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The Tenth International Conference on Green Communications, Computing and Technologies

(GREEN 2025), held between October 26th, 2025, and October 30th, 2025, in Barcelona, Spain, continued

a series of events focusing on current solutions, stringent requirements for further development, and

evaluations of potential directions related to green technologies.

Expected economic, environmental and society wellbeing impact of green computing and

communications technologies led to important research and solutions achievements in recent years.

Environmental sustainability, high-energy efficiency, diversity of energy sources, renewable energy

resources contributed to new paradigms and technologies for green computing and communication.

Economic metrics and social acceptability are still under scrutiny, even though many solutions,

technologies and products are available. Deployment on a large scale and a long-term evaluation of

benefits are under way in different areas where dedicated solutions are applied.
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The Unaccounted Carbon Cost of AI-Assisted Software Engineering: A Hidden Debt
and Sustainability Challenge

Nelly Nicaise Nyeck Mbialeu , Benjamin Leiding
Institute for Software and Systems Engineering

Clausthal University of Technology
Clausthal-Zellerfeld, Germany

e-mail: {nelly.nicaise.nyeck.mbialeu|benjamin.leiding}@tu-clausthal.de

Abstract—Software engineering is experiencing the impact
of AI on its productivity through rapid code generation, code
fixes, and workflow automation. However, there is a hidden
cost to this convenience, namely a growing double debt of
carbon emissions and technical inefficiencies that jeopardise
sustainability. Carbon debt is discussed in this paper, referring to
the invisible and cumulative environmental damage resulting from
the frequent use of AI-driven tools. AI sustainability discussions
often overlook the impact of inference phase emissions in this
field, where productivity tools lack built-in insights that measure
hidden, accumulated environmental burdens. There is a lack of
a conceptual and structured method to incentivise carbon debt.
This paper conceptually illustrates the negative contribution of
AI-assisted development tools, leading to pragmatic mitigation
strategies and a preliminary formalization of a measurable
sustainability framework for AI-driven development workflows.

Keywords-carbon debt; sustainability; technical debt; AI DevTools;
green software engineering

I. INTRODUCTION

The swift adoption of Artificial Intelligence (AI) into
software engineering has fundamentally changed how software
is designed, developed, tested, and maintained. Tools such as
GitHub Copilot, automated bug fixers, and intelligent testing
frameworks now assist developers at nearly every stage of the
software lifecycle, ensuring productivity through generating
code, debugging, and streamlining workflows. However, their
downside is an invisible cost due to the constant use of
computing power to support large-scale AI models running in
the background. When software engineers use AI-generated
suggestions or machine learning tests, the associated processes
are executed in high-energy-consuming data centres, which con-
tribute to a significant environmental footprint. In areas where
these centres use fossil fuels or operate with passive regulatory
oversight, as revealed by Elon Musk’s xAI data centre, which
used unauthorized gas turbines [1], the carbon intensity of AI
services continues to increase, exacerbating the hidden carbon
debt. The infrastructure that powers AI-driven development
tools is resource-intensive, and its environmental impact extends
far beyond electricity consumption. Graphic Processing Units
(GPUs), the computational core of these AI tools, are produced
using rare earth minerals and resource-intensive manufacturing
techniques with complex supply chains, which are frequently
linked to labour issues and environmentally damaging mining
activities [2], [3]. Once deployed, these GPUs work in data
centres that need massive cooling systems whose operations

require a lot of electricity and water to keep running at optimal
efficiency [4]. Likewise, the short lifespans of AI devices add
to the increasing amount of electronic waste, which worsen
climate change and emit harmful substances if not adequately
controlled [5]. These lifecycle impact, ranging from extraction
to disposal, add up to what can be referred to as a form
of carbon debt (a concealed but growing environmental cost
associated with the creation and application of AI technologies).
While the carbon cost of training huge AI models has received
a lot of attention, the accumulated impact of using them during
day-to-day software development is less known and rarely
acknowledged.

Like financial debt, carbon debt is a hidden expense that
eventually needs to be paid back to mitigate environmental
impact, as discussed in [6], for the necessity of meeting climate
targets. Carbon debt is an imperceptible environmental cost that
accumulates over time as a result of adopting energy-intensive
AI-driven software engineering methodologies [7]. Similar to
the well-known concept of technical debt in software develop-
ment [8], carbon debt builds subtly and is often overlooked in
the short term. Indeed, these debts are interconnected as the
same AI tools that accelerate development today also contribute
to escalating sustainability risks, which can have significant
long-term repercussions if left unaddressed [8]. As such, carbon
debt highlights the trade-offs between immediate efficiency
gains and future environmental liabilities. Although end users
may not be aware of the carbon impact of AI technologies, ac-
knowledging their influence is becoming increasingly essential
as these tools are integrated into development workflows. This
study provides a conceptual analysis for understanding and
mitigating carbon debt in software engineering by proposing
a shift in mindset from prioritizing efficiency to embracing
environmental responsibility. Additionally, the goal is to educate
with ideas or actionable solutions needed to make carbon-aware
software development a core part of responsible AI practice
and frame the urgency of AI-assisted Software engineering
emissions as debt before regulators or climate consequences
force our hand.

This paper seeks to answer the following research questions:
RQ1: How does AI-assisted software development contribute
to carbon debt, a hidden form of environmental damage?
RQ2: What strategies can be applied to mitigate carbon
debt without reinforcing the unethical adoption of AI in SE
workflows?

1Copyright (c) IARIA, 2025.     ISBN:  ISBNFILL
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In software engineering, AI Development Tools (DevTools)
are frequently evaluated in terms of productivity and code
quality, with their ecological impacts totally ignored and
unmeasured. This study introduces carbon debt as a conceptual
lens to understand better the long-term consequences and
advocates for incorporating environmental criteria, such as the
sustainability impact factor, into our assessment of the utility
and responsibility of such tools. The value of this contribution
is to spark discussion through the conceptual lens of carbon
debt and guide future research to explore how this framing
might be quantified, modeled, or embedded into development
environments.

The paper is structured as follows: Section II illustrates
the emissions from AI software engineering tools. Section III
portrays the double debt trap and the invisible accumulation
of carbon debt. Next, Section IV presents mitigation strategies
across the perspectives of multiple stakeholders. The early
contours of a sustainability impact assessment are proposed
in Section V for future evaluation of the responsibilities of
these AI tools. Critical reflections and limitations are discussed
in Section VI. Finally, Section VII concludes this study and
provides an outlook for further research.

II. CARBON DEBT IN AI-DRIVEN SOFTWARE ENGINEERING

The increasing integration of AI tools into software de-
velopment workflows comes with an unclear sustainability
concern that is not immediately visible but has long-term
consequences for the planet, as it is underexplored. In contrast
to financial costs that are obvious in cloud service bills, the
AI coding tools increasingly being adopted in development
build up carbon emissions [9] shrouded in opacity as invisible
carbon debt. GitHub Copilot, Amazon CodeWhisperer, and
ChatGPT are examples [10] of these tools that, with each query,
assist developers with real-time code suggestions and blocks of
logic generation, thus requiring computational resources [11].
Each interaction implies running inference on massive Large
Language Models (LLMs) in energy-intensive data centres,
resulting in non-trivial energy consumption [12] that scales
rapidly with frequent usage. This leads to an unacknowledged
environmental burden referred to as carbon debt [13].

A. The Hidden Emissions of Everyday AI-assisted Tools

These tools constantly feed user input to LLMs hosted in
cloud infrastructures that consume much energy [12], [14],
[15]. The training stage of large models, which is, in fact,
energy-intensive, has been the focus of most research on the
environmental impact of AI [13], [15]. But, inference (the
real-time application of these models each time a developer
inputs a line of code or requests code, then gets a suggestion)
is instead the primary cause of carbon debt rather than training,
as observed by studies quantifying carbon emissions from AI
inference [16]–[18]. This continual inference workload [16], is
multiplied across thousands of users, Integrated Development
Environments (IDEs), and ongoing delivery pipelines, resulting
in significant energy usage [19] that remains largely overlooked.
As such, in the realm of AI-assisted software engineering,

the impact of daily tool usage in terms of long-term carbon
emissions is still quite open for investigation. The following
are examples of energy-intensive cloud infrastructure that are
ingrained in Software Engineering workflows and could be
invoked repeatedly during coding:

• Github Copilot
Every code suggestion GitHub Copilot generates requires
inference from a LLM hosted on Microsoft Azure servers
because it is frequently used as an AI coding assistance. The
model powering Copilot (Codex) is fine-tuned from GPT-3
and probably used less energy during training; nonetheless,
the estimated emissions of GPT-3 of about 500 tonnes of
CO2 [20] serve as a valuable benchmark for measuring the
environmental impact of LLM-based tools. While Microsoft
does not disclose precise figures, each suggestion is reported
by community estimates to consume about 0.002kWh of
energy, equivalent to roughly 1.2g CO2 per inference [21].
This is in line with broader estimates of small-scale AI
inference tasks energy use [13], [15], [17], [18]. Even
though this reported value seems low in isolation, the total
carbon emissions from ongoing, real-time inferences made
during daily software engineering tasks could add up to
a non-negligible environmental cost. This observation is
consistent with broader research in the field, which shows
how, when scaled to millions of operations, seemingly
minor per-inference energy costs can substantially impact
the overall carbon footprint [13].

• AI Testing Tools
These tools are essential to CI/CD pipelines as they enhance
developer productivity. Several automated test generators,
such as EvoSuite [22] and DiffBlue [23], often generate
redundant or inefficient test cases. The authors in [24] show
that automated test generation using EvoSuite can produce up
to 28% low cohesion and approximately 50% high coupling
test methods even after test minimization. This observation
suggests that many generated test cases are functionally
redundant, which implies more execution and more energy
consumption, as they do not improve code reliability but
still burn energy. So, when such tools run frequently, the
compounded energy from computing power used for testing
quickly becomes significant [10], [12]. Additionally, prior
studies have shown that continuous integration systems can
amplify energy use by an order of magnitude (potentially
10x) when augmented with tools like test generation and
fault localisation [25], [26]. The energy footprint of CI/CD
workflows could rise rapidly if AI tools result in more test
inefficiencies. Like the emission from Copilot, this waste is
invisible to developers and silently adds to the carbon debt.

In contrast to broadly applicable AI technologies like
ChatGPT, the aforementioned AI tools alleviate carbon debt
more through regular integration within IDEs and pipelines
as a result of their widespread adoption. These examples
above highlight a critical blind spot: unlike performance
measurements (such as latency and accuracy), which are clearly
visible, developers do not have feedback mechanisms to identify
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the carbon cost of using AI tools in daily software engineering
operations. Reliable carbon accounting for AI tools remains
scarce, highlighting the need for transparent and standardized
emission metrics for both training and inference phases.

B. Why Carbon Debt is a Debt

Debt is the commitment to pay back funds or resources,
often with added interest, as defined by the Oxford English
Dictionary [27]. Beyond finance, the term is often used in a
metaphorical sense to refer to hidden accumulated costs that
require future repayment, like environmental or technical debt.
As such, the carbon debt of AI-assisted software engineering
works similarly. Global threats are increasing exponentially
with higher temperatures, according to the Intergovernmental
Panel on Climate Change (IPCC) [28], which also notes that
economic impacts from climate change are being tracked in
energy, agriculture, and other vulnerable sectors [28]. As such,
carbon emissions are increased by carbon debt from widespread
computational operations, such as the real-time use of AI
tools that make high energy consumption, which eventually
contributes to the global emission budget, exacerbating the
threats. The IPCC (2023) also emphasizes that postponing
mitigation efforts is expected to increase future costs, including
infrastructure damage and health-related impacts. Highlighting
the importance of early intervention in mitigating carbon debt
in AI-assisted software engineering. Similar to financial debt
bearing compound interest, the seemingly negligible energy
cost of each inference adds up to cumulative emissions through
the numerous daily operations, which causes the carbon debt
of AI-assisted tools to grow exponentially [9], [10]. For
illustrative purposes, if 30% of the approximately 26 million
developers [29] adopted AI coding tools at 50 suggestions per
day, and assuming an estimated 0.002 kWh per suggestion [21].
The annual energy use could reach approximately 285 million
kWh, which could lead to annual carbon emissions exceeding
100000 tonnes [30], that is comparable roughly to the emissions
produced by 20000-25000 passenger vehicles each year [31].
These illustrative projections display the cumulative climate
cost of real-time inference and are highly sensitive to adoption
rates and infrastructure efficiency. The tech sector frequently
presents AI as environmentally friendly (i.e., intrinsically
“green”) because of data centres that are powered by renewable
energy. But this information is quite misleading. Firstly, cloud
providers like Microsoft that are committed to achieving 100%
renewable energy by 2025 through annual purchases and
matching over 95% of its Scope 2 emissions using renewable
energy instruments like Power Purchase Agreement (PPA) and
Renewable Energy Certificate (REC) [32]. But Microsoft’s
2022 report shows that, on an hourly basis, just 60% of its
electricity use came from carbon-free sources, underscoring the
difference between energy accounting and actual clean energy
(real carbon-free) usage [32]. Secondly, training a large LLM,
like GPT-3, has a carbon impact of about 552 metric tonnes
of CO2; nonetheless, this number does not include emissions
from the construction of data centres or the manufacturing of
GPUs [20]. This upfront carbon debt, which is paid before any

inference is ever made, added to the overlooked embodied
emissions, contributes highly to the overall environmental
impact as increased productivity from faster code generation
leads to higher energy use.

III. TECHNICAL DEBT ANALOGY AND PIPELINE

Technical debt occurs when developers use shortcuts or
suboptimal solutions to achieve short-term goals, which even-
tually increases complexity and maintenance expenses in the
long run [8]. This section observes the role of AI in software
engineering in relation to technical debt within the context of
sustainability. It examines how the lifecycle of technical debt
is well related to carbon debt.

A. AI’s Hidden Tax on Code Quality

Developers identify inefficiencies in AI-generated code, as
revealed in a study [33], where approximately 40% of code
snippets suggested by Copilot contain security vulnerabilities.
These flaws increase future maintenance workloads and reduce
code quality, which may require a lot of energy use for the
necessary later fixes. According to studies, code generated
by AI-assisted tools often contains structural issues like poor
modularity and tight coupling (“code smells”) [33], [34], which
can make it challenging to maintain and result in future updates
that require high energy demands. These problems are similar
to those of traditional technical debt but with a carbon twist.

