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The Second International Conference on Systems Explainability (EXPLAINABILITY 2025), held on
October 26-30, 2025 in Barcelona, Spain, continued a series of events dealing with models and metrics
to build a documented and provable trust for the developers and users of any kind of system.
Explainability helps to validate tracking between system design requirements and current
implementation ensuring validation of evolving properties by continuously learning and adapting the
original requirements.

Interpretability, Explainability, and Understandability are characteristics needed for any product,
system, device, government regulation, or societal law to increase their trustfulness and acceptability by
the end-users. Their role is to avoid bias and increase confidence in the systems’ output.

Explainability favors interpretability and understandability and should be considered during the
requirements, design, deployment and maintenance phases of all software, hardware, and complex
systems. To a large extent, explainability is present as a user manual, software requirements tracking
and code identification, validation/testing results, interactive interfaces, explanation of models,
guidelines for industrial robots, and in any human-driven procedural processes. Desiderata on
explainability become more complex for Artificial Intelligence (Al)-based entities/systems in terms of
'thinking' via internal mechanisms and accepting/trusting the output.

Explainability is a sought-after property of any complex 'products'. In Al-based systems, the
explanation of the behavior of models for certain critical systems is mandatory. This is a complex task,
considering that the behavior is the result of intricate development processes involving humans,
algorithms, datasets, and other artificial entities (tools).

This conference was very competitive in its selection process and very well perceived by the
international community. As such, it attracted excellent contributions and active participation from all
over the world. We were very pleased to receive a large amount of top quality contributions.

We take here the opportunity to warmly thank all the members of the EXPLAINABILITY 2025
technical program committee as well as the numerous reviewers. The creation of such a broad and high
quality conference program would not have been possible without their involvement. We also kindly
thank all the authors that dedicated much of their time and efforts to contribute to the EXPLAINABILITY
2025. We truly believe that thanks to all these efforts, the final conference program consists of top
quality contributions.

This event could also not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the EXPLAINABILITY 2025
organizing committee for their help in handling the logistics and for their work that is making this
professional meeting a success.

We hope the EXPLAINABILITY 2025 was a successful international forum for the exchange of
ideas and results between academia and industry and to promote further progress in system
explainability research. We also hope that Barcelona provided a pleasant environment during the
conference and everyone saved some time for exploring this beautiful city
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Identifying Confusion Trends in Concept-based XAl for Multi-Label
Classification

Haadia Amjad
Chair of Fundamentals of Electrical Engineering
TUD Dresden University of Technology
Dresden, Germany
e-mail: haadia.amjad@tu-dresden.de

Steffen Seitz
Chair of Fundamentals of Electrical Engineering
TUD Dresden University of Technology
Dresden, Germany
e-mail: steffen.seitz@tu-dresden.de

Ronald Tetzlaff
Chair of Fundamentals of Electrical Engineering
TUD Dresden University of Technology
Dresden, Germany
e-mail: ronald.tetzlaff@tu-dresden.de

Abstract—Deep Neural Networks (DNNs) deployed in
high-risk domains, such as healthcare and autonomous
driving, must be not only accurate but also understandable
to ensure user trust. In real-world computer vision tasks,
these models often operate on complex images containing
background noise and are heavily annotated. To make such
models explainable, Concept-based Explainable Al (CXALI)
methods need to be assessed for their applicability and
problem-solving capacity. In this work, we explore CXAlI
use cases in multi-label classification by training two DNNS,
VGG16 and ResNet50, on the 20 most annotated labels
in the MS-COCO dataset (Microsoft Common Objects in
Context). We apply two CXAIl methods, CRP (Concept
Relevance Propagation) and CRAFT (Concept Recursive
Activation FacTorization), to generate concept-level expla-
nations and investigate the overall evaluations. Our analysis
reveals three key findings: (1) CXAI highlights learning
weaknesses in DNNs, (2) higher concept distinctiveness
reduces label and concept confusion, and (3) environmental
concepts expose dataset-induced biases. Our results demon-
strate the potential of CXAI to enhance the understanding
of model generalizability and to diagnose bias instigated
by the dataset.

Keywords-Concept-based XAl; Multi-Label Classification;
Concept Distinctiveness.

. INTRODUCTION

Deep Neural Network (DNN) [1] performance is
crucial for their adoption in real-world applications.
However, understanding their decisions is also impor-
tant, especially in high-risk domains like autonomous
driving and medical diagnosis. Real-world datasets often
vary in resolution and object size, with complex scenes
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including small, clustered, or overlapping objects. Multi-
label datasets, where images have multiple annotations,
frequently suffer from class imbalance. This can lead
to confusion (i.e., errors made in predicting the correct
class/data points) between labels and wrong associations.
Even high-performing models that exhibit confusion
need deeper analysis. Explainable Al (XAl) methods are
useful in revealing these learning patterns [2].

XAl provides interpretability for black-box models
[2]. Concept-based XAl (CXAI) identifies semantically
meaningful features relevant to a class [3], unlike
saliency maps, which are harder to interpret in complex
scenes [4]. Concepts reflect how a DNN internally repre-
sents a class [5]. However, DNNs may learn unintended
associations, concept bias or spurious correlations, where
background elements influence classification (e.g., as-
sociating “fingers” with a pen) [6]. We refer to non-
target concepts produced by such bias as “environmental
concepts.”

CXAIl methods often visualize activation maps or
focused image regions [7]. These show both target and
environmental concepts. Determining whether an envi-
ronmental concept is valid requires further analysis. Its
presence may reflect dataset bias or mislearning.

In this work, we train two state-of-the-art DNNS,
ResNet50 and VGG-16, on the 20 most annotated MS-
COCO labels [8]. Using two model checkpoints per
architecture, one well-performing and one poor, we
evaluate their predictions using CXAI methods: CRP [9]
and CRAFT [10]. These methods produce focused region
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visualizations and scores that determine a concept’s
contribution to the overall learning (concept importance)
or target label learning (concept relevance) of the DNN
model. We compare results using concept error and
distinctiveness (see Section Ill, D) to study confusion
trends across models.

The main contributions of this paper can be
summarized as follows:

- We demonstrate that CXAI methods can reveal
learning weaknesses in deep neural networks.

- We find that greater concept distinctiveness is asso-
ciated with reduced confusion in label predictions
and concept attributions.

- We show that environmental concepts can expose
dataset-induced biases in model learning and inter-
pretation.

The remainder of this paper is organized as follows:
Section 11 reviews related studies. Section Ill describes
the experimental setup, including the dataset, DNN mod-
els, CXAI methods, and key terminology. Section 1V
presents the results structured around our three main
contributions. Finally, Section V concludes the paper and
discusses directions for future work.

Il. RELATED WORK

Various CXAI methods are available for use today,
and it is a growing research field. Lee et al. [11]
detail the current state of CXAI methods. Their study
identifies three main directions for future research: the
choice of concepts to explain, the selection of concept
representation, and methods to control concepts.

Some studies focus on using concepts to detect poten-
tial biases in DNN models. Their evaluation emphasizes
the relationship between different concepts and classes
and aims to expose potential biases in the learning of
the DNN. Singh et al. [12] study model biases in both,
the model learning process and the model’s semantic
understanding (concept biases), by evaluating the DNN
model’s ability to recognize a class in the presence and
absence of the established context (via learning) for a
multi-label classification task.

With newer emerging methods in the realm of CXAI,
the desire to fully understand how they can be effec-
tively used with Al systems increases. The dataset, for
example, is an important factor contributing to the mean-
ingfulness of the explainability method. The evaluation
of CXAI by Ramaswamy et al. [13] addresses important
considerations for CXAIl methods that influence their
effective usage. They emphasize that the impact of the
choice of the dataset, even with slight variations in the
dataset options, changes the model decision and the
explanation provided by a CXAI method.

To study the relationship between confusion and
concept-based explanations, we select two CXAI meth-
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ods to answer the “where” (..the important information
is) and “what” (..is the important information) questions.
CRP, proposed by Achtibat et al. [9], is based on the
Layer-wise Relevance Propagation (LRP) method [14].
CRP addresses “what” and “where” explanations by
exploiting concepts in hidden layers of a DNN model
and locating them in the input data. It assesses the
contribution of each concept for a target class; in other
words, it introduces concept relevance. CRP utilizes
relevance maximization to tune its visualization, which
depicts a series of focused concepts. CRAFT is another
“what” and “where” method proposed by Fel et al. [10]
based on the Grad-CAM method [15]. They utilize Sobol
indices to estimate the importance of concepts that have
been identified using Non-Negative Matrix Factorization
(NMF) recursively, generating sub-concepts (concepts of
smaller, more focused areas in the image).

Existing research has advanced CXAIl by defining
concepts and applying them to detect biases and assess
dataset effects. Building on this foundation, our work
investigates how confusion interacts with concept-based
explanations through the lens of CRP and CRAFT.

I1l. EXPERIMENTAL SETUP

Just as with any other explainable Al pipeline, our
experimentation contains the training of DNNs model
and its evaluations and the usage of an XAl method
and its evaluation, illustrated in Figure 1. This section
contains details of our workflow.

Confusions

ResNet50

?)Aul(\!.)bo\
“f-‘“"—" 3 Real Label
Predicted Labels wwed
: redictedtane Evaluations
VGG-16

Concept Relevance

Pretrained Relationship
Weights Analysis

Concept

CRES > Evaluation

Concept
Evaluation

Concept Importance

Figure 1. Schematic diagram of our experimental setup.

A. Dataset

MS-COCO [8] is a large-scale dataset widely used
for computer vision tasks such as object detection, cap-
tioning, segmentation and classification. The 2017 object
detection subset includes 80 “things” classes, objects
with clear boundaries, across 118,000 images. As test
labels are unavailable, we split the training set 90/10,
resulting in 106,200 training and 11,800 test images. For
our experiments, we focus on the 20 most frequently
annotated labels in the training set to ensure sufficient
data per class and meaningful inter label relationships.
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B. DNN Models

ResNet50 [16] is a popular image classification model
due to its residual learning feature, which mitigates
information loss. It balances accuracy and efficiency
well, and its ImageNet-pretrained weights are widely
used [17].

VGG-16 [17], known for its simple and uniform struc-
ture of stacked convolutional and fully connected layers,
is often used as a baseline for deep learning applications.
Despite its larger parameter count, it performs well on
classification tasks and is easy to implement.

These two models are chosen as they are widely used,
and many XAl methods have been proven to work with
them. Some of the latest models require large adaptations
of XAl methods to be made [18]. Our study focuses
on base-level use cases, to be adaptable across different
domains; hence, we train ResNet50 and VGG-16 models,
pretrained on ImageNetV2 [19], using PyTorch for 350
epochs, saving all checkpoints. For each model, we select
two “scenarios” from the saved checkpoints:

- Scenario 1 (well-performing model):

— ResNet50: Accuracy: 82.85%, Recall: 85.50,
Precision: 58.84, F1 Score: 60.84

— VGG-16: Accuracy: 84.26%, Recall: 86.91, Pre-
cision: 59.74, F1 Score: 58.84

- Scenario 2 (poor-performing model):

— ResNet50: Accuracy: 58.24%, Recall: 77.04,
Precision: 53.82, F1 Score: 42.92

— VGG-16: Accuracy: 52.85%, Recall: 74.50, Pre-
cision: 53.62, F1 Score: 46.12

These scenarios are created to have two different
sets of performance metrics against which to evaluate
explainability. We evaluate models using accuracy, re-
call, precision, F1 score, and confusion matrices tailored
for multi-label tasks. Specifically, we use the multi-
label confusion tensor by Krstinic” et al. [20], which
accounts for label imbalance—well-suited for the MS-
COCO dataset.

We also compute Mutual Information (MI) and Jac-
card Similarity Coefficient (JSC) between labels. We use
these metrics to understand which target labels are more
likely to share information or similarities with which
predicted labels.

C. CXAIl Methods

We investigate the effect of confusion on two CXAI
methods, CRAFT and CRP, across all four model sce-
narios.

- CRAFT outputs concept importance, representing
the overall contribution of each concept to the
model’s learning process.

- CRP provides concept relevance, indicating the
contribution of a concept to specific target classes.
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While both methods offer different perspectives, we
do not compare them directly or suggest one is superior.
Instead, we use their outputs to explore how label
confusion is reflected in learned concepts.

We compute concept distinctiveness [21] and concept
error [22] for both methods. Concept error is evaluated
against a subjective ground truth (detailed in the next
section). Additionally, we adapt mutual information to
measure shared information between concepts and com-
pare these findings to our DNN evaluations to support
our hypotheses.

D. Explanation of terms (in brief)

This sub-section briefly explains some terminologies
in CXAI and our adaptations.

1) Concept Distinctiveness: Concept distinctiveness,
defined in Eq. (1), measures how unique a concept is
compared to others, with values ranging from 0 to 1.
Low distinctiveness suggests overlapping or redundant
concepts, which may indicate learning errors [21].

V¢, : Vg

D(C, ) =1 @)

lvedlvel

Here, v, and vc; are the concept vectors for concepts
Ci and G, respectively. Concept vectors are directions
in activation space that capture distinct features [23].

2) Concept Error: Concept error captures incorrect or
irrelevant concept usage during prediction [22]. To ap-
proximate accuracy (in binary classification), we define
a rough “ground truth” by selecting only those concepts
that belong to the target class, excluding environmental
concepts. This approach offers an estimate of model con-
fusion, though a structured human study is recommended
for practical validation.

3) Mutual Information: Mutual information (MI)
quantifies the dependency between two variables. In
multi-label classification, it measures how much infor-
mation one label provides about another. Applied to
concepts, Ml reflects how much information is shared
between two concept vectors, revealing potential depen-
dencies or redundancies in learned features [24].

IV. RESULTS

In this section, we present our findings based on case
studies of different label evaluations. These case studies
comprise comparisons of the evaluations described in the
previous section.

A. Confusion in Labels Can Be Understood by Their
Explanations
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TABLE 1. Top CONFUSION AND MUTUAL INFORMATION SCORES IN SCENARIO 1 OF RESNET50

Class Top Confusion Top MI Jaccard
Name Class Class Similarity
1st Score 2nd Score 1st MI Score 2nd MI Score
person car 1148.00 chair 1081.70 | handbag 0.0221 backpack 0.0176 0.6008
car truck 207.17 bench 173.16 truck 0.0400 traffic light 0.0280 0.1894
motorcycle truck 86.33 handbag 85.70 car 0.0094 person 0.0037 0.1474
truck airplane 118.35 car 117.22 car 0.0399 boat 0.0020 0.0077
boat Parking meter 89.70 car 76.30 chair 0.0682 fork 0.0017 0.0068

TABLE Il. Tor CONFUSION AND MUTUAL INFORMATION SCORES IN SCENARIO 2 OF RESNET50

Class Top Confusion Top Ml Jaccard
Name Class Class Similarity
1st Score 2nd Score 1st MI Score 2nd MI Score
person backpack | 1995.20 | bench 1922.50 tie 0.0221 umbrella 0.0176 0.5470
car backpack | 340.70 bench 334.80 boat 0.0399 stop sign 0.0280 0.1159
motorcycle | backpack | 277.60 | handbag | 273.41 bicycle 0.0372 car 0.0199 0.1289
truck backpack | 209.07 bench 200.09 | motorcycle 0.0399 Fire hydrant 0.0077 0.0755
boat car 134.04 bird 133.66 fork 0.0017 refrigerator 0.0010 0.0440

TABLE IV. CXAl METHOD EVALUATION COMPARED WITH
CONFUSION SCORE FOR ’PERSON’ LABEL

TABLE Ill. PERCENTAGE OF CO-OCCURRENCE OF TARGET LABEL cxal | ¢ t Concept | Confus
WITH OTHER LABELS (ToP 20 FREQUENTLY ANNOTATED LABELS) Label Model Method éncep Distinct -ion
Class Ist >nd etho rror -iveness | Score
0 0, ResNet
Name Class | Class gl Person | (" | Cratt 0.20 0.76 0.09
person car 13.29 | backpack 7.85 person | ResNet Craft 0.38 0.48 0.26
car person | 69.54 | backpack | 8.43 S\C/e(’;‘g”fez
mo'gl)gcy person | 79.55 | car 39.32 Person | coonario 1 | Craft 0.24 0.71 0.12
- VGG-16
truck person | 65.15 | car 59.80 Person | scenario 2 | C1aft 041 043 028
boat person | 65.69 | car 8.66
trgfflc car 61.22 | person 59.19 . .
light Label confusion occurs when models struggle to dis-
bench person | 73.75 | car 14.63 tinguish between classes with overlapping features or co-
bird person | 24.56 | boat 7.29 occurring contexts, often due to ambiguous data, mis-
sheep person | 24.07 | dog 7.59 labeling, or internal misinterpretation. We hypothesize
backpack | person | 91.06 | car 18.69 that CXAI methods, particularly through M1 and concept
umbrella | person | 86.87 | handbag | 28.81 distinctiveness, can reveal whether confusion stems from
handbag | person | 90.95 | backpack | 24.62 visual similarity, dataset bias, or how the model encodes
kite person | 92.84 | car 11.54 relationships between labels.
bottle person | 53.65 | cup 34.65 Tables | and 1l present confusion and MI scores
cup person | 52.76 dining 50.92 for thr_ee highly confused classes across both Re§Net50
o table scenarios. In scenario 1, person is confused with car
bowl dining 47.76 | person 40.73 and chair,_ while car overlaps with trL_jck _and ben_ch.
table MI analysis shows that person shares high information
banana | person | 41.37 | bowl 23.05 content with handbag and backpack, and car with truck
potted person | 44.07 | chair 38.61 and tra_ffic light. T_hese_ associations indit_:a_te that the
plant model is not learning isolated class-specific features,
dining person | 49.58 | chair 43.29 byt instead forming dependencies based on recurring
table o visual or contextual co-occurrence. Table IIl supports
book dining 75.61 | cup 5297 this, showing frequent jqint appearance of labels sqch
table as person and accessories, or car and truck, which

reinforces these spurious links.
Table IV further highlights the role of CXAI metrics
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in understanding confusion. In scenario 1, where models
perform better, person has lower concept error and
higher distinctiveness, aligning with reduced confusion.
In scenario 2, we observe the opposite: increased concept
error, lower distinctiveness, and significantly higher con-
fusion scores. These patterns suggest that when a model
lacks distinct conceptual boundaries between classes, it
tends to rely more heavily on misleading contextual
aspects.

