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GPTMB 2025

Forward

The Second International Conference on Generative Pre-trained Transformer Models and Beyond
(GPTMB 2025), held on July 6th- 10th, 2025 focused on advanced topics on GPTM and AI/Deep Learning
and target the challenges of using at large scale of GPTM-based tools. The event considers the research
works and the current challenges including input data, process truthfulness, impact on existing human
perception, and lessons learned from experiments.

The advances on Machine Learning (ML) and Deep Learning (DL) change the nature of
summarization and text generation. GPTM (Generative Pre-trained Transformer Models) are ML models
that use DL techniques to generate natural language text. As for any model, the accuracy of the output
is driven by the quality of input data (sensitivity, specificity) and the processing mechanisms.

The current achievements were warmly received by industrial media corporations and scientist
communities. At the same time several aspects related to trust, bias, liability, and regulations because of
the high probability of spreading untrue and difficultly to be cross-checked output.

We take here the opportunity to warmly thank all the members of the GPTMB 2025 technical
program committee, as well as all the reviewers. The creation of such a high quality conference program
would not have been possible without their involvement. We also kindly thank all the authors who
dedicated much of their time and effort to contribute to GPTMB 2025. We truly believe that, thanks to
all these efforts, the final conference program consisted of top quality contributions.

We also thank the members of the GPTMB 2025 organizing committee for their help in handling the
logistics and for their work that made this professional meeting a success.

We hope that GPTMB 2025 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in the area of large language
models. We also hope that Venice provided a pleasant environment during the conference and
everyone saved some time to enjoy the historic charm of the city.
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Designing A New Graduate Course on Artificial Intelligence for Cybersecurity

Ping Wang 

Department of Computer and Information Systems 

Robert Morris University 

Pittsburgh, PA, USA 

wangp@rmu.edu 

Abstract — Artificial intelligence (AI) technologies and 

solutions are increasingly integrated into various applications and 

domains of studies. Generative AI (Gen AI) also has significant 

impacts and implications for the fast-growing field of 

Cybersecurity and cybersecurity education for workforce 

development. This research proposes the design of a new graduate 

master’s level credit course to integrate AI into cybersecurity 

education. This new course explores the evolving impacts of 

artificial intelligence on the cybersecurity ecosystem. The course 

is intended for students to learn to identify and evaluate AI-

powered cyber threats and attacks and their implications as well 

as to utilize AI-powered systems for enhancing cyber threat 

detection, incident response, security automation, vulnerability 

analytics, and security risk assessment. The proposed course 

design will summarize initial suggestions of main topics, outcomes, 

activities, and assessment criteria for implementation.  

Keywords – AI; cybersecurity; vulnerability; learning outcomes; 

assessment. 

I. INTRODUCTION  

Artificial intelligence (AI) is a fast-growing, promising, 
inter-disciplinary and comprehensive technology solution 
supported by advanced computing, machine learning, data and 
knowledge representation, robotics, and optimization. With the 
strong potential to increase automation, efficiency and 
productivity, Generative AI (Gen AI) is increasingly adopted 
and used in various industries and fields of studies including 
Cybersecurity. Cybersecurity is also an increasingly critical area 
for national security and economic prosperity in the digital age 
due to rising and evolving cyber threats and risks. As a double-
edged sword, Gen AI powered tools and solutions present 
opportunities for more efficient and effective cybersecurity 
measures such as in network traffic analysis and in cyber threat 
detection, risk assessment, and incident response, along with 
risks and challenges for cybersecurity in the case of malicious 
use of AI for more devasting cyber-attacks [1]-[3].   

There are strong short-term and long-term demands for 
skilled workers in Cybersecurity around the world and 
especially in the United States that are projected to far outpace 
the average national job growth in the next decade [4][5]. Higher 
education is the main avenue expected for providing the pipeline 
of qualified professionals to meet the growing cybersecurity 
workforce demand. The U.S. National Centers of Academic 
Excellence in Cybersecurity (NCAE-C) designation program 
jointly sponsored by the National Security Agency (NSA) and 
Department of Homeland Security (DHS) is a national standard 
for reviewing, certifying, and maintaining high quality of 
cybersecurity education programs with rigorous and consistent 
requirements for program evaluation as well as up-to-date 

knowledge units (KUs) aligned to cybersecurity knowledge, 
skills, and abilities (KSAs) [6][7]. A recent global cybersecurity 
workforce study report shows that cybersecurity organizations 
and professionals need to keep up with AI as a major 
technology innovation in order to maintain and improve 
their efficiency and agility [8]. Therefore, cybersecurity 
education programs need to incorporate AI in the curriculum 
and course design. This study will briefly review relevant 
background and summarize the initial design of the 
proposed graduate AI for Cybersecurity course.  

II. BACKGROUND 

     Gen AI solutions have the capacity to help cybersecurity 

professionals to detect, analyze, and defend against cyber 

threats and attacks. Specific to cybersecurity, large language 

models (LLMs) and generative security models of Gen AI bring 

the major benefits of early threat detection, efficiency and 

accuracy in vulnerability and threat analysis and risk 

assessment, automated incident response, preventive and 

secure software development, as well as efficient training of 

cybersecurity professionals [9][10]. Recent research on AI for 

Cybersecurity shows that Gen AI applications have the capacity 

and strengths to automate repetitive security tasks, speed up 

cyber threat detection, penetration testing and response, and 

improve the accuracy of countermeasures to address cyber 

vulnerabilities and risks [11]-[13]. Therefore, a new course on 

AI for Cybersecurity should cover the security benefits of Gen 

AI and its applications and models.  

 

     Gen AI can be a double-edged sword to Cybersecurity, 

which also brings risks, challenges, and limitations for 

cybersecurity solutions. Unauthorized and malicious users 

could use AI tools to generate code and launch more powerful 

and devastating attacks and exploitations targeting known 

vulnerabilities [1][14]. For legitimate users, Gen AI 

applications, such as ChatGPT, may provide misleading results 

or “hallucinations”, which is a substantial limitation [14][15]. 

In addition, there are concerns with the security and privacy 

risks of Gen AI applications that may disclose private and 

confidential user data on public domains [3][14][16]. 

Therefore, a new course on AI for Cybersecurity should also 

reveal and address the risks and limitations of AI models and 

applications.  

 

     For pedagogical and educational effectiveness, a new course 

design should reflect the cognitive development process of 

different levels or stages of learning objectives in the updated 
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Bloom’s taxonomy, which lays out the following 6 levels of 

progressive learning objectives and achievements [17]: 

 

• Recall information, facts, terms, and basic concepts 

• Describe and interpret facts and ideas to demonstrate 

comprehension 

• Apply knowledge and techniques learned to solve 

problems in new situations  

• Analyze information to identify causes, motives, and 

relationships  

• Evaluate information or ideas based on certain criteria to 

make judgements 

• Develop and propose new or alternative solutions 

III. PROPOSAL 

The proposed new course is a 3-credit course for a master’s 
degree program in applied AI at an NCAE-C designated 
university in the United States. The new course focuses on the 
evolving impacts of AI on the cybersecurity landscape and 
teaches students to identify and evaluate AI-powered cyber risks 
and solutions. The specific learning outcomes are:  

• Identify and describe AI-powered cyber threats and 

attacks  

• Evaluate AI-powered cyber threats and attacks and 

security implications and solutions 

• Identify and describe positive impacts of AI in 

cybersecurity  

• Identify and apply AI-driven solutions, techniques, and 

tools for cybersecurity  

• Evaluate secure development practices for protecting 

applications in the age of AI  

• Assess and evaluate AI-powered cybersecurity risks and 

solutions.   

For a graduate level course, it is important include more 

advanced level learning objectives of analysis, evaluation, and 

solution development in Bloom’s taxonomy.  

 

A variety of teaching and learning activities are suggested 

for this new course, including presentations, hands-on demos, 

discussions, and a comprehensive project assignment for 

problem solving. The project assignment includes progressive 

development of an initial project plan involving identification 

of AI-related cyber threats and risks, a midterm progress report, 

and a final report and presentation that are submitted for 

grading and assessment. The main assessment criteria for the 

project include problem description, analysis, and evaluation 

and discussion of proposed solutions, tools, and methods. 

Student presentations demonstrate their problem solving skills.  

IV. CONCLUSION  
This abstract presents preliminary research on proposing a 

new graduate course on AI for Cybersecurity. Future research 

will report the actual implementation, empirical data, and areas 

of improvements identified for the course design. 
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Abstract—Retrieval-Augmented Generation (RAG) systems are
relevant for improving factuality in Large Language Model (LLM)
outputs, yet their evaluation remains challenging due to their
multi-component architecture. This paper introduces plot-RAG
(pRAG), a novel evaluation framework that visualizes component-
level performance in RAG systems, providing granular insights
into retrieval and re-ranking processes, without requiring resource-
intensive LLM-based evaluation. The effectiveness of pRAG is
demonstrated by analyzing a real-world technical documentation
question-answering system. Additionally, the methodology for gen-
erating and validating synthetic evaluation datasets is presented,
showing they can match or exceed manually prepared datasets
for RAG assessment. The experiments confirm that the retrieval
component represents the most critical performance bottleneck
in RAG systems, and a formula is provided to determine the
optimal retrieval size based on response time requirements. These
contributions enable a more efficient and targeted evaluation
of RAG systems, particularly in specialized domains where the
creation of ground truth data typically requires substantial expert
involvement.

