
ICAS 2019

The Fifteenth International Conference on Autonomic and Autonomous Systems

ISBN: 978-1-61208-712-2

June 2 - 6, 2019

Athens, Greece

ICAS 2019 Editors

Irina Topalova, FaGEEIM, Technical University Sofia, Bulgaria

Paolo Paoletti, School of Engineering, University of Liverpool, UK

 1 / 92

ICAS 2019

Forward

The Fifteenth International Conference on Autonomic and Autonomous Systems (ICAS
2019), held between June 02, 2019 to June 06, 2019 - Athens, Greece, was a multi-track event
covering related topics on theory and practice on systems automation, autonomous systems
and autonomic computing.

The main tracks referred to the general concepts of systems automation, and
methodologies and techniques for designing, implementing and deploying autonomous
systems. The next tracks developed around design and deployment of context-aware networks,
services and applications, and the design and management of self-behavioral networks and
services. We also considered monitoring, control, and management of autonomous self-aware
and context-aware systems and topics dedicated to specific autonomous entities, namely,
satellite systems, nomadic code systems, mobile networks, and robots. It has been recognized
that modeling (in all forms this activity is known) is the fundamental for autonomous
subsystems, as both managed and management entities must communicate and understand
each other. Small-scale and large-scale virtualization and model-driven architecture, as well
as management challenges in such architectures are considered. Autonomic features and
autonomy requires a fundamental theory behind and solid control mechanisms. These topics
gave credit to specific advanced practical and theoretical aspects that allow subsystem to
expose complex behavior. We aimed to expose specific advancements on theory and tool in
supporting advanced autonomous systems. Domain case studies (policy, mobility, survivability,
privacy, etc.) and specific technology (wireless, wireline, optical, e-commerce, banking, etc.)
case studies were targeted. A special track on mobile environments was indented to cover
examples and aspects from mobile systems, networks, codes, and robotics.

Pervasive services and mobile computing are emerging as the next computing paradigm in
which infrastructure and services are seamlessly available anywhere, anytime, and in any
format. This move to a mobile and pervasive environment raises new opportunities and
demands on the underlying systems. In particular, they need to be adaptive, self-adaptive, and
context-aware. Adaptive and self-management context-aware systems are difficult to create,
they must be able to understand context information and dynamically change their behavior at
runtime according to the context. Context information can include the user location, his
preferences, his activities, the environmental conditions and the availability of computing and
communication resources. Dynamic reconfiguration of the context-aware systems can generate
inconsistencies as well as integrity problems, and combinatorial explosion of possible variants
of these systems with a high degree of variability can introduce great complexity.

Traditionally, user interface design is a knowledge-intensive task complying with specific
domains, yet being user friendly. Besides operational requirements, design recommendations
refer to standards of the application domain or corporate guidelines.

Commonly, there is a set of general user interface guidelines; the challenge is due to a
need for cross-team expertise. Required knowledge differs from one application domain to

 2 / 92

another, and the core knowledge is subject to constant changes and to individual perception
and skills.

Passive approaches allow designers to initiate the search for information in a knowledge
database to make accessible the design information for designers during the design process.
Active approaches, e.g., constraints and critics, have been also developed and tested. These
mechanisms deliver information (critics) or restrict the design space (constraints) actively,
according to the rules and guidelines. Active and passive approaches are usually combined to
capture a useful user interface design.

We welcomed academic, research and industry contributions. The conference had the
following tracks:

 UNMANNED: Driver-less cars and unmanned vehicles

 Technologies for Real Robotic Autonomy

 Application of Neural Networks in Intelligent Autonomous Systems

 Autonomic computing and self-adaptability
We take here the opportunity to warmly thank all the members of the ICAS 2019 technical

program committee, as well as all the reviewers. The creation of such a high quality conference
program would not have been possible without their involvement. We also kindly thank all the
authors who dedicated much of their time and effort to contribute to ICAS 2019. We truly
believe that, thanks to all these efforts, the final conference program consisted of top quality
contributions.

We also thank the members of the ICAS 2019 organizing committee for their help in
handling the logistics and for their work that made this professional meeting a success.

We hope that ICAS 2019 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in the area of
autonomic and autonomous systems. We also hope that Athens, Greece provided a pleasant
environment during the conference and everyone saved some time to enjoy the historic charm
of the city.

ICAS 2019 Chairs

ICAS Steering Committee
Satoshi Kurihara, University of Electro-Communications, Japan
Ljubo Vlacic, Griffith University, Australia
Roy Sterritt, Ulster University, UK
Mark J. Balas, Embry-Riddle Aeronautical University, USA
Elisabetta Di Nitto, Politecnico di Milano, Italy
Radu Calinescu, University of York, UK
Karsten Böhm, Fachhochschule Kufstein, Austria
Richard Anthony, University of Greenwich, UK
Jacques Malenfant, Sorbonne Université | LIP6 Lab, France
Wladyslaw Homenda, Warsaw University of Technology, Poland
Albert M. K. Cheng, University of Houston, USA

 3 / 92

ICAS Industry/Research Advisory Committee
Loris Penserini, Informatica e Società Digitale - IES, Italy
Stefanos Vrochidis, Centre for Research and Technology Hellas - Thermi-Thessaloniki, Greece
Tsuyoshi Ide, IBM T. J. Watson Research Center, USA
Petr Skobelev, Knowledge Genesis Group / Samara Technical University, Russia
Rajat Mehrotra, Intelligent Automation Inc., USA
Andreas Kercek, Lakeside Labs GmbH, Austria
Claudius Stern, biozoom services GmbH - Kassel | FOM University of Applied Sciences - Essen,
Germany

 4 / 92

ICAS 2019
Committee

ICAS Steering Committee
Satoshi Kurihara, University of Electro-Communications, Japan
Ljubo Vlacic, Griffith University, Australia
Roy Sterritt, Ulster University, UK
Mark J. Balas, Embry-Riddle Aeronautical University, USA
Elisabetta Di Nitto, Politecnico di Milano, Italy
Radu Calinescu, University of York, UK
Karsten Böhm, Fachhochschule Kufstein, Austria
Richard Anthony, University of Greenwich, UK
Jacques Malenfant, Sorbonne Université | LIP6 Lab, France
Wladyslaw Homenda, Warsaw University of Technology, Poland
Albert M. K. Cheng, University of Houston, USA

ICAS Industry/Research Advisory Committee
Loris Penserini, Informatica e Società Digitale - IES, Italy
Stefanos Vrochidis, Centre for Research and Technology Hellas - Thermi-Thessaloniki, Greece
Tsuyoshi Ide, IBM T. J. Watson Research Center, USA
Petr Skobelev, Knowledge Genesis Group / Samara Technical University, Russia
Rajat Mehrotra, Intelligent Automation Inc., USA
Andreas Kercek, Lakeside Labs GmbH, Austria
Claudius Stern, biozoom services GmbH - Kassel | FOM University of Applied Sciences - Essen,
Germany

ICAS 2019 Technical Program Committee

Sherif Abdelwahed, Mississippi State University, USA
Lounis Adouane, POLYTECH'Clermont-Ferrand, France
Jose Aguilar, Universidad de Los Andes, Venezuela
Ignacio Alpiste, University of the West of Scotland, UK
Alba Amato, Institute for High-Performance Computing and Networking (ICAR), Napoli, Italy
Razvan Andonie, Central Washington University, USA
Richard Anthony, University of Greenwich, UK
Markus Bader, Technische Universität Wien, Austria
Mark J. Balas, Embry-Riddle Aeronautical University, USA
Stefania Bandini, RCAST - Research Center for Advanced Science & Technology | The University
of Tokyo Komaba Campus, Japan
Giovanni Beltrame, Ecole Polytechnique de Montreal, Canada / University of Tübingen,
Germany
Julita Bermejo-Alonso, Universidad Politécnica de Madrid (UPM), Spain
Karsten Böhm, Fachhochschule Kufstein, Austria

 5 / 92

Radu Calinescu, University of York, UK
Paolo Campegiani, University of Roma Tor Vergata, Italy
Valérie Camps, Paul Sabatier University - IRIT, Toulouse, France
José Manuel Castro Torres, University Fernando Pessoa / LIACC - Artificial Intelligence and
Computer Science Laboratory / ISUS - Intelligent Sensing and Ubiquitous Systems, Portugal
Albert M. K. Cheng, University of Houston, USA
Feng Chu, University of Evry, France
Siobhan Clarke, Trinity College Dublin, Ireland
Rem Collier, University College Dublin, Ireland
Stéphanie Combettes, University Paul Sabatier of Toulouse, IRIT Lab, France
Emilio Cruciani, Gran Sasso Science Institute, Italy
Prithviraj (Raj) Dasgupta, University of Nebraska, USA
Giovanni De Magistris, IBM Research AI, Tokyo, Japan
Angel P. del Pobil, Jaume I University, Spain
Elisabetta Di Nitto, Politecnico di Milano, Italy
Sotirios Diamantas, Tarleton State University (Texas A&M), Stephenville, USA
Akif Durdu, Selcuk University, Turkey
Larbi Esmahi, Athabasca University, Canada
Anna Esposito, Seconda Università di Napoli & IIASS, Italy
Thaddeus Eze, University of Chester, UK
Luis Fernando Orleans, Universidade Federal Rural do Rio de Janeiro, Brazil
Hugo Ferreira, INESC TEC / Porto Polytechnic Institute, Portugal
Seyedshams Feyzabadi, Intuitive Surgical Inc., USA
Maurizio Fiasché, Politecnico di Milano, Italy
Manuel Filipe Santos, Universidade do Minho | Research Centre Algoritmi, Portugal
Paolo Fiorini, University of Verona, Italy
Ziny Flikop, Scientist, USA
Stefano Franchi, University of Texas A&M, USA
Matjaz Gams, Jozef Stefan Institute, Slovenia
Fabio Gasparetti, ROMA TRE University, Italy
Marie-Pierre Gleizes, University Paul Sabatier of Toulouse | IRIT, France
Fatemeh Golpayegani, Trinity College Dublin, Ireland
Teodor Lucian Grigorie, Military Technical Academy "Ferdinand I" in Bucharest, Romania
William Grosky, University of Michigan-Dearborn, USA
Jordi Guitart, Universitat Politècnica de Catalunya (UPC), Spain
Maki K. Habib, The American University in Cairo, Egypt
Fei Han, Colorado School of Mines, USA
Cédric Herpson, University Pierre and Marie Curie (UPMC) | LIP6, Paris, France
Gerold Hoelzl, University of Passau, Germany
Wladyslaw Homenda, Warsaw University of Technology, Poland
Wei-Chiang Hong, Jiangsu Normal University, China
Marc-Philippe Huget, Polytech Annecy-Chambery-LISTIC | University of Savoie, France
Jinho Hwang, IBM T.J. Watson Research Center, USA
Tsuyoshi Ide, IBM T. J. Watson Research Center, USA

 6 / 92

Konstantinos Ioannidis, Information Technologies Institute - Centre for Research and
Technology Hellas, Thessaloniki, Greece
Luis Iribarne, University of Almería, Spain
Reza Javanmard, University of Science and Technology of Mazandaran, Iran
Michael Jenkin, York University, Canada
Richard Jiang, Northumbria University, UK
Kevin Jones, University of Plymouth, UK
Paulo Jorge Sequeira Goncalves, Instituto Politecnico de Castelo Branco, Portugal
Imed Kacem, Université de Lorraine, France
Bilal Kartal, Borealis AI, Edmonton, Alberta, Canada
Alexey M. Kashevnik, St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences (SPIIRAS), Russia
Andreas Kercek, Lakeside Labs GmbH, Austria
Pete Khooshabeh, US Army Research Laboratory, USA
Won-jong Kim, Texas A&M University, USA
Ah-Lian Kor, Leeds Beckett University, UK
Timo Korthals, Universität Bielefeld, Germany
Igor Kotenko, St. Petersburg Institute for Informatics and Automation of the Russian Academy
of Sciences (SPIIRAS), Russia
Satoshi Kurihara, University of Electro-Communications, Japan
Ouiddad Labbani-Igbida, XLIM CNRS UMR 7252 Institute | ENSIL-ENSCI Engineering School |
University of Limoges, France
Diego Latella, Consiglio Nazionale delle Ricerche - Istituto di Scienza e Tecnologie
dell'informazione “A. Faedo”, Pisa, Italy
Jannik Laval, University of Lyon | DISP Lab, France
Jinoh Lee, Istituto Italiano di Tecnologia (IIT), Italy
Alessandro Leone, National Research Council of Italy | Institute for Microelectronics and
Microsystems, Lecce, Italy
Jiaoyang Li, University of Southern California, USA
Noel Lopes, Polytechnic of Guarda, Portugal
Marin Lujak, IMT Lille Douai, France
José Machado, University of Minho, Portugal
Prabhat Mahanti, University of New Brunswick, Canada
Jacques Malenfant, Sorbonne Université | LIP6 Lab, France
Pushparaj Mani Pathak, Indian Institute of Technology, Roorkee, India
Dinesh Manocha, University of North Carolina at Chapel Hill, USA
Jerusa Marchi, Universidade Federal de Santa Catarina, Brazil
Leandro Soriano Marcolino, Lancaster University, UK
Konrad Andrzej Markowski, Warsaw University of Technology, Poland
Goreti Marreiros, Polytechnic of Porto, Portugal
Rajat Mehrotra, Intelligent Automation Inc., USA
René Meier, Lucerne University of Applied Sciences and Arts, Switzerland
Marcio Mendonça, Universidade Tecnológica Federal do Paraná, Brazil
Yasser F. O. Mohammad, KDDI Laboratories, Japan / Assiut University, Egypt

 7 / 92

Masayuki Murata, Osaka University Suita, Japan
Adnan Abou Nabout, Bergische Universität Wuppertal, Germany
Kai Nagel, TU Berlin, Germany
Nicol Naidoo, University of KwaZulu-Natal, South Africa
Roberto Nardone, University of Naples Federico II, Italy
Nathalia Nascimento, Catholic University of Rio de Janeiro (PUC-Rio), Brazil
Chrystopher Nehaniv, University of Waterloo, Canada
António J. R. Neves, University of Aveiro, Portugal
Rafael Oliveira Vasconcelos, University Tiradentes (UNIT), Brazil
Flavio Oquendo, IRISA - University of South Brittany, France
Paolo Paoletti, University of Liverpool, UK
Eros Pasero, Politecnico of Turin, Italy / Tongji University, Shanghai, China
Loris Penserini, Informatica e Società Digitale - IES, Italy
Johan Philips, University of Leuven (KU Leuven), Belgium
Francesco Pierri, Universita` degli Studi della Basilicata, Italy
Agostino Poggi, DII - University of Parma, Italy
José Ragot, Université de Lorraine, France
Sazalinsyah Razali, Universiti Teknikal Malaysia Melaka (UTeM), Malaysia
Douglas Rodrigues, University of Sao Paulo (USP), Brazil
Spandan Roy, Indian Institute of Technology Delhi, India
Fariba Sadri, Imperial College London, UK
Lakhdar Sais, CRIL - CNRS, University of Artois, France
Jagannathan Sarangapani, Missouri University of Science and Technology, USA
Jurek Z. Sasiadek, Carleton University, Canada
Alain Servel, Independent Consultant, France
Madhavan Shanmugavel, Monash University Malaysia Campus, Malaysia
Pietro Siciliano, Institute for Microelectronics and Microsystems IMM-CNR, Italy
Fábio Silva, University of Minho, Portugal
Maria Silvia Pini, University of Padova, Italy
Edoardo Sinibaldi, Istituto Italiano di Tecnologia (IIT), Italy
David Sislak, Czech Technical University in Prague, Czech Republic
Petr Skobelev, Knowledge Genesis Group / Samara Technical University, Russia
Antonino Staiano, University of Naples, Parthenope, Italy
Bernd Steinbach, University of Mining and Technology, Freiberg, Germany
Claudius Stern, biozoom services GmbH - Kassel | FOM University of Applied Sciences - Essen,
Germany
Roy Sterritt, Ulster University, UK
Chun-Yi Su, Concordia University, Montreal, Canada
Ryszard Tadeusiewicz, AGH University of Science and Technology, Poland
Brahim Tamadazte, FEMTO-ST Institute / CNRS, France
Giorgio Terracina, Università della Calabria, Italy
Guy Theraulaz, Université Paul Sabatier, Toulouse, France
Emanuele Tonucci, IES - Informatica e Società Digitale, Italy
Irina Topalova, Technical University Sofia, Bulgaria

 8 / 92

Ali Emre Turgut, Middle East Technical University (METU), Turkey
Paulo Urbano, Universidade de Lisboa, Portugal
Egon L. van den Broek, Utrecht University, The Netherlands
Pierluigi Vellucci, Università di Roma “La Sapienza”, Italy
Ramon Vilanova i Arbos, Escola d'Enginyeria - UAB, Spain
Ljubo Vlacic, Griffith University, Australia
Stefanos Vrochidis, Centre for Research and Technology Hellas - Thermi-Thessaloniki, Greece
Yin-Tien Wang, Tamkang University, Taiwan
Zijian Wang, Stanford University, USA
Stephan Weiss, Alpen-Adria Universität Klagenfurt, Austria
Yu Weiwei, Northwestern Polytechnical University, China
Chenxia Wu, Nuro.ai, USA
Wenjun Xu, National University of Singapore, Singapore
Reuven Yagel, Azrieli - Jerusalem College of Engineering, Israel
Linda Yang, University of Portsmouth, UK
Wuu Yang, National Chiao-Tung University, Taiwan
Xin-She Yang, Middlesex University, UK
Mingyi Zhang, Huawei US R&D Research Center, USA
Minghui Zheng, University at Buffalo, USA
Saman Zonouz, Rutgers University, USA

 9 / 92

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 10 / 92

Table of Contents

Manned-Aircraft-Leader, Unmanned-Aircraft-Follower Teaming Architecture
Mohammad Sadraey

1

Evaluating LTL Formulas for On-Board Unmanned Vehicle Health Monitoring
Michael Poteat and Yiannis Papelis

9

Dynamic, Model-based Reconfiguration for Flexible Robotic Assembly Lines
Niki Kousi, Christos Gkournelos, Sotiris Aivaliotis, George Michalos, and Sotiris Makris

15

A Robust Polyurethane Depositing System for Deployment on Disaster Scenario Robotics
Alec Burns, Sebastiano Fichera, and Paolo Paoletti

21

DART Project: A High Precision UAV Prototype Exploiting On-board Visual Sensing
Michele Basso, Luca Bigazzi, and Giacomo Innocenti

27

A Navigational System for Quadcopter Remote Inspection of Offshore Substations
Elisabeth Welburn, Hassan Hakim Khalili, Ananya Gupta, Joaquin Carrasco, and Simon Watson

32

Towards a Methodology to Test UAVs in Hazardous Environments
Vincent Page, Matt Webster, Michael Fisher, and Mike Jump

38

Design of Autonomous Systems for Cybersecurity Threat Detection Using Deep Learning
Strahil Sokolov

46

Transfer Learning Approach for Autonomous Agents in Collective Games
Vanya Markova and Ventseslav Shopov

51

Deep Learning with Evolutionary Strategies for Building Autonomus Agents Beahviour
Ventseslav Shopov and Vanya Markova

55

Adaptive Control of Traffic Congestion with Neuro-Fuzzy based Weighted Random Early Detection
Irina Topalova and Pavlinka Radoyska

59

Organic Self-Adaptable Real-Time Applications
Lial Khaluf and Franz-Josef Rammig

65

Funnel Control for a Class of High-Order Nonlinear Systems
Yong-Hua Liu and Chun-Yi Su

72

Software Architectural Style for Autonomic Cloud Computing 75

 1 / 2 11 / 92

Zakarya Alzamil

Powered by TCPDF (www.tcpdf.org)

 2 / 2 12 / 92

Manned-Aircraft-Leader, Unmanned-Aircraft-Follower Teaming Architecture
Mohammad H. Sadraey

Southern New Hampshire University

Manchester, NH 03106, USA

Email: m.sadraey@snhu.edu

Abstract - Unmanned Aerial Vehicles (UAVs), due to their

remarkable development, relatively low cost, and low risk to

human are a prime candidate for the teaming with manned

aircraft in performing complex missions. There are various

challenges and techniques for manned-unmanned aircraft

collaboration. This paper introduces the concept of manned-

unmanned aircraft teaming, as well as teaming architecture.

The technical requirements for a manned-aircraft-leader,

unmanned-aircraft-follower teaming are discussed. In addition,

the teaming formulation, teaming laws, and sense-and-avoid

system are developed. A particular teaming law and a guidance

algorithm for a manned-aircraft-leader, unmanned-aircraft-

follower teaming architecture are developed. At the end, the

success of the teaming architecture and performance of the

sense-and-avoid and guidance systems are examined through

various flight simulations.

Keywords - Manned-Unmanned Teaming; Unmanned Aerial

Vehicle; and Sense-And-Avoid.

I. INTRODUCTION

Today’s aircraft inventory includes a diverse mix of
manned and unmanned systems. Unmanned aerial vehicles
are a prime candidate for the teaming with manned aircraft in
performing complex/dangerous missions. Unmanned aircraft
systems are subject to regulation by the Federal Aviation
Administration (FAA) to ensure safety of flight, and safety of
people and property on the ground. Incidents involving
unauthorized and unsafe use of small, remote-controlled
aircraft have risen [16] dramatically. One of the main goals
for the manned-unmanned teaming is to provide flexible and
safe flight operations. Teaming a UAV system with manned
systems will offer advantages to both.

To achieve the full potential of unmanned systems at an

affordable cost, efforts must be conducted to implement

technologies and evolve tactics, techniques and procedures

that improve the teaming of unmanned systems with the

manned aircraft. An efficient teaming will create an

environment such that both parties operate within their limits,

while generating an unachievable goal by one party. The

functions of a UAV in a team with manned aircraft depend in

nature on the different UAV configurations and their

characteristics.

A literature survey has reflected that various technical

documents have investigated many aspects of manned-

unmanned teaming. Unmanned vehicle systems are being

introduced into Army systems to extend manned capabilities

and act as “force multipliers” [1]. Jameson et al. [2] have

presented the collaborative autonomy for manned/unmanned

teams. The researchers in [3] have explored the expansion of

the envelope of unmanned aircraft systems operational

employment for manned-unmanned teaming. Accuracy

assessment of professional grade unmanned systems for high

precision airborne mapping is investigated in [4]. Clough et

al. [5] have presented a perspective on the autonomous

control challenges for UAVs from a researcher's point of

view. Autonomous vehicle technologies for small fixed-

wing UAVs have been discussed in [6]. There is a number of

consequences for UAV design requirements especially on

UAV modeling and simulation, some of which have been

investigated in [7]. The augmentations, motivations, and

directions for aeronautics applications of man–machine

integration design and analysis system have been explored in

[8].

The researchers in [9] developed new methodologies and

quantitative measurements for evaluating human-robot team

performance to achieve effective coordination between teams

of humans and unmanned vehicles. Significant challenges

facing a successful teaming are presented in the next section.

A team of a manned aircraft and an UAV in a flight mission

is a complex system [10] and requires the approach of

multidisciplinary systems engineering. Fundamentals of

manned-unmanned aircraft teaming are presented in [17].

In the literature survey, we did not find any publication

that fully develops the manned-aircraft-leader, unmanned-

aircraft-follower teaming architecture. There is a number on-

going research projects by National Aeronautics and Space

Administration (NASA) in this area employing various

manned aircraft and UAVs. The major contributions of this

paper are to provide a model for decision making within the

realms of guidance, sense-and-avoid and teaming, as well as

to provide a teaming formulation and a teaming law.

The rest of the paper is structured as follows. In Section

II, teaming problem formulation including three categories of

teaming is presented. The line of sight guidance law to guide

the UAV is developed in Section III. The UAV in turning

flight has a couple of constraints and limits, these constraints

and limits are introduced in Section IV. Collision avoidance

is a primary concern in full integration of UAVs with manned

aircraft; Section V presents the sense-and-avoid problem.

Section VI introduces the manned-aircraft-leader, unmanned-

aircraft-follower teaming law. Finally, the success of the

teaming architecture and performance of the sense-and-avoid

and guidance systems are examined via flight simulations in

Section VII. We conclude the paper in in Section VIII.

II. TEAMING PROBLEM FORMULATION

Formulation of manned-unmanned teaming problem
basically requires mathematical modeling of UAV flight
dynamics, human decision making process, and
communication between human and autopilot. Fig. 1
demonstrates the functional block diagram of a teaming flight

1Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 13 / 92

operation. In principle, there are two independent decision
makers: 1. Autopilot for UAV, and 2. Human pilot for the
manned aircraft. Moreover, there are two separate
trajectories, and two feedbacks. The teaming law creates
command for both manned and unmanned aircraft. There is
one group of input (mission parameters) and two outputs (i.e.,
trajectories). Both trajectories are fed back to the same point
for comparison with the mission input. Any difference will
create an error signal for the teaming law block. The teaming
law will generate two signals: one for the pilot of maned
aircraft, and one for the autopilot of the UAV.

Figure 1. Functional block diagram of a teaming flight operation

Fig. 1 contains information concerning dynamic
behavior, but it does not include any information on the
physical construction of the team. Each team member has a
unique trajectory which is controlled by its controller (one by
a pilot, and one by an autopilot). Both UAV and manned
aircraft provide a feedback to another team member. The
teaming law governs the relationship between team members
in conducting a flight team mission. The Guidance,
Navigation and Control (GNC) of the UAV is within the
autopilot, while the pilot will guide and control the manned
aircraft.

The mathematical model of aircraft/UAV (dynamics
model), and autopilot have been provided by [12]. In general,
there are three categories of teaming, each governed by a
distinct law: 1. UAV-leader, manned-aircraft-follower; 2.
manned-aircraft-leader, UAV-follower; and 3. mixed leader-
follower. This paper is primarily focusing on category 2.

Each teaming case has a number of advantages and
disadvantages, and is suited for specific applications and
flight missions. For instance, the teaming category 1 (i.e.,
UAV-leader, manned-aircraft-follower), is appropriate for a
flight mission where the operation involves some hazards to
human. Two examples for teaming category 1 are: 1.
Observing a volcano, 2. Monitoring a target in the enemy
zone for a military mission. In such a mission, the UAV takes
the lead and the manned aircraft will follow suit. If any
hazard arises, the UAV will be the first to face and handle it.
This category will guarantee the safety of human plot in the
manned aircraft. A pictorial representation of the functions
performed by each team member in the category 2 is
illustrated in Fig. 2.

The UAV flight parameters are measured by both UAV
avionics and manned aircraft measurement devices. Thus, the
manned aircraft has two feedbacks; one from the UAV, and
one from its own flight. The UAV will fly to accomplish the
trajectory as the leader, while the manned aircraft will be
guided and controlled based on the teaming law. However,
the teaming category 2 is appropriate for a flight mission
where the UAV acts as a reserve and no hazard is involved to
human pilot. The teaming law for this category may be based
on various techniques and guidance laws.

Figure 2. Manned-aircraft-leader, UAV-follower teaming block

diagram

In the second category, the manned aircraft flight
parameters are measured by both UAV avionics and manned
aircraft measurement devices, as well as the pilot’s eyes.
Thus, the UAV has two feedbacks; one from the manned-
aircraft-leader and one from its own flight. The manned
aircraft (human pilot) will fly to accomplish the mission
trajectory as the leader, while the UAV will be guided and
controlled based on the teaming law. The pilot decision
making process could be independent from the teaming law,
as he/she plays the role of the leader. The mathematical
formulations of control systems, guidance systems, and
navigation systems are presented by many books and papers
including [12].

III. GUIDANCE LAW

The UAV must employ a guidance law to follow the
manned aircraft. Guidance is defined as the process of
producing a trajectory based on what is received from the
command subsystem and the feedback from the navigation
system. The guidance subsystem produces the desired states
which go to the control subsystem. The output of the
guidance subsystem is sent to the control subsystem; based
on the guidance law. The control system implements this
command through actuators driving control surfaces such as
the elevator, aileron, and rudder. Navigation system is mainly
responsible for measuring the flight variables including the
aircraft’s angles, the rate of change of the angles, and the
body axis accelerations. The guidance system compares the
location of the aircraft with the pre-determined reference
trajectory, and modifies the autopilot commands to drive the
error to zero. The guidance subsystem often produces an
acceleration command. Thus, the guidance subsystem makes
the necessary correction to keep the vehicle on course by
sending the proper signal to the control system of an
autopilot.

The guidance system may be based on categories; for this
teaming formation, the Line-Of-Sight (LOS) seems a good fit
which satisfies the teaming requirements. The basic principle
in LOS guidance law is to guide the UAV on a LOS course
in an attempt to keep it on a line joining the target and the
ground station (tracking line). For a teaming of two, the line
of sight is defined as the line joining the follower UAV and
the leader UAV. In addition, the leader UAV is following a
moving ground target. For this law, the target-tracking radar
acquires the target shortly after take-off and then guides the
UAV into the beam of the target-tracking radar. For the

2Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 14 / 92

guidance command, the actual distance from the tracking line
to the UAV is required.

Figure 3. Line-Of-Sight (Top view)

An imaginary line between the follower-UAV to the
leader UAV is referred to as line-of-sight. The line of sight

angle () is determined by forming a right triangle, when
putting follower UAV and target, each at a corner. Then, the
hypotenuse is along the line of sight. The line of sight angle
is calculated by trigonometry from Fig. 3 as:

𝜆 = 𝑡𝑎𝑛−1 (
𝑦𝑇−𝑦𝑈

𝑥𝑇−𝑥𝑈
) (1)

where xT and xU represent the distance between target and
UAV to a reference line along x-axis, and yT and yU represent
the distance between target and UAV to a reference line along
y-axis. If the reference is selected to be at the UAV location,
both yU and xU will be zero. The instantaneous distance
between UAV and the target will be:

𝐷𝑇𝑈 = √(𝑦𝑇 − 𝑦𝑈)
2 + (𝑥𝑇 − 𝑥𝑈)

2 (2)

The closing velocity (Vc) - the negative rate of change of
separation between UAV and target - is obtained [11] by:

𝑉𝑐 =
−(𝑉𝑇𝑈𝑥(𝑥𝑇−𝑥𝑈)+𝑉𝑇𝑈𝑦(𝑦𝑇−𝑦𝑈))

𝐷𝑇𝑈
 (3)

where VTUx and VTUy are components of the relative velocity
and are given by

𝑉𝑇𝑈𝑥 = �̇�𝑇 − �̇�𝑈 (4)

𝑉𝑇𝑈𝑦 = �̇�𝑇 − �̇�𝑈 (5)

The instantaneous line-of-sight rate is computed by
taking the derivative of the equation 1, which leads to:

�̇� =
𝑉𝑇𝑈𝑦(𝑥𝑇−𝑥𝑈)−𝑉𝑇𝑈𝑥(𝑦𝑇−𝑦𝑈)

𝐷𝑇𝑈
2 (6)

In the line-of-sight guidance law, the velocity of the
follower UAV (Vn) perpendicular to the LOS should be equal
to the LOS rate at that point. It is assumed that the LOS value
is available from the use of onboard sensors (e.g., radar).

 𝑉𝑛 = 𝐷𝑇𝑈�̇� (7)

where �̇� is the rate of change of the line of sight angle,
and DTU denotes the distance between the follower UAV and
the target or leader UAV. Moreover, Vn is velocity of the
follower UAV perpendicular to the LOS. Hence, the
guidance command is perpendicular to the line of sight. The
guidance system output in xy plane (VC) may be readily

converted to a sideslip angle () command to control system.
There is a relationship between this speed (i.e., in y-direction)
and sideslip angle as:

𝛽 =
𝑉𝑛

𝑉𝑜𝑈
 (8)

where VoU is the initial UAV airspeed. So, the follower
UAV is guided so as to remain on the commanded LOS. As
soon as the follower UAV is reached to the commanded circle
around the target and stabilized, the guidance system will be
activated to guide the aircraft such that to keep a constant
line-of-sight angle. The LOS variables are available in both
manned and unmanned aircraft from the use of onboard
vision sensors. The guidance equations derived for the xy
plane. However, similar governing equations are derived and
used in xz plane.

IV. MANEUVERABILITY CONSTRAINTS

One of the basic maneuvers to make a flight smooth, and
to correct the line of sight, is to turn around to follow the
leader UAV. A turning flight has a couple of constraints,

including: 1. Maximum turn rate (max), 2. Minimum turn
radius (Rmin), 3. Maximum load factor (nmax), 4. Minimum
and maximum airspeed (Vmin, Vmax), 5. Maximum bank angle

(max). The following set of equations governs the relation
between parameters of a turning flight. The load factor is a
function of bank angle. The maximum allowable bank angle
is limited by the load factor:











 

max

1

max

1
cos

n
 (9)

 The turn radius (R) and turn rate () are functions of

airspeed (V), and load factor (n):

12

2




ng

V
R (10)

V

ng 12 
 (11)

The stall speed during a turn is a function of bank angle:

)cos(

2

max
 L

s
SC

mg
V

t
 (12)

 where S denotes the wing area, m the UAV mass,  the air

density, and CLmax the UAV maximum lift coefficient.

When the theoretical airspeed corresponding to the minimum

turn is less than the stall speed, the UAV has to turn with the

corner speed (
V):

2

1

max

max

2














LSC

Wn
V


 (13)

Moreover, a turn must be coordinated in order to keep the
radius of turn constant. For the requirements of a coordinated
turn, you may refer to references, such as [3]. The trajectory
smoother must take into account all of these performance
constraints to convert an initial path into a smooth trajectory.

V. SENSE AND AVOID

Collision avoidance is a primary concern and a critical
challenge in full integration of unmanned aircraft systems.
One of the major limitations to the widespread use of
unmanned vehicles in teaming with manned aircraft has been
the detect-and-avoid problem. When a group of UAVs (e.g.,

3Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 15 / 92

three Reapers) are following a manned aircraft (e.g., F/A-18),
a sense-and-avoid system will be needed to prevent collision
between UAVs.

In general, there are five functions required in a sense-
and-avoid system: 1. Detect the intruder/obstacle, 2. Track,
3. Evaluate, 4. Calculation, 5. Command, 6. Execute. There
is currently a large amount of research projects [16] being
conducted in the area of sense-and-avoid. In selecting a
surveillance system, a number of factors should be evaluated.
They are range, timeliness (update rate), field of view,
simplicity, cost, design challenge, reliability, accuracy, size,
weight, technology level, flexibility, and integration.

When a conflict resolution algorithm is feasible, various
guidance laws may be employed for a collision avoidance.
For instance, the proportional navigation guidance with a
proportional navigation constant less than one (i.e., N < 1). In
such case, the UAV will be turning slower than the LOS, thus
continuously falling behind the target (i.e., another aircraft).
Another appropriate guidance law for a collision avoidance
(as in a formation flight) is the line of sight guidance law.
This law may be implemented by assuming the goal (i.e.,
target) of the follower UAV to be constantly at a desirable
distance behind or at the side of the leader UAV. This paper
is mainly focusing on the sense-and-avoid system of one
UAV to follow a manned aircraft.

VI. TEAMING LAW

In order to begin the synthesis of the teaming law, the
design requirements relative to both parties must be
technically established. Based on handling qualities [14], and
also airworthiness standards [15], the following items are
typical design requirements to be used in the design process:
cost, stability of the overall teaming system; output (or state
tracking) performance; accuracy from command to response;
overshoot; steady state error; rise time; and settling time. In
addition, the law must be robust with respect to aircraft type,
communication elements, and mission.

A fully autonomous UAV should be capable of trajectory
tracking, defined as tracking a time-parameterized reference.
However, for trajectory tracking there exist fundamental
performance limitations that cannot be overcome by any
control system. Moreover, to meet temporal specifications,
the airspeed profile often needs to be controlled
independently. To overcome this challenge, temporal
constraints are not frequently imposed in path-following
problems, and the vehicle is allowed to converge to and
follow a path without imposing any temporal specifications.
This will result in a smoother convergence to the path, and
the control signals are less likely to be saturated. This
approach must also avoid collision in multi-vehicle
cooperative missions.

In a path following problem, the designer is required to
design an algorithm for a given path satisfying the given
bounds such that the generalized error converges to a
neighborhood of the zero. There are fundamental principles
which govern an efficient teaming law; some of which are
presented in this section. As the most important principle, the
safety of the manned aircraft (in fact, the human pilot) is of
much higher priority compared with the UAV airworthiness.

Thus, the collision avoidance and sense or detect are two
primary concerns to teaming success. Moreover, when the
leader aircraft is out of sight of the follower, the follower
aircraft must circle around to detect the leader.

The teaming law is established based on three
fundamental principles: 1. Keep the UAV at a line of sight,
2. Keep UAVs at a safe distance from the leader aircraft and
each other, 3. Each team member should fly within its safe
flight envelope. Sections IV, V, and VI provide the concept
and governing equations for each principle. The guidance
system will generate a command for the control system to
maintain the LOS. Ref. [20] has presented a modeling and
decentralized control for the multiple UAVs formation based
on Lyapunov design.

The sense-and-avoid system subsystem should make the
necessary correction to keep the follower UAV at a safe
distance (DTU) from leader aircraft (i.e., target) by sending the
proper signal to the control system.

𝐶1 ≤ 𝐷𝑇𝑈 ≤ 𝐶2 (14)

 In addition, the sense-and-avoid subsystem should make

the necessary correction to keep the follower UAVs at a safe

distance (DUU) from each other.

𝐶3 ≤ 𝐷𝑈𝑈 ≤ 𝐶4 (15)
The C1, C2, C3, and C4, are constant values and are given

by the designer. These constants are functions of many
factors including UAV vision sensor features, the UAV
maneuverability, weather conditions, and flight altitude.
When the UAV is at a safe distance (DTU) from the leader
aircraft, it must follow every flight maneuver of the leader
aircraft. The only difference is that every maneuver is
performed by the follower UAV after a time delay (Td),
which is the ratio of the safe distance (DTU) to the target speed
(UT):

𝑇𝑑 =
𝐷𝑇𝑈

𝑈𝑇
 (16)

For two reasons of 1. UAV airworthiness, and 2.
Successful payload application (e.g., aerial photography); the
trajectory must be smooth. A well-designed smooth
trajectory has ideally no abrupt and significant changes on the
movement of the UAV. The trajectory smoother should apply
changes to make the assigned trajectory kinematically
feasible in terms of constraints.

A limitation of this algorithm is that the trajectory is
composed of a number of time-stamped curves, which
specify the desired location of the UAV at a specified time.

Tracking the movement state estimation of an UAV
basically concerns inferring the latent state of interest based
on discrete time series noisy observations. The time of
interest may be the past (namely, smoothing), the present
(tracking) or the future (forecasting).

VII. SIMULATION

Two sets of simulations are presented to demonstrate the
efficacy of the proposed algorithm and teaming law: 1. A
UAV is following a manned aircraft in longitudinal plane
(i.e., xz), 2. A UAV is following a maneuvering manned
aircraft in the xy plane (i.e., turning flight). In the first
simulation, the UAV (as the follower) with a conventional
configuration, has a wing span of 20 m, length of 15 m, a stall

4Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 16 / 92

speed of 70 knot, and a maximum speed of 250 knot.
Moreover, the manned aircraft (as the leader), with a
conventional configuration has a wing span of 15 m, length
of 12 m, a stall speed of 100 knot, and a maximum speed of
400 knot. For this formation flight, the UAV is required to
stay behind and follow the manned aircraft and keep a safe
distance. The distance between the UAV and the manned
aircraft should be between 100 to 120 meters. Hence,

mDm TU 120100 

Next, the UAV is required to follow a random trajectory
(as if a manned aircraft is flying/leading) to simulate a
manned-unmanned aircraft teaming flight. For this mission,
the UAV is required to stay behind the manned aircraft at a
safe distance. For the initial conditions, the leader aircraft is
flying at a constant altitude with a velocity of 130 knot. The
follower UAV is right behind the manned aircraft with a
distance of 200 m, and an initial velocity of 120 knot. The
UAV performance limits and constraints are tabulated in
Table 1.

TABLE 1. UAV PERFORMANCE LIMITS AND CONSTRAINTS

No Parameter Value Remarks

1 Maximum load

factor

2 Structural limit

2 Maximum bank

angle

60 deg Structural limit

3 Maximum

airspeed

250

knot

Engine limits

4 Minimum

airspeed

1.2 Vs Airworthiness,

stall

5 Maximum bank

angle

60 deg Structural limit,

camera view

6 Maximum possible

turn rate

20

deg/sec

Fastest turn limit

7 Minimum turn

radius

50 m Tightest turn

limit

A linear state-space dynamic model for both the manned
aircraft and the UAV have been employed. For both vehicles,
typical stability and control derivatives for a dynamically
stable vehicle are utilized.

DuCxy

BuAxx






 (17)

The A, B, C, and D matrices are generated by a matlab
code. The four state-variables are airspeed (V), climb angle

(), heading angle (), and sideslip angle (). Furthermore,

four control-variables are throttle (T), elevator (E), aileron

(A), and rudder (R). Thus, the state variables are: x = [V, ,

, ]T and input variables are u = [T, E,A,R]T.
Four PID control laws (one for each controller) are

employed for controlling the UAV in the three dimensional
space. A Simulink model (Fig. 9) is developed to model all
subsystems of both the follower UAV and the leader manned
aircraft including LOS, navigation, guidance and control
systems.

