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EXPLAINABILITY 2025

Forward

The Second International Conference on Systems Explainability (EXPLAINABILITY 2025), held on
October 26-30, 2025 in Barcelona, Spain, continued a series of events dealing with models and metrics
to build a documented and provable trust for the developers and users of any kind of system.
Explainability helps to validate tracking between system design requirements and current
implementation ensuring validation of evolving properties by continuously learning and adapting the
original requirements.

Interpretability, Explainability, and Understandability are characteristics needed for any product,
system, device, government regulation, or societal law to increase their trustfulness and acceptability by
the end-users. Their role is to avoid bias and increase confidence in the systems’ output.

Explainability favors interpretability and understandability and should be considered during the
requirements, design, deployment and maintenance phases of all software, hardware, and complex
systems. To a large extent, explainability is present as a user manual, software requirements tracking
and code identification, validation/testing results, interactive interfaces, explanation of models,
guidelines for industrial robots, and in any human-driven procedural processes. Desiderata on
explainability become more complex for Artificial Intelligence (AI)-based entities/systems in terms of
'thinking' via internal mechanisms and accepting/trusting the output.

Explainability is a sought-after property of any complex 'products'. In AI-based systems, the
explanation of the behavior of models for certain critical systems is mandatory. This is a complex task,
considering that the behavior is the result of intricate development processes involving humans,
algorithms, datasets, and other artificial entities (tools).

This conference was very competitive in its selection process and very well perceived by the
international community. As such, it attracted excellent contributions and active participation from all
over the world. We were very pleased to receive a large amount of top quality contributions.

We take here the opportunity to warmly thank all the members of the EXPLAINABILITY 2025
technical program committee as well as the numerous reviewers. The creation of such a broad and high
quality conference program would not have been possible without their involvement. We also kindly
thank all the authors that dedicated much of their time and efforts to contribute to the EXPLAINABILITY
2025. We truly believe that thanks to all these efforts, the final conference program consists of top
quality contributions.

This event could also not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the EXPLAINABILITY 2025
organizing committee for their help in handling the logistics and for their work that is making this
professional meeting a success.

We hope the EXPLAINABILITY 2025 was a successful international forum for the exchange of
ideas and results between academia and industry and to promote further progress in system
explainability research. We also hope that Barcelona provided a pleasant environment during the
conference and everyone saved some time for exploring this beautiful city

EXPLAINABILITY 2025 Steering Committee

Thomas Fehlmann, Euro Project Office AG, Zurich, Switzerland
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Abstract—Deep Neural Networks (DNNs) deployed in 
high-risk domains, such as healthcare and autonomous 
driving, must be not only accurate but also understandable 
to ensure user trust. In real-world computer vision tasks, 
these models often operate on complex images containing 
background noise and are heavily annotated. To make such 
models explainable, Concept-based Explainable AI (CXAI) 
methods need to be assessed for their applicability and 
problem-solving capacity. In this work, we explore CXAI 
use cases in multi-label classification by training two DNNs, 
VGG16 and ResNet50, on the 20 most annotated labels 
in the MS-COCO dataset (Microsoft Common Objects in 
Context). We apply two CXAI methods, CRP (Concept 
Relevance Propagation) and CRAFT (Concept Recursive 
Activation FacTorization), to generate concept-level expla- 
nations and investigate the overall evaluations. Our analysis 
reveals three key findings: (1) CXAI highlights learning 
weaknesses in DNNs, (2) higher concept distinctiveness 
reduces label and concept confusion, and (3) environmental 
concepts expose dataset-induced biases. Our results demon- 
strate the potential of CXAI to enhance the understanding 
of model generalizability and to diagnose bias instigated 
by the dataset. 

Keywords-Concept-based XAI; Multi-Label Classification; 
Concept Distinctiveness. 

 

I. INTRODUCTION 

Deep Neural Network (DNN) [1] performance is 

crucial for their adoption in real-world applications. 

However, understanding their decisions is also impor- 

tant, especially in high-risk domains like autonomous 

driving and medical diagnosis. Real-world datasets often 

vary in resolution and object size, with complex scenes 
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including small, clustered, or overlapping objects. Multi- 

label datasets, where images have multiple annotations, 

frequently suffer from class imbalance. This can lead 

to confusion (i.e., errors made in predicting the correct 

class/data points) between labels and wrong associations. 

Even high-performing models that exhibit confusion 

need deeper analysis. Explainable AI (XAI) methods are 

useful in revealing these learning patterns [2]. 

XAI provides interpretability for black-box models 

[2]. Concept-based XAI (CXAI) identifies semantically 

meaningful features relevant to a class [3], unlike 

saliency maps, which are harder to interpret in complex 

scenes [4]. Concepts reflect how a DNN internally repre- 

sents a class [5]. However, DNNs may learn unintended 

associations, concept bias or spurious correlations, where 

background elements influence classification (e.g., as- 

sociating “fingers” with a pen) [6]. We refer to non- 

target concepts produced by such bias as “environmental 

concepts.” 

CXAI methods often visualize activation maps or 

focused image regions [7]. These show both target and 

environmental concepts. Determining whether an envi- 

ronmental concept is valid requires further analysis. Its 

presence may reflect dataset bias or mislearning. 

In this work, we train two state-of-the-art DNNs, 

ResNet50 and VGG-16, on the 20 most annotated MS- 

COCO labels [8]. Using two model checkpoints per 

architecture, one well-performing and one poor, we 

evaluate their predictions using CXAI methods: CRP [9] 

and CRAFT [10]. These methods produce focused region 

1Copyright (c) IARIA, 2025.     ISBN:  ISBNFILL
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visualizations and scores that determine a concept’s 

contribution to the overall learning (concept importance) 

or target label learning (concept relevance) of the DNN 

model. We compare results using concept error and 

distinctiveness (see Section III, D) to study confusion 

trends across models. 

The main contributions of this paper can be 

summarized as follows: 

• We demonstrate that CXAI methods can reveal 

learning weaknesses in deep neural networks. 

• We find that greater concept distinctiveness is asso- 

ciated with reduced confusion in label predictions 

and concept attributions. 

• We show that environmental concepts can expose 

dataset-induced biases in model learning and inter- 

pretation. 

The remainder of this paper is organized as follows: 

Section II reviews related studies. Section III describes 

the experimental setup, including the dataset, DNN mod- 

els, CXAI methods, and key terminology. Section IV 

presents the results structured around our three main 

contributions. Finally, Section V concludes the paper and 

discusses directions for future work. 

II. RELATED WORK 

Various CXAI methods are available for use today, 

and it is a growing research field. Lee et al. [11] 

detail the current state of CXAI methods. Their study 

identifies three main directions for future research: the 

choice of concepts to explain, the selection of concept 

representation, and methods to control concepts. 

Some studies focus on using concepts to detect poten- 

tial biases in DNN models. Their evaluation emphasizes 

the relationship between different concepts and classes 

and aims to expose potential biases in the learning of 

the DNN. Singh et al. [12] study model biases in both, 

the model learning process and the model’s semantic 

understanding (concept biases), by evaluating the DNN 

model’s ability to recognize a class in the presence and 

absence of the established context (via learning) for a 

multi-label classification task. 

With newer emerging methods in the realm of CXAI, 

the desire to fully understand how they can be effec- 

tively used with AI systems increases. The dataset, for 

example, is an important factor contributing to the mean- 

ingfulness of the explainability method. The evaluation 

of CXAI by Ramaswamy et al. [13] addresses important 

considerations for CXAI methods that influence their 

effective usage. They emphasize that the impact of the 

choice of the dataset, even with slight variations in the 

dataset options, changes the model decision and the 

explanation provided by a CXAI method. 

To study the relationship between confusion and 

concept-based explanations, we select two CXAI meth- 

ods to answer the “where” (..the important information 

is) and “what” (..is the important information) questions. 

CRP, proposed by Achtibat et al. [9], is based on the 

Layer-wise Relevance Propagation (LRP) method [14]. 

CRP addresses “what” and “where” explanations by 

exploiting concepts in hidden layers of a DNN model 

and locating them in the input data. It assesses the 

contribution of each concept for a target class; in other 

words, it introduces concept relevance. CRP utilizes 

relevance maximization to tune its visualization, which 

depicts a series of focused concepts. CRAFT is another 

“what” and “where” method proposed by Fel et al. [10] 

based on the Grad-CAM method [15]. They utilize Sobol 

indices to estimate the importance of concepts that have 

been identified using Non-Negative Matrix Factorization 

(NMF) recursively, generating sub-concepts (concepts of 

smaller, more focused areas in the image). 

Existing research has advanced CXAI by defining 

concepts and applying them to detect biases and assess 

dataset effects. Building on this foundation, our work 

investigates how confusion interacts with concept-based 

explanations through the lens of CRP and CRAFT. 

 

III. EXPERIMENTAL SETUP 

Just as with any other explainable AI pipeline, our 

experimentation contains the training of DNNs model 

and its evaluations and the usage of an XAI method 

and its evaluation, illustrated in Figure 1. This section 

contains details of our workflow. 

 

Figure 1. Schematic diagram of our experimental setup. 
 

 

 

A. Dataset 

MS-COCO [8] is a large-scale dataset widely used 

for computer vision tasks such as object detection, cap- 

tioning, segmentation and classification. The 2017 object 

detection subset includes 80 “things” classes, objects 

with clear boundaries, across 118,000 images. As test 

labels are unavailable, we split the training set 90/10, 

resulting in 106,200 training and 11,800 test images. For 

our experiments, we focus on the 20 most frequently 

annotated labels in the training set to ensure sufficient 

data per class and meaningful inter label relationships. 
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i C C 

B. DNN Models 

ResNet50 [16] is a popular image classification model 

due to its residual learning feature, which mitigates 

information loss. It balances accuracy and efficiency 

well, and its ImageNet-pretrained weights are widely 

used [17]. 

VGG-16 [17], known for its simple and uniform struc- 

ture of stacked convolutional and fully connected layers, 

is often used as a baseline for deep learning applications. 

Despite its larger parameter count, it performs well on 

classification tasks and is easy to implement. 

These two models are chosen as they are widely used, 

and many XAI methods have been proven to work with 

them. Some of the latest models require large adaptations 

of XAI methods to be made [18]. Our study focuses 

on base-level use cases, to be adaptable across different 

domains; hence, we train ResNet50 and VGG-16 models, 

pretrained on ImageNetV2 [19], using PyTorch for 350 

epochs, saving all checkpoints. For each model, we select 

two “scenarios” from the saved checkpoints: 

• Scenario 1 (well-performing model): 

While both methods offer different perspectives, we 

do not compare them directly or suggest one is superior. 

Instead, we use their outputs to explore how label 

confusion is reflected in learned concepts. 

We compute concept distinctiveness [21] and concept 

error [22] for both methods. Concept error is evaluated 

against a subjective ground truth (detailed in the next 

section). Additionally, we adapt mutual information to 

measure shared information between concepts and com- 

pare these findings to our DNN evaluations to support 

our hypotheses. 

 

D. Explanation of terms (in brief) 

This sub-section briefly explains some terminologies 

in CXAI and our adaptations. 

1) Concept Distinctiveness: Concept distinctiveness, 

defined in Eq. (1), measures how unique a concept is 

compared to others, with values ranging from 0 to 1. 

Low distinctiveness suggests overlapping or redundant 

concepts, which may indicate learning errors [21]. 

– ResNet50: Accuracy: 82.85%, Recall: 85.50, 

Precision: 58.84, F1 Score: 60.84 

 vCi · vCj  

D(Ci, Cj) = 1 − 
|v  ||v  | 

(1) 

– VGG-16: Accuracy: 84.26%, Recall: 86.91, Pre- 

cision: 59.74, F1 Score: 58.84 

• Scenario 2 (poor-performing model): 

– ResNet50: Accuracy: 58.24%, Recall: 77.04, 

Precision: 53.82, F1 Score: 42.92 

– VGG-16: Accuracy: 52.85%, Recall: 74.50, Pre- 

cision: 53.62, F1 Score: 46.12 

These scenarios are created to have two different 

sets of performance metrics against which to evaluate 

explainability. We evaluate models using accuracy, re- 

call, precision, F1 score, and confusion matrices tailored 

for multi-label tasks. Specifically, we use the multi- 

label confusion tensor by Krstinic´ et al. [20], which 

accounts for label imbalance—well-suited for the MS- 

COCO dataset. 

We also compute Mutual Information (MI) and Jac- 

card Similarity Coefficient (JSC) between labels. We use 

these metrics to understand which target labels are more 

likely to share information or similarities with which 

predicted labels. 

C. CXAI Methods 

We investigate the effect of confusion on two CXAI 

methods, CRAFT and CRP, across all four model sce- 

narios. 

• CRAFT outputs concept importance, representing 

the overall contribution of each concept to the 

model’s learning process. 

• CRP provides concept relevance, indicating the 

contribution of a concept to specific target classes. 

Here, vCi and vCj are the concept vectors for concepts 

Ci and Cj, respectively. Concept vectors are directions 
in activation space that capture distinct features [23]. 

2) Concept Error: Concept error captures incorrect or 

irrelevant concept usage during prediction [22]. To ap- 

proximate accuracy (in binary classification), we define 

a rough “ground truth” by selecting only those concepts 

that belong to the target class, excluding environmental 

concepts. This approach offers an estimate of model con- 

fusion, though a structured human study is recommended 

for practical validation. 

3) Mutual Information: Mutual information (MI) 

quantifies the dependency between two variables. In 

multi-label classification, it measures how much infor- 

mation one label provides about another. Applied to 

concepts, MI reflects how much information is shared 

between two concept vectors, revealing potential depen- 

dencies or redundancies in learned features [24]. 

 

IV. RESULTS 

In this section, we present our findings based on case 

studies of different label evaluations. These case studies 

comprise comparisons of the evaluations described in the 

previous section. 

 

A. Confusion in Labels Can Be Understood by Their 

Explanations

j 
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TABLE I. TOP CONFUSION AND MUTUAL INFORMATION SCORES IN SCENARIO 1 OF RESNET50 
 

Class 

Name 

Top Confusion 

Class 

Top MI 

Class 

Jaccard 

Similarity 

1st Score 2nd Score 1st MI Score 2nd MI Score 

person car 1148.00 chair 1081.70 handbag 0.0221 backpack 0.0176 0.6008 

car truck 207.17 bench 173.16 truck 0.0400 traffic light 0.0280 0.1894 

motorcycle truck 86.33 handbag 85.70 car 0.0094 person 0.0037 0.1474 

truck airplane 118.35 car 117.22 car 0.0399 boat 0.0020 0.0077 

boat Parking meter 89.70 car 76.30 chair 0.0682 fork 0.0017 0.0068 

 

TABLE II. TOP CONFUSION AND MUTUAL INFORMATION SCORES IN SCENARIO 2 OF RESNET50 
 

Class 

Name 

Top Confusion 

Class 

Top MI 

Class 

Jaccard 

Similarity 

1st Score 2nd Score 1st MI Score 2nd MI Score 

person backpack 1995.20 bench 1922.50 tie 0.0221 umbrella 0.0176 0.5470 

car backpack 340.70 bench 334.80 boat 0.0399 stop sign 0.0280 0.1159 

motorcycle backpack 277.60 handbag 273.41 bicycle 0.0372 car 0.0199 0.1289 

truck backpack 209.07 bench 200.09 motorcycle 0.0399 Fire hydrant 0.0077 0.0755 

boat car 134.04 bird 133.66 fork 0.0017 refrigerator 0.0010 0.0440 

 
 

 

 

 

TABLE III. PERCENTAGE OF CO-OCCURRENCE OF TARGET LABEL 

WITH OTHER LABELS (TOP 20 FREQUENTLY ANNOTATED LABELS) 
 

Class 

Name 

1st 

Class 
% 

2nd 

Class 
% 

person car 13.29 backpack 7.85 

car person 69.54 backpack 8.43 

motorcy 

-cle 
person 79.55 car 39.32 

truck person 65.15 car 59.80 

boat person 65.69 car 8.66 

traffic 

light 
car 61.22 person 59.19 

bench person 73.75 car 14.63 

bird person 24.56 boat 7.29 

sheep person 24.07 dog 7.59 

backpack person 91.06 car 18.69 

umbrella person 86.87 handbag 28.81 

handbag person 90.95 backpack 24.62 

kite person 92.84 car 11.54 

bottle person 53.65 cup 34.65 

cup person 52.76 
dining 

table 
50.92 

bowl 
dining 

table 
47.76 person 40.73 

banana person 41.37 bowl 23.05 

potted 

plant 
person 44.07 chair 38.61 

dining 

table 
person 49.58 chair 43.29 

book 
dining 

table 
75.61 cup 52.97 

TABLE IV. CXAI METHOD EVALUATION COMPARED WITH 
CONFUSION SCORE FOR ’PERSON’ LABEL 

 

Label Model 
CXAI 

Method 

Concept 

Error 

Concept 

Distinct 

-iveness 

Confus 

-ion 

Score 

Person 
ResNet 

Scenario 1 
Craft 0.20 0.76 0.09 

Person 
ResNet 

Scenario 2 
Craft 0.38 0.48 0.26 

Person 
VGG-16 

Scenario 1 
Craft 0.24 0.71 0.12 

Person 
VGG-16 

Scenario 2 
Craft 0.41 0.43 0.28 

 

 

 

Label confusion occurs when models struggle to dis- 

tinguish between classes with overlapping features or co- 

occurring contexts, often due to ambiguous data, mis- 

labeling, or internal misinterpretation. We hypothesize 

that CXAI methods, particularly through MI and concept 

distinctiveness, can reveal whether confusion stems from 

visual similarity, dataset bias, or how the model encodes 

relationships between labels. 

