electromagnetic fields could potentially interfere with
the nominal operation of the propulsion motors [4]. To cir-
cumvent this, the use of a magnetometer within the proposed
navigational system will be neglected. Moreover, the sensor
payload must also be minimal to extend battery life, facilitating
the implementation of autonomous capabilities in this remote
location. Also, the absence of visible light limits the use of
vision-based odometry.

Three levels of autonomy can be defined: pure tele-
operation, safe-guarded tele-operation and autonomous navi-

gation [5]. The navigational system presented within this paper
provides a method of remote tele-operation. However, the aim
is to extend this system to full autonomy in the future with
more sophisticated obstacle avoidance capabilities that account
for the electromagnetic fields.

This paper presents a navigational system for UAVs to op-
erate inside a High Voltage Direct Current (HVDC) valve hall.
The quadcopter is equipped with two 2D Light Detection and
Ranging (LiDAR) devices that are mounted perpendicularly to
each other, the combination of which provides a 3D estimation
of the robot pose. However, this estimation is, in part, based
upon relative movement of the surrounding landmarks between
frames and so is subject to a certain amount of drift. This is
further exacerbated by the repetitive and symmetrical nature of
these landmarks. To remedy this, the implementation of Quick
Response (QR) codes were investigated as global reference
points to correct for this accumulated error. Sensor fusion
was accomplished with the use of an Extended Kalman Filter
(EKF).

The remainder of this paper is structured as follows:
Section II of this paper will consider related works and Section
III will detail the system architecture, while Section IV will
analyse the collated results and several conclusions will be
drawn concerning further extensions of this work and the
viability of this system within industry.

II. RELATED WORK

To inform system design, the state-of-the-art navigational
techniques were considered for UAVs as well as ground
vehicles, with the view of adapting these methods for UAV
navigation of a GPS-denied and dark environment.

A. Current Navigational Techniques
In [6], an autonomous navigational system was developed

for a ground vehicle deployed within a GPS-denied green-
house. This system used the Hector Simultaneous Localisa-
tion and Mapping (SLAM) Robot Operating System (ROS)
package, that is also used within this system, and combined
this with a potential fields path planning algorithm. Structural
changes due to the growth of crops were accounted in the path
planning algorithm while being safe to operate in the presence
of humans. This is reminiscent of faults occurring and causing
a fluctuation of electromagnetic fields inside the HVDC valve
hall environment, changing the required clearances to maintain
nominal operation of the UAV.

In [7], a UAV was deployed into a GPS-denied, dark tunnel
where a perception system comprising of a near-infra-red
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stereo camera, flashing LEDs, inertial sensors, and a 3D depth
sensor to derive the geometry of the environment. A horizon-
based planner accounted for the system’s uncertainty during
mission execution and generated collision-free exploration
paths. However, the environment here was unknown and static,
whereas the valve hall geometry is known and faults within the
racks can cause a fluctuation of the electromagnetic fields.

In [2], a robot transverses substations with the use of a
rail system and collects IR and visible images, positioning,
time and component description and transmits this, as well
as energy, to a control centre with the use of the rails.
This mitigates faults caused by intermediate electromagnetic
interference between the robot and the control centre. Also,
magnetic references on the rails negate the need for markings
implemented onto the substation infrastructure. Also, the use
of the commercial voltage for Brazil facilitates installation
in other locations. However, the rail-based robot requires the
installation of an extensive rail system in existing substations
to operate [2]. The system proposed within this paper provides
a retro-fit solution that could potentially accomplish the same
task.

B. Vision-Based Odometry Techniques
The dark nature of the valve hall restricts the perception

within the visible spectrum. However, a Near-Infrared (NIR)
camera will be fitted to the drone for fault detection purposes
and also a LED spotlight can provide limited ambient lighting
in the immediate vicinity.

In general, though visual odometry is useful for local posi-
tion control and stability, these methods often suffer from long-
term drifts and are not suitable for building large-scale maps
[8]. RGB-D cameras provide both a colour image and per-
pixel depth estimates and are prominent within mobile robotic
platforms due to their richness of the data collected coupled
with their reducing cost. In [8], a system for the navigation
of a micro-air vehicle within a cluttered, GPS-denied indoor
environments with the use of an on-board RGB-D camera
and an Inertial Measurement Unit (IMU) was developed. This
system periodically corrected for the drift present within the
local state estimation based upon visual odometry with results
from the RGB-D mapping algorithm [9]. However, this system
was unsuitable for real-time situations as the loop closing and
SLAM algorithms were not sufficiently fast to be run on an
on-board processor.

The use of Quick Response codes within absolute local-
isation methods for indoor mobile robots is widespread due
to their large data storage capabilities, small size, low cost
and simple implementation. A possible issue with their use is
that the recognition rate is reduced if the QR code is small
within the camera’s field of view or the robot moves too
fast. Considering this application in real-time, the processing
resources are sufficiently low to enable use of the QR codes,
as it was found within [10], that the time taken to calculate
the relative position of the robot was between 20 to 30 ms.

Within [10], an industrial camera was mounted onto a
mobile ground robot pointing upwards in order to identify
QR codes mounted to the ceiling. Meanwhile, a laser range-
finder was used for object detection as well as the construction
of a 2D map with the use of a Rao-Blackwellized particle
filter. The Dijkstra algorithm, as well as the Dyanmic Window
Approach were used to implement both local and global path

planning capabilities [10]. However, this system is not usable
in situations where the QR codes were occluded from the
camera’s field of view due to sheltering obstacles or ambient
light. Odometry data was used to compensate for the drift
occurring within the short time interval travelling between the
QR codes, whereby the error accumulation was mitigated with
the use of additional sensor inputs [10].

In [11], a tailored extended H∞ filter (EHF) was imple-
mented. This filter fused both odometry and gyroscope data
with pose estimates based upon QR code landmarks. However,
this method is more computationally expensive compared to an
EKF, taking longer to converge on an accurate estimate [11],
which is paramount when instructing real-time control as in
this scenario.

III. SYSTEM ARCHITECTURE

Within this section, the architecture of the navigational
system as depicted in Figure 1 is discussed.

Figure 1. Software Architecture for the Proposed Navigational System.

A. Mobile Robotic Platform
The quadcopter utilised for the proof-of-concept system is

the Hector quadrotor Robot Operating System (ROS) package
[12] due to its pre-existing and well-documented integration
with the Gazebo simulator. The visual geometry was written
within COLLADA format and the collision geometry was
modelled as a STL mesh. A low polygon count reduced the
demand from rendering the model, allowing simulations to be
ran at a higher percentage of real-time. The propellers were
represented by actuator discs to facilitate the maintenance of
boundary conditions [12]. The hector quadrotor is depicted
below in Figure 2.

Figure 2. The Hector quadrotor rendered within the Gazebo simulator.
Image taken from [12].

The CAD model of an offshore substation, as shown in Fig-
ure 3, with the correct clearances as the real-time environment
was constructed and used to collate results.
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Figure 3. CAD model of the HVDC valve hall

B. 2D SLAM Algorithm
Low-cost laser range-finders are prevalent in autonomous

robot applications due to their low price and ability to trace
terrains and structures in the contiguous area, while consuming
relatively little power [13].

In the proposed system, two Hokuyo utm-30lx LiDARs
were mounted perpendicularly to each other. It was assumed
that the z-axis was out-of-plane relative to the ground plane
and the x-axis was pointing in the forward direction of the
quadcopter. The horizontal, planar LiDAR was used within the
2D SLAM algorithm to construct a map of the surroundings.

A ROS node, Hector Mapping [14], was selected as the 2D
SLAM algorithm, of which the only requirement was a high
frequency laser scanner, such as the Hokuyo utm-30lx LiDAR
in this scenario.

C. Floor Extraction
For height estimation and greater spatial understanding, a

secondary LiDAR was mounted, perpendicular to the primary
LiDAR, onto the underside of Hector quadrotor. The vertical
LiDAR produced a 2D vertical laser scan of the environment.
A split-and-merge algorithm [15] was then implemented to
differentiate the walls and floor using the relative angle of
the incident laser endpoints. The roll and pitch recorded by
the EKF was processed and the calculated relative angles
of the identified line segments were rotated to avoid falsely
recognising the walls as the floor during operation.

A laser pointing vertically downwards was also considered
as the method of height estimation, however this is a less
robust method than the aforementioned secondary LiDAR.
This is because if the quadrotor turned near the boundaries
of the space, the singular laser point could potentially rotate
to be incidental on walls or substation racks. This could be
mitigated with the use of fusion with the orientation from
the IMU device to account for the laser rotation. However,
IMU data suffers from drift and so a secondary LiDAR was
used in the implementation to provide more information of the
transformation of the laser scan points relative to the quadrotor.

D. QR Codes as Global Landmarks
Vision-based odometry is generally computationally inten-

sive and also suffers from robustness under varying lighting
conditions [11]. However, in this scenario there is an absence
of visible light and so ambient light levels are constant. Also,
vision-based odometry was implemented with the view to

periodically correct for drift in the 2D SLAM algorithm pose
estimations.

A FLIR One Near-Infrared (NIR) camera of a spectral
range between 8 - 14 µm will be utilised to enable simultane-
ous QR code detection and faults within the infrared spectrum.
An infrared LED emitting light between 750 - 950 nm will be
mounted on top of the camera, illuminating the proximal field
of view. However, for the purposes of this simulation, a generic
camera is created within a virtual world lit by ambient lighting
to ensure an accurate estimation of the nominal accuracy of
the vision-based odometry.

The QR codes were generated with the use of the open-
source library, arUco markers. These were then placed on
the racks within the virtual substation environment at regular
intervals. The ROS package, fiducial SLAM [16], was used to
both identify the unique identifier of the QR code as well as
produce a 6 DoF pose estimation of the drone using the known
global poses of the QR codes.

The QR codes could potentially be used in two capacities
during drone operation. Correct identification of a unique QR
code indicates the drone is within the correct general vicinity
of the rack. These could form the basis of a command interface
to set the goal destination that determines the generated path.
The unique identifiers of visible QR codes in the camera field
of view are shown in Figure 3.

Figure 4. The virtual UAV inspecting a substation rack. Inset is the
camera field of view.

Alternatively, the pose of the visible QR marker in a known
location can be processed to output a 6 DoF pose estimation
of the drone that could have been later fused with the other
sensor measurements within the EKF. However, this was found
to produce erroneous estimations of 6 DoF pose, as discussed
later.

IV. SENSOR FUSION
Sensor fusion was necessary within this system to identify

the optimal estimate of the UAVs pose. Considering the sensor
measurements modelled in this section, (xs, ys, zs, φs, θs,Ψs)
was produced from the 2D SLAM performed using the planar
LiDAR, z from the height measurement using the perpendicu-
lar LiDAR and, finally, (x, y, z, φ, θ,Ψ) was produced from the
vision-based odometry system based upon QR codes visible to
the on-board camera.

First, the orientation measurements must be converted from
a quarternion in the local frame to Euler angles that are
relative to the global frame. A function available within the
ROS python library tf was used for this conversion. For the
purposes of this system, the starting pose of the spawned robot
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was assumed to be the global frame in terms of the way-
point commands that were converted into command velocities.
However, this coordinate frame was mapped onto the 2D
occupancy grid constructed to utilise the A* path planning
algorithm.

The measurements were taken at different unsynchronised
rates. To accompany this, each sensor measurement was sam-
pled with each new IMU measurement at a rate of 100 Hz. In
this way, a sufficient sample rate was ensured.

Kalman filters are algorithms for the estimation of dynamic
state variables by combining state predictions with measure-
ments. For discrete systems, the future values of the state
variables can be predicted using Kalman filters.

The EKF can overcome the linearity assumption of the
Kalman Filter that both the motion model and sensor model are
linear Gaussian [13]. Within this system, an extended Kalman
filter was implemented, where the non-linearity is introduced
with the continuously-variable rotation relative to the global
frame.

For time-invariant systems, the function f computed the
predicted state from the previous estimate, and the h function
computed the output. The variables, wk and vk, represented
the process and observation white noises, respectively, i. e.

xk+1 = f(xk, uk) + wk (1)
zk = h(xk) + vk (2)

The white noises wk and vk were assumed to be zero mean
and covariances Qk and Rk, respectively.

For the purposes of this Kalman filter, all variables were
within the global frame. The values used for initialisation of
the Kalman filter were the coordinates of spawning the robot
model.

In the case of the Hector quadcopter, the state variables
were updated with the use of inertial measurements from
the IMU unit. The state vector, X , comprised of these state
variables:

X = [x y z ẋ ẏ ż φ θ Ψ]
T (3)

where x, y, z were the positions on the X, Y, and Z axes and
φ was the roll, θ, the pitch and Ψ, the yaw of the quadrotor.

The global displacement, s, in each of the X, Y and
Z axes was modelled using dead reckoning with the initial
displacement, s0, the rotation matrix that transforms between
the body frame to the inertial frame, R, the initial velocity at
the start of the time interval v0, IMU acceleration within the
IMU frame of reference, a, the gravitational constant, g, and
the length of the time interval, t.

With some abuse of notation, this relationship was encap-
sulated in the dynamic matrix, f , that described how the state
evolves to the next time step, as below:

f =


s0 + ṡ4T + 1

2R(a− g)4T 2

v̇0 +4T
(
R(a− g)

)
α0 +4TΘ

 , (4)

where Θ was the mapping of the angular velocities in the body
frame (p, q, r) to the changes in the Euler angles within the
inertial frame [17], e.g.

Θ =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ

 . (5)

The measurement function, h, was given by

h = [x y z φ θ Ψ]
T
. (6)

The linearisation of (1) provided the state transition matrix,
Fk, by computing the Jacobian of the dynamic matrix f with
respect to the state vector. Similarly, the observation matrix
Hk was also be defined as the Jacobian of the measurement
matrix, h with respect to the state vector.

The control inputs into the system were assumed to be the
linear accelerations and the angular velocities as measured by
the IMU, i.e.

u =
[
ẍ ÿ z̈ φ̇ θ̇ Ψ̇

]T
(7)

The time update of the EKF algorithm was given by

x̂k|k−1 = f(xk−1, uk−1), (8)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk. (9)

The measurement update steps were then computed to
adjust the Kalman gain, Kk and to update the estimate with
the actual measurement, zk, and to update the error covariance,
Pk|k. The measurement residual, ỹ as well as the covariance
residual, Sk were also calculated.

ỹk = zk − h(x̂k|k−1) (10)

Sk = HkPk|k−1H
T
k +Rk (11)

Kk = Pk|k−1H
T
k S
−1
k (12)

x̂k|k = x̂k|k−1 +Kkỹk (13)
Pk|k = (I −KkHk)Pk|k−1 (14)

This method was less computationally expensive in com-
parison to other methods, such as the H∞ filter (EHF) [11].
One of the drawbacks of an extended Kalman filter is that it is
not an optimal estimator. Moreover, if the initial state vector is
wrong, the filter will quickly diverge due to its linearisation. As
a result, the EKF requires extensive tuning of these parameters.

V. PATH PLANNING ALGORITHM

The final pose estimation from the EKF was fed into an A*
path planning module [18]. The robot radius was considered
greater than the nominal dimensions, ensuring clearances from
the high electromagnetic fields present within the substation
racks were maintained.

Prior to this, a 2D occupancy grid of the substation plan
was constructed using the known dimensions of the CAD
model. In terms of command way-points, height correction was
performed first to adjust the drone to the specified goal height
because of the largely constant geometry of the environment
within the vertical plane. Then, an A* path planning algorithm
was then used to generate the path shown in Figure 5 within
the substation.
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Figure 5. A 2D occupancy grid and path generated by the A* star
algorithm

TABLE I. ERROR IN EKF OUTPUT

Global Axis Distance Travelled (m) Maximum Error (m) Maximum Error (%)

x 39 0.65 1.67
y 5.5 0.3 5.45
z 5 0.015 0.3

This produced the optimal trajectory consisting of 0.5 m
increments between the start position and goal position. After
this, alterations to the orientation of the drone were made to
enable 360 degree inspection.

VI. RESULTS

To ascertain a baseline and compute the errors of the
constituent algorithms, the standard deviations of each of the
measurements were calculated. These standard deviations were
then used as a baseline for tuning of the Q and R matrices
within the EKF.

The pose estimation generated from the EKF during the
mapped trajectory in Figure 5 was used to gauge the viability
of the proposed navigational system. The IMU measurements,
as well as the hector mapping 2D pose and extracted floor
height were fused by the EKF. The 3D position of the UAV is
compared to the ground truth within Figure 6. The error present
within the EKF output is tabulated in Table I. An error of
1.67% in the x-axis throughout the course of a twenty-minute
mission is tolerable. However, an error of 5.45% in the y-axis
is unsatisfactory and further tuning of the EKF is required to
alleviate this. The height estimation algorithm was found to
produce the least error, with a 0.3% throughout the length of
the mission. The average battery life of a UAV is between ten
to fifteen minutes, depending on payload and so these figures
represent a probable overestimation of the drift present within
the EKF.

The camera stream was also recorded, whereby visible QR
codes unique identifiers were overlaid, as seen in Figure 4. The
6 DoF pose estimation from the visible QR codes was also
collated to evaluate whether this data should be incorporated
into the EKF. However, as can be seen by Figure 7, these pose
estimations are extremely erratic and will not contribute to the
overall stability of the EKF upon fusion.

The inaccurate 6 DoF pose estimation produced from the
fiducial slam could potentially be due to the 2D nature of
the QR codes hindering precise depth perception. It also may
be due to the monocular nature of the camera.

Figure 6. EKF pose estimation

Considering Figure 7, ultimately direct pose estimation
from fiducial slam was not implemented within the EKF.
However, the unique identifiers displayed within the camera
stream could potentially facilitate inspection of substation
racks by providing a visual verification of the current vicinity
of the UAV.

Figure 7. EKF pose estimation with the fiducial slam results

In summary, these set of results suggest that this framework
could potentially be adapted for implementation into a real-
world system.

VII. CONCLUSION

In conclusion, the proposed, proof-of-concept, navigational
system paves the way for UAV navigation within dark, GPS-
denied environments. This was acheived with the fusion of
IMU data with processed LiDAR measurements. Possible
mechanisms of correction via vision-based odometry upon
the identification of QR codes within the environment were
explored and it was concluded that though the QR codes
provide visual cues of the drones current position they fail to
act as reference points to generate an accurate 6 DoF pose. This
system provides a retro-fit solution for the remote inspection
of substations, merely requiring the careful placement of QR
codes within the environment.

Future work includes the implementation of this naviga-
tional system onto a drone within an indoor, confined and
dark environment. The computation and sensing required for
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local position control will be performed on-board the vehicle,
reducing the dependence on unreliable wireless links [8]. The
path planning capabilities will also be expanded to account for
the presence of electromagnetic fields with the implementation
of a modified potential fields algorithm. Moreover, this system
could potentially pave the way for the use of thermal imaging
to identify faults within the substation infrastructure. This is
advantageous in comparision to existing methods because it
involves non-contact precision temperature measurements and
non-destructive testing [5].
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ABSTRACT - This paper reports on the early stages of the 

development of a methodology to analyse and test autonomous 

systems in hazardous environments, with the aim of verifying 

both the safe decision-making and resulting actions of the 

system. The ultimate goal is to generate safety case evidence that 

a designer can provide to a regulator to show that the system to 

be used will likely operate safely. 

Keywords – UAV; Hazardous Environments; Verification; 

Simulation. 

I. INTRODUCTION 

There is currently a drive in the UK toward using 

autonomous systems, and robotic systems in particular, in 

extreme or hazardous environments [1]. This paper is 

concerned with the Verification and Validation (V&V) of 

autonomous systems operating in hazardous (specifically 

offshore) environments.  

Autonomous systems are systems which decide for 

themselves what to do [2]. Typically, these decisions are 

made using computer systems, which control the system in 

question and perform operations that might otherwise be 

performed by a person. For example, an autonomous 

Unmanned Aerial Vehicle (UAV) will need to contain a 

number of computer systems that can replace a human pilot 

operating the UAV using remote control [3].  

In this paper, an autonomous system means the following: 

A system that is given a goal and restrictions and 

fulfils this goal by planning, making decisions and 

carrying out actions without direct human 

interaction 

Robotic systems are good for tasks in hazardous 

environments. Typically, robotic systems are used for Dull, 

Dirty and/or Dangerous missions, commonly known as the 

“three D’s”. Recently however, the need to use robots within 

Demanding, Distant and Distributed missions has also been 

established. Offshore environments, such as oil platforms and 

wind farms, are prime examples of these latter “three D’s”.  

In all environments, but in particular for hazardous 

environments, autonomous systems must operate safely and 

be safe to operate. What is more, this must be demonstrable. 

