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Treatment of the Multi-Attribute Decision-Making Rank Reversal Problem for 
Real-World Systems 

 
Steve Chan 

VTIRL, VT/DE-STEA 
Orlando, USA 

Email: stevec@de-stea.tech 
 

Abstract—This paper describes an enhanced approach towards 
considering the Rank Reversal (RR) problem for certain 
Multi-Attribute Decision-Making (MADM) methods critical to 
Multi-Criteria Decision-Making (MCDM) systems. 
Prototypical testing environments for RR usually do not 
include key facets of Real-World Systems (RWS), such as the 
treatment of time, prospective Influence Dominating Sets (IDS) 
at play, sub-biases throughout the system, involved Decision 
Engineering Pathways (DEP) for consortial environments, and 
a more Transparent, Explainable, and Accountable (TEA)-
oriented architectural construct, which are all desired in these 
contemporary times. These facets have been considered as 
Extrapolated Decision Quality (DQ) Thematics (EDQTs) of the 
Howard & Abbas six classically understood facets of DQ, and 
they are critical for MCDM RWS. Since various MADM 
methods vary in performance against the EDQTs, the 
approach utilized is to employ a robust Multi-Objective 
Decision-Making (MODM) module to discern the more 
optimal MADM methods to utilize in an ongoing fashion. 

Keywords-decision engineering pathway; decision-making; 
multi-criteria decision-making; multi-attribute decision-making; 
rank reversal; multi-objective decision-making; decision quality; 
artificial intelligence; machine learning; epistemic transparency. 

I.  INTRODUCTION  
The issue of bias in Artificial Intelligence (AI) systems 

has been a prevalent topic. Major companies, such as in the 
2019 to 2020 time frame, had withdrawn a number of 
AI/Machine Learning (ML) offerings from the marketplace 
due to the fact that mitigation against prospective biases 
(e.g., gender, racial/ethnic, etc.) had not been robustly 
considered in the design of those systems. Since that time, 
algorithmic bias has become an acknowledged issue, and the 
notion of equitable outcomes (as contrasted to “unfair” or 
“privileged” outcomes) has become an important aspect in 
the design of AI/ML-centric Tools, Platforms, 
Methodologies, Frameworks, and Systems (TPMFS). 
Confalonieri notes that while the Explainability in AI (XAI) 
movement has resurged in recent times, its origins trace 
back a number of decades via various research Lines of 
Effort (LOEs), such as “expert systems,” “recommender 
systems,” “neural-symbolic learning and reasoning,” etc. 
[1]. Heder notes that Winograd had investigated the “issues 
of explanations and transparency” (critical to XAI) via 
LOEs, such as “phenomenology” and “cognitive science,” 
and Hosain underscores Winograd’s contributions [2][3]. 
Heder also investigated the notions of “epistemic opacity” 

(i.e., wherein functional details may not be clear, such as in 
a “black box” architectural construct) and the criticality of 
moving towards “epistemic transparency” [4]. The IEEE 
Standards Association has also opined the need for 
Autonomous and Intelligent Systems (AIS) to be 
comprehensible so as to be accountable, and standards, such 
as IEEE P7001 [Standard for Transparency of Autonomous 
Systems] (one of the P70XX series of standards), have 
emerged, received approval (e.g., 2021), and published (e.g., 
2022) so as to put forth a delineation of 
Transparency/Explainability (T/E); for example, P7001 has 
a T/E scale of 0 (no T/E) to 5 (fullest attainable extent of 
T/E) [5]. While P7001 seems to have gained some traction 
in areas, such as robotics, advances in the area of XAI are 
still nascent/ongoing [6]. Winfield points out that P7001 is a 
process standard, wherein the involved T/E measures are not 
specified, and Winfield further asserts that the principal role 
of P7001 is to serve as a System Transparency Specification 
(STS) and as a System Transparency Assessment (STA) [7]. 

Beyond STA and the issue of transparency, the 
Association of Computing Machinery (ACM) accentuates 
explanation in its “Principles for Algorithmic Transparency 
and Accountability” [8]. Also, “the European Union’s 
[General] Data Protection Regulation (GDPR) stipulates a 
right” “for consumers affected by an automatic decision” 
“to obtain ‘meaningful information about the logic 
involved’” [1]; Confalonieri notes that this equates to a 
“right to explanation” [1]. Along this vein, Winfield notes 
that “P7001 recognises that AI technology cannot be 
separated from the larger Socio-Technical System [STS] of 
which it is a component” [7]. STS encompasses the 
interplay among humans, technology, and the environs, and 
while the overarching XAI and P7001-type movements 
further mature and burgeon, it is interesting to note that for 
some ecosystems, there has been a predilection for 
increasing the utilization of humans-in-the-loop for 
Decision Engineering (DE)/Decision-Making (DM) (to 
mitigate against “non-perfect” algorithmic and AI/ML-
centric paradigms), particularly for “high-stakes tasks” [9]. 
The arena encompassing this Human-Computer Interaction 
(HCI)-centric DE/DM begets a new set of challenges, such 
as in the case of Multi-Criteria Decision-Making (MCDM) 
for AI Technology-Related Investment Decisions (TRID). 
This might beget the use of human evaluators, who in a 
number of cases, such as within the reviewer ecosystem, 
self-assess their own level of expertise in a Subjective 
Measure/Methodology (SM) fashion. Yet, the level of 
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expertise should be context dependent; for example, various 
reviewers may rate their “AI hardware expertise” at the 
same level ¾ such as when reviewing an AI whitepaper 
involving massive datasets, intricate Deep Learning (DL) 
(as contrasted to the less intricate methods of ML), 
accelerated computational performance, and energy 
efficiency ¾ but in actuality, those with Tensor Processing 
Unit (TPU) and Graphics Processing Unit (GPU) 
proficiency may be better suited than those with simply 
Central Processing Unit (CPU) experience. After all, it is 
now generally understood that GPUs may offer better 
performance speeds for DL models with large datasets over 
CPUs (as the size of the involved dataset increases, CPU 
performance may decrease due to its constrained parallel 
processing capabilities) and for large-scale computation, 
TPUs may offer accelerated performance (as well as better 
energy efficiency “without jeopardizing the model’s 
accuracy”) over GPUs and CPUs [10][11]. Likewise, 
“technical expertise regarding AI” may also vary depending 
upon time frame and macro trends, such as those which can 
be gleaned from the U.S. Patent Trademark Office (USPTO) 
AI Patent Dataset (AIPD) and PatentsView Data, World 
Intellectual Property Organization (WIPO), etc. In many 
cases, this information is not being robustly considered for 
TRID-related reviewer assessments; indeed, the realm of 
assessments is heavily beset with SM, which are 
infrequently counterbalanced with Objective 
Measures/Methodology (OM) approaches. 

A well-counterpoised Dynamic Assessment and 
Weighting System (DAWS) can be utilized to derive more 
appropriate weights, such as when considering the SM-
centric self-assessment of the reviewers and OM-centric 
macro trend utilization. For example, during the time period 
2000-2020, according to the USPTO AIPD and PatentsView 
data, the AI component technologies with the highest 
number of patents (with a government interest) were, in 
descending order, “Knowledge Processing (KP), 
[Computer] Vision (CV), Planning & Control (P&C), AI 
Hardware (AIH), ML, Natural Language Processing (NLP), 
and Evolutionary Computation (EC)” [12][13]; of course, 
the order changes depending upon the time frame chosen 
(e.g., 2012-2016 might differ from 2016-2020). In addition, 
there was a “2023 update to the AIPD” that incorporates 
various refinements (e.g. BERT for Patents) and overcomes 
prior limitations that might affect the sorting order [14].  
The relative ranking of KP, CV, P&C, AIH, ML, NLP, and 
EC, among others, is likely to be significant for the review 
of a TRID, particularly if there is an accompanying 
supposition/reliance upon future governmental funding [12]. 
The DAWS, which is also referred to by various other terms 
of art, such as Adaptive Weighting Schema (AWS), 
Adaptive Weighting Methodology (AWM), Adaptive 
Assessment & Weighting Methodology (A2WM), Adaptive 
Criteria Weighting System (ACWS), etc., endeavors to 
overcome the SM biases with OM input. Moreover, the 
DAWS construct is also envisioned to have an enhanced 

T/E posture. To address the research goal and problem 
statement of achieving not only a more robust T/E, but also 
a DAWS that demonstrates more responsibility (more 
aspirational at this point), the paper delineates an innovative 
approach towards devising a construct with more epistemic 
Transparency, Explainability, and Accountability (TEA). 
The aspects discussed within this paper are presented in 
Table I (with utilized acronyms). 

TABLE I.  TABLE OF ACRONYMS 

Acronym Full Form 
A&F Aires & Ferreira 
A2WM Adaptive Assessment & Weighting Methodology 
ACM Association of Computing Machinery 
ACWS Adaptive Criteria Weighting System 
AI Artificial Intelligence 
AIH AI Hardware 
AIPD AI Patent Dataset 
AIS Autonomous and Intelligent System 
AWM Adaptive Weighting Methodology 
AWS Adaptive Weighting Schema 
C&L Cascales & Lamata 
C&W  Choo & Wedley 
CPU Central Processing Unit 
CV Computer Vision 
DAWS Dynamic Assessment and Weighting System 
DE Decision Engineering 
DEP Decision Engineering Pathway 
DL Deep Learning 
DM Decision-Making 
EC Evolutionary Computation 
EDQ Extrapolated Decision Quality 
EDQT EDQ Thematic 
F&H Finan & Hurley 
GDPR General Data Protection Regulation 
GPU Graphics Processing Unit 
HCI Human-Computer Interaction 
IDS Influence Dominating Set 
K&U Kwiesielewicz & Uden 
KP Knowledge Processing 
L&N Liberatore & Nydick 
LOE Line of Effort 
MADM Multi-Attribute Decision-Making 
MCDC Multi-Criteria Decision-Making 
ML Machine Learning 
MODM Multi-Objective Decision-Making 
MVP Minimum Viable Product 
NLP Natural Language Processing 
OM Objective Measure/Methodology 
P&C Planning & Control 
RR Rank Reversal 
RWS Real-World System 
S&V Saaty & Vargas 
SM Subjective Measure/Methodology 
SOTA State-of-the-Art 
STA System Transparency Assessment 
STS System Transparency Specification 
STS Socio-Technical System 
T/E Transparency/Explainability 
TEA Transparency, Explainability, and Accountability 
TPMFS Tools, Platforms, Methodologies, Frameworks, and Systems 
TPU Tensor Processing Unit 
TRID Technology-Related Investment Decision 
USPTO U.S. Patent Trademark Office 
W&W Wijnmalen & Wedley 
WIPO World Intellectual Property Organization 
XAI Explainability in AI 
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Section I presented the narrative arc, which explains the 
title of the paper. Section II provides pertinent background 
information. Section III provides aspects of the theoretical 
foundations, which underpin the paper, as well as delineates 
some of the precursor research LOEs leading up to this 
point. Section IV presents an experimental construct. 
Section V summarizes with some reflections and puts forth 
future work. 

II. BACKGROUND 
Schmidt notes that current funding schemas (e.g., seed 

capital) may no longer suffice since the “next generation of 
technologies” (e.g., AI) will “increasingly require sustained 
and substantial amounts of resources to reach commercial 
scale” [15]; this alludes to the paradigm, wherein AI TRID 
might carry higher thresholds of risk/reward. To address 
this, Boucher and others have underscored the use of 
MCDM “in the evaluation of technology investment 
decisions” [16]. In addition, Triantaphyllou notes that 
“pertinent data are very expensive to collect,” so a robust 
utilization/evaluation of this data, such as via MCDM, 
seems prudent [16].  

A. MCDM 
Fattoruso (as well as Rao, Sitorus, and of course, Hwan 

& Yoon) construe MCDM as being comprised of Multi-
Attribute Decision-Making (MADM) and Multi-Objective 
Decision-Making (MODM) [17]. MADM involves “discrete 
decision spaces” (i.e., the number of alternatives is “finite 
and predetermined”) [18]; in contrast, for MODM, “the 
decision space is continuous” (i.e., “the number of 
alternatives is infinite” and undetermined) [19]. Restated, 
MODM tends to contend with multiple objectives (often 
conflicting) and seeks to ascertain an optimal solution set 
among “undetermined continuous alternatives” while 
MADM tends to contend with a single objective and 
sorts/ranks so as to determine the optimal solution among “a 
finite set of discrete alternatives” [20]. MADM and MODM 
each have SMs and OMs that can be leveraged. Ideally, the 
OMs can somewhat mitigate against the SMs, and three 
distinct scenarios are presented, wherein this counterpoising 
would be invaluable. 

1) Scenario #1 
In a number of cases, reviewer evaluations (at the “same 

level of expertise”) may be diametrically opposed. The 
choice of OM is non-trivial, as conventional generalized 
measures, such as h-index or i-index may be specious in 
deciding how to re-weight the reviewer’s self-assessment 
[21]. In the case of an AI technology firm (e.g., whose 
intended market is, say, Japan and/or Germany) seeking 
funding for the advancement of the AI technique of, say, 
fuzzy logic, the reviewer with the stronger background in 
fuzzy logic might be of higher criticality and weighted 
more, as the need to determine the competitive barrier to 
entry in the involved countries is significant, particularly as 
the WIPO indicates that the referenced countries have 

notable strengths in the area of fuzzy logic [12][13][14][22]. 
Hence, the reviewer’s expertise level varies by the involved 
locale, as what constitutes State-of-the-Art (SOTA) may 
vary geographically.  

