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Applications, and Services (GEOProcessing 2025), held between May 18th, 2025, and May 22nd, 2025, in

Nice, France, continued a series of events addressing various aspects of managing geographical

information and web services. The goal of the GEOProcessing 2025 conference was to bring together

researchers from the academia and practitioners from the industry in order to address fundamentals of

advances in geographic information systems and the new applications related to them using the Web

Services. Such systems can be used for assessment, modeling, and prognosis of emergencies.

The event provided a forum where researchers were able to present recent research results and new

research problems and directions related to them. The topics covered aspects from fundamentals to

more specialized topics such as 2D & 3D information visualization, web services and geospatial systems,

geoinformation processing, and spatial data infrastructure.
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and results between academia and industry for the promotion of progress in the field of geographical

information systems, applications, and services.
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Abstract— Agrivoltaic systems represent an innovative strategy 

to improve sustainability in agriculture by integrating solar 

energy production with food cultivation. In the province of Jaén, 

Spain, where olive cultivation is key, the implementation of these 

systems could optimise land use and increase farmers' 

profitability. This study uses Geographic Information Systems 

(GIS) and Multi-Criteria Decision Analysis (MCDA), 

specifically the Analytic Hierarchy Process (AHP) method to 

identify the most suitable sites for the installation of agrivoltaics. 

The results indicate that 19% of the area studied (33,840 km²) is 

highly suitable for agrivoltaic systems, with solar radiation and 

terrain slope being the most influential factors. This paper 

contributes a reproducible GIS-MCDM methodology for 

agrivoltaic site selection using expert- weighted criteria and 

spatial layers. The novelty lies in applying these techniques 

specifically to olive groves in Jaén, integrating solar potential 

with crop viability to support land- use optimization.  

Keywords - Agrivoltaics; Geographic Information System; 

Agriculture; Geospatial analysis. 

 

I. INTRODUCTION 

The growing demand for energy and food intensifies 

competition for land use, making agrivoltaic systems a 

strategic solution for integrating agricultural production with 

solar energy generation. Photovoltaic energy has been 

expanding globally, and in Spain, after a period of stagnation, 

its capacity more than doubled between 2019 and 2021, 

driven by lower technology costs and high solar radiation 

levels [1] [2]. 

Agrivoltaic systems allow for dual land use, enabling both 

agricultural production and electricity generation, providing 

environmental and economic benefits, such as improved soil 

quality, reduced water consumption, and increased 

biodiversity [3]. Additionally, studies show that this system 

can increase farmers' income, especially in low- margin 

crops. However, poorly positioned solar panels may 

compromise the productivity of the solar plant. 

To address this challenge, GIS and MCDA are widely 

used to select optimal locations for renewable energy projects 

[4]. AHP, in particular, is effective in weighting different 

criteria without complex calculations, ensuring more 

consistent decision-making [5]. 

 

 

 

 

 

 

Previous research has demonstrated the effectiveness of 

GIS and MCDA, specifically the AHP method, in the 

selection of ideal sites for solar power plants. Studies in 

Morocco [8], Turkey [9], and Indonesia [6] have shown that 

between 16% and 19% of the analyzed areas are highly 

suitable for photovoltaic installations. In addition to MCDA, 

methods such as Weighted Linear Combination (WLC), 

Fuzzy AHP, and Technique for Order Preference by 

Similarity to Ideal Solution (TOPSIS) have also been 

employed to evaluate multiple criteria [12]. 

This study focuses on Jaén province, Spain, the world's 

largest olive oil producer, where agrivoltaics is not yet widely 

implemented. The methodology combines GIS, MCDA, and 

3D modeling to assess the impact of shading. 

The results indicate that 19% of the study area is highly 

suitable for agrivoltaic projects, allowing clean energy 

generation without compromising agricultural productivity. 

This proposed approach can be replicated in other 

agricultural regions, promoting food and energy security in a 

sustainable way. 

The remainder of this paper is structured as follows: 

Section 2 describes the study area and data collection process. 

Section 3 explains the MCDA methodology based on the 

Analytic Hierarchy Process (AHP). Section 4 presents the 

results of the spatial analysis, while Section 5 discusses the 

implications of the findings. Finally, Section 6 outlines 

conclusions and future research directions. 

II. RELATED WORKS 

Recent studies have applied Geographic Information 

Systems (GIS) and Multi-Criteria Decision Analysis 

(MCDA) methods, particularly the Analytic Hierarchy 

Process (AHP), to identify optimal locations for photovoltaic 

(PV) energy projects. In Saudi Arabia [7][13], Morocco [8], 

Turkey [9], and Egypt [10], GIS-AHP frameworks have 

successfully classified between 16% and 19% of their 

territories as highly suitable for solar energy installations, 

primarily based on criteria such as solar radiation, slope, land 

use, and proximity to infrastructure. Additionally, alternative 

decision techniques such as Weighted Linear Combination 

(WLC), Fuzzy AHP [14], and TOPSIS [12] have been 

introduced to enhance evaluation accuracy. 

1Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-269-2
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      However, although these approaches have been effective 

in optimizing site selection for energy purposes, they often 

overlook the agricultural context, particularly the 

preservation of existing crops and rural heritage. In Spain, 

olive groves cover more than 2.5 million hectares, 

representing not only a key agricultural product but also an 

important cultural and environmental asset. The rapid 

expansion of large-scale photovoltaic plants has raised 

concerns about the loss of olive cultivation areas, threatening 

food production, local economies, and traditional landscapes. 

Addressing this gap, the present study proposes a GIS- 

MCDA framework specifically adapted for the development 

of agrivoltaic systems within existing olive groves, aiming to 

optimize land use by integrating solar energy production 

without displacing agricultural activities. By focusing on the 

specific conditions of Jaén province—the leading olive oil- 

producing region globally—this work contributes a 

reproducible methodology that balances renewable energy 

deployment with agricultural preservation and sustainability. 

III. MATERIALS AND METHODS 
 

A. Study Area 

The study area consists of 22 towns in Jaén, Andalusia, 

Spain, covering 2,700 km², a region with high solar radiation 

(2,625 kWh/m² annually) and extensive olive cultivation 

(550,000 ha). Jaén is the world's largest olive oil producer and 

has 219 MW of installed solar capacity, enough to power 

100,000 homes. The region's long sunshine hours and 

available land make it highly suitable for agrivoltaic systems, 

allowing farmers to integrate solar energy with agriculture, 

improving land productivity and income while promoting 

sustainable energy generation. 

 

B. Definition criteria 

Identifying the factors used to evaluate site suitability is 

essential for optimizing solar power plant performance and 

cost efficiency. Common factors include Global Horizontal 

Irradiance (GHI), slope, and land cover, though variations 

exist depending on the study area and expert knowledge. 
 

The criteria are divided into two types: 
• Evaluation Criteria – Factors that influence site 

suitability. 
• Constraints – Factors that exclude unsuitable areas. 

The constraints were selected based on previous research 
on optimal PV plant siting [4][9][10][11]. These include 
permanent water bodies, restricted zones (airports, military 
sites), protected areas (e.g., Natura 2000, cultural heritage 
sites), and urban centers. These restricted areas and their buf- 

 

 

 

 

 

 

 

 

 

fer zones were identified following the Guide for 
Environmental Impact Studies for Photovoltaic Projects. In 
this study, the evaluation criteria were grouped into three 
categories: Climatology, Orography, and Location (Figure 
1). The selection was based on previous studies and expert 
evaluations in PhotoVoltaic (PV) energy. 

 
• Selected Criteria: 
C1 - Slope (%): Steep slopes complicate solar panel 

installation and reduce sunlight exposure. Research indicates 
that areas with slopes less than 5° are ideal for maximizing 
PV system efficiency [13] [14]. 

C2 - Aspects (Orientation): The orientation of the land 
influences solar energy capture. In the Northern Hemisphere, 
south-facing panels receive the most sunlight, whereas in the 
Southern Hemisphere, north-facing ones are optimal. Non- 
optimal orientations may require adjustments to improve 
efficiency [15]. 

C3 - Global Horizontal Irradiance (GHI) (kWh/m²): Solar 
radiation is the most critical factor in PV site selection. High 
GHI values ensure continuous and effective energy 
generation. 

C4 - Average Temperature (°C): High temperatures 
negatively impact photovoltaic cell performance. Efficiency 
drops when temperatures exceed 25°C, making it essential to 
consider temperature variations when selecting sites. 

 
• Distance-Based Criteria: 
C5 - Distance to Roads (m): Sites close to roads ensure 

easy transportation, installation, and maintenance of solar 
panels. Proximity minimizes infrastructure costs and 
environmental impacts [15]. 

C6 - Distance to Transmission Lines (m): PV plants 
should be near power lines to reduce energy losses and avoid 
the high costs of new transmission infrastructure. Efficient 
connection to the grid ensures profitability [15]. 

C7 - Distance to Residential Areas (m): Closeness to 
urban centers affects land availability, costs, and energy 
distribution. While proximity reduces grid connection 
expenses, buffer zones are necessary to minimize social and 
environmental impacts. 

 
These criteria were validated by PV energy experts and 

integrated into GIS and MCDA to determine the most 
suitable locations for agrivoltaic systems. The evaluation 
criteria, such as climate, topography, and location, were 
prioritized according to expert judgment and literature of 
100,000 homes. The region's long sunshine hours and 
available land make it highly suitable for agrivoltaic systems, 
allowing farmers to integrate solar energy with agriculture, 
improving land productivity and income while promoting 
sustainable energy generation. 

2Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-269-2
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Figure 1. Criteria for optimal location of agrivoltaic plants. 

 

C. Obtaining Thematic Layers 

After defining the criteria, thematic layers were created 
through geoprocessing in Quantum Geographic Information 
System (QGIS) to analyze the suitability of sites for 
agrivoltaic plants. This involved combining GIS and MCDA 
techniques to assess the installation sites for solar panels. The 
process began with the collection of data, followed by spatial 
analysis using tools like surface, geometric, and distance 
operations. 

A filtering step was performed on the Cadastral Parcels 
layer, focusing on olive grove farms identified by SIGPAC 
land use codes: OV (Olive groves), VO (Olive grove– 
Vineyard), OF (Olive grove–Fruit trees), FL (Shell fruit 
trees–Olive grove), and OC (Olive grove–Citrus). These 
categories correspond to different types of agricultural land 
where olive cultivation is predominant, either alone or in 
combination with other crops. Only parcels larger than 1,000 
m² were selected, as smaller plots are not suitable for 
photovoltaic installations. 

For each evaluation criterion, relevant data layers were 
generated: 

• Criterion C1 - Slope (%): Calculated using Digital 

Elevation Model (DEM) with the QGIS Slope tool to 

identify flatter areas. 

• Criterion C2 - Aspects: Orientation of the terrain 

calculated using DEM and the QGIS Aspect tool, 

with south-facing areas considered ideal for solar 

panels. 

• Criterion C3 - Global Horizontal Irradiation 

(kWh/m²): Solar irradiance data from the Global 

Solar Atlas [16], downloaded as raster layers and 

clipped to the study area. Data was transformed using 

QGIS to align with the study’s spatial resolution and 

suitability classification. 

• Criterion C4 - Average Temperature (°C): 

Temperature data from the Global Solar Atlas, also 

clipped to the study area. 

• Criterion C5, C6, C7 - Distance to Roads, 

Transmission Lines, and Residential Areas (m): 

Distances calculated using QGIS Euclidean distance 

tool for proximity analysis. 

Once all layers were created, they were standardized on a 
common scale. Each layer was reclassified into 10 classes (1 
= most suitable, 10 = least suitable), with special restrictions 
applied for Aspect (south-facing = 1) and Slope (slopes 
greater than 5° = 1). This reclassification allowed for 
integration into a unified suitability map for agrivoltaic plant 
siting. The processing results can be seen in the maps 
presented in Figure 2. 
 

 

Figure 2. Maps of the geoprocessed and classified criteria. 

 

Figure 2 presents the raster layers classified for each 
evaluation criterion. The slope and aspect maps reveal that 
south-facing land with gentle slopes-ideal for solar panel 
efficiency-are concentrated in the southern and southwestern 
regions of the study area. The solar radiation layer indicates 
higher irradiance values in these same areas, reinforcing their 
suitability. In addition, proximity-based criteria, such as 
distance to roads and power lines, highlight the advantage of 
the central and western municipalities in terms of access to 
infrastructure. 

IV. MCDA USING AN AHP APPROACH 

This study employs the Analytic Hierarchy Process 

(AHP) within a Geographic Information System (GIS)- based 

Multi-Criteria Decision Analysis (MCDA) framework to 

identify optimal sites for agrivoltaic systems in Jaén, Spain. 

The AHP method is particularly suitable for renewable 

energy applications due to its ability to incorporate multiple 

qualitative and quantitative factors through structured expert 

judgment. 

The AHP process follows structured steps, as shown in 

Figure 3 (decision-making flowchart). The process begins 

with problem definition, followed by hierarchical structuring 

of criteria and sub-criteria, and then constructing the Pairwise
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Comparison Matrix (PCM). Experts evaluate the importance 

of each criterion using pairwise comparisons, and the results 

are normalized before computing the overall weight. A 

critical step is checking the Consistency Ratio (CR), which 

should be less than or equal to 10% to ensure the reliability 

of the decision matrix. If CR exceeds this threshold, 

adjustments are required before proceeding with the GIS 

mapping. 
 

 

Figure 3. Steps for applying the AHP multi-criteria decision method. 

 

AHP relies on expert pairwise comparisons, using a 
numerical scale from 1 (equal importance) to 9 (extreme 
importance). Table I presents the scale used to assess the 
relative importance of each criterion. 

TABLE I. JUDGEMENT OF THE PAIRWISE COMPARISONS 
 

N Importance 

 Ci is equally as important as Cj 1 

    Ci is slightly more important than Cj 3 

    Ci is strongly more important than Cj 5 

  Ci is very strongly more important 
than Cj 7 

Ci is extremely more important than 
Cj 9 

      Intermediate values 2, 4, 6, 8 

 

 
After defining the importance levels, a PCM is 

constructed using a numerical grade scale (using Table I). 

Each criterion is compared with the others based on expert 

judgment. The reciprocal property is applied: if one criterion 

is considered much more important than another (e.g., C1 is 

6 times more important than C6), the inverse value (1/6) is 

assigned to the opposite comparison (C6 compared to C1). 

 

TABLE II. PAIRWISE COMPARISON MATRIX (PCM) 

Criteria C1 C2 C3 C4 C5 C6 C7 

C1 1 2 3 4 7 6 5 

C2 1/2 1 2 3 6 5 4 

C3 1/3 1/2 1 2 5 4 3 

C4 1/4 1/3 1/2 1 4 3 2 

C5 1/7 1/6 1/5 1/4 1 1/2 1/3 

C6 1/6 1/5 1/4 1/3 2 1 1/2 

C7 1/5 1/4 1/3 1/2 3 2 1 

 

Each entry  in the pairwise comparison matrix was 

normalized by dividing it by the sum of its respective column, 

as shown in Equation (1): 

 
 

 
(1) 

This transformation ensures that all criteria are expressed  

in  relative  terms,  making  them  directly comparable. 

To determine the criterion weight vector ( ), Equation (2) 

was applied. The relative weight of each criterion was 

obtained by averaging the normalized values across each row, 

where n is the number of elements in the row:  

 

 

(2) 

Then, the CI was divided by the Random Consistency 

Index (RI), a reference value that varies depending on the 

number of criteria (3): 
 

 
(3) 

The resulting weights are presented in Table III, with 

slope (C1) and aspect (C2) emerging as the most influential 

criteria for site selection. 

                TABLE III. FINAL RESULT OF THE AHP APPLICATION  

Criterion Valor Percentage 

C1 0.354 35.44% 

C2 0.240 24.00% 

C3 0.159 15.85% 

C4 0.104 10.36% 

C5 0.031 3.11% 

C6 0.045 4.49% 

C7 0.068 6.75% 

 

To ensure the reliability of expert judgments, a 

Consistency Ratio (CR) was calculated. First, the 

Consistency Index (CI) is determined by comparing the 

maximum eigenvalue of the matrix with the number of 

criteria. 

 

        

 
(4) 
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Then, the CI is divided by a Random Consistency Index 
(RI), a reference value that depends on the number of criteria 
in the matrix. The RI values used for reference are presented 
in Table IV. 

TABLE IV. RANDOM CONSISTENCY INDEX (RI) VALUES 

N 1 2 3 4 5 6 7 

RI 0 0 0.58 0.90 1.12 1.24 1.32 

 

A CR ≤ 10% indicates acceptable consistency, ensuring 

that expert evaluations are logically consistent. In this study, 

the calculated CR was 0.03, confirming that the matrix is 
reliable. 

Once the normalized weights were established, a final 

suitability map was created using a weighted linear 

combination method (Figure 4). Each criterion was 

represented as a raster layer previously standardized on a 1– 

10 suitability scale, and each layer was multiplied by its 

corresponding weight. The weighted layers were then 

summed to produce a composite suitability score for each cell 

in the study area. 
 

Figure 4. AHP Map. 

 

In this step, spatial constraints previously defined — such 

as steep slopes or protected zones — were applied to mask 

out unsuitable areas. The result is a continuous raster map 

highlighting the most favorable locations for agrivoltaic 

development. To refine the results, areas deemed unsuitable 

for agrivoltaics—such as protected zones, urban regions, and 

bodies of water—were excluded from the final map. 

The analysis revealed that 19% of the studied area is 

highly suitable for agrivoltaic projects, effectively balancing 

solar energy generation with agricultural productivity. 

In sumary, using the MCDA-AHP technique, weighted 

values were assigned, and QGIS was used for spatial analysis. 

The results indicate that 33,840 km² of the study area are 

highly suitable, with a suitability level exceeding 80%. To 

simplify interpretation, the results were classified using the 

Land Suitability Index (LSI), as shown in Table V. 

TABLE V. LAND SUITABILITY INDEX (LSI) 

Suitability Level Suitability Percentage Area (km²) 

Most Suitable > 80% 33,840 
Highly Suitable 70% – 80% 899,710 

Moderately Suitable 60% – 70% 1,416,590 
Marginally Suitable 50% – 60% 257,810 

Least Suitable < 50% 2,320 

 

After classification, restricted areas (e.g., protected lands, 

urban zones, and bodies of water) were excluded using the 

QGIS clipping tool (Figure 5). 
 

 
Figure 5. LSI with Restrictions excluded. 

 

The most highly suitable areas are mainly in the south and 

west, benefiting from lower temperatures, high solar 

radiation, and accessibility to roads and power infrastructure. 

In contrast, northwestern areas are less suitable due to lower 

irradiation and infrastructure density. This solar site 

suitability analysis provides a data-driven approach to 

support decision-makers in selecting optimal agrivoltaic 

locations in Andalusia, whether for small or large-scale PV 

systems. 

 

IV. CONCLUSION AND FUTURE WORKS 
 

This study proposed a spatial framework based on GIS 

and Multi-Criteria Decision Analysis (MCDA) to identify 

optimal locations for agrivoltaic installations in olive- 

growing areas of Jaén province, Spain. By combining 

environmental, topographic, and infrastructure-related 

criteria using the Analytic Hierarchy Process (AHP), the 

study generated a spatial suitability map indicating that 

33,840 km² — mainly in the south and west — are highly 

suitable for agrivoltaic systems, with an overall suitability 

level above 80%. 

These results demonstrate that the integration of GIS and 

AHP methodologies enables informed land-use decision- 

making, promoting both energy transition and agricultural 
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productivity. The spatial framework developed is replicable 

and adaptable to other contexts, making it a valuable tool for 

planners and policymakers. 

However, this study is not without limitations. 

Agronomic variables such as crop yield under shading or 

irrigation needs were not included, and they could 

significantly influence the final suitability of the sites. 

Additionally, the results rely on static environmental datasets 

and expert-derived weights, which may vary over time or 

across regions. 

Future work should consider the integration of dynamic 

agronomic models, real-time data, and alternative decision- 

making techniques such as the Fuzzy AHP algorithm. In 

addition, developing an intuitive and user-friendly interface 

would enhance accessibility and enable stakeholders to 

interact with spatial data and suitability maps more 

effectively, thereby supporting informed decision-making 

and encouraging broader public engagement. Finally, 

expanding this methodology to other agricultural regions of 

Spain or the Mediterranean could provide a more generalized 

understanding of sustainable dual land use. 
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Abstract—This project aims to develop an Artificial Intel-
ligence (AI)-based system for early crop yield prediction in
vineyards. The objective is to provide farmers with a reliable tool
that allows them to optimize resource planning, reduce risks, and
enhance crop sustainability. The methodology integrates multi-
source and multi-scale data, including historical yield informa-
tion, multispectral satellite images, and climatic variables, such as
temperature, humidity and precipitation, obtained from MODIS
and ERA5, from Copernicus services. It employs advanced AI
techniques, such as image processing and regression models. A
key phase is validating and adjusting the model using high-
resolution data captured by drones. The expected impact is
outstanding accuracy in harvest prediction, which will lead
to a significant reduction in uncertainty, greater operational
efficiency, and improved grape quality, transforming viticulture
into a more predictive and sustainable discipline.

Keywords-Artificial intelligence; agriculture; crop yield predic-
tion; remote sensing.

I. INTRODUCTION

The early estimation of crop yields for a specific crop is
essential for all actors involved, including farmers, intermedi-
aries, insurance companies, administrations and, of course, the
consumer himself. Since time immemorial, good or bad har-
vests have brought both prosperity and famine to populations
and thus determined their livelihoods and subsistence. Today,
they still generate major imbalances in the economies of many
families and areas of the planet, mainly because there are
still no effective tools to make accurate forecasts sufficiently
in advance. In this field, the most significant advances are
determined by Information and Communication Technologies
(ICT) at the service of Precision Agriculture (PA). This field
also includes Remote Sensing for capturing images of the
terrain and their advanced processing using Machine Learning
techniques to forecast possible problems, such as diseases, and
above all those related to crop yields [1] and [2].

It is the focus of most of the scientific community’s efforts
to try to identify the variables that mainly determine the be-
haviour of harvests. Undoubtedly, one of the most determining
factors is climate [3], [4]. Although the wine sector has a
somewhat more stable production than other traditional crops,
such as olives, weather conditions are the main reason for the
variability between the harvests of 2013 (7,500 tonnes) and
2017 (5,400 tonnes) at regional level [5]. Another important
aspect related to climate is the quality of the grapes and,
therefore, of the resulting wines [6], .

In order to be able to determine future behaviour, it is
usually necessary to know what happened in the past. In the
case of crop prediction, it is important to make this correlation
between climatological variables and harvest results. The use
of satellite data offers great advantages for working with
medium and large-scale territories, such as municipalities,
provinces or other types of geographical demarcations. How-
ever, their greatest capacity is to provide data with a certain
frequency, providing historical data [7], [8]. Although they do
not provide the same resolution as sensors attached to drones,
they can cover large areas of land and provide data from
the past that can also be correlated with data from previous
harvests. In addition, different satellites provide images of
different types: optical, multispectral, hyperspectral, thermal
or LiDAR (Light Detection and Ranging), which are widely
used in precision agriculture.

Most of the works developed for harvest forecasting differ
in methodology depending on the type of crop. The impor-
tance of its forecasting in the field of wine production is
pointed out in some works to determine the desired quantity
and quality of grapes, which is crucial for winemakers [9],
[10], [11]. However, the methodology of data capture, data
cleaning and pre-processing can be considered a common task.
Although each crop needs to adjust a different model based
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on its specific characteristics, a common methodology can be
established for many crop types. In each case, the importance
of data collection at different times of the year both at the
climatological level and using specific vegetation indices for
each case is considered.

Crop yield prediction is definitely one of the challeng-
ing problems in precision agriculture; however, as Xu et
al. [12] point out, it is not a trivial task. Nowadays, crop
yield prediction models can reasonably estimate actual values,
but better performance in yield prediction is still desirable
[6]. Numerous authors have emphasised the importance of
quantitative crop yield prediction for years, considering it as a
valuable tool to support farmers [13]. The close relationships
between pollen emission and fruit production are extensively
studied in this research. However, final fruit production is
influenced by various climatic and agronomic conditions both
in the pre-flowering period and in the period between flowering
and harvest, such as water deficit, temperature extremes and
phytopathological problems.

The structure of the paper has 4 sections: Section I is
the Introduction where the crucial importance of early yield
estimation in vineyards is highlighted for all actors in the
sector. Section II, Methodology, proposes the implementation
of a geospatial vineyard yield prediction system using AI and
remote sensing, by integrating multi-source and multi-scale
data. Section III describes the expected results and, finally,
Section IV presents the incipient conclusions of this work.

II. METHODOLOGY

The implementation of a vintage prediction system for
vineyards using AI and remote sensing involves the integration
of multi-source and multi-scale data, the design of a geospatial
database in the cloud and the creation of a predictive model
validated with field data. Success lies in efficient data man-
agement and analysis, accuracy of predictions and accessibility
for winegrowers, as shown in 1 . A phased implementation is
proposed.

Figure 1. Methodology workflow.

A. System architecture planning and design

The first step will be to design a system architecture that
allows data to be managed, processed and analysed in an
efficient and scalable way. Three main sources of data will
be considered:

1) Public data:: Satellite imagery providing multispectral
information on vine cultivation.

2) Project-specific data:: High-resolution images, both
satellite and captured from drone-mounted sensors.

3) Meteorological data:: Real-time weather information
from local stations and historical bases, as well as products
derived from remote sensing.

A geospatial database will be designed to efficiently store
and manage geolocated information, and a cloud infrastructure
will be implemented to ensure remote access, scalability and
data security.

B. Data acquisition and processing

This phase includes the collection of the multi-source data
and the processing of the data. The different origin and nature
of the data requires a specific treatment of the data, both to
be integrated homogeneously in the database without affecting
the coherence of the data and to generate the derived products
necessary for the implementation of the predictive model itself.

C. Implementation of the geospatial database

The geospatial database will be used to store and manage
spatial data, allowing complex queries based on vineyard
locations and associated variables. In addition, geospatial visu-
alisation tools will be integrated to provide users with a visual
representation of the data and to facilitate the interpretation of
the information. Furthermore, being cloud-based, the database
will be scalable, allowing new datasets to be incorporated as
more data is obtained, without affecting the performance of the
system. The cloud will also facilitate collaboration by allowing
multiple users to access the system from different locations,
which is essential when working with a technology transfer
project involving multiple stakeholders.

D. Design and implementation of the predictive system in the
cloud

The next step is the design and implementation of the
predictive system in the cloud. This system will use advanced
Machine Learning (ML) techniques capable of integrating
diverse data sources and learning complex patterns that allow
early estimation of the harvest. Once the model is trained,
it will be implemented on Oracle’s cloud platform. This
cloud platform should also be accessible from mobile devices,
facilitating remote access for users, so that it can also serve
as a means of capturing data on harvest quantity (in the first
instance) and other information on farming practices to feed
back and retrain the predictive system.
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E. Design and development of graphical interface for system
use

Using Oracle Application Express, a system will be devel-
oped that will allow authorised users to visualise the harvest
prediction and allow them to analyse the actual harvest and
prediction data. This will allow non-expert users and from
home to access and use the machine learning models, allowing
to interpret and apply predictions in an intuitive and efficient
way.

F. Validation and adjustment of the model with drone data

A fundamental part of the implementation of the system is
the validation of the predictions generated by the predictive
model. For this purpose, data collected directly with drones
in the vineyards will be used as a reference point to verify
the accuracy of the system’s predictions from satellite images.
The drone data, due to its high resolution and ability to
capture fine details of the vineyard, will allow validation of
the harvest predictions and adjustment of the model as needed.
In order to ensured statistically robust validation it shall be
adopted a sufficient number of sampling points covering a
representative range of conditions within the study vineyards.
Also, the timing of data collection will be directly related to
the vegetative cycle of the vineyard.

This validation process is iterative and will progressively
improve the accuracy of the system as more drone data is
collected and more experience is gained with the system.

G. Scalability and maintenance of the system

Once the predictive system has been validated and fine-
tuned, the focus will be on ensuring its long-term scalability
and maintainability. As technology and data will continue to
evolve, the system must be flexible and able to adapt to new
data sources and predictive algorithms. The cloud platform
must have tools that allow for continuous updating of the
model, incorporation of new data, and enhancement of the
system without interrupting service to users. This also includes
the implementation of a monitoring system to ensure optimal
performance of the infrastructure, detect possible errors and
ensure the accuracy of the system.

H. Knowledge transfer and training

Training programmes will be designed to teach winegrowers
how to use the platform, interpret forecasts and make informed
harvesting decisions. This training will be crucial to ensure
technology adoption and maximise the impact of the system
on improving productivity in the vineyards.

III. PRELIMINARY RESULTS AND EXPECTATIONS

In a machine learning study focused on early grape harvest
prediction, results are anticipated that will transform vineyard
management. The primary goal is to achieve outstanding ac-
curacy in harvest date prediction, minimising the discrepancy
between model estimate and reality. Regression algorithms,
trained on historical data, climatological data and multispec-
tral images, are expected to reveal complex and non-linear

patterns, overcoming the limitations of traditional methods.
This accuracy would translate into more efficient harvest
planning, allowing growers to optimise resource allocation and
coordinate labour in advance.

The model is expected to reveal the relative importance of
the variables analysed, from climatic fluctuations to vegetation
indices captured by satellites and drones. This information will
allow winegrowers to better understand the influence of var-
ious factors on their vineyards, adapting to the particularities
of each vintage and mitigating the effects of climate change.