Tables I and II present confusion and MI scores 

for three highly confused classes across both ResNet50 

scenarios. In scenario 1, person is confused with car 

and chair, while car overlaps with truck and bench. 

MI analysis shows that person shares high information 

content with handbag and backpack, and car with truck 

and traffic light. These associations indicate that the 

model is not learning isolated class-specific features, 

but instead forming dependencies based on recurring 

visual or contextual co-occurrence. Table III supports 

this, showing frequent joint appearance of labels such 

as person and accessories, or car and truck, which 

reinforces these spurious links. 

Table IV further highlights the role of CXAI metrics 
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in understanding confusion. In scenario 1, where models 

perform better, person has lower concept error and 

higher distinctiveness, aligning with reduced confusion. 

In scenario 2, we observe the opposite: increased concept 

error, lower distinctiveness, and significantly higher con- 

fusion scores. These patterns suggest that when a model 

lacks distinct conceptual boundaries between classes, it 

tends to rely more heavily on misleading contextual 

aspects. 

Together, these findings show how CXAI methods 

help expose the roots of confusion. By combining ex- 

planations with performance metrics and co-occurrence 

statistics, we gain a clearer view of when confusion 

reflects real-world visual similarity versus when it results 

from dataset bias or poor internal representations. 

B. Distinctiveness Reduces Conceptual Confusion 

When a concept is distinct, its features are unique and 

specific, allowing it to be more accurately defined and 

recognized. In contrast, concepts derived from confused 

or overlapping labels tend to be “confused” themselves, 

as they learn features that are shared across multiple 

classes rather than those unique to their true class. This 

issue arises from concept bias, where the model may 

associate a class with irrelevant features that co-occur 

with other classes, as shown in Figure 2. 
 

Figure 2. Concepts of class “tennis racket” in scenario 1 of VGG-16. 
We can see that “person” is heavily present in these explanations. 

 
TABLE V. MUTUAL INFORMATION, CONCEPT DISTINCTIVENESS, 

AND CONCEPT ERROR IN SCENARIO 1 OF RESNET50 
 

Class 

Name 

Top MI 

(Concept) 

Lowest 

Distinctive 

(CRP) 

Lowest 

Distinctive 

(CRAFT) 

Concept 

Error 

1st 2nd 1st 2nd 1st 2nd Value 

person car backpack car backpack car 
tennis 

racket 
0.7291 

car truck bus truck 
traffic 

light 
handbag truck 0.5385 

dining 

table 
chair cup chair fork person chair 0.0166 

 

From the information given in Table VI, it is evident 

that a poor-performing model is not ideal for concept- 

based explanations due to the lack of clear distinctions 

between classes. This can be seen in scenario 2 of 

ResNet50, where classes like person show less dis- 

tinctiveness with other unrelated classes. In scenario 1, 

shown in Table V, we see a more effective distinction be- 

tween highly confused classes like car and person, which 

TABLE VI. MUTUAL INFORMATION, CONCEPT DISTINCTIVENESS, 
AND CONCEPT ERROR IN SCENARIO 2 OF RESNET50 

 

Class 

Name 

Top MI 

(Concept) 

Lowest 

Distinctive 

(CRP) 

Lowest 

Distinctive 

(CRAFT) 

Concept 

Error 

1st 2nd 1st 2nd 1st 2nd Value 

person car 
tennis 

racket 
backpack bottle backpack umbrella 0.8136 

car truck 
traffic 

light 
bench 

fire 

hydrant 
backpack boat 0.6388 

dining 

table 
cup bottle chair fork person 

potted 

plant 
0.0753 

 

 

indicates that a well-performing model actively tries to 

separate these difficult-to-distinguish classes (previously 

established based on confusion scores, see Table I, V, 

VI and III). 

By focusing on distinctiveness metrics and correlat- 

ing them with confusion patterns in Table I and co- 

occurrence in Table III, we see that increasing concept 

distinctiveness can significantly aid in or point to im- 

proved model performance. This insight not only helps in 

diagnosing where models are struggling but also guides 

how to curate datasets and improve feature learning 

to reduce confusion and improve overall classification 

accuracy. 

C. Environmental Concepts Reveal Dataset Biases 

 

Figure 3. Environmental concepts generated from CRP for class 
“car” in scenario 1 and 2 of ResNet50. 

 

 
TABLE VII. MUTUAL INFORMATION (CONCEPT), MUTUAL 

INFORMATION AND CONFUSION SCORES IN SCENARIO 1 OF 

VGG-16 
 

Class Name Top MI (Concept) Top MI (Class) Top Con fusion 

1st 2nd 1st 2nd 1st 2nd 

umbrella person handbag backpack handbag person car 

dining table chair fork chair cup apple person 

traffic light person car car fire hydrant person car 

 

Environmental concepts emerge from concept bias and 

often reflect patterns in the training dataset. We ob- 

serve that classes within the same “supercategory” (e.g., 

sports: baseball glove, tennis racket) tend to produce 

biased explanations, frequently including environmen- 

tal concepts from related classes, illustrated in Figure 

3. This suggests that, beyond model performance, the 

diversity and distinctiveness of training samples play a 

key role in learning meaningful class representations. 
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Figure 4. Concepts generated by CRP on OSDaR23 dataset for class 
"person". 

 

 

 

 

Table VII illustrates the top mutual information and 

confusion scores for selected classes. For instance, din- 

ing table in scenario 1 is frequently associated with 

chair, person, apple, and cup, which are labels that share 

semantic but not structural similarity. Such associations, 

while intuitive to humans, suggest that the model is 

not generalizing but instead relying on frequent co- 

occurrences, which is problematic in deployed systems. 

High concept error rates for classes like umbrella, per- 

son, handbag, and car, paired with low distinctiveness 

scores between semantically unrelated objects (e.g., um- 

brella and traffic light), reinforce this concern, especially 

when models perform poorly. 

To further support this, we evaluate OSDaR23 [25], 

a multi-sensor dataset for autonomous train driving. 

Despite strong accuracy (95.92%) and F1 (79.93) on 

a ResNet50 model trained on its RGB subset, CXAI 

explanations reveal low generalizability. Since person 

consistently appears near platforms or staircases, CRP 

visualizations heavily rely on these backgrounds, none of 

which are labeled in the dataset, as illustrated in Figure 

4. As a result, person has the lowest distinctiveness 

score with track, and a high concept error, indicating 

dangerous misattribution. 

These findings highlight how environmental concepts 

reveal dataset-induced biases that compromise gener- 

alization. In real-world or high-risk applications, such 

as autonomous systems, these misleading correlations 

can reduce model reliability. Diverse and well-annotated 

datasets are essential to prevent concept bias and ensure 

models learn robust, semantically accurate representa- 

tions. 

V. CONCLUSION AND FUTURE WORK 

Our study demonstrates that confusion in multi-label 

classification is directly reflected in concept-based ex- 

planations. By comparing model evaluations with CXAI 

properties, we observe that label confusion often results 

from overlapping or spurious environmental concepts, 

emphasizing the role of CXAI in uncovering learning 

biases and assessing model generalizability. We further 

show that concept distinctiveness is inversely related to 

conceptual confusion, models with higher distinctive- 

ness show clearer feature boundaries and reduced bias, 

while lower distinctiveness leads to shared or incorrect 

associations across classes. CRP and CRAFT help iden- 

tify such conceptual ambiguities, making them useful 

tools for model diagnosis. Finally, our results highlight 

that environmental concepts can reveal dataset-induced 

biases, especially in cases where co-occurring objects 

affect model learning. In datasets with label imbalance or 

strong contextual patterns, models may form misleading 

correlations, reducing their ability to generalize. This is 

particularly problematic in high-risk applications, rein- 

forcing the need for diverse, well-annotated datasets to 

ensure robust and reliable AI models. For future work, 

this case study can be extended to more complex models 

and datasets. 
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Abstract— In this paper, we propose an explainable 

framework to assess biomarker significance in brain stroke 

data by combining Causal Artificial Intelligence (AI), which 

models cause–effect relationships beyond simple correlations, 

with a Tsetlin Machine, a symbolic rule-based learning 

algorithm that generates human-readable logic clauses. In a 

first step, Causal AI is used to uncover complex 

interdependencies among biomarkers and to identify the most 

impactful ones, while the interpretable clauses of the Tsetlin 

Machine enhance understanding and support improved 

diagnosis, prognosis, and prevention in stroke patients. This 

methodological strategy sets a novel foundation for better 

understanding of complex brain diseases. 

Keywords - Brain stroke; Causal AI;  Explainability; 

Interpretability; Tsetlin Machine.  

I.  INTRODUCTION 

Stroke, caused by an alteration of the blood supply to the 
brain, is a medical emergency that requires immediate 
attention in urgent care departments and specialized stroke 
units. It is a leading cause of long-term disability and the 
second leading cause of death globally. In Spain, about 1 in 5 
stroke patients are readmitted with a recurrent stroke [1][2]. 
These statistics highlight the importance of early and 
accurate diagnosis, as timely intervention can significantly 
reduce mortality and long-term disability. Despite notable 
advances in medical imaging and diagnostics, deciphering 
the intricate relationships among stroke-related biomarkers 
remains a significant challenge.  

In recent years, Machine Learning (ML) has shown 
promise for detecting subtle patterns in biomedical data [3]. 
However, many ML models lack transparency, offering 
limited insight into how predictions are made. This opacity 
poses a major barrier to their adoption in clinical settings, 
where trust, accountability, and explainability are essential 
for informed decision-making.   

In this paper, we propose a novel approach that integrates 
Causal AI [4] to model cause-effect relationships rather than 
simple correlations among stroke-related biomarkers with 
Tsetlin Machines [5][6][8][9], a symbolic, rule-based 

learning model that can uncover and help interpret how 
specific biomarkers influence stroke outcomes. Causal AI 
refers to machine learning methods that model cause–effect 
relationships, beyond mere correlations, whereas Tsetlin 
Machines are interpretable, rule-based learning models that 
construct human-readable logic clauses for classification 
tasks [6]. For example, a Tsetlin Machine might generate a 
rule such as: “If LDL cholesterol is high and age is above 
65, and prior use of antiplatelet drugs is absent, then the 
patient is more likely to suffer an ischemic stroke.” Such 
clauses are easily understandable by clinicians and can be 
directly compared with established medical knowledge. 
Together, these not only enhance predictive accuracy, but 
also provide a transparent, interpretable insight essential for 
clinical decision-making.  

The rest of the paper is organized as follows. In Section 
II, we describe the methodology, including an overview of 
the dataset, pre-processing steps, the application of Causal 
AI, and the use of Tsetlin Machines for interpretable 
classification. In Section III, we present and discuss the 
results obtained from both the causal inference analysis and 
the Tsetlin Machine model, highlighting their clinical 
relevance. In Section IV, we conclude the paper by 
summarizing the key findings and outlining directions for 
future research and model improvements. 

 

II. METHODOLOGY 

In this section, we describe the methodology, with 

subsections on an overview of the dataset, pre-processing 

steps, Causal AI, and the Tsetlin Machines. 

A. Overview 

As mentioned in the introduction, we employ a hybrid 

methodology that combines Causal AI, a set of techniques 

designed to model cause–effect relationships rather than 

mere correlations, with Tsetlin Machines, symbolic rule-

based learning algorithms capable of generating human-

readable logic clauses. This integrated approach allows us to 

both identify the underlying causal relationships among 
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biomarkers that drive clinical outcomes in stroke diagnosis 

and prognosis, and to extract interpretable rules that clarify 

how specific biomarker patterns contribute to different 

stroke subtypes. By linking causal discovery with 

transparent classification, our method not only improves 

predictive power but also enhances clinical trust and 

explainability. The study has received the ethical approval 

of the Santiago/Lugo clinical ethical committee (code: 

2025/221). 

B. Dataset and pre-processing  

 
The dataset consists of about 4000 data points with 62 
features, containing relevant clinical, demographic and 
biochemical biomarkers. Standard pre-processing steps were 
applied, as listed below: 

• Removal of non-relevant features using domain 
knowledge (e.g., multiple stroke determination tests 
at various times would dominate causal relations, 
suppressing the weight of other biomarkers). 

• Missing value imputation using binary and iterative 
imputers, which estimate missing values by 
iteratively predicting them based on other available 
features. This is particularly useful in this data set as 
the relationships between medical features can 
provide valuable information for filling in missing 
data. This is done for binary and non-binary features 
respectively. 

C. Causal AI 

 
To identify potential causal relationships among 

biomarkers, we applied the PC algorithm (after its authors, 
Peter and Clark), a constraint-based causal discovery 
method, to the pre-processed dataset [7]. At this stage, the 
dataset contains approximately 50 features including the 
target (type of stroke – ischemic or haemorrhagic). 

Since our objective is to isolate the most influential 
biomarkers, we employed two graph-theoretic measures to 
rank nodes (features) within the causal graph: 

• Degree Centrality: Measures the number of direct 
connections for a node. High degree centrality 
suggests that a feature has broad influence. 

• Betweenness Centrality: Quantifies how often a 
node appears on the shortest paths between other 
nodes. High betweenness centrality implies that a 
feature is a critical intermediary or bridge in the 
causal network. 

To minimize selection bias to ensure that both direct and 
indirect influences are taken into account, we first created 
two separate ranked lists of features: one based on degree 
centrality and the other based on betweenness centrality. 

From each ranking, we extracted the top 25 features, 
representing those with the strongest influence according to 
the respective measures. Next, we introduced a composite 
centrality score, which assigns weights to features depending 
on their positions in the two rankings, thereby balancing the 
contribution of both centrality measures. Finally, by 
comparing the two lists and focusing on the features with the 
highest combined scores, we identified the 10 most 
influential biomarkers that consistently appeared as 
important across both centrality perspectives. 

 
D. Tsetlin Machines  
 

Following the identification of the top 10 biomarkers 
through causal inference, we applied a rule-based 
convergence Tsetlin Machine (TM) [8][9][10] to model their 
relationship with stroke subtypes. This model is a logic-
based learning algorithm that constructs human-interpretable 
propositional logic clauses to perform classification. It 
operates by learning patterns expressed as conjunctive 
logical clauses, where each clause is essentially a 
combination of conditions that must be satisfied for a 
prediction to be made (for example, if biomarker A is present 
and biomarker B is absent, then the case belongs to class X). 
Rather than relying on a single clause, the Tsetlin Machine 
generates a large set of such clauses, each of which casts a 
“vote” for a particular class. These votes are then aggregated, 
and the overall prediction is determined by the balance of 
evidence provided by all the clauses together. This 
ensemble-like mechanism allows the model to capture 
subtle, complex patterns while still maintaining a form that 
remains human-interpretable. 

We used the MultiClassTsetlinMachine from 
pyTsetlinMachine Python module and utilised the in-built 
bit-per-feature binarization to binarize the data [11]. This 
method discretizes continuous variables into a fixed number 
of bins, encoding each bin as a separate binary feature. This 
transformation ensures compatibility with TM’s binary input 
format. The original bin values are stored separately to 
correctly identify the real values of the features 
corresponding to the clauses. 

After binarization, an 80-20 train-test split was applied 
and the model was trained with appropriate hyper-parameters 
(i.e., the number of clauses, threshold, and specificity).  

Our target variable represents stroke subtypes (a binary 
classification task) and the TM generated 50 clauses for each 
class. To identify the most influential clauses per class, we 
analysed their voting weights, which reflect how frequently a 
clause contributes to a particular class prediction. We 
selected the top clauses based on these weights to further 
enhance interpretability and explainability and to reduce 
redundancy, with two filters: 
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• Bias Check: We excluded clauses that were 
overwhelmingly positive or negative for a single 
class to avoid skewed interpretations. 

• Redundancy Check: Clauses that appeared 
identically in both classes of the outputs were 
removed, as they introduce ambiguity in the 
interpretation of feature impact. 

After filtering, we retained the distinct and unbiased 
clauses for each class with the highest voting weights. These 
clauses form the basis for interpreting how specific 
combinations of biomarker presence or absence influence the 
classification of stroke subtypes. 

III. RESULTS AND DISCUSSION 

Based on the process explained in the methodology 
section, our final goal is to obtain the top clauses for each of 
the output classes. To simplify further, we retrieve the most 
important features for each class as well as the information 
whether their absence or presence is important for either 
class.  

In this section, we discuss the results of both the causal 
AI and the Tsetlin Machine. 

