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Abstract—Recent developments in energy metering technologies
have allowed electric load data to be more easily accessible.
Services that use this data to inform customers can raise
awareness about electricity consumption and provide sugges-
tions to encourage energy efficient behavior. Quantifying the
flexibility of the demand combined with accurate predictions
of the total electric load allow information services to provide
suggestions to end-users on how to reduce electric consumption
that are appliance and time specific. With the arrival of new
electric generation technologies, such as photovoltaic or wind
energy, demand side flexibility will play an important role in
the optimization of the future electric system. The accurate
prediction of demand flexibility at a building level, therefore
can contribute to the optimization of load scheduling. This
study presents an effective multi-step technique to forecast the
average hourly demand flexibility for a household, using neural
networks, unsupervised clustering techniques and an optimization
algorithm, combined with statistical studies. The model is mainly
based on the historical electric use of a building and does not
require significant computational capacity, thus making it widely
applicable and informative for residential customers, helping
them improve their behavior to be more energy efficient in the
future.

Keywords–non-intrusive load monitoring; demand flexibility;
long short-term memory; recurrent neural network.

I. INTRODUCTION

Worldwide, the energy sector is increasing the penetration
of decentralized renewable power generation systems and
therefore, reducing more traditional centralized fossil fuel
generation. This transition presents several challenges, such
as moving from a more stable and controllable power gener-
ation to a more volatile and less predictable one. Mitigating
this volatility and simultaneously decreasing the number of
conventional power generators makes it harder to balance out
supply and demand in order to ensure a stable and reliable
grid. In addition, emissions from buildings have risen in the
last few years, reaching an all-time high in 2018 [1], making
this transition even more challenging. In particular, households
in the European Union (EU) represented one-fourth of its total
final energy consumption [2]. This results from several factors,
including extreme weather conditions that increase energy
demand for heating and cooling and inefficient behavioral
habits that result in high energy use which is unnecessary for
the comfort of building inhabitants.

Accordingly, demand side management is important to
reduce overall emissions of buildings while guaranteeing end-
user comfort. Accurate forecasts of individual building electric
loads are crucial to effectively inform end-users about their

energy consumption habits. The willingness of end-users to
change their energy use habits can therefore provide demand
flexibility. Accurate predictions of the energy demand and
demand flexibility at a building level can help encourage
energy efficient behavior, stabilize the electricity grid and
reduce the electricity bill, while accelerating the sustainable
energy transition.

Recent developments in technology have allowed energy
consumption data to be more easily accessible. Several studies
show that real-time feedback about appliance specific enery
use in energy efficiency awareness programs results in the
highest energy savings [3]. In this regard, an awareness raising
project has been put in place by the company Eco CO2 in the
context of a public tender in France put forth by ADEME
related to a funding mechanism called Investissement d‘avenir
[4]. This awareness raising service called Tableu de Bord de
l’Habitat (TBH) Alliance aims to test different interfaces with
varying information about the electric load of each user to
encourage energy efficient behaviour. A digital tablet and a
website is available for users to observe their electric load data,
load profile analysis metrics and suggestions to reduce their
consumption. In this context, quantifying demand flexibility
combined with accurate predictions of the total electric load
can lead to services that provide action plans to reduce energy
consumption that are appliance and time specific.

Models used in building energy analysis can be grouped
into two categories: the top-down approach, and the bottom-
up approach [5]. Top-down approaches do not consider the
occupant behavior inside, and very little information is needed
about the building, they rely mostly on historical consumption
data. Bottom-up techniques take into consideration the physical
characteristics of a building and occupant behavior resulting
in more detailed models. The bottom up approaches require
a significant amount of detailed input information about each
building and often require complex models that require a high
computational time. Therefore, a pure bottom-up approach is
not feasible for the assessment of a large group of end-users
where detailed information is not available.

Many different top-down methods have been developed for
load forecasting, such as curve fitting using numerical methods
or machine learning algorithms [6]–[9]. Load forecasting is
a complex multi-step time series regression problem. Some
forecasting techniques, such as curve fitting using numerical
methods, do not provide accurate results as they often fail
to track seasonality and trends accurately. Machine learning
algorithms, such as neural networks are more effective at
integrating seasonal trends. In particular, they can be applied

1Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-788-7

ENERGY 2020 : The Tenth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

                             8 / 68



to energy consumption data to forecast electric load profiles. In
spite of new developments in literature and applied modeling,
this remains to be a difficult problem [6].

Traditional machine learning algorithms are often inef-
fective at predicting sequential data, where each data point
represents an observation at a certain point in time. The
algorithm assumes that the data is non-sequential, and that each
data point is independent of the others. As a result, the inputs
are analyzed independently, without the intrinsic temporal
dependencies. Consequently, some models are successful at
predicting a single value, but they fail to attain multi-step
forecasting. A benefit of neural network models over many
other machine learning techniques is that they are able to
compute multi-step predictions. This is useful in time series
forecasting as the forecasts are multiple future time steps. In
the field of building energy consumption forecasting methods,
Artificial Neural Networks (ANN) are the most commonly
used models for making load and energy use predictions [7].
ANN modeling techniques have been used to estimate energy
consumption in multiple studies [6], [8], [10], [11] using
Convolutional, Nonlinear Autoregressive and Feed Forward
Neural Networks.

Recurrent Neural Network (RNN) has been proven to be
a powerful tool for modeling sequential data as a regression
time-series problem. The RNN is able to remember the anal-
ysis that was done up to a given point by maintaining a
state, considering past observations. The state can be thought
of as the memory of the RNN, which captures information
about whats been previously calculated and is integrated into
each step in the training process. This allows RNNs to pro-
cess information sequentially and exhibit temporal behavior
for a time sequence while retaining information from the
past. Nonetheless, there are a few challenges in the effective
implementation of this algorithm. Recurrent networks are
computationally intensive since they keep track of past states.
Some other common issues that may appear during the training
phase are the vanishing or exploding gradient. As a result, the
simple Vanilla RNN is not useful for long sequences of data.
To solve these problems, a specific type of RNN that maintains
a strong gradient over many time steps is used, thus being able
to efficiently work with long sequences: the Long Short-Term
Memory (LSTM) model.

Once accurate predictions of the load profile are acquired,
it is necessary to then assess the flexibility of this future
load. Several strategies to quantify the demand response of
the residential sector to optimize electricity consumption are
present in literature. Furthermore, the individual flexibility of
different smart appliances has been quantified. Sancho Tomas
et al. [12] applied a time-inhomogeneous Markov process to
model energy variations over time for different appliances.
Laicane et al. [13] investigated the potential for demand side
management to reduce peak load. Load shifting algorithms
were developed by Dlamini and Cromieres [14] to achieve sig-
nificant household load reduction. DHulst et al. [15] presented
a demand response flexibility analysis based on measurements
from appliances within a large-scale implementation of smart
grid technologies in a distribution grids project. These studies
allow for the quantification of the flexibility of individual
appliances.

In this paper, a LSTM model is used to predict the load
profile of individual households. This predicted load profile

is then decomposed into specific load categories using a
combination of both top-down and bottom-up non-intrusive
analysis. The prediction of appliance specific load profiles
then allows for the forecast of total demand response potential
of a household and the associated flexibility. Firstly, limited
information about households is gathered through a question-
naire about the building energy systems and operational set
points. Then, an effective supervised learning algorithm is used
to forecast the energy consumption of the households, using
historical load profile data. Thirdly, in a top-down approach,
a decomposition algorithm is used to partition the predicted
load profile into two main categories: active (manual control of
appliances by inhabitants) and inactive (appliances that cycle
automatically and are not controlled directly by inhabitants)
loads. These categories are then further separated by applying
statistical studies of typical appliance uses to provide an
estimate of the expected energy use per device [16]. Finally,
an optimization algorithm is used to reconstruct a load forecast
and the average flexibility of the demand is determined for each
hour of the day. This multi-step hybrid approach is applied to
a case study of three residential clients and the results are
presented. The following sections of this paper are composed
of Section II describing the methodology of the algorithm
including Section II-A detailing the forecasting algorithm,
Section II-B describing the estimation of the load flexibility
and Section II-C presenting details on the evaluation of the
load predictions. It is followed by Section III, which describes
the case study where results are presented in Section IV and
final conclusion in Section V.

II. METHODOLOGY

The electric load data used for this study was collected
through the services offered by the company Eco CO2. Using
a LSTM model, total load profiles were forecasted for each
household. These forecasted load profiles are then analyzed
with a non-intrusive load decomposition technique. Addition-
ally, an optimization algorithm is used to reconstruct the
hourly load profile for each appliance type. Finally, the hourly
flexibility potential for each household is determined.

A. Forecasting
For the load forecasting, an LSTM model was used. The

RNN has two hidden layers: a 200-neuron LSTM layer, and a
100-neuron dense layer, implemented in python with the Ten-
sorFlow and Keras sequential model packages. To determine
the best choice of hyperparameters for the model, a sensitivity
test was performed on multiple hyperparameters of the LSTM
algorithm. Different architectures of LSTM networks were
compared, each one with different hyperparameters, reaching
an optimal compromise between forecasting accuracy and
low computational time. The number of time steps used as
input was ninput = 24 prior observations, and both the
input and output layers have the same number of time steps
(ninput = noutput).

The network was trained on 43 weeks of historical data in
each run. This 43 week period was choosen based on the max-
imum historical data available for all users. This was repeated
four times in order to obtain 1 full month of load predictions
for each user. The default number of epochs and batch size
for all analysis was nepochs = 400 and nbatch = N/25,
respectively, being N the total number of training samples.
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Finally, the rectifier (ReLU) was chosen as the activation
function, and ADAM (Adaptive Moment Estimation [17]) as
the optimizer.

B. Energy Flexibility
To determine the flexibility potential of a 24-hours period

for a household, a two-step approach was applied to the load
forecasts. The load category partitioning algorithm published
in [3] is applied to forecasted profiles obtained from the
LSTM model to classify the total weekly energy use into eight
categories listed in Table I. Active load periods are classified
as the time intervals with a relatively high value and high
variance.

TABLE I. HOUSEHOLD CHARACTERISTICS

Active load categories Inactive load categories
Cooking Domestic Hot Water (DHW)
Lighting Refrigeration
Multimedia active Multimedia standby
Washing Continuous Mandatory Ventilation (CMV)

The load categories classified as inactive were assumed
to be a constant percentage of the inactive load profile for
the whole week period. The load categories classified as
active required an optimization algorithm to assign the active
consumption to different time periods of the active load
profile. Therefore, identifying the expected times of use of
each category. This was achieved by minimizing the objective
function:

min

T∑
t

Xact,t ∗ pact − bact,t (1)

where Xact,t is the unknown binary variable matrix where
each column corresponds to a specific active load category time
series, bact,t is a column vector with the forecasted total energy
use of each category for the week, and pactis a column vector
with the average hourly power values for each category. These
last values were collected from statistical household energy
consumption studies [18]–[21]. In addition, four constraints
were defined, one per each active load category:

T∑
t

jt ≤ jtot (2)

where jt is the value of the active category j corresponding
to timestep t and jtot is the weekly energy use obtained in the
previous step, corresponding to the same category j of the
active consumption.