Rigorous validation of the model is crucial to ensure its
robustness and applicability in different scenarios. The integra-
tion of drone data, with its high spatial resolution, is expected
to complement satellite information, refining predictions and
allowing accurate assessment at the plot scale. In terms of
metrics, high R² values, close to 1, and low RMSE (Root
Mean Square Error) and MAE (Mean Absolute Error) values
are aspired, reflecting the high accuracy and low error of the
predictions.

IV. CONCLUSIONS

The implementation of machine learning models for early
grape harvest prediction represents a significant advance in
precision viticulture. The expected results, based on the
integration of multi-source data and regression algorithms,
promise not only to improve the accuracy of predictions, but
also to deepen our understanding of the factors influencing
grapevine phenology. The ability to accurately anticipate har-
vest yields months in advance will allow grape growers to opti-
mise the planning of their activities, from resource allocation
to grape quality management. In addition, the identification
of the most influential variables, such as climatic conditions
and vegetation indices, will provide valuable information for
informed decision-making.

Ultimately, this approach has the potential to transform
viticulture into a more predictive and sustainable discipline.
Rigorous validation of the models, using high-resolution drone
and satellite data, will ensure their robustness and applicability
in different contexts. Quantification of model performance
through metrics, such as R², RMSE and MAE will provide
an objective basis for assessing their accuracy and reliability.
The implementation of these models is expected to lead to a
significant reduction of uncertainty in wine crop management,
resulting in increased efficiency and improved grape quality. In
addition, the ability to capture and analyse complex patterns
in the data will allow researchers and viticulturists to gain
new insights into grapevine physiology and its response to
environmental conditions.
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Abstract—The automated classification of olive varieties plays a
crucial role in Precision Agriculture, enabling optimized resource
allocation, improved irrigation strategies, and enhanced olive
oil quality. This study explores the integration of Hyperspectral
Imaging (HSI) and Deep Learning (DL) to classify olive varieties,
focusing on Picual. Utilizing drone-acquired hyperspectral data,
a Convolutional Neural Network (CNN) was employed to analyze
leaf reflectance and extract spectral-spatial features with high
accuracy. The Unmanned Aerial Vehicle (UAV)-based HSI system
captures high-resolution spectral data, allowing for the detection
of subtle differences in reflectance patterns that are imperceptible
to traditional sensors. The study demonstrates that the proposed
deep learning approach achieves an accuracy of approximately
90% in classifying olive varieties, significantly outperforming
traditional machine learning methods. These findings highlight
the potential of hyperspectral deep learning in agricultural
applications, paving the way for scalable, efficient, and sustainable
orchard management.

Keywords-Hyperspectral Imaging (HSI); Deep Learning (DL);
Convolutional Neural Networks (CNN); Precision Agriculture; Olive
Variety Classification; UAV-based Imaging; Spectral-Spatial Analysis;
Arbequina; Picual.

I. INTRODUCTION

Olive cultivation (Olea europaea) is a fundamental compo-
nent of Mediterranean agriculture, contributing significantly
to global olive oil production. The identification of olive
varieties is crucial for optimizing agricultural management,
ensuring efficient irrigation, and enhancing oil quality. However,
traditional classification methods rely on manual expertise,
which is labor-intensive and impractical for large-scale olive
groves [1].

Spain, with the province of Jaén as its production heart, leads
the olive grove sector worldwide, being the largest producer
of olive oil and a benchmark for the quality and tradition of
this crop. In this province, Picual and Arbequina varieties are
the most prevalent, and it is a common practice to substitute
Picual trees with Arbequina due to the significant problem of
Verticillium wilt. This substitution results in a high prevalence
of mixed-variety groves, significantly affecting agricultural
management. Specifically, irrigation, pruning, fertilization, and
pest control strategies vary based on the type of variety. From a

cooperative perspective, cultivar identification is crucial; Picual
oil is characterized by an intense profile, high polyphenol
content, and a bitter, pungent flavor. The identification of this
variety is important to control the mixture with other varieties,
such as Arbequina. This justifies the projects that accurately
identify different tree specimens within groves.

This automatic species identification is now possible. HSI
has emerged as a powerful tool in Precision Agriculture,
enabling the detailed spectral analysis of plant species. Unlike
multispectral imaging, HSI captures narrow and continuous
spectral bands, allowing for the detection of subtle differences
in reflectance properties between varieties [2]. This technology
has been widely applied in tasks, such as vegetation monitor-
ing, disease detection, and yield estimation [2][3]. However,
conventional analysis techniques often struggle with the high-
dimensional nature of hyperspectral data.

To address these challenges, Artificial Intelligence (AI)
and Deep Learning (DL) methods have been increasingly
integrated with HSI for agricultural applications. Deep learning
techniques, particularly CNNs, have demonstrated significant
improvements in classification accuracy for various crops,
including wheat, rice, and maize [4]. CNNs effectively extract
spectral-spatial features from hyperspectral data, reducing the
need for manual feature engineering and improving classifica-
tion efficiency [5].

Recent studies have highlighted the advantages of DL over
traditional machine learning approaches in handling complex
hyperspectral datasets [2]. Traditional models, such as k-Nearest
Neighbors (k-NN) and Support Vector Machines (SVMs),
often struggle with the curse of dimensionality and require
extensive preprocessing. In contrast, CNNs automatically
learn hierarchical feature representations, enabling superior
performance in hyperspectral classification tasks [6].

Despite these advancements, limited research has been
conducted on the application of deep learning for Olive
Variety Classification. The spectral differences between olive
varieties, such as Arbequina and Picual, are often subtle,
making traditional classification approaches less effective [3].
Leveraging UAV-based hyperspectral imaging combined with
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CNNs offers a promising solution for automating and scaling
olive variety identification [4].

This study aims to develop a deep learning-based approach
for Olive Variety Classification using drone-acquired hyper-
spectral imagery. By applying CNN architectures optimized
for hyperspectral data, this research seeks to improve classifi-
cation accuracy and provide a scalable solution for Precision
Agriculture.

Section 2 provides an overview of related work and describes
the methodology used, including data acquisition and prepro-
cessing. Section 3 reports the experimental results, focusing on
model training and performance evaluation. Section 4 discusses
and interprets the findings. Finally, Section 5 presents the
conclusions and outlines potential directions for future research.

II. RELATED WORK | METHODS

The research took place in Mengíbar, Jaén, on land owned
by the Andalusian Institute of Agricultural and Fisheries
Research and Training (IFAPA) at the Venta del Llano Center.
This agricultural research facility operates under the research
instituteian Regional Government and is dedicated to research
and development in the agricultural sector, with a focus on
olive cultivation [7]. The center is located in Jaén, which
provides convenient access to a variety of olive plantations
for conducting field studies and experiments. The study was
carried out on a plot of land that offers optimal conditions for
examining different olive varieties in a real-world agricultural
setting.

The research area consists of rows of olive trees planted
specifically for experimental purposes, allowing for the as-
sessment of various olive cultivars. The experimental design
includes 14 rows, each with around 24 trees. Within each row,
groups of four trees from the same variety are planted, followed
by a shift to a different variety. The row selected for the study
can be seen in Figure 1, seeing that there are 8 Picual olive
trees and the rest of other varieties.

Figure 1. Row selected for the study.

Most of the other varieties are hybrids under investigation
and are not widely cultivated. The random arrangement of
these varieties within each block ensures comprehensive data
collection and reduces bias. This structure enables IFAPA to
gather important insights into the adaptability, productivity,
and characteristics of different olive cultivars in the specific
environmental conditions of Jaén.

A. Hyperspectral data capture and preparation

This study utilized a UAV equipped with a NanoHyperspec
camera and Light Detection and Ranging (LiDAR) sensor to
acquire hyperspectral imagery of olive trees. Flight parameters

were optimized for high-quality data capture, including a 30-
meter altitude, 5 m/s speed, and specific overlap percentages
to ensure comprehensive coverage. The hyperspectral data,
capturing 270 spectral bands from 400 to 1000 nm, was
processed using Headwall SpectralView™ software, involving
reflectance calibration and geometric correction using a high-
resolution DEM (Digital Elevation Model) generated from
LiDAR data. This process resulted in a dataset of 24 olive
trees, showcasing spectral variations after applying necessary
corrections.

Subsequent steps focused on refining the hyperspectral data
for accurate classification. Tree canopy segmentation was
performed using the Enhanced Vegetation Index (EVI) and
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) clustering to delineate individual trees, creating a
vector mask with unique identifiers and variety classifications.
To further improve data quality, noisy pixels, particularly
those affected by shadows, were removed through a filtering
process based on Near Infrared (NIR) reflectance and standard
deviation. This filtering ensured that only spectrally stable
pixels were used for analysis, enhancing the consistency and
reliability of the data for subsequent classification methods. The
effectiveness of these filtering techniques was demonstrated
through visual comparisons and spectral signature analyses,
ultimately leading to a refined dataset suitable for precise olive
tree characterization.

B. Train, test and validation subsets

This section outlines the methodology for creating the
training, testing, and validation subsets for Picual vs. non-
Picual (PI - NO PI) classification. The data comes from
the IFAPA farm, where the fourth row was selected for data
extraction.

After segmentation, all the Picual olive trees were selected,
totalling 264. Similarly, another 264 of the other varieties were
randomly selected so that both sets were balanced, as can be
clearly seen in Table I. For the training set, approximately
80% of the above-mentioned set (180 olive trees for picual
and 186 for Non-Picual) were chosen. On the other hand, for
the validation set, the remaining 20% were chosen (49 and 43
respectively), reserving 35 of each class for a subsequent test
of the model generated (see Table I).

TABLE I
DESCRIPTION AND DISTRIBUTION OF PICUAL DATASET.

Dataset Train Data Validation Data Test Data Total
PI 180 49 35 264
NO PI 186 43 35 264

This partitioning ensures that the models are trained on
diverse and representative samples, improving reliability, gen-
eralizability, and reducing bias, while the separate validation
set helps prevent overfitting.
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C. Justification for the Use of Deep Learning and Neural
Networks

Deep learning models, such as Multi-Layer Perceptrons
(MLP) and CNNs, are particularly well-suited for handling
the intricate nature of hyperspectral data. These models excel
in identifying and learning hierarchical patterns directly from
the data, allowing them to adapt to the complex relationships
found in the numerous spectral bands of hyperspectral images.
This capability is crucial when classifying olive varieties, as it
enables the model to discover subtle, non-linear distinctions
that might otherwise be overlooked.

Additionally, deep learning models offer the advantage of
automated feature extraction, simplifying the overall process
by eliminating the need for manual intervention in selecting
key features. This not only streamlines the workflow but
also ensures that the model can capture essential information
more effectively. Combined with their ability to manage high-
dimensional data, deep learning models are well-equipped to
improve classification accuracy and address the challenges
posed by the intricate structure of hyperspectral datasets.

D. CNN architecture

As mentioned above, CNNs are highly suited for this study
due to the nature of hyperspectral data and the complexity of
Olive Variety Classification. A one-dimensional (1D) CNN
model was developed specifically for the classification of
Picual variety, using hyperspectral data. The model architecture
consists of four convolutional layers, two max-pooling layers,
a fully connected layer with dropout, and an output layer for
binary classification. The structure of the model is illustrated
in Figure 2. The input consists of the dataset depicted in
Table I. The first convolutional layer (in dark blue) applies
the Exponential Linear Unit (ELU) activation function, which
improves learning and normalizes feature maps by introducing
non-linearity [8]. These layers, shown in dark blue, vary in the
number of filters, and their kernels scan the hyperspectral
sequence to extract relevant features. Filters help capture
important patterns from the data, while the kernel size remains
consistent across all convolutional layers.

Following the convolutional layers, a MaxPooling layer
(shown in light blue) reduces the dimensionality of the feature
maps, using a pool size of 3. This step enhances the model’s
efficiency by focusing on the most prominent features, reducing
computational complexity, and preventing overfitting. After
every two convolutional layers, MaxPooling layers further
reduce the dimensionality, allowing the model to retain key
spectral features critical for classification.

Once the convolutional layers have extracted the necessary
features, the feature maps are flattened into a one-dimensional
vector and passed to a fully connected layer. This dense layer
captures complex relationships between the features, applying
the ReLU activation function to enhance learning by setting
negative values to zero, which helps avoid issues like vanishing
gradients. A dropout layer is then added to mitigate overfitting,
and the final output layer uses a sigmoid function to classify
the sample as either Picual or Non-Picual.

E. Computational Environment

The calculations in this study were carried out using the
Anaconda distribution with Python 3.9, together with the
NumPy, Pandas, TensorFlow and Scikit-learn libraries. For
Bayesian optimisation, the BayesianOptimization library was
used. All calculations were run on a personal computer with
the following specifications: Intel(R) Core(TM) i9-12900K
12th generation 3.20 GHz processor and 64 GB of RAM. The
operating system used was 64-bit on an x64-based architecture.

III. RESULTS

By employing UAV-based hyperspectral imaging, this study
removes the necessity for manual sampling, allowing for real-
time, high-throughput classification. This represents a major
leap forward in Precision Agriculture, enhancing the scalability
and efficiency of identifying olive varieties.

In this section, the hyperparameters of the CNN model
used for classifying olive varieties are further optimized. A
combination of manual tuning and Bayesian optimization was
utilized to determine the most effective configurations for the
Picual variety classification.

A. Refining the Classification

This section details the process of adjusting the hyper-
parameters of the CNN for the classification of olive tree
varieties. Different configurations were explored to optimise
the performance of the model, resulting in specific parameters
for Picual variety.

Initially, hyperparameters were manually tested to improve
model performance, but this approach proved to be time-
consuming and inefficient. As a result, Bayesian optimization
was chosen to streamline the process and systematically explore
the hyperparameter space. Bayesian optimization employs a
probabilistic surrogate model to approximate the objective
function—in this case, classification accuracy. It iteratively
refines its search by leveraging information from previous trials,
making it particularly useful when computational resources are
limited or evaluations are costly, as was the case in this study.

The optimized values, detailed in Table II, include the filters
applied to the convolutional layers, the kernel size for the ELU
layers, and the number of neurons in the dense layer. These
parameters were fine-tuned through Bayesian optimization to
enhance model performance.

TABLE II
RANGE OF CNN HYPERPARAMETERS USED FOR OPTIMIZATION IN THIS

STUDY.

Hyperparameters Range
Filter 1 [10,20]
Filter 2 [25,35]
Filter 3 [60,75]
Filter 4 [110,130]
Kernel size [2,5]
Dense Neurons [32,70]

After applying Bayesian optimisation, the optimal values for
the hyperparameters are shown in Table III. In addition, we
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Figure 2. Neural Network CNN.

add the Pool Size, Epochs and Patience which were adjusted
manually.

TABLE III
RANGE OF CNN HYPERPARAMETERS USED FOR PICUAL.

Picual
Hyperparameters Value
Filter 1 14
Filter 2 29
Filter 3 60
Filter 4 111
Kernel size 4
Dense Neurons 59
Pool Size 3
Batch Size 32
Epochs 50
Patience 10

B. Output of CNN

The application of CNNs for the classification of olive
tree varieties has produced significant results, showcasing the
capability of deep learning techniques to efficiently process
hyperspectral data. By leveraging UAV-based hyperspectral
imaging, this study eliminates the need for manual sampling,
enabling real-time, high-throughput classification. This repre-
sents a major advancement in Precision Agriculture, making
the identification of olive varieties more scalable and efficient.
The models were evaluated based on their performance in
classifying Picual (PI) and non-Picual (NO PI) varieties.

In addition to metrics, such as accuracy, recall, and F1-
score, confusion matrices were generated to visualize the
model’s performance for each class, illustrating true positives,
false positives, true negatives, and false negatives. During
training, epoch plots were generated, showing the reduction
in the loss function and the increase in accuracy over time,
allowing for an assessment of model convergence and the
detection of potential overfitting.

The CNN model for the Picual variety demonstrated robust
performance:
• Loss: 0.4201
• Accuracy: 0.8804

Table IV presents the classification report for the Picual
variety. The precision of the model shows that, when it predicts
an olive tree as Picual, it is correct 84% of the time, while
predictions of Non-Picual olive trees are correct 94% of the
time. The recall metric reveals that the model accurately
identifies 96% of all actual Picual olive trees and 79% of
the Non-Picual ones.

The F1-Score, which provides a balance between precision
and recall, is 0.90 for the Picual class and 0.86 for the Non-
Picual class. Overall, the model achieved an accuracy of 88%
in classifying the 92 test olive trees. The macro average of
the metrics (precision, recall, and F1-score) represents an
unweighted average across all classes, while the weighted
average accounts for the number of samples per class, ensuring
a more representative performance evaluation.

TABLE IV
CLASSIFICATION REPORT FOR PICUAL VARIETY.

Class Precision Recall F1-Score
Picual 0.84 0.96 0.90
No Picual 0.94 0.79 0.86
Accuracy 0.88
Macro Avg 0.89 0.87 0.88
Weighted Avg 0.89 0.88 0.88

The results of this can also be seen in the graph in Figure 3.

The epoch chart in Figure 4 visualizes how the CNN model
improves its performance during training for the classification
of the Picual variety. In this graph, the horizontal axis
represents the training epochs, while the vertical axis shows the
loss and accuracy. The confusion matrix for the Picual variety
shown in Figure 5 presents the performance of the CNN model
in distinguishing between Picual and Non-Picual (NON-PI)
olive trees.

The generalisability of the model was assessed using a new
set of 70 trees, equally divided between Picual and Non-Picual
varieties. The results are shown in Table V and demonstrate
the model’s ability to maintain a high level of accuracy on
unseen data.
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Figure 3. Comparison of Recall, Accuracy, and F-score between Picual and
Non-Picual.

Figure 4. Model Accuracy Across Epochs.

IV. DISCUSSION AND EVALUATION

After presenting the results obtained from the neural network
for the datasets, this section provides an interpretation of those
outcomes. The overall performance of the CNN model applied
to the Picual variety yields promising results in terms of
classification, as detailed in Table IV. The model’s loss value
of 0.4201 is relatively low, indicating that the network makes
few errors on average when classifying the Picual variety.
Although this loss value is slightly higher than might be ideal,
it still reflects the model’s effective learning.

In terms of accuracy, the model achieves 88.04%, meaning
it correctly classifies Picual trees in the majority of cases. This
level of accuracy is a solid indication of the model’s capability,
correctly identifying Picual trees 88% of the time. Regarding
recall for Picual (see Table IV), the model demonstrates an
impressive 96%, meaning it successfully identifies 96% of

Figure 5. Confusion Matrix CNN.

TABLE V
CLASSIFICATION REPORT FOR NEW PICUAL DATA.

Class Precision Recall F1-Score
Picual 0.78 0.91 0.84
No Picual 0.90 0.74 0.81
Accuracy 0.83 (70 instances)
Macro Avg 0.84 0.83 0.83
Weighted Avg 0.84 0.83 0.83

all Picual trees in the dataset. This high recall indicates the
model’s strong sensitivity to the Picual variety, minimizing
the number of Picual trees it misses. In contrast, the recall
for Non-Picual trees is 79%, suggesting the model correctly
identifies 79% of Non-Picual trees. Although lower, this value
is still reasonable for distinguishing between these classes.

The F1 score, which balances precision and recall, reaches
0.90 for Picual and 0.86 for Non-Picual, as shown in Table
IV. These high values confirm the model’s strong performance
across both classes, with slightly better performance for the
Picual class. The epoch chart in Figure 4 illustrates the
evolution of the model’s performance during training. The
gradual decrease in loss and the increase in accuracy with each
epoch reflect the model’s improvement over time. The curves
stabilize towards the end of the training process, suggesting
that the model has converged and is ready to generalize to new
data.

The confusion matrix (Figure 5) offers further insight into
the model’s classification performance. Higher values along the
diagonal indicate the model’s success in correctly classifying
most of the samples, while the lower off-diagonal values
point to fewer misclassifications, reflecting a high level of
classification reliability. To further validate the model, a new
dataset of 70 trees, equally split between Picual and Non-
Picual classes, was used. The model (see Table V) achieved
an overall accuracy of 83% in this validation set, with a class-
specific accuracy of 78% for Picual and 90% for Non-Picual.
These results confirm the model’s ability to generalize, although
with slightly lower performance compared to the test set. The
recall for Picual in the validation is 91%, while for Non-
Picual it is 74%, indicating that the model is more adept at
identifying Picual trees than Non-Picual ones. The F1 scores
are 0.84 for Picual and 0.81 for non-Picual, demonstrating
robust performance, particularly for the Picual variety.
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V. CONCLUSION AND FUTURE WORK

This study confirms that UAV-based HSI, combined with
DL, represents a highly effective solution for automated Olive
Variety Classification. The CNN-based approach demonstrated
strong performance in classifying the Picual variety with
high accuracy and reliability. Nevertheless, further refinements
could improve the model’s robustness, including expanding the
dataset to incorporate additional olive varieties and exploring
how this UAV-based system adapts under various environ-
mental conditions, such as changes in lighting and seasons.
Addressing these factors would enhance the scalability and
real-world application of this Precision Agriculture system.
Unlike traditional multispectral methods, HSI enables precise
differentiation of cultivars based on subtle spectral reflectance
variations, significantly reducing the reliance on labor-intensive
manual sampling. These findings reinforce the potential of
AI-driven remote sensing for improving efficiency in Precision
Agriculture.

The process addressed for the processing of the hyperspectral
imagery includes reflectance calibration, geometric correction,
and individual tree segmentation, using techniques, such as the
Enhanced Vegetation Index (EVI) and the DBSCAN clustering
algorithm. In addition, spectral filtering was applied to remove
pixels with low reflectance, reducing noise from shaded areas
in the canopy and improving the accuracy of the analysis.
Then, the use of 1D CNN proved to be suitable for processing
spectral data, with an architecture consisting of convolutional
layers, max-pooling, and a fully connected layer, allowing
the automatic extraction of relevant features from the data.
Optimization of the CNN hyperparameters was crucial to obtain
accurate results, with Bayesian optimization being used for the
Picual variety.

For the Picual variety, the CNN model showed solid
performance with an accuracy of 88.04% and a loss of
0.4201 in the test set, also with good generalization to unseen
data. Further validation on a fresh dataset showed a slightly
lower performance with an accuracy of 83%. The findings
confirm that deep learning models, particularly CNNs, excel in
extracting hierarchical spectral features from hyperspectral data,
achieving significantly higher accuracy than traditional machine
learning methods. Approaches, such as k-NN, Naïve Bayes, and
Decision Trees struggle to handle the high-dimensional nature
of hyperspectral imaging, reinforcing the superiority of data-
driven feature extraction techniques in agricultural classification
tasks.

Overall, the study concludes that the combination of hy-
perspectral imaging with deep learning is an effective tool
for automated olive variety identification, which can improve
agricultural practices and increase the competitiveness of olive
products.

The experiments were conducted at only a single farm, so
the robustness of the method should be checked on other
farms as well. This limitation highlights the need to validate
the proposed approach across different locations to ensure

its general applicability. Also, it is suitable to verify whether
the approach can be applied over longer periods and under
various environmental conditions. Future research will focus
on addressing the challenge of model generalization in diverse
environmental conditions and crop varieties, ensuring robust
performance in diverse agricultural landscapes. The evaluation
of alternative CNN architectures, including 2D and 3D models
tailored to specific data structures, will be explored. Expanding
the scope to include a broader spectrum of olive varieties
and integrating complementary sensor data, such as LiDAR,
will improve classification accuracy and comprehensiveness.
The ultimate goal would be to automatically catalog the
majority species in a region using a single UAV flight. These
advancements collectively aim to refine Precision Agriculture
practices, promoting sustainable and efficient crop management.
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Abstract—Distinguishing olive varieties is essential for optimiz-
ing orchard management and oil quality. Hyper-Spectral Imaging
(HSI) captures subtle spectral differences in leaf reflectance,
surpassing conventional sensors. This study explores the use of
drone-acquired HSI to differentiate Arbequina and Picual olives,
two predominant varieties. The high spectral resolution of HSI
enables precise varietal mapping, supporting more efficient and
sustainable agriculture.
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I. INTRODUCTION

The identification of olive varieties is essential for optimizing
orchard management, irrigation strategies, and oil quality con-
trol. Traditionally, this process has relied on expert knowledge,
morphological analysis, or genetic testing, which are time-
consuming, costly, and impractical for large-scale plantations.
A more efficient alternative is Hyper-Spectral Imaging (HSI),
which captures the spectral reflectance of plants across a
wide range of wavelengths, allowing for precise differentiation
between varieties.

HSI has proven to be highly effective in agricultural applica-
tions due to its ability to detect subtle biochemical and structural
differences in plant tissues. Unlike multispectral imaging, which
captures only a limited number of spectral bands, hyperspectral
sensors provide continuous spectral information, enabling a
more detailed analysis of plant characteristics. In the case of
olive cultivation, this technology offers a non-invasive method
for distinguishing between varieties based on their unique
spectral signatures.

In this study, we investigate the potential of Unmanned Aerial
Vehicle (UAV)-mounted hyperspectral sensors to classify olive
varieties in a high-throughput manner. We focus on Arbequina
and Picual, two of the most widely cultivated varieties in
southern Spain, which exhibit distinct agronomic and oil
composition traits. By analyzing spectral differences in leaf
reflectance, we aim to demonstrate the feasibility of HSI for
precise varietal mapping, which can support more efficient and
sustainable orchard management practices.

In Section 2, we present related work and describe the
methods employed, including a brief review of similar studies

and the workflow followed for data processing. Section 3
discusses the results obtained after applying the proposed
classification methods for olive variety differentiation. Section
4 provides an evaluation and discussion of the results, while
Section 5 concludes the study and outlines potential directions
for future research.

II. RELATED WORK | METHODS

HSI has become a key technology in precision agriculture,
providing a non-destructive and high-resolution method for
crop monitoring and analysis [1]. Unlike multispectral imaging,
it captures reflectance across numerous narrow spectral bands,
detecting subtle differences often missed by traditional sensors
[2]. Applications include soil erosion analysis, plant health
assessment, and water stress monitoring [3], as well as inventory
management, irrigation control, disease detection, and yield
estimation in olive cultivation [4], contributing to sustainable
practices by optimizing resources and reducing environmental
impact [5].

HSI’s detailed chemical and physical information makes it
particularly effective for distinguishing crop varieties [6]. It has
been used to identify crop types like wheat, maize, and rice
[7] [8], and even different varieties within the same crop, such
as wheat [9] and rice [10]. In olive cultivation, beyond variety
identification, HSI has supported disease detection, maturity
assessment, and yield estimation [11] [12].

Given the diversity of olive varieties, HSI-based classification
is a growing research field. By capturing differences in pigment
concentration, moisture, and cellular structure, hyperspectral
sensors can distinguish varieties, although challenges remain
due to spectral similarities and external factors. Recent studies
have shown the feasibility of variety identification using
lightweight models throughout the season [13] [14].

Gomes et al. [15] demonstrated that hyperspectral reflectance
effectively differentiates olive varieties, emphasizing its value
for sustainable orchard management. Unlike manual spectral
acquisition, our approach uses UAV-mounted sensors for
automated, large-scale mapping without laboratory sampling.
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However, UAV-based HSI faces challenges such as the
influence of shadows on vegetation indices [16] and the need for
improved hyperspectral mosaicking methods [17]. Addressing
these issues is crucial to fully exploit HSI for olive variety
identification and precision agriculture.

Figure 1 shows the general workflow followed by the
methodology.

Figure 1. Methodology workflow.

The study was conducted in Mengíbar, Jaén, at the IFAPA
Venta del Llano Center, a research facility focused on agricul-
tural development, particularly olive cultivation. Its location is
shown in Figure 2. The experimental plot consists of 14 rows
of olive trees, each with approximately 24 trees, organized
into blocks of four trees per variety. Among these, 21 different
olive varieties are tested, including ‘Arbequina’ and ‘Picual’
as reference cultivars. The randomized distribution ensures
representative data collection, aiding research on adaptability,
productivity, and phenotypic characteristics.

Figure 2. Geogrphic location for the study area.

A UAV equipped with a NanoHyperspec camera (Headwall)
and a Light Detection And Ranging (LiDAR) sensor captured
hyperspectral data across 270 spectral bands (400–1000 nm) at a
2 cm Ground Sample Distance (GSD). The flight was conducted
at 30 meters AGL with a speed of 5 m/s, ensuring high data
quality. Overlapping flight paths (1% longitudinal, 40% lateral)

minimized gaps, while terrain adjustments maintained accuracy.
Headwall SpectralView™ software processed the hyperspectral
data, applying radiometric and geometric corrections using a
Digital Elevation Model (DEM) derived from LiDAR data.
The reflectance calibration was based on dark and white
reference measurements. Figure 3 shows the processes required
to properly correct the data taken with the hyperspectral sensor.

Figure 3. Spectral and geometric corrections applied to the hiperspectral data.

Once the hyperspectral data is properly adjusted, it is
necessary to differenciate invidual olive trees, applying a
tree canopy segmentation. Individual tree segmentation was
essential for precise spectral analysis. Using the Enhanced
Vegetation Index (EVI), vegetation was isolated, minimizing
shadow effects. EVI was selected due to its effectiveness in
distinguishing vegetation while minimizing shadow influence.
The index’s smoothing term (L) reduces soil background effects,
which is particularly useful in olive orchards. By utilizing
specific spectral bands (Near-Infrared (NIR), red, and blue),
EVI is particularly well-suited for analyzing hyperspectral
image data, where these bands are clearly defined [18].

The equation is as follows:

EVI = G · NIR − Red
NIR + C1 · Red − C2 · Blue + L

, (1)

where:
• G: Gain factor, with a default value of 2.5
• C1 y C2: Atmospheric correction coefficients, with default

values of 6.0 and 7.5, respectively.
• L: Smoothing term, with a default value of 1.0.