Part of the process to demonstrate this safety case means that 

the decisions being made, by the system, the reasons why 

they have been made and the actions that result from these 

decisions need to be verified for all possible operating 

conditions. Furthermore, if a system fails, knowledge 

regarding why it fails is required. Thus, the question asked in 

this paper is as follows: 

How can an autonomous UAV be analysed to 

determine the conditions under which it fails and to 

indicate why it failed? 

This paper uses an example scenario of an UAV 

inspecting an offshore asset to demonstrate the development 

of tools and techniques that will be used to verify its safe 

operation. 

The paper is organised as follows. Section II establishes 

the challenges of offshore environments for autonomous 

systems; how V&V can be used to ensure safety; how a 

system needs to be constructed to be verified; how the V&V 

outputs can be used to build certification evidence; and how 

the methodology presented contributes to this. Section III 

presents the methodology to analyse the UAV and provide 

explainable failures and Section IV shows the results of its 

application and interpretation. Finally, conclusions are drawn 

and future work is detailed in Section V. 

II. BACKGROUND 

A. Offshore Operations  

For the purposes of this paper, ‘the offshore environment’ 

means the environment around energy generation assets, such 

as oil rigs and wind turbines. 

UAV operations, e.g., remote inspections around oil rigs 

and wind turbines, pose many engineering challenges. A 

potentially significant source of operational difficulty for 

such tasks will be when flying in the disturbed/turbulent air 

flow near such structures, as shown in Figure 1. Such 

turbulent flow structures make flying in and around the 

offshore assets dangerous if the vehicle does not possess 

sufficient control authority to maintain its desired position, 

leading to a potential collision with the asset or its associated 

personnel.  

A similar situation exists for ship-borne naval aviation 

operations. Helicopters are often operated from landing decks 

located at the ship’s stern. The ship’s motion and wind 
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conditions create an area of disturbed air flow in the landing 

area. To determine whether a particular ship and helicopter 

combination is capable of landing/taking off from the ship 

under a given wind condition, flight trials are conducted to 

form a Ship Helicopter Operating Limit (SHOL) [4]. 

Previous work has investigated the replacement of part of the 

physical testing required to generate a SHOL with piloted 

simulations [4]. The method presented in this paper takes a 

similar simulation-based approach for autonomous UAV 

system missions.  

The scenario considered in this paper is an inspection task 

for a UAV on an oil rig leg. This is a sufficiently complex 

task to allow the methodology to be rigorously tested. It will 

be applied to other, more diverse scenarios at a later date. 

B. V&V of Autonomous Systems 

Autonomous systems present a significant challenge for 

V&V. Many non-autonomous systems are designed to use a 

human operator who has overall responsibility for the safe 

and reliable operation of the system. Autonomous systems, 

on the other hand, cannot assume the presence of the 

responsible human, and therefore must manage safe and 

reliable operations themselves [5]. 

 
Figure 1. A typical offshore UAV operating environment. 

 

V&V for autonomous systems uses many well-

established techniques, as well as some that have been 

developed with autonomous systems in mind [5]. At the same 

time, experimentation within controlled environments is a 

mainstay of engineering best-practice, and is also used for 

autonomous systems. However, due to the significant 

challenges and added complexity of autonomous systems, 

experimentation can be expensive and dangerous. Therefore, 

high-fidelity simulation is often used as a separate V&V 

technique [6]. High-fidelity simulation involves 

incorporating accurate physical models of a system within a 

realistic synthetic environment. Trials within high-fidelity 

simulation provide a safer and potentially cheaper means to 

test than physical experiments. Of course, this comes at the 

cost of needing to understand the limitations of the models 

being used. The models of the system and the environment 

used within simulation must themselves be verified and 

validated [7]. 

 

 
 
Figure 2. System Architecture of an Autonomous UAV with the separation 

of the component using layers which then indicates the verification method 
to be applied to each 

 

A V&V technique commonly used for autonomous 

systems is formal verification, an application of Formal 

Methods [8]. Formal verification works by building abstract 

mathematical models of the system in question, and then 

exhaustively analysing the models using software to 

determine whether or not particular requirements hold. 

Formal verification is particularly useful for finite state 

systems, and has therefore found a natural application in the 

verification and validation of autonomous software.  

There are, of course, many other V&V techniques not 

listed above, including hardware-in-loop testing [9], real-

world operations and end-user validation [10], that are also 

used for V&V of autonomous systems. 

C. Systems Architecture for V&V 

To be able to apply V&V to a whole system, it needs to 

be constructed in a certain way. This is mostly due to the 

models used to describe a sub-system. In Figure 2, the 

systems architecture of an autonomous system that is to fly 

UAVs around oil rigs is shown. There are two important 

features in this architecture: the layers and the intra-layer 

separation of subsystems.  

The layering is to group sub-systems, similar in 

construction rather than role or output. The calculation layer 

can be thought of as any task that reasons about the world in 

a non-abstract way, such as a route or mission planner. The 

decision layer is for those systems that make decisions based 

on information provided by the interaction and calculation 

layers. The interaction layer is the-low level autonomous 

tasks that translates plans and decisions into actions. The 

environment layer is the actual hardware that physically 

carries out the desired actions. 

On the right of Figure 2, the verification methods are 

aligned with the components that they are best suited to 

testing. Formal methods are well suited to analysing and 

verifying decision making, but the abstraction required to 

apply them to planners or continuous controllers makes them 

less so for these elements. Simulation-based testing allows 
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many permutations of the systems goals, initial conditions 

and even internal parameters, to be tested; thus allowing the 

actions of the systems to be rigorously tested. The physical 

testing of the system then checks the results of the formal 

methods and simulations against reality and will determine 

the validity of the abstractions and assumptions required to 

build them. 

In short, with the system constructed in such a way, the 

following questions can be answered: 

Formal Methods - Has the safe decision been made? 

Simulation Based Testing - Did it result in safe actions? 

Physical Testing - How well do these answers match 

reality? 

D. Evidence for Safe Operations 

For an autonomous system to be used in a real-world 

environment, its safe operation needs to be agreed with the 

regulator. In the UK, there is no standard method for 

assessing whether or not autonomous UAV operations are 

safe. Each request for operation is reviewed on a case-by-case 

basis using a submitted safety case/risk assessment for the 

planned operation. 

V&V techniques can be used to generate evidence to 

prove that a system will operate safely and reliably. This 

paper proposes that formal methods and simulation based 

stress testing can be included to add strength to the safety 

case.  

For the scenario considered in this paper, the operating 

envelope of the system, when being used in certain conditions 

is the addition to the safety case. An example of this is shown 

in Figure 3. This example is intentionally similar to that of a 

SHOL. The aim of simulation-based verification is to 

generate this operating envelope.  The dotted lines represent 

the boundary between safe and unsafe operations.  

As an example, for a UAV doing inspections of the legs 

of an oil rig, there will exist a set of wind speeds and 

directions under which the UAV is no longer able to operate. 

The operator of the UAV, oil rig and regulators will need to 

know the safe wind speed and direction operating envelope 

before any task can proceed. 

 
Figure 3. Illustration of the safety case evidence aimed for when using the 

methodology. 

In addition, for this situation the variables that affect the 

safe operation of the UAV are not restricted to just the wind 

speed and direction. They could include, but are not limited 

to, the following: 

• Initial position and goal 

• Geometry of environment 

• UAV performance capability  

• Actuator/sensor performance/degradation 

• Other environmental conditions e.g. ambient light, 

sea state etc. 

This means that the real operating envelope will be a 

multi-dimensional surface. 

It is important to note here that such a surface can not only 

be used as safety-case evidence, but also as a run-time safety 

monitor. The analogy is that the boundary is the equivalent of 

the prior experience of the human pilot, where they intuitively 

know what actions and decisions are a good idea or not. This 

can then be used, while the system is in operation, to inform 

the autonomous system of when it is feasible to carry out a 

plan or not; or as a monitor to tell the system that, as the 

environment changes,  planned actions or current states (such 

as where it is) are no longer safe. 

E. Understanding the System’s Failure 

If a system is tested under one set of conditions and is 

found to successfully complete the task assigned to it safely, 

this is good. If under slightly different conditions, the system 

fails to complete it safely, this is also good. This now informs 

both the user and the system itself, when it should and should 

not carry out particular actions. This is the essence of the 

operating envelope shown in Figure 3. However, this does not 

inform the user, or regulator, why the system failed. 

It is far more useful to be able to say under what 

conditions a system can or cannot work and to also to be able 

to say why. This both directs any effort to redesign or 

improve the system, as the designer now knows which system 

to focus on; and it provides the regulator with a more concrete 

answer as to why it behaves in the way it does.  

As an example, suppose there are measures of failure for 

an actuator, controller, guidance, and navigation of a UAV 

(more on this in Section III). After a simulation of a task, at a 

number of wind speeds and directions, these failure measures 

are then applied to the response, a possible result could be as 

shown in Figure 4 (a). Outside of this boundary, the system 

failed its task, while inside it succeeded. The aggregate of 

these failure results in Figure 4 (b).    

This boundary is now the operating envelope of the 

system. However, by splitting the failure of the system into 

separate components, the colours shown can be added. This 

then indicates that the actuator, at least in this example, was 

the most likely cause of the system to fail its task.  

III. METHODS 

This section describes the cost functions and 

methodology used to apply V&V ideas to an autonomous 

systems.  
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A. Cost functions for each component 

Four continuous autonomy components are considered. 

The responsibility of each component, what its job is, 

determines the definition of the cost function. The 

responsibilities of each component are as follows: 

Actuator: To create the required output while leaving a 

margin of error as a contingency. 

Controller: To force the current states to follow the 

commanded states as closely as possible, while 

maintaining system stability. 

Guidance: To cause the system to follow the desired 

path to within a desired separation distance. 

Navigation: To generate a path between the start and 

goal, while avoiding collisions with objects. 

The cost function defining the actuator’s performance is 

shown in (1) and illustrated in Figure 5. 

 𝐴𝑓 =
1

𝑛𝑎
∑

1

𝑡𝑚
∫

√(𝐴𝑖 − .5)2

. 5 − 𝑀𝑎𝑟
𝑑𝑡

𝑡𝑚

0

𝑖=𝑛𝑎

1

 (1) 

Where 𝑛𝑎 is the number of actuators, 𝑡𝑚 is the maximum 

simulation time, 𝐴𝑖 the actuator output at time 𝑡, 𝑀𝑎𝑟 the 

specified margin of error, and 𝑑𝑡 the time step of the 

simulation. 

Here, the zero point for the actuator is 50%. The function 

is, in essence, a time average of the deviation from the neutral 

point normalised by the margin of error. The performance of 

all the actuators is averaged over time and over the number 

of actuators.  

This function aims to create a single measure for all the 

actuators over the time period of operation between 0 and 1. 

The cost function gives a gradual increase in the failure. If an 

actuator reaches either 100% or 0%, this results in the failure 

of the system being set to 1. This can be considered a critical 

failure, as would a collision, since the system would very 

likely become unsafe.  

The controller’s performance is defined in (2) and shown 

in Figure 6.  

 𝐶𝑓 =
1

𝑛𝑠
∑

1

𝑡𝑚
∫

√(𝑅𝑖 − 𝑢𝑖)
2

𝐷𝑖𝑓𝑖
𝑑𝑡

𝑡𝑚

0

𝑖=𝑛𝑠

𝑖=0

 (2) 

Where 𝑛𝑠 is the number of controlled states, 𝑅𝑖 is the 

command reference, 𝑢𝑖 the measured state of the system, and 

𝐷𝑖𝑓𝑖  the specified max difference between the actual and 

reference values. 

It is essentially the same as the cost function used in 

Linear Quadratic Regulator controllers. The difference 

between the reference and controlled state is normalised by a 

desired maximum distance. It is then averaged over both time 

and the number of controlled states. A discontinuity exists 

when the system becomes unstable.  

The guidance performance is defined by both in (3) and 

Figure 7. 

 𝐺𝑓 =
1

𝑡𝑚
∫

√(𝛿𝑥 + 𝛿𝑦 + 𝛿𝑧)
2

𝐷𝑖𝑣
𝑑𝑡

𝑡𝑚

0

 (3) 

Where 𝛿𝑥, 𝛿𝑦, and 𝛿𝑧 are the orthogonal difference 

between the actual position and the desired path and 𝐷𝑖𝑣 is 

the specified maximum deviation from the path. 

It is the length of the vector perpendicular to the nearest 

point on the desired path from the system’s current location. 

It is then normalised by the desired maximum deviation from 

the path. A discontinuity does not explicitly exist with this 

function, however the discontinuities are handled by the 

mission manager’s performance, see Criteria Analysis 

section later. 

The navigation’s performance is defined by (4) and by 

Figure 8.  

 𝑁𝑓 =
1

𝑡𝑚
∫

𝑃𝑟𝑜𝑥

𝑃

𝑡𝑚

0

𝑑𝑡 (4) 

Where 𝑃𝑛 is the planned proximity at the point on the path 

perpendicular to the current position, 𝑃 the proximity to the 

nearest object, and 𝑃𝑟𝑜𝑥 is the specified maximum proximity 

to an object.  

Figure 4. Illustration of how the subsystems can be combined and therefore allow the explanation of why a system failed to operate safely
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Figure 5. Definition of cost function for the analysis of the actuator’s 

performance 

 
Figure 6. Definition of cost function for the analysis of the controller's 

performance 

 
Figure 7. Definition of the cost function for the analysis of the guidance 

performance 

 
 
Figure 8. Definition of the cost function for the analysis of the navigation 

performance 

B. Simulation Environment 

A simple simulation environment of a helicopter moving 

around the legs of an oil rig is used to generate the data 

required to test the above cost functions, see Figure 9.  

It consists of a series of linearized state space flight 

dynamics models identified from a non-linear simulation 

model. The models are then scheduled based on the forward 

flight speed of the UAV, to account for the changing 

dynamics.  

To control the helicopter a PI controller [11] is gain 

scheduled and a waypoint following with cross tracking error 

is used as the guidance method [12]. A simple A* route 

finding algorithms is used for the navigation [13], where a 

simple hazard model is used to allow the planner to plan a 

route around the wakes of the oil rig legs. 

A sample data set is taken from the simulation 

environment and presented in the next section. The cost 

functions are then applied to the output of the simulator. 

 

Figure 9. Systems diagram for the simulator 

IV. RESULTS 

When testing and analysing an autonomous system’s 

performance, a designer may be presented with the output 

shown in Figure 10 to Figure 12. From this the designer 

would be able to determine whether the UAV was able to 

carry out the task assigned to it. In this case, simply move 

from bottom left to the right of the top right leg. 

However, some of the routes come very close to the legs, 

to the point where a collision is very likely. This is also for 

only a single set of conditions, but can only be interpreted 

visually. If the conditions change, will the UAV be able to 

still carry out the task? How does this compare to other UAVs 

or settings/weightings within the autonomous components of 

the UAV? 

A closer inspection of the least risky plan’s response of 

the UAV can be seen in Figure 13, Figure 14, and Figure 15. 

From this, it can be determined that the control input is not 

exceeded, the body velocities follow the reference values and 

the UAV follows the desired path reasonably well. However, 

again this does not allow an easy comparison to other UAVs 

or settings. The interpretation is also abstract and not 

quantified. 

Further detail can be determined from Figure 16 and 

Figure 17, where how well the UAV followed the planned 

path and how well the plan enabled the UAV to avoid 

collisions with its surroundings is shown. The actuator cost 

function can be applied to the results in Figure 13, the 

controller function to Figure 14, the guidance function to 

Figure 16 and the navigation function to Figure 17. 

42Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

                            54 / 92



 

 
Figure 10. Balance between a route's total distance and the risk associated 

with it 

 
Figure 11. Planned routes for a range of risk weightings 

 
Figure 12. Plan view of the response of the UAV as the guidance, 

controller and model tries to follow the planned route 

 

This allows a simple metric to be applied to the UAV’s 

response, reducing the interpretation of the performance 

down to a single number, thus allowing easier comparisons 

and optimisations of the UAV’s settings to be made. 

Figure 18 to Figure 21 show the cost functions of the 

UAV response for a range of different performance 

specifications.  

Figure 18 shows that, as the specification is made more 

demanding, the cost increases, as would be expected. It also 

illustrates the control that is closest to failure, in this case the 

collective.   

Figure 19 shows the performance of the flight controller. 

It can be seen that the u and v velocities are by far the most 

difficult for the controller to follow; also that unless very 

strict limits on the deviation of the actual from the command 

reference values are imposed, the performance is good. A 

similar story can be seen in Figure 20, where only very small 

allowed deviations from the desired direction will result in 

the system’s failure. 

Figure 20 shows that, on average, the guidance system 

allows the UAV to follow the desired path well. Only when 

the allowable deviation from the desired path is below 4 ft 

will the system fail. Therefore, showing that the guidance is 

able to perform correctly, unless under tight restrictions. 

The navigation performance is shown in Figure 21, where 

the performance decreases as the closest allowable proximity 

of the UAV to an object is increased. It can be seen that only 

small allowable proximities result in the system being safe. 

Taking Figure 18 to Figure 21 together, it can be seen that 

the actuators and controller are performing well, even under 

tight requirements. Guidance performs well, but the 

navigation component is the likely cause of the systems to be 

unable to carry out its assigned task. This is in contrast to the 

interpretation of Figure 10 to Figure 12, where such 

conclusions are harder to draw, as the performance of the 

system is not quantified. 

 
Figure 13. Control inputs for the UAV 

 

 
Figure 14. Body velocities (u,v,w)/heading (psi) and controller reference 

velocities (uR, vR, wR, psiR) 
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Figure 15. UAV (x, y, z) and reference (xref, yref, zref) positions 

 

 
Figure 16. Plan view of the UAVs response when following the least risky 

planned route. Solid line = planned route. Dashed line = path taken 

 

 
Figure 17. Actual and planned proximity to the nearest object at a point in 

time in the UAV's response 

 

 
Figure 18. Performance metric for the actuator when applied to the UAV's 

response for a range of specifications 

 

 
Figure 19. Controller performance for the body velocities for a range of 

specifications 

 

 
Figure 20. Controller performance for the direction command reference 
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Figure 21. Navigation performance for a range of specified proximity 

specifications 

V. CONCLUSION AND FUTURE WORK 

A. Conclusion 

A method for the analysis of the continuous autonomous 

components of a system has been reported. Results from a 

scenario where a UAV moves around an oil rig’s legs have 

been presented. 

The need to certify an autonomous systems operating in 

hazardous environments by V&V methods was discussed and 

the need to separate the failure of subsystems outlined. 

It was found that by applying the presented methodology, 

the performance of the system can be quantified; also, that 

the component that is likely to cause the system to fail can be 

found, and therefore focused on by the system’s designer. 

Thus, the first stages of a method to analyse a system to 

determine when a system fails and why was successfully 

demonstrated. 

B. Future Work 

Having a quantifiable metric of a systems performance 

allows two follow up pieces of work. First, it allows the 

generation of operating envelopes, which can then be used by 

a systems user or by the system itself as safety run time errors. 

Second, it allows the performance of the system to be 

optimised by wrapping the simulation and analyse method in 

an optimiser, where the bias, weightings and settings of the 

system are the independent variables and the outputs of the 

presented cost functions can be used to form a cost function 

of an optimiser. 

To achieve both of these, a third and final follow up task 

is required, where an algorithm to search all the variables that 

can influence the system’s performance is needed. The 

algorithm will be required to move through both continuous 

and discrete parameter space. A hybrid evolutionary/genetic 

algorithm or a modified Particle Swarm Optimisation method 

is a likely solution to meet this requirement. 
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Abstract—In this paper, an approach is proposed for designing
autonomous systems featuring machine learning and neural
networks for cybersecurity threat detection. It is proposed that
neural models are trained on monitoring data obtained from
cloud environments that service enterprise applications.
Cybersecurity is a hot topic and a broad field of science that
spreads over activities, such as protecting infrastructure,
computers and servers, industrial and telecommunications
equipment, applications and data. All modern networks are
capable of substantial throughput due to enormous volumes of
generated traffic. A design is proposed for autonomous threat
detection systems, which is based on combining traditional and
deep neural networks for cloud monitoring data analysis and
an algorithm for combining classifier results. The proposed
autonomous system design delivers promising results that are
comparable to existing approaches and can become useful in
enterprise cloud applications.

Keywords-cybersecurity; autonomous threat detection; deep
learning.

I. INTRODUCTION

Research in the field of cybersecurity has been ongoing
for decades. With the continual increase of data volumes,
protecting computer and telecommunication systems has
become a primary concern. There are several approaches
which are currently in use: traffic analysis, content analysis,
application and user behavior analysis.