2) Scenario #2 
As noted by various repositories on GitHub, startups and 

lean engineering teams seeking to develop the Robinson-
Blank-Ries notion of Minimum Viable Products (MVP) 
might use various packages from Github for more Rapid 
Application Development (RAD) [23]. However, in some 
cases, technical issues for the package may abound (e.g., 
“signature consistency and dependency intricacies have 
been shown to result in errors and/or incorrect results”) and 
may constitute “glass ceilings” (until resolved) [24]. In this 
case, the reviewer with the higher proficiency in numerical 
methods and experience with various libraries, toolkits, and 
frameworks (e.g., PyTorch, Tensorflow, etc.) might be of 
higher criticality (e.g., for having previously contended with 
incompatibility issues, conflicts with required libraries, as 
well as an assortment of “glass ceiling” matters) and, likely, 
should be re-weighted accordingly [25]. 

3) Scenario #3 
In a number of cases, professional investors endeavor to 

mitigate against bias so as to enhance investment discipline 
and achieve a better Return on Investment (ROI). The use of 
Behavioral/Emotional Analytics (BEA) within this 
ecosystem has been increasing, and there have been some 
explorations with using BEA Multimedia (MM) feeds for 
re-weighting the self-assessment of reviewers involved with 
TRID. Differing from the predominantly volunteer 
reviewers within the academic community, reviewers for 
TRID tend to be paid professionals, and accordingly, they 
are more amenable to the stipulations of the investment 
firms, who engage their services. MM-based BEA has 
improved since the 1990s with enhanced resolution and 
more robust time series analytical tools to discern, among 
other measures, Duchenne indicators — “lip corner puller 
action unit (AU12),” “cheek raiser action unit (AU6),”  lip 
corners pulled “towards the ears” (AU12), etc. — so as to, 
potentially, posit how fervently/sincerely the reviewer 
subscribes to his/her own self-evaluation of expertise on a 
topic [26]. The use of Duchenne indicators seems to 
supported by the increasing use of the “Automatic Facial 
Expression Analysis (AFEA), which automates the Facial 
Action Coding System (FACS),” and is noted by Clark and 
others as being “the most comprehensive, psychometrically 
rigorous, and widely used system to describe facial activity 
in terms of visually observable facial muscle actions (i.e., 
[Action Units or] AUs)” [27]. As TEA accountability can 
lead to more “trustworthy” TPMFS, it should be of no 
surprise that the use of Duchenne (e.g., “genuine”) and non-
Duchenne (“non-genuine)” indicators (e.g., smiles) have 
been of great interest as a prospective OM-centric MM feed 
[28].  
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B. Effective MODM & MADM SMs/OMs 
Lyons-Padilla notes that “asset allocators manage more 

than $69.1 trillion dollars globally on behalf of 
governments, universities, charities, foundations, and 
companies” and retain “professional managers to generate 
returns” (i.e., ROIs) [29]. Despite the anticipated investment 
discipline, particularly given the magnitude of funds at 
stake, Lyons-Padilla and others have reported that 
professional investor human review teams remain subject to 
bias in their financial decisions [29]. Along this vein, a 
TRID human review team may be beset by a variety of 
predilections. For example, the teams may have been 
assembled using a variety of 360 evaluation, personality 
type, and conflict mode/management assessments that are 
predominantly SM-based (and, thereby, subject to inherent 
biases). In many cases, these assessment tools were 
matured/utilized, such as in the 1950s, 1950s/60s, 1970s, 
respectively, although the developmental origins tend to 
trace back to the 1930s and 1940s (particularly during the 
World War II time frame) [30][31][32]. As this was prior to 
the more prevalent use of AI/ML (since the 1990s), the 
counterpoising of SM with OM-based approaches remains a 
relatively unsaturated/nascent area. However, the arena of 
MCDM endeavors has leveraged both SM and OM so as to 
formulate a more practical/logical weighting, such as noted 
by Taherdoost (as well as Hwang & Yoon and others) [33]. 
Prior experimentation has shown that particular 
combinations of MADM/MODM SMs/OMs can achieve a 
modicum of efficacy; exemplars are shown in Table II. 

TABLE II.  EXEMPLAR MADM/MODM SMS/OMS 

# TPMFS MADM/ 
MODM 

SM/ 
OM 

1 Analytic Hierarchy Process (AHP) MADM 
[34] SM [35] 

2 Weighted Aggregated Sum Product 
Assessment (WASPAS)  

MADM 
[36] SM [37] 

3 CRiteria Importance through 
Intercriteria Correlation (CRITIC)  

MADM 
[38] OM [39]  

4 Data Envelopment Analysis (DEA) MADM 
[38] OM [38] 

5 Technique of Order Preference by 
Similarity to an Ideal Solution 
(TOPSIS)  

MADM 
[40] OM [41] 

6 Fuzzy VIseKriterijumska 
Optimizacija I Kompromisno 
Resenje (VIKOR) 

MADM 
[42] 

SM/OM 
[43] 

7 Preference Ranking Organization 
Method for Enrichment Evaluation 
(PROMETHEE) (e.g., I and II) 

MADM 
[44] 

SM/OM 
[45][46] 
[47][48] 

[49] 
8 ELimination Et Choix Traduisant la 

Realité (ELECTRE) 
MADM 

[50] 
SM/OM 

[47] 
9 Multi-Objective Optimization by a 

Ratio Analysis plus the Full 
Multiplicative Form 
(MULTIMOORA) 

MODM 
[51] SM [51] 

10 Goal Programming (GP) Method  MODM 
[52] OM [52] 

 

Yet, even for the case of a well-counterpoised construct, the 
matter of TEA is a separate matter, and architectural 
constructs, from previous experimentation, are often not 
evaluated for TEA. This segues to the need for an 
experimental TEA construct, which is described in Section 
IV. Some of the theoretical foundations are delineated in 
Section III below. 

III. THEORETICAL FOUNDATIONS FOR THE EXPERIMENT 
Abbas and Howard had noted that there are, 

fundamentally, “six elements of Decision Quality” (DQ) 
(although Abbas later expands this to eleven elements) [53]. 
These include: (1) an understanding of the involved 
“uncertainty,” (2) a grasp of the problem boundaries (e.g., 
including the temporal constraints of (1)) and the 
“perspectives involved,” (3) identification of the reasoning 
involved (e.g., “values,” “trade-offs,” prioritization 
schemas, etc.), (4) the “commitment to action” by the 
Decision Maker (DM) “and the stakeholders…affected by 
the decision,” (5) the determination of “feasible” 
alternatives, and (6) the “choice criterion” to “choose the 
alternative with the highest expected utility” (e.g., use of the 
Neumann-Morgenstern utility function) [53][54]. Along this 
vein, various DQ dimensions have been explored, as is 
shown in Table II, by way of extrapolated LOEs/EDQTs. 
For example, (1) has been extended to the notion of 
ambiguity/uncertainty, (2) has been extended to more fully 
contextualize the “perspectives involved,” via Spatial-
Temporal Knowledge Graph (STKG) Completion 
(STKGC)/STKG Reasoning (STKGR), (3) has been 
extended to contextualize the involved rationale, via DAWS 
(e.g., AWS/AWM/A2WM/ACWS), (4) has been extended 
to better comprehend the potential DE Pathways (DEP) and 
the accompanying operationalization schemas (e.g., 
Command and Control or C2) by the DM and/or the notion 
of Multi-Partner Enclaves (MPEs) or “coalitions of the 
willing,” (5) has been extended to better organize/sort/rank 
the prospective alternatives, via a Counterpoised MCDM 
(C-MCDM) (e.g., a balancing of MADM/MODM SM/OM), 
and (6) has been extended to consider the most apropos 
MADM (given RR considerations along with the 
considerations of (1) through (5)). The EDQTs are clarified 
in the following subsections A through F. 

A. LHM, an extrapolation of DQ#1 
The notion of “uncertainty” should not be treated in 

isolation, particularly when there is a temporal element. 
Time can be classified as Compressed Decision Cycles 
(CDC) (i.e., a “paradigm of ‘tight time constraints’”) and 
Uncompressed Decision Cycles (UDC) (i.e., a paradigm, 
wherein time is not necessarily of the essence) [56]. In a 
situation of CDC, the DM may tolerate “higher uncertainty 
(i.e., sparse data) given the condition of lower ambiguity” 
(i.e., a similar situation has happened before, so there is 
some prior experience on how to react) [56]. This paradigm 
of Lower Ambiguity and Higher Uncertainty is referred to 
as LAHU. In contrast, in a situation of UDC, the DM may 
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not “simply accept the higher uncertainty” and might 
“proactively seek to use ‘more data to lower uncertainty’,” 
particularly given the condition of higher ambiguity (i.e., a 
comparable situation has not been encountered before, so 
there is no apriori experience of how to react) [56]. This 
paradigm of Higher Ambiguity and Lower Uncertainty is 
referred to as HALU. When conjoined, a LAHU HALU 
Module is referred to as an LHM [55][56]. 

B. Higher-Order Networks (HON), an extrapolation of 
DQ#2 
Tian asserts that a Knowledge Graph (KG) “describes 

the objective world’s concepts, entities, and their 
relationships in the form of graphs” [57]. The procedure of 
positing links and nodes is known as KG Completion 
(KGC). Building upon this, Chen and Ji assert that KG 
Reasoning (KGR) can “discover new knowledge from 
existing knowledge” [58][59]. However, in its base form, 
KGs are static, as they lack temporal information [60]. In 
turn, Temporal KGs (TKs) are critiqued for their lack of 
spatial information [61]. Also, Spatial-Temporal KGs 
(STKGs) are critiqued against the backdrop of Positive 
Influence Dominating Sets (PIDS) as well as Negative 
Influence Dominating Sets (NIDS), and the PIDS/NIDS 
effects are considered against the Abelian Sandpile Model 
(ASM) or Bak–Tang–Wiesenfeld (BTW) phenomenon of 
non-equilibrium systems so as to ascertain the prospective 
“Higher-Order Networks” (HONs) at play (i.e., other 
stakeholders), which is of critical import to discern. After 
all, without being cognizant of the potential HONS at play 
(as well as identifying the likely HONs at play), delineation 
of the boundaries and the framing of the problem will not be 
correct [62]. 

C. DAWS, an extrapolation of DQ#3 
In a substantial number of cases, TPMFS are beset by 

selection bias (e.g., the choice/formulation of heuristics). In 
a number of these cases, even the DAWS involved are beset 
with confirmation bias (e.g., the choice/amalgamation of 
parameters). This effect is further aggravated when the 
utilized AI/ML is also beleaguered with inherent 
inclinations. A mitigation approach that has been utilized 
with some efficacy has been to utilize the Type-2 Fuzzy 
Sets (T2FS) and Spherical Fuzzy Set (SFS) versions of the 
TPMFS approaches of Table 1. Other enhancements include 
utilizing an Extended Matrix Shanks Transformation 
Accelerant (EMSTA). 

D. C2, an extrapolation of DQ#4 
DEPs may vary for the DM and the stakeholders of the 

MPE (and for the MPE itself, as it evolves or devolves); 
DEPs for urgent situations (i.e., “exigency circumstances”) 
and non-urgent situations (i.e., “non-exigency 
circumstances) may differ greatly. This also relates to the 
notion that the Minimum Controllability Problem (MCP) is 
quite different from the Efficient Controllability Problem 
(ECP) (since ECP is more desirable for exerting control, 

when desired, over a more elongated period of time). In 
particular, control may need to be exercised during 
“exigency circumstances.” DEPs may also vary depending 
upon the degree of resiliency incorporated into the involved 
system/paradigm. The ability to exercise 
action/operationalize, via the involved/available C2, is 
highly dependent upon the involved DEPs, MCP/ECP, and 
circumstances (e.g., exigency/non-exigency). 

E. TEA, an extrapolation of DQ#5 
Prior research had found that a cascading class of “ever 

smaller” convolutional filters is well-suited for DL (and the 
implementation of C-MCDM) since they well mimic a 
Convolutional Wavelet Transform (CWT) approach, which 
unlike other types of transforms, do not necessarily suffer as 
much from truncation, leakage, and other issues [63]. 
Hence, there is an advantage to leveraging “cascading 
‘CWT-like’ convolutional filters” [63]. Also, bounds 
tightening can be employed (e.g., such as by a bespoke 
convex relaxations framework for the “tightest possible 
relaxation”) so as to further delineate the successive steps 
being taken. This can be achieved via a Bespoke 
Implementation (BI), which was delineated in prior work 
and also lends towards operationalizing the MODM OM. 
Collectively, the approach lends to TEA.  

F. Rank Reversal (RR) Challenge, an extrapolation of 
DQ#6 
Despite the generalized promise of the MADM TPMFS 

of Table 1, the specific implementation is crucial. For 
example, in some instances, the MADMs of Table 1 can 
experience a “Rank Reversal” (RR) phenomenon and yield 
incorrect results. Belton and Gear (B&G) had first noted the 
RR dilemma, and recognition of the problem was affirmed 
by Triantaphyllou and others across the gamut of MADM 
approaches. Even newly introduced MADM methods are 
beset by the RR challenge. However, it has been reported 
that, among others, the Ranking of Alternatives through 
Functional mapping of criterion sub-intervals in a Single 
Interval (RAFSI) method can somewhat mitigate against the 
RR challenge, and it is also mathematically straightforward 
so as not to worsen the TEA goal [64]. 