Once the pixels of interest are selected, the segmentation is
refined by delineating olive trees more precisely using several
geospatial processing techniques and clustering methods. The
key method for this segmentation is the use of the Density-
Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm for grouping geometries into individual trees [19].
This process generates a vector mask with unique identifiers
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and variety classifications. The final segmentation was manually
refined in the software Quantum Geographic Information
System (QGIS) to ensure accuracy [20]. Figure 4 shows the
steps taken to properly segment trees canopies.

Figure 4. Segmentation process.

Once the olive canopy is identified, selecting relevant
hyperspectral pixels is critical for improving classification
accuracy. A two-step filtering process is applied: first, low-
reflectance pixels, mainly from shadowed areas, are removed
based on NIR reflectance thresholds; second, spectral stability
is ensured by filtering out pixels with high variability across
bands.

In the first step, pixels are assessed by their NIR reflectance,
retaining only those exceeding a predefined threshold to exclude
shadow-affected areas. The second step refines pixel selection
by evaluating spectral variability. Two statistical parameters
are computed for each band:
• Spectral Relevance Threshold: pixels are considered rele-

vant if its reflectance value exceeds a dynamically calculated
threshold:

thresholdmean[band] = µ[band] + 0.5 · σ[band]

• Low Dispersion Criterion: to ensure that selected pixels
belong to bands with limited variability, an additional
constraint is applied:

σ[band] < 0.75 · σ

where σ represents the global mean standard deviation
across all bands. This condition excludes spectral bands
with excessive variability, which may be less reliable for
analysis.
Pixels meeting both criteria are retained, resulting in a

binary mask that refines the dataset by eliminating spectral
inconsistencies. As shown in Figure 5, these filters are applied

to each tree to exclude pixels affected by shadows or extreme
spectral responses, ensuring a more accurate and representative
analysis.

Figure 5. Before and after applying low reflectance filtering in the NIR
and standard deviation. (a) Unfiltered view of Olive 401 and the reflectance
response of randomly selected pixels. (b) View of Olive 401 after filtering and
the reflectance response of randomly selected pixels.

To compare different olive trees and determine whether they
exhibit similar spectral behaviour, a classification system based
on spectral ranges was developed. This method operates at
both the pixel and tree levels, calculating the percentage of
pixels within each predefined range for each tree. To optimize
computational efficiency, spectral bands were selectively sam-
pled: one out of every ten bands, and one out of every five in
the NIR region, where vegetation reflectance is most sensitive
to variations. This resulted in a total selection of 27 bands.

Figure 6. Comparison of any spectral response with the created ranges. Each
spectral signature falls within a different range for each of the selected spectral
bands.
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The classification approach is based on a reference spectral
signature constructed from the mean spectral response of all
analysed olive trees. From this baseline, upper and lower
thresholds are defined using the 90th and 10th percentiles,
respectively. This ensures the exclusion of extreme pixel values
that might distort classification results. Each pixel’s spectral
signature is compared against the baseline across the selected
bands, classifying it into six ranges. Figure 6 illustrates a sample
spectral reflectance response compared to the predefined ranges,
indicating the corresponding range for each selected band. This
information is then used to classify all pixels within the canopy
of each tree.

TABLE I
VALUES BY ID_OLIVE AND THEIR RESPECTIVE RANGES.

ID_OLIVE Variety Range 10 20 30 ... 217

401 36-41 Max range (Range 3 to 10.0) 19.86 18.29 18.92 ... 3.10
401 36-41 Range 3 / Range 2 9.60 7.93 9.56 ... 4.44
401 36-41 Range 2 / Range 1 13.31 10.50 10.14 ... 8.91
401 36-41 Range 1 / Mean 16.25 16.19 15.32 ... 14.06
401 36-41 Mean / Range -1 15.07 16.11 15.14 ... 16.82
401 36-41 Range -1 / Range -2 12.12 13.34 14.71 ... 17.41
401 36-41 Range -2 / Range -3 7.65 10.36 10.17 ... 15.01
401 36-41 Min range (0.0 to Range -3) 6.13 7.29 6.04 ... 20.27

The classification results are organized in a matrix where
the x-axis represents the 27 spectral bands and the y-axis the
defined ranges. Each cell shows the percentage of pixels falling
within each range for a given band. For example, if all pixels
of a band fall into range 2, it will account for 100% of the
pixels, with the rest at 0%.

This classification enables the analysis of the pixel dis-
tribution across ranges for each tree, allowing comparative
assessments of spectral behaviour between different olive trees
and varieties. Results are systematically stored and analysed,
providing a quantitative basis for evaluating varietal differences.
As shown in Table I, the percentage distribution across ranges
is displayed for each selected band, ensuring that the total per
band sums to 100.

III. RESULTS

Following the implementation of the classification method
for the hyperspectral image, numerical results were obtained,
providing insights into the distribution of pixels within each
olive tree across different predefined spectral ranges. By
analyzing these proportions, comparisons were made between
olive trees of similar and different varieties to identify potential
differences in their spectral behaviour.

Given the complexity of interpreting numerical differences
directly, graphical representations were employed. As shown in
Figure 7, pixel proportions per spectral band were visualized
for each created range, using olive tree 401 as an example.
The graph is divided into six sections, each corresponding to a
different range, illustrating the distribution of pixel proportions
across spectral bands. A clear trend is observed, where most
pixels are concentrated in intermediate ranges.

This graphical representation was extended to all 24 olive
trees in the study row, with every four trees belonging to the
same variety. The objective was to determine whether trees
of the same variety exhibited similar trends in their spectral
distributions. Figure 8 displays all graphical representations,
where each set of four graphs corresponds to a specific variety.

Upon analysing the spectral distributions of the 24 olive
trees, clear patterns emerged within each variety. Notably,
Arbequina and Picual varieties exhibited consistent spectral
trends, with similar curve shapes and peak amplitudes among
trees of the same variety. These findings suggest that spectral
characteristics, influenced by the biophysical and biochemical
properties of the trees, are closely related to variety, reinforcing
the idea that genetic and physiological factors impact spectral
behaviour.

According to IFAPA farm organizers, the studied varieties
originate from the same maternal lineage, implying genetic
similarity. However, differences were observed between two
groups of Picual trees, indicating variability despite belonging
to the same variety. This discrepancy may be attributed to
the fact that these groups do not share the same mother
plant, potentially resulting in distinct genomes that explain the
spectral differences. Consequently, trees within each subgroup

Figure 7. Graphical representation of the proportion of pixels in each range for a random olive tree.
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Figure 8. Representation of proportion graphs for each olive tree (24 in total).

are expected to be more similar to each other than to those in
the other subgroup.

Additionally, minor variations were noted within each variety,
likely influenced by external factors such as lighting conditions
or localized environmental differences. These variations were
more pronounced in the 36-41 variety, where certain spectral
peaks displayed greater fluctuation. Despite these variations,
the overall pattern remained consistent, reinforcing the potential
of HSI as a reliable tool for olive variety differentiation, as is
shown in Figure 8.

Figure 9. Heatmap of Euclidean distances between olive trees based on
extracted features (mean, standard deviation, maximum, minimum, skewness,
and kurtosis). Lighter colors (yellow) indicate smaller distances (higher
similarity), and darker colors (red) indicate larger distances (lower similarity).
Olive trees are labeled with their ID and variety (e.g., "401 (36-41)").

To further explore the similarities and differences among
olive trees, a heatmap of pairwise Euclidean distances in a
normalized feature space was generated, as is shown in Figure

9. Features including the mean, standard deviation, maximum,
minimum, skewness, and kurtosis were extracted from the
spectral data for each olive tree and standardized. The olive
trees are compared to each other, generating this heat map,
which visualizes these distances, with lighter colors (yellow)
indicating higher similarity and darker colors (red) indicating
greater dissimilarity. For instance, olive trees of the same
variety, such as 403 and 404 (both "36-41"), show small
distances, while trees from different varieties, such as 403 ("36-
41") and 405 ("AR"), exhibit larger distances. A Random Forest
classifier validated these features, achieving an accuracy of 1.0
across 5-fold cross-validation, confirming their effectiveness in
distinguishing olive varieties. It is visible as well how the first
four olives with variety PI (Picual) shown similarities with the
last four olives of the same variety.

This analysis highlights the significance of Hyper-Spectral
Imaging in varietal classification, as intra-varietal similarities
were found to be substantial despite minor fluctuations. These
findings support the use of spectral analysis for the classification
and management of olive varieties in agricultural settings.

IV. DISCUSSION | EVALUATION

This study demonstrates the effectiveness of UAV-based
Hyper-Spectral Imaging (HSI) for differentiating olive varieties
based on spectral characteristics. The successful classification
of Arbequina and Picual varieties highlights the potential of
spectral analysis as a non-invasive tool for varietal identifica-
tion.

Critical to this success were spectral filtering and advanced
segmentation techniques, which minimized noise by removing
shadow-affected pixels and applying spectral stability criteria.
However, environmental factors such as illumination variability,
atmospheric conditions, and leaf age remain challenges that
can introduce inconsistencies.

Overall, the evaluation of the results obtained is positive.
Not only was the spectral similarity between olive trees of
the same variety intuited in the graphs shown in Figure 8, but
the comparison of olive trees using the Euclidean distance
calculation clearly shows the similarity between these varieties,
clearly visualized in the matrix in Figure 9, taking into account
the specific failures that are difficult to distinguish due to the
environmental factors described above.

It can therefore be confirmed that UAV-based HSI offers
valuable advantages for precision agriculture by enabling large-
scale varietal monitoring, supporting more efficient orchard
management, and promoting sustainable olive production.

V. CONCLUSION AND FUTURE WORK

This work establishes UAV-based hyperspectral imaging as
a scalable and effective method for olive variety classifica-
tion, offering a promising alternative to traditional sampling
approaches. Despite its success, environmental variability and
computational demands must be addressed to fully unlock its
potential.

Future research should focus on enhancing model robustness
against external factors through advanced machine learning
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techniques, particularly deep learning models capable of
capturing subtle spectral patterns. Improving computational
efficiency using dimensionality reduction methods, such as
autoencoders or a Principal Component Analysis (PCA), will
be key to enabling real-time or near-real-time analysis.

Additionally, the fusion of hyperspectral data with other
sensing modalities, like LiDAR or thermal imaging, presents a
promising path for improving the differentiation of similar
cultivars. Advances in these areas will drive the broader
adoption of HSI in agriculture, fostering more precise, efficient,
and sustainable orchard management.

ACKNOWLEDGMENTS

This research has been partially funded through the research
support provided by the Ministry of Innovation and Science of
the Government of Spain through the research project PID2021-
126339OB-I00 and from the European Union’s Horizon Europe
research and innovation programme under the grant agreements
No. 101157502 (Soil Deal for Europe - HORIZON-MISS-2023-
SOIL-01).

REFERENCES

[1] L. Shuai, Z. Li, Z. Chen, D. Luo, and J. Mu, “A research
review on deep learning combined with hyperspectral imaging
in multiscale agricultural sensing”, Computers and Electronics
in Agriculture, vol. 217, p. 108 577, Feb. 1, 2024, ISSN: 0168-
1699. DOI: 10.1016/j.compag.2023.108577.

[2] K. E. Karfi, S. E. Fkihi, L. E. Mansouri, and O. Naggar,
“Classification of hyperspectral remote sensing images for
crop type identification: State of the art”, Proceedings of the
2nd International Conference on Advanced Technologies for
Humanity, 2020. DOI: 10.5220/0010426600110018.

[3] G. Messina and G. Modica, “Twenty years of remote sensing
applications targeting landscape analysis and environmental
issues in olive growing: A review”, Remote. Sens., vol. 14,
p. 5430, 2022. DOI: 10.3390/rs14215430.

[4] P. Marques, L. Pádua, J. J. Sousa, and A. A. Fernandes-
Silva, “Advancements in remote sensing imagery applications
for precision management in olive growing: A systematic
review”, Remote. Sens., vol. 16, p. 1324, 2024. DOI: 10.3390/
rs16081324.

[5] M. Govender, K. Chetty, V. Naiken, and H. Bulcock, “A
comparison of satellite hyperspectral and multispectral remote
sensing imagery for improved classification and mapping of
vegetation”, Water sa, vol. 34, no. 2, pp. 147–154, 2008. DOI:
10.4314/wsa.v34i2.183634.

[6] M. R. R. d. Oliveira, S. G. Ribeiro, J.-F. Mas, and A. d. S.
Teixeira, “Advances in hyperspectral sensing in agriculture: A
review”, revista ciencia agronomica, 2020. DOI: 10.5935/1806-
6690.20200096.

[7] R. N. Sahoo, S. Ray, and K. Manjunath, “Hyperspectral remote
sensing of agriculture”, Current science, pp. 848–859, 2015.

[8] F. Zhang et al., “Hyperspectral imaging combined with CNN
for maize variety identification”, Frontiers in Plant Science,
vol. 14, p. 1 254 548, 2023. DOI: 10.3389/fpls.2023.1254548.

[9] A.-K. Mahlein et al., “Development of spectral indices for
detecting and identifying plant diseases”, Remote Sensing of
Environment, vol. 128, pp. 21–30, 2013. DOI: 10.1016/j.rse.
2012.09.019.

[10] B. Jin et al., “Identification of rice seed varieties based on
near-infrared hyperspectral imaging technology combined with
deep learning”, ACS omega, vol. 7, no. 6, pp. 4735–4749, 2022.
DOI: 10.1021/acsomega.1c04102.

[11] T. Poblete et al., “Discriminating xylella fastidiosa from
verticillium dahliae infections in olive trees using thermal-and
hyperspectral-based plant traits”, ISPRS Journal of Photogram-
metry and Remote Sensing, vol. 179, pp. 133–144, 2021. DOI:
10.1016/j.isprsjprs.2021.07.014.

[12] C. Riefolo et al., “Assessment of the hyperspectral data analysis
as a tool to diagnose xylella fastidiosa in the asymptomatic
leaves of olive plants”, Plants, vol. 10, no. 4, p. 683, 2021.
DOI: 10.3390/plants10040683.

[13] G. Moreda, J. Ortiz-Cañavate, F. J. García-Ramos, and M. Ruiz-
Altisent, “Non-destructive technologies for fruit and vegetable
size determination–a review”, Journal of Food Engineering,
vol. 92, no. 2, pp. 119–136, 2009. DOI: 10.1016/j.jfoodeng.
2008.11.004.

[14] S. Domínguez-Cid et al., “Identification of olives using in-
field hyperspectral imaging with lightweight models”, Sensors
(Basel, Switzerland), vol. 24, 2024. DOI: 10.3390/s24051370.

[15] L. Gomes, T. Nobre, A. M. O. Sousa, F. T. Rei, and N.
Guiomar, “Hyperspectral reflectance as a basis to discriminate
olive varieties—a tool for sustainable crop management”,
Sustainability, 2020. DOI: 10.3390/su12073059.

[16] L. Zhang, X. Sun, T. Wu, and H. Zhang, “An analysis of
shadow effects on spectral vegetation indexes using a ground-
based imaging spectrometer”, IEEE Geoscience and Remote
Sensing Letters, vol. 12, no. 11, pp. 2188–2192, Nov. 2015,
ISSN: 1558-0571. DOI: 10.1109/LGRS.2015.2450218.

[17] J. M. Jurado, L. Pádua, J. Hruška, F. R. Feito, and J. J. Sousa,
“An efficient method for generating UAV-based hyperspectral
mosaics using push-broom sensors”, IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing,
vol. 14, pp. 6515–6531, 2021, ISSN: 2151-1535. DOI: 10.1109/
JSTARS.2021.3088945.

[18] B. D. Wardlow, S. L. Egbert, and J. H. Kastens, “Analysis
of time-series MODIS 250 m vegetation index data for crop
classification in the US central great plains”, Remote sensing
of environment, vol. 108, no. 3, pp. 290–310, 2007, Publisher:
Elsevier.

[19] M. Ester, H. P. Kriegel, J. Sander, and X. Xiaowei, “A
density-based algorithm for discovering clusters in large spatial
databases with noise”, in Proceedins of the international
conference on knowledge discovery and data mining, AAAI
Press, Menlo Park, CA (United States), Dec. 1996.

[20] QGIS Development Team, QGIS Geographic Information
System. Open Source Geospatial Foundation, 2009.

22Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-269-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GEOProcessing 2025 : The Seventeenth International Conference on Advanced Geographic Information Systems, Applications, and Services

                            30 / 77



Extra Virgin Olive Oil Price Prediction from Multi-source Variables and Machine
Learning

Juan J. Cubillas
Dept. Information and Communication Technologies applied to Education.

International University of La Rioja
Logroño, Spain

e-mail: {juanjose.cubillas}@unir.net
Ángel Calle

Dept. Computer Science.
University of Jaen

Jaen, Spain
e-mail: {acalle}@ujaen.es

M.Isabel Ramos , Ruth Córdoba
Dept. Cartographic, Geodetic and Photogrammetric Engineering.

University of Jaen
Jaen, Spain

e-mail: {miramos}@ujaen.es

Abstract—This research underscores the vital need for accurate
Extra Virgin Olive Oil (EVOO) price prediction, especially in
Andalusia, Spain, given its significant economic and social impact
on inflation, trade, and stability. Anticipating price fluctuations
benefits producers, distributors, consumers, and governments
for improved planning. The complexity arises from diverse
influencing factors like climate, global markets, energy costs,
and policies, highlighted by recent price surges due to adverse
conditions. The study aims to develop a Machine Learning
(ML) approach using historical and current data from official
sources, processed with ML algorithms and Oracle Data Mining.
The promising results demonstrate the feasibility of enhancing
prediction accuracy, potentially stabilizing markets, optimizing
distribution, and improving agricultural budgeting. Furthermore,
this work contributes to advancing predictive modeling research
within the agricultural sector.

Keywords-EVOO Price; Machine Learning Algorithms; Multi-
source Data.

I. INTRODUCTION

The close relationship between the economy and the food
industry is evidenced by macroeconomic indicators that di-
rectly affect the food supply chain, and vice versa, fluctuations
in food prices influence price stability and purchasing power,
in turn affecting macroeconomic indicators through inflation.
In addition, recent global events such as the pandemic, the war
in Ukraine and climate change have generated significant dis-
ruptions in global fuel and food prices, underlining the critical
importance of food stability for economies and societies [1]
and [2]. Predicting food prices is a crucial economic objective,
as fluctuations affect inflation, trade and economic stability.
Forecasting stabilises markets, enables informed decisions for
producers and consumers, and facilitates the formulation of
government policies on trade, subsidies and food security.
It also helps mitigate food crises and plan distribution in
emergencies, allowing consumers to manage their budgets.

Predictive modelling, an application of Machine Learning
(ML), is revolutionizing price prediction and economic be-
haviour. Using algorithms and historical data, these models
identify patterns and make predictions without explicit pro-
gramming, applying to a wide range of commodity prices
[3], [4]. Generally, the price of food is directly related to
crop production and the behavior of markets. Specifically,
these factors are weather and climate behaviors, global trade
of commodities, market trends and speculation, energy and
phytosanitary prices, government policies, and even natural
disasters or international conflicts. The impact of ML tech-
niques for price forecasting in different types of food is widely
represented in the literature [5], [6]. The increase in olive
oil prices is attributed to a combination of complex factors.
Adverse weather conditions and declining crop yields are
primary causes. Added to this are high energy costs, market
speculation, low stock levels and disruptions caused by the
Russian-Ukrainian war.

In addition, there is a change in consumer behaviour, with
consumers showing an increasing preference for healthier fats,
strengthening the demand for Extra Virgin Olive Oil (EVOO),
which is recognised for its beneficial properties. This trend
suggests that consumers are willing to pay a premium price
for a high quality product with functional benefits [7]. Olive
oil price prediction has already been studied in the literature
using soft computing techniques [8]. However, ML and deep
learning techniques are currently the most widely used. Most
of these methodologies use regression, the supervised learning
technique used to understand the relationship between one de-
pendent variable (olive oil price) and one or more independent
variables (historical price series, weather, fuel prices, etc.).

This study proposes a ML approach to predict the price of
EVOO, incorporating key variables identified in the literature.
Time series of olive oil prices from Spanish and international
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markets are used, together with prices of other vegetable fats.
Energy prices, especially fuels, and critical climatic factors
such as drought are also included. The resulting dataset
is processed with Oracle Data Mining, where various ML
algorithms are evaluated. The objective is to approximate the
function that relates the input variables to the price of EVOO.
The study addresses the prediction of the price of EVOO
in Jaén, highlighting in Section I its economic importance
and complexity due to multiple factors, and proposing a ML
approach. Section II, Methodology, describes the acquisition of
historical data (2009-2023) of economic, climatic and produc-
tion variables, and the application of several ML algorithms.
The Results, Section III, show non-linear relationships and
that Gradient Boosting and Random Forest are more accurate
in cross-validation. The Conclusions, Section IV, confirm the
success of the ML model and the effectiveness of non-linear
models in capturing market complexity.

II. METHODOLOGY

A. Data acquisition

This initial phase focuses on obtaining quality data from
official web sources. The relevant variables for the model,
related to the factors that influence the price of EVOO, are
precisely defined. In this case, extensive historical information
is sought from 2009 to 2023. The variables considered include
economic and agronomic factors:

• Base price. The base price of EVOO is obtained from
the European Union’s olive oil price website, specifically
from the API which provides weekly data in JSON
format by province, taking Jaén as a reference.This price
represents the value of EVOO in the month prior to the
calculation of the forecast [9].

• Month.Seasonality influences demand and supply. The
values of all variables in each of the twelve months are
considered.

• Diesel prise. The price of diesel and EVOO are in-
terconnected by global economic factors and by the
dependence on diesel in agricultural machinery for olive
oil production, which implies that an increase in the price
of diesel can increase the production costs of EVOO. Data
on the average monthly price of diesel in the province of
Jaén, obtained from the Spanish Ministry for Ecological
Transition and the Demographic Challenge [10].

• Accumulated rainfall. The accumulated rainfall during the
last 24 months is considered crucial for predicting the
price of EVOO, as it directly influences the production,
quality and costs of the oil, due to the biannual cycle
of the olive tree. Data from the Andalusian Agroclimatic
Information Network (RIA), which has more than twenty
stations in Jaén [11].

• Average level of reservoirs. The level of reservoirs has a
significant influence on the price of EVOO, as the avail-
ability of irrigation water directly affects the quantity and
quality of olives. Historical data on Spanish reservoirs,
available through the Ministry for Ecological Transition

and the Demographic Challenge, allow this relationship
to be analysed [12].

• Consumer Price Index (CPI). The Consumer Price Index,
CPI, which reflects inflation and directly affects the price
of EVOO, as increases in the CPI generate inflationary
pressure in agriculture and alter consumer purchasing
power, influencing demand. The CPI data, obtained from
the National Statistics Institute (INE), allow this eco-
nomic relationship to be analysed [13].

• World olive oil production. The price of EVOO in Spain
is closely linked to world prices due to the globalisation
of the market and Spain’s dominant role as a producer and
exporter. Fluctuations in global production, influenced by
producing countries, are reflected in Spanish prices, as
Spain competes in both local and export markets. World
production data are obtained from the International Olive
Oil Council (IOC).[14].

• World production of other types of oil. Data on the
world production of other vegetable oils, obtained from
FAOSTAT [15], are essential to understand the price
dynamics of EVOO, as these oils are substitutes in the
global market. Fluctuations in their prices directly impact
the demand and competitiveness of EVOO, especially in
key export markets. The price of sunflower oil, within
vegetable oils, is crucial due to its strong substitution
effect on EVOO, as consumers may opt for one or the
other depending on its relative price. Moreover, the inter-
connectedness of the oil market implies that fluctuations
in the price of sunflower oil affect the overall supply and
demand dynamics, indirectly influencing EVOO.

• Early prediction value of olive crop yield. The olive crop
yield is a crucial factor determining the supply of raw
material for EVOO. High yields can lower prices due to
abundance, while low yields raise prices due to scarcity.
It also influences production costs and market strategies,
with predictions based on climatic variables and satellite
vegetation indices [16].

• Early prediction value of olive oil production. This vari-
able provides an early estimate of the quantity of olive
oil that will be available on the market, thus capturing the
direct relationship between supply and price. This input
value is obtained following the workflow described in the
article Ramos et al. [16].

• Price of fertilisers. The price of fertilisers is a key
variable in the prediction of EVOO prices due to its
direct impact on production costs and crop yields. Fer-
tiliser prices, obtained from the Ministry of Agriculture,
Fisheries and Food (MAPA) and its Price and Market
Information Service (SIPMA), influence the health and
productivity of olive trees, as well as global economic
trends affecting the olive oil sector.

Figure 1 shows the level of influence of the variables
considered in the prediction of the EVOO price using a linear
regression model. The most relevant variables include the base
(historical) EVOO price, the olive crop yield prediction and
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Figure 1. Feature Importance of variables in predicting EVOO price using Linear Regression.

the Consumer Price Index (CPI), which reflect the importance
of price history, raw material supply and inflation. Overall,
the figure highlights that the model considers both local
factors (climate, costs) and global factors (world production,
inflation), providing a comprehensive view of the dynamics
affecting the price of EVOO.

B. Maching Learning algorithms

Data preparation for ML algorithms is essential to ensure
compatibility, capture complex relationships and improve ac-
curacy. This process includes transforming data into numerical,
categorical or binary formats, handling outliers and missing
values, and applying techniques such as temporal aggregation,
spatial selection and seasonal categorisation.

Both linear and non-linear models have been selected in
order to consider different types of relationships between
attributes and target. As confirmed in the previous section,
the variables considered have different influences on the target
and even their seasonality is key in the predictive model. In
this study, algorithms analysed are: Linear regression, Support
Vector Machines, Neural Networks, Random Forest, Gradient
Boosting and K-Nearest Neighbors.

III. RESULTS

The attributes considered in this study have different
weights on the target attribute and the relationship between
them does not follow a linear pattern. The level of accuracy
of each of the algorithms used in this study can be analysed
from the scatter plot, Figure 2. The figure displays six scatter
plots, each evaluating a regression model by comparing actual
(x-axis) and predicted (y-axis) values. A dashed red line y=x
represents perfect prediction. Closer points to this line indicate
higher model accuracy, while deviations signify errors. The
vertical distance from the line shows the absolute error. The
dispersion of points reveals the model’s fit (related to R2, Sys-
tematic over or underestimation is visible by points clustering
above or below the line. The models’ handling of extreme
values, like the point near 8, indicates their generalizability.
These plots offer a robust visual method for model compari-
son, outlier identification, and prediction fidelity assessment.

The quality of each model is evaluated using the cross-
validation method. This consists of generating a predictive

model using data from all months of each year except the
month to be tested. Then, the data for that excluded month
(the last month of the set of all months of all years) is
used to assess the accuracy of the model by comparing the
prediction obtained with the actual price data for that month.
This procedure is repeated for each month of the historical
data set, excluding it from the training set and using it
for validation. In this way, the model is tested against the
actual value of several months independently. Finally, once
the models have been evaluated, a final model is generated
using all months of all years as training data. The accuracy of
the algorithms varies significantly when predicting the price of
EVOO. Linear Regression and Support Vector Machine (SVM)
show lower accuracy due to their difficulty in modelling non-
linear relationships. Random Forest, Gradient Boosting and
K-Nearest Neighbors offer higher accuracy, with Gradient
Boosting standing out for its accuracy. Gradient Boosting,
when combining weak models and correcting errors, shows
the best performance. The Neural Network is also accurate,
but inferior to the ensemble models. If we analyse Figure 2
in detail, clearly the value of 8 reached in one of the months
could be interpreted as an outlier. However, although it is an
outlier, it is a real value which cannot be eliminated. As the
volume of training data increases, the model will adjust to
these oil price fluctuations.

IV. CONCLUSIONS AND FUTURE WORK

This study developed a ML model to predict the price of 
EVOO in Jaén, using a wide range of economic, climatic and 
cost variables. The Gradient Boosting and Random Forest 
models proved to be the most effective in capturing the 
complex and non-linear relationships in the market, suggesting 
that the EVOO market is influenced by multiple interconnected 
factors. The high accuracy of the models indicates that the 
input variables adequately reflect the market dynamics in Jaén 
and that the data sources and data processing were suitable 
for building predictive models.
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Abstract—This work in progress addresses the challenge of
individual detection of olive trees in different planting frames
using advanced computer vision techniques and environmental
analysis using point clouds. Accurate identification of individual
trees is essential for efficient olive orchard management, especially
in planting systems that vary in density, geometric layout and
spacing between trees, aspects that strongly affect the way the
field should be worked afterwards. Through the combination of
image processing algorithms and geometric models, this study
aims to develop a robust system that automates the identification
of each tree, improving the monitoring of the crop and allowing
for more accurate decision-making on the future treatment of
each segmented entity in terms of health, maintenance, pruning.
Preliminary results show the potential of these tools to optimize
olive grove management in different planting configurations.

Keywords-computer vision; plantation distribution; individual
segmentation; point clouds.

I. INTRODUCTION

The digitization in agriculture is essential to improve the
efficiency and sustainability of modern farming. In this context,
image analysis using computer vision techniques and the
application of algorithms based on spatial models plays an
essential role in crop identification and monitoring, allowing
applications such as disease detection, biomass calculation
and optimization of agricultural resources once we are able to
individualize each element of interest in the plantation.

In Spain, olive groves are one of the most representative
crops. According to a 2019 report by the Undersecretariat
of Agriculture, Fisheries and Food, the area occupied by
olive groves in the Spanish territory amounts to 2,733,620
hectares, which represents 16.1% of the total cultivated area
[1]. Moreover, Spain is the largest producer of olive oil in the
world. Therefore, the possibility of individualizing the olive
tree within a plantation is crucial for delimiting cultivated areas,
making production estimates and improving soil and irrigation
management.