Index Terms—retrieval-augmented generation; evaluation frame-
work; synthetic datasets; component-level analysis.

I. INTRODUCTION

Retrieval-Augmented Generation (RAG) systems are im-
portant for improving the factuality and reliability of Large
Language Model (LLM) outputs, especially in domain-specific
applications. Despite their adoption, evaluating these systems
remains challenging, particularly when considering their multi-
component nature and varying performance across different
use cases [1].

A. Motivation and Problem Statement

The evaluation of RAG systems faces several challenges
that current LLM approaches fail to adequately address. While
LLMs alone can be evaluated using established benchmarks,
RAG systems introduce additional complexities due to their
multi-stage architecture spanning document processing, re-
trieval, re-ranking, and generation components [2][3]. As
noted by [2], dynamic data environments further complicate
evaluation, as the underlying knowledge sources often change
over time.

Current evaluation frameworks typically produce aggregate
metrics that mask the performance of individual components,
making it difficult to identify specific bottlenecks or op-
timization opportunities [2][4]. Manual evaluation methods
are becoming increasingly inefficient, necessitating automated
approaches that can scale with system complexity. Additionally,
temporal aspects of RAG performance — such as latency
variations across different technical configurations — are rarely

incorporated into evaluation methodologies despite their critical
importance in real-world applications [2][5].

Established benchmark datasets like HotpotQA [6] and
MS MARCO [7] have proven inadequate for evaluating
modern RAG systems [8], as they fail to capture the nuanced
retrieval and generation scenarios encountered in specialized
domains. The availability of ground truth data will become
rare in the future [9]. While synthetic dataset generation
offers promising alternatives [10], systematic approaches for
validating these datasets and incorporating them into holistic
evaluation frameworks remain underdeveloped.

B. Research Gap

Despite the proliferation of evaluation methods for RAG
systems, major gaps persist in current approaches. Existing
frameworks like RAGAS [11] rarely provide granular insights
into component-level performance, instead focusing on end-to-
end evaluation that obscures the contribution of individual
technical elements [2][3]. As [12] observes, the various
technical alternatives available at each stage of the RAG
pipeline create a complex evaluation space that remains largely
unexplored. [13] mentioned that this gap cannot be closed by
asking LLMs for reasoning.

The role of re-ranking models [14][15] and hybrid retrieval
techniques like the combination of embeddings and BM25
[16] in RAG performance is inadequately addressed by current
evaluation approaches. Furthermore, while the importance of
synthetic datasets for evaluation is increasingly recognized [17],
methodologies for generating and validating these datasets
remain ad-hoc and not standardized. These gaps demand
a comprehensive evaluation framework that addresses both
the technical complexity of RAG systems and the practical
challenges of meaningful assessment [10].

C. Research Questions

This paper addresses the primary research question: “Which
technical concepts are necessary to successfully evaluate RAG
systems?”. Secondary research questions are investigated to
explore this question more comprehensively:

1) “How can we effectively evaluate the retrieval component
in RAG systems?”

2) “How can synthetic datasets be efficiently generated and
validated for RAG evaluation?”

3) “What approaches show promise for evaluating the entire
RAG pipeline?”
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D. Contributions

This paper makes several contributions to the field of RAG
system evaluation:
• The introduction of a methodology for generating and vali-

dating synthetic evaluation datasets that can scale efficiently
across domains and use cases.

• The development of a visualization approach (pRAG) for
assessing retrieval component performance that incorporates
both quality metrics and temporal analysis.

• The provision of empirical findings from applying the frame-
work to a real-world RAG system designed for technical
documentation question answering.
The framework addresses critical gaps in existing evaluation

approaches by offering a more granular, component-specific as-
sessment methodology that can adapt to the evolving landscape
of RAG system design.

E. Paper Structure

The remainder of this paper is organized as follows: Section
II describes the methodology, including the architecture of the
evaluation framework, synthetic dataset generation approach,
and component-specific assessment techniques. Section III
presents the results of applying the framework to a case
study RAG system and discusses key findings and implications.
Finally, Section IV concludes the paper and outlines directions
for future work.

II. METHODOLOGY

A. RAG System Architecture

The RAG system employs a microservice-based architecture
designed for scalability and modular development. The system
processes user queries through these key components: When
a user submits a query via the frontend, the middleware
API coordinates the workflow. First, the pre-processing API
generates keywords and embeddings from the query for
semantic comparison. These are passed to a vector handling
API that performs hybrid retrieval, combining BM25 [18],
keyword matching, and embedding-based semantic search
through paradeDB, a PostgreSQL extension supporting vector
operations.

Retrieved contexts and metadata flow back to the middleware
API, which forwards them to the pre-processing API where
a cross-encoder re-ranker prioritizes the most semantically
relevant documents. Finally, these re-ranked contexts together
with an initial prompt are provided to a LLM that generates
a comprehensive response based on the available information
and returns it to the user via the frontend.

B. System Implementation

The system is deployed on a Kubernetes cluster with the fron-
tend developed in React and backend services in Python. For
the knowledge base, 50 technical documents from HORSCH
machinery manuals using Azure Document Intelligence are
processed to convert PDF content into processable text.

For embedding generation, the Hugging Face multi-qa-
MiniLM-L6-cos-v1 Sentence Transformer model [19] was

implemented, selected for its balance of English language
capabilities and computational efficiency. Documents were
chunked to match the model’s maximum token length and
stored with machine-specific metadata.

We evaluated two cross-encoder models for re-ranking:
msmarco-MiniLM-L6-en-dev1 [20] and ms-marco-MiniLM-
L-6-v2 [21], which reorder retrieved contexts based on query
relevance. For response generation, we utilized ChatGPT-
3.5-Turbo-0125 with crafted prompts to ensure responses
were relevant, accurate, and focused on HORSCH machinery
documentation.

Performance timing was implemented using Python’s time
module, capturing execution duration for each component to
enable system optimization.

C. plot-RAG (pRAG): A Novel Evaluation Framework
1) Motivation and Design: A key contribution of this work

is pRAG, a novel visualization and evaluation framework specif-
ically designed to address the lack of quantitative, interpretable
evaluation methods for RAG systems. pRAG provides granular
insights into the performance of individual RAG components,
particularly the critical retrieval and re-ranking stages. This
contrasts with current evaluation approaches, which often focus
on end-to-end performance or rely on limited metrics like recall
and precision, which are susceptible to outliers [22].

2) Visualization Components: The pRAG visualization (see
Figure 1) displays multiple dimensions of system performance
simultaneously:
• Context position tracking: Visualizes where relevant con-

texts from ground truth appear in both retrieval and re-ranked
results (blue numbers).

• Retrieval method comparison: Distinguishes between
embedding-based and BM25 keyword-based retrievals (y-
axis).

• Ground truth distribution: Shows distances between
relevant contexts in the document corpus (green numbers).

• Quantitative metrics overlay: Presents calculated perfor-
mance metrics alongside visual representations (top right
corner).

• Right contexts quantity: Number of relevant contexts from
ground truth at this position based on the entire evaluated
data set (numbers in parentheses).
3) Metrics Integration: pRAG calculates and visualizes

several critical metrics:
• Specialized recall metrics:

– Recall Emb: Effectiveness of embedding-based retrieval
– Recall BM25: Performance of keyword-based retrieval
– Recall Full Retrieval: Combined unique contexts retrieval

rate
– Recall Reranking from Retrieval: Preservation of relevant

contexts after re-ranking
• Ranking quality: Normalized Discounted Cumulative Gain

(NDCG) calculation highlighting the importance of position-
ing relevant information earlier in results

• Retrieval optimization: Recommended retrieval sizes for
both embedding and BM25 components

4Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-287-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GPTMB 2025 : The Second International Conference on Generative Pre-trained Transformer Models and Beyond

                             9 / 27



4) Actionable Insights: The pRAG framework provides
actionable insights by visually exposing:

• Which retrieval method (BM25 or embeddings) more effec-
tively captures relevant contexts

• How effectively the re-ranker prioritizes relevant contexts
• Optimal retrieval configuration parameters
• Performance bottlenecks in specific components

This visualization approach enables the identification of
system weaknesses without requiring extensive manual analysis,
making it particularly valuable for ongoing RAG system
development and optimization.

Figure 1 shows the unitization of the pRAG approach in the
analysis of retriever performance. The particular results are
further discussed in Section III-A

D. Synthetic Dataset Generation

For evaluation, both manually curated and synthetically
generated question-answer pairs based on three technical
manuals for products from the HORSCH portfolio: Avatar
12/40 SD, Joker RX, and Tiger MT were created. These
documents were selected based on machine sales volume
analysis, indicating likely user query subjects.