Garcia-Cascales describes RR as a paradigm that 
manifests when a DM “is confronted with new alternatives 
that were not thought about” or available “when the 
selection process was initiated” [65]. Aires adds to this by 
noting that “RR refers to a change in the ordering among 
alternatives previously defined after the addition or removal 
of an alternative from the group previously ordered” and 
pointed out that the primary methods of MCP (e.g., “AHP, 
TOPSIS, ELECTRE, PROMETHEE and combinations 
thereof”) “have been criticized due to the occurrence of” RR 
[66]. By way of background, RR discussions had 
commenced via Saaty, B&G, and Saaty and Vargas (S&V) 
in 1980, 1983, and 1984, respectively. The dialectic 
prompted others, such as Triantaphyllou, Finan & Hurley 
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(F&H), Liberatore & Nydick (L&N), Wijnmalen & Wedley 
(W&W), and others to engage in RR research. 
Simplistically, B&G argued that RR can manifest “when a 
new alternative is added or deleted,” S&V argued that RR 
“can occur due to the presence of near or similar copies 
within the set of alternatives,” Cascales & Lamata (C&L) 
asserted that “it is well known that when the projects are 
very close[,] the order between them can depend on the 
method used on their evaluation,” Fedrizzi argued that RR 
“depends on the distribution of criteria weights” (i.e., 
entropy of the weight distribution”) and that “the estimated 
probability of” RR “increases with the weights entropy,” 
and Choo & Wedley (C&W), Lin, as well as others worked 
on “deriving the priority values from the pair-wise 
comparison matrix,” but Kwiesielewicz & Uden (K&U) 
showed that the “pair-wise comparison matrix can be 
contradictory (inconsistent), yet it can pass the consistency 
check” [67][68]; this list goes on. Proposed RR mitigation 
methods, among others, have been put forth by Zizovic in 
the form of “the lattice MADM method,” Kizielewicz’s 
“Characteristic Objects method (COMET),” Dezert’s Stable 
Preference Ordering Towards Ideal Solution Method 
(SPOTIS), and others [69][70][71][72]. Wieckowski points 
out that theoretical mitigation and practical mitigation for 
RWS are quite different and uses varying sensitivity 
analysis results to underscore the point [72]. Yet, “despite 
the great interest” in RR, Aires asserts that “given its 
importance for addressing the reliability of MCDM 
methods, there is still a paucity in the literature regarding 
this subject” [66]. This assertion was made despite the fact 
that Maleki & Zahir had “evaluated 61 papers…from 18 
international journals,” Aires & Ferreira (A&F) had 
evaluated “130 articles…from 37 journals,” and others (e.g., 
Yu) [66][73][74]. 

A key factor for ascertaining the latent stability of 
MADM methods is to inject replacement alternatives into 
(or by removing alternatives from) the original set. Ideally, 
the MADM method would not exhibit any substantive 
change in the organizing/sorting/ranking of the alternatives. 
Zizovic’s RAFSI constitutes a foray into better 
contextualizing resistance to RR; this paper endeavors to 
continue that foray. The research of this paper also 
considers the elements of: (1) time (e.g., CDC/UDC), such 
as in the case of LHM, (2) HON (e.g., PIDS/NIDS), such as 
in the case of STKGC/STKGR, (3) biases/sub-biases (e.g., 
chosen parameters, indices, heuristics, etc.), such as in the 
case of the DAWS utilized, (4) involved DEPs and the 
ability to exert C2, whether DM/MPE and/or MCP/ECP 
during varied circumstances (e.g., exigency/non-exigency), 
and (5) involved architectural construct (e.g., for the 
treatment of TEA), which needs to consider both the 
Method (M) and Architecture (A) involved. The prior 
research relating to the EDQTs atop the fundamentals of 
DQ#1 through 5, which segue to the novelty and 
contribution of this paper, is shown in Table III below. 

 

TABLE III.  EDQTS FOR THE VARIOUS DQ DIMENSIONS 

DQ 
# DOI EDQTs 

1 • 10.1109/GEM61861.2024.10585580 
• 10.1109/IAICT62357.2024.10617473 

LHM 
(UDC/CDC) 

2 • 10.1109/AIIoT61789.2024.10579029 
• 10.1109/IBDAP62940.2024.10689701 

HON 
(PIDS/NIDS) 

3 

• 10.1109/CyMaEn57228.2023.10051057 
• 10.1109/ICPEA56918.2023.10093212 
• 10.1109/ICSGTEIS60500.2023.10424230 
• 10.1109/AIIoT61789.2024.10579033 

DAWS 

4 • 10.1109/IEMCON.2019.8936241 
• 10.1109/IAICT62357.2024.10617473 

C2 
(MCP/ECP) 

5 

• 10.1109/ICPEA56918.2023.10093212 
• 10.1109/AIIoT61789.2024.10579033 
• 10.1109/ICDCSW53096.2021.00014 
• 10.1109/IEMCON53756.2021.9623140 
• 10.1109/OETIC57156.2022.10176215 

TEA 
(M/A) 
 

6 This paper. RR 
 
For this paper, a particular Achilles heel of MCDM systems 
was explored and addressed. Hwang and Yoon had 
previously noted that the most utilized facet of MCDM was 
that of MADM, and Fattoruso had found that AHP was the 
most prevalent method utilized for MADM [17]. In 
addition, Fattoruso noted that methods, such as 
PROMETHEE and ELECTRE, were minimally used in 
various sectors; TOPSIS was used slightly more often, but 
its use still paled in comparison to AHP [17]. Despite the 
widespread use of AHP, ironically, Aazadfallah asserts that 
AHP is the most sensitive to RR, while TOPSIS, 
PROMETHEE II, and ELECTRE are more resistant/stable 
(yet still susceptible to RR as well) [75]. Other MADM 
methods are also sensitive to RR [76]. Even after B&G 
noted the AHP susceptibility to RR and the creator of AHP, 
Saaty, unveiled an updated version, B&G pointed out that 
Saaty’s updated version was still susceptible under 
particular conditions; B&G released a version that was 
supposedly resistant to RR, but S&V asserted that the B&G 
version was susceptible as well [77]. Bottom line, AHP is 
still deemed to be susceptible to RR. Moving beyond the 
catch-all generalizations of RR, Resistance/Stability (R/S) is 
also subject to the RR Type (RRT), as shown in Table IV. 
 

TABLE IV.  TYPES OF RR (RRT) 
R
R
T 
# 

Initial Ranking Expected Ranking 
after change 

Exemplar 
Manifested RR 

1 DEP3,DEP1,DEP2 (DEP1 ~ DEP4); 
DEP3,DEP4,DEP2 

DEP2,DEP4,DEP3 

2  
DEP3,DEP1,DEP2 

(DEP1 > DEP4); 
DEP3,DEP4,DEP2 

DEP2,DEP4,DEP3 

3 
 
DEP3,DEP1,DEP2 
 

(DEP1 ~ DEP4); 

DEP3 > DEP4 

DEP4 > DEP2; 
DEP3,DEP4,DEP2; 

DEP3 > DEP4 

DEP2 > DEP4; 
(DEP3 ~ DEP2); 
DEP3~DEP2 >DEP4 

4 DEP3,DEP1,DEP2 
 

DEP3 > DEP4 

DEP4 > DEP2; 

DEP3 >DEP4>DEP2 

DEP3 > DEP2 

DEP2 > DEP4; 

DEP3 >DEP2>DEP4 
 
In the case of RRT#1, let us take the classical case of a 
triplicate of choice: DEP1, DEP2, and DEP3. Let us also 
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presume that the involved MADM method ranked the DEPs 
as DEP3, DEP1, DEP2. In the case, where DEP1 is no longer 
available as an option (and it is supplanted by a comparable 
DEP4), the expected outcome might be: DEP3, DEP4, and 
DEP2. However, in the case of RRT#1, the actual outcome 
might be DEP2, DEP4, and DEP3 (wherein the actual 
potentially optimal DEP3 is displaced from first position). 
RRT#2 is similar to RRT#1; however, it differs in that DEP1 
and DEP4 would not be comparable, such as for the case 
wherein DEP4 is far less optimal than DEP1 (expressed as 
DEP1 > DEP4). In the case of RRT#3, a comparison would 
be made between the overarching ranking against the sub-
rankings; for example, taking the initial RRT#1 ranking of 
DEP3, DEP1, DEP2 along with the replacement of DEP1 with 

DEP4, the sub-rankings might equate to DEP3 > DEP4 and 
DEP4 > DEP2. Yet, RRT#3 might manifest as having the 
sub-rankings of DEP3 > DEP4 and DEP2 > DEP4; DEP3 and 
DEP2 might be construed as being similar in that they are 
both > DEP4 (expressed as DEP3 ~ DEP2), and an outcome 
could be DEP3 ~ DEP2 > DEP4. RRT#4 is akin to RRT#3; 
however, it differs in that only sub-ranking inconsistencies 
are focused upon. For example, DEP3 > DEP4 and DEP4 > 
DEP2 could be construed as being consistent since DEP3 > 
DEP4  > DEP2; if, however, the sub-ranking outcome was 
DEP3 > DEP2 and DEP2 > DEP4, which equates to DEP3 > 
DEP2 > DEP4, then RRT#4 would have manifested itself. 
This progression continues for numerous other RRTs. 

IV. EXPERIMENTATION FOR THE INVOLVED CASE STUDY 
Zizovic et al. introduced the RAFSI method to mitigate 

against RR. Zizovic points out that a consistent/steady-state 
ranking across various scenarios (e.g., S0 through S5) 
constitutes mission success for the RR problem, such as 
exemplared in Zizovic’s RAFSI Table 2 (exhibited as Table 
V) [64]. However, the anticipated results for the approach 
utilized in this paper would differ from Zizovic’s RAFSI 
Table 2 (exhibited as Table V), as time is treated [64]. 

TABLE V.  ZIZOVIC’S RAFSI  “RANKING OF THE ALTERNATIVES IN 
SCENARIOS” [64] 

Alternatives Scenarios 
S0 S1 S2 S3 S4 S5 

A5 1 1 1 1 1 1 
A1 2 2 2 2 2  
A4 3 3 3 3   
A2 4 4 4    
A3 5 5     
A6 6      

 
When considering just one of the EDQTs of Table III (e.g., 
EDQT#1, which centers upon the temporal aspect), the re-
mapped (and simplified) table (using just the initial ranking 
of Table III) might resemble something like Table VI below. 

TABLE VI.  EDQT CONSIDERATIONS AND RE-MAPPING OF TABLE IV 

Alternatives Scenarios 
UDC of LHM (EDQT#1) CDC of LHM (EDQT #1) 

S0 S1 S2 S3 S4 S5 
DEP3 1 1 1 3 3 3 
DEP1 2 2 2 1 1 1 
DEP2 3 3 3 2 2 2 

 
Moreover, when considering EDQT#1 to 5, there are some 
significant reversals of findings when considering even 
simply UDC and CDC (of EDQT #1). For example, when 
comparing the medians of S1 (of the UDC scenarios) and S4 
(of the CDC scenarios) of Table VI, whereas the initial 
ranking and expected ranking of DEP2 were not in first 
position when treated generally, its ranking rose when 
considered against EDQT#1 to 5 (e.g., CDC), such as shown 
in Figures 1 and 2 below. 
 

 
Figure 1.  EDQT#1 to 5 for Scenario S1 

 
Figure 2.  EDQT#1 to 5 for Scenario S4 

Cognizant of the desired endstate so as to address RWS, a 
bespoke experimental architectural construct was further 
examined. Previously, the construct utilized was a plain 
vanilla MADM/MODM SM/OM counterpoising to comprise 
a C-MCDM. This is delineated in DQ#1 Bullet (B) 1 and B2, 
DQ#3 B2 and B3, DQ#4 B2, and DQ#5 B1 of Table III. For 
this paper, the construct was revised from that of Figure 3 
(the TPMFS #s are from Table II) to Figure 4 so as to 
decrease the weighting of the MADM and to incorporate 
more apropos methods (that are more resistant/stable against 
RR); The BI is a Particle Swarm Optimization-centric 
Robust Convex Relaxation Framework (implementation 
details are delineated in DQ#1 B1, DQ#3 B1 and B3, and 
DQ#5 B1 through B5 of Table III), is equates to input set, 
and ss equates to solution set. 
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Figure 3.  Prior Architectural Construct without RR Considerations 

 
Figure 4.  Current Architectural Construct with RR Consideration 

Further experimentation was conducted to explore the TEA 
factor of the various methods employed. By way of 
example, PROMETHEE (TPMFS#7) was utilized as it is 
“easily… understood” [78][79]. Likewise, [fuzzy] VIKOR 
(TPMFS#6) was removed as it “less explainable than other 
more intuitive methods” [80]. These actions lend toward 
improving the System TEA (STEA). TPMFS#1 and 2 were 
removed for axiomatic RR reasons. TPMFS#5 remained in 
use and TPMFS#8 was added for their higher R/S with 
regards to RR.  