Together, these findings show how CXAI methods
help expose the roots of confusion. By combining ex-
planations with performance metrics and co-occurrence
statistics, we gain a clearer view of when confusion
reflects real-world visual similarity versus when it results
from dataset bias or poor internal representations.

B. Distinctiveness Reduces Conceptual Confusion

When a concept is distinct, its features are unique and
specific, allowing it to be more accurately defined and
recognized. In contrast, concepts derived from confused
or overlapping labels tend to be “confused” themselves,
as they learn features that are shared across multiple
classes rather than those unique to their true class. This
issue arises from concept bias, where the model may
associate a class with irrelevant features that co-occur
with other classes, as shown in Figure 2.

CRAFT

Image from MS-COCO

S

Figure 2. Concepts of class “tennis racket” in scenario 1 of VGG-16.
We can see that “person” is heavily present in these explanations.

TABLE V. MUTUAL INFORMATION, CONCEPT DISTINCTIVENESS,
AND CONCEPT ERROR IN SCENARIO 1 OF RESNET50

Lowest Lowest

Class Top MI Distinctive Distinctive Concept

Name (Concept) (CRP) (CRAFT) Error
1st 2nd 1st 2nd 1st 2nd Value

person car | backpack car | backpack car tennis 0.7291

racket

car truck bus truck tlriZth handbag | truck 0.5385

dining . . .

table chair cup chair fork person chair 0.0166

From the information given in Table VI, it is evident
that a poor-performing model is not ideal for concept-
based explanations due to the lack of clear distinctions
between classes. This can be seen in scenario 2 of
ResNet50, where classes like person show less dis-
tinctiveness with other unrelated classes. In scenario 1,
shown in Table V, we see a more effective distinction be-
tween highly confused classes like car and person, which

ISBN: ISBNFILL
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TABLE VI. MUTUAL INFORMATION, CONCEPT DISTINCTIVENESS,
AND CONCEPT ERROR IN SCENARIO 2 OF RESNET50

Lowest Lowest
ﬁ;ﬁz (-Crgr?czﬂi) Distinctive Distinctive CE::sft
P (CRP) (CRAFT)
1st 2nd Ist 2nd 1st 2nd Value
tennis
person car backpack | bottle backpack | umbrella 0.8136
racket
traffic fire
car truck light bench hydrant backpack boat 0.6388
dining . potted
table cup bottle chair fork person plant 0.0753

indicates that a well-performing model actively tries to
separate these difficult-to-distinguish classes (previously
established based on confusion scores, see Table I, V,
VI and I11).

By focusing on distinctiveness metrics and correlat-
ing them with confusion patterns in Table | and co-
occurrence in Table 111, we see that increasing concept
distinctiveness can significantly aid in or point to im-
proved model performance. This insight not only helps in
diagnosing where models are struggling but also guides
how to curate datasets and improve feature learning
to reduce confusion and improve overall classification
accuracy.

C. Environmental Concepts Reveal Dataset Biases

Environment Concepts

(from Concept Bias)
I
TP N = |

CRP CRP
(ResNet50 Scenario 1) ResNet50 Scenario 2

n
)
3
a
s

2
@
2
g
]

sepy sidasuo)
sepy s1dasuo)

Figure 3. Environmental concepts generated from CRP for class
“car” in scenario 1 and 2 of ResNet50.

TABLE VII. MUTUAL INFORMATION (CONCEPT), MUTUAL
INFORMATION AND CONFUSION SCORES IN SCENARIO 1 OF

VGG-16
Class Name | Top MI (Concept) Top v (Class) Top Cc fusion
st 2nd Ist 2nd 1st 2nd
umbrella person | handbag | backpack handbag person car
dining table chair fork chair cup apple | person
traffic light person car car fire hydrant | person car

Environmental concepts emerge from concept bias and
often reflect patterns in the training dataset. We ob-
serve that classes within the same “supercategory” (e.g.,
sports: baseball glove, tennis racket) tend to produce
biased explanations, frequently including environmen-
tal concepts from related classes, illustrated in Figure
3. This suggests that, beyond model performance, the
diversity and distinctiveness of training samples play a
key role in learning meaningful class representations.
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Figure 4. Concepts generated by CRP on OSDaR23 dataset for class
"person".

Table VII illustrates the top mutual information and
confusion scores for selected classes. For instance, din-
ing table in scenario 1 is frequently associated with
chair, person, apple, and cup, which are labels that share
semantic but not structural similarity. Such associations,
while intuitive to humans, suggest that the model is
not generalizing but instead relying on frequent co-
occurrences, which is problematic in deployed systems.
High concept error rates for classes like umbrella, per-
son, handbag, and car, paired with low distinctiveness
scores between semantically unrelated objects (e.g., um-
brella and traffic light), reinforce this concern, especially
when models perform poorly.

To further support this, we evaluate OSDaR23 [25],
a multi-sensor dataset for autonomous train driving.
Despite strong accuracy (95.92%) and F1 (79.93) on
a ResNet50 model trained on its RGB subset, CXAI
explanations reveal low generalizability. Since person
consistently appears near platforms or staircases, CRP
visualizations heavily rely on these backgrounds, none of
which are labeled in the dataset, as illustrated in Figure
4. As a result, person has the lowest distinctiveness
score with track, and a high concept error, indicating
dangerous misattribution.

These findings highlight how environmental concepts
reveal dataset-induced biases that compromise gener-
alization. In real-world or high-risk applications, such
as autonomous systems, these misleading correlations
can reduce model reliability. Diverse and well-annotated
datasets are essential to prevent concept bias and ensure
models learn robust, semantically accurate representa-
tions.
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V. CONCLUSION AND FUTURE WORK

Our study demonstrates that confusion in multi-label
classification is directly reflected in concept-based ex-
planations. By comparing model evaluations with CXAI
properties, we observe that label confusion often results
from overlapping or spurious environmental concepts,
emphasizing the role of CXAI in uncovering learning
biases and assessing model generalizability. We further
show that concept distinctiveness is inversely related to
conceptual confusion, models with higher distinctive-
ness show clearer feature boundaries and reduced bias,
while lower distinctiveness leads to shared or incorrect
associations across classes. CRP and CRAFT help iden-
tify such conceptual ambiguities, making them useful
tools for model diagnosis. Finally, our results highlight
that environmental concepts can reveal dataset-induced
biases, especially in cases where co-occurring objects
affect model learning. In datasets with label imbalance or
strong contextual patterns, models may form misleading
correlations, reducing their ability to generalize. This is
particularly problematic in high-risk applications, rein-
forcing the need for diverse, well-annotated datasets to
ensure robust and reliable Al models. For future work,
this case study can be extended to more complex models
and datasets.
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Abstract— In this paper, we propose an explainable
framework to assess biomarker significance in brain stroke
data by combining Causal Artificial Intelligence (AI), which
models cause—effect relationships beyond simple correlations,
with a Tsetlin Machine, a symbolic rule-based learning
algorithm that generates human-readable logic clauses. In a
first step, Causal Al is used to wuncover complex
interdependencies among biomarkers and to identify the most
impactful ones, while the interpretable clauses of the Tsetlin
Machine enhance understanding and support improved
diagnosis, prognosis, and prevention in stroke patients. This
methodological strategy sets a novel foundation for better
understanding of complex brain diseases.

Keywords - Brain stroke; Causal Al;
Interpretability; Tsetlin Machine.

Explainability;

I. INTRODUCTION

Stroke, caused by an alteration of the blood supply to the
brain, is a medical emergency that requires immediate
attention in urgent care departments and specialized stroke
units. It is a leading cause of long-term disability and the
second leading cause of death globally. In Spain, about 1 in 5
stroke patients are readmitted with a recurrent stroke [1][2].
These statistics highlight the importance of early and
accurate diagnosis, as timely intervention can significantly
reduce mortality and long-term disability. Despite notable
advances in medical imaging and diagnostics, deciphering
the intricate relationships among stroke-related biomarkers
remains a significant challenge.

In recent years, Machine Learning (ML) has shown
promise for detecting subtle patterns in biomedical data [3].
However, many ML models lack transparency, offering
limited insight into how predictions are made. This opacity
poses a major barrier to their adoption in clinical settings,
where trust, accountability, and explainability are essential
for informed decision-making.

In this paper, we propose a novel approach that integrates
Causal Al [4] to model cause-effect relationships rather than
simple correlations among stroke-related biomarkers with
Tsetlin Machines [5][6][8][9], a symbolic, rule-based

learning model that can uncover and help interpret how
specific biomarkers influence stroke outcomes. Causal Al
refers to machine learning methods that model cause—effect
relationships, beyond mere correlations, whereas Tsetlin
Machines are interpretable, rule-based learning models that
construct human-readable logic clauses for classification
tasks [6]. For example, a Tsetlin Machine might generate a
rule such as: “If LDL cholesterol is high and age is above
65, and prior use of antiplatelet drugs is absent, then the
patient is more likely to suffer an ischemic stroke.” Such
clauses are easily understandable by clinicians and can be
directly compared with established medical knowledge.
Together, these not only enhance predictive accuracy, but
also provide a transparent, interpretable insight essential for
clinical decision-making.

The rest of the paper is organized as follows. In Section
I1, we describe the methodology, including an overview of
the dataset, pre-processing steps, the application of Causal
Al, and the use of Tsetlin Machines for interpretable
classification. In Section III, we present and discuss the
results obtained from both the causal inference analysis and
the Tsetlin Machine model, highlighting their clinical
relevance. In Section IV, we conclude the paper by
summarizing the key findings and outlining directions for
future research and model improvements.

II.  METHODOLOGY

In this section, we describe the methodology, with
subsections on an overview of the dataset, pre-processing
steps, Causal Al, and the Tsetlin Machines.

A.  Overview

As mentioned in the introduction, we employ a hybrid
methodology that combines Causal Al, a set of techniques
designed to model cause—effect relationships rather than
mere correlations, with Tsetlin Machines, symbolic rule-
based learning algorithms capable of generating human-
readable logic clauses. This integrated approach allows us to
both identify the underlying causal relationships among
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biomarkers that drive clinical outcomes in stroke diagnosis
and prognosis, and to extract interpretable rules that clarify
how specific biomarker patterns contribute to different
stroke subtypes. By linking causal discovery with
transparent classification, our method not only improves
predictive power but also enhances clinical trust and
explainability. The study has received the ethical approval
of the Santiago/Lugo clinical ethical committee (code:
2025/221).

B. Dataset and pre-processing

The dataset consists of about 4000 data points with 62
features, containing relevant clinical, demographic and
biochemical biomarkers. Standard pre-processing steps were
applied, as listed below:

e Removal of non-relevant features using domain
knowledge (e.g., multiple stroke determination tests
at various times would dominate causal relations,
suppressing the weight of other biomarkers).

e Missing value imputation using binary and iterative
imputers, which estimate missing values by
iteratively predicting them based on other available
features. This is particularly useful in this data set as
the relationships between medical features can
provide valuable information for filling in missing
data. This is done for binary and non-binary features
respectively.

C. Causal Al

To identify potential causal relationships among
biomarkers, we applied the PC algorithm (after its authors,
Peter and Clark), a constraint-based causal discovery
method, to the pre-processed dataset [7]. At this stage, the
dataset contains approximately 50 features including the
target (type of stroke — ischemic or haemorrhagic).

Since our objective is to isolate the most influential
biomarkers, we employed two graph-theoretic measures to
rank nodes (features) within the causal graph:

e Degree Centrality: Measures the number of direct
connections for a node. High degree centrality
suggests that a feature has broad influence.

o Betweenness Centrality: Quantifies how often a
node appears on the shortest paths between other
nodes. High betweenness centrality implies that a
feature is a critical intermediary or bridge in the
causal network.

To minimize selection bias to ensure that both direct and
indirect influences are taken into account, we first created
two separate ranked lists of features: one based on degree
centrality and the other based on betweenness centrality.

From each ranking, we extracted the top 25 features,
representing those with the strongest influence according to
the respective measures. Next, we introduced a composite
centrality score, which assigns weights to features depending
on their positions in the two rankings, thereby balancing the
contribution of both centrality measures. Finally, by
comparing the two lists and focusing on the features with the
highest combined scores, we identified the 10 most
influential biomarkers that consistently appeared as
important across both centrality perspectives.

D. Tsetlin Machines

Following the identification of the top 10 biomarkers
through causal inference, we applied a rule-based
convergence Tsetlin Machine (TM) [8][9][10] to model their
relationship with stroke subtypes. This model is a logic-
based learning algorithm that constructs human-interpretable
propositional logic clauses to perform classification. It
operates by learning patterns expressed as conjunctive
logical clauses, where each clause is essentially a
combination of conditions that must be satisfied for a
prediction to be made (for example, if biomarker A is present
and biomarker B is absent, then the case belongs to class X).
Rather than relying on a single clause, the Tsetlin Machine
generates a large set of such clauses, each of which casts a
“vote” for a particular class. These votes are then aggregated,
and the overall prediction is determined by the balance of
evidence provided by all the clauses together. This
ensemble-like mechanism allows the model to capture
subtle, complex patterns while still maintaining a form that
remains human-interpretable.

We used the MultiClassTsetlinMachine  from
pyTsetlinMachine Python module and utilised the in-built
bit-per-feature binarization to binarize the data [11]. This
method discretizes continuous variables into a fixed number
of bins, encoding each bin as a separate binary feature. This
transformation ensures compatibility with TM’s binary input
format. The original bin values are stored separately to
correctly identify the real values of the features
corresponding to the clauses.

After binarization, an 80-20 train-test split was applied
and the model was trained with appropriate hyper-parameters
(i.e., the number of clauses, threshold, and specificity).

Our target variable represents stroke subtypes (a binary
classification task) and the TM generated 50 clauses for each
class. To identify the most influential clauses per class, we
analysed their voting weights, which reflect how frequently a
clause contributes to a particular class prediction. We
selected the top clauses based on these weights to further
enhance interpretability and explainability and to reduce
redundancy, with two filters:
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e Bias Check: We excluded clauses that were
overwhelmingly positive or negative for a single
class to avoid skewed interpretations.

e  Redundancy Check: Clauses that appeared
identically in both classes of the outputs were
removed, as they introduce ambiguity in the
interpretation of feature impact.

After filtering, we retained the distinct and unbiased
clauses for each class with the highest voting weights. These
clauses form the basis for interpreting how specific
combinations of biomarker presence or absence influence the
classification of stroke subtypes.

III. RESULTS AND DISCUSSION

Based on the process explained in the methodology
section, our final goal is to obtain the top clauses for each of
the output classes. To simplify further, we retrieve the most
important features for each class as well as the information
whether their absence or presence is important for either
class.

In this section, we discuss the results of both the causal
Al and the Tsetlin Machine.

A. Results of Causal inference

We extract the list of top nodes/features using the
composite centrality, as defined in the methodology section.
The causal Directed Acyclic Graph (DAG) connections
comparing original features and the extracted top 10 features
using causal inferences are shown in Figure 1.

The first graph (Figure la) presents the complete set of
features and biomarkers included in the dataset. Because all
variables and their interconnections are displayed at once,
the result is a complex and visually dense network that
makes it difficult to distinguish which biomarkers play the
most critical roles. In contrast, the second graph (Figure 1b)
focuses only on the top 10 most influential features, as
identified through our causal inference procedure using the
composite centrality score. This reduced network provides a
much clearer picture of the variables that exert the strongest
influence on stroke outcomes, allowing clinicians and
researchers to focus on the most relevant biomarkers. To

further illustrate how causal inference can assign importance
to a feature, even when the connection to the target is
indirect, the right-hand panel (Figure 1c) zooms in on a
specific causal path. In this example, the feature age (ED) in
Figure 1b does not connect directly to the target variable,
GD-C, which represents the type of stroke. Instead, its
influence is mediated through an intermediate biomarker, AG
(prior use of antiplatelet drugs), which then affects TF
(treatment to dissolve blood clots), and only at that point
does the causal chain reach GD-C. This breakdown
demonstrates how a variable can still be considered highly
important when it contributes to the target outcome through a
series of intermediate links, rather than through a direct
relationship as well as to trace and understand how each
node in the causal graph contributes to the target outcome,
whether through direct or indirect pathways.

The top features/biomarkers identified by the causal
model and their significance in the context of stroke related
literature is summarized in Table 1 below.

TABLE L. MOST IMPORTANT BIOMARKERS AS PER CAUSAL MODEL
Feature Description Significance
BNP Blood test to help A strong indicator for cardiac
diagnose heart failure stress, important for stroke
diagnosis/prognosis
AG Prior use of antiplatelet Aligns with existing clinical
drugs evidence that such medications
reduce the risk of recurrent stroke
ED Age of the patient A critical determinant of stroke
severity and recovery potential
HLP Abnormally high levels | Associated with increased stroke
of lipids (fats) risk; important for stroke
prevention strategies
LDL Bad cholesterol Linked to atherosclerosis and
subsequent cerebrovascular
events; a key modifiable risk
factor
R A Degree of disability Reflects the immediate functional
after a stroke at outcome post-stroke; serves as a
discharge proxy for the effectiveness of
acute care
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mRS 0 Baseline disability in Predictive of post-stroke recovery
daily activities trajectories
SEX Gender of the patient Reflects gender effect in stroke
prognosis and prevention
TF Treatment to dissolve Highlights a critical role of
blood clots emergency treatments in
improving stroke outcomes
GD C Category of the stroke Classification of stroke types;
type (target) target of this study

As can be seen from the significance column in Table 1,
the causal model validates known clinical associations.
Additionally, it also captures nuanced interdependencies
among biomarkers by providing the strength of connections
between them (i.e., node connection strengths calculated
using composite score as described in the methodology
section).