A. LONGITUDINAL FLIGHT TEAMING

The first simulation is to examine a team of one follower
UAV and a manned leader aircraft in a 50 second longitudinal
flight maneuver (cruise/climb/cruise). The leader aircraft will
cruise for 20 seconds, and then, climb to 100 meters in
another 20 seconds.

Fig. 4 shows velocities, distance, and heights of UAV and
manned aircraft for this teaming flight operation. The top
Figure shows the velocities of UAV and manned aircraft, and
the middle Figure demonstrates the heights of UAV and
manned aircraft. The bottom Figure illustrates the distance
between UAV and manned aircraft. As the Fig. 5
demonstrates, the follower UAV is perfectly following the
leader aircraft, and performs every flight operation by a delay
of 1.5 seconds.

As the simulation results indicate, the UAV accelerates in
the beginning to reduce the distance of 200 m to the desired
value of 100 m. Then, it will keep the velocity equal to the
velocity of the leader aircraft. Due to the desired distance of
100 m, and the velocity of the leader aircraft (130 knot), the
time delay is about 1.5 seconds (i.e., 100/(130×0.5144)).

Fig. 5 illustrates the elevator deflections and throttle

settings of the UAV for this teaming flight operation. The

initial elevator angle is -2 deg, but during the flight, it varies

to maintain the longitudinal trim. The initial throttle setting is

20 deg, but during the flight, it varies to maintain the forward

velocity.

Figure 4. Velocities, distance, and heights of UAV and manned aircraft in a

teaming flight for a longitudinal flight maneuver

5Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 17 / 92

Figure 5. Elevator deflections and throttle settings of the UAV in a teaming

flight for a longitudinal flight maneuver

Both UAV elevator and engine throttle are varying to

change the velocity and altitude to follow the manned leader

aircraft.

a. Elevator deflections

b. Aileron deflections

c. Rudder deflections

d. Throttle setting

Figure 6. Control surfaces of UAV in a teaming flight for a turning flight
maneuver

B. TURNING FLIGHT TEAMING

 The second simulation is to examine a team of one
follower UAV and a manned leader aircraft in a 60 second
turning (lateral-directional) flight. The leader aircraft will
cruise for 20 seconds, and then, have a 360 level turn to the
left (one full turn in 40 seconds). Fig. 6 shows control
surfaces (i.e., elevator, aileron, and rudder) deflections and
throttle settings of the UAV in a teaming flight for a turning
flight maneuver.

a. Bank angle

b. Angle of attack

Figure 7. Control surfaces and flight parameters of UAV in a teaming flight
for a turning flight maneuver

The UAV accelerates in the beginning to reduce the
distance of 200 m to the desired value of 100 m. Then, it will
decelerate to keep the velocity equal to the velocity of the
leader aircraft.

Figure 8. Flight parameters of UAV and manned aircraft in a teaming flight

for a turning flight

During the turn, the UAV bank angle is about 40 degrees
(Fig. 7), while the angle of attack is about 3 degrees. Fig. 8
illustrates the flight path of both UAV and leader aircraft. As
the Figure demonstrates, the follower UAV is perfectly
following the leader aircraft, and performs every flight
operation by a delay of 1.5 seconds.

As the flight simulations indicate, both teaming
operations are successful, and the UAV is tracking and
following the manned aircraft for both longitudinal and
direction flight maneuvers. In both flight missions, the UAV
continuously keeps a distance of 100 m from leader aircraft
to avoid a collision. In all flight motions, the UAV
maneuverability constraints were observed, and the UAV did
not fly beyond the flight envelope.

The simulation employs a UAV linear state-space
dynamic model with four PID controllers. However, in
reality, the dynamics of a UAV is nonlinear. Moreover, other

6Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 18 / 92

control laws (e.g., robust nonlinear) may offer better
outcomes. The objective of the paper is to present the
fundamentals of the teaming technique with an application.
This technique may employ UAV nonlinear model with more
complex control laws. Each dynamic model and each control
law has unique advantages and disadvantages. The current
application is simple and efficient, but may not handle
nonlinearities.

VIII. CONCLUSION AND FUTURE WORK

This paper explores the manned-aircraft-leader,

unmanned-aircraft-follower teaming architecture. There are

various challenges and techniques for manned-unmanned

aircraft collaboration. This paper develops the concept of

manned-unmanned aircraft teaming, as well as teaming

architecture. The technical requirements for a manned-

aircraft-leader, unmanned-aircraft-follower teaming are

discussed. In addition, the teaming formulation, teaming

laws, and sense-and-avoid system are presented. A particular

teaming law and a guidance algorithm for manned-aircraft-

leader, unmanned-aircraft-follower teaming architecture are

developed.

At the end, the efficacy of the teaming architecture and

performance of the sense-and-avoid/guidance systems are

examined through formation flight simulations. The

simulation results confirm that the suggested teaming law is

applicable and efficient in following the flight team mission

and in avoiding any obstacle. In future, the teaming law will

be redesigned to improve the efficiency of the team.

Moreover, the future work will include a team of three UAVs

to follow a manned aircraft in 3d flight maneuvers.

REFERENCES

[1] A. Freedy, E. DeVisser, G. Weltman, and N. Coeyman,
“Measurement of trust in human-robot collaboration”,
International Symposium on Collaborative Technologies and
Systems, 0-9785699-1-1, IEEE, 2007.

[2] S. Jameson, J. Franke, R. Szczerba, and S. Stockdale,
“Collaborative Autonomy for Manned/Unmanned Teams”,
American Helicopter Society, 61th Annual Forum, Grapevine,
TX, June 1-3, 2005.

[3] S. J. Gaydos and I. P. Curry, “Manned-Unmanned Teaming:
Expanding the Envelope of UAS Operational Employment”,
Journal of Aviation, Space, and Environmental Medicine, Vol.
85, No. 12, December 2014.

[4] M. M. R. Mostafa, “Accuracy Assessment of Professional
Grade Unmanned Systems for High Precision Airborne
Mapping”, ISPRS Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, Presented at the
UAVg 2017, Bonn, Germany, September 4 – 7, 2017.

[5] M. Clough and T. Bruce, “Unmanned Aerial Vehicles:
Autonomous Control Challenges, A Researcher's Perspective”,

Journal of Aerospace Computing, Information, and
Communication, 1542-9423, Vol. 2, No. 8, 2005.

[6] R. W. Beard et al., “Autonomous Vehicle Technologies for
Small Fixed-Wing UAVs,” Journal of Aerospace Computing,
Information, and Communication, 1542-9423, Vol. 2, No. 1,
2005.

[7] H. Friehmelt, “Some Consequences of UAV Design
Requirements Especially on UAV Modeling and Simulation”,
AIAA-2003-5688, AIAA Modeling and Simulation
Technologies Conference and Exhibit, Austin, Texas, Aug. 11-
14, 2003.

[8] B. F. Gore, “Man–machine integration design and analysis
system, V5: Augmentations, motivations, and directions for
aeronautics applications”, In P. C. Cacciabu, M. Hjalmdahl, A.
Luedtke, & C. Riccioli, Human modelling in assisted
transportation, Heidelberg, Germany, Springer, pp. 43–54,
2010.

[9] E. DeVisser, R. Parasuraman, A. Freedy, E. Freedy, and G.
Weltman, “A Comprehensive Methodology for Assessing
Human-Robot Team Performance for Use in Training and
Simulation”, Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, October 2006, Vol. 50.

[10] B. S. Blanchard, and W. J. Fabrycky, “Systems Engineering
and Analysis”, Fourth Edition, Prentice Hall, 2006.

[11] P. Zarchan, “Tactical and Strategic Missile Guidance”, 6th Ed.,
American Institute of Aeronautics and Astronautics, Reston,
VA, 2013.

[12] B. L. Stevens, F. L. Lewis, and E. L. Johnson, “Aircraft Control
and Simulation: Dynamics, Controls Design, and Autonomous
Systems”, 3rd ed., John Wiley, 2015.

[13] C. Kaufman, R. Perlman, and M. Speciner; “Network Security:
Private Communication in a Public World”, 2nd Edition,
Prentice Hall, 2002.

[14] MIL-STD-1797A, “Flying Qualities of Piloted Aircraft”,
Department of Defense Interface Standard, 2004

[15] US Department of Transportation, Federal Aviation
Administration (www.faa.gov), “FAR 23, FAR 25”, retrieved:
Feb. 2019.

[16] P. Angelov and P. Angelov, “Sense and Avoid in UAS:
Research and Applications”, Wiley, 2012.

[17] M. Sadraey, “Manned-Unmanned Aircraft Teaming”,
International IEEE Aerospace Conference, Big Sky, Montana,
March 3-10 2018.

[18] M. A. Goodrich and R. W. Bear, “Semi-Autonomous Human-
UAV Interfaces for Fixed-Wing Mini-UAVs”, Brigham Young
University, 2004.

[19] V. Cichella, et al., “A 3D Path-Following Approach for a
Multirotor UAV on SO(3)”, 2nd IFAC Workshop on Research,
Education and Development of Unmanned Aerial Systems,
Compiegne, France, November 20-22, 2013.

[20] H. Zhicheng, F. Isabelle, and Z. Arturo, “Modeling and
Decentralized Control for the Multiple UAVs Formation based
on Lyapunov design and redesign”, 2nd IFAC Workshop on
Research, Education and Development of Unmanned Aerial
Systems, Compiegne, France, November 20-22, 2013.

7Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 19 / 92

Figure 9. Simulink model for subsystems of the follower UAV and the leader manned aircraft

8Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 20 / 92

Evaluating LTL Formulas for On-Board Unmanned Vehicle Health Monitoring

Michael Poteat

Modeling, Simulation, and Visualization Engineering
Old Dominion University

Norfolk, VA, United States
Email: me@mpote.at

Yiannis Papelis

Virginia Modeling, Analysis and Simulation Center
Old Dominion University

Suffolk, VA, United States
Email: ypapelis@odu.edu

Abstract—The proliferation of unmanned vehicle technologies
has drastically increased their use in multiple domains. In the
maritime domain, unmanned surface vehicles often pose special
requirements for on-board health monitoring and fault mitigation
due to long endurance, which increases the likelihood of failures
when operating without human oversight. Whereas such vehicles
can be equipped with numerous on-board sensors, detecting
actual or impending failures is often more complicated than
simply thresholding values of a sensor reading. In this paper,
we will consider the use of Linear Temporal Logic (LTL) as
a means to specify and then evaluate in real-time, the health
status of an unmanned surface vehicle. This is accomplished
by capturing nominal conditions in LTL formulas and then
evaluating these formulas in real-time. The advantage of LTL
is that it allows capturing value-based as well as time-based
expectations for sensor readings when evaluating system status.
We define a formal language which is an extension of LTL,
and a corresponding software evaluation method with bounded
performance. An example demonstration of the feasibility of the
process is presented.

Keywords–Linear Temporal Logic; safety; logic; model checking

I. INTRODUCTION

Monitoring the on-board status of unmanned maritime
vehicles can prove challenging, for many reasons. Maritime
vehicles operate in a relatively difficult environment in which
debris, water spray, corrosion and other factors can degrade
the performance of the system in ways that are not always
immediately apparent. Furthermore, the use of automatic con-
trollers often hides the onset of problems by compensating for
such errors. Addressing such issues is often done by installing
sensors that monitor for error conditions; however, there are
difficulties in properly interpreting their readings. For example,
consider an engine temperature gauge with a pre-set maximum
safe limit. Shutting down the system based on that reading
alone runs the risk of making an incorrect choice should the
gauge itself fail and provide erroneous readings. A different
but equally problematic scenario is gauge failure that displays
a nominal temperature even though the actual temperature
exceeds the safe limit. Because of the propensity of individual
sensor failures, it is necessary the cross reference multiple
sensor readings over time before making a determination of
a fault. When under human supervision, sensor information
is typically aggregated by the vehicle and transmitted to a
monitoring/control station that displays all sensor readings,
pushing the responsibility for making fault assessments and
evaluating mission readiness to the human operator. Not only

is this a difficult task for a human, but it is not transferable to
unsupervised operations during which a vehicle must be able
to make a determination of its ability to accomplish its mission
autonomously.

Our approach is based on using Linear Temporal Logic
(LTL) formulas Section III as a means of capturing nominal
performance of the overall system. One advantage of LTL over
other approaches is that LTL can capture the element of time in
addition to fixed-in-time reading. Use of LTL formulas hence
allows evaluating the behavior of the system over time and as-
sessing if it operates within nominal parameters based on richer
information when compared to point-in-time sensor readings.
A key contribution of the paper is an efficient approach to
evaluating the LTL formulas allowing their evaluation to be
performed on-board the unmanned vessel.

The remaining of the paper is organized as follows: Sec-
tion II overviews related work, Section III describes the LTL
formalism in general and the specific portion used in our
proposed system. Section IV outlines the method by which
LTL formulas are evaluated in real-time based on sensor
readings. Section V presents a test case of using LTL formulas
to identify a nuanced failure in a maritime unmanned system
and Section VI concludes.

II. RELATED WORK

LTL has been used to model correctness properties of
low-level software programs [1] and robotic motion planning
[2] [3]. Safety properties can be falsified but not proved in
general, as in sufficiently complex systems these statements are
undecidable [4]. In practice, this is avoided by using a bounded
variant of LTL known as metric temporal logic. This has been
used to find the trajectory of safety properties over time [5].
Effectively, the decidability problem is avoided by evaluating
safety expressions on a single system trajectory (i.e., a trace)
in real-time.

On-board fault detection is also accomplished by using
Bayesian networks [6], which consider the probability of the
actual fault event as well as the reliability of the sensor, and
thus makes a probabilistic estimate of a fault based on multiple
sensor readings. One drawback is that a priori probability
estimates of faults are needed, as well as relative sensor
reliability weightings.

Another common approach for safety monitoring is the
“residual method”, whereby a real-time simulated version of
the system is compared against the real system [7]. The
residual (e.g., squared error) between the simulated and real

9Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 21 / 92

system is computed; if the residual is too large, this indicates
that some non-optimal state has been reached. A drawback of
the residual approach is that you must model the system, and
any errors in doing so, whether arising from system complexity
or computational difficulty, may lead to false-positives. As
well, it is not obvious how one would in general detect the
exact problem that has occured solely from the residual, and
indeed that problem has been an area of active research.

Our implementation is an alternative to both the residual
and Bayesian methods, whereby one explicitly specifies invari-
ants of how system variables must temporally relate to one
another. In this “LTL approach”, an explicit system model or
simulation is not necessary, allowing it to be applied to systems
intractable or uneconomic to explicitly model.

III. LTL OVERVIEW

LTL is essentially a generalization of Boolean logic, which
adds a capability to model “propositions whose truth or falsity
may depend on time” [8]. Practically, this adds a number
of operators which specify temporal relationships between
propositions. One way of thinking about temporal logic is that
unlike first-order logic, it operates on countably infinite ordered
sets [9] (i.e., sequences). In convention with the literature, we
use the term trace to refer to these sequences, and the term
finite trace when the sequence in question has finite size.

Since LTL is a generalization of Boolean logic, it inherits
by default all of the common logical connectives intrinsic to
that logic, which are enumerated by Table I. The so-called
“application syntax” refers to the form used in application,
chosen due to programming convention, as opposed to the
symbolic form used in presentation of this document.

TABLE I. COMMON LOGICAL CONNECTIVES

Operator Symbol Application Syntax
Not ¬p !p
And p ∧ q p && q
Or p ∨ q p || q

In that predicate logic models quantification (e.g., ∀, ∃),
temporal logic models temporal relationships (e.g., A:, E:).The
best way to understand the LTL formalism is by example.
The arguably simplest temporal operation is A:(p), such that
p is an arbitrary boolean proposition with values across time
(i.e., a trace). This expression is read as “always”, and simply
specifies that p is always true across the trace. Figure 1 shows
a case where A:(p) evaluates to true or false, respectively. In
the first example, A:(p) evaluates to false because there exists
a time in the past where p was false. In the second example,
A:(q) evaluates to true for the opposite reason.

The second most basic operator is E:(p), which is the
dual of A:(p). It is read as “eventually”, and has much the
same mathematical meaning: E:(p) is true if p was true at any
point in time. These two operators are dual due to the relation
¬A:(p) ⇔ E:(¬p). This should make intuitive sense: p was
not always true if, and only if, there was a point at which
p was false. That operator relationship is a salient similarity
between temporal and first-order logic. In much the same way,
Figure 2 exemplifies a set of traces where E:(p) evaluates to
true or false, respectively.

The full set of temporal operators considered in our appli-
cation is described in Table II. In addition to the ones already

A:(p) ⇔ False

T T T T T F T T T...

A:(q) ⇔ True

T T T T T T T T T...

Trace of (p)

Trace of (q)

Figure 1. Always Operator on Two Example Traces.

E:(p) ⇔ True

F F T F F F F F F...

E:(q) ⇔ False

F F F F F F F F F...

Trace of (p)

Trace of (q)

Figure 2. Eventually Operator on Two Example Traces.

described, there exist three other operators whose illustrated
explanation we will omit.

TABLE II. LISTING OF TEMPORAL OPERATORS

Operator Syntax Description
Next N: p p was true one time-step ago.
Always A: p p was always true.
Eventually E: p p was eventually true at some point.
Until p U: q p was true up until just before q was true.
Release p R: q q was true up until p was true, after which q was false.

A. Introduction of Boolean Combinations
The true expressiveness of LTL arises from the ability to

nest logical connectives and temporal operators in arbitrary
ways. Referring back to Figure 1, the result of A:(p ∨ q) is
true, because for every false entry in the trace of p, there exists
a corresponding q entry that is true at the same time. The
expression acted upon by a temporal operator may be any LTL
expression, including other temporal operators. For example,
in Figure 3, we see the intermediate values involved in the
expression E:(A:(p)) operating upon a finite trace. A finite
trace for this example was chosen only to keep the example
simple; it works for general traces equivalently.

The key to understanding this nested temporal expression
is that each temporal operator possesses its own trace (Boolean
values through time), corresponding to whether or not the
subsequence formed by taking the past at each point would
result in a true value. However, the proper result of a temporal
expression is the last value of the trace; This is indicated by the
bottom arrow in Figure 3. A conceptual justification for this
is that the last value of the trace is what the value is “now”.

10Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 22 / 92

T T F F F T T F FT

A:(E:(p)) ⇔ True

T T F F F F F F FT

Finite Trace of (p)

Finite Trace of A:(p)

T T T T T T T T TT

Finite Trace of E:(A:(p))

Figure 3. Nested Operator on Finite Trace.

It is important to note that this interpretation is not unique; it
is equally as valid to take the first value of the trace as “now”
and consider all other trace values to be future values.

B. Introduction of Metric Temporal Logic

A common way to introduce real-time in the (LTL) syntax
is by “replacing the unrestricted time operators by time-
bounded versions” [10]. This allows for temporal operators to
factor a metric of time, and to have essentially a time-bounded
range of concern. In addition to making the logic much more
expressive, it also has important considerations for real-time
evaluation of the logic for practical applications.

We utilize MTL operators by defining some slightly mod-
ified syntax. For example, the time-bounded version of “al-
ways” is A:ts(p) where s, t ∈ Z≥. In our formulation, the 0th

entry corresponds to “now”, and all other entries incrementally
refer to past values. Table III defines the application syntax and
mathematical symbology used to denote the metric temporal
operators.

TABLE III. SYNTAX OF METRIC TEMPORAL OPERATORS

Operator Symbol Application Syntax
Always A:ts(p) A:s:t,(p)
Eventually E:ts(p) E:s:t,(p)
Until pU:tsq p U:s:t, q
Release pR:tsq p R:s:t, q

C. Introduction of State Variables

The final extensions we include in our formalism are basic
arithmetic and relational operations, as well as numerical state
variables. State variables are real numbers which possess a
real-valued trace (i.e., values through time). Effectively, this
allows us to construct expressions which model the temporal
relationship of real-valued variables through time. These values
can represent sensor readings or other on-board state varibles.
A comprehensive example of this capability is illustrated by
Figure 4, which shows the intermediate values associated with
evaluating E:(A:20(x > y)), given that x, y ∈ R. This expres-
sion is equivalent to the existence of a three-unit contiguous
time region during which x is larger than y.

1.5 2 2 1.5 1 0.25 0 0 0.251

E:(A:0:2,(x>y))⇔ True

Finite Trace of (x)

T T T T T T

Finite Trace of E:(A:0:2,(x>y))

1.75 1.5 1.5 2 2.5 1 ­1.5 6 7.51.25

Finite Trace of (y)

F T T T F F T F FF

Finite Trace of x>y

F F F T F F F F FF

Finite Trace of A:0:2,(x>y)

F F FF

Figure 4. Bounded Temporal Expression on State Variables.

IV. METHOD

Real-time evaluation of the LTL formalism described by
Section III was implemented via a Robot Operating System
(ROS) package developed for the purpose. ROS is a commonly
used middleware for developing robotics applications, provid-
ing algorithms and visualization tools. Some of the basic func-
tionality provided is message-passing, which is implemented
through so-called “ROS topics”, and serves as the basis of the
application.

Given user-specified LTL formulas and associated topic
names, the program parses and evaluates the formulas, pub-
lishing the truth result to the rest of the ROS system. The flow
of inputs and outputs involved in this process is illustrated in
Figure 5. Dotted arrows represent external interfaces to the
system.

ROS

LTL Parser

LTL
Evaluator

User­supplied
LTL Formulas

RPN StackState Variable
Subscription

LTL Truth Value

Terminal Output

Figure 5. System Diagram of LTL Parser and Evaluator.

11Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 23 / 92

The evaluation of an LTL expression occurs in two steps,
as illustrated in Figure 6. Of note is that explicit construction
of the abstract-syntax tree is not performed during parsing, but
is provided here only for explanation.

1) The expression is parsed while converting from infix
to RPN.

2) Variable tokens are replaced with the corresponding
data, and the stack machine is executed.

E:0:60,(A:(x>y)) && A:15:45,(y+x>z)

&&

E: A:

A:

>

>

x y

+

x y

z

&& E: A: > + x y z A: ...

Result ∈ {T,F}

Figure 6. Generation of RPN Stack Machine.

Parsing is performed via Dijkstra’s shunting-yard algo-
rithm, converting the expression string to an array of Reverse
Polish Notation (RPN) tokens. The evaluator then, on each
arrival of new data, evaluates the RPN expression using a
stack-based postfix evaluation algorithm. Each element of the
stack is a trace, and each operator is a function of one or more
traces.

When a real number is encountered in the execution, it is
interpreted as a trace consisting solely of that real number.
Hence, when a variable is introduced and compared to that
number, the result is a boolean trace representing the result of
that comparison over time. For all arithmetic, relational, and
logical operators the result is simply that operator applied pair-
wise to each element of the two corresponding traces. In the
case of 1-arity operators e.g., !p, the operator is simply applied
to each element of the trace. For temporal operators, each trace
element’s result is a function of the previous elements in the
same way as described in Section III. Each element of every
trace is of real type, and is automatically type cast depending
on the operator.

The internal procedure used to calculate the ’Always’ op-
erator is described by Algorithm 1. If a boundedness operator

Algorithm 1: ’Always’ operator. Resultant array is
true up until xi is false.
1 function A (x);

Input : Array of reals x of size n
Output: Array of reals, size n

2 boolean : α = true;
3 α = false;
4 for xi ∈ x do
5 α = xi ∧ α;
6 xi = R(α);
7 end
8 return x;

is applied the procedure described by Algorithm 1 will operate
only on a contiguous subsequence of the input trace. All non-
zero real numbers (approximated by floating point) are type
cast to true if acted upon by a boolean operator.

We achieve bounded performance by allowing the user
to specify the maximum trace size for each LTL formula.
Once the trace reaches that size, all LTL formulas, whether
they are ultimately bounded or not will only act upon data
within the specified time window of the current time. This is
to ensure that the computation required to evaluate a given
LTL formula is sublinear with respect to the current time of
operation. One future work considered is automatic generation
of an appropriate maximum trace size given an LTL formula.

V. RESULTS

This method was applied to an autonomous sea vessel in
order to detect motor misalignment conditions, which occur
when there exists an offset between the steering control value
and the angle between the vessel and one, or both, of the
motors. The control interface is a four-vector, with each
element controlling the rotation (with respect to the craft)
and effort of each of the two motors respectively. We use the
term “effort” a percentage of the total power available to the
system for acceleration that abstracts away physical details.
For context, a simplified diagram of the physical placement of
the motors can be seen in Figure 7. The controls values are
subject to the constraints defined by (1) and (2).

−100 ≥ EN ≤ 100 (1)

−90◦ ≥ θN ≤ 90◦ (2)

The method was implemented as a configurable ROS com-
ponent, which subscribes to the topics necessary to detect the
suboptimal condition. The implementation allows for multiple
LTL formulas each corresponding to a set of ROS topics.
(3) specifies the LTL formula written to detect the motor
misalignment condition, where |x| specifies the absolute value
operation.

A:0:60,(EL = ER ∧ |SL| < 3 ∧ |SR| < 3 ∧ Vyaw > 0.3) (3)

We may break (3) into three logical clauses. If the follow-
ing three conditions are true for the last sixty time units, the
motor is misaligned.

12Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 24 / 92

Motor 1 Motor 2

θ1, E1 θ2, E2
­90° +90°­90°+90°

Figure 7. Diagram of Autonomous Vessel in Overhead View.

1) The efforts from both motors are equal.
2) The steering angles from both motors are less than 3

degrees, and...
3) The yaw-velocity of the craft is above a certain

threshold.

The LTL formula was applied to two simulations of the
autonomous vessel, each under an equivalent control trajectory.
In the first (control) simulation, both motors are correctly
aligned. In the second, the left motor is misaligned by 10◦.
The resultant angular velocity of both 10-second simulations
is illustrated by Figure 8. The difference in yaw velocity, and
particularly the spike at 2 seconds in the misaligned case can
be attributed to the alignment discrepancy.

The control trajectory applied was generated by a simple
driver code. For 2 seconds, an effort value of 50 and 100
was applied to the left and right motors respectively. Then,
for the next 2 seconds, an effort value of 100 was applied to
both motors for 2 seconds. Finally, the vehicle was allowed to
coast under no effort. The control trajectory was chosen to be
deterministic and not unlikely to occur during user operation.

0.0

0.1

0.2

0.3

0.4

0 2 4 6 8 10

Y
aw

 V
el

o
ci

ty
 (

m
/s

)

Time(s)

Nominal

Misaligned

Figure 8. Angular Velocity of Nominal vs. Misaligned Case.

The resultant boolean signal for both the nominal case and
misaligned case is seen in Figure 9. Due to the to the structure
of the LTL formula used, there is a delay present in the result.
It is possible to decrease the delay, but at risk of causing false-

positives. As in most forms of signal processing, a tradeoff in
delay and accuracy is present.

0

1

0 2 4 6 8 10

L
T

L
 S

ig
n

al

Time (s)

Nominal

Misaligned

Figure 9. LTL Signal of Nominal vs. Misaligned Case.

Instead of integrating the squared error between what is
expected to happen (via a physics model) with what was ob-
served, i.e., the “residual method”, we write specific temporal
scenarios, which would only occur if the condition is present.
The LTL approach allows us to both be more specific about
error detection, and can be deployed in scenarios where an
accurate physics model is intractable to compute.

VI. CONCLUSION AND FUTURE WORK

Autonomous systems require ways to detect, interpret, and
even anticipate problems. On-board sensors provide informa-
tion, but unless there is a trivial interpretation (i.e., battery
voltage dropping below a threshold), it is difficult to make
a singular assessment about on-board status based on several
sensor readings. Furthermore, proper interpretation of sensors
cannot be done only for a single time, but must be done over
a history. Proper sensor values may be temporally correlated
in non-trivial ways. LTL is a convenient formalism for cap-
turing the expected behavior of the system via mathematical
modeling. Failures in the system can be directly inferred from
evaluating these LTL expressions.

In this paper, we have demonstrated a practical LTL
evaluation method that has bounded performance with respect
to temporal formula evaluation at given time-points. For tele-
operated systems, we view this as a compression scheme to en-
code high-dimensional temporal data into a form parsable by a
human operator controlling the system. For on-board systems,
this method effectively addresses the problem of autonomously
capturing the nominal performance of the overall system.

There are three major directions planned for future work
of this method. Currently, maximum trace size is manually
set in order to provide bounded performance. However, it
seems possible to automatically derive the maximum trace
size from a provided LTL formula. As well, memoization of
certain intermediary values may improve on the computational
complexity of the method. Finally, a large part of the effort
expended in using this method is coming up with a LTL
formula that captures the desired behavior. Supervised machine
learning techniques could be used to automatically generate
an appropriate LTL formula given examples of nominal and
“problem” mission trajectories, enabling rapid development of
status assessment systems.

REFERENCES
[1] J. Morse, L. Cordeiro, D. Nicole, and B. Fischer, “B.: Context-bounded

model checking of LTL properties for ansi-c software,” in SEFM 2011.
LNCS. Springer, 2011, pp. 302–317.

[2] G. E. Fainekos and H. Kress-gazit, “Temporal logic motion planning
for mobile robots,” in In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, 2005, pp. 2020–2025.

13Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 25 / 92

[3] A. Albore and P. Bertoli, “Safe ltl assumption-based planning,” in In
Proc. 16th Int. Conf. on Planning and Scheduling (ICAPS-06.

[4] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s
decidable about hybrid automata?” in Journal of Computer and System
Sciences. ACM Press, 1995, pp. 373–382.

[5] J. Schumann, K. Y. Rozier, T. Reinbacher, O. J. Mengshoel, T. Mbaya,
E. Al, J. Schumann, K. Y. Rozier, T. Reinbacher, O. J. Mengshoel,
and T. Mbaya, “Towards real-time, on-board, hardware-supported sensor
and software health management for unmanned aerial systems,” in in
Proceedings of the 2013 Annual Conference of the Prognostics and
Health Management Society (PHM2013, 2013.

[6] R. Zhang, X. Hu, H. Wang, and H. Yao, “Fault diagnosis method in
complex system using bayesian networks sensitivity analysis,” Informa-
tion Technology Journal, vol. 14, pp. 24–30, 01 2015.

[7] R. Reiter, “A theory of diagnosis from first principles,” 1987.
[8] F. KrÃűger, Temporal Logic of Programs, ser. EATCS Monographs on

Theoretical Computer Science. Springer, 1987, vol. 8.
[9] E. A. Emerson, “Temporal and modal logic,” in Handbook of Theoret-

ical Computer Science. Elsevier, 1995, pp. 995–1072.
[10] R. Alur and T. A. Henzinger, “Logics and models of real time: A

survey,” 1992.

14Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 26 / 92

Dynamic, Model-based Reconfiguration for Flexible Robotic Assembly Lines

Niki Kousi, Christos Gkournelos, Sotiris Aivaliotis, George Michalos, Sotiris Makris

Laboratory for Manufacturing Systems & Automation

Department of Mechanical Engineering and Aeronautics, University of Patras

Patras, Greece

e-mail: makris@lms.mech.upatras.gr, kousi@lms.mech.upatras.gr, gkournelos@lms.mech.upatras.gr,

saival@lms.mech.upatras.gr

Abstract—The European industry is becoming more customer

centric in an approach to meet the varying customers’ demand

and minimize the costs of large inventories. The optimized

production capacity that is achieved by the fixed production

model can no longer guarantee the sustainability inside a

fluctuating market that constantly requests new models. This

creates the need to deploy flexible production systems

exploiting the capabilities of multiple resources including both

robots and human operators. Motivated by this need, this

paper introduces the usage of mobile dual arm robots that are

able to autonomously navigate in different workstations to

undertake multiple operations, acting as assistants to human

workers. A digital world model infrastructure for enabling this

dynamic performance achieving process level reconfiguration,

through robot’s behavior adaptation is discussed. This system

is based on a multiple sensor data synthesis mechanism that

facilitates the real time shopfloor status digital representation.

Static objects and moving obstacles, as well as human presence

are identified inside this model enabling the robots’ behavior

adaptation through reasoning upon them. The suggested

infrastructure has been deployed and tested in a case study

from the automotive industry.

Keywords-Mobile robots; flexibility; perception; digital

world; sensor data synthesis.

I. INTRODUCTION

Robots have been considered as a major enabler for

autonomous assembly systems. However, in current robot-

based production systems, flexibility [1] and reconfiguration

are still constrained due to [2]: a) the rigidity of the used

stationary robotic units, b) the use of fixed and product

model dedicated equipment, c) the use of fixed robot control

logic and d) the absence of perception abilities that would

allow the robots to dynamically adapt their behavior to the

production needs.

Overcoming these limitations may be realized through

the introduction of flexible robot workers enabling

autonomy and collaboration between all production

resources (including human operators and robot resources).

Mobility both in resources and product level can play a vital

role towards the realization of such production concepts as

discussed in [3]. To this end, a hybrid and dynamically

reconfigurable shopfloor is suggested employing mobile

dual arm workers, namely Mobile Robot Platforms (MRP),

and human operators.

The last decades, extensive research has been made in the

field of mobile robotic systems, either in the field of mobile

robot manipulators or simple mobile platforms [4].

However, existing applications have limited perception

capabilities not allowing real time adaptation of the system

and robot behavior to dynamic environments [5][6]. Most of

the manipulators are restricted to performing off-line

programmed tasks only when they are in fixed positions,

thus not fully exploiting their mobility.

On the other hand, digital representation and simulation

of the production environment and process have emerged

over the last decades as a means of partially handling the

optimization of the production system performance [6]. In

this era of digitalization in manufacturing, the Digital Twin

concept has gained a lot of attention given the advantages

that it may offer in terms of system autonomy [7]. The main

principle of this concept relies on the digital representation

of the physical world using multiple data input formats,

such as Computer aided design – CAD files or other unified

formats [8] as well as real time update of the virtual world

based on real-time data (e.g., shopfloor/resource sensors,

process related data, etc.). This is a very promising approach

for providing perception and cognition abilities towards

more autonomous and intelligent robotic systems [9].

Existing applications of dynamic robot control based on

digital modelling and sensor data for ensuring collision free

paths are based on the functionalities provided by Robot

Operating System (ROS) [10]. The latter provides a rich

content of data types and formats to virtually represent

various hardware devices and multi-sensor data as well as a

network of services and topics for broadcasting the captured

knowledge. However, existing infrastructures are not

mature enough to support the representation of the discussed

hybrid production paradigm given the complexity of the

various automated devices used, such as multiple mobile

dual arm workers and products as well as human operators.

To overcome the existing limitations, this paper

introduces a Digital World model infrastructure for

supporting the effective introduction of MRPs in assembly

environments. A unified semantic representation of the

15Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 27 / 92

geometrical and the workload state on top of the ROS

provided data structures is proposed so for the model to be

able to support real time planning and MRP behavior

optimization based on the shopfloor status.
The paper is organized as follows: Section II discusses

the MRPs structure and capabilities while section III is
focusing on the Digital World model description. In Section
IV, the implementation of the robot’s behavior adaption in
different levels is presented. The performance of the system
is analyzed on an automotive case study in Section IV. The
last section is dedicated to drawing the conclusions and
providing an outlook towards future work.

II. MOBILE ROBOT PLATFORMS (MRPS)

The present work considers as flexible robotic assembly

lines the production paradigm presented by Kousi et al. [3].

Under this paradigm, mobile dual arm workers are

introduced as the main enables for the flexibility of the

system. These so-called MRPs can autonomously navigate

inside the shopfloor localizing themselves into different

workstations for a) performing multiple assembly

operations, such as handling, insertion, screwing, drilling,

etc. and b) acting as assistants to human operators. Figure 1

presents MRPs’ hardware structure.

The main hardware components integrated under the

MRPs can be summarized as follows:

• Two collaborative robot arms undertaking the
assembly tasks execution;

• An omnidirectional mobile platform enabling the
autonomous navigation;

• A torso adding two degrees of freedom to the robot
arms in terms of rotation and elevation;

Figure 1. Mobile Robot Platforms (MRPs).

• Safety certified 2D laser scanners allowing the single
plan obstacle detection, and

• Depth sensors allowing the 3D environment
understanding.

These components aim to provide the hardware

infrastructure allowing the safe navigation and localization

of the robot into the different workstations as well as

flexibility in terms of the process by dynamically

identifying the product variants that need to be processed.

III. DYNAMIC DIGITAL WORLD MODEL

To enable the dynamic behavior and communication
among these MRPs, the discussed Digital World model aims
to provide the infrastructure for enabling the shopfloor data
acquisition as well as combine them in a common
representation to be consumed by the different decision-
making mechanisms involved in the execution. A continuous
feedback from the actual shopfloor (using resource and
sensor data) will enable the dynamic update of digital twin
involving two main functionalities:

Figure 2. Digital World model-based system.

16Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 28 / 92

• Virtual representation of the shopfloor using
multiple sensor data combination and CAD models.
The digital shopfloor is rendered in the 3D
environment using the capabilities provided by ROS.

• A unified data model will be implemented in order
to semantically represent the geometrical as well as
the workload state. This data model should be
generic enough in order to be able to address
multiple cases as well as to be consumed by multiple
components inside execution system.

The overall system structure is presented in Figure 2.

A. 3D environment constructor – sensor data synthesis

The 3D environment constructor, composed by a set of
sub-components, is responsible for registering the various
entities included in the assembly, such as resources, parts,
equipment, sensors, etc. A dedicated monitoring mechanism
records the online location of these entities. These locations
are used for constructing the complete working environment
under a global world frame. This construction is performed
based on the ROS Tf library [11] as visualized in Figure 3.
The involved software components were developed on top of
ROS provided functionalities enabling the scalable network
communication and easy integration with existing robotic
applications. In more detail, existing ROS interfaces for
various robot models and sensor types make the developed
infrastructure re-usable in multiple robotic systems.

During the set-up phase, the configuration of the
resources, sensors and static objects takes place. In
particular, the Resource configuration sub-component is
managing the registration of the existing resources in the
system. A set of attributes describing the resources have been
defined as a universal resource model, such as transform
configuration (.urdf format), path (.yaml format) and motion
(.srdf format) configuration, payload, velocity, location, etc.
These are populated for each resource instance introduced in
the system. In a similar way, the involved Sensors are
registered in the system through interfacing with the ROS
drivers and recording their configuration data. The multiple

3D
Environment
constructor

Camera 1 URDF

MRP 1 URDF
file

pre-assembly
table SDF file

TF topic tree

MRP 2 URDF
file

Camera 2 URDF file Laser Scanner
URDF file

Other
resources
URDF file Fixtures SDF

file

Sensors

Layout components

R
e

so
u

rc
e

s

Figure 3. 3D environment constructor.

sensor data are shared with the robots’ motion and path

planners though dedicated topics following a predefined

naming convention for each new sensor. Collecting the data

from the available sensors, a data synthesis mechanism is

responsible for publishing the 2D–3D combined sensor data.

In that way, the 3D scene is reconstructed based on the

sensors and this scene is consumed as a cost map for the

standards motion and path planning algorithms (e.g.,

gmapping, amcl, ompl). The static objects, are loaded in .sdf

that is uses by robot simulators, such as GAZEBO [12].

During the real-time execution phase, a Resource

location and status monitoring sub–component is deployed

for regularly publishing this online information on the

digital twin. These data are retrieved through dedicated

interfaces in each resource controllers. Nevertheless, apart

from the static parts whose position is defined at the

configuration phase, there are also moving objects and

obstacles whose position is not well fixed and need to be

identified during the execution.

Figure 4. Unified semantic world model.

17Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 29 / 92

B. Unified semantic model

To handle the complexity of hybrid production systems,
this study suggests a structured way to model the process and
the environment following the principles of hierarchical
modelling as shown in Figure 4.

IV. ROBOT BEHAVIOR ADAPTATION

Under this study robot behavior is specified as the set of

low-level actions, such as navigation, move arm actions that

the robot needs to perform for performing a task such as

pick and place of an object. Thus, the concept of adapting

robot behavior relies on the realization of ad-hoc changes in

the MRP’s planned navigation and motion paths so that it

may perform the high-level task successfully.

A lot of research has been done related to the avoidance

of collisions among resources and unmapped obstacles

inside the shopfloor environment. Exploiting existing

algorithms, the Digital twin provides interfaces with robot’s

path and trajectory planners, to achieve online re-planning

based on fused real-time information from shopfloor. The

MRP structure has been modelled through a ROS based

description file describing the link the inter-robot

connections among the robot arms, the platform and the

torso. Thus, inter-robot conflicts such as collision of the

robot with itself are not allowed.

A. MRP platform online path planning

MRP online path planning is implemented based on ROS
navigation stack for mobile robots, thence, is essential the
use of ROS Topics for sending transforms using tf,
publishing odometry information, publishing sensor data.
Digital World model resource manager handles the
appropriate information for the correct configuration of each
MRP unit as follows:

• Transform configuration: The transform tree for
every coordinate frame of each resource is described
inside the .urdf file. Worlds model’s repository
contains all the URDF files for each resource.