There exist a number of layers with common groups of
threats, existing protection capabilities and Information and
Communication Technology (ICT) resources that are under
constant attack nowadays. The most popular applications
based on traffic analysis [1] can be grouped into the fields of:
network intrusion detection, botnet detection and malware
detection. Over the recent years, approaches emerged based
on machine learning algorithms for each of these fields.
Some of the Intrusion Detection and Protection Systems
(IDPS) are trained to recognize abnormalities in traffic, e.g.,
in peer-to-peer applications. There are Intrusion Detection
Systems (IDS) for protecting against Distributed Denial-Of-
Service (DDoS) attacks. There are e-mail protection services,
which are able to detect harmful applications that steal
information; mobile malware applications are also
widespread [2]. Malware application behaviours are
analyzed and detectors are trained to classify an application
or part of it as harmful [2]. Another type of threat is the
botnet: many compromised devices or hosts, infected with

malware and connected to the Internet, that are controlled
and manipulated by botmasters [3]. Botnets are mainly used
for sending spam emails, DDoS attacks, identity thefts or just
making use of the victim's computational resources for
purposes of, e.g., tunnelling, proxying or even
cryptocurrency mining.

There are several modern proposals that have appeared
on the usage of advanced techniques for intrusion detection
[4]. The authors propose a cybersecurity framework based on
two-stage Markov model for early prediction of malicious
edge devices as well as legitimate edge devices in fog
computing.

In [5], focus has been given to the recent rise of security
incidents affecting critical infrastructure, such as power grids
and water suppliers. The German cybersecurity office -
Bundesamt für Sicherheit in der Informationstechnik (BSI) -
reported that not all of the incidents were due to hacking.
Another recent publication [6] shows flaws and
vulnerabilities in an entire European country. The author
shows how vulnerability scanning can be organized by a
single person and justifies the importance of cybersecurity
threat detection software.

This paper is organized as follows: in Section 2, an
overview is given on existing techniques for cyberthreat
detection based on network traffic analysis. In Section 3, the
proposed approach for design of autonomous threat detection
techniques is described. Section 4 describes the technique for
combining classifier results. The paper’s conclusion is in
Section 5.

II. THREAT DETECTION TECHNIQUES BASED ON

NETWORK TRAFFIC ANALYSIS

A. Intrusion Detection Systems (IDS) and Intrusion
Prevention (IPS) Systems

Both IDS and IPS are entitled to try and recognize
malicious traffic from normal traffic. There are Host-Based
Intrusion Detection Systems (HIDS) and Network Intrusion
Detection systems (NIDS) [7]. To achieve this goal, both
IDS and IPS rely on network traffic analysis. Most of the
existing systems rely on rule-based classification to detect
the nature of the attacks; the malicious traffic is often
concealed within botnet, DDoS attack traffic or spam traffic.
It can be expected that the accuracy of such systems is
relatively low [8], due to the limits of their operation modes:
signature based and anomaly-based [7]. Signature based
threat detection uses a set of predetermined rules that are
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available from the community or vendors. These rules
contain signature patterns of threats similar to antivirus
software. The anomaly based detection function is to detect
abnormalities in the current network traffic or states of
services in logs.

The big manufacturers of network equipment offer
bundles of IDS/IPS systems, which claim high accuracy and
machine learning capabilities. It is worth exploring some of
the open source available systems.

 OSSEC [9] stands for Open Source Security. It is
an open source host intrusion detection system
owned by Trend Micro, one of the leading names
in IT security.

 SNORT [10] is an open source intrusion prevention
system capable of real-time traffic analysis and
packet logging.

 Suricata [11] is a free and open source, mature, fast
and robust network threat detection engine. The
Suricata engine is capable of Real Time Intrusion
Detection (RTID), Inline Intrusion Prevention (IIP),
Network Security Monitoring (NSM) and offline
pcap processing.

 Zeek [12] (ex. Bro) is a powerful network analysis
framework that consists of event engine and policy
scripts.

 The Samhain [13] Host-based Intrusion Detection
System (HIDS) provides file integrity checking and
log file monitoring/analysis, as well as rootkit
detection, port monitoring, detection of rogue Set
User ID (SUID) executables, and hidden processes.

 Fail2ban [14] scans log files (e.g.
/var/log/apache/error_log) and bans IPs that show
the malicious signs – too many password failures,
seeking for exploits, etc.

 Security Onion [15] is a free and open source Linux
distribution for intrusion detection, enterprise
security monitoring, and log management. It
includes Elasticsearch, Logstash, Kibana, Snort,
Suricata, Bro, Wazuh, Sguil, Squert, CyberChef,
NetworkMiner, and many other security tools.

B. Malware analysis

Malware detection has been a field of interest for
computer virologists for a long time. In order to address the
automated classification of malware based on behavioral 
analysis, the researchers usually need a virtual machine
where they can start and analyze the malware behaviour in
all of it aspects , such as function calls [2].

According [8], there is a growing number of malware
threats worldwide and also the level of technological
sophistication of malicious software is increasing mainly due
to the popularity of smartphones. This is what makes
malware analysis an important task in cybersecurity.
Malware detection systems which detect malicious traffic are
usually able to classify threads in the following categories:
unclassified (0-day), misc-attack, Trojan-activity, not-
suspicious, and misc-activity.

Among the most wide-spread malwares on the Internet as
of November 2018 according to [16], the following are
listed: Coinhive; Cryptoloot; Andromeda; Roughted;
Dorkbot; Jsecoin; Emotet; Conficker; XMRig and Nivdort.

Among the mobile devices, [16] reports the following
threats: Triada; Hiddad and Lokibot. The three most
exploited Common Vulnerability Exposures (CVE) are
reported as:

 Microsoft IIS WebDAV ScStoragePathFromUrl
Buffer Overflow (CVE-2017-7269) - 48% of
organizations have dealt with this threat;

 OpenSSL TLS DTLS Heartbeat Information
Disclosure (CVE-2014-0160; CVE-2014-0346) –
An attacker can leverage this vulnerability to
disclose memory contents of a connected client or
serve that had global impact of 44%.

 OpenSSL tls_get_message_body Function
init_msg Structure Use After Free (CVE-2016-
6309) – A remote, unauthenticated attacker could
exploit this vulnerability by sending a crafted
message to the vulnerable server. Successful
exploitation allows the attacker to execute arbitrary
code on the system impacting 42% of
organizations.

C. Botnet detection

Compromised devices in botnets provide attackers with
means to send spams, launch DDoS attacks, run brute-force
password cracking, steal private information, and hide the
origin of cyber attacks [3][17]. Malware network traffic can
spread rapidly through various platforms and this is what
makes botnet detection an important part in cybersecurity.
According to the structure of botnets, two categories exist:
Peer-to-Peer (P2P) and centralized botnet [8]. In a P2P
botnet, the botmaster can control each bot with distributed
commands sent from peers; whereas in a centralized botnet,
the centralized Command & Control (C&C) architecture is
formed with protocols like Internet Relay-Chat (IRC) and
HTTP.

Network traffic analysis serves for detection of the
botnets. The typical approach to detect compromised hosts
on the network and filter botnet traffic is to maintain a
blacklist of openly available C&C domains. The efficiency is
poor because the blacklist has to be updated manually. There
are botmasters who often use unchanged P2P-based C&C
structures with pseudo random domain generation algorithms
to evade the detection by blacklisting and to increase the
reliability of the botnet. That is, the bots search for working
C&C servers by periodically generating a set of pseudo-
random domain names and resolving the generated domain
names to IP addresses through DNS queries [18]. Therefore,
these botnets can still survive even after some C&C servers
are detected and blocked.

Machine Learning (ML) techniques are vital for the
statistical based traffic classification [19]. The traffic can be
processed by supervised learning, also known as
classification, or by unsupervised learning, also known as
clustering [20][21]. The disadvantage of the ML approaches

47Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

                            59 / 92



for network traffic analysis comes mainly from the lack of
online (or as some authors refer to it: real-time) detection
capabilities [22]. There are many prerequisites for the
successful application of supervised learning [23] with – the
most important of which is the annotation of the dataset. This
is what makes the unsupervised clustering ML techniques,
rule-based and anomaly-based approaches preferable in these
scenarios.

III. AUTONOMOUS SYSTEMS FOR CYBERSECURITY

THREAT DETECTION BASED ON DEEP LEARNING

TECHNIQUES

The main idea of this work is to present a linear
autonomous system for prepossessing of incoming traffic.
The proposed system has the capability for file content
analysis and is targeted towards cloud applications, which
serve multimedia (Figure 1). The incoming traffic is
analyzed in an IDS; cyberthreats are blocked based on rules,
anomaly detection and correlation analysis.

Figure 1. Workflow of the proposed protection cybersecurity protection
system for cloud applications.

In the experiments, Suricata was used as well as a
Surricata module based on the Google TensorFlow
framework for Deep Learning [24]. The IDS filtered traffic
was then subjected to content analysis where the traffic is
decoded in a proxy server and the incoming text, video and
images were analyzed with deep neural network classifiers
(Figure 2) [25].

Figure 2. Classifier for network traffic analysis

With the appearance of large quantities of unstructured
(or partially structured data) – the so called Big Data – and
the improvement of computing power, deep learning has

become extremely popular both for research and commercial
purposes. ML algorithms are highly dependent on the choice
of features. There are described cases with Bayesian
classifiers where feature selection can greatly improve
classification accuracy [25]. Deep learning techniques solve
some of these challenges by automatically combining low-
order features of the input, transforming and arranging them
in order to calculate high-order features. In such scenario, it
is not needed to add a manual step to eliminate for
calculation of higher-order features of the training set. To an
extent, the deep neural network structure is similar to the
multi-layer neural network which includes input layer,
hidden layer and output layer (Figure 3).

Figure 3. Multi-layer neural network general structure

The network parameters are initialized with random
values, and the neuron weights are updated using the Back
Propagation (BP) algorithm. In the standard neural network
schema (Figure 2), the input for the of the j-th neuron from
the output layer is calculated as follows:

o
j
= ∑

h= 1

q

v
hj

h
h
 

where vhj is the weight of the connection of the hidden

neuron h to the output neuron j and hh is the output from the
h-th hidden neuron. For the input of the h-th hidden neuron,
the following is calculated:

σ
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= ∑

i= 1

q

w
ih

x
i
 
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where whj is the weight of the connection of the input

neuron i to the hidden neuron h and
xi is the i-th input. For

the k-th training sample
(x

k
, y

k
)

, the output of the neural

network is
ŷk= ( ŷ1

k , ŷ2

k ,... , ŷt

k)
. With another representation

known as offset term
ϵ j , it is given as

^
yt

k=f (o j− ϵ j)
.

The aim of the back-propagation training algorithm is to
minimize the mean square error of the network on the k-th
training sample. It is used for automatic update of the
weights of the neural network. The regular multi-layer neural
network carries the pitfalls of the disappearing gradient.
With the increase in the number of layers, the number of
weight parameters correspondingly grows, leading to a more
complex model which can overfit [25]. Deep learning
introduced the ReLU activation function, a new weight
initialization method, a new loss function and new anti-
fitting method (Dropout, regularization) to solve the
traditional multi-layer perceptron disadvantages in terms of
network structure and training capabilities.

IV. COMBINATION OF CLASSIFIER RESULTS

The classifier combination in the proposed approach
depends on the modality of the cyberthreat in each classifier.
The final score is given through:

 Cout= argmax(Ci ) 


where Cout is the final class label and Ci is the output from
the i-th classifier. The final score represents the most certain
classifier [26] out of several classifiers which use different
modalities and learning algorithms.

V. EXPERIMENTAL RESULTS

The Pytbull framework was used [27] to test the rules in
Suricata. The accuracy of the detection with the most current
rule sets was about 85%. The test setup included 4 virtual
machines in private cloud infrastructure at the University of
Telecommunications and Post, Sofia, Bulgaria.

A neural classifier was created using datasets obtained
from [28][29] and modeled a neural network in the Weka
[30] tool. The model delivered the highest accuracy of about
83% with 115 inputs four hidden neuron layers and 11
output neurons. The used dataset was derived from [23]
containing 10 types of data with 249 attributes. Some of the
classes contain fewer training samples and it was observed
that other researches have excluded them from their training
set.

Content analysis in terms of Spam detection was realized
with a Convolutional Neural Network (CNN) trained in the
Weka tool. The model was tested on the dataset [31] and the
achieved accuracy in two classes was about 70%. Image
classification was based on previous work [26] on human
emotion analysis and is intended to be used on image data

uploaded to a transparent proxy on the system. The achieved
classification accuracy in 5 classes is about 73%.

VI. CONCLUSION AND FUTURE WORK

In this paper, an approach was presented based on deep
neural networks for design of autonomous cybersecurity
threat detection systems in cloud applications. The proposed
system uses 4 neural classifiers for network traffic, spam
comments, spam email and images. The achieved results are
comparable with contemporary approaches. The achieved
accuracy for the individual components is comparable to
other authors. The next steps will include expanding this
framework and adopting it at the University of
Telecommunications and Post, Sofia, Bulgaria.
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Abstract—The aim of this study is to present a new approach for
Transfer Learning in collective games. This framework is a set
of methods for transferring accumulated knowledge. In this way,
autonomous agents share their knowledge in order to achieve
better performance. The main hypothesis in the study is that the
group of agents who exchange knowledge performs better than
the same group without Transfer Knowledge, under the same
conditions.
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I. INTRODUCTION

The subject of the study is the transfer of knowledge in
training and decision-making for autonomous agents. In this
study, we look at the environment as collective sequential
games. Our goal is to clarify whether Markov Decision Process
(MDP) solving methods can be applied to collective games
with partially observable goals and partially dynamic environ-
ments.

In addition, we raise the question of how effective transfer
of knowledge in training and decision-making by autonomous
agents in collective games is.

Exploring these issues is important for the development of
training with support in general, and in particular for the trans-
fer of knowledge between agents in partially observable and
dynamic environments. Knowledge transfer can significantly
speed up training and decision-making by autonomous agents.
Such research can be found in machine learning, the video
game industry, and robotics.

In this study, we build upon a recent method for knowl-
edge transfer, which formulates the sequencing problem as
a Markov Decision Process. Recently, various representations
that make such knowledge transfer possible for multiple agents
in different domains have been explored [1]. In addition, some
generalisation of curriculum MDP model have been proposed
[2] to handle different kinds of transfer learning algorithms.
Another approach formulates the design of a curriculum as a
Markov Decision Process, which directly models the accumu-
lation of knowledge as an agent interacts with tasks to produce
an agent-specific curriculum [2] such that overall performance
or learning speed is improved [3].

There are several studies that introduce methods to generate
a curriculum based on task descriptors [4], or by data-driven
automated similarity measures [5]. Other methods combine
feature-based control in a non-rewarding discrete environment,
and imitation learning applied to an ambiguous and uncon-
strained third party agent [6].

Some recent studies have been performed in regard of
creating frameworks for selecting source tasks in the absence
of a known model or target task samples based on meta-data
[7] or guided by policy sketches. [8]

In our study, we make an effort to allow the application
of already developed and tested methods and algorithms to
solve MDP in fields such as multi-agent systems and collective
games. TL can also accelerate the learning process in various
areas of machine learning, the video game and robotics indus-
tries. Given certain limitations, it is possible to use solutions
that have already been tested, which may lead to a reduction
in time of developing new applications.

The main hypothesis of this study is that, subject to certain
limitations, it is possible to use classical MDP solving methods
for partially observable and dynamic environments. It is also
possible to apply knowledge transfer to groups of autonomous
agents. Such a transfer leads to acceleration of training and
decision-making in collective games.

The article is organised as follows: In Section 2, we briefly
look at the theory underlying the proposed solutions, and then
we describe the theoretical limitations of our approach and
the respective implementation. In Section 3, we experimentally
examine the applicability and effectiveness of our approach. In
the last part, we describe our findings.

II. METHODS AND MATERIALS
A. Theory

1) Sequential games: We consider sequential games, which
are n-player non-zero sum games played on finite trees. Each
node of the tree is controlled by either of the players, and the
game is played by moving a token along the branches of the
tree, from the root node, up to the leaves, which are libelled
by a payoff. We also associate a preference relation with each
player that indicates how he ranks the payoffs. Let us now
formalise the basic notions about these games. The definitions
and notations of this section are inspired from [9].

Definition 1. A sequential or extensive form game G is a
tuple (N ;A;H;O; d; p; (≺i) where:

N is a non-empty finite set of players;
A is a non-empty finite set of actions;
H is a finite set of finite sequences of A which is prefix-

closed. That is, the empty sequence ε is a member of H; and
h = a1, ..., ak ∈ H implies that hl = a1, ..., al ∈ H for
all l < k. Each member of His called a node. A node h =
a1, ..., ak ∈ H is terminal if ∀a ∈ A, a1, ..., ak, a /∈ H . The
set of terminal nodes is denoted by Z.

O is the non-empty set of outcomes, d : H \ Z → N
associates a player with each non-terminal node;
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p : Z → O associates an outcome with each terminal node;
For all i ∈ N :≺i is a binary relation over O, modelling

the preferences of player i.
From now on, we fix a sequential game G =

(N,A,H,O, d, p, (≺i)i∈N ).
Then, we let Hi = (h ∈ H \ Z | d(h) = i) be the set of

nodes belonging to player i. A strategy si : Hi → A of player
i is a function associating an action with all nodes belonging
to player i, s.t. for all

h ∈ Hi : hsi(h) ∈ H , i.e., si(h) is a legal action from
h. Then, a tuple s = (si) ∈ N associating one strategy with
each player is called a strategy profile. For all strategy profiles
s, we denote by (s) the outcome of s, which is the outcome
of the terminal node obtained when all players play according
to s. Single-agent Reinforcement Learning (RL) concepts are
given first, followed by their extension to the multi-agent case.

2) Markov Decision Process: We formulate the transfer
learning problem in sequential decision making domains using
the following framework of Markov Decision Process. We use
the following definition of MDP as a 5-tuple

< S,A, P,R, γ > (1)

where the set of states, set of actions, transition function
and reward function are described. And

P : S ×A→ Π(S) (2)

is a transition function that maps the probability of moving to
a new state given an action and the current state,

R : S ×A→ R (3)

is a reward function. that gives the immediate reward of taking
an action in a state.

And
γ ∈ [0, 1] (4)

is the discount factor. The gradient formula can be written
as [10]. So the MDP of the agent is described in (1), where s
is the set of states, a is the set of actions, p is the transition
function and r is a reward function. The transition function p
maps the the probability of moving to a new state given an
action and the current states and is shown in (2). The reward
functions r that gives the immediate reward of taking an action
is described in (3). The discount factor γ is bounded as is
shown in 4.

Multi-agent Markov games can be defined by N agents
with a set of global or local observations O1, ..., ON , a set
of actions A1, ..., AN , a set of states S and a state transition
function

T : S ×A1 ×A2 × ...×AN → S (5)

which determines the Markov process. For each agent i,
it interacts with the environment by taking actions following
its policy πQi

: Ai → [0, 1] transformed into the next state
and gets a reward ri : S × Ai → R to judge the policy’s
performance. Each agent tries to maximise the accumulated
discount return

R =
∑

t = 0T γtrt (6)

and T is the expect time horizon and γ is the discount
parameter. In this paper, only local observations are available
for all games.

3) Reinforcement Learning: To solve sequential decision-
making problems, the agent should learn about the optimal
value of each action, defined as the expected amount of future
rewards when taking this action and following the optimal
policy afterwards. Under a given policy π , the true value of
an action a in a state s is

Qπ(s; a) = E[R1 + γR2 + . . . |S0 = s;A0 = a; ] (7)

where r ∈ [0; 1] is a discount factor which trades off the
importance of immediate and later rewards. The optimal value
is then Qπ∗(s; a) = maxQ(s; a) . An optimal policy can be
easily learned from the optimal values by selecting in every
state the highest valued action.

4) Q-Learning: The optimal action values can be derived
through Q-learning [11] [12], a form of time learning. The real
problems are too large to learn all the action values in all states
separately. Instead, we can learn a parametric value Q(s; a; qt).
In this way, Q-learning values update the parameters after
taking action At at St and observe the immediate reward Rt+1

so that the resulting state St+1 is then

qt+1 = qt + α(Y Qt −Q(St;At; qt))∇qtQ(St;At; qt) (8)

where q is a scalar value and the target Y Qt is defined as

Y Qt = Rt+1 + γmax
a

Q(St+1; a; qt) (9)

In order to update the current value Q(St;At; qt) towards
a target value Y Qt the agent applies stochastic gradient descent
approach.