For each document, we prepared 50 question-answer pairs
with relevant contexts as ground truth. From each set, five pairs
were randomly selected as examples for synthetic generation.
Using these examples iteratively with different ground truth
contexts, we generated 45 synthetic question-answer pairs per
document using three different language models: GPT-4o-Mini,
Gemini-1.5-Flash, and Nemotron-4-340b-Instruct. Also, two
comparison methodologies were implemented:

1) Absolute comparison: evaluating curated vs. synthetic
datasets based on different contexts

2) Relative comparison: generating synthetic data using
ground truth from the curated dataset

Quality assessment employed a GAN-like approach, using
language models (GPT-4o-Mini, Llama-3-Patronus-Lynx-8B-
Instruct [23], and Prometheus-7b-v2.0 [24]) as discriminators
to evaluate response quality with Pass/Fail determinations and
comparative quality judgments.

E. Experimental Setup

Multiple experimental configurations are conceptualized to
evaluate different aspects of the RAG system and demonstrate
the utility of the pRAG framework. For enhanced retrieval
configurations, we used a basic setup and changed specific
technical components for enhanced setups:

a) Basic Synthetic Data Evaluation (Setup A):

• Generator: ChatGPT-3.5-Turbo-0125
• Retrieval: paradeDB (BM25+Embeddings)
• Re-ranker: Cross-encoder/msmarco-MiniLM-L6-en-de-v1
• Retrieval size: 8 contexts each for BM25 and embeddings
• Re-ranking size: 4 contexts

b) Enhanced Retrieval Configuration (Setup B):
• Generator: ChatGPT-3.5-Turbo-0125
• Metadata: Machine Name
• Re-ranker: Cross-encoder/msmarco-MiniLM-L6-en-de-v1
• Retrieval size: 60 contexts (BM25+Embeddings)
• Re-ranking size: 20 contexts

c) Enhanced Retrieval Configuration (Setup B-1):
• New Re-ranker: Cross-encoder/ms-marco-MiniLM-L-6-v2

d) Enhanced Retrieval Configuration (Setup B-2):
• New Method: HyDE Integration

For additional quantitative evaluation, we implemented
the RAGAS framework to assess context precision, answer
credibility, relevance, and accuracy. We compared RAGAS
with the pRAG framework to substantiate the validity of the
pRAG approach. We supplemented the pRAG approach with
timing analysis of each system component, capturing minimum,
maximum, and median execution times.

The expert evaluation was conducted with domain specialists
who assessed question-answer pair quality in a blinded format,
comparing synthesized and manually curated responses without
knowledge of their origin to eliminate bias. For this experiment,
we used the Basic Setup B with three different datasets.

In this comprehensive methodology using the novel pRAG
evaluation framework, we aimed to evaluate not only the overall
RAG system performance but also the viability of synthetic
data for ongoing system improvement. We aimed to address the
issue of available ground truth datasets by generating synthetic
datasets automatically based on contexts from the database.

III. RESULTS AND DISCUSSION

A. Performance Analysis of RAG Components Using pRAG

1) Retrieval Component Performance: The analysis demon-
strates that each component contributes differently to the
overall performance and can be individually assessed through
visualization with pRAG. Figure 1 illustrates the pRAG
visualization, where the positions of contexts in the ground
truth collection are mapped against their retrieval positions.
It shows that several relevant contexts (positions 6, 7, and
8) were missed by BM25 but captured by embedding-based
retrieval. “Large” gaps in the diagram can support decision-
making on whether increasing the retrieval size at the cost of
performance should be implemented to identify only a few
additional relevant contexts. The automated evaluation of RAG
systems with pRAG does not require an LLM as a judge. This
makes the evaluation more resource-efficient, considering the
substantial computational power required by LLMs.

Since pRAG visualizes the full set of retrieved contexts,
the precision metric can be omitted. However, integrating the
recall value into the diagram is beneficial to complement the
visualization with a quantitative metric. The average values
from setups in Section II-E b), c), and d) are presented in
Table I.

The pRAG visualization enabled a dedicated evaluation
of retrieval techniques, revealing that relevant contexts were
retrieved either through BM25 or embedding-based methods
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Figure 1. pRAG Visualization Showing Position of Retrieved Contexts Relative to Ground Truth based on Setup B-1.

TABLE I
RECALL METRICS ACROSS ENHANCED RETRIEVAL CONFIGURATION

Metric Setup B Setup B-1 Setup B-2
Recall BM25 0.4314 0.4615 0.3654
Recall Embeddings 0.6863 0.6154 0.3846
Recall Full Retrieval 0.9412 0.9231 0.6923

and also in both. This points out the importance of evaluating
different retrieval strategies individually, as relevant contexts
may be identified in one approach but not in another. Further
analysis demonstrated that embedding-based retrieval signif-
icantly outperformed lexical methods for datasets containing
technical terminology. This underlines the necessity of hybrid
retrieval approaches, where the combination of strategies
ensures a more comprehensive retrieval process and improves
overall performance.

2) Optimal Retrieval Size Determination: The experiments
demonstrate a relationship between retrieval size and answer
quality. With higher retrieval size RAG systems have to handle
more irrelevant contexts. Therefore, the optimal retrieval size
can be determined using:

Retrieval Size =
Current Retrieval Size × Average Response Time

Acceptable Response Time

This formula provides a practical guideline for balancing
response time against completeness. As shown in Figure 1,
there is no need to put the retrieval size to 60 because the latest
relevant contexts were found in positions 21 by embeddings
and position 48 by BM25.

The pRAG analysis revealed diminishing returns beyond
certain retrieval sizes. For example, in setup B-2 (cf. Figure
1), increasing BM25 retrieval size from 28 to 48 yielded only
one additional relevant context, suggesting a practical cut-off
point based on efficiency considerations.

B. Synthetic Dataset Evaluation Results

1) Comparative Quality Assessment: To assess the effec-
tiveness of synthetic versus manually prepared datasets, we
evaluated both using specialized discriminator models. The
results of this evaluation indicate that synthetically generated
data achieves comparable or superior performance. Specifically,
manually prepared datasets did not offer a notable advantage,
and Lynx even performed better on the synthetic data. This
confirms that synthetic datasets can provide a similar level of
performance to manually prepared ones. Detailed performance
results are presented in Figure 2.

TABLE II
GENERATOR-DISCRIMINATOR COMBINATIONS

No. Generator - Discriminator Combination
1 GPT-4o Mini - GPT-4o Mini
2 Gemini-1.5-Flash - GPT-4o Mini
3 Neomotron-4-340b-Inst. - GPT-4o Mini
4 GPT-4o Mini - Llama-3-Patronus-Lynx-8B-Inst.
5 Gemini-1.5-Flash - Llama-3-Patronus-Lynx-8B-Inst.
6 Neomotron-4-340b-Inst. - Llama-3-Patronus-Lynx-8B-Inst.
7 GPT-4o Mini - Prometheus-7b-v2.0
8 Gemini-1.5-Flash - Prometheus-7b-v2.0
9 Neomotron-4-340b-Inst. - Prometheus-7b-v2.0

2) Human Expert Validation: Human evaluators assessed
pairs of question-answer examples from both dataset types. In
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Figure 2. Comparison of Prepared and Synthetic Document for Different
Generator-Discriminator Combinations.

68% of comparable cases, experts preferred synthetically gener-
ated data, with the remaining 32% showing no clear preference.
Table III summarizes these findings. Expert evaluators noted
that synthetic datasets showed stronger logical coherence and
clearer question formulation. However, they identified a conse-
quential limitation: synthetic datasets generated from tabular
data frequently contained factual errors or misinterpretations
of numerical relationships, suggesting a specific weakness in
current LLM approaches to tabular content. For the evaluation,
we used setup B with the three different datasets. The model
Nemotron was chosen for its ability to generate better synthetic
data [25].

TABLE III
HUMAN EXPERT PREFERENCES IN DATASET EVALUATION

Dataset Pair Prefer
Prepared

Prefer
Synthetic

No
Preference

Avatar/Nemotron 14 20 16
JokerRX/Nemotron 8 9 31
TigerMT/Nemotron 4 24 22

C. Technical Component Performance Insights

1) Comparative Analysis of Retrieval Enhancements: We
evaluated technical enhancements to the base RAG architecture,
including re-ranking models and the integration of HyDE
(Hypothetical Document Embeddings) [26]. This method
decomposes dense retrieval into two distinct tasks: First, it uses
an instruction-following language model (like InstructGPT) to
generate a hypothetical document in response to a user query. In
the second step, an unsupervised contrastively-trained encoder
(like Contriever) encodes this hypothetical document into an

embedding vector. This vector identifies a neighborhood in the
corpus embedding space, from which similar real documents
are retrieved based on vector similarity. Table IV summarizes
these findings.