• Sensor and Odometry Information: Resource
manager is responsible for defining which sensors
are used by each robot.

• Map: Inside world model’s repository 2D and 3D
maps of the shopfloor are stored. In case of simple
2D navigation as visualized in Figure 5, the
map_server node publishes periodically the map data
in /map2d topic.

• Planner Configuration: For the MRP’s navigation
two planners are responsible based on the ROS 2D
SLAM navigation module. The first is the global
planner and is responsible for finding a minimum
cost plan from a start point to an end point. The
second is the base local planner, which is responsible
for computing velocity commands to send to the
mobile base of the robot given a high-level plan
from global planner.

Figure 5. Digital World Model – 2D map.

B. MRP robot arm online motion planning

For the motion planning and controlling of the MRP
arms ROS MoveIt! [13] is used. MoveIt! communicates with
the MRP through ROS and it requires the existence of a
dedicated ROS package for its configuration. The resource
manager for the registration of a robot, such as MRP needs
three type of information in order to setup the motion
planning and export the MoveIt! package.

• Robots Universal Robot Description File (URDF);

• Robots Semantic Robot Description Format (SRDF)
file created from MoveIt! setup assistant tool, and

• MoveIt! configuration files including among others
joint limits, kinematics, motion planning, perception.

The digital world model through the Sensor Manager

provides to MoveIt! the configuration for the occupancy 3D

map created in occupancy grid using the OctoMap library as

represented in Figure 6. This map is used as cost map with

real time obstacles. Enhancing the environment knowledge

with the occupancy map, the online motion planning

component is aware of the existing objects / obstacles and

uses this knowledge to ensure a collision-free trajectory

planning.

V. CASE STUDY

The proposed Digital World model infrastructure has

been implemented and tested through a case study coming

from the automotive sector. In particular, the pilot case

scenario involves the assembly of a passenger’s vehicle

suspension. This assembly scenario involves a set of

assembly operations in three different workstations: a) the

damper pre-assembly area, b) the damper compression area

and c) the damper assembly on the disk area.

Following the analysis made in [3], an MRP is

introduced in this assembly line, navigating among these

Figure 6. Digital World model – 3D map.

18Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 30 / 92

Figure 7. Assembly enviroment simulation.

workstations for performing a) the transferring of the

damper from the pre-assembly to the compression area, b)

small parts assembly on the compression area and b) the

assembly of the compressed damper on the disk. In parallel,

one human operator is working on the same workspace

performing the pre-assembly of the damper as well as a set

of cabling operations on the disk assembly area.

To be able to test the application in a realistic robotics set

up in terms of 3D layout, a GAZEBO ROS-based

simulation was set up replicating the assembly environment

as shown in Figure 7. The digital models of the MRP

(URDF) and human (CAD) where added in the simulation

integrating the human side interface and robot controller in

the backend. Figure 8 visualizes the Digital World model of

the assembly environment based on the sensor data: a) two

laser scanners located in the mobile platform of the MRP

and b) one Kinect located on its torso. A Station Controller

mechanism is responsible for dispatching the assigned tasks

to the MRP, as well as the human operator and monitoring

their progress so to coordinate the execution.

For the efficient execution of the scenario, the MRP

needs to perceive the: a) damper and working tables to

compensate the localization errors that cannot be foreseen

offline, using a Kinect depth sensor, b) static obstacles and

moving humans / obstacles for ensuring collision free

navigation, using 2D laser scanner data.

Figure 8. Digital World model visualization.

Figure 9. MRP 2D SLAM navigation.

Each time the robot is re-located by the Station

Controller to a different workstation it needs to

autonomously navigate from its current location to the new

one. 2D SLAM based navigation is an existing solution for

resolving the path generation aspects as visualized in Figure

9.

In this specific use case, the Digital World model

provides the 2D map based on the combined sensor data

from the two laser scanners located on the MRP platform.

This map includes the static obstacles existing during the

map creation procedure. Nevertheless, as mentioned in

Section II, apart from the static obstacles recorded during

the map creation procedure, during actual execution several

other moving obstacles may be in conflict with MRP’s

navigation path. The dynamic nature of the Digital World

model allows the real time update of the planning scene, so

for the navigation planners to consider in the local plan

generation the new, unmapped obstacles. Figure 10 presents

an instance where the human operator interferes to MRP’s

planned path. The respective visualization of the Digital

World model instance during this case is also presented.

Figure 10. Collision avoidance with moving obstacles – humans.

19Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 31 / 92

 In that way, the MRP may avoid collision with humans in a

dynamic way while both are in motion.

VI. CONCLUSIONS AND FUTURE WORK

Shopfloor uncertainty is a key aspect that limits the

flexibility potential of nowadays manufacturing systems.

Modular robotic systems are considered as a main enabler

for production system reconfigurability. However, their

fixed control logic, based on pre-programmed operations,

does not allow the effective exploitation of their capabilities.

Robots’ perception abilities and reasoning upon the

perceived environment so to adapt their behavior are key

prerequisites for overcoming the existing limitations. To this

end, this work, introduces the deployment of a dynamic

Digital World model enabling the a) multiple sensor data

synthesis into a common scene and the online update of the

scene based on the real time data, b) the integration of the

involved resources and hardware components allowing the

robots to understand the real time environment and apply

cognition techniques to transform the sensor based scene

into useful information for optimizing their behavior.

The discussed infrastructure has been tested in an

assembly case study form the automotive sector, employing

one MRP and one human operator. The deployment of the

Digital World model allowed the reconfiguration of robot

behavior by compensating the real – world uncertainty.

Combining 2D and 3D sensor data information increases

shopfloor’s real time knowledge and eventually leads to

higher accuracy in robot actions.

Considering a production system with more workstations

and more humans and MRPs the complexity and

unpredictability of the system increases a lot. In these cases,

the suggested Digital World model may have a greater

impact when applied in the completed manufacturing

system. To achieve that, technical issues such as the

computational requirements for processing big amounts of

data need to be overcome as a future step. In addition, under

the era of Industry4.0 data security is an important aspect to

be addressed. Future version of this platform needs to be

enhanced a secure communications framework that can

ensure that connections between resources and systems are

private (or secure) by using approaches such as symmetric

cryptography.

Nevertheless, the validation of the developed

infrastructure under a physical set up involving the actual

MRP is already an ongoing work by the authors. Future

work should also focus on the integration of a higher-level

decision-making mechanism that will be able to

dynamically re-distribute the work among the available

robot and human resources based on their capabilities and

the production needs.

ACKNOWLEDGMENT

This work has been partially funded by the EC research
project “THOMAS – Mobile dual arm robotic workers with
embedded cognition for hybrid and dynamically
reconfigurable manufacturing systems” (Grant Agreement:
723616) (www.thomas-project.eu/).

REFERENCES

[1] G. Chryssolouris, Manufacturing Systems: Theory and
Practice. second ed. Springer-Verlag, New York , 2006

[2] G. Michalos, N. Kousi, S. Makris, and G. Chryssolouris,
“Performance Assessment of Production Systems with Mobile
Robots” 48th CIRP Conference on Manufacturing Systems
(CMS 2015) Procedia CIRP, 2016, pp. 195-200, ISSN 2212-
8271

[3] N. Kousi, G. Michalos, S. Aivaliots, and S. Makris, “An
outlook on future assembly systems introducing robotic
mobile dual arm workers” 51st CIRP Conference on
Manufacturing Systems, (CMS 2018), Procedia CIRP, 2018,
pp. 33-38 ISSN 2212-8271

[4] N. Kousi, S. Koukas, G. Michalos, and S. Makris,
“Scheduling of smart intra – factory material supply
operations using mobile robots”, International Journal of
Production Research. Vol. 57, pp. 801-814, Jul 2018,
doi.org/10.1080/00207543.2018.1483587

[5] J. Váncza and L. Monostori, “Cyber-physical Manufacturing
in the Light of Professor Kanji Ueda's Legacy”, 50th CIRP
Conference on Manufacturing systems (CMS 2017) Procedia
CIRP, 2017, pp. 631-638, ISSN 2212-8271

[6] G. Michalos, S. Makris, N. Papakostas, D. Mourtzis, and G.
Chryssolouris, “Automotive assembly technologies review:
challenges and outlook for a flexible and adaptive approach”,
CIRP Journal of Manufacturing Science and Technology, vol.
2, pp. 81-91, 2010, doi.org/10.1016/j.cirpj.2009.12.001

[7] R. Rosen, G. V. Wichert, G. Lo, and K. D. Bettenhausen,
“About The Importance of Autonomy and Digital Twins for
the Future of Manufacturing”, IFAC-PapersOnLine, vol. 48,
pp. 567-572, 2015, ISSN 2405-8963

[8] S. Makris, G. Michalos, and G. Chryssolouris, "Virtual
Commissioning of an Assembly Cell with Cooperating
Robots", Advances in Decision Sciences, vol. 2012, Aug
2018, 11 pages, doi:10.1155/2012/428060

[9] S. Giordani, M. Lujak, and F. Martinelli, “A distributed multi-
agent production planning and scheduling framework for
mobile robots”, Computers and Industrial Engineering, vol.
64, pp. 19-30, Jan 2013, doi.org/10.1016/j.cie.2012.09.004

[10] URL Robot Operating System http://www.ros.org/, last
accessed April 2019

[11] URL ROS Tf library http://wiki.ros.org/tf. last accessed March

2019

[12] URL GAZEBO SIM http://gazebosim.org/, last aceessed March

2019

[13] URL ROS MoveIt! https://moveit.ros.org/, last accessed March 201

20Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 32 / 92

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 21

A Robust Polyurethane Depositing System for
Deployment on Disaster Scenario Robotics

Alec John Burns

School of Engineering
University of Liverpool

Liverpool, UK
Email: sgaburns@liv.ac.uk

Sebastiano Fichera

School of Engineering
University of Liverpool

Liverpool, UK
Email: Sebastiano.Fichera@liv.ac.uk

Paolo Paoletti

School of Engineering
University of Liverpool

Liverpool, UK
Email: paoletti@liv.ac.uk

Abstract—Robotic platforms have been widely recognised as po-
tential tools for mitigating the aftermath of natural catastrophes.
However, their ineffectiveness in traversing highly unstable and
irregular terrains is a key bottleneck in their deployment and
usage in real world scenarios. In this work, a Polyurethane
Foam depositing system is proposed to allow ground vehicles
to overcome obstacles and navigate on challenging substrates.
The proposed system is designed as in independent modular
mechanism that can be attached to various robotic platforms
to enable material deposition and thus to increase their ability in
overcoming obstacles. The materials used are inexpensive and
their properties can be tuned on board by a simple control
system, allowing the device to vary its output type according
to situational requirements. Four different deposit types have
been characterized, with expansion ratios varying from 20× to
33×, compressive strengths from 0.16MPa to 2MPa, and full
expansion and set times below 6 minutes, allowing application in
real-time. The system has been fitted to a tracked rover equipped
with some basic sensors to allow autonomous responses when
faced with obstacles. The system allows successful traversing of
previously insurmountable obstacles such as large frontal objects
and chasms. The results show that the amount of foam deposited
can be well controlled and multiple layers can be stacked on top
of each other to significantly increase altitude.

Keywords–Robotics; Overcoming Obstacles; Disaster Scenario.

I. INTRODUCTION

A natural catastrophe is an unexpected event caused by
nature, which results in a great deal of suffering, damage and
death. These include but are not limited to events such as,
tornadoes, hurricanes, earthquakes, etc. According to a U.N.
report [1], since 1995 over 600, 000 people have been killed,
4.1billion injured or left homeless and $2trillion in economic
damages have been caused by such natural catastrophes. When
natural disasters strike, the primary concern is human life and
therefore it is critical to reach the victims and the survivors
as soon as possible. People left stranded in the wake of
these events are often stuck for days without food, water
or medicines. They find themselves cut off from all support,
typically due to collapsed infrastructure, making it impossible
for teams to easily and safely reach them. This results in
first responders being some of the most at risk during any
relief efforts [2], often entering highly unstable areas with little
knowledge of the interiors.

It is widely acknowledged that robotic platforms will play
a key role in mitigating the after effects of such disasters.
Major progress has been made in the developments of aerial,

TABLE I. SYNTHETIC COMPARISON OF LOCOMOTION SYSTEM
FEATURES, TAKEN FROM [8]. LeW = LEGGED WHEELED, LeT =

LEGGED TRACKED, WT = WHEELED TRACKED, L=LOW,
M=MEDIUM and H=HIGH

W T Leg LeW LeT WT
maximum speed H M/H L M/H M M/H
obstacle crossing L M/H H M/H H M
step climbing L M H H H M
slope climbing L/M H M/H M/H H M/H
soft terrain L H L/M L/M M/H H
uneven terrain L M/H H H H M/H
energy efficiency H M L M/H M M/H
system complexity L L H M/H M/H L/M

terrestrial and maritime robotic platforms specifically designed
for use for disaster relief, search and rescue and salvage
operations [3]. This is because robots can be deployed quickly
in areas deemed too hazardous for human operation. Terrestrial
platform specifically can be used to collect interior data,
deliver supplies and support first responders. Many projects
have been developed in recent years to achieve some of these
functions, see for example [4]–[6]. However, when taking
ground based platforms from the even surface of a lab to the
unpredictable and often unstable terrain expected in disaster
zone environments, they typically encounter major difficulties.

Numerous robotic architectures have been developed for
the very purpose of overcoming rough terrain. Current ap-
proaches can be classified into roughly five categories accord-
ing to [7]: single-tracked, multi-tracked, wheeled, quadruped-
platforms (or biologically inspired systems) and humanoid.
Each of these unique solutions can perform well in particular
conditions, but there is no one of these categories that performs
exceptionally in every circumstance. As a result of this, more
focus has been recently put on the development of hybrid
platforms to maximise the advantages of multiple architectures.
However, such systems are expensive and their added benefits
often limited. A comparison of tracked, wheeled, humanoid
and their respective hybrids was performed in [8] and is
reported in Table I. This overlooks quadruped and biologically
inspired platforms as these represent a very diverse array of
systems which are difficult to generalise. Table I shows that
no architecture nor hybrid system can tackle all of the con-
sidered environments, therefore development of one particular
locomotion style will not result in a system that is the most apt
in all scenarios. Due to this, material deposition systems have
been suggested as methods for augmenting robotic platforms

 33 / 92

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 22

to increase their ability of navigating uneven terrain.
In this paper, a novel Polyurethane (PU) Foam deposition

system is proposed to increase a robotic platforms ability
to traverse uneven terrains and overcome obstacles. The pa-
per is structured as follows. In Section II, an overview of
Polyurethane foam and the related works are given. In Section
III, a brief description of the design for the depositing module,
a characterisation of the deposited material and the integration
with a tracked rover is reported. Section IV contains an illus-
tration of the experimental setup used to test the effectiveness
of the depositing systems, whereas the results obtained in
these experiments are discussed in Section V. Finally, some
final remarks and suggestions for further work are reported in
Section VI.

II. BACKGROUND

A. Polyurethane Foam
Polyurethane Foam (PU) is a synthetic resin in which the

polymer units are linked by urethane groups; when combining
the two part constituents, the mix quickly expands and then
sets rigid. The ratio between these two parts alters the final
properties of the PU foam and therefore maximum values for
such properties are the best way to characterise the material.
Two key material characteristics for the purpose of this paper
are:

• Compressive strengths - over 2MPa are possible,
which can easily support the weight of a human
standing thereon.

• Expansion ratios - over 30× the original volume,
meaning 25dm3 of final structure foam can be gener-
ated from 840cm3 of the two part liquid constituents
[9].

The final properties depend largely on two factors: the mix
ratio and the mix style. Therefore, different mixing mecha-
nisms, such as manual stirring, syringe pumping and aerosol
deposition, will result in very different final material prop-
erties. The importance of this will be further discussed in
Section II-B. The final material form is a closed-cell and thus,
water-proof foam when set and all mix types are lighter than
water, yet strong enough to support the weight of a human.
Additionally, these foams attach to a variety of materials
including wood, iron, and concrete, among others. Based on
these characteristics, this material is deemed suitable for use
in disaster scenarios in real-time.

B. Related Work
Two projects have utilised a robotic PU foam depositing

system for traversing obstacles. The first platform was pro-
posed in [10] and utilised a motorised syringe prefilled with
the two parts of PU. As the syringe is actuated, the two
parts are driven through a series of static mixing chambers
to increase turbulence and initiate reaction. This allows the
system to deposit small amounts of PU foam to create a
ramp which allowed it to traverse an object larger than its
original capability. There are several major drawbacks of this
system. Firstly, the style of deposition provides little mixing
and thus very low expansion ratio of the foam, meaning a
significant amount of material extrusion was needed to create
the desired ramps. This low expansion ratio, coupled with the
single rigid nozzle deposit system, resulted in a very complex

build requirement, which would be difficult to implement
autonomously and was thus manually controlled by a human
operator. Further, continuous deposition was required if the
syringe was to remain unblocked before using all of the
material. For the ramp demo shown in this project, multiple
syringe cartridges and mixing devices were manually replaced
on the system to allow continuous usage.

An alternative approach was proposed in [9], where a
robotic platform utilised an aerosol depositing system mounted
on a gimbal, with both single part and two part PU tested.
The two part PU resulted in much more effective outputs
and a more flexible deposition than [10], and therefore an
autonomous ramping system was possible upon detecting an
object. However, the use of aerosol depositing system gives
little control over the material being deposited, as the mix
ratio and outlet speed are determined with the systematic
design and cannot be controlled by the platform or even altered
simply offline. Also, the use of prepackaged aerosols bring into
questions how well this system could be scaled.

To overcome the drawbacks of existing platforms, this
paper proposes an on board system to drive the two part liquids
of PU foam to reaction. The proposed approach provides
complete control over the deposition process and over the final
material properties of the PU foam, thus eliminating the issues
described above.

III. DESIGN

A. PU Foam Deposit System

The proposed PU foam deposit device is illustrated in
Figure 1. Separate reservoirs are used to contain the required
components: PU part one, PU part two. Pumps are used to
drive PU parts one and two to an external mixing chamber.
This chamber ensures the two parts are fully diffused without
increasing turbulence to induce reaction. This is a necessary
step when multiple outlets are required as in the platform
described in this paper, otherwise the flows would not mix
and develop into separate channels due to the viscous nature
of the individual parts, see Figure 2. The now combined
PU is separated toward two different static mixers acting as
depositing nozzles.

Figure 1. Schematic representation of the PU depositing device: PU part 1
and PU part 2 reservoirs are connected to a mixing chamber (light cyan

octagon) via pumps (represented by white double triangles). The resultant
mixture is then fed to static mixers (dark blue cylinders) that act as nozzles

for depositing PU foam.

The proposed design results in a number of benefits when
compared to systems available in the literature:

 34 / 92

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 23

Figure 2. Illustration of PU parts one and two not mixing, which occurs
without a suitable mixing chamber.

1) Basing the system around pumping mechanisms re-
sults in a fixed amount of liquid being driven at
any one time. The amount of liquid being actuated
is independent of the reservoir size from which it
is being drawn. This, unlike syringe and aerosol
driven designs [9], [10], allows significant scaling of
reservoirs with no system alteration.

2) The system can use pumps to independently control
the flow rate of each PU part. This allows complete
control over the mix ratio and therefore the final
mechanical properties of the deposited PU foam.
For example, increasing the ratio of PU part two
would increase expansion ratio; this could be used
to maximise volumetric output if material was low.
Conversely, if the system required a harder deposit,
it could autonomously increase the ratio of PU part
one to the mix.

3) Flow rate control allows control of fluid turbulence
within the mixing devices. Increasing overall flow ve-
locity increases the turbulence with which the chemi-
cals are mixed, thus reducing the time taken to begin
expansion. This has the potential to allow outputted
material to be less fluid-like and more immediately
sticky, where obvious applications would be to allow
foam deposition on vertical walls. However, making
the deposit more liquid-like on exit allows the sub-
stance to be deposited into crevices and cracks which
would not be possible for syringe or aerosol deposited
systems.

4) Finally, the system allows two pumps to drive the
liquids to two outlets, although it is possible to
increase this number. The importance of this will be
mentioned in Section III-C.

B. Foam Characterisation
To demonstrate the control ability on the final material

properties of the PU foam, four different PU foam types have
been characterised according to: mix ratio, expansion ratio,
initial compressive strength, final compressive strength, rise
time and set time. Higher compressive strengths and expansion
ratios are possible from this deposition system. However,
mixes that result in higher expansion ratios, for example, result
in compressive strengths that are too low to be considered
useful for the envisaged applications, and vice versa.

PU foam is a high ductility material, hence it tends
to experience large shape deformation instead of exhibiting
brittle cracking behaviour under load. Therefore, two non

standard definitions of compressive strength are used: ini-
tial compressive strength and final compressive strength. The
former is defined as the pressure applied before permanent
plastic deformation occurs, whereas the latter is defined as the
pressure at which the height of the deposit is reduced by 70%.
Beyond this value the deposit is considered to have failed.
Controlled compression tests were conducted on an extracted
cubic test sample from a free rise foam deposit. Force and
compression/tension were measured with a material testing
machine (Instron 3345) loading the specimens at a rate of
2mm/min.

Set time is measured from initial deposition until the foam
has fully solidified, and is calculated by removing multiple
samples at set times and recording their compressive strength.
Full set time is considered the point at which compressive
strength no longer increases with increased reaction time.

Whilst absolute values of the properties have been mea-
sured and are of importance per se, the relative differences
are the primary quantities of interest, as they demonstrate the
capability of the proposed system to deliver enhanced control
characteristics. A summary of properties of the deposited
foams are reported in Table II, where each foam is defined
by the mix ratio of part one to part two. Such table shows, for
example, that the proposed device can create PU foams with
compressive strengths ranging from 0.56MPa to 2MPa.

C. Robotic Platform
The modular design proposed for the depositing system

allows easy deployment on already existing robotic platforms,
enabling their increased range of operation. For the purposes
of testing, the simple low cost ground rover shown in Figure 3
was used. This platform is a two-tracked vehicle with a track
height of 100mm and a track length of 300mm. The maximum
pressure exerted by the rover on the terrain is about 0.02MPa
(15kg rover on the total surface area of its tracks), therefore
the PU foam can easily sustain the weight of the whole
platform. The rover is driven by two large stepper motors (RB-
Phi-266, Robotshop) controlled by a central Arduino Mega
2560 board which actuates the motor speeds via two Arduino
Nano boards and the pumping systems via another Arduino
Mega 2560. A digital compass is connected to the central
control board to feed orientation information back to the
controller and positional information is estimated based on
encoder information from the motors. The PU Foam depositing
system was mounted on top of the rover with the two outlets
positioned directly behind the tracks. As the rover moves,
the foam will be deposited, forming two distinct extrusions
which are aligned with the rovers tracks. Once the foam has
expanded and solidified, the rover can simply climb on said
extrusions to increase or maintain altitude. When depositing
foam in a straight line, controlling either deposit speed or rover
speed allows the platform to create ramp structures as will
be demonstrated in Section IV. This is an efficent approach
compared to the complex depositing mechanism proposed in
[9] and to the complicated ramp structure required in [10].

IV. EXPERIMENTAL SETUP

Two main simulated scenarios are designed to demonstrate
the effectiveness of the proposed PU foam depositing system
in allowing ground vehicles to navigate in a disaster scenario:
obstacle climbing and chasm traversing. To this end, the

 35 / 92

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 24

TABLE II. CHARACTERISATION OF FOUR TYPES OF PU FOAM DEPOSITION.

Low Density Medium-Low Density Medium-High Density High Density
Mix Ratio (one:two) 1 : 0.74 1 : 1 1 : 1.4 1 : 1.6
Expansion Ratio 33× 29× 25× 20×
Initial Compressive Strength 0.16MPa 0.25MPa 0.41MPa 0.76MPa
Final Compressive Strength 0.56MPa 0.74MPa 1.37MPa 2MPa
Rise Time 37 seconds 46 seconds 52 seconds 55 seconds
Set Time 210 − 270 seconds 240 − 300 seconds 270 − 340 seconds 310 − 380 seconds

Figure 3. Images of the rover platform used for testing.

Figure 4. Illustration of the frontal obstacle detection system and ramp
building process. Panels 1-5 show process used when a single ramp is

enough to allow the robot to climb on the obstacle, whereas panels 6-9 show
the procedure used to build higher ramps by depositing several PU layers on

top of each other until sufficient height is reached.

robotic platform described in Section III-C was fitted with
ultrasonic distance sensors (HC-SR04) pointing in the direction
of travel and toward the ground to detect obstacles and/or
chasms. If the sensors detect a scenario that would prevent
the ground vehicle from proceeding on the planned path, a PU
foam deposition protocol is initiated.

A. Frontal Obstacle Detection and Climbing
Frontal obstacles are defined as objects that are placed on

the rover planned path and are too high to be overcome by the
vehicle itself. Through testing, it was determined that the rover
cannot overcome obstacles that are above half the rover track
height. The frontal ultrasound sensor was then placed at this
height and, once an obstacle is detected, the rover initiates a
ramp depositing procedure in order to climb onto the obstacle.
In particular, following detection of an obstacle, the rover will
begin to move forward at a low motor torque to align the rover
front face with the straight edge of an object upon contact. The
ramp building protocol, schematically represented in Figure 4
is then initiated, giving rise to the creation of a ramp that the
rover can use to climb onto the obstacle.

Figure 5. Illustration of the chasm detection and filling system.

B. Chasm Detection and Filling

A chasm is defined as a gap in the floor that is long enough
to prevent the rover from moving over it without falling in.
Through testing it was determined that the rover can overcome
chasms of up to 100mm (one third of the total length) without
falling into said gap. Longer gaps would prevent the vehicle
to move along the planned path. Two ultrasound sensors
were then placed on the underside of the chassis, pointing
to the ground. One sensor was positioned at the front of the
undercarriage and another one was placed at one third of the
length from the front, in other words 100mm behind. These
two sensors are necessary as some gaps in the floor, of less
than 100mm in length, can be overcome by the rover without
need for material deposition. However, if both undercarriage
sensors detect a continuous gap, the rover will stop moving
and initiate a void filling procedure. At first, the rover uses
depth measurements of the chasm to estimate the amount of
deposit required. However, if it is under deposited (for example
if the foam expanded less than expected) then it would once
again detect the chasm and repeat the filling procedure. Over-
depositing typically leads to foam overflowing the chasm, but
the extra amount is usually trivial for the rover to overcome.
An illustration of the autonomous response to chasms is shown
in Figure 5. Of course, chasm detection is overridden when
climbing a ramp produced by the system described in Section
IV-A.

V. RESULTS

Three experiments were carried out with both detection
systems being operational. In all experiments, the rover is
instructed to move in a straight line and the detection systems
will determine whether or not they should activate the PU
foam deposit procedures in order for the rover to continue to
navigate along its planned path. All experiments require the
on-board autonomous decision system to:

1) Identify an obstacle or a chasm preventing forward
movement.

 36 / 92

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 25

Figure 6. Small obstacle test: the stages of the rover detecting a 60mm high
block and depositing a foam ramp to climb onto the obstacle.

2) Deposit the PU foam to overcome said obstacle
according to the procedures described in Section IV.

3) Wait an appropriate amount of time for the PU foam
to set.

4) Climb onto the obstacle or move over the filled chasm
using the deposited PU foam.

The mix ratio of PU Part one:Part two was fixed at 1 : 1
(Medium-Low Density foam) for all three tests. The first two
experiments consider frontal obstacles and the third considers
chasm detection. In all the scenarios the vehicle could not
navigate along the planned path without the aid of the PU foam
depositing system. For the frontal obstacles, the rover would
either topple or slip when trying to climb on the objects. In
the case of the chasm, the rover would simply fall into it.

A. Small Frontal Obstacle Test
The first experiment considered a 60mm high block - 60%

of the 100mm rover height - blocking the rovers path. As can
be seen from Figure 6, the rover detected the object using the
embedded ultrasound sensor and initiated its ramp creation
procedure. The system created a sloped ramp by controlling
flow rate according to the distance from the obstacle. The
system then waited for the foam to expand and solidify before
using the deposit to climb onto the obstacle. The total time to
run this experiment was 6 minutes and 42 seconds.

B. Large Frontal Obstacle Test
In the second experiment, a 130mm high block - 130%

times the rover height - was placed along the planned path.
Upon successfully detecting the object, the rover initiated the
ramp building procedure as in the previous scenario. However,
upon climbing the ramp, it detects the object again. The
system, knowing it has previously created a ramp, then starts
a different ramp creation procedure aimed at depositing a
second layer that is longer than the first ramp, as shown in
Figure 7. After curing, the platform used the two-layer ramp
to climb onto the obstacle. Total time for this experiment was
13 minutes and 42 seconds.

C. Chasm Test
In the final experiment, a 160mm long chasm was placed

along the rovers path - over half the 300mm rover tracks
length. The chasm was 80mm deep and 400mm wide. Once

the forward undercarriage sensor detected a gap, the rover
reduced its speed to ensure it had sufficient time to detect
a potential chasm. Once the second sensor detected the same
continuous gap, the decision logic inferred that no flooring is
present between the two sensors, hence the chasm filling proce-
dure was initiated. The material depositing system estimated
the amount of material to be deposited from the knowledge
of the depth of the chasm (measured by the undercarriage
sensors), performed the deposit and then waited for this to
expand and solidify. The rover successfully filled the chasm
and traversed the gap as shown in Figure 8. Total time for this
experiment time was 5 minutes and 50 seconds.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, an inexpensive and easy-to-use PU foam
depositing system is proposed. The system is designed as an
independent module that can easily be integrated into existing
robotic platforms to broaden their navigation capabilities on
uneven terrains. This system does not require any complicated
control systems, but it allows significant obstacles and chasms
to be overcome. The primary benefit of this system when
compared with others available in the literature is the complete
control over the mix ratio and the deposit process. This
allows control over the mechanical properties of the deposited
material, allowing the PU foams expansion ratio and final
compressive strength to be altered autonomously according to
the situational requirement. The proposed device mitigates the
main obstacle for using ground robots in disaster scenarios:
traversing uneven terrain. Future developments may include
the development of intelligent algorithms for optimising mix
ratios according to the situation detected by sensors, scaling of
system for increased range of applications, and collaborative
robotics to tackle more complex and large scale efforts.

ACKNOWLEDGMENT

This research was supported by Apadana Management
3 Ltd. The authors also wish to thank colleagues from the
University of Liverpool who provided useful insight both
during development of the platform described here and on its
potential application to disaster scenarios.

REFERENCES

[1] Centre for Research on Epidemiology of Distasters and United
Nations Office for Disaster Risk Reduction, “The human cost of
weather related disasters 1995-2015,” 2016, retrieved: May, 2019.
[Online]. Available: https://www.unisdr.org/2015/docs/climatechange/
COP21 WeatherDisastersReport 2015 FINAL.pdf

[2] D. A. Alexander and S. Klein, “First responders after disasters: A
review of stress reactions, at-risk, vulnerability, and resilience factors,”
Prehospital and Disaster Medicine, vol. 24, no. 2, 2009, p. 8794.

[3] R. R. Murphy, S. Tadokoro, D. Nardi, A. Jacoff, P. Fiorini, H. Choset,
and A. M. Erkmen, Search and Rescue Robotics. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 1151–1173.

[4] K. Nagatani et al., “Redesign of rescue mobile robot Quince,” in
2011 IEEE International Symposium on Safety, Security, and Rescue
Robotics, Nov 2011, pp. 13–18.

[5] R. R. Murphy, J. Kravitz, S. L. Stover, and R. Shoureshi, “Mobile robots
in mine rescue and recovery,” IEEE Robotics Automation Magazine,
vol. 16, no. 2, June 2009, pp. 91–103.

[6] F. Matsuno and S. Tadokoro, “Rescue robots and systems in japan,”
in 2004 IEEE International Conference on Robotics and Biomimetics,
Aug 2004, pp. 12–20.

 37 / 92

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 26

Figure 7. Large obstacle test: the stages of the rover detecting a 130mm high block and depositing a two-layer foam ramp to climb onto the obstacle. Left:
side view, Right: top view.

Figure 8. Chasm test: the stages of the rover detecting a 160mm long
chasm and depositing PU foam to fill the gap and traverse the chasm.

[7] M. Brunner, B. Brggemann, and D. Schulz, “Towards autonomously
traversing complex obstacles with mobile robots with adjustable chas-
sis,” in Proceedings of the 13th International Carpathian Control Con-
ference (ICCC), May 2012, pp. 63–68.

[8] L. Bruzzone and G. Quaglia, “Review article: locomotion systems
for ground mobile robots in unstructured environments,” Mechanical
Sciences, vol. 3, 07 2012, pp. 49–62.

[9] R. Fujisawa et al., “Active modification of the environment by a robot
with construction abilities,” ROBOMECH Journal, vol. 2, no. 1, 2015,
p. 9.

[10] N. Napp, O. R. Rappoli, J. M. Wu, and R. Nagpal, “Materials and
mechanisms for amorphous robotic construction,” in 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Oct 2012,
pp. 4879–4885.

 38 / 92

DART Project:
A High Precision UAV Prototype Exploiting On-board Visual Sensing

Michele Basso, Luca Bigazzi, Giacomo Innocenti

Dipartimento di Ingegneria dell’Informazione
Università degli Studi di Firenze

via S. Marta 3, 50139, Firenze, Italy.
Email: {michele.basso,giacomo.innocenti}@unifi.it

Abstract—This work explores a way to achieve high precision in
the positioning of a 250-class aerial drone by means of only on-
board sensors. The proposed technology is still in development,
and its basic idea is to compensate the errors of the sensors
by fusing together strongly correlated data streams. The main
players are a 6 Degrees of Freedom (DoF) Inertial Measurement
Unit (IMU) and a computer vision system, arranged to work
together as a “virtual sensor” providing the pose of the drone
relative to one or more markers acting as reference points of
known position and orientation. The proposed advance sensing
exploits complementary filters to merge inertial and visual data.
Such a refined positioning is then used to feed a custom con-
trol strategy acting as auto-pilot for implementing autonomous
navigation. Preliminary results on the developed technologies are
reported.

Keywords–Advance sensing; Drone; Computer Vision; Sensor
Fusion.

I. INTRODUCTION

Thanks to their versatility, small drones like multirotor
Unmanned Aerial Vehicles (UAVs) have received more and
more interest over the last few years, both in the academic
and industrial communities. In the scientific literature the
use of drones is getting very popular and applications are
increasing in pace with the technological development of these
systems. Moreover, recent advances in microelectronics have
made single-board microcontrollers and embedded systems
economically affordable, making their use widespread to add
advanced features in many small and medium-sized systems
such as drones. In the context of UAV systems, for example,
the availability of these advanced single-board computers is
important in applications where extreme positioning precision
is required. In this regard, interesting applications that have
been proposed recently concern precision agriculture, where
drones equipped with Real-Time Kinematic Global Navigation
Satellite Systems (GNSSs-RTK) [1] are used to minimize
human intervention [2] [3]. Other recent usage scenarios see
drones equipped with specific scientific equipment, for exam-
ple for the reconstruction of 3D environments through LIDAR
(Laser Remote Sensing) techniques [4], or for monitoring road
traffic [5]. These systems often use Vision-Based Navigation
(VBN) algorithms to improve positioning accuracy [6]–[8].
However, currently in the scientific literature there are no
direct references to the precision achieved by these multirotor
systems, since in almost all of today’s applications high
precision specifications are not required, while for applications
that require it, alternative solutions are sought. In particular,

at the current technological level there are no drones capable
of following trajectories with sub-centimetric precision and
this precludes the use of these drones in many potential novel
applications.

The main purpose of this work consists in the develop-
ment of a high-precision positioning system for UAV multi-
rotors, which makes these devices usable in a wide class of
applications where high accuracy is the main requirement.
To increase the level of accuracy of the currently available
solutions, the proposed approach integrates and extends the
performance of computer vision and inertial sensor navigation
techniques, where position, velocity and attitude data extracted
simultaneously from video streams and inertial sensors are
merged together by filter fusion algorithms for error compen-
sation. The above task involves the development of software
and hardware dedicated to video processing. In particular,
by exploiting a single camera mounted on-board, the main
task is based on the identification of specific markers in the
environment, from which it is possible to extract with high
precision the information of attitude and position relative to
the drone. Through appropriate algorithms, it is then possible
to determine in real-time the 3D coordinates of the drone
with respect to the marker, which can be used as a position
virtual sensor for controlling the drone trajectory. This visual
sensor has been designed to be employed as an on-board
autonomous navigation system add-on for commercial drones.
Indeed, the developed prototype has been implemented on
a low-cost hardware board (Raspberry PI), which is able to
process video and inertial sensor data to autonomously pilot a
250-class multirotor for tracking specific trajectories.

The rest of the paper is structured as follows. In Section II,
the hardware and software architectures are illustrated. In
Section III, the computer vision technique developed for the
advanced sensing of the drone’s position is presented. We
conclude the paper in Section IV reporting some preliminary
results.

II. PROTOTYPE ARCHITECTURE

A. Hardware
The DART prototype is a 250-class aerial drone developed

at the Systems & Control Lab of the Department of Informa-
tion Engineering of the University of Florence (see Figure 1).
The drone features a flight controller CC3D Revo running the
open-source LibrePilot software as low-level interface to the
hardware. This very basic architecture has been extended by

27Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 39 / 92

(a)

(b)

Figure 1. (a) DART prototype. (b) Zoom of the camera suspension support.

two additional board: A Raspberry PI 3 B+ and a Arduino
nano. The first board is equipped with an Pololu 2739 IMU and
a Raspicam camera module, and it implements the autonomous
driving commands based on image processing and data from
the onboard IMU. The second board, instead, implements a
Pulse Position Modulation mixer (PPM-mixer) between the
commands coming from the 2.4 GHz receiver, and those
generated by the autonomous driving module. The mixer
allows also for hybrid driving modes, and it is responsible of
the safety during transitions from manual to autonomous flight
modes and vice-versa. Figure 2 illustrates the related functional
scheme. The Raspberry module communicates with the PPM-
mixer via a bidirectional Universal Asynchronous Receiver
Transmitter (UART) protocol, while the commands from the
receiver arrive to the Arduino nano via its native PPM protocol.
PPM is also the kind of signal expected by the LibrePilot
interface, and so this has to be the nature of the mixer output,
thus explaining its name. Regarding the commands from the
receiver, then, the mixer operates just as a pass-through, while
the commands from the autonomous driving module have to
be transformed into proper PPM signals. In the Raspberry
board, API V4L2 are exploited to handle the signals from the
connector of the camera, whereas data from the IMU arrive

via I2C bus.

B. Software
All the necessary software runs on the three boards de-

scribed in the previous subsection according to the following
scheme. The CC3D Revo board executes the LibrePilot soft-
ware [9], which provides access to the drone IMU sensors
and motors, thus acting as low-level interface to each single
device on the drone. The Raspberry module, instead, executes
the software for image processing, and it is also responsible
for generating the commands of the autonomous driving. In
particular, the developed computer vision software is based on
OpenCV [10] and Visp [11] libraries. In the proposed version,
the computer vision software is designed to recognize special
markers. Figure 3 depicts the result of the image processing
that allows the module to detect the marker, and to compute
its orientation. The autonomous driver implements an in-house
control algorithm, described in more details later. The Arduino
nano board, finally, runs UART and PPM protocols specifically
designed for it objective function, i.e. the hardware switch.

C. Control algorithm
The autonomous driving module computes the commands

in the same form of those coming from the receiver, i.e., as
proper reference values for roll, pitch, yaw and thrust. At this
stage of the project, they are simply conceived to have the
drone maintaining a desired position Q with a zero yaw angle
ψ = 0, such that the drone is facing the marker. The image pro-
cessing module provides both relative orientation and relative
position with respect to the marker. This information is further
integrated by means of a fusion algorithm with data coming
from the onboard IMU to improve the estimate of the image
processing. It is worth stressing that with the implemented
algorithm and hardware platform the image processing module
works at about 30-40 Hz, while the IMU can provide data at
higher frequency. Therefore, the sensor fusion algorithm also
synchronizes the two different information streams in order to
use the right samples from each sensor. The final result is a
refined estimate of the drone position Q with respect to the
marker, whose details will be described in the next section.
The extension to multiple markers is still under development,
but early results are promising.

The information on the drone pose errors (Q − Q) and
(0 − ψ) are used to feed four distinct controllers, which
generate the driving commands as references for roll and pitch
angles, yaw angular velocity, and thrust. Such a preliminary
solution is not expected to provide the best performance,
since it does not consider the mutual connections between
the drone pose components, but it allows one to design the
autonomous driver by composition of simpler modules. The
resulting control architecture is illustrated in Figure 4.

III. ADVANCED SENSING

A. Virtual sensor
The vision algorithm takes care of detecting one or more

known markers present in the environment in order to obtain
their poses (positions and orientations) with respect to the
camera reference frame (body frame). To achieve this task, the
algorithm computes the gradient for each pixel of the image
such that pixels with similar gradient directions are grouped
into sets. The latter sets identify edges in the image from which

28Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 40 / 92

PPM-mixer

2.4 GHz receiver
(FrSky R-XSR)

PPM Input

PPM OutputUART

I2cV4L2 API

Raspberry PI 3 B+ Flight controller
(CC3D revo)

Raspicam Pololu-2739
AltIMU-10 v5

Figure 2. Hardware configuration and dependencies.