With this two-step approach, hourly load profiles were
obtained for each consumption category. The average hourly
flexibility potential was then determined. Flexibility depends
on both the total load value and the end use device or category.
For categories labeled as inactive, reducing consumption en-
tails changing the temperature set-point for different inactive
appliances or reducing the consumption of phantom loads.
Literature studies show that Domestic Hot Water (DHW)
demand response potential can be reduced 3% by decreasing
the set-point by 3◦C, while refrigeration can attain a 40%
reduction by increasing its set-point by 3◦C [15]. Standby or

phantom loads from the multimedia category have shown a
17% flexibility potential if devices are unplugged when not
in use [22]. For categories labeled as active, demand side
flexibility correlates more with postponing the cycle of active
appliances: 1 washing event over 3 can be shifted in order to
increase flexibility potential [15].

C. Forcasting evaluation
Different criteria can be used to evaluate the performance

of the regression forecasting model. Commonly used metrics
are the coefficient of determination (R-squared, R2), the Root
Mean Square Error (RMSE), and the Mean Absolute Error
(MAE). These error measures are defined in (3), (4) and (5),
respectively.

R2 =

∑N
i=0(yi − ŷi)

2∑N
i=0(yi − ȳi)2

(3)

RMSE =

√∑N
i=0(yi − ŷi)2

N
(4)

MAE =
1

N

N∑
i=0

|yi − ŷi| (5)

where yi denotes the observed values from the test set, ŷi
the predicted values, and ȳ the mean of the observed data as
defined in (6).

ȳ =
1

N

N∑
i=0

yi (6)

The RMSE is the most used evaluation metric for regres-
sion models. On the other hand, averaging values makes MAE
more robust to outliers while the RMSE gives a relatively high
weight to large errors. For the coefficient of determination,
high values are preferable. However, even a model with low
R2 can be accurate if the RMSE is low [23].

III. CASE STUDY

The data used for this study was collected through the
services offered by the company Eco CO2. Load data from
3 French households was collected through sensors that are
capable of reading and transmitting the total electric load data
for each household. Additionally, limited information about
the households was gathered through a questionnaire. The
characteristics of the case study households is summarized in
Table II.

TABLE II. HOUSEHOLD CHARACTERISTICS

Household 1 Household 2 Household 3
Surface (m2) 100 110 160
Heating type Natural gas Natural gas Natural gas
DHW electric electric electric
CMV yes no yes
Cooking electric electric electric
Refrigeration 2 3 3 + freezer
Washing 3 3 3
Multimedia 6 6 7
Annual consumption (kWh) 5786 10193 4172
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Household 1 shows an annual electric consumption of 5786
kWh. Household 3 presents the lowest measured value, roughly
exceeding 4000 kWh, whereas household 2 uses more than
10000 kWh per year. The maximum consumption attained for
one-hour period ranges between 4 kWh to almost 7 kWh, for
users 2 and 3, respectively.

All households present gas heating, electric cooking de-
vices and roughly the same number of washing and multimedia
appliances. Regarding the refrigeration category, household 1
presents the lowest number of appliances (two). Both house-
holds 2 and 3 have three refrigeration devices, taking into
consideration that, for the latter, one of these appliances is
a freezer. User 3 is the only one without electric DHW and
user 2 does not have a Continuous Mandatory Ventilation
(CMV) system. For this reason, these end-use appliances will
not be considered for these users during the decomposition
algorithm. In addition, the studied households present different
surface dimensions. This variation is taken into account in
the optimization model when applying normalized values of
statistical household energy consumption studies. For example,
the lightning category is highly dependent on the area of the
household.

IV. RESULTS

The LSTM model used to forecast electricity consumption
was efficient after finding the optimal hyper-parameters. Error
measure results are shown in Table III.

TABLE III. PERFORMANCE OF FORECASTING MODEL

Household ID R2 RMSE MAE
1 0.692 0.432 0.334
2 0.625 0.464 0.402
3 0.496 0.157 0.125

R-squared values were calculated for the monthly time
series forecasts for each user. The calculated values ranged
from 0.496 to 0.692, showing a good fit to the test values. The
calculated RMSE and MAE showed low values for all cases.
Household 3 showed smaller results not because of under
fitting issues, but because its average electricity consumption
was lower than the other two cases, hence leading to smaller
forecasted values and metric results.

The optimization algorithm was then applied to determine
the partitioned consumption forecast as shown in Figure 1.
Active and inactive loads are highlighted in shades of gray.
An example day for each user is presented in Figure 1 with
the associated partitioned load curve for the different categories
presented in Table I.

Of the three users analyzed, household 3 did not have
electric domestic hot water and household 2 did not have a
CMV. Accordingly, during the decomposition algorithm, these
end use appliances were not considered for these users. The
variability of the total consumption may change according
to each user and their energy behavior. However, an overall
decrease of global consumption occurs for all studied cases
during nighttime hours, around 12am, or between 1am and
3am.

Overall, most of the consumption corresponds to the in-
active category, reaching 60% and up to 78% of the total
consumption. This is mainly caused by the use of DHW,

Figure 1. Example electric load forecasts partitioned into appliance
categories for a 24-hour period for household 1 (top), household 2 (middle)
and household 3 (bottom). Inactive load categories are shown at the bottom
of each graph, while active loads are shown at the top of the stacked bars

one of the highest consumption appliances, followed by the
refrigeration category. As could be expected, inactive load
consumption stays almost constant for all forecasted periods,
while active consumption changes depending on user behavior.

The consumption of the active part is dominated by
the multimedia and lighting categories, showing consumption
peaks several times a day. The washing and cooking categories
are only active approximately once every 24 hours. For all
end-users, active periods corresponding to multimedia and
lightning categories usually occur during the same intervals.
These intervals are often between 4am and 6am, or during the
afternoon between 1pm and 19pm. With respect to the cooking
and washing categories, they occur more often between 10am
and 1pm or between 8pm to 10pm.

It is important to notice when these forecasted active and
peak inactive periods occur during the day, considering that
these could be the possible periods where demand response
programs could be more efficiently deployed.

The final average forecasted flexibility potential for each
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household is shown in Figure 2. These results are based on
the possible consumption savings obtained from the different
guidelines mentioned in Section II-B: for inactive loads, re-
ducing consumption entails diminishing the consumption of
phantom loads or changing the temperature set point; for active
loads, demand side flexibility correlates more with postponing
the cycle of active appliances.

Figure 2. Average demand flexibility values for the three households for a
24-hour period

Average flexibility potential is dependent on the household
characteristics, time of day and inhabitant behavior. For all
cases, the smallest values for a 24-hour period are found
around midnight, between 11pm and 1am, or during the early
morning, between 3am and 4am.

Household 1 shows the lowest flexibility values, mostly
between 0 and 0.08 kW. This is explained by the characteristics
of the household, such as having the lowest number of refrig-
eration appliances (see Table II) and refrigeration consumption
values of all study cases. The adjustment of refrigeration
temperature set points results in the largest flexibility in the
inactive category, thus not allowing for significant load flex-
ibility in this particular case. Moreover, flexibility associated
with changing domestic hot water temperature set points result

in only 3% savings. Therefore, for this household, where 70%
of the inactive load corresponds to the use of DHW, this results
in overall lower flexibility potential.

On the contrary, household 3 presents the highest flexibility
values, around 0.08 kW for every hour. This household has the
lowest total electricity consumption of all three and does not
have electric DHW, usually responsible of a large percentage
of the inactive loads. Additionally, more than 50% of his
inactive consumption corresponds to the refrigeration category,
resulting in a possible 40% inactive load flexibility.

Finally, household 2 shows the greatest variability in the
flexibility potential values since it is the household with the
highest total consumption. Besides, during all the studied
period, the percentage of the active load is higher and more
variable, providing a higher active load flexibility but a lower
inactive load flexibility.

V. CONCLUSION

This paper has presented an effective multi-step tech-
nique to forecast the average hourly demand flexibility of a
household. This model is widely applicable, does not require
high computational capacity, and is also compatible with the
type and resolution of data available through the massive
deployment of smart meters. This solution allows for end-
users to learn about their energy use and receive behavior
adjustment suggestions for future possible use to encourage
energy efficient behavior in advance.

The average demand flexibility values vary between
0.015kW and 0.08kW for each hour depending on the house-
hold characteristics, time of day and user behavior. For all
cases, the smallest values for a 24-hour period are found
around midnight, between 11pm and 1am, or during the early
morning, between 3am and 4 am, where it has been noted that
the load is relatively low.

The largest flexibility comes from the inactive part of
the consumption: changes of temperature set points and un-
plugging unused multimedia devices causing phantom loads
that increase total consumption. Particularly, the adjustment of
refrigeration set points results in the largest flexibility values
in the inactive category, while DHW usage leads to smallest
values: domestic hot water appliances are often responsible
of a large percentage of the inactive consumption but its
temperature set point change results in only 3% savings. Active
consumption appliances contribute to smaller flexibility values
since it concerns end-user active behavior, rescheduling activ-
ities, postponing appliances or actively changing consumption
habits.

Overall, the individual demand flexibility of each user is
limited, between 15W and 80W every hour, but the aggregate
demand flexibility is interesting to exploit in a massive de-
ployment program. With the arrival of new electric generation
technologies, such as photovoltaic or wind energy, demand
side flexibility will play an important role in the optimization
of the future electric system.
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Abstract—This study aims to address the question “How to
predict power outages?” A statistical model in Statistical
Package for Social Sciences (SPSS) is used to predict power-
outage-event duration and customer calls using a stepwise
regression algorithm. The model presented in this study can
help advance smart-grid reliability by predicting power
outages and taking the necessary steps to prevent them. Future
work may involve enhancing the model’s success and adding
significant predictive variables.

Keywords—data analytics; power-failure; smart-grid.

I. INTRODUCTION

In a short time, electrical power has become a necessity
of modern life. Our work, healthcare, leisure, economy, and
livelihood depend on the constant supply of electrical power.
Even a temporary power outage can lead to relative chaos,
financial setbacks, and possible loss of life. U.S. cities
dangle on electricity and, without a constant supply from the
power grid, pandemonium would ensue. Power outages can
be especially tragic when they endanger life-support systems
in hospitals and nursing homes or systems in synchronization
facilities such as airports, train stations, and traffic control.
The economic cost of power interruptions to U.S. electricity
consumers is $79 billion annually in damages and lost
economic activity [1]. In 2017, Lawrence Berkeley National
Laboratory provided an update, estimating power-
interruption costs have increased more than 68% per year
since their 2004 study [2].

Many reasons underlie current power failures. Among
these reasons are severe weather, damage to electric
transmission lines, shortage of circuits, and the aging of the
power-grid infrastructure. Severe weather is the leading
cause of power outages in the United States [3]. In 2019,
weather events as a whole cost U.S. utilities $306 billion: the
highest figure ever recorded by the federal government [4].

The aging of the grid infrastructure is another noteworthy
reason for power failures. In 2008, the American Society of
Civil Engineers gave the U.S. power-grid infrastructure an
unsatisfactory grade [5]. They stated in a report that the
power-transmission system in the United States required
immediate attention. Furthermore, the report mentioned that
the U.S. electric-power grid is similar to those of third-world
countries. According to the Electric Power Research Institute
(EPRI), equipment such as transformers controlling power
transmission need to be replaced, as they have exceeded their

expected lifespan considering the materials’ original design
[6].