A. Results of Causal inference 

 
We extract the list of top nodes/features using the 

composite centrality, as defined in the methodology section. 
The causal Directed Acyclic Graph (DAG) connections 
comparing original features and the extracted top 10 features 
using causal inferences are shown in Figure 1.  
The first graph (Figure 1a) presents the complete set of 
features and biomarkers included in the dataset. Because all 
variables and their interconnections are displayed at once, 
the result is a complex and visually dense network that 
makes it difficult to distinguish which biomarkers play the 
most critical roles. In contrast, the second graph (Figure 1b) 
focuses only on the top 10 most influential features, as 
identified through our causal inference procedure using the 
composite centrality score. This reduced network provides a 
much clearer picture of the variables that exert the strongest 
influence on stroke outcomes, allowing clinicians and 
researchers to focus on the most relevant biomarkers. To 

further illustrate how causal inference can assign importance 
to a feature, even when the connection to the target is 
indirect, the right-hand panel (Figure 1c) zooms in on a 
specific causal path. In this example, the feature age (ED) in 
Figure 1b does not connect directly to the target variable, 
GD-C, which represents the type of stroke. Instead, its 
influence is mediated through an intermediate biomarker, AG 
(prior use of antiplatelet drugs), which then affects TF 
(treatment to dissolve blood clots), and only at that point 
does the causal chain reach GD-C. This breakdown 
demonstrates how a variable can still be considered highly 
important when it contributes to the target outcome through a 
series of intermediate links, rather than through a direct 
relationship as well as to trace and understand how each 
node in the causal graph contributes to the target outcome, 
whether through direct or indirect pathways. 

The top features/biomarkers identified by the causal 
model and their significance in the context of stroke related 
literature is summarized in Table 1 below.  

TABLE I.  MOST IMPORTANT BIOMARKERS AS PER CAUSAL MODEL 

Feature Description Significance 

BNP Blood test to help 

diagnose heart failure 

A strong indicator for cardiac 

stress, important for stroke 

diagnosis/prognosis 

AG Prior use of antiplatelet 

drugs 

Aligns with existing clinical 

evidence that such medications 

reduce the risk of recurrent stroke 

ED Age of the patient A critical determinant of stroke 

severity and recovery potential 

HLP Abnormally high levels 

of lipids (fats) 

Associated with increased stroke 

risk; important for stroke 

prevention strategies 

LDL Bad cholesterol Linked to atherosclerosis and 

subsequent cerebrovascular 
events; a key modifiable risk 

factor 

R_A Degree of disability 

after a stroke at 

discharge 

Reflects the immediate functional 

outcome post-stroke; serves as a 
proxy for the effectiveness of 

acute care 

 

Figure 1.  Causal graphs: (a) with all the features, (b) top 10 features using composite score of degree and betweenness centralities and (c) 

deconstructed specfic causal path 
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mRS_0 Baseline disability in 

daily activities 

Predictive of post-stroke recovery 

trajectories 

SEX Gender of the patient Reflects gender effect in stroke 

prognosis and prevention 

TF Treatment to dissolve 

blood clots 

Highlights a critical role of 
emergency treatments in 

improving stroke outcomes 

GD_C Category of the stroke 

type (target) 

Classification of stroke types; 

target of this study 

 
 
As can be seen from the significance column in Table 1, 

the causal model validates known clinical associations. 
Additionally, it also captures nuanced interdependencies 
among biomarkers by providing the strength of connections 
between them (i.e., node connection strengths calculated 
using composite score as described in the methodology 
section).  

The model’s ability to prioritize features with both 
statistical and clinical relevance strongly supports its 
potential application in decision support systems for stroke 
management. 

B. Results of Tsetlin Machine 

 

As previously mentioned, a TM produces human-

readable clauses (e.g., if A and not B, then class X). After 

applying the model to the top features identified through 

causal inference, we derive such clauses for our target 

variable, the type of stroke. 

Figure 2 provides a visual depiction of the clauses. In this 

illustration, pink cells indicate the absence of a feature for 

the corresponding class shown at the bottom, while light 

green cells represent its presence. Each feature’s value range 

is displayed within its respective cell. The feature SEX is 

binarized, with 0 → female and 1 → male.  

 

The clause for Ischemic stroke would then be:  

 

If the modified Rankin Scale (mRS_0) score is 

greater than 2.67, and the LDL level is between 71 

and 117 mg/dL, and the patient’s age is not greater 

than 56 years, and the BNP level is not between 

550 and 1123 pg/mL, then the predicted outcome is 

Ischemic stroke. 

 

Which in logic notation is: 

 

 
 

 

Such human-readable clauses, with well-defined value 

ranges for each feature or biomarker influencing the output 

classes, could become particularly valuable in clinical 

settings.  

In terms of clinical research, they enhance model 

transparency, enabling researchers to validate findings 

against existing biomedical knowledge and uncover novel 

associations. This interpretability can help bridge the gap 

between data-driven models and domain expertise. 

Furthermore, such clauses can inform the design of 

prospective studies and contribute to the development of 

explainable clinical decision support tools.  

Finally, having transparency in clinical decision-making 

would benefit effective patient communication, helping 

individuals understand prevention strategies and treatment 

options.  

IV. CONCLUSION AND FUTURE WORK 

 
The findings presented here are preliminary and require 

further refinement. A key priority is to acquire additional 

data and repeat the analysis to ensure the robustness of the 
results. We are in the process of obtaining a more 
comprehensive dataset, which will include recent records of 
stroke patients. 

To further strengthen the robustness of the results, the 
next steps are broadly categorized into two areas: one 
focusing on Causal AI and the other on rule extraction using 
the Tsetlin Machine.   

 

A. Causal AI 

 

To ensure the accuracy of the causal graphs, it is 

essential to correctly capture the directionality of the 

relationships. Achieving this will require deeper domain 

expertise and a thorough analysis of how various 

biomarkers interact. 

Additionally, it is vital to conduct what-if scenario 

simulations based on the discovered causal relationships 

within the feature space. These in-silico experiments will 

 

Figure 2.  Visual representation of Tsetlin Machine clauses identified for 

the target with most important biomarkers. 
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enable us to explore how changes in feature values, whether 

hypothetical or novel, might influence stroke prognosis, 

without the need for new empirical data. 

B. Tsetlin machine 

 

While our current model achieves an overall accuracy of 

approximately 80%, a closer examination of its performance 

metrics reveals a notable imbalance. Specifically, the F1-

score for Class 0 (the majority class) reaches 0.88, whereas 

the F1-score for Class 1 (the minority class) drops sharply to 

just 0.15. This large disparity highlights that, although the 

model performs well in predicting the dominant class, it 

struggles to correctly identify cases that belong to the less 

frequent class. In practice, this means that the model fails to 

capture a substantial proportion of minority class instances, 

which may correspond to clinically critical or rare 

conditions. The root cause of this problem is the class 

imbalance present in the dataset, where examples of one 

stroke subtype greatly outnumber the other. We anticipate 

that the inclusion of additional patient records in our 

forthcoming dataset will help mitigate this imbalance by 

providing a more even distribution of classes. 

It is also important to emphasize that a Tsetlin Machine 

(TM) differs fundamentally from many classical machine 

learning models. Instead of optimizing a global error 

function, the TM relies on a frequency-driven clause 

learning mechanism in which the prevalence of certain 

patterns directly affects the clauses it learns. While this 

makes the model efficient and interpretable, it also means 

that it tends to favor patterns associated with the majority 

class, often at the expense of learning sufficient rules for the 

minority class. This characteristic can amplify the effects of 

class imbalance, as seen in our results. 

Nevertheless, in the context of biomedical datasets 

(where imbalanced class distributions are common) this bias 

does not necessarily negate the model’s clinical utility. 

Optimizing for the majority class can still yield valuable 

insights, as the most prevalent stroke subtype remains a 

major focus of clinical diagnosis and treatment. However, 

achieving reliable detection of minority cases is equally 

critical, as these often represent the most challenging and 

high-risk scenarios. Addressing this imbalance in future 

work will therefore be essential, ensuring that the TM 

captures meaningful patterns for both majority and minority 

classes without sacrificing interpretability. 

These facts also do not diminish the importance of 

accurately identifying minority class instances, which often 

represent critical or rare conditions. To address this, we are 

actively exploring various strategies (e.g., resampling, 

decision threshold tuning, etc.) to improve the model’s 

ability to generalize and perform equitably across both 

classes. These efforts are guided by domain expertise to 

ensure that learned patterns are meaningful and to prevent 

the model from learning artifacts of the data rather than true 

signals. 

Additionally, binarization must be approached with 

greater care. It is important to ensure that the binning of 

biomarkers identified as significant by the Tsetlin Machine 

aligns with domain knowledge and statistical distribution. 

For example, consider serum Vitamin D levels, which 

typically range from 0 to 100 ng/mL. Clinical guidelines 

define severe deficiency as levels below 10 ng/mL, 

deficiency as below 20 ng/mL, insufficiency between 20–30 

ng/mL, and sufficiency as levels above 30 ng/mL. If all 

values below 30 ng/mL were grouped into a single bin (e.g., 

bin 0), this would obscure critical clinical distinctions 

between mild insufficiency and severe deficiency. Such 

coarse binning could reduce the model’s ability to detect 

meaningful health risks associated with different deficiency 

levels. 
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Abstract—Explainability holds significant importance for 

autonomous robots deployed in human-centered situations, 

particularly when errors occur during execution. In the context 

of robot action, it is important to consider various levels and 

types of explainability. The social dimension of Artificial 

Intelligence (AI) and robotic explanations, which highlights how 

they affect social interaction, values, and decision-making, has 

received little to no attention in prior research. With a 

particular emphasis on item handover, we hypothesize that 

users prefer systems with explanations and that explanations in 

natural language are more appealing than heatmaps. A user 

study, involving participants from diverse backgrounds and 

levels of expertise, is conducted to evaluate different levels and 

preferred types of explainability. The study results support our 

hypotheses and offer additional valuable information for future 

system development. 

Keywords-Explainable Artificial Intelligence; Natural 

Language Processing; Heatmaps; Human-Robot Interaction. 

I.  INTRODUCTION 

There have been notable developments in the disciplines 
of Artificial Intelligence (AI) and robotics in recent decades, 
which are both largely affiliated. Future robotics systems are 
anticipated to be far more advanced and adaptable as AI and 
robotics continue to grow. Rule-based systems, also referred 
to as white-box artificial intelligence, place an emphasis on 
transparency, making their logic processes clear and 
accessible to users. On the other hand, black-box AI, such as 
neural networks, often does not specify its decision-making 
process. Therefore, researchers are actively refining the 
interpretability of black-box AI, which can be used to improve 
transparency in robot actions, especially when failures occur 
[1-5]. 

Some challenges in Human-Robot Interaction (HRI) 
necessitate transparent communication. Varying user 
knowledge and expectations pose challenges in maintaining 
the right level of detail in the explanations. Another challenge 
is to determine the most effective explanation format for each 
user [6][7]. Explainability can be classified as local (usually 
focused on a single input dataset), global (describing how a 
model behaves generally), model-specific [8] (limited to 
particular model classes), model-agnostic [9] (may be local or 
global and independent of machine learning models), and 
counterfactual [10] (offering an alternate input scenario that 
would have produced a different model prediction). 

Meanwhile, there are three common levels of explainability 
[8]: low-level (which includes techniques like linear model 
coefficients or feature importance scores), medium-level 
(which delves deeper into how specific features impact the 
model's predictions), and high-level (which highlights 
intricate decision-making processes within the model). 

This paper is focusing on robot object handover tasks, with 
the intention to enhance user understanding and trust in robot 
actions. A user study was conducted to evaluate the 
effectiveness of multiple levels of explainability in such tasks. 
This study aims to encourage innovation in autonomous 
robotics by providing access to more adaptable, flexible, and 
user-centered systems. 

The remainder of this paper is organized as follows. 
Section II offers an overview of literature related to the 
challenging topic this study addresses. Section III describes 
the general approaches used in our methodology. Section IV 
outlines our experimental results, both qualitative and 
quantitative, as well as hypothesis testing. Section V 
summarizes our findings and includes possible future work. 

II. RELATED WORK 

Transparent or white-box models refer to algorithms that 
provide users with both the end decision and a summary of the 
steps used to get there. One of the most common methods used 
for this is Bayesian network [11][12]. However, this method 
often requires substantial manual effort from users to explore 
the robot's behavior [13]. It lacks scalability and 
generalizability because it involves hand-annotating every 
domain-specific context up front, which hinders application to 
new circumstances.  

On the other hand, opaque or black-box models are 
machine learning models that are difficult to explain and 
understand by experts in practical domains [14][15]. These 
models include random forest, support vector machine, 
multilayer neural network, etc. One of the ways to obtain 
information from such models are to use post-hoc 
interpretability. Although this approach provides useful 
information for end users, it often does not clarify precisely 
how a model works. Therefore, a more thorough analysis of a 
better strategy for building trust, reliance, and performance for 
human-AI teams needs to be conducted.  

The need for user-centered design practices when creating 
explanations for AI systems was emphasized by [16]. They 
suggest involving users in the AI system design process 
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through user studies, interviews, and feedback sessions to 
understand their needs, mental models, and expectations. 
Even so, they primarily focused on design practices and 
guidelines for creating user experiences in explainable AI 
systems and did not delve deeply into technical solutions or 
algorithms to achieve explainability. As a result, the technical 
aspects of implementing the proposed guidelines may require 
further exploration. 

In Human-Robot Collaboration (HRC), human workers 
should have the ability to naturally converse with robots, since 
they are the most crucial members of any HRC team. 
According to [17], while there are currently few means of 
communication between human workers and robots, gesture 
recognition has long been used as an efficient human-
computer interaction. In conclusion, they believe that HRC 
will operate in a safer environment if a depth sensor and body-
model technique are combined to track human movements. 

As part of the machine learning adaptation in the robot's 
motion planning, our approach proposes the utilization of a 
neural network. This is an alternative approach to the genetic 
algorithm utilized by [14]. The adjustment in methodology 
highlights our dedication to investigating different and 
practical approaches that may result in improved 
responsiveness and flexibility of robotic systems in dynamic 
settings. In addition, inspired by [16] user-centric principles, 
we conducted a user study to uncover user preferences 
regarding different approaches in robot motion planning. Our 
questionnaire aims to uncover user preferences regarding the 
different approaches employed in robot motion planning, 
shedding light on which method resonates more effectively 
with particular users. 

III. APPROACH 

The scope of our study concentrates on the usage of 
autonomous robots for object handover tasks from robot to 
human, an important use case that requires an effective 
explanation strategy. Giving our Toyota Human Support 
Robot (HSR) a skill set that corresponds to different levels of 
explainability—or, in some cases, no explainability at all—is 
the current challenge at hand. Our explainability analysis for 
skill execution takes into account a number of important 
factors, one of which is the recognition that explainability in 
our case is inherently local.  

A. Proposed Approach 

The current approach used in our robot to determine the 

handover position is done by factoring in context-dependent 

(based on the posture of the detected person) and context-

independent (static; based on the context-dependent 

outcome). However, the handover position in a context-

independent approach does not consider any surrounding 

environment variables; thus, we propose to train a neural 

network to dynamically set the end-effector position based on 

the values obtained from the 3D bounding box. By allowing 

the neural network to generate random handover positions, 

we can collect input-output pairs dataset that can be used to 

fine-tune the model until it can automatically generate 

optimal handover positions based on the user's needs. This 

strategy would increase the effectiveness and usability of the 

robotic system. Regrettably, a prolonged mechanical issue in 

our Toyota HSR has forced us to delay the implementation of 

our neural network interpretation. Upon its resumption of 

operations, we shall resume our work and implement our 

planned approach. 

B. Explainability Setup 

One of the primary concerns that drives our research is 
how to determine the robot's reasoning behind certain 
decisions, especially why it stops at a specific point in relation 
to the detected human position during object handover. To 
carry out this research, an advanced built-in program created 
by [18] is used, which generates a 3D bounding box to locate 
the detected person in front of the robot. It follows the right-
handed coordinate system, which includes the depth (𝑥-axis), 
horizontal (𝑦-axis), and vertical (𝑧-axis). Once the person is 
detected, their position will be determined; in our case, there 
are three possible positions: standing, sitting, and lying down. 

Within our research framework, several notations play an 
important role in influencing how we perceive the spatial 
connection between humans and the robot during the 
handover task. Figure 1 illustrates the configuration in which 
Wp represents the robot's end-effector location where the 
object is held, W is the robot's base frame, B denotes the 
bounding box, and p is the relative position between the end 
effector and the center point of the bounding box. 

Figure 1.  Illustration of the parameters on handover skill. 

Logical predicates describing the requirements for a 
successful handover interaction are adopted from [19] to 
define the success preconditions. The predicates include 
𝑖𝑛_𝑓𝑟𝑜𝑛𝑡_𝑜𝑓𝑥,𝑦 (𝑝, 𝐵) , 𝑓𝑎𝑟_𝑖𝑛_𝑓𝑟𝑜𝑛𝑡_𝑜𝑓𝑥,𝑦(𝑝, 𝐵) , 

𝑏𝑒ℎ𝑖𝑛𝑑𝑥,𝑦(𝑝, 𝐵) , 𝑓𝑎𝑟_𝑏𝑒ℎ𝑖𝑛𝑑𝑥,𝑦(𝑝, 𝐵) , 𝑎𝑏𝑜𝑣𝑒𝑥,𝑦(𝑝, 𝐵) , 

𝑏𝑒𝑙𝑜𝑤𝑥,𝑦(𝑝, 𝐵), and 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑥,𝑦(𝑝, 𝐵) . Using the success 

preconditions, the natural language explanation for each 
position is generated manually, as shown in Tables I-III. 