The model’s ability to prioritize features with both
statistical and clinical relevance strongly supports its
potential application in decision support systems for stroke
management.

B.  Results of Tsetlin Machine

As previously mentioned, a TM produces human-

readable clauses (e.g., if A and not B, then class X). After
applying the model to the top features identified through
causal inference, we derive such clauses for our target
variable, the type of stroke.
Figure 2 provides a visual depiction of the clauses. In this
illustration, pink cells indicate the absence of a feature for
the corresponding class shown at the bottom, while light
green cells represent its presence. Each feature’s value range
is displayed within its respective cell. The feature SEX is
binarized, with 0 = female and 1 - male.

The clause for Ischemic stroke would then be:

If the modified Rankin Scale (mRS 0) score is
greater than 2.67, and the LDL level is between 71
and 117 mg/dL, and the patient’s age is not greater
than 56 years, and the BNP level is not between
550 and 1123 pg/mL, then the predicted outcome is
Ischemic stroke.

Which in logic notation is:

IF (MRS, > 2.67) A (71 < LDL > 117) A (Age < 56)
A—=(550 < BNP < 1123) —» ISCHEMIC

Such human-readable clauses, with well-defined value
ranges for each feature or biomarker influencing the output
classes, could become particularly valuable in clinical
settings.

In terms of clinical research, they enhance model
transparency, enabling researchers to validate findings
against existing biomedical knowledge and uncover novel
associations. This interpretability can help bridge the gap
between data-driven models and domain expertise.
Furthermore, such clauses can inform the design of
prospective studies and contribute to the development of
explainable clinical decision support tools.

Finally, having transparency in clinical decision-making
would benefit effective patient communication, helping
individuals understand prevention strategies and treatment
options.

IV. CONCLUSION AND FUTURE WORK

The findings presented here are preliminary and require
further refinement. A key priority is to acquire additional

AG 1

BNP > 112377 550.01 to 1123.77

ED >56.0
oL 7167 to 117.67
RA >233
SEX 1

TF 1

mRS_0 > 2.67

Haemorrhagic Ischemic

Figure 2. Visual representation of Tsetlin Machine clauses identified for

the target with most important biomarkers.

data and repeat the analysis to ensure the robustness of the
results. We are in the process of obtaining a more
comprehensive dataset, which will include recent records of
stroke patients.

To further strengthen the robustness of the results, the
next steps are broadly categorized into two areas: one
focusing on Causal Al and the other on rule extraction using
the Tsetlin Machine.

A. Causal Al

To ensure the accuracy of the causal graphs, it is
essential to correctly capture the directionality of the
relationships. Achieving this will require deeper domain
expertise and a thorough analysis of how various
biomarkers interact.

Additionally, it is vital to conduct what-if scenario
simulations based on the discovered causal relationships
within the feature space. These in-silico experiments will
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enable us to explore how changes in feature values, whether
hypothetical or novel, might influence stroke prognosis,
without the need for new empirical data.

B. Tsetlin machine

While our current model achieves an overall accuracy of
approximately 80%, a closer examination of its performance
metrics reveals a notable imbalance. Specifically, the F1-
score for Class 0 (the majority class) reaches 0.88, whereas
the F1-score for Class 1 (the minority class) drops sharply to
just 0.15. This large disparity highlights that, although the
model performs well in predicting the dominant class, it
struggles to correctly identify cases that belong to the less
frequent class. In practice, this means that the model fails to
capture a substantial proportion of minority class instances,
which may correspond to clinically critical or rare
conditions. The root cause of this problem is the class
imbalance present in the dataset, where examples of one
stroke subtype greatly outnumber the other. We anticipate
that the inclusion of additional patient records in our
forthcoming dataset will help mitigate this imbalance by
providing a more even distribution of classes.

It is also important to emphasize that a Tsetlin Machine
(TM) differs fundamentally from many classical machine
learning models. Instead of optimizing a global error
function, the TM relies on a frequency-driven clause
learning mechanism in which the prevalence of certain
patterns directly affects the clauses it learns. While this
makes the model efficient and interpretable, it also means
that it tends to favor patterns associated with the majority
class, often at the expense of learning sufficient rules for the
minority class. This characteristic can amplify the effects of
class imbalance, as seen in our results.

Nevertheless, in the context of biomedical datasets
(where imbalanced class distributions are common) this bias
does not necessarily negate the model’s clinical utility.
Optimizing for the majority class can still yield valuable
insights, as the most prevalent stroke subtype remains a
major focus of clinical diagnosis and treatment. However,
achieving reliable detection of minority cases is equally
critical, as these often represent the most challenging and
high-risk scenarios. Addressing this imbalance in future
work will therefore be essential, ensuring that the TM
captures meaningful patterns for both majority and minority
classes without sacrificing interpretability.

These facts also do not diminish the importance of
accurately identifying minority class instances, which often
represent critical or rare conditions. To address this, we are
actively exploring various strategies (e.g., resampling,
decision threshold tuning, etc.) to improve the model’s
ability to generalize and perform equitably across both
classes. These efforts are guided by domain expertise to
ensure that learned patterns are meaningful and to prevent
the model from learning artifacts of the data rather than true
signals.

Additionally, binarization must be approached with
greater care. It is important to ensure that the binning of
biomarkers identified as significant by the Tsetlin Machine
aligns with domain knowledge and statistical distribution.
For example, consider serum Vitamin D levels, which
typically range from O to 100 ng/mL. Clinical guidelines
define severe deficiency as levels below 10 ng/mL,
deficiency as below 20 ng/mL, insufficiency between 20-30
ng/mL, and sufficiency as levels above 30 ng/mL. If all
values below 30 ng/mL were grouped into a single bin (e.g.,
bin 0), this would obscure critical clinical distinctions
between mild insufficiency and severe deficiency. Such
coarse binning could reduce the model’s ability to detect
meaningful health risks associated with different deficiency
levels.

ACKNOWLEDGMENT

The authors would like to thank the Instituto de Salud
Carlos III_ICIII RICORS-ICTUS network (grant number
RD24/0009/0017) and Xunta de Galicia (grant number:
IN607A2022/02) for providing the resources to carry out this
work.

REFERENCES

[1] Ministry of Health, "Annual Report of the National
Health System 2023," Government of Spain, Aug. 2024.
[Online]. Available: https://www.sanidad.gob.es [retrieved:
Sep., 2025].

[2] Eurostat, "Causes of death statistics," Statistics
Explained, European Commission, Mar. 2025. [Online].
Available: https://ec.europa.eu/eurostat/statistics-explained
[retrieved: Jun., 2025].

[3] B. Mirza, W. Wang, J. Wang, H. Choi, N. C. Chung, and
P. Ping, "Machine learning and integrative analysis of
biomedical big data," Genes, vol. 10, no. 2, pp. 87, 2019.
[Online]. Available: https://doi.org/10.3390/genes10020087
[retrieved: Aug., 2025].

[4] P. Sanchez, J. P. Voisey, T. Xia, H. . Watson, A. Q.
O’Neil, and S. A. Tsaftaris, "Causal machine learning for
healthcare and precision medicine," Royal Society Open

Science, vol. 9, no. 7, pp. 220638, 2022. [Online].
Available: https://doi.org/10.1098/rs0s.220638 [retrieved:
Jul., 2025].

[5] O. C. Granmo, "The Tsetlin Machine — A game theoretic
bandit driven approach to optimal pattern recognition with
propositional logic," arXiv preprint arXiv:1804.01508,
2018. [Online]. Available: https://arxiv.org/abs/1804.01508
[retrieved: Sep., 2025].

[6] G. T. Berge, O. C. Granmo, T. O. Tveit, B. E.
Munkvold, A. L. Ruthjersen, and J. Sharma, "Machine
learning-driven clinical decision support system for

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: ISBNFILL

12



EXPLAINABILITY 2025 : The Second International Conference on Systems Explainability

concept-based searching: A field trial in a Norwegian
hospital," BMC Medical Informatics and Decision Making,
vol. 23, no. 5, pp. 1-12, 2023. [Online]. Available:
https://doi.org/10.1186/s12911-023-02101-x [retrieved:
Jun., 2025].

[7] M. Kalisch and P. Biihlmann, "Estimating high-
dimensional directed acyclic graphs with the PC-algorithm,"
Journal of Machine Learning Research, no. 8, pp. 613—636,
2007. [Online]. Available:
https://jmlr.csail.mit.edu/papers/v8/kalisch07a.html
[retrieved: Aug., 2025].

[8] A. Wheeldon, A. Yakovlev, and R. Shafik, "Self-timed
reinforcement learning using Tsetlin Machine," in
Proceedings of the 27th IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC 2021), 1IEEE,
2021. [Online]. Available: https://arxiv.org/abs/2109.00846
[retrieved: Jun., 2025].

[9] S. Glimsdal and O.-C. Granmo, "Coalesced multi-output
Tsetlin Machines with clause sharing," arXiv preprint
arXiv:2108.07594, 2021. [Online]. Available:
https://arxiv.org/abs/2108.07594 [retrieved: Sep., 2025].

[10] K. D. Abeyrathna, O.-C. Granmo, and M. Goodwin,
"Adaptive sparse representation of continuous input for
Tsetlin Machines based on stochastic searching on the line,"
Electronics, vol. 10, no. 17, pp. 2107, Aug. 2021. [Online].
Available:  http://dx.doi.org/10.3390/electronics10172107
[retrieved: Jul., 2025].

[11] O. C. Granmo, et al., "pyTsetlinMachine [Computer

software]," GitHub, n.d. [Online]. Available:
https://github.com/cair/pyTsetlinMachine [retrieved: Jun.,
2025].

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: ISBNFILL

13



EXPLAINABILITY 2025 : The Second International Conference on Systems Explainability

Explainability Analysis for Skill Execution

Khatina Sari, Paul G. Ploger, and Alex Mitrevski

Department of Computer Science
Hochschule Bonn-Rhein-Sieg
Sankt Augustin, Germany
e-mail: khatina.sari@smail.inf.h-brs.de, {paul.ploeger; aleksandar.mitrevski}@h-brs.de

Abstract—Explainability holds significant importance for
autonomous robots deployed in human-centered situations,
particularly when errors occur during execution. In the context
of robot action, it is important to consider various levels and
types of explainability. The social dimension of Artificial
Intelligence (AI) and robotic explanations, which highlights how
they affect social interaction, values, and decision-making, has
received little to no attention in prior research. With a
particular emphasis on item handover, we hypothesize that
users prefer systems with explanations and that explanations in
natural language are more appealing than heatmaps. A user
study, involving participants from diverse backgrounds and
levels of expertise, is conducted to evaluate different levels and
preferred types of explainability. The study results support our
hypotheses and offer additional valuable information for future
system development.

Keywords-Explainable  Artificial Intelligence;  Natural
Language Processing; Heatmaps; Human-Robot Interaction.

L INTRODUCTION

There have been notable developments in the disciplines
of Artificial Intelligence (AI) and robotics in recent decades,
which are both largely affiliated. Future robotics systems are
anticipated to be far more advanced and adaptable as Al and
robotics continue to grow. Rule-based systems, also referred
to as white-box artificial intelligence, place an emphasis on
transparency, making their logic processes clear and
accessible to users. On the other hand, black-box Al, such as
neural networks, often does not specify its decision-making
process. Therefore, researchers are actively refining the
interpretability of black-box Al, which can be used to improve
transparency in robot actions, especially when failures occur
[1-5].

Some challenges in Human-Robot Interaction (HRI)
necessitate transparent communication. Varying user
knowledge and expectations pose challenges in maintaining
the right level of detail in the explanations. Another challenge
is to determine the most effective explanation format for each
user [6][7]. Explainability can be classified as local (usually
focused on a single input dataset), global (describing how a
model behaves generally), model-specific [8] (limited to
particular model classes), model-agnostic [9] (may be local or
global and independent of machine learning models), and
counterfactual [10] (offering an alternate input scenario that
would have produced a different model prediction).

Meanwhile, there are three common levels of explainability
[8]: low-level (which includes techniques like linear model
coefficients or feature importance scores), medium-level
(which delves deeper into how specific features impact the
model's predictions), and high-level (which highlights
intricate decision-making processes within the model).

This paper is focusing on robot object handover tasks, with
the intention to enhance user understanding and trust in robot
actions. A user study was conducted to evaluate the
effectiveness of multiple levels of explainability in such tasks.
This study aims to encourage innovation in autonomous
robotics by providing access to more adaptable, flexible, and
user-centered systems.

The remainder of this paper is organized as follows.
Section II offers an overview of literature related to the
challenging topic this study addresses. Section III describes
the general approaches used in our methodology. Section IV
outlines our experimental results, both qualitative and
quantitative, as well as hypothesis testing. Section V
summarizes our findings and includes possible future work.

II.  RELATED WORK

Transparent or white-box models refer to algorithms that
provide users with both the end decision and a summary of the
steps used to get there. One of the most common methods used
for this is Bayesian network [11][12]. However, this method
often requires substantial manual effort from users to explore
the robot's behavior [13]. It lacks scalability and
generalizability because it involves hand-annotating every
domain-specific context up front, which hinders application to
new circumstances.

On the other hand, opaque or black-box models are
machine learning models that are difficult to explain and
understand by experts in practical domains [14][15]. These
models include random forest, support vector machine,
multilayer neural network, etc. One of the ways to obtain
information from such models are to wuse post-hoc
interpretability. Although this approach provides useful
information for end users, it often does not clarify precisely
how a model works. Therefore, a more thorough analysis of a
better strategy for building trust, reliance, and performance for
human-Al teams needs to be conducted.

The need for user-centered design practices when creating
explanations for Al systems was emphasized by [16]. They
suggest involving users in the Al system design process
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through user studies, interviews, and feedback sessions to
understand their needs, mental models, and expectations.
Even so, they primarily focused on design practices and
guidelines for creating user experiences in explainable Al
systems and did not delve deeply into technical solutions or
algorithms to achieve explainability. As a result, the technical
aspects of implementing the proposed guidelines may require
further exploration.

In Human-Robot Collaboration (HRC), human workers
should have the ability to naturally converse with robots, since
they are the most crucial members of any HRC team.
According to [17], while there are currently few means of
communication between human workers and robots, gesture
recognition has long been used as an efficient human-
computer interaction. In conclusion, they believe that HRC
will operate in a safer environment if a depth sensor and body-
model technique are combined to track human movements.

As part of the machine learning adaptation in the robot's
motion planning, our approach proposes the utilization of a
neural network. This is an alternative approach to the genetic
algorithm utilized by [14]. The adjustment in methodology
highlights our dedication to investigating different and
practical approaches that may result in improved
responsiveness and flexibility of robotic systems in dynamic
settings. In addition, inspired by [16] user-centric principles,
we conducted a user study to uncover user preferences
regarding different approaches in robot motion planning. Our
questionnaire aims to uncover user preferences regarding the
different approaches employed in robot motion planning,
shedding light on which method resonates more effectively
with particular users.

III. APPROACH

The scope of our study concentrates on the usage of
autonomous robots for object handover tasks from robot to
human, an important use case that requires an effective
explanation strategy. Giving our Toyota Human Support
Robot (HSR) a skill set that corresponds to different levels of
explainability—or, in some cases, no explainability at all—is
the current challenge at hand. Our explainability analysis for
skill execution takes into account a number of important
factors, one of which is the recognition that explainability in
our case is inherently local.

A. Proposed Approach

The current approach used in our robot to determine the
handover position is done by factoring in context-dependent
(based on the posture of the detected person) and context-
independent (static; based on the context-dependent
outcome). However, the handover position in a context-
independent approach does not consider any surrounding
environment variables; thus, we propose to train a neural
network to dynamically set the end-effector position based on
the values obtained from the 3D bounding box. By allowing
the neural network to generate random handover positions,
we can collect input-output pairs dataset that can be used to
fine-tune the model until it can automatically generate
optimal handover positions based on the user's needs. This

strategy would increase the effectiveness and usability of the
robotic system. Regrettably, a prolonged mechanical issue in
our Toyota HSR has forced us to delay the implementation of
our neural network interpretation. Upon its resumption of
operations, we shall resume our work and implement our
planned approach.

B. Explainability Setup

One of the primary concerns that drives our research is
how to determine the robot's reasoning behind certain
decisions, especially why it stops at a specific point in relation
to the detected human position during object handover. To
carry out this research, an advanced built-in program created
by [18] is used, which generates a 3D bounding box to locate
the detected person in front of the robot. It follows the right-
handed coordinate system, which includes the depth (x-axis),
horizontal (y-axis), and vertical (z-axis). Once the person is
detected, their position will be determined; in our case, there
are three possible positions: standing, sitting, and lying down.

Within our research framework, several notations play an
important role in influencing how we perceive the spatial
connection between humans and the robot during the
handover task. Figure 1 illustrates the configuration in which
Wp represents the robot's end-effector location where the
object is held, W is the robot's base frame, B denotes the
bounding box, and p is the relative position between the end
effector and the center point of the bounding box.

Figure 1. Illustration of the parameters on handover skill.

Logical predicates describing the requirements for a
successful handover interaction are adopted from [19] to
define the success preconditions. The predicates include
in_front_of,, (0,B) , far_in_front_of,,(0,B) ,
behindx‘y(p,B) s far_behindx_y(p, B), abovex,y(p,B) R
below, ,(p,B), and centered,, (p, B). Using the success
preconditions, the natural language explanation for each
position is generated manually, as shown in Tables I-II1.