Electrical outages have three main causes: (1) hardware
and technical failures, (2) environment-related, and (3)
human error [7]. Hardware and technical failures are due to
equipment overload, short circuits, brownouts, and
blackouts, to name a few [8]–[10]. These failures are often
attributed to unmet peak usage, outdated equipment, and
malfunctioning back-up power systems. Environment-related
causes for power outages comprise weather, wildlife, and
trees that come into contact with power lines. Lightning,
high winds, and ice are common causes of weather-related
power interruptions. Also, squirrels, snakes, and birds that
come in contact with equipment such as transformers and
fuses can cause equipment to momentarily fail or shut down
completely [8]. As for the third main cause for electrical
outages, human error, the Uptime Institute estimated that
human error causes roughly 70% of the problems that plague
data centers. Hacking can be included in the human-error
category [11].

Analytics have been a popular topic in research and
practice, particularly in the energy field. The use of analytics
can help advance smart-grid reliability through, for example,
elucidating a root cause of power failure, defining a solution
for a blackout through data, or implementing a solution with
continuous monitoring and management. In this research
paper, the aim is to unveil the novel use of data analytics in
predicting power-outage-event duration and customer calls.
As the objective in this research is to advance smart-grid
reliability, this paper explores ways to create a predictive
model for power outages.

II. DATA SELECTION AND METHODOLOGY

EPRI’s data repository includes the primary datasets used
to conduct this analysis. The data sets include data from
advanced metering systems, supervisory-control and data-
acquisition systems, Geographic Information Systems,
outage-management systems, distribution-management
systems, asset-management systems, work-management
systems, customer-information systems, and intelligent
electronic-device databases. Access to datasets was provided
as part of EPRI’s data-mining initiative; the initiative
provides a test bed for data exploration and innovation and
seeks to solve major challenges faced by the utility industry
[12].
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To further enhance EPRI’s dataset, data from other
institutions are collected and aggregated. Specifically,
Georgia Spatial Data Infrastructure and the Georgia GIS
Clearinghouse are the sources for monthly temperature and
precipitation data [13]. Additional data regarding storm
events and storm details come from the National Oceanic
and Atmospheric Administration website (NOAA) [14]. The
data size is about 76,000 outages with 13 attributes.

The first step of the project methodology was to load data
files from EPRI’s Data Repository along with all
aforementioned weather data to ArcGIS, the Geographic
Information Systems platform created by ESRI. To
streamline and make sure that the process is reusable and
repeatable, ModelBuilder tool in ArcGIS is utilized to design
data workflow. The workflow models spatially join the 48
map layers of weather data (from the Georgia Spatial Data
Infrastructure and the Georgia GIS Clearinghouse website)
with the outage map layer provided by EPRI. This serves as
a final dataset for the study. Next, data exploration through
correlational analysis in SPSS and GeoDa software has been
conducted. The final step was to run a stepwise regression in
SPSS.

Prior to all statistical analyses, data preparation follows
these steps:

• Several variables need expert interpretation. For
instance, the following variables: forestry expected pruning
staff hours, average standard tree-pruning miles with bucket,
average mechanical tree-pruning miles, average climbing
tree-pruning miles, and actual pruning staff hours/circuit
mile, had missing data. Aligned with the expert’s
instruction, missing data for these variables is replaced with
a zero (0).

• The variable pole age had missing data. Per the
instruction of the client’s expert, transformer age replaces the
missing data on pole age, with the reasoning that poles and
transformers are routinely installed in tandem.

• The following variables: average climbing tree
pruning miles, average standard tree-pruning miles with
bucket, average mechanical tree-pruning miles, and forestry
expected pruning staff hours either perfectly correlated (r =
1.00) with each other or nearly perfectly correlated (r > 0.90)
with each other. Thus, these variables injected
multicollinearity issues into the stepwise-regression
equations. Due to the high level of multicollinearity, all of
these variables are removed from the regression equation
except one, forestry expected pruning staff hours.

• A stepwise regression algorithm is employed to
create two regression equations. As Vogt [16] notes,
researchers use a stepwise regression algorithm to find the
“best” equation possible when regressing a dependent
variable onto multiple independent variables. In other
words, only sstatistically significant predictors of the
dependent variable in a stepwise regression.

III. ANALYSIS AND RESULTS

A. Descriptive Statistics in SPSS

Figures 1 and 2 were the outcomes of the initial data
exploration of power-outage events. Percentages and
frequencies were calculated for two main categories of
outages: either based on storm event or due to forestry
management. The breakdown is shown in Table I.

Ritchey [15] notes that for categorical variables,
percentages and frequencies are the appropriate descriptive
statistics to report. A statistical summary was calculated for
all continuous variables in the sample. These data appear in
Table II.

Unselected
Unknown
Other
Failed in Service
Scheduled Work
Wind/Tree
Foreign Utility
Tree Fall on Line

Major Storm
Vehicle
Lightning
Squirrel
Customer Request
Limb on Line
Fire Call
Deterioration

Theft/Vandalism
Dig in Public
Wind
Thermal Overload
Overload
Ice
Public Safety Request
Vines

Tree Grew into Line
Bird
Contamination
Contact Public
Contact Machinery
Load Shed
Switching Error
Contact GPC Contractor

Figure 1. Reported outage events percent count by cause.

Unselected

Unknown

Other

Failed in Service
Wind/Tree

Major Storm
Scheduled Work

Foreign Utility
Tree Fall on Line

Vehicle
Lightning
Squirrel

Customer Request
Limb on Line

Fire Call

Deterioration
Theft/Vandalism

Ice Dig in Public

Wind

Thermal Overload
Overload

Vines
Tree Grew into Line

Figure. 2. Reported outage duration by cause.
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TABLE I. PERCENTAGES AND FREQUENCIES, STUDY VARIABLES

Frequency Percent

Storm event
Yes 59,078 76.9%
No 17,769 23.1%

Forestry management
Yes 47,175 61.4%
No 29,672 38.6%
n 76,847 100.0%

Ritchey [15] notes that for continuous variables, means
and standard deviations are the appropriate descriptive
statistics to report.

B. Correlational Results

Results of correlation analysis in SPSS indicated a strong
positive correlation between variables, such as storm events
and outage-event duration . As expected, a storm event,
precipitation, older poles, higher forestry expected pruning
human hours, and higher levels of transformer age increased
outage-event duration. A negative correlation between
variables appeared between variables such as forestry
management and outage-event customer calls. Surprisingly,
engaging in forestry management, having older poles, and
having lower levels of actual pruning human hours/circuit
mile decreases the number of outage-event customer calls.

TABLE II. MEANS AND STANDARD DEVIATIONS, STUDY VARIABLES

Variable M SD Min Max

Outage event duration (minutes) 89.15 204.81 0 3589
Outage event customer calls 11.18 85.07 0 4888
Temperature (mean) 62.52 13.72 40.25 80.75
Precipitation 4.29 0.66 2.8 5.80
Forestry expected pruning man hours 858.01 882.24 0 3300
Average standard tree pruning miles
with bucket 6.63 6.48 0 20.49
Average mechanical tree pruning
miles 3.00 2.94 0 9.28
Average climbing tree pruning miles 0.75 0.73 0 2.32
Actual pruning man hours / circuit
mile 42.18 36.80 0 157
Transformer age 4.50 1.86 3 8
Pole age 23.90 16.76 3 93

Note: n = 76,847.

Statistically significant correlations were flagged in the
correlation table (Table III) in the following manner:

 A single star (*) denotes a significant correlation at
the p = .05 alpha level.

 A double star (**) denotes a significant correlation at
the p = .01 alpha level.

 No stars means the correlation is not statistically
significant, and no relationship exists among the two
variables in question.

 An inverse correlation was denoted by a negative sign
(-). An inverse correlation means that as one variable
increases in value, the other variable decreases in
value.

 A positive correlation was denoted by the absence of
a negative sign (-). A positive correlation means that
as one variable increases in value, the other variable
increases in value.

TABLE III. CORRELATION RESULTS

1 2 3 4 5 6 7 8 9 10 11 12

2 0.09** 1.00
3 0.08** 0.01 1.00
4-0.13** 0.01 0.14** 1.00
5 0.08** 0.00 -0.06**-0.37** 1.00
6 0.01 -0.02** -0.01 0.00 -0.03** 1.00
7 0.01** 0.00 0.00 0.00 -0.02** 0.77** 1.00
8 0.01** 0.00 0.00 0.00 -0.02** 0.81** 0.96** 1.00
9 0.01** 0.00 0.00 0.00 -0.02** 0.81** 0.96** 1.00 1.00

10 0.01** 0.00 0.00 0.00 -0.02** 0.81** 0.96** 1.00** 1.00 1.00
11 0.01* -0.01** -0.01 -0.01**-0.02** 0.91** 0.85** 0.79** 0.79** 0.79** 1.00
12 0.01* 0.01** 0.01** 0.00 0.02**-0.13**-0.11**-0.12**-0.12**-0.12**-0.11** 1.00
13 0.02**-0.01** 0.02**-0.01** 0.03** 0.02** 0.04** 0.03** 0.03** 0.03** 0.03**-0.03**

Note: 1. Outage-event duration; 2. Outage-event customer calls; 3. Storm
event (1 = yes); 4. Temperature (mean); 5. Precipitation; 6. Forestry
management (1 = yes); 7. Forestry expected pruning human hours; 8.
Average standard tree-pruning miles with bucket; 9. Average mechanical
tree-pruning miles; 10. Average climbing-tree-pruning miles; 11. Actual
pruning human hours/circuit mile; 12. Transformer age; 13. Pole age; *p <
.05; **p < .01, two-tailed tests.

C. Multiple Linear Regression Results

As Ritchey [15] notes, a multiple linear regression
technique is appropriate when the dependent variable is
continuous in nature and two or more independent variables
are in use. The current circumstances satisfy these criteria.
The idea of stepwise regression is to add all independent
variables into a regression equation that relates to the
dependent variables. Then, the process involves iteratively
peruse the regression, removes the variables that are not
statistically contribute to the dependent variable. In this
paper, we have 2 dependent variables of interest: outage-
event customer calls and outage-event duration. These
dependent variables will result in two regression equations
that will be described below.

Table IV presents the results of the stepwise multiple
linear regression of outage-event customer calls onto the
several independent predictors. The Omnibus F-test, shown
in Table IV, is statistically significant (F = 18.217; df = 5,
76841; p < .001). Thus, the decomposition of effects in the
regression model can proceed.