5) Deep Q Networks: Deep Q networks (DQN) are multi-
layered neural networks. These networks, for a given state s,
output a vector of action values Qtheta(s; a; q), where θ are
the parameters of the network. If an action space contains m
actions and state space is a n-dimensional vector, the neural
network maps Rn to Rm. In addition, in Deep Q Network there
is target network [13], with parameters θ−. This additional
network is the same as the original network except that its
parameters are copied every τ steps from the online network,
so that θ−t = t, and are not changed on all other steps. So, the
target used by DQN is then

Y DQNt = Rt+1 + γmax
a

Q(St+1; a; θt) (10)

6) Double Q-learning: To prevent overoptimistic value
estimation, we can decouple the selection from the evaluation.
This is the idea behind Double Q-learning [14]. In the original
Double Q-learning algorithm, two value functions are learned
by assigning each experience randomly to update one of the
two value functions, such that there are two sets of weights,
and 0. For each update, one set of weights is used to determine
the greedy policy and the other to determine its value. For
a clear comparison, we can first untangle the selection and
evaluation in Q-learning and rewrite its target 10 as

Y Qt = Rt+1 + γQ(St+1,maxaQ(St+1; a; qt); qt) (11)

The Double Q-learning error can then be written as

Y DoubleQt = Rt+1 + γQ(St+1,maxaQ(St+1; a; qt); qt) (12)
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7) Autonomous agents: the autonomous agent in our ap-
proach has the following main features: - Autonomy -
Reactivity - Proactivity - Communicativeness It is impor-
tant to emphasise that our agents are autonomous not only
during decision-making but also during training. This means
that agents are able to learn and adapt to changes in the
environment without the need for external training.

B. Implementation
To enable the MDP agent to work in Partially Observed

Markov Decision Process (POMDP), its learning algorithm and
decision-making algorithm must be expanded. The drawback
of this approach is that already trained agents and knowledge
gained in the MDP training process can not be reused.

The environment for partially observable dynamic collec-
tive games in the MDP environment is important due to two
reasons: to be able to apply methods and algorithms devel-
oped for classic MDP cases of partially observable dynamic
collective games; and it allows to transfer knowledge between
agents trained in MDP and POMDP.

In this study, we describe the agent environment as MDP.
We are driven by the desire to present the various properties
of the autonomous agent so that the agent is compatible with
the MDP constraints. Moreover, we strive for a generalised
approach to the training of our autonomous agents.

By expanding agents’ space, we present POMDP as MDP.
Such representation is only possible if the following limitations
are met: Partial environmental observability can be eliminated
through communication between agents; dynamic changes in
the environment are reflected by expanding the transition
function.

Our goal is not to expand the environmental model. In
addition, environments represented by POMDP can describe
significantly complex systems of interactions with those de-
scribed with classic MDP. Thus, by expanding the agent’s
state space by adding global states of the medium, the agent
is compatible with the classical MDP environments.

But the extension of the MDP notation leads to some
drawbacks: such as the need to modify learning algorithms s
that the incompatibility of policies resulting from such training
has made the transfer of knowledge between MDP trained
agents enriched by such trainees POMDP environments. In the
case of sequential collective games, describing the environment
as partially observable does not necessarily have to be achieved
by introducing POMDP. The agents themselves are able to
change the environment, but by clearly announcing the changes
in the environment, the agents through communication are able
to bypass the limit of partial observability.

The imposition of restrictions and the expansion of the state
space takes place in two stages:

a set pair < sagent, senv > is created. The so-called pair
is used for a generalised representation of agent states in a
partially observed collective game environment. By imposing
these limitations, we allow the use of MDP solving methods
to be applied in the field of collective games with a dynamic
environment.

We start with expansion of the state space, where state
space is:

S = {si}, i = 1, ..N (13)

so we expand space of agent sagent with the space of the
environment senva: so we form a tuple:

si =< sagent, senv > (14)

where sagent as a result of agent’s actions and senv as a
result of environment changes.

However, to incorporate in natural manner the changes in
environment we also have to expand the transition function:

< s′agent, s
′
env >= T (si) = T (sagent, senv) (15)

so that the agents state is defined as follow:

s′agent = Pr[sagent(t+ 1) = s′agent(t) = s, at = a] (16)

and the environment changes reflect in environment state:

s′env = Te[senv(t+ 1) = s′env(t) = s, at = a] (17)

Thus, by expanding the state space and the transition
function we map the constrained unobservables and dynamic
of the environment into combined state space and extended
transition function.

Each agent may have an individual transition function, so
different agents can interact in a team, but the degree of knowl-
edge transfer depends on how different the transition function
differs between agents. So, to achieve full portability of the
methods, as well as knowledge transfer between individual
agents the function of the transition of the environment is have
to be the same for all agents.

III. EXPERIMENTS AND RESULTS
We gather evidence to support the hypothesis that we will

speed up the learning process for knowledge transfer. It per-
forms the following experiments: for a given map several com-
binations of autonomous agents should be generated. These
agents should be grouped in three main parts: competitive,
cooperative and neutral.

The map is described by its size n×n and the complexity
factor Rc. The map generates random k treasure chests with
treasure. The treasure value is 100. Additionally, k traps are
generated. These pits can not be set right beside the treasures.
If an agent gets into a pit, a -100 prize is generated. As a
result of the complexity factor Rc, obstacles are generated. If
an agent hits an obstacle, he returns to the starting position. The
obstruction generation algorithm does not allow the creation
of a closed area. We only issue instances when the number
of agents is equal to the number of treasures. A game ends
when the agent finds the treasure and takes it, falls in a trap
or makes more than n2 moves. For each move, except the last
agency, agent get a small negative reward (for example -1).

Once the agent starts to learn it use a Reinforcement
Learning approach. As a base algorithm, we use SARSA. For
one agent, we have one pit and one treasure. Solving this
problem is trivial.

If we put one agent in map with one treasure then agent
quickly learns how to get the treasure. A problem arises when
there are two agents and two treasures. Once the first agent
reaches his treasure and takes it then in the map will remain
an ”empty” chest. The second agent, if closer to a treasure
already taken, will try to take it, but the chest is now empty.
So the second agent will go down to a local minimum and end
the game with negative reward.

If the agency is a cooperative then when the first agent
gets its treasure it reports to others that treasure is already
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Figure 1. We compare cooperative and competitive strategies in simple
one-goal map. In this map there are only one trap and relatively small

amount of obstacles.

taken. There are several ways to address this issue, so we
need to expand the MDP model. In order to stay in place, the
agent should initially ”change” the environment so that the
”changed” environment is in consistency with a policy that
will lead to the treasure.

We compare three approaches:

• Non-cooperative game with non-cooperative learning:
where the first one has reached treasure ends the game
with a 100 prize, and the next may fall to the local
minimum.

• Cooperative Game with Deliberative Cooperative
Learning: A binary vector for treasure is generated
at the coordinator. In practice, the number of states in
which there is a permanent effect on all possible trea-
sure states is increased. If only the positive reward of
the training process are combined against a sufficiently
high level.

Figure 2. We compare competitive, cooperative and deliberative strategies in
complex multi-goal map. In this map there are plenty of traps and relatively

big amount of obstacles.

As can be seen in Figure 1, if we have only one prize,
then cooperative behaviour has no advantage over competitive
behaviour. In Figure 2 one can see that with the growing
number of agents in the team, the use of the deliberate
approach is better than the rest of the algorithms.

IV. CONCLUSION
A new approach is proposed to transfer knowledge among

agents in collective games.The approach suggested in this
article allows knowledge from pre-trained agent for pre-defined
environments to be used. Our approach allows to speed up
the training of agents. Instead of random values initialisation
of utility or quality function, we can take such values from
an already trained agent. By expanding the state space and
transition function in MDP classes, we allow, subject to certain
limitations, that MDP solving methods be applied to partially
observable and partially dynamic environments. In addition, it
is possible to transfer knowledge into collective applications.

From the results of our research it follows that in the
case of only one treasure, complex cooperative interaction has
no advantages over competitive approaches. In other words,
the use of deliberative techniques in simple systems is over-
engineering. And only with the increasing complexity of the
choice between individual goals, the cooperative behaviour
demonstrates the advantages of the deliberative approach.
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Abstract—In this study, we will consider the construction of the
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I. INTRODUCTION
Reinforcement Learning (RL) is a scientific area where

the main topics is agent training without supervision. Thus,
an agent is an autonomous subject who learns and makes
decisions independently. Such an agent, through interactions
with the environment, finds the optimal policy for consistent
decision making [1]–[3].

Deep learning prevails in the areas of studying natural
language, recognising objects in the pictures of classification
in multidimensional cases. Q-nets, AlphaGo, asynchronous
methods and many others are examples of successful Deep
Learning applications [4]–[8]. Deep learning leads to great
benefits in areas of big data and data science. However, there
are cases in which employing greedy optimisation for a reward
can lead to sticking to a local minimum or suffer of slow
converging [9].

Evolutionary Strategies (ES) are an approach that helps to
find global minimums. A comprehensive overview of different
ES techniques in the field of machine learning is given in [10].
Several studies have been done so far [11] [12], however most
of them consider the ES as an alternative to RL.

In our study, we combine ES as they were described in [10]
and Deep Q-Networks [4]–[6] in Reinforcement Learning to
explore the applicability and effectiveness of the agent learning
in the field of Sequential Games. At the moment, many specific
methods of gradient descent have been proposed, but they all
assume that the gradient behaves well: there are no cliffs where
it increases abruptly, or a plateau where it vanishes. The first
problem can be dealt with using the gradient clipping, but the
second is more challenging.

The main objective of this study is to compare the perfor-
mance of classical optimisation methods and ES as well as to
verify how these algorithms affect learning speed. Thus, the
hypothesis in this study is to compare the behaviour of gradient
optimisation algorithms and algorithms for ES.

This paper is organised as follows: in Section 2, we
briefly describe some basic theories of learning in the field of
reinforcement, Deep Learning, and ES. In addition, we present
the implementation of our approach. In Section 3 of our article,
we describe the experiments and collect evidence to support
our hypothesis. We conclude the work in Section 4.

II. METHODS AND MATERIALS

A. Theory
1) Autonomous Agent Behaviour: Information about past

and current states of the agent and environment allows agents
to evaluate their own progress. In reinforcement training, an
agent builds up policies based on progress. The policy deter-
mines the reaction of the agent to the state of the environment.
Through RL, the agent builds such policies that will achieve
the goal with the maximum benefit for the agent.

So, if we describe the states of the agent and environment
as a time series, then the task of making efficient plans will
be significantly aided if the agent could forecast the future
with desirable accuracy. An n-tipple (vector) is a result of one
cycle of the work of the agent. It consists of the parameters
of the behaviour of the agent: b(b1, b2, . . . , bn). The data from
environment are collected and transformed into time series in
the knowledge base of the agent.

2) Markov Decision Process: We formulate the transfer
learning problem in sequential decision making domains using
the following framework of Markov Decision Process. We use
the following definition of Markov Decision Process (MDP)
as a 5-tuple

< S,A, P,R, γ > (1)

where the set of states, set of actions, transition function
and reward function are described. P : S × A → Π(S) is a
transition function that maps the probability of moving to a
new state given an action and the current state,

R : S ×A→ R (2)

is a reward function that gives the immediate reward of taking
an action in a given state. γ ∈ [0, 1) is the discount factor. The
MDP of the agent is described in (1), where S is the set of
states, A is the set of actions, P is transition function and R
is a reward function.
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3) Reinforcement Learning: To solve sequential decision-
making problems, the agent should learn about the optimal
value of each action, defined as the expected amount of future
rewards when taking this action and following the optimal
policy afterwards. Under a given policy π , the true value of
an action a in a state s is

Qπ(s; a) = E[R1 + γR2 + . . . |S0 = s;A0 = a; ] (3)

where r ∈ [0; 1] is a discount factor which trades off the
importance of immediate and later rewards. The optimal value
is then Qπ∗(s; a) = maxQ(s; a) . An optimal policy can be
easily learned from the optimal values by selecting in every
state the highest valued action.

4) Q-Learning: The optimal action values can be derived
through Q-learning [13] [14], a form of time learning. The
real problems are too large to learn all the values of action
in all states separately. Instead, we can learn a parametric
value Q(s; a; qt). In this way, Q-learning values update the
parameters after taking action At at St and observe the
immediate reward Rt+1 so that the resulting state St+1 is then

qt+1 = qt + α(Y Qt −Q(St;At; qt))∇qtQ(St;At; qt) (4)

where q is a scalar value and the target Y Qt is defined as

Y Qt = Rt+1 + γmax
a

Q(St+1; a; qt) (5)

Updating the current value Q(St;At; qt) towards a target
value Y Qt the agent applies stochastic gradient descent ap-
proach.

5) Deep Q Networks: Deep Q Networks (DQN) are multi-
layered neural networks.These networks for a given state s
outputs not a single action but a vector of action values
Q(s; a; q), where θ are the parameters of the network. If an
action space containing m actions and state space is a n-
dimensional vector, the neural network maps Rn to Rm. In
addition in Deep Q Networks, there are target network [5],
with parameters θ−. This additional network is the same as the
original network except that its parameters are copied every τ
steps from the online network, so that then θ−t = t, and are
not changed on all other steps. So, the target used by DQN is
then

Y DQNt = Rt+1 + γmax
a

Q(St+1; a; θt) (6)

6) Double Q-learning: The max operator in standard Q-
learning and DQN, in 4 and 6, uses the same values both to
select and to evaluate an action. To prevent this overoptimistic
value estimation we can decouple the selection from the
evaluation. This is the idea behind Double Q-learning [15]. In
the original Double Q-learning algorithm, two value functions
are learned by assigning each experience randomly to update
one of the two value functions, such that there are two sets of
weights, and 0. For each update, one set of weights is used
to determine the greedy policy and the other to determine
its value. For a clear comparison, we can first untangle the
selection and evaluation in Q-learning and rewrite its target as

Y Qt = Rt+1 + γQ(St+1,maxaQ(St+1; a; qt); qt) (7)

The Double Q-learning error can then be written as

Y DoubleQt = Rt+1 + γQ(St+1,maxaQ(St+1; a; qt); qt) (8)

7) Evolution Strategies: If the action values contain ran-
dom errors uniformly distributed in an interval [−ε, epsilon]
then each target is overestimated up to γεm−1

m+1 , where m is the
number of actions [16]. This could leads to local optima. So,
we need a new approach for achieving the exploration strategy
that will lead us to a global optima. Such kind of algorithms
are ES.

ES are a class of black box optimisation algorithms inspired
by natural evolution [17]. At every iteration (generation),
a population of parameter vectors (genomes) is perturbed
(mutated) and, optionally, recombined (merged) via crossover.
The reward (fitness) of each resultant offspring is then eval-
uated according to some objective function. Some form of
selection then ensures that individuals with higher reward tend
to produce the individuals in the next generation, and the cycle
repeats.

Recent work from OpenAI outlines a version of NES
applied to standard RL benchmark problems [11]. We will
refer to this variant simply as ES going forward. In their
work, a fitness function f() represents the stochastic reward
experienced over a full episode of agent interaction, where θ
is the parameters of a policy π.

∇φEθ∼φ[f(θ)] =
1

n

n∑
i=1

f(θit)∇φ log pφ(θit) (9)

where n is the number of samples estimated per genera-
tion. The sample parameters in the neighbourhood of t and
determines the direction in which t must move to improve
the expected reward. Instead of the baseline, the ES relies on
a large number of samples n to reduce the variance of the
gradient estimate. To avoid bias in the optimisation process
due to large scale of reward between domains, we follow the
approach of [11] and rank-normalise f(θit) before taking the
weighted sum.

B. Implementation
The idea is quite simple. With a standard gradient descent,

at each step we look at the inclination of the surface on
which we are located and move in the direction of the greatest
gradient. In ES, we fire a nearby neighbourhood with points
where we can supposedly move, and move in the direction
where most points with the greatest height difference fall (and
the farther the point, the more weight is attached to it).

In the case of a piecewise-step function, the resulting
estimate will represent the gradient of the smoothed function
without having to calculate the specific values of this function
at each point. Also in the case when the loss function depends
on the discrete parameters, it can be shown that the estimate
remains valid, since in the proof one can interchange the order
of taking the expectation. Which is often not possible for
ordinary Stochastic Gradient Descent (SGD).

EεεE(θ + ε) = EεεExE(θ + ε, x) = ExEεεE(θ + ε, x) (10)

The greater the sigma distribution, the less the local
structure of the function manifests itself. When the sampling
algorithm is too large, the optimisation algorithm does not
show narrow minima and hollows, from which one can go
from one good state to another. If it is too small, the gradient
descent may not start if the initialisation point was chosen
unsuccessfully.
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Sampling makes noise in the gradient calculation, which
makes learning more sustainable. Just like dropout in learning
neural networks in the usual way. ES does not depend on
frame-skip with RL. Also ES allow learning more easily
than regular SGD, when a large amount of time can pass
between an action in RL and a positive response, and in noisy
conditions, when it is not clear which change helped improve
the result. What are the disadvantages? The computation per
episode is slower than in SGD. And the final results are
not significantly better. Noise in gradients - even with one-
dimensional optimisation, are slightly unstable.

The RL algorithm can query the environment by sending
it the suggested policy π. The model then selects a random
variable e, independent of the past, and generates a vector from
the system in accordance with the policy π and randomness
e.And then the model returns to the our algorithm a sequence
of states, actions, and rewards (s, a, r), which represent a
vector generated from the system in accordance with the policy
π. In this scheme, one request is called an episode. The purpose
of the RL algorithms is to approximate the solution of problem
by making as few calls as possible to the medium.

III. EXPERIMENTS AND RESULTS

For the purposes of our research, we do the following : we
look at a stochastic single player game that strives to maximise
its winnings. The game is a 2d map in which the player must
reach a certain goal by avoiding certain traps. The reward in
the target is 100 and the reward in the trap is -100. For each
idling, the player receives a -5. The game has a stochastic
policy because the probability of going to the next scheduled
state is 0.9 and with probability 0.025 the agent will either
end up in one of the neighbours to the current state or will
remain in the current state. In this way, an odometric error or
a real agent monitoring error is modelled. If the agent made
a transition to an obstacle or out of the map, we see this as a
”collision”. Upon collision, the agent returns, returning to the
current state and receiving a -10 reward. The agent performs
one episode until it reaches a terminal state or by making a
number of steps larger than the size of the environment.

Maps are rated by many parameters as: size, size of hurdles,
trap to size ratios, and reward ratios to size. The latter is always
inversely proportional to the size of the map. We are looking
at a couple of specially made maps:
• map with minimal obstacles and traps. This map is a

virtually ideal playing field. The likelihood of collision
or the agent becoming trapped is minimal. Depending
on the ratio of the reward to the size, the agent is
favourably trained in small-sized maps.

• map with a significant number of obstacles and traps.
In this case, we have an obstacle to size ratio of 0.2
and trap ratios to the size of 0.2. On this map, the
total return is less than the first. However, obstacles
and traps are selected so that there are no conditions
for occurrence of local minima.

• map with a significant number of obstacles and traps
designed to generate a local minimum. This map
has the same ratio of obstacles and traps as in the
previous case, but here the goal is surrounded by traps
and obstacles. We have done this arbitrarily in order
to check how our policy optimisation methods will
behave in such a situation.

We create a model of the RL problem in a way similar to
the one in [18]. This model allows us to get an estimate of
the information our agent can extract from the environment.
The training agent generates policy and applies it to the
environment. In fact, the agent uses this policy for an episode.
In addition, the agent generates a random magnitude that
I apply to policy parameters. This magnitude is different
and independent for each step. In this way, the environment
generates a vector with the responses to the proposed policy
for each step.

Figure 1. We study the performance of the algorithms in simple map.

Figure 2. We study the impact of higher number of obstacles and traps.

This vector has the form < s, a, r > where c is the current
state, and the action a r is the reward. This vector is recorded
for each episode. The optimisation method should change the
policy parameters depending on what reward is awarded at
each episode step. Through this model, we get the opportunity
to generate queries to the environment and get vectors with all
of the agent’s trajectories for each episode.

From a practical point of view, the agent strives to obtain a
policy whereby the overall return is maximum. Creating a stop
criterion is not a trivial task especially if we have a stochastic
pattern of behaviour. Fluctuations in rewards as a result of
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unfavourable coincidence of random events lead to a significant
volatility of the overall return. However, in our research we
are are primarily interested in the comparative characteristics
of the two policy optimisation approaches. Therefore, we will
ignore the convergence criterion and set a final number of
epochs as a measure of completing the training.