This paper explored a particular facet of MCDM systems 
— the counterpoising of MADM/MODM SM/OM, wherein 
MADM would employ methods that exhibited higher R/S as 
pertains to RR and MADM, in general, would be re-
weighted downwards. Given that the RR phenomenon 
greatly affects the most popular constituent component of 
MCDM — MADM — this constituted a non-trivial research 
goal. In addition, there was a constraint to select MADM 
methods that were more inclined towards the TEA 
aspiration (e.g., PROMETHEE is more intuitive and 
explainable). Among other advances, the research goal was 
approached from an EDQT vantage point, and the list of 
utilized methods was modified/winnowed from MADM SM 
1,2 and OM 3, 5, 6 to MADM SM 7, 8 and OM 5. Two 
other non-trivial advancements should also be illuminated. 
First, the Abbas and Howard six fundamentals of DQ was 
extended for RWS via EDQT#1 through 5 and the foray 
explored within this paper — EDQT#6. The practicalities of 
EDQT#1 through 6 should not be underestimated. Second, 
the Zizovic RAFSI method to mitigate against RR was 
extended for RWS by considering the temporal element 
(from EDQT#1), such as that of UDC S0 to S2 and CDC S3 
to S5. The aforementioned advancements were incorporated 
into the STEA advancement — the formulation of a bespoke 
architectural construct with RR considerations, such as 
reflected in Figure 4. The MODM OM BI was previously 
shown to have high efficacy in shaping an optimized 
selection of MADMs, so the new amalgam construct of 

Figure 4 constitutes an enhanced approach towards the 
treatment of RR. It should be noted that, depending upon the 
specific implementation, TPMFS#5 and 8 can exhibit 
drawbacks (when putting aside the TEA and R/S RR 
considerations) for factors, such as Flexibility (F) (for 
integration, hybridization, adaptation, etc.), Consistency (C), 
and Performance (P), as shown in Table VI below; 
TPMFS#6 is exhibited for comparison purposes only. 

TABLE VII.  EXEMPLAR BENCHMARKING FOR SELECT TPMFS 

TPMFS # R/S RR TEA F C P 
5      
8      
6      
 
The range of MADM methods (e.g., ML, neural network, 
and other advanced computational methods) is constrained 
to those, for the purposes of this paper, deemed to exhibit 
higher practicality by way of being TEA-centric and suited 
for R/S RR.  

V. CONCLUSION 
This paper explores the challenges of RR in MCDM, 

specifically within MADM methods. Experimentation was 
provided through case studies that emphasize the temporal 
and control aspects. The paper integrates a variety of DQ 
dimensions (DQ#1 to DQ#6), which demonstrate: (1) how 
the model can be adapted to various DM contexts, and (2) 
how the overarching framework is well-suited for RWS 
applications. While various decision-making systems within 
the literature explore dynamic systems and/or describe time-
sensitive DM, this paper differs via the unique amalgam 
treatment of EDQTs for the various DQs delineated in Table 
II. Planned future work includes a more granular 
comparison (the value of a quantitative comparison is still 
nebulous, as there are quantitative exactitude issues 
surrounding the involved benchmarking) as well as a 
prioritization list (e.g., a prioritization of TEA, R/S RR, C, 
F, and P), which will be informed by a survey to be 
conducted. Further MADM methods, pertaining to the listed 
factors, will also be explored. 
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Abstract—Levels of effort and timetable posits for the 
development and operationalization of System Transparency, 
Explainability, and Accountability (STEA)-centric Artificial 
Intelligence (AI) Systems (AIS) are beset by underestimation in 
often overlooked areas, such as the “Optimizing” facet of the 
“Deploying and Optimizing” phase of the AI Development Life 
Cycle, among others. This is a high derailment factor in 
conceptual estimating, particularly for those mission-critical 
AIS that do not well consider biases stemming from the 
broader Socio-Technical System (STS), which impact 
Interpretability & Explainability (I&E). In furtherance of bias 
mitigation and AIS whitening — STS-STEA-I&E (SSI) — an 
amalgam construct for facilitating/discerning a Fugacity Phase 
Transition (FPT) and Hyper-Heuristics (HH) convergence, 
segueing to an enhanced SSI contribution, is delineated. 

Keywords-AI Development Life Cycle; interpretability; 
explainability; justification logic; decision engineering. 

I.  INTRODUCTION  
The development and deployment of Artificial 

Intelligence (AI) Systems (AIS) is on the rise, and the rapid 
growth in market size for AIS and related supply chains have 
been abundantly memorialized; Compound Annual Growth 
Rates (CAGR), such as 36.6% from 2024 to 2030, have been 
reported [1]. Cisco’s 2024 AI Readiness Index asserts that 
“nearly all companies (98%) report that the urgency to 
deploy AI has increased in the last year” [2]. Rough Order of 
Magnitude (ROM) cost estimates for Levels of Effort 
(LOEs) and the associated timetables for the 
design/development and operationalization of these AIS are 
being requested in a torrential fashion to keep pace with the 
escalating demand/adoption rate [3][4]. This is buttressed by 
Stanford University’s AI Index Report 2024, which notes a 
dramatic increase of interest in GitHub AI projects (more 
than doubling between 2022 to 2023) [5]. Simply, AIS are in 
high demand. 

Despite the $184 billion market size for AI as of 
November 2024, the anticipated $826 billion market size by 
2030, and the rising price tags for AIS deployments, 
conceptual estimating (e.g., positing ROMs prior to the 
substantial completion of the involved architecture/design) 
has not yet become sufficiently mature and/or robust; these 
ROMs are often far off target with a plethora of 
cost/schedule overruns and project failures populating the 
landscape [6][7][8][9]. Generally speaking, cost estimates 
are typically predicated upon the historical costs of 

successfully completed projects, and since the corpus of 
historical data is still quite limited in this arena, a myriad of 
conceptual estimating and cost estimator issues have arisen; 
ROMs are often erroneous.  

To aggravate matters, not all AIS are equal. By way of 
example, a number of the earlier AIS had been withdrawn 
from the market due to their problematic “black box” 
architectures and prospective biases (e.g., algorithmic), 
which had not been well accounted for during their 
architectural/design phases [10]. Since that time, the AI 
ecosystem has progressively moved toward a paradigm of 
System Transparency, Explainability, and Accountability 
(STEA) for the prototypical stages/phases of the AI 
Development Life Cycle (ADLC) (as pertains to the 
development and operationalization of an AIS). The number 
of phases varies depending upon organizational preference 
and model selection — e.g., 3, 5, 6, 8, etc.; for simplicity, 3 
phases will be considered herein; of the 3 basic phases — (1) 
Planning & Collection, (2) Designing & Training, and (3) 
Deploying & Optimizing — the “Optimizing” facet (a 
substantive contributor towards the success of the AIS) of (3) 
constitutes a formidable STEA challenge. Without careful 
consideration, the STEA treatment for “Optimizing” can 
dramatically increase the required LOEs and potentially 
derail any posited ADLC timetable for the STEA-centric AIS. 

 Yet, without even considering the STEA complexities 
and requisite mitigations against biases stemming from the 
larger Socio-Technical System (STS) rubric, which includes 
the ecosystem of “humans, technology, and the environs,” 
there are a variety of staggering statistics to consider: (1) the 
Project Management Institute has reported that “almost half 
of business projects fall behind schedule, and up to a third 
are not completed at all,” (2) a Boston Consulting Group 
(BCG) survey reports that “nearly half of all respondents 
said that more than 30% of their organization’s technology 
development projects were over budget and late,” (3) 
McKinsey & Company (McK), in collaboration with the [BT 
Group plc, formerly British Telecom] BT Centre for Major 
Programme Management at the University of Oxford, reports 
that “on average, large [Information Technology] IT projects 
run 45 percent over budget and 7 percent over time, while 
delivering 56 percent less value than predicted” while 
McKinsey further reports that “software projects run the 
highest risk of cost and schedule overruns,” (4) [Research & 
Development] RAND Corporation notes that, “by some 
estimates, more than 80 percent of AI projects fail — twice 
the rate of failure for information technology projects,” and 
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(5), The Computing Technology Industry Association 
(CompTIA) notes that “nearly 80% of the AI projects 
typically don’t scale beyond a [Proof of Concept] PoC or lab 
environment” [11]-[16]. Against this backdrop, when the 
complexities of IT/AI projects are conjoined with the cited 
STEA and STS complexities, it becomes clear that the 
devising of a robust STS/STEA-centric AIS architecture is 
non-trivial. Accordingly, four central aspects, among others, 
need to be well considered for an STEA-centric AIS 
architecture prior to providing a ROM.  

The first is the desired level of transparency. The 
literature describes the principal variations in AIS 
architecture — “black-box,” “gray-box,” and “white-box — 
as being distinguished by gradations in transparency (most 
opaque to most transparent). The second is the desired level 
of interpretability, which centers upon the AIS’s Decision 
Engineering/Decision-Making (DE/DM) processes. The third 
is the desired level of explainability, which centers upon the 
rationale/underlying  logic employed to arrive at the, 
hopefully, non-biased and reasonable outcomes [17]; the 
University of Toronto’s Schwartz Reisman Institute for 
Technology & Society and others further distinguish 
between Explainable AI (which centers upon “fact”) and 
Justifiable AI (a.k.a., justifiability) (which centers upon 
“judgment”) [18]. The fourth is the degree of accuracy 
(ACC) desired. For the second and third aspects, 
interpretability describes how the AIS formulates certain 
posits (e.g., the DE/DM processes), and explainability 
describes why the AIS made certain posits (e.g., the 
justification logic). These (i.e., Interpretability and 
Explainability) are often referred to as I&E, and along with 
the fourth aspect, there is an ongoing dialectic in the 
literature regarding the trade-off between ACC and I&E. 
Some argue that reduced ACC AIS are more readily 
interpreted; along this vein, some argue that enhanced ACC 
AIS are less able to be interpreted in an intuitive fashion 
[19][20]. A similar argument has been made regarding 
explainability [21][22]. Amidst this backdrop, researchers 
have endeavored to achieve high-performance AIS that still 
have high I&E [23]. Suffice it to say, this arena constitutes a 
challenging study space.  

In the interim, research forays have trended towards more 
transparent white-box (a.k.a., glass-box) architectures, which 
reputedly have better I&E-by-design [24]. However, the 
performance tends to, as reported by some, lag behind the 
more translucent/opaque black-box architectures [25]. 
Accordingly, researchers have actively investigated the 
feasibility of middle-ground gray-box architectures. Along 
the vein of the previously discussed AIS project 
cost/schedule overruns, the initial development time for a 
high-performance STS/STEA/I&E (SSI)-centric AIS 
architecture can vary greatly (e.g., from months to years), 
and Gartner notes that, generally, “organizations” take about 
“7 months to develop AI initiatives, with 47% of the 
surveyed companies taking between 6 to 24 months from 
prototype to production”  [12][26][27]; some AIS 
implementers assert that SSI-centric AIS architectures can 
take several years to devise and realize. The testing times can 
also vary greatly. Generally speaking, black-box testing can 

require less time than white-box testing since the latter 
would require additional LOEs (i.e., an increased amount of 
time) to comprehend the DE/DM pathways and logic 
employed. The AIS model training time/cost is also highly 
variable, as the training data needs to be refreshed in an 
ongoing fashion, particularly for Real World Scenario 
(RWS) AIS applications. With regards to the “Optimizing” 
facet of (3) of the ADLC, the degree of ACC (versus I&E) 
needs to be specified, and the various involved optimizations 
(e.g., pertaining to the involved computational resources, 
quantity/quality of the training data, heuristics/algorithms 
employed, tuning/fine-tuning efficacy for [e.g., Deep Neural 
Network or DNN] weights/hyperparameters, complexity of 
the AIS model and AIS architecture/design, etc.) is central. 
Stanford University and Epoch AI (a multidisciplinary 
research institute that investigates the arc of AI) reviewed AI 
model training cloud compute times/costs, and MIT 
Technology Review noted that “the process used to build 
most of the… [AI] models we use today can’t tell if they will 
work in” RWS, “and that’s a problem” [28][29][30]. Some 
AIS implementers argue that the greater the desired level of 
SSI, the “more time-consuming and resource-intensive” the 
processes can be — with an ensuing increase to Capital 
Expenditures (CAPEX). Over time, the seeming CAPEX 
advantage of “black-box” over “white-box” architectures 
may potentially be offset by ever-escalating Operational 
Expenditures (OPEX) related to brittleness and obsolescence 
issues (e.g., undetected issues, such as data drift may result 
in dramatic performance degradation) that often beset black-
box architectures; in other words, the downstream OPEX-
related disadvantages may offset the initial CAPEX 
advantages of the earlier developmental and testing phases. 
Gray-box architectures seem to constitute a middle-ground. 

Certain SSI challenges that beset the ADLC are 
illuminated within this paper, such as at the “Optimization” 
facet of (3) of the ADLC. To assist the reader, a table of 
acronyms is provided in Table I below.  