TABLE IV
PERFORMANCE COMPARISON OF RETRIEVAL ENHANCEMENT TECHNIQUES

Technique Recall Re-rank NDCG Mean Resp.
from Retrieval Time (s)

msmarco-MiniLM-L6-en-de-v1 0.7544 0.54 3.41
ms-marco-MiniLM-L-6-v2 0.8036 0.63 4.08
HyDE Integration 0.7179 0.35 5.43

Contrary to [26], the HyDE approach showed reduced perfor-
mance despite increased processing time. The pRAG analysis
revealed that HyDE’s theoretical advantage in generating better
query representations did not improve the retrieval of relevant
contexts in our test datasets.

Among re-ranking models, ms-marco-MiniLM-L-6-v2
demonstrated the best performance with 80% recall from
retrieval but required 20% more processing time than msmarco-
MiniLM-L6-en-de-v1. The time-performance analysis shows
this tradeoff across various system components.

IV. CONCLUSION AND FUTURE WORK

This paper contributes to the evaluation methodology of RAG
systems. Our primary findings are the critical role of ground
truth data in conducting valid evaluations of domain-specific
RAG applications.

A. Key Contributions
Our research has validated three key advances in RAG

evaluation:
1) The pRAG Visualization: pRAG provides granular in-

sights into component-level performance that conventional
aggregated metrics cannot reveal. This approach allows
precise identification of retrieval bottlenecks and optimiza-
tion opportunities within complex RAG architectures. The
visualization-based approach of pRAG offers insights into
system performance beyond what metrics-only frameworks
provide. pRAG is a resource-saving evaluation technology
for RAG systems without any usage of LLM-powered
evaluation.

2) Viability of Synthetic Datasets: The results confirm
comparable or superior evaluation quality of synthetically
generated question-answer pairs compared to manually
prepared datasets. This significantly reduces the resource
burden for domain-specific RAG applications while main-
taining evaluation rigor.

3) Retrieval Optimization Guidelines: The retrieval compo-
nent represents the most critical performance bottleneck
in RAG systems and we provide a practical formula for
determining optimal retrieval size based on response time
requirements.

The integration of these approaches enables more efficient
and targeted evaluation of RAG systems, particularly in special-
ized domains where ground truth data creation conventionally
requires substantial expert involvement.
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B. Future Research Directions

Several promising research directions emerge from this work:
1) Dynamic Evaluation of Evolving RAG Systems: Future

research should explore automated evaluation approaches for
continuously changing RAG systems, potentially integrating
pRAG with streaming metrics.

2) Multi-modal Data Analysis: Our work focused exclusively
on textual data. Extending these evaluation methods to incor-
porate images, tables, and other data modalities represents
an important next step.

3) Enhanced Synthetic Data Generation: While our syn-
thetic datasets performed well, specific weaknesses were
identified with tabular data. Future work should address
these limitations and explore character-based generation
approaches to increase dataset heterogeneity.

4) Generator Component Analysis: The relationship between
retrieval metrics and generation quality is of interest. Future
work should explore how retrieved contexts influence the
generation process and final answer quality.

In conclusion, the combination of pRAG visualization and
synthetic dataset generation represents an advancement in RAG
system evaluation methodology. These approaches provide
practical tools for researchers and practitioners seeking to
optimize RAG implementations for specialized knowledge
domains in a more efficient and targeted assessment of
individual components.
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Abstract—In this paper, we investigate the ability of large
language models (LLMs) to translate American Sign Language
with GLOSS annoation into English without fine-tuning or
architectural modifications. Our findings show that pretrained
transformers achieve translation quality comparable to human
experts. While prompt engineering enhances accuracy for simpler
models, it has minimal impact on more advanced ones. Addi-
tionally, when generating multiple translation variants, the first
response is typically the most accurate, with subsequent outputs
declining in quality. These results underscore the strong zero-shot
translation capabilities of LLMs and highlight their potential for
scalable ASL-GLOSS translation applications.

Keywords-ASL-GLOSS translation; Generative pretrained trans-
formers, large language models

I. INTRODUCTION

Large Language Models (LLMs) have emerged as a trans-
formative force in natural language processing, demonstrat-
ing remarkable versatility across various applications, includ-
ing text generation, summarization, and machine translation.
These models, often referred to as foundation models, are
trained on vast corpora of text and possess extensive knowl-
edge of human languages. Their ability to generalize across a
wide range of tasks has enabled them to achieve impressive
performance, even in low-resource language translation tasks.
Recent studies have shown that LLMs excel in one-shot and
few-shot learning scenarios [1], where only a limited num-
ber of examples are available. This makes them particularly
suitable for translating languages with scarce training data.

Among the communities that could greatly benefit from
these advancements are deaf and hard-of-hearing individuals.
Sign languages serve as the primary mode of communication
for these communities; however, the automatic translation of
sign languages into spoken or written languages remains a
significant challenge [2]. Developing effective translation solu-
tions could substantially enhance accessibility and inclusivity,
supporting social integration and improving communication
opportunities for these individuals.

Automatic translation of sign languages typically follows a
two-step pipeline [3][4], although end-to-end approaches have
also been explored [5]. The first step involves recognizing
and detecting visual symbols associated with sign language

TABLE I. EXAMPLE SENTENCES IN ENGLISH AND ASL-GLOSS

English sentence ASL-GLOSS
There are a lot of studies on
speech disorders

STUDY ON SPEECH/ORAL
fs-DISORDER A-LOT

While I was a graduate student,
in a linguistics class, a profes-
sor gave a lecture about syntax.

DURING/WHILE IX-
1p GRAD STUDENT
IN CLASS_2 LONG-
AGO LINGUISTICS
TEACH+AGENT
TEACH+AGENT
DIRECT/EXPLAIN fs-
SYNTAX

My mother taught my two
brothers and me, so it was eas-
ier for us to move around.

part:indef MOTHER
TEACH IX-1p+ AND TWO
BROTHER EASY MOVE
part:indef

gestures. From these visual inputs, a structured intermediate
representation can be derived, such as ASL-GLOSS. ASL-
GLOSS serves as a symbolic transcription of American Sign
Language (ASL) gestures, capturing the essential lexical com-
ponents of signs while abstracting away certain nonmanual
markers, including facial expressions, eye movements, and
contextual cues. Although ASL-GLOSS simplifies the repre-
sentation of sign language, it remains an incomplete encoding
of meaning, as it lacks many elements necessary for full
semantic understanding, although this limitation also applies
to written text. Table I presents examples of English and ASL-
GLOSS sentences.

Existing machine translation solutions for sign-to-English
or ASL-GLOSS-to-English tasks typically rely on smaller,
domain-specific models trained exclusively on sign and gloss-
specific datasets [6]. However, these models often struggle
with generalization due to their limited exposure to the target
output language. We hypothesize that the broad linguistic
knowledge embedded in LLMs can mitigate this issue by
providing improved translations and using their comprehensive
understanding of syntax, semantics, and common expressions
in the target language.

In this work, we explore the capabilities of current LLMs
in translating ASL-GLOSS into English. Our objective is
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to assess the direct translation quality of LLMs on ASL-
GLOSS inputs and to establish a baseline accuracy for LLM-
based gloss translation. Additionally, by analyzing potential
translation errors and corrections, we aim to provide insights
into the viability of LLMs as robust components in future sign
language translation pipelines.

The remainder of this paper is organized as follows. Section
II. provides an overview of the theoretical background and
related work relevant to our study. In Section III., we introduce
the proposed methodology, including dataset descriptions and
evaluation metrics. The results and their analysis are discussed
in Section IV., highlighting both quantitative and qualitative
findings. Finally, Section V. concludes the paper by summa-
rizing the main contributions and key findings along with the
potential avenues for future research.

II. EXISITING SOLUTIONS

Machine Translation (MT) of ASL encompasses various
approaches, each leveraging different technologies to facilitate
translation between ASL and spoken or written languages. Key
methodologies include:

1) Rule-Based Systems: Early MT systems for ASL uti-
lized rule-based approaches, where linguistic experts
encoded grammatical and syntactic rules to map English
text to ASL structures [7]. An example is the TEAM pro-
totype, which analyzed English text’s syntactic and mor-
phological aspects before accessing a sign synthesizer
to produce corresponding ASL signs via a computer-
generated human avatar [8].

2) Statistical Machine Translation (SMT): SMT approaches
rely on statistical models derived from bilingual corpora
to predict translation probabilities. However, the scarcity
of large-scale parallel ASL-English corpora has limited
the effectiveness of SMT in ASL translation [9].

3) Neural Machine Translation (NMT): Recent advance-
ments in NMT have shown promise in translating spo-
ken languages. Applying NMT to ASL involves train-
ing deep learning models on annotated sign language
datasets to capture the nuances of ASL grammar and
expressions. Challenges include the need for extensive
datasets and the complexity of modeling sign language’s
spatial and temporal aspects [6].

4) Vision-Based Recognition Systems: These systems em-
ploy computer vision techniques to interpret sign lan-
guage from video input [10]. For instance, the Kinect
Sign Language Translator utilizes Microsoft’s Kinect
sensor to capture signers’ movements and translate them
into spoken language using machine learning and pattern
recognition [11].