We compare the following four algorithms: BRS, BRS-
norm, Natural Evolutionary Strategies (NES) and NES-norm.
BRS and BRS-norm differ only in that the initial initialisation
of the BRS-norm parameters is normalised according to the
maximum and minimum reward. The same applies to NES
and NES-norm.

Figure 3. We see the impact of ”local minima” environment.

Figure 4. The Shapiro tests shows that all results have normal distribution.

The results of first experiment can be seen in Figure 1.
One can see that under favourable conditions the cumulative
reward after training does not differ significantly. The results of
second experiment are shown in Figure 2. Here we can see that
NES and NES-norm have a higher median reward, but their
dispersion also is higher. It is only in the third experiment
(Figure 3) that we see the superiority of ES. It seems that
Basic Random Search (BRS) and BRS-norm are stuck in the
local minima. NES algorithms perform much better although
they show higher volatility.

From Shapiro’s tests (result shown in Figure 4), it can

be seen that as the complexity of the environment increases,
the volatility of the solutions increases. BRS and BRS-norm
demonstrate more stable but significantly lower performance,
while NES and NES-norm achieve a higher overall return but
at the expense of increased volatility.

IV. CONCLUSION AND FUTURE WORK
In this study, we looked at building an autonomous agent’s

behaviour in an environment that has both rewards and traps.
Such environments require agents to build a policy that leads
them as quickly as possible to the goal. On the other hand, the
agent should ”avoid” traps especially in the case of a stochastic
policy of movement.

As a working framework, we used Reinforcement Learn-
ing. We compared approaches from the field of random search
and Evolutionary Strategies. Experiments have shown that
methods based on an evolutionary approach show better results
when the environment is more complex. Especially important
is the superiority of Evolutionary Strategies in cases where the
environment has local minima.

REFERENCES
[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.

MIT press Cambridge, 1998.
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Abstract— Differentiating class-based traffic and class-based
queue management is the most advanced approach for queue
management in routers and switches, controlling and
preventing the congestion. The combination of a mechanism
for prioritizing the Internet Protocol traffic and the way to
dynamically modify the parameters of the packet rejection
algorithm is essential for achieving efficient and reliable
traffic. In this study, a method is proposed, exploring the
automatic adaptation of new users added to the backbone of
the network, to the already defined weighted random early
detection parameters. A neuro-fuzzy-logic network is trained
to automatically adapt new end users to the quality of service
policy already set in the backbone area. This network is
trained with the quality of service parameters of the backbone
area and serves to adapt these parameters in the newly-added
routers. The results obtained are compared with those from
the study of this problem by the authors, when a multilayer
neural network is used.

Keywords-traffic congestion; Quality of Service; Weighted
Random Early Detection; fuzzy logic; neuro-fuzzy system.

I. INTRODUCTION

In modern Information Technology (IT)
communications, the Quality of Services (QoS) is essential
for traffic efficiency. The creation of queues and their
inadequate management results in substantial packet delays.
The QoS aims to guarantee the quality of message delivering
by congestion management and congestion avoidance.
Various methods are currently applied to reduce the negative
effect of the problem. But more and more experimental
methods of artificial intelligence are being explored, hoping
for better results as given by K. Markov et al. [1], B. Deaire
et al. [2].

In this study, a method is proposed, to investigate the
automatic adaptation of new users added to the backbone of
the network, to previously defined weighted random early
detection parameters. The neuro-fuzzy logic network is
trained to automatically adapt new end-users to the service
quality policy already in place. This network is trained with
the service quality parameters of the main zone and serves to
adapt these parameters to the newly added routers. The
results obtained are compared with those, from the study of
this problem by the authors, when a multilayer neural
network is used, as well as with results from other similar
researches. The novelty of the proposed method consists in

the possibility of automated adaptation of the newly added
QoS parameters to an already existing communication
structure without having to reconfigure these network
devices. This is made possible by the proposed adaptive
neuro-fuzzy system, which approximates the parameters of
these devices in order to bring them closer to the one already
set.

The rest of this paper is organized as follows. Section II
describes the related to the research works. Section III
describes methods for congestion avoidance and Weighted
Random Early Detection methods. In Section IV, the
proposed method for weighted random early detection
parameter adjustment is presented. Section V gives the
experimental results. Section VI closes the article.

II. RELATED WORK

In the recent years, various methods have been proposed
to implement fuzzy logic to optimize traffic or to create
predictive models. E. Jamhoura et al. [3] propose a method
for building a fuzzy predictor to model a differentiated
services (DiffServ) node with two queues - for Voice over IP
(VoIP) traffic and self-similar data traffic. They define the 
fuzzy membership functions on the base of extending the
existing queue models and apply a fuzzy model to build
network traffic controllers. M. Yaghmaee et al. [4] proposed
a fuzzy based controller for traffic differentiated services.
Their fuzzy scheduler is based on the waited fair queue
mechanism, in which the significance of each queue is
adjusted by the fuzzy controller. To dynamically tune the
committed interface rate, the authors use a two input one
output fuzzy controller. The presented results show better
performance than non-fuzzy mechanisms. The researchers S.
Shalinie et al. [5] describe the input and output of a queue
size regulation system, by a fuzzy set. In the proposed
model, they use two inputs - Traffic Intensity and Available
Link Bandwidth. Output of this model is the Queue size
parameter. But fuzzy logic-based Adaptive Drop Tail shows
significant improvement in controlling congestion without
any need for special parameterization or tuning as given by
A. Mishra [7]. The outcome shows that their proposed
Adaptive Drop Tail Fuzzy Logic controller has reduced
packet loss when compared to traditional Drop Tail
mechanisms. The simulation is designed to maintain
adaptive buffer space when a sudden change in overloading
occurs, which prevents Internet router buffers from
becoming full when overloading occurs.
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The above-mentioned methods that use fuzzy logic offer
ways to reduce congestion through non-traditional queue
management in network device buffers, rather than
addressing the problem of adapting the new device's QoS
parameters to those already set in the primary
communications area.

In our study, we use fuzzy logic combined with neural
network training to offer a simplified method of adjusting the
QoS parameters of newly-added routers to the backbone
area. The difference in the approach of this method is that the
need to create an analytical model of traffic queues is
eliminated. At the same time, the use of fuzzy logic in
conjunction with a Nero Fuzzy System (NFS) allows the
uncertainty of the average queue, to be transformed into a
specific value of the Mark Denominator parameter. This
parameter, obtained as a NFS solution, is fed to the newly-
added routers to match this QoS parameter to those already
set in the backbone area.

III. CONGESTION AVOIDANCE AND WEIGHTED RANDOM

EARLY DETECTION

Network congestion occurs in two cases: when data
arrive on a big pipe and get sent out a smaller pipe and when
multiple input streams arrive at a router whose output
capacity is less than the sum of the inputs. Congestion
avoidance in network communications has two significant
components: congestion management in end devices based
on Transmission Control Protocol (TCP) algorithm and
Active Queue Management in routers.

A. TCP congestion avoidance

The main purpose of congestion management in end
devices is to adapt TCP window size to the bottleneck
throughput while maintaining an optimal exchange rate. The
basic congestion control algorithms, focused on end devices
are implemented in TCP protocol (RFC 5681) and include:
slow start, congestion avoidance, fast retransmit (TCP
Tahoe) and fast recovery (TCP Reno). Different variants are
compared by authors H. Kaur and G. Singh [6], A. Mishra
[7], N. Parvez et al. [8].

The TCP window size is measured in bytes. The
communication starts with the slow start phase (RFC5681).
The sender doubles the widow size on every received TCP
acknowledgement (ACK). Slow start stops when the window
size reaches slow start threshold (ssthresh) or at the first
missing ACK. The congestion avoidance phase starts after
the widow size reaches ssthresh. The window size
increments by one full size segment on any Round Trip Time
(RTT). The congestion avoidance phase stops at the first
missing ACK. According to the traditional TCP algorithm,
the slow start phase is activated after any missing ACK.
Congestion avoidance defines how to deal with lost packets.
There are two indications of packet loss: (1) waiting time has
expired and (2) receipt of duplicate ACKs. Retransmit Time
Out (RFC 6298) is a parameter which determines the wait
time for acknowledgment. The Receiver returns to the sender
an ACK after every arrived segment. But it acknowledges
the latest ordered segment data. The segments that arrive out
of order (there is a missing segment) are buffered, but not

acknowledged. This mechanism follows more than one ACK
for a segment. According to the Selective Acknowledge TCP
algorithm (SACK), the receiver acknowledges the last
ordered segment and all buffered segments. SACKs with the
same last ordered segment acknowledged, independently of
acknowledged buffered segments, are considered as
duplicate acknowledgements.

B. Congestion avoidance mechanisms in the routers

Random Early Detection (RED) was proposed by C.
Ghazel and C. Saidane [9] in the early 1990s to address
network congestion in a responsive rather than reactive
manner. It aims to trigger TCP congestion avoidance in end
devices before traffic congestion has occurred. As a result,
the data transmission speed is reduced and congestion in the
router is avoided. RED controls the average queue size in the
router and compares it with the predefined threshold for the
minimum (minq) and maximum queue (maxq) size. RED
runs in minq – maxq range – shown in Figure 1. At an
average queue size less than the minq, the packets are sent in
pure FIFO mode. At an average queue size greater than the
maxq, all packets are dropped. RED decides which packages
to drop using probability calculations based on the minimum,
maximum and average queue size, the ratio of the current
packet size to the maximum one and the number of packets
in the queue as is given by S. Rajput [10]. MPD (Mark
Probability Denominator) is used to limit the dropped
packets, according to the average queue size during the RED
phase. MPD defines the number of dropped packets when
average queue size is equal to maxq, just before full drop
phase.

Some authors give a review in IEEE Transactions [11]
and also X. Jiang et al. [12] consider the main problems of
the RED algorithm as: 1) unpredictable queuing delay and 2)
a sharp decrease in the throughput with high traffic load.
Unpredictable queuing delay provokes to instability of RTT.
RTT may become larger than the Recovery Time Objective
(RTO) and causes retransmission of packets already
received, and hence overload the network. Other authors,
Cisco IOS Quality of Service Solutions [13], consider this
behavior to be reasonable.

The traffic flow describes the communication between
two sockets. The packets marked for dropping are selected
based on the probability theory rather than on full statistics.
This can cause more frequent dropping of packets from some
flows than packets of other flows. Thus, the mechanism of
congestion avoidance in some flows is triggered more often
than others, and the speed of communication between two
sockets can be drastically slow while others remain high.
Furthermore, some packets carry no TCP traffic and are
therefore not sensitive to the TCP congestion avoidance
mechanism. These packets will not reduce their transmission
rate and it is very likely, that the queue will be filled with
their packets only. As a result, the router will become
“impassable” for TCP communication. On the third hand, in
the presence of DoS (Denial of Service) attacks, the attackers
turn off the slow start and congestion avoidance mechanisms
and send their packages with maximum windows size. Of
course, there are serious defenses against such attacks, but
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with low-rate DoS attacks the most of them do not work as
shown by M. Al-shaw and A. Laurent [14].

The WRED algorithm given by A. Custura et al. [15] has
been developed to achieve better fairness and is implemented
into the operating systems of two of the leading companies
in the communications industry – Cisco and Juniper. The
packages are split into flows. Flows are merged into queues.
Each queue gets a specific portion of the outgoing
bandwidth. Within each queue, streams get their weighting
priority. Priorities are defined as: high, medium, and low.
The priority determines the probability of the packets
dropping. Each package is marked to determine which queue
it belongs to and what its priority is. The DifServ fields in
the IPv4 (RFC) and Type of Service (ToS) header in the
IPv6 header (RFC) are used to classify traffic. These fields
are 8 bits long. The first 6 of them are used for Differentiated
Service Code Point (DSCP) (RFC2474), (RFC2475) and the
last 2 bits are for experimental use. RFC5865 describes
service classes, according to the traffic types. When
constructing the DSCP classes, it is recommended to apply
Per-Hop Behaviors (PHBs) and Active Queue Management
(AQM) mechanisms. Service class applies to applications
with similar characteristics and performance requirements,
such as specific delay, loss and jitter. DSCPs to Service
Class Mapping is shown in Table 1. The network
administrator may choose to implement different service
classes, or to implement different behaviors for service
classes, or to aggregate different kinds of traffic into one
class. Only the Default Forwarding (DF) "Standard" service
class is required. All other service classes are optional. Three
types of queues can be defined: priority queue, rate queue
and AQM. Each defined queue gets the portion of outbound
bandwidth. Cisco developments recommended by Geib, R.
and D. Black [16] a bandwidth distribution by types of
traffic.

Only AQM queues are based on packet dropping and
RED/WRED. AQM queues define only Assured Forwarding
(AF) classes and DF. Any package that is not explicitly
marked belongs to DF class. DSCP bits for AF classes are
depicted in Figure 2. The first 3 bits define the class number,
the next two - the priority, and the last one must be 0.

Collections of packets with the same DSCP setting that
are sent in a particular direction can be grouped into a
Behavior Aggregate (BA). Packets from multiple sources or
applications can belong to the same BA. DSCP is used to
select the Per-Hop Behavior (PHB) at each interface.

PHB (RFC2475) is a mechanism that allows
independent management of DSCP classes in each router.
DSCP classes are queueing in the router in a locally defined
manner. A portion of the output bandwidth is allocated to
each queue. For example, class traffic with DSCP Af11,
Af12 and Af13 is incorporated in one AQM queue with
name gold (statement 1). For this queue, 35% of outbound
bandwidth (statement 2) is allocated. Minq, maxq, and MPD
are defined for DSCP classes in the queue. Let configure
minq =20, maxq =40, MPD =10 for DCSP class af11
(statement3).
class-map match-all gold match ip dscp af11 af12 af13
class gold bandwidth percent 35

random-detect dscp af11 20 40 10
Based on these analyzes and research, as well as our

observations, we have come to the conclusion that the most
efficient action, would be the implementation of a WRED
mechanism, but with the ability to transform the queue
uncertainty into specific values of the rejected packets. This
leads to the idea of using fuzzy logic.

Figure 1. Queue management phases.

Figure 2. DSCP bits for AF classes.

TABLE I. DSCP TO SERVICE CLASS MAPPING

Service Class
Name

DSCP
Name

DSCP
Value

Application
Examples

Network
Control

CS6 110000 Network routing

Telephony EF 101110 IP Telephony
bearer

Signaling CS5 101000 IP Telephony
signaling

Multimedia
Conferencing

AF41,
AF42,
AF43

100010,
100100,
100110

H.323/V2 video
conferencing
(adaptive

Real-Time
Interactive

CS4 100000 Video
conferencing and
Interactive
gaming

Multimedia
Streaming

AF31,
AF32,
AF33

011010,
011100,
011110

Streaming video
and audio on
demand

Broadcast
Video

CS3 011000 Broadcast TV &
live events

Low-Latency,
Data

AF21,
AF22,
AF23

010010,
010100,
010110

Client/server
transactions Web-
based ordering

OAM CS2 010000 OAM&P
High-
Throughput
Data

AF11,
AF12,
AF13

001010,
001100,
001110

Store and forward
applications

Standard DF (CS0) 000000 Undifferentiated
applications

IV. PROPOSED METHOD FOR QOS PARAMETER

ADJUSTMENT

The proposed method is based on the functional scheme
shown in Figure 3. The assumption is that in the end
(Remote site) routers, as well as in the Central router, the
AF classes with related traffic types are already defined. We
assume that WRED and differentiated services are
configured in the end routers. Тhe DSCP values and the 
minimum and maximum threshold range, considered for
managing the average queue depth in the central router, are
both configured. The Neuro-Fuzzy Device Manager
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(NFDM) is trained with these two parameters and prepares
in its output the calculated Mark Denominator (MD). MD
defines the fraction of packets dropped when the average
queue depth is at the maximum threshold. Thus, the NFDM
system consists of two inputs and one output variables. As
newly-added routers are connected to the Central router
area, their also configured DSCP values are submitted to the
already trained NFDM. According to the defined linguistic
rules in the inference phase, the NFDM sends the calculated
MD to the added routers. This action seems to be
reasonable, because the following baseline markings with
DSCP Assured Forwarding PHB are typically recommended
by Cisco Systems, represented by B. Hedlund [17]:

Figure 3. Functional scheme of the proposed method

 Interactive Video - AF41
 Mission Critical Data (locally defined) - AF31
 Transactional Data (dlsw, sql, sap): AF21
 Bulk Data (email, ftp, backups): AF11.

Thus, it is assumed that these classes are set by following
these recommendations in the newly-added routers.

V. EXPERIMENTAL RESULTS

The NFDM was trained with two input variables. The
first one is represented in Figure 4 and defines the
membership functions of the DSCP values - combination of
traffic class and its priority. Тhe upper angles of the 
trapezoidal membership functions are set to point to the
exact DSCP values of the respective range of the standard
AF classes. Seven ranges are defined - 10-12 and 12-14
respectively for class 1; 18-20 and 20-22 for Class 2; 26-28
and 28-30 for Class 3; 34-38 for Class 4. The overlapping
areas of the trapezoidal shapes are so set, that the values of

Figure 4. Membership function of DSCP values (combination of traffic
class and its priority)

the membership functions are negligible, as no packets with
DSCP values beyond the standard are expected. The second

input variable is represented in Figure 5 and defines the four
ranges are chosen as typically recommended [17].
membership function of the Min-Max threshold values. Here
The defined MD as output result of the Inference and
Defuzzifiction phase is shown in Figure 6. Because of its
neural network structure, the system is capable of learning
(an advantage of neural systems) and because of its fuzzy-
like topology it is possible to recreate the processing steps.
To design a system that takes advantage of neural networks
and fuzzy systems in one project, we need a system that
processes the fuzzy membership functions and fuzzy model
rules.

Figure 5. Membership function of the Min-Max threshold values

Thus, we can determine knowledge from the sampling data
using neurons capable of learning. You can solve this
problem by using a special neural network called NFN. It
consists of three neural subnets (NSNs) that emulate the
three sub-sequences - fuzzification, inference and
defuzzification - of the fuzzy system [18].

Figure 6. Membership function of MD

Thus, the fuzzification of the non-fuzzy input variables is
implemented by a layer of neurons with activation functions
of the both above described inputs. One neuron is assigned to
each membership function of the input variables. In the
second layer of the neuro-system, the rule base of the fuzzy
system is applied and one neuron is assigned to each rule.
The IF part of a fuzzy rules is implemented by the first
neuron layer and the 2nd layer implements the THEN part of
a fuzzy rule. The number of neurons in the second layer is
equivalent to the number of membership functions of the
output variables. The output values of the system in the 3rd
neuron layer are implemented by the standard defuzzification
method with MAX-PROD inference followed by centroid
calculation as given in NeuroSystem, User Manual [18].
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Table II demonstrates the chosen linguistic rules, which are
inputs to the second layer neurons. For example, the first to
third columns of Table II, set the following linguistic rules:

IF DSCP is 10 to 12 and Range 1 THEN MD=8;
IF DSCP is 12 to 14 and Range 1 THEN MD=4;
IF DSCP is 18 to 20 and Range 2 THEN MD=8; etc.

TABLE II. LINGUISTIC RULES OF THE NFDM

Input X:

traffic
class with

drop
preferenc
e

AF11-

AF12

(DSCP

values

10 to 12)

AF12-

AF13

(DSCP

values

12 to 14)

AF21-

AF22

(DSCP

values

18 to 20)

AF22-

AF23

(DSCP

values

20 to 22)

AF31-

AF32

(DSCP

values

26 to 28)

AF32-

AF33

(DSCP

values

28 to 30)

AF41-

AF43

(DSCP

values

34 to 38)

Input Y:

Min-Max
Threshold
range

range 1 range 1 range 2 range 2 range 3 range 3 range 4

Output Z:
MD

8 4 15 11 25 20 28

Figure 7 shows the obtained 3D surface, which illustrates the
obtained dependencies between inputs X and Y and the
resulting value of MD (axis Z) at the output of the NFDM.
But the 3D presentation is not informative enough, when the
number of input and output variables for NFDM is higher. In
this case, it is better to represent the variables as it is shown
in Figure 8 and Figure 9.

Figure 7. Membership function of MD (axis Z) according to Input X (DSCP)
and Input Y (Min-Max threshold ranges)

Figure 8 shows the variations of MD (green line) according
to AF12 (DSCP=12; yellow line) and all threshold ranges 1
to 4 (red line). Figure 9 shows the variations of MD (green
line) according to AF32 (DSCP=28; yellow line) and all
threshold ranges 1 to 4 (red line). Both figures show very
well the change in the value of MD, that is submitted to the
newly-added router, when its DSCP value is brought to the
input of the already trained NFDM system.

