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Foreword

The Twelfth International Conference on Smart Grids, Green Communications and IT Energy-
aware Technologies (ENERGY 2022), held between May 22 – 26, 2022, continued the event considering
Green approaches for Smart Grids and IT-aware technologies. It addressed fundamentals, technologies,
hardware and software needed support, and applications and challenges.

There is a perceived need for a fundamental transformation in IP communications, energy-
aware technologies and the way all energy sources are integrated. This is accelerated by the complexity
of smart devices, the need for special interfaces for an easy and remote access, and the new
achievements in energy production. Smart Grid technologies promote ways to enhance efficiency and
reliability of the electric grid, while addressing increasing demand and incorporating more renewable
and distributed electricity generation. The adoption of data centers, penetration of new energy
resources, large dissemination of smart sensing and control devices, including smart home, and new
vehicular energy approaches demand a new position for distributed communications, energy storage,
and integration of various sources of energy.

We take here the opportunity to warmly thank all the members of the ENERGY 2022 Technical
Program Committee, as well as the numerous reviewers. The creation of such a high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
who dedicated much of their time and efforts to contribute to ENERGY 2022. We truly believe that,
thanks to all these efforts, the final conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the ENERGY 2022 organizing committee
for their help in handling the logistics and for their work to make this professional meeting a success.

We hope that ENERGY 2022 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the fields of smart grids,
green communications and IT energy-aware technologies.

We are convinced that the participants found the event useful and communications very open.
We also hope that Venice provided a pleasant environment during the conference and everyone saved
some time for exploring this beautiful city.
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Abstract—In this study, ArcGIS Pro 2.8 identified power poles 
and towers from Light Detection And Ranging (LiDAR) point-
cloud data. In previous research, machine learning has 
identified objects from such data. We sought to demonstrate a 
deep-learning model developed by the Environmental Systems 
Research Institute and a group based in Australia and whether 
deep learning is a viable solution for identifying power assets 
in three California areas. The deep-learning model was 
deployed in ArcGIS Pro using the Classify Point Cloud Using 
Trained Model geoprocessing tool. The model successfully 
identified some power poles in both rural and urban areas. A 
better training dataset might improve on this limited success, 
suggesting that deep learning can successfully classify point 
clouds. Those interested in using LiDAR point clouds with 
deep learning to classify power poles and towers should 
produce training data using accurately labeled data that 
accurately represents the objects of interest to ensure optimal 
results with a new model. 

Keywords—LiDAR; deep learning; point cloud; ArcGIS Pro; 
point classification. 

I. INTRODUCTION

Light Detection And Ranging (LiDAR), a type of 
remote-sensing technology, uses pulsed lasers to measure 
variable distances, heights, or depths of objects and areas. 
LiDAR devices are generally mounted on Unmanned Aerial 
Vehicles (UAV). These UAVs are remotely operated to scan 
areas of interest. At a minimum, this process requires a two-
person team to remotely operate the UAV and verify the data 
is correct [1]. This data can be input to software that can read 
the point-cloud data for further processing. UAVs and 
LiDAR data provide several benefits over sending people to 
physically inspect all assets of interest. For instance, a UAV 
can easily scan large areas without regard to the type of 
terrain (steep slopes, dense forests, etc.). Several studies have 
examined extracting objects from point-cloud data. 

Based on the current and future potential of LiDAR data 
in assessing and managing forest structures, remote sensing 
and classification can identify specific trees in a cluster and 
more closely identify the species [2]. The article is relevant 
to our research question of whether LiDAR can be used to 
identify power poles and structures, which may be imbedded 
in forests or other rural areas. 

3D LiDAR imaging could be used in conjunction with a 
Recurring Neural Networks (RNN) to identify different 
objects. With the progression of scanners, 3D LiDAR images 
provide enhanced measurement data [3]. The point spacing 
between objects could be leveraged to create a model to 
recognize objects [3]. The RNN model showed promise, and 
warrants further research, as does pursuing better 3D data. 

Using Convolutional Neural Networks (CNNs), Maggiori 
et al. [4] created an end-to-end satellite-imagery classification 
framework, noting its ability to classify satellite images, 
identify objects, and produce quality images. Untrained 
models performed less well. From an existing model, they 
constructed a manually classified dataset with significant 
improvements. They propose a two-step approach with a 
small manually classified training dataset to classify a larger 
unclassified set. 

Kudinov [5] used the Point Convolution Neural Network 
(PointCNN) framework to automatically identify power lines 
and poles. The group used artificial intelligence for the labor-
intensive task of manually labeling the point cloud. Their 
study area was a city in Australia, and their dataset contained 
540 million points. They trained their PointCNN model 
using four classes: other, wires, stray wires, and utility poles. 

Studying the You Only Look Once (YOLO) deep-
learning algorithm, Fan et al. [6] detect objects in point-
cloud datasets for self-driving vehicles, which need real-time 
information to avoid collisions. Consequently, the researchers 
propose a computationally efficient algorithm, LS-R-
YOLOv4, using color images and point-cloud data to 
precisely segment and detect objects. Borcs et al. [7] 
proposed a pipeline to quickly classify point clouds. One 
component of this pipeline is a CNN trained to classify 
objects. 

LiDAR data can be used to accurately pinpoint large 
areas’ micromorphology [8]. Comparing a Digital Elevation 
Model (DEM) generated from LiDAR data to the surveyed 
plots, Brubaker et al. [8] learned that their research was 
accurate to within 0.3–0.4 m of the actual survey, a single 
point in the point cloud. With their data, they generated the 
surface constraint of the surveyed area faster and from a 
greater distance compared to a traditional survey. The DEM 
is important as it allows LiDAR data to be accurately 
separated from ground, water, or any surface constraints 
based on elevation. 

Azevedo et al. [9] showcased UAVs to replace 
helicopters. UAVs with LiDAR would help companies 
maintain their equipment more efficiently with a team of a 
few people for data vetting and to control the UAV. LiDAR 
data can be converted to point-cloud data and fed through an 
algorithm to help identify and sort items in the LiDAR data. 
They argue that, while the algorithm they used failed to 
correctly identify possible points, those points were 
classified as unidentified due to the difficulty of 
differentiating vegetation and other objects. They conclude 
that a more powerful algorithm may correctly identify points 
of interest and that Graphics Processing Units (GPUs) would 
process faster. 
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The CNN algorithm was able to transform, organize, and 
label data [10]. With orthophotos and LiDAR data, Nahhas 
et al. [10] created a digital surface model, DEM, shapes, and 
input other data through the model to detect buildings. From 
their findings and experiments, the CNN and machine-
learning model accurately classified background and 
buildings and drew the geometry and shapes of the building 
from the LiDAR and orthophotos. They were able to 
transform low-level detail into highly detailed, classified 
features. 

Section II describes the materials and methods used in 
the study. Section III presents the results and discusses the 
findings. Section IV concludes. 

II. MATERIALS AND METHODS

In this section, we define the problem, outline the data 
selection and acquisition, and lay out the methodology. 

A. Problem Definition 

Utility companies must carefully manage their assets 
against various hazards, visually inspect their assets 
regularly. Generally, these assets require many hours to 
manage and are not easily accessible due to their remoteness. 
Dispatching teams of people to assess the status of power 
equipment is expensive and time consuming. LiDAR data 
serves as a cost-efficient alternative for surveying large areas 
of land and generating real-time images of objects. 

The point-cloud data generated by scans can be analyzed 
to identify assets needing maintenance. Additionally, utility 
companies can lower labor and transportation costs as there 
is no need to send maintenance crews into the field. 

The cost of LiDAR depends on the type of equipment 
and the range and scope of work [11]. LiDAR drones can 
potentially be cost effective for difficult-to-reach forested 
areas, rural towns, or high-elevation areas. LiDAR can also 
be used in high-density areas such as urban or suburban areas 
[12]. The high upfront cost leaves just maintenance of the 
equipment, future upgrades, and pilot licensing as needed 
[13]. These costs can be calculated in advance, while the 
ongoing costs of dispatching workers depends on the scope 
of work and may not be easily estimated [14]. In many cases, 
contractors may be required in difficult-to-reach areas and 
may not have the quality control utility companies need. 

While manually assessing and inspecting equipment is 
beneficial as the information about them can be updated in 
real time, high-scale LiDAR data must be processed and 
analyzed to ensure error-free data [9][10]. 

LiDAR technology provides several benefits when 
surveying objects. Therefore, this study sought to answer the 
following question. Can utilities use LiDAR point-cloud data 
to accurately define asset locations (poles and towers)? 

The literature suggests deep learning can be used to 
classify objects of interest. This study deployed a deep-
learning model to classify points of interest (utility poles). In 
addition, we gauged the effectiveness of other ArcGIS Pro 
classification tools at classifying poles and towers. This 
study may be of interest to utility companies and individuals 
interested in using LiDAR to manage assets. 

B. Data Selection and Acquisition 

Using publicly available point-cloud data from the 
United States Geological Survey website, we explored 
datasets from June 19, 2018, for parts of Santa Cruz, West 
Hollywood, and North Long Beach (>30 million points and 
1.5 GB each) to study a PointCNN deep-learning model’s 
ability to correctly classify power poles. The deep-learning 
model employed came from ArcGIS Online. 

The following steps describe the point-cloud download 
process. (1) Navigate to the national US Geological Survey 
map [15]. (2) Select “Show where Lidar is available” and 
“Show AOI [Area Of Interest] Results” in the left pane. The 
latter may only show after an area of interest is defined. (3) 
Select the area of interest by Ctrl-clicking and dragging. (4) 
A results pane will appear on the right. Click “Lidar within 
AOI” for the download files. Note that all steps are for 
Windows users. Mac steps are similar. 

C. Methodology 

This research explored ArcGIS geoprocessing tools, 
including a deep-learning model and additional tools. We 
classify the tools into three categories: (a) data conversion, 
(b) deep learning, and (c) .LAS conversion and discuss 
deploying a deep-learning model to classify point-cloud data. 

1. Data Conversion and Projection 
The data files come from USGS in the .LAZ format. To 

use these files in ArcGIS Pro, they must be decompressed. 
The first step is to convert them to .LAS using the open-
source laszip.exe executed at the command prompt: (1) 
Download the conversion tool [16]. Place the downloaded 
file in a folder with the .LAZ files. (2) Bring up the 
Command Prompt (Windows), allowing file access as 
necessary. (3) Type cd /d. (4) Copy the location of the .LAZ 
files from the file manager, paste it on the command line, 
and press Enter. (5) Copy the command laszip.exe *.laz to 
the command prompt and press Enter. (Note: pressing Enter 
will start the tool converting the .LAZ files to .LAS files. 
The tool must be located in the same folder as the .LAZ files, 
otherwise it will not find them.) The converted files will 
appear in the folder with the .LAZ files. 

ArcGIS Pro requires a .LAS dataset to manipulate the 
point-cloud data. In addition, the deep-learning model’s 
documentation requires the point cloud’s x, y, and z
coordinates be in metric. The USGS .LAS datasets, by 
default, are in imperial units. ArcGIS’s “Create LAS 
Dataset” can perform this conversion: (1) Navigate to the 
Geoprocessing Tools pane in ArcGIS Pro and find “Create 
LAS Dataset.” Click on the folder icon under Input Files and 
locate the .LAS files decompressed earlier. Under “Create 
PRJ For LAS Files,” select “All LAS Files.” (2) Click on the 
globe icon under Coordinate System. (3) A separate window 
will open for setting coordinate systems. Click on Current 
XY and find NAD 1983 NSRS2007 California (Teale) 
Albers (Meters) or whatever is appropriate for your dataset. 
It is found by expanding Projected Coordinate System – 
State Systems. (4) Click Current Z and navigate to “NAD 
1983 (NSRS2007)” found by expanding Vertical Coordinate 
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System – Ellipsoidal-based – North America. Once the X, Y
and Z coordinates are correctly specified, click OK. 

2. Deep-Learning Tools 
Our main approach involved using a publicly available 

PointCNN deep-learning model to automatically classify 
power poles and towers. Due to resource and time 
constraints, this study instantiated an existing trained model 
to determine whether deep learning is an effective solution 
for extracting the desired objects from point-cloud data. 

ArcGIS Pro provides three tools to classify data, train a 
model, and use a model: Prepare Point Cloud Training Data, 
Train Point Cloud Classification Model, and Classify Point 
Cloud Using Trained Model 

This project employed the Classify Point Cloud Using 
Trained Model (CPCWTM) geoprocessing tool to run the 
trained model on the .LAS datasets. To run deep-learning 
models in ArcGIS, one must install the Deep Learning 
Framework for ArcGIS Pro 2.8. (1) Download and install 
required framework to run deep-learning models on ArcGIS 
[17]. At that link, click Deep Learning Libraries Installer for 
ArcGIS Pro 2.8 in the Download section. Unzip and run the 
executable. (2) Download the deep-learning model to 
classify power lines [18]. The tool is also on ArcGIS online 
through the ArcGIS Catalog Pane. You will need to store the 
deep-learning model in your project folder. (3) Open the 
CPCWTM geoprocessing tool. Enter your .LAS dataset 
under Target Point Cloud. Under Input Model Definition, 
locate the downloaded deep-learning model from the folder 
icon. Under Existing Class Code Heading, select Edit 
Selected Points. Under Existing Class Codes, select “1” to 
run the model on unclassified points. With all parameters 
entered, click Run. The required time to complete depends 
upon the size of the dataset and the computer’s resources. 
The model may take several hours to classify the point-cloud 
data. (4) Filter the layer to display only power poles: Select 
the .LAS dataset map layer in the Contents plane. On the 
Appearance tab of the ribbon click “LAS Data Points.” Turn 
off all but classification code 15—transmission tower—by 
unchecking the other checkboxes. 

3. .LAS Classification Tools 
We also evaluated whether ArcGIS’s .LAS classification 

tools in Geoprocessing Tools support classifying power 
poles and towers: “Classify LAS Ground,” “Classify LAS 
Building,” “Classify LAS by Height,” “Classify LAS 
Noise,” and “Change LAS Classification Codes.” 

The point-cloud data was classified using the above tools 
prior to running the model without improvement. In addition, 
the “Classify LAS by Height” tool helped determine if poles 
could be classified by their height. The tool proved 
ineffective at classifying poles as it only considers the height 
of the point not its other attributes or its relation to 
neighboring points. 

III. RESULTS AND DISCUSSION OF FINDINGS

In this section, we present the results and discuss the 
findings. 

A. Results 

The CPCWTM geoprocessing tool used with the 
PointCNN deep-learning model successfully classified point-
cloud data points as power poles and towers. The model was 
able to identify power poles and towers in the Santa Cruz 
Mountains, West Hollywood, and Long Beach (Figures 1–3). 

While the tools achieved the objective of identifying 
power poles and towers, they could have performed better. 
They performed better in urban areas than in rural areas, but 
it had difficulty finding most of the power poles and towers 
within the datasets examined. In the Santa Cruz dataset, only 
seven power poles were identified. In the North Long Beach 
dataset, several poles were identified but not in their entirety, 
and some poles were not classified at all. The West 
Hollywood dataset gave similar results. Further, the deep-
learning model did not identify any power poles or towers in 
the densely forested parts of the Santa Cruz Mountains. 

Figure 1. Scotts Valley, CA (Santa Cruz County). 

Figure 2. North Long Beach, CA. 

Figure 3. West Hollywood, CA. 

The remote-sensing classification tools did not increase 
model performance compared to unclassified data. The 
model failed to identify many power poles and towers. 

B. Discussion of Findings 

Our project produced several findings. Troubleshooting 
the .LAZ–LAS file conversion led us to discover a third-
party tool for converting .LAZ files, discussed in an earlier 
section. Using the tool on the command prompt, our group 
converted multiple files at one time for greater efficiency. 

The deep-learning model required the dataset’s projected 
coordinate system in the metric system. We used the 
“Classify LAS Dataset” geoprocessing tool to change the 
coordinate system. Some group members experienced issues 
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with plotting the data. More than once, the point cloud was 
plotted in the middle of the Atlantic Ocean. Each time this 
issue surfaced, team members repeated the first steps of the 
workflow. Importing newly converted data solved the 
problem each time, and the data was plotted correctly. 

Running the CPCWTM geoprocessing tool resulted in 
key findings on converting data from imperial to metric 
measures. Finding a method to convert both the XY 
coordinates and the Z coordinates took a combined 20 hours. 
ArcGIS contains many coordinate systems with limited 
explanations of each system. 

Using the PointCNN trained deep-learning model led us 
to several key findings. When running the model more than 
once, we found that ArcGIS occasionally did not always 
accept the parameters we entered. In one case, ArcGIS 
would not recognize where the downloaded tool was kept. 
Closing the project and creating a new one fixed the issue. 

Another issue we faced was the inability to run the deep-
learning model. Although the correct path to the deep-
learning model was input from both the local file directory 
and ArcGIS Online, the CPCWTM tool could not find it. 
After several hours of troubleshooting, the issue was 
resolved by reinstalling ArcGIS pro on all desktop profiles. 

The different members’ varying computer hardware and 
processing capabilities was challenging. Recommended 
hardware for using ArcGIS Pro is a four-core central 
processing unit, with two cores at a minimum and 10 cores 
optimally. Devices with lower specifications had some 
issues, such as freezing and becoming unresponsive. The 
datasets in the research ranged from 1.5 to 3.2 gigabytes, and 
the group noticed that ArcGIS Pro to function with fewer 
issues with less data processed. Additionally, some 
troubleshooting was required for some users to get the 
machine-learning model to function. For example, ArcGIS 
Pro must be installed for all users or there will be an issue 
with permissions. 

IV. CONCLUSIONS

Utilities must manage assets for reliable service and to 
protect property and life. Asset inspections are expensive, 
labor intensive, and difficult in hard-to-reach locations. 
LiDAR can efficiently scan areas and generate point-cloud 
data that can be efficiently and cost-effectively processed 
and classified to visualize objects of interest and identify 
physical changes with such software as ArcGIS Pro. 

Small teams can quickly scan large areas and analyze the 
data to determine which assets need attention, focusing 
efforts on assets needing maintenance. This study validates 
deep-learning methods to classify power poles and towers 
from a LiDAR point cloud. 

Due to time constraints and lack of training data, we 
opted for a model trained with other data. Though the study’s 
results are suboptimal, they do show deep learning is viable. 
According to the Environmental Systems Research 
Institute’s deep-learning documentation, a model developed 
with other data may underperform because the project data 
differs from the data used to train the model [19]. 

ArcGIS Pro comes equipped with tools to interactively 
classify points. These tools can be used to label points of 

interest in the training and validation data that accurately 
represent the project data. These steps should produce a 
model that can automatically classify other point clouds [20]. 
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Abstract—One of the most critical aspects for the smooth
operation of power systems is short-term load forecasting. Fore-
cast accuracy has a significant impact on an electricity utility’s
economic viability and reliability. Thus, robust deep learning
methods, such as artificial neural networks, are implemented in
order to achieve higher accuracy load forecasting results. In this
paper, a new preprocessing method of the input data of a neural
network, which emphasizes on the importance of specific input
data, that show a higher Pearson’s correlation coefficient with the
output result, is proposed. This work implements the proposed
preprocessing technique and compares the results with those
derived from the classical min-max scaling methods. Numerical
results of next hour’s load forecasting, based on a multi-layer
perceptron with the implementation of the proposed data scaling
approach, show higher precision than the typical scaling method,
demonstrating the importance of our work.

Index Terms—short-term load forecasting, data preprocessing,
scaling techniques, multi-layer perceptron

I. INTRODUCTION

One of the most critical parts of effective power system
management is the ability to forecast electrical load con-
sumption. The accuracy of predictions has a direct impact
on the economic feasibility and dependability of electricity
systems. Short-Term Load Forecasting (STLF) covers a time
span of one hour to one week and it is utilized for day-to-day
power system operations, such as economic dispatch, demand
response, energy transaction scheduling, power flow analy-
sis, and power system reliability and stability research [1].
Short-term load forecasting has traditionally been performed
using approaches such as time series models, regression-
based algorithms, and Kalman filtering [2]. Recently, methods
based on artificial intelligence and deep learning algorithms
have been widely employed for power system optimization,
since they outperform conventional approaches in terms of
generalization and prediction [3]. Their primary applications
include optimum power system operation and management,
load forecasting and energy price forecasting.