5) Sensor-Based Recognition Systems: Some approaches
use wearable sensors to detect hand movements and
positions. For example, SignAloud incorporates gloves
equipped with sensors that transliterate ASL into English
by tracking hand movements and sending data to a
computer system for analysis and translation [12].

6) Hybrid Systems: Combining multiple methodologies,
hybrid systems aim to enhance translation accuracy.
SignAll integrates computer vision and natural language
processing to recognize hand shapes and movements,
converting this data into simple English phrases to
facilitate real-time ASL translation [13].

Despite these advancements, challenges persist, particularly
in accurately interpreting the diverse and complex structures
of ASL. Ongoing research aims to address these issues by
developing more robust models and incorporating larger, more
diverse datasets to improve the reliability and inclusivity of
ASL machine translation systems.

III. METHODOLOGY

To thoroughly evaluate ASL-GLOSS to English translation,
it is essential to carefully consider the data sources and
models used in this study. The methodology section outlines
our approach to selecting appropriate datasets, choosing rele-
vant language models, and establishing a rigorous evaluation
framework. These choices form the foundation for robust and
reproducible experimental results.

A. Datasets

To evaluate the performance of LLMs in ASLGLOSS-to-
English translation, we conducted an extensive review of avail-
able datasets. Our primary objective was to select a dataset that
meets several critical criteria. The ideal dataset would be large-
scale, contain video recordings of the signing person, provide
gloss annotations of the signed sentences, and include high-
quality English translations. Video recordings are particularly
important as they serve as the most accurate reference for
human translations, capturing the full range of visual cues
necessary for understanding sign language, including hand
movements, facial expressions, and other nonmanual markers.
Additionally, we prioritized datasets that feature complex
sentence structures and a broad spectrum of topics, ensuring
comprehensive coverage of real-world communication scenar-
ios.

However, only a limited number of datasets meet these
demanding requirements. The datasets we investigated include:

• English-ASL Gloss Parallel Corpus 2012 (ASLG-PC12):
A dataset mapping ASL gloss to formal English text[14]

• American Sign Language Linguistic Research Project
(ASLLRP) Data Access Interface (DAI): Contains video
recordings with corresponding gloss annotations [15].

• MS-ASL Dataset: A large-scale dataset for isolated sign
recognition[16].

• DAI - ASLLVD: A video dataset with ASL lexical
items[17].

• ASL Finger Spelling Dataset: Focused on finger-spelling
gestures[18].

• WLASL: A large-scale dataset for word-level American
Sign Language recognition.[19]

• American Sign Language Lexicon Video Dataset: A
comprehensive dataset with video recordings, gloss an-
notations, and English translations[20].
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Among these datasets, the American Sign Language Lex-
icon Video Dataset proved to be the most suitable for our
experiments, as it met all the aforementioned selection criteria.
Its combination of video input, detailed gloss annotations, and
high-quality English translations makes it an ideal resource
for training and evaluating ASL-GLOSS-to-English transla-
tion models. Consequently, our experimental work primarily
focuses on this dataset.

B. Large Language models

In our investigation, we selected a diverse range of language
models to evaluate their performance on the ASL-GLOSS-
to-English translation task. Given the rapid advancements in
the field, with new models emerging regularly, compiling an
exhaustive list is not feasible. However, our selection was
guided by several key considerations to ensure a representative
and comprehensive assessment.

The selected models fall into two broad categories:
• Large-Scale Proprietary Models: This category includes

cutting-edge models such as Claude and ChatGPT, which
are accessible exclusively through API-based interfaces.
These models are considered among the most complex
and sophisticated LLMs available, and we anticipated that
their extensive training data and advanced architectures
would yield the highest translation accuracy. Despite
their closed-source nature, their performance serves as
an upper-bound benchmark for comparison.

• Open-Source Models: We also included open-source
models, such as LLaMA and DeepSeek. Although these
models are typically less complex than their proprietary
counterparts, their publicly available architectures and
weights offer several advantages. Running these models
on-premise enables greater control over execution en-
vironments, facilitates further optimization, and allows
fine-tuning on domain-specific data. This flexibility is
particularly valuable for tailoring models to the nuances
of ASLGLOSS translation.

By evaluating models from both categories, we aim to bal-
ance performance, transparency, and practical deployability in
our study. This comprehensive selection will provide insights
into the trade-offs between accuracy and customizability, help-
ing to identify the most suitable models for real-world sign
language translation applications.

For the sake of reproducibility, all our experiments, in-
cluding the code and detailed parameter setups, are avail-
able at the following GitHub link to ensure reproducibility:
https://github.com/horan85/ASLGloss

IV. RESULTS

Before presenting the experimental results, we summarize
the comparative evaluation of various state-of-the-art language
models in the ASL-GLOSS to English translation task. This
analysis focuses on assessing how model architecture and
prompting strategies influence translation quality. Our goal
is to understand not only the absolute performance of these

models but also how additional linguistic context affects their
translation capabilities.

A. Model Comparisons

To systematically assess the performance of our translation
models, we curated an evaluation dataset comprising 2,040
ASL-GLOSS-English sentence pairs sourced from the Ameri-
can Sign Language Lexicon Video Dataset. This dataset serves
as a benchmark for measuring translation quality and the
generalization capabilities of our models.

We conducted experiments with various models under two
distinct prompting strategies. In the first setup, models received
only a direct translation prompt, instructing them to generate
an English sentence from a given ASL-GLOSS input. In
the second setup, we supplemented the prompt with a brief
explanation of the GLOSS structure (3,000 words in length)
and a carefully selected set of twenty example translations to
provide additional context and guidance.

As evaluation metrics, we selected the BLEU score and
cosine similarity between the embedded representations of the
translated and ground-truth sentences. For sentence embed-
dings, we utilized the CLIP-ViT-B/32 transformer model [21].

Our results for the models without additional descriptions
are presented in Table II, which reports the mean performance
along with the corresponding variances. To provide a more
comprehensive view of the distribution, Figures 1 and 2
illustrate the detailed distributions of BLEU scores and cosine
similarities, respectively. These visualizations offer deeper
insights into the variability and consistency of model outputs
across different evaluation metrics.

Our findings indicate that for more advanced and complex
models, such as ChatGPT, Claude, and DeepSeek, the inclu-
sion of structural information and example translations had
minimal impact on overall translation quality. This suggests
that these models inherently possess a strong ability to in-
terpret ASL-GLOSS sequences and generate fluent English
translations, even without explicit guidance on the source
language structure.

In contrast, the LLaMA and ChatGPT-mini models exhib-
ited moderate improvements, with increases of approximately
0.03 and 0.04 in cosine similarity and BLEU scores, respec-
tively. However, further investigation is needed to determine
whether this robustness extends to less frequent linguistic
structures or more complex GLOSS annotations.

B. Model Consistency

Since LLMs generate probabilistic outputs, translation qual-
ity can vary due to multiple factors. Additionally, ASL-GLOSS
sentences, when extracted without broader context, may have
multiple valid interpretations. To assess whether generating
multiple translation variants improves accuracy, we examined
the effect of allowing GPT-based models to produce several
alternative translations for each input.

While output variability can be adjusted by tuning the
model’s temperature parameter, we did not optimize this
aspect. Instead, we instructed the models to generate five
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Figure 1. This figure depicts the Blue scores on the American Sign
Language Lexicon Video Dataset using various LLM models as a GLOSS

to Enlish translation task.

Figure 2. This figure depicts the Cosine similarity values on the American
Sign Language Lexicon Video Dataset using various LLM models as a

GLOSS to Enlish translation task.

TABLE II. COSINE SIMILARITIES AND BLEU SCORES WITH AND
WITHOUT GLOSS DESCRIPTIONS

Model Cosine Similarity BLEU Score
ChatGPT-4o 0.881± 0.83 0.514± 0.192
ChatGPT-4o
with GLOSS description

0.880± 0.87 0.512± 0.201

Claude Sonnet 0.879± 0.94 0.518± 0.219
Claude Sonnet
with GLOSS description

0.880± 0.99 0.518± 0.244

DeepSeek V3 0.876± 0.83 0.496± 0.217
DeepSeek V3
with GLOSS description

0.876± 0.88 0.495± 0.227

Llama 3.2 0.793± 1.23 0.349± 0.203
Llama 3.2
with GLOSS description

0.824± 1.43 0.374± 0.486

ChatGPT-4o-mini 0.787± 1.26 0.324± 0.213
ChatGPT-4o-mini
with GLOSS description

0.814± 1.67 0.365± 0.455

translation variants per input to evaluate whether this approach
enhances translation quality.

Using the same dataset of 2,040 sentences, we selected
the two best-performing models (ChatGPT and Sonnet) and
tasked them with generating five distinct translations for each
ASL-GLOSS input without providing detailed GLOSS de-
scriptions. The BLEU scores for these translations are shown
in Figure 3. Similar trends were observed in cosine similarity
measurements, though these results are omitted due to space
constraints.