In addition to manual natural language translation,
ChatGPT 3.5 [20] is employed to generate automated
translation and evaluate the results using the Bilingual
Evaluation Understudy (BLEU) score [21]. The first few
initial tests did not produce close translations to the manual
translation. Therefore, more detailed definitions of each
logical expression were provided, as well as separating each
predicate that consists of two or more coordinates; for
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example, centered, ,(p, B) becomes centered,(p,B) A
centered,(p, B). The outcome of the last iteration was then
used for assessment.

TABLE L PRECONDITIONS FOR STANDING POSITION
Types Success Preconditions
centered, ,(p,B) n in_front_of,(p, B) A
Logical —icentered,(p, B) n =belowy,,(p, B) n —behind,,(p,B) A
Predicates | —far_behind,,(p,B) A mabovey,(p,B) A
—in_front_of,(p,B) A ~far_in_front_of,(p, B)
The robot's arm should be in front of and centered around
Natural a person (corresponding to the person's height and width).
Language | It should not be behind, above, beneath, or to the right/left
of a human.
TABLE II. PRECONDITIONS FOR SITTING POSITION
Types Success Preconditions
centered,, ,(p,B) n in_front_of,(p, B) A
Logical —centered,(p, B) n =belowy,,(p, B) a =behind,,(p,B) A
Predicates —far_behind,, (p, B) r mabove,, (p,B) A
—in_front_of,(p, B) A =far_in_front_ofy,(p,B)
The robot’s arm is positioned in front of and around the
Natural middle of a sitting person (according to the person’s
Language | height and width). It is not behind, above, beneath, and to
the right or left of the person.
TABLE IIL PRECONDITIONS FOR LYING DOWN POSITION
Types Success Preconditions
above, ,(p, B) a centered, (p,B) r ~centered,(p,B) a
Logical —below, ,(p, B) A —behind, ,(p,B) A
Predicates —far_behind,,(p, B) A ~in_front_of,(p,B) a
—far_in_front_ofy,(p, B)
The robot’s arm is positioned above and centered around
Natural the person’s width. It is not below or around their head or
Language | feet. It should not extend all the way to the opposite side
from where a robot is standing next to.

BLEU provides a quantitative measure by comparing the
output of machine translation systems (candidate translation)
against reference translations, offering insights into the degree
of overlap in n-gram or word sequences with human-
generated counterparts [21]. The length of candidate
sentences that are shorter than the reference phrases is
penalized in the BLEU metric (Brevity Penalty), which is
based on the modified n -gram precision measure. The
following formula determines the BLEU score:

BLEU = BP - exp (Z_1+ - logP), (1)

where BP = Brevity Penalty and P, = Precision for n-
gram.

The Natural Language Toolkit (NLTK) [22] and spaCy
[23] are used in our BLEU score computation to provide an
unbiased evaluation of machine-generated translations. The
translation produced by ChatGPT 3.5 (as a candidate
translation) is compared with our original translation (as a
reference). The results of the BLEU score for each translation
performed by ChatGPT in comparison to the manual
translation are presented in Table I'V.

TABLE IV. BLEU SCORE OF CHATGPT 3.5 TRANSLATION
No. Position BLEU Score
1 Standing 0.85
2 Sitting 0.81
Lying Down 0.88

The final translation output from ChatGPT 3.5 provides a
good starting point for future developments. Despite the fact
that the translations produced by the first few iterations were
not satisfactory, adding further specific information made it
generate a translation that was similar to the one that was done
manually. The key realization is that it is possible to train
models, like ChatGPT, to translate technical terminology into
natural languages effectively.

When it comes to interpreting the neural network’s
decisions about handover position, Grad-weighted Class
Activation Mapping (Grad-CAM) [24] integration shows
itself to be an effective tool for insight. It offers a transparent
and insightful lens into the decision-making processes of
complex models. Grad-CAM fills this gap by giving an
illustration of the areas in the input data that have a major
impact on a certain outcome. Unfortunately, the problem with
our Toyota HSR prevented us from implementing this
method. Despite this obstacle, a previously collected dataset
from our research team [25] was leveraged, and the video
content was edited to achieve the same heatmap effect (as seen
in Figure 2). This decision allowed us to simulate and observe
the intended outcomes, ensuring the continuity of the research
despite the technical constraints.

Figure 2. Additional heatmaps on one of the handover scenarios.

The dataset, which includes relevant information but lacks
explanations, was then extended by adding explanations in
both heatmap and natural language formats. This improvised
solution allows us to proceed with our user study within the
designated timeframe, preserve the research objectives, and
ensure the timely execution of the study.

C. Experimental Design

In our comprehensive user study aimed at investigating
user preferences in interacting with Al-based or robotic
systems, two distinct hypotheses were formulated to guide our
research. The first hypothesis is that users have a preference
for systems that offer explanations while they are using them.
The second hypothesis is about the preferred explanation
format among users; in particular, we hypothesize that people
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prefer explanations in natural language over alternative
visualization techniques like heatmaps.

Our user study adopts a mixed-methods strategy to gather
quantitative data and qualitative insights through surveys in
order to experimentally validate our hypotheses. After being
presented with simulated robotic interfaces that include
heatmaps and natural language explanations, participants’
preferences, satisfaction, and understanding were carefully
examined.

Through selectively crafted survey questions, user
experiences, preferences, and challenges are explored,
allowing us to obtain insights into the factors that contribute
to a positive or negative interaction. Additionally, scenarios
that are meant to replicate real-world interactions were chosen
by giving users experiences that were contextually appropriate
and reflected the difficulties and complexities of real-world
circumstances. Ten videos and three different explanation
varieties were presented to help construct a more
comprehensive understanding of user preferences: no
explanation, partial explanation using heatmaps, and detailed
explanation using natural language. In order to prevent any
potential biases, 8 out of 10 videos were purposefully
presented in a random order. Following every video,
participants were asked to rate how confident they were in
their understanding of the robot decision-making process.

Iv.

Our user study involved a total of 33 participants, ages
ranging from 18 to 40 years old, education ranging from high
school to Ph.D., and different academic and professional
backgrounds. Our participants’ demographic profiles show a
variety of age groups, gender identities, levels of education,
and fields of study. This diversity attempts to determine
whether there is any relationship between the preferred
explanation technique and the educational background.

EXPERIMENTAL RESULTS

A. Quantitative Analysis

In terms of the participants' experiences and expectations
in the realms of robotic systems and Artificial Intelligence
(AI), 75.8% of them have prior hands-on experience with
robotic systems, while an overwhelming 84.8% are familiar
with Al or machine learning in their practical lives. In a survey
on comfort levels, 72.7% of the respondents said they felt
uneasy when Al systems made decisions without providing an
explanation, highlighting the significance of transparency.

In our scenario-based questions, two identical videos
served as starting points. The first was without explanation,
whereas the second included a natural language explanation.
The majority indicated that they were unclear about the
robot’s action in the first video, though it was a successful
object handover scenario. However, the participant’s
confidence level improved after watching the second video,
which revealed a positive beginning. Table V summarizes
participants' confidence levels after eight more videos were
shown in a random order. It reveals that individuals feel more
confident when they are given an explanation of how the robot
makes decisions. Less than 40% of the participants felt
confident about their understanding of the robot decision-
making process in the three videos without an explanation, in

both successful and unsuccessful handover scenarios. More
than 50% of the participants in the two videos where heatmaps
were used as an explanation type expressed confidence in the
successful handover scenario. However, in the case of an
unsuccessful handover, only 34.6% of participants reported
feeling confident. With natural language explanations, on the
other hand, 48.4% of those surveyed expressed confidence in
the unsuccessful scenarios. In the successful scenario, over
80% of the participants expressed confidence and none of
them indicated lack of confidence.

TABLE V. AN OVERVIEW OF PARTICIPANTS’ CONFIDENCE LEVEL
. Explanati Confidence Level (%)
Video Outcome ¥
Type 5 4 3 2 1
3 Succeed None 9.1 | 242 | 485 | 182 | 0.0
4 Succeed Heatmap 242 | 273 | 364 | 121 | 00
5 Failed None 121 | 152 | 303 | 242 | 182
6 Failed Natural 242 | 242 | 152 | 152 | 212
Language
7 Succeed None 30 | 182 | 152 | 364 | 273
8 Succeed Natural 273 | 57.6 | 152 | 0.0 0.0
Language
9 Failed Natural 242 | 242 | 182 | 273 | 6.1
Language
10 Failed Heatmap 182 | 212 | 303 | 273 | 3.0

To conclude, compared to visual explanation (using a
heatmap), natural language explanation improves their
confidence by over 30% (shown in Figure 3).

90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%

10.00%

0.00%

No Explanation

Heatmap Natural Language

Figure 3. Participants’ overall confidence in understanding the robot

decision-making process.

B. Hypotheses Testing

We conducted the first hypothesis test to investigate
users’ preferences regarding the type of videos when seeking
information. The hypothesis aimed to determine whether
users prefer videos with explanations over videos without
explanations. The participants were presented with the
question “Which type of video do you prefer when seeking
information?” and the response options: videos with
explanation, without explanation, and depending on the
context.

A chi-square test [26] for independence is employed to
analyze the association between the type of video and user
preference, where H, = no preference difference and H,=
there is a preference for videos with an explanation. If the p-
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value of a given dataset is less than 5%, the null hypothesis
is rejected because it is assumed that there is a preference
difference among the options. To calculate the p-value using
chi-square formula (2), the observed value (0) needs to be
identified first, which represents the actual counts derived
from the sample, and the expected value (E), which
represents the values of each category in the event that there
was no preference difference between all categories. E is
obtained by dividing the total number of observed values by
the number of categories. The following calculation can then
be used to get its chi-square statistic (¥2) based on the
observed and expected values:

2
XZ :Z(OEE) '

2
The result, along with the degrees of freedom (df'), which
is a number representing how much variation is involved in
the research (n) minus 1,
df = n-1, 3)
is used to calculate the p-value from the chi table.

Our observed and expected values based on the survey
results are displayed in Table VI. The total observed values—
33 in this case—and the number of categories—3 in this
case—are then used to compute the expected values, yielding
the value E = 11.

TABLE VI THE OBSERVED AND EXPECTED VALUES
User Preference 0 E 0-E (0 — E)?
With Explanation 22 11 11 121
Explanaton 2 | 1| 81
Dmimic |y | 2|

These observed and expected values were used to
calculate the chi-square statistic, which was then used to test
the hypothesis. The result yielded y?= 28.1; with df = 2, the
resulting p-value was 0.0000008. Since the p-value is less
than a = 5% or 0.05, it is determined that the null hypothesis
is rejected.

The second hypothesis is tested based on two identical
videos with two distinct explanations—one using a heatmap
(video 4) and the other using natural language (video 8).
Participants were asked to choose which of the two videos
gave them a better understanding of the robot decision-
making process. Participants who selected video 8 are
considered to prefer the natural language explanation. A one-
sample proportion test (Z) [27] is employed to analyze
whether the proportion of users who prefer video 8 differs
significantly from 50% (no preference). The null hypothesis
(H,) assumed no preference difference, while the alternative
hypothesis (H,) assumed a preference for videos with natural
language explanation.

To conduct the test, we need to estimate the proportion p
as:

X

p=1, )
where x is the number of participants who have chosen video
8 and n is the total number of participants. After that, the test

statistic can be calculated with the following formula:

P-Do
Po(1-pg)’
n

where p, is the pre-specified value; in this case, it is 50% to
indicate that if half of the total participants chose video 8,
there is no significant preference for that particular video.
From there, the calculated Z-value is compared with critical
values, which can be obtained from the Z table, from the
standard normal distribution. Given that the sampling
distribution of our data is a normal distribution with a
significant value of 0.05, the critical values are in a range of
-1.96 to 1.96. Based on the result of our survey, a one-sample
proportion test was calculated with x = 23 and n = 33, which
yielded a Z-value of 2.46. Because the Z-value is larger than
the maximum critical value, the null hypothesis is rejected.
A post hoc sensitivity analysis [28] was conducted to
evaluate the statistical power of our study. Cohen’s w,

7 = (5)

3 (Pi—poi)?
Poi

w =

A (6)

where p; is the observed value in category i and py; is the
expected value under the null hypothesis in category i, is
used to measure the effect size for the chi-square test of the
first hypothesis. The thresholds are 0.10 for a small effect,
0.30 for a medium effect, and 0.50 for a large effect. The
result yielded w = 0.75, which represents a large effect.
Furthermore, we assess the effect size for the one-sample
proportion test of the second hypothesis with Cohen’s h,

h = 2x (arcsin(,/p,) — arcsin(/p,)),

where p; and p, are the two proportions being compared.
The thresholds are 0.20 for a small effect, 0.50 for a medium
effect, and 0.80 for a large effect. From our user study result,
23 out of 30 participants preferred video with natural
language explanation; thus, p; = 69.7%. Then we compare it
with p, = 50% for the proportion that shows no preference
difference. The result yielded h = 0.40, which indicates a
moderate effect size.

(7

C. Qualitative Analysis

As proven in our hypothesis 2, natural language
explanations are preferable to heatmaps. In order to evaluate
it on a qualitative level, the participants were asked why they
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preferred one type of explanation over the other, and the
majority of them responded that they preferred natural
language because it is easier to understand and more elaborate.
In addition, they believe that natural language explanations
can be enhanced by an audio or speech component.

They were then asked to imagine a situation in which they
would favor a different kind of explanation than the one they
had previously selected. Those who have chosen natural
language say that they prefer heatmaps when a robot performs
a simple task, interacts with static objects, or is in a simulation.
On the other hand, those who have chosen heatmaps say that
they prefer natural language when failure occurs, when the
robot is in a dynamic environment, or when the user has no
background knowledge about the system.

When asked to imagine a situation in which they would
prefer to have no explanation at all, the majority of
respondents believe that in a straightforward or routine task
that is repeated, there is no need for an explanation because
the rationale is obvious. While some claim that they cannot
think of any situation in which it is preferable not to have an
explanation, others highlight this point by stating that, even in
tasks that appear straightforward, having an explanation is
desirable since it provides a clear reasoning behind the robot’s
chosen action.

V. CONCLUSION AND FUTURE WORK

Our user study results supported our hypotheses, offering
statistical evidence that users do, in fact, prefer explanations
when interacting with robotic systems. These findings
highlight that providing explanations improves users’ trust
and understanding of robot systems. Although the study
demonstrates a clear preference for explanations in natural
language as opposed to heatmap visualizations, respondents
express a preference for heatmaps or no explanations at all
when the robot is performing regular or routine tasks. This
tendency implies that, in situations they are familiar with,
participants think that the visual representations of the
heatmaps are sufficient or that perhaps they prefer them more
when the tasks are simple and require no extra information.
Due to the wide range of participant preferences, flexible
communication strategies that take into account varying user
expectations and levels of experience with certain robotic
tasks are necessary.

Even though the results suggest that users prefer systems
that provide explanations over those that do not, it is important
to acknowledge a potential bias in how this hypothesis was
tested. The question itself highlights the presence or absence
of an explanation, which might have led participants to
gravitate toward the condition with explanations, independent
of their actual utility in decision making. Future studies should
aim to mitigate this bias by embedding explanations in more
naturalistic tasks where the usefulness of the explanation
emerges organically rather than being made explicit to
participants.

While our findings indicate that participants preferred
natural language explanations, it is important to recognize that
this result may partly reflect differences in interpretability
between formats. Natural language requires little effort to
process, whereas heatmaps demand additional interpretation

and prior familiarity. This asymmetry may have
disadvantaged the heatmap condition. To address this
imbalance, future studies should explore providing training or
familiarization with visual explanations, refining visualization
design to reduce cognitive effort, or presenting hybrid formats
that combine textual and visual elements for complementary
strengths.

Further studies could explore automating the translation of
scientific terms into natural language to provide explanations
for nonexpert users. To implement audio explanations
effectively, future work may explore the integration of speech
synthesis technologies or Natural Language Processing (NLP)
models specialized 1in generating spoken content.
Additionally, exploring the potential of machine learning
techniques, such as reinforcement learning, could contribute
to optimizing explanation selection. This way, the system
could learn over time which combination of explanation
modalities yields the most positive user responses or
facilitates optimal task performance.
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Abstract—Recommendation systems are designed to rank
items according to users’ predicted interest. As these systems
increasingly affect choices in domains like e-commerce and media,
understanding the reasoning behind their rankings becomes
essential. However, most existing approaches that explain recom-
mendations focus on individual predictions, rather than explaining
why one item is prioritized over another. To bridge this gap, this
paper introduces RanXplain, an approach specifically designed
to explain the ranking decisions produced by recommendation
models. RanXplain operates as a separate machine learning
model trained on pairs of items, using features that are derived
from the original ranking model. The impact of different
feature sets and model architectures on model performance
is systematically investigated. Furthermore, a simulation based
performance evaluation was presented on different breakdowns,
specifically analyzing the proximity of item ranks and whether
items belong to the same category to detect scenarios in which
RanXplain yields superior performance. A practical insight is
discussed regarding instances in which RanXplain fails to identify
the ranking model’s prioritization.

Keywords-Recommendation System; Explainable Al (XAl); Ma-
chine Learning Explainability.

I. INTRODUCTION

Explainability in machine learning has become a cornerstone
of responsible and trustworthy artificial intelligence, especially
as these models are increasingly deployed in high-stakes and
diverse domains, such as healthcare, finance, legal systems,
and digital platforms. As predictive systems grow more
complex, understanding how and why a model arrives at a
particular decision is essential not only for debugging and
improvement but also for ensuring fairness, accountability, and
user trust. Therefore, developing effective methods to interpret
machine learning models is crucial for aligning technical
performance with ethical and practical expectations in real-
world applications.