TABLE IV. MULTIPLE LINEAR REGRESSION OF OUTAGE EVENT CUSTOMER

CALLS ONTO THE PREDICTORS

Variable B SE(B) p

Constant 12.214 1.044 0.000
Forestry management -4.084 1.515 0.007
Forestry expected pruning man hours 0.004 0.001 0.000
Pole age -0.072 0.018 0.000
Transformer age 0.499 0.167 0.003
Actual pruning staff hours/circuit mile -0.068 0.024 0.004
N 76847
F 18.217 0.000
Adjusted R2 0.001

Based on the significance of the table, five variables have
been retained using the stepwise regression algorithm. Three
of these variables lower the number of outage-event
customer calls. Specifically, engaging in forestry
management (B = -4.084, p = .007), having older polls (B = -
0.072, p < .001), and having lower levels of actual pruning
staff hours/circuit mile (B = -0.068, p = .004) decrease the
number of outage-event customer calls. Two of the variables
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raise the number of outage-event customer calls.
Specifically, having higher levels of forestry expected
pruning staff hours (B = 0.004, p < .001) and higher levels of
transformer age (B = 0.499, p = .003) increase the number of
outage-event customer calls. The adjusted R2 value was
identical to the R2 value.

Table V presents the results of the stepwise multiple
linear regression of outage-event duration onto the several
independent predictors. The Omnibus F-Test in Table V is
statistically significant (F = 218.672; df = 5, 76841; p <
.001). Thus, decomposition of effects in the regression
model can proceed.

TABLE V. MULTIPLE LINEAR REGRESSION OF OUTAGE EVENT DURATION

ONTO THE PREDICTORS

Variable B SE(B) p

Constant -62.703 5.511 0.000
Storm event 42.413 1.744 0.000
Precipitation 24.796 1.112 0.000
Pole age 0.243 0.044 0.000
Forestry expected pruning man hours 0.004 0.001 0.000
Transformer age 0.898 0.398 0.024
N 76847
F 218.672 0.000
Adjusted R2 0.014

A count of five variables were retained by the stepwise
regression algorithm. All five variables raise the outage-
event duration. Specifically, having a storm event (B =
42.413, p < .001), having precipitation (B = 24.796, p <
.001), having older poles (B = 0.243, p < .001), having
higher forestry expected pruning staff hours (B = 0.004, p <
.001), and higher levels of transformer age (B = 0.898, p =
.024) increase the outage-event duration.

IV. CONCLUSION

This study aimed to address “How to predict power
outages.” To address the research, A predictive novel model
was developed in SPSS to predict the power-outage-event
duration and customer calls. A stepwise regression algorithm
was used for the two regression equations. The SPSS model
presented in this study can help advance smart-grid
reliability by predicting power outages and taking the
necessary steps to prevent them. Future work may involve
enhancing the model’s success and adding significant
predictive variables. Data analytics can be a major resource
of assistance for managing power-failure events.

One limitation of this research is that pole-age data was
used as a proxy for infrastructure age and the rest of the
equipment data. Future work may involve connecting to
virtually any type of streaming data feed and transforming
data-analytics applications into frontline decision
applications, predicting and updating power-outage
incidents as they occur.

From this research, it was concluded that SPSS and GIS
tools offers a solution to analyze the electric-grid distribution
system. This model provides evidence that SPSS can
perform the analysis to predict power-outage-event duration
and customer calls. If additional funds and data are made
available, one can expand on this analysis to create a custom
solution for the utility industry to control and forecast power
outages. Data analytics can be a major resource of assistance
for electronic-inspection systems, to lower the duration of
customer outages, to improve crew-response time, and to
reduce labor and overtime costs.
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Abstract—Maintaining the continuous supply of electricity
within smart microgrids is a challenging task, which becomes
increasingly difficult with the growing integration of volatile
Renewable Energy Sources (RES). Quick changes within the
production behavior of these resources can disturb the necessary
balance between demand and supply and may ultimately lead
to blackouts within the grid. To prevent balance disturbances,
electricity production and consumption needs to be coordinated
and power needs to be shared among the participants within
the microgrid. Facilitating coordinated behavior of grid entities
and ensuring reliable operation of the microgrid in the presence
of volatile RES requires sophisticated strategies for operating
individual participants. In this paper, we present a modular
framework to support dynamic energy distribution for atomic
entities (producers/consumers) in holarchically organized energy
grids. In particular, the framework provides production and
consumption forecasting to enable intelligent strategy selection to
improve the day-ahead control decisions for atomic entities. The
proposed framework enables the bottom-up formation of smart
mircogrid holons and represents a foundation for the formation
and strategic coordination of participants in smart microgrids.

Keywords—Micro Grids; Holonic Smart Grids; Optimization;
Forecasting; Strategy Selection.

I. INTRODUCTION

Electrical grids are evolving from a centrally managed criti-
cal infrastructure to distributedly managed Smart Grids (SGs).
This evolution is driven by the need for the grid to incorporate
local production capabilities of renewable Distributed Energy
Resourcess (DERs). The paradigm shift from centralized to
distributed control, however, leads to a considerable increase
in the complexity of network management tasks. Various
approaches for tight monitoring and fast control have been put
forward to support continuous operation and provide stability
of distributed energy grids [1]–[3]. These approaches generally
rely on strong support by Information and Communication
Technologies (ICT).

Hierarchical and cellular network segmentation promises
to simplify the mechanisms for controlling the SG. The
next evolutionary step for cellular network approaches are
holar structures [4]. In particular, these systems seek to
leverage formation and segmentation by enabling the reuse of
mechanisms on different hierarchical levels. Entities in such
a system (so-called Holons) are simultaneously a “whole”
and a “part” of something bigger. The emerging system-of-
systems structure is referred to as a holarchy [5]. Holons

are dynamic cells, which can merge with other holons (or
separate into individual smaller ones) when suitable. Under
optimal conditions, holons tend to form larger holons, while
their capability to separate sub-parts aids in increasing network
stability (e.g., by splitting off potential misbehaving or faulty
entities). This is ensured cause holocharies are mainly based
on the concepts of isolation and containment [6].

In this work, we consider single buildings, be they commer-
cial or residential, to be the atomic building blocks of holons.
With the integration of DERs, they may be both producers and
consumers, so called prosumers of energy. In order to facilitate
holon creation and stable operation, particularly in small-
scale grid scenarios, accurate models for the behavior of these
prosumers are necessary. This, in turn, entails the need for a
framework that is capable of forecasting, within reasonable
limits, both electrical load and production behaviors. This
need is exacerbated especially in small holons, i.e., smart
microgrids, because smoothing effects on energy production
and consumption are not as effective here as in larger grids.

Based on the considerations mentioned above, we present
a framework for stable holon operation. In particular, at an
atomic prosumer level, the framework consists of a consumer,
production unit, storage system and a power supply. The main
contributions of the proposed framework are:

• Provision of dynamic control via smart strategy selection
for holonic smart microgrids.

• Advancement of current smart microgrid capabilities by
enabling forecasting and operation optimization on the
level of atomic holons.

• Showcasing the applicability of the current deployment of
the framework by deploying it at a real-world prosumer
site.

The rest of the paper is structured as follows: Section II
describes the topology and power flow of an atomic holon,
as well as the conceptual framework model and information
transmissions. In Section IV, further details concerning the
forecast model and operation strategy optimization are pro-
vided. We finalize this work with conclusion and future works
in Section V.
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II. SYSTEM

The goal of this section is to present the system description
of an atomic building block of holons and the energy flow
between the different components. Following this, the structure
and information flow of the framework is detailed.

A. Topology

To manage the merging and splitting process of a holon, an
optimized energy flow at the atomic level, i.e., for individual
consuming and producing participants, is necessary. Therefore,
the individual components that are encompassed in an atomic
holon require a clear definition. Figure 1 shows the four
components of what we treat as an atomic holon: consumer,
producer (PV), storage (batteries) and power grid. An atomic
holon can, but does not need to, implement all components.
The arrows indicate the direction of possible energy flow.

Consumer

Storage

Power Grid

Producer

ENVIRONMENT

Figure 1. Energy flow between the four different holon components.

a) Power grid: The grid-connected power supply of the
building. Ideally, the household’s load is covered by batteries
and direct consumption of self-produced energy (e.g., solar
panel). In case of an increased demand, which cannot be
compensated by the locally available resources, the remaining
difference is taken from the general power grid.

b) Consumer: The total aggregated energy consumption
of an atomic holon (This includes potential incident consump-
tion that results from the battery storage, the solar panel and
the grid connection).

c) Producer: As mentioned in Section I, every entity in
the grid, which is capable of supplying electricity to itself
or others is considered as an energy producer. As holons are
envisioned to represent prosumers in the future energy grid
the producer component represents the aggregated production
capacity of the holon. For instance, single households with
solar Photovoltaic (PV) cells or commercial buildings with
wind turbines.

d) Storage: A main enabler for the efficient use of
Renewable Energy Sourcess (RESs) is their combined used
with an energy storage system. Aside from storing excess
energy during times of high production (e.g., sunny days at
noon), energy storage solutions are used to compensate for

the volatile behavior of RESs. The resulting inconsistency of
production behavior of RESs – due to intermittency of weather
conditions – or daily consumption variations can be mitigated
using energy storage systems. In general, these storage systems
can consist of any type of batteries, including the batteries of
attached electric vehicles.

B. Framework

The proposed framework aims to optimize control strategies
in systems that are structured according to the holarchy
concept. In particular, we focus on system control of atomic
holons within a holarchy. For these holons, the following
characterizations are necessary [6]:

• Autonomy: As holons are, simultaneously a part and a
whole within a system and they may have individual goals
that may differ from the general goals of the system as a
whole. A holon’s autonomy property describes its striving
to fulfill its own objectives. For this, it is capable of
making decisions and to create and manage the execution
of its own plans and strategies.

• Self-contained: Each holon is a whole itself and can exist
or work without external input by exploiting its own
resources.

• Co-operation: Holons can cooperate on the basis of
special communication and interaction rules. Holons can
cooperate with other holons on similar levels within a
holarchy. Additionally, they can merge with other holons
to form larger holons or split into smaller holons. This
concept of cooperation enables holons to achieve more
complex goals (e.g., due to more available resources
after a merging process), and enables to interrupt the
cooperation by isolating faulty parts.

In order to facilitate holarchical operation in a better way,
the proposed framework uses a bottom-up approach. Instead of
organizing holons with a top-down approach, this framework
regulates the strategic operation within an atomic building
block, composed of the previously described system’s primary
components. In future work, we will expand the prediction and
strategy selection to non-atomic holons.

The framework architecture can be seen in Figure 2. It is
divided into three main parts: Forecasting of Resources for
Dynamic Optimization (FRODO), Optimal Load and Energy
Flow (OLAF), and Environment. As depicted in the architec-
ture layout, the framework works based on historical data
of power consumption as well as production. Dashed-line
arrows indicate the flow of information between the framework
components. FRODO receives historical data and derives two
forecasts: PV production and load consumption. Information
about these two forecasts, in addition to information about the
holar system structure, are then used by OLAF as an input
for the strategy selection process. This selected strategy is the
foundation for next days charging and discharging schedule of
a storage unit within an atomic holon. After considering the
related work in the following Section III, Section IV provides
detailed information for the individual parts of the framework.
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Figure 2. Structure and information flow within the Framework.