Notably, our findings indicate that the first generated trans-
lation was consistently the most accurate. As the ranking
progressed, translation quality gradually declined, though the
differences were minor. This suggests that while generating
multiple outputs introduces slight variations, the first transla-
tion is generally the most reliable.

Figure 3. Translation quality (in terms of BLEU scores) when we asked the
model to provide multiple variants for Claude-Sonnet (above) and

Chat-GPT-4o (below)

-

TABLE III. COSINE SIMILARITIES AND BLEU SCORES ON THE REDUCED
DATASET

Model Cosine Similarity BLEU Score
Translator 0.903± 0.361 0.582± 0.253
ChatGPT-4o 0.893± 0.49 0.548± 0.163
Claude Sonnet 0.901± 0.47 0.560± 0.182
DeepSeek V3 0.884± 0.78 0.523± 0.316
Llama 3.2 0.810± 1.23 0.377± 0.250
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Figure 4. Cosine Similarities (above) and BLEU scores (below) on the
88-sentence dataset comparing a human translator’s performance with

various LLMs

V. CONCLUSION AND FURUTE WORK

In this paper, we demonstrated the capability of large
language models (LLMs) to translate ASL-GLOSS to English
without fine-tuning or architectural modifications. Our findings
suggest that general-purpose pretrained transformers are viable
for this task, achieving translation quality comparable to that
of human experts.

A. Key Findings

• Zero-shot translation effectiveness: General-pretrained
transformers can effectively translate ASL-GLOSS with-
out additional fine-tuning, highlighting the strong zero-
shot capabilities of modern LLMs in handling structured
linguistic inputs like GLOSS.

• Limited impact of prompt engineering: While prompt
engineering improves translation accuracy for simpler
models, it has a negligible effect on more advanced
LLMs. This suggests that state-of-the-art models already
possess a robust understanding of GLOSS structures
without explicit prompting strategies.

• Quality decline in multiple outputs: When LLMs were
prompted to generate multiple translation variants, the
first response was typically the most accurate, with subse-
quent translations exhibiting a gradual decline in quality.
This suggests that probabilistic generation may introduce
increasing errors when multiple outputs are requested.

• Near-human translation accuracy: LLMs achieve trans-
lation accuracy close to that of human experts. This

underscores their potential to assist or even replace hu-
man translators in certain ASL-GLOSS translation tasks,
improving scalability and accessibility.

While our results are promising, further research is needed
to assess the robustness of LLM-based ASL-GLOSS trans-
lation across diverse linguistic structures and complex anno-
tations. Future work could explore fine-tuning approaches,
domain adaptation techniques, and real-world deployment
scenarios to enhance translation reliability and applicability.
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Abstract—This research is conducted in the context of the
Systems Engineering undergraduate program at the University
of Córdoba in Colombia, aiming to calculate the risk of failing
physics courses, which are considered particularly challenging for
students. At this university, the academic semester is divided into
three sessions, each equally weighted in the final grade. Our goal
is to estimate the failure risk based on student performance in
the earlier sessions. To this end, we collected a dataset comprising
the session grades and final results of students enrolled in Physics
I, II, and III during 2024. We then implemented a Monte Carlo
simulation to calculate the absolute and relative risk of course
failure. The results show that failing early sessions is strongly
associated with a higher probability of failing the course, especially
in Physics I and III. These insights can support lecturers in
adjusting the syllabus and designing interventions to reduce
dropout rates and improve student outcomes.

Keywords-Monte Carlo simulation; educational innovation; com-
putational social science.

I. INTRODUCTION

Nowadays, academic success is a primary concern for
universities worldwide. As a consequence, identifying strategies
and conducting research to predict the risk of academic failure
has become an active area of study within social computing,
particularly through educational data mining approaches. These
methods are commonly used to predict student dropout, delayed
graduation [1]–[3], and the likelihood of course failure or
withdrawal [4]–[13].

Our research focuses on the academic context of the
University of Córdoba in Colombia, where each academic
semester is split into three sessions, each lasting six weeks and
contributing equally to the final grade. The final course grade
is calculated as the mean of the student’s grades across the
three sessions. Within each session, no single assessment can
exceed 40% of the session grade, meaning that each student
undergoes at least nine evaluations during a semester.

This structure is designed to achieve several pedagogical
goals: reducing the pressure of final exams, diversifying assess-
ment strategies, encouraging consistent study habits, enabling
continuous monitoring of learning progress, facilitating early
interventions, and providing timely support to students. This
approach is supported by several educational theories and
instructional strategies, including constructivism, formative
assessment, multiple intelligences theory, cognitive load theory,
active learning, and outcome-based education.

According to constructivist theory, students build their
understanding through interaction with their environment.
Frequent evaluations help instructors monitor this evolving
understanding and adjust teaching strategies accordingly.

Formative assessment emphasizes the use of ongoing evalu-
ations throughout the instructional period to monitor learning,
identify challenges, and guide teaching. This method offers
continuous feedback to both students and instructors, aligning
well with the university’s evaluation strategy.

The theory of multiple intelligences posits that students
possess diverse talents and learning preferences. A variety of
assessments throughout the semester provides a more inclusive
way to evaluate these varied strengths.

Cognitive load theory suggests that students learn more
effectively when information is presented in manageable
segments. Multiple evaluations distributed over time align with
this principle by reducing cognitive overload.

Active learning promotes student engagement through
problem-solving, discussions, and hands-on activities. Multiple
evaluations throughout the semester can reinforce this approach
by encouraging students to actively engage with the material.

At the University of Córdoba, Outcome-Based Education
(OBE) is the foundational approach. It emphasizes clearly
defined learning outcomes and assessments aligned with those
outcomes. Dividing the semester into multiple sessions allows
for a more granular alignment of evaluations with specific
goals.

The university’s OBE model is integrated with the Structure
of the Observed Learning Outcomes (SOLO) taxonomy, which
categorizes learning into five levels:

1) Prestructural (0.0–2.0): The student has not yet grasped the
key concepts.

2) Unistructural (2.1–2.9): The student understands a single
aspect of the task.

3) Multistructural (3.0–3.7): The student understands several
aspects, but without integration.

4) Relational (3.8–4.5): The student can integrate multiple
aspects meaningfully.

5) Extended Abstract (4.6–5.0): The student demonstrates deep
understanding and applies concepts to new contexts.

To pass an evaluation, a student must achieve at least the
multistructural level, corresponding to a grade above 3.0.
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By structuring learning outcomes around SOLO taxonomy
principles, the curriculum offers a coherent and progressively
challenging learning experience. This structure emphasizes
the development of deeper understanding as students progress.
However, despite this pedagogical framework, physics courses
remain particularly challenging for systems engineering stu-
dents, who often struggle to reach the relational or extended
abstract levels. For example, in 2024, the average final grades
for Physics I, II, and III were 3.17, 3.30, and 3.35, respectively,
suggesting limited integration of concepts or application to
real-world contexts.

In an endeavor to mitigate failure and dropout, the university
assumes students at risk of failing a course if they fail either
of the first two sessions. This leads us to pose the following
research questions:
• What is the risk of failing a physics course if a student fails

the first session?
• What is the risk if a student fails the second session but

passed the first?
• What is the risk if a student fails both the first and second

sessions?
To the best of our knowledge, no prior research has directly

addressed these questions. To fill this gap, we simulate all
possible grade scenarios using the Monte Carlo numerical
method, informed by historical academic performance data.
This method has been used in similar educational contexts, for
instance, to evaluate curriculum effectiveness [14] or to estimate
students’ motivation in learning scientific computing [15].

Our simulations reveal the following findings:
• For Physics I, approximately 42 out of 100 students are at

risk of failing if they failed the first session; 44 out of 100
if they failed the second session; and 63 out of 100 if they
failed both.

• For Physics II, about 28 out of 100 students are at risk if
they failed the first session; 14 out of 100 if they failed the
second; and 49 out of 100 if both were failed.

• For Physics III, around 49 out of 100 students are at risk if
they failed the first session; 11 out of 100 if they failed the
second; and 14 out of 100 if they failed both.
These insights contribute to implement early intervention

strategies and improve academic support in physics courses.
Finally, the rest of this article is outlined as follows: in

Section II, we present the research and simulation methodology
adopted in this research, while we present and discuss the
results in Section II. The article concludes in Section IV.

II. RESEARCH METHODOLOGY

We adopted a quantitative approach, collecting the session
and final grades of 100 students enrolled in physics courses at
the University of Córdoba in 2024. Specifically, 36 students
were enrolled in Physics I, 32 in Physics II, and 32 in
Physics III. The relatively small dataset size reflects the recent
implementation of the previously described Outcome-Based
Education (OBE) framework at the institution.

Given the limited number of students and the sparsity of
failure cases in certain session combinations (as shown in

TABLE I. NUMBER OF STUDENTS WHO FAILED A PHYSICS WHEN THEY
HAVE FAILED AT LEAST ONE SESSION (S1, S2, AND S3).