B. Maintenance Burden of Hidden Cost

Due to challenges in code maintainability and security
vulnerabilities brought by AI-suggested code, post-deployment
fixes for AI-assisted software projects have been found to
occur frequently [33], [35]. This goes to show the frequent
need for fixes and remediation, thereby resulting in escalating
energy demands indirectly linked to more carbon debt. Thus,
AI-assisted development works on a carbon credit basis,
whereby rising emissions from subsequent maintenance
balance out the energy savings of quick initial coding. The
industry lacks tools to account for this delayed sustainability
responsibility, making the environmental benefits of AI’s
productivity questionable.

Both categories portray the double debt trap, in which
AI-assisted tools create technical debt that silently inflates
carbon debt. Whereby code quality tradeoffs lead to higher
maintenance requirements that contribute to a loop of increasing
energy consumption and carbon impact. In contrast, other
technical debt dimensions, such as security and scalability debt,
are typically resolved with localised solutions (such as patching
a single library) instead of systemic energy loss. In essence,
just as technical debt prioritises speed over quality, carbon debt
similarly compromises sustainability for productivity.

The analysis of emissions from AI-SE tools (Section II)
and their cumulative consequences through technical debt
(Section III) yields insights into RQ1, illustrating that carbon
debt builds up undetected throughout the lifecycle of AI-
assisted software development.
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IV. STRATEGIES TO MITIGATE CARBON DEBT

The first step in addressing the issue of carbon debt, which
is a hidden cost of AI-assisted software engineering, is to
identify targeted strategies and practical solutions inspired by
the technical debt analogy. To avoid relegating sustainability to
a secondary concern, proactive approaches are needed to ensure
that AI development is in line with long-term environmental
goals. Rather than providing concrete technical solutions, these
approaches serve as foundational concepts for software design,
educational initiatives, and future research endeavors.

A. Operationalizing Carbon Awareness

One key challenge to lowering carbon debt in software devel-
opment is its invisibility. Usually, developers don’t get feedback
on the energy costs or carbon emissions associated with
using AI tools. So, to improve awareness, carbon transparency
features could be incorporated, relying on prior research on
machine learning emissions tracking [18], [36]–[38].
• Real-time emissions dashboard to display approximate

carbon emissions, for example, IDE plugins such as Code-
Carbon [38], per AI suggestions, or after code completions
per day.

• Eco-modes that limit the use of AI tools or give priority to
suggestions that are energy-effective.

• Contextual pop-ups that alert developers when behaviours
like repeated Copilot requests exceed sustainability thresh-
olds.

These will help developers strike a balance between productivity
and sustainability by highlighting the environmental impact of
AI and recognizing carbon impact as an essential element of
software quality.

B. Context-Aware AI Tool Usage

Selective invocation is a significant mitigating technique
since the usage of AI tools varies depending on their impact.
This means avoiding unnecessary applications like boilerplate
code and deploying large models for complex tasks to limit
useless inference overhead [12], [13]. Some sustainability-
focused practices:
• Prompt engineering, which will reduce energy use by, for

example, generating a low memory algorithm [34], [39].
• AI-assisted refactoring of carbon-heavy patterns, such as

nested loops, to improve efficiency, and also flagging
excessive energy use by setting CO2 limits daily, for example.

Giving developers usage reports promotes introspection and
effective adoption of tools.

C. Integrating Sustainability in Education

A cultural shift is necessary to mitigate carbon debt, as
developers cannot efficiently handle what remains beyond
awareness. Incorporating sustainability principles in software
engineering education as AI becomes more ingrained in
development practices [40], [41].
• Workshops on Green AI and techniques to audit AI tools

for carbon efficiency.

• Hands-on exercises on energy consumption of both manual
and AI-assisted tasks.

• Reflective workshops on environmental compromises in
software design.

D. Policy Levers

Carbon accountability could be enforced, such as expanding
the EU’s Carbon Border Adjustment Mechanism to include
cloud-based AI capabilities.

E. Advocating for Purpose-Limited Technology

Energy-intensive AI tools that offer only marginal benefits
could be rejected or stop being used when their core justification
remains weak. Thereby promoting simple, sustainable solutions
like writing code manually to create maintainable software
rather than using possibly redundant recommendations. Some-
times, the most moral and environmentally responsible course
of action for a developer is to choose not to adopt technological
advancement when the ecological costs are unjustifiable.

Without visibility into emissions, AI DevTools leave careful
users in the dark (unaware of their ecological impact). There-
fore, reforming the system is necessary for significant change,
while individual efforts to reduce carbon debt are essential.

V. TOWARDS SUSTAINABILITY IMPACT ASSESSMENT

With the aim of understanding the environmental costs of AI-
supported software engineering, this study presents the concept
of carbon debt, which lays the groundwork for developing
visible, measurable, and actionable assessment mechanisms.
This concept can be considered as a focused instance of the
broader Sustainability Impact Factor (SIF) framework suggested
by Lawrenz et al. [42]. The authors propose measuring the
fixed and variable environmental consequences of digital tools
and services to promote the implementation of service-level
sustainability reporting in circular ecosystems. It is worth
acknowledging the significant cost associated with training
large models and manufacturing the supporting hardware (i.e.,
fixed sustainability impact). However, in the present context,
the focus is on the variable sustainability impact resulting from
the ongoing, cumulative emissions from the regular use of AI
tools, which accumulate invisibly over the daily interactions
of millions of developers. As the systematic tracking of
these emissions could form part of a measurable component
within a tool-specific SIF that can guide responsible usage
and development behaviours. The following Tab I suggests
preliminary criteria intended for initial discussion regarding
the SIF for AI DevTools:

The mitigation strategies proposed in Section IV collectively
address RQ2 and respond to the double debt issue of aiming
to maintain productivity while minimizing both environmental
and technical debt associated with AI tools. Section V extends
the discussion toward future impact tracking models.

VI. DISCUSSION AND LIMITATIONS

Generally, in software engineering, emphasis is laid on
fairness, bias, transparency, and privacy, whilst environmental
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TABLE I. PRELIMINARY CONCEPTUAL DIMENSIONS PROPOSAL OF A
SUSTAINABILITY IMPACT FACTOR FRAMED FROM THE CARBON DEBT

CONCEPT.

Dimension Illustrative Metric Rationale
Operational
Efficiency

CO2e per 1000 com-
pletions or test execu-
tions

Measures the continuous cost
of routine tool usage

Model
Training
Efficiency

Total carbon emis-
sions during pretrain-
ing and fine-tuning

symbolizes the environmental
impact of AI model develop-
ment

Usage Inten-
sity

Average daily invoca-
tions per developer

Shows the level of integration
and influence the tool has in
workflows

Energy
Source

Ratio of renewable to
fossil-powered infer-
ence

Distinguishes between
greener and carbon-intensive
AI operations

Hardware
Lifecycle

Average GPU replace-
ment cycle alongside
e-waste per model

Highlight the physical re-
source impacts and disposal
challenges

Transparency
Practices

Availability of data
on model size, energy
use, and emissions

Encourages accountability in
sustainability reporting

impact is often ignored [43]. To guarantee a really responsible
approach to AI, software development must address carbon
awareness and sustainability as equally essential components, as
they indicate our broader interaction with digital infrastructure
and planetary boundaries. Instead of being an afterthought,
carbon impact must be a visible, measurable indicator. As
AI DevTools continue to be integrated into daily workflows
(e.g., Copilot, CodeWhisperer, testing suites), their substantial
energy impact over time [13], [20] must be a shared responsi-
bility between developers, hosting companies, regulators, and
educational institutions. The actors mentioned above should
broaden their view of accountability related to the impact of
AI in software engineering on society and the environment. In
an era of climate urgency, passive observation is unacceptable,
as it is essential to ensure that advancement does not come at
the price of sustainability.

A more effective approach worth considering is to avoid
utilising AI when the assumption of its benefits could be
challenged. Techno-critical scholars like Schmachtenberger [44]
argue that adopting technological advancements must start
with a convincing, fact-based argument that proves that their
advantages outweigh their harm while justifying that the harms
are reasonable. From this perspective, harm mitigation is not
enough compared to not adopting these energy-intensive AI
tools, as non-adoption is the most ethical and carbon-conscious
decision to begin with.

Throughout this study, increasing awareness about Carbon
Debt in AI-assisted Software Engineering is the goal. But it
is also important to recognise a number of limitations present
here:
• Although studies show that AI technologies produce emis-

sions when inferring, this research does not provide empirical
energy values nor accurate measurements of carbon implica-
tions in development processes.

• The mitigation strategies proposed were all based on the
assumption that AI will remain embedded in software
workflows (currently reflecting industry trends). They can

make a difference, but would not solve the carbon debt
problem, and as a result, a "non-use" AI solution was
included but not fully explored in its radicality.

• This study acknowledges technical aspects of carbon debt
but does not explore issues such as organisational, economic,
and political-economic considerations that also influence AI
adoption and provider infrastructure.

VII. CONCLUSION AND FUTURE WORK

The increasing integration of AI-assisted software
engineering tools has unveiled an invisibly unacknowledged
environmental cost, namely carbon debt. Every output produced
by AI is dependent on energy-intensive infrastructure, which
results in cumulative emissions that are invisible but increase
with usage. This debt, left unmanaged, would accumulate
over time and threaten the viability of our ecosystem, even
though it does not damage the code. This study defines
the concept of carbon debt, inspired by technical debt as
a prism through which environmental costs of AI can be
viewed. Several strategies to identify and reduce carbon
debt were mentioned, such as making the invisible visible,
selective AI tool usage, prioritizing long-term sustainability,
distributing responsibility, and providing developer education
with an emphasis on sustainability. Bringing forth the fact
that carbon awareness should be part of responsible AI
components in software design. Notwithstanding, the strategy
of technological minimalism is mentioned. A cultural and
structural shift is necessary for the future. We need toolmakers
to stop considering it as an afterthought, developers to follow
responsible and reflective practices, educators to equip the next
generation with, for example, green coding, and policymakers
to create policies that make sustainability the profitable choice.
Moreover, a preliminary proposal was discussed on how
carbon debt could evolve into a traceable and measurable
system (conceptually inspired by previous research in circular
economy modelling), thereby promoting accountability in AI
DevTool ecosystems. Sustainability must be a primary concern,
and discussions about ethical innovation, software quality, and
the future of digital systems should all include consideration
of carbon debt. A collective action is then required for the
transition to a carbon-aware digital economy.

To operationalise this concept, future research should focus
on building measurement tools that can take into account both
direct energy use (such as code completions) and indirect infras-
tructure emissions (such as CI/CD pipelines). By incorporating
these measurements into developer environments through IDE
plugins, the carbon debt of AI-assisted software development
may become easier to understand and control. Additionally,
carbon-aware DevTools that offer real-time feedback regarding
carbon cost should be explored, and programmable "green
modes" should be investigated that can restrict high-emission
model invocation or promote lighter alternatives. In another
view, research should be done on formalizing carbon debt as a
measurable software quality attribute alongside performance
and maintainability. Moreover, research should be done to
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develop actual metrics for the suggested SIF, as no such stan-
dardized rating currently exists, and to test their applicability in
workflows. This paper outlines an initial conceptual structure
and indicators that shape the language and questions that
empirical work must eventually address. This entails accounting
for contextual factors such as infrastructure quality, energy
systems, and developer behavior. Finally, more studies should
be done on the ethical analysis of AI in Software Engineering
beyond harm reduction to critically examine its necessity and
bring about discussion on the non-adoption justification and/or
minimalism of AI tools. The goal is to put sustainability at
the center of responsible innovation debates.
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[34] B. Yetiştiren, I. Özsoy, M. Ayerdem, and E. Tüzün, “Evaluating
the code quality of AI-assisted code generation tools: An
empirical study on GitHub Copilot, Amazon Codewhisperer,
and ChatGPT”, arXiv preprint arXiv:2304.10778, 2023.

[35] P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation
vs. experience: Evaluating the usability of code generation
tools powered by large language models”, in Chi conference
on human factors in computing systems extended abstracts,
2022, pp. 1–7.

[36] P. Henderson et al., “Towards the systematic reporting of the
energy and carbon footprints of machine learning”, Journal of
Machine Learning Research, vol. 21, no. 248, pp. 1–43, 2020.

[37] L. F. W. Anthony, B. Kanding, and R. Selvan, “Carbontracker:
Tracking and predicting the carbon footprint of training deep
learning models”, arXiv preprint arXiv:2007.03051, 2020.

[38] K. Lottick, S. Susai, S. A. Friedler, and J. P. Wilson, “Energy
Usage Reports: Environmental awareness as part of algorithmic
accountability”, arXiv preprint arXiv:1911.08354, 2019.

[39] N. Ding et al., “Enhancing chat language models by scal-
ing high-quality instructional conversations”, arXiv preprint
arXiv:2305.14233, 2023.

[40] P. Becker, Sustainability science: Managing risk and resilience
for sustainable development. Elsevier, 2023.

[41] B. Penzenstadler et al., “Everything is INTERRELATED:
Teaching software engineering for sustainability”, in Pro-
ceedings of the 40th International Conference on Software
Engineering: Software Engineering Education and Training,
2018, pp. 153–162.

[42] S. Lawrenz et al., “Implementing the circular economy by
tracing the sustainable impact”, International journal of envi-
ronmental research and public health, vol. 18, no. 21, p. 11 316,
2021.

[43] J. Fjeld, N. Achten, H. Hilligoss, A. Nagy, and M. Srikumar,
“Principled artificial intelligence: Mapping consensus in ethical
and rights-based approaches to principles for AI”, Berkman
Klein Center Research Publication, no. 2020-1, 2020.

[44] Z. Stein, “Technology Is Not Values Neutral: Ending the Reign
of Nihilistic Design”, Consilience Project, 2022.