TABLE I.  TABLE OF ACRONYMS 

Acronym Full Form 
ACC Accuracy 
ACM Association for Computing Machinery 
AdapHH Adaptive selection Hyper-Heuristics 
ADLC AI Development Life Cycle 
AI Artificial Intelligence  
AIS Artificial Intelligence System  
ALGB-WG Algorithmic Bias Working Group 
BCG Boston Consulting Group 
CAGR Compound Annual Growth Rate 
CAPEX Capital Expenditure 
CompTIA Computing Technology Industry Association 
CRITIC CRiteria Importance through Intercriteria Correlation 
CWA Connection Weights Algorithm 
DE Decision Engineering 
DM Decision-Making 
DNN Deep Neural Network 
EO Expert Opinion 
FPT Fugacity Phase Transition 
GA Garson’s Algorithm 
GI Gini Importance 
HH Hyper-Heuristic 
HH-CF Choice-Function-based Hyper-Heuristic 
HH-R Reward-based Hyper-Heuristic 
HH-SF Statistical Frequency-based Hyper-Heuristic 
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I&E Interpretability & Explainability  
IEEE Institute of Electrical and Electronics Engineers 
LOE Level of Effort 
MADM Multi-Attribute Decision-Making 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
MCDM Multi-Criteria Decision-Making 
McK McKinsey & Company 
MDA Mean Decrease in Accuracy 
MDI Mean Decrease in Impurity 
MLR Multiple Linear Regression 
MODM Multi-Objective Decision-Making 
NIST National Institute of Standards and Technology 
OA Olden’s Algorithm 
OM Objective Measure 
OPEX Operational Expenditure 
OPH Operator/Procedure/Heuristic 
PLSR Partial Least Squares Regression 
POC Proof of Concept 
PROMETHEE Preference Ranking Organization Method for Enrichment 

Evaluation 
PSO Particle Swarm Optimization 
QoS Quality of Service 
QR Quantile Regression 
RAND Corp. Research & Development Corporation 
RMSE Root Mean Square Error 
ROM Rough Order of Magnitude 
RR Ridge Regression 
RWS Real World Scenario 
SM Subjective Measure 
SSHH Sequence-based Selection Hyper-Heuristic 
SSI Socio-Technical System-System Transparency, 

Explainability, and Accountability-Interpretability & 
Explainability 

STEA System Transparency, Explainability, and Accountability 
STS Socio-Technical System 
TransE Translating Embeddings 
WIP Work-in-Progress 
XAI Explainability in AI 

 
Section I delineates the impetus of the paper — the 
illumination and consideration of certain SSI-related 
derailment facets that may dramatically increase the 
required LOEs and potentially derail posited ADLC 
timetables for the SSI-centric AIS. Section II provides 
pertinent background information regarding: (1) STS/STEA 
(in general) and I&E (in particular) (collectively, “SSI”) for 
certain facets of the ADLC for an AIS, (2) the “Fugacity 
Phase Transition” (FPT) (e.g., the series of deviations 
between the “ideal” training data and the “actual” observed 
data), and (3) certain other key considerations (e.g., the SSI 
aspects of the utilized Hyper-Heuristics or HH) that are 
critical to consider prior to putting forth conceptual 
estimating ROMs for an SSI-centric AIS. Section III 
delineates the presets & theoretical foundations as well as 
benchmarking & insights related to the involved HH/FPT 
experimentation. Section IV concludes and presents some 
prospective future work. 

II. BACKGROUND 

A. The Import of SSI for AIS 
In these contemporary times, there is a heightened 

expectation for SSI-centric AIS, particularly with regards to 
I&E. Winfield and others have remarked on various STEA-
centric Work-in-Progress (WIP) standards, as well as actual 
standards that have buttressed the Explainability in AI (XAI) 

movement; these WIPs/standards include, among others, the 
U.S. National Institute of Standards and Technology (NIST) 
Special Publication 1270 “Towards a Standard for 
Identifying and Managing Bias in Artificial Intelligence,” the 
Association for Computing Machinery (ACM)  “Principles 
for Algorithmic Transparency and Accountability,” and the 
Institute of Electrical and Electronics Engineers (IEEE) 
Standard for Transparency of Autonomous Systems (P7001), 
among others. There are also a range of engaged working 
groups, such as the IEEE Algorithmic Bias Working Group 
(ALGB-WG) (P7003). On the topic of bias, NIST has opined 
that certain AI biases (e.g., “human biases and systemic, 
institutional biases as well”) may stem from the larger STS 
rubric [31]. This includes the involved corpus of data, which 
may, potentially, derive from problematic “facts,” 
“assessment surveys,” and other bias-related problems from 
the “Collection of Data” facet of (1) of the ADLC [32][33].  

Traditionally, it has been opined that, for the ADLC, 
approximately “80% time” is spent on (1) [34]. For the 
“Collection of Data” facet of (1) of the ADLC, Westland 
has noted that the “bias and informativeness” of Subjective 
Measures (SMs) (e.g., Likert-type measurements) “have 
been the center of recent” dialectic [35][36]. From an SSI 
perspective, STS-related biases, such as from a variety of 
assessment data utilized as input to the AIS (e.g., from 
surveys) has recently been illuminated as a prospective 
Achilles heel for AIS. For example, McLeod informs us that 
“prior research has shown that using Likert scales can be 
problematic,” via a variety of biases (e.g., “social 
desirability bias, acquiescence bias,” central tendency bias, 
etc.) [37]. Taherdoost affirms this by noting that Likert 
“scale validity may be difficult to demonstrate[,] and there 
is a lack of reproducibility” [38]. To further underscore the 
aforementioned, Louangrath’s experimentation reports on 
the higher reliability levels of non-Likert scales (e.g., 
“92%”) over Likert-type scales (e.g., “90, 89, and 88% 
reliability”) as well as higher validity levels of non-Likert 
scales (e.g., “93%”) over Likert-type scales (e.g., “89, 61, 
and 57%”) [39]. Hence, the formulation/implementation of 
enhanced assessments (e.g., STS-related surveys) for the 
“Collection of Data” facet of (1) of the ADLC, which is a 
key part of the STS rubric, will likely increase the time 
needed for formulating and instantiating SSI-centric AIS 
architectures.  

B. The Fugacity Phase Transition (FPT) between Phases 
(2) and (3) of the ADLC 
With regards to the AIS architecture’s DE/DM apparatus, 

Fattoruso depicts Multi-Criteria Decision-Making (MCDM) 
as being comprised of Multi-Attribute Decision-Making 
(MADM) and Multi-Objective Decision-Making (MODM) 
[40]. Generally speaking, while MODM concurrently 
addresses a range of objectives (“and endeavors to determine 
an optimal solution set among “undetermined continuous 
alternatives”), MADM addresses a single objective and 
“organizes/sorts/ranks” (in the endeavor to ascertain the 
optimal solution among “a finite set of discrete alternatives”) 
[41]. For the “Collection of Data” facet of (1) of the ADLC, 
a more robustly counterpoised MADM/MODM 
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SM/Objective Measures (OM) construct is crucial for 
facilitating SSI robustness, as it can better contend with the 
issue of AIS model drift (a.k.a., model decay) (i.e., shifts in 
the involved data/relationships that can result in AIS model 
performance degradation, wherein the posits become 
increasingly less effective), particularly in situations for 
which the RWS data encountered is far different “from the 
data it was trained to recognize or handle” [42]. Generally 
speaking, it can be easier to discern this drift within a higher 
SSI-centric than a lower SSI-centric AIS architecture. To 
assist in contextualizing/delineating this paradigm, the term 
“fugacity” (an apropos term utilized by Dreyfus-Schmidt-
DuPhan-Desfontaines that nicely references the “tendency… 
to escape from one phase to another”) is utilized; “‘fugacity’ 
measures the difference between the expected ‘ideal’ data… 
[that the AIS] model was trained on and the observed ‘real’ 
data” that the AIS model encounters (i.e., the distinction 
between the “reference distribution” and the “prediction 
distribution”) [43][44][45]. The indicators of low drift and 
low fugacity can be utilized in ascertaining when a 
transitioning from phase (2) to (3) of the ADLC (i.e., FPT) is 
prudent. It should be noted that the FPT is not a singular 
punctuating event/milestone; rather, it denotes a fairly 
steady-state paradigm, wherein the fugacities for the 
successive states of dynamically updated AIS heuristics 
(acting in conjunction with the involved AIS algorithms) are 
low enough to be of satisfactory utility for the involved RWS 
AIS application. The monitoring of the involved AIS model 
(and encompassing AIS architecture) will require a sufficient 
temporal span given the SSI-centric AIS architectural 
requirement. 

C. Potential ADLC pitfalls (e.g., HH) and I&E Robustness 
for the “Optimization” Facet of the ADLC  
As alluded to in Section I and Section IIA, the requisite 

time to develop a sufficiently robust performance SSI-centric 
AIS architecture can vary greatly. It consists of the (1), (2), 
and (3) phases referenced in Section I, as well as various 
facets, such as that of “Optimization.” Within the phases of a 
3-phase ADLC, the “Collection of Data” and 
“Training/Inferencing” (e.g., which might be subject to the 
prospective inversion of the classical training:inferencing 
ratios) facets, as discussed in [46], are noteworthy, for they 
need to be well considered prior to positing LOEs and their 
associated timetables for an SSI-centric AIS (i.e., conceptual 
estimating).  

The counterpoising of SM and OM (for MADM and 
MODM), such as for the “Collection of Data” facet of (1) of 
the ADLC is non-trivial. This is further complicated with the 
need to appropriately weight and “organize/sort/rank,” which 
may be accomplished via the utilization of various OM 
combinatorials; this includes the leveraging of OM methods, 
such as the CRiteria Importance through Intercriteria 
Correlation (CRITIC) OM for the ascertainment of apropos 
weights and the Preference Ranking Organization Method 
for Enrichment Evaluation (PROMETHEE) OM for the 
ensuing ranking. The apropos selection and testing of more 
SSI-oriented OM (as well as SM) combinatorials will also 

likely increase the time needed for SSI-centric AIS 
architectures. 

Moreover, there is a fundamental distinction between the 
paradigm of static weights and that of dynamically updated 
weights. The literature is abundant with regards to the 
criticality of a dynamic weighting strategy for the 
“Training/Inferencing” facet [47]. Along this vein, 
oftentimes, heuristic approaches are leveraged to 
complement algorithmic approaches, particularly for RWS 
AIS applications. After all, the amalgam of heuristics and 
algorithms lend to numerical methods implementations of 
higher efficacy, and a dynamically updated heuristic model 
lends to more optimal convergence for a “better-fit” or 
“best-fit” approximation, etc. (e.g., the robust convex 
relaxation discussed in [48]). The SSI-related issue is that 
while algorithms have received increasing SSI attention, the 
myriad of static/brittle heuristics populating the AIS 
landscape has not received comparable SSI attention; this is 
an area that can increase the ADLC time needed.  

Beyond the “Collection of Data” and the 
“Training/Inferencing” facets, the “Optimization” facet of 
the ADLC (e.g., optimizing the involved AIS model) is 
critical, for it facilitates more accurate and efficient 
predictions, which segues to enhanced performance, 
decreased OPEX, and higher practicality/applicability for 
RWS. In particular, optimization (e.g., such as with regards 
to AIS model size, complexity, etc.) can facilitate more rapid 
inferencing with less computational resources (e.g., energy 
consumption) and lend toward scalability (e.g., optimized 
AIS models are more readily deployed). By way of context, 
the heuristic problem-solving approach is geared for 
ascertaining a “good enough” solution within a bounded 
period of time, but there is no certainty that it will provide an 
optimal solution; in contrast, certain algorithmic approaches 
are favored for ascertaining an optimal solution, but the 
“runtimes” may vary greatly. To date, “research in the 
explainability of optimisation techniques has largely focused 
on meta-heuristics” (which “directly search the solution 
space of a problem”) [49][50]. There has been far less 
research on HH (higher-level Operator/Procedure/Heuristic 
(OPH) methods that “operate on a search space of low[er]-
level heuristics…rather than solutions directly”), which can 
pose herculean SSI challenges due to the use of a plethora of 
lower-level OPHs, which complicates matters [51]. There 
have been some notable SSI-related explorations that have 
shown promise with regards to SSI, such as Misir’s Adaptive 
selection HH (AdapHH) and Drake’s Sequence-based 
Selection HH (SSHH) (which leverages probability matrices 
to facilitate I&E) [49][51]. By leveraging these lessons 
learned as well as the presets delineated in Section IIIA, a 
more SSI-centric HH paradigm can be leveraged. 
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III. EXPERIMENTATION 

A. Presets & Theoretical Foundations 
Ali, Piccialli, and others have noted that a substantive 

portion of AI researchers opine that “a deeper network is 
better for decision-making than a shallow network” [24]. 
Yet, the prototypical DNNs are increasingly more difficult to 
examine at the deeper layers given the increasingly complex 
patterns/abstractness (as contrasted to the more 
straightforward patterns residing at the more shallow/earlier 
layers). From an SSI perspective, this makes certain 
reportage of DNN usage for mission-critical HH of even 
greater import [52].  For the experimentation herein, a preset 
(i.e., a precursor experimental construct) leveraged was in 
the form of an RWS-oriented Particle Swarm Optimization 
(PSO)-based Meta-Heuristic approach, as depicted in [53]. 
Another preset centered upon the selection of MODM OMs, 
such as CRITIC and PROMETHEE as well as those 
delineated in [54]. These presets are reflected in Figure 1 in 
bright red; the critical counterpoisings shown in lavender are 
supported by these presets. The focus of the experimentation 
is at the “Optimization” nexus of FPT/HH (denoted in brick 
red). 
 

 
Figure 1.  ADLC with the experimental focus, as indicated in brick red. 

Drake asserts that there are two types of HHs: (1) 
selection HH that select a sequence of Low[er]-Level 
Heuristics (LLHs), and (2) generation HHs that spawn 
LLHs [51]. From an SSI perspective, the degree of I&E 
depends upon the involved mechanism; for example, 
Maashi’s Choice-Function-based HH (HH-CF) facilitates 
the examination of LLHs, as LLHs are designated with a 
score/normalized score based upon prior performance and 
chosen accordingly. Qu’s Statistical Frequency-based HH 
(HH-SF) can reveal LLH sequences that relate to the more 
optimal solutions (thereby making I&E more self-evident). 

Kheiri’s Reward-based HH (HH-R) leverages LLH usage 
and transitions among LLH to yield transition probabilities 
for enhanced I&E [49].  