In recent years, approaches based on Artificial Neural
Networks (ANNs), as well as other computational intelligence
methodologies, have emerged as potentially robust methods for
short-term load forecasting. The increased availability of data
due mainly to the expanded installation of new power meters
and the breakthrough in the computational capability of current

computers have contributed significantly to the recent success
of neural networks. STLF is mostly dependent on historical
load data, such as load data from prior days, weeks or yeas,
as well as temperature and humidity data. The availability
of load data per minute utilized by different types of neural
networks achieves impressive performance as it brings even
greater accuracy in the forecast results [4]. However, the data
entered into the neural networks are not used in raw format,
but they undergo into various types of preprocessing, such
as eliminating outliers, handling missing values and feature
scaling, so that they can be used properly and increase the
efficiency of the forecasting model. Min-Max, z-score, stan-
dard and max absolute normalization are the most reputable
techniques for scaling input data. Despite their extensive use,
these strategies have certain drawbacks [5], which provides an
opportunity to develop novel scaling techniques that increase
the predictive abilities of ANNs.

This paper presents a unique data preprocessing technique
that differs from earlier work in that it highlights the sig-
nificance of specific input data by using neural networks to
forecast next hour’s load. The proposed technique focuses on
the importance of certain neural network’s input variables in
relation to output variables, resulting in improved prediction
outputs than usual preprocessing methods. This approach is
applied to data from the Greek Power System and is utilized
by a Multi-Layer Perceptron (MLP) for short-term load fore-
casting.

Our paper is developed as follows. In Section 2, the preva-
lent and most widely used preprocessing techniques of neural
network’s input data are presented. Section 3 presents precisely
the analysis of the enhanced scaling method we propose as
well as the improvement in accuracy that results in the short-
term load forecasting under consideration, while Section 4
concludes the paper.

II. PREPROCESSING TECHNIQUES OF NEURAL
NETWORK’S INPUT DATA

Data preprocessing aims at making the raw data at hand
more amenable to neural networks. This includes vector-
ization, normalization, handling missing values, and feature
extraction [6].
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A. Feature Selection

Feature selection is one of the initial steps in studying
and understanding the dataset in order to construct a robust
prediction model. The selection of suitable variables as input
data for the neural network, in order to boost the accuracy
of the prediction outcomes, is referred to as feature selec-
tion. Pearson’s r correlation coefficient between each pair
of variables is used to select features as input data. The
Pearson correlation coefficient is a metric for determining
the strength of a linear relationship between two variables
of the dataset taking numbers between -1 and 1. When it
is near to one, it indicates a significant positive association.
When the coefficient is near to -1, it indicates a significant
negative association. Finally, coefficients close to 0 indicate
that no linear association exists. The Pearson correlation
coefficient ignores whether a variable is considered dependent
or independent, evaluating all variables identically. Pearson’s
correlation coefficient is given by (1):

rX,Y =
cov(X,Y )

σX · σY
(1)

where cov(X,Y ) is the covariance, σX is the standard devi-
ation of X and σY is the standard deviation of Y .

Therefore, feature extraction and identification are one of
the most important steps in the field of energy forecasting,
including short term load forecasting [7]. The variables in the
dataset that exhibit the strongest linear correlation with the
load should be utilized in order to achieve higher accuracy
and reduce the complexity of load forecasting. It is necessary
to identify which characteristics selected from dataset are
containing the most relevant information helping to provide
accurate predictions. This crucial step is also applicable in
the field of Energy where artificial intelligence algorithms are
widely used [8]. In our work, the features with the highest
Pearson’s correlation with the output variable of the proposed
MLP are selected as neural network’s inputs.

B. Data Scaling

Data scaling is one of the most critical operations that
should performed on the input data. Machine Learning (ML)
methods, with a few exceptions, do not perform well when
the input numerical characteristics have extremely varied
scales [9]. In general, neural networks do not accept relatively
big values or input data that are heterogeneous, i.e., there are
substantial differences in the order of magnitude. As a result,
to boost the neural network’s performance, input data should
contain values inside a closed interval.

Differences in the magnitude of scaling across input vari-
ables may increase the difficulty of the problem being ap-
proached. A model with large scale values is frequently un-
stable, which means it may perform poorly during learning and
be sensitive to input values, resulting in larger generalization
error. A basic linear rescaling of the input variables is one
of the most prevalent types of preprocessing. In [10], the
authors highlight that input data normalization can enhance

neural networks’ overperformance by reducing effectively the
estimation errors and the computational time needed.

In forecasting approaches based on time series data, the
most common normalizing methods are min-max, decimal
scaling, z-score, median, and sigmoid normalization. A com-
parative study of these standard normalization techniques on
the time series forecasting is presented in [11]. The authors
use deep recurrent neural networks to predict the Bombay and
New York stock exchanges by normalizing the input data using
the methods described above and analysing the outcomes to
determine which methodology is preferred. Meanwhile, Oga-
sawara et al. [12] propose an adaptive normalization technique
for normalizing non-stationary time series. This innovative
approach is used along a feed-forward neural network in
order to predict numerous economic factors, producing greater
results than the traditional normalization methods. Further-
more, in [13], the authors study the effectiveness of batch
normalization technique in different types of convolutional
neural networks concluding that the implementation of a
normalization approach to the input data is inevitable.

The issue of data scaling has also influenced researchers’
efforts for STLF, as it applies directly to the various types
of ANNs used in the literature. Specifically, Che et al. [14]
examine various machine learning algorithms in the STLF
issue. In their work, the authors propose a fusion load fore-
casting model based on Support Vector Machines (SVM),
Random Forests (RF), Long Short-Term Memory (LSTM)
neural networks along with the Ensemble Empirical Mode
Decomposition algorithm for dealing with the abnormal data.
Their approach was tested on 15-min interval data yielding
Mean Absolute Percentage Error (MAPE) lower than 3%.
Furthermore, Yi et al. [15] propose a Multi-Temporal-spatial-
scale Convolutional Network (MTCN) in order to reduce the
data noise error, improve the time series features and enhance
the prediction accuracy. The input data used in this model
have been normalized via the standard min-max normalization
method. The model has been tested using load data from
Chinese power system producing better results in compare to
the traditional ANN models used in the STLF issue. In [16],
Kwon et al. study the impact of minimum-maximum, z-
score and decimal normalization approaches to the input data
of a MLP for the prediction of the load for 24 hours on
weekdays. Using load and temperature data of the past two
days of the Korean power system, came to the conclusion that
the conventional min-max scaling outperforms the other two
methods as it produces MAPE of 1,97%.

Most papers in the existing literature suggest that datasets
should be subjected to a global normalization technique.
In [17], Passalis et al. present some global normalization
methods for the STLF issue. In contrast with the existing
literature, this paper proposes that only some of the input
variables should be normalized based on their impact on
the predicted results. The proposed data scaling is done by
multiplying certain input data with importance coefficient
in order to obtain an order of magnitude that appropriately
determines their influence in the result of the forecast.
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III. ANALYSIS OF THE PROPOSED SCALING METHOD

Following a thorough review of the literature, an innova-
tive data processing technique is suggested and applied to
certain specific data depending on the Pearson’s correlation
coefficient. An MLP neural network, which is used to predict
the value of the next hour’s load using historical temperature
and load data from previous days and the previous hour, is
presented in detail in this section. The data used, containing
hourly load values, derives from the Greek national power
system for the years 2013-2017, from which 80% is chosen
as training set, while the remaining 20% consists the test set.
Our proposed MLP neural network consist of three layers; an
input layer, a hidden layer, and an output layer, as depicted
in Fig. 1. Historical load data, meteorological data such as
temperature, wind speed and direction, and data relating to
the seasonality of the load, such as hour, day, month, etc., are
included in the dataset. In order to reduce the complexity of
the suggested forecasting model, only data with a high Pearson
correlation coefficient related to the load variable are chosen
as input variables. The input variables used for next hour’s
load forecasting are the following:

• Hour: The time of day for which the load forecast is
made.

• Week Day: A characteristic coding to denote the day of
the week.

• Holiday: Binary values are used to indicate whether a
day is a holiday, which includes Greek state holidays,
religious holidays and the weekends, or a normal working
day

• Temperature: The hourly value (in Celsius) of the tem-
perature of the day for which the load is forecast.

• D-7 Load: The value of the load at the corresponding
time on the same day of the previous week.

• D-1 Load: The load value of the day preceding the one
for which prediction is made, at the corresponding time.

• H-1 Load: The value of the previous hour’s load on which
the forecast is based.

Fig. 1. Proposed MLP architecture for STLF.

Pearson’s correlation coefficient of the input data is then
calculated and compared to the neural network output, i.e., the
load for the following hour. Data with a coefficient r near to
+1 have a stronger impact on the outcome of the forecast and
should thus be considered more important. The variables with
higher r values compared to the output variable are D-1Load,
D-7Load, H-1Load. As a result, in order to improve the
predicting results, these variables with r approaching +1 in
respect to the load variable are subjected to an improved
scaling technique. The main benefit of this particular scaling
for variables that have a strong correlation with the load
variable is that they are given greater significance, allowing
the neural network to use this knowledge and improve the
forecasting accuracy. Fig. 2 summarizes the autocorrelation
coefficient calculation results.

Fig. 2. Calculation of Pearson’s correlation coefficient for input variables.

As previously stated, in order to produce more accurate
prediction outcomes using neural networks, the input data
should be scaled appropriately. Initially, the variables Hour,
WeekDay and Holiday serve as labels for the day on which
the prediction is created and are not susceptible to scaling. The
Temperature variable is subjected to the standard min-max
scaling approach. Because of the large value of the coefficient
r, the variables D-1Load, D-7Load and H-1Load are sub-
ject to both the standard min-max scaling approach and the
modified min-max scaling method in (2). This paper proposes
an enhanced min-max data preprocessing technique for STLF,
that alters the order of magnitude of the variables D-1Load,
D-7Load, H-1Load giving them the appropriate weight, and
compares the forecasing results with those obtained from the
conventional implementation of the min-max method.

y =
x− xmin

xmax − xmin
· ImpCoeff (2)

where ImpCoeff is an integer that appropriately identifies
the significance of the data for the forecast result by allocating
the input data within the closed interval [0, ImpCoeff].

A. Calculation of Importance Coefficient for the Enhanced
Min-Max Scaling Method

The ImpCoeff coefficient, which correctly attributes the
significance of these variables, must be determined before
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applying the suggested scaling method to the input data.
ImpCoeff is defined by the accuracy of the neural network
prediction by calculating the resultant MAPE value through a
trial-and-error procedure. At first, the coefficient accepts inte-
ger values in the range [1,100]. It is underlined that when the
coefficient equals 1, the suggested method is associated with
the traditional min-max scaling methodology. Fig. 3 depicts
the MAPE values obtained by implementing the suggested
MLP for the STLF at various ImpCoeff values.

Fig. 3. MAPE calculation for the various ImpCoeff values.

Then it is discovered that for coefficient values in the
interval [7,12], MAPE obtains the lowest values. Fig. 4 depicts
the thorough computation of ImpCoeff in this interval,
stressing that when ImpCoeff equals 10, MAPE yields the
smallest feasible value. As a result, with ImpCoeff equal to
10, our suggested scaling approach is obtained from (2).

B. Numerical Results

Before entering the proposed MLP neural network to es-
timate the following day’s load, input data with the highest
coefficient r value is exposed to both scaling strategies. Table
I summarizes and compares the outcomes of both procedures.
As predicted, the technique with the lowest MAPE is deemed
to be more efficient.

TABLE I
MAPE CALCULATION FOR THE TWO SCALING TECHNIQUES OF INPUT

DATA

Scaling Method MAPE
Classic Min-Max Scaling 2.34%

Enhanced Min-Max Scaling 1.80%

It turns out that our enhanced Min-Max Scaling technique
yields a lower MAPE value in the forecast. Despite its
simplicity, this technique appropriately emphasizes the weight
and importance of the input variables D-1Load, D-7Load and

Fig. 4. Computation of optimum value for ImpCoeff .

H-1Load in terms of MLP performance. When the proposed
preprocessing technique is applied to the input data of a MLP
neural network, the resulting value of MAPE decreases below
to 2%, resulting in one of the lowest prediction value in the
literature, based on data of the Greek interconnected power
system. Fig. 5 and Fig. 6 provide a graphical comparison
of prediction outcomes in 2017 using the proposed MLP for
estimating next hour’s load. In comparison to the usual scaling
strategy, it is clear that the suggested method’s outputs closely
match the real load curve.

Fig. 5. Load curves for the year 2017.

IV. CONCLUSION

The increased use of neural networks in short-term load
forecasting necessitates the development of novel data prepa-
ration approaches to increase the forecasting model’s accu-
racy. In this paper, an enhanced preprocessing technique is
presented that is applied to the input data of an MLP neural
network to predict the value of the load in the following
hour. This approach is based on the precise determination of
a coefficient that assigns the proper importance to particular
input data that demonstrate a high degree of correlation with
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Fig. 6. Comparison of load prediction.

the proposed MLP’s forecast output. Despite its simplicity,
the findings of short-term load forecasting are more accurate
when compared to other results in the literature that use data
from the Greek interconnected system, as indicated by the low
MAPE value, which is around 1.80%.
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Abstract—With the prevalence of smart meter infrastructure,
data analysis on consumer side becomes more and more impor-
tant in smart grid systems. One of the fundamental tasks is to
disaggregate users’ total consumption into appliance-wise values.
It has been well noted that encoding of temporal dependency is
a key issue for successful modelling of the relations between
the total consumption and its decomposed consumption on an
appliance historically, and therefore has been implemented in
many state-of-the-art models. However, how to encode the varied
long-term and short-term dependency coming from different
appliances is yet an open and under-addressed question. In
this paper, we propose an Attention-guided Temporal Convo-
lutional Network (ATCN), which generates different temporal
residual blocks and provides an attention mechanism to indicate
the importance of those blocks with respect to the appliance.
Ultimately, we aim to address these two questions: i) How to
employ both long-term and short-term temporal dependency to
better disaggregate future loads while maintaining an affordable
memory cost? ii) How to employ attention during the training of
an appliance to obtain a better representation of the consumption
pattern? We have demonstrated the effectiveness of our approach
through comprehensive experiments and show that our proposed
ATCN model achieves state-of-the-art performance, particularly
on multi-status appliances that are normally hard to cope with
regarding disaggregation accuracy and generalization capability.

Index Terms—energy disaggregation, non-intrusive load moni-
toring, deep learning, temporal convolutional network, attention
model

I. INTRODUCTION

Non-Intrusive Load Monitoring (NILM), also referred to
as energy disaggregation, aims to disaggregate the power
consumption of a customer as a whole into detailed appliance-
level consumption [1]. It has become one of the key tools to
make effective use of the emerging smart meter infrastructure
for the benefit of energy customers and producers, with great
potential in applications such as energy awareness, energy
conservation, and identification of controllable loads [2].

NILM has been framed historically both as classification
and regression problems. Our paper is treating NILM as
a regression problem, i.e, to estimate the consumption of
individual appliances from the mains signal. In order to capture
all distinct consumption patterns from all types of appliances,
NILM algorithms tend to adopt a training dataset with a long
time span (as long as memory permits) and attempt to learn
temporal dependencies for each appliance. The trend is that
recent work tends to utilize a range of deep neural network
architectures, such as encoder-decoder networks, long short-
term memory (LSTM) networks, bi-directional, sequence-to-
sequence, and sequence-to-point [3] [4] [5] based prediction
algorithms and their variants, including the very recent Bitcn-
NILM algorithm [6], which combines sequence-to-point with
bidirectional dilated convolution network. The key challenges
of the prediction strategy are these: if the time window is
too small, essential dependencies cannot be learned, e.g. if
an appliance has a cyclic consumption pattern and the time
window does not cover a full period. However, if it is too large,
the efficiency of the scheme can significantly degrade, since
loading long historical data burdens the memory requirement.
Additionally, it also requires a much longer prediction time,
and therefore cannot meet the needs of real applications.

Remark that different appliances exhibit vastly different
temporal dependencies. As an example, we present in Figure 1
the daily power consumption of a household from the REDD
dataset (shown in black color) along with its corresponding
appliance-level consumption. Two important findings can be
seen: 1) both local neighbors and far-away neighbors in
disjoint time windows can together help with the disaggrega-
tion of appliance-level consumption. 2) for some appliances,
local neighbors are most important for prediction of future
consumption (e.g., fridge in Fig.1); for others, far-away points
play a more important role (e.g., microwave and washer dryer
in Fig.1). In other words, the relevant dependency ranges are
specific to each appliance and should be adapted accordingly.
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Fig. 1. Different appliances demonstrate various dependencies on short-term, mid-term and long-term neighbors. Appliance-wise consumption patterns in
REDD dataset [7] showing temporal dependencies over mixed time scales: The power consumption marked with cyan indicates that it depends on its historical
neighbors in a local time window (the yellow rectangle); A potential strong connection with far-apart neighbors (marked in blue points within a blue rectangle
window) is also indicated. Depending upon the appliance, such a dependency can range one day ahead (fridge), or even six days ahead (microwave).

Therefore, the ability to use both long-term and short-term
dependencies, while varying the attention on them according
to the appliance, is crucial in NILM methodologies. How to
accomplish this, therefore, is the key question in our paper.

II. PROPOSED ALGORITHM AND RESULTS

To the best of our knowledge, the adaptive attention is still
missing in the current literature and the question of how to
put varied attention on different appliances, i.e., short-term
or long-term dependency, has not been fully addressed. We
therefore propose an Attention-guided Temporal Convolutional
Network (ATCN) to encode such dependencies.

Our algorithm sequentially acquires the input and actively
attends relevant pieces of temporal information to refine the
target consumption estimate at each time step. The key com-
ponents are the casual dilation nature of the model and the
attention mechanisms, both of which we empirically show
the contribution to the appliance-wise consumption prediction.
The overall architecture is show in Fig 3.

The comparative results with state-of-the-art algorithms on
RMSE metric are shown in Table. I. Our ATCN algorithm has
a competitive performance on multi-stage appliances, such as
microwave and dish washer (on dish washer, our algorithm can
achieve the second best place, just following after Seq2Point
algorithm); it particularly achieves the best performance on
the most difficult multi-stage appliance: washer dryer, owning
to the combination of short-term and long-term dependency
and attention mechanism.

In addition to RMSE metric evaluation, we also have
provided the comparative results on EA metric, where esti-
mated accuracy (EA) has also been employed as in [8] and
[9]. Our approach has proven competitive performance on
multi-stage appliances, including wash dryer and dish washer.
Be noted that different evaluation metrics does not always
have consensus result on different algorithms, which have
been observed through the experiments. Moreover, failure to
penalize the false detection during the evaluation procedure
also has been noticed, and therefore how to propose a reliable
evaluation criteria for NILM algorithms would be one of our
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research work in future.

III. CONCLUSION

As an important problem in smart home management,
NILM still remains a challenge with great potential for further
exploration and improvement. We propose a residual block
concatenation strategy and apply an attention mechanism
based on such residuals instead of dilated layers to im-
prove NILM performance. The essential dilation and temporal
convolution structure helps capture the long-term as well
as short-term dependencies in the consumption signatures,
while attention residuals ensure that the model’s emphasis on
relevant time scales is adapted to the appliance. Our proposed

TABLE I
COMPARISON OF RMSE FOR VARIOUS MODELS.