Figure 3. Marker as seen from the image processing module.

the algorithm searches for the correct sequence that recognizes
the two-dimensional position (u, v) of each marker in pixel
coordinates.

The marker coordinates (xm, ym, zm) in body frame can
be computed through the relations for barrel distortion

ym/zm =
(v − v0)(1 + kudR

2)

py
(1)

where
R2 =

(u− u0)2

p2x
+

(v − v0)2

p2y
, (2)

(u0, v0) represents pixel coordinates of the image center,
whereas parameters px e py are the focal length to pixel
dimension ratios. Finally, kud and kdu are parameters needed
to correct lens distortions. Therefore, kud, kdu, px and py are
intrinsic camera parameters which can be obtained through
an iterative evaluation process that involves the acquisition of
frames of a known image in different poses.

If the geometrical properties of the marker are known, it is
possible to retrieve additional information such as the distance
zm and orientation of the marker itself which, in turn, provide
the full pose of the marker frame with respect to the body
or camera frame. Indeed, the following change of coordinates
provide the drone 3D-position Q with respect to the marker
frame

Q =

[
x
y
z

]
= RXY Z(Φ)

[
xm
ym
zm

]
(3)

where

Φ =

[
ϕ
θ
ψ

]
(4)

is the vector of the roll, pitch and yaw angles between the
frames (computed in the experiments by using the Homogra-
phy method), and

RXY Z(Φ) =

[
cϕcψ cϕsψsθ + sϕcθ −cϕsψcθ + sϕsθ
−sϕcψ −sϕsψsθ + cϕcθ sϕsψcθ + cϕsθ
sψ −cψsθ cψcθ

]
is the corresponding rotation matrix.

B. Sensor fusion
The use of an addition 6-DoF IMU makes it possible to

merge the information of the drone attitude with the estimate
provided by the vision, considerably increasing performance,
especially at high frequencies.

At first, the algorithm running on the software platform
prefilters both the attitude and position data coming from
the vision and the angular velocities measured by the IMU
gyroscope. Then, to improve the estimation accuracy, at each
iteration k the attitude vector Φk computed by the vision
system is fused with the angular velocities Ωk measured by
the gyroscope, through the use of the following first order
complementary filter

Φ̂k+1 = ρ(Φ̂k + TkΩk) + (1 − ρ)Φk (5)

29Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 41 / 92

Flight controller
internal control
system attitude

Manual control

Drone state

Navigation control system

 Vision + IMU

Figure 4. Architecture of the autonomous driving module. Blue blocks stands for custom made functions, while the green block represents the CC3D Revo
board programmed with the LibrePilot software.

Raspicam

Gyro

Marker
detection
process

Complementary Filter
(attitude estimation)

Marker
attitude

Marker
Position

Rxyz
Drone

Position
Navigation

System

Figure 5. Schematic of the estimation process for the drone position and
orientation.

where Tk is the actual sample interval and

Ωk =

[
p
q
r

]
(6)

is the vector of the angular velocities around the three main
drone axes. The new orientation estimate Φ̂ of equation (5)
can now be employed in the coordinates transformation (3)
providing a refined position estimate Q. The schematic of
the complete filtering and estimation process is depicted in
Figure 5.

IV. CONCLUSION AND FUTURE DEVELOPMENTS

In this section, some preliminary results will be reported
and commented. A depiction of the next development of the
project will be illustrated, as well.

Figure 6 depicts how the sampling time varies during a
test flight. It is worth observing that its average is around the
already mentioned 34ms (i.e., about 30Hz) with a sufficiently
narrow standard deviation less than 2.5ms. Nevertheless, since
the control board in not meant for real-time computing, the
varying computational burden and the variable power supply
to the processor generate relatively small oscillation of the

Figure 6. Measured sample interval of the navigation system.

sampling time. In Figure 7, the trend of positions x, y, and z
are shown as they evolve during a test flight in auto-piloting
mode. The experiment is meant to provide a glimpse of the
output coming from the virtual sensor based on computer
vision techniques. The comparison with the real position of
the drone would require a special environment (such as a
set of ground cameras), which will be developed later in the
project to assess the final result quality. Still, a simple visual
inspection of the diagrams suggests that the virtual sensor may
be able to catch sufficiently rapid variations of the position
without introducing relevant noise. In this respect, Figure 8
reports the position estimate while the drone stands still on a
test bench. Since the position is constant, the plot shows the
trend of the estimation errors and it provides a good graphical
representation of the system intrinsic noise (appraisable in only
few centimeters for a 2.72m distant marker) and its related
power. Looking at Figure 8, the result turns out particularly
encouraging once the absence of a gimball for the camera
is stressed, since such a solution would strongly reduce the

30Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 42 / 92

Figure 7. Drone detected position during an autonomous flight.

Figure 8. Drone detected position in static conditions.

compensation needed to refine the pose estimate. The addition
of a gimball is planned as one of the next improvements.

Other tests have already been planned to check the reliabil-
ity of the proposed technology up to this stage of the project.
Experiments aimed at testing the auto piloting functionality,
instead, are scheduled later on, because they are more com-
plicated to perform due to the many precautions needed to
ensure the drone safety during an autonomous flight. Most
likely, better performance could be achieved by using model
based controllers. Therefore, an accurate physical model of the
drone will be top priority for the continuation of the project.

REFERENCES
[1] P. Henkel, U. Mittmann, and M. Iafrancesco, “Real-time kinematic

positioning with GPS and GLONASS,” in 2016 24th European Signal
Processing Conference (EUSIPCO), Aug 2016, pp. 1063–1067.

[2] P. Tokekar, J. V. Hook, D. Mulla, and V. Isler, “Sensor planning for
a symbiotic UAV and UGV system for precision agriculture,” IEEE
Transactions on Robotics, vol. 32, no. 6, Dec 2016, pp. 1498–1511.

[3] B. Reshma and S. S. Kumar, “Precision aquaculture drone algorithm
for delivery in sea cages,” in 2016 IEEE International Conference on
Engineering and Technology (ICETECH), March 2016, pp. 1264–1270.

[4] M. Sanfourche, B. Le Saux, A. Plyer, and G. Le Besnerais, “Environ-
ment mapping & interpretation by drone,” in 2015 Joint Urban Remote
Sensing Event (JURSE), March 2015, pp. 1–4.

[5] H. Zhou, H. Kong, L. Wei, D. Creighton, and S. Nahavandi, “Efficient
road detection and tracking for unmanned aerial vehicle,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 16, no. 1, Feb 2015,
pp. 297–309.

[6] F. Samadzadegan and G. Abdi, “Autonomous navigation of unmanned
aerial vehicles based on multi-sensor data fusion,” in 20th Iranian
Conference on Electrical Engineering (ICEE2012), May 2012, pp. 868–
873.

[7] A. G. Kendall, N. N. Salvapantula, and K. A. Stol, “On-board object
tracking control of a quadcopter with monocular vision,” in 2014
International Conference on Unmanned Aircraft Systems (ICUAS), May
2014, pp. 404–411.

[8] P. Rudol, M. Wzorek, and P. Doherty, “Vision-based pose estimation
for autonomous indoor navigation of micro-scale unmanned aircraft
systems,” in 2010 IEEE International Conference on Robotics and
Automation, May 2010, pp. 1913–1920.

[9] “LibrePilot open source project,” 2019, URL: https://www.librepilot.org
[accessed: 2019-04-02].

[10] “Open Source Computer Vision Library,” 2019, URL:
https://opencv.org/ [accessed: 2019-04-02].

[11] “Open source visual servoing platform library,” 2019, URL:
https://visp.inria.fr/ [accessed: 2019-04-02].

31Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 43 / 92

A Navigational System for Quadcopter Remote Inspection of Offshore Substations

Elisabeth Welburn∗, Hassan Hakim Khalili†, Ananya Gupta‡, Joaquin Carrasco§ and Simon Watson¶
School of Electrical and Electronic Engineering

The University of Manchester, Manchester, UK M14 9PL
∗Email: Elisabeth.Welburn@manchester.ac.uk
† Email: Hassan.Hakimkhalili@manchester.ac.uk
‡ Email: Ananya.Gupta@manchester.ac.uk
§ Email: Joaquin.Carrasco@manchester.ac.uk
¶ Email: Simon.Watson@manchester.ac.uk

Abstract—Effective and safe maintenance of offshore infrastruc-
ture is hampered by its remote location. Robotic inspection can
provide a retrofit solution, improving safety for human personnel
by removing them from a potentially hazardous environment, and
also reduce operational costs. There are three primary challenges
for navigation around an offshore substation: low visibility, high
electromagnetic fields and the absence of Global Positioning
System (GPS) signals. This paper details a navigational system
that enables Unmanned Aerial Vehicles (UAVs) to operate within
a dark and GPS-denied environment.

Keywords–Robotics In Hazardous Fields; Aerial Robotics;
SLAM; Sensor-based Control.

I. INTRODUCTION

The remote inspection and asset management of offshore
wind farms and the connection to shore will be worth up to 2
billion pounds annually by 2025. However, current methods of
inspection are dangerous for human personnel and introduce
high costs for the industry as a whole [1].

Currently, Supervisory Control and Data Acquisition
(SCADA) systems and thermal imaging inspections are being
used in data management to inform substation operations
and maintenance. However, the limited number of qualified
inspectors coupled with the high demand leads to common
unexpected failures. Automation could potentially alleviate this
by increasing inspection frequency and standardizing proce-
dures [2].

Robotic inspection platforms have the potential to ensure
the maintenance of vital infrastructure, reducing associated
expenditure and hazards [1]. However, this endeavour presents
unique challenges that must be overcome for it to become a
viable commercial method. Considering the offshore substation
environment in the context of a navigational system, the
inherently symmetrical nature coupled with the occlusion of
GPS signal may attribute to difficulty ascertaining an accurate
estimation of the robot’s global 6 Degree of Freedom (DoF)
pose. The high electromagnetic fields necessitate the use of
shielding, limiting external sensor hardware [3]. The presence
of high electromagnetic fields could potentially interfere with
the nominal operation of the propulsion motors [4]. To cir-
cumvent this, the use of a magnetometer within the proposed
navigational system will be neglected. Moreover, the sensor
payload must also be minimal to extend battery life, facilitating
the implementation of autonomous capabilities in this remote
location. Also, the absence of visible light limits the use of
vision-based odometry.

Three levels of autonomy can be defined: pure tele-
operation, safe-guarded tele-operation and autonomous navi-

gation [5]. The navigational system presented within this paper
provides a method of remote tele-operation. However, the aim
is to extend this system to full autonomy in the future with
more sophisticated obstacle avoidance capabilities that account
for the electromagnetic fields.

This paper presents a navigational system for UAVs to op-
erate inside a High Voltage Direct Current (HVDC) valve hall.
The quadcopter is equipped with two 2D Light Detection and
Ranging (LiDAR) devices that are mounted perpendicularly to
each other, the combination of which provides a 3D estimation
of the robot pose. However, this estimation is, in part, based
upon relative movement of the surrounding landmarks between
frames and so is subject to a certain amount of drift. This is
further exacerbated by the repetitive and symmetrical nature of
these landmarks. To remedy this, the implementation of Quick
Response (QR) codes were investigated as global reference
points to correct for this accumulated error. Sensor fusion
was accomplished with the use of an Extended Kalman Filter
(EKF).

The remainder of this paper is structured as follows:
Section II of this paper will consider related works and Section
III will detail the system architecture, while Section IV will
analyse the collated results and several conclusions will be
drawn concerning further extensions of this work and the
viability of this system within industry.

II. RELATED WORK

To inform system design, the state-of-the-art navigational
techniques were considered for UAVs as well as ground
vehicles, with the view of adapting these methods for UAV
navigation of a GPS-denied and dark environment.

A. Current Navigational Techniques
In [6], an autonomous navigational system was developed

for a ground vehicle deployed within a GPS-denied green-
house. This system used the Hector Simultaneous Localisa-
tion and Mapping (SLAM) Robot Operating System (ROS)
package, that is also used within this system, and combined
this with a potential fields path planning algorithm. Structural
changes due to the growth of crops were accounted in the path
planning algorithm while being safe to operate in the presence
of humans. This is reminiscent of faults occurring and causing
a fluctuation of electromagnetic fields inside the HVDC valve
hall environment, changing the required clearances to maintain
nominal operation of the UAV.

In [7], a UAV was deployed into a GPS-denied, dark tunnel
where a perception system comprising of a near-infra-red

32Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 44 / 92

stereo camera, flashing LEDs, inertial sensors, and a 3D depth
sensor to derive the geometry of the environment. A horizon-
based planner accounted for the system’s uncertainty during
mission execution and generated collision-free exploration
paths. However, the environment here was unknown and static,
whereas the valve hall geometry is known and faults within the
racks can cause a fluctuation of the electromagnetic fields.

In [2], a robot transverses substations with the use of a
rail system and collects IR and visible images, positioning,
time and component description and transmits this, as well
as energy, to a control centre with the use of the rails.
This mitigates faults caused by intermediate electromagnetic
interference between the robot and the control centre. Also,
magnetic references on the rails negate the need for markings
implemented onto the substation infrastructure. Also, the use
of the commercial voltage for Brazil facilitates installation
in other locations. However, the rail-based robot requires the
installation of an extensive rail system in existing substations
to operate [2]. The system proposed within this paper provides
a retro-fit solution that could potentially accomplish the same
task.

B. Vision-Based Odometry Techniques
The dark nature of the valve hall restricts the perception

within the visible spectrum. However, a Near-Infrared (NIR)
camera will be fitted to the drone for fault detection purposes
and also a LED spotlight can provide limited ambient lighting
in the immediate vicinity.

In general, though visual odometry is useful for local posi-
tion control and stability, these methods often suffer from long-
term drifts and are not suitable for building large-scale maps
[8]. RGB-D cameras provide both a colour image and per-
pixel depth estimates and are prominent within mobile robotic
platforms due to their richness of the data collected coupled
with their reducing cost. In [8], a system for the navigation
of a micro-air vehicle within a cluttered, GPS-denied indoor
environments with the use of an on-board RGB-D camera
and an Inertial Measurement Unit (IMU) was developed. This
system periodically corrected for the drift present within the
local state estimation based upon visual odometry with results
from the RGB-D mapping algorithm [9]. However, this system
was unsuitable for real-time situations as the loop closing and
SLAM algorithms were not sufficiently fast to be run on an
on-board processor.

The use of Quick Response codes within absolute local-
isation methods for indoor mobile robots is widespread due
to their large data storage capabilities, small size, low cost
and simple implementation. A possible issue with their use is
that the recognition rate is reduced if the QR code is small
within the camera’s field of view or the robot moves too
fast. Considering this application in real-time, the processing
resources are sufficiently low to enable use of the QR codes,
as it was found within [10], that the time taken to calculate
the relative position of the robot was between 20 to 30 ms.

Within [10], an industrial camera was mounted onto a
mobile ground robot pointing upwards in order to identify
QR codes mounted to the ceiling. Meanwhile, a laser range-
finder was used for object detection as well as the construction
of a 2D map with the use of a Rao-Blackwellized particle
filter. The Dijkstra algorithm, as well as the Dyanmic Window
Approach were used to implement both local and global path

planning capabilities [10]. However, this system is not usable
in situations where the QR codes were occluded from the
camera’s field of view due to sheltering obstacles or ambient
light. Odometry data was used to compensate for the drift
occurring within the short time interval travelling between the
QR codes, whereby the error accumulation was mitigated with
the use of additional sensor inputs [10].

In [11], a tailored extended H∞ filter (EHF) was imple-
mented. This filter fused both odometry and gyroscope data
with pose estimates based upon QR code landmarks. However,
this method is more computationally expensive compared to an
EKF, taking longer to converge on an accurate estimate [11],
which is paramount when instructing real-time control as in
this scenario.

III. SYSTEM ARCHITECTURE

Within this section, the architecture of the navigational
system as depicted in Figure 1 is discussed.

Figure 1. Software Architecture for the Proposed Navigational System.

A. Mobile Robotic Platform
The quadcopter utilised for the proof-of-concept system is

the Hector quadrotor Robot Operating System (ROS) package
[12] due to its pre-existing and well-documented integration
with the Gazebo simulator. The visual geometry was written
within COLLADA format and the collision geometry was
modelled as a STL mesh. A low polygon count reduced the
demand from rendering the model, allowing simulations to be
ran at a higher percentage of real-time. The propellers were
represented by actuator discs to facilitate the maintenance of
boundary conditions [12]. The hector quadrotor is depicted
below in Figure 2.

Figure 2. The Hector quadrotor rendered within the Gazebo simulator.
Image taken from [12].

The CAD model of an offshore substation, as shown in Fig-
ure 3, with the correct clearances as the real-time environment
was constructed and used to collate results.

33Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 45 / 92

Figure 3. CAD model of the HVDC valve hall

B. 2D SLAM Algorithm
Low-cost laser range-finders are prevalent in autonomous

robot applications due to their low price and ability to trace
terrains and structures in the contiguous area, while consuming
relatively little power [13].

In the proposed system, two Hokuyo utm-30lx LiDARs
were mounted perpendicularly to each other. It was assumed
that the z-axis was out-of-plane relative to the ground plane
and the x-axis was pointing in the forward direction of the
quadcopter. The horizontal, planar LiDAR was used within the
2D SLAM algorithm to construct a map of the surroundings.

A ROS node, Hector Mapping [14], was selected as the 2D
SLAM algorithm, of which the only requirement was a high
frequency laser scanner, such as the Hokuyo utm-30lx LiDAR
in this scenario.

C. Floor Extraction
For height estimation and greater spatial understanding, a

secondary LiDAR was mounted, perpendicular to the primary
LiDAR, onto the underside of Hector quadrotor. The vertical
LiDAR produced a 2D vertical laser scan of the environment.
A split-and-merge algorithm [15] was then implemented to
differentiate the walls and floor using the relative angle of
the incident laser endpoints. The roll and pitch recorded by
the EKF was processed and the calculated relative angles
of the identified line segments were rotated to avoid falsely
recognising the walls as the floor during operation.

A laser pointing vertically downwards was also considered
as the method of height estimation, however this is a less
robust method than the aforementioned secondary LiDAR.
This is because if the quadrotor turned near the boundaries
of the space, the singular laser point could potentially rotate
to be incidental on walls or substation racks. This could be
mitigated with the use of fusion with the orientation from
the IMU device to account for the laser rotation. However,
IMU data suffers from drift and so a secondary LiDAR was
used in the implementation to provide more information of the
transformation of the laser scan points relative to the quadrotor.

D. QR Codes as Global Landmarks
Vision-based odometry is generally computationally inten-

sive and also suffers from robustness under varying lighting
conditions [11]. However, in this scenario there is an absence
of visible light and so ambient light levels are constant. Also,
vision-based odometry was implemented with the view to

periodically correct for drift in the 2D SLAM algorithm pose
estimations.

A FLIR One Near-Infrared (NIR) camera of a spectral
range between 8 - 14 µm will be utilised to enable simultane-
ous QR code detection and faults within the infrared spectrum.
An infrared LED emitting light between 750 - 950 nm will be
mounted on top of the camera, illuminating the proximal field
of view. However, for the purposes of this simulation, a generic
camera is created within a virtual world lit by ambient lighting
to ensure an accurate estimation of the nominal accuracy of
the vision-based odometry.

The QR codes were generated with the use of the open-
source library, arUco markers. These were then placed on
the racks within the virtual substation environment at regular
intervals. The ROS package, fiducial SLAM [16], was used to
both identify the unique identifier of the QR code as well as
produce a 6 DoF pose estimation of the drone using the known
global poses of the QR codes.

The QR codes could potentially be used in two capacities
during drone operation. Correct identification of a unique QR
code indicates the drone is within the correct general vicinity
of the rack. These could form the basis of a command interface
to set the goal destination that determines the generated path.
The unique identifiers of visible QR codes in the camera field
of view are shown in Figure 3.

Figure 4. The virtual UAV inspecting a substation rack. Inset is the
camera field of view.

Alternatively, the pose of the visible QR marker in a known
location can be processed to output a 6 DoF pose estimation
of the drone that could have been later fused with the other
sensor measurements within the EKF. However, this was found
to produce erroneous estimations of 6 DoF pose, as discussed
later.

IV. SENSOR FUSION
Sensor fusion was necessary within this system to identify

the optimal estimate of the UAVs pose. Considering the sensor
measurements modelled in this section, (xs, ys, zs, φs, θs,Ψs)
was produced from the 2D SLAM performed using the planar
LiDAR, z from the height measurement using the perpendicu-
lar LiDAR and, finally, (x, y, z, φ, θ,Ψ) was produced from the
vision-based odometry system based upon QR codes visible to
the on-board camera.

First, the orientation measurements must be converted from
a quarternion in the local frame to Euler angles that are
relative to the global frame. A function available within the
ROS python library tf was used for this conversion. For the
purposes of this system, the starting pose of the spawned robot

34Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 46 / 92

was assumed to be the global frame in terms of the way-
point commands that were converted into command velocities.
However, this coordinate frame was mapped onto the 2D
occupancy grid constructed to utilise the A* path planning
algorithm.

The measurements were taken at different unsynchronised
rates. To accompany this, each sensor measurement was sam-
pled with each new IMU measurement at a rate of 100 Hz. In
this way, a sufficient sample rate was ensured.

Kalman filters are algorithms for the estimation of dynamic
state variables by combining state predictions with measure-
ments. For discrete systems, the future values of the state
variables can be predicted using Kalman filters.

The EKF can overcome the linearity assumption of the
Kalman Filter that both the motion model and sensor model are
linear Gaussian [13]. Within this system, an extended Kalman
filter was implemented, where the non-linearity is introduced
with the continuously-variable rotation relative to the global
frame.

For time-invariant systems, the function f computed the
predicted state from the previous estimate, and the h function
computed the output. The variables, wk and vk, represented
the process and observation white noises, respectively, i. e.

xk+1 = f(xk, uk) + wk (1)
zk = h(xk) + vk (2)

The white noises wk and vk were assumed to be zero mean
and covariances Qk and Rk, respectively.

For the purposes of this Kalman filter, all variables were
within the global frame. The values used for initialisation of
the Kalman filter were the coordinates of spawning the robot
model.

In the case of the Hector quadcopter, the state variables
were updated with the use of inertial measurements from
the IMU unit. The state vector, X , comprised of these state
variables:

X = [x y z ẋ ẏ ż φ θ Ψ]
T (3)

where x, y, z were the positions on the X, Y, and Z axes and
φ was the roll, θ, the pitch and Ψ, the yaw of the quadrotor.

The global displacement, s, in each of the X, Y and
Z axes was modelled using dead reckoning with the initial
displacement, s0, the rotation matrix that transforms between
the body frame to the inertial frame, R, the initial velocity at
the start of the time interval v0, IMU acceleration within the
IMU frame of reference, a, the gravitational constant, g, and
the length of the time interval, t.

With some abuse of notation, this relationship was encap-
sulated in the dynamic matrix, f , that described how the state
evolves to the next time step, as below:

f =


s0 + ṡ4T + 1

2R(a− g)4T 2

v̇0 +4T
(
R(a− g)

)
α0 +4TΘ

 , (4)

where Θ was the mapping of the angular velocities in the body
frame (p, q, r) to the changes in the Euler angles within the
inertial frame [17], e.g.

Θ =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ

 . (5)

The measurement function, h, was given by

h = [x y z φ θ Ψ]
T
. (6)

The linearisation of (1) provided the state transition matrix,
Fk, by computing the Jacobian of the dynamic matrix f with
respect to the state vector. Similarly, the observation matrix
Hk was also be defined as the Jacobian of the measurement
matrix, h with respect to the state vector.

The control inputs into the system were assumed to be the
linear accelerations and the angular velocities as measured by
the IMU, i.e.

u =
[
ẍ ÿ z̈ φ̇ θ̇ Ψ̇

]T
(7)

The time update of the EKF algorithm was given by

x̂k|k−1 = f(xk−1, uk−1), (8)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk. (9)

The measurement update steps were then computed to
adjust the Kalman gain, Kk and to update the estimate with
the actual measurement, zk, and to update the error covariance,
Pk|k. The measurement residual, ỹ as well as the covariance
residual, Sk were also calculated.

ỹk = zk − h(x̂k|k−1) (10)

Sk = HkPk|k−1H
T
k +Rk (11)

Kk = Pk|k−1H
T
k S
−1
k (12)

x̂k|k = x̂k|k−1 +Kkỹk (13)
Pk|k = (I −KkHk)Pk|k−1 (14)

This method was less computationally expensive in com-
parison to other methods, such as the H∞ filter (EHF) [11].
One of the drawbacks of an extended Kalman filter is that it is
not an optimal estimator. Moreover, if the initial state vector is
wrong, the filter will quickly diverge due to its linearisation. As
a result, the EKF requires extensive tuning of these parameters.

V. PATH PLANNING ALGORITHM

The final pose estimation from the EKF was fed into an A*
path planning module [18]. The robot radius was considered
greater than the nominal dimensions, ensuring clearances from
the high electromagnetic fields present within the substation
racks were maintained.

Prior to this, a 2D occupancy grid of the substation plan
was constructed using the known dimensions of the CAD
model. In terms of command way-points, height correction was
performed first to adjust the drone to the specified goal height
because of the largely constant geometry of the environment
within the vertical plane. Then, an A* path planning algorithm
was then used to generate the path shown in Figure 5 within
the substation.

35Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 47 / 92

Figure 5. A 2D occupancy grid and path generated by the A* star
algorithm

TABLE I. ERROR IN EKF OUTPUT

Global Axis Distance Travelled (m) Maximum Error (m) Maximum Error (%)

x 39 0.65 1.67
y 5.5 0.3 5.45
z 5 0.015 0.3

This produced the optimal trajectory consisting of 0.5 m
increments between the start position and goal position. After
this, alterations to the orientation of the drone were made to
enable 360 degree inspection.

VI. RESULTS

To ascertain a baseline and compute the errors of the
constituent algorithms, the standard deviations of each of the
measurements were calculated. These standard deviations were
then used as a baseline for tuning of the Q and R matrices
within the EKF.

The pose estimation generated from the EKF during the
mapped trajectory in Figure 5 was used to gauge the viability
of the proposed navigational system. The IMU measurements,
as well as the hector mapping 2D pose and extracted floor
height were fused by the EKF. The 3D position of the UAV is
compared to the ground truth within Figure 6. The error present
within the EKF output is tabulated in Table I. An error of
1.67% in the x-axis throughout the course of a twenty-minute
mission is tolerable. However, an error of 5.45% in the y-axis
is unsatisfactory and further tuning of the EKF is required to
alleviate this. The height estimation algorithm was found to
produce the least error, with a 0.3% throughout the length of
the mission. The average battery life of a UAV is between ten
to fifteen minutes, depending on payload and so these figures
represent a probable overestimation of the drift present within
the EKF.

The camera stream was also recorded, whereby visible QR
codes unique identifiers were overlaid, as seen in Figure 4. The
6 DoF pose estimation from the visible QR codes was also
collated to evaluate whether this data should be incorporated
into the EKF. However, as can be seen by Figure 7, these pose
estimations are extremely erratic and will not contribute to the
overall stability of the EKF upon fusion.

The inaccurate 6 DoF pose estimation produced from the
fiducial slam could potentially be due to the 2D nature of
the QR codes hindering precise depth perception. It also may
be due to the monocular nature of the camera.

Figure 6. EKF pose estimation

Considering Figure 7, ultimately direct pose estimation
from fiducial slam was not implemented within the EKF.
However, the unique identifiers displayed within the camera
stream could potentially facilitate inspection of substation
racks by providing a visual verification of the current vicinity
of the UAV.

Figure 7. EKF pose estimation with the fiducial slam results

In summary, these set of results suggest that this framework
could potentially be adapted for implementation into a real-
world system.

VII. CONCLUSION

In conclusion, the proposed, proof-of-concept, navigational
system paves the way for UAV navigation within dark, GPS-
denied environments. This was acheived with the fusion of
IMU data with processed LiDAR measurements. Possible
mechanisms of correction via vision-based odometry upon
the identification of QR codes within the environment were
explored and it was concluded that though the QR codes
provide visual cues of the drones current position they fail to
act as reference points to generate an accurate 6 DoF pose. This
system provides a retro-fit solution for the remote inspection
of substations, merely requiring the careful placement of QR
codes within the environment.

Future work includes the implementation of this naviga-
tional system onto a drone within an indoor, confined and
dark environment. The computation and sensing required for

36Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 48 / 92

local position control will be performed on-board the vehicle,
reducing the dependence on unreliable wireless links [8]. The
path planning capabilities will also be expanded to account for
the presence of electromagnetic fields with the implementation
of a modified potential fields algorithm. Moreover, this system
could potentially pave the way for the use of thermal imaging
to identify faults within the substation infrastructure. This is
advantageous in comparision to existing methods because it
involves non-contact precision temperature measurements and
non-destructive testing [5].

ACKNOWLEDGMENTS

This work was supported by the Holistic Operation and
Maintenance for Energy from Offshore Wind Farms (HOME
Offshore) project (EPSRC Grant Number: EP/P009743/1) and
the Robotics and Artifical Intelligence for Nuclear (RAIN)
project (EPSRC Grant Number: EP/R026084/1). The authors
would like to thank both Dr. Andrew West and Dr. Thomas
Wright of the University of Manchester for their continued
support.

REFERENCES

[1] E. M. Barnes et al., “Technology Drivers in Windfarm Asset Manage-
ment Position Paper,” 2018, pp. 1–46.

[2] B. P. Silva et al., “On-rail solution for autonomous inspections in
electrical substations,” Infrared Physics & Technology, vol. 90, May
2018, pp. 53–58. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1350449517307247

[3] M. Heggo et al., “Evaluation and mitigation of high electrostatic fields
on operation of aerial inspections vehicles in hvdc environments,” in
EERA DeepWind19, Jan 2019.

[4] M Heggo et al., “Evaluation and mitigation of offshore hvdc valve hall
magnetic field impact on inspection quadcopter propulsion motors,” in
EERA DeepWind19, Jan 2019.

[5] P. Rea and E. Ottaviano, “Design and development of an
Inspection Robotic System for indoor applications,” Robotics and
Computer-Integrated Manufacturing, vol. 49, Feb 2018, pp. 143–
151. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0736584517300613

[6] E. H. Harik, A. Korsaeth, E. H. C. Harik, and A. Korsaeth, “Combining
Hector SLAM and Artificial Potential Field for Autonomous Navigation
Inside a Greenhouse,” Robotics, vol. 7, no. 2, May 2018, p. 22.
[Online]. Available: http://www.mdpi.com/2218-6581/7/2/22

[7] C. Papachristos, S. Khattak, and K. Alexis, “Autonomous exploration
of visually-degraded environments using aerial robots,” in 2017
International Conference on Unmanned Aircraft Systems (ICUAS).
IEEE, Jun 2017, pp. 775–780. [Online]. Available: http://ieeexplore.
ieee.org/document/7991510/

[8] Huang et al., “Visual Odometry and Mapping for Autonomous Flight
Using an RGB-D Camera.” Springer, Cham, 2017, pp. 235–252. [On-
line]. Available: http://link.springer.com/10.1007/978-3-319-29363-914

[9] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D Mapping:
Using Depth Cameras for Dense 3D Modeling of Indoor Environments.”
Springer, Berlin, Heidelberg, 2014, pp. 477–491. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-28572-133

[10] H. Zhang, C. Zhang, W. Yang, and C.-Y. Chen, “Localization and
navigation using QR code for mobile robot in indoor environment,”
in 2015 IEEE International Conference on Robotics and Biomimetics
(ROBIO). IEEE, Dec 2015, pp. 2501–2506. [Online]. Available:
http://ieeexplore.ieee.org/document/7419715/

[11] P. Nazemzadeh, D. Fontanelli, D. Macii, and L. Palopoli, “Indoor
Localization of Mobile Robots Through QR Code Detection and Dead
Reckoning Data Fusion,” IEEE/ASME Transactions on Mechatronics,
vol. 22, no. 6, Dec 2017, pp. 2588–2599. [Online]. Available:
http://ieeexplore.ieee.org/document/8066377/

[12] J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klingauf, and O. von
Stryk, “Comprehensive simulation of quadrotor UAVs using ROS and
gazebo,” in Simulation, Modeling, and Programming for Autonomous
Robots. Springer Berlin Heidelberg, 2012, pp. 400–411. [Online].
Available: https://doi.org/10.1007%2F978-3-642-34327-8 36

[13] W.-C. Jiang, M.-Y. Ju, Y.-J. Chen, and W.-C. Jiang, “Implementation
of Odometry with EKF in Hector SLAM Methods,” International
Journal of Automation and Smart Technology, vol. 8, no. 1, Mar
2018, pp. 9–18. [Online]. Available: http://www.ausmt.org/index.php/
AUSMT/article/view/1558

[14] “Hector mapping,” accessed: 2019-05-09. [Online]. Available:
\url{http://wiki.ros.org/hector mapping}

[15] “Laser line extraction,” accessed: 2019-05-09. [Online]. Available:
https://github.com/kam3k/laser line extraction

[16] “Fiducial slam,” accessed: 2019-05-09. [Online]. Available: https:
//github.com/UbiquityRobotics/fiducials

[17] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion
Control. Chichester, UK: John Wiley & Sons, Ltd, Apr 2011.
[Online]. Available: http://doi.wiley.com/10.1002/9781119994138

[18] “Pythonrobotics,” accessed: 2019-05-09. [Online]. Available: https:
//github.com/AtsushiSakai/PythonRobotics

37Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 49 / 92

Towards a Methodology to Test UAVs in Hazardous Environments

Vince Page

School of Engineering

University of Liverpool

Liverpool, United Kingdom

Email: v.page@liverpool.ac.uk

Michael Fisher

Department of Computer Science

University of Liverpool

Liverpool, United Kingdom

Email: MFisher@liverpool.ac.uk

Matt Webster

Department of Computer Science

University of Liverpool

Liverpool, United Kingdom

Email: matt@liverpool.ac.uk

Mike Jump

School of Engineering

University of Liverpool

Liverpool, United Kingdom

Email: mjump1@liverpool.ac.uk

ABSTRACT - This paper reports on the early stages of the

development of a methodology to analyse and test autonomous

systems in hazardous environments, with the aim of verifying

both the safe decision-making and resulting actions of the

system. The ultimate goal is to generate safety case evidence that

a designer can provide to a regulator to show that the system to

be used will likely operate safely.

Keywords – UAV; Hazardous Environments; Verification;

Simulation.

I. INTRODUCTION

There is currently a drive in the UK toward using

autonomous systems, and robotic systems in particular, in

extreme or hazardous environments [1]. This paper is

concerned with the Verification and Validation (V&V) of

autonomous systems operating in hazardous (specifically

offshore) environments.

Autonomous systems are systems which decide for

themselves what to do [2]. Typically, these decisions are

made using computer systems, which control the system in

question and perform operations that might otherwise be

performed by a person. For example, an autonomous

Unmanned Aerial Vehicle (UAV) will need to contain a

number of computer systems that can replace a human pilot

operating the UAV using remote control [3].

In this paper, an autonomous system means the following:

A system that is given a goal and restrictions and

fulfils this goal by planning, making decisions and

carrying out actions without direct human

interaction

Robotic systems are good for tasks in hazardous

environments. Typically, robotic systems are used for Dull,

Dirty and/or Dangerous missions, commonly known as the

“three D’s”. Recently however, the need to use robots within

Demanding, Distant and Distributed missions has also been

established. Offshore environments, such as oil platforms and

wind farms, are prime examples of these latter “three D’s”.

In all environments, but in particular for hazardous

environments, autonomous systems must operate safely and

be safe to operate. What is more, this must be demonstrable.

Part of the process to demonstrate this safety case means that

the decisions being made, by the system, the reasons why

they have been made and the actions that result from these

decisions need to be verified for all possible operating

conditions. Furthermore, if a system fails, knowledge

regarding why it fails is required. Thus, the question asked in

this paper is as follows:

How can an autonomous UAV be analysed to

determine the conditions under which it fails and to

indicate why it failed?

This paper uses an example scenario of an UAV

inspecting an offshore asset to demonstrate the development

of tools and techniques that will be used to verify its safe

operation.

The paper is organised as follows. Section II establishes

the challenges of offshore environments for autonomous

systems; how V&V can be used to ensure safety; how a

system needs to be constructed to be verified; how the V&V

outputs can be used to build certification evidence; and how

the methodology presented contributes to this. Section III

presents the methodology to analyse the UAV and provide

explainable failures and Section IV shows the results of its

application and interpretation. Finally, conclusions are drawn

and future work is detailed in Section V.

II. BACKGROUND

A. Offshore Operations

For the purposes of this paper, ‘the offshore environment’

means the environment around energy generation assets, such

as oil rigs and wind turbines.

UAV operations, e.g., remote inspections around oil rigs

and wind turbines, pose many engineering challenges. A

potentially significant source of operational difficulty for

such tasks will be when flying in the disturbed/turbulent air

flow near such structures, as shown in Figure 1. Such

turbulent flow structures make flying in and around the

offshore assets dangerous if the vehicle does not possess

sufficient control authority to maintain its desired position,

leading to a potential collision with the asset or its associated

personnel.

A similar situation exists for ship-borne naval aviation

operations. Helicopters are often operated from landing decks

located at the ship’s stern. The ship’s motion and wind

38Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 50 / 92

conditions create an area of disturbed air flow in the landing

area. To determine whether a particular ship and helicopter

combination is capable of landing/taking off from the ship

under a given wind condition, flight trials are conducted to

form a Ship Helicopter Operating Limit (SHOL) [4].

Previous work has investigated the replacement of part of the

physical testing required to generate a SHOL with piloted

simulations [4]. The method presented in this paper takes a

similar simulation-based approach for autonomous UAV

system missions.

The scenario considered in this paper is an inspection task

for a UAV on an oil rig leg. This is a sufficiently complex

task to allow the methodology to be rigorously tested. It will

be applied to other, more diverse scenarios at a later date.

B. V&V of Autonomous Systems

Autonomous systems present a significant challenge for

V&V. Many non-autonomous systems are designed to use a

human operator who has overall responsibility for the safe

and reliable operation of the system. Autonomous systems,

on the other hand, cannot assume the presence of the

responsible human, and therefore must manage safe and

reliable operations themselves [5].

Figure 1. A typical offshore UAV operating environment.

V&V for autonomous systems uses many well-

established techniques, as well as some that have been

developed with autonomous systems in mind [5]. At the same

time, experimentation within controlled environments is a

mainstay of engineering best-practice, and is also used for

autonomous systems. However, due to the significant

challenges and added complexity of autonomous systems,

experimentation can be expensive and dangerous. Therefore,

high-fidelity simulation is often used as a separate V&V

technique [6]. High-fidelity simulation involves

incorporating accurate physical models of a system within a

realistic synthetic environment. Trials within high-fidelity

simulation provide a safer and potentially cheaper means to

test than physical experiments. Of course, this comes at the

cost of needing to understand the limitations of the models

being used. The models of the system and the environment

used within simulation must themselves be verified and

validated [7].

Figure 2. System Architecture of an Autonomous UAV with the separation

of the component using layers which then indicates the verification method
to be applied to each

A V&V technique commonly used for autonomous

systems is formal verification, an application of Formal

Methods [8]. Formal verification works by building abstract

mathematical models of the system in question, and then

exhaustively analysing the models using software to

determine whether or not particular requirements hold.

Formal verification is particularly useful for finite state

systems, and has therefore found a natural application in the

verification and validation of autonomous software.

There are, of course, many other V&V techniques not

listed above, including hardware-in-loop testing [9], real-

world operations and end-user validation [10], that are also

used for V&V of autonomous systems.

C. Systems Architecture for V&V

To be able to apply V&V to a whole system, it needs to

be constructed in a certain way. This is mostly due to the

models used to describe a sub-system. In Figure 2, the

systems architecture of an autonomous system that is to fly

UAVs around oil rigs is shown. There are two important

features in this architecture: the layers and the intra-layer

separation of subsystems.

The layering is to group sub-systems, similar in

construction rather than role or output. The calculation layer

can be thought of as any task that reasons about the world in

a non-abstract way, such as a route or mission planner. The

decision layer is for those systems that make decisions based

on information provided by the interaction and calculation

layers. The interaction layer is the-low level autonomous

tasks that translates plans and decisions into actions. The

environment layer is the actual hardware that physically

carries out the desired actions.

On the right of Figure 2, the verification methods are

aligned with the components that they are best suited to

testing. Formal methods are well suited to analysing and

verifying decision making, but the abstraction required to

apply them to planners or continuous controllers makes them

less so for these elements. Simulation-based testing allows

39Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 51 / 92

many permutations of the systems goals, initial conditions

and even internal parameters, to be tested; thus allowing the

actions of the systems to be rigorously tested. The physical

testing of the system then checks the results of the formal

methods and simulations against reality and will determine

the validity of the abstractions and assumptions required to

build them.

In short, with the system constructed in such a way, the

following questions can be answered:

Formal Methods - Has the safe decision been made?