B. Benchmarking & Insights 
For the purposes herein, operators will be construed as: 

(1) diversification, (2) intensification, and (3) perturbation,  
Typically, (1) will leverage randomness to induce a 
substantive variation (e.g., to avoid stagnation at local 
optima) to expand the search space (e.g., progress to 
unexplored areas), (2) will spawn solution variations in high 
potential areas of the search space, and (3) will induce 
minute variations (e.g., to facilitate the gauging of LLH 
performance). In some cases, the sequencing of (1), (2), and 
(3) is effective; in other cases, (3), (1), and (2) may have 
efficacy. Our experimentation finds that the (1), (2), (3), (2) 
sequence has high efficacy; our findings are consistent with 
Drake’s reportage that LLHs/LLH sequences “which are 
ineffective at the start of the search process prove to be 
highly effective at the end, and vice versa” [51]. In essence, 
the efficacy of LLHs/LLH sequences and their concomitant 
HHs need to be gauged over time. For this temporal 
consideration, the assessment of the LLHs/HHs also needs 
to include consideration of the long-tail (part of the 
[statistical distribution], which is far afield from the head 
and centroid) phenomena prevalent in RWS; Samuel reports 
that “strongly unbalanced data with a long-tail is ubiquitous 
in numerous domains and problems” and “learning [over 
time] with unbalanced data causes models to favor head 
classes” [55][56]. Various techniques (e.g., based upon 
Wang’s Translating Embeddings or TransE) for better 
balancing across both head and tail classes are discussed in 
[57]. There is also the matter of AIS model drift over time. 
Along this vein, HHs can be leveraged to avoid a high drift 
paradigm (i.e., a drift score closer to 1), such as for the case 
where the features underlying the AIS model drift are of low 
significance; HHs can also be leveraged to lower the drift 
paradigm (e.g., moving the drift score closer to 0) by 
recognizing features of high significance, whose removal 
would dramatically degrade the AIS model performance. 
Interestingly, the challenge of feature significance 
determination centers upon the fact that features are not 
independent; actually, a substantive portion of features are 
highly correlated (a.k.a., collinear features). Spearman’s and 
Pearson’s correlation [coefficient] (R) can be used to gauge 
collinearity (e.g., a high R indicates collinearity), and given 
the plethora of collinear features, the notion of feature 
families becomes quite useful. Given a high R2 (a value 
closer to 1, which implies a perfect fit), wherein R2 = 1 – 
Sum Squares of Error or SSE/Total Sum of Squares or SST, 
the removal of a high dependency feature will likely not 
have a significant impact upon ACC for the feature family; 
on the other hand, a lower Root Mean Square Error (RMSE) 
(square root of the average squared differences between the 
measured values and actual values) and Mean Absolute 
Error (MAE) (average of the absolute differences) implies a 
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better fit. As Matel notes, “the larger the drop in R2 when a 
variable [/feature] is removed…, the more important it is 
assumed to be” [58]. This is affirmed by Gini Importance 
(GI), Mean Decrease in Impurity (MDI), and Mean 
Decrease in Accuracy (MDA) (a higher GI, MDI, and MDA 
indicates higher variable/feature significance). In essence, 
the involved RWS AIS evaluation was conducted over time 
(i.e., the FPT). 

Matel’s experimentation was utilized for benchmarking 
purposes, as Matel had reported that his conceptual 
estimating model exhibited “a 14.5% improvement in the 
accuracy” over Hyari’s model when considering Mean 
Absolute Percentage Error (MAPE) [58]. Matel’s findings 
are as follows: (1) for the Connection Weights Algorithm 
(CWA), “the lowest MAPE with all 16 variables was 
50.36%,” but the MAPE dropped “to 27.41%” “when only 
the top 5 variables were used,” (2) for Multiple Linear 
Regression (MLR), “when [only] the top 5 to 7 variables” 
were used, the MAPE was “42.47%,” and (3) for Expert 
Opinion (EO), when only “the top 5 variables” were used, 
the “MAPE was 93.25%” [58]. Hence, in terms of efficacy, 
CWA >> MLR >>> EO; this should be no surprise, for 
while CWA can accommodate non-linear relationships, 
MLR is not able to. For the case herein, Matel’s 
experimentation was reiterated with HH utilized for 
determining the top variable/features, and the results were 
somewhat comparable. The results are shown in Figure 2, 
which also incorporates Garson’s Algorithm (GA) and 
Olden’s Algorithm (OA) as alternatives to CWA as well as 
Partial Least Squares Regression (PLSR), Quantile 
Regression (QR), and Ridge Regression (RR) as alternatives 
to MLR. 

 

 
Figure 2.  Benchmarking of Section III with Matel’s Experimentation 

CWA tends to outperform GA, and OA (as an 
implementation of CWA) is more nuanced than the plain 
vanilla CWA. PLSR is better suited for multi-collinearity 
than MLR, and QR can better handle outliers than MLR. 
Apart from that, the principal distinction was that of a 
steady-state convergence that was obtained with the 
amalgam of: (1) low drift, (2) low RMSE and MAE 

reflecting low fugacities/a more narrow FPT, (3) high GI, 
MDI, and MDA affirming variable/feature significance, (4) 
high R (reflecting collinearity) and a high R2 (wherein the 
removal of high dependency features did not have a 
substantive ACC impact), and (5) high efficacy HH 
ascertainment at 8 variables/features. This logical 
progression through the amalgam composition and FPT/HH 
convergence should make clear the FPT/HH SSI 
contribution. 

IV. CONCLUSION 
The use of heuristics, to assist with algorithmic 

convergence for RWS AIS applications, is on the rise. These 
applications are likely to have specific stringent RWS timing 
requirements (e.g., pursuant to the involved Quality of 
Service or QoS). The adherence to these stringent RWS 
timing requirements constitutes a key facet of why the 
dynamically updated heuristic model (e.g., via HH) tangibly 
contributes towards the utility/practicality expected for RWS 
applications. Hence, HHs become critical to the equation, 
and their SSI orientation becomes central; it should be noted 
that HH has gained traction “in addressing NP-hard 
optimisation problems because it generalises well across 
problem domains” [59]. This paper presented an FPT/HH 
convergence approach (i.e., low drift, narrow FPT, and high 
efficacy HH) that would lend to a more SSI-centric 
optimization facet of the ADLC; accordingly, conceptual 
estimating and cost estimator ROMs can be made more 
robust. To conclude, this paper explores the development 
and implementation of improved assessment methods, such 
as STS-oriented surveys, for the “Data Collection” process 
within ADLC, a key component of the STS framework. The 
study highlights how these enhancements may impact the 
creation and deployment timelines of AIS architectures 
focused on SSI. By refining evaluation approaches, the 
research aims to improve the efficiency and effectiveness of 
data-driven decision-making within STS-based 
systems. Future work will involve more quantitative 
experimentation and benchmarking. 
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Abstract—This paper describes an Artificial Intelligence (AI)-
based Construct Validity Verification Methodology (CVVM) 
being advanced. The proposed methodology includes an 
amalgam utilization of temporal-centric Finite-Change 
Shapley-Owen values along with, among others, Generic 
Shapley-Owen values and Variance-Based Shapley-Owen 
values (i.e., a bespoke SHAP amalgam or b-SHAP 
implementation), CRiteria Importance through Intercriteria 
Correlation (CRITIC), and Preference Ranking Organization 
Method for Enrichment Evaluation (PROMETHEE) for 
enhancing the interpretability of not only the machine learning 
constituent components of an AI system, but also the interstices 
(e.g., between/among individual components as well as 
amalgams/clusters of components locally/globally). This 
approach extrapolates upon and furthers current proposals for 
the utilization of SHAP in local, global, and glocal (a 
hybridized intermediary of local and global) contexts. It turns 
out that this Interstitial SHAP-centric Amalgam (ISA), by 
better correlating features with each interim intended 
construct, potentially segues to better interpretability and 
construct validity at the component, interstitial, and overall 
system level, particularly when ISA is conjoined with a well-
counterpoised Multi-Attribute Decision-Making 
(MADM)/Multi-Objective Decision-Making (MODM) 
Subjective Measures (SM)/Objective Measures (OM) 
paradigm and a modified Constriction Factor (CF)-Particle 
Swarm Optimization (PSO)-Robust Convex Relaxation (RCR)-
Long Short-Term Memory (LSTM)-Deep Convolutional 
Neural Network (DCNN) (CPRLD) metaheuristic architectural 
construct. 

Keywords-artificial intelligence systems; machine learning; 
construct validity; explainability; interpretability. 

I.  INTRODUCTION  
The impact of AI within the industrial sector and 

business, in general, should not be underestimated. 
Subhadra and others underscore the “rise of AI in business 
and industry” [1]. As AI is a transformative technology, it is 
envisioned to spur innovation and revolutionize various 
industries [2]. Honeywell’s Industrial AI Insights report 
notes that, for the majority of cases, the “C-Suite has 
already decided to expand AI use,” and in 91% of the cases, 
new use cases are brought to light “during AI 
implementation” [3]. Hence, AI forays are begetting further 
AI forays. These implementations involve AI software 
engineering, which leverages Machine Learning (ML) 
models and techniques to automate various tasks. The ML 

models of these AI Systems (AIS) are being increasingly 
relied upon to process/interpret Big Data so as to put forth 
meaningful forecasts/posits, thereby enhancing and 
illuminating certain Decision Engineering (DE) pathways so 
as to inform Decision-Making (DM).  

A. The Criticality of Construct Validity 
To ensure that the AIS ML models are robustly depicting 

the Real-World Scenarios (RWS), which they are tasked to 
emulate, the notion of construct validity becomes central. 
Sjoberg depicts construct validity as being “concerned with 
whether one can justifiably make claims at the conceptual 
level that are supported by results at the operational level” 
[4]; Sjoberg had conducted a Software Engineering (SE)-
centric Systematic Literature Review (SLR) for the years 
2000 through 2019 and determined that over this period of 
time, the prominence of the construct validity term rose by 
“sevenfold” [4]. Zhou affirms the criticality of validity 
within the SE sector and noted, comparatively speaking, the 
lack of research regarding the challenges related to construct 
validity [5]. Hence, despite the “sevenfold” increase, Deets 
and others find that the notion of construct validity is still 
“underdiscussed” [6]. As the ML models for AIS evolve, 
construct validity becomes particularly important to ensure 
that the involved progression leads to the intended construct. 
For example, construct validity can help ensure that the 
feature set aligns with the intended construct (i.e., feature 
alignment); also, given the understood constraints of the 
Shannon-Weaver model in communications theory, 
consideration of construct validity can help to avoid 
misinterpretation of the AIS ML model’s posits (i.e., more 
robust interpretation). In essence, failure modes/blindspots 
and bias can be more readily identified and mitigated 
against.  

B. Transparency, Explainability, and Accountability (TEA) 
Evaluation & Testing for Enhanced Construct Validity 
Evaluation/testing (which ensures that the ML model 

well handles unseen data) and fine-tuning (which ensures 
that the ML model is optimized for a winnowed subset of 
data or particular task) are both integral for the enhancement 
of the involved AIS. The evaluation/testing of ML models 
involves both construct validity, as well as performance 
metrics to capture the intended construct and generalize well 
upon unseen data, respectively. The distinction is often not 
made, but evaluation and testing are quite marked and 
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disparate. For example, with regards to performance metrics, 
evaluation tends to encompass accuracy, precision, recall, F1 
score (determined by the precision and recall scores), Area 
Under the Receiver Operating Characteristic (AUC-ROC), 
cross-validation, etc. However, these types of evaluation do 
not provide insight into particular behaviors and/or potential 
Root Cause Analysis (RCA), which resides more in the 
realm of testing; while evaluation tends to focus upon 
performance of the model in its entirety, testing tends to 
focus upon the performance intricacies of the constituent 
components of the ML model. In the case of this paper, it is 
posited that the testing paradigm should also be extended to 
the interstices (e.g., interstitial areas between/among 
individual/amalgam of components, particularly in a glocal 
context). In any case, the evaluation/testing and fine-tuning 
paradigms are complicated enough for a single AIS, but in a 
System-of-Systems (SoS) (wherein constituent systems 
support the overarching function of the larger system) 
paradigm (wherein the incorrect testing and/or fine-tuning of 
one AIS may adversely impact another AIS), the notion of 
construct validity is crucial. The improving of AIS TEA at 
the component/interstitial areas can lead to enhanced 
construct validity, as feature alignment, more robust 
interpretation, etc. can likely be more readily achieved.  

C. Enhancing TEA for Enhanced Construct Validity 
Pathways for the advancement of System TEA (STEA) 

include a better understanding of the influence of Higher-
Order Network (HONs), a finer-tuned Dynamic Assessment 
and Weighting System (DAWS) (wherein more apropos 
weights can be derived), as well as a more 
understandable/interpretable corpus of experience such that it 
can be better leveraged in a Lower Ambiguity (wherein the 
repertoire of experience suffices) Higher Uncertainty 
(LAHU) situation (given a sufficient repertoire of 
experience, the tolerance for uncertainty is higher, such that 
a decision can be made without, necessarily, the need for 
more Big Data) when time is of the essence. In addition, 
STEA-related SoS boundary areas also need to be taken into 
consideration as ML of ML becomes increasingly prevalent. 
After all, ML algorithms have a propensity to spawn “non-
monotonic, non-polynomial [unable to be captured as a 
summation of terms], and even non-continuous functions” 
[7]. This is not dissimilar to the paradigm, wherein the 
transformation of “non-convex Mixed Integer Non-Linear 
Programming (MINLP) to convex problems, often 
spawn[ed] further non-convex MINLP problems” that 
necessitated further handling [8]. The enhancement of STEA 
can lead to better discernment of problematic constituent 
components (e.g., those exhibiting issues with feature 
alignment, robust interpretation, selection bias, etc.); this 
segues to enhanced construct validity. 