Models RMSE
Fridge Microwave Dish Washer Wash Dryer

RNN 16.18 30.58 9.01 316.85
DAE 66.77 52.86 14.83 293.20

Seq2Seq 78.72 33.91 10.65 267.87
Seq2Point 72.52 28.56 4.70 196.10

TCN NILM 34.71 37.75 40.16 221.82
ATCN NILM 73.24 44.00 6.59 182.30

TABLE II
COMPARISON OF EA FOR VARIOUS MODELS.

Models EA
Fridge Microwave Dish Washer Wash Dryer

RNN 0.97 0.73 0.86 0.50
DAE 0.78 0.39 0.77 0.55

Seq2Seq 0.74 0.69 0.86 0.83
Seq2Point 0.76 0.74 0.94 0.82

TCN NILM 0.91 0.59 0.29 0.80
ATCN NILM 0.75 0.55 0.90 0.85

ATCN algorithm outperforms state-of-the-art methodologies
on multi-status appliances, especially those with short usage
time, and has demonstrated excellent generalization capability.
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Abstract—The future Information and Communication Tech-
nology (ICT) infrastructure in distribution grids requires a
significant network and computational resources for potentially
running all so-called Smart Grid Services (SGS). The insufficient
infrastructure may create network and computational conges-
tions and resource shortages, which can lead to e.g., delayed
critical messages in the power system and thus affect the power
system stability. This paper presents a model for the configuration
of SGSs with consideration of the underlying ICT infrastructure
as a constraint satisfaction problem. This model is studied in a
nominal and overvoltage scenario. The resulting over-constrained
problem in the second scenario is relaxed by SGS data-rate
reduction, SGS migration or SGS distribution. We show that
an over-constrained problem can be relaxed with our proposed
strategies.

Keywords—smart grids; information and communication tech-
nology; quality of service; constraint satisfaction problem

I. INTRODUCTION

The operation of modern energy systems is based on a
number of measurement, control and automation tasks for
monitoring and operating extensively distributed resources,
e.g., voltage stability monitoring or state estimation, for which
different Quality of Service (QoS) requirements must be
guaranteed. They serve as the basis for higher optimization
functions that realize reliable, efficient and forward-looking
overall system operation. In transmission systems, a dedicated
and high-performance real-time communication infrastructure
guarantees timing behavior and allows parallel execution of
these communication-intensive functions and services with
very heterogeneous and homogeneous latency requirements
and communication demands. Such requirements range from,
e.g., 10 ms up to several minutes maximum latency [1]. Due
to the expansion of renewable energies at lower voltage level
distribution networks and the shift of system responsibility to
(operators of) these systems, similar functions and services
must also be implemented in distribution systems – so-called
Smart Grid Services (SGSs) with similar QoS requirements
and guarantees. In addition, the future smart distribution
system will be supplemented by additional SGSs comprising
market and user-based applications, which may use the same
communication infrastructure to enable a synergetic use [2].
This would require, similarly to transmission systems, a ded-
icated, over-provisioned communication infrastructure to run
planned and future SGSs. Due to economical reasons, such
infrastructure is not likely to be available soon (if ever) for
smart distribution grids. Other solutions like wireless-based
dedicated infrastructures or the usage of public networks do

not provide sufficient and reliable resources to ensure QoS
requirements of all potentially running SGSs. Additionally,
the behavior and criticality of SGSs may change in different
states of the power grid and thus QoS requirements may
vary. For instance, in case of sudden changes of fluctuating
renewable feed-in, the power grid may enter a critical state
in which SGSs (e.g., feed-in management, voltage control,
or congestion control) need to stabilize the system. In such
critical situations, a reconfiguration might be necessary to
meet new QoS requirements, e.g., due to higher sampling
rates for increased measurement precision [3]. A solution to
this problem could be the reconfiguration of SGS in the ICT-
system with regards to the power system. Such reconfiguration
can include a controlled reduction of data rates, migration of
SGS to another server or a change in the overlay topology.
This implies, that besides network QoS, also computational
demands of SGSs must be considered to avoid congestion on
servers. These SGS requirements and the limitations of the
physical ICT infrastructure (i.e., computational resources on
server, maximum line bitrates in the communication infras-
tructure) can be denoted as constraints and hence, this may be
modeled as constraint satisfaction problem.

A. Related Work

Several aspects of flexibilization of communication for
smart grids can be found in the literature. Virtualization con-
cepts like Software-Defined Networking (SDN) may build the
foundation to enable such flexibilization. In SDN, the network
control (running on the SDN controller) is separated from the
data flow (running on SDN devices). The infrastructure com-
ponents (SDN devices) will be more quickly and adaptively
configurable through abstract SDN applications in the SDN
controller. One of the central features of SDN is the rapid
adaptability of flows and packet routes and the implementation
of QoS mechanisms [4]. In smart grids, the use of SDN has
enhanced the reliability of field device communication through
fast migration of functionality from a failed device towards a
redundant device [5] and enabled a power system-dependent
prioritization of SGS communication triggered by one SGS
[6]. Another approach to virtualization in the communication
system is called Network Function Virtualization (NFV), in
which the network functions (e.g., routing, firewall, load
balancer) are virtualized as an entire function and can thus
be flexibly moved and multiplied [7]. This has been applied
in smart grid communication where it demonstrates how this
flexibility in communication may increase the dependability of
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metering communication [8] or functionality may be moved
towards the edge of the network near field devices in order
to reduce traffic and communication delays [9]. Similar to
NFV, the Grid Function Virtualization (GFV) concept enables
the migration of SGSs. This concept has been studied in a
simulation in case of server failures with a running SGS for
voltage control. The affected SGS could be migrated after the
failure, improving the voltage quality much faster compared to
non-GFV simulations [10]. In another study, GFV was used
to decrease the data rates of a non-prioritized SGS to favor
QoS requirements of the prioritized SGS [11].

B. Contribution

This paper presents a constrained-based model for SGS con-
figurations considering QoS and computational requirements
for the underlying ICT infrastructure, which can be solved
by using constraint satisfaction programming. This model is
studied in a use case with two power system-based scenarios
in which one scenario leads to non-satisfiability of constraints.
With this, the usage of SGS flexibilities, such as data-rate
reduction, migration and distribution, is motivated as a better
controllable form of problem relaxation.

The remainder of the paper is structured as follows: The
constraint-based model is defined in Section II. In Section III
this model is integrated into an experimentation environment
and scenarios with exemplary SGSs are defined. Furthermore,
flexibilities of SGSs are introduced to resolve the constraint
satisfaction problem if the scenario is over-constrained (e.g.,
due to changes in QoS of one SGS). Section IV presents the
results for the nominal scenario and different over-constrained
scenarios with and without using SGSs flexibilities showing
the selected solutions and the computational performance of
the process. Finally, Section V summarizes the paper, draws
a conclusion, and presents ideas for future research.

II. CONSTRAINT-BASED MODEL

A Smart Grid Service (SGS) is an application serving the
operation of the power grid. It contains field devices, such
as sensors and actors in the power grid, and may contain a
central server for processing field device data. SGSs impose
requirements on the ICT infrastructure, such as maximum
latency or minimum bitrate requirement, and minimum com-
putational resources. The allocation of SGSs require a feasible
path configuration of the single SGS in a given communication
infrastructure and with regards to QoS requirements of SGSs.
Therefore, this can be categorized as a combinatorial problem
(such as other resource allocation problems) and may be
formalized as a Constraint Satisfaction Problem (CSP). Our
problem formalization is based on the definition of CSPs as
described in Bartak et al. [12]. For this, the i-th SGS from a
set of n SGSs will be associated with a decision variable xi. In
the following description, we continue to denote i for the SGS
i specifics. The domain of each decision variable comprises a
set of tuples di,j ∈ Di and represents a set of feasible solution
candidates for SGS i, in which a single solution candidates

di,j can be selected by xi. The solution candidate di,j can be
denoted as follows:

di,j = (phs
,mhs

, shs
, amax, B) with di,j ∈ Di. (1)

The constraints C = {c1, c2, . . . , cp} may be defined by n-ary
functions, which limit the values from the domain that can be
assigned to the decision variable. The domain is determined
by the parameterization of the SGS i and therefore, regards
the field devices Hfi and server hsi belonging to this SGS,
as well as network (latency αi, bitrate βi) and computational
QoS requirements (CPU pi, memory mi, storage si) and
the configured overlay topology (centralized or distributed).
In a centralized topology, field devices are connected to the
central server in a star topology, whereas in the distributed
topology, field devices are directly connected, creating a fully-
meshed topology. The computational properties are defined as
CPU demand phs

, memory demand mhs
and storage demand

shs
, which are applied to the server node hs ∈ Hsi . The

network properties are determined by maximum path latency
amax and by the bitrate demands for all edges B which are
determined by the paths representing the routing or data flow
in the underlying ICT infrastructure. The ICT infrastructure
is represented by the physical graph G(V,E) defined by
vertices V and edges E. A weighted edge is defined as
e = (v′, v′′, a, b), with v′ as a source node connected to
v′′ with the edge weight properties a as line propagation
latency and b as maximum line bitrates. The set of vertices V
includes infrastructure nodes (e.g., router) R and hosts, such as
server nodes Hs and field nodes Hf . To construct the network
properties of a solution candidate, subgraphs of the physical
graphs are constructed, which contain one feasible simple path
for each end-to-end connection. This end-to-end connection is
defined by the overlay topology and the host nodes of the SGS
i. To create such subgraphs, the paths have to be determined
first (e.g., by depth-first search). A path from the source h1 to
the target h2 is determined by

p(h1, h2) = (h1, r1, . . . , rq, h2) (2)

where r ∈ R and h1, h2 ∈ Hs∪Hf . The path p(h1, h2) is part
of the set P (h1, h2) comprising all potential paths from h1 to
h2, which occur if there are cycles in the physical graph. In a
preliminary step, a set of path combinations Zi is constructed
comprising one feasible path per end-to-end connection, i.e.,
one path combination zi contains the topological information
to construct subgraphs connecting all host nodes h ∈ Hi of
SGS i. For this, all end-to-end connections per SGS i are
defined by the set of tuples Qi = {(h1, h

′
1), . . . , (hn, h

′
n)}

with h, h′ ∈ Hi. The set of path combinations can then be
constructed as a cartesian product by

Zi =
∏
q∈Q

P (q). (3)

Based on this, the subgraph fi,j can be built by adopting the
edge latency of the physical graph G(V,E) if the vertices
(v′, v′′) ∈ zi,j ∈ Zi are also v′, v′′ ∈ V (G). The edge bitrates
e(b) are determined for the edge (v′, v′′) ∈ zi,j by the bitrate
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QoS requirement βi of the SGS i for the solution candidate
j, such that

fi,j(e(b)) = e(b) + βi. (4)

This implies, that an edge in this subgraph is used by multiple
simple paths, the bitrate weight is adjusted by summing the
bitrate weight with the number of paths containing this edge.
The bitrate resource B of the solution candidate di,j can be
derived from the subgraph fi as an adjacency matrix Badj.
The end-to-end latency amax of the solution candidates di,j is
determined by

amax = max
h1,h2∈Hi

 ∑
e∈E(Ph1,h2

)

e(a)

 . (5)

The amount of SGSs running on a server h ∈ Hs is limited
by its server resources for cpu hp, memory hm and storage
hs. As xi chooses a solution candidate di,j , the information
can be accessed by the function phs(xi) for using the CPU
usage on server hs of this solution candidate. This also
applies to mhs

(xi) and shs
(xi). Therefore, the server resource

constraints are defined by the constraints cp, cm, and cs

cp :=
∑
xi∈X

phs
(xi) ≤ hp (6)

cm :=
∑
xi∈X

mhs
(xi) ≤ hm (7)

cs :=
∑
xi∈X

shs
(xi) ≤ hs (8)

The network constraints are defined by the latency constraint
ca and the bitrate constraint cb, which should not exceed the
maximum physical bitrates of the weighted adjacency matrics
Eadj of G with bitrates as weights.

ca := amax(xi) ≤ αi (9)

cb :=
∑
xi∈X

Badj(xi) ≤ Eadj (10)

In this constraint model, constraints can be relaxed by manu-
ally adjusting the SGS parameterization, such as the overlay
topology, network or computational QoS requirements.

III. METHODOLOGY

The aforementioned constrained-based model is integrated
into a constraint satisfaction program and then exemplary
scenarios are defined based on a physical graph and five
SGSs with network and computational requirements. These
requirements considered in the scenarios depend on the state
of the power system (e.g., nominal or overvoltage). The
overvoltage scenario leads to a non-solvability of the problem.
Therefore, relaxation strategies are presented at the end of this
section.

A. Experimentation Setup

The constrained-based model is implemented using Net-
workX [13] for solution candidate generation and Minizinc
[14] for constraint satisfaction programming and solving. For
this, the physical graph is modeled in NetworkX comprising
all nodes and edges with latency and bitrate properties. SGSs
can be defined by the QoS requirement parameters (latency,
bitrate, CPU, memory, storage), the assigned field devices and
server, and the overlay topology (centralized or distributed).
NetworkX is used to determine the simple paths in order to
create subgraphs containing all end-to-end connections to all
host nodes (i.e., server and field devices) of an SGS. These
subgraphs can be transformed to adjacency matrices for easier
bitrate calculation in Minizinc. Thus, NetworkX is used to
determine the adjacency matrix for bitrate calculations and the
corresponding end-to-end path latency as part of the solution
candidate. The SGSs and physical constraints are implemented
as a Minizinc model, the solution candidates are integrated via
a python interface to Minzinc as a model instance. Gecode
[15] is used as a solver in Minizinc. The output of Minizinc
consists of a feasible solution candidate for each SGS, which
can be visualized in NetworkX.

The model of the physical communication network in Fig-
ure 1 is based on the modeling of field devices in the CigreMV
power grid [11]. The inner communication infrastructure is
adjusted with regards to bitrates and latency. Routers are con-
nected in three subnetworks and one core network linking the
subnetworks, which creates a hierarchical infrastructure [16]
[17]. The core network is defined by the routers R10, R20 and
R30; the subnetworks comprise the routers R11 - R12, R21 -
R23 and R31 - 32. The edge of the network is modeled by
the 17 field devices (F11 - F16, F21 - F26, F31 - F35) and the
two servers S1 and S2. The modeled infrastructure is the most
powerful in its core network, followed by the subnetworks and
the edge network. Therefore, the core network is modeled with
200 kByte / s bitrate resource and a propagation delay of 20 ms
on each edge. The subnetwork is defined with 100 kByte / s
bitrate and a latency of 25 ms and the edge network is denoted
with a bitrate and latency property of 25 kByte / s and 30 ms.
The server S1 contains 6 CPU cores, 16 GB memory and
50 GB storage. The server S2 is modeled with 4 CPU cores,
8 GB memory and 20 GB storage capacity.

B. Scenarios

We test our model from Section II with two scenarios
representing two states of the power system. In both scenarios,
we consider the SGSs Adaptive Relaying (AR), Coordinated
Voltage Control (CVC), Line Monitoring (LM), State Esti-
mation (SE) and Virtual Power Plant management (VPP).
The first scenario describes the nominal state of the power
system, in which the power system properties (voltage, active
and reactive power, temperature of the operating equipment)
are within the ideal range, so that grid critical services only
need the minimum computational and network resources. The
bitrate and latency requirements for SGS AR and LM are
based on [18] and the requirements for the SGSs CVC and
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Figure 1. Physical graph with bitrates and latency on the edges.

SE are based on [19]. The bitrate requirements are derived
from the sampling rates. For this, we estimate the size of a
TCP / IP packet including payload to 100 Byte per sampling
value. The QoS requirements for the SGS VPP are derived
from the assumptions and results of [20].

The computational demands of SGSs are very dependent
on the implementation of the service. Therefore, we try to
categorize the demands based on a likely implementation. For
this, we determine the computational demands into the cate-
gories low, medium and high for each computational demand
characteristic. In Table I, these categories are translated into
concrete requirements. The CPU resources are modeled as
proportions (as millicpu) of one hyper thread on a bare-metal
Intel processor. These computational demands are idealized
abstractions but may work as a rough estimate.

TABLE I. COMPUTATIONAL RESOURCE DEMANDS FOR SGSS.

Resource demand low medium high
CPU 500m 1.0 4.0

Memory 200MB 2GB 8GB
Storage 500MB 4 GB 16GB

The SGS demands for computational resources are esti-
mated based on some implementation characteristics, e.g.,
whether historical data is needed, if the SGS can be par-
allelized (by, e.g., a multi-agent system or some machine
learning methods) or the amount of measurement data. There-
fore, SGS demands are determined based on the following
assumptions: The purpose of the SGS LM is the evaluation of
(a limited amount of) measurement data against a threshold
[21]. The computational resource demands should be low in
each category. The SGS SE for distribution grids is often based
on a weighted least-squares approach and thus, needs pseudo-
measurements to approximate missing measurements. Those
can be achieved by a trained machine learning model [22].
Hence, we estimate the CPU demand as high, the memory de-
mand as medium, and the storage demand as low. For the SGS
AR, knowledge about topology, load flow, and characteristics

of DGs are needed as an input for, e.g., a machine learning
or linear programming-based approach [23]. Therefore, we
assume high CPU demand, and medium memory and storage
demands. The SGS CVC is threshold-based but needs short-
term load and generation forecasts to avoid unnecessary con-
trol and switching signals, which may be caused by weather-
dependent generators [24] [25]. For this, we assume that
weather forecasts are included in the voltage calculation.
Therefore, the resource demands are medium in each category.
For the SGS VPP, we assume it to be implemented as a
multi-agent system that can be run either centralized on a
server or distributed by each agent representing a distributed
generator. To find an optimal combined operational schedule,
each agent may choose a schedule from a pre-defined set of
feasible schedules for each generator participating in this VPP.
[20]. The resources demands are assumed to be high for CPU,
memory and storage. The resulting parameterization for SGSs
can be taken from the following Table II.

TABLE II. PARAMETERIZATION OF SGSS FOR THE NOMINAL SCENARIO.

SGS β α c m s field devices server
Byte / s ms cores GB GB

AR 2.5 100 1 2 4 F36 S2
CVC 3 500 1 2 4 F16, F22, F35 S1
LM 1 1 0.5 0.2 0.5 F12, F24, F32 S2
SE 0.5 1000 1 2 0.5 F11, F15, F21,

F23, F33, F34
S1

VPP 2 800 4 8 4 F13, F14, F25,
F31

S1

The second scenario is describing an overvoltage situation in
the power grid. Therefore, the QoS and computational require-
ments of CVC increase leading to a bitrate requirement of at
least 6 kByte/s, a maximum end-to-end latency of 200 ms and
a CPU demand of 4 cores. The CSP cannot be solved anymore,
as this introduces a bitrate shortage from R12 to S1, all paths
P (F35, S1) exceed the latency requirement and server S1
cannot supply enough computational resources. We propose
the following SGS flexibilities to relax this overconstrained
problem:
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Reduction: Reduction of QoS requirements of a non-
prioritized SGS. In this scenario, the bitrate requirement
of SE is reduced to β=1 kBit / s

Virtualization: Migration of an SGS to another server. In this
scenario, the SGS CVC is migrated from S1 to S2.

Distribution: Change of overlay topology of an SGS. In this
scenario, the SGS VPP switches from centralized to dis-
tributed operation, which does not need communication
to any server.

We have conducted one experiment for the nominal scenario
and six for the overvoltage scenario testing each constraint
violation with and without relaxation.