In addition to manual natural language translation, 
ChatGPT 3.5 [20] is employed to generate automated 
translation and evaluate the results using the Bilingual 
Evaluation Understudy (BLEU) score [21]. The first few 
initial tests did not produce close translations to the manual 
translation. Therefore, more detailed definitions of each 
logical expression were provided, as well as separating each 
predicate that consists of two or more coordinates; for 
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example, 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑥,𝑦(𝑝, 𝐵)  becomes 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑥(𝑝, 𝐵)  ∧ 

𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑥(𝑝, 𝐵). The outcome of the last iteration was then 
used for assessment. 

TABLE I.  PRECONDITIONS FOR STANDING POSITION 

Types Success Preconditions 

Logical 

Predicates 

𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑦,𝑧(𝑝, 𝐵)  ∧  𝑖𝑛_𝑓𝑟𝑜𝑛𝑡_𝑜𝑓𝑥(𝑝, 𝐵) ∧

 ¬𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑥(𝑝, 𝐵)  ∧  ¬𝑏𝑒𝑙𝑜𝑤𝑥,𝑦(𝑝, 𝐵)  ∧  ¬𝑏𝑒ℎ𝑖𝑛𝑑𝑥,𝑦(𝑝, 𝐵)  ∧

 ¬𝑓𝑎𝑟_𝑏𝑒ℎ𝑖𝑛𝑑𝑥,𝑦(𝑝, 𝐵)  ∧  ¬𝑎𝑏𝑜𝑣𝑒𝑥,𝑦(𝑝, 𝐵)  ∧

 ¬ 𝑖𝑛_𝑓𝑟𝑜𝑛𝑡_𝑜𝑓𝑦(𝑝, 𝐵)  ∧  ¬𝑓𝑎𝑟_𝑖𝑛_𝑓𝑟𝑜𝑛𝑡_𝑜𝑓𝑦(𝑝, 𝐵)  

Natural 

Language 

The robot's arm should be in front of and centered around 

a person (corresponding to the person's height and width). 
It should not be behind, above, beneath, or to the right/left 

of a human. 

TABLE II.  PRECONDITIONS FOR SITTING POSITION 

Types Success Preconditions 

Logical 

Predicates 

𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑦,𝑧(𝑝, 𝐵)  ∧  𝑖𝑛_𝑓𝑟𝑜𝑛𝑡_𝑜𝑓𝑥(𝑝, 𝐵) ∧

 ¬𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑥(𝑝, 𝐵)  ∧  ¬𝑏𝑒𝑙𝑜𝑤𝑥,𝑦(𝑝, 𝐵)  ∧  ¬𝑏𝑒ℎ𝑖𝑛𝑑𝑥,𝑦(𝑝, 𝐵)  ∧

 ¬𝑓𝑎𝑟_𝑏𝑒ℎ𝑖𝑛𝑑𝑥,𝑦(𝑝, 𝐵)  ∧  ¬𝑎𝑏𝑜𝑣𝑒𝑥,𝑦(𝑝, 𝐵)  ∧

 ¬ 𝑖𝑛_𝑓𝑟𝑜𝑛𝑡_𝑜𝑓𝑦(𝑝, 𝐵)  ∧  ¬𝑓𝑎𝑟_𝑖𝑛_𝑓𝑟𝑜𝑛𝑡_𝑜𝑓𝑥,𝑦(𝑝, 𝐵)  

Natural 

Language 

The robot’s arm is positioned in front of and around the 
middle of a sitting person (according to the person’s 

height and width). It is not behind, above, beneath, and to 

the right or left of the person. 

TABLE III.  PRECONDITIONS FOR LYING DOWN POSITION 

Types Success Preconditions 

Logical 

Predicates 

𝑎𝑏𝑜𝑣𝑒𝑥,𝑦(𝑝, 𝐵)  ∧  𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑦(𝑝, 𝐵)  ∧  ¬𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑧(𝑝, 𝐵)  ∧

 ¬𝑏𝑒𝑙𝑜𝑤𝑥,𝑦(𝑝, 𝐵)  ∧  ¬𝑏𝑒ℎ𝑖𝑛𝑑𝑥,𝑦(𝑝, 𝐵)  ∧

 ¬𝑓𝑎𝑟_𝑏𝑒ℎ𝑖𝑛𝑑𝑥,𝑦(𝑝, 𝐵)  ∧  ¬𝑖𝑛_𝑓𝑟𝑜𝑛𝑡_𝑜𝑓𝑦(𝑝, 𝐵)  ∧

 ¬𝑓𝑎𝑟_𝑖𝑛_𝑓𝑟𝑜𝑛𝑡_𝑜𝑓𝑥,𝑦(𝑝, 𝐵)  

Natural 

Language 

The robot’s arm is positioned above and centered around 
the person’s width. It is not below or around their head or 

feet. It should not extend all the way to the opposite side 
from where a robot is standing next to. 

 
BLEU provides a quantitative measure by comparing the 

output of machine translation systems (candidate translation) 
against reference translations, offering insights into the degree 
of overlap in n-gram or word sequences with human-
generated counterparts [21]. The length of candidate 
sentences that are shorter than the reference phrases is 
penalized in the BLEU metric (Brevity Penalty), which is 
based on the modified 𝑛 -gram precision measure. The 
following formula determines the BLEU score: 

 𝐵𝐿𝐸𝑈 = 𝐵𝑃 ⋅ exp (∑
1

𝑁
⋅ 𝑙𝑜𝑔𝑃𝑛)𝑁

𝑛=1 , () 

where 𝐵𝑃  = Brevity Penalty and 𝑃𝑛 = Precision for 𝑛 -
gram. 

The Natural Language Toolkit (NLTK) [22] and spaCy 
[23] are used in our BLEU score computation to provide an 
unbiased evaluation of machine-generated translations. The 
translation produced by ChatGPT 3.5 (as a candidate 
translation) is compared with our original translation (as a 
reference). The results of the BLEU score for each translation 
performed by ChatGPT in comparison to the manual 
translation are presented in Table IV. 

TABLE IV.  BLEU SCORE OF CHATGPT 3.5 TRANSLATION 

No. Position BLEU Score 

1 Standing 0.85 

2 Sitting 0.81 

3 Lying Down 0.88 

 
The final translation output from ChatGPT 3.5 provides a 

good starting point for future developments. Despite the fact 
that the translations produced by the first few iterations were 
not satisfactory, adding further specific information made it 
generate a translation that was similar to the one that was done 
manually. The key realization is that it is possible to train 
models, like ChatGPT, to translate technical terminology into 
natural languages effectively. 

When it comes to interpreting the neural network’s 
decisions about handover position, Grad-weighted Class 
Activation Mapping (Grad-CAM) [24] integration shows 
itself to be an effective tool for insight. It offers a transparent 
and insightful lens into the decision-making processes of 
complex models. Grad-CAM fills this gap by giving an 
illustration of the areas in the input data that have a major 
impact on a certain outcome. Unfortunately, the problem with 
our Toyota HSR prevented us from implementing this 
method. Despite this obstacle, a previously collected dataset 
from our research team [25] was leveraged, and the video 
content was edited to achieve the same heatmap effect (as seen 
in Figure 2). This decision allowed us to simulate and observe 
the intended outcomes, ensuring the continuity of the research 
despite the technical constraints. 

 

  

Figure 2.  Additional heatmaps on one of the handover scenarios. 

The dataset, which includes relevant information but lacks 
explanations, was then extended by adding explanations in 
both heatmap and natural language formats. This improvised 
solution allows us to proceed with our user study within the 
designated timeframe, preserve the research objectives, and 
ensure the timely execution of the study. 

C. Experimental Design 

In our comprehensive user study aimed at investigating 
user preferences in interacting with AI-based or robotic 
systems, two distinct hypotheses were formulated to guide our 
research. The first hypothesis is that users have a preference 
for systems that offer explanations while they are using them. 
The second hypothesis is about the preferred explanation 
format among users; in particular, we hypothesize that people 
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prefer explanations in natural language over alternative 
visualization techniques like heatmaps. 

Our user study adopts a mixed-methods strategy to gather 
quantitative data and qualitative insights through surveys in 
order to experimentally validate our hypotheses. After being 
presented with simulated robotic interfaces that include 
heatmaps and natural language explanations, participants’ 
preferences, satisfaction, and understanding were carefully 
examined. 

Through selectively crafted survey questions, user 
experiences, preferences, and challenges are explored, 
allowing us to obtain insights into the factors that contribute 
to a positive or negative interaction. Additionally, scenarios 
that are meant to replicate real-world interactions were chosen 
by giving users experiences that were contextually appropriate 
and reflected the difficulties and complexities of real-world 
circumstances. Ten videos and three different explanation 
varieties were presented to help construct a more 
comprehensive understanding of user preferences: no 
explanation, partial explanation using heatmaps, and detailed 
explanation using natural language. In order to prevent any 
potential biases, 8 out of 10 videos were purposefully 
presented in a random order. Following every video, 
participants were asked to rate how confident they were in 
their understanding of the robot decision-making process. 

IV. EXPERIMENTAL RESULTS 

Our user study involved a total of 33 participants, ages 
ranging from 18 to 40 years old, education ranging from high 
school to Ph.D., and different academic and professional 
backgrounds. Our participants’ demographic profiles show a 
variety of age groups, gender identities, levels of education, 
and fields of study. This diversity attempts to determine 
whether there is any relationship between the preferred 
explanation technique and the educational background. 

A. Quantitative Analysis 

In terms of the participants' experiences and expectations 
in the realms of robotic systems and Artificial Intelligence 
(AI), 75.8% of them have prior hands-on experience with 
robotic systems, while an overwhelming 84.8% are familiar 
with AI or machine learning in their practical lives. In a survey 
on comfort levels, 72.7% of the respondents said they felt 
uneasy when AI systems made decisions without providing an 
explanation, highlighting the significance of transparency. 

In our scenario-based questions, two identical videos 
served as starting points. The first was without explanation, 
whereas the second included a natural language explanation. 
The majority indicated that they were unclear about the 
robot’s action in the first video, though it was a successful 
object handover scenario. However, the participant’s 
confidence level improved after watching the second video, 
which revealed a positive beginning. Table V summarizes 
participants' confidence levels after eight more videos were 
shown in a random order. It reveals that individuals feel more 
confident when they are given an explanation of how the robot 
makes decisions. Less than 40% of the participants felt 
confident about their understanding of the robot decision-
making process in the three videos without an explanation, in 

both successful and unsuccessful handover scenarios. More 
than 50% of the participants in the two videos where heatmaps 
were used as an explanation type expressed confidence in the 
successful handover scenario. However, in the case of an 
unsuccessful handover, only 34.6% of participants reported 
feeling confident. With natural language explanations, on the 
other hand, 48.4% of those surveyed expressed confidence in 
the unsuccessful scenarios. In the successful scenario, over 
80% of the participants expressed confidence and none of 
them indicated lack of confidence. 

TABLE V.  AN OVERVIEW OF PARTICIPANTS’ CONFIDENCE LEVEL 

Video Outcome 
Explanation 

Type 

Confidence Level (%) 

5 4 3 2 1 

3 Succeed None 9.1 24.2 48.5 18.2 0.0 

4 Succeed Heatmap 24.2 27.3 36.4 12.1 0.0 

5 Failed None 12.1 15.2 30.3 24.2 18.2 

6 Failed 
Natural 

Language 
24.2 24.2 15.2 15.2 21.2 

7 Succeed None 3.0 18.2 15.2 36.4 27.3 

8 Succeed 
Natural 

Language 
27.3 57.6 15.2 0.0 0.0 

9 Failed 
Natural 

Language 
24.2 24.2 18.2 27.3 6.1 

10 Failed Heatmap 18.2 21.2 30.3 27.3 3.0 

 
To conclude, compared to visual explanation (using a 

heatmap), natural language explanation improves their 
confidence by over 30% (shown in Figure 3). 

Figure 3.  Participants’ overall confidence in understanding the robot 

decision-making process. 

B. Hypotheses Testing 

We conducted the first hypothesis test to investigate 

users’ preferences regarding the type of videos when seeking 

information. The hypothesis aimed to determine whether 

users prefer videos with explanations over videos without 

explanations. The participants were presented with the 

question “Which type of video do you prefer when seeking 

information?” and the response options: videos with 

explanation, without explanation, and depending on the 

context. 

A chi-square test [26] for independence is employed to 

analyze the association between the type of video and user 

preference, where 𝐻0  = no preference difference and 𝐻1 = 

there is a preference for videos with an explanation. If the 𝑝-
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value of a given dataset is less than 5%, the null hypothesis 

is rejected because it is assumed that there is a preference 

difference among the options. To calculate the 𝑝-value using 

chi-square formula (2), the observed value (𝑂) needs to be 

identified first, which represents the actual counts derived 

from the sample, and the expected value (𝐸) , which 

represents the values of each category in the event that there 

was no preference difference between all categories. 𝐸  is 

obtained by dividing the total number of observed values by 

the number of categories. The following calculation can then 

be used to get its chi-square statistic (𝜒2)  based on the 

observed and expected values: 

 𝑋2 = ∑
(𝑂−𝐸)2

𝐸
  () 

The result, along with the degrees of freedom (𝑑𝑓), which 

is a number representing how much variation is involved in 

the research (𝑛) minus 1,  

 𝑑𝑓 =  𝑛 –  1 () 

is used to calculate the 𝑝-value from the chi table.  

Our observed and expected values based on the survey 

results are displayed in Table VI. The total observed values—

33 in this case—and the number of categories—3 in this 

case—are then used to compute the expected values, yielding 

the value 𝐸 = 11. 

TABLE VI.  THE OBSERVED AND EXPECTED VALUES 

User Preference 𝑶 𝑬 𝑶 − 𝑬 (𝑶 − 𝑬)𝟐 

With Explanation 22 11 11 121 

Without 
Explanation 

2 11 -9 81 

Depend on the 

Context 
9 11 -2 4 

 

These observed and expected values were used to 

calculate the chi-square statistic, which was then used to test 

the hypothesis. The result yielded 𝜒2= 28.1; with 𝑑𝑓 = 2, the 

resulting 𝑝-value was 0.0000008. Since the 𝑝-value is less 

than 𝛼 = 5% or 0.05, it is determined that the null hypothesis 

is rejected.  

The second hypothesis is tested based on two identical 

videos with two distinct explanations—one using a heatmap 

(video 4) and the other using natural language (video 8). 

Participants were asked to choose which of the two videos 

gave them a better understanding of the robot decision-

making process. Participants who selected video 8 are 

considered to prefer the natural language explanation. A one-

sample proportion test (𝑍)  [27] is employed to analyze 

whether the proportion of users who prefer video 8 differs 

significantly from 50% (no preference). The null hypothesis 

(𝐻0) assumed no preference difference, while the alternative 

hypothesis (𝐻1) assumed a preference for videos with natural 

language explanation. 

To conduct the test, we need to estimate the proportion  ̂𝑝 

as: 

 𝑝̂ =
𝑥

𝑛
  () 

where 𝑥 is the number of participants who have chosen video 

8 and 𝑛 is the total number of participants. After that, the test 

statistic can be calculated with the following formula: 

 𝑍 =
𝑝−𝑝0

√
𝑝0(1−𝑝0)

𝑛

  () 

where 𝑝0 is the pre-specified value; in this case, it is 50% to 

indicate that if half of the total participants chose video 8, 

there is no significant preference for that particular video. 

From there, the calculated 𝑍-value is compared with critical 

values, which can be obtained from the 𝑍  table, from the 

standard normal distribution. Given that the sampling 

distribution of our data is a normal distribution with a 

significant value of 0.05, the critical values are in a range of 

-1.96 to 1.96. Based on the result of our survey, a one-sample 

proportion test was calculated with 𝑥 = 23 and 𝑛 = 33, which 

yielded a 𝑍-value of 2.46. Because the 𝑍-value is larger than 

the maximum critical value, the null hypothesis is rejected. 

A post hoc sensitivity analysis [28] was conducted to 

evaluate the statistical power of our study. Cohen’s 𝑤, 

 𝑤 =  √∑
(𝑝𝑖−𝑝0𝑖)2

𝑝0𝑖
 () 

where 𝑝𝑖  is the observed value in category 𝑖  and 𝑝0𝑖  is the 

expected value under the null hypothesis in category 𝑖 , is 

used to measure the effect size for the chi-square test of the 

first hypothesis. The thresholds are 0.10 for a small effect, 

0.30 for a medium effect, and 0.50 for a large effect. The 

result yielded 𝑤 = 0.75, which represents a large effect. 

Furthermore, we assess the effect size for the one-sample 

proportion test of the second hypothesis with Cohen’s ℎ, 

 ℎ =  2 𝑥 (arcsin(√𝑝1) − arcsin(√𝑝2)) () 

where 𝑝1  and 𝑝2  are the two proportions being compared. 