Accordingly, this paper describes an AI-based Construct 
Validity Verification Methodology (CVVM) (i.e., the extent 
to which the AIS is accurately gauging the actual underlying 
concept/intended theoretical construct) being advanced. To 
assist the reader, a table of acronyms is provided in Table I 
as follows.  

 

TABLE I.  TABLE OF ACRONYMS 

Acronym Full Form 
ACM Association for Computing Machinery 
ADMB Automatic Differentiation Model Builder 
AI Artificial Intelligence 
AIS Artificial Intelligence System 
AUC-ROC Area Under the Receiver Operating Characteristic 
c-SHAP Classical Shapley Additive exPlanation 
C2 Command and Control 
CF Constriction Factor 
CNN Convolutional Neural Networks 
CPRLD Constriction Factor-Particle Swarm Optimization-

Robust Convex Relaxation-Long Short-Term 
Memory-Deep Convolutional Neural Network 

CRITIC CRiteria Importance through Intercriteria Correlation 
CVVM Construct Validity Verification Methodology 
CWT Continuous Wavelet Transform 
DAWS Dynamic Assessment and Weighting System 
DCGAN Deep Learning Convolutional Generative Adversarial 

Network 
DCNN Deep Convolutional Neural Network 
DE Decision Engineering 
DeepLIFT Deep Learning Important FeaTures 
DL Deep Learning 
DM Decision-Making 
E Execution Time 
ELECTRE ÉLimination Et Choix Traduisant la REalité 
FCSO Finite-Change Shapley-Owen 
GAN Generative Adversarial Network 
GNU GNU’s Not Unix 
GPL General Public License 
Grad-CAM Gradient-weighted Class Activation Mapping 
GSO Generic Shapley-Owen 
HON Higher-Order Network 
I Interpretability 
IEC International Electrotechnical Commission 
IEEE Institute of Electrical and Electronics Engineers 
IPOPT Interior Point OPTimizer 
ISA Interstitial SHAP-centric Amalgam 
ISO International Organization for Standardization 
LAHU Lower Ambiguity Higher Uncertainty 
LIME Local Interpretable Model Agnostic Explanations 
LSTM Long Short-Term Memory 
MA Model Agnostic 
MADM Multi-Attribute Decision-Making 
MINLP Mixed Integer Non-Linear Programming 
ML Machine Learning 
MODM Multi-Objective Decision-Making 
MS Model Specific 
NP-hard Non-deterministic Polynomial-time Hardness 
OM Objective Measure 
OSNS Optimal Shapley-Nondominated Solution 
OSONS Optimal Shapley-Owen-Nondominated Solution 
PROMETHEE Preference Ranking Organization Method for 

Enrichment Evaluation 
PSO Particle Swarm Optimization 
RCA Root Cause Analysis 
RCR Robust Convex Relaxation 
RR Rank Reversal 
RWS Real-World Scenarios 
S Sensitivity 
SDP Semi-Definite Programming 
SE Software Engineering 
SHAP Shapley Additive exPlanation 
SLR Systematic Literature Review 
SM Subjective Measure 
SNOPT Sparse Nonlinear OPTimizer 
SoS System-of-Systems 
SQP Sequential Quadratic Programming 
STEA System Transparency, Explainability, and 
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Accountability 
TEA Transparency, Explainability, and Accountability 
TOPSIS Technique for Order Preference by Similarity to Ideal 

Solution 
U Performance under Uncertainty 
V Validity 
VBSO Variance-Based Shapley-Owen 
VC-dim Vapnik-Chervonenkis dimension 
XAI Explainable AI 
 

Section I provided an overview, which underscored the 
criticality of the notion of construct validity. The remainder 
of this paper is organized as follows. Section II reviews the 
notion of AI SoS ML on ML and the need for STEA 
(particularly interpretability as an actualizing agent for 
enhanced STEA) to facilitate viable ML of ML. Section III 
presents theoretical foundations, the experimental testbed, 
and the experimental construct for addressing the challenge 
of AI-based CVVM. Section IV provides some concluding 
remarks and puts forth some future work.   

II. BACKGROUND 

A. AI System of Systems (SoS) 
The notion of SoS is well-known; it is then axiomatic 

that an AI-related SoS is comprised of subordinate AIS. In 
theory, the involved ML at the top-tier AIS should be able to 
leverage the experiential base (e.g., lessons learned) of the 
lower-tier ML; in essence, the upper echelon ML should be 
able to enhance its efficacy by “learning” from the 
“successes” and “failures” of the lower echelon ML systems. 
This “learning” is effectuated by way of, among other types: 
(1) Collaborative learning (wherein ML systems collectively 
address a problem, such as in an ensemble and/or federated 
fashion, via learning from each other’s discernments and 
approaches), (2) Multi-agent reinforcement learning 
(wherein ML system learnings can inform the subsequent 
pathways undertaken by other AIS to achieve more optimal 
results), (3) Coopetition (a portmanteau of “cooperation” and 
“competition”) learning, such as in the case of Generative 
Adversarial Networks (GANs), wherein two AIS (e.g., 
generator and discriminator) engage in an “adversarial 
process” that segues to a win-win cooperative paradigm, (4) 
Transfer learning (e.g., wherein a pre-trained ML, with 
certain learnings already incorporated, can be fine-tuned and 
leveraged to undertake other tasks or wherein a distillation 
ML can transfer knowledge in a condensed form, thereby 
quickly enhancing efficacy and efficiency). However, to 
ascertain whether the learnings (e.g., employed approaches) 
are “effective” (or not) necessitates an AIS SoS ML on ML 
architecture that is more “white box” (e.g., wherein there is a 
higher degree of interpretability, such that the influencing 
variables are readily identifiable and the process — the 
involved model by which posits are generated — is more 
readily discernable) than “black box” (e.g., wherein 
opaqueness and/or translucency abounds); in other words, 
the desired “white box” AIS SoS ML on ML architectures 
need to have higher STEA (particularly interpretability). 

B. AI-centric STEA and its Criticality for ML on ML 
Along this vein, International Organization for 

Standardization (ISO)/International Electrotechnical 
Commission (IEC) 42001 focus upon AIS STEA; likewise, 
the Association for Computing Machinery (ACM) 
“Principles for Algorithmic Transparency and 
Accountability,” Institute of Electrical and Electronics 
Engineers (IEEE) Standard for Transparency of Autonomous 
Systems (P7001), and others follow suit. Addressing the “T,” 
a key factor for AIS architecture (e.g., “black-box,” “gray-
box,” and “white-box”) is in the form of transparency (e.g., 
opaque, translucent, and fully transparent). Addressing the 
“E,” McKinsey portrays it as the “capacity to express why an 
AIS reached a particular decision, recommendation, or 
prediction” [9]; this tracks with prevailing definitions within 
the Explainable AI (XAI) field. Addressing the “A,” it 
involves the prior “T” and “E,” as the justification logic 
employed needs to be articulated; on this point, there is a 
nuance. While explainability and interpretability are often 
treated synonymously within the literature, perhaps they 
should be better distinguished. While explainability focuses 
upon why the AIS made certain posits, interpretability 
focuses upon how the AIS formulated its posits; restated, the 
latter delves into the AIS’s DE/DM processes to derive 
insights into the pathways for the justification logic involved. 
Together, interpretability & explainability are referred to as 
I&E, and I&E is a lynchpin for operationalizing effective 
ML of ML. 

C. Interpretability and AIS SoS ML on ML Architecture 
For the dual pillars of I&E, interpretability turns out to be 

paramount. Yet, despite its criticality, interpretability tends 
to be challenged by the degree of complexity of the involved 
AIS architecture. For example, Table I presents degrees of 
interpretability (wherein green denotes high, yellow denotes 
medium, orange denotes medium/low and red denotes low) 
for various complexities; there is a column “Monotonic” 
denoting when the ML model is monotonically constrained 
(wherein a change at the input variable segues to a change at 
the response function output), and there is a row “Linear” to 
indicate when the output is proportional to the input as well 
as a row “Non-linear” to denote when the relationship is 
more complex (e.g., convoluted interplays among features, 
ambiguous boundary areas, intricate sequences of local, 
glocal, and global transformations, etc.). Table I is 
rudimentary since, as noted in Section I, the spawning of 
“non-monotonic, non-polynomial,  and even non-continuous 
functions” is not infrequent [7]; this greatly complicates 
matters, and gauges for interpretability are often tied to 
“measure[s] of model complexity,” such as “the Vapnik-
Chervonenkis dimension (VC-dim)” [10]; the VC-dim can, 
by way of example, be indicative of the number of weights, 
rules, etc., (but does not equate to them). 

TABLE II.  EXEMPLAR ML MODEL PROCESS INTERPRETABILITY 
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To date, STEA Efforts have tended to be on the post-side 
(e.g., Model Agnostic or MA), and those on the pre-post- 
side (e.g., Model Specific or MS) have had varied 
limitations. Exemplars of MA (e.g., Local Interpretable MA 
Explanations or LIME, Shapley Additive exPlanations or 
SHAP, etc.) and MS approaches (e.g., Gradient-weighted 
Class Activation Mapping or Grad-CAM, which is geared 
more for Convolutional Neural Networks or CNNs; Deep 
Learning Important FeaTures or DeepLIFT, which is geared 
for Keras and TensorFlow implementations; etc.) — the 
latter being constrained to a more limited set of ML models 
— are shown in Table II. 

TABLE III.  ML MODEL TYPES WITH EXEMPLAR I&E TOOLS 

 
 
On the MS side, since the LR coefficients “directly represent 
the influence of each feature on the prediction,” LR is 
construed as green when compared to the yellow of DT 
(which may have a complicated branching structure), the 
orange of NN (which may have complex internal workings, 
as contrasted to the more simplistic rules of DT), and the red 
of DL (which typically has a far greater number of layers 
than NN) [11]. On the MA side, LIME is oriented for more 
localized and individualized instances while SHAP 
capabilities extend beyond local and can well contribute 
towards a more global perspicacity across a gamut of 
instances; SHAP is well-suited to ascertain the more 
impactful features (i.e., as each feature will have a SHAP 
value to signify the impact on the posit, the features of 
import can be ascertained, and feature combinations that are 
able to maintain posit accuracy can be formulated while also 
considering the non-dominance principle, wherein no other 
feature combinations can provide posits without a 
degradation of efficacy in another facet) at the local, glocal, 
and global levels.  

D. Optimal Shapley-Owen-Nondominated Solution 
(OSONS) for Enhanced STEA and Construct Validity 
The Optimal Shapley-Nondominated Solution (OSNS) 

paradigm of Section IIC was explored as shown in Table III.  

TABLE IV.  EXEMPLAR DIGITAL OBJECT IDENTIFIERS (DOI) FOR 
VARIOUS FACETS OF OSNS  

OSNS context Facet DOI 
STEA In 

general: 
• 10.1109/AIIoT61789.2024.10579033 
• 10.1109/OETIC57156.2022.10176215 

HON • 10.1109/AIIoT61789.2024.10579029 
• 10.1109/IBDAP62940.2024.10689701 

DAWS • 10.1109/ICPEA56918.2023.10093212 
• 
10.1109/ICSGTEIS60500.2023.10424230 

LAHU • 10.1109/GEM61861.2024.10585580 
STEA-related 

SOS 
boundary 

areas 

C2 of C2 • 10.1109/IEMCON.2019.8936241 
• 10.1109/IAICT62357.2024.10617473 

ML of 
ML 

This paper 

In essence, it delineates prior work in the context of: (1) 
enhanced STEA, which facilitates a better understanding of 
the influence of HON-related drivers, a finer-tuned and more 
robust DAWS, and a more readily interpretable/leverageable 
repertoire of experience for a LAHU situation, as well as (2) 
STEA-related SoS boundary areas, such as those related to 
Command and Control (C2) of C2 (i.e., now ML of ML). 
For this paper, the notion of OSNS is expounded upon, as 
varied SHAP approaches differ in their local and global 
efficacies. By way of background, Borgonovo had referred 
to this hybridized efficacy as “glocal” (a portmanteau of 
“global” and “local”). Among other contributions, as a gauge 
of feature import (a key tasking of construct validity), SHAP 
values can be invaluable; Lundberg had advocated for SHAP 
to “explain various machine learning [ML] algorithms” [12]. 
With regards to the previously discussed (1) of this Section 
IID, Balog affirms the import of STEA-related HON-related 
drivers, and Sundararajan reinforces this perspective 
[13][14]. Kwon addresses the import of STEA-related 
DAWS, introduces “WeightedSHAP,” and distinguishes it 
from the standard SHAP, which “uses the same weight for 
all marginal contributions;” Kwon also “demonstrates that 
the influential features identified by WeightedSHAP are 
better able to recapitulate the model’s predictions compared 
to the features identified by the [classical] Shapley value” 
[15]. Addressing the matter from a different vantage point, 
Kotthoff raises the significance of utilizing the temporal-
sensitive/temporal-centric (as contrasted with the classical) 
Shapley value, and the temporal-centric LAHU notion is 
delineated by the associated DOI shown in Table III [16]. 
With regards to the previously discussed (2) of this Section 
IID, Guidotti affirms the importance of ML model inspection 
at the margins (e.g., STEA-related SoS boundary areas) [17]. 
These SoS boundary areas refer to, among others, regions 
between/among individual/amalgam constituent components 
as well as local/glocal/global interstices. With regards to the 
former, Dhamdhere affirms the notion of “Shapley-Owen 
values” “for the quantification of joint contributions” [18]. 
With regards to the latter, Borgonovo advocates the use of 
Finite-Change Shapley-Owen or FCSO values, such as 
articulated by Dhamdhere), which are well suited for the 
testing facet (e.g., the discussed aspect of Section IB is more 
focused upon local/hyper-local scrutinization of the ML 
model) [18]; in conjunction with this, the Shapley-Owen 
values (generally, the Generic Shapley-Owen or GSO values, 
such as articulated by Grabisch, and more granularly, 
Borgonovo’s suggested Variance-Based Shapley-Owen or 
VBSO values) can well serve in a generalized fashion — 
globally — across the model in its entirety [19][20]. 
Specifically, Borgonovo underscores the fact that FCSO 
values have equivalence to what Mase deemed to be the 
Baseline Shapley (i.e., the average of the FCSO values 
function under uncertainty) [20][21]; this Baseline Shapley 
also relates to the VBSO, since the upstream local finite-
changes for the FCSO values segues to the Glocal Partial 
Dependence Function (which segues to the Conditional 
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Regression Function and what Mase deemed to be the 
“Squared Cohorts” value function) [20][21]. Borgonovo 
notes that by averaging the “Squared Cohorts” Shapley-
Owen or SCSO values, the VBSO values can be obtained 
[20].  This reflects one of the many interplays among local, 
glocal, and global, and is also indicative of how “additional 
insights into the [ML] model behavior” are possible [20]; 
these supplemental insights segue to enhanced construct 
validity, which provides the basis for more robust ML of 
ML. 