IV. RESULTS

We have conducted seven experiments and present the
resulting solutions (each as a possible SGS configuration) and
the accompanied solution process data, such as the number of
solution candidates per SGS and the calculation time of each
step. The experiments are enumerated as follows:

1) Nominal case.
2) Overvoltage case, bitrate demand of CVC is increased,

no problem relaxation.
3) Overvoltage case, bitrate demand of CVC is increased,

SE communicates with reduced bitrate requirements.
4) Overvoltage case, latency demand of CVC is increased,

no problem relaxation.
5) Overvoltage case, latency demand of CVC is increased,

CVC is migrated to another server.
6) Overvoltage case, CPU demand of CVC is increased, no

problem relaxation.
7) Overvoltage case, CPU demand of CVC is increased,

VPP operates in the distributed mode.
A resulting feasible configuration is displayed in Figure 2
for each SGS. The chosen topologies for the SGSs AR (2a,
CVC (2b), LM (2c, SE (2d), and VPP(2e) are displayd by the
experiment number on the edge of the graphs. Following the
idea of a CSP, the first valid solution for the experiment is
used. Therefore, often the same first valid solution candidate
is chosen. Experiment 1 shows a feasible solution for the
nominal scenario in which all constraints can be fulfilled and
hence, no relaxation is needed. This experiment is used to
illustrate topological changes in the following experiments. In
case of overvoltage without a problem relaxation with SGS
flexibilization, no solutions can be found. For this reason,
experiments 2, 4, 6 cannot be visualized in Figure 2. The
successful problem relaxations are visible in experiments 3,
5 and 7. The bitrate reduction of SGS SE conducted in
experiment 3 lead to the same topology as in the nominal
scenario. In experiment 5, SGS CVC shifted the end-to-end
connectivity from the field devices from server S1 to server
S2, visible by the edge from R21 to S2. In experiment 7, SGS
VPP Management does not have a connection from R12 to
S1.

Table III shows the number of generated solution candidates
per SGS, the accompanied time to generate solution candidates

(a) AR (b) CVC

(c) LM

(d) SE

(e) VPP

Figure 2. The resulting SGSs configurations as solutions of the CSP.
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TABLE III. SIZE OF THE SET OF SOLUTION CANDIDATES AND TIME MEASURES OF THE SOLUTION FINDING PROCESS.

exp. number of solution candidates generation time of solution candidates (s) solving duration (s)
ID AR CVC LM SE VPP AR CVC LM SE VPP mean std.
1 2 128 32 8192 256 0.0011 0.0355 0.0101 3.3635 0.0857 18.2850 0.4118
2 2 128 32 8192 256 0.0011 0.0348 0.0100 3.5954 0.0884 18.1686 0.3248
3 2 128 32 8192 256 0.0011 0.0346 0.0099 3.5270 0.1037 18.0044 0.2305
4 2 128 32 8192 256 0.0011 0.0355 0.0101 3.5528 0.0775 10.4416 0.2333
5 2 16 32 8192 256 0.0011 0.0061 0.0223 3.5493 0.0821 18.0519 0.3075
6 2 128 32 8192 256 0.0011 0.0347 0.0101 3.5908 0.0740 16.7446 0.4263
7 2 128 32 8192 32768 0.0011 0.0355 0.0099 3.4880 14.5952 84.9177 1.0081

and the mean time and standard deviation to find a solution
for the problem created in the experiment. It shows the change
of generated solution candidates for SGS CVC and VPP in
experiments 5 and 7, where a topology change was conducted
by migration or the switch to a distributed topology. In ex-
periment 5, only 16 CVC solution candidates were generated,
whereas in experiment 7, 32768 VPP candidates were created,
which is 128 times the size of the centralized VPP topology.
These differences are caused by the placement of field devices
and the server in this example physical graph. In experiment
5, the size decreases due to the decrease of hops per end-to-
end connection. The fully-connected topology in experiment
7 leads to six end-to-end connections, which may include 3
cycles in the physical graph. As each traversed cycle creates
2 possible paths, this leads to 8 paths for 5 of 6 end-2-end
connections (there is only one possible path for P (F13, F14).
This results in a total of 32768 solution candidates.

The time measurements for the generation of solution candi-
dates and the solving are conducted on an Intel Xeon CPU E5-
2680 with 4× 2.40 GHz and 24 GB RAM. The solving process
was performed 25 times and all time measures are in seconds.
The time to generate solution candidates is similar in each
experiment apart from experiment 5 and 7, where the duration
for CVC decreases and the duration for VPP increases. Also,
the time to solve the CSP is similar in experiments 1, 2, 3, 5
and 6. The decrease of solving time in experiment 4 is caused
by the definition of the latency constraint, as this violation is
easy to detect. The increase in solving time in experiment 7
is determined by the size of potential solution candidates.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented how to flexibilize SGSs
and we have shown the potential of this approach by creating
a sporadically occurring high ICT-demand situation on a small
communication network with five SGSs. We have formalized
ICT demands as a constraint satisfaction problem considering
communication network requirements (latency and bitrates),
and computational requirements (CPU, memory and storage
usage). For this, we have studied 7 experiments based on
two scenarios: nominal operation and overvoltage. The first
scenario serves as a baseline experiment. The latter is defined
by an increase of several requirements of the service CVC,
leading to an over-constrained problem. We have conducted
experiments with each individual adjusted requirement and a
corresponding problem relaxation strategy using the flexibil-
ities of SGSs, such as reduction of requirements, migration

to other servers or switching to a distributed communication
topology. By using these flexibilities, the new requirements of
CVC could be fulfilled.

These findings show the potential of such SGS flexibilities
to operate the power system resiliently under QoS considera-
tions without the need for a strong over-provisioned dedicated
communication infrastructure. SGS flexibilities may improve
the maximization of the number of SGS requirements fulfilled
by migration or distribution of some SGSs and a controlled
degradation of requirements of low prioritized SGSs. The
proposed approach needs further extensions in future work. So
far, we only distinguish between the two categories prioritized
and non-prioritized SGS. Furthermore, there is no optimized
selection of the most suitable relaxation strategy. The approach
can be enhanced by integrating a fine-grained order of SGSs
based on pre-defined power system states and refining our SGS
model by defining an order of SGS flexibilities with regard to
performance degradations. For larger scale experiments based
on larger physical networks and an increased amount of SGSs,
we consider refining our constraint-based model and search
space modeling (e.g., by pre-filtering the solution candidates)
to improve the solving time. We will integrate those ideas to
an adaptive process, which will be evaluated in a simulation.
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Abstract—In this paper, we report on the application of multi-
agent reinforcement learning to the development of a microgrid
energy management simulation. The simulation is made up of
energy producers and consumers as well as storage devices. We
regard these components as agents that are trained in a shared
environment with reinforcement learning. A significant share of
energy production in the microgrid is provided by renewable
energy sources with stochastic characteristics, e.g., photo-voltaic
installations. The stochastic nature of such producers, as well
as of consumers, is captured in energy consumption/production
profiles that are used for training the respective agents. For
our results, the agents have been trained with an actor-critic
algorithm, using real-world energy profile data for photo-voltaic
installations and industrial consumers in Austria. A centralised
critic addresses the multi-agent nature of the energy management
problem. Running what-if analyses is an application scenario for
the trained simulation. In such analyses the effects of different
microgrid configurations on energy management performance
can be investigated. The presented work has been conducted in
the context of the projects RESINET and Zer0p.

Index Terms—Energy Management; Multi-Agent Reinforce-
ment Learning; Photo-Voltaic; Battery Storage; Microgrid.

I. INTRODUCTION

Green Industry for a sustainable and economically prosperous
future is becoming a reality [1]. One of the pillars for Green
Industry is the introduction of renewable energy sources into
the energy supply for industrial companies. In many cases,
the installment of a renewable energy source will be local,
e.g., photo-voltaic (PV) panels on a plant roof. Because of the
stochastic nature of prominent renewable energy sources like
PV panels and wind turbines, such installments have to be
accompanied with adequate storage systems to absorb excess
renewable energy, and to provide energy in times of low energy
production. However, companies that are willing to invest into
local renewable energy sources are facing a decision problem,
as they have to decide upon the right size of the installation,
i.e., storage capacity and power output. The ”right size”
does not only depend on the company’s energy consumption
profiles, but also on local (meteorological) conditions that
impact renewable energy production. An energy consump-
tion/production profile is a time series of power values. In
our work, we use real-world data from Austria, containing
industrial consumption profiles as well as energy production
profiles from PV installations.

The above decision problem motivated the following re-
search question: Is it possible to develop an energy man-
agement simulation for a microgrid, leveraging historic data
for renewable energy production profiles and consumption
profiles? Such a simulation would then allow to run what-
if analyses with different sizes of local renewable energy
installations.

The research question contains two important aspects: lever-
age data, and energy management, which is a sequential
decision-making problem in nature. These aspects motivated
the usage of Deep Reinforcement Learning (DRL) to tackle
the research question. Moreover, an energy management sys-
tem contains multiple agents with potentially selfish agendas.
However, in order to meet system-wide objectives (e.g., load
balancing) the individual agents have to cooperate. To also
meet the multi-agent character of energy management, we
employ Multi-Agent Reinforcement Learning (MARL).

The remainder of the paper is structured as follows. In
section II we present related work and argue our contribution,
the proposed approach is described in section III, results
are reported in section IV, and finally section V presents
conclusions and further research steps.

II. RELATED WORK

In recent years, the application of Reinforcement Learning
(RL) to Energy Management (EM) problems in microgrids
attracted some attention. The literature can be classified into
single-agent and multi-agent approaches, which is reflected in
the following subsections.

A. Single-Agent Reinforcement Learning

The work of Qin et al. [2] proposes a novel privacy preserving
load control scheme for a residential microgrid, where a
central operator controls a number of smart homes. In fact,
preservation of privacy could be achieved with a multi-agent
RL approach, where each smart home is represented by an
agent. The observation of such an agent would then include
privacy information, which is not visible in other agents‘
observations. However, the authors choose a single-agent
reinforcement learning approach, where the microgrid operator
is represented as an agent, and the agent is trained with an
actor-critic algorithm. The authors argue that the integration
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of a recurrent neural network with the deep learning model
solves the privacy issue.

Muriithi and Chowdhury [3] deal with EM in a microgrid
consisting of a PV installation, a Battery Energy Storage
System (BESS) and local loads. The microgrid can exchange
energy with the main grid. The EM objective function is the
minimisation of energy cost, where a battery degradation cost
model is taken into account. Single-agent RL with Q-learning
is applied to solve the EM problem, where the actions to be
learned by the agent are discrete charging/discharging actions
for the BESS.

The microgrid architecture in Ji et al. [4] consists of
distributed generators, a BESS, renewable energy production
from a PV installation and a wind turbine, and some local
consumption loads. The microgrid is connected to the main
grid. A deep Q-network algorithm is used to train the micro-
grid controller agent. The EM objective is to find cost-efficient
energy generation schedules for the distributed generators,
thus the action space for the agent does not contain demand
response actions.

B. Multi-Agent Reinforcement Learning

In Samadi et al. [5], they deal with a microgrid composed of
renewable energy sources (wind and PV), an electrical energy
storage system, and combined heat and power producers as
well as a diesel generator as controllable energy producers.
Additionally there are several electrical and thermal energy
consumers, respectively. The microgrid is connected to the
main grid. The paper proposes a multi-agent, market-based
approach to EM, i.e., each energy producer/consumer is rep-
resented as an agent that sells/buys energy in the microgrid
EM market. The EM goal is then to minimise energy cost for
consumers in the microgrid, and Q-learning is used to train the
agents towards the EM goal. Agents representing renewable
energy sources actually do have no action choices, they just
submit the produced energy per time step to the energy market,
and thus these agents are not part of training.

The microgrid in Foruzan et al. [6] is composed of energy
sellers (PV and wind generators as well as diesel generators)
and energy buyers, a storage system and a connection to
the main grid. In an auction-based market approach each
microgrid component is represented as an agent, and the EM
goal of an agent is to maximise its profit. Q-learning is applied
to learn optimal agent policies.

In Fang et al. [7], a residential microgrid is modeled as an
auction-based marketplace for renewable energy production
agents, an agent repesenting a set of residential loads, and an
agent representing a fleet of electric vehicles that can serve as
storage system for the microgrid. With Q-learning the agents
learn to maximise their individual profits, and the overall EM
goal is to reach a Nash-equilibrium for the microgrid.

The work of Fang et al. [8] considers a regional microgrid
with PV installations, wind turbines and micro turbines as
producers, distributed batteries as storage, and industrial and
residential loads as consumers. The microgrid is connected
with the main grid. The EM problem is modeled as a double

auction market, with seller agents (producers), buyer agents
(consumers) and management agents being responsible for
inter-agent communication and auction clearing. A deep Q-
network algorithm is applied to train the non-management
agents, where each agent has an individual Q-network, learn-
ing Q values for the agent’s individual observation and the
agents’ joint actions as input. An equilibrium selection process
in the training process ensures convergence towards a Nash
equilibrium with respect to the agents’ Q values.

The work of Xu et al. [9] targets a residential microgrid
connected to the main grid, with a PV installation and various
residential loads, e.g., electric vehicle and air conditioning.
The multi-agent EM system consists of four agents, corre-
sponding to non-shiftable loads, time-shiftable loads, power-
shiftable loads and electric vehicle load, thus only demand side
actions are considered in the EM system. For agent training,
a Q-learning algorithm is integrated with a neural network
model predicting energy price and PV generation. The reward
scheme considers energy cost and so-called dissatisfaction
terms penalising load shifting.

C. Discussion

The related work shows that algorithms based on Q-learning
are predominantly used when it comes to solve EM problems
with RL. The application of policy gradient methods, and here
especially actor-critic methods, deserves more attention, as
these methods show excellent performance in applications like
mastering the games of Go [10] and Dota 2 [11], and solving
Rubik’s cube with a robot hand [12].

In many cases in the literature the reward schemes are rather
simple, as they are used in market-based models for EM with
cost minimisation as EM objective. In multi-objective EM the
reward scheme has to reflect these objectives, and the impact
of such complex reward schemes on RL peformance has to be
investigated.

For training an energy management simulation including
components with stochastic energy production/consumption
characteristics it is essential that the simulation model is
trained with a rich variety in data patterns, captured in energy
production/consumption profiles. In the majority of contribu-
tions in the related work, energy profiles or predictors for
renewable energy production and/or consumption are used.
However, these profiles/predictors do rather show a limited
variety in data patterns. On the one hand the time resolution
is rather coarse (1h time steps), and on the other hand the
profiles do look smoothened out, not exhibiting the stochastic
variations found in raw energy profiles. Based on the above
findings, our contribution can be summarised as follows.

1) A multidimensional reward scheme encodes the fol-
lowing EM objectives: a) follow a given energy pro-
file as close as possible (for profile-driven agents), b)
load balancing, i.e., matching energy production with
consumption, c) minimise energy production from non-
renewable sources, and d) correct charging behaviour of
BESS: charge if excess renewable energy is available,
discharge otherwise.
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2) For agent training, we use an extension of Reinforce-
ment Learning library (RLlib)’s implementation of a
Proximal Policy Optimisation (PPO) algorithm, which
is an actor-critic RL algorithm. The extension consists
of a centralised critic approach, where a critic model
(implemented as a deep neural network) processes all
agents’ observations and actions, and the agents share
this critic model.

3) For training profile-driven agents, we use energy produc-
tion and consumption profiles with a 15 min resolution,
and due to the real-world character of these profiles,
they show a considerable variety in data patterns being
observed by the agents.

III. PROPOSED APPROACH

In this section, we describe the energy management system
to be simulated, followed by a brief introduction into DRL
and MARL. The main part of this section is then dedicated
to the description of the training environment and the agents
that make up the energy management system.

A. Energy Management in a Microgrid

Our work is based on a microgrid with five components: 1)
PV energy producer, 2) fully controllable energy producer
(e.g., diesel generator), 3) profile-driven energy consumer, 4)
BESS, and 5) free acting energy consumer. In contrast to
3), the free consumer is not profile-driven, but it can freely
absorb excess production that cannot be absorbed by 3) and 4).
Energy management in the described microgrid is a sequential
decision-making process. At any time step, the components
adjust their loads in pursuing the following goals: a) load
balancing, i.e., energy production should match consumption
at any time, b) profile following, i.e., components 1) and 3)
should follow given energy profiles as close as possible, c) the
BESS component should charge if there is more renewable
energy available than the profile-driven consumer needs, and
BESS should discharge when not enough renewable energy is
available to satisfy the profile-driven consumer’s demand, d)
the fully controllable producer should only produce energy if
the profile-driven consumer’s demand can not be satisfied by
components 1) and 4). The components are configured with
max/min State Of Charge (SOC) (for the BESS), max/min load
(for all consumers and producers) and max increase/decrease
in load from one time step to the next one (for all components).

B. Deep Reinforcement Learning

RL is learning to make decisions from interactions with an
environment. Interactions are episodic, leading to a sequential
decision-making process. The environment defines an obser-
vation space S and an action space A. In every time step
t, the RL agent receives an observation st and a reward rt
from the environment and chooses an action at, following a
policy function π(at|st). The learning goal is to maximize the
expected cumulative reward,

Rt =

∞∑
k=1

γkrt+k+1, γ ∈ (0, 1]. (1)

For a state s, the value of a policy π is defined as: vπ(s) =
Eπ(Rt|st = s). Maximizing for the value function also leads
to a maximization in the goal sense. We call this policy
optimal. Taking action a in a state s leads to the action-value
function of a policy π: qπ(s, a) = Eπ(Rt|st = s, at = a).

With the latest achievements in Deep Learning (DL), new
possibilities in many areas of machine learning arose. Es-
pecially the combination of DL and RL, DRL, achieved
new impressive results in various fields, e.g., superhuman
performance in video games. In DRL deep neural networks are
used as function approximators for value and policy functions.
Function approximation is crucial for larger spaces of states
and/or actions, where a tabular representation is not feasible. It
also enables the policy to be optimised directly, by searching
in the policy space {πθ(at|st), θ} for optimal parameters θ of
such a function approximation.

For neural networks, θ are the weights and biases and we
can use the gradient ascent method (Baird and Moore [13]) to
optimise, leading to a class of algorithms called policy gradient
methods. The gradient of an objective function is representing
an estimate, to update the parameters. A commonly used
objective function for policy gradient methods is (cf. Schulman
et al. [14]):

LPG(θ) = Êt[log πθ(at|st)Ât] (2)

where Ât is an estimator of the advantage function, describing
the extra reward that could be obtained by taking action at.

Combining policy gradient methods with action-value func-
tions leads to actor-critic methods. The actor approximates the
policy, and the critic approximates the action-value function,
thus criticising the actions taken by the policy.

C. Multi-Agent Reinforcement Learning

A generalisation of RL into multi-agent systems is MARL,
where we study how multiple agents learn within a shared
environment. A key challenge in MARL is the fact that other
agents are part of the training environment, and they are
modifying the environment with their actions. The observation
that an agent receives does not only reflect the agent’s action,
but also the actions taken by other agents. In other words: in
MARL multiple agents are interacting indirectly through their
actions in the training environment. In the energy management
case, load balancing requires coordinated actions from all
agents. To be able to train coordinated actions, we used RLlib’s
implementation of a PPO algorithm and extended it with a
centralised critic. The usage of a centralised critic approach is
inspired by Yu et al. [15].

PPO is a new family of actor-critic methods, proposed by
Schulman et al. [14]. With an adaptation of (2), an idea to
stabilise training was introduced. The new objective constrains
large policy changes, leading to smaller steps and enabling for
multiple epochs of mini-batch updates. With the ratio between
new and old policy rt(θ) = πθ(at|st)/πθold(at|st), the new
objective is defined as:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1−ϵ, 1+ϵ)Ât] (3)
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where clip(rt(θ), 1 − ϵ, 1 + ϵ) clips the ratio to the interval
[1− ϵ, 1 + ϵ].

D. Training Environment and Agents

This subsection describes the development of a multi-agent
compatible RL training environment, where the five compo-
nents described in section III-A are represented as agents. The
training objective is then to learn optimal policies to achieve
the energy management goals described in section III-A.

1) Training Environment: For the development of the train-
ing environment RLlib’s [16] multi-agent environment has
been bootstrapped, which makes it compatible with OpenAI
gym environments. The environment uses Box observation
spaces and discrete action spaces for the agents. The deci-
sion to use discrete action spaces with PPO algorithm has
been inspired by Tang and Agrawal [17], who state, ”the
discrete policy achieves significant performance gains with
state-of-the-art on-policy optimization algorithms PPO”. Tang
and Agrawal [17] also give an optimum number of discrete
sampling of a continuous action space which is (7-15) and as
per our experiments 11 discrete actions gave the best results.