Segmentation of olive groves from RGB (Red, Green, Blue)
images presents several challenges. Factors such as variability
in illumination, seasonal changes in vegetation, heterogeneity
of terrain and its distribution, and the variability of ways
to obtain the data make accurate tree identification difficult.
Accurate detection and segmentation of olive trees are essential
for monitoring crop health, optimizing resource allocation, and
improving precision agriculture. Although traditional computer
vision methods, such as segmentation algorithms in OpenCV,
have been widely used, their effectiveness is often limited by
environmental factors, such as variations in light, changes in
foliage over the seasons, and terrain complexity. In contrast,
deep learning-based methods, such as U-Net models and YOLO

(You Only Look Once) architectures, have the ability to learn
more robust features from large volumes of data, thus improving
segmentation accuracy under changing conditions.

The purpose of this paper is to show the beginnings in
addressing the challenge of individual olive tree identification
in different planting distributions, using several advanced com-
puter vision techniques as well as post-processing with spatial
algorithms if necessary. Accurate identification of individual
trees is crucial for efficient olive grove management, especially
in planting systems that vary in density, geometric distribution,
and spacing between trees. Through the combination of image
processing algorithms and geometric models, this study seeks
to develop a robust system that automates tree identification,
improving crop monitoring and enabling more accurate decision
making on the future treatment of each tree, in terms of health,
maintenance, and pruning.

The remainder of the paper is organized as follows: Section II
presents a review of existing related work, Section III describes
the materials and methods used in the existing development
to date, Section IV shows the results obtained, Section V
discusses the results obtained, and finally, Section V provides
conclusions and directions for future work.

II. RELATED WORK

The segmentation of vegetation in RGB imagery has been
widely explored through both traditional computer vision
techniques and more recent deep learning approaches [2][3].
Traditional methods have been extensively utilized due to their
low computational cost and ease of implementation. However,
with the rise of neural network-based models, these have
become strong alternatives, offering superior performance under
complex conditions [4] [5].

Among traditional approaches that do not require labeled
datasets for training, the literature identifies three main
strategies. The first strategy is based on color thresholds,
where vegetation is segmented using predefined color value
ranges, effectively differentiating vegetated areas from back-
ground elements. Another widely recognized methodology
employs vegetation indices, which leverage combinations
of spectral bands to enhance the detection of vegetation,
such as the Normalized Difference Vegetation Index (NDVI)
and other specialized indices [6]. The third strategy utilizes
clustering methodologies, grouping pixels based on similar
characteristics—such as color or intensity—to isolate regions
corresponding to vegetation [7][8].

The advent of deep Convolutional Neural Networks (CNNs)
has brought significant advances in segmentation tasks. These
models are capable of learning complex hierarchical features
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from the images, achieving more robust and precise segmenta-
tions, particularly in heterogeneous environments [9].

In recent years, the integration of 3D modeling has further
advanced vegetation segmentation, especially when combined
with geometric and multisensor data. Unmanned Aerial Vehicle
(UAV) platforms have proven highly effective for acquiring
high-resolution spatial data, offering precise and real-time
geometric information [10].

A particularly relevant development is the projection of RGB
aerial imagery onto photogrammetric point clouds, enabling the
alignment of 2D segmented regions with their corresponding 3D
spatial structures. This projection process enhances the spatial
understanding of vegetation and facilitates further geometric
processing [11][12][13].

One of the main benefits of incorporating 3D analysis is the
ability to filter out ground-level elements by applying relative
height thresholds and techniques as voxelization [14] to split
up the terrain or some algorithms based on regression [15]
or Light Detection and Ranging (LiDAR) [16] techniques.
This techniques are critical for isolating tree canopies from low
vegetation and terrain noise, particularly in complex agricultural
environments [17]. It is especially useful in olive groves,
where understory vegetation can interfere with canopy-based
measurements.

Additionally, the use of multisensor technologies—such
as thermal, multispectral, and hyperspectral cameras—has
enhanced the segmentation and mapping process [18][19] by
providing a more comprehensive view of crop conditions.
These sensors detect variations in reflectance that are not
visible in the RGB spectrum, enabling differentiation between
vegetation types and even revealing physiological traits that
are useful for using traditional unsupervised algorithms for
canopy segmentation [20]. The fusion of these multisensor
datasets with advanced neural architectures (e.g., attention
networks or 3D CNNs) [21] has helped overcome limitations
of conventional methods by integrating spatial, spectral, and
temporal information into more detailed and accurate segmen-
tation outputs.

III. MATERIALS AND METHODS

This study presents a comprehensive methodology for
the individual identification of olive trees under different
plantation distributions, including traditional, intensive, and
super-intensive scenarios, the difference between these types of
scenarios lies in the proximity of the trees, as well as the fact
that in intensive or super-intensive, the trees are planted in well-
defined rows. To thoroughly validate the proposed approach
under realistic agricultural conditions, various representative
scenarios characterized by significant differences in spatial
distribution, density, and morphological structure were selected.
Figure 1 illustrates visual examples of each plantation type
considered in this research.

The input data for the proposed methodology consist
primarily of high-resolution (0.25m) RGB imagery captured by
Unmanned Aerial Vehicles (UAVs). These UAVs are equipped

Figure 1. Comparison of olive orchard cultivation systems: (a) Traditional,
(b) Intensive, and (c) Super-intensive.

with multiple sensor types, including multispectral, hyper-
spectral, and LiDAR sensors. The future integration of these
multisensor data will enhance the comprehensive representation
and characterization of the crops, significantly improving
precision and reliability. Data acquisition was conducted
through autonomous flight planning, achieving longitudinal and
transversal overlaps exceeding 85%. Following data collection,
precise three-dimensional models were reconstructed using
Structure from Motion (SfM) photogrammetric techniques,
resulting in detailed 3D point clouds with high spatial accuracy.

For the individual detection of olive trees within RGB images,
a comparative study between previously trained neural networks
and classical computer vision techniques was carried out (see
Figure 2). It was observed that classical computer vision
techniques offer greater efficiency and generalization across
diverse plantation types, whereas neural networks required
individual training tailored to each specific scenario. Therefore,
classical computer vision techniques were ultimately selected
for validating our proposal in the context of crop identification
tasks.

Once individual trees are identified with the traditional image
segmentation process within the RGB imagery, their labels are
accurately projected into the three-dimensional point cloud
space through a pinhole camera geometric model, represented
mathematically by:

s
[
u v 1

]
= K[R t]

[
X Y Z 1

]
(1)

where u,v represent image coordinates, X, Y and Z denote
3D spatial coordinates, K is the intrinsic camera calibration
matrix, R and t represents the rotation and translation matrices
for extrinsic parameters, and s is a scaling factor.

Subsequently, a filtering stage was performed to exclude
ground points, utilizing relative height analysis by defining a
minimum height threshold as follows:

Pfilt = p ∈ P | z(p) > hmin (2)

where P represents the original point cloud dataset, and
z indicates the relative height of each point concerning the
terrain.

The outcome of this process is a precisely labeled 3D point
cloud, clearly depicting the individual geometric structure of
each olive tree. Currently, the methodology is being expanded
through the development of an advanced clustering stage,
applying algorithms such as Density-Based Spatial Clustering
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of Applications with Noise (DBSCAN) and Mean Shift. These
clustering methods aim to achieve fully automated segmentation
of each individual tree. The DBSCAN algorithm applied can
be expressed in the following general form:

DBSCAN(P, ϵ,MinPts) = C1, C2, . . . , Cn (3)

where C denotes the resulting individual clusters, ϵ defines
the neighborhood radius threshold, and MinPts specifies the
minimum number of points required to constitute a valid cluster.

Implementing this integrated methodological framework will
significantly enhance the robustness, accuracy, and automation
capability required for intelligent agricultural management of
olive plantations, making it suitable for diverse real-world and
commercial scenarios.

IV. RESULTS

This section presents the detailed results obtained from
applying various methodologies for identifying vegetation and
olive trees across different plantation frameworks, as thoroughly
described in Section III. The analysis includes a compre-
hensive comparative assessment between the segmentation
methods employed, carefully examining the strengths and
limitations of traditional techniques versus more contemporary
neural network-based approaches. This comparison provides
a rationale for the selection of traditional methodologies,
highlighting their advantages in terms of simplicity, efficiency,
and interpretability.

A. Image segmentation

Image segmentation was approached following three main
approaches: traditional computer vision techniques and two
deep learning models, namely U-Net and YOLOv8-seg. Both
models were trained with datasets generated from the available
images, representative of different planting configurations.

Since a dataset with validated manual segmentation (ground
truth) was not available, the evaluation of the results was carried
out by visual validation by experts.

As can be seen in the results shown (see Figure 2), in
scenarios with clearly defined and well separated trees, such as
in traditional plantations, neural network-based models provide
a more accurate segmentation of the crowns. However, when
working with denser and more complex configurations, such
as in intensive and super-intensive frameworks, these models
show difficulties in clearly distinguishing each individual tree.
This limitation is mainly due to the fact that the models are at
an early stage of training and have been trained with poorly
generalizable datasets.

In contrast, the traditional computer vision approach, al-
though less accurate in ideal cases, has shown greater consis-
tency and generalizability in all scenarios, especially the more
complex ones. However, its main limitation lies in the fact
that it segments all visible vegetation, including grass or other
non-relevant elements, without specifically differentiating tree
canopies.

Figure 2. Olive tree segmentation process using the U-Net model(b), YOLOv8-
seg architecture (c) and traditional computer visión techniques (d) on Input
RGB aerial image (a).

In order to overcome this limitation, a post-processing based
on three-dimensional terrain models is proposed, which allows
discriminating low vegetation from tree canopy.

B. Geometrical post-processing

Once the most robust segmentation methodology had been
selected, the binary masks generated on the RGB images
were overlapped to obtain a clearer mask (Figure 3) and
to be able to project onto the three-dimensional models
of the environment, previously obtained by photogrammetry
techniques like Structure from Motion (SfM) or by LiDAR
scanning. This projection made it possible to visualize on the
3D model the initial result of the segmentation carried out on
the RGB images.

Figure 3. Example of overlay masks with their corresponding RGB image
for segmentation with traditional computer vision methods.

At this stage, it was observed that many of the points
identified as vegetation actually corresponded to low vegetation
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Figure 4. Comparison of point clouds: (a) vegetation points projected and (b)
height-filtered vegetation points.

or ground elements, which generated noise in the representation
of the tree canopy.

To solve this problem, geometric filtering was applied based
on the relative height of the points, eliminating those whose
elevation was below a defined minimum threshold with respect
to the terrain. The result, shown in the Figure 4, shows a notable
improvement in the cleanliness of the three-dimensional model,
significantly reducing the number of unwanted points and
retaining only those that represent the tops of the olive trees.

V. CONCLUSION AND FUTURE WORK

This work presents the initial steps towards a robust
methodology for individual olive tree identification across
various planting designs. The aim is to spatially locate and
monitor each tree entity using RGB drone imagery and 3D
data representations.

A traditional image segmentation approach has proven to be
effective and fast for isolating vegetation in various scenarios,
demonstrating stability across all plantation types. Although
preliminary experiments with neural networks such as U-Net
and YOLOv8-seg show promising results, especially in simpler
scenarios, their generalisability remains limited due to the
early stage of training and the specificity of the datasets.
Future refinement of these models is expected to improve
their performance and potentially position them as the main
segmentation tool for this project.

To complement image-based segmentation and to address
problems such as interference from low vegetation, a 3D filter-
ing methodology was applied. This process discards vegetation
at ground level based on height thresholds, effectively isolating
tree structures in the point cloud very quickly and successfully.
However, current limitations include reduced robustness in
terrain with significant topographic variation.

The current process allows us to segment vegetation with
drones and isolate trees in 3D, laying the groundwork for
clustering methods to identify individual olive trees. As
future work, we plan to improve segmentation accuracy using
advanced neural network models and develop a clustering
mechanism capable of encapsulating individual trees with
bounding boxes. This will allow the extraction of structural
features and support precision agricultural applications such as
tree health monitoring, pruning planning and yield estimation.
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Abstract—Shared e-scooters have emerged as a popular mode of
micro-mobility in urban areas, while their widespread adoption
has also led to regulatory challenges, particularly concerning
improper parking. Several governments and local authorities
have established parking regulations to tackle the challenges.
However, less is known about their effects on shared e-scooter
usage patterns. This paper explores how shared e-scooter usage
changed before and after the enforcement of parking regulations
from statistical, spatial, and temporal perspectives by conducting
a case study in Stockholm, Sweden. The results indicate that
the parking regulations have a significant influence on shared
e-scooter usage in terms of trip frequency, service area, and usage
efficiency. This research is beneficial for urban planners and
policy-makers to develop evidence-based parking regulations and
practices for regulating shared micro-mobility.

Keywords-Shared e-scooter usage; Micro-mobility; Parking regu-
lations; Spatial and temporal patterns.

I. INTRODUCTION

The proliferation of shared micro-mobility services, espe-
cially shared e-scooters, has revolutionized urban transportation
systems, and offered a sustainable and flexible alternative to
traditional travel modes worldwide [1]. These services have
rapidly gained popularity due to their potential to mitigate
traffic congestion, reduce carbon emissions, and address the
First-Mile-Last-Mile (FMLM) problems in urban areas [2],
[3]. However, their rapid adoption has introduced a host of
regulatory challenges, particularly related to public safety and
parking management [4].

Parking rules and regulations for shared e-scooters are inte-
gral to their successful integration into urban transport systems.
Poorly implemented or inadequately enforced parking policies
often result in cluttered sidewalks, obstruction of pedestrian
pathways, and hazards for individuals with disabilities [5]. Such
outcomes can undermine the benefits of micro-mobility by
creating friction between users, non-users, and city authorities.
Conversely, well-designed parking strategies have the potential
to improve service usability, reduce urban clutter, and foster a
positive public perception of shared e-scooters, encouraging
their wider adoption.

To combat the bad reputation of shared e-scooter services, a
number of countries and local governments have implemented
a range of strategies, including designated parking zones,
geofencing, and financial penalties for non-compliance [6].
These regulations vary significantly across regions and cities,

reflecting differing urban layouts, population densities, and
governance priorities [7]. For instance, it is permitted to
park e-scooters on the pavement in France as long as it
does not obstruct pedestrians. However, parking on pavements
is prohibited in Paris, and 49 Euros could be imposed. To
tackle the parking and regulatory challenges, new parking rules
regulating scooter traffic have also come into force in Sweden
on 1 September 2022. Concretely, parking on pavements or
cycle paths is prohibited, and e-scooters may only be parked
in specially designated parking spaces.

In this context, it is important and necessary to understand
the influence of parking rules on shared e-scooter usage for
effective regulatory strategies and transportation management.
Scholars have conducted a strand of studies on shared e-scooter
usage patterns and influencing factors in different cities [8]–[10].
For instance, a comparison study is implemented to reveal the
similarities and differences of shared e-scooter usage patterns
in 30 European cities [9]. Despite the growing implementation
of parking rules and studies on understanding shared e-scooter
usage, limited research has systematically examined the impact
of parking rules on shared e-scooter usage. To fill the above-
mentioned research gap, this study aims to conduct an empirical
study to explore how shared e-scooter usage patterns changed
before and after the enforcement of parking regulations from
a spatiotemporal perspective, with a case study dataset from
Stockholm, Sweden.

The paper is structured as follows. Section II reviews the
existing literature on regulations and usage patterns of shared
e-scooters. Section III outlines the data and methods used
to analyze the influence of parking rules on e-scooter usage
patterns. Section IV presents and discusses the main results,
highlighting the spatiotemporal variations of shared e-scooter
usage patterns in the case study area. Finally, Section V
concludes the paper with key findings and future research.

II. RELATED WORK

A. Shared micro-mobility regulations

Shared micro-mobility regulatory challenges and parking
regulations have attracted notable attention in recent years.
A number of studies have documented a high number of
scooter-related injuries and accidents [11], which calls for more
attention to the research on regulatory frameworks, policies, and
regulations. Shaheen et al. [12] systematically discussed shared
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micro-mobility policies and practices for managing vehicles
and operations, such as service area limitations, designated
parking areas, maximum allowable operating speeds. Mehranfar
and Jones [5] emphasized the need for comprehensive analysis
of e-scooter incident data and targeted interventions to address
safety risks (e.g., helmet use, speeding, and infrastructure adap-
tation), and highlighted the importance of tailored regulatory
frameworks, rider education, and device design to enhance
stability, reduce injury severity, and improve overall safety.
Although these regulations and strategies have been indicated
to be effective in mitigating shared micro-mobility regulatory
challenges, they also present a significant influence on shared
micro-mobility usage. Lo et al. [13] conducted an online survey
to explore the relationship between potential scooter-share
regulations and ridership in New Zealand, and indicated that the
regulations governing user behavior negatively impact shared
e-scooter usage. Wincent et al. [14] also developed a survey
to examine the effects of parking regulations on shared e-
scooter usage in Sweden. It is reported that the usage frequency,
walking distance, and travel time for e-scooter trips have been
affected in Stockholm and Malmö after the introduction of
parking regulations. The usage in Gothenburg was affected to a
less extent, which could be due to the delay in the introduction
of parking regulations .

B. Shared e-scooter usage patterns

The increasing availability of vehicle availability data and
empirical trip data from micro-mobility operators has led to
a large amount of studies on understanding shared e-scooter
usage patterns. For instance, Jiao and Bai [8] examined the
spatial and temporal usage patterns of shared e-scooters in
Austin by analyzing monthly trip counts, total vehicle miles
traveled, average trip distance, and average operation time.
McKenzie [15] explored the spatial and temporal differences in
usage patterns between six shared micro-mobility services in
Washington, D.C. Notable differences in spatial and temporal
usage patterns were observed between the micro-mobility
services. Heumann et al. [16] analyzed the spatial and temporal
usage patterns of shared e-scooters in Berlin, and suggested
that the usage patterns are influenced by points of interest
characteristics. Foissaud et al. [17] examined the spatial and
temporal patterns of e-scooter trips in 4 European cities,
including Paris, Malaga, Bordeaux, and Hamburg. The results
displayed similar usage patterns across the cities but also local
characteristics in each city. In recent studies, scholars further
investigated how shared e-scooters are used to improve the
FMLM connectivity in public transport. For example, Guo et
al. [18] explored the integration between shared e-scooters and
public transport and how the integration was influenced by the
urban built environment in Stockholm and Helsinki. Aarhaug
et al. [19] analyzed the relationships between shared e-scooters
and public transport in Oslo, and also demonstrated that shared
e-scooters can both complement and compete with public
transport. Li et al. [20] investigated how shared e-scooters
are used as a feeder to complement public transport for solving
the FMLM problem by conducting a comparison study in 124

European cities. The results showed that these cities can be
divided into 4 clusters according to the temporal usage patterns.

III. METHODOLOGY

A. Study area and data

The data was collected in Stockholm, the largest city and
capital of Sweden. The trip records of shared e-scooters were
collected from two micro-mobility operators from September
1st to December 31st, in 2021 and 2022. The abnormal trips
were filtered out first based on the criteria of duration (more
than 1 minute and less than 1.5 hours) and distance (more
than 100 m and less than 10 km) according to the previous
study [21]. After the data preprocessing, the dataset contains
2,139,381 and 542,337 trips in the periods of 2021 and 2022.
Each trip record consists of the fields of vehicle id, longitude,
latitude, and timestamp of start and end points. Since the
parking regulations came into force in Sweden on September 1,
2022, the dataset was divided into two parts based on the date,
namely the Period Before Regulations (PBR) and the Period
After Regulations (PAR). A summary of data description is
displayed in Table I.

TABLE I
BASIC INFORMATION OF THE E-SCOOTER TRIP DATA DURING PBR AND

PAR.

The number of trips The number of active vehicles
Operator PBR PAR PBR PAR
Operator1 1,705,810 378,077 7,141 2,256
Operator2 433,571 164,260 6,983 1,715

In addition, Sweden’s regional division data based on DeSOs
(demographic statistical areas) as well as public transport
stations in Stockholm were also collected.

B. Indicators for shared e-scooter usage measurement

According to the survey results in previous studies [13],
[14], parking regulations presented negative effects on shared
e-scooter usage. In this study, three indicators are calculated to
model the shared e-scooter usage patterns before and after the
introduction of parking regulations, including trip frequency,
service area, and usage efficiency.

Trip frequency reflects the usage intensity of shared e-
scooters, which have been commonly used in shared micro-
mobility analysis. To examine the temporal variations of
trip distribution before and after the enforcement of parking
regulations, a trip frequency signature for each period is
constructed to capture the temporal fluctuations of e-scooter
trip frequency. Considering that the date ranges of the two
periods are not completely consistent due to data gaps in the
collection process, the temporal signature for each period is
calculated by aggregating and averaging the trips based on the
day of a week and the hour of a day, according to the method
by Li et al. [9]. The signature can be denoted as a 1 × 168
vector that covers the average trip frequency on each hour from
Monday to Sunday:

S = [F1,0, ..., Fi,j , ..., F7,23] (1)
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where S represents the temporal signature of trip frequency. i
is from 1 to 7 to represent the day of a week from Monday to
Sunday, j is from 0 to 23 to represent each hour of a day.

Service area describes the areas where shared e-scooters are
active, which can be used to explore how parking regulations
influence users’ parking behavior. Since it is not publicly
available from micro-mobility operators, we calculated the
service areas before and after the introduction of parking
regulations in a data-driven manner. Concretely, the Stockholm
city was split into cells with a 0.001 longitude × 0.001
latitude size. The number of origins and destinations of trips is
calculated within each cell. Only the cells that contain origins
and destinations are used to calculate the service area.

The indicator Time to Booking (TtB) is calculated to
measure the usage efficiency of shared e-scooters. Compared
to traditional usage indicators such as cycling duration, usage
frequency, and turnover rate, TtB provides a more accurate
reflection of supply and demand in a specific area, making it
a more effective measure of usage efficiency in that region
[22]. It can be used to clearly indicate the change in usage
efficiency of shared e-scooters after the enforcement of parking
regulations in terms of idle time. Longer idle time implies
lower usage efficiency.

C. Shared e-scooter usage in combination with public transport

We further investigate how shared e-scooter usage in
combination with public transport changed before and after the
introduction of parking regulations. In particular, the integration
between shared e-scooters and public transport at the trip
level is explored according to the spatial relationships between
origins and destinations of e-scooter trips and public transport
stations [18], [20]. Concretely, an e-scooter trip is classified as
complementary if either its origin or destination falls within
the catchment area of public transport stations, indicating that
the trip involves people traveling to or from these stations (e.g.,
addressing the first/last mile problem). Conversely, if both the
origin and destination are within the catchment areas, the trip is
considered competitive, as it suggests that e-scooters are being
used within the service range of public transport, potentially
competing with it. If neither of the origin and destination is
within a catchment area of a public transport station, the trip
is classified as the category of ’others’.

IV. RESULTS AND DISCUSSION

In the experiment, statistical, temporal, and spatial analyses
were implemented to examine the changes in shared e-scooter
usage patterns based on the above-mentioned three indicators.

A. Trip frequency

As displayed in Table I, there are 2,139,381 and 542,337 trips
during PBR and PAR. It can be observed that the number of
trips decreased dramatically, approximately 74.6% of the trips,
after the introduction of parking regulations. The significant
decrease could also be related to another issued policy, which
reports that a maximum of 12,000 e-scooters were legally
registered in 2022.

Next, the temporal variations of trip frequency on an hourly
basis before and after the parking regulations were explored.
As described in the method section, a temporal signature of
trip frequency in terms of a 1 × 168 vector was calculated for
each period. As shown in Figure 1, the temporal distribution
of trip frequency from Monday to Sunday displayed similar
patterns between the two periods. First, the usage of e-
scooters on weekdays showed three obvious peaks during
morning (i.e., 8:00–9:00), noon (12:00-13:00), and evening
(i.e., 17:00–18:00), corresponding to the two commuting peaks
and lunchtime. The findings are consistent with the e-scooter
usage patterns in Zurich [21]. By comparison, the temporal
distribution of trip frequency also presented similar patterns on
weekends during the two periods, while the peak was shifted to
the afternoon on weekends. Although the temporal distribution
of trip frequency showed similar patterns, the average hourly
trip frequency decreased during PAR.

Figure 1. Temporal distribution of trip frequency on an hourly basis during
(a) PBR and (b) PAR.

B. Service area

In this subsection, the service areas during PBR and PAR
were calculated, respectively, as shown in Figure 2. It can
be observed that the service area during PAR shrank in the
peripheral area of Stockholm. In addition, the trip frequencies at
the cell level in terms of the number of origins and destinations
were visualized during the two periods, which were classified
into five classes with the natural breaks (Jenks) method. The red
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cells represent the areas with high trip frequency, which were
mainly concentrated in the central area of Stockholm. We also
calculated the global Moran’s I based on the spatial distribution
of trip frequency, which are 0.57 and 0.38, respectively, during
the two periods. The high Moran’s I values also indicated the
clustering characteristics of trip frequency. By comparing the
two periods, it can also be seen that the number of red cells
decreased during PAR. These results demonstrated the lower
popularity of shared e-scooter usage after the introduction of
parking regulations.

Figure 2. Service areas and spatial distribution of trip frequency during (a)
PBR and (b) PAR.

C. Usage efficiency

In this subsection, the time to booking values at the trip
level were calculated based on the trips during the two periods.
Figure 3 displays the statistical distribution of time to booking
on a monthly basis in terms of a boxplot during PBR and

PAR, respectively. The numbers in each boxplot represent the
median of Ttb in the specific month during the two periods. It
can be seen that the median values of Ttb decreased in each
month accordingly after the introduction of parking regulations,
indicating the improvement of usage efficiency of shared e-
scooters.

Figure 3. Statistical distribution of time to booking on a monthly basis during
(a) PBR and (b) PAR.

Figure 4 presents the spatial distributions of Ttb medians
at the DeSO level during PBR and PAR. The Ttb medians
were categorized into five classes with the natural breaks
method. Since the Ttb medians are visualized with the same
classification scheme, the two maps are comparable to each
other. In the maps, the yellowish DeSOs represent the areas
with low Ttb values and high usage efficiency of shared e-
scooters. It can be observed that the number of yellowish
DeSOs increased dramatically during PAR. It may conclude
that the usage efficiency of shared e-scooters is lower, even
if the number of e-scooter trips is higher than that after the
introduction of parking regulations. It could be due to the
oversupply of shared e-scooters before the introduction of
parking regulations.

D. Integration between shared e-scooter and public transport

According to the method described in subsection III-C, the
e-scooters were classified into complementary, competitive,
and other categories. The complementary trips were further
divided into the ones for the first-mile and last-mile connection.
The proportions of complementary trips during PBR and
PAR are very close, which are 32.0% and 32.2% respectively.

35Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-269-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GEOProcessing 2025 : The Seventeenth International Conference on Advanced Geographic Information Systems, Applications, and Services

                            43 / 77



Figure 4. Spatial distribution of time to booking during (a) PBR and (b) PAR.

Likewise, we also aggregated and averaged the proportions
of the first-mile and last-mile trips on an hourly basis during
PBR and PAR. Figure 5 displays the temporal variations of
the proportions during the two periods. It can be observed that
the patterns of the integration between shared e-scooters and
public transport are similar before and after the enforcement
of parking regulations. The first mile trips occupied a major
portion in the morning on weekday and weekend compared
with the last mile trips, and then the last mile trip became
dominant in the evening. The findings are consistent with the
study by Li et al. [20].

Figure 5. Temporal distribution of proportions of first mile and last mile trips
on an hourly basis during (a) PBR and (b) PAR.

V. CONCLUSION AND FUTURE WORK

Shared e-scooters offer a sustainable and flexible alternative
to traditional transport modes. Considering the regulatory
challenges caused by their widespread adoption, parking
regulations have been introduced to tackle them in many cities
worldwide. However, less is known about how the parking
regulations influence shared e-scooter usage in urban areas. In
this paper, we explore how shared e-scooter usage changed

before and after the enforcement of parking regulations in
terms of three usage indicators and their integration with public
transport by conducting a case study in Stockholm, Sweden.
The main findings of this study are summarized as follows.

First, the trip frequency decreased dramatically after the
introduction of parking regulations. This could also be due to
the permit constraint on the number of shared e-scooters in
urban areas, in addition to the parking regulations. However,
the temporal usage patterns were similar before and after the
parking regulations. Second, the service areas of shared e-
scooters shrank after the introduction of parking regulations,
which were mainly concentrated in the peripheral areas of
Stockholm. The areas with high trip frequency were still
focused on central Stockholm. Third, the usage efficiency
of shared e-scooters in terms of time to booking displays
improvement after the introduction of parking regulations.
Lastly, the changes in the integration between shared e-scooters
and public transport in terms of the proportions of the first mile
and last mile trips are tiny before and after the introduction of
parking regulations.

Overall, the research findings are beneficial for urban
planners and policy-makers to develop evidence-based parking
regulations and practices for regulating shared micro-mobility.
The following aspects deserve to be studied in future work.
First, more analyses will be implemented to investigate how
the parking regulations influence the integration between
shared e-scooters and public transport from the perspectives of
accessibility and equity, especially in the context of multiple
cities. Second, it is also interesting to see whether the parking
regulations affect the relationships between the integration pat-
terns and influence factors, such as the urban built environment
and socio-demographics.
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Abstract–In standardization, the term coverage captures the 

digital representation of space/time-varying phenomena. Cov-

erages are supported by a mature set of standards, maintained 

in a continuous cooperation of the International Organization 

for Standardization (ISO) and Open Geospatial Consortium 

(OGC), with manifold uptake and implementation. At its heart 

is the OGC/ISO Coverage Implementation Schema (CIS) data 

standard. We give a condensed overview of the CIS standard 

and its current progress, looking at the ISO 19123-1 concepts 

and their realization with ISO 19123-2. We do this in our 

capacity as primary editor of the standards discussed. 
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I. INTRODUCTION 

Phenomena observed on, in, or above Earth often repres-
ent fields as defined in physics (e.g., quantum field theory 
[8]): some quantity that has a value for each point in space 
and time within some region. In other words: the quantity 
varies in space and time. Examples include the Earth’s mag-
netic field, surface wind maps, and river water temperature 
at some location; Figure 1 shows a kaleidoscope of data 
from various geo application domains. 