VI. CONCLUSION AND FUTURE WORK

The use of fuzzy logic in conjunction with a neural
network NFS in the proposed method, allows the
uncertainty of the average queue to be transformed into a
specific value of the Mark Denominator parameter. This

parameter, obtained as a NFS solution, is fed to the newly-
added routers to match this QoS parameter to those already
set in the backbone area. An advantage of the method is that
no any analytical model is designed, but only NFDM
training is required.

Figure 8. Variations of MD (green line) according to AF12 (DSCP=12;
yellow line) and all threshold ranges 1 to 4 (red line)

The advantage is the ability of the network to learn, i.e. its
ability to adapt to changed behavior and new situations. To
exploit the benefits of both - the easy understandability of
fuzzy systems and the ability to train neural networks - the
two techniques are combined. Compared to the results of the

Figure 9. Variations of MD (green line) according to AF32 (DSCP=28;
yellow line) and all threshold ranges 1 to 4 (red line)

authors' study given by I. Topalova and P. Radoyska [19],
where only neural network is used to match MD, the NFDM
method does not require a large volume of trained samples,
as the initial uncertainty of the selected input variables. The
methods discussed above use fuzzy logic and offer ways to
reduce congestion through non-traditional queue
management in network device buffers, rather than
addressing the problem of adapting the new device's QoS
parameters to those already set in the primary
communications area, applying automated adaptation. In this
sense, we consider the proposed method of no analogue in
the scientific registers

As a further continuation of the study, we are testing the
NFMM system with more MD values for tracking and
validating the adjusted values for the newly-added routers.
Different forms (for example triangular) of the Membership
functions of the Min-Max threshold values and of the DSCP
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values will also be attempted, aiming to investigate the
degree of uncertainty.

REFERENCES

[1] K. Markov, K. Ivanova, K. Vanhoof, I. Mitov, B. Depaire, V.
Velychko, and V. Gladun, “Intelligent Data Processing Based
on Multi-Dimensional Numbered Memory Structures,”
Diagnostic Test Approaches to Machine Learning and
Commonsense Reasoning Systems, IGI Global, 2013, pp.
156-184, doi: 10.4018/978-1-4666-1900-5.ch007, ISBN: 978
1-4666-1900-5, EISBN: 978-1-4666-1901 2.

[2] B. Deaire, K. Ivanova, K. Markov, I. Mitov, K. Vanhoof, and
V. Velychko,“Multi-dimensional Information Spaces as
Memory Structures for Intelligent Data Processing in GMES,”
pp 347-370 In: Kr. Markov et al. Intelligent Data Processing
in Global Monitoring for Environment and Security, ITHEA,
2011, Kiev, Ukraine - Sofia, Bulgaria. ISBN: 978-954-16-
0045-0 (printed), ISBN: 978-954-16-0046-7 (CD/DVD),
ISBN: 978-954-16-0047-4 (online). ITHEA® IBS ISC No.:
21. 410 p.

[3] E. Jamhoura, M. Pennaa, R. Nabhenb, and G. Pujolleb, ”
Modeling a multi-queue network node with a fuzzy
predictor,” Fuzzy Sets and Systems 160 (2009) 1902–1928, ©
2008 Elsevier B.V., doi:10.1016/j.fss.2008.12.004.

[4] M. Yaghmaee, M. Menhaj, and H. Amintoosi, “Design and
performance evaluation of a fuzzy based traffic controller for
differentiated services,” Computer Networks 47 (2005) 847-
869, available online at www.sciencedirect.com, access date
april, 2019.

[5] S. Shalinie, G. Preetha, S. Nidhya, and B. Devi, “Fuzzy
Adaptive Tuning of Router Buffers for Congestion Control,”
International Journal of Advancements in Technology,
http://ijict.org, Vol 1, No 1, © IJoAT ISSN 0976-4860, June
2010.

[6] H. Kaur and G. Singh, “TCP Congestion Control and Its
Variants,” Advances in Computational Sciences and
Technology ISSN 0973-6107 Volume 10, Number 6 (2017)
pp. 1715-1723.

[7] A. Mishra, “Performance Analysis of TCP Tahoe, Reno and
New Reno for Scalable IoT Network Clusters in QualNet” ®
Network Simulator, International Jpurnal of Computer
Sciences and Engineering 6(8), pp:347-355, August 2018
DOI: 10.26438/ijcse/v6i8.347355.

[8] N. Parvez, A. Mahanti, and C. Williamson, "An Analytic
Throughput Model for TCP NewReno," in IEEE/ACM

Transactions on Networking, vol. 18, no. 2, pp. 448-461,
April 2010. doi: 10.1109/TNET.2009.2030889

[9] C. Ghazel and C. Saidane, “Next generation networks
dimensioning for improving and guaranteeing quality of
service,” The International Journal of Networks (JNW) 5 (7),
pp.782-791, 2018.

[10] S. Rajput, V. Kumar, and S. Paul, "Comparative analysis of
random early detection (RED) and virtual output queue
(VOQ) algorithms in differentiated services network," 2014
International Conference on Signal Processing and Integrated
Networks (SPIN), Noida, 2014, pp. 237-240. doi:
10.1109/SPIN.2014.6776954

[11] Learning-Automata-Like Solution, in IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 40,
no. 1, pp. 66-76, Feb. 2010. doi:
10.1109/TSMCB.2009.2032363

[12] X. Jiang, J. Yang, G. Jin, and W. Wei, RED-FT: A Scalable
Random Early Detection Scheme with Flow Trust against
DoS Attacks, IEEE COMMUNICATIONS LETTERS, Vol.
17, No. 5, pp. 1032-1035, May 2013.

[13] Cisco IOS Quality of Service Solutions Configuration Guide,
[Online] Available:
https://www.cisco.com/c/en/us/td/docs/ios/12_2/qos/configura
tion/guide/fqos_c/qcfintro.html, access date march, 2019.

[14] M. Al-shaw and A. Laurent, QoS Design Principles and Best
Practices, Cisco Press, Jan 1, 2018, [Online]
Available:http://www.ciscopress.com/articles/printerfriendly/
2756478, access date march, 2019.

[15] A. Custura, A. Venne, and G. Fairhurst, "Exploring DSCP
modification pathologies in mobile edge networks," 2017
Network Traffic Measurement and Analysis Conference
(TMA), Dublin, 2017, pp. 1-6.

doi: 10.23919/TMA.2017.8002923

[16] R. Geib and D. Black, "Diffserv-Interconnection Classes and
Practice", RFC 8100, DOI 10.17487/RFC8100, March 2017,
[RFC8100].

[17] B. Hedlund, “Enterprise QoS Solution Reference Network
Design Guide,” Cisco Systems, 2017.

[18] NeuroSystem, User Manual, Copyright © Siemens AG, 2006.

[19] I. Topalova and P. Radoyska, “Control of Traffic Congestion
with Weighted Random Early Detection and Neural Network
Implementation”, ICAS 2018, The Fourteenth International
Conference on Autonomic and Autonomous Systems, pp. 8-
12, Nice, France, 20-24 May 2018.

64Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

                            76 / 92



ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 65

Organic Self-Adaptable Real-Time Applications

Lial Khaluf
Email: lial.khaluf@googlemail.com

Franz-Josef Rammig
University of Paderborn
Email: franz@upb.de

Paderborn, Germany

Abstract—Nowadays, computing systems tend to find inspiration
for their behavior in organic systems. Approaches have been
published to develop a system behavior with the potential to
react to environments. In the real-time domain, such approaches
are still very rare and limited. In this paper, we provide an
approach which is able to adapt at runtime and, at the same
time, preserve all real-time constraints. In accordance to “Organic
Programming”, we make use of the concept of cells. A cell is an
extension of a task allowing its adaptation. Cells exist by means of
classes, which consist of a limited set of cell variants. All variants
of a cell share the same fundamental functionality, however
under different computing time demands and different costs.
Our approach consists of an adaptation algorithm that behaves
as a real-time cell. Under the assumption that the ecosystem of
the real-time environment is given in the form of a set of real-
time cells, each one with multiple variants, it provides a selection
mechanism in the space of this ecosystem. The system goals aim to
reduce system costs under the constraint of meeting all real-time
requirements.

Keywords–Real-time cell; variant; organic programming; opti-
mization; self-adaptability.

I. INTRODUCTION

Turning any physical process into an online process is a
current trend in many kinds of businesses. This evolution is
reflected by transforming the current physical systems into
Cyber Physical Systems. In such systems, the correct function-
ality of the system is influenced by its reaction to internal and
external events. Such adaptation capabilities apply in general
to control processes as, for example, in the medical or energy
sectors, etc. In most cases, the nature of such processes belongs
to embedded systems where timing constraints have to be
achieved. Cyber Physical Systems add several advantages over
traditional systems, such as self-adaptability as reaction to
failures as well as unexpected conditions [1]. In this sense,
such a system is evaluated by its ability to adapt itself to
environmental changes in real-time. Many approaches have
been proposed to solve this challenge. However, most of the
existing approaches have several limitations related to the
ability of reacting to unexpected events, or reacting in an
undefined way. In order to overcome these deficiencies, we
introduce in this paper a solution that mimics the organic
behavior of objects in our real world. Real world objects have
the ability to change their structure or behavior when they react
to any environmental event, as cells do in an organism [2]. For
this reason, our solution does not limit itself to a predefined
set of events or reactions. It is assumed that the system has the
ability to grow at runtime. In other words, it is assumed that the
system is able to have new resources, new events and reactions
at runtime. Currently, we apply our algorithm on a single node

system, with the ability to import the needed information from
the outside which can be considered as a remote node. This
information consists of the different reactions that the system
may apply in response to specific events that may result from
an internal or external environmental change. The reactions
are developed by external sources, and added to the system
at runtime. The solution we provide applies for all kinds
of real-time systems. This is done by providing the system
with organic properties at the level of real-time tasks. Such
tasks, in our case, are transformed into cells, called real-time
cells. A real-time cell is an extension of a real-time task by
mechanisms empowering it to self-adaptation. Whenever an
adaptation takes place, both the adaptation and the resulting
adapted system have to respect real-time restrictions. For this
purpose, a selection process is part of the adaption mechanism.
Its search space is restricted to a current ecosystem given by a
limited number of cell classes, each one with a limited number
of variants. Under the constraint that all real-time restrictions
have to be satisfied, this selection process aims to minimize
the overall system costs. We assume a relatively low frequency
of adaptation requests. Such requests react to requested im-
provements or slight environmental changes. In this paper,
we mostly concentrate on the central essential question: how
adaptation requests can be handled under real-time constraints.
In Section 2, we present the related work. Section 3 describes
the problem we are facing and provides a solution for it. In
the last section, we conclude the achievements of the paper
and present possible future work.

II. RELATED WORK

In [2], a new model for organic programming is introduced.
It aims to overcome limitations of the traditional programming
models such as the Object Oriented Programming (OOP) [28],
Model Driven Architecture (MDA) [27] or Aspect Oriented
Programming (AOP) [26], where abstract classes or models
are difficult to change. The idea behind the approach in [2] is
to have a system that is able to grow and evolve continuously.
However, it was not made for real-time systems. In our
approach, we concentrate on having a system consisting of
cells with defined properties that enable self-adaptability in
real-time.

The approach in [3] and [4] defines different profiles
with different resource requirements for each task. It enables
choosing the best combination of profiles at runtime to adapt
the system to certain situations. However, these profiles are
developed offline, and new ones cannot be added to the system
at runtime, which decreases the system adaptation ability.
Our approach applies the concept of organic programming by
giving the ability to modify tasks online in a way that preserves
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all real-time constraints. Cells can be developed and added
online to the system.

In [5], we find a summarized description for the state of the
art in terms of modeling dimensions, research challenges, and
requirements of self-adaptive systems. A self-adapting system
has the following dimensions: (1) Goals: Evolution, Flexibility,
Duration, Multiplicity, Dependency, Change, Source, Type,
Frequency, Anticipation, (2) Mechanisms: Type, Autonomy,
Organization, Scope, Duration, Timeliness, Triggering, and
(3) Effects: Criticality, Predictability, Overhead, Resilience
[5]. In our approach, system goals may change according to
adaptation scenarios. Events that trigger an adaptation depend
on the system where we apply the developed algorithm. The
type of change that causes an adaptation could be functional,
non functional, or technological. In our approach, there is
no restriction on this issue; changes are foreseeable, but can
change over time.

Mechanisms of adaptability summarize how the system can
react to changes, in terms of space and time required. The
algorithm we provide may act by decisions taken automatically
or by other parties. The adaptation is done by a central
component. The scope of adaptation could be local or global.
The duration of the adaptation is influenced by execution time
of the central component.

The set of dimensions and effects deals with results of
adaptation, such as the overhead. In our approach, missing a
deadline may confirm the failure of the system.

In [6], a second roadmap for state of the art is presented.
Challenges of a self-adaptive system are described.

The first challenge is to understand the different alternatives
that may represent designer or developer decisions. In our
approach, we have developed a general strategy that applies
for different kinds of real-time systems. We have an abstract
implementing component, which fits as a reusable component.

The second challenge is concerned with understanding the
nature, goals, and lifecycle of the system. In [6], a comparison
between the basics for traditional software processes, and self-
adaptive processes is described. The first one is illustrated
in [7] by the traditional approach to corrective maintenance,
and the second in [8] and [9] by the automatic workaround
approach. The traditional approach reports the problem to the
developers. The automatic workaround approach moves the
corrective actions to runtime by applying alternative proce-
dures when a failure happens. In our approach, the alternative
procedure might be a new request or an update request.
Analyzing causes of the failure may be assigned to a human or
a subsystem. In the workaround approach, recovering methods
are developed at design phase. In our approach, this can be
done at runtime. In the workaround approach, if a recovering
method does not exist, a report is sent to the developers, which
is the same action taken in our approach.

The third challenge is concerned with decentralization
of control loops. Controlling a system could be done in a
centralized [10]-[12] or decentralized manner [13]-[17]. The
self-adapting component is central in our approach, as network
reliability in terms of time and trustworthy is a main concern
in real-time systems.

The fourth challenge is the verification and validation of the
system. In our approach, verification is done for requirements
of real-time systems, apart from the context of the system.

In our approach, we define the optimization constraints in
a multi-dimensional multiple choice knapsack problem. Most
common solutions can be found in [18] and [19]. In our
approach, we use a genetic algorithm inspired from [18] to
solve a knapsack problem. The reason is that it can provide
the whole solution (individual consisting of best variants in
terms of time and cost) at once if available. This allows to
use required parameters of the individual elements in order to
calculate the parameters of other elements. The most important
fact for our application is that it is an ”Anytime Algorithm”
in the sense that at any time the current valid solution of the
algorithm can be used. This solution may be far away from
an optimal one. However, if the initial population is a valid
solution, it is guaranteed that at any time a valid solution can
be provided.

III. PROBLEM DESCRIPTION AND SOLUTION CONCEPT

In our assumption, we consider periodic, aperiodic tasks
or if both then evidently together. Dependability may exist
between aperiodic tasks. A request can be adding a task, delet-
ing a task, updating a task, adding a set of dependent tasks,
deleting a set of dependent tasks, updating a set of dependent
tasks. We assume a mixed hard-deadline periodic and aperiodic
task environment. Figure 1 shows an example of request types.
In case 1, the algorithm should solve the case of Task 5 not
being accepted by the underlying schedulability algorithm. In
case 2, the algorithm should solve the case of Task 1 update
not being accepted by the underlying schedulability algorithm,
and the question of how to make an update of Task 1.

In this paper, we only consider the activities on one single
local node. System tasks, and tasks that are triggered have to
be executed on this node. We assume that task management
is carried out by a Real-Time Operating System (RTOS)
with Earliest Deadline First algorithm (EDF) as the principal
scheduling method. Furthermore, we assume that aperiodic
tasks are handled via a Total Bandwidth Server (TBS) [20] and
that the underlying RTOS runs the Stack Resource Protocol
[21] to avoid unlimited blocking and deadlocks. In order to
be able to run the adaptation algorithm, we come up with
the concept of real-time cells. A cell is a task that is able
to change its structure and behavior at runtime, to allow
adaptations in real-time. The change is decided by a central
cell called “Engine-Cell”. Assuming that the system before
update is correctly functioning, we strictly follow the concept
of transactions. If a solution for an update request is found after
applying the update operations, the system state is updated. If
a solution is not found, the system goes back to the previous
state.

The above mentioned Engine-Cell runs the adaptation
algorithm using a two dimensional array as model of the
underlying ecosystem. Each column stands for a class of cells
which all share the same principal functionality. Each cell
in the column is a variant, where these variants accomplish
the same task, but with different costs and execution time
demands. The Engine-Cell runs an adaptation algorithm, which
intends to select over all cell classes the best combination of
variants that allows to accept the newly arrived requests. The
objective is to fulfill all real-time constraints and to provide
a globally maximum quality of the adapted system. As this
selection process takes place on the ecosystem defined by the
mentioned two-dimensional array, the search space is restricted
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to the bounded set of cells with bounded number of variants
which is present at time of adaptation.

We also assume a remote node (as model of the en-
vironment) that is dedicated to install variant updates, and
newly deployed cells. An update request means updating a cell
according to a provided change of parameters without altering
the principal behaviour. The remote node is used for providing
external storage, and also to be uploaded in an appropriate
place for developers. Modelling the current state of the system
and cell classes and viewing these models by developers are
not discussed in the scope of the paper. At each execution of
the Engine-Cell, new requests may have arrived to the system.
The adaptation algorithm is run by the Engine-Cell, trying

Figure 1. Request Types

to find a feasible solution by selecting variants over all cell
types. A real-time cell becomes active when it is accepted
by the system for execution. The Engine-Cell is called an
Active Engine-Cell (AEC) once it is activated. Any other Real-
Time Cell (RTC) is called an Active Real-Time Cell (ARTC)
once it is accepted for execution. The Engine-Cell is treated
here as a periodic cell and stays active as long as the system
is running. We make the general assumption for all periodic
cells (including AEC) that the relative deadline is equal to
the period. As investigating the acceptance of newly arrived
requests is part of the Engine-Cell algorithm, we ensure that
the system state does not change during the execution of the
Engine-Cell.

The parameters controlling the Engine-Cell are defined as
follows:

1) Hyperperiod: is the hyperperiod of the currently ac-
cepted periodic ARTCs. The next point in time where
a hyperperiod completes execution is abbreviated as
NHP (Next Hyperperiod). Adaptation takes place
only once per hyperperiod. It becomes effective not
earlier than NHP.
At the start of the system, the hyperperiod is cal-
culated as the least common multiple of the periods
of periodic ARTCs that initially might exist at the
system startup. The resulting value is set as initial
value for the AEC’s period. We examine the total
utilization (AEC and ARTCs). If it is smaller or equal
to 1, we have found the shortest possible period for
AEC (which at the same time by definition is the
hyperperiod). If the total utilization is beyond 1 then
the hyperperiod has to be extended by a harmonic
multiple until the total utilization is no longer beyond
1. Calculating an initial NHP is carried out either
offline or as part of the initialization when starting
the system.
Note: the response time on adaptation requests de-
pends on the load of the system. A highly loaded
system means a smaller fraction of the processing
capacity to be dedicated for the AEC. At the same
time, the execution time demand of the AEC tends
to increase if some fixed upper bounds (such as
dimensions of the RTCArray) change.

2) NumOfPARTCs: is the number of the current periodic
ARTCs in the system.

3) NumOfAARTCs: is the number of the current aperi-
odic ARTCs in the system.

4) RTCArray: is the data structure that holds the differ-
ent variants of RTCs in the system. Figure 2 shows
the RTCArray consisting of different RTCs. Each
column is called an RTClass. Each RTClass holds
a number of variants, which are RTCs dedicated to
fulfill the same task, with different cost and execution
time requirements. Switching between the different
variants online enables to execute tasks in the best
way regarding system resources. All periodic vari-
ants, that belong to the same class, have the same
period. All aperiodic variants that belong to the same
class, have the same deadline. The RTCArray is a
dynamic component. RTCs can be added to it online.
The upper bounds of its dimensions can grow online.
Other parameters include the Worst-Case Execution

                            79 / 92



ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 68

Time (WCETEC), the worst case period (WCTEC),
and additional properties of the EC.

Another set of properties is defined for ordinary RTCs:

1) VariantsAllowed: is a Boolean property. When it is
equal to true, all variants that belong to the class of
the respective RTC variant should be examined to
select the best variant in the adaptation algorithm.
Otherwise, the respective RTC variant is considered
mandatory to be processed by the algorithm.