2) Agents: In the following agent configuration character-
istics are described. For a profile-driven agent, the energy
profile and the profile-corridor, introducing some tolerance
for deviating from the profile, are important characteristics,
while for BESS their initial SOC and minimum SOC play an
important role. For all the agents, their max-load-diff denotes
the maximum load difference between consecutive time steps,
thus max-load-diff determines the agent’s maximum speed
of reaction. Another important configuration parameter for
all agents is the load-balancing tolerance. If the absolute
difference between total production and total consumption is
smaller than the tolerance, load-balancing is achieved. The
observation of an agent is composed of four time series with
five time steps each, see Figure 1.

Fig. 1: Observation space for agents.

In the following the agents are specified in more detail.
• PV producer agent:

This agent is a profile-driven agent that follows the
energy production profiles of a PV panel, with a small
tolerance with which the agent is allowed to deviate
from its specific profile. The agent has a 20-dimensional

observation space represented by Figure 1 (a), and a
discrete action space of 11 non-negative numbers, with
(0-4): decrease production load, 5: do nothing and (6-10):
increase production load. The effective increase/decrease
of production load is then (0.2, 0.4, 0.6, 0.8, 1.0) * max-
load-diff.

• Profile-driven consumer agent:
This agent is a profile-driven agent that follows power
consumption profiles. The profile following tolerance,
observation space and action space are the same as for
the PV agent.

• BESS agent:
This agent simulates the behaviour of a battery storage,
where the main aim is to charge/discharge appropriately.
It has a 20-dimensional observation space represented by
Figure 1 (b), an action space of 11 non-negative numbers,
with (0-4): battery discharges, 5: battery does nothing
and (6-10): battery charges. In the BESS agent’s context,
max-load-diff is the maximum charging/discharging rate
of a battery. The effective charging/discharging rate is
called the battery magnitude and is calculated as (0.2,
0.4, 0.6, 0.8, 1.0) * max-load-diff. The BESS agent is
further specified with initial battery SOC, minimum SOC
and maximum SOC. The setting of maximum SOC value
is decided based upon total renewable energy available
after consumption has been satisfied. The setting of initial
SOC is based upon the energy required for consumption
at the initial part of the episode. Minimum SOC is chosen
randomly, but it can be chosen considering safe operation
of the battery.

• Fully controllable producer agent, free acting consumer
agent:
The observation space and the action space are the same
as for the PV producer agent. An important configura-
tion parameter for the fully controllable producer is the
maximum power output that can be delivered into the
microgrid. Profile-following is not of concern for these
agents.

3) Deep Reinforcement Learning Model: The current im-
plementation adapts the PPO implementation of RLlib, such
that the agents share a centralised critic model. Figure 2 shows
the DRL model used for each agent. The actor model has
three layers, with the action logits in the final layer. The
centralised critic model for each agent has three input layers.
To understand the input layers let us assume that we have
n agents. The first input layer corresponds to the agent’s own
observation with shape (, 20), the second input layer processes
the opponent agents’ observations with shape (, 20 ∗ (n− 1)),
and the third layer processes the opponent agents’ actions with
shape (, 11∗ (n−1)). The three input layers are concatenated,
followed by two dense hidden layers. The final layer outputs
a single value, indicating how good the input is in terms of
cumulative rewards over an episode. For all layers the first
dimension in (, size) is not specified, as it depends on the
mini-batch size used by the PPO algorithm.
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Fig. 2: DRL model.

4) Reward Scheme for Agents: The reward scheme for the
agents in our energy management simulation is as follows:

• Profile-driven producer and consumer:
For profile-driven agents there are only two penalties or
rewards:

– Profile deviation penalty
L Current Agent Load
PL Current Agent Profile Load
CORR profile corridor tolerance
if abs(L - PL) <CORR then

No Penalty
else

Penalty = abs(L - PL) * const-penalty
end if

– Load balancing reward
TP Total Production
TC Total Consumption
if abs(TP -TC) <balance-tolerance then

Reward = constant
else

No Reward
end if

• Fully controllable producer and free acting consumer:
For the fully controllable producer and free acting con-
sumer agents there are three penalties and rewards and
they are as follows:

– Load balancing reward
– Excess-energy penalty and appropriate-energy re-

ward
R Renewable energy
C Consumption, only profile-driven consumer
BM Battery Magnitude charging/discharging
BM >0.0 {charging}, BM <0.0 {discharging}

FCP Load of fully controllable producer
FCC Load of free acting consumer
EE = R - C - BM Remainder energy after
battery charges/discharges
if R - C >0.0 then {Excess renewable energy

is available}
if FCP >0.0 then {FCP should not get
greater than zero}

penalty ∝ FCP
end if
if abs(FCC - EE) >balance-tolerance then
{FCC should equate to remainder energy
EE}

penalty = constant
else

reward = constant
end if

else {No excess renewable energy is available}
if FCC >0.0 then {FCC should not get
greater than zero}

penalty ∝ FCC
end if
if abs(FCP -EE) >balance-tolerance then
{FCP production equates to remainder en-
ergy EE}

penalty = constant
else

reward = constant
end if

end if
• BESS:

For the BESS agent there are three penalties and rewards
and they are as follows:

– Load balancing reward
– Correct charging/discharging behaviour reward and

incorrect behaviour penalty
This reward scheme, allows to select a specific action
from the action sets (0,10). The battery magnitude for
discharging actions (0,4) is (-0.2,-0.4,-0.6,-0.8,-1.0)
* max-load-diff, and for charging actions (6,10) it is
(0.2, 0.4, 0.6, 0.8, 1.0) * max-load-diff, at action 5
the battery does nothing.

if consumption >PV production then
action(0,4) is rewarded. The reward favours
the action with the best effect on load balanc-
ing.

else if PV production >consumption then
action (6,10) is rewarded. The reward favours
the action with the best effect on load balanc-
ing.

else
action 5 is rewarded

end if

IV. RESULTS

This section describes results for training the EM simulation
with the proposed reward scheme. The results have been
achieved in the context of the projects RESINET and Zer0p.
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A. Experiment Setup

The experimental setup is as follows. The PV producer agent
and the profile-driven consumer agent are trained each with
a single profile. The profiles are taken from real-world data
for large-scale PV installations and industrial consumers in
Austria, with maximum consumption loads at 1700 kW, and
maximum production loads at 600 kW. For our experiments,
we scaled down the power values of the producer by 105

and consumption by 6 ∗ 105. The decision to scale down
the consumption further by a factor of 6 was taken to create
a scenario where charging of the battery is feasible. Each
profile has data of 96 time steps covering one day, which is
then the episode length for RL training. The profile-corridor
parameter for the profile-driven agents has been kept really
small (0.0001), so that the agents are forced to follow their
respective profile as close as possible. The load-balancing
tolerance is set up as 0.5. For the BESS agent, the maximum
SOC is 60, and both the initial battery SOC and the minimum
battery SOC are at 2% of the maximum value. The max-load-
diff parameters are set as follows. BESS: 2.5, PV producer:
0.4, profile-driven consumer: 0.25, fully controllable producer
and free acting consumer: 0.5. With the above configuration,
the agents are trained for 20,000 episodes. Figure 3 illustrates
the training progress with different reward curves, x-axis units
are time steps.

• rew charging mean: reward curve for correct charg-
ing/discharging behaviour of the BESS agent

• rew dev profile mean: reward curve for profile following
• rew total load mean and rew total out mean : reward

curve for load balancing
• rew exp energy mean: reward curve for fully control-

lable producer
• rew episode reward mean: total reward curve

B. Evaluation

Figures 4a and 4b illustrate the performance of the trained
energy management simulation, x-axis units are time steps,
y-axis units are arbitrary power units resulting from scaling
down the real-world data. Figure 4b shows that load balancing
is achieved quite accurately, plotting total energy production
vs. total energy consumption. In Figure 4a the load curves
of the individual agents are plotted, as well as the profiles
for the profile-driven agents. The figure shows that profile-
following is achieved quite accurately, both for the profile-
driven consumer and the PV producer. The BESS agent shows
proper charging behaviour: the agent does nothing in the initial
part of the episode when there is no renewable power available,
in the middle part it is charging when renewable power is
available, and it discharges in the last part when there is only
very little output from the PV producer. The fully controllable
producer produces sufficient energy in the initial and last part
of the episode to fulfill consumption demand, and it outputs
near zero energy when renewable energy is available. The
free acting consumer only consumes energy in the middle
of the episode, where there is remainder energy from the

PV producer that cannot be consumed by the profile-driven
consumer and the BESS.

C. Scalability

In multi-agent systems scalability issues are of interest, where
it is investigated how the number of agents impacts system
performance. So far, our experiments with respect to scalabil-
ity have been limited. For these experiments we used three
agent types: PV producer, profile-driven consumer and fully
controllable producer. We investigated different system config-
urations (I, J,K) where I denotes the number of PV producer
agents, J denotes the number of profile-driven consumers and
K denotes the number of fully controllable producers. We per-
formed experiments with the following configurations: (1,1,1),
(2,2,2), (5,5,3) and (5,5,5). We found that all configurations
resulted in proper profile following and load balancing. Table I
provides an overview of the conducted scalability experiments
in terms of number of episodes used for training and training
time on a state-of-the-art desktop PC.

TABLE I: SCALABILITY RESULTS

Configuration Number of
agents

Number of
episodes Training time

(1,1,1) 3 8000 40mins
(2,2,2) 6 16000 1hr 20mins
(5,5,3) 13 60000 4hr 30mins
(5,5,5) 15 60000 5hr 15mins

V. CONCLUSION

The results show that it is possible to train an energy manage-
ment simulation for a microgrid, leveraging data for renewable
energy production profiles and consumption profiles in the
training process. A crucial point was the development of an
appropriate reward scheme, enabling to learn the key desired
agent behaviours ”profile following” and ”load balancing” in
an energy management case with five agent types: profile-
driven producer/consumer, fully controllable producer, free
acting consumer and storage. In the following we outline our
further research steps.

1) Quantitative analysis of simulation performance: for
evaluation of the trained simulation we currently rely
on a visual analysis of the results of simulation runs.
For a quantitative analysis a metric has to be developed,
measuring the performance of the multi-agent system
when running a simulation. We envisage the application
of simple statistical methods such as Mean Absolute
Error and Root Mean Square Error, calculated over all
time steps of a simulation run with respect to the desired
behaviours ”profile following” and ”load balancing”.

2) Multi-profile training: so far, we have only considered
single-profile training, i.e. the renewable energy pro-
ducer and the profile-driven consumer, respectively, have
been trained with one profile each. With multi-profile
training, the goal is to achieve flexible agent behaviour,
i.e., the trained behaviours should be able to cope with
various situations. A situation is characterised by a
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Fig. 3: Training progress.

(a) Agent load curves and profiles. (b) Load balancing.

Fig. 4: Simulation results.
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concrete pair of energy profiles, one for the renewable
energy producer, the other one for the profile-driven con-
sumer. To what extent such flexibility can be achieved
is a future research question.

3) Up-scaling the number of agents: in future experiments
we will intensify our research with respect to up-scaling
the number of agents in the energy management system,
thus increasing system size. We will investigate the
question, how system size does influence training and
simulation performance.
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Abstract—This study aims to find a rapid and efficient method
for managing the energy of a Grid-connected hybrid system.
Thus, two optimization strategies, the Linear Programming (LP)
and the Particle Swarm Optimization (PSO), have been suggested
to minimize the operating cost of the hybrid system while
respecting the constraints of all the system components. Then,
a comparative study has been made between these two methods
(i.e., LP and PSO). Consequently, the operating cost obtained
using PSO algorithm is close to the one provided by the LP
algorithm. However, the PSO algorithm is slower than the LP
algorithm and requires different parameters to be chosen. Finally,
the impact of the battery initial state of charge on the operating
cost is studied.

Keywords—Linear Programming; Particle Swarm Optimization;
Optimization; Grid-connected hybrid system.

I. INTRODUCTION

The energy consumption of access networks represents a
principal part of telecommunications operators’ energy bills.
Several works [1] [2] have been initiated on sources, energy
storage, and their management to reduce this consumption
and the carbon footprint. Green production is a promising
way to overcome this fossil energy issue [3] [4]. Besides,
it is necessary to develop acceptable management methods
and technical tools guaranteeing network reliability [5]. In this
perspective, the notion of microgrid has appeared to resolve
part of this management problem. Indeed, it is an intelligent
system composed of green and local production as well as
a storage system to ensure the reliability of the system. An
energy management system provides an optimal configuration
and sizing with the economic management of exchanged
energy within. The maximization of economic efficiency and
reliability is undoubtedly the top of all research targets [6].
Different studies have been made to achieve this purpose. For
instance, in [6] a multi-objective optimization problem of op-
timizing the schedule of sources, as well as the import/export

power with the grid, has been solved using an optimization-
based approach called Branch and Bound method. In addition,
optimal energy management of microgrid, which constitutes of
a PV system and a storage system with minimum of cash flow
using dynamic programming technique has been suggested in
[7] [8]. A comparative study has been presented in [9] to
illustrate the efficiency of Linear Programming (LP) compared
to PSO and adaptive dynamic programming for an intelligent
home energy resources scheduling in the presence of uncertain
data. Hossain et al. [10] present a particle swarm optimization
for real-time application energy management to find optimal
battery control of a community microgrid. In [11], a fuzzy
logic-based energy management system for a residential grid-
connected system including renewable energy sources and
storage capability is suggested. The difference between this
study and the studies cited above occurs in the problem
formulation and the constraints to be respected. To optimize
the energy scheduling/management in a connected microgrid,
there are two types of methods: an exact optimization methods
that guarantee finding an optimal solution (e.g., LP) and
heuristic optimization methods that don’t guarantee that the
solution founded is optimal (e.g., PSO). In this study, both
algorithms LP and PSO are applied to find the optimal energy
scheduling of a grid-connected hybrid system. Furthermore,
three different scenarios are considered to provide a compar-
ison between these two algorithms. It is shown that the LP
algorithm is faster and does not require parameters to be tuned
which is not the case for PSO algorithm. On the other hand,
the impact of the initial state of charge of the battery on the
operating cost is studied for the LP algorithm.

The work is organized as shown: system description and
energy models of the architecture components are introduced
in Section II. These models will be used to calculate the
required parameters for optimization approaches. Section III
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suggests two different methodologies for optimizing energy
planning with a minimum operating cost. In this section,
we introduce the objective function and constraints adopted
in each method. The results obtained by these approaches
are compared in Section IV. In addition, some assessment
has been established to show the robustness of the proposed
strategy.

II. SYSTEM DESCRIPTION

The architecture studied is a grid-connected hybrid system
composed of renewable energy sources, i.e., Photovoltaic and
Wind Turbine, batteries, and DC load as shown in Figure 1.
To reduce the energy loss, we assume that the battery should
be charged only by the remaining energy, this means when
the energy produced by renewable sources is greater than the
load demand. Otherwise, the energy left will be exchanged
with another local site. On the other hand, if the consumption
exceeds the production of the renewable source, the battery
will discharge to meet the remaining energy.

Figure 1. Grid-connected hybrid system architecture

A. Photovoltaic model

The mathematical model for estimating the output power of
a PV module is a linear function of the solar radiation and the
ambient temperature [12]. It can be calculated as follows:

Ppv = Pp fcG(
1+β (Tc −Tre f )

Gr
) (1)

Tc = Ta +G(
(NOCT −20)

800
) (2)

where Pp is the rated power under standard test conditions
(kW), fc is PV derating factor (88%), G is solar radia-
tion (W/m2), β is the temperature coefficient of efficiency
(−0.41%/°C), Gr is the standard amount radiation (1000
W/m2), Tre f is standard test temperature (25°C), Tc is the
cell temperature (°C), Ta is the ambient temperature (°C) and
NOCT is the nominal operating cell temperature (45°C).

B. Wind Turbine model

To model the wind turbine, the mechanical power, which is
directly extracted from it, can be given by [13]

Pwt =


0.5CpSϕV 3, if Vi ≤V ≤Vn

Pr, ifVn ≤V ≤Vo

0, otherwise
(3)

where Vn, Vi and Vo are the rated (11m/s), the cut-in (3.5m/s),
the cut-out (25m/s) wind speeds respectively, Cp is the power
coefficient, S is the turbine blades swept area (10.87m2), ϕ is
the air density (1.225kg/m3), V is the wind speed at hub height
H and Pr is the rated power. For the purpose of adjusting the
wind profile according to the height, the following equation
can be used [14]

V =V0(
H
H0

)α (4)

where V0 is the wind speed measured at the reference height
H0. α is the power law exponent depends on the nature of
terrain (0.14).

C. Battery model

Batteries are used to store excess power in the microgrid and
operate when the system has deficit power. At any hour, the
battery stored energy is related to the previous one and the
energy production and consumption situation of the system
during the time from t −1 and t as used in [10].

• Charging mode

Wb(t) =Wb(t −1)+(Wpv +Wwt −Wl) (5)

• Discharging mode

Wb(t) =Wb(t −1)− (Wl −Wwt −Wpv) (6)

where Wl is the energy consumption (kWh). Wpv, Wwt represent
the energy production by Photovoltaic module and Wind
turbine (kWh) respectively.

III. OPTIMIZATION ALGORITHM

The main goal of this paper is to minimize the operating
cost of the energy exchanged with the grid to obtain an
optimal energy schedule of the grid-connected hybrid system.
The optimization algorithm should ensure that the discharging
of the battery will be done during high demand, while the
charging will be done during high production, moreover, the
state of charge should be within upper and lower limits. In
addition, the battery must return to its initial state of charge at
the end of the optimization horizon to ensure that the system
has a stabilized energy balance for one cycle. To solve this
issue, we presume two methods of optimization explained
below:

A. Linear programming
This approach is based on the linear programming paradigm

that consists in minimizing or maximizing a given function
according to the following constrained scheme [9]:

max f (x) = cT x or min f (x) = cT x
subject to: Ax ≤ b or Ax ≥ b orAeqx = beq

Where: x ≥ 0,x ∈ Rn×1,A ∈ Rm×n,b ∈ Rm×1,

c ∈ Rn×1,Aeq ∈ Rp×n,beq ∈ Rp×1

(7)

In this approach, the decision variables for the economic
dispatch problem are as follows:

• The battery energy of charging and discharging (Wc and
Wd).
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• The exchanged energy with the grid utility (Wg).
• The exchanged energy with another site (Wexch).
• The battery state of charge (SOC).

This means, in our case the vector x is chosen as follows:
[Wg, Wc, Wd , SOC, Wexch]

T . The vector c is formed us-
ing (8)-(9). The right part of (10)-(12) represents the elements
of the matrix Aeq, and the left part of these equations are
used to form the vector beq. Matrix A contains the coefficients
multiply the decision variables in (13)-(18). The vector b
includes the upper and the lower limits of each variable.
The objective function in (8) aims to minimize the cost of the
energy purchased from the grid Wg when the consumption
is greater than the production as well as make profit by
exchanging the remaining energy with other site Wexch. And,
Cg in (8) represents the purchased energy price (0.2e/kWh).

minC =
T

∑
i=1

Wg(i)Cgk(i) (8)

Where T is the energy management system period (e.g., one
day) and i is time interval (e.g., 1h). The parameter k is a
binary variable for the charging state of the battery. In fact,
k represents two constraints to be respected which are the
battery should not be discharged when the system has an
excess energy and vice versa. k is calculated in terms of the
load demand and renewable energy production, as described
in (9), where Wl , Wpv and Wwt are the load, solar PV and Wind
Turbine energy (kWh)

k(i) =

{
1, if d(i)≥ 0
0, otherwise

(9)

d(i) =Wl(i)−Wpv(i)−Wwt(i) (10)
Equation (11) guarantees that the battery will be charged
mostly by the renewable energy.

d(i) = k(i)(Wg(i)−Wd(i))+(k(i)−1)(Wc(i)−Wexch(i)) (11)

Equation (12) calculates the battery state of charge SOC
in each slot time i to maintain its values within the given
limitations in (13).