III. RELATED WORK

In related work, Battery Energy Storage Systems (BESSs)
for handling fluctuations in DER are a major research topic.
The requirements of a BESS for mitigating PV output fluc-
tuations are examined in [7]–[9]. In [10], a control scheme
for energy devices in the distribution network to reduce peak
demand based on day-ahead demand forecasts is presented.
Thereby, the research focuses on optimizing the storage sys-
tem’s schedule from the network operator’s perspective. [11]
proposes a solution for finding the optimal size of a BESS with
regard to economic perspective, which can be used in addition
to finding the optimal charge and discharge strategy under
certain conditions. In [12], a day-ahead energy management
framework of a microgrid is presented; the authors propose
management of the energy flow based on next days electricity
price. That is one possible strategy for controlling the energy
flow. In this work, we are defining several strategies and
looking for the best based on external constraints. Batteries
are also used in [13] to maximize a households profit. Control
strategies are applied for scheduling electric vehicles to imple-
ment peak-shaving and valley-filling in [14]. In this scenario,
the electric vehicle takes part of a storage unit in Figure 1.

IV. METHODS

The promising results in BESS-oriented related work sug-
gest the potential of prediction-based strategy selection for
the dynamic creation of holar microgrids. The framework
proposed in this paper aims to leverage these results and, in
future work, also to integrate formation and control methods
for merging and splitting holar microgrids.

This section gives detailed information for the three differ-
ent parts of the framework: Historical Data (IV-A), FRODO
(IV-B) and OLAF (IV-C). Additionally, we show the first
results on day-ahead load forecasting based on real-world data.

A. Historical Data

The load consumption and PV production data used in
this paper are provided by the Technology Centre of Energy

(TZE) at the Landshut University of Applied Sciences. The
load consumption and PV production data was collected from
January 1st, 2017 to December 31st, 2018 and are available
for every minute. However, in this paper we are using 60
minutes – or hourly – discrete power values for production
[kW] as well as consumption [kW]. Weather data are recorded
at the stationary installed weather station at the TZE for
temperature [°C], humidity [%], solar irradiation [W/m2],
precipitate [mm/min], wind speed [m/s], wind direction [°]
and air pressure [hPa]. Missing weather data points are taken
from the Deutscher Wetterdienst (DWD).

To ensure valid forecasting results by FRODO, the following
data preprocessing steps are implemented:

• Data cleaning: To reduce the influence of missing data,
interpolation was executed if the gap is less than one hour.
Otherwise the average value for the specific time-slot was
scaled to fit the curve. Since we are doing day-ahead
forecasting, days without previous load consumption are
also removed.

• Time-series to supervised learning: The raw data is a
time-series sequence ordered by a time index for every
minute, which is first aggregated to hourly discrete values
and then converted to input-output-pairs (xn, tn) where
xn are the inputs and tn the output values for each day
n = 1...N .

• Input selection: Feature engineering is a crucial task in
machine learning. Figure 3 shows the daily average power
consumption per weekday and there is a significant differ-
ence between workday and weekend visible. Therefore,
the date features are one-hot-encoded, i.e. 1000000 for
Monday, 0100000 for Tuesday and so on. The same
applies to special days like holidays.

Figure 3. Daily average consumption per weekday over a 2-year period.

For illustration, Figure 3 depicts the daily discrete power
values for consumption over a day divided into 23 hourly
intervals. Beside the previous mentioned difference between
workday and weekend, there is a clear decrease after Friday
lunchtime visible. This is explained due to the fact that the
consumer in this show-case is formed by a research center with
around 15-20 employees working regularly on weekdays. The
production unit in this research is a 10.4 kWp installed PV
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module and different batteries, e.g., 100 kWh Redox-Flow,
125 kWh Lithium-Ion, 12 kWh Lithium-Ion, are used as
storage systems. These are the key components for the atomic
holon in this show-case as well as the consumption data –
and also the production data – which provides the basis for
the forecasting module, described in the following part.

B. FRODO

To ensure an efficient energy flow between the different
entities within a holon, a precise load consumption and PV
production forecast is essential. Due to page limitations, only
the development process for the load consumption component
within FRODO is described. The PV production forecasting
works similarly and will be shown in subsequent work.
Different forecast approaches can be classified according to
their forecast horizon. Hereby, we differentiate between three
main categories: Long-Term Load Forecast (1 year to 10
years ahead), Medium-Term Load Forecast (1 month to 1
year ahead), Short-Term Load Forecast (1 hour to 1 day
or 1 week ahead) [15]. A main requirement for using the
proposed framework is to be able to dynamically select the
next day’s operation strategy. For enabling this, a Short-Term
Load Forecast (STLF) is essential. Therefore, two different
Machine Learning (ML) models for STLF are developed and
tested against each other: A first model leverages Random
Forest (RF) and the second one is based on a Long-Short-
Term memory (LSTM) neural network. Both approaches have
been tested and proven to work well for the present forecasting
task in the related literature [16]–[19].

Architecture: The RF is an ensemble method that oper-
ates by constructing a multitude of decision trees whereby
each tree forecasts the load consumption by itself and the
method returns the mean value. In this case, 500 trees are
created at training time with a maximum depth of 15. The
LSTM is a recurrent neural network and unlike standard
feedforward networks, LSTM has feedback connections to
maintain information, which is used for solving learning tasks
based on prior input data and decisions [20]. We use one
hidden layer with 50 neurons, one dropout layer with 0.2 rate
to avoid over-fitting and one dense layer with 24 neurons,
since we want forecast values for every hourly interval. The
prior mentioned hyperparameters of each method are estimated
through extensive grid search. For that reason, the historical
data are first split into three distinct groups: training (80%),
validation (10%) and test (10%). The first two are used
for tuning the previously mentioned hyperparameters. After
estimating the best model architecture, each model is tested
by using a 10-Fold Cross-Validation.

Input Features: In [21], we showed that the power
consumption for an exemplary day d can be explained by
the consumption values of the previous day d − 1 and by
last week’s consumption d − 7. In addition, we mentioned
previously the importance of calendric factor like day of week
and holidays. Therefore, the input features are composed of
the following 58 variables: (Input 1 − 24) consumption of

d − 1 [kW], (25) mean temperature Td−1 [°C], (26 − 50)
consumption of d−7 [kW], (51) mean temperature Td−7 [°C],
(52 − 57) one-hot-encoded day of week and (58) holiday [0
or 1]. Training, validation and test data are input-output pairs
(xn, tn), with n = 1...N , where xn are the explanatory input
variables and tn the outputs.

Evaluation: The test data is used to evaluate the model’s
forecast accuracy. Therefore, the third split of the historical
data was held back to measure the model’s accuracy on
“unknown” input data. Figure 4 shows next day’s consumption
forecast of both RF and LSTM for one example day, and also
the actual measured values for comparison. It shows good
accuracy in the morning as well as in the evening, but a
clear underestimation for the three intervals between 11 and
14 o’clock. This behavior is caused by the fact that those
consumption values are way above average (see Figure 3) and
can not be handled well by both RF and LSTM. To improve
this forecast behavior, further model adjustments are done in
future work described in Section V.

Figure 4. Forecast values and actual consumption for one example day.

For model comparison, three different persistence ap-
proaches are used. Let L(d, h) be the consumed load for a
specific day d at a particular hour h. A persistence model
is a method to predict the future behavior on the assump-
tion that current load consumption L(dt, h) is similar to the
value at the same hour of a different day L(dt−i, h). The
following approaches are implemented: (1) “previous day”
L(dt, h) = L(dt−1, h), (2) “last week” L(dt, h) = L(dt−7, h)
and (3) “weekday average” L(dt, h) = L(dt, h), where L
denotes the average value for a specific day and hour.

To quantify the results numerically, forecast accuracy is pre-
sented using standard measures: Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE) and Mean Percentage Error (MPE), defined in the
following equations Eq. (1)–(4):

MSE =
1

N

N∑
n=1

(Yn − Ŷn)
2 (1)

RMSE =
√
MSE (2)
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MAE =
1

N

N∑
n=1

∣∣∣Yn − Ŷn

∣∣∣ (3)

MPE =
100%

N

N∑
n=1

(
Yn − Ŷn

Yn

)
, (4)

where Yn represents the actual value of the electrical load and
parameter Ŷn is the corresponding forecast value, respectively.
N is the sample size. The forecast results on the test set are
given in Table I.

TABLE I. RESULTS OF MEASUREMENTS FOR DIFFERENT
CONDUCTED FORECASTS

Model MSE RMSE MAE MPE

Previous Day 15.82 3.98 2.46 -6.51

Last Week 9.27 3.04 2.16 1.45

Weekday Average 5.42 2.33 1.77 -3.39

RF 4.86 2.20 1.43 -1.57

LSTM 6.23 2.45 1.67 -4.29

The results in Table I show that the RF has an increased
forecast accuracy compared to the persistence approaches and
that the LSTM performs worse than the “weekday average”
persistence models. For every metric, the lowest value is the
best result and is indicated by emphasized cells. It is also worth
mentioning, that the forecast error for the RF remains mostly
constant regardless of the different splits of the data set. In
contrast, the LSTM results depend highly on the segmentation
of training and test sets. This might be due to the LSTM
overfitting of the data based on the distribution of workdays,
weekends and outliers (way above average days). Due to page
limitations, this section only describes the load consumption
forecast. However, the production forecast (e.g., solar, wind)
works similarly and will be the focus of further work. The
derived energy production and consumption forecasts are
further processed by OLAF, where the optimal strategy for
the energy flow between the different holon components is
selected. This selection process and also definitions of example
strategies are explained in the following section.

C. OLAF

The OLAF module of the framework is responsible for
selecting and executing the next day’s operation strategy.
Basically, this strategy is a sequence of information how and in
which direction the energy flow between the components (see
Figure 1) is realized for each next day’s hourly interval. This
includes schedules for charging and discharging the storage
unit, based on some prior defined constraint and optimization
goals, which are specified in the following paragraph. For this,
OLAF receives the two previously generated PV production
and load consumption forecasts of the FRODO module and

selects a BESS operation strategy based on this information.
The different possible BESS strategies can roughly be divided
into three categories: customer-, market- and grid-oriented
strategies [22]. A more detailed classification for operation
strategies is presented in [23]. These strategies and the primary
beneficiary are defined as follows:

• Maximized consumption of self-generated power (cus-
tomer): Produced power is primary used to cover the
household’s load. Overproduction is going to the storage
unit.

• Limited power grid feed-in (grid): Cuts off power feed-in
at a given upper boundary.

• Time-scheduled (dis-)charging (grid/customer): The stor-
age, e.g., Battery, is only used at certain time of days.

• Time and power constrained storage (grid): Minimize
feed-in at given peak-hours for grid relief through em-
pirical knowledge.

• (Dis-)charging depending on energy pricing (mar-
ket/customer): This strategy’s goal is to minimize the
electricity price for a given household.

• Incremental grid relief (grid): Instead of feed-in as much
produced power as possible, only a fixed percentage is
used, e.g., 30%.

• State-of-Charge dependent charging (customer): The
charging schedule is prepared, depending on the battery’s
State Of Charge (SOC). The lower the SOC, the more
produced power is used to charge the battery.