 

Figure 1.  Basic building blocks of a coverage. 

Such fields are multi-dimensional by nature – in the 
above examples we find 4-D (four-dimensional) x/y/z/t for 
the magnetic field, 3-D x/y/t for the wind map, and 1-D for 
the water temperature timeseries. Obviously, the dimension 
axes can be spatial or temporal; however, they even can 
have further dimensions, such as a spectral dimension for 
wave frequencies occurring; a second time axis, as used in 
weather forecasting; a species axis for measuring habitat 
changes in a region over time. 

Mathematically, such a field can be seen as a function 
which assigns a value (from its range) to every point in the 
region where the function is defined (its domain). In stand-

ardization, the term coverage subsumes digital representat-
ions of such space/time varying phenomena. Technically, 
coverages encompass regular and irregular grids, point 
clouds, and general meshes. Most notably, they serve to rep-
resent raster data and spatio-temporal datacubes. To cite 
common phrases, such data typically constitute “Big Data”, 
which are “too big to transport”, so that processing requires 
to “ship code to the data”. 

The central standard is the Open Geospatial Consortium 
(OGC) Coverage Implementation Schema (CIS) [27] and 
the parallel International Organization for Standardization 
(ISO) 19123-2 [11], likewise nicknamed CIS. They are 
embedded in a larger ecosystem of data and service stand-
ards. In this contribution, we only look at the coverage data 
standards. Table 1 shows the correspondence of ISO and 
OGC coverage standards; see also the overview in [33]. 

Recently, these standards have undergone a revision and 
now are better structured (cf. Table I): 

• conceptual level: ISO 19123-1 / OGC Abstract Topic 
(AT) 6.1 defines the information concepts, together with 
the pertaining terminology; 

• logical level: ISO 19123-2 Clauses 5 to 10 / OGC CIS 
defines concrete data structures as object classes; 

• physical level: ISO 19123-2 Clause 11 and 12 / OGC 
CIS plus further separate encoding standards define the 
mapping of logical-level data to byte streams such as 
XML, JSON, GeoTIFF, NetCDF, JPEG2000, etc. 
ISO 19123-1 [10], which defines coverage concepts and 

terms, was adopted in 2023 replacing outdated 19123:2005. 
Several reasons prompted this evolution: difficult to under-
stand; errors and omissions, such as excluding 1-D; definit-
ions not state of the art, such as rasters defined as “corresp-
onding to the display on a cathode ray tube”; mixed con-
ceptual, logical, and physical levels making comprehension 
difficult. 

 

TABLE I.  CORRESPONDENCE OF OGC AND ISO  
COVERAGE STANDARDS. 

ISO OGC contents 

19123-1 [10] Abstract Topic 
6.1 [28] 

Coverage data model:  
concepts & terminology 

19123-2 [11] CIS [27] Coverage Implementation 
Schema 

19123-3 [12] Abstract Topic 
6.3 [29] 

Coverage processing model: 
concepts & terminology, 
based on OGC WCPS [26] 
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Consequently, 19123:2005 got split and replaced by two 
parts: 19123-1 [10] establishes the conceptual model using 
interfaces describing the high-level observable behavior of a 
coverage object, leaving implementation details open. Such 
detail is provided by 19123-2 [11] which contains the 
logical model and – clearly separated – the physical-level 
encoding. The standard is organized into packages resemb-
ling self-contained units where each one establishes a 
particular coverage concept. 

The author is active OGC contributor since 2004 and in 
this capacity main editor of the currently 23 coverage / data-
cube / Web Coverage Service (WCS) standards [26]-
[29][31], OGC delegate to ISO, ISO project lead / editor of 
the 19123-1/2/3 family of coverage standards [10]-[12], and 
German delegate and WCS drafting team member for EU 
INSPIRE, the European legal framework for a common 
spatial data infrastructure. Further, he is initiator and co-edi-
tor of ISO SQL/MDA (Multi-Dimensional Arrays) [9][19]. 

The remainder of this paper is organized as follows. In 
Section II, we present the concepts and terminology of cov-
erages, followed by the concrete, implementation-oriented 
coverage structures in Section III. A brief lookout on a data 
language tailored to coverage analytics is given in Section 
IV. Related coverage standards are discussed in Section V. 
Section VI provides a summary. 

II. COVERAGE CONCEPTUAL MODEL 

The notion of a field as a function C: D   V suggests a 
rather simple definition of a coverage, plus an access 

method: just evaluate the function at any position pD, 

yielding C(p) = vV. As per ISO 19107 [14], this is called 
the evaluate function, commonly denoted as 

evaluateC: D   V, evaluateC(p) = v 
While this is conceptually elegant, it is normally highly 

inefficient to ask for single coordinates, so this is not the 
kind of functionality specifically supported in coverage 
services; rather, extraction and processing of larger regions 
is common, e.g., in WCS [31] and Web Coverage Process-
ing Service (WCPS) [3][26]. 

Actually, the above function definition needs an 
extension to allow multiple values for a location: 

evaluateC: D   P(V), evaluateC(p) =  f.contains(p) 

                                                                  fC 
where P(V) denotes the power set of V, i.e., the set of all 

sub-multisets (a multiset is an unordered set where elements 
can repeat). The contains() predicate, likewise defined in 
ISO 19107, indicates whether a point coordinate lies inside 
a geometric object. For example, a point cloud may contain 
more than one value for a given point; the evaluation 
function will return the multiset of these values for that 
point. The same holds for curves, surfaces, and solids which 
all may overlap. 

A. Coordinates and Coordinate Reference Systems 

The n-D region which a coverage domain spans (we 
avoid the mathematical term “space” because coverage axes 
can span more than physical space) is built from n>0 axes. 
Consequently, point coordinates form an n-tuple where the 

ith component is taken from the ith axis ai. The ordered list of 
axes defines the function domain, described through a 
Coordinate Reference System (CRS). 

Handling of coordinates is normatively established in 
the ISO 19111:2019 standard [13] whose use is also 
mandated by 19123-1. Conveniently, beyond geodetic CRSs 
19111:2019 also opens the door for further axes and CRSs, 
as well as combining CRSs. One example for this is image 
timeseries where a horizontal CRS (contributing two axes) 
is combined with a 1-D CRS (adding one further axis) into a 
3-D CRS. With the OGC CRS shorthand notation the World 
Geodetic System 1984 (WGS84) CRS [EPSG:4326] and 
datetime CRS [OGC:AnsiDate] get combined as ordered list 
[EPSG:4326],[OGC:AnsiDate]. 

More details about CRS syntax and handling are 
specified in the concretization standard 19123-2. 

B. Coverage Structures 

ISO 19123-1 defines the basic coverage components 
domain set, range set, and range type: 

• Domain set: “where are values available?” Points for 
which values are stored are called direct positions. 

• Range set: “what is the value at a particular position?” 
Such values consist of records with one or more comp-
onents (atomic, such as in grayscale images, or compos-
ite structures such as color images). 

• Range type: “what do these values mean?” This describ-
es the semantics for each range value record component 
(also known as bands / channels / variables). 

• Metadata: “what else do we know about this coverage?” 
This item is a black box which literally can be anything, 
not understood by the coverage but duly transported. 
 
19123-1 does not hardwire the above structure. Rather, 

several organization schemes are provided: 

• by domain and range, plus a mapping between them; 

• as a set of direct position / value pairs; 

• partitioning of the coverage into sub-coverages. 
We discuss each alternative in turn. 
The domain/range separation follows directly from the 

structuring in Figure 2.  The advantage is that the domain 
representation can be chosen independently, which is very 
important particularly with grid coverages where a detailed 
structure with several variants is required. On the other 
hand, the connection between direct positions and values is 
lost and needs to be established separately. Typically, such a 
mapping is done through sequence rules inside the coverage 
function structure defining the correspondences between 
(implicitly) enumerated direct positions and the simple 
sequence of values in the range set are established. 

 

 

Figure 2.  Basic building blocks of a coverage. 
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The position/value pair approach is attractive whenever 
the geometry and its associated value are used in con-
junction. This is often the case, for example with point 
clouds. On gridded data, on the other hand, many algorithms 
work without reference to the geographic coordinates of the 
pixels, and hence can very efficiently iterate over the values 
only, disregarding the domain set. 

Partitioning can be seen as a generalization of the 
position / value pair approach where not single pairs, but 
sets of such pairs are built. Every partition forms a comp-
lete, self-contained coverage, and all partitions together 
must be non-overlapping and contiguous without “holes”. 
Partitioning schemes are common for splitting large cover-
ages (i.e., “Big Data” files) into smaller “tiles” or “chunks”. 
In [2], a method for user-invisible flexible partitioning of 
datacubes is introduced. 

C. Coverage Function 

Historically, in the coverage definition of the Geography 
Markup Language (GML) [15], an alternative was foreseen 
for defining the coverage function analytically. This has 
never been detailed, GML only vaguely mentions that the 
Mathematics Markup Language (MathML) might be used. 
Today, the coverage function is mostly used for describing 
the internal range set array sequencing through its sequence 
rule subitem. 

D. Domain Set 

The coverage domain describes for which positions in 
the coverage’s multi-dimensional space values are available, 
in other words: where evaluation of the coverage function is 
defined. Within this multi-dimensional space defined by the 
domain’s CRS and the bounding box extent, the coverage 
domain contains a set of geometric objects which together 
determine the direct positions, i.e., the locations in this 
space where the coverage offers a value. This description 
can be given through direct enumeration of the direct 
positions (example: point clouds) or through containment 
descriptions (example: areas and volumes), or some other 
mechanism (example: Ground Control Points in sensor 
models). The coverage’s “extent” gives a bounding box – 
i.e., lower and upper bounds along every coordinate axis – 
within which all its direct positions are located. A quick 
overview on the footprint of the coverage can be obtained 
through the coverage envelope. 

Coverage coordinates are defined through a single CRS 
which defines all axes, using ISO 19111:2019. Each axis is 
described by an axis name, a Boolean axis direction (true 
for positive direction along the axis, false for inverse 
direction), a unit of measure, and a (possibly empty) set of 
interpolation methods applicable along this axis. As 
discussed, axes can be of spatial, temporal, or abstract (in 
ISO 19111:2019: “parametric”) nature. 

Note again that this does not yet define a concrete data 
structure; many different incarnations are possible ultimate-
ly carrying the same information. For example, a concrete 
implementation schema may choose to not define inter-
polation methods always per axis, but may group several 
axes – such as Lat and Lon – into a single description. 

E. Envelope 

A typical first step when shaking hands with a coverage 
is to ask about its region covered, i.e., its axes and extent a-
long each axis. This information is available in the domain 
set: By determining the minimum and maximum of point 
coordinates for each component, the overall extent of the 
region along each axis is determined. These boundaries det-
ermine an axis-parallel minimum bounding box, or bbox. 

While it is possible to obtain this information from the 
coverage domain set, it is not straightforward: the n-dimen-
sional domain is described through n axes, possibly of diff-
erent types, and in some without explicit indication of the 
lower and upper bounds. Additionally, the domain might 
employ a CRS different from the desired one. For example, 
the European Terrestrial Reference System 1989 (ETRS89) 
system used in Europe consists of 60 different Universal 
Transverse Mercator  (UTM) zones whereas a US GIS may 
want to see all data in the single WGS84. 

The envelope concept provides a shortcut to such infor-
mation. It contains the bbox of the coverage in a CRS 
which, for the users’ convenience, can be different from the 
domain set CRS (as long as a conversion exists between 
envelope and domain CRS). There is no need for the envel-
ope to be minimal, although it should get as close as poss-
ible to the coverage footprint. 

F. Range Set and Range Type 

Range values listed must adhere to the definition given 
in the coverage’s range type, following a dynamic typing 
approach. The range values can be scalar or a record. For 
simplicity, more involved structures – such as variable-
length lists, arrays, graphs, etc. – are not supported in order 
to keep implementations simple in this respect. 

For example, a coverage might assign to each direct 
position in a county the temperature, pressure, humidity, 
and wind velocity components u and v, at a specific time, at 
that point. The coverage then maps every direct position in 
the county to a record of these components. The coverage 
range type, therefore, is a record of these components, each 
of its individual type. 

Type information goes beyond the mere data type as in 
programming languages. Essential extra information is pro-
vided, in particular: Data type; unit of measure; null values, 
if any. For example, RGB images might have as their range 
type a record consisting of three components red, green, and 
blue (in that order), each of them of type unsigned 8-bit 
integer with unit Watt per square meter – in Unified Code 
for Units of Measure (UCUM) syntax: W.m-2 – and no null 
values. The 19123-2 concretization of ISO 19123-1 adds 
further details. 

G. Interpolation 

Having space and time axes, a coverage is a finite, disc-
retized representation of some typically infinite, continuous 
phenomenon. Digital representations of such fields, there-
fore, must find appropriate data structures to represent the 
infinity of points by a finite data volume. Obviously, it is 
desirable that even positions can be queried for which no 
value is stored – typically, between direct positions. The 
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general approach is to store a finite number of “represent-
ative” points with their values alongside with rules how to 
derive values at further points.  

Under certain conditions, such values can be derived 
algorithmically through interpolation. Hence, direct posit-
ions plus interpolation can emulate the continuous nature of 
the original phenomenon. Many interpolation methods are 
known for such purposes, obviously the technically approp-
riate method has to be chosen carefully to remain sufficient-
ly close to the original.  

The interpolation applicable is co-determined by the 
range type. For example, radiometry data, such as hyper-
spectral satellite imagery, is normally amenable to linear, 
quadratic, and cubic interpolation due to the continuous 
nature of the radiation measured. Categorial data like land 
use, on the other hand, allow only nearest-neighbour inter-
polation – the average of street and building does not make 
sense. Further particularities can have an impact, like the 
lack of direct positions; kriging is a family of special inter-
polations used in particular in geophysics. 

In summary, interpolation is determined by both domain 
and range of the coverage function: 

• The coverage axis. For example, atmospheric linear int-
erpolation may be fine in Latitude and Longitude, but 
not vertically when measured in pressure levels. Also, 
time axis behavior may need to be considered separately. 
Index axes, finally, with their integer coordinates, do not 
even allow for addressing fractional coordinates. Within 
one and the same coverage, different interpolations may 
apply along different axes. 

• The range type (possibly individually for each record 
element). For example, categorial data (like land use) 
only allow nearest-neighbour interpolation whereas 
radiometry etc. also allow linear interpolation. 
The coverage standard guides application of interpolat-

ion, but does not itself define interpolation methods; these 
are rather taken from ISO 19107. Only for the reader’s con-
venience, ISO 19123-1 Annex B addresses interpolation in a 
non-normative way. 

Notably, the abstract coverage concept allows only one 
interpolation. The reason is that interpolation is a consequ-
ential of the physical field structure emulated by the cover-
age, and different interpolation yields different in between 
values so represent different fields. For practical reasons – 
to avoid duplicating Big Data – in 19123-2 CIS a set of 
“allowed interpolation methods” is foreseen. 

A further complication may be the applicability of inter-
polation around a direct position. Naively, any position be-
tween two adjacent direct positions can be queried, and 
interpolation (if any) will yield a range value. However, 
being “too far away” from any direct positions, when the 
neighboring direct positions happen to be far apart from 
each other, might be to “unsafe” and so interpolation may 
be forbidden. The concept of a region of validity around 
direct positions captures this, as first introduced for the time 
axis [5] and implemented in the rasdaman datacube engine. 
See [6] for future-directed concepts. 

Based on these concepts, the original distinction of 
19123:2005 into discrete and continuous coverages can be 

grasped exactly: An axis is called discrete if every possible 
interval with finite bounds describes a finite set of values, 
otherwise (when interpolation is enabled) such an axis is 
called continuous. A coverage is called discrete if its axis 
list contains only discrete axes. A coverage is called contin-
uous if its axis list contains at least one continuous axis. 
Technically, a continuous coverage is a discrete coverage 
which can be interpolated. 

H. Coverage Classification 

The coverage concept in ISO 19123-1:2023 defines a 
series of different approaches to establish digital structures 
for spatio-temporally varying phenomena. The idea is to 
exploit additional knowledge that may exist about the phen-
omenon. For example, if point values measured sit on a grid 
(aka grid or raster coverage) rather than arbitrarily in space 
(aka point clouds) then Computer Science knows specific, 
very efficient methods to exploit this knowledge. 

Following this line, the standard classifies coverage 
regions into features – points, curves, surfaces, or solids – 
with potentially additional conditions imposed such as a 
grid lineup. To keep coverage handling tractable in imple-
mentation, only one kind of feature is allowed in any given 
coverage. This gives a natural classification of coverage, 
sorted along the topological dimensions of its elements: 0-D 
point, 1-D line, 2-D surface, and 3-D solid coverages. This 
is mirrored by the coverage types in Clause 6 onwards in 
ISO 19123-1:2019 in multi-point, multi-curve, multi-
surface, and multi-solid coverage. 

A multi-point coverage is a coverage consisting of a 
collection of 0-D points. As points may coincide, there can 
be more than one value correspond to a given direct 
position, therefore the evaluation returns a multi-set of 
values with possibly more than one value. 

A multi-curve coverage resembles a set of geometric 
objects of the ISO 19107 type CurveData. Curves defined 
there encompass a wide range, from polygon strings to 
splines. AIS worldwide ship tracking system trajectories 
represent an example of multi-curve coverages. Trajectories 
may intersect, hence evaluate() may deliver more than one 
trajectories as values. 

A multi-surface coverage is a coverage consisting of a 
collection of surfaces. The feature type used is given by the 
ISO 19107 geometric object type SurfaceData. Such 
surfaces are described through bounding curves which in 
turn are delimited by start and end points. A typical example 
for a multi-surface coverage is an iso-surface set. 

A multi-solid coverage consists of a collection of solids, 
modeled through ISO 19107 SolidData which adopts a 
Boundary Representation where solids are bounded by sur-
faces delimited by curves delimited by points. 

I. Grid Coverages 

A grid coverage is a special case of multi-point cover-
age: all direct positions must sit on a grid. As the grid struct-
ure is of prime practical importance, we unfold it separately. 

Mathematically, an n-D grid is the cross product over 
the admissible coordinates of each contributing axis. For 
some n>0 let A = (a1, …, an) be a finite ordered set of axes 
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where each axis ai = {vi,1,…, vi,mi} is an ordered set of mi>0 

values inducing a grid G = a1…an. G can be interpreted 
as a set of coordinates yielding the direct positions, G = { 

(x1, …, xn) | xi  ai for 1 ≤ i ≤ n }. 
Such a grid consists of points only. These points are 

aligned in a special way, and we often like to draw lines bet-
ween neighboring points so that the alignment becomes 
easier to see. However, these lines are artifacts and not part 
of the coverage grid. Notably, the gridded nature does not 
affect the CRS in any way – the grid is just about constraints 
on the coordinates. 

Geometrically, grids generally can be constructed based 
on triangles, rectangles, or hexagons (meaning: the grid 
points can be aligned so that, would they be connected, we 
would see such geometric shapes). In the context of ISO 
19123-1, rectangular grids are modeled through grid cover-
ages, hexagonal grids can be mapped to grid coverages, and 
triangular grids are modeled through meshes, i.e., multi-
surface or multi-solid coverages. In the sequel, for simp-
licity the term “grid” is understood as a rectangular grid. 

Intuitively speaking, in a coverage grid, every direct 
position (except at the rim) has exactly one immediate 
neighbor with a lower coordinate and exactly one immediate 
neighbor with a higher coordinate along each axis (Figure 3. 
This neighborhood establishes the grid topology; the grid 
geometry is determined by the concrete coordinates, which 
in turn are described by the axis types. 

The grid alignment constraint also has a further con-
sequence: As it is not possible any longer that two points 
coincide, there will be always one range value per direct 
position, and we can simplify the evaluate() function from a 
value set to a single value: 

evaluateC: D   V, evaluateC(p) = v 

J. Regular and Non-Regular Grids 

In general, rectangular grids do not need to have an 
equidistant spacing between the direct positions. Figure 4 
and Figure 5, taken from the standard document, illustrate 
some cases of regular and irregular grids. A grid can be reg-
ular along some axes but irregular along others, as Figure 5 
shows. In particular, when grid connections are drawn as 
curved lines, this should not be interpreted as reality. 

The grid concept can be generalized to the situation that 
n-D grids can be embedded in some (n+m)-D space for 
some m > 0. Actually, Figure 5 (c) models such a situation 
where a 2D grid is warped in 3D space. 

K. Grid Axis Types 

ISO 19123-1 categorizes the coverage grid domain by its 
individual axes, allowing free combinations such as regular 
spatial with irregular temporal axes. Notably, this axis 
classification establishes several ways to describe the coord-
inates of the direct positions, not the grid CRS which 
contains the axis definitions. 

Every axis has one of the following axis types: index, 
regular, irregular, warped, and (sensor) model.  

An index axis is a 1D unit-less axis (in ISO 19111:2019 
named “Cartesian axes”); there is no georeference, and 
admissible coordinates are at discrete, integer positions 

only. The corresponding CRS is Index1D for a single axis, 
and Index2D etc. for a multi-axis setup. For two lower and 
upper bounds lo and hi with lo, hi ∈ Z and lo ≤ hi, the direct 
positions are taken from the closed interval S = { x ∈ Z | lo ≤ 
x ≤ hi }.The bounds, at the same time, constitute the bbox 
along this axis. 

A regular axis has an equi-distant spacing like an index 
axis, but is continuous and not constrained to integer 
positions and distances. It can be georeferenced, i.e., it can 
have a spatial or temporal (or other) semantics attached, 
given by its CRS. It can be described conveniently by lower 
and upper bound plus resolution. 

An irregular axis lists (possibly georeferenced) posit-
ions P = {p1,…, pn} ⊆ C explicitly where C denotes the co-
ordinate value set defined for this axis in the CRS. Direct 
positions exist for every coordinate tuple where the co-
ordinate value of the irregular axis is from P. 

A displacement axis nest (or warped nest) is a set of 
possibly georeferenced axes forming a subset of the CRS’s 
axes. Direct positions have maximum freedom of location, 
the only rule being that coordinates along each participating 
axis remain ordered and no duplicate coordinates appear. 
Direct positions are given by the coordinate tuples where 
the coordinate of each axis participating in the displacement 
axis nest is in the coordinate value set of this axis. 

By combining all the above axis types freely, any type 
of grid shape can be modeled. The list of possible axis types 
in the standard is not exhaustive, some standard or applic-
ation may define their own additional axis types. 

 

Figure 3.  Multi-dimensional neighbourhood in a grid [10]. 

   
(a) (b) (c) 

Figure 4.  Sample regular 2-D grid (a),  

2-D irregular grid (b), 2-D warped nest grid (c) [10]. 

  
(a) (b) 

Figure 5.  Sample 3-D x/y/t grid representing the combination  

of regular Lat/Long with irregular time (a) and warped nest with irregular 

time (b), time axis running vertically [10]. 
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Obsoleted ISO 19123:2005 differentiates on grid level 
distinguishing only rectified and referenceable grid cover-
age. Based on the above grid construction mechanisms, 
these terms can be defined precisely: 

• A rectified grid coverage is a grid coverage where every 
axis is either an index axis or a regular axis; 

• A referenceable grid coverage is a grid coverage where 
at least one axis is neither index nor regular axis. 

L. Grid Cells 

Inspired by the Computer Science term of “array cells” – 
storage locations in memory for the values, lined up in 
sequence – geo informatics also has a common notion of 
“grid cells”, however with different understanding. In a grid 
cell view, the imaginary lines suggest to be boundaries of an 
area which suddenly becomes the first-class citizen. 
Consequently, questions arise like “is the real cell location 
at the direct position or rather between the direct positions, 
in the center of the cell?” and “is the cell extent still a point 
like the direct position, or is it an area now?” 

This is captured by the commonly used, yet not clearly 
defined distinctions pixel-in-corner versus pixel-in-center 
on the one hand and pixel-is-point versus pixel-is-area on 
the other hand.  

These questions will be addressed in a forthcoming 
paper, aiming at a comprehensive conceptual treatment.  

III. COVERAGE IMPLEMENTATION SCHEMA 

We next address the coverage concretization standard, 
ISO 19123-2 [11], known as Coverage Implementation 
Schema (CIS). CIS is a compliant standardization target of 
ISO 19123-1:2023, meaning: it relies on the concepts, 
terms, definitions, and interfaces of the abstract data model 
to establish a logical schema expressed in the Unified Mod-
eling Language (UML) implementing the interfaces defined 
there. Additionally, this document defines several format 
encodings for the single logical schema. 

Current ISO 19123-2:2018 was adopted from OGC CIS 
1.0; integration of OGC CIS 1.1 [27] is under work as a 
version update. In the sequel, we introduce the latest, yet 
unpublished draft (named CIS for short), thereby providing 
the most up-to-date information to the public while work is 
still in progress. 

OGC CIS 1.1 does not supersede, but extend OGC CIS 
1.0. When integrating both into a self-contained ISO 19123-
2 a specific structure had to be found for the combined 
document because both differ in places due to historical 
reasons. With a similar approach as in 19123-1, the CIS 1.1 
coverage classes have been put into the specification body 
while isolating the legacy – consisting of the rectified and 
referenceable grid coverages – in a separate annex.  

One important reason for fencing CIS 1.0 and 1.1 is due 
to the GML legacy. The GML 3.2.1 coverage structure [15] 
is both overly complicated and too restrictive. The complic-
ation comes from a particular modeling style of GML which 
might be academically justified but in practice almost 
duplicates the number of structuring elements in the GML 
encoding. The most important of the restrictions is due to 
the coordinate types which normatively are fixed to num-

bers in GML. However, in today’s timeseries and datacube 
world temporal axes require date and time stamps, such as 
“2025-01-25” – nobody wants to count seconds since 
January 1st 1970. All communities made clear that support 
for convenient calendar and time syntax is an absolute must. 
Still, despite manifold requests and discussion the GML 
working group was not willing to extend GML with strings. 
Therefore, CIS 1.1 carefully deviates from GML to allow 
any type of coordinates. 

Additionally, the domain set description in the CIS 1.1 
GeneralGridCoverage has been made more straightforward. 

In a nutshell, the main changes of CIS over its pre-
decessor version ISO 19123-2:2018 are as follows: 

• CIS has been adjusted to ISO 19123-1 in terminology 
and concept use, with a clear focus and separation into 
logical level (UML structures) and physical level. 

• All CIS 1.1 coverage classes are adopted unchanged. 
Legacy grid coverage classes RectifiedGridCoverage 
and ReferenceableGridCoverage (the latter from a sepa-
rately adopted OGC standard [35]) have been retained, 
but moved into a separate (normative) Annex B. These 
two types are legacy and will be deprecated in the next 
version – anyway, GeneralGridCoverage can model 
these cases while simpler in structure. 
Technically, gridded coverages still consist of an n-D 
matrix (mathematically: tensor), ornamented with extra 
information realizing the spatio-temporal semantics. 

• The JSON encoding of CIS 1.1 has been reworked to 
comply with modern JSON Schema. 

• Due to resource reasons, the Resource Data Framework 
(RDF) encoding present in CIS 1.1 has not been in-
cluded at this time and is left for future work. 
Realizing the structuring opportunities of 19123-1:2023 

CIS likewise offers several structuring variants: a separation 
of domain and range, partitioning into sub-coverages, and 
direct enumeration of position/value pairs (sometimes also 
called “geometry / value pairs” or “interleaved representat-
ion”). In this overview, we limit ourselves to the very 
common domain/range representation. 

B. Coordinates and Coordinate Reference Systems 

Direct positions are expressed as coordinate tuples, as 
laid down in ISO 19123-1. Coordinate values are of data 
type string as they must accommodate data types as diverse 
as numbers (such as 1.23 degrees or 500 nm), dates and 
times (such as “2016-03-08T11:23Z”), categorial values 
(such as “orange”, “apple”), and possibly more.  

Similarly, resolution specifications are of type string as 
they have to accommodate, e.g., “1.23” for degrees or 
meters and “PT2h” for a 2-hour duration. As per ISO 
19111:2019, any coordinate representation scheme must 
convey some total ordering so that expressions like 

“lowerBound  upperBound” are valid for any axis. 
We briefly focus on date and time coordinates as these 

convey a more involved syntax. The ISO 19108:2002 
standard [16] applies here which defines the date and time 
syntax used, such as "2023-01-01T10:15:22.345Z" and 
"2023-01-01T00:00:00.000CET". Note the time zone ident-
ifiers, “Z” (for Zulu time aka UTC) and “CET”. Such 
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timestamps are called “fully qualified”; shorter time strings 
with different temporal resolution are possible, such as 
"2023-01-01" and "2023". The basis for date and time is one 
basic time CRS counting in seconds. On top of this, calend-
ar CRSs are built such as GregorianDateTime (following 
the syntax sketched above), UnixTime, and Chronometric-
GeologicTime.  

Several vertical CRSs are available in the OGC registry. 
What still has to be added are proxies such as pressure 
altitude (measured in hPa or psi) for altitude in the atmo-
sphere. Their description likely is possible through para-
metric CRSs foreseen in ISO 19111:2019. 