Recommendation systems, a key application of machine
learning, have become integral in modern digital platforms,
connecting users with relevant items across various domains,
from e-commerce to entertainment. While traditional machine
learning tasks provide precise point predictions, the core
objective in recommendation systems is to accurately rank
items based on users’ predicted preferences. This change in
focus underlines the need to adapt explainability techniques
to better align with ranking based recommendation systems.
Most of the existing explainability methods are effective for
explaining individual predictions but they are often insufficient
in expressing the comparative logic behind a generated ranked
list. For instance, understanding why a model recommends

“Item A” over “Item B” is crucial for user trust, system
transparency, and even for identifying potential biases.

This paper introduces RanXplain, a methodology specifically
designed to address this gap by explaining the comparative
behavior of rankings generated by recommendation models.
RanXplain functions as an independent machine learning
model, trained on pairs of items recommended by the ranking
model. It utilizes features derived from the original ranking
model, enriched with additional comparison features that
capture the differences between items. The application of
both inherently explainable models and more complex, high-
performing models were explored within RanXplain framework.
The approach addresses the unique challenges of explaining
rankings, offering flexible and detailed insights into why one
item is placed above another in a recommendation list. By
doing so, RanXplain aims to increase the transparency and
interpretability of recommendation systems, promoting user
understanding and trust.

The remainder of the paper is organized as follows: Section
II reviews the related work on explainable Al and explanation
methods. Section III introduces the RanXplain methodology
in detail. Section IV offers the key results and experiments,
along with a brief evaluation and discussion. Finally, Section V
concludes the paper and outlines directions for future research.

II. RELATED WORK

Explainable Artificial Intelligence (XAI) is now one of
the most important topics in many machine learning systems,
due to the increasing need for transparency, trustfulness, and
accountability [1][2]. With the high adoption of artificial
intelligence in various fields, such as healthcare, banking, law,
e-commerce, entertainment, interpreting predictions has been as
important as creating the predictions themselves. Approaches
to XAl may be categorized in terms of their usage with models
and explaining the local or global behaviors.

1) Model-Intrinsic (or Inherently Interpretable) vs. Model-

Agnostic (or Post-Hoc):

o Model-intrinsic methods rely on the inherent trans-
parency of certain machine learning algorithms, such
as linear models or decision trees, whose internal
structures make them naturally suitable for generating
explanations.

o On the other hand, model-agnostic methods are comple-
mentary for so-called black box models, such as neural
networks, gradient boosting trees in a way that these
methods are used after the predictions have been made.
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These methods are, therefore, more flexible and may
be used with any algorithm.

2) Local vs global explanations:

o Local explanations aim to clarify individual input-
output decisions, such as why a specific application
was rejected or why a particular prediction probability
was assigned.

o Global explanations, however, try to give a general
image of the behavior of the models and can be thought
of as a summary of the model.

Local Interpretable Model-Agnostic Explanations (LIME) [3]
and SHapley Additive exPlanations (SHAP) [4] are two
popular model-agnostic local explanation approaches designed
to explain any given black box classifier. Both of them work
as feature attribution linear models, trying to understand the
degree of change in predictions and particular features used to
generate these predictions.

Even though they are extremely widely used and general,
SHAP and similar feature attribution methods are basically
limited [5][6][7], especially in ranking tasks. These methods
are designed to explain instance-wise predictions by attributing
the outcome to each feature one at a time. However, in
recommendation systems, where the main task is to rank
items relative to one another, such pointwise explanations
are not able to capture the relative dynamics among items.
For instance, the fact that the particular feature had a positive
impact on the score of Item 1 tells us relatively little about the
reasons why Item 1 outperformed Item 2. In Figure 1, row-wise
SHAP-style feature attributions for the top four recommended
items for a user are shown to illustrate this limitation. Each
row corresponds to one item, with SHAP values color-coded
based on their magnitude and impact within that row. Green
indicates positive contribution toward the item’s ranking score,
and red indicates negative contribution. Though single-item
contributions are formulated for each item, they do not provide
insight into relative differences that cause the ensuing ranking
order. A seemingly logical, yet misleading, approach would be
to simply compare feature contributions between two items. For
instance, the SHAP value for price feature (Feature 1) could
be positive for Item 1 and negative for Item 2. This large,
opposing difference in SHAP values might incorrectly suggest
that price is the primary reason for the ranking disparity. In
reality, Item 2 can be cheaper than Item 1 and other features
like user affinity for specific categories (or brands) might be the
true drivers, creating these conflicting individual attributions.
This means a feature crucial for an item’s individual score may
be irrelevant when explaining its comparative rank.

Global explanation methods like Permutation Feature Im-

portance [8] or Partial Dependence Plots [9] similarly fall
Item ID |Featurel |Featurez Feature 3 |Feature 4 |Feature 5 |Feature 6 |Feature 7 |Feature 8 |Score |Rank
1 0.73 0.92 0.56 0.36 0.25 0.11 0.58 277 1
2 -0.4 0.14 0.10 0.95 -0.04 0.76 0.42 0.04 1.91 2
3 0.51 -0.08 -0.56 0.49 0.84 0.59 -0.24 -0.18 1.37 3
4 lo.s7 |-08 1 0.02 0.84 077 0.16 0.19 127 |4

Figure 1. Row-wise SHAP-style feature attributions.

short in explaining the behavior of ranking models. While they
can identify influential features on average across predictions,
they do not provide specific, contextual information. For
example, price is generally the most important factor for
ranking models in e-commerce; however, it does not explain
why, for a particular user and context, a more expensive Item
A might be ranked higher than a cheaper Item B, contrary
to average user behavior. These gaps highlight that neither
standard local nor global approaches are inherently suited to
the comparative nature of ranking explanations, motivating the
need for specialized pairwise or listwise approaches.

One of the most influential pairwise approaches is the
Analytic Hierarchy Process (AHP) and its generalization,
the Analytic Network Process (ANP), introduced by Saaty
[10][11] for decision-making based on pairwise comparisons.
In AHP/ANP, decision-makers explicitly provide judgments on
the relative importance of alternatives or criteria, and a priority
ranking is then derived using the principal eigenvector of the
comparison matrix. This framework has been widely applied
in domains, such as project selection, resource allocation,
and policy evaluation. The RanXplain framework, however,
addresses the inverse problem: instead of deriving rankings
from human-provided comparisons, it seeks to explain rankings
that have already been produced by machine learning models.
While one might envision applying Saaty’s eigenvector method
directly to model-generated pairwise scores, several practical
obstacles arise.

First, the scale of modern recommender systems far exceeds
the typical scope of AHP/ANP: a single user session may
involve thousands of candidate items (e.g., in e-commerce
with catalogs exceeding 10 million products) and hundreds
of input features (e.g., user—item embeddings, contextual fea-
tures, temporal recency signals). Constructing and processing
complete n X n pairwise matrices under such conditions
becomes computationally intractable. Second, the eigenvector
solution yields overall item priorities but does not provide
feature-level contributions to rankings, which are essential for
transparency in explainable Al. Third, while AHP assumes
relatively stable and consistent comparison judgments, machine-
learned rankings are highly context-dependent, with the relative
importance of features varying substantially across users and
sessions. These distinctions underscore why classical AHP/ANP
methods are not directly applicable to explaining large-scale
Al ranking systems.

In the following sections, a comparative RanXplain method-
ology will be discussed in detail on how to mitigate the gaps
of the current methods of XAlL

III. METHODOLOGY

The methodological framework for the RanXplain model
outlined in this section, addresses the aforementioned limita-
tions of existing explainability methods in ranking. RanXplain
provides explanations for pairwise preferences within a ranked
list of items, clarifying the comparative reasoning of the original
ranking model. Effectively, RanXplain operates as a seperate
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machine learning model, trained to explain the primary ranking
system’s comparative behavior.

A. Data Generation for RanXplain: The Pairwise Paradigm

RanXplain focuses on enhancing a personalized recommen-
dation system in terms of explainability. The underlying notion
behind RanXplain is to transform the complex problem of
explaining the ranking of the whole item list into a series of
manageable binary classification problems based on pairwise
comparisons. A training instance is constructed for RanXplain,
for each relevant pair of items derived from the output of the
primary ranking model.

In personalized recommendation systems, the common ap-
proach involves generating pointwise predictions for individual
user-item pairs. Items are then ranked for each user based on
these scores. However, while it might be possible to explain why
a single item received a particular prediction score (although
even this is often challenging with typical ranking models),
it’s rarely clear why “Item A is ranked higher than Item B.”
This explanation is often more intuitive for users trying to
understand their preferences.

This lack of clarity regarding relative rankings makes it
difficult for both users and developers to grasp the underly-
ing behavior of the recommendation framework. RanXplain
addresses this explanatory deficiency by evaluating ranking
model behavior through considering combinations of items.

1) Selection of Pairs: RanXplain relies on modeling pairwise
preferences to effectively explain the comparative logic of
the primary ranking model. However, it is computationally
challenging to generate every possible combination from a
large set of items. Therefore, a strategic approach to sampling
these pairs is vital, not only for practical implementation but
also to ensure the most informative pairs of items are included.

The preferred methodology for generating these pairwise
comparisons involves two main strategies, both beginning by
determining top K items for each user from their recommen-
dation lists.

The first strategy for generating user-item-item indices
involves randomly selecting a subset of k (kK < K) items
for each user, from their selected top K recommendations.
All possible pairwise combinations are then created from
this subset. This ensures that each item within the chosen
subset appears in multiple comparisons for that user, providing
a substantial set of data for learning specific comparative
preferences of the ranking model.

The second strategy initially forms all possible combinations
from the entire set of K top items for each user. Then, a random
sampling is applied to obtain a comprehensive collection of
pairwise comparisons from this potentially vast dataset. This
strategy differs from the first as it creates a subset of the original
dataset rather than representing the full data. While this can
make the model more robust, it has a key drawback: it might
miss some pairwise comparisons between items. For example,
if we consider three items (i1, i, and i3) recommended to a
user, the first strategy includes all pairwise comparisons (71
VS. i9, 19 VS. i3, and 41 Vs. 73). In contrast, this strategy might

include only some of these pairs, which makes it harder to
capture three-way (or higher-order) relationships. Furthermore,
this approach may introduce greater imbalance in the number
of data points per user, which can lead to biased training or
decreased generalization performance.

2) Features of RanXplain: Creating meaningful features
is crucial for the RanXplain model to learn from and ex-
plain the comparative relations. Original feature set F' =
{f1,f2,..., fn} which were used by the primary ranking
model to make pointwise predictions are added to the feature
set for both items in each pair (i1,72), so that the feature set
of RanXplain contains 2N item features for each index since
both items have IV features.

Additionally, a set of comparison features that explicitly
capture the relationship between i; and i, are derived from the
features in F'. Let x; and x5 be the values of a feature f; € F
for i1 and i, respectively. A small constant € (e.g., 107%) is
introduced to handle potential division by zero. Using x1, 2,
and ¢, a set of comparison features Fiopp is constructed as
follows:

Ratio: The ratio of feature values for items 71 and 75 is defined

as shown in (1):
x1

To9 + &

Mean Percentage Error (MPE): The MPE between feature
values, as calculated in (2), is computed as:

(D

€Tl — T2
1+ 29 + €

2

Difference: The absolute difference between feature values is
simply expressed by (3):
3)

Relative Deviation: The relative deviation, given by (4),
captures the proportional difference:

€Tl — T2

1 — T2
r1+¢€

4)

Equality Indicator: For categorical features, an indicator
function checks equality, as defined in (5):

I o 1 if Ir1 = X2,
e 0 otherwise

The full feature set of RanXplain includes both item features
from the original ranking model and features that describe the
comparison between item pairs in order for the model to learn
more detailed comparison logic. All different combinations of
feature sets have been tested by adding and discarding them
to optimize the feature set for effective comparative learning.

3) Target Variable: The target variable for RanXplain is a
binary indicator, which has the value of 1 if the first item %,
in the pair (i1,i2) is ranked higher by the primary ranking
model. If the second item iy is ranked higher, the target is O.
This approach turns the primary model’s unknown pairwise
decisions into a clear, learnable signal for RanXplain.

(&)
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B. RanXplain Model Selection

Selecting the type of underlying machine learning model is
critical for development of RanXplain. It requires balancing
robust predictive performance with the need for interpretability
when explaining comparative behaviors. Logistic Regression
and XGBoost are considered as two prominent models for this
purpose.

o Logistic Regression: Initially advanced by [12] and further
generalized by [13], Logistic Regression is a linear
model which is particularly advantageous for its inherent
interpretability in binary classification. RanXplain’s aim
of interpreting ranking behavior by classifying pairwise
preferences, directly aligns with capability of this model
type. Within RanXplain, Logistic Regression models the
probability that 7, is prioritized over iy by the primary
ranking model. Its direct interpretability comes from its
learned coefficients:

— A positive coefficient for a feature f;(i1) indicates that
an increase in f; for i, directly raises the probability
of i1 being preferred, assuming other features remain
constant.

— Critically, for comparison features, such as f;(i;) —
fj(i2), a positive coefficient directly quantifies that
a higher difference in f; in favor of i, contributes
proportionally to its higher predicted preference.

This direct mapping between feature values and their
impact on the log-odds of preference provides transparent
and comprehensible explanations for the primary ranking
model’s comparative logic. Its main limitation in this
context is its inability to capture complex non-linear
relationships or feature interactions that may characterize
the primary ranking model’s decision-making process.

o XGBoost (Extreme Gradient Boosting): An optimized
gradient boosting framework which is introduced by [14],
offers superior predictive performance by constructing
an ensemble of decision trees. While inherently a black-
box model, its utility within RanXplain for generating
explanations is realized through the application of SHAP
values. SHAP provides a robust, unified framework to
attribute the contribution of each feature to a specific
prediction.

— For a RanXplain model trained with XGBoost, SHAP
values precisely quantify the impact of each feature
on the prediction of whether i; is preferred over is.
This enables local explanations for individual pairs (e.g.,
attributing ;s preference to its higher “discount” and
“popularity” differential).

— Furthermore, aggregating SHAP values enables global
insights into the most important features effecting
comparative preferences across the entire dataset (e.g.,
identifying “price difference” as a universally strong
determinant of higher ranking).

XGBoost’s advantage lies in its competency to model com-

plex non-linear relationships and high-order feature interactions,
potentially offering a more accurate representation of the

primary ranking model’s intricate decision boundaries. The
need for post-hoc explanation methods like SHAP is the
disadvantage of using XGBoost for RanXplain. Although
SHAP is a powerful method to produce explanations, it is
more complex and computationally intensive than using direct
coefficients from Logistic Regression.

C. Explanation Generation and Presentation

The practical applicability of the RanXplain methodology
extends beyond its predictive capacity, addressing the non-
trivial step of translating its output into useful, understandable
explanations for end-users and system designers. This process
is fundamentally guided by the ability to use the model’s
internal feature weights and contributions to pinpoint the most
influential factors in a ranking decision.

Consider a real-world e-commerce scenario in which a
recommendation system presents a user with a ranked list of
products. Within this list, two items are of particular interest:
Item A, an expensive shoe from a well-known brand with an
applied discount, and Item B, a medium-priced shoe from a
common brand without a discount. The primary ranking model
prioritizes Item A over Item B, and RanXplain successfully
predicts this outcome.

When RanXplain correctly predicts the prioritization of
one item over another, its model coefficients (for Logistic
Regression) or feature importance values (for XGBoost) reveal
which comparison features were most influential. For instance,
the model can identify that the difference in discount ratio,
relative brand popularity, or the user’s affinity for a specific
brand were the key drivers behind the ranking. These features,
which quantify the relative properties of the two items, allow
for the generation of clear and concise explanations.

This capability enables the extraction of concrete insights,
such as: “Item A was ranked higher than Item B because, while
Item B is cheaper, the model gave more weight to the discount
available on Item A and the user’s affinity for Item A’s brand.”
This ability to generate detailed, feature-based explanations
serves several primary purposes in real-world applications:

o User Trust and Understanding: Providing explanations
for why a specific item was prioritized helps users
understand the system’s logic, leading to increased trust
and confidence in the recommendations.

o System Debugging and Improvement: Explanations act
as a critical tool for developers to diagnose the primary
ranking model’s behavior. By analyzing why certain items
are ranked in a particular order, developers can identify
potential biases, correct model errors, and gain insights
for future feature engineering.

o Cross-functional Insights: Explanations can be shared with
other teams (e.g., merchandising, marketing) to provide a
deeper understanding of customer behavior and content
performance. For example, by analyzing explanations, a
merchandising team could determine that a 10% price
decrease on a specific product would cause it to be ranked
higher than a competitor’s product for a particular segment
of users.
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IV. RESULTS | EVALUATION

Experimental evaluation of RanXplain involves a rigorous
process, beginning with the detailed construction of three
distinct datasets: (i) training set, (ii) test set and (iii) sim-
ulation set. The training dataset was formed using top 50
recommendations per user generated by the ranking model
within a specified historical period. It consists of 4.5 million
rows by over 30,000 unique users and more than 130,000
distinct items while maintaining a balanced 50% target ratio. As
the test set has been obtained by splitting the initial training set
according to 80%-20% parity, it contains 1.1 million rows while
exhibiting comparable unique user and item counts and the
same 50% target ratio. Crucially, simulation dataset, consisting
of 50 million rows, was generated by incorporating all 50
top-ranked items for each user from a later temporal period
than the training set, including approximately 45,000 users and
over 175,000 distinct items, also with a 50% target ratio.