The thresholds are 0.20 for a small effect, 0.50 for a medium 

effect, and 0.80 for a large effect. From our user study result, 

23 out of 30 participants preferred video with natural 

language explanation; thus, 𝑝1 = 69.7%. Then we compare it 

with 𝑝2 = 50% for the proportion that shows no preference 

difference. The result yielded ℎ  = 0.40, which indicates a 

moderate effect size. 

C. Qualitative Analysis 

As proven in our hypothesis 2, natural language 
explanations are preferable to heatmaps. In order to evaluate 
it on a qualitative level, the participants were asked why they 
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preferred one type of explanation over the other, and the 
majority of them responded that they preferred natural 
language because it is easier to understand and more elaborate. 
In addition, they believe that natural language explanations 
can be enhanced by an audio or speech component. 

They were then asked to imagine a situation in which they 
would favor a different kind of explanation than the one they 
had previously selected. Those who have chosen natural 
language say that they prefer heatmaps when a robot performs 
a simple task, interacts with static objects, or is in a simulation. 
On the other hand, those who have chosen heatmaps say that 
they prefer natural language when failure occurs, when the 
robot is in a dynamic environment, or when the user has no 
background knowledge about the system. 

When asked to imagine a situation in which they would 
prefer to have no explanation at all, the majority of 
respondents believe that in a straightforward or routine task 
that is repeated, there is no need for an explanation because 
the rationale is obvious. While some claim that they cannot 
think of any situation in which it is preferable not to have an 
explanation, others highlight this point by stating that, even in 
tasks that appear straightforward, having an explanation is 
desirable since it provides a clear reasoning behind the robot’s 
chosen action. 

V. CONCLUSION AND FUTURE WORK 

Our user study results supported our hypotheses, offering 
statistical evidence that users do, in fact, prefer explanations 
when interacting with robotic systems. These findings 
highlight that providing explanations improves users’ trust 
and understanding of robot systems. Although the study 
demonstrates a clear preference for explanations in natural 
language as opposed to heatmap visualizations, respondents 
express a preference for heatmaps or no explanations at all 
when the robot is performing regular or routine tasks. This 
tendency implies that, in situations they are familiar with, 
participants think that the visual representations of the 
heatmaps are sufficient or that perhaps they prefer them more 
when the tasks are simple and require no extra information. 
Due to the wide range of participant preferences, flexible 
communication strategies that take into account varying user 
expectations and levels of experience with certain robotic 
tasks are necessary. 

Even though the results suggest that users prefer systems 
that provide explanations over those that do not, it is important 
to acknowledge a potential bias in how this hypothesis was 
tested. The question itself highlights the presence or absence 
of an explanation, which might have led participants to 
gravitate toward the condition with explanations, independent 
of their actual utility in decision making. Future studies should 
aim to mitigate this bias by embedding explanations in more 
naturalistic tasks where the usefulness of the explanation 
emerges organically rather than being made explicit to 
participants. 

While our findings indicate that participants preferred 
natural language explanations, it is important to recognize that 
this result may partly reflect differences in interpretability 
between formats. Natural language requires little effort to 
process, whereas heatmaps demand additional interpretation 

and prior familiarity. This asymmetry may have 
disadvantaged the heatmap condition. To address this 
imbalance, future studies should explore providing training or 
familiarization with visual explanations, refining visualization 
design to reduce cognitive effort, or presenting hybrid formats 
that combine textual and visual elements for complementary 
strengths. 

Further studies could explore automating the translation of 
scientific terms into natural language to provide explanations 
for nonexpert users. To implement audio explanations 
effectively, future work may explore the integration of speech 
synthesis technologies or Natural Language Processing (NLP) 
models specialized in generating spoken content. 
Additionally, exploring the potential of machine learning 
techniques, such as reinforcement learning, could contribute 
to optimizing explanation selection. This way, the system 
could learn over time which combination of explanation 
modalities yields the most positive user responses or 
facilitates optimal task performance. 
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Abstract—Recommendation systems are designed to rank
items according to users’ predicted interest. As these systems
increasingly affect choices in domains like e-commerce and media,
understanding the reasoning behind their rankings becomes
essential. However, most existing approaches that explain recom-
mendations focus on individual predictions, rather than explaining
why one item is prioritized over another. To bridge this gap, this
paper introduces RanXplain, an approach specifically designed
to explain the ranking decisions produced by recommendation
models. RanXplain operates as a separate machine learning
model trained on pairs of items, using features that are derived
from the original ranking model. The impact of different
feature sets and model architectures on model performance
is systematically investigated. Furthermore, a simulation based
performance evaluation was presented on different breakdowns,
specifically analyzing the proximity of item ranks and whether
items belong to the same category to detect scenarios in which
RanXplain yields superior performance. A practical insight is
discussed regarding instances in which RanXplain fails to identify
the ranking model’s prioritization.

Keywords-Recommendation System; Explainable AI (XAI); Ma-
chine Learning Explainability.

I. INTRODUCTION

Explainability in machine learning has become a cornerstone
of responsible and trustworthy artificial intelligence, especially
as these models are increasingly deployed in high-stakes and
diverse domains, such as healthcare, finance, legal systems,
and digital platforms. As predictive systems grow more
complex, understanding how and why a model arrives at a
particular decision is essential not only for debugging and
improvement but also for ensuring fairness, accountability, and
user trust. Therefore, developing effective methods to interpret
machine learning models is crucial for aligning technical
performance with ethical and practical expectations in real-
world applications.

Recommendation systems, a key application of machine
learning, have become integral in modern digital platforms,
connecting users with relevant items across various domains,
from e-commerce to entertainment. While traditional machine
learning tasks provide precise point predictions, the core
objective in recommendation systems is to accurately rank
items based on users’ predicted preferences. This change in
focus underlines the need to adapt explainability techniques
to better align with ranking based recommendation systems.
Most of the existing explainability methods are effective for
explaining individual predictions but they are often insufficient
in expressing the comparative logic behind a generated ranked
list. For instance, understanding why a model recommends

“Item A” over “Item B” is crucial for user trust, system
transparency, and even for identifying potential biases.

This paper introduces RanXplain, a methodology specifically
designed to address this gap by explaining the comparative
behavior of rankings generated by recommendation models.
RanXplain functions as an independent machine learning
model, trained on pairs of items recommended by the ranking
model. It utilizes features derived from the original ranking
model, enriched with additional comparison features that
capture the differences between items. The application of
both inherently explainable models and more complex, high-
performing models were explored within RanXplain framework.
The approach addresses the unique challenges of explaining
rankings, offering flexible and detailed insights into why one
item is placed above another in a recommendation list. By
doing so, RanXplain aims to increase the transparency and
interpretability of recommendation systems, promoting user
understanding and trust.

The remainder of the paper is organized as follows: Section
II reviews the related work on explainable AI and explanation
methods. Section III introduces the RanXplain methodology
in detail. Section IV offers the key results and experiments,
along with a brief evaluation and discussion. Finally, Section V
concludes the paper and outlines directions for future research.

II. RELATED WORK

Explainable Artificial Intelligence (XAI) is now one of
the most important topics in many machine learning systems,
due to the increasing need for transparency, trustfulness, and
accountability [1][2]. With the high adoption of artificial
intelligence in various fields, such as healthcare, banking, law,
e-commerce, entertainment, interpreting predictions has been as
important as creating the predictions themselves. Approaches
to XAI may be categorized in terms of their usage with models
and explaining the local or global behaviors.

1) Model-Intrinsic (or Inherently Interpretable) vs. Model-
Agnostic (or Post-Hoc):
• Model-intrinsic methods rely on the inherent trans-

parency of certain machine learning algorithms, such
as linear models or decision trees, whose internal
structures make them naturally suitable for generating
explanations.

• On the other hand, model-agnostic methods are comple-
mentary for so-called black box models, such as neural
networks, gradient boosting trees in a way that these
methods are used after the predictions have been made.
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These methods are, therefore, more flexible and may
be used with any algorithm.

2) Local vs global explanations:
• Local explanations aim to clarify individual input-

output decisions, such as why a specific application
was rejected or why a particular prediction probability
was assigned.

• Global explanations, however, try to give a general
image of the behavior of the models and can be thought
of as a summary of the model.

Local Interpretable Model-Agnostic Explanations (LIME) [3]
and SHapley Additive exPlanations (SHAP) [4] are two
popular model-agnostic local explanation approaches designed
to explain any given black box classifier. Both of them work
as feature attribution linear models, trying to understand the
degree of change in predictions and particular features used to
generate these predictions.

Even though they are extremely widely used and general,
SHAP and similar feature attribution methods are basically
limited [5][6][7], especially in ranking tasks. These methods
are designed to explain instance-wise predictions by attributing
the outcome to each feature one at a time. However, in
recommendation systems, where the main task is to rank
items relative to one another, such pointwise explanations
are not able to capture the relative dynamics among items.
For instance, the fact that the particular feature had a positive
impact on the score of Item 1 tells us relatively little about the
reasons why Item 1 outperformed Item 2. In Figure 1, row-wise
SHAP-style feature attributions for the top four recommended
items for a user are shown to illustrate this limitation. Each
row corresponds to one item, with SHAP values color-coded
based on their magnitude and impact within that row. Green
indicates positive contribution toward the item’s ranking score,
and red indicates negative contribution. Though single-item
contributions are formulated for each item, they do not provide
insight into relative differences that cause the ensuing ranking
order. A seemingly logical, yet misleading, approach would be
to simply compare feature contributions between two items. For
instance, the SHAP value for price feature (Feature 1) could
be positive for Item 1 and negative for Item 2. This large,
opposing difference in SHAP values might incorrectly suggest
that price is the primary reason for the ranking disparity. In
reality, Item 2 can be cheaper than Item 1 and other features
like user affinity for specific categories (or brands) might be the
true drivers, creating these conflicting individual attributions.
This means a feature crucial for an item’s individual score may
be irrelevant when explaining its comparative rank.

Global explanation methods like Permutation Feature Im-
portance [8] or Partial Dependence Plots [9] similarly fall

Figure 1. Row-wise SHAP-style feature attributions.

short in explaining the behavior of ranking models. While they
can identify influential features on average across predictions,
they do not provide specific, contextual information. For
example, price is generally the most important factor for
ranking models in e-commerce; however, it does not explain
why, for a particular user and context, a more expensive Item
A might be ranked higher than a cheaper Item B, contrary
to average user behavior. These gaps highlight that neither
standard local nor global approaches are inherently suited to
the comparative nature of ranking explanations, motivating the
need for specialized pairwise or listwise approaches.

One of the most influential pairwise approaches is the
Analytic Hierarchy Process (AHP) and its generalization,
the Analytic Network Process (ANP), introduced by Saaty
[10][11] for decision-making based on pairwise comparisons.
In AHP/ANP, decision-makers explicitly provide judgments on
the relative importance of alternatives or criteria, and a priority
ranking is then derived using the principal eigenvector of the
comparison matrix. This framework has been widely applied
in domains, such as project selection, resource allocation,
and policy evaluation. The RanXplain framework, however,
addresses the inverse problem: instead of deriving rankings
from human-provided comparisons, it seeks to explain rankings
that have already been produced by machine learning models.
While one might envision applying Saaty’s eigenvector method
directly to model-generated pairwise scores, several practical
obstacles arise.

First, the scale of modern recommender systems far exceeds
the typical scope of AHP/ANP: a single user session may
involve thousands of candidate items (e.g., in e-commerce
with catalogs exceeding 10 million products) and hundreds
of input features (e.g., user–item embeddings, contextual fea-
tures, temporal recency signals). Constructing and processing
complete n × n pairwise matrices under such conditions
becomes computationally intractable. Second, the eigenvector
solution yields overall item priorities but does not provide
feature-level contributions to rankings, which are essential for
transparency in explainable AI. Third, while AHP assumes
relatively stable and consistent comparison judgments, machine-
learned rankings are highly context-dependent, with the relative
importance of features varying substantially across users and
sessions. These distinctions underscore why classical AHP/ANP
methods are not directly applicable to explaining large-scale
AI ranking systems.

In the following sections, a comparative RanXplain method-
ology will be discussed in detail on how to mitigate the gaps
of the current methods of XAI.

III. METHODOLOGY

The methodological framework for the RanXplain model
outlined in this section, addresses the aforementioned limita-
tions of existing explainability methods in ranking. RanXplain
provides explanations for pairwise preferences within a ranked
list of items, clarifying the comparative reasoning of the original
ranking model. Effectively, RanXplain operates as a seperate
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machine learning model, trained to explain the primary ranking
system’s comparative behavior.

A. Data Generation for RanXplain: The Pairwise Paradigm

RanXplain focuses on enhancing a personalized recommen-
dation system in terms of explainability. The underlying notion
behind RanXplain is to transform the complex problem of
explaining the ranking of the whole item list into a series of
manageable binary classification problems based on pairwise
comparisons. A training instance is constructed for RanXplain,
for each relevant pair of items derived from the output of the
primary ranking model.

In personalized recommendation systems, the common ap-
proach involves generating pointwise predictions for individual
user-item pairs. Items are then ranked for each user based on
these scores. However, while it might be possible to explain why
a single item received a particular prediction score (although
even this is often challenging with typical ranking models),
it’s rarely clear why “Item A is ranked higher than Item B.”
This explanation is often more intuitive for users trying to
understand their preferences.

This lack of clarity regarding relative rankings makes it
difficult for both users and developers to grasp the underly-
ing behavior of the recommendation framework. RanXplain
addresses this explanatory deficiency by evaluating ranking
model behavior through considering combinations of items.

1) Selection of Pairs: RanXplain relies on modeling pairwise
preferences to effectively explain the comparative logic of
the primary ranking model. However, it is computationally
challenging to generate every possible combination from a
large set of items. Therefore, a strategic approach to sampling
these pairs is vital, not only for practical implementation but
also to ensure the most informative pairs of items are included.

The preferred methodology for generating these pairwise
comparisons involves two main strategies, both beginning by
determining top K items for each user from their recommen-
dation lists.

The first strategy for generating user-item-item indices
involves randomly selecting a subset of k (k < K) items
for each user, from their selected top K recommendations.
All possible pairwise combinations are then created from
this subset. This ensures that each item within the chosen
subset appears in multiple comparisons for that user, providing
a substantial set of data for learning specific comparative
preferences of the ranking model.

The second strategy initially forms all possible combinations
from the entire set of K top items for each user. Then, a random
sampling is applied to obtain a comprehensive collection of
pairwise comparisons from this potentially vast dataset. This
strategy differs from the first as it creates a subset of the original
dataset rather than representing the full data. While this can
make the model more robust, it has a key drawback: it might
miss some pairwise comparisons between items. For example,
if we consider three items (i1, i2, and i3) recommended to a
user, the first strategy includes all pairwise comparisons (i1
vs. i2, i2 vs. i3, and i1 vs. i3). In contrast, this strategy might

include only some of these pairs, which makes it harder to
capture three-way (or higher-order) relationships. Furthermore,
this approach may introduce greater imbalance in the number
of data points per user, which can lead to biased training or
decreased generalization performance.

2) Features of RanXplain: Creating meaningful features
is crucial for the RanXplain model to learn from and ex-
plain the comparative relations. Original feature set F =
{f1, f2, . . . , fN} which were used by the primary ranking
model to make pointwise predictions are added to the feature
set for both items in each pair (i1, i2), so that the feature set
of RanXplain contains 2N item features for each index since
both items have N features.

Additionally, a set of comparison features that explicitly
capture the relationship between i1 and i2 are derived from the
features in F . Let x1 and x2 be the values of a feature fj ∈ F
for i1 and i2, respectively. A small constant ε (e.g., 10−6) is
introduced to handle potential division by zero. Using x1, x2,
and ε, a set of comparison features Fcomp is constructed as
follows:
Ratio: The ratio of feature values for items i1 and i2 is defined
as shown in (1):

x1

x2 + ε
(1)

Mean Percentage Error (MPE): The MPE between feature
values, as calculated in (2), is computed as:

x1 − x2

x1 + x2 + ε
(2)

Difference: The absolute difference between feature values is
simply expressed by (3):

x1 − x2 (3)

Relative Deviation: The relative deviation, given by (4),
captures the proportional difference:

x1 − x2

x1 + ε
(4)

Equality Indicator: For categorical features, an indicator
function checks equality, as defined in (5):

Ix1=x2
=

{
1 if x1 = x2,

0 otherwise
(5)

The full feature set of RanXplain includes both item features
from the original ranking model and features that describe the
comparison between item pairs in order for the model to learn
more detailed comparison logic. All different combinations of
feature sets have been tested by adding and discarding them
to optimize the feature set for effective comparative learning.

3) Target Variable: The target variable for RanXplain is a
binary indicator, which has the value of 1 if the first item i1
in the pair (i1, i2) is ranked higher by the primary ranking
model. If the second item i2 is ranked higher, the target is 0.
This approach turns the primary model’s unknown pairwise
decisions into a clear, learnable signal for RanXplain.
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B. RanXplain Model Selection
Selecting the type of underlying machine learning model is

critical for development of RanXplain. It requires balancing
robust predictive performance with the need for interpretability
when explaining comparative behaviors. Logistic Regression
and XGBoost are considered as two prominent models for this
purpose.