Course Failed S1 Failed S2 Failed S3 Failed Students
Physics 1 Yes Yes Yes 1

Yes Yes No 7
Yes No No 2
No Yes Yes 0
No Yes No 0

Physics 2 Yes Yes Yes 2
Yes Yes No 3
Yes No No 0
No Yes Yes 0
No Yes No 0

Physics 3 Yes Yes Yes 0
Yes Yes No 1
Yes No No 0
No Yes Yes 0
No Yes No 0

Table I), direct estimation of absolute and relative risks from
empirical data would be statistically unreliable. For example,
the dataset contains no instances of students failing the Physics
I course after failing the second or third session, provided they
passed the first. This type of data sparsity presents a challenge
for risk estimation.

To address this, we employed the Monte Carlo simulation
method [16] to explore the full probability space of possible
student performance outcomes. Instead of relying solely on
the small number of observed cases, we reconstructed the
grade distribution using a parametric model, specifically, a
normal distribution, with parameters (mean and standard
deviation) derived from the original dataset. Grades were
clipped to fall within the [0, 5] scale, as the normal distribution
might otherwise generate implausible values in the tails. This
allowed us to simulate large numbers of plausible student
grade combinations and estimate the associated risks under
uncertainty.

In essence, the Monte Carlo simulation serves as a data-
informed method for approximating risk in underrepresented
or unobserved configurations, enabling generalization beyond
the empirical observations while remaining grounded in the
observed statistical characteristics of the data.

Thus, the probability that a student fails a physics course
given that they failed the jth session is denoted as P (y <
3 | xj < 3), where y is the final course grade. A final grade
below 3.0 indicates course failure, as previously explained.
The variable xj represents the grade the student obtained in
the jth session, with j = 1, 2, 3. Thus, x ∈ X ⊆ [0, 5]3 is
a real-valued three-dimensional vector containing the grades
from each session, all within the range [0, 5]. A session grade
below 3.0 (xj < 3) indicates failure in that session.

Since the final grade y is the arithmetic mean of the three
session grades, it is computed as:

y =
1

3

3∑
j=1

xj (1)

The Absolute Risk (AR) of failing the course given failure
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in session jth is defined as:

AR(y < 3 | xj < 3) =

∫
X

P (y < 3, xj < 3)

P (xj < 3)
dx (2)

Similarly, the absolute risk of failing the course given that
the student did not fail session jth is:

AR(y < 3 | xj ≥ 3) =

∫
X

P (y < 3, xj ≥ 3)

P (xj ≥ 3)
dx (3)

The Relative Risk (RR) is defined as the ratio of these two
quantities:

RR(y < 3 | xj < 3) =
AR(y < 3 | xj < 3)

AR(y < 3 | xj ≥ 3)
(4)

To estimate these quantities via the Monte Carlo method,
we generate an N × 3-dimensional matrix X ∈ [0, 5]N×3,
where its component Xij ∼ N (µj , σj) is normally distributed
with mean µj and standard deviation σj computed from the
historical grades of students in session j of each physics course.

The absolute risk AR(y < 3 | xj < 3) is approximated as:

AR(y < 3 | xj < 3) ≈
∑N

i=1 1(yi < 3 ∧Xij < 3)∑N
i=1 1(Xij < 3)

(5)

where 1(u) = 1 if the condition u is true, and 0 otherwise.
Similarly, the absolute risk for students who did not fail session
j is:

AR(y < 3 | xj ≥ 3) ≈
∑N

i=1 1(yi < 3 ∧Xij ≥ 3)∑N
i=1 1(Xij ≥ 3)

(6)

Finally, the relative risk is calculated as:

RR(y < 3 | xj < 3) ≈

∑N
i=1 1(yi<3∧Xij<3)∑N

i=1 1(Xij<3)∑N
i=1 1(yi<3∧Xij≥3)∑N

i=1 1(Xij≥3)

(7)

This simulation-based approach enables us to estimate the
conditional risks associated with failing individual sessions and
provides a probabilistic understanding of academic outcomes
based on partial performance.

Figure 1. Grades of the students enrolled in the physics I course in 2024

Figure 2. Grades of the students enrolled in the physics II course in 2024

The simulation was implemented in Python using the
NumPy and Matplotlib libraries. The anonymized dataset and
corresponding source code are available upon request from the
first author.

III. THE RESEARCH RESULTS AND DISCUSSION

Based on the collected dataset, the mean grades for the
first, second, and third sessions in the Physics I course were
3.03, 2.98, and 3.50, respectively, with corresponding standard
deviations of 0.43, 0.53, and 0.58. As shown in Figure 1, the
box plot corresponding to the final grade illustrates that students
rarely failed the course outright or achieved exceptionally high
grades. Furthermore, there appears to be a general trend of
improved performance in the final session.

Similarly, the mean grades for Physics II were 3.17, 3.20,
and 3.55 for the first, second, and third sessions, respectively,
with standard deviations of 0.57, 0.27, and 0.47. Figure 2
demonstrates a performance pattern comparable to Physics I,
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where both failures and outstanding performances were infre-
quent. However, a notable difference emerges in the second
session: while performance in Physics I declined slightly from
3.03 to 2.98, Physics II showed a slight improvement, with
the average grade increasing from 3.17 to 3.20. This suggests
a possible difference in instructional design or assessment
difficulty between the two courses during that session.

Additionally, the dataset reveals that the mean grades for the
first, second, and third sessions in the Physics III course are
3.12, 3.28, and 3.66, respectively, with standard deviations of
0.41, 0.36, and 0.31. Figure 3 illustrates that student grades in
this course follow a pattern similar to the previous two physics
courses.

TABLE II. EXPECTED FINAL GRADES BY COURSE OBTAINED FROM THE
MONTE CARLO SIMULATION RESULTS.

Course Expected Grade Standard Error 95% CI
Physics 1 3.178 1.2× 10−4 [3.178, 3.179]
Physics 2 3.305 10−4 [3.30498, 3.305]
Physics 3 3.354 1.1× 10−4 [3.353, 3.354]

The results of the numerical simulation show that the
expected final grades for Physics I, II, and III are 3.17, 3.31, and
3.35, respectively (see Table II). Figures 4–6 demonstrate how
the Monte Carlo simulations converge to these values, which
are consistent with the histograms presented in Figures 7–9,
displaying the distribution of the final grades for each course.

TABLE III. ABSOLUTE AND RELATIVE RISK BY SESSION AND COURSE.

Course Session(s) Absolute Relative 95% CI (RR)
Failed Risk (%) Risk (%)

Physics I S1 41.66 2.77 [2.762, 2.777]
S2 43.52 4.05 [4.032, 4.059]
S1 and S2 62.93 4.18 [4.172, 4.195]

Physics II S1 28.11 12.62 [12.532, 12.703]
S2 22.76 2.49 [2.484, 2.505]
S1 and S2 49.03 22.00 [21.851, 22.159]

Physics III S1 10.61 17.93 [17.601, 18.267]
S2 14.30 8.11 [8.021, 8.196]
S1 and S2 33.05 55.86 [54.827, 56.913]

A summary of the relative and absolute risk estimates derived
from the Monte Carlo simulation is presented in Table III. The
corresponding relative risks for each course are depicted using
forest plots in Figures 10–12. As expected, failing the first
two sessions corresponds to the highest relative risk of failing
a physics course. It is noteworthy that for Physics I, failing
the second session alone is associated with a higher relative
risk than failing the first session. This pattern differs from
Physics II and III, where failing the first session presents a
greater relative risk. Notably, the risk of failing Physics I after
failing only the second session is nearly equivalent to the risk
of failing after both the first and second sessions.

The absolute risk of course failure among students exposed
to session failures versus those unexposed is compared in
Table IV. The results of the simulation reveal that there is an
absolute risk of 41.66% that students fail the Physics I course if
they fail the first session. This corresponds to a risk difference

Figure 3. Grades of the students enrolled in the physics III course in 2024

of 26.62 percentage points, with a 95% confidence interval of
[26.554%, 26.688%], compared to an absolute risk of 15.04%
for students who do not fail the first session. This difference
is statistically significant, indicating a meaningful association
between failing the first session and ultimately failing Physics I.
Furthermore, the relative risk is 2.77, suggesting that students
who fail the first session are 2.77 times more likely to fail the
course than those who do not (see Figure 10).