Such coverage axes are defined by the coverage CRS as 
laid down in ISO 19111:2019 [13]. Any combination of 
spatial, temporal, and “abstract” (i.e., non-spatio / temporal) 
axes is possible. This coverage CRS – its so-called native 
CRS, in which data are stored in the coverage – is a single n-
D CRS for the n-D coverage. (This is an important 
difference to other spatio-temporal data standards in OGC 
which split CRS components over several places, an 
approach which is not only more difficult to oversee but 
also comes with significant conceptual restrictions.)  

OGC several years back has resolved that CRSs are to 
be expressed through URLs, such as the following for 
WGS84, which has EPSG [36] code 4326: 

https://www.opengis.net/def/crs/EPSG/0/4326 
In the crs-compose/ branch, component CRSs can be 

added constituting a concatenation as per ISO 19111:2019. 
For example, a 3-D t/x/y CRS can be built from ETRS89 
LAEA and date/time by concatenating two CRS URLs: 

https://www.opengis.net/def/crs-compound? 
  1=https://www.opengis.net/def/crs/OGC/0/AnsiDate& 
  2=https://www.opengis.net/def/crs/EPSG/0/3035  

Such URLs can be “resolved” using the OGC CRS Res-
olver service [32] which returns the XML-encoded definit-
ion of the CRS. 

These long, hard-to-read URLs mostly are geared to-
wards machine consumption – nevertheless, they were felt 
unwieldy, and so the rasdaman team at some time suggested 
a bracket notation as shorthand. Meanwhile these shortcuts 
are adopted by the OGC Naming Authority and permitted as 
alternatives to the CRS URLs. Rules are simple: 

• A non-composite CRS URL of pattern 
https://www.opengis.net/def/crs/{authority}/{version}/{id}  
is identical to the shorthand  
[{authority}:{id}] 
Version number is 0 by definition, interpreted as "latest 
available". For example, [EPSG:4326] expands to 
https://www.opengis.net/def/crs/EPSG/0/4326  

• A composite CRS URL is translated into a comma-
separated sequence of the component CRSs, each of 
which is transcribed individually as per the rule above.  
For example, [EPSG:4326],[OGC:AnsiDate] is equiva-
lent to the long version  
https://www.opengis.net/def/crs-compound? 
   1=https://www.opengis.net/def/crs/OGC/0/AnsiDate& 
   2=https://www.opengis.net/def/crs/EPSG/0/4326  
Such CRS shorthand can be used, e.g., in the srsName 

attribute of a coverage domain set (see below), like: 

srsname="[EPSG:4326],[OGC:AnsiDate]" 
Note, however, that not all coverage implementations 

necessarily implement this feature; notably, the rasdaman 
WCS reference implementation does support it. 

Based on this CRS infrastructure, we can define n-tuple 
coordinates for direct positions in coverages. Thanks to the 
generalization of CIS 1.1 and the liberation from GML rest-
rictions, coordinates can be numeric and non-numeric alike. 

C. Coverage Domain Set 

The coverage domain set specializes into specific 
structures for multi-point, grid, multi-curve, multi-surface, 
and multi-solid domain set specifications as discussed 
earlier. All have in common, though, the srsName attribute 
holding the CRS of the coverage using either URL or 
bracket notation. In attribute axisLabels, the list of axis 
names in the CRS is provided in proper order, whitespace 
separated. These axis names are used inside the coverage for 
axis identification in the domain set’s axis list. In attribute 
uomLabels the unit of measure is indicated for each axis in a 
whitespace-separated list in proper axis order. Best practice 
is to use UCUM notation [38] such as “m”, “ft”, “yr”, etc. 

In grid coverages, the GeneralGrid structure inside the 
DomainSet serves to span the n-D raster grid. For each axis 
its type is defined which mirrors the 19123-1 definitions. 

An IndexAxis constitutes the simplest axis type, with only 
integer coordinates allowed. No resolution and no unit of 
measure are required. 

A regular axis employs as coordinates any totally 
ordered value set, such as numbers and date/time strings. 
Additionally, the unit of measure – recommended: UCUM – 
plus the (constant) resolution need to be kept. 

An irregular axis is like a regular one in that it can use 
any totally ordered value set for coordinates, with the unit of 
measure to be indicated. The coordinates contributing the 
direct positions are enumerated explicitly. 

We omit the further axes types – irregular correlated 
grid axes (also called displacement axis nest or warped nest) 
and transformation model – to avoid undue complexity in 
this overview paper. 

D. Coverage Range Set and Range Type 

The range set usually forms the by far largest part of the 
coverage in terms of its storage footprint. Therefore, this 
part is designed as compact as ever possible, with no redun-
dancy – the structure simply resembles an ordered list of 
values. It is essential, therefore, to have a linearization rule 
establishing a clear correlation between the multi-dimen-
sional direct positions and the 1-D value sequence. The de-
fault row major / left-to-right sequencing rule can be over-
ridden in the sequenceRule part of CoverageFunction. 

The range type adds technical metadata required for a 
program to interpret the coverage range values correctly. 
CIS makes use of the OGC Sensor Web Enablement (SWE) 
Common [25] DataRecord. This ensures that the semantics 
from upstream sensor acquisitions into downstream services 
(like WCS) is carried over losslessly. Each range value can 
be a record characterized by component field name, unit of 
measure, and a characterization into Quantity, Count, or 

44Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-269-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GEOProcessing 2025 : The Seventeenth International Conference on Advanced Geographic Information Systems, Applications, and Services

                            52 / 77



Category. Further optional parts include nil (null) value list, 
definition (a URL pointing to a human-readable definition), 
and further more. 

Besides DataRecord, there is an optional list of interpol-
ation methods applicable. Common interpolation methods 
include nearest-neighbor, linear, quadratic, cubic, bary-
centric, and more. Interpolation is tightly connected with the 
region-of-validity concept, something to be reflected in sub-
sequent standardization progress once there are conclusive 
results from the ongoing research [5][6]. 

E. Metadata 

The metadata slot is as defined abstractly before: some 
byte string without further semantics known to the coverage. 
Use of this slot is manifold: To enhance the coverage infor-
mation; to provide further domain-specific information; to 
create profiles, such as EU INSPIRE metadata [20]. 

F. Coverage Encodings 

Many encoding formats are in active use for coverages 
in practice. Several of those are already standardized, such 
as GeoTIFF, NetCDF, GRIB2, and JPEG2000 – see the list 
at [31]. XML and JSON encodings are already contained in 
OGC CIS 1.1 [27] as separate conformance classes. 

The XML encoding has a strong legacy from GML [10] 
to which it was aligned at the heydays of XML use. GML 
coverages came with several constraints (such as numerical 
coordinates only), and so a cautious liberation of GML was 
started with OGC CIS 1.1 allowing date / time strings and 
simplifying the structure. 

Further, OGC CIS 1.1 added a conformance class for 
JSON. While reworking this into the new version of 19123-
2 this was reshaped to match with current technology, in 
particular: JSON Schema [21]. 

The ASCII formats XML and JSON are “information-
ally complete” by containing all of the coverage information 
defined, but they not efficient in particular for voluminous 
data. Efficient binary formats, on the other hand, tend to 
grasp only part of the coverage information. For an 
encoding which is both informationally complete and 
storage efficient the multi-part conformance class was 
added. It defines a container which, as first item, contains an 
overall coverage description in some well-known complete 
format like XML or JSON. Instead of the storage-heavy 
parts – typically the range set – a reference is provided to 
one or more files also stored in the container. These further 
parts can be in any well-known format, typically in a 
compact binary encoding. 

IV. COVERAGE WRANGLING STANDARDS 

While this paper focuses on the coverage data structure, 
we still discuss briefly the corresponding service standards. 
The direct companion service standard to the coverage data 
standards is the OGC Web Coverage Service (WCS) which 
offers versatile extraction, conversion, analysis, and fusion 
on general multi-dimensional datasets [31]. Part of the 
modular WCS suite is the Web Coverage Processing Serv-
ice (WCPS) [3][26], a geo datacube analytics language built 
for server-side evaluation. WCS is supported by manifold 

implementations [30], such as Oracle, Hexagon, GeoServer, 
ESRI, and rasdaman.   

For map visualization, OGC Web Map Service (WMS) 
and Web Map Tiling Service (WMTS) are available. As 
opposed to WCS, these are specialized on 2D map rendering 
of datasets with two horizontal axes. WMS returns color 
pixels (like hill shading), a WCS delivers the original data 
(like height in feet) in a way that allows further processing. 

For WCS and WMTS, rasdaman is official OGC Refer-
ence Implementation. 

Given that coverages are “Big Data”, they typically are 
“too big to download”, hence processing requires “shipping 
code to data”. From a service provider perspective, unguard-
ed acceptance of programming language code is unsafe; 
from a user perspective, coding requires extra skills making 
exploitation infeasible for non-experts and time-consuming 
for experts. Therefore, OGC, ISO, and INSPIRE have ad-
opted the dedicated datacube analytics language Web Cov-
erage Processing Service (WCPS) [3][12]. This language 
defines expressions on coverages which evaluate to ordered 
lists of either coverages or scalars (whereby “scalar” here is 
used as a summary term of all data structures that are not 
coverages). Like the SQL data analytics language, WCPS is 
“safe in evaluation”: every query is guaranteed to terminate 
in finite time, as opposed to programming languages like 
Python where such a guarantee is not possible.  

We present WCPS through some examples illustrating 
basic mechanisms; see also the WCPS tutorial on Earth-
Server [22] and the ChatCUBE WCPS query assistant [23]. 
A forthcoming paper, updating the original WCPS 1.0 
overview [3], will address WCPS 1.1 in detail. 

• “Retrieve coverages A, B, and C in GeoTIFF”: 
for $c in ( A, B, C )  
return encode( $c, "image/tiff" )  

• “Apply mask M to coverage A, B, and C” (fusion): 
for $s   in ( A, B, C ), $m in ( M )  
return encode( $s * $m, "image/tiff" )  

• “Create 3D x/y/t coverage from input stream $1”: 
for $t in ( TemperatureCube )  
return encode(  
  coverage MySatelliteDatacube  
  domain  
      crs “EPSG:4326+OGC:unixTime” with  
      Lat  regular (10:30) resolution 0.5  
          interpolation linear,  
      Lon regular (10:30) resolution 0.5  
          interpolation linear,  
      Date irregular ( “2017-01-01”, “2017-02-01”, 
                                 “2017-07-01”, “2017-11-01” ) 
  range type panchromatic: integer  
  range decode( $1 ), 
  “netcdf” 
) 

• “Timeseries of temperature average over Berlin“: 
for $t in ( TemperatureCube )  
return encode(  
    avg( $t[ Lat(52.51: 52.53), Lon(13:39:13.41) ] ), 
    “json”  
) 
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• “Absolute of wind speed”: 
for $w in ( WindCube )  
return encode( 
    sqrt( $w.u * $w.u + $w.v * $w.v ), 
    “netcdf”  
) 

• “Logarithm of intergalactic matter temperature “: 
for $c in ( UniverseTemperature )  
return encode( 
    switch 
        case $temp > 0 return log( $temp ) 
        default             return 0, 
    “netcdf” 
) 

The syntax of WCPS tentatively is aligned with XQuery 
– a majority of geo metadata are stored in XML, so natur-
ally queried with XPath / XQuery. This allows for an inte-
gration of the two languages into a seamless data / metadata 
continuum. Furthermore, XQuery is also suited for querying 
JSON structures, so future oriented.  

V. RELATED STANDARDS 

The coverage standards, aligned between ISO and OGC, 
are generally accepted and widely implemented. In this 
section we inspect related standards. 

With SQL Part 15 (Multi-Dimensional Arrays, MDA) 
[9], ISO has added multi-dimensional arrays to the relat-
ional model. MDA defines how attribute values can be 
arrays of arbitrary extent and number of dimensions, includ-
ing operational support in the SQL query language. These 
arrays are domain-agnostic and not aware of spatial nor 
temporal semantics. The OGC/ISO Web Coverage Process-
ing Service (WCPS) language [3][12] is different in that (i) 
it adopts an XQuery syntax flavor to be better aligned with 
the many geo metadata stored worldwide and (ii) is aware of 
space and time, knowing, e.g., about regular and irregular 
grids. However, the operational semantics is the same as 
SQL/MDA, except that WCPS is space/time semantics 
aware. This is exploited, for example, in the rasdaman array 
database system where WCPS queries internally get trans-
lated, with the help of geo-specific metadata, into 
SQL/MDA style queries which ultimately are executed in 
the federated engine [9]. 

CoverageJSON [34] is an OGC community standard for 
datacubes. Despite its name it is not the JSON encoding of 
coverages, but an incompatible variant – a “hijacking” of 
the normatively defined name “coverage”. 

W3C QB4ST [1] establishes a datacube ontology, ex-
pressed in Resource Data Framework (RDF) syntax and 
queryable through the RDF query language, SPARQL. 
QB4ST only addresses datacube metadata, but not the “pay-
load” itself. While an interesting approach in itself, with a 
potential to bridge into the Semantic Web world, QB4ST 
likewise is not aligned with the coverage standards. 

While focus here is on the coverage data model we 
briefly address service APIs. The first and foremost cover-
age service standard is the Web Coverage Service (WCS). In 
its core, it offers only subset extraction and format encoding 
so as to keep the implementation hurdle as low as possible. 

A series of optional extensions adds further functionality. 
Particularly noteworthy is WCPS, a high-level geo datacube 
query language. 

Further relevant standards include Web Map Service 
(WMS) for map visualization. WMS and WCS differ in that 
WMS focuses on map visualization, hence returns colors 
(such as color shading for elevation levels) whereas WCS 
delivers the true data (such as elevation), suitable for further 
processing and analytics by tools. 

Some further standards, such as Environmental Data 
Retrieval (EDR) [24], use (incompatible) CoverageJSON. 

OAPI-Coverages offer access to coverages based on 
OpenAPI technology and http. Functionality is mostly par-
allel to WCS. The specification is draft since about 2018, 
but still incomplete, with random changes, without a 
comprehensive example set nor a test suite, and altogether 
not suspected to become OGC standard in the near future. 

Another recent OGC activity has started work on a 
GeoDataCube API which itself consists of two incompatib-
le API definitions, openEO and OAPI-Processes. It is like-
wise an early-stage draft under discussion. 

The European legal framework for a common spatial 
data infrastructure, INSPIRE, relies on the OGC coverage 
standards, including WCS and WCPS [20]. 

VI. CONCLUSION 

Standardization not only fosters interoperability, but also 
offers guidance to implementers, thereby accelerating devel-
opment cycles. Conversely, scientific and technological pro-
gress in the understanding of generation, management, and 
use of coverage structures nurtures the standards contin-
uously. Coverages have matured in concepts and imple-
mentation, culminating in CIS 1.1. The integration of both is 
to become the next version of ISO 19123-2. 

This paper provides a lookout on this new standard syn-
optically on three levels of abstraction: the concepts and 
terminology of ISO 19123-1, the logical-level coverage data 
model of ISO 19123-2 which currently is under adoption 
vote, and the physical (encoding) level of ISO 19123-2 pro-
viding XML and (revised) JSON support, in addition to the 
existing binary coverage formats. The first ISO vote 
(“ballot”) was finished with only minor comments. These 
have been worked in, making the specification ready for the 
next stage ballot (Draft International Standard, DIS). From 
DIS status onwards only editorial changes will be allowed. 
Altogether, the document can be considered quite stable. 

Coverage data and service standards have an immense 
impact on Big Geo Data, in particular datacubes – examples 
include 1-D sensor timeseries; 2-D satellite, airborne drone 
and underwater data, on Earth or on planetary bodies; 3-D 
x/y/t image timeseries over all these; 3-D x/y/z geophysical 
data, such as with oil, gas, and water exploration; 4-D 
x/y/z/t atmospheric and ocean data; and general n-D statist-
ical datacubes. These few examples may illustrate the imp-
ortance of coverages for geo data in science and industry. 

The contribution, therefore, aims at spreading informat-
ion about coverages in general and datacubes in particular, 
and conversely solicits feedback by the community into 
standardization. 
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Abstract—Geospatial inference is crucial for various spatial pre-
diction tasks, where the choice of modeling approach significantly
impacts both inference performance and computational efficiency.
Traditional geospatial statistical models, such as Geographically
Weighted Regression (GWR) and Kriging, explicitly account for
spatial dependence, but often come with high computational costs.
In this study, we argue that treating coordinates as standard input
features can yield competitive inference performance while signif-
icantly reducing computational costs when selecting a predictive
model with an appropriate level of complexity. To support this,
we compare geospatial statistical models with various machine
learning approaches, including linear methods, tree ensemble
methods, hybrid kernel-based methods that incorporate explicit
geospatial learning, and a recent state-of-the-art tabular deep
learning model—TabPFN—to assess their effectiveness in spatial
prediction tasks (to the best of our knowledge, this is the first
study to investigate the performance of TabPFN in the geospatial
domain using explicit coordinate inputs). Our results demonstrate
that when coordinates are sufficiently informative, tree-based
ensemble models and tabular deep learning can implicitly capture
spatial dependence without requiring explicit geospatial modeling,
achieving superior performance whilst maintaining a reasonable
computational cost.

Keywords-geospatial regression; ensembles modeling; spatial
statistics; comparative performance.

I. INTRODUCTION

Spatial inference plays an increasingly critical role across
various industries, including environmental science [1][2],
urban planning [3], and disaster management [4][5], where
predicting unobserved values at specific locations is essential.

Over the years, researchers have developed two primary
approaches towards modeling spatial inference. Explicit ap-
proaches rely on the principle that geographically closer
observations tend to be more similar. Traditional methods,
such as Kriging [6][7] and Geographically Weighted Regression
(GWR) [8], incorporate this principle through variograms or
distance-decay weighting, offering both interpretability and
predictive power which have been widely adopted for spatial
interpolation and regression tasks.

Alternatively, Machine Learning (ML) models have emerged
as powerful tools for handling large and complex datasets.
These models treat coordinates as standard input features, allow-
ing them to capture spatial dependence implicitly. Among them,
tree-based ensembles—such as random forests and gradient
boosting machines—excel at modeling nonlinear relationships
and variable interactions. By incorporating spatial features
into their predictive framework, they achieve competitive
performance without the need for explicit geospatial modeling.

A hybrid approach has also gained traction, combining the
interpretability of spatial models with the predictive power
of machine learning. Techniques that integrate Kriging with
ML-based kernels have demonstrated promising results by
leveraging both domains’ strengths [9][10].

The advancement of Tabular Deep Learning (TDL) fur-
ther expands spatial inference possibilities. Whilst typically
confronted with challenges, such as the need for extensive
hyperparameter tuning and risk of overfitting, especially on
small datasets, pre-trained models have appeared which aim to
offer a robust alternative. For instance, the recently developed
Prior-Data Fitted Network (PFN) Transformer [11], designed
for tabular data, is pre-trained offline, enabling supervised
learning on small datasets without additional hyperparameters
tuning.

While traditional geospatial statistical models provide a
rigorous framework for modeling geospatial dependence, they
often struggle to balance predictive performance and computa-
tional efficiency, particularly with large datasets or nonlinear
relationships. Conversely, TDL and ML—especially tree-based
ensemble models—offer strong predictive performance with
reasonable training and tuning costs as these models avoid
constructing the geospatial distance function explicitly in a
large scale.

Therefore, in this study, we reflect on the way traditional
geospatial statistics leverage the distance matrix to model
geospatial dependence and argue for the efficiency of consid-
ering the coordinates as just standard input features for spatial
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inference tasks. We do so by presenting a comprehensive
comparison of geospatial statistical models (e.g., Kriging
and GWR), machine learning models (with a focus on tree
ensembles), hybrid kernel-based models, and a state-of-the-art
tabular deep learning model, i.e., TabPFN. Summarized, this
work presents the following key contributions:
• We conduct a comparative experiment across statistical,

ML, hybrid and TDL methods, with an emphasis on tree
ensembles and TabPFN, to assess predictive performance
and training efficiency;

• We analyze the practical considerations of training and tuning
these models in real-world geospatial applications;

• We reflect on risks of putting a large emphasis on explicit
spatial dependence usage, especially when coordinate infor-
mation is sufficiently informative or strong ML models are
available;

• The source code and datasets used in our work are publicly
available on our GitHub page [12].
This paper is structured as follows: Section II provides a

detailed explanation of related methodologies used in the field
of geospatial reference. Section III introduces the experimental
setup, covering the datasets, models, hyperparameter grids, and
evaluation metrics used in the comparison. Section IV presents
the results and discusses the effectiveness of all methods. The
conclusion and future work are provided in Section V.

II. METHODOLOGY REVIEW

This section clarifies the mechanisms underlying geospatial
statistical models, ML, hybrid models and TabPFN, i.e., the
techniques we will compare in this work, as well as their
distinct ways to incorporate spatial dependence principles. By
examining the mechanisms of these approaches, we aim to
establish a foundation for comparing their performance and
applicability in geospatial inference tasks.

A. Spatial Dependence-Based Models

Kriging and GWR are the most representative models in
this group. Although they both rely heavily on the principle of
spatial dependence, where observations close to each other are
more similar than those farther apart, the emphasis of spatial
relationships modeling of these two models are slightly varied.

1) Kriging: The main goal of Kriging is to quantify spatial
autocorrelation to model and estimate the target values by
using a variogram based on the assumption of jointly Gaussian
distribution of the data, and then computes optimal weights for
predictions by solving a system of linear equations, ensuring
that predictions are best linear unbiased estimates.

The Kriging [13] predictor can be defined as:

Ẑ(s0) =

n∑
i=1

λiZ(si),

where:
• Z(si): Observed value at location si,
• λi: Weight assigned to Z(si), determined by spatial correla-

tion.

• n: Number of observed locations.
The spatial correlation between locations is modeled using

a variogram [14] which is defined as:

γ(h) =
1

2
Var[Z(s)− Z(s+ h)],

where:
• h: Distance between two locations,
• γ(h): Semi-variance at lag h.

By using the variogram, we can calculate the covariance
matrix to solve the Kriging system,

C(si, sj)Λ = C(si, s0)

where Λ indicates the weight assigned to known nodes for the
interpolation of an unknown node s0.

Based on the definition above, Kriging provides an estimate
of prediction uncertainty that is defined as:

σ2
Kriging(s0) = C(s0, s0)−

n∑
i=1

λiC(si, s0)− µ.

2) GWR: Compared with Kriging focusing on spatial auto-
correlation and estimating the proximity similarity, GWR [15] is
more based on the assumption of spatial heterogeneity. Though
GWR also utilizes the distance matrix as weights to model the
spatial variation, it fits a separate regression model locally at
each location, weighting observations based on their proximity
using a kernel function (e.g., Gaussian or bisquare), which
allows for spatial variation in relationships between dependent
and independent variables.

Essentially, the GWR can be defined as a linear combination:

yi = β0(si) +

p∑
k=1

βk(si)xki + ϵi,

where:
• yi: Dependent variable at location si,
• β0(si) and βk(si): Intercept and coefficient (for the k-th

independent variable) at location si,
• xki: Independent variable at location si,
• ϵi: Random error term at location si,
• p: Number of independent variables.

The regression coefficients β(si) are estimated by solving
the weighted least squares problem, which is expressed as

β(si) =
(
X⊤W(si)X

)−1
X⊤W(si)y,

where W(si) represents the diagonal weight matrix of the
weights assigned to the location which is close to the point of
interest.

To estimate the weight matrix, two kernel functions are
commonly used, including:
• Gaussian kernel:

wij = exp

(
−
d2ij
2b2

)
,
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• Bisquare kernel:

wij =


(
1−

(
dij

b

)2)2

if dij ≤ b,

0 if dij > b,

where:
• dij : Distance between locations si and sj ,
• b: Bandwidth parameter controlling the spatial extent of the

weights.
Classical GWR models the local geospatial variation under

the assumption of the same spatial scale, while a modification of
GWR, namely Multiscale Geographically Weighted Regression
(MGWR) [16], provides a more flexible and scalable framework
by allowing different processes to operate at different spatial
scales.

Although Kriging and GWR are widely used for spatial
inference tasks, the application scenarios are slightly different.
Kriging is more applied in spatial interpolation, such as esti-
mating soil properties [17], pollutant concentrations [18][19],
or precipitation levels [20], while GWR is more commonly
applied in spatial regression scenarios, such as modeling house
prices [21], socioeconomic factors [22], or environmental
influences [23], where relationships vary spatially.

B. Machine Learning Models

Machine learning methods provide a data-driven approach to
modeling, focusing on capturing patterns and relationships
within the data without explicit assumptions about spatial
dependence.

Typically, given a dataset {X,Y } consisting of instances
{xi, yi} from a certain distribution P (Y |X), the goal is to
learn a function f that maps input features x ∈ Rd to an
output y ∈ R. The general objective is:

f̂ = argmin
f

1

n

n∑
i=1

ℓ(yi, f(xi)),

where:
• ℓ(yi, f(xi)): Loss function measuring the error between

predicted f(xi) and actual yi,
• n: Number of training instances.

To minimize the loss function (e.g., mean squared error
for regression or cross-entropy for classification), a wide
range of optimization algorithms, such as gradient descent
and tree-based heuristics are developed to capture complex
linear or nonlinear relationships between features. Specifically,
tree ensemble models often outperform simpler models on
structured data by building a series of decision trees and
updating iteratively to minimize the loss,

fm(x) = fm−1(x) + γmhm(x),

where:
• fm(x): Prediction at iteration m,
• hm(x): Weak learner (e.g., a shallow decision tree),
• γm: Step size for the weak learner.

Unlike the spatial dependence-based models which integrate
the geospatial information explicitly, machine learning models
theoretically are available for all kinds of tabular data inference
tasks, but can be applied to the geospatial field easily by
engineering the geographical features (e.g., raw coordinates,
distance to landmarks, elevation, or land use types) and
including location information (i.e., coordinates in most cases).

C. Hybrid Kernel-Based Models

Recent advances have sought to explore hybrid approaches
to boost the strengths of handling of spatial dependence.

The most straightforward trail is to consider Kriging as an
extension of GWR, but train these two components separately.
Following this basic hybrid idea, Geographically Weighted
Regression Kriging (GWRK) [24] was developed and its
efficiency proven on datasets from different domains [25][26].

Another possible combination is merging Kriging with ML
models. By using Kriging as the base model and ML models
as either internal learners for residuals [27] or as a super
learner [9], this hybrid approach helps mitigate the limitations
of both model types, allowing effectively incorporating spatial
relationships while enhancing predictive performance.

Moreover, the variogram function in Kriging or a local
linear function are not the only choices to model geospatial
dependence. E.g., Gaussian Processes (GPs) can also model
spatial dependencies explicitly through kernel functions and
by weighting proximal observations spatially. The Gaussian
kernel is defined as:

k(si, sj) = exp

(
−∥si − sj∥2

2ℓ2

)
,

where:
• k(si, sj): Covariance between points si and sj ,
• ℓ: Length scale parameter, determining how quickly the

correlation decays with distance,
• ∥si − sj∥: Euclidean distance between points si and sj .

In theory, by embedding spatial correlation into machine
learning workflows, these kernel-based methods enhance pre-
dictive performance while retaining the capacity to model
non-linearities and complex interactions.

D. TabPFN

TabPFN is a single Transformer pre-trained to approxi-
mate probabilistic inference using a designed prior based on
Bayesian Neural Networks. It is built on Prior-Data Fitted
Networks (PFNs) [28], which can directly sample from and
approximate the Posterior Predictive Distribution (PPD). Unlike
conventional neural networks and tree ensembles that rely
on fixed structures, such as neural layers or constrained
tree depth, TabPFN [11] incorporates not only a Bayesian
Neural Network-based prior [29][30] but also Structural Causal
Models [31][32] to capture complex feature dependencies and
analyze underlying causal mechanisms, particularly in tabular
data. It has demonstrated superior inference performance across
various datasets spanning different domains. As a pre-trained
Transformer, TabPFN embeds all input features as tokens and
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processes them through a feed-forward mechanism, treating
coordinates as standard input features alongside others.

In summary, these three types of models leverage geospatial
dependence in two distinct ways: either by directly integrating
geographic information as a distance matrix to model interac-
tions between the target point and its proximal neighbors or by
engineering proximity as hard features, incorporating location
information as standard features while ignoring autocorrelation
among points. Although a vast body of literature applies these
methods to tackle various real-world challenges, researchers
rarely discuss the advantages and efficiency of explicitly using
spatial dependence. Models like Kriging and GWR often
entail high computational costs and are susceptible to singular
distance matrices, which can render the Kriging system or
covariance matrix unsolvable.

In contrast, ML and TDL models mitigate computational cost
and solvability concerns, as they do not require solving linear
systems based on distance matrices. Instead, they directly model
the mapping function from tabular features and approximate
the prior distribution of the given dataset, which is particularly
efficient with larger datasets.

To uncover the most efficient approach for different geospa-
tial inference tasks, we conducted an extensive experiment
evaluating various models in terms of predictive performance
and computational cost. We hope this study provides new
insights into modeling geospatial variables and selecting
practical models for real-world applications, especially under
the presence of stronger ML models, as well as very recent
TDL approaches.

III. EXPERIMENTAL SETUP

In this section, we describe an exhaustive experiment to
compare a wide range of ML models with other well-known
geospatial predictive modeling techniques, covering a collection
of real-life datasets.

A. Datasets

There are two primary types of public datasets used in
this work to evaluate the performance of geospatial statistical
models and machine learning models, i.e., property datasets
obtained from Kaggle and biology related datasets from the R
package Spatstat.data.