Simulation Based Testing - Did it result in safe actions?

Physical Testing - How well do these answers match

reality?

D. Evidence for Safe Operations

For an autonomous system to be used in a real-world

environment, its safe operation needs to be agreed with the

regulator. In the UK, there is no standard method for

assessing whether or not autonomous UAV operations are

safe. Each request for operation is reviewed on a case-by-case

basis using a submitted safety case/risk assessment for the

planned operation.

V&V techniques can be used to generate evidence to

prove that a system will operate safely and reliably. This

paper proposes that formal methods and simulation based

stress testing can be included to add strength to the safety

case.

For the scenario considered in this paper, the operating

envelope of the system, when being used in certain conditions

is the addition to the safety case. An example of this is shown

in Figure 3. This example is intentionally similar to that of a

SHOL. The aim of simulation-based verification is to

generate this operating envelope. The dotted lines represent

the boundary between safe and unsafe operations.

As an example, for a UAV doing inspections of the legs

of an oil rig, there will exist a set of wind speeds and

directions under which the UAV is no longer able to operate.

The operator of the UAV, oil rig and regulators will need to

know the safe wind speed and direction operating envelope

before any task can proceed.

Figure 3. Illustration of the safety case evidence aimed for when using the

methodology.

In addition, for this situation the variables that affect the

safe operation of the UAV are not restricted to just the wind

speed and direction. They could include, but are not limited

to, the following:

• Initial position and goal

• Geometry of environment

• UAV performance capability

• Actuator/sensor performance/degradation

• Other environmental conditions e.g. ambient light,

sea state etc.

This means that the real operating envelope will be a

multi-dimensional surface.

It is important to note here that such a surface can not only

be used as safety-case evidence, but also as a run-time safety

monitor. The analogy is that the boundary is the equivalent of

the prior experience of the human pilot, where they intuitively

know what actions and decisions are a good idea or not. This

can then be used, while the system is in operation, to inform

the autonomous system of when it is feasible to carry out a

plan or not; or as a monitor to tell the system that, as the

environment changes, planned actions or current states (such

as where it is) are no longer safe.

E. Understanding the System’s Failure

If a system is tested under one set of conditions and is

found to successfully complete the task assigned to it safely,

this is good. If under slightly different conditions, the system

fails to complete it safely, this is also good. This now informs

both the user and the system itself, when it should and should

not carry out particular actions. This is the essence of the

operating envelope shown in Figure 3. However, this does not

inform the user, or regulator, why the system failed.

It is far more useful to be able to say under what

conditions a system can or cannot work and to also to be able

to say why. This both directs any effort to redesign or

improve the system, as the designer now knows which system

to focus on; and it provides the regulator with a more concrete

answer as to why it behaves in the way it does.

As an example, suppose there are measures of failure for

an actuator, controller, guidance, and navigation of a UAV

(more on this in Section III). After a simulation of a task, at a

number of wind speeds and directions, these failure measures

are then applied to the response, a possible result could be as

shown in Figure 4 (a). Outside of this boundary, the system

failed its task, while inside it succeeded. The aggregate of

these failure results in Figure 4 (b).

This boundary is now the operating envelope of the

system. However, by splitting the failure of the system into

separate components, the colours shown can be added. This

then indicates that the actuator, at least in this example, was

the most likely cause of the system to fail its task.

III. METHODS

This section describes the cost functions and

methodology used to apply V&V ideas to an autonomous

systems.

40Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 52 / 92

A. Cost functions for each component

Four continuous autonomy components are considered.

The responsibility of each component, what its job is,

determines the definition of the cost function. The

responsibilities of each component are as follows:

Actuator: To create the required output while leaving a

margin of error as a contingency.

Controller: To force the current states to follow the

commanded states as closely as possible, while

maintaining system stability.

Guidance: To cause the system to follow the desired

path to within a desired separation distance.

Navigation: To generate a path between the start and

goal, while avoiding collisions with objects.

The cost function defining the actuator’s performance is

shown in (1) and illustrated in Figure 5.

 𝐴𝑓 =
1

𝑛𝑎
∑

1

𝑡𝑚
∫

√(𝐴𝑖 − .5)2

. 5 − 𝑀𝑎𝑟
𝑑𝑡

𝑡𝑚

0

𝑖=𝑛𝑎

1

 (1)

Where 𝑛𝑎 is the number of actuators, 𝑡𝑚 is the maximum

simulation time, 𝐴𝑖 the actuator output at time 𝑡, 𝑀𝑎𝑟 the

specified margin of error, and 𝑑𝑡 the time step of the

simulation.

Here, the zero point for the actuator is 50%. The function

is, in essence, a time average of the deviation from the neutral

point normalised by the margin of error. The performance of

all the actuators is averaged over time and over the number

of actuators.

This function aims to create a single measure for all the

actuators over the time period of operation between 0 and 1.

The cost function gives a gradual increase in the failure. If an

actuator reaches either 100% or 0%, this results in the failure

of the system being set to 1. This can be considered a critical

failure, as would a collision, since the system would very

likely become unsafe.

The controller’s performance is defined in (2) and shown

in Figure 6.

 𝐶𝑓 =
1

𝑛𝑠
∑

1

𝑡𝑚
∫

√(𝑅𝑖 − 𝑢𝑖)
2

𝐷𝑖𝑓𝑖
𝑑𝑡

𝑡𝑚

0

𝑖=𝑛𝑠

𝑖=0

 (2)

Where 𝑛𝑠 is the number of controlled states, 𝑅𝑖 is the

command reference, 𝑢𝑖 the measured state of the system, and

𝐷𝑖𝑓𝑖 the specified max difference between the actual and

reference values.

It is essentially the same as the cost function used in

Linear Quadratic Regulator controllers. The difference

between the reference and controlled state is normalised by a

desired maximum distance. It is then averaged over both time

and the number of controlled states. A discontinuity exists

when the system becomes unstable.

The guidance performance is defined by both in (3) and

Figure 7.

 𝐺𝑓 =
1

𝑡𝑚
∫

√(𝛿𝑥 + 𝛿𝑦 + 𝛿𝑧)
2

𝐷𝑖𝑣
𝑑𝑡

𝑡𝑚

0

 (3)

Where 𝛿𝑥, 𝛿𝑦, and 𝛿𝑧 are the orthogonal difference

between the actual position and the desired path and 𝐷𝑖𝑣 is

the specified maximum deviation from the path.

It is the length of the vector perpendicular to the nearest

point on the desired path from the system’s current location.

It is then normalised by the desired maximum deviation from

the path. A discontinuity does not explicitly exist with this

function, however the discontinuities are handled by the

mission manager’s performance, see Criteria Analysis

section later.

The navigation’s performance is defined by (4) and by

Figure 8.

 𝑁𝑓 =
1

𝑡𝑚
∫

𝑃𝑟𝑜𝑥

𝑃

𝑡𝑚

0

𝑑𝑡 (4)

Where 𝑃𝑛 is the planned proximity at the point on the path

perpendicular to the current position, 𝑃 the proximity to the

nearest object, and 𝑃𝑟𝑜𝑥 is the specified maximum proximity

to an object.

Figure 4. Illustration of how the subsystems can be combined and therefore allow the explanation of why a system failed to operate safely

41Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 53 / 92

Figure 5. Definition of cost function for the analysis of the actuator’s

performance

Figure 6. Definition of cost function for the analysis of the controller's

performance

Figure 7. Definition of the cost function for the analysis of the guidance

performance

Figure 8. Definition of the cost function for the analysis of the navigation

performance

B. Simulation Environment

A simple simulation environment of a helicopter moving

around the legs of an oil rig is used to generate the data

required to test the above cost functions, see Figure 9.

It consists of a series of linearized state space flight

dynamics models identified from a non-linear simulation

model. The models are then scheduled based on the forward

flight speed of the UAV, to account for the changing

dynamics.

To control the helicopter a PI controller [11] is gain

scheduled and a waypoint following with cross tracking error

is used as the guidance method [12]. A simple A* route

finding algorithms is used for the navigation [13], where a

simple hazard model is used to allow the planner to plan a

route around the wakes of the oil rig legs.

A sample data set is taken from the simulation

environment and presented in the next section. The cost

functions are then applied to the output of the simulator.

Figure 9. Systems diagram for the simulator

IV. RESULTS

When testing and analysing an autonomous system’s

performance, a designer may be presented with the output

shown in Figure 10 to Figure 12. From this the designer

would be able to determine whether the UAV was able to

carry out the task assigned to it. In this case, simply move

from bottom left to the right of the top right leg.

However, some of the routes come very close to the legs,

to the point where a collision is very likely. This is also for

only a single set of conditions, but can only be interpreted

visually. If the conditions change, will the UAV be able to

still carry out the task? How does this compare to other UAVs

or settings/weightings within the autonomous components of

the UAV?

A closer inspection of the least risky plan’s response of

the UAV can be seen in Figure 13, Figure 14, and Figure 15.

From this, it can be determined that the control input is not

exceeded, the body velocities follow the reference values and

the UAV follows the desired path reasonably well. However,

again this does not allow an easy comparison to other UAVs

or settings. The interpretation is also abstract and not

quantified.

Further detail can be determined from Figure 16 and

Figure 17, where how well the UAV followed the planned

path and how well the plan enabled the UAV to avoid

collisions with its surroundings is shown. The actuator cost

function can be applied to the results in Figure 13, the

controller function to Figure 14, the guidance function to

Figure 16 and the navigation function to Figure 17.

42Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 54 / 92

Figure 10. Balance between a route's total distance and the risk associated

with it

Figure 11. Planned routes for a range of risk weightings

Figure 12. Plan view of the response of the UAV as the guidance,

controller and model tries to follow the planned route

This allows a simple metric to be applied to the UAV’s

response, reducing the interpretation of the performance

down to a single number, thus allowing easier comparisons

and optimisations of the UAV’s settings to be made.

Figure 18 to Figure 21 show the cost functions of the

UAV response for a range of different performance

specifications.

Figure 18 shows that, as the specification is made more

demanding, the cost increases, as would be expected. It also

illustrates the control that is closest to failure, in this case the

collective.

Figure 19 shows the performance of the flight controller.

It can be seen that the u and v velocities are by far the most

difficult for the controller to follow; also that unless very

strict limits on the deviation of the actual from the command

reference values are imposed, the performance is good. A

similar story can be seen in Figure 20, where only very small

allowed deviations from the desired direction will result in

the system’s failure.

Figure 20 shows that, on average, the guidance system

allows the UAV to follow the desired path well. Only when

the allowable deviation from the desired path is below 4 ft

will the system fail. Therefore, showing that the guidance is

able to perform correctly, unless under tight restrictions.

The navigation performance is shown in Figure 21, where

the performance decreases as the closest allowable proximity

of the UAV to an object is increased. It can be seen that only

small allowable proximities result in the system being safe.

Taking Figure 18 to Figure 21 together, it can be seen that

the actuators and controller are performing well, even under

tight requirements. Guidance performs well, but the

navigation component is the likely cause of the systems to be

unable to carry out its assigned task. This is in contrast to the

interpretation of Figure 10 to Figure 12, where such

conclusions are harder to draw, as the performance of the

system is not quantified.

Figure 13. Control inputs for the UAV

Figure 14. Body velocities (u,v,w)/heading (psi) and controller reference

velocities (uR, vR, wR, psiR)

43Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 55 / 92

Figure 15. UAV (x, y, z) and reference (xref, yref, zref) positions

Figure 16. Plan view of the UAVs response when following the least risky

planned route. Solid line = planned route. Dashed line = path taken

Figure 17. Actual and planned proximity to the nearest object at a point in

time in the UAV's response

Figure 18. Performance metric for the actuator when applied to the UAV's

response for a range of specifications

Figure 19. Controller performance for the body velocities for a range of

specifications

Figure 20. Controller performance for the direction command reference

44Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 56 / 92

Figure 21. Navigation performance for a range of specified proximity

specifications

V. CONCLUSION AND FUTURE WORK

A. Conclusion

A method for the analysis of the continuous autonomous

components of a system has been reported. Results from a

scenario where a UAV moves around an oil rig’s legs have

been presented.

The need to certify an autonomous systems operating in

hazardous environments by V&V methods was discussed and

the need to separate the failure of subsystems outlined.

It was found that by applying the presented methodology,

the performance of the system can be quantified; also, that

the component that is likely to cause the system to fail can be

found, and therefore focused on by the system’s designer.

Thus, the first stages of a method to analyse a system to

determine when a system fails and why was successfully

demonstrated.

B. Future Work

Having a quantifiable metric of a systems performance

allows two follow up pieces of work. First, it allows the

generation of operating envelopes, which can then be used by

a systems user or by the system itself as safety run time errors.

Second, it allows the performance of the system to be

optimised by wrapping the simulation and analyse method in

an optimiser, where the bias, weightings and settings of the

system are the independent variables and the outputs of the

presented cost functions can be used to form a cost function

of an optimiser.

To achieve both of these, a third and final follow up task

is required, where an algorithm to search all the variables that

can influence the system’s performance is needed. The

algorithm will be required to move through both continuous

and discrete parameter space. A hybrid evolutionary/genetic

algorithm or a modified Particle Swarm Optimisation method

is a likely solution to meet this requirement.

ACKNOWLEDGEMENTS

Authors acknowledge funding for this work in the UK by

EPSRC through the ORCA [EP/R026173] Robotics and

Artificial Intelligence Hub.

REFERENCES

[1] UK-RAS Network. “White Paper: Robotics & Autonomous

systems: Challenges and Opportunities for the UK”, ISSN

2398-4414, 2018.
[2] M. Wooldridge “An Introduction to Multiagent Systems” John

Wiley & Sons, 2002.

[3] UK Civil Aviaton Authority (CAA), “CAP 722 Unmanned

Aircraft System Operations in UK Airspace: Guidance”.

[4] I. Owen, M. D. White, G. D. Padfield, and S. J. Hodge “A

virtual engineering approach to the ship-helicopter dynamics

interface - A decade of modelling and simulation reserach at

the University of Liverpool”, The Aeronautical Journal, vol.

121 , no. 1246 , pp. 1833-1857, 2017.

[5] M. Fisher et al. “Verifiable Self-Certifiying Autonomous

Systems”, International Symposium on Software Reliability

Engineering Workshops (ISSREW), pp. 241-348, 2018.

[6] M. Webster, N. Cameron, M. Fisher, and M. Jump “Generating

Certification Evidence for Autonomous Unmanned Aircraft

Using Model Checking and Simulation”, Journal of Aerospace

Information Systems, vol. 11, no. 5, pp. 258-278, 2014.

[7] M. Webster et al. “A Corroborative Approach to Verification

and Validation of Human-Robot Teams”.

arXiv:1608.07403v2, 2016.

[8] M. Fisher, “An Introduction to Practical Formal Methods

Using Temporal Logic”, Wiley, 2011.

[9] D. M. Lane, G. J Falconer, G. Randall, and I. Edwards,

“Interoperability and synchronisation of distributed hardware-

in-the-loop simulation for underwater robot development:

issues and experiments” IEEE Iternational Conference on

Robotics and Automation, vol. 1, pp. 909-914, 2001.

[10] J. Saunders, D. S. Syrdal, K. L. Koay, N. Burke, and K.

Dautenhahn, “Teach Me - Show Me- End-User Personalisation

of a Smart Home and Compansion Robot” IEEE Transactions

on Human-Machine Systems, vol. 46, no. 1, pp. 27-40, 2016.

[11] H. Purnawan, M. Mardlijah, and E.B. Purwanto, “Design of

linear quadratic regulator (LQR) control system for flight

stability of LSU-05” Journal of Physics: Conference Series

890, 2017.

[12] T. Shima and S. Rasmussen, “UAV Cooperative Decision and

Control: Challenges and Practical Approaches” Society for

Industrial and Applied Mathematics, 2009.

[13] D. Ferguson, M. Likhachev, and A. Stentz, “A guide to

heuristic-based Path Planning” American Association for

Artificial Intelligence, 2005.

45Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 57 / 92

Design of Autonomous Systems for Cybersecurity Threat Detection Using Deep
Learning

Strahil Sokolov
University of Telecommunications and Post

Department of Information Technologies
Sofia, Bulgaria

e-mail: strahil.sokolov@gmail.com

Abstract—In this paper, an approach is proposed for designing
autonomous systems featuring machine learning and neural
networks for cybersecurity threat detection. It is proposed that
neural models are trained on monitoring data obtained from
cloud environments that service enterprise applications.
Cybersecurity is a hot topic and a broad field of science that
spreads over activities, such as protecting infrastructure,
computers and servers, industrial and telecommunications
equipment, applications and data. All modern networks are
capable of substantial throughput due to enormous volumes of
generated traffic. A design is proposed for autonomous threat
detection systems, which is based on combining traditional and
deep neural networks for cloud monitoring data analysis and
an algorithm for combining classifier results. The proposed
autonomous system design delivers promising results that are
comparable to existing approaches and can become useful in
enterprise cloud applications.

Keywords-cybersecurity; autonomous threat detection; deep
learning.

I. INTRODUCTION

Research in the field of cybersecurity has been ongoing
for decades. With the continual increase of data volumes,
protecting computer and telecommunication systems has
become a primary concern. There are several approaches
which are currently in use: traffic analysis, content analysis,
application and user behavior analysis.

There exist a number of layers with common groups of
threats, existing protection capabilities and Information and
Communication Technology (ICT) resources that are under
constant attack nowadays. The most popular applications
based on traffic analysis [1] can be grouped into the fields of:
network intrusion detection, botnet detection and malware
detection. Over the recent years, approaches emerged based
on machine learning algorithms for each of these fields.
Some of the Intrusion Detection and Protection Systems
(IDPS) are trained to recognize abnormalities in traffic, e.g.,
in peer-to-peer applications. There are Intrusion Detection
Systems (IDS) for protecting against Distributed Denial-Of-
Service (DDoS) attacks. There are e-mail protection services,
which are able to detect harmful applications that steal
information; mobile malware applications are also
widespread [2]. Malware application behaviours are
analyzed and detectors are trained to classify an application
or part of it as harmful [2]. Another type of threat is the
botnet: many compromised devices or hosts, infected with

malware and connected to the Internet, that are controlled
and manipulated by botmasters [3]. Botnets are mainly used
for sending spam emails, DDoS attacks, identity thefts or just
making use of the victim's computational resources for
purposes of, e.g., tunnelling, proxying or even
cryptocurrency mining.

There are several modern proposals that have appeared
on the usage of advanced techniques for intrusion detection
[4]. The authors propose a cybersecurity framework based on
two-stage Markov model for early prediction of malicious
edge devices as well as legitimate edge devices in fog
computing.

In [5], focus has been given to the recent rise of security
incidents affecting critical infrastructure, such as power grids
and water suppliers. The German cybersecurity office -
Bundesamt für Sicherheit in der Informationstechnik (BSI) -
reported that not all of the incidents were due to hacking.
Another recent publication [6] shows flaws and
vulnerabilities in an entire European country. The author
shows how vulnerability scanning can be organized by a
single person and justifies the importance of cybersecurity
threat detection software.

This paper is organized as follows: in Section 2, an
overview is given on existing techniques for cyberthreat
detection based on network traffic analysis. In Section 3, the
proposed approach for design of autonomous threat detection
techniques is described. Section 4 describes the technique for
combining classifier results. The paper’s conclusion is in
Section 5.

II. THREAT DETECTION TECHNIQUES BASED ON

NETWORK TRAFFIC ANALYSIS

A. Intrusion Detection Systems (IDS) and Intrusion
Prevention (IPS) Systems

Both IDS and IPS are entitled to try and recognize
malicious traffic from normal traffic. There are Host-Based
Intrusion Detection Systems (HIDS) and Network Intrusion
Detection systems (NIDS) [7]. To achieve this goal, both
IDS and IPS rely on network traffic analysis. Most of the
existing systems rely on rule-based classification to detect
the nature of the attacks; the malicious traffic is often
concealed within botnet, DDoS attack traffic or spam traffic.
It can be expected that the accuracy of such systems is
relatively low [8], due to the limits of their operation modes:
signature based and anomaly-based [7]. Signature based
threat detection uses a set of predetermined rules that are

46Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 58 / 92

available from the community or vendors. These rules
contain signature patterns of threats similar to antivirus
software. The anomaly based detection function is to detect
abnormalities in the current network traffic or states of
services in logs.

The big manufacturers of network equipment offer
bundles of IDS/IPS systems, which claim high accuracy and
machine learning capabilities. It is worth exploring some of
the open source available systems.

 OSSEC [9] stands for Open Source Security. It is
an open source host intrusion detection system
owned by Trend Micro, one of the leading names
in IT security.

 SNORT [10] is an open source intrusion prevention
system capable of real-time traffic analysis and
packet logging.

 Suricata [11] is a free and open source, mature, fast
and robust network threat detection engine. The
Suricata engine is capable of Real Time Intrusion
Detection (RTID), Inline Intrusion Prevention (IIP),
Network Security Monitoring (NSM) and offline
pcap processing.

 Zeek [12] (ex. Bro) is a powerful network analysis
framework that consists of event engine and policy
scripts.

 The Samhain [13] Host-based Intrusion Detection
System (HIDS) provides file integrity checking and
log file monitoring/analysis, as well as rootkit
detection, port monitoring, detection of rogue Set
User ID (SUID) executables, and hidden processes.

 Fail2ban [14] scans log files (e.g.
/var/log/apache/error_log) and bans IPs that show
the malicious signs – too many password failures,
seeking for exploits, etc.

 Security Onion [15] is a free and open source Linux
distribution for intrusion detection, enterprise
security monitoring, and log management. It
includes Elasticsearch, Logstash, Kibana, Snort,
Suricata, Bro, Wazuh, Sguil, Squert, CyberChef,
NetworkMiner, and many other security tools.

B. Malware analysis

Malware detection has been a field of interest for
computer virologists for a long time. In order to address the
automated classification of malware based on behavioral
analysis, the researchers usually need a virtual machine
where they can start and analyze the malware behaviour in
all of it aspects , such as function calls [2].

According [8], there is a growing number of malware
threats worldwide and also the level of technological
sophistication of malicious software is increasing mainly due
to the popularity of smartphones. This is what makes
malware analysis an important task in cybersecurity.
Malware detection systems which detect malicious traffic are
usually able to classify threads in the following categories:
unclassified (0-day), misc-attack, Trojan-activity, not-
suspicious, and misc-activity.

Among the most wide-spread malwares on the Internet as
of November 2018 according to [16], the following are
listed: Coinhive; Cryptoloot; Andromeda; Roughted;
Dorkbot; Jsecoin; Emotet; Conficker; XMRig and Nivdort.

Among the mobile devices, [16] reports the following
threats: Triada; Hiddad and Lokibot. The three most
exploited Common Vulnerability Exposures (CVE) are
reported as:

 Microsoft IIS WebDAV ScStoragePathFromUrl
Buffer Overflow (CVE-2017-7269) - 48% of
organizations have dealt with this threat;

 OpenSSL TLS DTLS Heartbeat Information
Disclosure (CVE-2014-0160; CVE-2014-0346) –
An attacker can leverage this vulnerability to
disclose memory contents of a connected client or
serve that had global impact of 44%.

 OpenSSL tls_get_message_body Function
init_msg Structure Use After Free (CVE-2016-
6309) – A remote, unauthenticated attacker could
exploit this vulnerability by sending a crafted
message to the vulnerable server. Successful
exploitation allows the attacker to execute arbitrary
code on the system impacting 42% of
organizations.

C. Botnet detection

Compromised devices in botnets provide attackers with
means to send spams, launch DDoS attacks, run brute-force
password cracking, steal private information, and hide the
origin of cyber attacks [3][17]. Malware network traffic can
spread rapidly through various platforms and this is what
makes botnet detection an important part in cybersecurity.
According to the structure of botnets, two categories exist:
Peer-to-Peer (P2P) and centralized botnet [8]. In a P2P
botnet, the botmaster can control each bot with distributed
commands sent from peers; whereas in a centralized botnet,
the centralized Command & Control (C&C) architecture is
formed with protocols like Internet Relay-Chat (IRC) and
HTTP.

Network traffic analysis serves for detection of the
botnets. The typical approach to detect compromised hosts
on the network and filter botnet traffic is to maintain a
blacklist of openly available C&C domains. The efficiency is
poor because the blacklist has to be updated manually. There
are botmasters who often use unchanged P2P-based C&C
structures with pseudo random domain generation algorithms
to evade the detection by blacklisting and to increase the
reliability of the botnet. That is, the bots search for working
C&C servers by periodically generating a set of pseudo-
random domain names and resolving the generated domain
names to IP addresses through DNS queries [18]. Therefore,
these botnets can still survive even after some C&C servers
are detected and blocked.

Machine Learning (ML) techniques are vital for the
statistical based traffic classification [19]. The traffic can be
processed by supervised learning, also known as
classification, or by unsupervised learning, also known as
clustering [20][21]. The disadvantage of the ML approaches

47Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 59 / 92

for network traffic analysis comes mainly from the lack of
online (or as some authors refer to it: real-time) detection
capabilities [22]. There are many prerequisites for the
successful application of supervised learning [23] with – the
most important of which is the annotation of the dataset. This
is what makes the unsupervised clustering ML techniques,
rule-based and anomaly-based approaches preferable in these
scenarios.

III. AUTONOMOUS SYSTEMS FOR CYBERSECURITY

THREAT DETECTION BASED ON DEEP LEARNING

TECHNIQUES

The main idea of this work is to present a linear
autonomous system for prepossessing of incoming traffic.
The proposed system has the capability for file content
analysis and is targeted towards cloud applications, which
serve multimedia (Figure 1). The incoming traffic is
analyzed in an IDS; cyberthreats are blocked based on rules,
anomaly detection and correlation analysis.

Figure 1. Workflow of the proposed protection cybersecurity protection
system for cloud applications.

In the experiments, Suricata was used as well as a
Surricata module based on the Google TensorFlow
framework for Deep Learning [24]. The IDS filtered traffic
was then subjected to content analysis where the traffic is
decoded in a proxy server and the incoming text, video and
images were analyzed with deep neural network classifiers
(Figure 2) [25].

Figure 2. Classifier for network traffic analysis

With the appearance of large quantities of unstructured
(or partially structured data) – the so called Big Data – and
the improvement of computing power, deep learning has

become extremely popular both for research and commercial
purposes. ML algorithms are highly dependent on the choice
of features. There are described cases with Bayesian
classifiers where feature selection can greatly improve
classification accuracy [25]. Deep learning techniques solve
some of these challenges by automatically combining low-
order features of the input, transforming and arranging them
in order to calculate high-order features. In such scenario, it
is not needed to add a manual step to eliminate for
calculation of higher-order features of the training set. To an
extent, the deep neural network structure is similar to the
multi-layer neural network which includes input layer,
hidden layer and output layer (Figure 3).

Figure 3. Multi-layer neural network general structure

The network parameters are initialized with random
values, and the neuron weights are updated using the Back
Propagation (BP) algorithm. In the standard neural network
schema (Figure 2), the input for the of the j-th neuron from
the output layer is calculated as follows:

o
j
= ∑

h= 1

q

v
hj

h
h
 

where vhj is the weight of the connection of the hidden

neuron h to the output neuron j and hh is the output from the
h-th hidden neuron. For the input of the h-th hidden neuron,
the following is calculated:

σ
h
= ∑

i= 1

q

w
ih

x
i
 

48Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 60 / 92

where whj is the weight of the connection of the input

neuron i to the hidden neuron h and
xi is the i-th input. For

the k-th training sample
(x

k
, y

k
)

, the output of the neural

network is
ŷk= (ŷ1

k , ŷ2

k ,... , ŷt

k)
. With another representation

known as offset term
ϵ j , it is given as

^
yt

k=f (o j− ϵ j)
.

The aim of the back-propagation training algorithm is to
minimize the mean square error of the network on the k-th
training sample. It is used for automatic update of the
weights of the neural network. The regular multi-layer neural
network carries the pitfalls of the disappearing gradient.
With the increase in the number of layers, the number of
weight parameters correspondingly grows, leading to a more
complex model which can overfit [25]. Deep learning
introduced the ReLU activation function, a new weight
initialization method, a new loss function and new anti-
fitting method (Dropout, regularization) to solve the
traditional multi-layer perceptron disadvantages in terms of
network structure and training capabilities.

IV. COMBINATION OF CLASSIFIER RESULTS

The classifier combination in the proposed approach
depends on the modality of the cyberthreat in each classifier.
The final score is given through:

 Cout= argmax(Ci) 


where Cout is the final class label and Ci is the output from
the i-th classifier. The final score represents the most certain
classifier [26] out of several classifiers which use different
modalities and learning algorithms.

V. EXPERIMENTAL RESULTS

The Pytbull framework was used [27] to test the rules in
Suricata. The accuracy of the detection with the most current
rule sets was about 85%. The test setup included 4 virtual
machines in private cloud infrastructure at the University of
Telecommunications and Post, Sofia, Bulgaria.

A neural classifier was created using datasets obtained
from [28][29] and modeled a neural network in the Weka
[30] tool. The model delivered the highest accuracy of about
83% with 115 inputs four hidden neuron layers and 11
output neurons. The used dataset was derived from [23]
containing 10 types of data with 249 attributes. Some of the
classes contain fewer training samples and it was observed
that other researches have excluded them from their training
set.

Content analysis in terms of Spam detection was realized
with a Convolutional Neural Network (CNN) trained in the
Weka tool. The model was tested on the dataset [31] and the
achieved accuracy in two classes was about 70%. Image
classification was based on previous work [26] on human
emotion analysis and is intended to be used on image data

uploaded to a transparent proxy on the system. The achieved
classification accuracy in 5 classes is about 73%.

VI. CONCLUSION AND FUTURE WORK

In this paper, an approach was presented based on deep
neural networks for design of autonomous cybersecurity
threat detection systems in cloud applications. The proposed
system uses 4 neural classifiers for network traffic, spam
comments, spam email and images. The achieved results are
comparable with contemporary approaches. The achieved
accuracy for the individual components is comparable to
other authors. The next steps will include expanding this
framework and adopting it at the University of
Telecommunications and Post, Sofia, Bulgaria.

ACKNOWLEDGMENT

This work is supported by the University of
Telecommunications and Post (UTP), Sofia, Bulgaria,
internal research grant Nr. NID16/03.04.2018 -
"UNICLOUD2.0: Development and integration of cloud
services in the learning process of UTP".

REFERENCES

[1] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, "Robust
network traffic classification." IEEE/ACM Transactions on
Networking 23, no. 4, 2015, pp. 1257-1270.

[2] G. Wagener, R. State and A. Dulaunoy, “Malware behaviour
analysis”. Journal in Computer Virology. Vol.4., 2013,
pp.279-287.

[3] F. Haddadi et al., “Botnet Behaviour Analysis using IP Flows
With HTTP filters using classifiers”, Proceedings of the 28th
International Conference on Advanced Information
Networking and Applications Workshops, 2014, pp. 7-12

[4] A. S. Sohal, R. Sandhu, S. K. Sood, and V. Chang, "A
cybersecurity framework to identify malicious edge device in
fog computing and cloud-of-things environments." Computers
& Security 74, 2018, pp. 340-354.

[5] M. Chambers, Reuters [retrieved: May 2019], “Germany sees
big rise in security problems affecting infrastructure”,
https://www.reuters.com/article/us-germany-cybersecurity-
idUSKCN1Q60CS

[6] C. Hascheck [retrieved: May 2019], “I scanned the whole
country of Austria and this is what I've found”,
https://blog.haschek.at/2019/i-scanned-austria.html

[7] R. L.-Langlois, [retrieved: May 2019], “Top 10 Intrusion
Detection Tools: Your Best Free Options for 2019”,
https://www.addictivetips.com/net-admin/intrusion-detection-
tools/

[8] Y. Miao et al., "Automated Big Traffic Analytics for Cyber
Security." arXiv preprint arXiv:1804.09023, 2018.

[9] Open Source Host-based Intrusion Detection System,
[retrieved: May 2019], http://www.ossec.net/

[10] M. Roesch, “Snort - lightweight intrusion detection for
networks,” inProceedings of the 13th USENIX conference on
System administration, LISA ’99, 1999, pp. 229–238

[11] “Suricata, open source ids/ips/nsm engine.” [retrieved: May
2019], https://suricata-ids.org/

[12] “The Zeek Network Security Monitor”, [retrieved: May
2019], https://www.zeek.org/

[13] “The SAMHAIN file integrity / host-based intrusion detection
system”, [retrieved: May 2019], https://www.la-
samhna.de/samhain/

49Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 61 / 92

[14] “Fail2Ban – an intrusion prevention software (IPS)
framework that protects computer servers from brute-force
attacks”, [retrieved: May 2019], http://www.fail2ban.org

[15] “Security Onion – a free and open source Linux distribution
for intrusion detection, enterprise security monitoring, and log
management”, [retrieved: May 2019],
https://securityonion.net/

[16] Check Point Software: Latest Global Threat Index November
2018’s Most Wanted Malware: The Rise of the Thanksgiving
Day Botnet, [retrieved: May 2019]
https://blog.checkpoint.com/2018/12/11/november-2018s-
most-wanted-malware-the-rise-of-the-thanksgiving-day-
botnet/

[17] Kaspersky Labs Technical Report, [retrieved: May 2019],
“Botnet activity in H1 2018: Multifunctional bots becoming
more widespread”, https://www.kaspersky.com/about/press-
releases/2018_botnet-activity-in-h1-2018-multifunctional-
bots-becoming-more-widespread

[18] DNS-BH- Malware Domain Blocklist, [retrieved: May 2019].
Available: http://www.malwaredomains.com/

[19] T. Nguyen and G. Armitage, "A survey of techniques for
internet traffic classification using machine learning." IEEE
Communications Surveys & Tutorials 10, no. 4, 2008, pp.56-
76.

[20] D. Zhao et al., „Botnet detection based on traffic behavior
analysis and flow intervals”, Computers & Security,Vol. 39,
2013, pp. 2-16

[21] S. García, A. Zunino, and M. Campo, "Botnet behavior
detection using network synchronism.", In Privacy, Intrusion
Detection and Response: Technologies for Protecting
Networks, IGI Global, 2012, pp. 122-144.

[22] S. Keshapagu and S. Suthaharan, "Analysis of datasets for
network traffic classification.", In Topics from the 8th Annual
UNCG Regional Mathematics and Statistics Conference,
Springer, New York, NY, 2013, pp. 155-168.

[23] A. K. J. Michael, E. Valla, N. S. Neggatu, and A. W. Moore.
“Network traffic classification via neural networks”, No.
UCAM-CL-TR-912. University of Cambridge, Computer
Laboratory, 2017.

[24] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M.
Devin et al. "Tensorflow: a system for large-scale machine
learning." In OSDI, vol. 16, 2016, pp. 265-283.

[25] J. H. Shu, J. Jiang, and J. X. Sun. "Network Traffic
Classification Based on Deep Learning." Journal of Physics:
Conference Series, vol. 1087, no. 6, 2018, p. 062021.

[26] S. Sokolov. "Neural Network Based Multimodal Emotion
Estimation." ICAS 2018 vol 12, 2018, pp 4-7.

[27] Pytbull IDS/IPS testing framework, [retrieved: May 2019],
http://pytbull.sourceforge.net/index.php?page=home

[28] D. Duaand and E. K. Taniskidou, “UCI Machine Learning
Repository”, Irvine, CA: University of California, School of
Information and Computer Science, 2017.

[29] Y. Meidan et al., "N-BaIoT—Network-Based Detection of
IoT Botnet Attacks Using Deep Autoencoders." IEEE
Pervasive Computing 17, no. 3, 2018, pp: 12-22.

[30] F. Eibe, M. A. Hall, and I. H. Witten, "The WEKA
Workbench. Online Appendix for Data Mining: Practical
Machine Learning Tools and Techniques." Morgan Kaufmann
2016.

[31] A. L. Maas et al., "Learning word vectors for sentiment
analysis." In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language
technologies-volume 1, Association for Computational
Linguistics, 2011, pp. 142-150.

50Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 62 / 92

Transfer Learning Approach for Autonomous Agents in Collective Games

Ventseslav Shopov, Vanya Markova

Institute of Robotics
Bulgarian Academy of Sciences

Bulgaria
Email: vkshopov@yahoo.com, markovavanya@yahoo.com

Abstract—The aim of this study is to present a new approach for
Transfer Learning in collective games. This framework is a set
of methods for transferring accumulated knowledge. In this way,
autonomous agents share their knowledge in order to achieve
better performance. The main hypothesis in the study is that the
group of agents who exchange knowledge performs better than
the same group without Transfer Knowledge, under the same
conditions.

Keywords–autonomous agents; reinforcement learning; transfer
learning.

I. INTRODUCTION

The subject of the study is the transfer of knowledge in
training and decision-making for autonomous agents. In this
study, we look at the environment as collective sequential
games. Our goal is to clarify whether Markov Decision Process
(MDP) solving methods can be applied to collective games
with partially observable goals and partially dynamic environ-
ments.

In addition, we raise the question of how effective transfer
of knowledge in training and decision-making by autonomous
agents in collective games is.

Exploring these issues is important for the development of
training with support in general, and in particular for the trans-
fer of knowledge between agents in partially observable and
dynamic environments. Knowledge transfer can significantly
speed up training and decision-making by autonomous agents.
Such research can be found in machine learning, the video
game industry, and robotics.

In this study, we build upon a recent method for knowl-
edge transfer, which formulates the sequencing problem as
a Markov Decision Process. Recently, various representations
that make such knowledge transfer possible for multiple agents
in different domains have been explored [1]. In addition, some
generalisation of curriculum MDP model have been proposed
[2] to handle different kinds of transfer learning algorithms.
Another approach formulates the design of a curriculum as a
Markov Decision Process, which directly models the accumu-
lation of knowledge as an agent interacts with tasks to produce
an agent-specific curriculum [2] such that overall performance
or learning speed is improved [3].

There are several studies that introduce methods to generate
a curriculum based on task descriptors [4], or by data-driven
automated similarity measures [5]. Other methods combine
feature-based control in a non-rewarding discrete environment,
and imitation learning applied to an ambiguous and uncon-
strained third party agent [6].

Some recent studies have been performed in regard of
creating frameworks for selecting source tasks in the absence
of a known model or target task samples based on meta-data
[7] or guided by policy sketches. [8]

In our study, we make an effort to allow the application
of already developed and tested methods and algorithms to
solve MDP in fields such as multi-agent systems and collective
games. TL can also accelerate the learning process in various
areas of machine learning, the video game and robotics indus-
tries. Given certain limitations, it is possible to use solutions
that have already been tested, which may lead to a reduction
in time of developing new applications.

The main hypothesis of this study is that, subject to certain
limitations, it is possible to use classical MDP solving methods
for partially observable and dynamic environments. It is also
possible to apply knowledge transfer to groups of autonomous
agents. Such a transfer leads to acceleration of training and
decision-making in collective games.

The article is organised as follows: In Section 2, we briefly
look at the theory underlying the proposed solutions, and then
we describe the theoretical limitations of our approach and
the respective implementation. In Section 3, we experimentally
examine the applicability and effectiveness of our approach. In
the last part, we describe our findings.

II. METHODS AND MATERIALS
A. Theory

1) Sequential games: We consider sequential games, which
are n-player non-zero sum games played on finite trees. Each
node of the tree is controlled by either of the players, and the
game is played by moving a token along the branches of the
tree, from the root node, up to the leaves, which are libelled
by a payoff. We also associate a preference relation with each
player that indicates how he ranks the payoffs. Let us now
formalise the basic notions about these games. The definitions
and notations of this section are inspired from [9].

Definition 1. A sequential or extensive form game G is a
tuple (N ;A;H;O; d; p; (≺i) where:

N is a non-empty finite set of players;
A is a non-empty finite set of actions;
H is a finite set of finite sequences of A which is prefix-

closed. That is, the empty sequence ε is a member of H; and
h = a1, ..., ak ∈ H implies that hl = a1, ..., al ∈ H for
all l < k. Each member of His called a node. A node h =
a1, ..., ak ∈ H is terminal if ∀a ∈ A, a1, ..., ak, a /∈ H . The
set of terminal nodes is denoted by Z.

O is the non-empty set of outcomes, d : H \ Z → N
associates a player with each non-terminal node;

51Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 63 / 92

p : Z → O associates an outcome with each terminal node;
For all i ∈ N :≺i is a binary relation over O, modelling

the preferences of player i.
From now on, we fix a sequential game G =

(N,A,H,O, d, p, (≺i)i∈N).
Then, we let Hi = (h ∈ H \ Z | d(h) = i) be the set of

nodes belonging to player i. A strategy si : Hi → A of player
i is a function associating an action with all nodes belonging
to player i, s.t. for all

h ∈ Hi : hsi(h) ∈ H , i.e., si(h) is a legal action from
h. Then, a tuple s = (si) ∈ N associating one strategy with
each player is called a strategy profile. For all strategy profiles
s, we denote by (s) the outcome of s, which is the outcome
of the terminal node obtained when all players play according
to s. Single-agent Reinforcement Learning (RL) concepts are
given first, followed by their extension to the multi-agent case.