SOC(i+1) = SOC(i)+
(1− k(i))Wc + k(i)Wd

Ec
(12)

SOCmin ≤ SOC(i)≤ SOCmax (13)

Where Ec is the nominal energy of the battery[kWh]. The
inequalities (14)-(17) indicate the lower and upper bounds that
should be respected for the exchanged energy with the grid,
the external consumers, and the battery, respectively.

0 ≤Wg(i)≤Wgmax (14)

Wexch(i)≥ 0 (15)

0 ≤ Pc(i)≤ Pcmax (16)

Pdmax ≤ Pd(i)≤ 0 (17)

The ε refers to an admitted tolerance in the constraints concern
the charging of the battery in the end of the period of the
optimization T .

|SOC(T )−SOC(1)| ≤ ε (18)

B. Particle swarm optimization

Its concept is based on the behavior of birds to compute
global optimization functions [10]. In PSO, each possible
solution is modeled as a particle that moves through the input
hyperspace, which can have numerous dimensions [15]. First
and foremost, each solution takes a random position with a
random velocity in the search space. At each iteration, the
particles move towards their best position, and therefore that
of their neighborhood, which corresponds to the optimum
position, by updating their velocity [16]. In this section,
the objective is similar, whereas the objective function has
presented differently. The first term in (19) refers to a penalty
applied in the case of the battery charged with the grid. The
decision variable in this methodology is only the exchanged
energy with the battery. For this strategy, the cost function is
described by (19) to reduce the electricity bill by minimizing
the exchanged energy with the grid. Indeed, according to the
difference between the load demand and the renewable energy
production, as well as the sign of the decision variable, the
penalty is applied to avoid the following scenarios:

• Charging or discharging the battery when the system is
in a steady state.

• Discharging the battery even if there is an excess of
energy.

• Energy left is not sufficient to charge the battery.

minC = P+
T

∑
i=1

Wg(i)Cg (19)

The grid will meet the load when the consumption is greater
than the production. On the other hand, if the suppliers
transcend the load demand, the energy left will be exchanged
with other consumers.

d(i) =Wl(i)−Wpv(i)−Wwt(i) (20)

Wg =

{
Wl(i)−d(i)+Wb(i), if d(i)≥ 0
0, otherwise

(21)

Wexch =

{
−d(i)−Wb(i), if d(i)≤ 0
0, otherwise

(22)

At each point of time, the program ensures that the solution
respects the constraints presented as follows:

Pbmin ≤ Pb(i)≤ Pbmax (23)

SOCmin ≤ SOC(i)≤ SOCmax (24)

0 ≤Wg(i)≤Wgmax (25)

Wexch(i)≥ 0 (26)

|SOC(T )−SOC(1)| ≤ ε (27)

IV. SIMULATION AND DISCUSSION

The considered system includes a DC load with a constant
rated power of 5 kW, a PV with an installed peak power of
69 kW, a Wind turbine with a rated power of 16 kW, and a
battery with a rated energy of 74 kWh.
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TABLE I. PSO PARAMETERS

PSO
Number of variables 24
Number of iterations 300

population size 1000
Inertia coefficient 1

Damping ratio of inertia coefficient 0.99
Personal acceleration coefficient 2
Social acceleration coefficient 2

A. Comparative study

In this subsection, the performance of both algorithms
to provide the energy management for this aforementioned
system is compared through simulation results using Matlab.
Indeed, three scenarios have been tested (see Figures 2-4) to
find which approach is more efficient regarding some parame-
ters such as the operating cost, the computational time, and the
energy exchanged with other site. These scenarios present the
meteorological data at Lannion for three different months July,
May and October. In the simulations which follow, the period
is fixed as 24 hours, the initial state of charge is chosen as
SOC(1) = 80%, and the error between the final and the initial
values of SOC is taken as 3%, i.e., ε = 3% in Eqs.(18) and
(27). Moreover, the values of SOC(min) and SOC(max) have
been selected as SOC(min)=30% and SOC(max)=100%. The
optimization parameters for PSO algorithm are given in Table
I. In Figures 2-4, it can be observed that the energy dispatch
proposed by both methods for the three scenarios, are globally
similar. Indeed, when the PV and Wind turbine production is
more important than the load demand, the two approaches
suggest to charge the battery and transfer the remaining
energy to other consumers. But, the difference occurs when
the production is less than the demand. In this case, PSO
algorithm proposes to use the grid and the battery to meet
the load demand. Conversely, linear programming suggests
meeting the load by discharging only the battery. Besides, the
two strategies respect obviously the constraints about the final
value of the battery state of charge in all cases. Regarding
the computational time, the linear programming can find the
optimal solution within one minute. However, the PSO algo-
rithm takes more than one hour to find it, since its convergence
depends on the number of iterations and population size which
have been chosen big enough. Here, it should be mentioned
that if the number of iterations and population size have not
been adequately chosen, the convergence of PSO algorithm
cannot be ensured. The operating cost proposed by LP is less
expensive than the one proposed by PSO algorithm for all
scenarios, as it can be shown in TableII. On the other hand,
the PSO algorithm offers to exchange more energy compared
to other one since the battery discharges less than the first
technique as shown in the Figures 2-4.
To sum up, the LP finds quickly and efficiently the optimal
schedule of the considered system compared to the PSO
algorithm. Furthermore, as soon as the numbers of the decision
variables increase, the use of the PSO becomes avoidable. That
is due to the reason that, the PSO algorithm requires a lot of

parameters to be tuned.

TABLE II. OPERATING COST AND EXCHANGED ENERGY PRO-
POSED BY TWO APPROACHES.

Scenario PSO LP
C (e) Wexch (kWh) C (e) Wexch (kWh)

Case 1 1.85 32 0.68 24
Case 2 2.61 27 1.18 18
Case 3 2.38 18.5 1.2 10

Where case 1, case 2, and case 3 represent the meteorological
data in July, May, and October, respectively.

B. Sensitivity analysis
In this part, some parameters will be analyzed using linear

programming. It treats the impact of the initial state of charge
on the operational cost and the energy sold to other sites over
24h.The values of the SOCmin, SOCmax, and ε are similar to
those used in the subsection A. However, the data that will
be used in this subsection are presented in Figure 2. Table III
shows that the minimum operational cost has been obtained
in the case where the battery initial level of energy is 70%.
Indeed, the purchased energy from the grid is zero as well
as the 70% of energy stored is sufficient to meet the load
and respect the constraint about the final value of the SOC.
Consequently, the exchanged energy with the other consumers
is the minimum because the most excess energy is used to
charge the battery. At the beginning of the optimization, if
the battery is fully charged or discharged, the operational
cost and the exchanged energy for the solution obtained
would be greater than the other scenarios. In other words,
the battery is less used in these cases in order to respect the
constraint about the final SOC. Figure 5, it represents the
energy schedule of the system aforementioned considering
the optimal value of the SOC(t0). As can be shown in the
Figure 5, the battery has completely discharged in the state of
deficit when the renewable sources production is insufficient.
Besides, it is remarkable that the excess energy has been
sufficient to charge completely the battery. For that reason,
the system has respected the constraints without using the
grid energy to meet the load like the other cases. To conclude,
the economic scenario to adopt is with SOC(t0) equals to
70% since the energy exchanged with the grid in this case is
zero.

TABLE III. OPERATING COST AND EXCHANGED ENERGY FOR
DIFFERENT VALUES OF THE INITIAL BATTERY STATE OF CHARGE
USING LP.

SOCint (%) 100 90 80 70 60 50 40
C (e) 2.61 1.64 0.68 0 0.46 1.42 2.39

Wexch (kWh) 39 31 24 19 22 30 37
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(a) (b)

(c) (d)

Figure 2. (a) The PV and Wind turbine energy profile on 1st of July in Lannion. (b) The variation of the battery state of charge proposed by PSO and LP.
The energy scheduling on 1st of July using: (c) PSO and (d) LP.

(a) (b)

(c) (d)

Figure 3. (a) The PV and Wind turbine energy profile on 1st of May in Lannion.(b) The variation of the battery state of charge proposed by PSO and LP.
The energy scheduling on 1st of May using: (c) PSO and (d) LP.

V. CONCLUSION

This paper has applied two approaches for the optimal
energy scheduling of a Grid-connected hybrid system which
are the LP and the PSO algorithms. Then, a comparison has
been made to confirm the effectiveness and the rapidity of the
LP in front of the PSO algorithm in terms of computational
time and operational cost. Moreover, it is shown that the PSO
algorithm requires some parameters to be tuned to achieve
the convergence which is not the case for the LP.

On the other hand, a sensitivity analysis for the LP has
been studied also. The obtained results confirm that the LP
will be more effective if the battery starts with an initial
state of charge equal to 70%. As future works, a comparative
study between two exact optimization methods (i.e., LP
and Mixed-Integer linear programming (MILP)) will be
studied. Furthermore, the LP-based energy management
will be combined with a sizing algorithm to optimize the
configuration of a grid-connected hybrid system. Moreover, a
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(a) (b)

(c) (d)

Figure 4. (a) The PV and Wind turbine energy profile during on 1st of October in Lannion. (b) The variation of the battery state of charge using PSO and
LP. The energy scheduling on 1st of October using: (c) PSO and (d) LP.

Figure 5. The energy scheduling of the system studied on 1st of July in
Lannion

comparative study with the existing sizing algorithms will be
performed.
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Abstract— The increasing demand for renewable energy 

sources has empowered their integration into existing power 

networks. This initiated an interest in investigating the 

capabilities of these clean sources and how can then be 

efficiently utilized to support the balance of energy markets. In 

this regard, forecasting energy generation has become an 

essential research problem to improve the reliability of energy 

systems. It is of key importance to meet the energy demand, as 

well as to bridge the gap between energy consumption and 

production in energy markets. In this research, we present a 

case study to investigate the performance of ensemble learning 

models for forecasting the energy generation of photovoltaic 

(PV) modules. For this purpose, we utilize a dynamic energy 

forecasting tool to perform various experiments with different 

combinations of input data fields. Primarily, the performance 

of 3 ensemble learning models (Adaboost, Random Forest, and 

Gradient Boosting Regressor) has been investigated and then 

compared to the predictions of two previously undertaken 

neural network-based methods. The results indicated higher 

accuracy of the ensemble approaches in almost all 

experiments. Which was also better than the accuracy of the 

neural networks-based methods.   

Keywords-Energy Prediction; Energy Forecasting Tools; 

Prediction Models; Machine Learning. 

I.  INTRODUCTION 

The rapid shift from traditional fossil fuel-based energy 
towards renewable energy sources is one of the core 
strategies in developing sustainable future energy systems 
[1]. As a constant source of energy, sunlight is used to meet 
the ever-increasing energy needs, and solar energy becomes 
a suitable substitute for fossil fuels [2]. The forecasting of 
wind and solar energy is getting much attention over the last 
two decades. Primarily, due to the increasing amount of 
energy generated from these renewable sources. That said, 
special emphasis is given to predicting wind and solar energy 
records because of their variability and limited predictability, 
as well as instantaneous response to weather phenomena [3].   

On the other hand, the prediction of solar power using 
photovoltaics is crucial to mitigate the random fluctuations in 
the incoming values. Many approaches have been utilized to 
predict the generated energy from Photovoltaic Panels (PV). 
Most of them make use of traditional statistical methods and 
Machine Learning (ML) approaches. Furthermore, historical 
data sets used to make predictions usually combine a variety 
of weather characteristics, cloud motion tracking, solar 
radiation, and many others. Nevertheless, time-horizon and 

climate have the most noticeable impact on the performance 
of solar energy forecasting [4]. 

In this article, we contribute to the current efforts by 
assessing the performance of 3 ensemble learning methods in 
predicting energy generation from PV panels. We also 
compare the results to the output of two other Artificial 
Neural Networks (ANN) and Deep Neural Networks (DNN) 
based models. The goal of this case study is to explore better 
forecasting circumstances by manipulating various 
prediction models and different input fields. The rest of this 
research is organized as follows. Section II summarizes a 
state of the art of currently used models to forecast solar 
energy production. Section III describes the conducted case 
study, including the used energy forecasting tool, data sets, 
and methods. In this section, we also present, discuss, and 
compare the results. Finally, Section IV highlights the 
conclusion and future perspectives of this research. 

II. STATE OF THE ART 

Energy forecasting is crucial in energy markets, it 
basically aims to build accurate forecasting models to inspect 
future generation/consumption scenarios. Forecasting of 
energy production has been widely covered in the literature 
to balance the supply and demand in energy systems. 
Attempts from workers in various fields have been made to 
obtain as accurate prediction models as possible. The 
accuracy of the forecasting models has significantly 
increased in the last decade. Various methods have been 
utilized to undergo short-term prediction experiments for 
energy generation obtained from photovoltaic panels. 
Namely, statistical methods and machine learning based 
methods. 

A state-of-the-art of the accuracy of solar energy 
forecasting is conducted by Blaga, R., et al. [4]. The 
compared forecasting models cover various classes: 
persistence, classical statistics, machine learning, cloud-
motion tracking, numerical weather prediction, and hybrid 
models. As a result, machine learning and hybrid models 
have the best performance for intra-hour predictions in all 
climates. However, according to Tato, J.H. and Brito, M.C. 
[5], using meteorological and historical data is not enough to 
produce accurate solar energy forecasts. Instead, the authors 
integrate a Smart Persistence prediction algorithm with 
Random Forests to analyze the data of six solar PV modules. 
The results showed a great improvement in the accuracy of 
short-term forecasts. 
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Furthermore, due to the dependency of PV panels on 
solar radiation, Global Horizontal Solar Irradiance (GHI) has 
a strong influence on PV production. An ANN based model 
was proposed to predict the next-day produced power from 
PV panels [6]. The model makes use of real-time solar 
irradiance to provide a set of decision rules for a proper 
prediction system. The research shows that machine learning 
algorithms hold some promise in this regard. Another 
research based on a non-linear autoregressive neural network 
was presented in [7]. It aims at forecasting global horizontal 
solar irradiance as input to a photovoltaic simulator 
presented in another study [8]. This system estimates the 
energy generation profiles of PV systems in real-sky 
conditions. The goal of this process is to predict energy 
production in short-term time periods. In a similar manner, 
authors of Cannizzaro, D., et al. [9] present a methodology to 
forecast GHI from the next 15 min and up to the next 24 
hours. The proposed approach implements ML techniques 
including Variational Mode Decomposition (VMD), 
Convolutional Neural Networks (CNN), Random Forest 
(RF), and Long Short-Term Memory (LSTM). 

On the other hand, authors of Gellert, A., et al. [10] 
propose a technique to predict the electricity production and 
consumption in a household with photovoltaics and storage 
systems. They analyze statistical models based on previous 
values aiming at increasing the self-consumption and 
reducing the dependency on the power grid. However, the 
study lacks considering environmental-specific input 
parameters, such as weather characteristics and contextual 
details. In a later study [11], the authors evaluate two 
statistical prediction methods: ARIMA and TBATS, and 
compare them to other models: Markov model, Multi-Layer 
Perceptron (MLP), Gated Recurrent Unit (GRU), Bayesian 
Regression Structural Time Series (BRSTS), and LSTM. The 
evaluation results showed a better mean absolute error for 
TBATS over what was obtained by the other models. 

Deep learning methods have been also approached to 
tackle energy forecasting in solar systems. Three deep 
learning-based forecasting models were introduced for the 
continuous prediction of energy generated by concentrated 
solar power plants in Spain [12]. The proposed models are  
Naïve cloud-cover, ANN, and LSTM based approaches. The 
authors used as inputs the irradiance values and weather 
conditions forecasts. Another deep learning approach 
established on LSTM was introduced in [13]. It aimed at 
forecasting one hour-ahead energy production from a solar-
PV plant. In this study, two other data-driven methods were 
also applied, and the results revealed that the LSTM model 
gave the best results. 

Moreover, a method for detailed PV energy yield 
forecasting is presented in [14]. This study utilizes a local 
sky-imager and neural networks for horizons up to 15 min. 
The proposed approach eliminates the usual models, from 
irradiation forecast to energy yield estimation, and reduces 
the propagated errors. Another approach was presented to 
predict local PV power output based on short-term solar 
forecasting using ground-based cameras [15]. The research 
also analyzes the benefits of the forecasts to the power 
system. Furthermore, daily energy production forecasting 

methods for photovoltaic solar panels were presented using 
mathematical methods and fuzzy logic models [16]. The 
studies showed that the best model is a two-input Takagi-
Sugeno system with nonlinear membership functions. In 
their study, authors also present a prototype software 
implementing the best-performing models. 

Our approach brings novelty in many aspects: first, 
instead of considering radiation values and cloud tracking, 
we employ historical weather information, time contextual 
fields, and previous energy values as input to train our ML 
models. In addition, to obtain the most accurate results, we 
focus our efforts on conducting various experiments 
considering different combinations of the available input 
fields. Finally, we successfully utilize the tuned model to 
predict the energy production for a whole week instead of a 
couple of upcoming hours. 

III. CASE STUDY 

A. Overview 

The aim of this case study is to investigate the 
performance of three ensemble learning methods in 
forecasting energy generation. In this context, we use a 
dynamic forecasting tool to perform and compare various 
experiments in different conditions. We also use a historical 
data set that combines the instant generation of 3 PV panels. 
Primarily, results of the considered models are presented, 
discussed, and then compared to previously undertaken 
predictions using two neural network-based models. The 
forecasting of PV generation data will be used and integrated 
by an Energy Resource Management System (ERMS), in a 
collective residential building, to support the management of 
all building resources aiming to minimize the electricity 
consumption costs. 

B. Energy Forecasting Tool 

In this case study, we used a dynamic energy forecasting 
tool that was developed by the GECAD research group [17]. 
The tool is a web-based application that extends a set of 
machine learning models to provide dynamic energy 
forecasting services. It provides interactive user interfaces to 
predict energy generation/consumption, build forecasting 
models, compare predictions, and fine-tune prediction 
models. The used tool utilizes five supervised machine 
learning estimators which include: Adaboost.R2 (Ada.) [18], 
Random Forest Regressor (RF) [19], Gradient Boosting 
Regressor (GBR) [20], Support Vector Regression (SVR) 
[21], and Linear Regression (LR) [22]. Furthermore, the tool 
maintains two common validation mechanisms: Train Test 
Split and Cross-validation. Services provided by this tool 
cover a set of training, predicting, and tuning features with 
various input and output capabilities. In Figure 1, we show a 
sample of the tool’s training interface, in which the user 
controls the configurations of 3 prediction models. This tool 
has been used previously in conjunction with other aspects 
that might benefit from the energy forecasting services. 
Mainly, in building trust models for Local Energy Markets 
[23] [24]. 

37Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-967-6

ENERGY 2022 : The Twelfth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

                            44 / 55



  

 

Figure 1. Energy Forecasting Tool: An example of the model training interface, it shows 3 models with their default parameters. 

C. Data Sets 

The historical data used in this case study combines the 
energy generation of three different photovoltaic solar 
modules installed and operated in Porto. The PV generation 
system under analysis is installed on the roof of a residential 
building consisting of 15 apartments of different typologies. 
There are 28 PV panels installed, each with a power of 400 
Wp, for a total installed capacity of 11.2 kW. This total PV 
power is distributed into three sets of producers, each with a 
3.68 kW installed PV power [25]. The data set represents the 
generated energy values in kW for each solar panel as well 
as the total generated values. It was internally collected and 
registered in a timestamp interval of 15 min and covers the 
whole year of 2019. 