2) UpdatingPoints (UP): is a set of points in the code
of the RTC routine. At these points, the RTC could
be substituted by another variant within the same
class from the RTCArray. All variants, which have
the same RTClassID, have a set of updating points
with the same number of points, where each point
in a specific set has a counter part point in all the
other considered sets. UpdatingPoints is of relevance
only in case of aperiodic tasks. Instances of such
tasks may have a long execution time, exceeding
the current hyperperiod. Therefore, just waiting for
the next instance would not be appropriate. In case
of periodic tasks, we restrict updates on the natural
updating point, defined as the release time of the next
instance of a periodic task [22].

3) ETexecuted : is the time that has been spent in
executing an aperiodic RTC before the previous NHP.

4) NextUpdatingPoint: a variable that saves the next
updating point which has not been yet reached by
the executed code of the RTC.

5) Triggered: is a Boolean property that reflects the
status of an RTC. If it is equal to true, this means
that the RTC is triggered for execution.

6) TriggeringTime: is the time at which an RTC is
triggered (chosen from the RTCArray).

7) TriggeringRange: is the range of time within which
the arrival time of an RTC could be set. Our goal is
to set the arrival time of requests greater or equal to
NHP, because at this point, we assume that all ac-
cepted periodic requests are simultaneously activated
(i.e., we assume all phases to be 0).

8) Deletion: a Boolean property, that is set to true if the
request means deletion of a cell. It is set to false,
otherwise.

9) Active: is a Boolean variable that is set to true when
the cell is accepted for execution.

Figure 2. RTCArray

Other properties not described in the scope of this paper
include the ID of the RTC (RTClassID/VariantID) inside
RTCArray, the cost of an RTC, the importance factor, the
factor of essentiality, the static parameters, and the updated
cost, which should be calculated for an RTC, when it replaces
another executing RTC.

In the following:
- We use the term ExpPARTCs to refer to the set of current

periodic ARTCs excluding the RTCs, which belong to the
deletion requests.

- We use the term ExpAARTCs to refer to the set of current
aperiodic ARTCs excluding the RTCs, which belong to the
deletion requests.

The Engine-Cell algorithm can be sketched as follows (See
Figure 3):

Step 1: Gathering and filtering the newly deployed
RTCs: The first step of the AEC is to collect the newly
deployed RTCs, and store them in a WorkingRTCArray (a
copy of RTCArray) following a procedure that ensures to
keep the upper bound of the WorkingRTCArray dimensions
preserved. As newly deployed RTCs enlarge the solution space
RTC classes and/or variants may need to be dropped following
some importance criteria.

Step 2: Triggering and handling the newly arrived
requests: In this step, a TriggeredQueue is constructed from
the WorkingRTCArray. Triggering a request from the Work-
ingRTCArray turns the Triggered property into true. Arrival
times of requests are set greater or equal to NHP according
to their TriggeringRange. The DeletionTime of requests that
have to be deleted is set to the next updating point. If a request
includes a set of dependent cells, we assume that their modified
arrival times and deadlines are calculated offline following the
rules of Modified Earliest Deadline First algorithm EDF* [23].

Step 3: Calculating the cost of quality factors for the
system: The total cost of factors available by a node Costtotal
is calculated.

Step 4: Adaptation algorithm: In this step, we construct
the lowest-cost feasible solution over the entire set of RT-
Classes stored in an AdaptationRTCArray which is constructed
in the beginning of this step. This data structure further reduces
the search space to be considered by excluding deleted cells
and aperiodic cells that have their absolute deadline within
the current hyperperiod. The reason for the latter exclusion
is following the general assumption that adaptations become
active not earlier than in the next hyperperiod.

To construct AdaptationRTCArray, we first copy variants
of WorkingRTCArray into AdaptationRTCArray. We then
reduce AdaptationRTCArray to contain only all classes of
ExpPARTCs and such ExpAARTCs with absolute deadlines
exceeding NHP. For each aperiodic ARTC that should be
deleted and has an absolute deadline exceeding NHP, we add
a column including the ARTC as the only variant. After that,
we add a column that includes the AEC. We add the newly
triggered requests, and finally the updating requests:

• Adding an aperiodic update is done (only if there
exists an updating point after NHP in the aperiodic
variant that is running) by adding the arrived RTClass
which includes the triggered updating variant. The
precise algorithm to identify the set of aperiodic
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ARTCs that can be updated and to calculate the
time characteristics for the updates are omitted here.
The number of those aperiodic ARTCs is denoted by
NumOfANHP. The updated variant has been excluded
when constructing ExpAARTCs.

• Adding a periodic update is done by adding the arrived
RTClass, which includes the triggered updating variant
to AdaptationRTCArray. The updated variant has been
excluded when constructing ExpPARTCs.

• In case there is an update request for a set of aperiodic
dependent RTCs the same rules as of updating a single
(independent) variant are applied.

By the above operations, a reduced array is constructed
that contains only those entries which are relevant for the

Figure 3. Nassi-Schneidermann Diagram for EC Algorithm

adaptation algorithm. For technical reasons, the columns in
the array are reordered, so that periodic columns come first,
then AEC, and finally aperiodic columns.

Let us assume that the number of columns in Adaptation-
RTCArray = Num. Ǹ denotes the number of columns, which
represent the newly triggered aperiodic requests.

If (NumOfANHP > 0) then we calculate arrival times,
execution times, and Cost-Update for the running aperiodic
ARTCs that are stored in AdaptationRTCArray, and deadlines
exceed the NHP. The details of these calculations are omitted
here.

The heart of the adaptation algorithm is to find a selection
of variants for all RTC classes in the relevant ecosystem. This
relevant ecosystem has been determined by the activities de-
scribed above and stored in AdaptationRTCArray. The solution
is a one dimensional array Solution that is assumed to contain
one variant from each column in the AdaptationRTCArray. The
chosen variants should pass the schedulability test of the Total
Bandwidth Server (TBS) [20], and achieve the lowest possible
accumulated cost.

To find the solution, we solve the following multiple
choice multi dimensional knapsack problem.

max
∑Num

i=1

∑ni

j=1−Costijxij

Subject to:
∑Num

i=1

∑ni

j=1 W
k
ijxij ≤ Rk

Where:∑ni

j=1 xij = 1; i = 1..Num & xij ∈ {0, 1} and j = 1..ni,
k = 1:3

By Num is denoted the number of columns (RTC classes)
in AdaptationRTCArray while by ni is denoted the number
of variants in the ith column. Note that three constraints are
formulated for the three values of parameter k. Constraint 1
handles periodic tasks including the AEC, constraint 2 the
aperiodic ones, and constraint 3 is an optional one limiting
the total cost. For these three constraints, the weights W k and
the constraining condition Rk are defined differently.

Constraint 1: W 1
ij = Factor1/Factor2

For any of the periodic RTCs: Factor1 = Cij , Factor2 =
Tij

For the AEC, Factor1 = WCETEC , Factor2 =
WCTECTemp

WCTECTemp denotes the expected hyperperiod of the
AEC. It is calculated the same way the initial hyperperiod
is calculated. Here periodic cells are ExpPARTCs in Adap-
tationRTCArray, and newly triggered periodic requests in
AdaptationRTCArray. Expected period of AEC is used instead
of its current period. In each hyperperiod, only one execution
of the AEC is assumed. For this reason, we finally update
WCTECTemp, the expected period of the AEC, to be equal
to the expected hyperperiod.

For any of the aperiodic RTCs: Factor1 = 0, Factor2 = 1
Constraint 2: W 2

ij = Factor1− Factor2

For any of the periodic RTCs and the AEC: Factor1 = 0,
Factor2 = 0.

For any of the aperiodic RTCs: Factor1 = dSpecified,ij ,
Factor2 = dCalculated,ij .

Where:
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dSpecified,ij : The specified absolute deadline for any
aperiodic variant, which belongs to an aperiodic variant in
AdaptationRTCArray is equal to its arrival time + relative
deadline of the variant.

By dCalculated,ij we denote the deadline calculated by the
TBS rule.

dCalculated,ij = max (dCalculated(i−1)ji−1
, ArrivalT imeij)+

Cij,new/Us.
Us = 1− Up.
Constraint 3: Depending on the different kinds of RTCs to

be considered in solving the knapsack problem, the weights
Wij for the optional third constraint are defined as follows:

W 3
ij = Cost for periodic RTCs stored in AdaptationRTCAr-

ray
W 3

ij = Cost for aperiodic RTCs that are stored in Adapta-
tionRTCArray

After defining the weights of the different variants, we can
start discussing the conditions. The constraining conditions Rk

for the three constraints are defined as follows:
R1 = 1(EDF constraint for periodic cells). R2 = 0 (no

aperiodic task missing its deadline). R3 = Costtotal.
The limit Costtotal is optional. If a solution is found, the

newly arrived requests are accepted.
The algorithm which we are applying to solve the knapsack

problem is a genetic algorithm. In the algorithm, an individual
contains exactly one variant for each column in Adaptation-
RTCArray. In total, there exist up to fh individuals. Each
of them is a potential solution of the knapsack problem. We
select smaller subsets of individuals and call them Generations.
Let us assume that the number of individuals in a generation
≤ upper bound of number of RTCs in a class in the Work-
ingRTCArray. In the initial generation, the first individual is
given by selecting from each RTClass the variant with the
lowest respective utilization. This individual allows a simple
decision whether a solution exists, as if this individual does
not fulfill the constraints then there cannot exist any solution.
If the knapsack constraint

∑Num
i=1

∑ni

j=1 W
k
ijxij ≤ Rk has a

solution for a set of individuals, we choose the individual
which minimizes the accumulated cost of the chosen RTCs.
The lowest-cost individual of a generation is a preliminary
solution of the knapsack problem. The previous operations are
bounded by upper bounds of RTCArray dimensions, and the
given time bound for the iteration. A generation is constructed
from a previous one by applying selection and mutation. This
process is iterated until no improvement can be observed or
a given time limit is reached. The latter termination condition
guarantees boundedness.

Step 5: Activate the accepted requests, and update
the AEC: The Active property of accepted RTCs becomes
true. They are put into the ready queue as managed by the
underlying RTOS. The AEC updates its properties. Updating
requests take place in the WorkingRTCArray. After that, Adap-
tationRTCArray is set to empty. Cells are still enforced when
having them replaced by other variants because, by definition,
updating points are designed for this reason. Values of still to
be used variables are transmitted to the updating variants, and
accomplishing the same functionality must be ensured by the
developer.

Step 6: Turning the triggered requests into non-
triggered: The Triggered Property of requests RTCs is turned
into false. After that, WorkingRTCArray is copied to RTCAr-
ray if the solution is accepted, and then it is set to empty.

Step 7: Notify the system, in case the requests are not
accepted. : Algorithm variables are reset to their initial values.

In [24] we modelled each of the previous steps by a Nassi-
Schneidermann diagram [25]. This helps to understand the
specification of code structure and points out the calculation
of time complexity.

Concerning the time complexity of the developed adap-
tation algorithm, we can show that per single execution (i.e.,
once per hyperperiod) the algorithm can be solved in quadratic
time in the upper bounds of dimensions of RTCArray and
upper bound of number of RTCs inside a dependent set request
[24]. Parameters of time complexity are bounded. In case of
solving the knapsack problem, this boundedness is enforced by
setting an upper bound of execution time in the iterative genetic
algorithm. Together with the fact that there are no unbounded
blockings possible due to parameters not under control of the
algorithm (assumption of Stack Resource Protocol included
in the underlying RTOS) this implies the boundedness of the
algorithm.

IV. CONCLUSION

In this paper, we have developed an approach that enhances
real-time operating systems by an organic adaptability feature.
This implies building an infrastructure of the system, which
can change its behavior at runtime. The basic unit in this
infrastructure is a cell. A cell is a task that can change its
structure and behavior by selecting a variant of it at runtime.
The way variants are chosen at runtime follows resource and
time limitations, in order to enhance the quality of the system.
The boundedness of our algorithm has been proven. Many
new trends can be developed in the context of the described
problem, such as distributing the central algorithm that is run
by the Engine-Cell on several nodes in order to save more
processor utilization on one node, obtaining fault tolerance,
dealing with the boundedness of the algorithm in case of a
non- deterministic network, such as in a multi-agent system,
measuring the optimization output by running the algorithm
on a real-time operating system and observing the results, and
having several controlling cells other than the Engine-Cell or
having several variants of it, etc.
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Abstract—This paper addresses the problem of funnel output
tracking control for a class of unknown high-order nonlinear sys-
tems with state feedbacks, which requires to achieve output track-
ing with prescribed accuracy when both the system nonlinearities
and the powers of the system are unknown. Therefore, a robust
funnel control algorithm, i.e., a continuous, static, universal, state-
feedback controller is explicitly constructed, which ensures that
the state errors evolve within the predesigned performance space.
The advantages of the proposed funnel output tracking controller
when compared with the current approaches lie in the fact that no
a priori knowledge of system nonlinearities, including generally
required bounding functions, is needed. Furthermore, all the
powers in each high-order subsystem are not required to be
known as well. A simulation example is provided to demonstrate
the effectiveness of the proposed algorithm.

Keywords–nonlinear systems; output tracking; funnel control;
unstabilizable linearization.

I. INTRODUCTION

Owing to its practical significance and theoretical chal-
lenge, the control problem of high-order uncertain nonlinear
systems has attracted considerable research effort. Significant
progress in different directions, including adaptive regulation,
output tracking control with state feedbacks, and finite-time
stabilization [1]-[4], has been achieved by adding a power
integrator technique and a homogeneous domination method.
However, in all aforementioned developments, a priori knowl-
edge of the system nonlinearities and the powers in each
subsystem is needed.

Another important issue associated with the control design
of unknown high-order nonlinear systems is the prescribed
transient behaviour of the closed loop system. Recently, the
work [5] introduced the concept of funnel control, which
not only deals with unknown system nonlinearities, but also
achieves the output tracking with prescribed performance. In
particular, via the backstepping procedure, the funnel control
methodology has been employed for various classes of non-
linear systems, such as Brunovsky, strict-feedback and pure-
feedback systems. Working independently, an alternative ap-
proach, called Prescribed Performance Control, was proposed
to achieve the same control objective [6]. Unfortunately, both
schemes mentioned in [5]-[6] cannot be directly applied to
high-order nonlinear systems even if the powers are precisely
known, due to the singularity around the origin.

Motivated by the above discussions, this paper focuses on
the output tracking problem with prescribed performance via
state feedbacks for high-order nonlinear systems with unknown
powers and functions. By combining the funnel control tech-
nique with barrier Lyapunov functions, the difficulty involved

with the singularity problem can be avoided and a continuous,
static, universal, state-feedback controller is explicitly con-
structed, which ensures the predesigned performance. In the
proposed universal approach, the barrier Lyapunov functions
are employed to enforce the unknown system nonlinearities
to be bounded, making constructions of the adaptive laws or
function approximators not necessary. Furthermore, the precise
knowledge of all the powers in each subsystem is not needed
to be known a priori. Thus, compared with the current state-
of-the-art of the output tracking control, the proposed scheme
relaxes significantly the common assumptions in the related
works and represents a structurally simple and computationally
inexpensive strategy. Finally, simulation results illustrate the
effectiveness of the proposed theoretical findings.

The paper is organized as follows: In Section II, the prob-
lem addressed is stated. In Section III, the main result of this
paper is presented without rigorous stability analysis. Further,
in Section IV, a simulation example is provided to demonstrate
the effectiveness of the proposed scheme. Conclusions are
drawn in Section V.

II. PROBLEM FORMULATION

Notations: R denotes the set of real numbers. R≥0 denotes
the set of nonnegative real numbers. R>0 denotes the set
of positive real numbers. Rn denotes the real n-dimensional
space. W1,∞(R≥0, R>0) denotes the set of differential func-
tions ρ : R≥0 → R>0 with ρ and ρ̇ being essentially bounded
on R≥0.

Consider the following class of single-input-single-output
(SISO) nonlinear systems:

ẋi = di(t, x, u)x
pi

i+1 + ϕi(t, x, u), i = 1, ..., n− 1,

ẋn = dn(t, x, u)u
pn + ϕn(t, x, u),

y = x1, (1)

where x̄i = [x1, ..., xi]
T ∈ Ri, i = 1, ..., n; x = x̄n =

[x1, ..., xn]
T ∈ Rn are the system states with initial condition

x0 = [x0
1, ...., x

0
n]

T , u ∈ R is the control input, y ∈ R is
the output; pi, i = 1, ..., n are the powers of the system; The
system nonlinearities di, ϕi : R≥0×Rn×R → R, i = 1, ..., n
are locally Lipschitz in x and u, and piecewise continuous in
t.

For simplicity of presentation, denote xn+1 = u. The
following assumptions are made.

Assumption 1: The powers pi, i = 1, ..., n are positive odd
integers, which may be unknown.
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Assumption 2: There exist unknown continuous and strict-
ly positive functions ci : Ri → R and c̄i : Ri+1 → R,
i = 1, ..., n such that

0 < ci(x̄i) ≤ di(t, x, u) ≤ c̄i(x̄i+1), i = 1, ..., n. (2)

Assumption 3: There exist unknown continuous non-
negative functions ϕ̄ij : R

i → R, i = 1, ..., n, j = 0, ..., pi− 1
such that

|ϕi(t, x, u)| ≤
pi−1∑
j=0

|xi+1|j ϕ̄ij(x̄i), i = 1, ..., n. (3)

Assumption 4: The desired trajectory yr is bounded, con-
tinuous and available, and ẏr is bounded but its bound may
not be available.

Remark 1: Assumptions 1-3 are sufficient conditions for
global controllability of the system (1), which are extensively
used in the literature [3]-[4]. It should be stressed that the de-
veloped controller in the sequel does not require the analytical
expressions of system nonlinearities di(t, x, u), ϕi(t, x, u) and
their bounding functions ci(x̄i), c̄i(x̄i+1), ϕ̄il(x̄i), in contrast
to some results in [3]-[4].

The control objective is to design a state-feedback con-
troller

u = α(t, x, yr) (4)

such that

• all signals in the closed loop system are globally
bounded;

• the tracking error e = y − yr evolves within a
prescribed performance funnel

Fρ :=
{
(t, e) ∈ R≥0 ×R

∣∣∣|e| < ρ1

}
, (5)

which is determined by a performance function ρ1 ∈
W1,∞(R≥0, R>0) incorporating the desired perfor-
mance specifications.

III. FUNNEL CONTROLLER DESIGN

In this section, we will construct a funnel controller for
system (1) via barrier Lyapunov functions [7]. The design
procedures of the proposed funnel controller are given as
follows.

Step 1 : Preselect the first performance function ρ1 ∈
W1,∞(R≥0, R>0) that satisfies ρ1(0) > |x1(0) − yr(0)| and
guarantees the desired performance specifications regarding
the steady state error and the speed of convergence. Let
z1 := e = x1 − yr and ξ1 := z1

ρ1
, then, the first virtual law is

designed as

α1 =
−k1ξ1
1− ξ21

, (6)

where k1 is a positive constant.
Step i(i = 2, · · · , n) : Preselect the i-th performance

function ρi ∈ W1,∞(R≥0, R>0) that satisfies ρi(0) > |xi(0)−
αi−1(0)|. Define zi := xi − αi−1 and ξi :=

zi
ρi

, then, the i-th
virtual and actual control laws are designed as

αi =
−kiξi
1− ξ2i

, (7)

u = αn, (8)

T ime(sec)
0 2 4 6 8 10

y
,
y
r

-2

0

2 y yr

T ime(sec)
0 2 4 6 8 10

z
1

-1

0

1
−ρ1 ρ1 z1

Figure 1. Output tracking performance.

where ki is a positive constant.
Remark 2: The features of the proposed scheme lie in

the fact that the exact knowledge of system nonlinearities,
including generally required bounding functions, is not needed
to be a priori, and all the powers in each high-order subsystem
are allowed to be any unknown positive odd rational numbers.
Moreover, compared with adaptive robust control approaches,
no adaptive techniques are utilized in the developed controller.

Remark 3: In the proposed control design, the prescribed
transient behaviour is imposed by appropriately selecting the
performance function ρ1, other controller parameters ρi, i =
2, ..., n, and ki, i = 1, ..., n, are chosen flexibly according to
the conditions ρi(0) > |xi(0)− αi−1(0)|, i = 2, ..., n.

IV. A SIMULATION EXAMPLE

To illustrate the correctness and effectiveness of the theoret-
ical findings, we consider the following second order nonlinear
system:

ẋ1 = (4− sin(x1))x
3
2 + sin(x1)x2 + x1e

x1 cos(x2),

ẋ2 = (3 + sin(t))u3 + cos(x1)e
x2 sin(x1),

y = x1, (9)

where the initial condition is [x1(0), x2(0)]
T = [−0.4, 0.5]T .