• Logistic Regression: Initially advanced by [12] and further
generalized by [13], Logistic Regression is a linear
model which is particularly advantageous for its inherent
interpretability in binary classification. RanXplain’s aim
of interpreting ranking behavior by classifying pairwise
preferences, directly aligns with capability of this model
type. Within RanXplain, Logistic Regression models the
probability that i1 is prioritized over i2 by the primary
ranking model. Its direct interpretability comes from its
learned coefficients:
– A positive coefficient for a feature fj(i1) indicates that

an increase in fj for i1 directly raises the probability
of i1 being preferred, assuming other features remain
constant.

– Critically, for comparison features, such as fj(i1) −
fj(i2), a positive coefficient directly quantifies that
a higher difference in fj in favor of i1 contributes
proportionally to its higher predicted preference.

This direct mapping between feature values and their
impact on the log-odds of preference provides transparent
and comprehensible explanations for the primary ranking
model’s comparative logic. Its main limitation in this
context is its inability to capture complex non-linear
relationships or feature interactions that may characterize
the primary ranking model’s decision-making process.

• XGBoost (Extreme Gradient Boosting): An optimized
gradient boosting framework which is introduced by [14],
offers superior predictive performance by constructing
an ensemble of decision trees. While inherently a black-
box model, its utility within RanXplain for generating
explanations is realized through the application of SHAP
values. SHAP provides a robust, unified framework to
attribute the contribution of each feature to a specific
prediction.
– For a RanXplain model trained with XGBoost, SHAP

values precisely quantify the impact of each feature
on the prediction of whether i1 is preferred over i2.
This enables local explanations for individual pairs (e.g.,
attributing i1’s preference to its higher “discount” and
“popularity” differential).

– Furthermore, aggregating SHAP values enables global
insights into the most important features effecting
comparative preferences across the entire dataset (e.g.,
identifying “price difference” as a universally strong
determinant of higher ranking).

XGBoost’s advantage lies in its competency to model com-
plex non-linear relationships and high-order feature interactions,
potentially offering a more accurate representation of the

primary ranking model’s intricate decision boundaries. The
need for post-hoc explanation methods like SHAP is the
disadvantage of using XGBoost for RanXplain. Although
SHAP is a powerful method to produce explanations, it is
more complex and computationally intensive than using direct
coefficients from Logistic Regression.

C. Explanation Generation and Presentation

The practical applicability of the RanXplain methodology
extends beyond its predictive capacity, addressing the non-
trivial step of translating its output into useful, understandable
explanations for end-users and system designers. This process
is fundamentally guided by the ability to use the model’s
internal feature weights and contributions to pinpoint the most
influential factors in a ranking decision.

Consider a real-world e-commerce scenario in which a
recommendation system presents a user with a ranked list of
products. Within this list, two items are of particular interest:
Item A, an expensive shoe from a well-known brand with an
applied discount, and Item B, a medium-priced shoe from a
common brand without a discount. The primary ranking model
prioritizes Item A over Item B, and RanXplain successfully
predicts this outcome.

When RanXplain correctly predicts the prioritization of
one item over another, its model coefficients (for Logistic
Regression) or feature importance values (for XGBoost) reveal
which comparison features were most influential. For instance,
the model can identify that the difference in discount ratio,
relative brand popularity, or the user’s affinity for a specific
brand were the key drivers behind the ranking. These features,
which quantify the relative properties of the two items, allow
for the generation of clear and concise explanations.

This capability enables the extraction of concrete insights,
such as: “Item A was ranked higher than Item B because, while
Item B is cheaper, the model gave more weight to the discount
available on Item A and the user’s affinity for Item A’s brand.”
This ability to generate detailed, feature-based explanations
serves several primary purposes in real-world applications:

• User Trust and Understanding: Providing explanations
for why a specific item was prioritized helps users
understand the system’s logic, leading to increased trust
and confidence in the recommendations.

• System Debugging and Improvement: Explanations act
as a critical tool for developers to diagnose the primary
ranking model’s behavior. By analyzing why certain items
are ranked in a particular order, developers can identify
potential biases, correct model errors, and gain insights
for future feature engineering.

• Cross-functional Insights: Explanations can be shared with
other teams (e.g., merchandising, marketing) to provide a
deeper understanding of customer behavior and content
performance. For example, by analyzing explanations, a
merchandising team could determine that a 10% price
decrease on a specific product would cause it to be ranked
higher than a competitor’s product for a particular segment
of users.
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IV. RESULTS | EVALUATION

Experimental evaluation of RanXplain involves a rigorous
process, beginning with the detailed construction of three
distinct datasets: (i) training set, (ii) test set and (iii) sim-
ulation set. The training dataset was formed using top 50
recommendations per user generated by the ranking model
within a specified historical period. It consists of 4.5 million
rows by over 30,000 unique users and more than 130,000
distinct items while maintaining a balanced 50% target ratio. As
the test set has been obtained by splitting the initial training set
according to 80%-20% parity, it contains 1.1 million rows while
exhibiting comparable unique user and item counts and the
same 50% target ratio. Crucially, simulation dataset, consisting
of 50 million rows, was generated by incorporating all 50
top-ranked items for each user from a later temporal period
than the training set, including approximately 45,000 users and
over 175,000 distinct items, also with a 50% target ratio.

The choice of sampling strategy is crucial for both the
practical impact and computational efficiency of RanXplain.
By transforming the complex task of explaining a ranked list
into a series of pairwise classification problems, RanXplain
becomes computationally tractable for large-scale recommen-
dation systems, which is a significant advantage over other
methods. Two different sampling strategies were explored for
training RanXplain: (i) content-based sampling and (ii) random
sampling. Performance metrics of the models trained on both
datasets were observed as highly similar. However, content-
based sampling yielded slightly superior performance and
provided a more representative distribution across diverse users.
This intentional sampling approach makes the training process
more efficient and ensures that the resulting explanations are
representative and of high quality, which is vital for real-world
application. Consequently, content-based sampling method was
adopted by randomly selecting 20 items per user from their top
50 recommendations and generating all possible combinations
for the selected 20 items.

Experiments of RanXplain proceeded to exploring two
critical dimensions in more detail: feature set composition
and model architecture, concluding with a detailed simulation-
based performance evaluation.

A. Experimentation of Feature Sets

To investigate the impact of features on RanXplain model, a
set of experiments were conducted. Table I depicts performance
metrics across train, test and simulation datasets of the
Logistic Regression models trained with different feature sets in
BigQuery ML [15]. Performance of the models were assessed
using the Receiver Operating Characteristic Area Under the
Curve (ROC-AUC), which quantifies the ability of a classifier
to discriminate between positive and negative classes across
various thresholds [16]. Similar behavior was observed across
other performance metrics, such as accuracy and recall.

Initially, Model 1 was trained using only item features which
is an approach that mirrored the original ranking model. By
incorporating comparison features alongside these item features
in Model 2, a significant improvement in model performance

TABLE I. RANXPLAIN MODEL PERFORMANCE WITH DIFFERENT
FEATURE SETS

Metric Model 1 Model 2 Model 3
Item Features Included Included Excluded

Comparison Features Excluded Included Included

Train ROC-AUC 0.62 0.73 0.74

Test ROC-AUC 0.61 0.74 0.74

Simulation ROC-AUC 0.61 0.69 0.70

was observed across all ROC-AUC metrics for the training,
test, and simulation datasets.

Interestingly, Model 3 which is trained exclusively with com-
parison features achieved slightly better predictive performance
than the models with item features. While the predictive gains
were marginal, using only comparison features significantly
enhanced the qualitative aspect of explanations compared to
Model 2. The increase in qualitative aspect is due to the
directness of interpretability that comparison features provide
when comparing two items.

Slightly improved performance along with stronger inter-
pretability indicates the vital role of comparison features in
accurately capturing the relative ranking of items. Therefore, the
comparison features are adopted as the feature set of RanXplain.

B. Experimentation of Model Types

For model selection, Table II shows performances of models
that differ by model type and maximum tree depth. Although
Model 3 was the best performer in the experiments of feature
sets, Model 2 was chosen as a baseline model to be compared
with XGBoost models (which are trained using BigQuery ML
[17]) so that both item and comparison features are included
in experimentation of model types.

TABLE II. RANXPLAIN PERFORMANCE FOR DIFFERENT MODELS

Metric Model 2 Model 4 Model 5
Model Type Log Reg XGBoost XGBoost

Max Tree Depth - 15 5

Train ROC-AUC 0.73 0.92 0.79

Test ROC-AUC 0.74 0.92 0.79

Simulation ROC-AUC 0.69 0.78 0.69

Reducing the maximum tree depth in the XGBoost model
causes significant decrease in model performance across all
train, test and simulation sets. This decrease is evident in Table
II, as shown by the performance difference between Model 4
and Model 5. This observation motivates the use of a more
sophisticated XGBoost model within RanXplain. Additional
complexity is required to effectively approximate the behavior
of primary ranking model, which is a highly complex model.
However, while higher complexity increases the prediction
performance, it also makes the interpretation of the explanation
model more challenging.
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It can be inferred from Table II that Model 2 underperformed
Model 4 with respect to ROC-AUC metrics. However, Logistic
Regression possesses inherent interpretability as opposed to
XGBoost which requires additional methods like SHAP for
explanations. Although more complex models like XGBoost
might be a better fit depending on the specific application’s
requirements, Logistic Regression is found more suitable for
RanXplain of the primary ranking model that is used in this
study.

C. Simulation Based Performance Evaluation

Simulation dataset was used to conduct various offline
evaluations on the preferred model (Model 3). Consistent ROC-
AUC performance was observed across the training, test, and
simulation datasets, with only a slight performance decrease
on the simulation set. Further analyses were conducted on
the simulation data to understand the behavior of RanXplain
model more comprehensively. These analyses are based on two
key factors: (i) proximity of item ranks in the original ranking
model and (ii) whether item pairs belonged to the same high
level item category (e.g., electronics category).

Table III depicts train, test and simulation performances of
Model 3. Simulation performance was analysed with respect
to three additional breakdowns: subset of the simulation data
(i) where the difference between rankings of two items are
greater than 20 (rdiff > 20) (ii) where the difference between
rankings of two items are less than or equal to 3 (rdiff ≤ 3)
and (iii) where the two items belong to the same category
(Same Category).

TABLE III. SIMULATION PERFORMANCE

Metric Model 3
Train ROC-AUC 0.74

Test ROC-AUC 0.74

Simulation ROC-AUC 0.70

Simulation ROC-AUC (rdiff > 20) 0.80

Simulation ROC-AUC (rdiff ≤ 3) 0.54

Simulation ROC-AUC (Same Category) 0.70

The results revealed a clear trend, predictive capability of the
model significantly improves as the rank difference between
item pairs increases. For example, the model performed substan-
tially better when the rank difference exceeded 20, achieving
an ROC-AUC of 0.80. On the contrary, performance dropped
considerably for closely ranked items ((rdiff ≤ 3)), with an
ROC-AUC of approximately 0.54. This finding indicates that
RanXplain has difficulty in predicting (and thus explaining)
prioritization when the primary ranking model assigns similar
scores to items, which is expected.

This behavior is a key advantage of the RanXplain approach,
as it allows us to know in advance when its outputs can be
used to confidently interpret the ranking model’s decisions,
thereby preventing misleading or false insights. The correctness
of RanXplain’s predictions (and therefore their reliability for

generating insights) is known in advance, since the real rankings
are already known. This enables the clear identification of when
it is safe to use RanXplain’s outputs to interpret the behavior
of the underlying ranking model for specific item pairs, thereby
avoiding misleading or false insights.

Regarding category influence, RanXplain’s predictions for
pairs within the same item category were very similar to its
performance on pairs from the whole simulation set, indicating
no significant performance differential. Consequently, for the
application of this study, improving RanXplain’s performance
on closely ranked pairs is of minor importance, although such
improvements are feasible by adjusting sampling strategies or
incorporating additional comparison features.

V. CONCLUSION AND FUTURE WORK

This paper introduced RanXplain, a methodology designed to
address a significant gap in recommendation systems, which is
the need to explain ranking decisions rather than individual item
predictions. As outlined in the previous sections, RanXplain
functions as a seperate machine learning model trained on
item pairs, employs features derived from the original ranking
model. Both the effectiveness and operational behavior of
RanXplain is illustrated through a systematic investigation
of various feature sets and model architectures, along with
simulation-based performance evaluation.

The main contribution of RanXplain lies in shifting the focus
of explainability from pointwise predictions to the comparative
logic behind ranked outputs. RanXplain enables a more intuitive
and actionable understanding of why one item is ranked above
another by reframing the task of explaining a ranked list as
a series of pairwise classification problems. The aim is to
provide interpretable insights into the decision-making process
of black-box recommendation models, supporting user trust
and contributing to system debugging.

The evaluation based on ROC-AUC across various datasets
highlighted the strong influence of comparison features. Models
trained exclusively on these features not only achieved better
predictive performance but also yielded more interpretable
explanations as a result of the direct relevance of the input
features. While more complex models, such as XGBoost,
offered better predictive performance, Logistic Regression
proved to be more suitable for applications that require
interpretability, even at a modest cost to accuracy.

The simulation based evaluation further revealed that RanX-
plain’s predictive performance improves significantly as the
rank difference between items increases. On the other hand,
its performance naturally decreased when items were very
closely ranked, which is expected given that the ranking
model assigns similar scores in such cases. It is important
to note that one of RanXplain’s primary advantages is that
the correctness of its predictions is known in advance, since
the ground truth rankings are available. This capability allows
for the identification of cases where RanXplain’s outputs can
be confidently used to interpret the ranking model’s decisions,
thus avoiding potential misinterpretations. This observation
also draws a parallel to the concept of rank reversal in pairwise
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comparison methods like Saaty’s AHP, suggesting that the
underlying ranking decisions for closely-ranked items are
inherently more ambiguous and less stable, making them
difficult to explain with high confidence.

The approach shows promise in interpreting pairwise relative
rankings; however, RanXplain is not designed to provide a
single, holistic explanation for an entire ranked list. While
a high-level explanation might be desirable, it can often be
too simplistic to capture the nuanced decision-making process
of a complex ranking model. Instead, RanXplain provides a
series of granular, actionable insights. An explanation for an
entire ranked list can be composed by chaining together a
series of pairwise comparisons, such as explaining why Item
1 was ranked above Item 2, why Item 2 was ranked above
Item 3, and so on. This approach offers a more detailed and
accurate understanding of the ranking process, as it clearly
articulates the specific feature-level trade-offs that led to the
final ordering. This modular nature allows RanXplain to provide
highly specific insights on demand, supporting both user
understanding and system debugging by clarifying the reasons
behind individual ranking decisions.

For future work, several promising directions can be explored
to further enhance RanXplain. The AUC performance of the
model, particularly on closely ranked pairs, can be enhanced
through various methods. This could involve incorporating
additional non-linear comparison features, such as the power
of the difference of feature values, to better capture the
primary model’s complex decision boundaries. Furthermore,
exploring alternative and more advanced sampling techniques
or using a wider range of training data could lead to significant
improvements in model performance and a more robust
understanding of the ranking model’s behavior. An extension of
RanXplain to support counterfactual explanations could offer
more actionable insights for users and system designers by
indicating how changes in specific features would affect the
relative ranking of items. The trade-off between user-based and
random sampling, and how different sampling strategies impact
the quality of explanations, presents a key area for further
research. RanXplain can also be used in a reverse engineering
context to guide feature design in the original ranking model.
When important comparison features are identified but prove
insufficient on their own, new supporting features can be
introduced to the original ranking model. This can improve
both the model’s performance and its explainability.
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Abstract—Clinicians need transparent reasoning to trust Ar-
tificial Intelligence recommendations, but standard explanation
methods lack clinical semantics. To address this, we transform
an Onkopedia colon carcinoma guideline into a semantically
enriched Knowledge Graph by segmenting text, extracting and
merging semantic concepts, enriching gaps with registry data, and
anchoring features to graph nodes. Using a predictive model, we
compute Shapley Additive Explanations feature attributions and
generate fact-grounded narratives via large language models that
directly reference guideline evidence. We compare three contexts
across 65 synthetic colorectal cancer cases (195 narratives) and find
that KG-based narratives reduce hallucinations, speculation, and
contradictions. Embedding KG-grounded narratives in clinical
decision-support tools promises to shorten expert review cycles,
surface guideline deviations, and bridge the explainability gap
between data scientists and clinicians.

Keywords-Keywords— Explainable Artificial Intelligence; XAI;
Knowledge Graphs; Shapley Additive Explanations; SHAP; Narra-
tive Generation; Claim Verification.

I. INTRODUCTION

Clinical decision support models promise early insights but
often function as opaque black boxes [1]. Clinicians require
transparent, evidence-based explanations to understand how
input features drive predictions [2]. In practice, model develop-
ment is a collaborative, iterative process: data scientists train
and refine predictive models, generate interim explanations, and
oncologists review these artifacts against clinical knowledge,
suggest adjustments, and feed feedback into retraining until
statistical performance and clinical relevance converge. This
real-world feedback loop motivates our work.