The choice of sampling strategy is crucial for both the
practical impact and computational efficiency of RanXplain.
By transforming the complex task of explaining a ranked list
into a series of pairwise classification problems, RanXplain
becomes computationally tractable for large-scale recommen-
dation systems, which is a significant advantage over other
methods. Two different sampling strategies were explored for
training RanXplain: (i) content-based sampling and (ii) random
sampling. Performance metrics of the models trained on both
datasets were observed as highly similar. However, content-
based sampling yielded slightly superior performance and
provided a more representative distribution across diverse users.
This intentional sampling approach makes the training process
more efficient and ensures that the resulting explanations are
representative and of high quality, which is vital for real-world
application. Consequently, content-based sampling method was
adopted by randomly selecting 20 items per user from their top
50 recommendations and generating all possible combinations
for the selected 20 items.

Experiments of RanXplain proceeded to exploring two
critical dimensions in more detail: feature set composition
and model architecture, concluding with a detailed simulation-
based performance evaluation.

A. Experimentation of Feature Sets

To investigate the impact of features on RanXplain model, a
set of experiments were conducted. Table I depicts performance
metrics across train, test and simulation datasets of the
Logistic Regression models trained with different feature sets in
BigQuery ML [15]. Performance of the models were assessed
using the Receiver Operating Characteristic Area Under the
Curve (ROC-AUC), which quantifies the ability of a classifier
to discriminate between positive and negative classes across
various thresholds [16]. Similar behavior was observed across
other performance metrics, such as accuracy and recall.

Initially, Model 1 was trained using only item features which
is an approach that mirrored the original ranking model. By
incorporating comparison features alongside these item features
in Model 2, a significant improvement in model performance

TABLE 1. RANXPLAIN MODEL PERFORMANCE WITH DIFFERENT
FEATURE SETS

Metric Model 1 | Model 2 | Model 3
Item Features Included | Included | Excluded
Comparison Features | Excluded | Included | Included
Train ROC-AUC 0.62 0.73 0.74
Test ROC-AUC 0.61 0.74 0.74
Simulation ROC-AUC 0.61 0.69 0.70

was observed across all ROC-AUC metrics for the training,
test, and simulation datasets.

Interestingly, Model 3 which is trained exclusively with com-
parison features achieved slightly better predictive performance
than the models with item features. While the predictive gains
were marginal, using only comparison features significantly
enhanced the qualitative aspect of explanations compared to
Model 2. The increase in qualitative aspect is due to the
directness of interpretability that comparison features provide
when comparing two items.

Slightly improved performance along with stronger inter-
pretability indicates the vital role of comparison features in
accurately capturing the relative ranking of items. Therefore, the
comparison features are adopted as the feature set of RanXplain.

B. Experimentation of Model Types

For model selection, Table II shows performances of models
that differ by model type and maximum tree depth. Although
Model 3 was the best performer in the experiments of feature
sets, Model 2 was chosen as a baseline model to be compared
with XGBoost models (which are trained using BigQuery ML
[17]) so that both item and comparison features are included
in experimentation of model types.

TABLE II. RANXPLAIN PERFORMANCE FOR DIFFERENT MODELS

Metric Model 2 | Model 4 | Model 5
Model Type Log Reg | XGBoost | XGBoost
Max Tree Depth - 15 5
Train ROC-AUC 0.73 0.92 0.79
Test ROC-AUC 0.74 0.92 0.79
Simulation ROC-AUC 0.69 0.78 0.69

Reducing the maximum tree depth in the XGBoost model
causes significant decrease in model performance across all
train, test and simulation sets. This decrease is evident in Table
II, as shown by the performance difference between Model 4
and Model 5. This observation motivates the use of a more
sophisticated XGBoost model within RanXplain. Additional
complexity is required to effectively approximate the behavior
of primary ranking model, which is a highly complex model.
However, while higher complexity increases the prediction
performance, it also makes the interpretation of the explanation
model more challenging.
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It can be inferred from Table II that Model 2 underperformed
Model 4 with respect to ROC-AUC metrics. However, Logistic
Regression possesses inherent interpretability as opposed to
XGBoost which requires additional methods like SHAP for
explanations. Although more complex models like XGBoost
might be a better fit depending on the specific application’s
requirements, Logistic Regression is found more suitable for
RanXplain of the primary ranking model that is used in this
study.

C. Simulation Based Performance Evaluation

Simulation dataset was used to conduct various offline
evaluations on the preferred model (Model 3). Consistent ROC-
AUC performance was observed across the training, test, and
simulation datasets, with only a slight performance decrease
on the simulation set. Further analyses were conducted on
the simulation data to understand the behavior of RanXplain
model more comprehensively. These analyses are based on two
key factors: (i) proximity of item ranks in the original ranking
model and (ii) whether item pairs belonged to the same high
level item category (e.g., electronics category).

Table III depicts train, test and simulation performances of
Model 3. Simulation performance was analysed with respect
to three additional breakdowns: subset of the simulation data
(1) where the difference between rankings of two items are
greater than 20 (rq;ry > 20) (ii) where the difference between
rankings of two items are less than or equal to 3 (rg;rs < 3)
and (iii) where the two items belong to the same category
(Same Category).

TABLE III. SIMULATION PERFORMANCE

Metric Model 3
Train ROC-AUC 0.74
Test ROC-AUC 0.74
Simulation ROC-AUC 0.70
Simulation ROC-AUC (rg; sy > 20) 0.80
Simulation ROC-AUC (rg;rr < 3) 0.54
Simulation ROC-AUC (Same Category) 0.70

The results revealed a clear trend, predictive capability of the
model significantly improves as the rank difference between
item pairs increases. For example, the model performed substan-
tially better when the rank difference exceeded 20, achieving
an ROC-AUC of 0.80. On the contrary, performance dropped
considerably for closely ranked items ((rq;ry < 3)), with an
ROC-AUC of approximately 0.54. This finding indicates that
RanXplain has difficulty in predicting (and thus explaining)
prioritization when the primary ranking model assigns similar
scores to items, which is expected.

This behavior is a key advantage of the RanXplain approach,
as it allows us to know in advance when its outputs can be
used to confidently interpret the ranking model’s decisions,
thereby preventing misleading or false insights. The correctness
of RanXplain’s predictions (and therefore their reliability for

generating insights) is known in advance, since the real rankings
are already known. This enables the clear identification of when
it is safe to use RanXplain’s outputs to interpret the behavior
of the underlying ranking model for specific item pairs, thereby
avoiding misleading or false insights.

Regarding category influence, RanXplain’s predictions for
pairs within the same item category were very similar to its
performance on pairs from the whole simulation set, indicating
no significant performance differential. Consequently, for the
application of this study, improving RanXplain’s performance
on closely ranked pairs is of minor importance, although such
improvements are feasible by adjusting sampling strategies or
incorporating additional comparison features.

V. CONCLUSION AND FUTURE WORK

This paper introduced RanXplain, a methodology designed to
address a significant gap in recommendation systems, which is
the need to explain ranking decisions rather than individual item
predictions. As outlined in the previous sections, RanXplain
functions as a seperate machine learning model trained on
item pairs, employs features derived from the original ranking
model. Both the effectiveness and operational behavior of
RanXplain is illustrated through a systematic investigation
of various feature sets and model architectures, along with
simulation-based performance evaluation.

The main contribution of RanXplain lies in shifting the focus
of explainability from pointwise predictions to the comparative
logic behind ranked outputs. RanXplain enables a more intuitive
and actionable understanding of why one item is ranked above
another by reframing the task of explaining a ranked list as
a series of pairwise classification problems. The aim is to
provide interpretable insights into the decision-making process
of black-box recommendation models, supporting user trust
and contributing to system debugging.

The evaluation based on ROC-AUC across various datasets
highlighted the strong influence of comparison features. Models
trained exclusively on these features not only achieved better
predictive performance but also yielded more interpretable
explanations as a result of the direct relevance of the input
features. While more complex models, such as XGBoost,
offered better predictive performance, Logistic Regression
proved to be more suitable for applications that require
interpretability, even at a modest cost to accuracy.

The simulation based evaluation further revealed that RanX-
plain’s predictive performance improves significantly as the
rank difference between items increases. On the other hand,
its performance naturally decreased when items were very
closely ranked, which is expected given that the ranking
model assigns similar scores in such cases. It is important
to note that one of RanXplain’s primary advantages is that
the correctness of its predictions is known in advance, since
the ground truth rankings are available. This capability allows
for the identification of cases where RanXplain’s outputs can
be confidently used to interpret the ranking model’s decisions,
thus avoiding potential misinterpretations. This observation
also draws a parallel to the concept of rank reversal in pairwise
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comparison methods like Saaty’s AHP, suggesting that the
underlying ranking decisions for closely-ranked items are
inherently more ambiguous and less stable, making them
difficult to explain with high confidence.

The approach shows promise in interpreting pairwise relative
rankings; however, RanXplain is not designed to provide a
single, holistic explanation for an entire ranked list. While
a high-level explanation might be desirable, it can often be
too simplistic to capture the nuanced decision-making process
of a complex ranking model. Instead, RanXplain provides a
series of granular, actionable insights. An explanation for an
entire ranked list can be composed by chaining together a
series of pairwise comparisons, such as explaining why Item
1 was ranked above Item 2, why Item 2 was ranked above
Item 3, and so on. This approach offers a more detailed and
accurate understanding of the ranking process, as it clearly
articulates the specific feature-level trade-offs that led to the
final ordering. This modular nature allows RanXplain to provide
highly specific insights on demand, supporting both user
understanding and system debugging by clarifying the reasons
behind individual ranking decisions.

For future work, several promising directions can be explored
to further enhance RanXplain. The AUC performance of the
model, particularly on closely ranked pairs, can be enhanced
through various methods. This could involve incorporating
additional non-linear comparison features, such as the power
of the difference of feature values, to better capture the
primary model’s complex decision boundaries. Furthermore,
exploring alternative and more advanced sampling techniques
or using a wider range of training data could lead to significant
improvements in model performance and a more robust
understanding of the ranking model’s behavior. An extension of
RanXplain to support counterfactual explanations could offer
more actionable insights for users and system designers by
indicating how changes in specific features would affect the
relative ranking of items. The trade-off between user-based and
random sampling, and how different sampling strategies impact
the quality of explanations, presents a key area for further
research. RanXplain can also be used in a reverse engineering
context to guide feature design in the original ranking model.
When important comparison features are identified but prove
insufficient on their own, new supporting features can be
introduced to the original ranking model. This can improve
both the model’s performance and its explainability.
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Abstract—Clinicians need transparent reasoning to trust Ar-
tificial Intelligence recommendations, but standard explanation
methods lack clinical semantics. To address this, we transform
an Onkopedia colon carcinoma guideline into a semantically
enriched Knowledge Graph by segmenting text, extracting and
merging semantic concepts, enriching gaps with registry data, and
anchoring features to graph nodes. Using a predictive model, we
compute Shapley Additive Explanations feature attributions and
generate fact-grounded narratives via large language models that
directly reference guideline evidence. We compare three contexts
across 65 synthetic colorectal cancer cases (195 narratives) and find
that KG-based narratives reduce hallucinations, speculation, and
contradictions. Embedding KG-grounded narratives in clinical
decision-support tools promises to shorten expert review cycles,
surface guideline deviations, and bridge the explainability gap
between data scientists and clinicians.

Keywords-Keywords— Explainable Artificial Intelligence; XAI;
Knowledge Graphs; Shapley Additive Explanations; SHAP; Narra-
tive Generation; Claim Verification.

I. INTRODUCTION

Clinical decision support models promise early insights but
often function as opaque black boxes [1]. Clinicians require
transparent, evidence-based explanations to understand how
input features drive predictions [2]. In practice, model develop-
ment is a collaborative, iterative process: data scientists train
and refine predictive models, generate interim explanations, and
oncologists review these artifacts against clinical knowledge,
suggest adjustments, and feed feedback into retraining until
statistical performance and clinical relevance converge. This
real-world feedback loop motivates our work.

To bridge the gap between raw model outputs and clinically
meaningful interpretation, we augment Shapley Additive Expla-
nations (SHAP) outputs with fact-grounded narratives linked
to an authoritative guideline-derived Knowledge Graph (KG).
Our contributions are threefold:

1) Extract and structure clinical guideline content into a
semantically rich KG.

2) Compute SHAP attributions for model features and anchor
them to KG nodes.

3) Generate narrative explanations referencing the KG, yield-
ing traceable, domain-specific rationales.

Standard SHAP bar charts quantify feature influence but
lack clinical semantics. By mapping attributions to KG nodes

Djaffar Ould-Abdelsam
Université de Haute-Alsace
IRIMAS Laboratory, Université de Haute-Alsace
68100 Mulhouse, France
e-mail: djaffar.ould-Abdelsam@uha. fr

derived from colon carcinoma guidelines, our approach en-
riches explanations with medical context—enabling clinicians
to reason in domain-specific terms and data scientists to
identify discrepancies from accepted evidence. We therefore
ask how such fact-grounded narratives affect four claim
categories—Hallucination, Contradiction, Speculation, and
Extrapolation:

(RQ1) Does KG anchoring reduce hallucinations?
(RQ2) Does KG anchoring reduce contradictions?
(RQ3) Does KG anchoring reduce speculative statements?

(RQ4) Does it keep extrapolations within the boundaries
established by using guideline text alone?

If successful, this strategy could streamline expert review
and facilitate the way for prospective clinical validation. The
remainder of the paper is organized as follows: In Section III
we present the proposed methods, including KG construction
and narrative generation. Section IV reports quantitative
and qualitative results. Section V discusses implications and
limitations. Section VI concludes with future directions.

II. RELATED WORK

Shapley values provide theoretically grounded, local feature
attributions that have become standard in explainable clinical
ML [3], but dense bar-chart displays impose high cognitive load
on physicians [4]. To improve interpretability, template-based
systems, such as SHAPstories, convert attributions into short
rationales, yielding modest trust gains [S], while constrained
decoding in EXPLINGO reduces hallucinations in general
domains [6]. Burton et al. frame explanation verbalization as a
data-to-text task with the TEXEN corpus—496 SHAP/LIME-
to-narrative pairs—reporting factual error rates of 25%-42%
for models like BART and T5 [7]. Although these methods
enhance usability, they lack integration with domain-specific
clinical knowledge.

Evaluation of explanation quality typically distinguishes
between faithfulness—how accurately an explanation reflects
the underlying model—and plausibility—how well it aligns
with human judgment [8-10]. Kroeger et al. demonstrate
that larger language models can yield less faithful post-hoc
explanations without additional constraints [11], and Lanham
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et al. offer a fine-grained benchmark for faithfulness in chain-
of-thought reasoning [12]. Diagnostic probes, such as Walk-
the-Talk and the FaithEval suite, complement traditional lexical
overlap metrics (BLEU, ROUGE) by assessing deeper semantic
and factual fidelity [13][14]. To build upon this strand, we
introduce a structured factual-consistency framework that
quantifies divergences across four categories: Hallucination,
Extrapolation, Speculation, and Contradiction, as defined in
Table II and applied in Table IV.

Knowledge Graphs enhance semantic structure, traceability,
and bias control in otherwise opaque model explanations [15].
Typical KG construction pipelines involve text segmentation,
entity and relation extraction, canonicalization, ontology align-
ment, and population [15], while widely used biomedical
resources, like the UMLS Metathesaurus and Bio2RDF, in-
tegrate millions of curated concepts from diverse ontologies
[16]. Domain-grounding systems, such as XplainLLM, anchor
generated explanations in KG triples; DR.KNOWS integrates
UMLS—a large compendium of biomedical terminologies—for
diagnostic safety [17][18]. Cross-domain cybersecurity work
highlights that LLM-based verbalization of SHAP tables can
still wander off-fact without authoritative grounding [19].
Emerging LLM-based tools (e.g., Text2KG, LLM-Assisted
Knowledge Graph Engineering) automate parts of these
pipelines but face challenges, such as hallucination and schema
drift [20][21]. Crucially, no existing approach constructs
KGs directly from prescriptive clinical guidelines—a gap our
guideline-driven pipeline addresses by extracting semantic
concepts from Onkopedia guidelines, enriching them with
registry data, and anchoring model features to KG nodes.

Building on post-hoc feature attributions (SHAP), narrative
verbalization, domain-specific evaluation metrics, and estab-
lished KG construction pipelines, we address the challenge of
grounding model explanations in clinical evidence. We integrate
guideline-derived Knowledge Graph construction with SHAP-
anchored narrative generation to produce explanations that are
both interpretable and verifiable. We evaluate factual accuracy
by fact-checking statements in the generated narratives against
patient case records and quantify divergences from the ground
truth. This methodology yields fact-anchored narratives that
clinicians can immediately verify against clinical guidelines,
enhancing trust and accelerating prospective validation.

IIT. PROPOSED METHODS

We developed an end-to-end pipeline that (i) transforms
the Onkopedia colorectal-cancer (CRC) guideline [22] into a
semantically enriched Knowledge Graph, (ii) computes Shapley
Additive Explanations attributions on an XGBoost predictive
model to quantify feature importance, and (iii) generates fact-
grounded narrative explanations via large language models
(LLMs), which we evaluate experimentally for factual consis-
tency.

A. Knowledge Graph Representation

We represent the guideline-derived KG as a labeled directed
graph, where nodes correspond to clinical semantic concepts

(e.g., therapies, biomarkers, patient characteristics), edges
denote typed relationships between them, and both nodes and
edges carry labels derived from the medical guideline.

We implemented a six-stage pipeline to transform the CRC
guideline into a semantically enriched Knowledge Graph:

Step 1: Preprocessing & Chunking: Clean raw guideline text
(remove headers, footers) and segment into traceable
100-character chunks with metadata (chapter, page,
hash).

Concept & Relation Extraction: Apply GPT-04-
mini-high with structured prompts to extract semantic
concepts as entities with attributes (name, description,
confidence) and their inter-relations into a validated
JSON schema.

Subgraph Integration & Clustering: Merge chunk-
level subgraphs into an initial graph, cluster entities
by thematic category, consolidate identical identifiers,
and link synonyms.