The control purpose is to force the output y to track the desired
trajectory yr = sin 1.5t with steady state error no more than
0.1 and minimum speed of convergence as obtained by the
exponential e−3t.

By selecting appropriately the design parameters and ap-
plying the proposed controller, the simulation result on the
output tracking performance is presented in Figure 1, in which
it can be observed that the prescribed performance of the
tracking error is achieved.

V. CONCLUSION

This paper has studied the funnel output tracking problem
for unknown high-order nonlinear systems. By combining
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the funnel control technique with barrier Lyapunov functions,
we have exploited a constructive approach for designing the
global universal controller, which achieves the predesigned
performance of the state errors. Contrary to the current state-
of-the-art of the output tracking control, the proposed funnel
control does not incorporate any prior knowledge of system
nonlinearities and the powers in each subsystem. Moreover,
instead of utilizing adaptive laws or function approximators,
the unknown system nonlinearities are guaranteed to be bound-
ed via the barrier Lyapunov functions. Simulations performed
on an illustrative example verify and clarify the theoretical
findings. As a future work, we will apply the proposed
method to an underactuated unstable two degree of freedom
mechanical system [1].
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Abstract— Most of the autonomic cloud computing 

architectures are either a domain specific architecture or focus 

on certain properties of autonomic computing. In addition, 

they do not concentrate on the core issues related to the design 

and architectural concerns with respect to autonomic cloud 

computing in which the cloud can manage itself. In this paper, 

we propose a generic software architectural style for 

autonomic cloud computing systems that is based on a 

simplified layered approach. The proposed architectural style 

consists of five layers in which the bottom layer consists of 

cloud hardware/software resources, the second layer consists of 

a virtual machine that provides flexibility to service providers 

to utilize cloud resources, the third layer consists of an 

autonomic manager that manages cloud services, the fourth 

layer consists of a cloud service provider which provides 

services to cloud clients, and finally, the fifth and top layer 

represents the client layer that enables users to utilize the 

provided cloud services. This architectural style is a flexible 

and expandable software architecture solution for autonomic 

cloud computing systems, in which the service providers in the 

cloud can integrate their services within the architecture of the 

cloud computing software system. Additionally, this 

architecture enables the software architects to design and 

model their cloud computing software system in a flexible way 

that will maximize the reuse of existing cloud software 

components within their software system. 

 

Keywords- autonomic cloud computing; cloud computing 

architecture; software architecture; software architectural style; 

cloud computing architectural style. 

I. INTRODUCTION 

Cloud computing is a computing model that aims to 
provide services over the Internet by providing shared 
computing resources that are accessible by cloud service 
providers, as well as cloud clients. Cloud computing  is 
defined by the National Institute of Standards and 
Technology (NIST) as “a model for enabling ubiquitous, 
convenient, on-demand network access to a shared pool of 
configurable computing resources (e.g., networks, servers, 
storage, applications, and services) that can be rapidly 
provisioned and released with minimal management effort or 
service provider interaction” [1]. A given cloud computing 
implementation can be viewed as a collection of 
interconnected computers that are presented as unified 
computing resources that provide services based on a certain 
service level agreement. Cloud computing provides different 
services. The most common cloud computing services are 
three service models: Software as a Service (SaaS), Platform 
as a Service (PaaS), and Infrastructure as a Service (IaaS). In 

addition, cloud computing may be deployed based on four 
deployment models: private cloud, community cloud, public 
cloud, or hybrid cloud [1][2]. Cloud computing relies on 
sharing of resources, as well as adaptation to existing 
technologies and paradigms without the need to know such 
technologies and paradigms. In addition, cloud computing 
adopts concepts from Service-Oriented Architecture (SOA) 
that can help users to breakdown the business problems into 
services that can be integrated to provide a solution. Cloud 
computing is widely used as a Web service that provides 
services at minimal management. The advantage of cloud 
computing is the flexibility of offering and delivering shared 
resources. Typically, the cloud service is a subscription-
based service in a pay-as-you-go model. Cloud computing is 
a complex, large scale distributed system whose 
management is crucial in order to offer services in a reliable 
and timely manner. This requires the automation and 
integration of cloud service provision and management in an 
autonomic computing manner. 

The autonomic computing model is derived from the 
human body autonomic nervous system [3] in which the 
computing system is capable of managing itself and can 
dynamically adjust to changes in policies without human 
intervention. The main property of autonomic computing is 
the self-management, which consists of self-configuration, 
self-optimization, self-healing, and self-protection [15]. Self-
configuration is the system’s ability to dynamically 
configure itself according to high-level policies, with the rest 
of system adjusting itself automatically and seamlessly. Self-
optimization is the system’s ability to automatically optimize 
its usage of resources and improve its performance and 
efficiency. Self-healing is the system’s ability to 
automatically detect, diagnose, and repair localized software 
and hardware problems. Self-protection is the system’s 
ability to automatically defend itself from malicious attacks 
or cascading failures, as well as from end users who 
accidentally make software changes, e.g., deleting an 
important file [3]. 

Software architecture deals with the design and 
implementation of the high-level structure of the software. It 
is the result of assembling a certain number of architectural 
elements in some well-chosen form to satisfy the major 
functional and non-functional requirements of a system, such 
as reliability, scalability, portability, and availability [4]. 
Software development based on common architectural 
idioms has its focus shifted from lines-of-code to coarser-
grained architectural elements (software components and 
connectors) and their overall interconnection structure [5]. In 
order to understand the architectural style, one should 
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understand the concept of software architecture. There are 
several definitions of software architecture. Perry and Wolf 
[6] define software architecture in terms of building blocks 
that are concerned with the selection of architectural 
elements, their interactions, and the constraints on those 
elements and their interactions necessary to provide a 
framework in which to satisfy the requirements and serve as 
a basis for the design. ISO/IEC/IEEE 42010 Standard [7] 
defines software architecture as “fundamental concepts or 
properties of a system in its environment embodied in its 
elements, relationships, and in the principles of its design 
and evolution”. Bass et al. [8] define software architecture as 
the structure or structures of a system, which comprises 
software elements, the externally visible properties of those 
elements, and the relationships among them. These 
definitions identify the software architecture at the macro 
level as the software system’s blueprint. The architectural 
style is determined by a set of element types, the topological 
layout of the elements indicating their interrelationships, a 
set of semantic constraints, and a set of interaction 
mechanisms that determine how the elements coordinate 
through the allowed topology [8]. Shaw and Clements [9] 
define the architectural style as a set of design rules that 
identify the kinds of components and connectors that may be 
used to compose a system or subsystem, together with local 
or global constraints on the way the composition is done. An 
architectural style determines the vocabulary of components 
and connectors that can be used in instances of that style, 
together with a set of constraints on how they can be 
combined. These can include topological constraints on 
architectural descriptions (e.g., no cycles) or some 
constraints on execution semantics [10].  

In this paper, we propose an autonomic cloud computing 
architectural style for software systems that is based on a 
simplified layered approach. We have used the decision 
support system’s architectural elements proposed in [11], as 
will be described in Section III, to support the self-
management of autonomic cloud computing software 
systems. The proposed architectural style consists of five 
layers: cloud hardware/software resources layer, virtual 
machine layer, autonomic manager layer, cloud service 
providers layer, and client layer. This paper is organized as 
follows. In Section II, we describe the related works, and in 
Section III, we present our proposed approach. The 
conclusions are presented in Section IV. 

II. RELATED WORK 

Several studies have proposed architectural approaches 
for autonomic cloud computing. In [12], a software process 
based development approach for designing and building an 
autonomic cloud computing system is described. According 
to this approach, a sequence of software steps is followed for 
the complete design, such as control parameter identification, 
system model, system input identification, model 
identification, model update, system decision type, 
prediction creation, coordinator creation, data measurement, 
managed system control, and autonomic system control. A 
cluster of application servers running on top of a cloud is 
described as an application of autonomic management 

architecture to show how the development approach can be 
reconfigured for self-management and optimization for Web 
services. 

A mechanism to implement autonomic cloud computing 
with the usage of information proxies is described in [13]. 
An information proxy provides useful information about a 
resource such as its state, works that need resources, overall 
resource utilization, etc. The proposed approach aims at 
improving the collaboration among peers in a large-scale 
network for the purpose of distributed resource scheduling. 
Results from the study showed that information proxies may 
improve the resource scheduling of large scale distributed 
systems. The information proxies help in building 
neighborhood nodes that contain information about the co-
located nodes that share similar characteristics.  

Artificial intelligence techniques such as multi agent and 
mobile computing are proposed in [14] for designing 
autonomic cloud computing. In this proposed approach, 
autonomous cloud agents are implemented with multi agent 
system which is capable of monitoring and correcting 
resource scheduling activities. The aim of this approach is to 
provide a monitoring system that facilitates autonomic 
clouds based on mobile agent computing. An agent enabled 
cloud consists of a mobile agent platform distributed on 
different virtual machines, and a software agent installed on 
the front-end to act as a proxy between the interface and 
agents.  

An architectural blueprint for autonomic computing 
system is presented in [15]. The presented architecture 
constitutes layers that are connected using enterprise service 
bus patterns in which the layers collaborate using Web 
services. The basic building blocks of the layers include 
managed resources which contain system components such 
as hardware or software, knowledge sources such as 
interfaces for accessing and controlling the managed 
resources, autonomic managers that perform various self-
management tasks to embody different intelligent control 
loops, and manual managers that provide a common system 
management interface for the informational technology 
professional using an integrated solutions console.  

In [16], the authors explore the architectural features and 
requirements of cloud computing. General guidelines are 
presented to software architects and cloud developers for 
creating future architectures. The architectural requirements 
are classified according to the stakeholder of such software 
system such as cloud providers, the enterprises that use the 
cloud, and end-users.  

A software defined cloud is proposed as an approach for 
automating the process of optimal cloud configuration [17]. 
Such optimization is obtained by extending the virtualization 
concept to all resources in a data center with emphasis on 
mobile cloud applications, in which a better quality of 
service can be obtained by easy reconfiguration and 
adaptation of physical resources in a cloud infrastructure.  

In [18], a conceptual architecture of autonomic 
computing for cloud resources’ management and provision 
that support SaaS applications is presented. The aim of such 
proposed model is to maximize efficiency and minimize the 
cost of services. In addition, the model aims at ensuring that 
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the resource provisioning system is able to allocate resources 
only for requests from legitimate users.  

An autonomic mobile cloud management framework is 
proposed in [21] for efficient service/resource management 
of mobile ad hoc cloud computing systems. The security and 
privacy of the proposed framework is investigated. The 
proposed framework uses mobile cloud application-enabling 
fabric to create and manage cloud applications in which a 
composition of autonomic cloud elements can be managed. 
Autonomic cloud elements can virtualize the physical 
resources, compose other elements, and communicate with 
other cloud elements using some common interface.  

In [22], an elastic architecture is presented for autonomic 
cloud computing based on control loops and thresholds 
based rules. The experiment shows that cloud computing and 
autonomic computing may be leveraged together for 
elasticity provisioning. The proposed architecture enables the 
resources to be allocated and deallocated as needed, to adjust 
to the workload. 

An autonomic Service Level Agreement (SLA) 
monitoring framework that is managed by trusted third party 
is proposed in [23]. The proposed framework uses 
calculation formulas to calculate the score of the cloud 
service providers and is composed of an SLA establishment 
module to support SLA generation and management, and a 
service monitoring module to monitor quality of service. The 
proposed framework is integrated into a real cloud based on 
the Apache CloudStack platform.  

In [24], autonomic computing paradigm features have 
been used to Supervisory Control And Data Acquisition 
(SCADA) system’s security by focusing on the self-
protecting SCADA system. The proposed framework aims at 
leveraging autonomic computing elements to cope with 
cyber security threats and challenges to SCADA industrial 
applications. The hierarchical autonomic managers are 
incorporated within the framework to extract and refine 
inferences for decision making support.  

Most of the aforementioned software architectures and 
frameworks are either a domain specific architecture or focus 
on certain properties of autonomic computing. We have 
observed that most of the existing studies of autonomic cloud 
computing did not concentrate on the core issues related to 
the design and architectural concerns with respect to 
autonomic cloud computing in which the cloud can manage 
itself. As stated earlier, cloud computing relies on sharing of 
resources, as well as adaption with existing technologies and 
paradigms without the need to know such technologies and 
paradigms which support independency of such cloud 
components. Therefore, we adopt a layered approach for our 
proposed architectural style to support independency among 
cloud components that support self-management in which 
each layer is independent from other layers. In addition, as 
discussed in the next Section, we have used the decision 
support system’s architectural elements [11] that support 
autonomic manager to enhance the self-management of 
cloud resources. In the next section, we present our proposed 
architectural style for autonomic cloud computing software 
system.  

III. AUTONOMIC CLOUD COMPUTING ARCHITECTURAL 

STYLE  

The aim of the proposed software architecture is to 
propose a generic architectural style that serves as a software 
architecture foundation for autonomic cloud computing 
systems that are not limited to certain domain. As stated 
earlier, we have used the decision making subcomponents 
i.e., knowledge base, data mining/Online Analytical 
Processing (OLAP), and a judgmental heuristics of the 
decision support system approach that was described in [11] 
to propose an autonomic manager for cloud resources’ self-
management.  

Cloud computing facilitates the accessibility to the shared 
computing resources by the cloud service providers. As a 
result, the software architectural style for such software 
system should be flexible and reusable to facilitate the 
interaction between the service providers and the computing 
shared resources.  Therefore, the proposed architecture is 
based on a simplified layered approach, which supports 
flexibility and reusability of its components. Within the 
layered style, each layer is server to the layer above it and 
client to the layer below it.  

Autonomic computing requires self-managing 
environments that, automatically, act and reflect the changes 
to cloud elements based on the observed changes, which can 
be achieved through employing an autonomic manager. The 
autonomic manager monitors and gathers required 
information from a system, analyzes collected information to 
detect whether it is necessary to take some action, creates a 
plan that describes the necessary changes, and executes the 
plan to implement these actions [19]. Monitoring cloud 
elements and/or services requires software or hardware 
sensors to capture the properties of such element or its 
related physical or virtual components within the 
environment, and an effector to adjust to the produced 
changes [20]. 
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Figure 1.  Autonomic cloud computing software architectural style 
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The proposed architectural style consists of five layers in 
which the bottom layer is the cloud hardware/software 
resources layer, the second layer is the virtual machine layer 
that provides flexibility to service providers to utilize cloud 
resources, the third layer is the autonomic manager layer 
which manages cloud services, the fourth layer is the cloud 
service provider layer that provides services to cloud clients 
to utilize, and the top layer is the client layer that enables the 
user to utilize the provided services. Figure 1 depicts the 
proposed software architectural style for autonomic cloud 
computing systems. In addition, the specification of the 
proposed architectural style is presented in Table I. In the 
following subsections, we briefly describe each layer of the 
proposed software architectural style for autonomic cloud 
computing starting from the bottom layer. 
 

TABLE I.  SPECIFICATION OF AUTONOMIC CLOUD COMPUTING 

ARCHITECTURAL STYLE 

Item Description 

Element 
types 

Standalone subsystems or components 

Connectors 
Typically procedure call 

Message passing  

Topology 

layout  

Hierarchical 

Multi-level client-server  

Each layer exposes an interface (API) to be used by 
above layers 

Semantic 
constraints 

Connectors are protocols of layer interaction 

Standardized layer interfaces to maintain layer 

independence 

Interaction 

mechanisms 

Each layer acts as a service provider to layers above and 

service consumer of layer below 

 
 

A. Cloud resources layer 

The cloud resources layer is the bottom layer that 
contains all hardware and software resources including the 
shared resources. It consists of data centers, servers, and 
other shared virtual resources. The cloud resources layer is 
the infrastructure of cloud computing system and it may 
include commercialized, as well as public domain and open 
source resources. This layer is interconnected with the virtual 
machine layer via a gateway, which can be defined as a 
proxy to maximize the independency among the different 
layers. 
 

B. Virtual machine layer 

The virtual machine layer contains the operating system 
or virtual machine that facilitates the environment to link 
cloud services to cloud resources. It operates as an interface 
between the cloud service providers and cloud resources to 
maximize the utilization of such resources by cloud services 
and, at the same time, to minimize the incompatibility among 
the Web services and the available cloud resources. This 
layer is connected to the layer above via a gateway which 
acts as a proxy between the two layers. It should be noticed 
that this layer may be skipped in the case where a service and 
the resource belong to the same platform and they have a 

well-defined connector. In such case, there is no need for a 
virtual machine to be in the middle.  
 

C. Autonomic manager layer 

This layer is the autonomic manager which is responsible 
for providing the self-management of cloud services. The 
autonomic manager is a configurable software and/or 
hardware component that consists of sensor, effector, and a 
decision making subcomponents i.e., knowledge base, data 
mining/OLAP, and judgmental heuristics. The autonomic 
manager monitors the managed resources and cloud services, 
in which the sensor collects data about cloud elements to 
monitor their states. When symptoms are discovered, the 
element state is identified and passed to the knowledge base 
to check whether an update of such state is available. The 
knowledge base looks for a fact or rule that is applicable for 
such element’s state, in which a prediction of such state 
change is identified by the data mining or OLAP approach. 
OLAP is a business intelligence technique that helps in 
discovering some knowledge by extracting data from the 
database and viewing it from different points-of-view. The 
data mining explores data from the database and puts it into 
the knowledge base of the expert system to make 
knowledge-based reasoning for quantitative analysis to aid 
decision making. In other words, the data mining aims to 
discover new knowledge by extracting information from a 
database, analyzing it from different perspectives, and 
transforming it into an understandable structure of 
knowledge for further use. In some cases, there is a need for 
human intervention and/or interpretation to collect some 
information from human experts to identify the element’s 
state change. In such cases, the system may use judgmental 
heuristics, which is a normative approach that aims to 
support the human in combing many factors into an optimal 
decision. Judgmental heuristics use a decision-analytic 
approach that applies the principles of decision theory and/or 
probability theory into the decision analysis. The normative 
system is based on graphical probabilistic models, i.e., 
probability distribution over model variables in terms of 
directed graph, also known as influence diagram. The 
database at this layer can be a traditional database, relational 
database, or multidimensional database. The database 
structure, e.g., the blackboard, as well as the components 
operating on it, are managed by a database management 
system (DBMS). In addition, such sub-system is controlled 
by the blackboard state. The autonomic manager identifies 
the element’s new state, such as new configuration, new 
usage for an element, better optimization or utilization, 
fixing problem, or fixing security vulnerability. The new 
state and a request of change are passed from the sensor to 
the effector to execute such state change.  
 

D. Cloud service provider layer 

This layer consists of cloud services, such as Software as 
a Service (SaaS), Platform as a Service (PaaS), and 
Infrastructure as a Service (IaaS). In addition, it may contain 
any other cloud services which we describe as “X as a 
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Service (XaaS)”. This layer provides the environment of 
such cloud services offered by the cloud service providers. 
This layer is connected to the layer above via different types 
of connectors such as Remote Procedure Calls (RPC), 
Remote Method Invocation (RMI), Application 
Programming Interface (API), or Extensible Markup 
Language (XML).  
 

E. Client/Front end layer 

This layer represents the cloud client or the front end 
user, which is the consumer of cloud services. This layer 
enables the client to request any available service using 
servicing tools that may utilize different technologies. Each 
service within this layer is defined using a specific 
connector, in which the client may utilize the Web services 
via the identified connector such as RPC, RMI, XML, API, 
or any other servicing tool connector. 
 

IV. CONCLUSION  

In this paper, we have introduced a software architectural 
style for autonomic cloud computing systems. The proposed 
architecture style is based on a simplified layered approach, 
and consists of five layers: a cloud hardware/software 
resources layer, a virtual machine layer, an autonomic 
manager layer, a cloud service provider layer, and a client 
layer. Within the layered style, each layer is a server to the 
layer above it, and a client to the layer below it.  

The proposed software architectural style can 
accommodate most cloud computing software systems for 
different domains. In addition, this architectural style 
minimizes the dependency among its components which can 
enhance the reusability, integration with other software 
systems, and expandability. Such feature will enable 
software architects to design and model their cloud 
computing software system in a flexible way that will 
maximize the reuse of existing cloud software components 
within their software system. 

The proposed architectural style is an abstract framework 
prototype for autonomic cloud computing software systems, 
and in order to understand its advantages and/or limitations, 
an experimental and investigation study is needed to judge 
the applicability of such framework on real autonomic cloud 
computing systems. We plan to conduct an experimental 
study using some commercial cloud software systems and 
perform a comparison study with the existing relevant 
architectural styles to better understand the advantages of 
such proposed software architecture.  
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