III. EXPERIMENTATION 
ML of ML is a central tenet of this paper. To improve 

upon the ML model and the involved SoS, the need for 
interpretability (and STEA) is paramount. After all, 
constituent component and interstitial analyses is vital for 
determining whether the prospective ML learnings are of 
potential benefit; in some cases, RCA will be needed to 
discern and mitigate against problematic areas affecting 
performance. Borgonovo’s glocal notion can help bridge the 
gap, and the significance of the OSNS segueing to an 
Optimal Shapley-Owen-Nondominated Solution (OSONS) 
paradigm is well articulated by Casajus, Lopez, Beal, and 
others [22][23][24]. In essence, the Owen value (which well 
captures the nuanced interactions between/among the 
members of the feature set) extends the Shapley value 
(which well captures the individual feature contributions) in 
a consistent fashion. However, OSONS is also just a 
precursor, and the utilization of the b-SHAP amalgam (e.g., 
temporal-centric FCSO values, SCSO values, and GSO 
values/VBSP values) is central. In turn, the b-SHAP 
amalgam needs to be leveraged in conjunction with a well-
counterpoised MADM/MODM SM/OM paradigm. Wu, 
Wang and others have advocated for the use of the 
Technique for Order Preference by Similarity to Ideal 
Solution (TOPSIS) OM in conjunction with SHAP [25][26]. 
Meanwhile, Hua and others have advocated for the use of 
the PROMETHEE OM with SHAP (there is a dearth of 
research for SHAP with other OMs, such as ÉLimination Et 
Choix Traduisant la REalité or ELECTRE) [27]. The 
experimentation evaluated both of the former cases, and a 
finding, among others, is that of utilizing an OM (e.g., 
CRITIC) to first, derive the criteria weights and second, use 
a complementary pairing for the ensuing ranking (e.g., 
TOPSIS, PROMETHEE).  

A. Theoretical Foundations 
As described in the last paragraph of Section I, the issue 

of Non-deterministic Polynomial-time Hardness (NP-hard) 
problem spawning is problematic, such that Spawn 
Reduction becomes critical [8]. The involved optimization 
problem transformation pathways, such as those shown in 
Figure 1, strive to effectuate the non-convex to convex 
transmogrification.  

 
Figure 1.  Non-convex to convex Transformation Pathways (e.g., non-

convex discontinuous non-linear MINLPs to convex form) 

A similar phenomenon is shown in Figure 2; after all, 
ML algorithms have a propensity to spawn “non-monotonic, 
non-polynomial, and even non-continuous (i.e., 
discontinuous) functions” [7]. Of note, the transformation of 
non-convex to convex can often inadvertently spawn further 
NP-hard problems. However, once in a convex form, a 
variety of Semi-Definite Programming (SDP) solvers can be 
employed to resolve the optimization problems in 
polynomial time [28].  

 
Figure 2.  Non-convex to convex Transformation Pathways (e.g., non-

convex [non-monotonic, discontinuous] non-polynomial MINLPs to 
convex form) 

B. Experimental Testbed 
Taking the case of NN, as depicted in Table II of Section 

II, the interpretability is in the orange (medium/low 
interpretability), as NN is more complex that DT and LR. 
However, for an enhanced STEA/construct validity-centric 
paradigm, a tasked ML can well learn atop the other MLs, 
adjust the involved ML model[s], and ascertain ways to 
mitigate against/lower the inadvertent spawning (i.e., Spawn 
Reduction). For this reason, the testing facet (at the 
constituent component level and interstices) of the 
performance metrics conjoined with construct validity 
considerations become central to the ML of ML task for the 
reduction of the spawning of further non-convex MINLP 
(e.g., from the transformation pathways of non-convex 
MINLP to convex MILP). In this case, the testing facet 
mechanisms and the utilized SDP solvers were implemented 
aboard GNU’s Not Unix (GNU) Octave (a “numerical 
computation platform” that is “under the GNU [General 
Public License] (GPL) v3 license” and is generally 
“compatible with the likes of MATLAB”) along with a 
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myriad of Octave Forge packages [28]. As noted in [28], 
“the source code was modified in the lab environment” so as 
to implement accelerants for the referenced SDP solvers to 
quickly address the various involved convex optimization 
problems described herein. Also, as noted in [28], “GPLv3 
avoids the issue of tivoization (the instantiation of a system 
that incorporates software under the terms of a copyleft 
software license but leverages hardware restrictions or 
digital rights management to prevent users from running 
modified versions of the software on the involved 
hardware)” [28]. Testing was conducted using a variety of 
open-source software packages, such as Automatic 
Differentiation Model Builder (ADMB) (for non-linear 
statistical modeling) and Interior Point OPTimizer (IPOPT) 
(for large-scale nonlinear optimization) [28]; other 
promising software packages, such as LOQO (like IPOPT, it 
is based upon the interior-point method) and Sparse 
Nonlinear OPTimizer (SNOPT) (it leverages Sequential 
Quadratic Programming or SQP for resolving large-scale 
non-linear optimization problems) were examined, but they 
were not utilized given their licensing caveats.  

It had been discussed in [8] that a particular numerical 
implementation of Continuous Wavelet Transforms 
(CWTs), aboard a CPRLD architectural paradigm, well 
contributes to STEA by way of the intrinsic “successive 
convolutional layers (which contain the cascading of ever 
smaller ‘CWT-like’ convolutional filters)” [8]. The 
referenced CPRLD construct handled the various 
transformation pathways delineated in Figures 1 and 2 (e.g., 
convex approximations, series of convex relaxations, etc.), 
and the architectural implementation for this paper was 
unique in that a ML of ML paradigm was implemented for 
Spawn Reduction (SR2 on SR1), such as shown in Figure 3.  

 

 
Figure 3.  CPRLD Architectural Construct with a ML of ML (SR2 on SR1) 

Spawn Reduction paradigm 

In terms of implementation details, a DCNN-centric 
instantiation was chosen for the requisite sufficient balance 
of reduced computational complexity along with sufficient 
robustness to be fit for purpose. The assigned tasks of the 
various DCNN are labeled accordingly in Figure 3. For 
example, as DCNN-1 was tasked with being the key solver 
for the involved convex optimization problems, it required a 
high degree of numerical stability, and PyTorch version 
0.4.1 was selected; DCGAN-1 leveraged a “forward stable” 
TensorFlow-based DL Convolutional GAN (DCGAN) 

implementation to be able to well address the potentiality of 
mode collapse/mode failure (a phenomenon that may occur 
when adversarial GANs, which are being trained in tandem, 
are either unable to converge or undergo an anomalous 
convergence) [8]. 

C. Experimental Construct 
With regards to the involved experimental construct, as 

can be seen in Figure 4, prior experimentation aspects used 
as presets are reflected in blue font while current 
experimental elements are shown in purple font. The “t-” 
elements (e.g., f-FCSO, t-SCSO, t-GSO, t-VBSO) of b-
SHAP are extrapolations of Borgonovo’s work (previously 
discussed in Section IID) that more fully consider 
Kotthoff’s emphasis on temporal-sensitive/temporal-centric 
Shapley values [20]. STEA-related experimental forays for 
various OM were conducted. The OM of CRITIC was 
utilized as a preset for deriving the criteria weights, and the 
OMs of PROMETHEE, TOPSIS, and ELECTRE were 
utilized for the subsequent rankings. Initial selections and 
avoidances, among others, were based upon the following 
rationale. For example, PROMETHEE was known to be 
“easily… understood” and interpretable, so it was selected 
for testing [29][30]. Along this vein, [fuzzy] VIKOR was 
not selected, as it was known to be less interpretable and 
“less explainable than other more intuitive methods” [31]. 

 

 
Figure 4.  AI-based CVVM (ISA) Experimentation Aspects 

Overall, selections were made to improve STEA/I&E. Yet, 
there were other technical considerations as well. A number 
of methodologies are subject to a phenomenon known as 
“Rank Reversal” (RR), wherein ranking results might 
change when the method changes or when the set of 
alternatives changes (leading to inconsistent and/or 
inaccurate results). The select OMs experimented with were 
known to be the most resistant to RR (yet are still subject to 
the phenomenon), and preliminary results are shown in 
Figure 5 below [32]. The key for the chart is as follows. 
First, the referenced “select OMs” of this Section IIIC are 
self-evident: ELECTRE, TOPSIS, and PROMETHEE. 
Second, these “select OMs” were benchmarked by 
execution time (E), sensitivity (S), performance under 
uncertainty (U), validity (V), and interpretability (I). Third, 
the aforementioned were benchmarked against classical 
SHAP (c-SHAP), as well as the b-SHAP approach 
described within this paper. Using the CPRLD as a preset, 
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collectively, this forms the basis of the ISA described 
herein. The relative values were normalized against a scale 
of one to ten for ease of comparison. 

 
Figure 5.  Preliminary Results from b-SHAP/select OM Benchmarking 

The V and I were higher for PROMETHEE than for 
TOPSIS or ELECTRE. The E for TOPSIS was notably 
higher than that of the others, but the computational 
complexity is known to be less, and the performance under 
conditions of U was weaker than that of the others; the 
performance of PROMETHEE under conditions of U were 
seemingly better than ELECTRE and TOPSIS, in that order. 
Overall, the performance of b-SHAP was better than that of 
c-SHAP across the board for the range of E, S, U, V, I (for 
all the “select OMs” of ELECTRE, TOPSIS, and 
PROMETHEE). Hence, the b-SHAP-PROMETHEE 
amalgam (along with the CRITIC, CPRLD, etc. presets) 
exhibits promise. 

IV. CONCLUSION 
In consideration of Abraham Maslow’s notion regarding 

the predilection that follows when there is only one tool to 
utilize, Section IIIC depicted some of the metrics 
underpinning the selection of a variety of methods and the 
comparative performance. For example, with regards to I&E, 
PROMETHEE was initially chosen over [fuzzy] VIKOR. As 
another example, PROMETHEE, TOPSIS, and ELECTRE 
were selected for testing, as they were reported to be more 
resistant to RR than certain other methods. As yet another 
example, Figure 5 depicted the relative performance of the 
methods for E, S, U, V, I; TOPSIS had a comparatively 
better E when E was considered in isolation, but it did not 
fare well under U, and along this vein, PROMETHEE did 
fare reasonably well under conditions of U when compared 
to ELECTRE and TOPSIS, etc. This brings us to the primary 
impetus of this paper, which centered upon enhancing 
robustness of the testing facet (with more granularity) at the 
interstices (e.g., interstitial areas between/among 
individual/amalgam component at the local, glocal, and 
global levels), better illuminating I&E/STEA DE/DM 
pathways, and operationalizing AI-based CVVM for the 
purposes of achieving higher efficacy AI SoS ML on ML for 
RWS. The hitherto lack of methodologies in this regard have 
led to RWS paradigms, wherein AIS adversely impact other 
AIS with the potentiality of cascading failure for the 
involved AI SoS (a.k.a., “near misses”). Moreover, the 

testing facet involves performance metrics conjoined with 
construct validity considerations. On the performance 
metrics front, OSONS was found to have greater efficacy 
than OSNS. Similarly, the b-SHAP (which involves various 
temporal-centric SHAP instantiations for local, glocal, and 
global) and PROMETHEE (along with CRITIC) amalgam 
was found to be more robust than the b-SHAP/TOPSIS or b-
SHAP/ELECTRE amalgams on the interpretability front. 
Also on the performance front, spawn reduction turns out to 
be central, for once in the convex form, a myriad of SDF 
solvers can be leveraged to handle the involved optimization 
problems in polynomial time; otherwise, NP-hard spawn can 
congest matters with an indefinite impasse. The 
advancement of STEA/I&E necessarily involves HONs, 
DAWS, and LAHU, and these presets were discussed; the 
enhanced STEA/I&E discernment segues to more robust 
feature alignment, robust interpretation, etc., which 
constitutes enhanced construct validity. For this reason, it 
seems apropos to have the “Enhancement of an AI-based 
Construct Validity Approach” be the overarching descriptor 
of this paper. Future work will involve more quantitative and 
qualitative experimentation in the aforementioned areas. 
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