7Copyright (c) IARIA, 2025.     ISBN:  ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GREEN 2025 : The Tenth International Conference on Green Communications, Computing and Technologies

                            14 / 39



Brains Without Brawn: Evaluating CPU Performance for Code Generation with Large
Language Models

Miren Illarramendi1, Joseba Andoni Agirre1, Aitor Picatoste2, Juan Ignacio Igartua2

1Software and Systems Engineering Research Group
Engineering Faculty of Mondragon University

Arrasate-Mondragon, Spain
e-mails: millarramendi@mondragon.edu, jaagirre@mondragon.edu,

2Circular economy and industrial sustainability
Engineering Faculty of Mondragon University

Arrasate-Mondragon, Spain
e-mails: apicatoste@mondragon.edu, jigartua@mondragon.edu

Abstract—This research presents a comparative analysis of
the performance of various Large Language Models (LLMs)
for code generation tasks executed on Central Processing Units
(CPUs) without the use of dedicated Graphics Processing Units
(GPUs). The study evaluates key metrics including inference
time, code generation accuracy, CPU and memory usage, and
energy consumption. By conducting repeated experiments, we
assess the impact of model size and optimization on efficiency
in environments lacking GPU resources. Energy consumption
is measured using tools like CodeCarbon, focusing on the
environmental impact of running these models on CPU-based
systems. The findings offer insights into the trade-offs between
model precision, resource usage, and energy efficiency, providing
valuable guidance for developers and researchers aiming to
balance performance and sustainability in low-resource computing
environments.

Keywords-LLMs; GenIA; GreenComputing; Code Generation;
Energy Consumption; Sustainability.

I. INTRODUCTION

The rapid advancement of LLMs has revolutionized various
fields, including Natural Language Processing (NLP), code
generation, and even machine translation. Models like GPT-
3, DeepSeek, and Llama have shown remarkable capabilities
in tasks ranging from text generation to understanding and
generating code. However, these models are computationally
expensive and require significant resources, particularly during
the training and inference stages [1] [2].

While GPUs are typically the hardware of choice for running
large-scale machine learning models due to their high parallel
processing capabilities, not all environments have access to
dedicated GPUs. Many users, particularly those in resource-
constrained settings or utilizing cloud computing, must rely
on CPUs for model inference. CPUs, though less powerful
than GPUs in terms of parallel processing, are widely available
and more energy-efficient in certain use cases, especially for
smaller models or lightweight tasks [3].

Despite the growing use of LLMs in production environ-
ments, there is a lack of comprehensive analysis comparing the
performance and sustainability of these models when executed
on CPUs versus GPUs. The existing literature focuses mainly
on GPU-based performance, leaving a gap in understanding

how LLMs perform in real-world scenarios where only CPU
resources are available. Some research has pointed out that the
energy consumption of LLMs is often underestimated in most
studies, with the environmental impact becoming a significant
concern when deploying models at scale.

This study aims to address this gap by conducting a com-
parative analysis of the performance of various LLMs for code
generation tasks when executed in GPU-based environments
remotely. Specifically, we will focus on several key metrics,
including inference time, code generation accuracy, energy
consumption, and computational cost. The initial phase will
involve measuring the cost of running inference from our local
CPU to understand the energy and computational efficiency of
remote execution. The next step will be to extend this analysis
by deploying the LLMs directly on our CPU for inference,
allowing us to compare performance and resource usage when
running these models in resource-constrained environments.
Models to be evaluated include "gpt-4o", "gpt-4-turbo", "gpt-
3.5-turbo", "gpt-4o-mini", "mistralai/Mistral-7B-Instruct-v0.3",
"meta-llama/Meta-Llama-3-8B-Instruct", "alpindale/WizardLM-
2-8x22B", and "Qwen/Qwen3-235B-A22B-Instruct-25072".
These models have been selected due to their variety in size
and diverse platforms (OpenAI, HuggingFace), providing a
comprehensive comparison of different model architectures
and inference performance across various levels of complexity
and computational demands.

The contribution of this research is to remotely measure
and monitor code generation tasks in inference across different
LLMs, in terms of accuracy and CO2 footprint. By analyzing
the efficiency of these models in resource-constrained environ-
ments, we provide insights into optimizing the use of LLMs
and balancing cost with environmental impact.

In the following sections, we will explore the methodology
used to measure these performance metrics and present the
results of the experiments to offer a comprehensive comparison
of model efficiency across different hardware configurations. By
doing so, we aim to provide practical guidance for researchers,
developers, and organizations seeking to optimize the use of
LLMs in resource-constrained environments while considering
cost-effective and sustainable deployment strategies.
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It is important to note that this study is limited to inference-
time evaluation, does not include model training or fine-tuning,
and relies partially on remote execution data, which may be
affected by variables such as network latency, backend opti-
mizations, and limited visibility into the energy consumption
of proprietary systems.

The remainder of the paper is organized as follows: Section
II and Section III cover the background and related work,
respectively, providing the foundational context for this study.
In Section IV, we describe the experimental setup and method-
ologies employed. Section V presents the experimental results,
focusing on performance, throughput, code generation accuracy,
and energy efficiency. Section VI offers an in-depth discussion
of the evaluation, interpreting the results and their implications.
Finally, Section VII concludes the paper and proposes directions
for future work.

II. BACKGROUND

The field of LLMs has seen significant advancements in
recent years, driven by the rapid development of deep learning
techniques and the availability of large-scale datasets. These
models, such as GPT-3 [4] and BERT [5], have achieved
impressive results across a wide range of NLP tasks, including
text generation, translation, and question answering. More
recently, specialized models, such as Codex [6] have been
developed for tasks related to code generation and software
development.

While LLMs have demonstrated remarkable capabilities, they
come with substantial computational requirements. Training
these models involves large-scale distributed computing on spe-
cialized hardware, often utilizing GPUs to speed up the process.
However, inference—the process of using pre-trained models
to generate outputs—can also be computationally demanding,
particularly when deployed in real-time applications. Typically,
GPUs are used for inference due to their ability to handle
parallel processing, but not all environments have access to
GPUs, especially in resource-constrained settings such as edge
devices, mobile platforms, or smaller cloud infrastructures.

The challenge of resource efficiency has become increasingly
important as the size of LLMs continues to grow. Models
like GPT-3, with over 175 billion parameters [4], consume
significant amounts of energy during inference. Studies have
highlighted the environmental impact of training and running
large-scale models, particularly with respect to their carbon
footprint and energy consumption [1]. Energy-efficient models
and the optimization of inference processes on CPUs have
therefore become crucial areas of research, especially when
considering the global push toward sustainable AI [2].

In parallel, the demand for code generation has increased,
driven by the need to automate repetitive programming tasks,
assist with code completion, and enhance software development
processes. Models, such as Codex [6] have shown that LLMs
can generate syntactically correct and semantically meaningful
code from natural language descriptions. These models have
the potential to reduce development time and improve software

quality by generating boilerplate code, automating refactoring,
and even suggesting optimizations.

However, the deployment of LLMs for code generation
in environments with limited hardware resources, such as
those relying on CPUs instead of GPUs, raises concerns
about the trade-offs between performance and energy efficiency.
There is limited research comparing the inference performance
and energy consumption of different LLMs in CPU-based
environments, which is critical for determining their practical
use in everyday software development tasks. Moreover, little
to no studies address the cost of inference when utilizing
remote models, such as ChatGPT provided by OpenAI, which
runs on cloud-based infrastructures. Understanding the energy
consumption and computational costs when querying remote
models from local CPU environments is crucial for optimizing
resources, especially when these models are not deployed
locally. This gap in the literature underscores the need for
comprehensive analyses that consider both local and remote
execution scenarios for LLMs.

III. RELATED WORK

The growing reliance on LLMs for tasks, such as code
generation, text generation, and question answering has signif-
icantly advanced the field of artificial intelligence. However,
these models, especially large-scale ones like GPT-3 [4],
Codex [6], and BERT [5], have raised concerns regarding
their environmental impact due to their substantial energy
consumption and carbon footprint. As these models become
larger, the need for energy-efficient deployment methods
becomes critical, particularly when leveraging resources such as
CPUs instead of GPUs, which are commonly used in research
environments.

A. Energy Consumption and Sustainability in AI

The environmental impact of LLMs has been a topic
of growing concern in recent research. Strubell et al. [1]
highlighted the significant energy consumption required to
train and run models like GPT-3, estimating that the carbon
emissions of training such models can rival those of several
cars over their lifetimes. This study emphasizes the need
for developing models that are not only accurate but also
energy-efficient, promoting the idea of Green AI. However,
this research focuses primarily on the training phase and the
larger-scale infrastructures typically used for training these
models, rather than on their inference phase or CPU-based
execution.

Schwartz et al. [2] further expanded on the concept of
sustainable AI, advocating for a shift toward models that
prioritize resource efficiency. They call for reducing the carbon
footprint of deep learning models and propose that energy-
efficient algorithms should be a focus in model design. However,
their work lacks a focus on real-world inference scenarios,
particularly in environments where GPUs are unavailable or
impractical for deployment.

Xu et al. [7] provided a comprehensive survey on strategies to
improve energy efficiency in deep learning models, addressing
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the growing need to reduce the environmental impact of AI
systems. They reviewed a variety of techniques, including
model compression, pruning, quantization, and efficient data
usage, all aimed at optimizing the energy consumption of
machine learning models. These methods can significantly
reduce the computational load during inference, particularly
for large-scale models. While this work offers valuable insights
into improving the energy efficiency of deep learning systems,
it does not specifically focus on the trade-offs involved in
running LLMs, such as GPT-3 or Codex, on CPUs for code
generation tasks—an area central to our research.

B. Inference Performance and Resource Allocation

Recent studies have explored optimizing inference efficiency
by balancing the load between CPU and GPU. Patterson et
al. [8] analyzed the energy consumption and carbon footprint
of large-scale deep learning models and discussed strategies
for improving energy efficiency during model training and
inference. They highlighted the cost and energy-efficiency
trade-offs between using GPUs and CPUs, with a focus on
reducing the environmental impact of large models like GPT-
3. However, their work primarily focuses on general model
training and does not specifically address LLMs or code
generation tasks. Furthermore, it does not consider the role of
automated tools like MLFlow and CodeCarbon, which adjust
resources dynamically based on real-time performance and
energy consumption metrics.

Furthermore, a more recent study by Patterson et al. [3] pro-
vided insight into carbon-efficient machine learning practices,
offering actionable strategies to reduce energy consumption
in inference tasks, especially when models are run on CPUs
in resource-constrained environments. This study is highly
relevant to our research, as it provides an essential framework
for making inference more sustainable, though it still lacks
specific analysis on LLMs for code generation and their
optimization on CPUs.

Incorporating energy monitoring into DevOps pipelines has
recently been explored by some researchers. For example,
CodeCarbon [9] provides a simple framework to measure the
carbon footprint of machine learning models during training
and inference. By integrating CodeCarbon into the DevOps
workflow, practitioners can track the energy consumption
and CO2 emissions of models in real time, making it easier
to evaluate the environmental impact of model deployment.
This approach has been integrated into workflows for smaller,
less resource-intensive models but is rarely used for large-
scale models like GPT-3 or Codex, especially in CPU-based
environments.

A recent study by Rangineeni et al. [10] explored the
integration of MLFlow within DevOps pipelines for continuous
monitoring and optimization of machine learning models in
production environments. Their work highlighted how MLFlow
can be utilized to track performance metrics, log experiments,
and manage model versions, enabling efficient deployment and
resource allocation during inference. They also emphasized the
importance of adaptive resource management, which can ensure

cost efficiency and sustainability in cloud-based environments.
While their research provides valuable insights into optimizing
resource allocation using MLFlow, it does not specifically
address the application of these practices to LLMs, such as
GPT-3 or Codex, for tasks like code generation, nor does
it consider the role of energy consumption metrics in the
optimization process.

C. Code Generation with LLMs

The application of LLMs for code generation has gained
significant attention, particularly with models such as Codex
[6], which are specifically designed to generate programming
code from natural language prompts. Codex has shown great
potential in automating code completion, bug fixing, and
refactoring tasks, but there is a lack of research on how these
models perform when executed on CPU-based systems as
opposed to GPUs.

A recent study by Arora et al. [11] introduced SetupBench,
a benchmark designed to evaluate the ability of LLM agents
to bootstrap development environments autonomously. The
benchmark comprises 93 tasks spanning various programming
languages, database engines, and multi-service orchestration
scenarios. The evaluation of OpenHands, a state-of-the-art
coding agent, revealed low success rates across task categories,
particularly in repository setup and local database configura-
tion. The study identified substantial inefficiencies in agent
exploration strategies, with a significant percentage of actions
being unnecessary compared to optimal human behavior. These
findings highlight gaps in current agents’ practical environment-
bootstrap capabilities.

However, the research does not investigate the inference effi-
ciency of these models when deployed in resource-constrained
environments or on CPUs, which is a critical gap in the
current body of literature. Furthermore, their focus was mainly
on cloud-based models and did not consider the potential
environmental impact of running these models in cloud
infrastructures, where energy consumption and carbon footprint
can vary significantly depending on the hardware used.

D. Gap in Literature

While the literature provides a strong foundation for un-
derstanding the energy consumption and performance of deep
learning models, particularly in large-scale environments using
GPUs, there is limited research specifically addressing the
trade-offs and performance of LLMs for code generation when
executed in CPU-only environments. Most of the existing
studies focus on training and GPU-based inference, overlooking
the operational efficiency and sustainability of running LLMs
in low-resource environments where only CPUs are available.

Energy-efficient deployment strategies using tools like
MLFlow and CodeCarbon remain underexplored for LLMs,
particularly in real-time inference tasks like code generation.
This paper addresses this gap by comparing the CPU-based
performance and energy efficiency of various LLMs, focusing
on code generation and incorporating energy monitoring
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through MLFlow and CodeCarbon to evaluate inference per-
formance and environmental impact in resource-constrained
environments.

IV. EXPERIMENTAL SETUP

This section describes the setup for evaluating the perfor-
mance, energy efficiency, and cost of various LLMs for code
generation tasks. The models selected for the experiments are
from OpenAI and Hugging Face repositories, with performance
monitoring conducted using MLFlow and energy consumption
tracking via CodeCarbon.