To bridge the gap between raw model outputs and clinically
meaningful interpretation, we augment Shapley Additive Expla-
nations (SHAP) outputs with fact-grounded narratives linked
to an authoritative guideline-derived Knowledge Graph (KG).
Our contributions are threefold:

1) Extract and structure clinical guideline content into a
semantically rich KG.

2) Compute SHAP attributions for model features and anchor
them to KG nodes.

3) Generate narrative explanations referencing the KG, yield-
ing traceable, domain-specific rationales.

Standard SHAP bar charts quantify feature influence but
lack clinical semantics. By mapping attributions to KG nodes

derived from colon carcinoma guidelines, our approach en-
riches explanations with medical context—enabling clinicians
to reason in domain-specific terms and data scientists to
identify discrepancies from accepted evidence. We therefore
ask how such fact-grounded narratives affect four claim
categories—Hallucination, Contradiction, Speculation, and
Extrapolation:

(RQ1) Does KG anchoring reduce hallucinations?
(RQ2) Does KG anchoring reduce contradictions?
(RQ3) Does KG anchoring reduce speculative statements?
(RQ4) Does it keep extrapolations within the boundaries

established by using guideline text alone?

If successful, this strategy could streamline expert review
and facilitate the way for prospective clinical validation. The
remainder of the paper is organized as follows: In Section III
we present the proposed methods, including KG construction
and narrative generation. Section IV reports quantitative
and qualitative results. Section V discusses implications and
limitations. Section VI concludes with future directions.

II. RELATED WORK

Shapley values provide theoretically grounded, local feature
attributions that have become standard in explainable clinical
ML [3], but dense bar-chart displays impose high cognitive load
on physicians [4]. To improve interpretability, template-based
systems, such as SHAPstories, convert attributions into short
rationales, yielding modest trust gains [5], while constrained
decoding in EXPLINGO reduces hallucinations in general
domains [6]. Burton et al. frame explanation verbalization as a
data-to-text task with the TEXEN corpus—496 SHAP/LIME-
to-narrative pairs—reporting factual error rates of 25%-42%
for models like BART and T5 [7]. Although these methods
enhance usability, they lack integration with domain-specific
clinical knowledge.

Evaluation of explanation quality typically distinguishes
between faithfulness—how accurately an explanation reflects
the underlying model—and plausibility—how well it aligns
with human judgment [8–10]. Kroeger et al. demonstrate
that larger language models can yield less faithful post-hoc
explanations without additional constraints [11], and Lanham
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et al. offer a fine-grained benchmark for faithfulness in chain-
of-thought reasoning [12]. Diagnostic probes, such as Walk-
the-Talk and the FaithEval suite, complement traditional lexical
overlap metrics (BLEU, ROUGE) by assessing deeper semantic
and factual fidelity [13][14]. To build upon this strand, we
introduce a structured factual-consistency framework that
quantifies divergences across four categories: Hallucination,
Extrapolation, Speculation, and Contradiction, as defined in
Table II and applied in Table IV.

Knowledge Graphs enhance semantic structure, traceability,
and bias control in otherwise opaque model explanations [15].
Typical KG construction pipelines involve text segmentation,
entity and relation extraction, canonicalization, ontology align-
ment, and population [15], while widely used biomedical
resources, like the UMLS Metathesaurus and Bio2RDF, in-
tegrate millions of curated concepts from diverse ontologies
[16]. Domain-grounding systems, such as XplainLLM, anchor
generated explanations in KG triples; DR.KNOWS integrates
UMLS—a large compendium of biomedical terminologies—for
diagnostic safety [17][18]. Cross-domain cybersecurity work
highlights that LLM-based verbalization of SHAP tables can
still wander off-fact without authoritative grounding [19].
Emerging LLM-based tools (e.g., Text2KG, LLM-Assisted
Knowledge Graph Engineering) automate parts of these
pipelines but face challenges, such as hallucination and schema
drift [20][21]. Crucially, no existing approach constructs
KGs directly from prescriptive clinical guidelines—a gap our
guideline-driven pipeline addresses by extracting semantic
concepts from Onkopedia guidelines, enriching them with
registry data, and anchoring model features to KG nodes.

Building on post-hoc feature attributions (SHAP), narrative
verbalization, domain-specific evaluation metrics, and estab-
lished KG construction pipelines, we address the challenge of
grounding model explanations in clinical evidence. We integrate
guideline-derived Knowledge Graph construction with SHAP-
anchored narrative generation to produce explanations that are
both interpretable and verifiable. We evaluate factual accuracy
by fact-checking statements in the generated narratives against
patient case records and quantify divergences from the ground
truth. This methodology yields fact-anchored narratives that
clinicians can immediately verify against clinical guidelines,
enhancing trust and accelerating prospective validation.

III. PROPOSED METHODS

We developed an end-to-end pipeline that (i) transforms
the Onkopedia colorectal-cancer (CRC) guideline [22] into a
semantically enriched Knowledge Graph, (ii) computes Shapley
Additive Explanations attributions on an XGBoost predictive
model to quantify feature importance, and (iii) generates fact-
grounded narrative explanations via large language models
(LLMs), which we evaluate experimentally for factual consis-
tency.

A. Knowledge Graph Representation

We represent the guideline-derived KG as a labeled directed
graph, where nodes correspond to clinical semantic concepts

(e.g., therapies, biomarkers, patient characteristics), edges
denote typed relationships between them, and both nodes and
edges carry labels derived from the medical guideline.

We implemented a six-stage pipeline to transform the CRC
guideline into a semantically enriched Knowledge Graph:
Step 1: Preprocessing & Chunking: Clean raw guideline text

(remove headers, footers) and segment into traceable
100-character chunks with metadata (chapter, page,
hash).

Step 2: Concept & Relation Extraction: Apply GPT-o4-
mini-high with structured prompts to extract semantic
concepts as entities with attributes (name, description,
confidence) and their inter-relations into a validated
JSON schema.

Step 3: Subgraph Integration & Clustering: Merge chunk-
level subgraphs into an initial graph, cluster entities
by thematic category, consolidate identical identifiers,
and link synonyms.

Step 4: Registry Enrichment: Identify missing clinical con-
cepts, insert placeholder nodes, and enrich them with
real-world CRC registry attributes (e.g., age, KRAS
status, ECOG).

Step 5: Master Graph Assembly: Integrate all enriched
subgraphs under a central root node, serialize in Mark-
down, and export to Neo4j format for queryability.

Step 6: Provenance Annotation: Attach detailed source meta-
data (document, chapter, page, chunk ID, hash) to
every node and edge for auditability.

B. Narrative Generation

Based on a real-world colorectal-cancer registry data schema
excerpt provided by our research partner, we built a simulation
and generated 20,000 synthetic patient records. We trained an
XGBoost model to forecast patient-level treatment decisions
and quantified feature importance with SHAP contribution
scores (ϕi) using the TreeExplainer algorithm [3]. SHAP
decomposes each prediction f(x) as:

f(x) = ϕ0 +

M∑
i=1

ϕi,

where ϕ0 is the model’s expected output and each ϕi the
marginal contribution of feature i. We linked features to their
corresponding nodes in the guideline-derived KG, ensuring
semantic grounding. However, not all features can be anchored
to the KG, since some registry variables (e.g., body mass index
or weeks since initial diagnosis) are not guideline-based clinical
concepts. We then synthesized 65 colorectal-cancer patient
personas—each defined by demographic variables, TNM stage,
ECOG performance status, Charlson Comorbidity Index [23],
and molecular biomarker profile—and stratified them into three
complexity tiers: (i) uncomplicated cases without guideline
conflicts; (ii) biomarker-driven cases; and (iii) multimorbid
cases with conflicting recommendations. For each persona,
we computed SHAP attributions using TreeExplainer on the
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XGBoost predictive model and selected the ten highest-impact
features by absolute SHAP magnitude. We then generated
narrative explanations in three grounding contexts (OA, GL,
KG), defined in Table I, with GPT-o4-mini-high, supplying
both the complete patient CSV record and the top-ten SHAP
features as patient case data. This 3 × 65 factorial design
produced 195 narratives, enabling paired comparisons of
factual consistency across grounding strategies. To evaluate
the incremental impact of integrating clinical guidelines and
Knowledge Graph information, we prompt the LLM (GPT-o4-
mini-high) to generate narrative explanations under the three
controlled contexts (OA, GL, KG). All narratives follow a
standardized Markdown template to control for length and
format, ensuring identical format and length constraints across
experimental conditions.

TABLE I. GROUNDING CONTEXTS FOR NARRATIVE GENERATION

Context Description

OA (Only-Attributes) Patient case data alone, excluding
guideline or KG context.

GL (Guideline) Patient case data plus extracted
guideline excerpts with explicit
citations.

KG (Knowledge Graph) Patient case data and full KG in
Markdown, including labels,
relations, and provenance.

C. Claim Extraction and Evidence Matching

We parsed each created narrative with GPT-o4-mini-high to
extract individual asserted claims (complete sentences). For
each claim, we matched its content against the patient case data
(patient attributes and corresponding SHAP attributions). The
LLM was prompted to flag each claim without direct support
in the patient case data as inferred and to classify it into four
categories: Hallucination, Contradiction, Extrapolation, and
Speculation, as defined in Table II.

TABLE II. INFERRED CLAIM CATEGORIES AND DEFINITIONS

Category Why the claim is inferred

Hallucination The claim asserts a patient-specific fact
that is not present in the case data or
SHAP features; the model introduces
new clinical information not observed in
the input.

Contradiction Claim conflicts with patient case data.

Extrapolation Guideline-consistent generalization that
lacks direct case evidence.

Speculation Conjecture with insufficient grounding
(not verifiable against case or guideline).

In the following, we illustrate examples of the LLM evaluated
claim extraction and evidence matching phase. Each category in
Table II is exemplified with excerpts from the LLM evaluation

to illustrate the four distinct ways in which a generated inferred
claim can arise. According to the Extrapolation criterion, a
claim is clinically plausible and drawn from the guideline but
lacks direct support in the patient record. For example:

“For a patient with stage I (T2 N0 M0) colon
carcinoma, complete surgical resection is curative
and no adjuvant chemotherapy is indicated.”

Here, the tumor stage (T2 N0 M0) is correctly taken from the
case data, yet the recommendation about cure and omission
of chemotherapy, while guideline-based, cannot be verified
against any patient-specific attribute. Such extrapolations are
nevertheless desirable, because they showcase the language
model’s ability to enrich its output with domain knowledge and
provide broader narrative explanations rather than relying solely
on SHAP-derived feature attributions. A Speculation covers
plausible inferences that nonetheless lack explicit evidence. For
example:

“ECOG 1 (–0.12) and a high comorbidity burden
(CDRRHIGH_yes, –0.10) further lowered the proba-
bility because of toxicity concerns.”

Although ECOG and comorbidity are real features, attributing
the SHAP-driven probability drop to “toxicity concerns” is
conjectural and not encoded in the patient case. Such specu-
lation are undesirable, as it introduces clinical reasoning not
backed by case data and can mislead users about the true
factors influencing the model. By contrast, a Hallucination
arises when the model fabricates a patient-specific fact that
does not appear in the input at all. Consider:

“Difference 1: According to the guidelines, an anti-
EGFR antibody should be added for RAS-wild-type
disease, whereas the model instead selects a BRAF-
targeted agent (AB).”

This statement wrongly attributes BRAF targeting to AB—a
fact not mentioned in the case data. Such hallucinations are
undesirable because they introduce clinical assertions not
backed by case data, undermining trust in the explanation
and potentially misleading downstream decisions.

Finally, Contradiction occurs when a claim directly conflicts
with documented attributes. For instance:

“This 55-year-old man with resected rectal cancer
(T3 N1 M1) and solitary liver and lung metastases
has undergone complete surgical removal of all
metastases.”

This contradicts the record’s single-metastasis count
(NUMBER_METASTASES=1) and notes R0 resection only
for the primary tumor. Such contradictions are undesirable
because they misrepresent case facts.

To validate claim extraction and evidence matching, which
were performed automatically using the OpenAI GPT-o4-mini-
high model, we randomly sampled 20 claims and computed
classification accuracy with 95% Wilson-score confidence
intervals to account for small-sample inference [24]. The LLM
correctly classified 19 out of 20 cases (95% accuracy), yielding
a Wilson 95% confidence interval of 76.4%–99.1%. Even at
the lower bound, fewer than 25% of labels are expected to
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be incorrect, justifying the use of automatic evaluation for the
quantitative analyses.

IV. RESULTS

To evaluate the factual consistency of the generated narratives
across three grounding contexts—KG, GL, and OA—we report
both quantitative counts and qualitative examples. Results are
presented in three parts: overall observed vs. inferred claim
counts, composition of inferred categories, and evaluation
reliability.

A. Observed vs. Inferred Claims

We evaluated the generated narratives and labeled every
asserted claim as either observed or inferred. A claim is
observed when it is directly supported by the patient record
(e.g., tumor stage or biomarker status) or explicitly grounded
by a SHAP attribution that links a named feature to the model’s
prediction. A claim is inferred when it lacks such direct support;
inferred claims were further categorized.

TABLE III. OVERALL OBSERVED VS. INFERRED CLAIM COUNTS BY
CONTEXT

Context Total ✓ ❍ % Observed

KG 1 128 367 761 32.5 %
GL 1 125 243 882 21.6 %
OA 1 107 395 712 35.7 %

We report the proportion of observed versus inferred claims
across the 195 narratives. Table III summarizes the total number
of observed (✓) and inferred (❍) claims across the three
grounding contexts. Narratives generated with KG grounding
achieved 32.5 % observed claims (367/1 128), outperforming
the GL context, which yielded only 21.6 % (243/1 125). The
OA context performed comparably to KG with 35.7 % observed
claims (395/1 107 vs. KG).
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Figure 1. Overall observed vs. inferred claim counts by context (observed =
case/SHAP-backed; inferred = not directly case-backed).

Figure 1 plots overall observed vs. inferred claim counts
by context. Observed shares differed across the three contexts:
explanations grounded in the KG achieved higher observed
shares than those from the GL baseline, while OA and KG
did not differ much. These findings indicate that KG-grounded
input improves consistency over GL-context narratives, while

OA may benefits from a narrower input scope with fewer
opportunities for inferred claims.

B. Inferred Claim Categories

Table IV details the distribution of inferred claims by
category—Extrapolation, Speculation, Hallucination, and
Contradiction—expressed as a percentage of total claims in
each context.

TABLE IV. INFERRED CLAIM CATEGORY RATES (PERCENTAGE OF TOTAL
CLAIMS)

Category KG GL OA

Extrapolation 64.8 % 73.7 % 61.9 %
Speculation 0.5 % 2.0 % 1.1 %
Hallucination 0.0 % 0.4 % 0.2 %
Contradiction 0.1 % 0.6 % 1.1 %

Extrapolation is the predominant inferred category across
all contexts. However, the KG condition achieves substantial
gains in factual precision and safety: no hallucinations were
observed under this setup (0.0 %), speculation drops to 0.5 %,
and contradictions fall to just 0.1 %. In contrast, the GL context
shows higher rates of speculation (2.0 %) and contradiction
(0.6 %).
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Figure 2. Inferred claim category composition per context (% of total claims).

Figure 2 visualizes these differences as stacked bars (%
of total claims). The KG approach yields markedly fewer
speculative and contradictory issues than both the GL and
OA baselines, and reduces extrapolation by nine percentage
points compared to GL. Despite these gains, many claims
remain inferred, reflecting our design choice to allow clinically
plausible, guideline-based extrapolations that may not be
explicitly present in the patient record. These results support
RQ1 (hallucination), RQ2 (contradiction), RQ3 (speculation),
and RQ4 (extrapolation).
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C. Qualitative Illustrations

Table V presents an excerpt of one narrative of the same case
under the different grounding contexts. The KG narrative cites
a unique guideline node [27205d9] and the recorded feature
RAS|wildtype, both verifiable in the case file, demonstrating
domain-rich yet fact-bound explanation. By comparison, the
GL narrative, while fluent, infers “stage III disease” solely from
N1 and offers no patient-specific evidence for adjuvant need,
showing readability at the expense of precision. The OA excerpt
repeats guideline buzzwords (“high-risk stage III”) relying on
generic statements (T3 N1 M0), resulting in the most vague
prose. For completeness, the last example in Table V presents
an GL hallucination example. The mentioned fact—“left-
sided tumor (+0.04)”—illustrates a feature not present in the
patient case and most likely misattributed from the referenced
guideline’s (§6.1.4.3.1.1) metastatic EGFR-therapy discussion,
underscoring how lack of authoritative grounding can introduce
factual errors.

TABLE V. REPRESENTATIVE NARRATIVE EXCERPTS ACROSS GROUNDING
CONTEXTS, WITH GL HALLUCINATION EXPLICITLY MARKED

Context Narrative Excerpt

KG Both guideline and model utilise an oxaliplatin +
fluoropyrimidine backbone [27205d9]; the SHAP
feature RAS|wildtype supports full cytotoxic
sensitivity.

GL The SHAP value for N1 (0.28) flags stage
III disease and confirms the need for adjuvant
therapy (guideline §6.1.3).