2) Markov Decision Process: We formulate the transfer
learning problem in sequential decision making domains using
the following framework of Markov Decision Process. We use
the following definition of MDP as a 5-tuple

< S,A, P,R, γ > (1)

where the set of states, set of actions, transition function
and reward function are described. And

P : S ×A→ Π(S) (2)

is a transition function that maps the probability of moving to
a new state given an action and the current state,

R : S ×A→ R (3)

is a reward function. that gives the immediate reward of taking
an action in a state.

And
γ ∈ [0, 1] (4)

is the discount factor. The gradient formula can be written
as [10]. So the MDP of the agent is described in (1), where s
is the set of states, a is the set of actions, p is the transition
function and r is a reward function. The transition function p
maps the the probability of moving to a new state given an
action and the current states and is shown in (2). The reward
functions r that gives the immediate reward of taking an action
is described in (3). The discount factor γ is bounded as is
shown in 4.

Multi-agent Markov games can be defined by N agents
with a set of global or local observations O1, ..., ON , a set
of actions A1, ..., AN , a set of states S and a state transition
function

T : S ×A1 ×A2 × ...×AN → S (5)

which determines the Markov process. For each agent i,
it interacts with the environment by taking actions following
its policy πQi

: Ai → [0, 1] transformed into the next state
and gets a reward ri : S × Ai → R to judge the policy’s
performance. Each agent tries to maximise the accumulated
discount return

R =
∑

t = 0T γtrt (6)

and T is the expect time horizon and γ is the discount
parameter. In this paper, only local observations are available
for all games.

3) Reinforcement Learning: To solve sequential decision-
making problems, the agent should learn about the optimal
value of each action, defined as the expected amount of future
rewards when taking this action and following the optimal
policy afterwards. Under a given policy π , the true value of
an action a in a state s is

Qπ(s; a) = E[R1 + γR2 + . . . |S0 = s;A0 = a;] (7)

where r ∈ [0; 1] is a discount factor which trades off the
importance of immediate and later rewards. The optimal value
is then Qπ∗(s; a) = maxQ(s; a) . An optimal policy can be
easily learned from the optimal values by selecting in every
state the highest valued action.

4) Q-Learning: The optimal action values can be derived
through Q-learning [11] [12], a form of time learning. The real
problems are too large to learn all the action values in all states
separately. Instead, we can learn a parametric value Q(s; a; qt).
In this way, Q-learning values update the parameters after
taking action At at St and observe the immediate reward Rt+1

so that the resulting state St+1 is then

qt+1 = qt + α(Y Qt −Q(St;At; qt))∇qtQ(St;At; qt) (8)

where q is a scalar value and the target Y Qt is defined as

Y Qt = Rt+1 + γmax
a

Q(St+1; a; qt) (9)

In order to update the current value Q(St;At; qt) towards
a target value Y Qt the agent applies stochastic gradient descent
approach.

5) Deep Q Networks: Deep Q networks (DQN) are multi-
layered neural networks. These networks, for a given state s,
output a vector of action values Qtheta(s; a; q), where θ are
the parameters of the network. If an action space contains m
actions and state space is a n-dimensional vector, the neural
network maps Rn to Rm. In addition, in Deep Q Network there
is target network [13], with parameters θ−. This additional
network is the same as the original network except that its
parameters are copied every τ steps from the online network,
so that θ−t = t, and are not changed on all other steps. So, the
target used by DQN is then

Y DQNt = Rt+1 + γmax
a

Q(St+1; a; θt) (10)

6) Double Q-learning: To prevent overoptimistic value
estimation, we can decouple the selection from the evaluation.
This is the idea behind Double Q-learning [14]. In the original
Double Q-learning algorithm, two value functions are learned
by assigning each experience randomly to update one of the
two value functions, such that there are two sets of weights,
and 0. For each update, one set of weights is used to determine
the greedy policy and the other to determine its value. For
a clear comparison, we can first untangle the selection and
evaluation in Q-learning and rewrite its target 10 as

Y Qt = Rt+1 + γQ(St+1,maxaQ(St+1; a; qt); qt) (11)

The Double Q-learning error can then be written as

Y DoubleQt = Rt+1 + γQ(St+1,maxaQ(St+1; a; qt); qt) (12)

52Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 64 / 92

7) Autonomous agents: the autonomous agent in our ap-
proach has the following main features: - Autonomy -
Reactivity - Proactivity - Communicativeness It is impor-
tant to emphasise that our agents are autonomous not only
during decision-making but also during training. This means
that agents are able to learn and adapt to changes in the
environment without the need for external training.

B. Implementation
To enable the MDP agent to work in Partially Observed

Markov Decision Process (POMDP), its learning algorithm and
decision-making algorithm must be expanded. The drawback
of this approach is that already trained agents and knowledge
gained in the MDP training process can not be reused.

The environment for partially observable dynamic collec-
tive games in the MDP environment is important due to two
reasons: to be able to apply methods and algorithms devel-
oped for classic MDP cases of partially observable dynamic
collective games; and it allows to transfer knowledge between
agents trained in MDP and POMDP.

In this study, we describe the agent environment as MDP.
We are driven by the desire to present the various properties
of the autonomous agent so that the agent is compatible with
the MDP constraints. Moreover, we strive for a generalised
approach to the training of our autonomous agents.

By expanding agents’ space, we present POMDP as MDP.
Such representation is only possible if the following limitations
are met: Partial environmental observability can be eliminated
through communication between agents; dynamic changes in
the environment are reflected by expanding the transition
function.

Our goal is not to expand the environmental model. In
addition, environments represented by POMDP can describe
significantly complex systems of interactions with those de-
scribed with classic MDP. Thus, by expanding the agent’s
state space by adding global states of the medium, the agent
is compatible with the classical MDP environments.

But the extension of the MDP notation leads to some
drawbacks: such as the need to modify learning algorithms s
that the incompatibility of policies resulting from such training
has made the transfer of knowledge between MDP trained
agents enriched by such trainees POMDP environments. In the
case of sequential collective games, describing the environment
as partially observable does not necessarily have to be achieved
by introducing POMDP. The agents themselves are able to
change the environment, but by clearly announcing the changes
in the environment, the agents through communication are able
to bypass the limit of partial observability.

The imposition of restrictions and the expansion of the state
space takes place in two stages:

a set pair < sagent, senv > is created. The so-called pair
is used for a generalised representation of agent states in a
partially observed collective game environment. By imposing
these limitations, we allow the use of MDP solving methods
to be applied in the field of collective games with a dynamic
environment.

We start with expansion of the state space, where state
space is:

S = {si}, i = 1, ..N (13)

so we expand space of agent sagent with the space of the
environment senva: so we form a tuple:

si =< sagent, senv > (14)

where sagent as a result of agent’s actions and senv as a
result of environment changes.

However, to incorporate in natural manner the changes in
environment we also have to expand the transition function:

< s′agent, s
′
env >= T (si) = T (sagent, senv) (15)

so that the agents state is defined as follow:

s′agent = Pr[sagent(t+ 1) = s′agent(t) = s, at = a] (16)

and the environment changes reflect in environment state:

s′env = Te[senv(t+ 1) = s′env(t) = s, at = a] (17)

Thus, by expanding the state space and the transition
function we map the constrained unobservables and dynamic
of the environment into combined state space and extended
transition function.

Each agent may have an individual transition function, so
different agents can interact in a team, but the degree of knowl-
edge transfer depends on how different the transition function
differs between agents. So, to achieve full portability of the
methods, as well as knowledge transfer between individual
agents the function of the transition of the environment is have
to be the same for all agents.

III. EXPERIMENTS AND RESULTS
We gather evidence to support the hypothesis that we will

speed up the learning process for knowledge transfer. It per-
forms the following experiments: for a given map several com-
binations of autonomous agents should be generated. These
agents should be grouped in three main parts: competitive,
cooperative and neutral.

The map is described by its size n×n and the complexity
factor Rc. The map generates random k treasure chests with
treasure. The treasure value is 100. Additionally, k traps are
generated. These pits can not be set right beside the treasures.
If an agent gets into a pit, a -100 prize is generated. As a
result of the complexity factor Rc, obstacles are generated. If
an agent hits an obstacle, he returns to the starting position. The
obstruction generation algorithm does not allow the creation
of a closed area. We only issue instances when the number
of agents is equal to the number of treasures. A game ends
when the agent finds the treasure and takes it, falls in a trap
or makes more than n2 moves. For each move, except the last
agency, agent get a small negative reward (for example -1).

Once the agent starts to learn it use a Reinforcement
Learning approach. As a base algorithm, we use SARSA. For
one agent, we have one pit and one treasure. Solving this
problem is trivial.

If we put one agent in map with one treasure then agent
quickly learns how to get the treasure. A problem arises when
there are two agents and two treasures. Once the first agent
reaches his treasure and takes it then in the map will remain
an ”empty” chest. The second agent, if closer to a treasure
already taken, will try to take it, but the chest is now empty.
So the second agent will go down to a local minimum and end
the game with negative reward.

If the agency is a cooperative then when the first agent
gets its treasure it reports to others that treasure is already

53Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 65 / 92

Figure 1. We compare cooperative and competitive strategies in simple
one-goal map. In this map there are only one trap and relatively small

amount of obstacles.

taken. There are several ways to address this issue, so we
need to expand the MDP model. In order to stay in place, the
agent should initially ”change” the environment so that the
”changed” environment is in consistency with a policy that
will lead to the treasure.

We compare three approaches:

• Non-cooperative game with non-cooperative learning:
where the first one has reached treasure ends the game
with a 100 prize, and the next may fall to the local
minimum.

• Cooperative Game with Deliberative Cooperative
Learning: A binary vector for treasure is generated
at the coordinator. In practice, the number of states in
which there is a permanent effect on all possible trea-
sure states is increased. If only the positive reward of
the training process are combined against a sufficiently
high level.

Figure 2. We compare competitive, cooperative and deliberative strategies in
complex multi-goal map. In this map there are plenty of traps and relatively

big amount of obstacles.

As can be seen in Figure 1, if we have only one prize,
then cooperative behaviour has no advantage over competitive
behaviour. In Figure 2 one can see that with the growing
number of agents in the team, the use of the deliberate
approach is better than the rest of the algorithms.

IV. CONCLUSION
A new approach is proposed to transfer knowledge among

agents in collective games.The approach suggested in this
article allows knowledge from pre-trained agent for pre-defined
environments to be used. Our approach allows to speed up
the training of agents. Instead of random values initialisation
of utility or quality function, we can take such values from
an already trained agent. By expanding the state space and
transition function in MDP classes, we allow, subject to certain
limitations, that MDP solving methods be applied to partially
observable and partially dynamic environments. In addition, it
is possible to transfer knowledge into collective applications.

From the results of our research it follows that in the
case of only one treasure, complex cooperative interaction has
no advantages over competitive approaches. In other words,
the use of deliberative techniques in simple systems is over-
engineering. And only with the increasing complexity of the
choice between individual goals, the cooperative behaviour
demonstrates the advantages of the deliberative approach.

REFERENCES
[1] S. Narvekar and P. Stone, “Learning curriculum policies for reinforce-

ment learning,” arXiv preprint arXiv:1812.00285, 2018.
[2] S. Narvekar, J. Sinapov, and P. Stone, “Autonomous task sequencing

for customized curriculum design in reinforcement learning.” in IJCAI,
2017, pp. 2536–2542.

[3] S. Narvekar, J. Sinapov, M. Leonetti, and P. Stone, “Source task creation
for curriculum learning,” in Proceedings of the 2016 International Con-
ference on Autonomous Agents & Multiagent Systems. International
Foundation for Autonomous Agents and Multiagent Systems, 2016, pp.
566–574.

[4] M. Svetlik et al., “Automatic curriculum graph generation for reinforce-
ment learning agents,” in Thirty-First AAAI Conference on Artificial
Intelligence, 2017, pp. 2590–2596.

[5] H. B. Ammar et al., “An automated measure of mdp similarity for
transfer in reinforcement learning,” in Workshops at the Twenty-Eighth
AAAI Conference on Artificial Intelligence, 2014.

[6] P. Fournier, O. Sigaud, M. Chetouani, and C. Colas, “Clic: Curriculum
learning and imitation for feature control in non-rewarding environ-
ments,” arXiv preprint arXiv:1901.09720, 2019.

[7] J. Sinapov, S. Narvekar, M. Leonetti, and P. Stone, “Learning inter-task
transferability in the absence of target task samples,” in Proceedings
of the 2015 International Conference on Autonomous Agents and
Multiagent Systems. International Foundation for Autonomous Agents
and Multiagent Systems, 2015, pp. 725–733.

[8] J. Andreas, D. Klein, and S. Levine, “Modular multitask reinforcement
learning with policy sketches,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
166–175.

[9] M. J. Osborne et al., An introduction to game theory. Oxford university
press New York, 2004, vol. 3, no. 3.

[10] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[11] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, 1992, pp. 279–292.

[12] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, King’s College, Cambridge, 1989.

[13] V. e. a. Mnih, “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, 2015, pp. 529–538.

[14] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning.” in AAAI, vol. 16, 2016, pp. 2094–2100.

54Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 66 / 92

Deep Learning with Evolutionary Strategies for Building Autonomous Agents

Behaviour

Ventseslav Shopov, Vanya Markova

Institute of Robotics
Bulgarian Academy of Sciences

Bulgaria
Email: vkshopov@yahoo.com, markovavanya@yahoo.com

Abstract—In this study, we will consider the construction of the
behaviour of an autonomous agent in an environment that has
many traps and a large number of obstacles. Such environments
require the agent to build a policy that will lead them to the goal
as quickly as possible. As a working basis, we use Reinforcement
Learning and apply approaches from the field of random search
and Evolutionary Strategies.

Keywords–Autonomous Agents; Reinforcement Learning; Evo-
lutionary Strategies.

I. INTRODUCTION
Reinforcement Learning (RL) is a scientific area where

the main topics is agent training without supervision. Thus,
an agent is an autonomous subject who learns and makes
decisions independently. Such an agent, through interactions
with the environment, finds the optimal policy for consistent
decision making [1]–[3].

Deep learning prevails in the areas of studying natural
language, recognising objects in the pictures of classification
in multidimensional cases. Q-nets, AlphaGo, asynchronous
methods and many others are examples of successful Deep
Learning applications [4]–[8]. Deep learning leads to great
benefits in areas of big data and data science. However, there
are cases in which employing greedy optimisation for a reward
can lead to sticking to a local minimum or suffer of slow
converging [9].

Evolutionary Strategies (ES) are an approach that helps to
find global minimums. A comprehensive overview of different
ES techniques in the field of machine learning is given in [10].
Several studies have been done so far [11] [12], however most
of them consider the ES as an alternative to RL.

In our study, we combine ES as they were described in [10]
and Deep Q-Networks [4]–[6] in Reinforcement Learning to
explore the applicability and effectiveness of the agent learning
in the field of Sequential Games. At the moment, many specific
methods of gradient descent have been proposed, but they all
assume that the gradient behaves well: there are no cliffs where
it increases abruptly, or a plateau where it vanishes. The first
problem can be dealt with using the gradient clipping, but the
second is more challenging.

The main objective of this study is to compare the perfor-
mance of classical optimisation methods and ES as well as to
verify how these algorithms affect learning speed. Thus, the
hypothesis in this study is to compare the behaviour of gradient
optimisation algorithms and algorithms for ES.

This paper is organised as follows: in Section 2, we
briefly describe some basic theories of learning in the field of
reinforcement, Deep Learning, and ES. In addition, we present
the implementation of our approach. In Section 3 of our article,
we describe the experiments and collect evidence to support
our hypothesis. We conclude the work in Section 4.

II. METHODS AND MATERIALS

A. Theory
1) Autonomous Agent Behaviour: Information about past

and current states of the agent and environment allows agents
to evaluate their own progress. In reinforcement training, an
agent builds up policies based on progress. The policy deter-
mines the reaction of the agent to the state of the environment.
Through RL, the agent builds such policies that will achieve
the goal with the maximum benefit for the agent.

So, if we describe the states of the agent and environment
as a time series, then the task of making efficient plans will
be significantly aided if the agent could forecast the future
with desirable accuracy. An n-tipple (vector) is a result of one
cycle of the work of the agent. It consists of the parameters
of the behaviour of the agent: b(b1, b2, . . . , bn). The data from
environment are collected and transformed into time series in
the knowledge base of the agent.

2) Markov Decision Process: We formulate the transfer
learning problem in sequential decision making domains using
the following framework of Markov Decision Process. We use
the following definition of Markov Decision Process (MDP)
as a 5-tuple

< S,A, P,R, γ > (1)

where the set of states, set of actions, transition function
and reward function are described. P : S × A → Π(S) is a
transition function that maps the probability of moving to a
new state given an action and the current state,

R : S ×A→ R (2)

is a reward function that gives the immediate reward of taking
an action in a given state. γ ∈ [0, 1) is the discount factor. The
MDP of the agent is described in (1), where S is the set of
states, A is the set of actions, P is transition function and R
is a reward function.

55Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 67 / 92

3) Reinforcement Learning: To solve sequential decision-
making problems, the agent should learn about the optimal
value of each action, defined as the expected amount of future
rewards when taking this action and following the optimal
policy afterwards. Under a given policy π , the true value of
an action a in a state s is

Qπ(s; a) = E[R1 + γR2 + . . . |S0 = s;A0 = a;] (3)

where r ∈ [0; 1] is a discount factor which trades off the
importance of immediate and later rewards. The optimal value
is then Qπ∗(s; a) = maxQ(s; a) . An optimal policy can be
easily learned from the optimal values by selecting in every
state the highest valued action.

4) Q-Learning: The optimal action values can be derived
through Q-learning [13] [14], a form of time learning. The
real problems are too large to learn all the values of action
in all states separately. Instead, we can learn a parametric
value Q(s; a; qt). In this way, Q-learning values update the
parameters after taking action At at St and observe the
immediate reward Rt+1 so that the resulting state St+1 is then

qt+1 = qt + α(Y Qt −Q(St;At; qt))∇qtQ(St;At; qt) (4)

where q is a scalar value and the target Y Qt is defined as

Y Qt = Rt+1 + γmax
a

Q(St+1; a; qt) (5)

Updating the current value Q(St;At; qt) towards a target
value Y Qt the agent applies stochastic gradient descent ap-
proach.

5) Deep Q Networks: Deep Q Networks (DQN) are multi-
layered neural networks.These networks for a given state s
outputs not a single action but a vector of action values
Q(s; a; q), where θ are the parameters of the network. If an
action space containing m actions and state space is a n-
dimensional vector, the neural network maps Rn to Rm. In
addition in Deep Q Networks, there are target network [5],
with parameters θ−. This additional network is the same as the
original network except that its parameters are copied every τ
steps from the online network, so that then θ−t = t, and are
not changed on all other steps. So, the target used by DQN is
then

Y DQNt = Rt+1 + γmax
a

Q(St+1; a; θt) (6)

6) Double Q-learning: The max operator in standard Q-
learning and DQN, in 4 and 6, uses the same values both to
select and to evaluate an action. To prevent this overoptimistic
value estimation we can decouple the selection from the
evaluation. This is the idea behind Double Q-learning [15]. In
the original Double Q-learning algorithm, two value functions
are learned by assigning each experience randomly to update
one of the two value functions, such that there are two sets of
weights, and 0. For each update, one set of weights is used
to determine the greedy policy and the other to determine
its value. For a clear comparison, we can first untangle the
selection and evaluation in Q-learning and rewrite its target as

Y Qt = Rt+1 + γQ(St+1,maxaQ(St+1; a; qt); qt) (7)

The Double Q-learning error can then be written as

Y DoubleQt = Rt+1 + γQ(St+1,maxaQ(St+1; a; qt); qt) (8)

7) Evolution Strategies: If the action values contain ran-
dom errors uniformly distributed in an interval [−ε, epsilon]
then each target is overestimated up to γεm−1

m+1 , where m is the
number of actions [16]. This could leads to local optima. So,
we need a new approach for achieving the exploration strategy
that will lead us to a global optima. Such kind of algorithms
are ES.

ES are a class of black box optimisation algorithms inspired
by natural evolution [17]. At every iteration (generation),
a population of parameter vectors (genomes) is perturbed
(mutated) and, optionally, recombined (merged) via crossover.
The reward (fitness) of each resultant offspring is then eval-
uated according to some objective function. Some form of
selection then ensures that individuals with higher reward tend
to produce the individuals in the next generation, and the cycle
repeats.

Recent work from OpenAI outlines a version of NES
applied to standard RL benchmark problems [11]. We will
refer to this variant simply as ES going forward. In their
work, a fitness function f() represents the stochastic reward
experienced over a full episode of agent interaction, where θ
is the parameters of a policy π.

∇φEθ∼φ[f(θ)] =
1

n

n∑
i=1

f(θit)∇φ log pφ(θit) (9)

where n is the number of samples estimated per genera-
tion. The sample parameters in the neighbourhood of t and
determines the direction in which t must move to improve
the expected reward. Instead of the baseline, the ES relies on
a large number of samples n to reduce the variance of the
gradient estimate. To avoid bias in the optimisation process
due to large scale of reward between domains, we follow the
approach of [11] and rank-normalise f(θit) before taking the
weighted sum.

B. Implementation
The idea is quite simple. With a standard gradient descent,

at each step we look at the inclination of the surface on
which we are located and move in the direction of the greatest
gradient. In ES, we fire a nearby neighbourhood with points
where we can supposedly move, and move in the direction
where most points with the greatest height difference fall (and
the farther the point, the more weight is attached to it).

In the case of a piecewise-step function, the resulting
estimate will represent the gradient of the smoothed function
without having to calculate the specific values of this function
at each point. Also in the case when the loss function depends
on the discrete parameters, it can be shown that the estimate
remains valid, since in the proof one can interchange the order
of taking the expectation. Which is often not possible for
ordinary Stochastic Gradient Descent (SGD).

EεεE(θ + ε) = EεεExE(θ + ε, x) = ExEεεE(θ + ε, x) (10)

The greater the sigma distribution, the less the local
structure of the function manifests itself. When the sampling
algorithm is too large, the optimisation algorithm does not
show narrow minima and hollows, from which one can go
from one good state to another. If it is too small, the gradient
descent may not start if the initialisation point was chosen
unsuccessfully.

56Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 68 / 92

Sampling makes noise in the gradient calculation, which
makes learning more sustainable. Just like dropout in learning
neural networks in the usual way. ES does not depend on
frame-skip with RL. Also ES allow learning more easily
than regular SGD, when a large amount of time can pass
between an action in RL and a positive response, and in noisy
conditions, when it is not clear which change helped improve
the result. What are the disadvantages? The computation per
episode is slower than in SGD. And the final results are
not significantly better. Noise in gradients - even with one-
dimensional optimisation, are slightly unstable.

The RL algorithm can query the environment by sending
it the suggested policy π. The model then selects a random
variable e, independent of the past, and generates a vector from
the system in accordance with the policy π and randomness
e.And then the model returns to the our algorithm a sequence
of states, actions, and rewards (s, a, r), which represent a
vector generated from the system in accordance with the policy
π. In this scheme, one request is called an episode. The purpose
of the RL algorithms is to approximate the solution of problem
by making as few calls as possible to the medium.

III. EXPERIMENTS AND RESULTS

For the purposes of our research, we do the following : we
look at a stochastic single player game that strives to maximise
its winnings. The game is a 2d map in which the player must
reach a certain goal by avoiding certain traps. The reward in
the target is 100 and the reward in the trap is -100. For each
idling, the player receives a -5. The game has a stochastic
policy because the probability of going to the next scheduled
state is 0.9 and with probability 0.025 the agent will either
end up in one of the neighbours to the current state or will
remain in the current state. In this way, an odometric error or
a real agent monitoring error is modelled. If the agent made
a transition to an obstacle or out of the map, we see this as a
”collision”. Upon collision, the agent returns, returning to the
current state and receiving a -10 reward. The agent performs
one episode until it reaches a terminal state or by making a
number of steps larger than the size of the environment.

Maps are rated by many parameters as: size, size of hurdles,
trap to size ratios, and reward ratios to size. The latter is always
inversely proportional to the size of the map. We are looking
at a couple of specially made maps:
• map with minimal obstacles and traps. This map is a

virtually ideal playing field. The likelihood of collision
or the agent becoming trapped is minimal. Depending
on the ratio of the reward to the size, the agent is
favourably trained in small-sized maps.

• map with a significant number of obstacles and traps.
In this case, we have an obstacle to size ratio of 0.2
and trap ratios to the size of 0.2. On this map, the
total return is less than the first. However, obstacles
and traps are selected so that there are no conditions
for occurrence of local minima.

• map with a significant number of obstacles and traps
designed to generate a local minimum. This map
has the same ratio of obstacles and traps as in the
previous case, but here the goal is surrounded by traps
and obstacles. We have done this arbitrarily in order
to check how our policy optimisation methods will
behave in such a situation.

We create a model of the RL problem in a way similar to
the one in [18]. This model allows us to get an estimate of
the information our agent can extract from the environment.
The training agent generates policy and applies it to the
environment. In fact, the agent uses this policy for an episode.
In addition, the agent generates a random magnitude that
I apply to policy parameters. This magnitude is different
and independent for each step. In this way, the environment
generates a vector with the responses to the proposed policy
for each step.

Figure 1. We study the performance of the algorithms in simple map.

Figure 2. We study the impact of higher number of obstacles and traps.

This vector has the form < s, a, r > where c is the current
state, and the action a r is the reward. This vector is recorded
for each episode. The optimisation method should change the
policy parameters depending on what reward is awarded at
each episode step. Through this model, we get the opportunity
to generate queries to the environment and get vectors with all
of the agent’s trajectories for each episode.

From a practical point of view, the agent strives to obtain a
policy whereby the overall return is maximum. Creating a stop
criterion is not a trivial task especially if we have a stochastic
pattern of behaviour. Fluctuations in rewards as a result of

57Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 69 / 92

unfavourable coincidence of random events lead to a significant
volatility of the overall return. However, in our research we
are are primarily interested in the comparative characteristics
of the two policy optimisation approaches. Therefore, we will
ignore the convergence criterion and set a final number of
epochs as a measure of completing the training.

We compare the following four algorithms: BRS, BRS-
norm, Natural Evolutionary Strategies (NES) and NES-norm.
BRS and BRS-norm differ only in that the initial initialisation
of the BRS-norm parameters is normalised according to the
maximum and minimum reward. The same applies to NES
and NES-norm.

Figure 3. We see the impact of ”local minima” environment.

Figure 4. The Shapiro tests shows that all results have normal distribution.

The results of first experiment can be seen in Figure 1.
One can see that under favourable conditions the cumulative
reward after training does not differ significantly. The results of
second experiment are shown in Figure 2. Here we can see that
NES and NES-norm have a higher median reward, but their
dispersion also is higher. It is only in the third experiment
(Figure 3) that we see the superiority of ES. It seems that
Basic Random Search (BRS) and BRS-norm are stuck in the
local minima. NES algorithms perform much better although
they show higher volatility.

From Shapiro’s tests (result shown in Figure 4), it can

be seen that as the complexity of the environment increases,
the volatility of the solutions increases. BRS and BRS-norm
demonstrate more stable but significantly lower performance,
while NES and NES-norm achieve a higher overall return but
at the expense of increased volatility.

IV. CONCLUSION AND FUTURE WORK
In this study, we looked at building an autonomous agent’s

behaviour in an environment that has both rewards and traps.
Such environments require agents to build a policy that leads
them as quickly as possible to the goal. On the other hand, the
agent should ”avoid” traps especially in the case of a stochastic
policy of movement.

As a working framework, we used Reinforcement Learn-
ing. We compared approaches from the field of random search
and Evolutionary Strategies. Experiments have shown that
methods based on an evolutionary approach show better results
when the environment is more complex. Especially important
is the superiority of Evolutionary Strategies in cases where the
environment has local minima.

REFERENCES
[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.

MIT press Cambridge, 1998.
[2] C. Szepesvári, “Algorithms for reinforcement learning,” Synthesis lec-

tures on artificial intelligence and machine learning, vol. 4, no. 1, 2010,
pp. 1–103.

[3] D. P. Bertsekas, Dynamic programming and optimal control 3rd edition,
volume II. Belmont, MA: Athena Scientific, 2011.

[4] V. Mnih et al., “Asynchronous methods for deep reinforcement learn-
ing,” in International Conference on Machine Learning, 2016, pp. 1928–
1937.

[5] ——, “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, 2015, pp. 529–538.

[6] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, 2016, pp. 484–489.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, 2015, pp. 436–442.

[8] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016.

[9] J. Lehman and K. O. Stanley, “Novelty search and the problem with
objectives,” in Genetic programming theory and practice IX. Springer,
2011, pp. 37–56.

[10] D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette, “Evolutionary
algorithms for reinforcement learning,” Journal of Artificial Intelligence
Research, vol. 11, 1999, pp. 241–276.

[11] T. Salimans, J. Ho, X. Chen, and I. Sutskever, “Evolution strategies
as a scalable alternative to reinforcement learning,” arXiv preprint
arXiv:1703.03864, 2017.

[12] F. P. Such et al., “Deep neuroevolution: Genetic algorithms are a com-
petitive alternative for training deep neural networks for reinforcement
learning,” arXiv preprint arXiv:1712.06567, 2017.

[13] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, 1992, pp. 279–292.

[14] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, King’s College, Cambridge, 1989.

[15] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning.” in AAAI, vol. 16, 2016, pp. 2094–2100.

[16] S. Thrun and A. Schwartz, “Issues in using function approximation
for reinforcement learning,” in Proceedings of the 1993 Connectionist
Models Summer School. Hillsdale, NJ. Lawrence Erlbaum, 1993, pp.
255–264.

[17] I. Rechenberg, “Evolutionsstrategien,” in Simulationsmethoden in der
Medizin und Biologie. Springer, 1978, pp. 83–114.

[18] H. Mania, A. Guy, and B. Recht, “Simple random search provides
a competitive approach to reinforcement learning,” arXiv preprint
arXiv:1803.07055, 2018.

58Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 70 / 92

Adaptive Control of Traffic Congestion with Neuro-Fuzzy based Weighted Random
Early Detection

Irina Topalova
Department of Information Technology

University of Telecommunications and Post
Technical University Sofia

Sofia, Bulgaria
email:itopalova@abv.bg

Pavlinka Radoyska
Department of Information Technology

University of Telecommunications and Post
Sofia, Bulgaria

email:pradoiska@abv.bg

Abstract— Differentiating class-based traffic and class-based
queue management is the most advanced approach for queue
management in routers and switches, controlling and
preventing the congestion. The combination of a mechanism
for prioritizing the Internet Protocol traffic and the way to
dynamically modify the parameters of the packet rejection
algorithm is essential for achieving efficient and reliable
traffic. In this study, a method is proposed, exploring the
automatic adaptation of new users added to the backbone of
the network, to the already defined weighted random early
detection parameters. A neuro-fuzzy-logic network is trained
to automatically adapt new end users to the quality of service
policy already set in the backbone area. This network is
trained with the quality of service parameters of the backbone
area and serves to adapt these parameters in the newly-added
routers. The results obtained are compared with those from
the study of this problem by the authors, when a multilayer
neural network is used.

Keywords-traffic congestion; Quality of Service; Weighted
Random Early Detection; fuzzy logic; neuro-fuzzy system.

I. INTRODUCTION

In modern Information Technology (IT)
communications, the Quality of Services (QoS) is essential
for traffic efficiency. The creation of queues and their
inadequate management results in substantial packet delays.
The QoS aims to guarantee the quality of message delivering
by congestion management and congestion avoidance.
Various methods are currently applied to reduce the negative
effect of the problem. But more and more experimental
methods of artificial intelligence are being explored, hoping
for better results as given by K. Markov et al. [1], B. Deaire
et al. [2].

In this study, a method is proposed, to investigate the
automatic adaptation of new users added to the backbone of
the network, to previously defined weighted random early
detection parameters. The neuro-fuzzy logic network is
trained to automatically adapt new end-users to the service
quality policy already in place. This network is trained with
the service quality parameters of the main zone and serves to
adapt these parameters to the newly added routers. The
results obtained are compared with those, from the study of
this problem by the authors, when a multilayer neural
network is used, as well as with results from other similar
researches. The novelty of the proposed method consists in

the possibility of automated adaptation of the newly added
QoS parameters to an already existing communication
structure without having to reconfigure these network
devices. This is made possible by the proposed adaptive
neuro-fuzzy system, which approximates the parameters of
these devices in order to bring them closer to the one already
set.

The rest of this paper is organized as follows. Section II
describes the related to the research works. Section III
describes methods for congestion avoidance and Weighted
Random Early Detection methods. In Section IV, the
proposed method for weighted random early detection
parameter adjustment is presented. Section V gives the
experimental results. Section VI closes the article.

II. RELATED WORK

In the recent years, various methods have been proposed
to implement fuzzy logic to optimize traffic or to create
predictive models. E. Jamhoura et al. [3] propose a method
for building a fuzzy predictor to model a differentiated
services (DiffServ) node with two queues - for Voice over IP
(VoIP) traffic and self-similar data traffic. They define the
fuzzy membership functions on the base of extending the
existing queue models and apply a fuzzy model to build
network traffic controllers. M. Yaghmaee et al. [4] proposed
a fuzzy based controller for traffic differentiated services.
Their fuzzy scheduler is based on the waited fair queue
mechanism, in which the significance of each queue is
adjusted by the fuzzy controller. To dynamically tune the
committed interface rate, the authors use a two input one
output fuzzy controller. The presented results show better
performance than non-fuzzy mechanisms. The researchers S.
Shalinie et al. [5] describe the input and output of a queue
size regulation system, by a fuzzy set. In the proposed
model, they use two inputs - Traffic Intensity and Available
Link Bandwidth. Output of this model is the Queue size
parameter. But fuzzy logic-based Adaptive Drop Tail shows
significant improvement in controlling congestion without
any need for special parameterization or tuning as given by
A. Mishra [7]. The outcome shows that their proposed
Adaptive Drop Tail Fuzzy Logic controller has reduced
packet loss when compared to traditional Drop Tail
mechanisms. The simulation is designed to maintain
adaptive buffer space when a sudden change in overloading
occurs, which prevents Internet router buffers from
becoming full when overloading occurs.

59Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 71 / 92

The above-mentioned methods that use fuzzy logic offer
ways to reduce congestion through non-traditional queue
management in network device buffers, rather than
addressing the problem of adapting the new device's QoS
parameters to those already set in the primary
communications area.

In our study, we use fuzzy logic combined with neural
network training to offer a simplified method of adjusting the
QoS parameters of newly-added routers to the backbone
area. The difference in the approach of this method is that the
need to create an analytical model of traffic queues is
eliminated. At the same time, the use of fuzzy logic in
conjunction with a Nero Fuzzy System (NFS) allows the
uncertainty of the average queue, to be transformed into a
specific value of the Mark Denominator parameter. This
parameter, obtained as a NFS solution, is fed to the newly-
added routers to match this QoS parameter to those already
set in the backbone area.

III. CONGESTION AVOIDANCE AND WEIGHTED RANDOM

EARLY DETECTION

Network congestion occurs in two cases: when data
arrive on a big pipe and get sent out a smaller pipe and when
multiple input streams arrive at a router whose output
capacity is less than the sum of the inputs. Congestion
avoidance in network communications has two significant
components: congestion management in end devices based
on Transmission Control Protocol (TCP) algorithm and
Active Queue Management in routers.

A. TCP congestion avoidance

The main purpose of congestion management in end
devices is to adapt TCP window size to the bottleneck
throughput while maintaining an optimal exchange rate. The
basic congestion control algorithms, focused on end devices
are implemented in TCP protocol (RFC 5681) and include:
slow start, congestion avoidance, fast retransmit (TCP
Tahoe) and fast recovery (TCP Reno). Different variants are
compared by authors H. Kaur and G. Singh [6], A. Mishra
[7], N. Parvez et al. [8].

The TCP window size is measured in bytes. The
communication starts with the slow start phase (RFC5681).
The sender doubles the widow size on every received TCP
acknowledgement (ACK). Slow start stops when the window
size reaches slow start threshold (ssthresh) or at the first
missing ACK. The congestion avoidance phase starts after
the widow size reaches ssthresh. The window size
increments by one full size segment on any Round Trip Time
(RTT). The congestion avoidance phase stops at the first
missing ACK. According to the traditional TCP algorithm,
the slow start phase is activated after any missing ACK.
Congestion avoidance defines how to deal with lost packets.
There are two indications of packet loss: (1) waiting time has
expired and (2) receipt of duplicate ACKs. Retransmit Time
Out (RFC 6298) is a parameter which determines the wait
time for acknowledgment. The Receiver returns to the sender
an ACK after every arrived segment. But it acknowledges
the latest ordered segment data. The segments that arrive out
of order (there is a missing segment) are buffered, but not

acknowledged. This mechanism follows more than one ACK
for a segment. According to the Selective Acknowledge TCP
algorithm (SACK), the receiver acknowledges the last
ordered segment and all buffered segments. SACKs with the
same last ordered segment acknowledged, independently of
acknowledged buffered segments, are considered as
duplicate acknowledgements.

B. Congestion avoidance mechanisms in the routers

Random Early Detection (RED) was proposed by C.
Ghazel and C. Saidane [9] in the early 1990s to address
network congestion in a responsive rather than reactive
manner. It aims to trigger TCP congestion avoidance in end
devices before traffic congestion has occurred. As a result,
the data transmission speed is reduced and congestion in the
router is avoided. RED controls the average queue size in the
router and compares it with the predefined threshold for the
minimum (minq) and maximum queue (maxq) size. RED
runs in minq – maxq range – shown in Figure 1. At an
average queue size less than the minq, the packets are sent in
pure FIFO mode. At an average queue size greater than the
maxq, all packets are dropped. RED decides which packages
to drop using probability calculations based on the minimum,
maximum and average queue size, the ratio of the current
packet size to the maximum one and the number of packets
in the queue as is given by S. Rajput [10]. MPD (Mark
Probability Denominator) is used to limit the dropped
packets, according to the average queue size during the RED
phase. MPD defines the number of dropped packets when
average queue size is equal to maxq, just before full drop
phase.

Some authors give a review in IEEE Transactions [11]
and also X. Jiang et al. [12] consider the main problems of
the RED algorithm as: 1) unpredictable queuing delay and 2)
a sharp decrease in the throughput with high traffic load.
Unpredictable queuing delay provokes to instability of RTT.
RTT may become larger than the Recovery Time Objective
(RTO) and causes retransmission of packets already
received, and hence overload the network. Other authors,
Cisco IOS Quality of Service Solutions [13], consider this
behavior to be reasonable.

The traffic flow describes the communication between
two sockets. The packets marked for dropping are selected
based on the probability theory rather than on full statistics.
This can cause more frequent dropping of packets from some
flows than packets of other flows. Thus, the mechanism of
congestion avoidance in some flows is triggered more often
than others, and the speed of communication between two
sockets can be drastically slow while others remain high.
Furthermore, some packets carry no TCP traffic and are
therefore not sensitive to the TCP congestion avoidance
mechanism. These packets will not reduce their transmission
rate and it is very likely, that the queue will be filled with
their packets only. As a result, the router will become
“impassable” for TCP communication. On the third hand, in
the presence of DoS (Denial of Service) attacks, the attackers
turn off the slow start and congestion avoidance mechanisms
and send their packages with maximum windows size. Of
course, there are serious defenses against such attacks, but

60Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 72 / 92

with low-rate DoS attacks the most of them do not work as
shown by M. Al-shaw and A. Laurent [14].

The WRED algorithm given by A. Custura et al. [15] has
been developed to achieve better fairness and is implemented
into the operating systems of two of the leading companies
in the communications industry – Cisco and Juniper. The
packages are split into flows. Flows are merged into queues.
Each queue gets a specific portion of the outgoing
bandwidth. Within each queue, streams get their weighting
priority. Priorities are defined as: high, medium, and low.
The priority determines the probability of the packets
dropping. Each package is marked to determine which queue
it belongs to and what its priority is. The DifServ fields in
the IPv4 (RFC) and Type of Service (ToS) header in the
IPv6 header (RFC) are used to classify traffic. These fields
are 8 bits long. The first 6 of them are used for Differentiated
Service Code Point (DSCP) (RFC2474), (RFC2475) and the
last 2 bits are for experimental use. RFC5865 describes
service classes, according to the traffic types. When
constructing the DSCP classes, it is recommended to apply
Per-Hop Behaviors (PHBs) and Active Queue Management
(AQM) mechanisms. Service class applies to applications
with similar characteristics and performance requirements,
such as specific delay, loss and jitter. DSCPs to Service
Class Mapping is shown in Table 1. The network
administrator may choose to implement different service
classes, or to implement different behaviors for service
classes, or to aggregate different kinds of traffic into one
class. Only the Default Forwarding (DF) "Standard" service
class is required. All other service classes are optional. Three
types of queues can be defined: priority queue, rate queue
and AQM. Each defined queue gets the portion of outbound
bandwidth. Cisco developments recommended by Geib, R.
and D. Black [16] a bandwidth distribution by types of
traffic.