A. LLMs Selected for the Experiments

The models shown in Table I will be evaluated for code gen-
eration in C programming tasks from OpenAI and HuggingFace
(via Novita as inference provider):

TABLE I: SELECTED LLMs FOR THE EXPERIMENTS.

From OpenAI From Hugging Face
gpt-4o mistralai/Mistral-7B-Instruct-v0.3

gpt-4-turbo meta-llama/Meta-Llama-3-8B-Instruct
gpt-3.5-turbo alpindale/WizardLM-2-8x22B
gpt-4o-mini Qwen/Qwen3-235B-A22B-Instruct-2507

These models represent a range of architectures, including
large-scale models like gpt-4o and optimized models like gpt-
4o-mini.

B. Hardware and Operating System

• CPU: 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz
(2.42 GHz)

• Operating System: Windows 11 Pro
The experiments will be conducted on this CPU-based

system, a typical environment for users without access to
high-performance hardware like GPUs for inference tasks.

C. Performance Monitoring and Energy Consumption Mea-
surement

To evaluate the energy consumption and carbon emissions,
the following tools will be employed:
• MLFlow will be integrated to monitor and track the inference

time, accuracy, and computational cost of each model.
• CodeCarbon will be used to track CO emissions and energy

consumption for each inference task, helping assess the
environmental impact of running LLMs.

D. Inference Tasks for the LLMs

The models will generate C source code for a set of problems,
which are as follows:
• Prime Number Check: Prompt: Write a C program that

checks if a number is prime. The program validation returns
1 if it is prime and 0 if not. The number to check is 11.

• Finding the Greatest of Three Integers: Prompt: Write a C
program that defines three integer variables and prints the
greatest of them. The numbers to check are 11, 22, and 33.

• Even/Odd Check: Prompt: Write a C program that returns
1 if the input number is even, and 0 if it is odd. The input
number for testing will be 122.

• Absolute Difference Calculation: Prompt: Write a C program
that calculates the absolute difference between two numbers.
The input numbers are -122 and 11.

• Sum of Digits: Prompt: Write a C program that calculates
the sum of the digits of the input number. The input number
is 123.

Each task was repeated 10 times for each model to ensure
that the results are statistically significant and to account for
potential variations in model performance across multiple
runs. The generated code will be validated using gcc to
ensure correctness, and the inference time, accuracy, energy
consumption, and computational cost will be tracked.

E. Evaluation Criteria

• Inference Time: Time taken by the model to generate the
required C code.

• Code Generation Accuracy: Correctness of the generated
code and whether it can be compiled and executed without
errors.

• Energy Consumption: Measured using CodeCarbon to assess
the energy used during inference.

• Computational Cost: The cost of running inference on remote
models (via APIs for models like gpt-4o).

F. Experimental Phases

• Phase 1: Remote Inference via APIs: The first phase will
focus on querying the models remotely using API calls
(for models like GPT-4 and others from Hugging Face) and
measuring inference time, accuracy, and energy consumption.

• Future Work - Phase 2: Local Inference on CPU: The
second phase, which will be explored in future work,
will involve deploying the LLMs locally on the CPU to
assess their performance and energy efficiency in resource-
constrained environments. This phase will compare the local
CPU performance against the remote inference to evaluate
trade-offs in energy efficiency and computational cost when
running on CPUs.

This study will provide insights into the cost and environmental
impact of deploying LLMs for code generation, particularly
in scenarios where access to GPU resources is limited. The
analysis will focus on the trade-offs between performance,
energy efficiency, and cost, with the remote inference phase
being the first step toward a more comprehensive study that
will include local deployment on CPUs as future work.

V. RESULTS

The results of our experiments are presented across three
key categories: Performance and Throughput, Code Generation
Accuracy, and Energy Efficiency. The models considered for
this study are from both OpenAI and Hugging Face, with
varying parameter sizes ranging from 3.8 billion to 235 billion
parameters. Each model was evaluated based on its execution
time, accuracy, energy consumption, and CO2 emissions, which
are discussed in detail below.
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A. Performance Throughput

The execution time of each model varied significantly,
primarily due to the differences in model size and complexity.
GPT-4o and GPT-4-turbo, the largest models in the study, had
execution times of 2.3 minutes and 3.5 minutes, respectively.
Despite optimizations in GPT-4-turbo, it required more time
to complete the task, suggesting trade-offs between speed and
accuracy.

In contrast, GPT-3.5-turbo was the fastest, taking only 1.9
minutes to generate code. However, this speed came at the cost
of accuracy, as shown in the next section. The smaller model,
GPT-4o-mini, took 2.8 minutes, slightly slower than GPT-4o,
but still significant for its reduced size.

The smaller models from Hugging Face, including Mistral-
7B and Meta-Llama-3-8B, took between 3.9 and 4.7 minutes
for the task, which is relatively long compared to their
smaller size. Finally, the largest models like WizardLM-2-
8x22B and Qwen/Qwen3-235B took 7.8 minutes and 1.2 hours,
respectively, showing the strong correlation between model
size and execution time.

B. Code Generation Accuracy

The accuracy of the models in generating correct C code
varied significantly, with the larger models performing better in
generating valid code. GPT-4o achieved the highest accuracy
of 54%, demonstrating its effectiveness in generating correct
code for the given tasks. On the other hand, GPT-4-turbo
showed a slight decrease in performance, with 36% accuracy,
indicating the speed optimizations may have sacrificed some
code generation quality.

GPT-3.5-turbo, with its smaller size, performed poorly, with
an accuracy of 12%, reflecting the limitations of smaller models
for such complex tasks. The smaller models, such as Mistral-
7B and Meta-Llama-3-8B had accuracy rates of 6% and 18%,
respectively, indicating that smaller parameter models struggle
with generating accurate code. Larger models like WizardLM-
2-8x22B and Qwen/Qwen3-235B both showed 17% accuracy,
suggesting that despite their massive size, they also faced
challenges in code generation.

C. Energy Efficiency

The energy consumption per inference varied based on model
size, with larger models generally consuming more energy. GPT-
4o and GPT-4-turbo consumed between 0.1–0.5 kWh, which is
typical for models of their size and complexity. Interestingly,
GPT-4o-mini, despite being smaller, consumed 0.003 kWh,
slightly more than GPT-4o, likely due to specific optimizations
and the inherent inefficiency of smaller models for complex
tasks.

In contrast, smaller models like Mistral-7B and Meta-Llama-
3-8B consumed 0.0015 kWh and 0.0028 kWh, respectively,
indicating their efficiency relative to their size. However,
larger models like WizardLM-2-8x22B and Qwen/Qwen3-235B
consumed significantly more energy, with values of 0.0047 kWh
and 0.0071 kWh, respectively, consistent with their massive
size and computational demands.

Figure 1: Execution Time vs LLMs.

CO2 emissions follow the same trend as energy consumption.
GPT-4o generated 0.000132657 kg of CO2 per inference, while
GPT-4-turbo emitted 0.000337222 kg. GPT-3.5-turbo produced
0.00044873 kg, further showing the inefficiency of smaller
models in terms of their carbon footprint. Mistral-7B and
Meta-Llama-3-8B had lower CO2 emissions of 0.000270392
kg and 0.000498069 kg, respectively, reflecting their lower
energy consumption.

The largest models had the highest emissions: WizardLM-
2-8x22B generated 0.001331077 kg and Qwen/Qwen3-235B
generated 0.005493181 kg.

VI. DISCUSSION AND EVALUATION

The results of our experiments provide valuable insights
into the trade-offs between performance, accuracy, and energy
efficiency when evaluating different LLMs for code generation
tasks. Based on the execution time, accuracy, energy consump-
tion, and CO2 emissions, we analyze the performance of the
selected models and evaluate their practical application for
real-world code generation tasks. This discussion will draw
comparisons between the models and explore the implications
of these results for both developers and environmental concerns.

A. Performance and Throughput

As shown in Figure 1, there is a clear correlation between
model size and execution time. Larger models, such as GPT-
4o and GPT-4-turbo require more time to generate code.
Specifically, GPT-4o took 2.3 minutes per task, while GPT-4-
turbo took 3.5 minutes. Although GPT-4-turbo is optimized
for faster inference, its performance trade-offs manifest in a
longer execution time compared to the base model. On the
other hand, GPT-3.5-turbo is the fastest model at 1.9 minutes,
but this speed comes at the cost of lower accuracy, as shown
in the next section.

The smaller models like Mistral-7B and Meta-Llama-3-
8B have execution times of 4.7 minutes and 3.9 minutes,
respectively. Despite their smaller parameter sizes, they do not
achieve significant speed advantages. In contrast, Qwen/Qwen3-
235B and WizardLM-2-8x22B take the longest to execute,
with 1.2 hours and 7.8 minutes, respectively, reflecting the
computational burden of their massive parameter sizes.
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Figure 2: Accuracy vs LLMs.

B. Code Generation Accuracy

The accuracy of code generation, as shown in Figure 2,
is heavily influenced by model size. GPT-4o outperforms all
other models with a 54% accuracy, highlighting its ability
to understand and generate correct code. In contrast, GPT-4-
turbo achieved a lower accuracy of 36%, which suggests that
speed optimizations negatively impacted the model’s ability to
generate correct code.

The smaller models, such as GPT-3.5-turbo (12% accuracy),
Mistral-7B (6% accuracy), and Meta-Llama-3-8B (18% ac-
curacy) perform poorly in generating correct C code, which
is expected due to their limited number of parameters and
training data. Despite their reduced size, larger models like
Qwen/Qwen3-235B and WizardLM-2-8x22B also showed
relatively low accuracy (17%), indicating that even large models
do not always excel in specialized tasks like code generation,
which requires deep understanding of syntax and logic.

C. Energy Efficiency

When evaluating energy consumption (Figure 3) and CO2
emissions (Figure 4), we observe a direct correlation with
the model’s size and computational requirements. The larger
models, such as GPT-4o and GPT-4-turbo consume between 0.1
and 0.5 kWh per inference, with GPT-4o using 0.000762179
kWh and GPT-4-turbo using 0.001937503 kWh. These higher
consumption rates reflect the larger energy footprint of run-
ning complex models, particularly when deployed in cloud
environments that require significant computing resources.

Smaller models, such as Mistral-7B and Meta-Llama-3-
8B, use far less energy, consuming 0.001553531 kWh and
0.002861641 kWh, respectively. This demonstrates that smaller
models are more energy-efficient, although their reduced size
results in lower accuracy for code generation tasks. While the
smaller models are more energy-efficient, their performance
is not optimal for generating high-quality code, making them
less suitable for complex software development tasks.

The larger models like Qwen/Qwen3-235B and WizardLM-2-
8x22B consume significantly more energy, with Qwen/Qwen3-
235B using 0.007103992 kWh and WizardLM-2-8x22B using
0.004770831 kWh. These models have the highest CO2
emissions per inference, with Qwen/Qwen3-235B producing

Figure 3: Energy Consumption VS LLMs.

Figure 4: CO2 Emissions vs LLMs.

0.005493181 kg of CO2 and WizardLM-2-8x22B producing
0.001331077 kg of CO2. The high energy consumption and
emissions of these large models suggest that while they
may have certain advantages in scale, they are less efficient
for deployment in resource-constrained or environmentally
conscious environments.

D. Implications for Practical Use

The results indicate that larger models like GPT-4o offer the
best performance and accuracy but at the expense of higher
energy consumption and environmental impact (if we consider
the approximate energy consumption during the training phase).
These models are suitable for applications where accuracy is
the primary concern, and there are sufficient computational
resources. However, their high energy consumption makes them
less ideal for environmentally conscious or resource-limited
environments.

On the other hand, smaller models like Mistral-7B and
Meta-Llama-3-8B are more energy-efficient but suffer from
significantly lower accuracy, making them less suitable for
complex tasks such as code generation. GPT-4o-mini shows
promise with a balance of moderate energy consumption and
relatively good accuracy at 30%. These models could be a
viable option when moderate performance is acceptable, and
energy efficiency is prioritized.
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VII. CONCLUSION AND FUTURE WORK

This study provides a comprehensive evaluation of various
LLMs for code generation tasks, focusing on performance,
accuracy, energy efficiency, and environmental impact. The
results reveal several key insights:
1) Larger models, such as GPT-4o and GPT-4-turbo offer

superior accuracy but require significantly more execution
time and consume higher amounts of energy, leading to
increased CO2 emissions. These models are optimal for
tasks where high accuracy is crucial, but their environmental
impact makes them less suitable for resource-constrained
environments.

2) Smaller models like Mistral-7B and Meta-Llama-3-8B offer
better energy efficiency and lower CO2 emissions, but their
accuracy is considerably reduced. These models may be
suitable for scenarios where energy consumption is a priority
and moderate performance is acceptable.

3) Models like GPT-4o-mini, with a balance of moderate
energy consumption and reasonable accuracy, could serve
as a compromise between large models and smaller, more
efficient models.

In conclusion, the performance of LLMs in code gener-
ation tasks is a delicate balance between accuracy, energy
consumption, and environmental impact. The choice of model
should depend on the specific use case, with larger models
being preferred for high-accuracy requirements, while smaller
models offer better energy efficiency for more environmentally-
conscious applications.

Future Work
Building on the insights from this study, several lines of

future research are planned:
• Expansion to Other LLMs: The experiments can be extended

to other LLMs beyond those evaluated in this study. Newer
models or those from different providers may offer improve-
ments in performance, energy efficiency, and environmental
impact that could alter the current conclusions.

• Evaluation on Other Software Development Tasks: While
the current study focused on code generation tasks in C
programming, future experiments will expand to other types
of software development tasks such as debugging, code
optimization, and automatic code refactoring. This will help
assess whether the trade-offs observed in this study hold true
for a wider range of software engineering tasks.

• Incorporating Local Deployment: The main future direction
involves repeating the experiments but this time using local
LLMs. This will involve deploying the models on both local
CPUs and local GPUs. By doing this, we can compare
the performance and energy consumption when models are
running locally, with the aim to identify the most efficient
configurations for resource-constrained environments. The
availability of local GPUs could offer a significant improve-
ment in execution time and energy consumption, making it
a valuable area of exploration.