The Strategy Selection Unit encompassed within OLAF
chooses, based on the forecast values and the desired holarchi-
cal organization, a preferred operation strategy. Since we are
getting next day’s forecast as hourly intervals from FRODO,
the chosen strategy is executed also in hourly time steps. Sub-
sequently, the Control Unit (CU) – an independent controlling
element implemented in the environment – is responsible for
executing the a-priori defined charge and discharge schedules
for the respective storage systems (e.g., batteries) within each
time interval. If the available energy does not satisfy the
chosen strategy, e.g., discharge an empty battery or feed-in
produced power although the limit is reached, the Control Unit
attempts to adjust the next time interval – using the feedback
loop – so that the desired goal can be achieved.

Although the Log Unit (LU) as well as the CU are not
explicitly part of OLAF, they are both in communication with
each other at the end/beginning of each time interval. One
key function of the CU is to give feedback to OLAF, not
only for strategy monitoring reasons, but also to adjust the
forecast results from FRODO. If the forecast value for a time
slot exceeds some threshold – both directions: overestimation
or underestimation – the CU informs OLAF to modify the
remaining daily values. Furthermore, the LU is responsible
for logging and storing the energy data, the recorded weather
data (either through a stationary station or external sources)
and the operational data on a daily basis. This information is
then stored as historical data and can then used by the FRODO
module to improve the forecast accuracy for subsequent days,
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if the desired accuracy is not fulfilled anymore. This possible
improvement – either update the forecast values or change the
actual operation strategy – represents an ability to dynamically
handle uncertain behavior, as it is necessary for the safe and
resilient operation of energy grids base on the concept of
holarchies and for performing the characterization described
in Section II-B. Through smart strategy selection, e.g., self-
containment for one atomic holon or co-operation between
multiple atomic entities is achievable.

V. CONCLUSION

In this paper, we introduced a framework to provide dy-
namic control for the state-of-the-art holonic smart grid. Based
on a bottom-up approach, the proposed framework enables
holarchical organization at an atomic level. The presented
approach is designed to improve current Smart Grid capa-
bilities by providing a modular structure for forecasting and
optimization. Based on historical load data, our framework
makes a day-ahead forecast for load consumption and PV
production, within reasonable limits. After analyzing the his-
torical data (Section IV-A) an LSTM approach, which is an
established ML technique, is presented in Section IV-B as
the STLF model within FRODO. Due to page limitations,
the PV production forecast was not presented in this research
paper, but works similarly to the load consumption forecast
and will be described in further works. To validate the load
forecast accuracy, an RF and an ML technique are evaluated
and compared, as well as the following three persistence
models: previous day, last week and average weekday value.
The results showed that both LSTM and RF are practicable
methods with higher accuracy than the persistence approaches.
The derived forecast values are the basis for OLAF, the opti-
mization part within the framework, which selects the strategy
for next day’s energy flow within a holon. This operation
strategy is chosen under predefined constraints, e.g., customer-
oriented, market-oriented, grid-oriented, and is executed in
one-hour-intervals over the next day. The framework is capable
of handling uncertain behavior and divergent forecasts through
a feedback-loop after each interval.

In future research work, we are improving the forecast
models by adjusting the different ML techniques. Furthermore,
we are defining more strategies to optimize the holarchical
operation.
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Abstract—Scientific applications, simulations and large-scale ex-
periments generate an ever increasing deluge of data. Due to the
storage hardware not being able to keep pace with the amount
of computational power, data reduction techniques have to be
employed. Care has to be taken such that data reduction does
not impact energy efficiency as it is an important cost factor
for supercomputer systems and infrastructures. Data reduction
techniques are highly data-specific and, therefore, unsuitable or
inappropriate compression strategies can utilize more resources
and energy than necessary. To that end, we propose a novel
methodology for achieving on-the-fly intelligent decision making
for energy-efficient data compression using machine learning.
We have integrated a decision component into the Scientific
Compression Library (SCIL) and show that, with appropriate
training, our approach allows SCIL to select the most effective
compression algorithms for a given data set without users
having to provide additional information. This enables achieving
compression ratios on par with manually selecting the optimal
compression algorithm.

Keywords–Data Compression; Energy Efficiency; Decision Tree.

I. INTRODUCTION

Even though the rate of improvement for processors has
slowed down, the gap between the computational power of
processors and other hardware components, such as main
memory and storage, is still widening [1]. To keep pace,
additional investments are necessary for storage hardware. This
also results in additional costs for energy because new hardware
used in computing systems requires additional power. Therefore,
especially in data-intensive fields, costs for storage and energy
are increasing. For instance, for each PetaByte (PB) of disk-
based storage space, the German Climate Computing Center
(Deutsches Klimarechenzentrum, DKRZ) has to pay investment
costs of roughly 100,000e and annual electricity costs of
3,680e. For its 54 PiB storage system, this amounts to almost
200,000e per year for electricity alone (one PB of storage
needs 3 kW of power and 1 kWh of energy costs 0.14e).

Data reduction techniques, such as compression, trans-
formations and deduplication are straight-forward solutions
to minimize the energy consumption of storage systems by
reducing the amount of storage hardware required to store
the same amount of data. However, data reduction itself can
consume significant amounts of energy, potentially negating
its beneficial effects on energy efficiency. While the energy
efficiency of supercomputers should be increased, the impact
on runtime performance should be minimal. A number of
approaches and mechanisms to reduce energy consumption in
supercomputers have been suggested at the different levels of
computing systems. However, the impact of data reduction on
High-Performance Computing (HPC) systems’ energy efficiency

remains largely unexplored, even though more and more HPC
applications produce enormous volumes of data and data
reduction techniques are increasingly adopted.

Developers of scientific software have a great interest in
data reduction. However, to make best use of it, the used
methods and algorithms have to be appropriate for their data
sets and must be tuned to achieve optimal results. Additionally,
decreasing runtime performance should be avoided both for
performance reasons and for its impact on energy consumption.
For these users, choosing a suitable compression algorithm is
a technical decision that is difficult to make since the choice
depends on the data set in question as well as the software and
hardware environments. Data reduction schemes and options
are highly data-specific and, therefore, our ultimate goal is
to automatize the decision making process on behalf of the
users. Poor manual choices can lead to low compression ratios,
decreased performance and increases in energy consumption.
In this paper, we are focusing on scientific applications in
the context of HPC, where defining data reduction strategies
with high performance and energy efficiency suitable for the
generated deluge of scientific data is a challenging task.

Based on the methodology first introduced in [2], we define
and extend mechanisms for intelligently selecting algorithms
from a variety of state of the art reduction techniques with an
emphasis on their energy consumption. In addition to employing
machine learning to pick the most suitable compression strategy
for a data set, users are able to specify additional criteria.

The remaining of the paper is structured as follows: In
Section II, we give an overview of a common HPC I/O stack as
it is used in earth system science. We introduce our framework
for scientific data compression through high-level I/O interfaces
in Section III. In Section IV, we present data collected for
several compressors used to train our decision component. A
detailed evaluation is performed in Section V using a real-
world ecosystem simulation. After a review of related work in
Section VI, we conclude in Section VII with a summary of
our findings and describe our future work in Section VIII.

II. HPC I/O AND DATA REDUCTION

Applications typically use high-level I/O libraries to access
data, which in turn uses I/O middleware to communicate with an
underlying file system (see Figure 1). Two popular and common
high-level I/O interfaces in the scientific community to access
data in both serial and parallel manner are the Hierarchical
Data Format (HDF5) and the Network Common Data Form
(NetCDF). They allow HPC applications written in various
programming languages to manipulate and store data in a self-
describing and portable way by using multidimensional arrays.
Self-describing data formats contain a description of the file
layout and are thus easy to share and distribute.
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While NetCDF provides a convenient programming inter-
face, the actual data format and I/O routines are implemented
as part of HDF5. HDF5, in turn, uses the I/O implementation
of the Message Passing Interface (MPI). MPI employs the I/O
operations of the underlying parallel file system using optimized
backends for a wide range of different file systems. In the end,
I/O operations are posted by the file system to the underlying
I/O driver. If the application performs data writing, it uses the
high-level I/O library, and the data is going through the stack
down until it is placed in the driver layer. A data read works
in the opposite direction.

There are two main levels of the data path where data
reduction mechanisms can be deployed: They are system
(low) and application (high) levels, which each have different
benefits and drawbacks. Data reduction usage on higher
levels of HPC I/O stack is typically advantageous. Unlike
low layers, it is possible to access and exploit additional
meta information provided by the high-level I/O libraries.
Different HPC applications for, e.g., climate change and weather
forecasting, are using a common I/O stack, making it easier to
employ application-level data reduction for them. Thus, usage
of data reduction at the application level can be fine-tuned
by taking application requirements and metadata into account.
Among others, techniques such as deduplication, compression
and transforms can be used on the application level. Moreover,
as long as these techniques perform lossless data reduction,
they can be deployed in a way that is transparent for users.

III. ENERGY-EFFICIENT DATA COMPRESSION

Based on these observations, we have extended the Scientific
Compression Library (SCIL) to support energy-efficient data
reduction by using machine learning approaches. SCIL already
provides a rich set of features. In general, SCIL is a meta-
compressor that aims to exploit knowledge on the application
level [3]. The library should ultimately pick a suitable chain of
algorithms satisfying the user’s requirements. This is currently
done based on the capabilities of the algorithms but has been
extended by a decision component that can use different criteria,
such as an energy-aware selection of the algorithms.

The overall architecture of using SCIL in scientific applica-
tions is depicted in Figure 1. Our main goal is providing the
most appropriate data reduction strategy for a given scientific
data set on the basis of semantical information and performance
of algorithms. SCIL currently supports a wide range of lossless
and lossy compression algorithms. Any application using the
HDF5 data model can use SCIL via its HDF5 filter.

A. Decision Component
Instead of relying solely on user-provided hints, we have

extended SCIL with a decision component that takes into
account information about the data’s structure to provide
improved data reduction capabilities. The decision component
uses machine learning techniques to infer which compression
algorithms and settings are best suited for a given data set.
To provide enough information for the decision component to
use, a separate training step is necessary. Currently, training
is done separately from application runs by post-processing
existing output data. The output data set is split up into its
individual variables, which are then analyzed. For each variable,
information about achievable compression ratios, processor
utilization, energy consumption, etc. is collected. This is done

Figure 1. General architecture of Scientific Compression Library (SCIL) when
integrated into the I/O workflow of scientific applications

for a wide range of data sets to provide the decision component
with a sufficiently large pool of training data. The exact
setup will be explained in more detail in Section V. Based
on these measurements, it is possible to statically compute
the appropriate compression algorithm for any given HDF5
variable. This information is then used to train the decision
component, which currently makes use of decision trees but is
planned to be extended with other techniques. In order to gain
insights into the accuracy of those decision trees and to prevent
overfitting, the data is split into a train and a test set. Those
pre-processing steps are necessary in order to gather data that
adds valuable information to the learning phase of the decision
tree classifier.

The decision trees are created using the Decision-
TreeClassifier component provided by scikit-learn,
which produces a tree representation that is then parsed into
a file that is usable in SCIL. Every time data is passed
to SCIL, the decision component infers which compression
algorithm and settings should be used before invoking its
integrated compressors. The decision component’s behavior
can be separated into two distinct modes, as described below.