Only AQM queues are based on packet dropping and
RED/WRED. AQM queues define only Assured Forwarding
(AF) classes and DF. Any package that is not explicitly
marked belongs to DF class. DSCP bits for AF classes are
depicted in Figure 2. The first 3 bits define the class number,
the next two - the priority, and the last one must be 0.

Collections of packets with the same DSCP setting that
are sent in a particular direction can be grouped into a
Behavior Aggregate (BA). Packets from multiple sources or
applications can belong to the same BA. DSCP is used to
select the Per-Hop Behavior (PHB) at each interface.

PHB (RFC2475) is a mechanism that allows
independent management of DSCP classes in each router.
DSCP classes are queueing in the router in a locally defined
manner. A portion of the output bandwidth is allocated to
each queue. For example, class traffic with DSCP Af11,
Af12 and Af13 is incorporated in one AQM queue with
name gold (statement 1). For this queue, 35% of outbound
bandwidth (statement 2) is allocated. Minq, maxq, and MPD
are defined for DSCP classes in the queue. Let configure
minq =20, maxq =40, MPD =10 for DCSP class af11
(statement3).
class-map match-all gold match ip dscp af11 af12 af13
class gold bandwidth percent 35

random-detect dscp af11 20 40 10
Based on these analyzes and research, as well as our

observations, we have come to the conclusion that the most
efficient action, would be the implementation of a WRED
mechanism, but with the ability to transform the queue
uncertainty into specific values of the rejected packets. This
leads to the idea of using fuzzy logic.

Figure 1. Queue management phases.

Figure 2. DSCP bits for AF classes.

TABLE I. DSCP TO SERVICE CLASS MAPPING

Service Class
Name

DSCP
Name

DSCP
Value

Application
Examples

Network
Control

CS6 110000 Network routing

Telephony EF 101110 IP Telephony
bearer

Signaling CS5 101000 IP Telephony
signaling

Multimedia
Conferencing

AF41,
AF42,
AF43

100010,
100100,
100110

H.323/V2 video
conferencing
(adaptive

Real-Time
Interactive

CS4 100000 Video
conferencing and
Interactive
gaming

Multimedia
Streaming

AF31,
AF32,
AF33

011010,
011100,
011110

Streaming video
and audio on
demand

Broadcast
Video

CS3 011000 Broadcast TV &
live events

Low-Latency,
Data

AF21,
AF22,
AF23

010010,
010100,
010110

Client/server
transactions Web-
based ordering

OAM CS2 010000 OAM&P
High-
Throughput
Data

AF11,
AF12,
AF13

001010,
001100,
001110

Store and forward
applications

Standard DF (CS0) 000000 Undifferentiated
applications

IV. PROPOSED METHOD FOR QOS PARAMETER

ADJUSTMENT

The proposed method is based on the functional scheme
shown in Figure 3. The assumption is that in the end
(Remote site) routers, as well as in the Central router, the
AF classes with related traffic types are already defined. We
assume that WRED and differentiated services are
configured in the end routers. Тhe DSCP values and the
minimum and maximum threshold range, considered for
managing the average queue depth in the central router, are
both configured. The Neuro-Fuzzy Device Manager

61Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 73 / 92

(NFDM) is trained with these two parameters and prepares
in its output the calculated Mark Denominator (MD). MD
defines the fraction of packets dropped when the average
queue depth is at the maximum threshold. Thus, the NFDM
system consists of two inputs and one output variables. As
newly-added routers are connected to the Central router
area, their also configured DSCP values are submitted to the
already trained NFDM. According to the defined linguistic
rules in the inference phase, the NFDM sends the calculated
MD to the added routers. This action seems to be
reasonable, because the following baseline markings with
DSCP Assured Forwarding PHB are typically recommended
by Cisco Systems, represented by B. Hedlund [17]:

Figure 3. Functional scheme of the proposed method

 Interactive Video - AF41
 Mission Critical Data (locally defined) - AF31
 Transactional Data (dlsw, sql, sap): AF21
 Bulk Data (email, ftp, backups): AF11.

Thus, it is assumed that these classes are set by following
these recommendations in the newly-added routers.

V. EXPERIMENTAL RESULTS

The NFDM was trained with two input variables. The
first one is represented in Figure 4 and defines the
membership functions of the DSCP values - combination of
traffic class and its priority. Тhe upper angles of the
trapezoidal membership functions are set to point to the
exact DSCP values of the respective range of the standard
AF classes. Seven ranges are defined - 10-12 and 12-14
respectively for class 1; 18-20 and 20-22 for Class 2; 26-28
and 28-30 for Class 3; 34-38 for Class 4. The overlapping
areas of the trapezoidal shapes are so set, that the values of

Figure 4. Membership function of DSCP values (combination of traffic
class and its priority)

the membership functions are negligible, as no packets with
DSCP values beyond the standard are expected. The second

input variable is represented in Figure 5 and defines the four
ranges are chosen as typically recommended [17].
membership function of the Min-Max threshold values. Here
The defined MD as output result of the Inference and
Defuzzifiction phase is shown in Figure 6. Because of its
neural network structure, the system is capable of learning
(an advantage of neural systems) and because of its fuzzy-
like topology it is possible to recreate the processing steps.
To design a system that takes advantage of neural networks
and fuzzy systems in one project, we need a system that
processes the fuzzy membership functions and fuzzy model
rules.

Figure 5. Membership function of the Min-Max threshold values

Thus, we can determine knowledge from the sampling data
using neurons capable of learning. You can solve this
problem by using a special neural network called NFN. It
consists of three neural subnets (NSNs) that emulate the
three sub-sequences - fuzzification, inference and
defuzzification - of the fuzzy system [18].

Figure 6. Membership function of MD

Thus, the fuzzification of the non-fuzzy input variables is
implemented by a layer of neurons with activation functions
of the both above described inputs. One neuron is assigned to
each membership function of the input variables. In the
second layer of the neuro-system, the rule base of the fuzzy
system is applied and one neuron is assigned to each rule.
The IF part of a fuzzy rules is implemented by the first
neuron layer and the 2nd layer implements the THEN part of
a fuzzy rule. The number of neurons in the second layer is
equivalent to the number of membership functions of the
output variables. The output values of the system in the 3rd
neuron layer are implemented by the standard defuzzification
method with MAX-PROD inference followed by centroid
calculation as given in NeuroSystem, User Manual [18].

62Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 74 / 92

Table II demonstrates the chosen linguistic rules, which are
inputs to the second layer neurons. For example, the first to
third columns of Table II, set the following linguistic rules:

IF DSCP is 10 to 12 and Range 1 THEN MD=8;
IF DSCP is 12 to 14 and Range 1 THEN MD=4;
IF DSCP is 18 to 20 and Range 2 THEN MD=8; etc.

TABLE II. LINGUISTIC RULES OF THE NFDM

Input X:

traffic
class with

drop
preferenc
e

AF11-

AF12

(DSCP

values

10 to 12)

AF12-

AF13

(DSCP

values

12 to 14)

AF21-

AF22

(DSCP

values

18 to 20)

AF22-

AF23

(DSCP

values

20 to 22)

AF31-

AF32

(DSCP

values

26 to 28)

AF32-

AF33

(DSCP

values

28 to 30)

AF41-

AF43

(DSCP

values

34 to 38)

Input Y:

Min-Max
Threshold
range

range 1 range 1 range 2 range 2 range 3 range 3 range 4

Output Z:
MD

8 4 15 11 25 20 28

Figure 7 shows the obtained 3D surface, which illustrates the
obtained dependencies between inputs X and Y and the
resulting value of MD (axis Z) at the output of the NFDM.
But the 3D presentation is not informative enough, when the
number of input and output variables for NFDM is higher. In
this case, it is better to represent the variables as it is shown
in Figure 8 and Figure 9.

Figure 7. Membership function of MD (axis Z) according to Input X (DSCP)
and Input Y (Min-Max threshold ranges)

Figure 8 shows the variations of MD (green line) according
to AF12 (DSCP=12; yellow line) and all threshold ranges 1
to 4 (red line). Figure 9 shows the variations of MD (green
line) according to AF32 (DSCP=28; yellow line) and all
threshold ranges 1 to 4 (red line). Both figures show very
well the change in the value of MD, that is submitted to the
newly-added router, when its DSCP value is brought to the
input of the already trained NFDM system.

VI. CONCLUSION AND FUTURE WORK

The use of fuzzy logic in conjunction with a neural
network NFS in the proposed method, allows the
uncertainty of the average queue to be transformed into a
specific value of the Mark Denominator parameter. This

parameter, obtained as a NFS solution, is fed to the newly-
added routers to match this QoS parameter to those already
set in the backbone area. An advantage of the method is that
no any analytical model is designed, but only NFDM
training is required.

Figure 8. Variations of MD (green line) according to AF12 (DSCP=12;
yellow line) and all threshold ranges 1 to 4 (red line)

The advantage is the ability of the network to learn, i.e. its
ability to adapt to changed behavior and new situations. To
exploit the benefits of both - the easy understandability of
fuzzy systems and the ability to train neural networks - the
two techniques are combined. Compared to the results of the

Figure 9. Variations of MD (green line) according to AF32 (DSCP=28;
yellow line) and all threshold ranges 1 to 4 (red line)

authors' study given by I. Topalova and P. Radoyska [19],
where only neural network is used to match MD, the NFDM
method does not require a large volume of trained samples,
as the initial uncertainty of the selected input variables. The
methods discussed above use fuzzy logic and offer ways to
reduce congestion through non-traditional queue
management in network device buffers, rather than
addressing the problem of adapting the new device's QoS
parameters to those already set in the primary
communications area, applying automated adaptation. In this
sense, we consider the proposed method of no analogue in
the scientific registers

As a further continuation of the study, we are testing the
NFMM system with more MD values for tracking and
validating the adjusted values for the newly-added routers.
Different forms (for example triangular) of the Membership
functions of the Min-Max threshold values and of the DSCP

63Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 75 / 92

values will also be attempted, aiming to investigate the
degree of uncertainty.

REFERENCES

[1] K. Markov, K. Ivanova, K. Vanhoof, I. Mitov, B. Depaire, V.
Velychko, and V. Gladun, “Intelligent Data Processing Based
on Multi-Dimensional Numbered Memory Structures,”
Diagnostic Test Approaches to Machine Learning and
Commonsense Reasoning Systems, IGI Global, 2013, pp.
156-184, doi: 10.4018/978-1-4666-1900-5.ch007, ISBN: 978
1-4666-1900-5, EISBN: 978-1-4666-1901 2.

[2] B. Deaire, K. Ivanova, K. Markov, I. Mitov, K. Vanhoof, and
V. Velychko,“Multi-dimensional Information Spaces as
Memory Structures for Intelligent Data Processing in GMES,”
pp 347-370 In: Kr. Markov et al. Intelligent Data Processing
in Global Monitoring for Environment and Security, ITHEA,
2011, Kiev, Ukraine - Sofia, Bulgaria. ISBN: 978-954-16-
0045-0 (printed), ISBN: 978-954-16-0046-7 (CD/DVD),
ISBN: 978-954-16-0047-4 (online). ITHEA® IBS ISC No.:
21. 410 p.

[3] E. Jamhoura, M. Pennaa, R. Nabhenb, and G. Pujolleb, ”
Modeling a multi-queue network node with a fuzzy
predictor,” Fuzzy Sets and Systems 160 (2009) 1902–1928, ©
2008 Elsevier B.V., doi:10.1016/j.fss.2008.12.004.

[4] M. Yaghmaee, M. Menhaj, and H. Amintoosi, “Design and
performance evaluation of a fuzzy based traffic controller for
differentiated services,” Computer Networks 47 (2005) 847-
869, available online at www.sciencedirect.com, access date
april, 2019.

[5] S. Shalinie, G. Preetha, S. Nidhya, and B. Devi, “Fuzzy
Adaptive Tuning of Router Buffers for Congestion Control,”
International Journal of Advancements in Technology,
http://ijict.org, Vol 1, No 1, © IJoAT ISSN 0976-4860, June
2010.

[6] H. Kaur and G. Singh, “TCP Congestion Control and Its
Variants,” Advances in Computational Sciences and
Technology ISSN 0973-6107 Volume 10, Number 6 (2017)
pp. 1715-1723.

[7] A. Mishra, “Performance Analysis of TCP Tahoe, Reno and
New Reno for Scalable IoT Network Clusters in QualNet” ®
Network Simulator, International Jpurnal of Computer
Sciences and Engineering 6(8), pp:347-355, August 2018
DOI: 10.26438/ijcse/v6i8.347355.

[8] N. Parvez, A. Mahanti, and C. Williamson, "An Analytic
Throughput Model for TCP NewReno," in IEEE/ACM

Transactions on Networking, vol. 18, no. 2, pp. 448-461,
April 2010. doi: 10.1109/TNET.2009.2030889

[9] C. Ghazel and C. Saidane, “Next generation networks
dimensioning for improving and guaranteeing quality of
service,” The International Journal of Networks (JNW) 5 (7),
pp.782-791, 2018.

[10] S. Rajput, V. Kumar, and S. Paul, "Comparative analysis of
random early detection (RED) and virtual output queue
(VOQ) algorithms in differentiated services network," 2014
International Conference on Signal Processing and Integrated
Networks (SPIN), Noida, 2014, pp. 237-240. doi:
10.1109/SPIN.2014.6776954

[11] Learning-Automata-Like Solution, in IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 40,
no. 1, pp. 66-76, Feb. 2010. doi:
10.1109/TSMCB.2009.2032363

[12] X. Jiang, J. Yang, G. Jin, and W. Wei, RED-FT: A Scalable
Random Early Detection Scheme with Flow Trust against
DoS Attacks, IEEE COMMUNICATIONS LETTERS, Vol.
17, No. 5, pp. 1032-1035, May 2013.

[13] Cisco IOS Quality of Service Solutions Configuration Guide,
[Online] Available:
https://www.cisco.com/c/en/us/td/docs/ios/12_2/qos/configura
tion/guide/fqos_c/qcfintro.html, access date march, 2019.

[14] M. Al-shaw and A. Laurent, QoS Design Principles and Best
Practices, Cisco Press, Jan 1, 2018, [Online]
Available:http://www.ciscopress.com/articles/printerfriendly/
2756478, access date march, 2019.

[15] A. Custura, A. Venne, and G. Fairhurst, "Exploring DSCP
modification pathologies in mobile edge networks," 2017
Network Traffic Measurement and Analysis Conference
(TMA), Dublin, 2017, pp. 1-6.

doi: 10.23919/TMA.2017.8002923

[16] R. Geib and D. Black, "Diffserv-Interconnection Classes and
Practice", RFC 8100, DOI 10.17487/RFC8100, March 2017,
[RFC8100].

[17] B. Hedlund, “Enterprise QoS Solution Reference Network
Design Guide,” Cisco Systems, 2017.

[18] NeuroSystem, User Manual, Copyright © Siemens AG, 2006.

[19] I. Topalova and P. Radoyska, “Control of Traffic Congestion
with Weighted Random Early Detection and Neural Network
Implementation”, ICAS 2018, The Fourteenth International
Conference on Autonomic and Autonomous Systems, pp. 8-
12, Nice, France, 20-24 May 2018.

64Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 76 / 92

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 65

Organic Self-Adaptable Real-Time Applications

Lial Khaluf
Email: lial.khaluf@googlemail.com

Franz-Josef Rammig
University of Paderborn
Email: franz@upb.de

Paderborn, Germany

Abstract—Nowadays, computing systems tend to find inspiration
for their behavior in organic systems. Approaches have been
published to develop a system behavior with the potential to
react to environments. In the real-time domain, such approaches
are still very rare and limited. In this paper, we provide an
approach which is able to adapt at runtime and, at the same
time, preserve all real-time constraints. In accordance to “Organic
Programming”, we make use of the concept of cells. A cell is an
extension of a task allowing its adaptation. Cells exist by means of
classes, which consist of a limited set of cell variants. All variants
of a cell share the same fundamental functionality, however
under different computing time demands and different costs.
Our approach consists of an adaptation algorithm that behaves
as a real-time cell. Under the assumption that the ecosystem of
the real-time environment is given in the form of a set of real-
time cells, each one with multiple variants, it provides a selection
mechanism in the space of this ecosystem. The system goals aim to
reduce system costs under the constraint of meeting all real-time
requirements.

Keywords–Real-time cell; variant; organic programming; opti-
mization; self-adaptability.

I. INTRODUCTION

Turning any physical process into an online process is a
current trend in many kinds of businesses. This evolution is
reflected by transforming the current physical systems into
Cyber Physical Systems. In such systems, the correct function-
ality of the system is influenced by its reaction to internal and
external events. Such adaptation capabilities apply in general
to control processes as, for example, in the medical or energy
sectors, etc. In most cases, the nature of such processes belongs
to embedded systems where timing constraints have to be
achieved. Cyber Physical Systems add several advantages over
traditional systems, such as self-adaptability as reaction to
failures as well as unexpected conditions [1]. In this sense,
such a system is evaluated by its ability to adapt itself to
environmental changes in real-time. Many approaches have
been proposed to solve this challenge. However, most of the
existing approaches have several limitations related to the
ability of reacting to unexpected events, or reacting in an
undefined way. In order to overcome these deficiencies, we
introduce in this paper a solution that mimics the organic
behavior of objects in our real world. Real world objects have
the ability to change their structure or behavior when they react
to any environmental event, as cells do in an organism [2]. For
this reason, our solution does not limit itself to a predefined
set of events or reactions. It is assumed that the system has the
ability to grow at runtime. In other words, it is assumed that the
system is able to have new resources, new events and reactions
at runtime. Currently, we apply our algorithm on a single node

system, with the ability to import the needed information from
the outside which can be considered as a remote node. This
information consists of the different reactions that the system
may apply in response to specific events that may result from
an internal or external environmental change. The reactions
are developed by external sources, and added to the system
at runtime. The solution we provide applies for all kinds
of real-time systems. This is done by providing the system
with organic properties at the level of real-time tasks. Such
tasks, in our case, are transformed into cells, called real-time
cells. A real-time cell is an extension of a real-time task by
mechanisms empowering it to self-adaptation. Whenever an
adaptation takes place, both the adaptation and the resulting
adapted system have to respect real-time restrictions. For this
purpose, a selection process is part of the adaption mechanism.
Its search space is restricted to a current ecosystem given by a
limited number of cell classes, each one with a limited number
of variants. Under the constraint that all real-time restrictions
have to be satisfied, this selection process aims to minimize
the overall system costs. We assume a relatively low frequency
of adaptation requests. Such requests react to requested im-
provements or slight environmental changes. In this paper,
we mostly concentrate on the central essential question: how
adaptation requests can be handled under real-time constraints.
In Section 2, we present the related work. Section 3 describes
the problem we are facing and provides a solution for it. In
the last section, we conclude the achievements of the paper
and present possible future work.

II. RELATED WORK

In [2], a new model for organic programming is introduced.
It aims to overcome limitations of the traditional programming
models such as the Object Oriented Programming (OOP) [28],
Model Driven Architecture (MDA) [27] or Aspect Oriented
Programming (AOP) [26], where abstract classes or models
are difficult to change. The idea behind the approach in [2] is
to have a system that is able to grow and evolve continuously.
However, it was not made for real-time systems. In our
approach, we concentrate on having a system consisting of
cells with defined properties that enable self-adaptability in
real-time.

The approach in [3] and [4] defines different profiles
with different resource requirements for each task. It enables
choosing the best combination of profiles at runtime to adapt
the system to certain situations. However, these profiles are
developed offline, and new ones cannot be added to the system
at runtime, which decreases the system adaptation ability.
Our approach applies the concept of organic programming by
giving the ability to modify tasks online in a way that preserves

 77 / 92

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 66

all real-time constraints. Cells can be developed and added
online to the system.

In [5], we find a summarized description for the state of the
art in terms of modeling dimensions, research challenges, and
requirements of self-adaptive systems. A self-adapting system
has the following dimensions: (1) Goals: Evolution, Flexibility,
Duration, Multiplicity, Dependency, Change, Source, Type,
Frequency, Anticipation, (2) Mechanisms: Type, Autonomy,
Organization, Scope, Duration, Timeliness, Triggering, and
(3) Effects: Criticality, Predictability, Overhead, Resilience
[5]. In our approach, system goals may change according to
adaptation scenarios. Events that trigger an adaptation depend
on the system where we apply the developed algorithm. The
type of change that causes an adaptation could be functional,
non functional, or technological. In our approach, there is
no restriction on this issue; changes are foreseeable, but can
change over time.

Mechanisms of adaptability summarize how the system can
react to changes, in terms of space and time required. The
algorithm we provide may act by decisions taken automatically
or by other parties. The adaptation is done by a central
component. The scope of adaptation could be local or global.
The duration of the adaptation is influenced by execution time
of the central component.

The set of dimensions and effects deals with results of
adaptation, such as the overhead. In our approach, missing a
deadline may confirm the failure of the system.

In [6], a second roadmap for state of the art is presented.
Challenges of a self-adaptive system are described.

The first challenge is to understand the different alternatives
that may represent designer or developer decisions. In our
approach, we have developed a general strategy that applies
for different kinds of real-time systems. We have an abstract
implementing component, which fits as a reusable component.

The second challenge is concerned with understanding the
nature, goals, and lifecycle of the system. In [6], a comparison
between the basics for traditional software processes, and self-
adaptive processes is described. The first one is illustrated
in [7] by the traditional approach to corrective maintenance,
and the second in [8] and [9] by the automatic workaround
approach. The traditional approach reports the problem to the
developers. The automatic workaround approach moves the
corrective actions to runtime by applying alternative proce-
dures when a failure happens. In our approach, the alternative
procedure might be a new request or an update request.
Analyzing causes of the failure may be assigned to a human or
a subsystem. In the workaround approach, recovering methods
are developed at design phase. In our approach, this can be
done at runtime. In the workaround approach, if a recovering
method does not exist, a report is sent to the developers, which
is the same action taken in our approach.

The third challenge is concerned with decentralization
of control loops. Controlling a system could be done in a
centralized [10]-[12] or decentralized manner [13]-[17]. The
self-adapting component is central in our approach, as network
reliability in terms of time and trustworthy is a main concern
in real-time systems.

The fourth challenge is the verification and validation of the
system. In our approach, verification is done for requirements
of real-time systems, apart from the context of the system.

In our approach, we define the optimization constraints in
a multi-dimensional multiple choice knapsack problem. Most
common solutions can be found in [18] and [19]. In our
approach, we use a genetic algorithm inspired from [18] to
solve a knapsack problem. The reason is that it can provide
the whole solution (individual consisting of best variants in
terms of time and cost) at once if available. This allows to
use required parameters of the individual elements in order to
calculate the parameters of other elements. The most important
fact for our application is that it is an ”Anytime Algorithm”
in the sense that at any time the current valid solution of the
algorithm can be used. This solution may be far away from
an optimal one. However, if the initial population is a valid
solution, it is guaranteed that at any time a valid solution can
be provided.

III. PROBLEM DESCRIPTION AND SOLUTION CONCEPT

In our assumption, we consider periodic, aperiodic tasks
or if both then evidently together. Dependability may exist
between aperiodic tasks. A request can be adding a task, delet-
ing a task, updating a task, adding a set of dependent tasks,
deleting a set of dependent tasks, updating a set of dependent
tasks. We assume a mixed hard-deadline periodic and aperiodic
task environment. Figure 1 shows an example of request types.
In case 1, the algorithm should solve the case of Task 5 not
being accepted by the underlying schedulability algorithm. In
case 2, the algorithm should solve the case of Task 1 update
not being accepted by the underlying schedulability algorithm,
and the question of how to make an update of Task 1.

In this paper, we only consider the activities on one single
local node. System tasks, and tasks that are triggered have to
be executed on this node. We assume that task management
is carried out by a Real-Time Operating System (RTOS)
with Earliest Deadline First algorithm (EDF) as the principal
scheduling method. Furthermore, we assume that aperiodic
tasks are handled via a Total Bandwidth Server (TBS) [20] and
that the underlying RTOS runs the Stack Resource Protocol
[21] to avoid unlimited blocking and deadlocks. In order to
be able to run the adaptation algorithm, we come up with
the concept of real-time cells. A cell is a task that is able
to change its structure and behavior at runtime, to allow
adaptations in real-time. The change is decided by a central
cell called “Engine-Cell”. Assuming that the system before
update is correctly functioning, we strictly follow the concept
of transactions. If a solution for an update request is found after
applying the update operations, the system state is updated. If
a solution is not found, the system goes back to the previous
state.

The above mentioned Engine-Cell runs the adaptation
algorithm using a two dimensional array as model of the
underlying ecosystem. Each column stands for a class of cells
which all share the same principal functionality. Each cell
in the column is a variant, where these variants accomplish
the same task, but with different costs and execution time
demands. The Engine-Cell runs an adaptation algorithm, which
intends to select over all cell classes the best combination of
variants that allows to accept the newly arrived requests. The
objective is to fulfill all real-time constraints and to provide
a globally maximum quality of the adapted system. As this
selection process takes place on the ecosystem defined by the
mentioned two-dimensional array, the search space is restricted

 78 / 92

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 67

to the bounded set of cells with bounded number of variants
which is present at time of adaptation.

We also assume a remote node (as model of the en-
vironment) that is dedicated to install variant updates, and
newly deployed cells. An update request means updating a cell
according to a provided change of parameters without altering
the principal behaviour. The remote node is used for providing
external storage, and also to be uploaded in an appropriate
place for developers. Modelling the current state of the system
and cell classes and viewing these models by developers are
not discussed in the scope of the paper. At each execution of
the Engine-Cell, new requests may have arrived to the system.
The adaptation algorithm is run by the Engine-Cell, trying

Figure 1. Request Types

to find a feasible solution by selecting variants over all cell
types. A real-time cell becomes active when it is accepted
by the system for execution. The Engine-Cell is called an
Active Engine-Cell (AEC) once it is activated. Any other Real-
Time Cell (RTC) is called an Active Real-Time Cell (ARTC)
once it is accepted for execution. The Engine-Cell is treated
here as a periodic cell and stays active as long as the system
is running. We make the general assumption for all periodic
cells (including AEC) that the relative deadline is equal to
the period. As investigating the acceptance of newly arrived
requests is part of the Engine-Cell algorithm, we ensure that
the system state does not change during the execution of the
Engine-Cell.

The parameters controlling the Engine-Cell are defined as
follows:

1) Hyperperiod: is the hyperperiod of the currently ac-
cepted periodic ARTCs. The next point in time where
a hyperperiod completes execution is abbreviated as
NHP (Next Hyperperiod). Adaptation takes place
only once per hyperperiod. It becomes effective not
earlier than NHP.
At the start of the system, the hyperperiod is cal-
culated as the least common multiple of the periods
of periodic ARTCs that initially might exist at the
system startup. The resulting value is set as initial
value for the AEC’s period. We examine the total
utilization (AEC and ARTCs). If it is smaller or equal
to 1, we have found the shortest possible period for
AEC (which at the same time by definition is the
hyperperiod). If the total utilization is beyond 1 then
the hyperperiod has to be extended by a harmonic
multiple until the total utilization is no longer beyond
1. Calculating an initial NHP is carried out either
offline or as part of the initialization when starting
the system.
Note: the response time on adaptation requests de-
pends on the load of the system. A highly loaded
system means a smaller fraction of the processing
capacity to be dedicated for the AEC. At the same
time, the execution time demand of the AEC tends
to increase if some fixed upper bounds (such as
dimensions of the RTCArray) change.

2) NumOfPARTCs: is the number of the current periodic
ARTCs in the system.

3) NumOfAARTCs: is the number of the current aperi-
odic ARTCs in the system.

4) RTCArray: is the data structure that holds the differ-
ent variants of RTCs in the system. Figure 2 shows
the RTCArray consisting of different RTCs. Each
column is called an RTClass. Each RTClass holds
a number of variants, which are RTCs dedicated to
fulfill the same task, with different cost and execution
time requirements. Switching between the different
variants online enables to execute tasks in the best
way regarding system resources. All periodic vari-
ants, that belong to the same class, have the same
period. All aperiodic variants that belong to the same
class, have the same deadline. The RTCArray is a
dynamic component. RTCs can be added to it online.
The upper bounds of its dimensions can grow online.
Other parameters include the Worst-Case Execution

 79 / 92

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 68

Time (WCETEC), the worst case period (WCTEC),
and additional properties of the EC.

Another set of properties is defined for ordinary RTCs:

1) VariantsAllowed: is a Boolean property. When it is
equal to true, all variants that belong to the class of
the respective RTC variant should be examined to
select the best variant in the adaptation algorithm.
Otherwise, the respective RTC variant is considered
mandatory to be processed by the algorithm.

2) UpdatingPoints (UP): is a set of points in the code
of the RTC routine. At these points, the RTC could
be substituted by another variant within the same
class from the RTCArray. All variants, which have
the same RTClassID, have a set of updating points
with the same number of points, where each point
in a specific set has a counter part point in all the
other considered sets. UpdatingPoints is of relevance
only in case of aperiodic tasks. Instances of such
tasks may have a long execution time, exceeding
the current hyperperiod. Therefore, just waiting for
the next instance would not be appropriate. In case
of periodic tasks, we restrict updates on the natural
updating point, defined as the release time of the next
instance of a periodic task [22].

3) ETexecuted : is the time that has been spent in
executing an aperiodic RTC before the previous NHP.

4) NextUpdatingPoint: a variable that saves the next
updating point which has not been yet reached by
the executed code of the RTC.

5) Triggered: is a Boolean property that reflects the
status of an RTC. If it is equal to true, this means
that the RTC is triggered for execution.

6) TriggeringTime: is the time at which an RTC is
triggered (chosen from the RTCArray).

7) TriggeringRange: is the range of time within which
the arrival time of an RTC could be set. Our goal is
to set the arrival time of requests greater or equal to
NHP, because at this point, we assume that all ac-
cepted periodic requests are simultaneously activated
(i.e., we assume all phases to be 0).

8) Deletion: a Boolean property, that is set to true if the
request means deletion of a cell. It is set to false,
otherwise.

9) Active: is a Boolean variable that is set to true when
the cell is accepted for execution.

Figure 2. RTCArray

Other properties not described in the scope of this paper
include the ID of the RTC (RTClassID/VariantID) inside
RTCArray, the cost of an RTC, the importance factor, the
factor of essentiality, the static parameters, and the updated
cost, which should be calculated for an RTC, when it replaces
another executing RTC.

In the following:
- We use the term ExpPARTCs to refer to the set of current

periodic ARTCs excluding the RTCs, which belong to the
deletion requests.

- We use the term ExpAARTCs to refer to the set of current
aperiodic ARTCs excluding the RTCs, which belong to the
deletion requests.

The Engine-Cell algorithm can be sketched as follows (See
Figure 3):

Step 1: Gathering and filtering the newly deployed
RTCs: The first step of the AEC is to collect the newly
deployed RTCs, and store them in a WorkingRTCArray (a
copy of RTCArray) following a procedure that ensures to
keep the upper bound of the WorkingRTCArray dimensions
preserved. As newly deployed RTCs enlarge the solution space
RTC classes and/or variants may need to be dropped following
some importance criteria.

Step 2: Triggering and handling the newly arrived
requests: In this step, a TriggeredQueue is constructed from
the WorkingRTCArray. Triggering a request from the Work-
ingRTCArray turns the Triggered property into true. Arrival
times of requests are set greater or equal to NHP according
to their TriggeringRange. The DeletionTime of requests that
have to be deleted is set to the next updating point. If a request
includes a set of dependent cells, we assume that their modified
arrival times and deadlines are calculated offline following the
rules of Modified Earliest Deadline First algorithm EDF* [23].

Step 3: Calculating the cost of quality factors for the
system: The total cost of factors available by a node Costtotal
is calculated.

Step 4: Adaptation algorithm: In this step, we construct
the lowest-cost feasible solution over the entire set of RT-
Classes stored in an AdaptationRTCArray which is constructed
in the beginning of this step. This data structure further reduces
the search space to be considered by excluding deleted cells
and aperiodic cells that have their absolute deadline within
the current hyperperiod. The reason for the latter exclusion
is following the general assumption that adaptations become
active not earlier than in the next hyperperiod.

To construct AdaptationRTCArray, we first copy variants
of WorkingRTCArray into AdaptationRTCArray. We then
reduce AdaptationRTCArray to contain only all classes of
ExpPARTCs and such ExpAARTCs with absolute deadlines
exceeding NHP. For each aperiodic ARTC that should be
deleted and has an absolute deadline exceeding NHP, we add
a column including the ARTC as the only variant. After that,
we add a column that includes the AEC. We add the newly
triggered requests, and finally the updating requests:

• Adding an aperiodic update is done (only if there
exists an updating point after NHP in the aperiodic
variant that is running) by adding the arrived RTClass
which includes the triggered updating variant. The
precise algorithm to identify the set of aperiodic

 80 / 92

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 69

ARTCs that can be updated and to calculate the
time characteristics for the updates are omitted here.
The number of those aperiodic ARTCs is denoted by
NumOfANHP. The updated variant has been excluded
when constructing ExpAARTCs.

• Adding a periodic update is done by adding the arrived
RTClass, which includes the triggered updating variant
to AdaptationRTCArray. The updated variant has been
excluded when constructing ExpPARTCs.

• In case there is an update request for a set of aperiodic
dependent RTCs the same rules as of updating a single
(independent) variant are applied.

By the above operations, a reduced array is constructed
that contains only those entries which are relevant for the

Figure 3. Nassi-Schneidermann Diagram for EC Algorithm

adaptation algorithm. For technical reasons, the columns in
the array are reordered, so that periodic columns come first,
then AEC, and finally aperiodic columns.

Let us assume that the number of columns in Adaptation-
RTCArray = Num. Ǹ denotes the number of columns, which
represent the newly triggered aperiodic requests.

If (NumOfANHP > 0) then we calculate arrival times,
execution times, and Cost-Update for the running aperiodic
ARTCs that are stored in AdaptationRTCArray, and deadlines
exceed the NHP. The details of these calculations are omitted
here.

The heart of the adaptation algorithm is to find a selection
of variants for all RTC classes in the relevant ecosystem. This
relevant ecosystem has been determined by the activities de-
scribed above and stored in AdaptationRTCArray. The solution
is a one dimensional array Solution that is assumed to contain
one variant from each column in the AdaptationRTCArray. The
chosen variants should pass the schedulability test of the Total
Bandwidth Server (TBS) [20], and achieve the lowest possible
accumulated cost.

To find the solution, we solve the following multiple
choice multi dimensional knapsack problem.

max
∑Num

i=1

∑ni

j=1−Costijxij

Subject to:
∑Num

i=1

∑ni

j=1 W
k
ijxij ≤ Rk

Where:∑ni

j=1 xij = 1; i = 1..Num & xij ∈ {0, 1} and j = 1..ni,
k = 1:3

By Num is denoted the number of columns (RTC classes)
in AdaptationRTCArray while by ni is denoted the number
of variants in the ith column. Note that three constraints are
formulated for the three values of parameter k. Constraint 1
handles periodic tasks including the AEC, constraint 2 the
aperiodic ones, and constraint 3 is an optional one limiting
the total cost. For these three constraints, the weights W k and
the constraining condition Rk are defined differently.

Constraint 1: W 1
ij = Factor1/Factor2

For any of the periodic RTCs: Factor1 = Cij , Factor2 =
Tij

For the AEC, Factor1 = WCETEC , Factor2 =
WCTECTemp

WCTECTemp denotes the expected hyperperiod of the
AEC. It is calculated the same way the initial hyperperiod
is calculated. Here periodic cells are ExpPARTCs in Adap-
tationRTCArray, and newly triggered periodic requests in
AdaptationRTCArray. Expected period of AEC is used instead
of its current period. In each hyperperiod, only one execution
of the AEC is assumed. For this reason, we finally update
WCTECTemp, the expected period of the AEC, to be equal
to the expected hyperperiod.

For any of the aperiodic RTCs: Factor1 = 0, Factor2 = 1
Constraint 2: W 2

ij = Factor1− Factor2

For any of the periodic RTCs and the AEC: Factor1 = 0,
Factor2 = 0.

For any of the aperiodic RTCs: Factor1 = dSpecified,ij ,
Factor2 = dCalculated,ij .

Where:

 81 / 92

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 70

dSpecified,ij : The specified absolute deadline for any
aperiodic variant, which belongs to an aperiodic variant in
AdaptationRTCArray is equal to its arrival time + relative
deadline of the variant.

By dCalculated,ij we denote the deadline calculated by the
TBS rule.

dCalculated,ij = max (dCalculated(i−1)ji−1
, ArrivalT imeij)+

Cij,new/Us.
Us = 1− Up.
Constraint 3: Depending on the different kinds of RTCs to

be considered in solving the knapsack problem, the weights
Wij for the optional third constraint are defined as follows:

W 3
ij = Cost for periodic RTCs stored in AdaptationRTCAr-

ray
W 3

ij = Cost for aperiodic RTCs that are stored in Adapta-
tionRTCArray

After defining the weights of the different variants, we can
start discussing the conditions. The constraining conditions Rk

for the three constraints are defined as follows:
R1 = 1(EDF constraint for periodic cells). R2 = 0 (no

aperiodic task missing its deadline). R3 = Costtotal.
The limit Costtotal is optional. If a solution is found, the

newly arrived requests are accepted.
The algorithm which we are applying to solve the knapsack

problem is a genetic algorithm. In the algorithm, an individual
contains exactly one variant for each column in Adaptation-
RTCArray. In total, there exist up to fh individuals. Each
of them is a potential solution of the knapsack problem. We
select smaller subsets of individuals and call them Generations.
Let us assume that the number of individuals in a generation
≤ upper bound of number of RTCs in a class in the Work-
ingRTCArray. In the initial generation, the first individual is
given by selecting from each RTClass the variant with the
lowest respective utilization. This individual allows a simple
decision whether a solution exists, as if this individual does
not fulfill the constraints then there cannot exist any solution.
If the knapsack constraint

∑Num
i=1

∑ni

j=1 W
k
ijxij ≤ Rk has a

solution for a set of individuals, we choose the individual
which minimizes the accumulated cost of the chosen RTCs.
The lowest-cost individual of a generation is a preliminary
solution of the knapsack problem. The previous operations are
bounded by upper bounds of RTCArray dimensions, and the
given time bound for the iteration. A generation is constructed
from a previous one by applying selection and mutation. This
process is iterated until no improvement can be observed or
a given time limit is reached. The latter termination condition
guarantees boundedness.

Step 5: Activate the accepted requests, and update
the AEC: The Active property of accepted RTCs becomes
true. They are put into the ready queue as managed by the
underlying RTOS. The AEC updates its properties. Updating
requests take place in the WorkingRTCArray. After that, Adap-
tationRTCArray is set to empty. Cells are still enforced when
having them replaced by other variants because, by definition,
updating points are designed for this reason. Values of still to
be used variables are transmitted to the updating variants, and
accomplishing the same functionality must be ensured by the
developer.

Step 6: Turning the triggered requests into non-
triggered: The Triggered Property of requests RTCs is turned
into false. After that, WorkingRTCArray is copied to RTCAr-
ray if the solution is accepted, and then it is set to empty.

Step 7: Notify the system, in case the requests are not
accepted. : Algorithm variables are reset to their initial values.

In [24] we modelled each of the previous steps by a Nassi-
Schneidermann diagram [25]. This helps to understand the
specification of code structure and points out the calculation
of time complexity.

Concerning the time complexity of the developed adap-
tation algorithm, we can show that per single execution (i.e.,
once per hyperperiod) the algorithm can be solved in quadratic
time in the upper bounds of dimensions of RTCArray and
upper bound of number of RTCs inside a dependent set request
[24]. Parameters of time complexity are bounded. In case of
solving the knapsack problem, this boundedness is enforced by
setting an upper bound of execution time in the iterative genetic
algorithm. Together with the fact that there are no unbounded
blockings possible due to parameters not under control of the
algorithm (assumption of Stack Resource Protocol included
in the underlying RTOS) this implies the boundedness of the
algorithm.

IV. CONCLUSION

In this paper, we have developed an approach that enhances
real-time operating systems by an organic adaptability feature.
This implies building an infrastructure of the system, which
can change its behavior at runtime. The basic unit in this
infrastructure is a cell. A cell is a task that can change its
structure and behavior by selecting a variant of it at runtime.
The way variants are chosen at runtime follows resource and
time limitations, in order to enhance the quality of the system.
The boundedness of our algorithm has been proven. Many
new trends can be developed in the context of the described
problem, such as distributing the central algorithm that is run
by the Engine-Cell on several nodes in order to save more
processor utilization on one node, obtaining fault tolerance,
dealing with the boundedness of the algorithm in case of a
non- deterministic network, such as in a multi-agent system,
measuring the optimization output by running the algorithm
on a real-time operating system and observing the results, and
having several controlling cells other than the Engine-Cell or
having several variants of it, etc.

V. ACKNOWLEDGEMENT
This work is based on a PhD thesis done at University of

Paderborn, Germany [24].

REFERENCES

[1] E. A. Lee, “Cyber Physical Systems: Design Challenges,” 11th IEEE
Symposium on Object Oriented Real-Time Distributed Computing
(ISORC), pp. 363-369, 2008.