• Optimization of Inference Efficiency: Future work will
also include optimizing inference strategies for energy con-

sumption and accuracy. Investigating different quantization,
pruning, and distillation methods could provide potential
pathways for improving the efficiency of LLMs without
compromising their performance.
By addressing these future directions, the research will not

only provide further insights into the trade-offs between per-
formance and efficiency but also contribute to the development
of more sustainable AI practices, particularly in the context of
code generation and software development.
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Abstract—The paper investigates power electronics interfaces
for integrating two identical 30 kW Surface Water Heat Pumps
(SWHPs) operating in parallel, with a 35 kW Wind Turbine
(WT) and a 30 kWh Battery Energy Storage System (BESS),
connected via a DC-bus. A simulation model was developed in
MATLAB/Simulink to evaluate the behavior of the system under
dynamic operating conditions, including measured data for the
wind speed in ’Le Cano Ouistreham pilot site’, France, and the
thermal load based on data from an operational Aquathermal
Energy (AE) site in Dijlemolens, Belgium. The paper addresses
challenges related to efficient energy management and power
control. This work presents new system-level insights, supported
by simulation results. The proposed design offers flexibility
and scalability, making it adaptable to integration with other
Renewable Energy Sources (RESs) and a wide range of power
capacities.

Keywords-Wind energy; surface water heat pump; battery energy
storage system; energy management; renewable energy.

I. INTRODUCTION

Aquathermal Energy (AE) is the extraction, storage, and
distribution of heat from water bodies, including surface water,
wastewater, and groundwater. It is an emerging Renewable
Energy Source (RES) with strong potential for heating and
cooling applications. In AE systems using surface water, heat
is extracted from the water body using a Surface Water Heat
Pump (SWHP) via a heat exchanger, which then increases or
decreases the temperature as needed for domestic hot water
supply and other thermal energy applications [1]. AE systems
reduce carbon emissions in the heating and cooling sector and
decrease its reliance on imported energy [2].

According to the latest IRENA report, 87 million Heat Pumps
(HPs) are projected to be installed in buildings, with wind and
solar expected to contribute 91% of the total Renewable Energy
(RE) capacity by 2050 [3]. When coupled with RESs, such
as wind or Photovoltaics (PVs) to power their compressors,
SWHPs offer a promising pathway to decarbonize the building
sector [4]. In Europe, the deployment of Wind Turbines (WTs)
is spreading rapidly, with wind energy accounting for almost
39% of the total electricity generated from RESs in 2024 [5].
However, due to the intermittent nature of WTs, Battery Energy
Storage Systems (BESSs) are integrated to effectively manage
short-term fluctuations, while appropriate control strategies can
significantly improve system reliability and efficiency [6].

Power electronics play an essential role in enabling the
efficient integration of HPs with RESs. DC-links, incorporating

AC-DC and DC-DC converters, allow for improved energy
management, voltage regulation, and efficient power conversion
across hybrid systems. Compared to traditional AC microgrids,
DC-based systems offer lower conversion losses, improved
energy management, and more straightforward control, particu-
larly advantageous for hybrid configurations with large shares
of DC loads or storage units [7].

In the literature, several studies have explored hybrid systems
for HP applications [8]–[11]. Although these studies laid
essential groundwork, they often overlooked power electronics
integration, realistic thermal demand modeling, and dynamic
power management between sources and loads. Few studies
addressed power electronics control strategies and converter
topologies for RE-powered HPs. For instance, in [12], the
authors proposed an energy management strategy for a micro-
grid that combines a PV, a BESS, and an air-source HP. The
main goal of the study was to reduce the cost of the BESS by
leveraging the thermal storage of the HP, incorporating a double
fuzzy logic that coordinates power fluctuation stabilization
between the BESS and the air-source HP. However, HP
operation was mainly governed by RE availability and system
efficiency, not by actual, time-varying thermal demand.

In [13], the authors presented a hybrid system that includes
PV, WT, and BESS powering a DC-HP. However, the ap-
proach is limited as it only accounts for the electrical power
consumption of the HP, with the thermal load profile being
derived from thermodynamic equations without incorporating
its actual dynamics. As a result, the control and performance
of the system are not realistically reflective of actual HP
operation, which is typically governed by unpredictable and
varying thermal loads over time. Furthermore, in [14], the
authors proposed an advanced control strategy based on the
model predictive control combined with a fractional short-
circuit current approach to optimize power extraction from
the PV system interfaced with a SWHP. However, this study
modeled the SWHP as a resistive load, so results were only
analyzed on the PV–BESS side. Alternatively, in [15], the
authors proposed a high-voltage-gain DC-DC converter to
improve PV-HP coupling efficiency. Although their converter
showed promising results in handling variable solar irradiance,
the system also lacked realistic thermal modeling of the HP.
Although their work offers valuable insights, it remains unclear
whether the results are scalable to real-world scenarios.
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This paper contributes to the growing body of research on
HPs, particularly SWHPs, by presenting a realistic simulation
conducted for an AE harvesting pilot site within the “Water-
warmth” project, funded by Interreg North Sea Region, in Le
Cano Ouistreham, France. This pilot site is currently in the
preparatory phase for constructing a SWHP system, making it
an ideal case study to simulate and validate RE integration and
control strategies under realistic site conditions. The proposed
system employs a 35 kW WT and a 30 kWh BESS to power
two identical 30 kW SWHPs operating in parallel, all connected
via a DC-bus with realistic control architecture, using both
measured wind speeds and thermal load profile. The originality
of this study lies in its comprehensive simulation of component
interactions between fluctuating RE generation and dynamic
thermal demand, and its validation of a coordinated control
strategy that ensures voltage stability under realistic fluctuating
wind and load conditions. The proposed model provides a
more accurate reflection of operational conditions and offers a
pathway toward scalable, site-adapted AE solutions.

In summary, the novelty of this work lies in three aspects:
(i) the use of a measured, time-varying thermal demand profile
rather than a simplified one; (ii) the coordinated control
of wind and battery subsystems to ensure DC-bus stability
under realistic fluctuations; and (iii) the adoption of a DC-
link topology that reduces conversion stages compared to
conventional AC-based systems. The main objective of this
study is to design and validate, through MATLAB/Simulink
simulations under real site conditions, an energy management
strategy that ensures reliable demand-driven operation of a
hybrid WT–BESS–SWHP system.

This paper is organized as follows: Section I briefly reviews
the current state of research. Section II presents the system
configuration, detailing the integrated WT, SWHP, and power
electronics on both the WT and BESS sides. Subsequently,
the control strategies applied to each DC-DC converter are
described in Section III. Section IV presents the results of the
performance analysis at a pilot site within the framework of
the “Waterwarmth” project. The conclusions of this work and
a paper summary are presented in Section V.

II. SYSTEM CONFIGURATION

A. Wind Turbine

The system shown in Figure 1 is based on a variable-speed
WT coupled with a permanent magnet synchronous generator,
which converts mechanical energy to electrical energy. The
rotating rotor blades extract kinetic energy from the wind and
transform it into shaft torque, which is then converted into
electricity by the generator. To maximize the energy extracted
from the varying wind speeds, the system relies on control
strategies that regulate the WT’s speed and blade pitch angle. A
detailed description of the control strategy adopted is provided
in Section III.

The wind speed data, which serve as input to the WT model,
were collected for Le Cano Ouistreham, covering the period
from March 7, 2024 at 11:00 AM to May 7, 2024 at 2:00

Figure 1. Electrical synoptic of the system.

AM, with a sample time of one hour. This data is illustrated
in Figure 2.

Figure 2. The wind speed profile in Le Cano Ouistreham, France.

The wind speed frequently drops below the 10.9 m/s
nominal speed and occasionally falls near or below cut-in
speed, reflecting the intermittent nature of wind energy. These
fluctuations justify the need for both real-time WT speed control
to maximize energy capture under partial load conditions and
the integration of a BESS to stabilize the system’s power
supply.

B. Heat pump

In this model, two identical SWHPs are used as parallel loads,
ensuring that the total electrical demand is closely aligned with
the rated capacities of the RE generation and BESS (35 kW
WT and 30 kWh BESS). This configuration also reflects the
actual thermal demand of the building and removes the need
for a backup gas boiler, enabling fully RE-powered operation.
The SWHP considered in the simulation is a CIAT DYNACIAT
LG 300 A water-to-water HP, which provides a nominal heat
capacity of 90.3 kW, a cooling capacity of 61.5 kW, and a
rated electrical consumption of 29.4 kW.

The primary model inputs were the thermal power generated
by the SWHP (Figure 3), and its coefficient of performance
(COP), based on measurements from an installed system at an
operational site in Dijlemolens, Belgium. This site also uses
a backup gas boiler to satisfy the total building heat demand.
The data covers the period from March 7, 2024 at 11:00 AM to
May 7, 2024 at 2:00 AM, with a sample time of five seconds.

The electrical power consumption for the two SWHPs is
calculated based on the thermal load profile of the building,
as well as the SWHP’s technical datasheet. It is given by (1):

Pelec,SWHP =
Pthermal

COP
(1)
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Figure 3. Thermal load profile of the SWHP.

As shown in Figure 3, the thermal load profile exhibits
frequent peaks in high demand and varying on/off cycles,
reflecting realistic building heating demand. Operating in a
fully demand-driven mode, these dynamics emphasize the
importance of a rapid control response from the supply side
and a robust power balance between generation, storage, and
load.

C. DC-DC boost converter on the WT side

Boost converters are commonly used in RE applications to
raise the input voltage generated by the RESs, particularly when
interfacing low-voltage sources, such as WTs with a higher-
voltage DC-bus. In this study, the DC-bus voltage reference is
1000 V, which is a typical design choice in many RE microgrids
and DC link systems, to ensure compatibility with industrial
inverters and BESSs [16][17]. The converter raises the rectified
WT’s generated voltage to the bus voltage level, allowing
efficient energy transfer under fluctuating wind conditions.
Various DC-DC converter topologies are found in the literature,
each with trade-offs in efficiency, control complexity, and
component stress, depending on the application requirement
[18]. The DC-DC boost topology used in this study is illustrated
in Figure 4, with the sole purpose of validating the working
principles of the overall system, providing a solid foundation
for further extension and refinement.

Figure 4. Topology of the AC-DC-DC converter on the WT side.

D. DC-DC bidirectional converter on the BESS side

To ensure stable operation of the DC-bus, a bidirectional
buck-boost converter is implemented on the battery side.
Bidirectional converters are pivotal components for energy
management in RE applications, as they enable bidirectional
power flow. This key feature allows excess energy generated
by the RESs to be stored in the BESS during peak generation
periods (buck mode) and retrieved during low-generation
periods (boost mode). Therefore, their integration is vital
for maximizing the utilization of RESs, as they ensure a
consistent and reliable power supply. In the context of HPs, a

few studies are found in the literature, including a BESS [19].
The bidirectional converter topology adopted in this study is
illustrated in Figure 5 [20].

Figure 5. Topology of the AC-DC-DC converter on the WT side.

The equations governing the working principle of the buck
and boost modes of this bidirectional converter are presented
in (2) [21]. 

diBESS,in

dt
=

VBESS,in − Vbus,Sboost

LBESS

dVbus

dt
=

iBESS,Sbuck − ibus

Cout,BESS

(2)

where iBESS,in represents the current exchanged with the
battery, accounting for both charging and discharging modes,
Vbus is the measured DC-bus voltage, Sboost and Sbuck are the
switching signals generated by the control algorithm described
in Section III, LBESS is the inductance of the boost converter,
and Cout,BESS corresponds to the capacitor located at the output
of the BESS, on the DC-bus side.

III. MICRO-GRID CONTROL METHODS

The control architecture of the system is designed with a
clear decoupling between energy management on the source
side and load operation. The SWHP functions as a passive load,
turning on/off based on thermal demand. Predictive adjustment
of the SWHP load is not considered; instead, the WT and the
BESS are solely responsible for maintaining voltage stability
and meeting demand.

A. WT Boost Converter Control Strategy

The control strategy for the WT’s boost converter is based on
maximizing the power extraction from the available wind-based
Maximum Power Point Tracking (MPPT), while ensuring the
protection of the components beyond nominal operation. Wind
speed is measured and compared to a predefined nominal speed
of 10.9 m/s, specific to the WT’s model used. After cut-in wind
speed, and if the measured wind speed is below this threshold,
the reference power is computed as in (3), based on the WT
power curve shown in Figure 6.

P = 1
2ρairACp,maxV

3
wind (3)

where ρair is the air density, A is the swept area of the WT
blades, Cp,max is the maximum power coefficient of the WT,
and Vwind is the measured wind speed.
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Figure 6. WT power curve.

The actual electrical power generated by the WT is measured
via voltage and current sensors on the boost converter input.
The power error is fed into a discrete Proportional Integral (PI)
controller as illustrated in Figure 7. The error is then processed
and used to generate the PWM signal for the boost converter
at a switching frequency of 10 kHz, with a sample time of 10
µs.

Figure 7. PWM control signal for boost switch on the WT side.

B. BESS Bidirectional Converter Control Strategy

The control of the battery-side bidirectional converter is
based on maintaining the DC-bus voltage at 1000 V, while
managing power flow directions (buck or boost mode) based
on the instantaneous power balance between the sources and
the load. For this purpose, a dual-loop bidirectional converter
control was developed based on the power flow direction and
the DC-bus voltage regulation. The control logic is illustrated
in Figure 8 and Figure 9.

IV. RESULTS AND DISCUSSIONS

The system configuration previously defined in Figure 1 is
simulated in Matlab/Simulink software, with the sole purpose
of validating the architecture under real operating conditions.
The parameters used in the simulation are listed in Table I.

Figure 10(a) shows the performance of the DC-bus voltage
control system operating in buck and boost modes. The output
voltage Vbus closely follows the constant reference voltage
of 1000 V throughout the entire operation, first reaching the
target value in 3.7 seconds. Afterwards, the voltage settles
within a ±5% tolerance band after approximately 1.6 seconds
and remains stable, showing a reliable and steady operation.
The Root Mean Square Error (RMSE) of the tracking error
is about 0.42%. Although occasional transient deviations
occurred, the system operated within acceptable limits, with
a voltage overshoot of 4.76%, which indicates a controlled
transient response without excessive voltage spikes. These
results demonstrate that the controller successfully maintains
the voltage regulation with minimal deviation despite mode
transitions and dynamic conditions.