If the data’s structure is known because it was part of the
training set, the decision component can select the optimal
compression algorithm and settings. This is currently done by
comparing the data set’s name but can be extended easily
if necessary. This mode of operation is mainly useful for
production runs of known applications. For instance, the
decision component can be trained for a specific application and
will be able to choose the best compressor for each subsequent
run without the developers having to modify the application.

If the data’s structure is unknown, the decision component
will use machine learning techniques (currently, decision trees)
to infer which compression algorithm and settings are best
suited for the data set in question. The decision component will
make use of information about the storage size, the number of
elements, the data’s dimensions, the data’s type (float, double,
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etc.) and other factors. Moreover, it is possible to influence the
decision based on whether energy efficiency, compression ratio
or performance should be prioritized.

IV. TRAINING OF THE DECISION COMPONENT

Our current approach requires collecting several metrics,
such as compression ratio, processor utilization and energy
consumption for each supported compressor. Since the data’s
structure can heavily influence a compressor’s behavior, these
metrics are collected per data set. This collected information can
then be employed in selection of power-aware data reduction
techniques for a given data set. In the next paragraphs, we
will gather the distinct performance and energy consumption
characteristics of a wide range of compression algorithms
through the use of HDF5 filters. Algorithms like LZ4 [4] and
Zstandard [5] are fast and provide high throughputs. However,
their compression ratios can be lower compared to slower
algorithms that consume more energy. To exclude the influence
of SCIL and the computation present in the actual applications,
the training step uses output data generated by several real-
world applications and experiments. The output data is split
up into individual data sets and compressed using HDF5’s
h5repack utility. Overall, the evaluation has been conducted
by repacking the data 10 times to obtain averaged metrics.

Hardware and Software Environment: In order to investigate
the performance of data compression at the application level, we
used a cluster, which operates with the parallel distributed file
system Lustre. Since performance is not a priority, only a single
node outfitted with two 2.80 GHz quad-core Intel Xeon X5560
processors and 12 GB of RAM was used to collect the required
metrics. Due to this, the maximum throughput was limited
to roughly 110 MB/s. To capture each compressor’s energy
consumption, the ArduPower wattmeter was used [6]. It is
designed to simultaneously measure the power consumption of
different components (e.g., motherboard, CPU, GPU and disks)
inside computing systems even at very large scale. ArduPower
provides 16 channels to monitor the power consumption with
a variable sampling rate of 480–5,880 Hz.

Metrics: The main metrics in which we were interested
are the Compression Ratio (CR) to quantify the data reduc-
tion, runtime of each algorithm to see how slow or fast is
it, and consumed energy. We define compression ratio as
CR =

original size
compressed size .

Data Sets: For the evaluation of data reduction techniques,
we used three data sets from different scientific domains:

1) ECOHAM: 17 GB data set produced by the 3-
dimensional ecosystem model for the North Sea
ECOHAM [7] (from climate science)

2) PETRA III: 14 GB data set of tomography experi-
ments from PETRA III’s P06 beamline (PCO 4000
detector) [8] (from photon science)

3) ECHAM: 4 GB data set produced by the atmospheric
model ECHAM [9] (from climate science)

Evaluated Techniques: To perform the reduction of data sets,
different HDF5 compression filters have been leveraged. As part
of our experimental evaluation, we have compared the following
algorithms commonly used in HPC. While others, such as
DEFLATE, LZMA or xz also offer high compression ratios,
their performance is typically not sufficient for HPC workloads.
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Figure 3. Average energy consumption depending on the HDF5 filter used for
data compression

Note that the following results only include compression as
decompression is usually much faster and thus negligible.

off : No filtering is applied. This represents the baseline.
blosc: The Blosc meta-compressor using the LZ4 compres-
sor. Additionally, Blosc’s shuffle pre-conditioner was used.
mafisc: The MAFISC compression algorithm that uses several
pre-conditioners and the LZMA compressor. lz4: The LZ4
compression algorithm using its default acceleration factor.
zstd: The Zstandard compression algorithm using its default
aggression parameter. The zstd-11 and zstd-22 variants represent
Zstandard with aggression parameters of 11 and 22, respectively.
scil: SCIL’s LZ4 compressor with some pre-conditioners.

Figure 2 shows that the runtimes vary wildly depending on
the internal structure of the datasets. The consumed energy and
obtained compression ratios for the ECOHAM, PETRA III and
ECHAM data sets are plotted in Figures 3 and 4, respectively.
It can be seen that different configurations achieve comparable
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Figure 4. Average compression ratios depending on the HDF5 filter used for
data compression
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DM2≤71.5
gini=0.637

samples=104
value=[41,2,10,46,5]

class=zstd-11

Storage_Size≤2816.0
gini=0.727

samples=16
value=[5,2,6,1,2]

class=zstd

True

Number_of_Elements≤1400704.0
gini=0.568

samples=88
value=[36,0,4,45,3]

class=zstd-11

False

gini=0.735
samples=7

value=[2,2,1,0,2]
class=blosc

gini=0.568
samples=9

value=[3,0,5,1,0]
class=zstd

gini=0.0
samples=1

value=[0,0,0,0,1]
class=zstd-22

gini=0.559
samples=87

value=[36,0,4,45,2]
class=zstd-11

Figure 5. Decision component trained with ECOHAM data, optimized for
maximal compression ratio per time

compression ratios with significantly different runtimes and
energy consumptions (for instance, compare mafisc and zstd
for the ECOHAM dataset). It is, therefore, necessary to
select the compression algorithm intelligently to avoid wasting
performance and energy. For a detailed analysis of the results
for the ECOHAM and PETRA III datasets, please refer to [2].

V. EVALUATION

Compressors behave very differently depending on the data
structure. Based on the results and data obtained in the previous
section, we have trained the decision component using two
different sets of training data and will run ECOHAM using
our SCIL HDF5 plugin to evaluate our approach. All relevant
code and data for this paper are available at [10].

ECOHAM data used as training data: This configuration
represents the case that the application in question is known and
has been run before on the system. The decision component has
knowledge about this particular application’s data and can take
informed decisions regarding data reduction. However, only a
random subset consisting of 75 % of ECOHAM’s output data is
used for training to make sure there is a degree of uncertainty
left. This uncertainty could correspond to updated versions of
the application or slightly changed output structure.

ECHAM data used as training data: This configuration
represents the case that a new application is run on a system
and the decision component has to use information gathered
from other applications to try to compress the application’s
data as best as possible. In this case, the decision component
will try to map decisions that make sense for other data sets
to the current application’s data.

Moreover, we will look at two different optimization targets
for the decision component, which correspond to different use
cases: First, we optimized for minimal energy consumption
per compression ratio. This strategy allows shrinking the data
with the least amount of energy possible, which is typically of
importance to data center operators. Second, we optimized for
maximal compression ratio per time. This strategy makes sure
that performance is not degraded excessively, which is usually
one of the main concerns of data center users. For instance,
Figure 5 shows a configuration using ECOHAM training data
with a decision tree that has been optimized for maximal
compression ratio per time. As can be seen, a multitude of
metrics are taken into account, including the array dimensions,
the data set’s storage size, as well as the number of elements.
In addition to these metrics, the size of each dimension and

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

off blosc lz4 zstd ecoham-1ecoham-2echam-1 echam-2

R
u

n
ti

m
e
 [

M
:S

]

Compression algorithm

Figure 6. Runtime of evaluated compressors

0.0

50.0

100.0

150.0

200.0

250.0

off blosc lz4 zstd ecoham-1ecoham-2echam-1 echam-2

E
n

e
rg

y 
co

n
su

m
p

ti
o
n

 [
k
J]

Compression algorithm

Figure 7. Energy consumption of evaluated compressors

information about data types can be used. In this specific
case, the decision tree makes sure that a mix of the Blosc
and Zstandard compressors are used. Moreover, Zstandard’s
compression level is adapted for maximum effect.

To compare our approach to static approaches, we have
chosen to run ECOHAM with the most important compressors
in static mode (that is, all data is compressed with the selected
algorithm) and four of our decision trees. It is important to
note that, although only Blosc, LZ4 and Zstandard are used
as static approaches, the decision trees have access to all of
SCIL’s compressors, which also include different aggression
parameters for Zstandard. Figures 6, 7 and 8 show the runtime,
energy consumption and compression ratio of ECOHAM when
run with the following configurations.

off : No HDF5 filter is used and, thus, no compression is
performed. blosc: SCIL’s HDF5 filter is configured to compress
ECOHAM’s data using Blosc. lz4: SCIL’s HDF5 filter is
configured to compress ECOHAM’s data using LZ4. zstd:
SCIL’s HDF5 filter is configured to compress ECOHAM’s data
using Zstandard. ecoham-1: The decision component has been
trained with ECOHAM data and is optimizing for minimal
energy consumption per compression ratio. ecoham-2: The
decision component has been trained with ECOHAM data and
is optimizing for maximal compression ratio per time. echam-
1: The decision component has been trained with ECHAM
data and is optimizing for minimal energy consumption per
compression ratio. echam-2: The decision component has been
trained with ECHAM data and is optimizing for maximal
compression ratio per time.

As can be seen in Figures 6 and 7, fast compression algo-
rithms, such as LZ4 reduce runtime and energy consumption
by causing less data being written to the file system and thus
slightly speeding up the whole application. The same is true
for the other light-weight algorithm Blosc and SCIL’s default
configuration. However, slower algorithms, such as Zstandard
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Figure 8. Compression ratio of evaluated compressors

have the opposite effect and cause increases in runtime and
energy consumption. Most importantly, the decision component
correctly uses energy-efficient algorithms when optimizing for
minimal energy consumption per compression ratio, which can
be seen in the ecoham-1 and echam-1 configurations. In the
ecoham-1 case, ECOHAM’s data structure is known and this
information can be used to effectively reduce the amount of
data. In the echam-1 case, however, the decision component
only has knowledge about ECHAM’s data structures but is still
able to choose appropriate compressors. The ecoham-2 and
echam-2 configurations both increase the runtime and energy
consumption. This is expected since, in contrast to the previous
cases, the optimization for maximal compression ratio per time
puts more emphasis on data reduction instead of low energy
consumption. Since the data structure is not known in the
echam-2 case, the decision component’s choices are not as
effective as in the ecoham-1 case and increase runtime and
energy consumption to a higher degree. Overall, the results
show that the decision component can be used both for known
as well as unknown applications. However, if the application’s
data structure are known, better decisions can be made.

This can also be seen in Figure 8, which illustrates the
compression ratios achieved by all configurations. As expected,
Blosc’s compression ratio is the lowest (3.79), followed by
LZ4 (4.95) and Zstandard (5.64). For ecoham-1 and ecoham-2,
the decision component has knowledge about ECOHAM’s data
structures and chooses the optimal algorithms for both opti-
mization targets. When optimizing for low energy consumption
(ecoham-1), the decision component favors LZ4 and achieves
a compression ratio of 4.95. When a higher compression ratio
is preferred (ecoham-2), Zstandard is chosen most of the time,
leading to a compression ratio of 5.64. When the decision
component has been training with ECHAM’s data, the results
are different: For echam-1, the decision component chooses
Blosc most of the time, which achieves the goal of reaching a
low energy consumption but boasts a lower compression ratio
of 3.79. For echam-2, however, the decision component does
end up using significantly more energy than ecoham-2 but also
provides a higher compression ratio of 5.69. This is due to the
fact that the decision component also chooses Zstandard with
higher aggression parameters.