Step 2:

Step 3:

Step 4: Registry Enrichment: Identify missing clinical con-
cepts, insert placeholder nodes, and enrich them with
real-world CRC registry attributes (e.g., age, KRAS

status, ECOG).
Master Graph Assembly: Integrate all enriched

subgraphs under a central root node, serialize in Mark-
down, and export to Neo4j format for queryability.

Step 5:

Step 6: Provenance Annotation: Attach detailed source meta-
data (document, chapter, page, chunk ID, hash) to

every node and edge for auditability.

B. Narrative Generation

Based on a real-world colorectal-cancer registry data schema
excerpt provided by our research partner, we built a simulation
and generated 20,000 synthetic patient records. We trained an
XGBoost model to forecast patient-level treatment decisions
and quantified feature importance with SHAP contribution
scores (¢;) using the TreeExplainer algorithm [3]. SHAP
decomposes each prediction f(x) as:

M
Fx)=do+ > ¢,
i=1

where ¢ is the model’s expected output and each ¢; the
marginal contribution of feature . We linked features to their
corresponding nodes in the guideline-derived KG, ensuring
semantic grounding. However, not all features can be anchored
to the KG, since some registry variables (e.g., body mass index
or weeks since initial diagnosis) are not guideline-based clinical
concepts. We then synthesized 65 colorectal-cancer patient
personas—each defined by demographic variables, TNM stage,
ECOG performance status, Charlson Comorbidity Index [23],
and molecular biomarker profile—and stratified them into three
complexity tiers: (i) uncomplicated cases without guideline
conflicts; (ii) biomarker-driven cases; and (iii) multimorbid
cases with conflicting recommendations. For each persona,
we computed SHAP attributions using TreeExplainer on the
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XGBoost predictive model and selected the ten highest-impact
features by absolute SHAP magnitude. We then generated
narrative explanations in three grounding contexts (OA, GL,
KG), defined in Table I, with GPT-04-mini-high, supplying
both the complete patient CSV record and the top-ten SHAP
features as patient case data. This 3 x 65 factorial design
produced 195 narratives, enabling paired comparisons of
factual consistency across grounding strategies. To evaluate
the incremental impact of integrating clinical guidelines and
Knowledge Graph information, we prompt the LLM (GPT-04-
mini-high) to generate narrative explanations under the three
controlled contexts (OA, GL, KG). All narratives follow a
standardized Markdown template to control for length and
format, ensuring identical format and length constraints across
experimental conditions.

TABLE I. GROUNDING CONTEXTS FOR NARRATIVE GENERATION

Context

OA (Only-Attributes)

Description

Patient case data alone, excluding
guideline or KG context.

Patient case data plus extracted
guideline excerpts with explicit
citations.

Patient case data and full KG in
Markdown, including labels,
relations, and provenance.

GL (Guideline)

KG (Knowledge Graph)

C. Claim Extraction and Evidence Matching

We parsed each created narrative with GPT-04-mini-high to
extract individual asserted claims (complete sentences). For
each claim, we matched its content against the patient case data
(patient attributes and corresponding SHAP attributions). The
LLM was prompted to flag each claim without direct support
in the patient case data as inferred and to classify it into four
categories: Hallucination, Contradiction, Extrapolation, and
Speculation, as defined in Table II.

TABLE II. INFERRED CLAIM CATEGORIES AND DEFINITIONS

Category Why the claim is inferred

Hallucination The claim asserts a patient-specific fact
that is not present in the case data or
SHAP features; the model introduces
new clinical information not observed in
the input.

Contradiction Claim conflicts with patient case data.

Extrapolation Guideline-consistent generalization that
lacks direct case evidence.

Speculation Conjecture with insufficient grounding

(not verifiable against case or guideline).

In the following, we illustrate examples of the LLM evaluated
claim extraction and evidence matching phase. Each category in
Table II is exemplified with excerpts from the LLM evaluation

to illustrate the four distinct ways in which a generated inferred
claim can arise. According to the Extrapolation criterion, a
claim is clinically plausible and drawn from the guideline but
lacks direct support in the patient record. For example:

“For a patient with stage I (T2 NO MO0) colon

carcinoma, complete surgical resection is curative

and no adjuvant chemotherapy is indicated.”

Here, the tumor stage (T2 NO MO) is correctly taken from the
case data, yet the recommendation about cure and omission
of chemotherapy, while guideline-based, cannot be verified
against any patient-specific attribute. Such extrapolations are
nevertheless desirable, because they showcase the language
model’s ability to enrich its output with domain knowledge and
provide broader narrative explanations rather than relying solely
on SHAP-derived feature attributions. A Speculation covers
plausible inferences that nonetheless lack explicit evidence. For
example:

“ECOG 1 (-0.12) and a high comorbidity burden

(CDRRHIGH _yes, —0.10) further lowered the proba-

bility because of toxicity concerns.”
Although ECOG and comorbidity are real features, attributing
the SHAP-driven probability drop to “toxicity concerns” is
conjectural and not encoded in the patient case. Such specu-
lation are undesirable, as it introduces clinical reasoning not
backed by case data and can mislead users about the true
factors influencing the model. By contrast, a Hallucination
arises when the model fabricates a patient-specific fact that
does not appear in the input at all. Consider:

“Difference 1: According to the guidelines, an anti-

EGFR antibody should be added for RAS-wild-type

disease, whereas the model instead selects a BRAF-

targeted agent (AB).”
This statement wrongly attributes BRAF targeting to AB—a
fact not mentioned in the case data. Such hallucinations are
undesirable because they introduce clinical assertions not
backed by case data, undermining trust in the explanation
and potentially misleading downstream decisions.

Finally, Contradiction occurs when a claim directly conflicts

with documented attributes. For instance:

“This 55-year-old man with resected rectal cancer

(T3 N1 M1) and solitary liver and lung metastases

has undergone complete surgical removal of all

metastases.”

This contradicts the record’s single-metastasis count
(NUMBER_METASTASES=1) and notes RO resection only
for the primary tumor. Such contradictions are undesirable
because they misrepresent case facts.

To validate claim extraction and evidence matching, which
were performed automatically using the OpenAl GPT-04-mini-
high model, we randomly sampled 20 claims and computed
classification accuracy with 95% Wilson-score confidence
intervals to account for small-sample inference [24]. The LLM
correctly classified 19 out of 20 cases (95% accuracy), yielding
a Wilson 95% confidence interval of 76.4%-99.1%. Even at
the lower bound, fewer than 25% of labels are expected to
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be incorrect, justifying the use of automatic evaluation for the
quantitative analyses.

IV. RESULTS

To evaluate the factual consistency of the generated narratives
across three grounding contexts—KG, GL, and OA—we report
both quantitative counts and qualitative examples. Results are
presented in three parts: overall observed vs. inferred claim
counts, composition of inferred categories, and evaluation
reliability.

A. Observed vs. Inferred Claims

We evaluated the generated narratives and labeled every
asserted claim as either observed or inferred. A claim is
observed when it is directly supported by the patient record
(e.g., tumor stage or biomarker status) or explicitly grounded
by a SHAP attribution that links a named feature to the model’s
prediction. A claim is inferred when it lacks such direct support;
inferred claims were further categorized.

TABLE III. OVERALL OBSERVED VS. INFERRED CLAIM COUNTS BY

CONTEXT
Context Total Vv O % Observed
KG 1128 367 761 32.5%
GL 1125 243 882 21.6%
OA 1107 395 712 35.7 %

We report the proportion of observed versus inferred claims
across the 195 narratives. Table III summarizes the total number
of observed (v') and inferred (O) claims across the three
grounding contexts. Narratives generated with KG grounding
achieved 32.5 % observed claims (367/1 128), outperforming
the GL context, which yielded only 21.6 % (243/1 125). The
OA context performed comparably to KG with 35.7 % observed
claims (395/1 107 vs. KG).

Overall observed vs. inferred claim counts

1000 A
800 -
600 -

400

Number of claims

200 A

OA

KG GL
B Observed mm Inferred

Figure 1. Overall observed vs. inferred claim counts by context (observed =
case/SHAP-backed; inferred = not directly case-backed).

Figure 1 plots overall observed vs. inferred claim counts
by context. Observed shares differed across the three contexts:
explanations grounded in the KG achieved higher observed
shares than those from the GL baseline, while OA and KG
did not differ much. These findings indicate that KG-grounded
input improves consistency over GL-context narratives, while

OA may benefits from a narrower input scope with fewer
opportunities for inferred claims.

B. Inferred Claim Categories

Table IV details the distribution of inferred claims by
category—Extrapolation, Speculation, Hallucination, and
Contradiction—expressed as a percentage of total claims in
each context.

TABLE IV. INFERRED CLAIM CATEGORY RATES (PERCENTAGE OF TOTAL

CLAIMS)
Category KG GL OA
Extrapolation 64.8% 73.7% 61.9%
Speculation 05% 20% 1.1%
Hallucination 0.0% 04% 02%
Contradiction 0.1%  0.6% 1.1%

Extrapolation is the predominant inferred category across
all contexts. However, the KG condition achieves substantial
gains in factual precision and safety: no hallucinations were
observed under this setup (0.0 %), speculation drops to 0.5 %,
and contradictions fall to just 0.1 %. In contrast, the GL context
shows higher rates of speculation (2.0 %) and contradiction
(0.6 %).

Extrapolation rates by context
100% -

80% A

73.7%

60% -

40% -

% total claims

20% A

0% -
Other inferred category rates by context
3.00% A

2.50% A
2.00% A

1.50% A

% total claims

1.00%

0.50% -

0.00% -

OA

KG GL

B Hallucination B Contradiction

B Extrapolation mmm Speculation

Figure 2. Inferred claim category composition per context (% of total claims).

Figure 2 visualizes these differences as stacked bars (%
of total claims). The KG approach yields markedly fewer
speculative and contradictory issues than both the GL and
OA baselines, and reduces extrapolation by nine percentage
points compared to GL. Despite these gains, many claims
remain inferred, reflecting our design choice to allow clinically
plausible, guideline-based extrapolations that may not be
explicitly present in the patient record. These results support
RQ1 (hallucination), RQ2 (contradiction), RQ3 (speculation),
and RQ4 (extrapolation).
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C. Qualitative Illustrations

Table V presents an excerpt of one narrative of the same case
under the different grounding contexts. The KG narrative cites
a unique guideline node [27205d9] and the recorded feature
RASIwildtype, both verifiable in the case file, demonstrating
domain-rich yet fact-bound explanation. By comparison, the
GL narrative, while fluent, infers “stage III disease” solely from
N1 and offers no patient-specific evidence for adjuvant need,
showing readability at the expense of precision. The OA excerpt
repeats guideline buzzwords (“high-risk stage III”’) relying on
generic statements (73 NI MO0), resulting in the most vague
prose. For completeness, the last example in Table V presents
an GL hallucination example. The mentioned fact— “left-
sided tumor (+0.04)”—illustrates a feature not present in the
patient case and most likely misattributed from the referenced
guideline’s (§6.1.4.3.1.1) metastatic EGFR-therapy discussion,
underscoring how lack of authoritative grounding can introduce
factual errors.

TABLE V. REPRESENTATIVE NARRATIVE EXCERPTS ACROSS GROUNDING
CONTEXTS, WITH GL HALLUCINATION EXPLICITLY MARKED

Context

KG

Narrative Excerpt

Both guideline and model utilise an oxaliplatin +
fluoropyrimidine backbone [27205d9]; the SHAP
feature RASlwildtype supports full cytotoxic
sensitivity.

The SHAP value for NI (0.28) flags stage
III disease and confirms the need for adjuvant
therapy (guideline §6.1.3).

Both guideline and model emphasise high-risk
stage III features (73 NI MO) as key drivers of
therapy intensification.

Hallucination: RAS wildtype (+0.03) and left-
sided tumor (+0.04) slightly increased probabil-
ity, mapping to metastatic guidelines for EGFR-
directed therapy (guideline §6.1.4.3.1.1).

GL

OA

GL

The GL hallucination example highlights a reference to a non-existent feature
(left-sided tumor).

Together, these qualitative vignettes also reinforce our
quantitative results: The KG-grounded narrative delivers deep,
context-rich explanations that remain verifiable, while the GL
outputs sacrifice fidelity for readability and the OA outputs rely
on overly generic statements, evidencing a tendency toward
vagueness.

V. DISCUSSION

Our study demonstrates that anchoring narrative explanations
in a guideline-derived KG improves factual reliability. The KG
context reduced hallucinations to 0.0% of total claims in our
sample—i.e., none were observed under this setup—supporting
RQI. Moreover, contradictions dropped to 0.1% and speculative
claims to 0.5% of total claims, supporting RQ2 and RQ3 that
KG grounding reduces both contradictions and speculation.

Moreover, anchoring explanations in the KG cut extrapola-
tion rates from 73.7 % under the GL context to 64.8 %—a 9.0
percentage-point drop—demonstrating that guideline-derived
KG grounding effectively constrains extrapolations to within
established bounds and thereby confirms RQ4 (See Table IV).

Although the OA context exceeds KG in overall observed-
claim rate (35.7% vs. 32.5%), its narrower input scope yields
shallower, less semantically rich narratives. OA’s lower extrap-
olation rate (61.9%) comes at the expense of actionable detail,
whereas KG grounding delivers fully audit-ready, guideline-
anchored explanations (See Table III and Figure 2). Finally, the
relatively high share of inferred claims across conditions largely
reflects clinically plausible, guideline-based extrapolations that
provide useful framing but may not be directly present in patient
records. In settings that require stricter evidencing, prompts or
decoding constraints can restrict extrapolation at the cost of
brevity; conversely, future work may calibrate this trade-off
per user role (e.g., clinical vs. data science review).

These findings extend prior LLM explainers by showing
that structured KG context not only enriches inference but
also constrains factual drift [7]. We note that the absence of
hallucinations should not be interpreted as impossibility; rather,
it likely reflects the combination of KG constraints and the
controlled, synthetic case distribution used here.

In practice, clinicians must rapidly validate Al recom-
mendations. The traceable paths in KG narratives—Ilinking
each feature attribution to specific guideline nodes—can
reduce expert review time by directly surfacing conflicts or
affirmations in the guideline text. In our qualitative examples
(Table V), KG narratives allowed unambiguous verification
of treatment rationale, whereas GL outputs required additional
cross-checking. We anticipate that integrating KG-grounded
narratives into decision-support dashboards will shorten itera-
tion cycles between data scientists and clinicians, as envisaged
in collaborative Al workflows [25].

Our evaluation is constrained by some factors. First, we
used 65 synthetic patient personas rather than real-world cases;
while this allowed controlled variation, it may not capture
the full complexity of clinical data. Second, we benchmarked
against a single guideline (Onkopedia CRC) and one LLM
version (GPT-04-mini-high); generalization to other specialties
or model variants remains to be demonstrated. Third, our error
annotations—though 95% accurate in spot-checks—rely on an
automated evaluation LLM; residual misclassifications could
slightly bias absolute error rates. Finally, we measured only
claim-level errors; additional dimensions such as usability,
cognitive load, and end-user satisfaction were not assessed
here.

VI. CONCLUSION AND FUTURE WORK

Having demonstrated through our evaluations that KG-
grounded narrative explanations outperform both attribute-only
and guideline-excerpt baselines in factual reliability, we now
outline directions to build on this work. To address limitations
and extend our findings, we propose the following directions:
(1) Apply the pipeline to real-world data and diverse guidelines;
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quantify clinician review time and simulated decision impact.
(2) Tteratively refine KG-narrative prompts with user feedback
and on-the-fly graph augmentation, aligning with human-
centered XAl [5]. (3) Evaluate usability, trust calibration, and
clinical actionability; extend metrics (e.g., comprehensiveness,
empowerment).

Overall, our results confirm that fact-grounded narrative
explanations built on guideline-derived Knowledge Graphs
deliver superior factual reliability and coherence compared to
attribute-only or guideline-excerpt baselines. By transparently
linking model attributions to clinical evidence, this approach
paves the way for more trustworthy, actionable Al in health-
care—bridging the critical gap between statistical performance
and domain relevance.

ACKNOWLEDGMENT

This research has been funded by the German Federal
Ministry of Education and Research (BMBF) under grant
agreement no. 13FHSE11TIA (CoHMed/NIO). Responsibility
for the content of this publication lies with the author.

REFERENCES

[1] J. M. Duran and K. R. Jongsma, “Who is afraid of black
box algorithms? on the epistemological and ethical basis of
trust in medical ai”, Journal of Medical Ethics, vol. 47, no. 5,
pp. 329-335, 2021. pot: 10.1136/medethics-2020-106820.

[2] T.P. Quinn, S. Jacobs, M. Senadeera, V. Le, and S. Coghlan,
“The three ghosts of medical ai: Can the black-box present de-
liver?”, Artificial Intelligence in Medicine, vol. 124, p. 102 158,
2022, 1SSN: 0933-3657. po1: 10.1016/j.artmed.2021.102158.

[3] S. M. Lundberg and S. Lee, “A unified approach to interpret-
ing model predictions”, in Advances in Neural Information
Processing Systems 30 (NeurlPS 2017), 2017.

[4] A. Bilal, D. Ebert, and B. Lin, “Llms for explainable ai:
A comprehensive survey”, ACM Transactions on Intelligent
Systems and Technology, 2025, March 2025 edition.

[S] D. Martens, J. Hinns, C. Dams, M. Vergouwen, and T.
Evgeniou, “Tell me a story! narrative-driven xai with large
language models”, arXiv preprint, 2023. eprint: 2309.17057.

[6] A. Zytek, S. Pido, S. Alnegheimish, L. Berti-Equille, and
K. Veeramachaneni, “Explingo: Explaining ai predictions using
large language models”, in /IEEE Big Data Conference, 2024.
eprint: 2412.05145.