Figure 10(b) illustrates the performance of the WT power
control loop defined in Section III. The reference curve includes

Start

Measure 

Vbus(t)

Calculate: 

e t = Vbus,ref(t) − Vbus(t)

Insert to discrete PI 

controller & generate

duty cycle α(t)

Measure 

IHP(t) & 

IWT,out(t)

Calculate:

IHP(t) − IWT,out(t)

IHP(t) − IWT,out(t) ≥ 0

Increase Vbus via battery

discharge

Duty cycle = α(t)

Yes No

Decrease Vbus via battery

charge

Duty cycle = 1 − α(t)

Figure 8. Buck and boost modes algorithm for the BESS bidirectional
converter.

Figure 9. PWM control signals for buck and boost switches for the BESS
bidirectional converter.

rapid changes and fluctuations to reflect both realistic wind
and load conditions. The measured electrical power output of
the WT closely follows its reference throughout the dynamic
operating period, with an RMSE of almost 1.036 kW, indicating
accurate and efficient tracking of the controller. Minor transient
deviations occur during abrupt transitions, as expected, due
to system inertia and converter response delays. However, the
overall tracking behavior validates the effectiveness of the
proposed control algorithm in maintaining the desired power
output under varying operating conditions.

The energy management between the WT, BESS and SWHPs
is illustrated in Figure 11 over an approximately 800-second
simulation period. The WT output presented in Figure 11(a)
fluctuates significantly between 0 and 35 kW due to wind speed
variability, while the electrical power demand of the SWHPs
is intermittent, varying between 0 and 52 kW, reflecting the
dynamics of the thermal load profile, previously shown in
Figure 3. The BESS operates bidirectionally, charging (negative
power values) when the load demand is low, and discharging
(positive power values) when the load demand exceeds the WT
generation, as illustrated in Figure 11(b). The BESS provides up
to 45 kW to maintain power balance. Therefore, the selected
100 Ah (35 kWh) battery is largely sufficient to cover the
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TABLE I. USED PARAMETERS IN THE SIMULATION

Simulation parameters Values
Wind Turbine

PMPPT: Maximum power 35 kW
R: Radius 5 m
vnom: Nominal wind speed 10.9 m/s
ρair: Air density 1.225 kg/m3

Cp: Power coefficient 0.47
WT’s Boost Converter

Cin,WT: Capacitance at rectifier’s output 100 µF
Cout,WT: DC-bus capacitance 3300 µF
LWT: Input inductance 1 mH
RL,WT: Inductor’s resistance 10 mΩ

BESS – Lithium-Ion
Vnom: Nominal Voltage 350 V
Ah: Rated Capacity 100 Ah

BESS’s Buck-Boost Converter
Cout,BESS: DC-bus capacitance 3300 µF
LBESS: Inductance 1 mH
RL,BESS: Inductor’s resistance 10 mΩ

Other parameters
Ts: Sampling time 10 µs
f : Switching frequency 10 kHz

observed demand–generation imbalance under the simulated
conditions. Furthermore, the overall power balance RMSE,
which compares the combined generation of the WT and BESS
with the electrical demand of the SWHP (Figure 11c), is almost
4 kW, indicating effective coordination between the components
of the system.

Table II summarizes the key performance metrics that were
derived from the simulation to quantitatively assess the dynamic
performance of the proposed control strategy. These include
voltage regulation accuracy, power tracking quality, and system
response characteristics under variable wind speed and load
conditions. The RMS tracking error represents the average
percentage deviation between the measured DC-bus voltage and
its reference 1000 V, computed during steady-state operation.
The maximum voltage overshoot corresponds to the highest
percentage by which the DC-bus voltage exceeds its reference
during dynamic transients. The settling time is the duration
required for the measured DC-bus voltage to return and remain
within ±5% of its reference after a significant disturbance.

The simulation results confirm that the WT–BESS mix
reliably tracks the HP’s dynamic demand, validating control
strategies under real-time conditions. In addition, the proposed
DC-based architecture reduces conversion stages, achieving
95–96% efficiency—about 3–5% higher than conventional AC
systems.

V. CONCLUSION AND FUTURE WORK

In this study, a hybrid system consisting of a Wind Turbine
(WT), Battery Energy Storage System (BESS), and two Surface
Water Heat Pumps (SWHPs) was developed. A complete
description of the components of the proposed system is
presented, along with the physical model associated with these
components. The proposed control methods and their features

Figure 10. Comparison of measured and reference (a) DC-bus voltage (b) WT
power output during control operation.

Figure 11. Instantaneous power profiles of the WT, BESS, and HP.

TABLE II. SYSTEM CONTROL PERFORMANCE METRICS

Metric Value
RMS voltage tracking error of DC-bus voltage 0.42%
Max voltage overshoot of DC-bus voltage 4.76%
Settling time of DC-bus voltage 1.6 s
WT electric power tracking RMSE 1.036 kW
Power balance RMSE 3.981 kW
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are then highlighted. The simulation results demonstrated
that the proposed control strategy achieves a fast dynamic
response, stable voltage regulation, and accurate power tracking
performance. This study is a proof of the feasibility and
effectiveness of using such hybrid configurations to power
thermal systems in a sustainable manner, offering scalable and
site-adaptable solutions. Although the present study relied on
classical PI-based control loops to validate feasibility, future
work will investigate more innovative control strategies, such
as model predictive controllers, in combination with alternative
DC–DC converter topologies, to further enhance dynamic
performance and robustness.
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Abstract—Integration of solar energy in stand-alone micro-

grid applications is an attractive solution for improving access to 

electrification in remote rural areas and reducing dependence on 

the main power grid. This paper proposes a control strategy to 

manage the energy of a hybrid system comprising photovoltaic 

(PV) solar panels and energy storage batteries. The aim is to 

maximize the use of PV solar energy by using a PV voltage model 

that considers the variations of the series resistance as a function 

of solar irradiance and operating temperature. This ensures 

optimum operations of the micro-grid and improves energy 

efficiency. The strategy adopted is based on a dual approach that 

combines a maximum power point tracking algorithm with 

incremental conductance to extract the maximum power from 

the solar panels, and an energy management system based on 

rules control. The proportional-integral controller regulates the 

batteries power flow to maintain a stable DC-bus voltage within 

the micro-grid. System performance is evaluated in the 

Matlab/Simulink software environment for different load 

profiles and sunlight conditions. The simulations results show a 

significant efficiency of the control system with PVs power 

fluctuations mitigating by the batteries to reduce the current 

stress for the load.  

Keywords—Photovoltaic; ernergy management system; energy 

storage batteries; DC-bus voltage regulation; micro-grids. 

I. INTRODUCTION 

The global climate crisis and the gradual depletion of fossil 
fuels are making the development of sustainable energy 
solutions an imperative. The integration of renewable energy 
sources into stand-alone micro-grid systems, in particular, 
offers a promising alternative for reducing greenhouse gas 
emissions and increasing energy independence. Among these 
sources, solar photovoltaic (PV) energy is abundant in West-
Africa (Guinea), clean and increasingly accessible thanks to 
the falling cost of conversion technologies. 

However, optimal operation of a PV source remains 
complex due to its variable and non-linear nature. Solar 
irradiance and temperature have a strong influence on the 
power generated, requiring dynamic Maximum Power Point 
Tracking (MPPT) to ensure optimum energy yield. Several 
MPPT techniques have been developed, including perturb and 
observe (P&O), incremental conductance (InC) and adaptive 
step methods, such as those explored in [1], [2], [3]. The InC 
algorithm, in particular, is recognized for its ability to better 
converge to the maximum power point under conditions of 
high solar radiation variability. 

Furthermore, energy management based PVs and batteries 
Energy Storage Systems (ESS) requires an Energy 
Management Strategy (EMS) capable of making the fast 
decisions to direct energy to Electric Vehicles (EVs) or to the 
batteries. Several studies have proposed EMS based on fuzzy 
rules, decision logic or hierarchical approaches. For example, 
Swetha et al. [4] proposes a strategy based on a centralized 

model for EV applications in a micro-grid environment. 
Oukkacha et al. [5] present an energy management method for 
electric vehicles based on frequency sharing between a fuel 
cell, lithium-ion batteries and the supercapacitors, each 
connected via DC-DC converters. Badawy and Sozer [6] 
developed and implemented an Energy Management Strategy 
Control (EMSC) for renewable source with the batteries 
micro-grid system. Baqar et al. [7] conducted a comparison of 
various EMSC. They are done on a hybrid system based on 
fuel cell, supercapacitors and batteries, highlighting the 
importance of effective coordination to extend the batteries 
life. Similarly, Bonkile and Ramadesigan. [8] proposed a 
solution for autonomously managing a PV-batteries hybrid 
system for electrical energy storage by minimizing overload 
constraints using the Runge-Kutta method with high-stability 
time steps. 

Concerning the DC-bus voltage regulation, a crucial 
element in on-board or stationary vehicle architectures, the use 
of conventional controllers (PI, PID) is still common to 
guarantee system voltage stability [9], [10]. Yaqoob et al. [11] 
proposes a power EMS based on platitude control for a stand-
alone photovoltaic-battery hybrid system, aimed at stabilizing 
the DC-bus voltage and optimizing power sharing between 
sources. Similarly, an EMSC for a DC micro-grid integrating 
a PV module, batteries and the load, aimed at optimizing 
energy flow while preserving battery’s life, is proposed in [12]. 
Benzaouia et al. [13] experimentally evaluated a control 
strategy for a PV/battery system dedicated to water pumping 
applications using neural network for maximum power 
extraction on the PV side and fuzzy logic on the battery side to 
maintain the balance between supply and demand. 

Despite these advances, few studies have combined an 
InC-type MPPT strategy with a PI control dedicated to DC-bus 
voltage regulation, applied to a PV/battery architecture 
oriented towards stand-alone micro-grids with emphasis on the 
voltage model of the PV system with variable series resistance, 
all set under realistic weather conditions. In this work, the 
authors propose a PV/batteries system dedicated to stand-alone 
micro-grid applications. Proposed EMS includes InC MPPT 
algorithm, which ensures the maximum power extraction of 
PV energy under variable irradiance and the PV series 
resistance. The MPPT is assisted by two PI controllers, one 
ensuring stability of the DC-bus voltage at 1000V through 
efficient control of the batteries charge/discharge via a 
bidirectional DC-DC converter, and the second, via a 
unidirectional DC-DC Boost converter, transferring power 
from the PV system to the DC-bus. 

The system is simulated using Matlab/Simulink with 
realistic climatic profiles (irradiance and temperature based on 
pilot site of Dialakoro in Guinea). The aim is to analyze the 
system’s performance in a variety of production and 
consumption scenarios, focusing on DC-bus voltage stability, 
battery safety and overall energy conversion efficiency. The 
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results obtained demonstrate efficient regulation, optimized 
use of solar energy, and optimal batteries utilization, making 
this approach particularly suitable for stand-alone micro-grid 
solutions.  

Following this introduction, the paper is organized as 
follows: Section 2 describes the micro-grid architecture, 
focusing on the modeling of PV sources and batteries storage 
systems. Section 3 is devoted to energy management 
strategies; it first introduces the principle of MPPT control, 
then details the energy management strategy. Section 4 
presents the simulation results and proposes an in-depth 
analysis. Finally, Section 5 concludes this study. 

II. DESCRIPTION OF MICRO-GRID 

Figure 1 illustrates the overall architecture of the hybrid 
system studied, which integrates a variable series resistance 
PV source, a battery storage system and a load represented by 
a home. The PV generator is connected to a boost converter, 
driven by a control signal (Duty Cycle PV) from the Maximum 
Power Point Tracking (MPPT) control strategy. The latter 
applies a MPPT algorithm to optimize the power extracted 
from the PV field, dynamically adapting the operating point. 
The storage system consists of the batteries, connected to the 
DC-bus via a bidirectional DC-DC converter, controlled by a 
dual signal (Duty Cycle BatBus) generated by the energy 
management system. This converter enables the batteries to be 
charged when PV production is in excess, and discharged to 
feed the load when solar production is low. The micro-grid, as 
the main load, is supplied by the DC-bus, whose voltage 
regulation is ensured by the coordinated power management 
through the two converters. This architecture enables 
intelligent, adaptive energy management, making it possible to 
integrate the PV system into a micro-grid, contributing to 
energy flexibility and reducing dependence on the large 
interconnected grid. 
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Figure 1. Proposed power system topoloy. 

A. Modeling of Solar PV 

Several mathematical models of PV panels have been 
developed with the aim of accurately representing their 
electrical properties and operation, which derive directly from 
the physical structure of PV cells as in [14], [15]. In this study, 
the PV model used is based on the methods described in [2]. 
The PV voltage model with variable series resistance is 
connected directly to the DC-bus via a boost converter, thus 
guaranteeing power transfer from the PV string to the DC-bus. 

Table 1 lists the main technical characteristics of the PV 
module and DC-DC boost converter. In addition, the voltage-
current (I-V) properties of the PV panel, and the links with 
power output, can be explained using (1), which summarizes 
the electrostatic behavior of the module under standard 
irradiance and temperature conditions. 
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where Ipv, Vpv, Io and Iph represent PV current, voltage, 
saturation current and photocurrent, respectively. The series 
and parallel resistances are Rp and Rs. Ns and Np are the total 
number of solar modules connected in series and parallel 
respectively. T is the PV surface temperature. n, Eg and k are 
the ideality factor, gap energy and Boltzmann constant, 
respectively. 