[2] O. Imbusch, F. Langhammer, and G. von Walter, “Ercatons and Or-
ganic Programming: Say Good-Bye to Planned Economy,” Dagstuhl
Seminar Proceedings 2006.

[3] S. Oberthür, L. Zaremba, and H. Simon Lichte, “Flexible Resource
Management for Self-X Systems: An Evaluation,” in Proceedings of
ISORCW2010.30, pp. 1-10, 2010.

[4] S. Oberthür, “Towards an RTOS for Self-Optimizing Mechatronic
Systems, Dissertation,” Paderborn, Germany, October 30, 2009.

 82 / 92

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2 71

[5] H. C. C. Betty at al. (Eds.), “Self-Adaptive Systems,” LNCS 5525,
pp. 1-26, Springer Verlag, Berlin Heidelberg, 2009.

[6] R. de Lemos et al. (Eds.), “Self-Adaptive Systems,” LNCS 7475, pp.
1-32, Springer Verlag, Berlin Heidelberg, 2013.

[7] E. Burton Swanson, “The dimensions of maintenance,” In Proceed-
ings of the 2nd International Conference on Software Engineering
(ICSE 1976), pp. 492-497. IEEE Computer Society Press, 1976.

[8] A. Carzaniga, A. Gorla, N. Perino, and M. Pezzè, “Automatic
workarounds for web applications,” In: FSE 2010: Proceedings of
the 2010 Foundations of Software Engineering Conference, pp. 237-
246. ACM, New York, 2010.

[9] A. Carzaniga, A. Gorla, and M. Pezzè, “Self-healing by means of
automatic workarounds,” In SEAMS 2008: Proceedings of the 2008
International Workshop on Software Engineering for Adaptive and
Self-Managing Systems, pp. 17-24. ACM, New York, 2008.

[10] D. Garlan, S.W. Cheng, A.C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable infras-
tructure,” IEEE Computer 37, pp. 46-54, 2004.

[11] IBM: “An architectural blueprint for autonomic computing,” Tech.
rep. IBM, January 2006.

[12] P. Oreizy et al., “An architecture- based approach to self-adaptive
software,” IEEE Intelligent Systems 14, pp. 54-62, 1999.

[13] Y. Brun and N. Medvidovic, “An architectural style for solving com-
putationally intensive problems on large networks,” In Proceedings
of Software Engineering for Adapting and Self-Managing Systems,
SEAMS 2007, Minneapolis, MN, USA, May 2007.

[14] I. Georgiadis, J. Magee, and J. Kramer, “Self-Organizing Software
Architectures for Distributed Systems,” In: 1st Workshop on Self-
Healing Systems. ACM, New York, pp. 33-38, 2002.

[15] S. Malek, M. Mikic-Rakic, and N. Medvidovic, “A Decentralized Re-
deployment Algorithm for improving the Availability of Distributed
Systems,” In A. Dearle, R. Savani (eds.) CD 2005. LNCS, vol. 3798,
pp 99-114. Springer, Heidelberg, 2005.

[16] P. Vromant, D. Weyns, S. Malek, and J. Andersson, “On interacting
Control loops in self-adaptive systems,” SEAMS 2011, Honolulu,
Hawaii, pp. 202-207, 2011.

[17] D. Weyns, S. Malek, and J. Andersson, “On decentralized self-
adaptation: lessons from the trenches and challenges for the future,”
In: Proceedings of the 2010 ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS 2010, pp. 84-93.
ACM, New York, 2010.

[18] A. Duenas, C. Martinelly, and G. Tütüncü, “A Multidimensional
Multiple-Choice Knapsack Model for Resource Allocation in a
Construction Equipment Manufacturer Setting Using an Evolutionary
Algorithm,” APMS 2014, Part I, IFIP AICT 438, pp. 539-546, 2014.

[19] M. Hifi, M. Michrafy, and A. Sbihi, “Heuristic algorithms for the
multiple-choice multidimensional knapsack problem,” Journal of the
Operational Research Society, Palgrave Macmillan, vol. 55, pp. 1323-
1332, 2004.

[20] M. Spuri and G. C. Buttazzo, “Efficient Aperiodic Service under
Earliest Deadline Scheduling,” Real-Time Systems Symposium, pp.
2-11, 1994.

[21] T. P. Baker, “A Stack-Based Resource Allocation Policy for Realtime
Processes,” In: Proceedings of the IEEE Real-Time Systems Sympo-
sium (RTSS), pp. 191-200, 1990.

[22] L. Khaluf and F. Rammig, “Organic Programming of Real-Time Op-
erating Systems,” In the ninth international conference on Autonomic
and Autonomous Systems (ICAS), pp. 57-60, 2013.

[23] H. Ghetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling of
real-time tasks under precedence constraints,” Journal of Real-Time
Systems, 2, pp. 181-194, 1990.

[24] L. Khaluf, “Organic Programming of Dynamic Real-Time Applica-
tions,” a PhD thesis, University of Paderborn, 2019.

[25] I. Nassi and B. Schneiderman, “Flowchart Techniques for Structured
Programming,” Technical Contributions, Sigplan Notices, pp. 12-26,
1973.

[26] G. Kiczales et al., “Aspect Oriented Programming,” in ECOOP’97
— Object-Oriented Programming, pp. 220-242, 1997.

[27] R. Petrasch, O. Meimberg, “Model Driven Architecture,” ISBN 3-
89864-343-3, 2006.

[28] T. Benaya and E. Zur, “Understanding Object Oriented Programming
Concepts in an Advanced Programming Course,” in ISSEP 2008:
Informatics Education - Supporting Computational Thinking pp. 161-
170, 2008.

 83 / 92

Funnel Control for a Class of High-Order Nonlinear Systems

Yong-Hua Liu and Chun-Yi Su

School of Automation
Guangdong University of Technology

Guangzhou, Guangdong 510006, China
Email: yonghua.liu@outlook.com, cysu@scut.edu.cn

Abstract—This paper addresses the problem of funnel output
tracking control for a class of unknown high-order nonlinear sys-
tems with state feedbacks, which requires to achieve output track-
ing with prescribed accuracy when both the system nonlinearities
and the powers of the system are unknown. Therefore, a robust
funnel control algorithm, i.e., a continuous, static, universal, state-
feedback controller is explicitly constructed, which ensures that
the state errors evolve within the predesigned performance space.
The advantages of the proposed funnel output tracking controller
when compared with the current approaches lie in the fact that no
a priori knowledge of system nonlinearities, including generally
required bounding functions, is needed. Furthermore, all the
powers in each high-order subsystem are not required to be
known as well. A simulation example is provided to demonstrate
the effectiveness of the proposed algorithm.

Keywords–nonlinear systems; output tracking; funnel control;
unstabilizable linearization.

I. INTRODUCTION

Owing to its practical significance and theoretical chal-
lenge, the control problem of high-order uncertain nonlinear
systems has attracted considerable research effort. Significant
progress in different directions, including adaptive regulation,
output tracking control with state feedbacks, and finite-time
stabilization [1]-[4], has been achieved by adding a power
integrator technique and a homogeneous domination method.
However, in all aforementioned developments, a priori knowl-
edge of the system nonlinearities and the powers in each
subsystem is needed.

Another important issue associated with the control design
of unknown high-order nonlinear systems is the prescribed
transient behaviour of the closed loop system. Recently, the
work [5] introduced the concept of funnel control, which
not only deals with unknown system nonlinearities, but also
achieves the output tracking with prescribed performance. In
particular, via the backstepping procedure, the funnel control
methodology has been employed for various classes of non-
linear systems, such as Brunovsky, strict-feedback and pure-
feedback systems. Working independently, an alternative ap-
proach, called Prescribed Performance Control, was proposed
to achieve the same control objective [6]. Unfortunately, both
schemes mentioned in [5]-[6] cannot be directly applied to
high-order nonlinear systems even if the powers are precisely
known, due to the singularity around the origin.

Motivated by the above discussions, this paper focuses on
the output tracking problem with prescribed performance via
state feedbacks for high-order nonlinear systems with unknown
powers and functions. By combining the funnel control tech-
nique with barrier Lyapunov functions, the difficulty involved

with the singularity problem can be avoided and a continuous,
static, universal, state-feedback controller is explicitly con-
structed, which ensures the predesigned performance. In the
proposed universal approach, the barrier Lyapunov functions
are employed to enforce the unknown system nonlinearities
to be bounded, making constructions of the adaptive laws or
function approximators not necessary. Furthermore, the precise
knowledge of all the powers in each subsystem is not needed
to be known a priori. Thus, compared with the current state-
of-the-art of the output tracking control, the proposed scheme
relaxes significantly the common assumptions in the related
works and represents a structurally simple and computationally
inexpensive strategy. Finally, simulation results illustrate the
effectiveness of the proposed theoretical findings.

The paper is organized as follows: In Section II, the prob-
lem addressed is stated. In Section III, the main result of this
paper is presented without rigorous stability analysis. Further,
in Section IV, a simulation example is provided to demonstrate
the effectiveness of the proposed scheme. Conclusions are
drawn in Section V.

II. PROBLEM FORMULATION

Notations: R denotes the set of real numbers. R≥0 denotes
the set of nonnegative real numbers. R>0 denotes the set
of positive real numbers. Rn denotes the real n-dimensional
space. W1,∞(R≥0, R>0) denotes the set of differential func-
tions ρ : R≥0 → R>0 with ρ and ρ̇ being essentially bounded
on R≥0.

Consider the following class of single-input-single-output
(SISO) nonlinear systems:

ẋi = di(t, x, u)x
pi

i+1 + ϕi(t, x, u), i = 1, ..., n− 1,

ẋn = dn(t, x, u)u
pn + ϕn(t, x, u),

y = x1, (1)

where x̄i = [x1, ..., xi]
T ∈ Ri, i = 1, ..., n; x = x̄n =

[x1, ..., xn]
T ∈ Rn are the system states with initial condition

x0 = [x0
1,, x

0
n]

T , u ∈ R is the control input, y ∈ R is
the output; pi, i = 1, ..., n are the powers of the system; The
system nonlinearities di, ϕi : R≥0×Rn×R → R, i = 1, ..., n
are locally Lipschitz in x and u, and piecewise continuous in
t.

For simplicity of presentation, denote xn+1 = u. The
following assumptions are made.

Assumption 1: The powers pi, i = 1, ..., n are positive odd
integers, which may be unknown.

72Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 84 / 92

Assumption 2: There exist unknown continuous and strict-
ly positive functions ci : Ri → R and c̄i : Ri+1 → R,
i = 1, ..., n such that

0 < ci(x̄i) ≤ di(t, x, u) ≤ c̄i(x̄i+1), i = 1, ..., n. (2)

Assumption 3: There exist unknown continuous non-
negative functions ϕ̄ij : R

i → R, i = 1, ..., n, j = 0, ..., pi− 1
such that

|ϕi(t, x, u)| ≤
pi−1∑
j=0

|xi+1|j ϕ̄ij(x̄i), i = 1, ..., n. (3)

Assumption 4: The desired trajectory yr is bounded, con-
tinuous and available, and ẏr is bounded but its bound may
not be available.

Remark 1: Assumptions 1-3 are sufficient conditions for
global controllability of the system (1), which are extensively
used in the literature [3]-[4]. It should be stressed that the de-
veloped controller in the sequel does not require the analytical
expressions of system nonlinearities di(t, x, u), ϕi(t, x, u) and
their bounding functions ci(x̄i), c̄i(x̄i+1), ϕ̄il(x̄i), in contrast
to some results in [3]-[4].

The control objective is to design a state-feedback con-
troller

u = α(t, x, yr) (4)

such that

• all signals in the closed loop system are globally
bounded;

• the tracking error e = y − yr evolves within a
prescribed performance funnel

Fρ :=
{
(t, e) ∈ R≥0 ×R

∣∣∣|e| < ρ1

}
, (5)

which is determined by a performance function ρ1 ∈
W1,∞(R≥0, R>0) incorporating the desired perfor-
mance specifications.

III. FUNNEL CONTROLLER DESIGN

In this section, we will construct a funnel controller for
system (1) via barrier Lyapunov functions [7]. The design
procedures of the proposed funnel controller are given as
follows.

Step 1 : Preselect the first performance function ρ1 ∈
W1,∞(R≥0, R>0) that satisfies ρ1(0) > |x1(0) − yr(0)| and
guarantees the desired performance specifications regarding
the steady state error and the speed of convergence. Let
z1 := e = x1 − yr and ξ1 := z1

ρ1
, then, the first virtual law is

designed as

α1 =
−k1ξ1
1− ξ21

, (6)

where k1 is a positive constant.
Step i(i = 2, · · · , n) : Preselect the i-th performance

function ρi ∈ W1,∞(R≥0, R>0) that satisfies ρi(0) > |xi(0)−
αi−1(0)|. Define zi := xi − αi−1 and ξi :=

zi
ρi

, then, the i-th
virtual and actual control laws are designed as

αi =
−kiξi
1− ξ2i

, (7)

u = αn, (8)

T ime(sec)
0 2 4 6 8 10

y
,
y
r

-2

0

2 y yr

T ime(sec)
0 2 4 6 8 10

z
1

-1

0

1
−ρ1 ρ1 z1

Figure 1. Output tracking performance.

where ki is a positive constant.
Remark 2: The features of the proposed scheme lie in

the fact that the exact knowledge of system nonlinearities,
including generally required bounding functions, is not needed
to be a priori, and all the powers in each high-order subsystem
are allowed to be any unknown positive odd rational numbers.
Moreover, compared with adaptive robust control approaches,
no adaptive techniques are utilized in the developed controller.

Remark 3: In the proposed control design, the prescribed
transient behaviour is imposed by appropriately selecting the
performance function ρ1, other controller parameters ρi, i =
2, ..., n, and ki, i = 1, ..., n, are chosen flexibly according to
the conditions ρi(0) > |xi(0)− αi−1(0)|, i = 2, ..., n.

IV. A SIMULATION EXAMPLE

To illustrate the correctness and effectiveness of the theoret-
ical findings, we consider the following second order nonlinear
system:

ẋ1 = (4− sin(x1))x
3
2 + sin(x1)x2 + x1e

x1 cos(x2),

ẋ2 = (3 + sin(t))u3 + cos(x1)e
x2 sin(x1),

y = x1, (9)

where the initial condition is [x1(0), x2(0)]
T = [−0.4, 0.5]T .

The control purpose is to force the output y to track the desired
trajectory yr = sin 1.5t with steady state error no more than
0.1 and minimum speed of convergence as obtained by the
exponential e−3t.

By selecting appropriately the design parameters and ap-
plying the proposed controller, the simulation result on the
output tracking performance is presented in Figure 1, in which
it can be observed that the prescribed performance of the
tracking error is achieved.

V. CONCLUSION

This paper has studied the funnel output tracking problem
for unknown high-order nonlinear systems. By combining

73Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 85 / 92

the funnel control technique with barrier Lyapunov functions,
we have exploited a constructive approach for designing the
global universal controller, which achieves the predesigned
performance of the state errors. Contrary to the current state-
of-the-art of the output tracking control, the proposed funnel
control does not incorporate any prior knowledge of system
nonlinearities and the powers in each subsystem. Moreover,
instead of utilizing adaptive laws or function approximators,
the unknown system nonlinearities are guaranteed to be bound-
ed via the barrier Lyapunov functions. Simulations performed
on an illustrative example verify and clarify the theoretical
findings. As a future work, we will apply the proposed
method to an underactuated unstable two degree of freedom
mechanical system [1].

REFERENCES
[1] C. Qian and W. Lin, “A continuous feedback approach to global strong

stabilization of nonlinear systems,” IEEE Trans. Autom. Control, vol.
46, no. 7, pp. 1061–1079, Jul. 2001.

[2] Q. Gong and C. Qian, “Global practical tracking of a class of nonlinear
systems by output feedback,” Automatica, vol. 43, no. 1, pp. 184–189,
Jan. 2007.

[3] X.-J. Xie and N. Duan, “Output tracking of high-order stochastic
nonlinear systems with application to benchmark mechanical system,”
IEEE Trans. Autom. Control, vol. 55, no. 5, pp. 1197-1202, May 2010.

[4] Z.-Y. Sun, L.-R. Xue, and K. Zhang, “A new approach to finite-
time adaptive stabilization of high-order uncertain nonlinear system,”
Automatica, vol. 58, pp. 60–66, Aug. 2015.

[5] A. Ilchmann, E. P. Ryan, and C. J. Sangwin, “Tracking with prescribed
transient behaviour,” ESAIM Control Optim. Calc. Var., vol. 7, pp. 471–
493, 2002.

[6] C. P. Bechlioulis and G. A. Rovithakis, “A low-complexity global
approximation-free control scheme with prescribed performance for
unknown pure feedback systems,” Automatica, vol. 50, no. 4, pp. 1217–
1226, 2014.

[7] K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier Lyapunov functions for the
control of output-constrained nonlinear systems,” Automatica, vol. 45,
no. 4, pp. 918–927, 2009.

74Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 86 / 92

Software Architectural Style for Autonomic Cloud Computing

Zakarya A. Alzamil

Software Engineering Department

King Saud University

Riyadh, Saudi Arabia

e-mail: zakarya@ksu.edu.sa

Abstract— Most of the autonomic cloud computing

architectures are either a domain specific architecture or focus

on certain properties of autonomic computing. In addition,

they do not concentrate on the core issues related to the design

and architectural concerns with respect to autonomic cloud

computing in which the cloud can manage itself. In this paper,

we propose a generic software architectural style for

autonomic cloud computing systems that is based on a

simplified layered approach. The proposed architectural style

consists of five layers in which the bottom layer consists of

cloud hardware/software resources, the second layer consists of

a virtual machine that provides flexibility to service providers

to utilize cloud resources, the third layer consists of an

autonomic manager that manages cloud services, the fourth

layer consists of a cloud service provider which provides

services to cloud clients, and finally, the fifth and top layer

represents the client layer that enables users to utilize the

provided cloud services. This architectural style is a flexible

and expandable software architecture solution for autonomic

cloud computing systems, in which the service providers in the

cloud can integrate their services within the architecture of the

cloud computing software system. Additionally, this

architecture enables the software architects to design and

model their cloud computing software system in a flexible way

that will maximize the reuse of existing cloud software

components within their software system.

Keywords- autonomic cloud computing; cloud computing

architecture; software architecture; software architectural style;

cloud computing architectural style.

I. INTRODUCTION

Cloud computing is a computing model that aims to
provide services over the Internet by providing shared
computing resources that are accessible by cloud service
providers, as well as cloud clients. Cloud computing is
defined by the National Institute of Standards and
Technology (NIST) as “a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or
service provider interaction” [1]. A given cloud computing
implementation can be viewed as a collection of
interconnected computers that are presented as unified
computing resources that provide services based on a certain
service level agreement. Cloud computing provides different
services. The most common cloud computing services are
three service models: Software as a Service (SaaS), Platform
as a Service (PaaS), and Infrastructure as a Service (IaaS). In

addition, cloud computing may be deployed based on four
deployment models: private cloud, community cloud, public
cloud, or hybrid cloud [1][2]. Cloud computing relies on
sharing of resources, as well as adaptation to existing
technologies and paradigms without the need to know such
technologies and paradigms. In addition, cloud computing
adopts concepts from Service-Oriented Architecture (SOA)
that can help users to breakdown the business problems into
services that can be integrated to provide a solution. Cloud
computing is widely used as a Web service that provides
services at minimal management. The advantage of cloud
computing is the flexibility of offering and delivering shared
resources. Typically, the cloud service is a subscription-
based service in a pay-as-you-go model. Cloud computing is
a complex, large scale distributed system whose
management is crucial in order to offer services in a reliable
and timely manner. This requires the automation and
integration of cloud service provision and management in an
autonomic computing manner.

The autonomic computing model is derived from the
human body autonomic nervous system [3] in which the
computing system is capable of managing itself and can
dynamically adjust to changes in policies without human
intervention. The main property of autonomic computing is
the self-management, which consists of self-configuration,
self-optimization, self-healing, and self-protection [15]. Self-
configuration is the system’s ability to dynamically
configure itself according to high-level policies, with the rest
of system adjusting itself automatically and seamlessly. Self-
optimization is the system’s ability to automatically optimize
its usage of resources and improve its performance and
efficiency. Self-healing is the system’s ability to
automatically detect, diagnose, and repair localized software
and hardware problems. Self-protection is the system’s
ability to automatically defend itself from malicious attacks
or cascading failures, as well as from end users who
accidentally make software changes, e.g., deleting an
important file [3].

Software architecture deals with the design and
implementation of the high-level structure of the software. It
is the result of assembling a certain number of architectural
elements in some well-chosen form to satisfy the major
functional and non-functional requirements of a system, such
as reliability, scalability, portability, and availability [4].
Software development based on common architectural
idioms has its focus shifted from lines-of-code to coarser-
grained architectural elements (software components and
connectors) and their overall interconnection structure [5]. In
order to understand the architectural style, one should

75Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 87 / 92

understand the concept of software architecture. There are
several definitions of software architecture. Perry and Wolf
[6] define software architecture in terms of building blocks
that are concerned with the selection of architectural
elements, their interactions, and the constraints on those
elements and their interactions necessary to provide a
framework in which to satisfy the requirements and serve as
a basis for the design. ISO/IEC/IEEE 42010 Standard [7]
defines software architecture as “fundamental concepts or
properties of a system in its environment embodied in its
elements, relationships, and in the principles of its design
and evolution”. Bass et al. [8] define software architecture as
the structure or structures of a system, which comprises
software elements, the externally visible properties of those
elements, and the relationships among them. These
definitions identify the software architecture at the macro
level as the software system’s blueprint. The architectural
style is determined by a set of element types, the topological
layout of the elements indicating their interrelationships, a
set of semantic constraints, and a set of interaction
mechanisms that determine how the elements coordinate
through the allowed topology [8]. Shaw and Clements [9]
define the architectural style as a set of design rules that
identify the kinds of components and connectors that may be
used to compose a system or subsystem, together with local
or global constraints on the way the composition is done. An
architectural style determines the vocabulary of components
and connectors that can be used in instances of that style,
together with a set of constraints on how they can be
combined. These can include topological constraints on
architectural descriptions (e.g., no cycles) or some
constraints on execution semantics [10].

In this paper, we propose an autonomic cloud computing
architectural style for software systems that is based on a
simplified layered approach. We have used the decision
support system’s architectural elements proposed in [11], as
will be described in Section III, to support the self-
management of autonomic cloud computing software
systems. The proposed architectural style consists of five
layers: cloud hardware/software resources layer, virtual
machine layer, autonomic manager layer, cloud service
providers layer, and client layer. This paper is organized as
follows. In Section II, we describe the related works, and in
Section III, we present our proposed approach. The
conclusions are presented in Section IV.

II. RELATED WORK

Several studies have proposed architectural approaches
for autonomic cloud computing. In [12], a software process
based development approach for designing and building an
autonomic cloud computing system is described. According
to this approach, a sequence of software steps is followed for
the complete design, such as control parameter identification,
system model, system input identification, model
identification, model update, system decision type,
prediction creation, coordinator creation, data measurement,
managed system control, and autonomic system control. A
cluster of application servers running on top of a cloud is
described as an application of autonomic management

architecture to show how the development approach can be
reconfigured for self-management and optimization for Web
services.

A mechanism to implement autonomic cloud computing
with the usage of information proxies is described in [13].
An information proxy provides useful information about a
resource such as its state, works that need resources, overall
resource utilization, etc. The proposed approach aims at
improving the collaboration among peers in a large-scale
network for the purpose of distributed resource scheduling.
Results from the study showed that information proxies may
improve the resource scheduling of large scale distributed
systems. The information proxies help in building
neighborhood nodes that contain information about the co-
located nodes that share similar characteristics.

Artificial intelligence techniques such as multi agent and
mobile computing are proposed in [14] for designing
autonomic cloud computing. In this proposed approach,
autonomous cloud agents are implemented with multi agent
system which is capable of monitoring and correcting
resource scheduling activities. The aim of this approach is to
provide a monitoring system that facilitates autonomic
clouds based on mobile agent computing. An agent enabled
cloud consists of a mobile agent platform distributed on
different virtual machines, and a software agent installed on
the front-end to act as a proxy between the interface and
agents.

An architectural blueprint for autonomic computing
system is presented in [15]. The presented architecture
constitutes layers that are connected using enterprise service
bus patterns in which the layers collaborate using Web
services. The basic building blocks of the layers include
managed resources which contain system components such
as hardware or software, knowledge sources such as
interfaces for accessing and controlling the managed
resources, autonomic managers that perform various self-
management tasks to embody different intelligent control
loops, and manual managers that provide a common system
management interface for the informational technology
professional using an integrated solutions console.

In [16], the authors explore the architectural features and
requirements of cloud computing. General guidelines are
presented to software architects and cloud developers for
creating future architectures. The architectural requirements
are classified according to the stakeholder of such software
system such as cloud providers, the enterprises that use the
cloud, and end-users.

A software defined cloud is proposed as an approach for
automating the process of optimal cloud configuration [17].
Such optimization is obtained by extending the virtualization
concept to all resources in a data center with emphasis on
mobile cloud applications, in which a better quality of
service can be obtained by easy reconfiguration and
adaptation of physical resources in a cloud infrastructure.

In [18], a conceptual architecture of autonomic
computing for cloud resources’ management and provision
that support SaaS applications is presented. The aim of such
proposed model is to maximize efficiency and minimize the
cost of services. In addition, the model aims at ensuring that

76Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 88 / 92

the resource provisioning system is able to allocate resources
only for requests from legitimate users.

An autonomic mobile cloud management framework is
proposed in [21] for efficient service/resource management
of mobile ad hoc cloud computing systems. The security and
privacy of the proposed framework is investigated. The
proposed framework uses mobile cloud application-enabling
fabric to create and manage cloud applications in which a
composition of autonomic cloud elements can be managed.
Autonomic cloud elements can virtualize the physical
resources, compose other elements, and communicate with
other cloud elements using some common interface.

In [22], an elastic architecture is presented for autonomic
cloud computing based on control loops and thresholds
based rules. The experiment shows that cloud computing and
autonomic computing may be leveraged together for
elasticity provisioning. The proposed architecture enables the
resources to be allocated and deallocated as needed, to adjust
to the workload.

An autonomic Service Level Agreement (SLA)
monitoring framework that is managed by trusted third party
is proposed in [23]. The proposed framework uses
calculation formulas to calculate the score of the cloud
service providers and is composed of an SLA establishment
module to support SLA generation and management, and a
service monitoring module to monitor quality of service. The
proposed framework is integrated into a real cloud based on
the Apache CloudStack platform.

In [24], autonomic computing paradigm features have
been used to Supervisory Control And Data Acquisition
(SCADA) system’s security by focusing on the self-
protecting SCADA system. The proposed framework aims at
leveraging autonomic computing elements to cope with
cyber security threats and challenges to SCADA industrial
applications. The hierarchical autonomic managers are
incorporated within the framework to extract and refine
inferences for decision making support.

Most of the aforementioned software architectures and
frameworks are either a domain specific architecture or focus
on certain properties of autonomic computing. We have
observed that most of the existing studies of autonomic cloud
computing did not concentrate on the core issues related to
the design and architectural concerns with respect to
autonomic cloud computing in which the cloud can manage
itself. As stated earlier, cloud computing relies on sharing of
resources, as well as adaption with existing technologies and
paradigms without the need to know such technologies and
paradigms which support independency of such cloud
components. Therefore, we adopt a layered approach for our
proposed architectural style to support independency among
cloud components that support self-management in which
each layer is independent from other layers. In addition, as
discussed in the next Section, we have used the decision
support system’s architectural elements [11] that support
autonomic manager to enhance the self-management of
cloud resources. In the next section, we present our proposed
architectural style for autonomic cloud computing software
system.

III. AUTONOMIC CLOUD COMPUTING ARCHITECTURAL

STYLE

The aim of the proposed software architecture is to
propose a generic architectural style that serves as a software
architecture foundation for autonomic cloud computing
systems that are not limited to certain domain. As stated
earlier, we have used the decision making subcomponents
i.e., knowledge base, data mining/Online Analytical
Processing (OLAP), and a judgmental heuristics of the
decision support system approach that was described in [11]
to propose an autonomic manager for cloud resources’ self-
management.

Cloud computing facilitates the accessibility to the shared
computing resources by the cloud service providers. As a
result, the software architectural style for such software
system should be flexible and reusable to facilitate the
interaction between the service providers and the computing
shared resources. Therefore, the proposed architecture is
based on a simplified layered approach, which supports
flexibility and reusability of its components. Within the
layered style, each layer is server to the layer above it and
client to the layer below it.

Autonomic computing requires self-managing
environments that, automatically, act and reflect the changes
to cloud elements based on the observed changes, which can
be achieved through employing an autonomic manager. The
autonomic manager monitors and gathers required
information from a system, analyzes collected information to
detect whether it is necessary to take some action, creates a
plan that describes the necessary changes, and executes the
plan to implement these actions [19]. Monitoring cloud
elements and/or services requires software or hardware
sensors to capture the properties of such element or its
related physical or virtual components within the
environment, and an effector to adjust to the produced
changes [20].

Data Center Servers
Shared Virtual

Servers

OS VM JVM ………………..

CORBA / DCOM/ ….

SaaS PaaS IaaS XaaS

Client

Cloud Resources
Layer (Hardware/

Software)

Virtual
Machine Layer

Cloud Service
Provider Layer

Client/Front
End Layer

Sensor

Autonomic
Manager Layer

Effector

Knowledge
Base

DataMining/
OLAP

Judgmental
Heuristic

Database

DB
connectivity

new state

st
at

e/
ch

an
gesymptom/state

RPC/msg

msg

G
ate

w
ay

G
atew

ay
G

atew
ay

A
P

I

R
P

C
/R

M
I

X
M

L

se
rvicin

g
to

o
ls

Figure 1. Autonomic cloud computing software architectural style

77Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 89 / 92

The proposed architectural style consists of five layers in
which the bottom layer is the cloud hardware/software
resources layer, the second layer is the virtual machine layer
that provides flexibility to service providers to utilize cloud
resources, the third layer is the autonomic manager layer
which manages cloud services, the fourth layer is the cloud
service provider layer that provides services to cloud clients
to utilize, and the top layer is the client layer that enables the
user to utilize the provided services. Figure 1 depicts the
proposed software architectural style for autonomic cloud
computing systems. In addition, the specification of the
proposed architectural style is presented in Table I. In the
following subsections, we briefly describe each layer of the
proposed software architectural style for autonomic cloud
computing starting from the bottom layer.

TABLE I. SPECIFICATION OF AUTONOMIC CLOUD COMPUTING

ARCHITECTURAL STYLE

Item Description

Element
types

Standalone subsystems or components

Connectors
Typically procedure call

Message passing

Topology

layout

Hierarchical

Multi-level client-server

Each layer exposes an interface (API) to be used by
above layers

Semantic
constraints

Connectors are protocols of layer interaction

Standardized layer interfaces to maintain layer

independence

Interaction

mechanisms

Each layer acts as a service provider to layers above and

service consumer of layer below

A. Cloud resources layer

The cloud resources layer is the bottom layer that
contains all hardware and software resources including the
shared resources. It consists of data centers, servers, and
other shared virtual resources. The cloud resources layer is
the infrastructure of cloud computing system and it may
include commercialized, as well as public domain and open
source resources. This layer is interconnected with the virtual
machine layer via a gateway, which can be defined as a
proxy to maximize the independency among the different
layers.

B. Virtual machine layer

The virtual machine layer contains the operating system
or virtual machine that facilitates the environment to link
cloud services to cloud resources. It operates as an interface
between the cloud service providers and cloud resources to
maximize the utilization of such resources by cloud services
and, at the same time, to minimize the incompatibility among
the Web services and the available cloud resources. This
layer is connected to the layer above via a gateway which
acts as a proxy between the two layers. It should be noticed
that this layer may be skipped in the case where a service and
the resource belong to the same platform and they have a

well-defined connector. In such case, there is no need for a
virtual machine to be in the middle.

C. Autonomic manager layer

This layer is the autonomic manager which is responsible
for providing the self-management of cloud services. The
autonomic manager is a configurable software and/or
hardware component that consists of sensor, effector, and a
decision making subcomponents i.e., knowledge base, data
mining/OLAP, and judgmental heuristics. The autonomic
manager monitors the managed resources and cloud services,
in which the sensor collects data about cloud elements to
monitor their states. When symptoms are discovered, the
element state is identified and passed to the knowledge base
to check whether an update of such state is available. The
knowledge base looks for a fact or rule that is applicable for
such element’s state, in which a prediction of such state
change is identified by the data mining or OLAP approach.
OLAP is a business intelligence technique that helps in
discovering some knowledge by extracting data from the
database and viewing it from different points-of-view. The
data mining explores data from the database and puts it into
the knowledge base of the expert system to make
knowledge-based reasoning for quantitative analysis to aid
decision making. In other words, the data mining aims to
discover new knowledge by extracting information from a
database, analyzing it from different perspectives, and
transforming it into an understandable structure of
knowledge for further use. In some cases, there is a need for
human intervention and/or interpretation to collect some
information from human experts to identify the element’s
state change. In such cases, the system may use judgmental
heuristics, which is a normative approach that aims to
support the human in combing many factors into an optimal
decision. Judgmental heuristics use a decision-analytic
approach that applies the principles of decision theory and/or
probability theory into the decision analysis. The normative
system is based on graphical probabilistic models, i.e.,
probability distribution over model variables in terms of
directed graph, also known as influence diagram. The
database at this layer can be a traditional database, relational
database, or multidimensional database. The database
structure, e.g., the blackboard, as well as the components
operating on it, are managed by a database management
system (DBMS). In addition, such sub-system is controlled
by the blackboard state. The autonomic manager identifies
the element’s new state, such as new configuration, new
usage for an element, better optimization or utilization,
fixing problem, or fixing security vulnerability. The new
state and a request of change are passed from the sensor to
the effector to execute such state change.

D. Cloud service provider layer

This layer consists of cloud services, such as Software as
a Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS). In addition, it may contain
any other cloud services which we describe as “X as a

78Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 90 / 92

Service (XaaS)”. This layer provides the environment of
such cloud services offered by the cloud service providers.
This layer is connected to the layer above via different types
of connectors such as Remote Procedure Calls (RPC),
Remote Method Invocation (RMI), Application
Programming Interface (API), or Extensible Markup
Language (XML).

E. Client/Front end layer

This layer represents the cloud client or the front end
user, which is the consumer of cloud services. This layer
enables the client to request any available service using
servicing tools that may utilize different technologies. Each
service within this layer is defined using a specific
connector, in which the client may utilize the Web services
via the identified connector such as RPC, RMI, XML, API,
or any other servicing tool connector.

IV. CONCLUSION

In this paper, we have introduced a software architectural
style for autonomic cloud computing systems. The proposed
architecture style is based on a simplified layered approach,
and consists of five layers: a cloud hardware/software
resources layer, a virtual machine layer, an autonomic
manager layer, a cloud service provider layer, and a client
layer. Within the layered style, each layer is a server to the
layer above it, and a client to the layer below it.

The proposed software architectural style can
accommodate most cloud computing software systems for
different domains. In addition, this architectural style
minimizes the dependency among its components which can
enhance the reusability, integration with other software
systems, and expandability. Such feature will enable
software architects to design and model their cloud
computing software system in a flexible way that will
maximize the reuse of existing cloud software components
within their software system.

The proposed architectural style is an abstract framework
prototype for autonomic cloud computing software systems,
and in order to understand its advantages and/or limitations,
an experimental and investigation study is needed to judge
the applicability of such framework on real autonomic cloud
computing systems. We plan to conduct an experimental
study using some commercial cloud software systems and
perform a comparison study with the existing relevant
architectural styles to better understand the advantages of
such proposed software architecture.

REFERENCES

[1] P. Mell and T. Grance, “The NIST definition of cloud computing”,

Special Publication 800-145, National Institute of Standards and
Technology, U.S. Department of Commerce, 2011.

[2] C.S. Yoo, “Cloud computing: architectural and policy implications”,

Review of Industrial Organization, Vol. 38, No. 4, June 2011, pp. 405-421.

[3] J. O. Kephart and D. M. Chess, “The vision of autonomic

computing”, IEEE Computer, 36(1) , Jan. 2003, pp. 41-50.

[4] P. Kruchten, “Architectural blueprints - the “4+1” view model of

software architecture”, IEEE Software 12 (6), November 1995, pp. 42-50.

[5] N. Medvidovic and R. Taylor, “A classification and comparison

framework for software architecture description languages”, IEEE
Transactions on Software Engineering, Vol. 26, No. 1, January 2000, pp.

70-93.

[6] D. Perry and A. Wolf, “Foundations for the study of software
architecture”, ACM SIGSOFT Software Engineering Notes, Vol. 17, No. 4,

October 1992, pp. 40-52.

[7] ISO/IEC/IEEE 42010:2011(E), “Systems and software engineering-

Architecture description”, IEEE/ISO/IEC, First edition, December 2011.

[8] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice, SEI series in Software Engineering, 2nd Edition, Addison-

Wesley, 2003.

[9] M. Shaw and P. Clements, “A field guide to boxology: preliminary

classification of architectural styles for software systems”, IEEE

Proceedings of the 21st Annual International Computer Software and
Applications Conference, COMPSAC ‘97, 1997, pp. 6-13.

[10] D. Garlan and M. Shaw, “An introduction to software architecture”,

CMU Software Engineering Institute Technical Report, CMU-CS-94-166,
January 1994.

[11] Z. Alzamil, “Software architectural style for decision support
systems”, Proceedings of the 11th International FLINS Conference on

Decision Making and Soft Computing (FLINS2014), World Scientific

Proceedings Series on Computer Engineering and Information Sciences,
Vol. 9, August 2014, pp. 3-10.

[12] B. Solomon, D. Ionescu, M. Litoiu, and G. Iszlai, “Designing
autonomic management systems for cloud computing”, IEEE International

Joint Conference on Computational Cybernetics and Technical Informatics

(ICCC-CONTI) , 2010, pp. 631–636.

[13] D. C. Erdil, “Dependable autonomic cloud computing with

information proxies”,. IEEE International Symposium on Parallel and

Distributed Processing Workshops and Phd Forum (IPDPSW) , 2011, pp.
1518– 1524.

[14] A. Cuomo, M. Rak, S. Venticinque, and U. Villano, “Enhancing an

autonomic cloud architecture with mobile agents”, Euro-Par 2011, Parallel

Processing Workshops, 2012, pp. 94–103.

[15] IBM, “An architectural blueprint for autonomic computing”, white
paper, 3rd Edition, june 2005, http://www-

03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.

pdf, [retrieved: September, 2018].

[16] B. Rimal, A. Jukan, D. Katsaros, and Y. Goeleven, “Architectural

requirements for cloud computing systems: an enterprise cloud approach”,
Journal of Grid Computing, Vol. 9, 2011, pp. 3-26.

[17] R. Buyya, R.N. Calheiros, J. Son, A. Dastjerdi, and Y. Yoon,

“Software-defined cloud computing: architectural elements and open
challenges”, 3rd International Conference on Advances in Computing,

Communications and Informatics (ICACCI 2014), September 24-27, 2014.

[18] R. Buyya, R.N. Calheiros, and Li Xiaorong, "Autonomic cloud

computing: open challenges and architectural elements," Third

International Conference on Emerging Applications of Information
Technology (EAIT), Nov. 30-Dec. 1 2012, pp. 3-10.

[19] M. Maurer, I. Breskovic, V. C. Emeakaroha, and I. Brandic,

“Revealing the mape loop for the autonomic management of cloud

infrastructures”, IEEE Symposium on Computers and Communications

(ISCC) , 2011, pp. 147–152.

[20] M. Huebscher and J. McCann, “A survey of autonomic computing -

degrees, models and applications”, ACM Computing Surveys, Vol. 40, No.

3, Article No. 7, August 2008, pp. 7-28.

[21] D. M. Shila, W. Shen, Y. Cheng, X. Tian, and X. Shen “AMCloud:

Toward a secure autonomic mobile ad hoc cloud computing system”, IEEE
Wireless Communications, April 2017, pp. 74-81.

[22] E. F. Coutinho, P. A. Rego, D. G. Gomes, and J. Neuman de Souza

“An architecture for providing elasticity based on autonomic computing

79Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

 91 / 92

concepts”, Proceedings of the 31st Annual ACM Symposium on Applied

Computing, 2016, pp. 412-419.

[23] A. Maarouf, Y. Mifrah, A. Marzouk, and A. Haqiq “An autonomic

SLA monitoring framework managed by trusted third party in the cloud
computing”, International Journal of Cloud Applications and Computing,

Volume 8, Issue 2, April-June 2018, pp. 66-95.

[24] S. Nazir, S. Patel, and D. Patel “Autonomic computing architecture
for SCADA cyber security”, International Journal of Cognitive Informatics

and Natural Intelligence, Volume 11, Issue 4, October-December 2017, pp.

66-79.

80Copyright (c) IARIA, 2019. ISBN: 978-1-61208-712-2

ICAS 2019 : The Fifteenth International Conference on Autonomic and Autonomous Systems

Powered by TCPDF (www.tcpdf.org)

 92 / 92

http://www.tcpdf.org