[7]1 J. Burton, N. A. Moubayed, and A. Enshaei, “Natural language
explanations for machine-learning classification decisions”, in
Proceedings of the International Joint Conference on Neural
Networks (IJCNN), IEEE, 2023, pp. 1-9.

[8] M. A. Kadir, A. Mosavi, and D. Sonntag, “Evaluation metrics
for xai: A review, taxonomy, and practical applications”, in
27th IEEE International Conference on Intelligent Engineering
Systems (INES), 2023, pp. 111-124. pol: 10.1109/INES59282.
2023.10297629.

[9] K. Matton, R. Ness, J. Guttag, and E. Kiciman, “Walk the

talk? measuring the faithfulness of large language model

explanations”, in Proceedings of the International Conference

on Learning Representations (ICLR), 2025.

Y. Ming et al., “Faitheval: Can your language model stay faith-

ful to context, even if “the moon is made of marshmallows””,

arXiv preprint, 2024. eprint: 2410.03727.

N. Kroeger, D. Ley, S. Krishna, C. Agarwal, and H. Lakkaraju,

“Are large language models post hoc explainers?”, in Robust-

ness of Few-/Zero-Shot Learning Workshop @ NeurlPS 2023,

2023.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

T. Lanham et al., “Measuring faithfulness in chain-of-thought
reasoning”, arXiv preprint, 2023. eprint: 2307.13702.

K. Papineni, S. Roukos, T. Ward, and W. Zhu, “Bleu: A
method for automatic evaluation of machine translation”, in
Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, Philadelphia, PA, USA: Association
for Computational Linguistics, 2002, pp. 311-318. por: 10.
3115/1073083.1073135.

C. Lin, “Rouge: A package for automatic evaluation of sum-
maries”, in Proceedings of the Workshop on Text Summarization
Branches Out, Barcelona, Spain: Association for Computational
Linguistics, Jul. 2004, pp. 74-81.

L. Zhong, J. Wu, Q. Li, H. Peng, and X. Wu, “A comprehensive
survey on automatic knowledge graph construction”, ACM
Computing Surveys, vol. 56, no. 4, 2024. por: 10.1145/
3618295.

F. Belleau, M. Nolin, N. Tourigny, A. Rigault, and J. Morissette,
“Bio2rdf: Towards a mashup to build bioinformatics knowledge
systems”, Journal of Biomedical Informatics, vol. 41, no. 5,
pp. 706-716, 2008. DOI: 10.1016/j.jbi.2008.03.004.

Z. Chen, J. Chen, A. K. Singh, and M. Sra, “Xplainllm: A
knowledge-augmented dataset for reliable grounded explana-
tions in 1lms”, in Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing (EMNLP),
Singapore: Association for Computational Linguistics, 2024,
pp. 7578-7596.

Y. Gao et al., “Leveraging medical knowledge graphs into
large language models for diagnosis prediction: Design and
application study”, JMIR Al, vol. 4, ¢58670, 2025. por: 10.
2196/58670.

A. Khediri, H. Slimi, A. Yahiaoui, and M. Derdour, “Enhancing
machine learning model interpretability in intrusion detection
systems through shap explanations and llm-generated descrip-
tions”, in 6th International Conference on Pattern Analysis and
Intelligent Systems (PAIS), 2024. pol: 10.1109/PAIS62114.
2024.10541168.

L. P. Meyer et al., “Llm-assisted knowledge graph engineering:
Experiments with chatgpt”, in First Working Conference
on Artificial Intelligence Development for a Resilient and
Sustainable Tomorrow (AIDRST 2023), C. Zinke-Wehlmann and
J. Friedrich, Eds., ser. Informatik aktuell, Wiesbaden, Germany:
Springer Vieweg, 2024. DOI: 10.1007/978-3-658-43705-3_8.
F. Gaber et al., “Evaluating large language model workflows in
clinical decision support for triage and referral and diagnosis”,
npj Digital Medicine, vol. 8, p. 263, 2025. DOI: 10.1038/s41746-
025-01684-1.

Onkopedia Guidelines, “Colon carcinoma — onkopedia guide-
line”, Accessed 2025-09, 2025, [Online]. Available: https://
www.onkopedia.com/.

M. E. Charlson, P. Pompei, K. L. Ales, and C. R. MacKenzie,
“A new method of classifying prognostic comorbidity in
longitudinal studies: Development and validation”, Journal
of Chronic Diseases, vol. 40, no. 5, pp. 373-383, 1987. DOI:
10.1016/0021-9681(87)90171-8.

R. G. Newcombe, “Two-sided confidence intervals for the
single proportion: Comparison of seven methods”, Statistics in
Medicine, vol. 17, no. 8, pp. 857-872, 1998.

M. Afshar, Y. Gao, D. Gupta, E. Croxford, and D. Demner-
Fushman, “On the role of the umls in supporting diagnosis
generation: Differential diagnoses proposed by large lan-
guage models”, Journal of Biomedical Informatics, vol. 157,
p. 104707, 2024. por: 10.1016/j.jbi.2024.104707.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: ISBNFILL

33



EXPLAINABILITY 2025 : The Second International Conference on Systems Explainability

Explaining the Medical Record: a Research Agenda for Non-medical
Practitioners

Ray B. Jones, Aled Jones, Sally Abey, Patricia Schofield, Joanne Paton, Jill Shawe, Jenny Freeman, Avril
Collinson, Nicholas Peres, John Downey, Sheena Asthana
University of Plymouth, PL4 8AA, United Kingdom
Emails: ray.jones@plymouth.ac.uk; aled.jones@plymouth,ac,uk; sally.abey@plymouth.ac.uk;
patricia.schofield@plymouth.ac.uk; joanne.paton@plymouth.ac.uk; jill.shawe@plymouth.ac.uk;
jenny.freeman@plymouth.ac.uk; avril.collinson@plymouth.ac.uk; nicholas.peres@plymouth.ac.uk;
john.downey@plymouth.ac.uk; sheena.asthana@plymouth.ac.uk.

Abstract - This paper proposes a research agenda exploring
how Generative Artificial Intelligence (GAI) can help explain
patient medical records, particularly to the patients of non-
medical practitioners. While patient access to records is
expanding globally, little is known about how this access
supports care beyond primary care doctors, or how GAI tools
like ChatGPT may assist in interpretation. We outline key
research questions and argue for co-designed solutions that
include nurses, midwives, and allied health professionals to
ensure accessible, equitable, and scalable approaches to
explainability in digital health.

Keywords- explainability; patient access to records; research
agenda; non-medical practitioners.

I INTRODUCTION

Medical records were originally developed in the 18th
and 19th centuries, primarily as an aide-mémoire for
clinicians to support diagnosis, monitor treatment, and
facilitate communication between healthcare professionals,
not as documents intended for patients themselves. During
the 1960s and 1970s researchers and practitioners began to
suggest that patients could benefit from access to their
records or hold shared care records [1], for example, in
diabetes or hypertension [2]. As technology developed
opportunities arose to share computer-produced summaries,
for example, a clinical system for diabetes that produced
records for hospital, GP and patient [3][4]. Use of this
problem-oriented record showed that doctors were not
always ready to share all problem-list entries with their
patients [5][6]. On the other hand, in some situations such
as antenatal care [7], clinicians were prepared to ‘hand
over’ a complete paper medical record for women to look
after.

In the 1990s we saw attempts to explain medical
records to patients including the development of ‘lay
dictionaries’ to ‘translate” medical problems [8][9] as well
as Al approaches to construct explanations [10][11] and
showed that explanations based on their medical record
were preferred to more generic information [12][13].
Randomised trials in the 1990s and 2000s [12][14][15]
showed that giving patients access to their record with some
type of explanation was of benefit. For example, a
computer-produced paper record of the medical record with
quality relevant information was more likely to be shared
by cancer patients with their family than just the general
information. This helped reduce patient anxiety [12].

More recently, a 2020 systematic review of patient
access to medical records found that sharing electronic

records with patients improved medicine safety and often
reduced healthcare use, including fewer hospital visits and
appointments [16]. However, an editorial by Sarkar et al
[17] argued that the impact of patient access depends
heavily on implementation. Contextual factors such as
digital literacy, language, and clinical workflows must be
considered, or else the benefits may be offset by increased
clinician burden and exacerbated inequalities [18].

In section 2 we describe current practice, in section 3
the changing health information landscape in the UK, in
section 4 we describe research questions about explaining
medical records to patients, in section 5 we focus on under-
researched areas and draw conclusion in section 6.

II. CURRENT PRACTICE

Progress in this area had been slow until recently, but
patients in at least 30 countries now have some level of
access to their records. Online routine access to medical
records has demonstrated benefits including patient
empowerment, reducing inefficiencies, error correction,
and better shared decision making [19-21].

However, the degree of routine implementation differs.
In the UK, patients were expected to gain prospective
access to new data in their primary care records, including
letters and consultations, from October 2023. However, a
recent study [22] of 400 GPs in England revealed that in
2023 only 33% supported patient access to records. Most
GPs felt that patients would worry more (91%) or find
records confusing (85%). While many acknowledged
potential patient benefits, most believed that online record
access would increase their workload. Qualitative analysis
[23] echoed these concerns among other primary care staff.
Clinicians are concerned that patients will not understand
their records.

111 THE CHANGING UK HEALTH
INFORMATION LANDSCAPE

The NHS 10-Year Plan sets out a vision for a digitally
enabled, personalised, and prevention-focused health
service, emphasising the shift of care closer to home and the
importance of empowering individuals to manage their own
health. Achieving this vision requires not only giving
patients access to their health records, but also ensuring
they can understand and use that information effectively
[24].
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In the UK as elsewhere, the digital health landscape is
evolving rapidly, both in terms of access to general health
information and the development of personal health
records. High-quality health information is widely available
from trusted sources such as the NHS [26], Mayo Clinic
[27], NICE [28], as well as peer-reviewed medical journals.
This information 1is increasingly being accessed,
summarised, and transformed by GAI tools such as
ChatGPT.

Meanwhile, personal health records, created through
interactions with frontline systems in general practice and
community care (e.g., EMIS [29] and SystmOne [30]), as
well as hospital systems (e.g., Cerner [31] and Epic [32]),
are being extracted into patient-facing platforms such as the
NHS App [33]. These records may also feed into shared
care records for care planning and potential future patient
access (e.g., via systems like Orion [34] and Black Pear
[35]). Patients may therefore engage with digital health in
different ways: using public websites or Al tools
independently or verifying their clinical data through
patient portals, then exploring it via GAIL. Some health IT
providers are beginning to integrate, or plan to integrate,
GAI directly into their patient portal platforms. For
example, Epic is working with Microsoft/OpenAl to embed
GAI into clinician workflows and patient portals and NHS
England is exploring how GAI might be used in the NHS
App and other digital services.

GALI tools offer new opportunities to make medical
records more accessible by translating clinical jargon into
lay language, providing context-specific explanations,
supporting conversational queries, and generating
personalised summaries. These tools may enhance patient
understanding, engagement, and self-management,
especially when integrated with voice interfaces or patient
portals. However, public-facing GAI tools also carry
significant risks. They may generate incorrect or misleading
information ("hallucinations"), lack source traceability,
pose privacy concerns if sensitive data is shared outside
secure systems, and exacerbate inequalities among patients
with low digital literacy or poor internet access. Without
safeguards and careful integration into clinical workflows,
GAI may increase anxiety or misunderstandings rather than
empowering patients. Research is therefore needed to
explore how GAI can be safely and effectively deployed in
real-world health contexts, particularly for non-medical
practitioners and the populations they support.

V. RESEARCH QUESTIONS ABOUT
EXPLAINING MEDICAL RECORDS TO
PATIENTS.

We could divide research questions about medical
records into three categories:

e ‘Micro’ level, the explainability of the record,
exploring which types of explanation are preferred
or are more useful.

e  ‘Meso’ level, whether patients want to use portals
and whether their use and GAI affects the
practitioner-patient relationship, and

e  ‘Macro’ level, how this transformation can affect
patient outcomes and possible changes to care
processes, such as the shift from acute to
community care and the focus towards health
promotion and disease prevention [36].

Micro questions might include: How much do patients
need their medical record if they know enough to ask a GAI
for explanation? Will software developers build in GAI to
their systems? Will this be more secure than patients using
information from their online records to query a GAI? If
NHS App builds in GAI will patients use that or still use
independent GAI? What about the digitally disadvantaged?
How should GAI adapt explanations to the knowledge level
of the patient? Should the priority be on giving voice Al
access to medical records so that those with no internet
access or lack of skills can use the telephone to find out
more?

At the ‘Meso’ level, questions are focussed on how we
develop the triad of patient-practitioner and AI? What staff
training is needed? How can practitioners collaborate with
patients who turn up with lists or cite papers or GAI? How
can practitioners support patients who do not use the
Internet? How can practitioners assess their patients’ IT
abilities and knowledge? How might this approach need to
be adapted for some categories of patients such as the
cognitively impaired? How do practitioners feel about
patients reading and interpreting their notes—especially
sensitive or nuanced ones (e.g. mental health, pain,
uncertainty)? Does transparency change clinical
documentation practices (e.g., tone, completeness,
candour)? What are the risks and benefits of giving access
to records in real time versus following clinician review or
filtering? How do we introduce this topic to the curriculum
of doctors, nurses, and other health professionals?

At the Macro level, NHS level questions are concerned
with the most scalable and cost-effective methods for
explaining records (e.g., automated summaries vs clinician
review vs chatbot support)? How can health systems
measure ‘understanding’ as an outcome of record-sharing
interventions? Will these developments increase or
decrease health inequalities?

V. UNDER RESEARCHED AREAS

In the English NHS, there are approximately 172,000
doctors (134,000 hospital doctors and 38,000 full-time
equivalent GPs). However, there are some 372,000 nurses
and midwives, and over 200,000 Allied Health
Professionals (AHPSs) (healthcare professionals other than
doctors and nurses) from 14 professions (such as
physiotherapy, podiatry, dietetics) working across
community, primary, and secondary care. AHPs deliver
over 208 million patient contacts annually [36]. Yet, most
research into patient online access to their records has been
in primary care and with GPs. Very little is known about
nursing or AHPs’ or patients’ attitudes to patient access to
their records or the use of GAI in non-medical clinical
situations. For example, a recent scoping review of patient-
accessible electronic health records [37] identified 66
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studies, with none addressing nursing or AHP attitudes or

GALI use in those settings.

We propose that the research questions outlined above
regarding the most effective ways to explain medical
records, could be more widely explored at micro, meso and
macro levels, through co-design with patients and
practitioners in non-medical disciplines. These include
antenatal care, nurse-led pain clinics, physiotherapy,
podiatry, and dietetics.

e Antenatal care has the longest history of providing
patients with access to their records [7]. It continues to
lead in shared record practices, with handheld notes
and digital maternity apps now widely used.

e  Pain clinics, particularly those led by nurses, are more
cautious. While some services have begun to share care
plans and symptom-tracking tools through patient
portals, concerns remain about the risk of patients
misinterpreting  complex  pharmacological  or
psychological data.

e Podiatry, especially within diabetes care, is seeing a
growing use of digital platforms. These integrate
podiatry notes into diabetes pathways and offer
patients access to wound images, self-care advice, and
foot health monitoring. However, access remains
inconsistent.

e Dietetics is at a transitional stage. Patients are
increasingly using digital tools to track dietary intake
and receive tailored plans. There are also new digital
platforms evolving such as MyRenalCare where
clinicians including dietitians support the patient. Yet
access to dietetic records is still limited, and
documentation is not routinely shared or integrated
across systems.

e Physiotherapy shows similar variability. Some
integrated musculoskeletal pathways allow patients to
access structured exercise plans and outcome data via
apps like getUBetter or PhysiApp. However, routine
access to clinical notes is uncommon, and many
departments still rely on paper records or standalone
systems.

Overall, progress toward shared records and digital
self-management tools across these disciplines is uneven.
There is a mix of promising developments and significant
gaps. However, this inconsistency presents an opportunity:
it offers researchers a diverse range of environments in
which to explore and evaluate innovative approaches.

VL CONCLUSION

Now is the time for a major change towards using Al to
explain and interpret the content of a patient’s medical
record to the patient themselves. But we need (i) to switch
attention to the under-researched areas of nursing and AHPs
and (ii) to work with both practitioners and patients to co-
design the convergence of patient access and GAI to
empower patients to self-manage their condition and get
what they need from their clinical consultation. Co-design
is the only approach which identifies the needs and
concerns of both groups (HCPs and patients) and enables

them to work together in developing and sharing an
optimum approach

We now need collaborative design between patients
and practitioners to adapt these technologies effectively
within clinical workflows. Without such work, we risk
missing opportunities for improvement and compounding
access disparities. This research proposes co-design
approaches, including the development of solutions such as
voiceAl telephone interfaces, to ensure these tools are
usable, equitable, and aligned with NHS real-world needs.

Improvements in technology such as patient portals and
GAI, may make it possible to improve patient autonomy,
accelerate the switch from acute to community care, focus
on health promotion and disease prevention. and reduce
practitioner workloads. However, practitioners are
concerned that the integration of Al and the potential need
for deeper conversations with patients will add additional
time pressures and create inefficiencies as conversations are
misdirected to discuss strong preconceptions and
conflicting advice, with some patient groups feeling
empowered (but perhaps misinformed) while the more
digitally excluded suffer even greater disadvantage.

To realise the benefits of patient access to records,
particularly in community-based care, approaches must be
co-designed by patients and practitioners and focus on
inequalities. Despite extensive research in primary care and
some in hospital settings, there has been virtually no
exploration of patient access in collaboration with non-
medical practitioners, apart from longstanding antenatal
care research [7]. To unlock the full potential of patient-
accessible records and generative Al, we must expand our
research lens beyond doctors and engage the full breadth of
the healthcare workforce and the patients they serve.
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