TABLE I.  CHARACTERISTICS OF PV PANEL AND BOOST CONVERTER 

Electrical Parameters Values 

Solar PV source 

Pmpp: Maximum power  345 W 

Impp : Maximum Current  9.05 A 

Isc: Short-circuit current  9.52 A 

Vmpp: Maximum voltage 38.14 V 

Voc: Open-circuit Voltage 46.52 V 

ksc: Temperature coefficient of current  +0.049 % /°C 

koc: Temperature coefficient of voltage  -0.315 % /°C 

Nsc: Series cells  72 

Ns,ch: Number of modules in series in a PV string 7 

Np,ch: Number of parallel strings in a PV string 80 

DC-Dc boost converter 

Cout: Capacitor 3300 µF 

L: Inductance  1 mH 

f: Switching frequency  10 kHz 

 

B. Behavior modeling of the batteries  

The batteries are high energy density, quick dynamic 
response, and low rate of self-discharge make it a promising 
technology for storing renewable energy in hybrid systems. As 
depicted in Figure 1, the batteries are connected to the DC-bus 
via a bidirectional DC-DC converter, enabling efficient DC 
power supply to the load. The considered model of the 
batteries is presented by (2) [16], [17]. 

 
( )

0
tB i

bat b b f
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Q Q
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− −
 (2) 

In (2), the open-circuit voltage is denoted by E0. Q is the 
capacity (Ah) of a typical battery. it is the battery’s current 
charge (Ah). The polarization constant is denoted by K. The 
exponential zone amplitude (in V) is shown by Ab. B represents 
the exponential zonetime constant inverse in the exponential 
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zone (Ah−1). The internal resistance (in Ω) is denoted by Rb. 
The battery’s current is denoted by i, and the filtered current 
(in A) by if. 

The battery design was modeled using simulation based on 
the technical specifications listed in Table 2, which also 
includes the parameters of the bidirectional DC-DC converter. 
The model describing the battery’s state of charge SoCbat, is 
evaluated by (3) [17], [18], where SoCbat is the battery state of 
charge (%), Qbat is the maximum battery capacity (Ah). 

 ( )
0

1
100 1

t

bat

bat

batSOC i t dt
Q

=  + 
 
 
 
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The battery’s charge-discharge cycle is mainly determined 
by the amount of power available and the power level required 
by the system. This cycle depends on both available energy 
capacity and demand dynamics. The battery’s State of Charge 
(SoC) limits is used to define operational constraints, framing 
minimum and maximum operating thresholds. These limits are 
used to set safety limits and optimize battery use according to 
the actual power capacities that can be supplied or absorbed at 
any given time, as described in (4), where SoCbatmin and 
SoCbatmin are respectively the state of charge minimum and 
maximum. 

 
min maxbat bat bat

SOC SOC SOC   (4) 

TABLE II.  CHARACTERISTICS OF BATTERY AND BIDIRECTIONAL 

CONVERTER 

Electrical Parameters Values 

Battery source 

Q  648 Ah 

E0 273.2 V 

K  0.0029 

Rb 0.0038 

Ab 21.16 

B  0.094 

SOCbat 50% 

DC-DC bidirectional converter 

Cbus: Capacitor 3300 µF 

Lbat: Inductance  1 mH 

f: Switching frequency  10 kHz 

 

III.  ENERGY MANAGEMENT STRATEGIES 

This section provides an in-depth explanation of the MPPT 
control principle and the energy management strategy 
proposed in this paper. 

A. Principle of MPPT Control for PV 

The photovoltaic (PV) panel, as a generator of electrical 
energy, converts solar irradiance into electricity through a 
direct conversion process. Nevertheless, this conversion is 
subject to the intrinsic variability of solar resources, which 
induces intermittent and non-linear behavior in energy 
production. This characteristic adversely affects the stability 
and performance of the PV system. To mitigate these effects 
and optimize energy capture, the integration of a dedicated 
control system is essential. To do this operation , the MPPT 
algorithms play a crucial role, adapting the operating point of 
the PV grid in real time to extract the maximum available 
power. Several MPPT strategies have been proposed in the 
literature [2], [19], [20], aiming to autonomously control the 
voltage of each PV module, in order to maximize energy 
efficiency under varying sunlight and temperature conditions. 
In the present work, we have opted for the control strategy 
shown in Figure 2 with the integrated Incremental 
Conductance (InC) algorithm, whose principle is illustrated in 

Figure 3, as the method for tracking the maximum power point. 
The InC algorithm is based on an analysis of the power 
gradient as a function of voltage (dP/dV), enabling precise 
estimation of the optimum operating point. In combination 
with the irradiance sensor, it provides the reference current that 
is calculated using (5). 
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Figure 2. Strategy MPPT Control. 
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Figure 3. MPPT InC. 

B. Energy Management Strategy Control (EMSC) 

The main objective of this study is to propose an innovative 
energy management strategy in a micro-grid, based on the use 
of a Proportional-Integral (PI) regulator, allowing for optimal 
energy transfer between the different components of the 
system. A fundamental aspect of this approach lies in 
maintaining the stability of the direct current DC-bus voltage, 
which must remain at a predefined reference level, regardless 
of external disturbances or inherent system uncertainties. The 
stability of this voltage is indeed crucial to ensure the 
performance, reliability, and operational safety of the micro-
grid.  

The proposed method is based on minimizing the error 
between the measured DC bus voltage (Vbus) and the setpoint 
(Vbusref) using a robust and systematic control scheme. The 
micro-grid’s electrical system must constantly adapt to 
variations in the output of PV sources. In this context, battery 
loading becomes essential to avoid system instability in the 
event of production deficits and overproduction, thus ensuring 
balance between supply and demand. 

Given that battery is coupled to the DC-bus via a 
bidirectional DC-DC converter, the PI controller’s main task 
is to drive this converter in buck or boost mode, depending on 
energy requirements. The reference current, generated by the 
PI voltage controller, is used to determine the duty cycle 
applied to the pulse-width modulation (PWM) module, thus 
effectively regulating converter operation. As shown in Figure 
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1, PV energy is mainly directed to the loads on the micro-grid 
and, in the event of excess, to the battery. This strategy ensures 
precise current and voltage regulation, while maintaining an 
overall energy balance. It maximizes the use of solar energy 
while ensuring optimum battery performance during charging 
and discharging. 

The structure of the control circuit is shown in Figure 4, 
and is based on a PI control loop which generates the 
appropriate duty cycle to track Vref (fixed at 1000 V). This 
mechanism allows control of battery charging and discharging 
operations by leaving the battery current free, unlike a cascade 
loop controller where this degree of freedom is restricted. The 
coefficients kp and ki of the proportional-integral controllers for 
PV current and DC bus voltage were determined by (6) to 
optimize the dynamic response of the system. Table 3 shows 
the optimal values found for these parameters. The 
performances obtained were validated by simulation. 
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Figure 4. DC-bus voltage control. 
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 (6) 

The system’s ω bandwidth is restricted to 10% of the 
control frequency [5], [7]. 

TABLE III.  PI CONTROLLER PARAMETERS 

Coefficients Values 

kpi 0.1 

kii 100 

kpv 0.1 

kiv 1 
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Figure 5. Voltage control strategy. 

Figure 5 illustrates the flowchart of the control strategy 
developed. The battery storage system plays a dual role, both 

supplying energy and absorbing excess energy. In stand-alone 
mode, when production exceeds demand, the algorithm 
commands the battery to charge at a rate compatible with its 
safety limits, in particular its maximum permissible current. 
Conversely, in the event of a shortfall in photovoltaic 
production, the battery supplies the energy required to meet 
load demand, until it is completely discharged. The energy 
management system continuously monitors the battery’s 
storage status to ensure safe and efficient operation of the 
micro-grid. 

IV. SIMULATION RESULTS AND DISCUSSION 

Following the design of the photovoltaic system, storage 
device and control strategy, Matlab/Simulink software was 
used to model and simulate the hybrid power system, with a 
view to validating the effectiveness of the proposed energy 
management strategy. 

A controlled DC voltage source has been adopted to 
represent the main DC bus, enabling analysis of system 
behavior in the presence of line or load disturbances. The 
simulated weather conditions, illustrated in Figure 6, include 
the evolution of solar radiation (in W/m²), ambient temperature 
(in °C) during and the load demanded over a period of 1000 
hours. These parameters have a direct influence on the energy 
output of the photovoltaic modules. The simulated climate 
profile incorporates realistic scenarios, ranging from optimal 
sunshine to cloudy episodes and sunset, to assess the 
robustness of the control strategy in the face of environmental 
variations, an essential criterion in micro-grid applications. 

 

 

Figure 6. Variations in experimental weather conditions, solar radiation, 

temperature and load. 

The curves in Figure 7 illustrate the temporal evolution of 
the voltage (Vpv) and current (Ipv) supplied by the photovoltaic 
modules. It can be seen that the system efficiently follows 
variations in irradiation and temperature, ensuring optimum 
production. This demonstrates the ability of the MPPT 
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algorithm and its control strategy to dynamically adapt the 
operating point of the PV generator. 

 

Figure 7. Waveform of the current and voltage on the PV side. 

The result of the waveforms shown in the Figure 8 
compares the current measured at the output of the 
photovoltaic array with the reference current generated by the 
MPPT controller. The precise alignment between the two 
curves demonstrates the performance of the incremental 
conductance algorithm, which rapidly adjusts the reference 
current in response to changes in sunlight, ensuring high 
energy efficiency.  

 

Figure 8. Waveform of the current and its reference on the PV side. 

The DC bus voltage is regulated around a setpoint of 1000 
V. The evolution of its result over the course of the experiment 
is illustrated in Figure 9. Thanks to the PI controller and the 
control strategy, effective regulation is achieved even in the 
presence of disturbances on the load or generation side. The 
stability of this voltage is essential to ensure the smooth 
operation of all equipment interacting in the system, 
particularly the micro-grid receivers. 

The waveform results shown in Figure 10 demonstrate the 
battery’s response to system requirements. Current variations 
indicate the charging and discharging phases in relation to 
solar energy availability and load demand. Voltage remains 
within nominal ranges, reflecting the correct sizing of the bi-
directional converter and the reliability of the management 
system. 

 

Figure 9. DC-bus voltage. 

 

 

Figure 10. Waveform of the voltage and current on the battery side. 

Figure 10 shows the state of charge of the battery pack. It 
can be seen that during the period of overproduction, the 
battery’s state of charge increases due to the excess solar 
energy production, conversely, when we are in deficit of 
production, the battery contributes by discharging to ensure the 
balance between supply and demand. This confirms that the 
proposed DC bus voltage control strategy responds effectively 
to system constraints, with better performance in terms of 
stability. 

The results in Figure 9 and Figure 10 confirm that the 
proposed DC bus voltage control strategy effectively meets the 
system’s constraints, with better performance in terms of 
stability. 

The resulting waveforms in Figure 11 illustrate the power 
flows involved in the system. We can see how the energy 
produced by the PV is shared between the load (micro-grid) 
and the battery. When PV energy is insufficient, the battery 
takes over. The EMSC thus ensures efficient dynamic 
management, avoiding losses and maintaining energy balance. 
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Figure 11. Waveform of the power. 

V. CONCLUSION AND FUTURE WORK 

In this paper, a control and energy management strategy for 
a stand-alone PV–battery hybrid micro-grid has been 
proposed, specifically designed for rural electrification in 
Guinea. By combining an Incremental Conductance MPPT 
algorithm with Proportional–Integral controllers, the system 
ensures both maximum photovoltaic energy extraction and 
robust DC-bus voltage regulation. The proposed approach 
enables efficient coordination between PV generation and 
battery storage, thereby improving energy utilization, 
enhancing system stability, and reducing current stress on the 
load. Simulation results in Matlab/Simulink under realistic 
irradiance and load conditions confirm the effectiveness of the 
proposed strategy, demonstrating stable DC-bus operation at 
1000 V, optimized battery charge/discharge management, and 
improved overall efficiency of the micro-grid. These findings 
indicate that the proposed control system is well suited for off-
grid rural applications where reliability and energy autonomy 
are critical. Future work will focus on experimental validation 
using a physical micro-grid test bench, as well as the 
integration of additional renewable sources and advanced 
predictive energy management techniques to further enhance 
system resilience and scalability. 
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Abstract— This paper presents evaluation of temperature 

variations on electric behavior of iron phosphate batteries. 

Indeed, the aim of this study is to show the effects of operating 

temperature on the series resistances and the capacities of the 

electrical model. More precisely, the paper's contribution 

focuses on the study of the degradation of lithium iron 

phosphate batteries parameters as a function of the temperature 

for increasing and decreasing phases of temperature. To 

determine the batteries, charge and discharge capacities and 

series resistance, experimental characterization is carried out by 

using different predetermined protocols. That leads to 

determination of electrical model parameters under various 

temperature conditions. 

Keywords— Lithium iron phosphate batteries; Electrical 

characterization; Temperature; Series resistance; Battery 

capacity. 

I. INTRODUCTION  

The energy crisis underlies many of the challenges and 
opportunities facing the world today. All energy production 
sources have drawbacks, including air pollution, accidents, 
and greenhouse gas emissions [1]. Renewable energy sources 
are emerging as serious contenders for fossil fuel substitution, 
helping to reduce greenhouse gas emissions. In a global 
context marked by ambitious renewable energy targets, their 
deployment has intensified across industrial, commercial, 
public, and residential sectors [2][3]. However, the 
intermittent nature of these resources, heavily dependent on 
weather conditions and changing seasons, underscores the 
crucial role of efficient energy storage systems in promoting 
the widespread adoption of renewable energy technologies in 
homes [2]. Storage systems now play a central role in 
integrating renewable energy sources into the traditional 
energy market while ensuring a stable and reliable power 
supply in smart grids [4]. 

Of all energy storage technologies, lithium batteries 
(LIBs) are the most widely used in industry today. They serve 
a broad range of applications, from smartphones to aerospace 
and electric vehicles [5]-[7]. Among the various types, the 
lithium iron phosphate (LiFePO4, LFP) battery is particularly 
popular due to its thermal stability and low cost compared to 
other technologies.  

Despite their central role, LIBs face several limitations and 
constraints. Numerous studies have demonstrated that 
temperature plays a critical role in the aging and failure of 
LIBs [8][9]. These effects are often characterized by failures 
such as thermal runaway and aging, which are based on 
variations in the components' capacitance and internal 
resistances. Many studies have evaluated the impact of 

operating temperature on battery series resistances and 
capacity, primarily focusing on test protocols involving 
charge and discharge cycles. 