Furthermore, to enrich the input data fields, we managed 
to retrieve detailed weather values of the exact location 
where the panels are installed. For this sake, we used a 
global weather API provided by World Weather Online [26]. 
Collected weather values include but are not limited to 
temperature, wind speed, direction, precipitation, humidity, 
visibility, pressure, cloud cover, etc. 

For the sake of transparently comparing the output 
predictions, the data set also includes forecasting results of 
two other prediction models. ANN and DNN were 
previously trained and used to forecast energy generation for 
the first week of September of the same year (2019) [27]. In 
this study, four forecasting performance metrics (Mean 
Absolute Error, Symmetric Mean Absolute Percentage Error, 
Weighted Absolute Percentage Error, and Normalized Root 
Mean Square Error) were used to evaluate the accuracy of 
both forecasting algorithms. The obtained forecasting results 
showed that both techniques had similar prediction behavior, 
however, and based on the obtained forecasting evaluation 
errors, the ANN presented a slightly better prediction 
performance in comparison with DNN. 

D. Methods 

We utilized the energy forecasting tool to perform 
multiple experiments. Primarily, we made use of 3 main 
services: a) model training with default parameters, to train 
models using a historical data set and generate downloadable 
trained models, b) bulk prediction, to use trained models to 
predict multiple future records, and c) model tuning, to find 
the best parameters for each model considering specific input 
data fields. Moreover, as per a case study undertaken using 
the same tool [17], ensemble learning methods had proven 
the most accurate results in energy forecasting in similar 
conditions. Consequently, we used the three ensemble 
learning methods: Ada., RF, and GBR. To validate trained 
models, we preferred to opt for the cross-validation 
mechanism over the train test split. Although this validation 
method is more expensive in terms of computational cost, it 
brings better and more reliable accuracy values. 

As input, the tool accepts three categories of data fields: 
contextual fields, weather attributes, and preceding 
consumption/generation values. In this case study, we 
consider all available contextual fields, weather fields that 
might affect the solar reflection on panels and, thus, affect 
the generated energy, and up to 10 previous generation 
values (see Table I). 

TABLE I. INPUT DATA FIELDS CONSIDERED IN THE CASE STUDY 

Input Categories Input Fields 

Contextual values 
Minute (min), Hour (h), Day of the week (dw), Day of 

the month (dm), Month (m), Year (y). 

Weather attributes 
Temperature (temp), Wind speed (ws), Cloud cover 

(cc), Visibility (vis), Precipitation (p). 

Previous values 

Up to 10 previous generations, where (vt-1) refers to the 

1st previously generated value, (vt-2) refers to the 2nd 
previously generated value, and (vt-n) refers to the nth 

previously generated value. 
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For this case study, we used the tool to perform 14 
training experiments for each model (Ada., RF, and GBR). 
Each experiment examines a different combination of input 
fields (see Table II). To obtain the most reliable results, we 
developed our case study as the following: first, we trained 
the three models using only contextual fields (Exp1). Then, 
we combined both contextual and weather fields to check the 
expected influence of weather conditions (Exp2). After that, 
to adjust the best number of previous values to be 
incorporated, we combined contextual fields with 1, 2, 3, and 
up to 10 previous values (Exp3-12). Afterward, we combined 
the contextual fields, weather data, and the best number of 
previous values for each model (Exp13). Finally, we used the 
tuning module to fine-tune the resulted models and perform 
the final experiment (Exp14). 

That said, for each experiment, we trained the three 
ensemble models using the total generated energy records, 
from January until August 2019. Then, we validated the 
trained models using the cross-validation technique and 
registered the averaged prediction accuracy for each 
model/experiment. Finally, to compare results with the 
previously conducted ANN and DNN methods, we used the 
bulk prediction service to predict energy generation during 
the 1st week of September of the same year. Nevertheless, 
although all models can be generalized to cover multiple 
years energy records, we had to consider 8 months to 
compare results with ANN and DNN predictions. 

TABLE II. TRAINING EXPERIMENTS, INCLUDING INPUT DATA FIELDS FOR 

EACH ONE 

Exp. Input Fields 

Exp1 Contextual (min, h, dw, dm, m, y) 

Exp2 Contextual (min, h, dw, dm, m, y), Weather (temp, ws, cc, vis, p) 

Exp3 Contextual (min, h, dw, dm, m, y), Previous Values (vt-1) 

Exp4 Contextual (min, h, dw, dm, m, y), Previous Values (vt-1, vt-2) 

Exp5 Contextual (min, h, dw, dm, m, y), Previous Values (vt-1, vt-2, vt-3) 

Exp6 Contextual (min, h, dw, dm, m, y), Previous Values (vt-1, vt-2, vt-3, 
vt-4) 

Exp7 Contextual (min, h, dw, dm, m, y), Previous Values (vt-1, vt-2, vt-3, 
vt-4, vt-5) 

Exp8 Contextual (min, h, dw, dm, m, y), Previous Values (vt-1, vt-2, vt-3, 

vt-4, vt-5, vt-6) 

Exp9 Contextual (min, h, dw, dm, m, y), Previous Values (vt-1, vt-2, vt-3, 

vt-4, vt-5, vt-6, vt-7) 

Exp10 Contextual (min, h, dw, dm, m, y), Previous Values (vt-1, vt-2, vt-3, 

vt-4, vt-5, vt-6, vt-7, vt-8) 

Exp11 Contextual (min, h, dw, dm, m, y), Previous Values (vt-1, vt-2, vt-3, 
vt-4, vt-5, vt-6, vt-7, vt-8, vt-9) 

Exp12 Contextual (min, h, dw, dm, m, y), Previous Values (vt-1, vt-2, vt-3, 
vt-4, vt-5, vt-6, vt-7, vt-8, vt-9, vt-10) 

Exp13 Contextual (min, h, dw, dm, m, y), Weather (temp, ws, cc, vis, p), 

Previous Values (Best of Exp3-12 for each model)  

Exp14 Same as Exp13 

 

 

E. Results and Discussion 

In Table III, we summarize the prediction accuracy R2 (1) 
achieved by each model in all performed experiments. 

 

TABLE III. PREDICTION ACCURACY FOR EACH MODEL IN ALL EXPERIMENTS 

Exp Description Ada. R2 FR R2 GBR R2 

Exp1 Only contextual fields 93.6 % 95.2 % 83.7 % 

Exp2 Contextual + Weather 94.5 % 95.8 % 86.5 % 

Exp3 Contextual + 1 previous value 95.9 % 96 % 96.2 % 

Exp4 Contextual + 2 previous values 96 % 96.1 % 96.3 % 

Exp5 Contextual + 3 previous values 96 % 96.2 % 96.3 % 

Exp6 Contextual + 4 previous values 96 % 96.3 % 96.4 % 

Exp7 Contextual + 5 previous values 96.1 % 96.3 % 96.3 % 

Exp8 Contextual + 6 previous values 96.1 % 96.3 % 96.3 % 

Exp9 Contextual + 7 previous values 96.1 % 96.3 % 96.3 % 

Exp10 Contextual + 8 previous values 96.2 % 96.3 % 96.3 % 

Exp11 Contextual + 9 previous values 96.1 % 96.3 % 96.3 % 

Exp12 Contextual + 10 previous values 96.2 % 96.3 % 96.3 % 

Exp13 Contextual + Best previous values* 

+ Weather 

96.2 % 96.3 % 96.4 % 

Exp14 Exp13 TUNED 96.3 % 96.4 % 96.4 % 
* For Ada.: 8 (or 10) previous values, For RF: 4 (or 5-10) previous values, For GBR: 4 

previous values 

Looking into the detailed results, all models could obtain 
high accuracy in almost all experiments. This might be 
explained in terms of the consistent generation of the 
considered solar panels. Even when using only contextual 
fields (Exp1), we get high accuracy with a minimum of 
83.7% for the GBR model. Such results clearly indicate the 
significant influence of contextual fields on energy 
predictions. Furthermore, we also notice the enhancement 
that weather fields achieved when combined with contextual 
data (Exp2). Nevertheless, as weather conditions highly 
affect energy generation using solar panels, we still expect 
greater impacts of weather fields in different circumstances. 
For example, with a lower base contextual accuracy when 
dealing with less or inconsistent generation values. 

On the other hand, the results also show an increasing 
accuracy upon considering preceding values (Exp3-12), 
especially in the very early stage when we started to combine 
the latest generation values (Exp3-6). These experiments also 
indicate that the more previous values to consider do not 
necessarily mean higher prediction accuracy. As we can 
notice a phase of fluctuation for each model after reaching a 
specific number of previous values. Nevertheless, with a 15-
min interval data log, 10 previous values cover 2:30 hours. 
Consequently, we also expect a downgrade in prediction 
accuracies when combining a longer prior period which 
might involve much divergence in the actual generated 
energy. Finally, as expected, combining all input fields 
(Exp13) as well as utilizing tuned models (Exp14) were 
eventually able to bring the best accurate results. 
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Figure 2. Actual generation and predictions for the 1st week of September, 2019. 

Regarding the forecasting models, we could notice, in 

general, not much difference in the performance of the 

three considered models. However, we could see 

relatively better results of Adaboost and Random Forest 

in the first two experiments (Exp1,2). While the 

performance of all models turned too close during the 

later observations. 

F. Comparison 

As mentioned earlier, to better assess our prediction 
models, we used the three models resulting from Exp14 to 
predict the energy generation values during the first week 
of September 2019. We also compared the results with 
previously undertaken predictions for the same period 
using ANN and DNN [27]. All predictions were conducted 
in a time interval of 15 min. Figure 2 shows the prediction 
results and the actual generation during the first week of 
September for all considered models. Furthermore, Table 
IV presents the accuracy (R2 score) for the predicted 
generation values during the considered period. 

TABLE IV. PREDICTION ACCURACY FOR EACH MODEL FOR THE 1ST WEEK 

OF SEPTEMBER. 2019 

Prediction 

Model 

Artificial 

Neural 

Networks 

Deep 

Neural 

Networks 

Adaboost Random 

Forest 

Gradient 

Boosting 

Regressor 

R2 Score 97.9 % 96.1 % 99.6 % 99.7 % 99.7 

 
It is clearly noticeable that the predictions of the three 

ensemble learning methods are almost identical to the 
actual generation along the whole observed period. This is 
reasonable in terms of the higher accuracy of the trained 
models obtained during the case study. Likewise, we can 
observe some deviation in the predictions of the other two 
ANN and DNN models from the actual generation, 
especially during the day hours when there is actual energy 
generation. We could also notice that, although ANN and 

DNN predictions were consistently low in comparison to 
the actual generation, they could relatively reflect the 
overall trend of the generated values.  

IV. CONCLUSION 

This research is a contribution to the efforts to obtain 
accurate energy forecasting from photovoltaic panels. In 
this regard, we conducted a case study to predict the 
energy production from 3 PV modules installed and 
running in Porto. The used dataset combines historical 
records of weather data, time-contextual fields, and 
previous generation values. We used a dynamic 
forecasting tool to undergo various prediction experiments 
using 3 ensemble learning models (Adaboost, Random 
Forest, and Gradient Boosting Regressor). Obtained results 
are then compared with the results of two ANN and DNN 
based models. The results indicate relatively high accuracy 
of the ensemble approaches in almost all experiments. 
Which was also much better than the accuracy of the 
previously conducted neural networks-based methods. 

This case study shows interesting new results. 
However, obtaining high accuracy in forecasting energy 
generation in specific conditions doesn’t eliminate the 
investigation process. Each forecasting problem has its 
own circumstances that are not necessarily the same in 
another environment. Upcoming challenges in the 
production of renewable energy always require better 
forecasting models. Future work might imply performing 
further experiments at multiple scales, utilizing a wider 
range of combinations between input fields, as well as 
investigating the effects of solar radiation when combined 
with other fields already considered in this research. The 
ultimate goal for such experiments would be to obtain as 
accurate results as possible within specific prediction 
conditions. 

 

40Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-967-6

ENERGY 2022 : The Twelfth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

                            47 / 55



ACKNOWLEDGMENT 

This work has received funding from FEDER Funds 
through COMPETE program and from National Funds 
through FCT under the project SPET–PTDC/EEI-
EEE/029165/2017. This work has also received funding 
from projects BENEFICE Project - PTDC/EEI-
EEE/29070/2017, UIDB/00760/2020, and 
UIDP/00760/2020. 

REFERENCES 

[1] A. J. Chapman, B. C. McLellan, and T. Tezuka, 

“Prioritizing mitigation efforts considering co-benefits, 

equity and energy justice: Fossil fuel to renewable energy 

transition pathways,” Appl. Energy, vol. 219, pp. 187–198, 

2018. 

[2] A. Qazi et al., “Towards sustainable energy: a systematic 

review of renewable energy sources, technologies, and 

public opinions,” IEEE access, vol. 7, pp. 63837–63851, 

2019. 

[3] C. Sweeney, R. J. Bessa, J. Browell, and P. Pinson, “The 

future of forecasting for renewable energy,” Wiley 

Interdiscip. Rev. Energy Environ., vol. 9, no. 2, p. e365, 

2020. 

[4] R. Blaga et al., “A current perspective on the accuracy of 

incoming solar energy forecasting,” Prog. energy 

Combust. Sci., vol. 70, pp. 119–144, 2019. 

[5] J. Huertas Tato and M. Centeno Brito, “Using smart 

persistence and random forests to predict photovoltaic 

energy production,” Energies, vol. 12, no. 1, p. 100, 2019. 

[6] M. H. Alomari, J. Adeeb, and O. Younis, “Solar 

photovoltaic power forecasting in jordan using artificial 

neural networks,” Int. J. Electr. Comput. Eng., vol. 8, no. 

1, p. 497, 2018. 

[7] A. Aliberti et al., “Forecasting Short-term Solar Radiation 

for Photovoltaic Energy Predictions.,” in 

SMARTGREENS, 2018, pp. 44–53. 

[8] L. Bottaccioli, E. Patti, E. Macii, and A. Acquaviva, “GIS-

based software infrastructure to model PV generation in 

fine-grained spatio-temporal domain,” IEEE Syst. J., vol. 

12, no. 3, pp. 2832–2841, 2017. 

[9] D. Cannizzaro et al., “Solar radiation forecasting based on 

convolutional neural network and ensemble learning,” 

Expert Syst. Appl., vol. 181, p. 115167, 2021. 

[10] A. Gellert, A. Florea, U. Fiore, F. Palmieri, and P. Zanetti, 

“A study on forecasting electricity production and 

consumption in smart cities and factories,” Int. J. Inf. 

Manage., vol. 49, pp. 546–556, 2019. 

[11] A. Gellert, U. Fiore, A. Florea, R. Chis, and F. Palmieri, 

“Forecasting Electricity Consumption and Production in 

Smart Homes through Statistical Methods,” Sustain. Cities 

Soc., vol. 76, p. 103426, 2022. 

[12] J. Segarra-Tamarit, E. Pérez, E. Moya, P. Ayuso, and H. 

Beltran, “Deep learning-based forecasting of aggregated 

CSP production,” Math. Comput. Simul., vol. 184, pp. 

306–318, 2021. 

[13] A. Ozbek, A. Yildirim, and M. Bilgili, “Deep learning 

approach for one-hour ahead forecasting of energy 

production in a solar-PV plant,” Energy Sources, Part A 

Recover. Util. Environ. Eff., pp. 1–16, 2021. 

[14] D. Anagnostos et al., “A method for detailed, short-term 

energy yield forecasting of photovoltaic installations,” 

Renew. Energy, vol. 130, pp. 122–129, 2019. 

[15] A. Jakoplić, D. Franković, V. Kirinčić, and T. Plavšić, 

“Benefits of short-term photovoltaic power production 

forecasting to the power system,” Optim. Eng., vol. 22, no. 

1, pp. 9–27, 2021. 

[16] G. Dec, G. Drałus, D. Mazur, and B. Kwiatkowski, 

“Forecasting Models of Daily Energy Generation by PV 

Panels Using Fuzzy Logic,” Energies, vol. 14, no. 6, p. 

1676, 2021. 

[17] S. Wannous, I. Praça, and R. Andrade, “Intelligence as a 

Service: A Tool for Energy Forecasting and Security 

Awareness,” in Practical Applications of Agents and 

Multi-Agent Systems, 2021, pp. 176–186. 

[18] H. Drucker, “Improving regressors using boosting 

techniques,” in ICML, 1997, vol. 97, pp. 107–115. 

[19] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 

1, pp. 5–32, 2001. 

[20] J. H. Friedman, “Greedy function approximation: a 

gradient boosting machine,” Ann. Stat., pp. 1189–1232, 

2001. 

[21] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for 

support vector machines,” ACM Trans. Intell. Syst. 

Technol., vol. 2, no. 3, pp. 1–27, 2011. 

[22] G. D. Hutcheson, “Ordinary least-squares regression,” L. 

Moutinho GD Hutcheson, SAGE Dict. Quant. Manag. 

Res., pp. 224–228, 2011. 

[23] R. Andrade, I. Praça, S. Wannous, and S. Ramos, “The 

Impact of Attacks in LEM and Prevention Measures Based 

on Forecasting and Trust Models,” Processes, vol. 9, no. 

2, p. 314, 2021. 

[24] R. Andrade, S. Wannous, T. Pinto, and I. Praça, 

“Extending a Trust model for Energy Trading with Cyber-

Attack Detection,” Electronics, vol. 10, no. 16, p. 1975, 

2021. 

[25] Z. Foroozandeh, S. Ramos, J. Soares, Z. Vale, and M. 

Dias, “Single contract power optimization: A novel 

business model for smart buildings using intelligent 

energy management,” Int. J. Electr. Power \& Energy 

Syst., vol. 135, p. 107534, 2022. 

[26] “World Weather Online.” 

https://www.worldweatheronline.com/ [retrieved: March, 

2022]. 

[27] I. Tavares et al., “Comparison of PV Power Generation 

Forecasting in a Residential Building using ANN and 

DNN.” CPES 2022, 11th Symposium on Control of Power 

and Energy Systems, June 21-23, 2022, in press. 

  

41Copyright (c) IARIA, 2022.     ISBN:  978-1-61208-967-6

ENERGY 2022 : The Twelfth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

                            48 / 55



Energy Efficiency of Parallel File Systems on an ARM Cluster

Timm Leon Erxleben∗, Kira Duwe ∗, Jens Saak †, Martin Köhler † and Michael Kuhn ∗
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Abstract—Parallel distributed file systems are typically run on
dedicated storage servers that clients connect to via the network.
Regular x86 servers provide high computational power, often
not required for storage management and handling I/O requests.
Therefore, storage servers often use low core counts but still
have a relatively high idle power consumption. This leads to high
energy consumption, even for mostly idle file systems. Advanced
Reduced Instruction Set Computer Machines (ARM) systems are
very energy-efficient but still provide adequate performance for
file system use cases. Leveraging this fact, we built an ARM-based
storage system, on which we tested both CephFS and OrangeFS.
We compare the performance and energy efficiency of x86 and
ARM systems using several metrics. Results show that while
our ARM-based approach currently provides less throughput per
Watt for reads, it achieves an approximately 121 % higher write
efficiency when compared to a traditional x86 Ceph cluster.

Keywords—energy efficiency, CephFS, OrangeFS, x86, ARM

I. INTRODUCTION

Storage systems are scaled up steadily to satisfy increasing
storage demands, leading to growing energy consumption [1].
High-Performance Computing (HPC) storage systems are cur-
rently built from regular x86 servers, whose computing power
is not fully utilized by storage applications. Traditional x86
servers feature a relatively high power consumption even when
idle: It is not uncommon to measure idle consumption of
more than 100 W for just the processor, main memory, and
mainboard. In comparison, low-power ARM computers are
often required to stay below 5–10 W maximum consumption
by design. To offset the high idle consumption of x86 servers,
they have to be equipped with large amounts of storage
devices, such as hard disk drives (HDDs) and solid-state disk
(SSDs). However, depending on the used network intercon-
nect, only a limited number of devices can be saturated.
For instance, on a 100 Gbit/s network, two to three NVMe
SSDs are enough to provide the necessary throughput. This
proportion gets even worse on slower networks.