TABLE IV. COMPARISON OF ABSOLUTE RISK (AR) OF COURSE FAILURE
BETWEEN STUDENTS EXPOSED AND UNEXPOSED TO FAILING PREVIOUS

SESSIONS, WITH CORRESPONDING RISK DIFFERENCES (RD)

Course Session(s) AR (%) AR (%) RD (%) 95% CI (RD)
Failed exposed unexposed

Physics I S1 41.66 15.66 26.62† [26.554, 26.688]
S2 43.52 10.76 32.76† [32.696, 32.823]
S1 and S2 62.93 15.04 47.89† [47.805, 47.975]

Physics II S1 28.11 2.23 25.89† [25.829, 25.944]
S2 22.76 9.12 13.63† [13.563, 13.707]
S1 and S2 49.03 2.23 46.80† [46.673, 46.934]

Physics III S1 10.61 0.59 10.02† [9.961, 10.071]
S2 14.30 1.76 12.54† [12.455, 12.623]
S1 and S2 33.05 0.59 32.45† [32.276, 32.634]

† (p-value < 0.05)

The absolute risk of failing the Physics I course increases to
43.52% if students fail the second session. In this case, the risk
difference is 32.76 percentage points, with a 95% confidence
interval of [32.696%, 32.823%], compared to an absolute risk
of 10.76% among students who pass the second session. The
relative risk in this scenario is 4.05, indicating that students
who fail the second session are over four times more likely to
fail the course than those who succeed (see Figure 10).

When students fail both the first and second sessions of
Physics I, the absolute risk of failing the course increases to
62.93%. The associated risk difference is 47.89 percentage
points, with a 95% confidence interval of [47.805%, 47.975%],
compared to the 15.04% absolute risk observed among those
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who do not fail the first two sessions. The relative risk of 4.18
further highlights the increased likelihood of course failure
under these conditions (see Figure 10).

Figure 4. The simulation converges to the expected final grade of 3.178 in the
Physics I course as N = 6, 553, 600, with a standard error of 1.2× 10−4.
The result lies within the 95% confidence interval of [3.178, 3.179].

Regarding the Physics II course, the simulation shows that
students who fail the first session have an absolute risk of
28.11% of failing the course. This results in a risk difference
of 25.89 percentage points, with a 95% confidence interval
of [25.829%, 25.944%], compared to an absolute risk of just
2.23% for those who do not fail the first session. The relative
risk of 12.62 indicates that students who fail the first session
are over 12 times more likely to fail Physics II (see Figure 11).

Figure 5. The simulation convergences to the expected final grade of 3.305
in the Physics II course as N = 6, 553, 600, with a standard error of 10−4.
The result lies within the 95% confidence interval of [3.30498, 3.305].

Failing the second session in Physics II results in an absolute
risk of 22.76%, with a risk difference of 13.63 percentage
points and a 95% confidence interval of [13.563%, 13.707%],

compared to an absolute risk of 9.12% for those who do not
fail the second session. The relative risk of 2.49 indicates a
significantly increased likelihood of failing the course for these
students (see Figure 11).

When students fail both the first and second sessions in
Physics II, the absolute risk of failing the course rises sharply
to 49.03%. This is associated with a risk difference of 46.80
percentage points and a 95% confidence interval of [46.673%,
46.934%], compared to the same 2.23% absolute risk for
students who succeed in both sessions. The relative risk of
22 underscores the very strong association between poor
performance in the initial sessions and course failure (see
Figure 11).

In the case of Physics III, students who fail the first session
have an absolute risk of 10.61% of failing the course. The
risk difference in this case is 10.02 percentage points, with a
95% confidence interval of [9.961%, 10.071%], compared to
an absolute risk of 0.59% among students who pass the first
session. The relative risk is 17.93, indicating a very strong link
between failing the first session and failing the course (see
Figure 12).

For students who fail the second session in Physics III, the
absolute risk of course failure is 14.30%, compared to 1.76%
among those who pass that session. This results in a risk
difference of 12.54 percentage points, with a 95% confidence
interval of [12.455%, 12.623%].The corresponding relative risk
of 8.11 suggests that failing the second session in Physics III
is associated with a higher likelihood of course failure than
the same condition in Physics I and II (see Figure 12).

Finally, for students who fail both the first and second
sessions in Physics III, the absolute risk of failing the course
increases to 33.05%. The risk difference is 32.45 percentage
points, with a 95% confidence interval of [32.276%, 32.634%],
in contrast to the absolute risk of 0.59% for students who
succeed in both sessions. The relative risk of 55.86 implies
an exceptionally high likelihood of failure under these circum-
stances (see Figure 12).

IV. CONCLUSION AND PERSPECTIVE

We adopted Monte Carlo simulation because the collected
dataset is small and statistically unstable or undefined (i.e.,
division by zero or nearly zero) to estimate absolute and relative
risk causing even high variance. Thereby the Monte Carlo
method provides a data-informed but smoothed approximation
of what outcomes would look like using a larger dataset with
similar distributional properties of the collected dataset.

We draw the following conclusions from the results:
• Teaching staff and lecturers may consider reorganizing the

syllabus to reduce the risk of course failure by incorporating
the observed probabilities of failure at each session.

• In Physics II and III, failing the first session is associated
with a higher risk of overall course failure than failing the
second session. This pattern might be driven by psychological
or motivational factors; students who begin the course
with poor performance often experience discouragement,
reduced engagement, and diminished resilience in response
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Figure 6. The simulation convergences to the expected final grade of 3.354 in
the Physics III course as N = 3, 276, 800, with a standard error of 1.1×10−4.
The result lies within the 95% confidence interval of [3.353, 3.354].

Figure 7. Distribution of final grades obtained from the simulation for the
Physics I course.

to subsequent academic challenges [17], [18]. More broadly,
performance in the first or second session is strongly asso-
ciated with final course outcomes. Beyond mere statistical
correlation, early academic struggles may serve as indicators
of underlying motivational or behavioral challenges, making
them valuable triggers for early intervention and academic
support strategies. Further research is needed to design and
implement targeted measures that might help students recover
from early setbacks and improve their overall performance
trajectory.

• In Physics III, students who pass the first two sessions have
an almost negligible risk of failing the course. Consequently,
they may become complacent and neglect the final session.
In contrast, students who fail the first two sessions face a

Figure 8. Distribution of final grades obtained from the simulation for the
Physics II course.

Figure 9. Distribution of final grades obtained from the simulation for the
Physics III course.

significantly high risk of failing the course. This discrepancy
suggests an imbalance in the difficulty and weight of the
course sessions. Simulating alternative scenarios may help
to redesign the course structure and improve student success
rates.

• A consistent trend of improved student performance is
observed from Physics I to Physics III, as indicated by
higher average grades and lower absolute risk in the later
courses. This pattern might reflect students’ adaptation to
course demands or the development of stronger academic
skills over time. Nevertheless, in the Systems Engineering
program, students are not strictly required to follow pre-
requisite sequencing. For instance, a student may enroll in
Physics III without having previously taken Physics I or
II. Although most students typically follow the intended
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Figure 10. Forest plot showing the relative risk (RR) of failing the Physics
I course. RR(y < 3 | x1 < 3) = 2.77, with a 95% confidence interval of
[2.762, 2.777]; RR(y < 3 | x2 < 3) = 4.05, with a 95% confidence interval
of [4.032, 4.059]; and RR(y < 3 | x3 < 3) = 4.18, with a 95% confidence
interval of [4.172, 4.195]. In all cases, the Wald test p-value is less than 0.05.

Figure 11. Forest plot showing the relative risk (RR) of failing the Physics
II course. RR(y < 3 | x1 < 3) = 12.62, with a 95% confidence interval
of [12.532, 12.703]; RR(y < 3 | x2 < 3) = 2.49, with a 95% confidence
interval of [2.484, 2.505]; and RR(y < 3 | x3 < 3) = 22, with a 95%
confidence interval of [21.851, 22.159]. In all cases, the Wald test p-value is
less than 0.05.

curricular progression, exceptions do occur. In this study,
information about such cases was not available.

• The simulation based on the Monte Carlo numerical method
has proven to be a valuable tool for estimating the absolute
and relative risks of course failure. It might support evidence-
based decision-making in academic planning and policy
design. Grades were simulated using a normal distribution,
with parameters estimated from observed student data. While
our dataset includes relatively few course failures, we
modeled grades probabilistically to reflect the empirical
distribution, ensuring that rare but plausible outcomes (e.g.,
failing scenarios) were represented.

As directions for further research, we propose the following:

• We shall collect additional data to apply this methodology
to other courses and broaden the scope of academic risk
analysis.

Figure 12. Forest plot showing the relative risk (RR) of failing the Physics
III course. RR(y < 3 | x1 < 3) = 17.93, with a 95% confidence interval
of [17.601, 18.267]; RR(y < 3 | x2 < 3) = 8.11, with a 95% confidence
interval of [8.021, 8.196]; and RR(y < 3 | x3 < 3) = 55.86, with a 95%
confidence interval of [54.827, 56.913]. In all cases, the Wald test p-value is
less than 0.05.

• We shall extend the simulation to incorporate the specific
coursework or evaluation structure assigned in each session,
aiming to estimate risk with greater accuracy.

• We shall adapt the simulation to assume an non-uniform
weighting of sessions when calculating final grades, in order
to reduce the risk of failure.

• We shall incorporate bootstrap resampling to estimate the
variability of simulation parameters (i.e., mean and standard
deviation) in order to strengthening the robustness of the
risk estimates under data scarcity.
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