In the work conducted by Yue et al. [10], tests were carried 
out using three types of batteries over a wide temperature 
range, from -50°C to 50°C. The results indicate that ohmic 
resistance increases significantly as the temperature decreases, 
particularly below -30°C, a phenomenon attributed to the 
increased viscosity of the electrolyte. Among the technologies 
evaluated, LFP batteries exhibited the lowest resistance and 
were the least sensitive to temperature variations. 
 In another study [11], the authors focused on 
characterizing and modeling the aging of LFP batteries under 
the combined effects of temperature and DC current ripple 
frequency. The tests were based on experimental data 
covering 4,800 cycles, with frequency variations from 50 to 
500 mHz and temperature variations from 10 to 80°C. The 
results reveal that series resistance increases with frequency 
but decreases with rising temperature. Conversely, energy 
capacity increases with both temperature and frequency. 

In [12], Ahmed et al. studied two types of batteries at 

different temperatures, demonstrating that cell resistance 

increases significantly at low temperatures. Their analysis also 

revealed that the interfacial resistance of the anode is nearly 

twice that of the cathode, highlighting its predominant role in 

ohmic losses. 

In [13], the research investigates the influence of cathode 

material and temperature on the discharge capacity of LIBs. 

They found that as temperature rises, electrolytic activity 

changes, leading to an initial increase followed by a decrease 

in discharge capacity. For LFP technology, correlations have 

been established between capacity, internal resistance, 

ambient temperature, and state of charge. At extreme 

temperatures (T ≥ 50°C or T ≤ 20°C), capacity decreases. 

However, as long as the temperature remains above 0°C, 

capacity stays above 93.4%, before dropping significantly 

below this threshold. Previous work [14][15]  has highlighted 

the contribution of temperature to battery aging, with its 

effects often studied alongside other factors, such as 

charge/discharge current or State of Charge (SoC).  

In this paper, we propose an analysis focused exclusively 

on the influence of temperature on ohmic resistance as well as 

on charge and discharge capacities. A comparative approach 

is adopted between two thermal profiles: one with increasing 

temperature and the other with decreasing temperature. 
The structure of this paper is designed to present the 

experimental approach and the results obtained in a 
progressive and methodical manner. Section II details the 
experimental setup and the general conditions under which the 
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tests were conducted, ensuring the reproducibility and 
reliability of the measurements. Section III outlines the 
methodology used to estimate the main electrical parameters 
of LIBs, specifically series resistance and capacity, from the 
experimental data. Section IV presents the results obtained 
and provides an in-depth analysis of the observed effects, 
highlighting the correlations between the measured 
parameters and the test conditions. Finally, Section V 
summarizes the main conclusions of the study and suggests 
perspectives for future work in the modeling and 
characterization of electrochemical storage systems. 

II. DESCRIPTION OF EXPERIMENTAL SETUP AND 

GENERAL TESTS CONDITIONS 

A. Description of the test environment: 

The experimental test bench used in this study is illustrated 
in Figure 1 and comprises a climatic chamber (model ARS-
0220), a battery cycler (BT2000/ARBIN BT-ML) and a real-
time control system (MITS-PRO). The NI cDAQ-9174 
module acquires and records the temperature, the batteries 
currents and the cells terminal voltages. 

 
 

 

Figure 1.  Test bench: (a) Computer running MITS-Pro software, (b) 

Battery cycler, (c) Climatic chamber (d) Battery pack. 

The batteries are subjected to thermal stress during the 
charging and discharging phases, imposed by a 120-liter 
environmental chamber with an operating range from -75°C 
to 180°C. The test bench is controlled via an RS232 interface, 
allowing for synchronization of events between the BT2000 
cycler and the environmental chamber. 

Tests were conducted on LF50K cells (3.2V, 50Ah), 
which have a nominal capacity of 50 Ah. The proposed 
analysis method is generic and can be adapted to other battery 
technologies without modification of the experimental 
protocol, provided the temperature ranges recommended by 
manufacturers are adhered to. 

Tests consist of periodic voltage cycles applied to the 
batteries, ranging from 2.5 V to 3.5 V and vice versa, under 
the influence of either fluctuating or constant DC current. 
These charge and discharge cycles are continuously applied, 
with no interruptions between different phases. 

To ensure accurate estimation of the battery’s capacity and 

its series resistance, the measurements are carried out 

according to the following protocols:  

- Temperatures are measured using high-precision 

sensors (error ≤ ±0.1%). 

- Voltages are measured directly at the cell terminals, 

thus avoiding disturbances induced by power cables. 

B. Test protocol 

It is crucial to design an accurate test protocol; otherwise, 
incorrect results may arise. In our study, we developed a 
characterization algorithm to determine the battery's ampere-
hour capacity (Q[Ah]) and series resistance. To ensure that the 
tests are conducted properly and that the correct parameters 
are accurately collected, we designed an algorithm that 
incorporates all elements of the protocol. This algorithm is 
tailored to perform two types of tests: 

1) A Constant Current/Constant Voltage (CCCV) 
charging method to charge and discharge the batteries. 

2) In the same program, a second test allows us to 
determine the series resistance. 

Both algorithm tests were implemented through MITS-

PRO, an ARBIN Group data acquisition device used as a 

communication interface, as shown in Figure 1. 

Measurements are performed with a sampling time of one 

point per second for the capacity and one point per 0.001 

second for the series resistance. 

The characterization protocol was studied over an 

operating temperature range of [-5°C to 55°C] with a charging 

current of 32 A and a discharging current of -32 A. The two 

experiments were conducted as follows: 
First, the battery is subjected to the test temperature for one 

hour to allow it to equilibrate with the temperature of the 
climatic chamber. It is then charged with a constant positive 
current until the voltage at its terminals reaches the maximum 
set voltage of 3.55 V, which has been established for both 
testing purposes and the safety of the module. 

 Before discharging, the battery is allowed to rest for 30 
seconds. A negative current is then applied to discharge the 
battery until its voltage reaches 2.5 V, the minimum test 
voltage. At the end of the characterization test, a rest period of 
2 hours is set to allow the battery voltage to stabilize. This 
stabilization period enables us to determine the capacity and 
resistance of the electrolyte, which are essential for calculating 
the time constant. Figure 2 provides an illustration of the 
general protocol of the tests. 

As illustrated in Figure 2 and in accordance with the 
protocol defined in the test algorithm, three distinct phases can 
be identified, each corresponding to a specific stage in the 
battery characterization process. 

Phase A represents the thermal stabilization period. 
During this phase, the battery is placed in the climate chamber 
and maintained at the set temperature for a sufficient duration 
to ensure thermal homogeneity within the cell. In our protocol, 
this duration is set to one hour, allowing the battery to reach 
thermal equilibrium with the environment, thereby 
guaranteeing the reliability of subsequent measurements. 

Phase B corresponds to a complete battery 
charge/discharge cycle. The exact sequence (charge followed 
by discharge or vice versa) is determined by the algorithm's 
internal logic. The total duration of this cycle is highly 
dependent on ambient temperature, as the electrochemical 
properties of the battery, such as capacity and internal 
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resistance, vary significantly with temperature. This step is 
essential for assessing the battery's energy behavior under 
different operating conditions. 

Phase C is dedicated to determining the battery's series 
resistance. Unlike the previous phase, this stage does not 
require a long-term test. It relies on the application of a 
constant charging current for a short period, followed by a rest 
phase. In our study, a constant current was applied for 10 
minutes, followed by a 5-minute rest period between stages. 
This method allows us to measure series resistance efficiently 
and accurately, without placing excessive strain on the battery. 

 

 
Figure 2. General protocol of the tests. 

The sequence of these three phases constitutes the 
characterization protocol for obtaining the parameters needed 
to analyze the battery's dynamic behavior. 

To determine series resistance, a short-term test was 
carried out. A constant charging current of 32 A was first 
applied for a period of 10 minutes. This was followed by a rest 
period of 5 minutes, before reversing the current to carry out 
the discharge phase under the same conditions. 

 

III. CALCULATION OF BATTERY ELECTRICAL 

PARAMETERS 

A. Behavior model of the battery 

 Numerous battery models have been proposed in the 
literature to simulate their dynamic behavior. Most of these 
models are based on equivalent fixed-parameter electrical 
circuits, typically composed of constant resistances and 
capacitances [11][14]. However, such models may be 
insufficient to accurately represent the actual behavior of 
batteries, particularly when their characteristics—such as 
internal resistance, capacity, or SoC—vary over time.  

A more realistic model of battery dynamic behavior can be 
achieved by considering the dependence of these parameters 
on SoC, as illustrated in Figure 3. Unfortunately, most existing 
models neglect the evolution of these parameters as a function 
of temperature during charge and discharge cycles, which 
limits their accuracy during prolonged simulations or under 
variable stress conditions.  

 
Figure 3. Basic model of the LFP-battery. 

The time constants RSTCST and RLTCLT are estimated based 
on a detailed analysis of the transient evolution of the battery 
terminal voltage, conducted immediately after the end of a 
charging phase or at the very beginning of a discharging 
phase. This approach accurately captures the dynamic 
response of the battery under these specific conditions, 
highlighting the resistive and capacitive components 
associated with various internal electrochemical phenomena 
[16][17]. 

B. Battery’s parameters identification 

To determine the parameters of the batteries, it is first 
necessary to extract the data recorded by the ARBIN system's 
acquisition software. Among the collected data, a column 
indicating capacity allows for the direct identification of the 
batteries' capacity in the table provided by the software. This 
section presents the method for calculating series resistance 
from experimental data (current and voltage) obtained during 
charging and discharging operations.  

If the battery does not exhibit hysteresis behavior, the 
series resistance can be estimated based solely on the 
experimental data from charging, as the series resistance 
during discharging will be identical to that obtained during 
charging. To estimate series resistance from the charging 
operations, the experimental voltage and current data shown 
in Figure 4, combined with Equation 1, are used. 

Conversely, if the battery exhibits hysteresis behavior, the 
series resistance must be estimated separately using the charge 
and discharge data presented in Figures 4 and 5, respectively. 
Thus, the voltage drops obtained from these figures, noted 
ΔVRC and ΔVRD, respectively, can be integrated into Equation 
1 to calculate the series resistance corresponding to the 
battery's charge and discharge phases. The series resistance 
calculated during charging and discharging operations with a 
constant current of ±50 A for each temperature is shown in 
Figures 4 and 5.   

 
Figure 4. Voltage and current obtained during a charge operation with a 

constant current of Ibat = 50A. 
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Figure 5. Voltage and current obtained during a discharge operation with a 

constant current of Ibat = -50A. 

           𝑅𝑖 =  {
𝑅𝐶 =  

∆ 𝑉𝑅𝐶

𝐼𝑏𝑎𝑡
    𝑖𝑓  𝐼𝑏𝑎𝑡  > 0

𝑅𝐷 =  
∆ 𝑉𝑅𝐷

𝐼𝑏𝑎𝑡
     𝑖𝑓   𝐼𝑏𝑎𝑡  < 0 

            (1) 

Capacity identification is based on experimental battery 
voltage and current data, as a function of charging or 
discharging time. In order to consider into account any 
differences in parameters between charging and discharging 
phases, parameter identification must be separately carried out 
for each operating mode. Figure 6 illustrates a single charge 
case based on experimental data obtained by measuring 
voltage, current and response time. 

 
Figure 6. Calculation curve for load capacity/discharge 

Battery capacities during charging Qcell_ch and discharging 
Qcell_di are determined using Equation 2. 

                      𝑄𝑐𝑒𝑙𝑙𝑐ℎ/𝑑𝑖 ≈  ∫ 𝐼𝑏𝑎𝑡 . 𝑑𝑡
𝜏2

𝜏1
                   (2) 

Where τ1 corresponds to the start time of 
charging/discharging, and τ2 to the final time of this operation. 

IV. RESULTS AND DISCUSSION 

After identifying capacity values at different temperatures, 

a comparative analysis was carried out to assess the thermal 

effect on the battery's electrochemical behavior. Figure 7 

illustrates the evolution of capacities in charge and discharge, 

as a function of the temperature, considered in both increasing 

and decreasing scenario. Observation of the curves reveals a 

tendency for increasing the capacity as temperature rises. This 

behavior can be explained by improved electrochemical 

kinetics. This trend is clearly visible in Figure 7, which shows 

that the capacity extracted is higher at higher temperatures, 

whether charging or discharging. Conversely, a decrease in 

temperature is accompanied by a significant drop in measured 

capacities, reflecting a marked thermal sensitivity of battery’s 

performance. 

 
Figure 7. Battery charge and discharge capacity at rising and falling 

temperatures. 

 
Figure 8. Battery charge and discharge series resistance at rising and falling 

temperatures 

      The carried-out calculations identify two values for series 

resistance, corresponding to the charging and the discharging 

phases, under the same temperature conditions as those used 
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in the previous test. The analysis of the results, illustrated in 

Figure 8, reveals a tendency for series resistance to decrease 

with increasing temperature, reflecting the classic thermal 

behavior of electrochemical materials. This can be explained 

by a reduction in the cell's internal resistivity at high 

temperatures, facilitating charge transport. However, it is also 

observed that, for each given temperature, the resistance 

values obtained in charge and discharge are identical. This 

symmetrical behavior suggests the absence of any significant 

hysteresis effect on series resistance under the considered 

experimental conditions. 

V. CONCLUSION AND FUTURE WORK 

The analysis of the experimental curves for series 
resistance and capacity, expressed in ampere-hours (Ah), 
clearly and unambiguously demonstrates the significant 
impact of the temperature on the electrical behavior of the 
battery. In particular, it is observed that at low temperatures, 
the battery's performance deteriorates considerably. This 
degradation is reflected in a sharp increase in internal 
resistance, indicating a reduction in ionic conductivity within 
the electrolyte, as well as a substantial decrease in the 
available capacity. In fact, under such conditions, the 
measured capacity remains well below the nominal value 
specified by the manufacturer, failing to reach even half of it. 
These findings confirm that low temperatures directly affect 
the battery’s internal electrochemical processes, thereby 
limiting its energy efficiency and its ability to deliver adequate 
current during operation. Consequently, these results highlight 
the critical importance of accounting for temperature effects 
in the modeling, thermal management, and optimal operation 
of electrochemical energy storage systems. 
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