All these datasets contain at least coordinates (either geo-
graphical or geometric coordinates), but not all of them have
additional features, such as hedonic features of property data.
To validate the capability of various models on capturing
geospatial information and the utility of geospatial dependence,
we divide the dataset further into two categories that consist
of coordinates-only and full-feature datasets. Each dataset
was cleaned to remove duplicate values and was re-scaled
so features fall in a range of 0 to 1. We partitioned each
dataset into a training set (70%), a validation set (10%) and a
test set (20%). Note that when a timestamp was available (such
as for real estate datasets), we perform the train-validation-test
split in a temporal manner (i.e., chronologically).

Moreover, we carefully process the coordinates to ensure
reliable geospatial inference. First, all coordinates are converted
into a Cartesian coordinate system according to the dataset’s
geographical location, ensuring unified features to each model,
and avoiding potential spherical distortions on statistic models
which are based on distance matrices. Specifically, for GWR
and Kriging, we keep the Cartesian coordinates unscaled to
maintain consistent Euclidean distance calculations. For ML
and TDL models, we scale the coordinates similarly to the
other input features.

B. Models

As shown in Table I, we select a diverse set of models that
cover different methodological categories to comprehensively
evaluate the effectiveness of geospatial statistical models, ML
and TDL approaches. The selected models are categorized into
machine learning, TDL, kernel-based methods, and geospatial
statistical models.

Machine learning models include Linear Regression
with Ridge regularization [33], Support Vector Machine
(SVM) [34][35][36]) and tree ensemble methods (Random
Forest (RMF) [37], XGBoost [38], LightGBM (LGBM) [39],
and CatBoost [40]). Strictly speaking, the kernel-based models
covering Gaussian Processes [41], Tweedie Regression [42],
and the hybrid Kriging-LGBM approach could also be placed
under the ML group. But since they combine machine learning
and geospatial statistics, we categorize them separately. The
hybrid model—Kriging-LGBM [27], is the most representative
in this group. It uses a LightGBM regressor as an internal
kernel and then gathers and processes geospatial information
with Kriging on target residuals. Moreover, a recent state-of-
the-art tabular deep learning model—TabPFN—is also included
in this experiment. To the best of our knowledge, this is the
first study to investigate the performance of TabPFN in the
geospatial domain using explicit coordinate inputs. Finally, we
include the most classical geospatial statistical models, i.e.,
GWR [15], and Regression Kriging [43][44][45].

Each model’s hyperparameters are tuned according to the
grid values listed in the table, to ensure a fair and com-
prehensive evaluation across different modeling approaches.
Hyperparameters for all models were systematically tuned
on the validation set using root mean square error (RMSE).
The best parameter combination was then used to test on the
completely unseen test set to report the evaluation results.
All models share the same data partitions. Note that TabPFN
claims to be able to reach competitive results without any
hyperparameter tuning, so for this pre-trained model, no tuning
was performed.

C. Comparative Setup

To clarify the extent of importance of coordinates in various
inference tasks and assess the efficiency of different models in
terms of leveraging spatial locations, we evaluate the model
performance under two main dataset configurations: one using
only spatial coordinates, and the other one incorporating both
coordinates and additional features when available.
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TABLE I
OVERVIEW OF MODELS AND THEIR HYPERPARAMETERS USED IN THE COMPARISON.

Category Type Model Hyperparameters

Machine Learning

Linear
Ridge LR α: [0.1, 0.2, ..., 0.9]
SVM C: [1, 11, ..., 101]

ϵ: [0.1, 0.2, ..., 0.9]

Tree Ensemble

RandomForest min_samples_split: [2, 3, 5]
min_samples_leaf: [3, 5, 10]

XGBoost learning_rate: [0.1, 0.01, 0.005]
reg_alpha: [0.0, 0.1, ..., 1.0]
reg_lambda: [0.0, 0.1, ..., 1.0]

LGBM learning_rate: [0.1, 0.01, 0.005]
reg_alpha: [0.0, 0.1, ..., 1.0]
reg_lambda: [0.0, 0.1, ..., 1.0]

CatBoost iterations: [100, 200]
learning_rate: [0.001, 0.005, 0.01, 0.05, 0.1]
l2_leaf_reg: [0.1, 0.5, 1, 5]

Kernel Based
Gaussian Gaussian Process kernel: C(1.0) * RBF( length_scale_bounds=(1e-2, 1e2))

alpha: [0.1, 0.2, ..., 0.9]
Power Tweedie power: [0, 1, 1.2, 1.5, 1.8, 2, 3]

alpha: [0.0, 0.1, ..., 0.9] + [2, 5, 8, 10]
ML Kernel Kriging LGBM Kriging params: nlags = [30, 60, 90, 120]

variogram_model: [“gaussian”, “linear”]
Lightgbm params: reg_alpha: [0.0, 0.5, 1.0]

reg_lambda: [0.0, 0.5, 1.0]
learning_rate: [0.1, 0.01, 0.005]

Geospatial Statistics
Geospatial Heterogeneity GWR best bandwidth for kernel
Geospatial Autocorrelation Kriging nlags: [30, 60, 90, 120]

variogram_model: [“gaussian”, “linear”]

Deep Learning Tabular DL TabPFN —

The primary evaluation metric to quantify the predictive
performance of each model is the Root Mean Squared Error
(RMSE). Additionally, we assess the computational efficiency
by measuring the training time per model per run during
the hyperparameter tuning. This dual assessment allows us
to analyze the trade-offs between model performance and
computational cost, providing insights into the practicality
of each approach in geospatial prediction tasks.

The experiment is conducted on an Intel Core i9-13900 (13th
Gen) CPU with 64 GB of RAM and an NVIDIA RTX A5000
GPU.

IV. DISCUSSION

All the results are shown in Table II and Table III. Since
Regression Kriging only accepts coordinates as input, its
predictive results remain the same for both datasets, with and
without hedonic features.

Interestingly, we find that TabPFN consistently achieves
the lowest RMSE across both datasets with hedonic features

and without (coordinates only). In particular, on datasets
with hedonic features, TabPFN outperforms all other models
virtually all cases, which serves as one of the first illustrations
of the competitive power of this recent approach in the domain
of geospatial inference.

Tree ensemble models, especially LightGBM, XGBoost, and
CatBoost, rank second. Although they do not surpass TabPFN,
their performance is still clearly better than geospatial statistical
models. In contrast, linear models, including Ridge Regression
and SVM, consistently yield the worst predictions among all
models, indicating that ML models can sufficiently capturing
geospatial dependencies without having to deal with coordinates
in a specific manner, as long as the chosen ML model is strong
enough.

Notably, Gaussian Processes, Kriging, and the Kriging
LGBM Regressor, which explicitly utilize geospatial infor-
mation, also demonstrate strong performance on a few datasets
where only coordinates were included. However, they do
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TABLE II
COMPARISON OF MODEL PERFORMANCE (RMSE) ACROSS DIFFERENT DATASETS WITH ONLY COORDINATE FEATURES.

Data Ridge LR SVM GWR Kriging Kriging LGBM Gaussian P Tweedie RMF LGBM XGBoost CatBoost TabPFN
anemones 0.1756 0.1870 0.1841 0.1826 0.1826 0.1804 0.1755 0.1753 0.1747 0.1779 0.1766 0.1810
beijing 0.1833 0.1342 0.1390 0.1284 0.1284 0.1380 0.1833 0.1296 0.1279 0.1279 0.1273 0.1272
bronzefilter 0.1736 0.2364 0.2133 0.1835 0.1835 0.1754 0.1622 0.1553 0.1623 0.1615 0.1795 0.1535
dubai 0.1941 0.1584 0.1668 0.1373 0.1373 0.1539 0.1911 0.1384 0.1448 0.1413 0.1404 0.1391
london 0.0885 0.0717 0.0676 0.0641 0.0641 0.0704 0.0885 0.0643 0.0650 0.0652 0.0667 0.0653
longleaf 0.3114 0.2978 0.2546 0.2750 0.2750 0.2923 0.2531 0.2641 0.2798 0.2639 0.3037 0.2451
melbourne 0.0944 0.0708 0.0751 0.0603 0.0602 0.0652 0.0922 0.0608 0.0610 0.0599 0.0599 0.0588
newyork 0.1104 0.1018 0.0955 0.0964 0.0964 0.0981 0.1104 0.0928 0.0931 0.0930 0.0939 0.0925
paris 0.0216 0.0615 0.0208 0.0213 0.0213 0.0217 0.0216 0.0205 0.0203 0.0203 0.0203 0.0202
perth 0.0555 0.0444 0.0350 0.0348 0.0348 0.0384 0.0548 0.0339 0.0340 0.0341 0.0344 0.0340
seattle 0.1448 0.1181 0.1147 0.1101 0.1101 0.1154 0.1448 0.1092 0.1096 0.1095 0.1103 0.1100
spruces 0.2038 0.2361 0.1984 0.2284 0.2284 0.1889 0.1942 0.2204 0.1889 0.2004 0.1911 0.1928
waka 0.1240 0.1398 0.1237 0.1295 0.1295 0.1233 0.1235 0.1293 0.1235 0.1234 0.1232 0.1230

TABLE III
COMPARISON OF MODEL PERFORMANCE (RMSE) ACROSS DIFFERENT DATASETS WITH COORDINATE AND ADDITIONAL FEATURES.

Data Ridge LR SVM GWR Kriging Kriging LGBM Gaussian P Tweedie RMF LGBM XGBoost CatBoost TabPFN
beijing 0.1718 0.1378 0.1329 0.1284 0.1285 0.1608 0.1693 0.1031 0.1003 0.1045 0.1036 0.1008
dubai 0.1801 0.1982 0.1852 0.1373 0.1303 0.1982 0.1905 0.1194 0.1202 0.1201 0.1122 0.1038
london 0.0846 0.0757 0.0859 0.0641 0.0628 0.0776 0.0846 0.0589 0.0586 0.0588 0.0602 0.0562
melbourne 0.0803 0.0702 0.0673 0.0603 0.0389 0.0687 0.0581 0.0326 0.0296 0.0313 0.0291 0.0263
newyork 0.0863 0.0759 0.0721 0.0822 0.0726 0.0751 0.1002 0.0565 0.0562 0.0560 0.0561 0.0532
paris 0.0213 0.0246 0.0206 0.0213 0.0213 0.0217 0.0214 0.0202 0.0202 0.0201 0.0201 0.0201
perth 0.0494 0.0460 0.0355 0.0348 0.0324 0.0375 0.0489 0.0270 0.0277 0.0274 0.0282 0.0275
seattle 0.1252 0.1100 0.0966 0.1101 0.0981 0.1134 0.1253 0.0838 0.0820 0.0836 0.0831 0.0790

Figure 1. All features: visualizations of training time (s) per hyperparameter
run across different models in log scale.

encounter challenges in terms of incorporating additional
features, limiting their effectiveness in such cases.

Figure 1 and Figure 2 evaluate model performance from a
more practical perspective. Due to computational constraints,
models that require less time for training and tuning are
more advantageous for real-world applications. It is evident
that models which are heavily reliant on spatial dependence
(i.e., Gaussian Processes, Kriging, and GWR) experience

Figure 2. Coordinates features: visualizations of average training time (s) per
hyperparameter run across different models in log scale.

exponentially increasing training and tuning times as the dataset
size grows.

TabPFN, on the other hand, requires significantly less time
due to its pre-trained nature. Given its superior predictive
performance, TabPFN offers a balance between predictive
power and efficiency. Similarly, tree ensemble models incur
lower computational costs compared to statistical models,
thanks to their optimized tree structures, which enable faster
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training while maintaining competitive predictive performance.
Our experimental results highlight the utility of geospatial

dependence in predictive modeling. Tabular deep learning,
i.e., TabPFN and tree ensemble methods demonstrate strong
predictive performance using only coordinates, as well as when
additional features are included, in many cases outperforming
traditional geospatial statistical models like GWR and Kriging.
This suggests that explicit spatial modeling is not always
necessary, especially when models are strong enough to
implicitly capture spatial dependencies from coordinate features.
Moreover, by treating coordinates as standard input features
rather than relying on computationally intensive geospatial
models, we can significantly reduce training and inference costs
while maintaining competitive regression performance, which
is particularly valuable for large-scale geospatial applications.

V. CONCLUSIONS

The primary goal of this work was to explore the balance
between expressiveness, efficiency, and predictive power among
different modeling approaches, including geospatial statistical
models, machine learning models, kernel-based models, and tab-
ular deep learning. Traditionally, geospatial inference research
explicitly models spatial dependence by leveraging distance
matrices. However, we argue that overemphasizing explicit
spatial learning is not always necessary, as it neither guarantees
superior predictive performance nor ensures computational
efficiency compared to more effective approaches, such as
tabular deep learning and tree ensemble models.

To further support our argument, we conducted a com-
parative experiment evaluating the predictive capabilities and
computational costs of geospatial statistical models, machine
learning models, kernel-based models, and tabular deep learning
on datasets containing only coordinates, as well as datasets
with additional features. The results demonstrate that TabPFN
achieves an optimal balance between expressiveness, efficiency,
and predictive power, making it the most effective choice
for geospatial regression tasks in this study. These findings
prompt a reconsideration of the learning paradigm in geospatial
inference. Instead of relying on variograms or local functions
based on distance metrics—which impose a heavy computa-
tional burden—incorporating coordinates as standard features
in tabular deep learning or tree ensemble models may provide
a more efficient and predictive alternative.

Although we have included several publicly available
datasets, certain limitations should be acknowledged. A more
exhaustive study should incorporate a wider range of datasets
and modeling techniques from diverse fields beyond real estate,
while also considering regions with varying population densities
rather than focusing solely on highly urbanized areas. This
would provide a broader and more generalizable evaluation.
Additionally, future research could explore additional hybrid
models, such as MGWR and GWRK, as well as expand the
hyperparameter tuning grid to further optimize on performance.
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Abstract—The fast development of technology and artificial
intelligence has significantly advanced Autonomous Vehicle (AV)
research, emphasizing the need for extensive simulation testing.
Accurate and adaptable maps are critical in AV development,
serving as the foundation for localization, path planning, and
scenario testing. However, creating simulation-ready maps is
often difficult and resource-intensive, especially with simulators
like CARLA (CAR Learning to Act). Many existing workflows
require significant computational resources or rely on specific
simulators, limiting flexibility for developers. This paper presents
a custom workflow to streamline map creation for AV develop-
ment, demonstrated through the generation of a 3D map of a
parking lot at Ontario Tech University. Future work will focus
on incorporating SLAM technologies, optimizing the workflow
for broader simulator compatibility, and exploring more flexible
handling of latitude and longitude values to enhance map
generation accuracy.

Keywords-Autonomous Valet Parking (AVP); Simulation Testing;
Autoware; Point Cloud Data (PCD); Lanelet2

I. INTRODUCTION

With rapid technological advancement, the design and de-
velopment of Autonomous Vehicles (AVs) has become increas-
ingly common. AVs provide many benefits, such as increased
safety, reduced traffic congestion, improved fuel efficiency, and
enhanced mobility for individuals who are unable to drive.
However, there are many challenges, such as high develop-
ment costs, lack of detailed regulations, and ethical concerns
for decision-making procedures. To address these challenges,
research must be conducted on all aspects of an AV, such as
path planning, object detection, object avoidance, localization,
simulation testing, sensor fusion, and machine learning. Au-
toware [1], an open-source software stack for AVs, provides
these functionalities out of the box. For this study, it was
selected as the primary software platform due to its widespread
adoption in AV research and its robust support for localization
and simulation testing. Autoware simplifies development and
facilitates integration with simulation platforms. This area of
research is especially important for simulation testing due
to the accessibility and safety of digitally simulated AVs,
allowing for the validation and verification of autonomous
systems in a controlled environment without the risks and costs
of real-world testing.

To enable the use of AVs in real-life scenarios, they must
first be tested extensively in a simulated environment. A key
component of these simulations is high-definition (HD) maps,
which provide detailed, centimeter-level accuracy for road
layouts, lane markings, and traffic infrastructure. HD maps
are essential for localization, perception, and planning, as they

allow AVs to understand their position and navigate accurately.
The simulated environment can be run in an existing 3D simu-
lation engine, built to support the development and integration
of these simulations. Current 3D game engines such as Unity,
Unreal Engine, and Godot allow for the creation of highly
detailed and interactive virtual environments, which are im-
portant for testing the behaviors of AVs. These game engines
are utilized to simulate the real world, such as the physics,
traffic, pedestrians, and the AV along with its hardware and
functionalities. In addition, the maps created for simulation are
not only used for virtual testing but also serve as a foundation
for real-world deployment. By ensuring accuracy in simulation
maps, developers can generate HD maps that are later used by
AVs to navigate real-life roads, allowing a seamless transition
from testing to deployment.

Currently, there are a few simulators that utilize these game
engines. These include Godot, which uses the Godot Engine,
AWSIM [2], which uses the Unity Engine, and CARLA,
[3] which uses the Unreal Engine. These simulators are
built to support user interaction for testing scenarios between
AVs and the real world. They are packaged and distributed
as easy-to-setup and ready-to-use software designed to aid
developers. While these simulators offer customization options
to test user-defined environments, the process of developing
and integrating new features can be challenging, potentially
requiring significant effort to understand and adapt to the tools
and workflows specific to each platform. Among these options,
AWSIM was selected for this project due to its user-friendly
interface and native compatibility with Autoware [4], enabling
efficient testing and development of AV algorithms. AWSIM
supports the project’s objectives by enabling detailed testing
of localization and vehicle interactions in a controlled and
customizable environment.

In this paper, a custom workflow is presented that simplifies
the creation of maps that are compatible with AWSIM. Section
2 provides the motivation behind the study. Section 3 reviews
related work in HD map generation and simulation-based
AV testing. Section 4 details the methodology, describing the
tools used, their functionalities, and their integration into the
proposed workflow. Section 5 presents the results of imple-
menting the workflow. Section 6 discusses the performance,
limitations, and practical advantages of the approach. Finally,
Section 7 concludes the paper and outlines directions for future
work. While this workflow is tailored for AWSIM, it has the
flexibility to be adapted for other simulators, although this
potential is not explored in this paper.
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II. MOTIVATION

At the time of development, AWSIM and Autoware offered
only a single simulation map, which represented a large city
environment. However, this map lacked an important feature,
which was a parking lot. Parking lots are essential for testing
real-world AV deployment in low-speed, complex environ-
ments where interactions with nearby vehicles are common.

This limitation highlighted the need for a custom parking
lot environment. Although documentation existed for creating
custom environments in AWSIM, it was difficult to interpret
and follow. Through this process, one key requirement was
clear, which was that creating a custom environment requires
a Lanelet2 OSM file, a PCD (Point Cloud Data) file, and a 3D
mesh file. Due to the complexity of the existing documenta-
tion, an alternative solution was needed to streamline the map
creation process.

Through extensive research and troubleshooting, a custom
workflow was developed that utilized multiple tools with
different functionalities to generate the required files. By using
an OpenStreetMap (OSM) [5] file and following a series of
steps in the workflow, the required files can be exported from
the workflow. This allows for the use of a custom environment
inside Autoware and AWSIM, enabling simulation testing for
any outdoor area available on OSM. OSM was selected as
a starting point because it is open-source and has very wide
geographic coverage of maps across the globe.

III. RELATED WORK

During the development of the workflow, a literature review
revealed no prior research specifically addressing map creation
using AWSIM. As a result, the workflow was constructed
incrementally through extensive Google searches and itera-
tive problem-solving. Each step built upon the previous one,
beginning with the extraction of an OSM file, followed by
generating a 3D mesh, converting the mesh into a point cloud,
and continuing through the necessary processing steps. To
emphasize the significance of this workflow and its practical
applications, several related studies are discussed below.

In researching methods for creating simulation environ-
ments for Autoware and AWSIM, literature was found de-
scribing workflows based on different simulation platforms,
primarily CARLA and LGSVL. These works often used earlier
versions of Autoware or relied on a deprecated simulator, such
as LGSVL, making them less applicable to modern systems
such as AWSIM.

Feng, Ye, and Angeloudis [6] proposed a pipeline for
Autoware that transforms OSM data into maps compatible
with both CARLA and LGSVL. Their workflow begins by
converting an OSM file from OpenStreetMap into a 3D
model using Blender, a 3D graphics software. This model is
then exported in FBX format. Simultaneously, the OSM file
is converted into OpenDRIVE format, resulting in both an
OpenDRIVE file and a FBX file required by both simulators.
Next, a PCD file is generated using CARLA’s PCD recording
function, which simulates an AV equipped with a LiDAR
sensor that navigates through the environment and captures the

PCD data. Finally, the OpenDRIVE file is used to generate a
Lanelet2 vector map, enabling integration with Autoware.

Santonato [7] presents a similar pipeline, though focused
solely on CARLA. The process begins by generating an OSM
file and converting it into OpenDRIVE format. A plugin
called StreetMap for Unreal Engine is then used to render
the streets and buildings and to generate the 3D environment.
The OpenDRIVE and 3D files are then imported into CARLA
to create the simulation map. Lastly, they generate the PCD
and Lanelet2 vector map files to be used for Autoware. As
in the work by Feng, Ye, and Angeloudis, CARLA is used to
record and generate the PCD file, while the OpenDRIVE file
is used to create a Lanelet2 vector map.

Both Feng, Ye, and Angeloudis, and Santonato developed
workflows capable of creating 3D maps from OSM files.
However, their approaches rely on CARLA to generate PCD
files. Feng, Ye, and Angeloudis used LGSVL as their primary
simulator, which is now deprecated, but depended on CARLA
for generating compatible files. Santonato on the other hand,
used CARLA as their main simulator, which streamlined the
process by keeping all file generation within a single platform.
In contrast, the workflow presented in this paper is independent
of any specific simulator for file generation. Instead, it utilizes
lightweight, open-source tools that are easy to install and do
not require running a simulator to produce the necessary files.
This flexibility reduces computational overhead and simplifies
deployment, particularly for researchers working outside the
CARLA ecosystem.

Beyond simulator-based workflows, recent research has
explored high-definition (HD) map generation using real-world
sensor data. Li et al. [8] introduced HDMapNet, a deep
learning-based framework for generating semantic HD maps
online using inputs from cameras and/or LiDAR. Jeong et
al. [9] presented a detailed tutorial for HD map generation
using physical vehicles equipped with LiDAR, GNSS, and
cameras, involving manual annotation, sensor calibration, and
integration with a now-deprecated version of Autoware based
on the ROS 1 framework. While both approaches produce
high-accuracy maps suitable for deployment, they require
significant hardware, real-world data collection, and complex
processing pipelines. In contrast, the workflow proposed in
this paper is designed specifically for simulation use. It op-
erates entirely offline using publicly available OpenStreetMap
data and a set of lightweight, open-source tools to generate
Autoware-compatible maps. This makes it especially valuable
for early-stage development, academic research, and rapid pro-
totyping within simulation environments like AWSIM, where
real-world precision is not critical and accessibility is a key
concern.

IV. METHODOLOGY

The workflow is made up of four steps and is shown in
Figure 1. The process goes from manually selecting the desired
location and inputting that file into an Automated Mapping
Docker Container [10], shown in Figure 2, which builds
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the location file into a 3D mesh and extracts the simulated
pointcloud.

Figure 1. Workflow of map creation.

Figure 2. Workflow of automated mapping Docker container.

After the Automated Mapping Pipeline, the lanes of traffic
or parking lots must be manually defined. After this, all the
necessary files are generated and can be used for integration
with Autoware and AWSIM. Each step requires different tools,
each providing different functionalities. The tools will be
discussed below and how they were used to develop a map
environment for Ontario Tech University’s SIRC parking lot.

A. Functionalities and Usage

1) OpenStreetMap (OSM) Selection
OpenStreetMap [5] is a resource for getting geospatial
data of the world. It allows users to select a certain
location to create an environment for. Using this tool, the
desired location can be extracted as an OSM file (.osm).
This OSM file contains many elements that define the
geography and features of the selected location, such as
nodes, ways, relations, and tags.
This tool is provided as a website. Using this website,
the campus location can be found using its address,
providing an aerial view. Using the select tool, the
SIRC parking lot can be selected as shown in Figure 3,
and exported as an OSM file, containing the geospatial
information of this location.

2) Automated Mapping Pipeline Docker Container
This Docker container uses OSM2World [11] to first
generate the 3D model of the map. Next, it uses Cloud-
Compare to generate the Point Cloud Data file, and lastly
uses the Point Cloud Library to further process the Point
Cloud Data file.

a) OSM2World Conversion
OSM2World is a conversion tool that generates a
3D mesh based on the provided OSM file. It creates
a three-dimensional model that closely represents
the actual location. The model consists of three
different file formats:

Figure 3. Exporting an OSM file from OpenStreetMap.

i) OBJ File (.obj): This file contains information
about the geometry of 3D objects. Each object
is defined by polygon faces, normals, curves,
texture maps, and surfaces.

ii) Material Library File (.mtl): This file defines
each of the materials in the 3D model, including
their color, texture, and reflection properties.

iii) Portable Network Graphic Files (.png): Mul-
tiple PNG files are generated to store texture
images for the 3D models. These files work
with the MTL files to generate textures for the
3D surfaces.

Figure 4. 3D model created in the OSM2World GUI.

OSM2World comes preinstalled in the container
and generates a 3D model shown in Figure 4, using
the OSM file created earlier through its command
line interface. The files are generated as one OBJ
file, one MTL file, and a folder of multiple PNG
files, containing pictures of the building texture,
stop signs, grass, and roads.

b) CloudCompare Point Cloud Extraction
CloudCompare [12] is a 3D point cloud and tri-
angular mesh processing software. This software
is used in the container to import the 3D mesh,
and export the point cloud (.pcd). This is done
by first importing the 3D mesh and using the
sample points feature, which calculates various
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dense points based on the surfaces of the mesh to
generate a point cloud. This point cloud contains
the set of data points in a 3D coordinate system
that represent the shape of the 3D mesh.

Figure 5. 3D model and point cloud shown in the CloudCompare GUI.

This software comes preinstalled inside the Docker
container, and is then used through its CLI in-
terface to import the 3D mesh obj file generated
from OSM2World and generate a point cloud of
the mesh. The 3D mesh file and point cloud are
shown on the left and right of Figure 5 respectively.
This point cloud is a single file, represented as a
PCD file.

c) Point Cloud Library (PCL) Processing
Point Cloud Library (PCL) [13] is an open source
project used for point cloud processing. This li-
brary contains various features on processing point
clouds, such as viewing it in a 3D space, removing
outliers, connecting point clouds, creating surfaces,
and many more. In this pipeline, PCL is used
to fix the orientation of the point cloud from a
frontal view to a top-down aerial view. It then
converts the point cloud file from ASCII format
to binary format. This concludes the processing
of the point cloud file, making it ready for use
with Autoware. This file must then be renamed to
pointcloud_map.pcd, due to Autoware nam-
ing conventions.

Figure 6. Orientations of point cloud before and after processing.

This library is used inside the Docker container,
which already has the library installed. The
library contains three useful functions. The first
is pcl_viewer, which helps to view the point
cloud and its initial orientation. Upon viewing it,
the orientation will be seen as an initial frontal
view. This must be changed so that the initial view
is a top-down view. Therefore, the next command

used is pcl_transform_point_cloud to
transform the view to a top-down view. The
initial view and transformed view are shown on
the left and right in Figure 6 respectively. After
this step, the last thing to do is to uncompress
the file to binary format, using the command
pcl_convert_pcd_ascii_binary. With
these steps, the PCD file processing is completed.

3) Vector Map Builder
Vector Map Builder [14] is a tool provided by Tier
IV, which is used for creating a Lanelet2 vector map,
a specialized format for AV simulations. Although the
resulting file uses the .osm extension, it is distinct from
typical OpenStreetMap data. Lanelet2 files define road
networks, lanes, and other road features essential for AV
simulations. This Lanelet2 OSM file allows Autoware
to run simulations on the predefined lanes. The tool
has a feature to import a point cloud file, which can
then be used to manually define lanes, parking lots,
and parking spaces. These features can be customized
as needed, but they are generally designed to conform
with real-world features. After defining these features,
the resulting Lanelet2 map can be exported as an OSM
file.

Figure 7. Lanelets and parking spaces created in VectorMapBuilder.

The tool can be accessed through the website, and can
be used to import the point cloud file. After the import,
features such as lanes and parking spots can be drawn. In
the case of the SIRC parking lot, the lanes and parking
spots were drawn as accurately as possible, shown in
Figure 7. After completion, a lanelet2_map.osm
file can be exported.

4) Python Script for OSM Manipulation A python script,
remove_lat_lon.py, provided in [8], was created
to nullify all latitude and longitude fields from the
Lanelet2 OSM file. This is necessary for functionality
with the Autoware software. If the lat/long coordinates
are not NULL, the lanes will malfunction and stretch
into infinity in Autoware.
This script is used in the Linux terminal, by invoking its
command and giving it the lanelet2_map.osm file
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as input. The script then sets all lat/long fields to NULL
and outputs the updated Lanelet2 OSM file.

B. Integration

The workflow generates three essential files: a Lanelet2
OSM file, a PCD file, and 3D mesh files (OBJ, MTL, and
PNG). To ensure compatibility with Autoware, the Lanelet2
OSM file must be named lanelet2_map.osm, and the
PCD file should be named pointcloud_map.pcd. These
files can then be imported into Autoware and AWSIM, as
detailed below:

1) Autoware
Autoware requires the Lanelet2 OSM file, and the PCD
file. It is then launched with a specific ROS2 launch
command with the map path argument pointing to the
two files.

Figure 8. Lanelet2 map and point cloud imported into Autoware.