Therefore, we evaluate the use of low-energy ARM-based
single-board computers as a replacement for traditional servers
in storage systems. To assess the feasibility of an ARM-based
storage system, we evaluated the ARM cluster using CephFS
and OrangeFS. Furthermore, we compared it to a productive
CephFS cluster running at the computer science faculty of the
Otto von Guericke University, using different metrics.

The contributions of our paper are:

1) We propose to apply the energy-delay product, typically
used to evaluate the energy efficiency of computations,
as a metric for storage systems as well to measure energy
efficiency while still accounting for the performance
needed by HPC applications.

2) We show that low-power ARM-based storage clusters
can achieve throughput efficiencies comparable to or
even exceeding traditional x86 systems.

The remainder of the paper is organized as follows. In
section II, CephFS and OrangeFS are briefly described fol-
lowed by a summary of related works. Section III describes
the benchmarks which were done and discusses metrics that
can be derived from the measurement data. Next, in section IV
both cluster setups, ARM and x86, are described, followed by
the presentation of the results. Results and setups are discussed
in section V. Finally, section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

This section introduces background on used technologies,
such as Ceph and OrangeFS, and related work.

a) Ceph: Ceph is a popular, clustered object store, which
is highly scalable due to its Controlled Replication Under
Scalable Hashing (CRUSH) placement algorithm, which en-
ables all participating services, that can access the cluster
map to locate and place objects [2]. A typical Ceph cluster
is made of Object Storage Devices (OSDs), monitoring and
management services. All components may be redundant to
enable automatic failover. Apart from access through the li-
brary librados, many interfaces might be used. The POSIX
access via CephFS, realized by additional Metadata Services
(MDSs) interacting with Ceph storage pools, is particularly
interesting for HPC systems. CephFS has a rich feature set,
including replication, multiple storage pools, file systems,
snapshots, and high control over data placement [3].

b) OrangeFS: OrangeFS is a traditional parallel file
system designed for HPC [4]. Only one type of server is
needed, which can handle both data and metadata, though
it can be configured to handle only one type. In OrangeFS,
data is striped according to a distribution function that can
be specified for each file. The default is to start at a random
server and use all servers in a round-robin fashion with a stripe
size of 64 KiB. Unlike Ceph, which uses its own object store
Bluestore [5], OrangeFS relies on a separate local file system.
As of the current version, 2.9.8, there are no redundancy
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features for data that is not marked as read-only, though this
is planned for OrangeFS version 3 [6]. Many interfaces may
be used to interact with OrangeFS. Most popular choices
include access via the OrangeFS Linux kernel module or direct
access using the library libpvfs2. Noteworthy is the direct
Message Passing Interface I/O (MPI-IO) support by using
ROMIO’s [7] Abstract-Device Interface for I/O (ADIO), for
which OrangeFS provides an implementation [8].

c) State of the Art and Related Work: There have been
various endeavors to measure and increase the energy effi-
ciency of large systems as energy consumption is becoming
a possible constraint on HPC systems in the future. Many
different aspects have to be considered, ranging from the
system’s energy efficiency to the scalability of the applications.
As ARM processors aim to offer better energy efficiency,
they have been heavily studied across the years [9–11]. De-
ployments, such as Fugaku [12], show that they can provide
competitive performance and even work in exascale systems.
Earlier research on systems like Tibidabo at Barcelona Super-
computing Center indicated that single instruction multiple,
data stream (SIMD) instructions limited to single precision
were a severe bottleneck for the performance [10][11][13].

Energy efficiency is also a relevant aspect in distributed
systems, as examined for Peer-to-Peer systems. A survey
by Brienza et al. showed that often simple energy models
were used, disregarding other hardware components like in-
termediate routers [14]. An early approach, and still very
prominent solution to energy savings in storage, is sending
idle peers to sleep [15]. However, it introduces problems when
the load varies. To have systems benefit from the increased
energy efficiency, in the long run, applications have to be
considered as well. The optimization towards energy efficiency
comes indeed with its challenges for applications [13][16–18].
Reducing the performance of a single core in order to cap
the power consumption means that scalability is of increased
importance [13].

Gudu and Hardt evaluated the use of an ARM-based Ceph
cluster, made of Cubieboards, as a replacement for tradi-
tional network-attached storage (NAS) controllers [19]. They
measured the throughput of their cluster via Ceph’s Reliable
Autonomic Distributed Object store (RADOS) and RADOS
Block Device (RBD) access and found that the Cubieboard
cluster is a viable alternative to NAS controllers. However,
the limited network capabilities were the bottleneck of the
system.

Apart from using low-power hardware [20], there have been
efforts to reduce the power consumption of existing HPC
storage clusters [21][ 22]. For example, it was proposed to
assign subsets of storage clusters to specific users and only
run them at full power when said user uses the compute-
cluster [23].

Considering that local file systems are often part of the
storage stack, their influence on energy efficiency and per-
formance were analyzed in [24] using simulated workloads of
web, database, and file servers. It was found that the choice of
file system and its configuration greatly influence performance

and energy efficiency. However, no file system performed best
for all workloads.

In contrast to Gudu and Hardt, we measure data throughput
at the CephFS level and evaluate ARM-based clusters as a
replacement for HPC storage clusters.

III. BENCHMARK AND METRICS

We measured the performance of the clusters for sequential,
independent accesses from one to four clients using IOR v3.3
[25] with the POSIX backend, individual files per client and
five iterations for each data point. The transfer size was set to
4 MiB, which corresponds to the default stripe size of CephFS
and is aligned to the stripe size of 64 KiB on OrangeFS. On the
x86 Ceph cluster, 96 GiB were written and read. The amount
of data was reduced to 36 GiB for the ARM setup to keep
run-times manageable.

For every iteration, the power consumption of the storage
cluster was measured using the methods as described in
Section IV. As a result, several energy efficiency metrics
can be derived from the collected data. However, choosing
a specific metric is not trivial, as there is no single optimal
metric indicating energy efficiency [26].

We decided to compare the results obtained by using the
energy-delay product (EDP) [27], throughput per Watt and
capacity per Watt [28].

Throughput per Watt is a commonly used metric for eval-
uating and comparing storage energy efficiency. The trans-
ferred data may differ between systems, so it is well suited
to compare systems that greatly vary in their performance.
However, this metric alone is insufficient when analyzing and
optimizing storage systems, as no insight into performance is
given. Geveler et al. [16] found that for simulations, in some
cases, energy savings might lead to performance drops. In such
cases, they motivated using the EDP as a fused metric describ-
ing energy efficiency and performance at once. The EDP is
computed as the product of the total energy E consumed while
performing a task and the time t needed to complete the task
(Equation (1)). Depending on the performance requirements,
the time may be weighted [29]. As we want to focus on energy
consumption, we set w = 1.

EDP = E · tw, w ∈ N (1)

Though the energy-delay product was initially developed for
hardware design, it is also useful when evaluating software, as
done by Georgiou et al. [30]. Nevertheless, the amount of work
needs to stay constant to compare different systems, so only
the two ARM setups are compared using the EDP. Because
its unit is hard to interpret and even changes with different
weights, we normalized the EDP using the lowest value per
comparison.

The third metric considered measures the capacity of the
storage system per Watt. Because of growing storage demands
and, therefore, growing storage systems, optimizing systems
regarding this metric is critical for the cost-efficient and
environmentally friendly operation of data centers.
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IV. EVALUATION

In this section, the hardware and software setup is described,
followed by an analysis of the respective clusters’ theoretical
peak performance and the presentation of the results.

a) Reference Cluster: The reference cluster is a four-
node subset of the productive Ceph cluster running at the
computer science faculty at the Otto von Guericke University
using Ceph 16.2.7 deployed as containers. Three nodes of the
subset are part of the Supermicro AS 2124BT-HNTR [31]
multi-node system, each of which is equipped with four Intel
P4510 NVMe SSDs [32]. The fourth server is a Gigabyte
R282-Z94 [33] equipped with one Intel P4510 NVMe SSD and
eight Samsung MZQL23T8HCJS-00A07 NVMe SSDs [34].
All nodes are connected by 100 Gbit Ethernet, with a separate
100 Gbit network for communication between Ceph OSDs.
Though Ceph does not exclusively use the nodes, they are
idle most of the time. The average idle power consumption
of the four nodes was measured to be 699.3 W. This power
measurement was done on a Sunday since the servers are
mostly idle on the weekend. It lasted for one hour, starting at
14:00, and had a standard deviation of 13.98 W. While running,
the benchmark power consumption peaked at 1,057 W. The
existing monitoring solution, gathering power samples over
IPMI every 15 seconds, was used to collect power samples.

For each SSD, two Ceph OSDs are deployed. The Ceph
monitor and a standby metadata service are located at the
Gigabyte server, while the active metadata service runs on
one of the Supermicro servers. Ceph pools use the default
replication settings and, therefore, produce three replicas of
the data and return to the client after two replicas are written.
The clients used for the benchmark were four servers equipped
with an AMD Epyc 7443, with 24 cores at 2.85 GHz, 128 GB
RAM, and 100 Gbit Ethernet.

b) ARM cluster nodes: The low-power cluster is built
of six Odroid HC4 nodes featuring the Amlogic S905X3
SoC, with four cores at 1.8 GHz, 4 GiB DDR4 RAM, two
SATA-3 ports, and a 1 Gbit NIC [35]. We used Armbian
Buster [36], and Ceph version 14.2.21, which is available in
the Buster backports repository. We built OrangeFS version
2.9.8 with GCC version 8.3.0 and LMDB 0.9.22 from the
Buster repository. Four of the nodes are equipped with two
1 TB WD Black HDDs [37] and one is equipped with two
512 GB Samsung V-NAND SSD 860 PRO SSDs [38]. All
nodes are connected to a Netgear GS110EMX switch [39].

One OSD is deployed for each storage device. The node
which is equipped with SSDs additionally runs one MDS. The
Ceph monitor and management daemon run on the sixth node,
which has no disks attached. The two storage pools needed
for CephFS use different CRUSH rules to distribute objects.
While the data pool uses all HDDs and manages replicas on the
node level, the metadata pool uses the two SSDs and manages
replicas on the OSD level. Both pools are configured to use 64
placement groups. Ceph is configured to produce two replicas
and return immediately after one replica is written, allowing
a fairer comparison with OrangeFS.

As explained above, OrangeFS has only a single type of
daemon, which is running on all nodes with disks. Metadata
is stored by the daemon, which is deployed on the SSD node,
while the other nodes store the data. As OrangeFS offers no
data redundancy for data that is not read-only, ZFS version
2.0.3 was used to mirror disks locally.

The complete cluster, including the switch, is powered by an
MW HRP450-15 PSU [40] and consumes 56.36 W, measured
over one hour with a standard deviation of 0.14 W, in idle state,
with HDDs spun up. For comparison with the reference cluster,
which does not include the switch in the power measurements,
we subtracted the average idle power of the switch, which
was measured to be 15.46 W, with a standard deviation of
1.13 W over one hour. The adjusted idle power consumption
of the ARM cluster, therefore, is 40.9 W. The highest peak in
power consumption measured while running the benchmark
was 58.9 W.

For power measurements, the ZES Zimmer LMG 450 [41]
is used to measure the power consumption of the PSU for
the whole cluster. The power meter is connected to one
of the clients via USB, which collects samples with 20 Hz.
The clients used to perform the benchmark were four Dell
Precision 3650 Tower workstations [42] each with an Intel
Core i7-11700 CPU with 8 cores at 2.5 GHz, 8 GB RAM,
and a 1 Gbit NIC. They were connected via the network
infrastructure of the Max Planck Institute Magdeburg.

c) Theoretical Peak Performance: As can be seen in
Table I the theoretical peak performance (TPP) of the ARM
cluster is limited by the network throughput of each node
which is not as high as the aggregated throughput of all storage
devices of the node. As no measurements could be made in the
productive reference cluster, the maximum throughput of the
components is taken from the respective datasheets. Adding
together the TPP of the two-node types, the reference cluster’s
TPP is 47.3 GB/s.

This analysis neglects metadata operations which are rea-
sonably assumed not to limit the data throughput of the
cluster for a few files in use. Furthermore, the table only
presents the performance for writes. However, as the network
already limits peak performance for the ARM cluster and
aggregated throughput of the SSDs in Supermicro nodes of
the reference cluster is close to the network speed, the same
applies approximately to reads.

d) Results: The results of the performance efficiency
metrics are shown in Figure 1. Each value of the throughput
per Watt metric is computed as the mean of five samples, each
divided by the mean power consumption of their iteration.
Error bars on the plots depict the standard deviation. As
explained above, the EDP (see Figure 2) is normalized by the
lowest value per comparison. The capacity metric was com-
puted using the idle power consumption of the clusters and the
raw storage capacity. The usable storage capacity depends on
the respective setup. The ARM cluster achieved 0.196 TB/W
and the reference cluster 0.073 TB/W, see Figure 3.
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TABLE I. THROUGHPUT OF COMPONENTS RELEVANT FOR THEORETICAL PEAK PERFORMANCE (TPP) THROUGHPUT

Cluster Network Throughput Storage Devices Storage Devices per Node # Nodes TPP
ARM 124.1 MB/s 115 MB/s 2 4 496.4 MB/s

Supermicro 12.5 GB/s 2.9 GB/s 4 3 34.8 GB/s
Gigabyte 12.5 GB/s 2.9 GB/s / 4 GB/s 1+8 1 12.5 GB/s
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V. DISCUSSION

All results need to be seen in relation to the respective
systems’ cost, as the ARM cluster nodes and disks cost only
about C 1,350, while the reference cluster nodes and disks
cost around C 40,000. In addition, the reference cluster only
uses NVMe SSDs, while the ARM cluster uses HDDs for
data object storage. Due to the low sampling rate of the
power measurements for the reference cluster, some spikes
in the energy consumption are possibly missed, resulting in
an underestimation. In contrast, power measurements on the
ARM cluster can be expected to overestimate the actual power

TABLE II. MAXIMUM THROUGHPUT ACHIEVED IN MIB/S AND PERCENT
OF TPP.

System Write / % TPP Read / % TPP
ARM - CephFS 95.22 / 20.11 172.12 / 36.36

ARM - OrangeFS 289.23 / 61.10 296.82 / 62.70
Reference 2322.47 / 5.15 5705.0 / 12.65

0.00 0.05 0.10 0.15 0.20
TB/W

Reference
ARM

Figure 3. Storage capacity per Watt

consumption of the nodes and disks, as only the average idle
power consumption of the switch is subtracted.

During previous experiments on a BananaPi M1 single-
board computer cluster, the deployment of traditional parallel
file systems proved difficult. Tested file systems were CephFS,
OrangeFS and BeeGFS. Both CephFS and BeeGFS needed
small patches to run on the unusual setup. OrangeFS could
not run the client on ARM 32-bit using the upstream kernel
module. Additionally, we observed low read throughput if
no direct I/O was used. For four clients reading a 2 GiB
file each, only 12.41 MiB/s could be achieved. Consequently,
measurements on OrangeFS are done with direct I/O.

Our prototype cannot compete with the throughput of the
reference cluster. For real world HPC applications, more
storage nodes need to be added to achieve higher throughput.
This cluster was built as a proof-of-concept for throughput
efficiency and to gain insight in ARM single-board computer
storage clusters.

The different read and write sizes on both setups were
chosen to achieve reasonable run-times of the benchmarks on
both settings. Neither throughput nor throughput efficiency are
influenced by the different amounts of transferred data if run-
times are long enough.

Both clusters show good scaling behavior in all metrics.
Exceptions occur for writes. On the reference cluster, one
client achieves close to the observed maximum performance,
and no further improvement can be seen when adding more
clients. In addition, both Ceph-based systems only reached a
fraction of the theoretical peak performance, as can be seen
in Table II.

For the ARM cluster, this is most likely related to data
replication over the public network. Ceph OSDs reported slow
operation warnings due to waiting times for sub-operations.
As pointed out by Just [43], the Ceph OSD service utilizes
many threads, leading to performance issues for a few cores
as context switches introduce additional overhead. Ceph’s
behaviour is strongly influenced by the number of placement
groups per OSD [3]. While a higher ratio of placement groups
to OSDs ensures a balanced data distribution, management of
each placement group consumes memory and CPU time. To
minimize overhead we set both pools to 64 placement groups.
The number of placement groups per OSD also influences
recovery behavior for larger clusters as more placement groups
need to be replicated in case of a server crash. Further
experiments are needed to evaluate different placement group
counts and placement group to OSD ratios for productive
usage of Ceph on large ARM clusters.

Nevertheless, replication cannot explain the performance
drop for the reference cluster, which needs further investiga-
tion. One impacting factor for reads was that only one process
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per client was used, resulting in only one network stream,
insufficient to saturate the network. This decision was made
for comparability with the ARM cluster.

Both systems might be impacted by CephFS’ lazy
deletes [3], which are done asynchronously by an MDS and
probably overlapped with reads and writes, resulting in lower
throughput.

OrangeFS performs better than CephFS on ARM in nearly
all measurements. In contrast to CephFS, the OrangeFS dae-
mon is lightweight and does not use many threads. As a
consequence, context switches introduce less overhead on low
core counts. Because no replication is done between nodes,
less data needs to be transferred via the network, and the
management of replicas does not consume resources. The
downside is that faults of nodes can lead to data loss. Even
though performance is higher compared to CephFS, only about
60 % of the TPP (see Table II) can be achieved. This can
certainly be improved by tuning the stripe size of OrangeFS
and the record size of ZFS. Compared to the defaults of other
parallel file systems, OrangeFS has a low default stripe size of
64 KiB. Further benchmarks should be done to evaluate bigger
stripes which could result in larger disk accesses depending on
server-side cache size and cache times. As shown by traces of
MPI-IO calls and OrangeFS’ internal Trove layer, which does
the actual disk I/O, single client-side write calls can result in
multiple server-side Trove write calls [44]. Those should align
to ZFS record sizes, if possible, to minimize read-modify-write
cycles.

Compared to the other metrics, the EDP, as shown in
Figure 2 is a fused metric that measures performance and
energy efficiency at once. The use of this metric for tuning
storage systems enforces that balanced configurations are
found. Neither performance nor energy-saving efforts are
neglected in favor of the other one. Considering that OrangeFS
achieves both higher performance and energy efficiency, the
EDP of CephFS is up to 30 times higher.

In terms of capacity per Watt, the ARM cluster is superior
to the reference cluster, achieving 2.68 more TB per Watt.
The ARM cluster’s low idle power and maximum power
consumption allow for usage of the cluster in places or
situations where power restrictions apply, enabling the usage
as a mobile storage solution.

VI. CONCLUSION AND FUTURE WORK

We evaluated CephFS for HPC workloads on a productive
cluster based on traditional x86 servers and an ARM-based
low-power cluster. We compared the results in terms of
throughput and efficiency. The ARM cluster is able to provide
more than twice as much TB per Watt as the reference cluster
and can achieve comparable throughput efficiency. OrangeFS
has been shown to perform better than CephFS on the ARM
cluster. Due to the low idle power consumption and low power
peaks, ARM-based storage solutions are helpful in situations
where power restrictions apply, for example, when used as a
mobile storage cluster. In summary, we have shown that the
energy efficiency of storage solutions depends significantly on

both the used architecture and the file system. Lightweight
solutions can reduce energy consumption and thus cost, which
is becoming increasingly important due to the exponentially
growing volumes of data.

As a next step, we will evaluate the use of other parallel
file systems, such as MooseFS, and compare the results with
an x86 setup, which is more similar in terms of network and
disks compared to the ARM-based cluster. Throughput scaling
of the ARM cluster while adding more storage nodes needs
to be measured, so that the use in real world applications
can be evaluated. In addition to sequential throughput other
workloads, such as metadata-focused or mixed workloads, are
of interest.
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