OA Both guideline and model emphasise high-risk
stage III features (T3 N1 M0) as key drivers of
therapy intensification.

GL Hallucination: RAS wildtype (+0.03) and left-
sided tumor (+0.04) slightly increased probabil-
ity, mapping to metastatic guidelines for EGFR-
directed therapy (guideline §6.1.4.3.1.1).

The GL hallucination example highlights a reference to a non-existent feature
(left-sided tumor).

Together, these qualitative vignettes also reinforce our
quantitative results: The KG-grounded narrative delivers deep,
context-rich explanations that remain verifiable, while the GL
outputs sacrifice fidelity for readability and the OA outputs rely
on overly generic statements, evidencing a tendency toward
vagueness.

V. DISCUSSION

Our study demonstrates that anchoring narrative explanations
in a guideline-derived KG improves factual reliability. The KG
context reduced hallucinations to 0.0% of total claims in our
sample—i.e., none were observed under this setup—supporting
RQ1. Moreover, contradictions dropped to 0.1% and speculative
claims to 0.5% of total claims, supporting RQ2 and RQ3 that
KG grounding reduces both contradictions and speculation.

Moreover, anchoring explanations in the KG cut extrapola-
tion rates from 73.7 % under the GL context to 64.8 %—a 9.0
percentage-point drop—demonstrating that guideline-derived
KG grounding effectively constrains extrapolations to within
established bounds and thereby confirms RQ4 (See Table IV).

Although the OA context exceeds KG in overall observed-
claim rate (35.7% vs. 32.5%), its narrower input scope yields
shallower, less semantically rich narratives. OA’s lower extrap-
olation rate (61.9%) comes at the expense of actionable detail,
whereas KG grounding delivers fully audit-ready, guideline-
anchored explanations (See Table III and Figure 2). Finally, the
relatively high share of inferred claims across conditions largely
reflects clinically plausible, guideline-based extrapolations that
provide useful framing but may not be directly present in patient
records. In settings that require stricter evidencing, prompts or
decoding constraints can restrict extrapolation at the cost of
brevity; conversely, future work may calibrate this trade-off
per user role (e.g., clinical vs. data science review).

These findings extend prior LLM explainers by showing
that structured KG context not only enriches inference but
also constrains factual drift [7]. We note that the absence of
hallucinations should not be interpreted as impossibility; rather,
it likely reflects the combination of KG constraints and the
controlled, synthetic case distribution used here.

In practice, clinicians must rapidly validate AI recom-
mendations. The traceable paths in KG narratives—linking
each feature attribution to specific guideline nodes—can
reduce expert review time by directly surfacing conflicts or
affirmations in the guideline text. In our qualitative examples
(Table V), KG narratives allowed unambiguous verification
of treatment rationale, whereas GL outputs required additional
cross-checking. We anticipate that integrating KG-grounded
narratives into decision-support dashboards will shorten itera-
tion cycles between data scientists and clinicians, as envisaged
in collaborative AI workflows [25].

Our evaluation is constrained by some factors. First, we
used 65 synthetic patient personas rather than real-world cases;
while this allowed controlled variation, it may not capture
the full complexity of clinical data. Second, we benchmarked
against a single guideline (Onkopedia CRC) and one LLM
version (GPT-o4-mini-high); generalization to other specialties
or model variants remains to be demonstrated. Third, our error
annotations—though 95% accurate in spot-checks—rely on an
automated evaluation LLM; residual misclassifications could
slightly bias absolute error rates. Finally, we measured only
claim-level errors; additional dimensions such as usability,
cognitive load, and end-user satisfaction were not assessed
here.

VI. CONCLUSION AND FUTURE WORK

Having demonstrated through our evaluations that KG-
grounded narrative explanations outperform both attribute-only
and guideline-excerpt baselines in factual reliability, we now
outline directions to build on this work. To address limitations
and extend our findings, we propose the following directions:
(1) Apply the pipeline to real-world data and diverse guidelines;
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quantify clinician review time and simulated decision impact.
(2) Iteratively refine KG-narrative prompts with user feedback
and on-the-fly graph augmentation, aligning with human-
centered XAI [5]. (3) Evaluate usability, trust calibration, and
clinical actionability; extend metrics (e.g., comprehensiveness,
empowerment).

Overall, our results confirm that fact-grounded narrative
explanations built on guideline-derived Knowledge Graphs
deliver superior factual reliability and coherence compared to
attribute-only or guideline-excerpt baselines. By transparently
linking model attributions to clinical evidence, this approach
paves the way for more trustworthy, actionable AI in health-
care—bridging the critical gap between statistical performance
and domain relevance.
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Abstract - This paper proposes a research agenda exploring 

how Generative Artificial Intelligence (GAI) can help explain 

patient medical records, particularly to the patients of non-

medical practitioners. While patient access to records is 

expanding globally, little is known about how this access 

supports care beyond primary care doctors, or how GAI tools 

like ChatGPT may assist in interpretation. We outline key 

research questions and argue for co-designed solutions that 

include nurses, midwives, and allied health professionals to 

ensure accessible, equitable, and scalable approaches to 

explainability in digital health. 

Keywords- explainability; patient access to records; research 

agenda; non-medical practitioners. 

I. INTRODUCTION 

Medical records were originally developed in the 18th 

and 19th centuries, primarily as an aide-mémoire for 

clinicians to support diagnosis, monitor treatment, and 

facilitate communication between healthcare professionals, 

not as documents intended for patients themselves. During 

the 1960s and 1970s researchers and practitioners began to 

suggest that patients could benefit from access to their 

records or hold shared care records [1], for example, in 

diabetes or hypertension [2]. As technology developed 

opportunities arose to share computer-produced summaries, 

for example, a clinical system for diabetes that produced 

records for hospital, GP and patient [3][4]. Use of this 

problem-oriented record showed that doctors were not 

always ready to share all problem-list entries with their 

patients [5][6]. On the other hand, in some situations such 

as antenatal care [7], clinicians were prepared to ‘hand 

over’ a complete paper medical record for women to look 

after. 

In the 1990s we saw attempts to explain medical 

records to patients including the development of ‘lay 

dictionaries’ to ‘translate’ medical problems [8][9] as well 

as AI approaches to construct explanations [10][11] and 

showed that explanations based on their medical record 

were preferred to more generic information [12][13]. 

Randomised trials in the 1990s and 2000s [12][14][15] 

showed that giving patients access to their record with some 

type of explanation was of benefit. For example, a 

computer-produced paper record of the medical record with 

quality relevant information was more likely to be shared 

by cancer patients with their family than just the general 

information. This helped reduce patient anxiety [12]. 

More recently, a 2020 systematic review of patient 

access to medical records found that sharing electronic 

records with patients improved medicine safety and often 

reduced healthcare use, including fewer hospital visits and 

appointments [16]. However, an editorial by Sarkar et al 

[17] argued that the impact of patient access depends 

heavily on implementation. Contextual factors such as 

digital literacy, language, and clinical workflows must be 

considered, or else the benefits may be offset by increased 

clinician burden and exacerbated inequalities [18].  

In section 2 we describe current practice, in section 3 

the changing health information landscape in the UK, in 

section 4 we describe research questions about explaining 

medical records to patients, in section 5 we focus on under-

researched areas and draw conclusion in section 6. 

  

II. CURRENT PRACTICE 

Progress in this area had been slow until recently, but 

patients in at least 30 countries now have some level of 

access to their records. Online routine access to medical 

records has demonstrated benefits including patient 

empowerment, reducing inefficiencies, error correction, 

and better shared decision making [19-21].  

However, the degree of routine implementation differs. 

In the UK, patients were expected to gain prospective 

access to new data in their primary care records, including 

letters and consultations, from October 2023. However, a 

recent study [22] of 400 GPs in England revealed that in 

2023 only 33% supported patient access to records. Most 

GPs felt that patients would worry more (91%) or find 

records confusing (85%). While many acknowledged 

potential patient benefits, most believed that online record 

access would increase their workload. Qualitative analysis 

[23] echoed these concerns among other primary care staff. 

Clinicians are concerned that patients will not understand 

their records. 

 

III. THE CHANGING UK HEALTH 

INFORMATION LANDSCAPE 

The NHS 10-Year Plan sets out a vision for a digitally 

enabled, personalised, and prevention-focused health 

service, emphasising the shift of care closer to home and the 

importance of empowering individuals to manage their own 

health. Achieving this vision requires not only giving 

patients access to their health records, but also ensuring 

they can understand and use that information effectively 

[24].  
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In the UK as elsewhere, the digital health landscape is 

evolving rapidly, both in terms of access to general health 

information and the development of personal health 

records. High-quality health information is widely available 

from trusted sources such as the NHS [26], Mayo Clinic 

[27], NICE [28], as well as peer-reviewed medical journals. 

This information is increasingly being accessed, 

summarised, and transformed by GAI tools such as 

ChatGPT. 

Meanwhile, personal health records, created through 

interactions with frontline systems in general practice and 

community care (e.g., EMIS [29] and SystmOne [30]), as 

well as hospital systems (e.g., Cerner [31] and Epic [32]), 

are being extracted into patient-facing platforms such as the 

NHS App [33]. These records may also feed into shared 

care records for care planning and potential future patient 

access (e.g., via systems like Orion [34] and Black Pear 

[35]). Patients may therefore engage with digital health in 

different ways: using public websites or AI tools 

independently or verifying their clinical data through 

patient portals, then exploring it via GAI. Some health IT 

providers are beginning to integrate, or plan to integrate, 

GAI directly into their patient portal platforms. For 

example, Epic is working with Microsoft/OpenAI to embed 

GAI into clinician workflows and patient portals and NHS 

England is exploring how GAI might be used in the NHS 

App and other digital services.  

GAI tools offer new opportunities to make medical 

records more accessible by translating clinical jargon into 

lay language, providing context-specific explanations, 

supporting conversational queries, and generating 

personalised summaries. These tools may enhance patient 

understanding, engagement, and self-management, 

especially when integrated with voice interfaces or patient 

portals. However, public-facing GAI tools also carry 

significant risks. They may generate incorrect or misleading 

information ("hallucinations"), lack source traceability, 

pose privacy concerns if sensitive data is shared outside 

secure systems, and exacerbate inequalities among patients 

with low digital literacy or poor internet access. Without 

safeguards and careful integration into clinical workflows, 

GAI may increase anxiety or misunderstandings rather than 

empowering patients. Research is therefore needed to 

explore how GAI can be safely and effectively deployed in 

real-world health contexts, particularly for non-medical 

practitioners and the populations they support. 

 

IV. RESEARCH QUESTIONS ABOUT 

EXPLAINING MEDICAL RECORDS TO 

PATIENTS. 

We could divide research questions about medical 

records into three categories: 

• ‘Micro’ level, the explainability of the record, 

exploring which types of explanation are preferred 

or are more useful.   

• ‘Meso’ level, whether patients want to use portals 

and whether their use and GAI affects the 

practitioner-patient relationship, and 

• ‘Macro’ level, how this transformation can affect 

patient outcomes and possible changes to care 

processes, such as the shift from acute to 

community care and the focus towards health 

promotion and disease prevention [36]. 

 

Micro questions might include: How much do patients 

need their medical record if they know enough to ask a GAI 

for explanation? Will software developers build in GAI to 

their systems? Will this be more secure than patients using 

information from their online records to query a GAI? If 

NHS App builds in GAI will patients use that or still use 

independent GAI?  What about the digitally disadvantaged? 

How should GAI adapt explanations to the knowledge level 

of the patient? Should the priority be on giving voice AI 

access to medical records so that those with no internet 

access or lack of skills can use the telephone to find out 

more? 

At the ‘Meso’ level, questions are focussed on how we 

develop the triad of patient-practitioner and AI? What staff 

training is needed? How can practitioners collaborate with 

patients who turn up with lists or cite papers or GAI?  How 

can practitioners support patients who do not use the 

Internet? How can practitioners assess their patients’ IT 

abilities and knowledge? How might this approach need to 

be adapted for some categories of patients such as the 

cognitively impaired?  How do practitioners feel about 

patients reading and interpreting their notes—especially 

sensitive or nuanced ones (e.g. mental health, pain, 

uncertainty)? Does transparency change clinical 

documentation practices (e.g., tone, completeness, 

candour)? What are the risks and benefits of giving access 

to records in real time versus following clinician review or 

filtering? How do we introduce this topic to the curriculum 

of doctors, nurses, and other health professionals? 

At the Macro level, NHS level questions are concerned 

with the most scalable and cost-effective methods for 

explaining records (e.g., automated summaries vs clinician 

review vs chatbot support)? How can health systems 

measure ‘understanding’ as an outcome of record-sharing 

interventions? Will these developments increase or 

decrease health inequalities? 

V. UNDER RESEARCHED AREAS 

In the English NHS, there are approximately 172,000 

doctors (134,000 hospital doctors and 38,000 full-time 

equivalent GPs). However, there are some 372,000 nurses 

and midwives, and over 200,000 Allied Health 

Professionals (AHPs) (healthcare professionals other than 

doctors and nurses) from 14 professions (such as 

physiotherapy, podiatry, dietetics) working across 

community, primary, and secondary care. AHPs deliver 

over 208 million patient contacts annually [36]. Yet, most 

research into patient online access to their records has been 

in primary care and with GPs. Very little is known about 

nursing or AHPs’ or patients’ attitudes to patient access to 

their records or the use of GAI in non-medical clinical 

situations. For example, a recent scoping review of patient-

accessible electronic health records [37] identified 66 
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studies, with none addressing nursing or AHP attitudes or 

GAI use in those settings. 

We propose that the research questions outlined above 

regarding the most effective ways to explain medical 

records, could be more widely explored at micro, meso and 

macro levels, through co-design with patients and 

practitioners in non-medical disciplines. These include 

antenatal care, nurse-led pain clinics, physiotherapy, 

podiatry, and dietetics. 

• Antenatal care has the longest history of providing 

patients with access to their records [7]. It continues to 

lead in shared record practices, with handheld notes 

and digital maternity apps now widely used. 

• Pain clinics, particularly those led by nurses, are more 

cautious. While some services have begun to share care 

plans and symptom-tracking tools through patient 

portals, concerns remain about the risk of patients 

misinterpreting complex pharmacological or 

psychological data. 

• Podiatry, especially within diabetes care, is seeing a 

growing use of digital platforms. These integrate 

podiatry notes into diabetes pathways and offer 

patients access to wound images, self-care advice, and 

foot health monitoring. However, access remains 

inconsistent. 

• Dietetics is at a transitional stage. Patients are 

increasingly using digital tools to track dietary intake 

and receive tailored plans. There are also new digital 

platforms evolving such as MyRenalCare where 

clinicians including dietitians support the patient. Yet 

access to dietetic records is still limited, and 

documentation is not routinely shared or integrated 

across systems. 

• Physiotherapy shows similar variability. Some 

integrated musculoskeletal pathways allow patients to 

access structured exercise plans and outcome data via 

apps like getUBetter or PhysiApp. However, routine 

access to clinical notes is uncommon, and many 

departments still rely on paper records or standalone 

systems. 

 

Overall, progress toward shared records and digital 

self-management tools across these disciplines is uneven. 

There is a mix of promising developments and significant 

gaps. However, this inconsistency presents an opportunity: 

it offers researchers a diverse range of environments in 

which to explore and evaluate innovative approaches. 

 

VI. CONCLUSION 

Now is the time for a major change towards using AI to 

explain and interpret the content of a patient’s medical 

record to the patient themselves. But we need (i) to switch 

attention to the under-researched areas of nursing and AHPs 

and (ii) to work with both practitioners and patients to co-

design the convergence of patient access and GAI to 

empower patients to self-manage their condition and get 

what they need from their clinical consultation. Co-design 

is the only approach which identifies the needs and 

concerns  of both groups (HCPs and patients) and enables 

them to work together in developing and sharing an 

optimum approach 

       We now need collaborative design between patients 

and practitioners to adapt these technologies effectively 

within clinical workflows. Without such work, we risk 

missing opportunities for improvement and compounding 

access disparities. This research proposes co-design 

approaches, including the development of solutions such as 

voiceAI telephone interfaces, to ensure these tools are 

usable, equitable, and aligned with NHS real-world needs. 

       Improvements in technology such as patient portals and 

GAI, may make it possible to improve patient autonomy, 

accelerate the switch from acute to community care, focus 

on health promotion and disease prevention. and reduce 

practitioner workloads. However, practitioners are 

concerned that the integration of AI and the potential need 

for deeper conversations with patients will add additional 

time pressures and create inefficiencies as conversations are 

misdirected to discuss strong preconceptions and 

conflicting advice, with some patient groups feeling 

empowered (but perhaps misinformed) while the more 

digitally excluded suffer even greater disadvantage. 

       To realise the benefits of patient access to records, 

particularly in community-based care, approaches must be 

co-designed by patients and practitioners and focus on 

inequalities. Despite extensive research in primary care and 

some in hospital settings, there has been virtually no 

exploration of patient access in collaboration with non-

medical practitioners, apart from longstanding antenatal 

care research [7]. To unlock the full potential of patient-

accessible records and generative AI, we must expand our 

research lens beyond doctors and engage the full breadth of 

the healthcare workforce and the patients they serve. 
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