Figure 8 shows the correct loading of the two files.
2) AWSIM

AWSIM requires the 3D mesh and Lanelet2 OSM file to
be imported in. The 3D mesh then needs some additional
steps done to start working. Some scripts have to be
added which define the 3D mesh as Mesh Colliders,
so that they can be interacted with in the simulation.
The 3D mesh file also has to have the read/write field
enabled. Lastly, the Lanelet2 OSM file is loaded and
aligned with the simulation environment to synchronize
with Autoware. Figure 9 shows the correct loading of
the 3D files and the Lanelet2 map.

V. RESULTS

After importing all the files of the newly created map, both
Autoware and AWSIM are able to load the SIRC parking
lot environment. To get both synced, AWSIM is run first,
and then Autoware afterwards. In AWSIM, the ego vehicle
is correctly spawned and activated inside the environment,
with all its sensors functioning correctly. In Autoware, the ego
vehicle is correctly localized to the position of the ego vehicle
by receiving the location from AWSIM. The initialization of
AWSIM and Autoware are shown in Figure 10.

After setting a goal pose inside a parking spot for the
vehicle, which is shown in Figure 11, and activating the

Figure 9. Lanelet2 map and 3D model imported into AWSIM.

Figure 10. Initial startup of AWSIM and Autoware.

autonomous mode, both vehicles in AWSIM and Autoware ac-
curately mimic each other and reach the destination correctly,
which are shown in Figure 12.

The successful completion of route planning and parking
demonstrates the map’s effective integration into both simula-
tion platforms, highlighting its accuracy and the ego vehicle’s
proper localization and navigation in AWSIM and Autoware.
These results show the workflow’s capability to support real-
world applications and test AVP systems in simulation envi-
ronments.

VI. DISCUSSION

With this workflow, testing can be done in any outdoor
environment that is available on OpenStreetMap. AWSIM has
the ability to generate pedestrians and traffic, and also relays
all this information back to Autoware. In any scenario, whether
it is simple driving, or parking, Autoware can be used to test
them. In order to deploy Autoware in real life, an alternative
must be used for generating the PCD and Lanelet2 maps.
This is because the 3D model generated by OSM2World
is not perfect. The buildings are not true to reality. For
example, the SIRC parking lot contains a soccer dome, and in
OSM2World, this dome is represented as a simple rectangular
building. However, in the case of real-life deployment, SLAM
technologies can be used to generate the perfect and accurate
point cloud.

Although the 3D models generated by OSM2World have
limitations in geometric accuracy, the workflow remains highly
practical compared to other HD map generation methods
such as HDMapNet or CARLA-based pipelines. Unlike those
approaches, which rely on real-world sensor data and manual
annotation, this workflow generates all required map com-
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Figure 11. Goal pose selected and route calculated.

Figure 12. Car reaches the destination in AWSIM and Autoware.

ponents offline using only open-source tools and OSM data.
This makes it especially suitable for simulation use, offering
accessibility and ease of deployment in low-resource environ-
ments. Although formal evaluation metrics such as runtime or
accuracy comparisons are not presented, the workflow’s suc-
cessful integration with AWSIM and Autoware demonstrates
its effectiveness for early-stage research and prototyping.

VII. CONCLUSION

In this paper, a custom workflow was presented, which
was designed to simplify the creation of maps for use with
AWSIM. While primarily developed by AWSIM, this work-
flow can potentially be adapted for use with other simulators,
though this aspect was not explored in detail. The workflow
was developed within the context of an AVP project using
Autoware, addressing a critical gap in the availability of
simulation-ready environments for testing AV technologies.

Accurate and adaptable maps are essential for AV develop-
ment. However, creating such maps can often be difficult and
resource-intensive. Many existing workflows rely on signifi-
cant computational resources or are tied to specific simulators,
limiting their flexibility for developers. Moreover, documenta-
tion for creating custom maps can often be difficult to follow,
complicating the process of integrating real-world locations
into simulations. This workflow addresses these challenges
by using lightweight tools to generate 3D mesh files, point
cloud data files, and Lanelet2 files from OSM data, making it
applicable to any location available on OSM.

HD maps are vital for testing AVs in simulated envi-
ronments before real world deployment. These maps offer
centimeter-level accuracy for road layouts, lane markings,
and traffic infrastructure, supporting localization, perception,

and planning tasks. The workflow demonstrated in this paper
enables the creation of HD maps for use in 3D simulation en-
gines, including AWSIM, which is compatible with Autoware.
The simulated maps are not only valuable for virtual testing
but also serve as the foundation for real-world deployment,
ensuring a seamless transition from simulation to real-world
navigation.

The methodology outlined in this paper, ranging from
extracting data from OpenStreetMap to processing it through
Docker containers for map generation, was used to create a
functional 3D map of Ontario Tech University’s SIRC parking
lot. This map was successfully tested in both Autoware and
AWSIM simulations, demonstrating the workflow’s potential
for use in a variety of real-world environments available on
OpenStreetMap. Future work will focus on improving model
accuracy, incorporating SLAM technologies, and optimizing
the workflow for broader simulator compatibility. Additionally,
exploring more flexible handling of latitude and longitude
values could allow for better control over the nullification
process and further enhance map generation accuracy.
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Abstract—Current spatial search methods predominantly focus
on distance-based metrics, while direction-based queries have
emerged to address applications requiring diverse directional
coverage. Existing direction-based approaches like the Direction-
Based Surrounder (DBS) and Direction-Aware Nearest Neighbor
(DNN) employ iterative algorithms that require examining multiple
objects and their spatial relationships, leading to high computa-
tional costs particularly in dense datasets. These methods also
suffer from either overly restricted results (DBS) or directionally
clustered outcomes (DNN) due to their selection criteria. This
paper introduces Direction Proximity Search (DPS), a novel
approach that ensures directional diversity—defined as having
at most one object per angular interval—while significantly
reducing computational overhead. By employing geometric space
partitioning to divide the search space into equal angular regions
and a refinement phase that selects the nearest object per
directional interval, DPS eliminates the need for extensive object-
to-object comparisons. Experiments on both synthetic and real
datasets show that DPS achieves processing time reductions of
up to 99.9% specifically for high-density distributions (Bit and
Sierpinski) with large datasets, while consistently maintaining
the desired directional diversity property across all tested
configurations.

Keywords-Spatial databases; surrounding queries; efficient pro-
cessing; directional diversity.

I. INTRODUCTION

Spatial queries with directional diversity are essential for
critical applications where distance alone cannot guarantee
accessibility. In emergency response scenarios—such as fires,
floods, or traffic incidents—the nearest facilities may be un-
reachable, making it crucial to identify alternatives distributed
across different directions. The widespread adoption of mobile
devices has made spatial data processing essential in various
domains, including location-based recommendations, route
planning, environmental monitoring, and urban mapping. These
applications rely on spatial queries to retrieve and analyze
geographic information, helping users make informed decisions
based on their spatial context.

Spatial query processing typically relies on Geographic In-
formation Systems (GIS) and spatial databases. These systems
manage geometric objects (points, lines, and polygons) that
represent entities in the real world. For example, a restaurant
can be represented as either a simple point or, more precisely, as
a polygon depicting its physical boundaries. The query point in
these systems could represent various entities: a mobile user’s
location, a point of interest, or a vehicle’s projected position.

Although distance-based queries are prevalent, incorporating
directional diversity has become increasingly crucial. This is
particularly evident in emergency scenarios, where the nearest
service point may not be the most accessible. During a fire,

for example, the closest hospitals or fire stations might be
inaccessible due to smoke or the spread of the fire. Similarly,
during floods, nearby shelters could be in areas prone to
submersion or landslides. In urban settings, traffic congestion,
road closures, or construction work can render the closest
facilities temporarily unreachable, highlighting the need for
directionally diverse alternatives.

To address the limitations of purely distance-based ap-
proaches, nearest surrounder queries [1] were introduced as
queries that consider both distance and direction of objects in re-
lation to a query point. Subsequently, the DBS [2] and DNN [3]
queries emerged as variations of this approach. These queries
employ a fundamental concept called "dominance relation",
which uses direction and distance properties to determine which
objects should be included in the result set. While DBS applies
dominance relations between pairs of objects, resulting in more
restricted results, DNN considers object triplets, potentially
yielding more diversity, but sometimes spatially concentrated
outcomes.

In critical applications, particularly emergency planning and
response, the speed of information delivery is crucial. Decision-
makers need instant access to results to plan their actions and
execute the necessary procedures. However, current approaches
face two main limitations: computational inefficiency due to
iterative processing and suboptimal result distribution that is
either too restrictive or lacks sufficient directional spread.

This paper makes three key contributions: (1) a novel geomet-
ric partitioning strategy that efficiently handles direction-based
queries; (2) substantial computational efficiency improvements
over existing methods; and (3) comprehensive experimental
evaluation that demonstrates scalability across diverse datasets.
The remainder of the paper is organized as follows: Section
II reviews related work in spatial queries and direction-based
methods. Section III introduces our novel Direction Proximity
Search (DPS) approach, detailing its partitioning, processing,
and refinement phases. Section IV describes our experimental
evaluation methodology and datasets. Section V discusses the
performance results and comparative analysis. Finally, Section
VI concludes the paper and outlines future research directions.

II. RELATED WORK

This section presents a systematic review of the literature
on direction-based neighborhood queries and optimization
techniques. The research was carried out in the major digital
libraries (IEEE, Science Direct, Springer, ACM DL, and
Google Scholar), resulting in 11 relevant studies after applying
selection criteria. The analysis revealed six main categories of
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approaches: spatial indexing (C1), formal query definitions
(C2), dominance-based algorithms (C3), computational ge-
ometry techniques (C4), visibility-based direction methods
(C5), and performance testing (C6). Most works span multiple
categories, demonstrating the interconnected nature of these
approaches. Regarding spatial indexing (C1), Lee et al. [1]
introduced direction-based neighborhood queries with the
sweep and ripple algorithms using R-tree structures. Zhang
et al. [4] and Chung et al. [5] expanded this approach, while
Nutanong et al. [6] developed R*-Tree pruning techniques
to reduce disk access. For formal query definitions (C2),
Lee et al.’s work [1] established the theoretical foundations
that supported subsequent studies, notably the DBS and
DNN queries presented by Guo [2][3]. In dominance-based
algorithms (C3), the relationship between objects determines
the result set. Table I summarizes the key characteristics and
computational limitations of the main direction-based query
methods: DBS and DNN.

TABLE I
CHARACTERISTICS OF EXISTING DIRECTION-BASED QUERY

METHODS

Method Time Complexity Dominance Result
(worst case) Relation Distribution

DBS O(n2) Pairwise Sparse
(2θ interval) (uniform coverage)

DNN O(n2) Triplet-based Dense
(relaxed criteria) (potential clustering)

As shown in Table I, the DBS algorithm [2] requires
O(n2) comparisons in the worst case to examine all object
pairs. Its restrictive dominance relationship, where objects
dominate within a 2θ angular interval, can lead to overly
limited result sets, especially with larger θ values where a single
object can eliminate many candidates within its dominance
range. The DNN algorithm [3] provides better directional
diversity through less restrictive dominance rules but still
has O(n2) worst-case complexity, making it computationally
expensive for large datasets. Additionally, its relaxed dominance
criteria can result in directionally close objects being returned,
potentially compromising the spatial distribution consistency
despite producing larger result sets.

For computational geometry techniques (C4) and visibility-
based methods (C5), Lee et al. [1], Nutanong et al. [6], and
Chung et al. [5] grounded the direction aspect as a visibility
field. Nutanong et al. introduced the concept of minimum
visible distance (MinViDist), while Chung et al. relied on angle
and direction calculations. Regarding performance testing (C6),
Carniel [7], [8] focused on general spatial query definitions,
discussing future optimization challenges. A significant gap
exists in the literature: the absence of comparative performance
analyses between different algorithms, and the fundamental
trade-off between computational efficiency and directional
diversity in existing methods.

III. DIRECTION PROXIMITY SEARCH

This section presents the DPS method and its implementa-
tion. We detail its architecture and operation, introducing a

novel direction-based neighborhood query that addresses key
limitations in existing approaches.

We begin by formally defining the core concepts of DPS.
The parameter θ determines the directional diversity of the
result set - it ensures that returned objects are separated by
at least θ degrees. For any two objects oi, oj ∈ D relative to
query point q, their angular separation is the angle between
vectors −→qoi and −→qoj , denoted as ̸ (−→qoi,−→qoj).

In DPS, an object o dominates an angular region R of size
θ if: (i) o is the nearest object to q within R, and (ii) no closer
object exists within θ/2 degrees of o. This ensures directional
diversity by allowing at most one object per θ interval, resulting
in a maximum of ⌈360/θ⌉ objects in the result set.

DPS employs geometric partitioning to divide the 360° space
around q into n = 360/(θ/2) equal partitions. Each partition
spans θ/2 degrees, allowing two adjacent partitions to form
a complete θ interval. This approach eliminates the O(n2)
pairwise comparisons required by DBS and DNN. For a fixed
θ, DPS achieves O(n) time complexity, as the number of
partitions k = 360/(θ/2) is constant.

A. Partitioning

The partitioning algorithm systematically divides the spatial
domain around the query point into equal geometric regions.
This geometric partitioning constitutes the initial phase of the
DPS query, formally defined as DPS = (t, q, θ, distMax), where
t denotes the dataset, q represents the query point, θ specifies
the angular constraint, and distMax determines the maximum
search radius.

The number of partitions is defined by φn = 360◦

θ/2 . Each
partition has an angular interval of θ/2, allowing two adjacent
partitions to form a complete θ interval. The first partition φ1

is constructed using Algorithm 1.

Algorithm 1 First Partition Construction
Require: Query point q, dataset D, angle θ, distance distMax
Ensure: First partition φ1

1: NN ← FindNearestNeighbor(q, D)
2: NN ′ ← Project(NN , distMax)
3: v⃗ ←

−−−→
qNN ′

4: ls ← Rotate(v⃗, θ/2)
5: φ1 ← CreatePolygon(q, NN ′, ls)
6: return φ1

To illustrate this process, we use a sample dataset with
13 points and parameters DPS = (sample, POINT(0 0), 90◦,
200000). With θ = 90◦, we obtain φn = 8 partitions. The
nearest neighbor to query point POINT(0,0) is point a.

Following Algorithm 1, we project point a to create NN’
at distance 200000, then rotate the vector

−−−→
qNN ′ by θ/2 to

obtain the upper boundary ls. The resulting polygon forms the
first partition φ1, as illustrated in Figure 1.

Subsequent partitions are created in clockwise direction using
Algorithm 2, which systematically generates all φn partitions.
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Figure 1. Construction of φ1.

Algorithm 2 Complete Partitioning
Require: First partition φ1, angle θ, number of partitions φn

Ensure: Set of partitions Φ
1: Φ← {φ1}
2: for i = 2 to φn do
3: lprev ← GetUpperBoundary(φi−1)
4: lnew ← Rotate(lprev , −θ/2)
5: φi ← CreatePartition(lprev , lnew)
6: Φ← Φ ∪ {φi}
7: end for
8: return Φ

B. Processing

This step is responsible for finding the nearest object to
q within each partition. The process requires identifying all
objects that intersect with each partition and determining the
one closest to q. The partitioning strategy enables an optimized
processing approach by confining the search to individual
partitions, where only a single nearest object needs to be
identified. This significantly reduces computational overhead
compared to traditional methods that require multiple object
comparisons to establish dominance relationships.

The processing is performed sequentially φn-1 times, once
for each partition except the first one, which already has
its Nearest Neighbor (NN) calculated during the partitioning
step. Following the geometric partitioning in our example, this
step identifies the nearest objects to the query point qp for
each partition. These objects, highlighted in red in Figure 2,
are accompanied by a table that presents their distances in
ascending order and their directions relative to qp.

The key advantage of this approach is that it reduces
processing to φn-1 sequential operations, whereas traditional
methods require multiple comparisons among objects until
either meeting stopping conditions or, in the worst case,
examining the entire dataset.

Figure 2. Objects identified as NN for each partition and their respective
directions and distances relative to qp.

C. Refinement

After identifying all NN of q in their respective partitions,
the refinement step ensures directional diversity. Objects are
considered directionally close if their angular separation is
less than θ/2. The refinement merges adjacent partitions into
composite partitions of size θ, selecting only the nearest object
from each composite partition.

To formalize the refinement process, we introduce the
following definitions:

Definition 1 (Ordered Processing List): The processing
result is a list of tuples containing partition identifier, NN object,
and distance from q to NN, Listp = (φiid , NNi, dist(q,NNi)),
... (φnid , NNn, dist(q,NNn)), sorted by ascending distance.

Definition 2 (Adjacent Partition): Adjacent partitions
comprise predecessor and successor partitions in an ordered
partition list.

Definition 3 (Ignored Partition): A partition is marked as
ignored if its NN object is at an angular distance less than θ/2
from the NN of a dominant partition.

The refinement algorithm (Algorithm 3) systematically
processes the ordered list to determine the final result set.

Algorithm 3 DPS Refinement
Require: Ordered processing list Listp
Ensure: Result set R

1: ignored← ∅
2: R← ∅
3: for each (φi, NNi, disti) in Listp do
4: if φi /∈ ignored then
5: R← R ∪ {NNi}
6: adjacent← GetAdjacentPartitions(φi)
7: ignored← ignored ∪ adjacent
8: end if
9: end for

10: return R

In our example, Algorithm 3 starts with partition φ1

containing object a. Since a dominates a complete θ interval, its
successor partition is marked as ignored, as shown in Figure 3.
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Figure 3. Ignored partition in the first iteration of the refinement step.

In the next iteration, the algorithm examines the next NN
object that is not in an ignored partition. In this case, it is the
point k in φ6, which then marks its predecessor and successor
partitions as ignored, as illustrated in Figure 4.

Figure 4. Adjacent partitions of φ6 marked as ignored.

Subsequently, the object m in φ8 does not mark any partitions
as ignored, since its predecessor φ7 was already ignored by
φ6. Being the last partition, φ8 has no successor according to
the definition of the adjacent partition. Finally, object j in φ4

is verified and marks φ3 as an ignored partition, as shown in
Figure 5.

Definition 4 (Dominant Partition): Partitions containing
the nearest object to q in an ordered processing list, not marked
as ignored. These partitions contain objects for the DPS query
result set.

Definition 5 (Composite Partition): A composite partition
(PC) joins two consecutive partitions where k ranges from 1
to n

2 :

PCk = (φ2k−1, φ2k) (1)

Figure 5. Final iteration of the refinement step.

From the upper limit (ls) of partition φ1, we define the
angular intervals (λ) for the composite partitions PCk. For
PC1, the upper limit is as follows:

lsPC1
=
−−−→
qNN′ +

θ

2
(2)

The lower limit is calculated by subtracting θ from the upper
limit:

liPC1
=
−→
qls− θ (3)

For subsequent composite partitions PCk (k > 1), the angular
interval is calculated from the lower limit of the previous
partition:

λPCk
=
−−−−−→
qliPCk−1

− θ (4)

The final result set contains all NN objects from non-ignored
partitions. Each object dominates the θ interval defined by a
composite partition. Figure 6 shows the result set and identifies
the composite partitions (PC), formed by consecutive partitions:
PC1 = φ1 and φ2, PC2 = φ3 and φ4, PC3 = φ5 and φ6, PC4

= φ7 and φ8.
The refinement algorithm transforms the processing results

into an ordered list, determines the dominant partitions, and
combines them into composite partitions, ensuring that each
object in PCk is dominant over a complete interval θ.

IV. EXPERIMENTAL EVALUATION

A. Datasets

To vary the distribution and complexity of spatial objects,
synthetic and real datasets were constructed for the experiments.

The Spider spatial data generator [9] was used to generate
synthetic data within the [0,1] interval, containing different
volumes and distributions. The generated volumes were defined
into three distinct categories: small, medium, and large, con-
taining 20,000, 200,000, and 2,000,000 records, respectively.

The data distribution was generated considering the 5 types
of distributions available for point objects in the generator:
uniform, diagonal, Gaussian, Sierpinski, and bit. A dataset was
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Figure 6. DPS query result with answer objects in their respective dominance
intervals.

generated for each combination of volume and distribution,
totaling 15 datasets.

Real-world data was collected from the OpenStreetMap
platform [10], resulting in three datasets extracted from the
Brazil map: a small dataset with points representing schools,
a medium dataset with street intersections, and a large dataset
with all point-type objects. These datasets vary in volume,
representing small, medium, and large datasets.

B. Experimental Design

The experimental design was structured to comprehensively
evaluate the algorithm performance under various conditions
by systematically varying the query parameters. The primary
parameter, θ, was tested using four distinct values: 20, 45,
60, and 90 degrees, applied consistently across all databases.
Although most queries shared the same input parameters, the
proposed DPS query required an additional parameter, distMax,
which defines the maximum partition length in meters. This
parameter was adjusted between real and synthetic databases
to account for differences in data variation.

The experiment encompassed a total of 18 databases, 15
synthetic and 3 real. Each database was tested against four
values of θ, resulting in 72 unique query scenarios. These
scenarios were then doubled to compare performance between
indexed and non-indexed databases, creating 144 distinct test
configurations. Each configuration was evaluated using three
different algorithms (DBS, DNN and DPS), culminating in
432 total test loads. Of these, 360 test loads were executed on
synthetic data, while the remaining 72 were performed on real
data.

C. Experimental Setup

The experiments were conducted on a physical machine with
the following specifications: Intel(R) Core(TM) i7-10750H
CPU @ 2.60GHz with 12 cores, 16 GB of RAM, 1 TB SSD,
running Ubuntu 20.04.1 LTS (64-bit). The spatial database
was implemented using PostgreSQL 12.4 with PostGIS 3.0.2
extension.

For indexed experiments, we employed the Generalized
Search Tree (GiST) indexing method provided by PostGIS,
which implements a variant of the R-Tree structure. All queries
(DBS, DNN, and DPS) were executed systematically, with
results stored in a dedicated results table. To ensure consistency
and prevent caching effects, the system cache was cleared
before each test execution using standard Linux cache clearing
procedures.

D. Performance Analysis
Although statistical tests were not performed, the perfor-

mance differences are substantial enough to demonstrate DPS
superiority. DPS completed some queries on large datasets
in under 25 seconds, while DBS and DNN were unable to
complete the same queries even after 24 hours—representing
a performance improvement of at least 3,456x. Such extreme
differences, consistent across multiple configurations, clearly
indicate algorithmic advantages beyond measurement uncer-
tainties.

DPS query demonstrated superior efficiency in a significant
portion of the test scenarios, outperforming other methods in
52.8% of cases for non-indexed databases and 61.1% of cases
for indexed databases, as illustrated in Figure 7. Specifically, it
achieved better performance in 38 out of 72 query scenarios for
non-indexed databases and 44 out of 72 scenarios for indexed
databases, indicating robust performance across both database
types.

Figure 7. Frequency of algorithms (DPS, DBS, DNN) achieving fastest query
execution across indexed and non-indexed databases.

Figure 8 presents a detailed breakdown of the results by
data distribution, revealing significant performance patterns.
The DPS algorithm demonstrated remarkable effectiveness
on both synthetic and real datasets. In Bit and Sierpinski
distributions, it consistently achieved optimal performance
across all configurations, with a maximum frequency of 12
best results in both indexed and non-indexed scenarios. For
real data, the algorithm also showed strong performance,
achieving 9 and 10 best results in non-indexed and indexed
configurations respectively. Although performance was more
modest with the Gaussian distribution, the algorithm still
maintained consistent effectiveness across diagonal and uniform
distributions, demonstrating its versatility across different data
patterns.
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Figure 8. Frequency of DPS achieving fastest query execution across data
distributions.

A deeper analysis of query execution times for Bit and
Sierpinski distributions revealed significant differences among
the algorithms. Both DBS and DNN algorithms encountered
considerable challenges, particularly when processing large
databases. In most cases involving large-scale datasets, these
algorithms failed to complete execution even after 24 hours
of processing time. The only exception occurred with the
Sierpinski distribution, where both DBS and DNN converged
to a solution in approximately 77 minutes using a θ parameter
of 90°. In contrast, the DPS algorithm demonstrated remarkable
efficiency. For angles of 20°, the execution time remained under
25 seconds, and for larger angles, it further decreased to less
than 11 seconds. This performance improvement highlights
the algorithm’s scalability and optimization capabilities. To
better illustrate this performance contrast, Figure 9 presents
the execution time in seconds for the DPS algorithm. The
graph shows results for both Bit and Sierpinski distributions
in large-scale databases, comparing different values of the θ
parameter across indexed and non-indexed databases.

Figure 9. DPS algorithm execution time as a function of θ for larges indexed
and non-indexed databases.

In the analysis of real-world data distributions, the DPS
query demonstrated superior performance across most tested
scenarios. The algorithm showed less favorable results for

90° angles in both indexed and non-indexed large-volume
databases, as well as for 60° angles in smaller non-indexed
databases. Despite these exceptions, DPS achieved excellent
execution time results. Table II presents the execution times
for different configurations of DBS, DNN, and DPS queries
on real databases.

TABLE II
EXECUTION TIME COMPARISON BETWEEN DBS, DNN AND DPS

ALGORITHMS.

Database Size Angle Non-Indexed Indexed
DBS DNN DPS DBS DNN DPS

Small 20° 4.37 4.36 3.14 4.19 4.22 1.26
45° 2.18 2.13 1.59 2.00 2.05 0.80
60° 1.25 1.24 1.34 1.13 1.14 0.78
90° 1.28 1.18 0.87 1.11 1.19 0.66

Medium 20° 187.87 183.04 4.51 177.45 182.37 5.05
45° 21.84 21.81 2.39 21.30 22.16 2.51
60° 6.04 6.05 1.92 5.92 6.01 2.09
90° 0.78 0.76 1.50 0.71 0.71 1.63

Large 20° 93.44 98.22 37.41 91.63 98.58 32.13
45° 74.59 73.90 19.06 72.57 73.02 19.44
60° 33.97 33.85 15.27 32.80 32.50 16.75
90° 4.22 3.97 11.61 3.52 3.49 13.49

The analysis of the variation of the query angle, shown in
Figure 10, demonstrates that DPS achieved better performance
with smaller angles, particularly at θ = 20. From a total of
18 queries per angle (15 on synthetic datasets and 3 on real
datasets), the algorithm achieved the best 14 results on indexed
bases (77.78%) and 12 on non-indexed bases (66.7%) for
θ = 20.

Figure 10. DPS performance comparison at different angles with and without
index.

The diversity of objects returned by the DPS query reinforces
this work’s objective of providing consistent and homogeneous
diversity in the response set, regardless of query parameters,
distribution, and volume. This characteristic is demonstrated
in 11, which presents a comparison of the number of objects
returned in the response set among DPS, DBS, and DNN
algorithms, considering only different configurations of real
databases. As explained in the refinement step, if all partitions
contain data, the maximum number of objects found is equal to
the number of composite partitions; that is, it has a maximum
of θ/360 response objects.
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Figure 11. Comparative analysis of retrieved object counts for DPS, DBS,
and DNN on real data.

V. RESULTS DISCUSSION

Overall, the DPS algorithm demonstrated superior perfor-
mance compared to DBS and DNN algorithms, excelling in
52.8% of queries on non-indexed databases and 61.1% on
indexed databases. These results demonstrate its versatility and
efficiency in different application contexts.

In synthetic databases with Bit and Sierpinski distributions,
DPS achieved exceptional performance, showing a 99.9%
improvement in execution time for all queries on large
databases. This result can be attributed to the high density
of objects concentrated in specific directions, a characteristic
that benefits the algorithm’s geometric partitioning approach.
The processing step efficiently identifies the NN point in each
partition, significantly reducing the number of comparisons
needed to determine the result set.

The same pattern of high object density in specific directions
was observed in real-world data. This characteristic of spatial
distribution explains the algorithm’s excellent performance
on real databases, as geometric partitioning proves to be
particularly efficient when objects are concentrated in specific
directions.

DPS showed better performance with smaller angle param-
eters, such as 20° and 45°. This behavior can be explained
by the fact that smaller angles impose less strict dominance
restrictions for DBS and DNN queries, meaning more objects
must be evaluated before the stopping condition is reached.

Regarding the diversity of results, DPS consistently maintains
that the maximum number of returned objects will be equal to
360◦/θ, which means that there will be at most one dominant
object for each θ interval.

VI. CONCLUSION AND FUTURE WORK

This paper presented DPS, a geometric partitioning approach
for direction-based queries. DPS reduces execution time by up
to 99.9% compared to existing methods—completing queries
in under 25 seconds that previously took over 24 hours. It also

ensures directional diversity by returning at most one object
per θ interval.

While our experiments focused on geographic datasets, DPS
has potential applications beyond traditional GIS systems.
The algorithm’s ability to efficiently identify directionally
diverse neighbors could benefit autonomous navigation systems
when detecting surrounding obstacles, or assist IoT networks
in selecting well-distributed sensor nodes. The consistent
directional coverage guaranteed by DPS makes it particularly
suitable for emergency response scenarios where alternative
routes in different directions are critical.

Our evaluation was limited to datasets of up to 2 million
points. Although DPS performed well at this scale, real-
world applications with larger datasets may present additional
challenges requiring further investigation.

Future research directions include:
• Intelligent Query Selection: Develop models to automati-

cally choose between DPS, DBS, or DNN based on dataset
characteristics and query parameters.

• Scalability Analysis: Evaluate DPS performance with
datasets exceeding 10 million objects and identify optimiza-
tion opportunities.

• Dynamic Environments: Adapt DPS for scenarios with
frequently changing data, such as real-time traffic or mobile
sensor networks.

• Extended Domains: Explore applications beyond spatial
queries, including similarity searches in high-dimensional
spaces.
These directions will help establish the practical scope and

limitations of the DPS approach.
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