In order to put the possible energy savings of this approach
into perspective, the initially required energy consumption of
the training has to be compared. For every variable existing
in the data set, all available compression algorithms and
selected compression levels are applied. In case of ECOHAM,
1,953 tests have been performed, resulting in 10,633 kJ being
consumed. For ECHAM, 833 tests were necessary with a total

energy consumption of 1,169 kJ. A comparison of the energy
consumptions from Figure 7 shows that our approach can save
roughly 10 kJ per run in contrast to using no compression.
Even though these savings appear small, the presented runs
were relatively short with 11–12 minutes. Production runs of
these applications typically take several days or weeks and
are repeated many times for comparison purposes. Therefore,
significant cost savings are possible even though initial training
costs appear high. Moreover, training costs can be decreased by
eliminating algorithms and settings that prove to be inefficient.

VI. RELATED WORK

The results by Welton et al. [11] show that the achievable
throughput is highly dependent on the chosen algorithm and
data properties because slow algorithms or incompressible data
can decrease throughput significantly. One way to compensate
for this drawback is to implement these algorithms in hardware.
Abdelfattah et al. [12] have implemented gzip on Field-
Programmable Gate Arrays (FPGAs) using OpenCL, which
offers higher throughput and a better performance-per-watt
ratio. Intel’s QuickAssist technology can also be used to lower
the total cost of ownership by executing popular encryption and
compression algorithms in hardware, as shown by Hu et al. [13].
However, all of these approaches still require developers
to manually select a compression algorithm and settings.
Inappropriate choices can lead to suboptimal performance
and compression ratios. It is, therefore, important to foresee
which reduction method will produce the best results. For
example, Chen et al. [14] present a decision algorithm for
MapReduce users to decide whether to use compression or not.
They reported that compression provides up to 60 % energy
savings for some jobs.

Machine learning techniques (especially Deep Learning)
are being increasingly used to compress images and videos,
as shown by Liu et al. [15]. They show that new approaches
based on deep networks can produce comparable results to
traditional coding approaches. Neural networks have also been
used by Park et al. [16] to compress data gathered by Internet
of Things devices in a lossy fashion. Rippel et al. [17] created a
machine-learning-based approach for lossy image compression
that outperforms traditional approaches, such as JPEG, JPEG
2000 and even WebP. A similar approach has been taken by
Toderici et al. [18], who have created a compressor based on
Recurrent Neural Network (RNNs) that also outperforms the
traditional lossy JPEG compressor. The same is possible for
lossless image compression, as shown by Mentzer et al. [19]:
The proposed image compression system L3C outperforms
PNG, WebP and JPEG2000. Machine learning can also be used
for indirect space savings: Kraska et al. [20] have used machine
learning to replace traditional data structures for b-trees, hash
maps and bloom filters, which allowed reducing the amount
of data needed by these data structures while simultaneously
delivering competitive performance. However, in these cases,
the actual compression is replaced using machine learning.
This has the downside of not being able to perform lossless
compression, which our approach can achieve.

VII. CONCLUSION

In this work, we have analyzed whether it is possible to
automatically and intelligently pick compression algorithms
for a given data set by making use of machine learning
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techniques. Our results show that the amount of data which can
be saved after using reduction techniques like compression
heavily depends on the structure of data. Preconditioners,
algorithms and settings might work well for one data set,
but they might increase energy consumption for others. The
preliminary results obtained during the training step have
been taken into account when designing and implementing
the decision unit for intelligent algorithms selection in SCIL.
We have used fine-grained per-variable analyses to identify
the optimal compression strategies for three different data sets
and used this data to train the decision component for our
real-world evaluation. We could demonstrate that the decision
component is able to choose appropriate compressors for both
known and unknown applications, which can be tuned for
energy efficiency or compression ratio. Without providing
additional information, the decision component was able to
achieve satisfactory compression ratios without increases in
energy consumption. Moreover, by changing the optimization
strategy of the decision trees to allow slight increases in energy
consumption, we could significantly boost compression ratios.

VIII. FUTURE WORK

Training currently has to be performed in a separate step.
In the future, we envision training data collection to be more
tightly integrated with production runs of applications. For
instance, a specialized training mode of SCIL’s HDF5 filter
could be used to capture and analyze applications’ output
data during regular runs. In order not to influence application
performance negatively, selected data samples could be sent
to a training service that then takes care of analyzing it in
more detail using a wide range of compression algorithms.
For instance, a preloadable library, which intercepts calls to
HDF5 and integrates filters into applications could offer this
functionality in a transparent way. This would also allow us
to extend our analysis to more compression algorithms and
datasets. Since training is a manual process at the moment, we
have focused on algorithms commonly used in HPC for now.

Additionally, the current interface used by HDF5 filters
is too limiting to fully exploit all possibilities offered by our
decision component. For instance, since HDF5 filters operate
on opaque buffers, it is not easily possible to access single data
points. However, this could be used gather further information
about data variance, such as maximum and minimum values,
which could be used to further tune compressor behavior. We
will also experiment with chains of compressors. Applying
multiple compressors in the correct order can lead to additional
space savings. However, figuring out the order and suitable
compressors is a combinatorial problem that is not easy to
solve manually. Therefore, we want to extend the decision
component to take this fact into account and predict chains of
compressors instead of singles ones.
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Abstract—Accurate power measurement is a prerequisite to en-
ergy optimization in High Performance Computing (HPC) sys-
tems. Fine temporal and spatial power profiling is also required to
capture fast power fluctuations that can point to inefficiencies in
applications, libraries or the operating system. Moreover, flexible
deployment of powermeters is an important factor to apply
power measurement in computing systems without breaking
into the system circuitry or compromising the system warranty.
However, it is usually a challenge to find a comprehensive
solution in the market that meets all the requirements to study
energy efficiency in HPC systems. In response to the various
research needs, ArduPower aims at a modular internal wattmeter
platform. It enables flexible deployment in computing systems,
renders accurate power monitoring with a high sampling rate
at component level and offers an on-the-fly power consumption
analysis for given components. Its open design and low price
lend it to an affordable option for fast deployment and further
customization for specific needs. Our evaluations show that
ArduPower is capable of delivering competitive results with
commercial solutions which allows us to identify application
phases within popular benchmark programs. This information
can be exploited to tune for higher computational performance
or energy efficiency in computing systems.

Keywords–Internal Wattmeter; Power Consumption; Energy
Efficiency; ArduPower; Modular Architecture.

I. INTRODUCTION

In many fields in research and engineering, High-
Performance Computing (HPC) is required to process data
or simulate processes or structures. While computation clusters
were rated and evaluated by their performance and Floating
Point Operations per Second (FLOPS) for a long time, today’s
evaluation processes also consider operating costs. Besides
maintenance, a huge factor for these is energy consumption.
This shift is also shown with the introduction of the Green500
list in 2009 which, opposing to the TOP500 list, ranks systems
using their energy efficiency by considering watts per GFLOPS.
While the TOP500 is dominated by Graphics Processing Unit
(GPU) powered systems, the Green500 list places an ARM-
based CPU in the top position, which only reaches place 159
in the TOP500 [1]. The ArduPower v2 platform, introduced
in this paper, aims to enable cheap, plug and play power
measurement for many systems, allowing for optimizations in
energy efficiency in regards to hardware selection, as well as
programming techniques.

Measurement of power consumption is done with
wattmeters. The formula for electric power P is given by
P = U ∗ I , where U is voltage and I is the current. Normally,
the voltage on a power delivery line is known relatively well
and should be in a specified range, e.g., the ATX standard
specifies ±5% for positive lines. Acquiring a value can be
easily done by either consulting the standard’s documentation

or by probing with a voltmeter, which is connected in parallel,
or an Analog-Digital-Converter.

The current, on the other hand, fluctuates with the current
workload of the consumer circuit and often is an unknown
value. To measure its value, most often Hall-effect sensors are
used to determine the strength of the magnetic field induced
by a current passing a conductor, which directly correlates
to the current value. Measuring current can be done with a
clamp meter, which is placed around a singular conductor and
captures the induced magnetic field strength, or by placing an
ammeter in series with the consumer.

Introducing a wattmeter for energy analysis can be done
externally or internally. External wattmeters, such as ZES
Zimmer LMG450 or similar, monitor power consumption
between the power outlet and a server’s power supply. Readings
represent the power draw of a system as a whole, but only
allow an overall estimation of real load. Factors offsetting
the values are the efficiency of the power supply or sporadic,
non-application related workloads. A detailed analysis often is
hard and power fluctuations of single components can not be
identified.

Internal wattmeters aim to provide power draw readings
on a component level, differentiating between energy used
by processors, mainboard, hard disk drives, etc. A finer level
of analysis is possible as different application behaviors like
computation bound or memory bound show on their corre-
sponding channels and in the specific energy profiles. Results
also can be transformed for system-level analysis by summing
up all channels. Combining both variants, external and internal,
the efficiency of power supply units can be evaluated. With
ArduPower v2 an internal wattmeter is introduced. Evolved
from the ArduPower platform, it delivers more features while
maintaining the already proven concept.

II. USES OF POWER CONSUMPTION ANALYSIS

Building a computation cluster is a complicated task requir-
ing optimization of multiple features. A naive approach to this
can be simply to optimize available computational resources,
like FLOPS. This might work for building a capable general
purpose cluster, but often systems face specific workloads
repeatedly, which might be a reference for tuning. For instance,
systems running ligand configuration simulations often benefit
from high core counts, as the tasks are worked on in a batch-
like manner, therefore parallel and independent simulations are
done. Engineering tasks, however, are regularly calculations-
heavy and benefit from faster floating point arithmetics, that
are found on higher clock-frequency CPU models.

Besides clock speeds and thread counts, there are also
architectural differences. Generally, CPU clusters are suited for
every computational problem, but, in recent years, development
of new programming techniques and hardware architectures
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pushed the usage of GPUs and accelerator cards, which provide
higher FLOPS than regular CPUs. Also, ARM’s technology
emerged, providing low-powered CPUs with high energy
efficiency. Besides the hardware cost for a new system, energy
cost accumulates over the time of usage, reaching a significant
portion of the initial costs. HPC systems have a typical lifetime
of around 5–6 years and energy costs over this period of time
can easily add another 20 % of total procurement costs. These
costs include electricity for powering the machine as well as
costs for cooling. Due to the high costs of supercomputers,
reducing energy costs even by small amounts can result in
huge cost savings. In periods of inactivity, servers are typically
not shut down but left idling, during which they still consume
significant amounts of energy. While external and non-critical
devices like GPUs can be turned off completely, CPUs can
typically only be put into power-saving modes.

Power consumption analysis allows evaluating components
on an energy level. When comparing configurations, a stan-
dardized set of programs can be run to model general cluster
usage and energy consumption can be tracked. If the results
show the efficiency of GPUs over CPUs for the desired use
case, such a more specialized cluster could be taken into
consideration. If computation speed can be sacrificed for energy
efficiency, ARM-based CPUs could offer an alternative over
regular x86 CPUs. Evaluating feature changes can be done as
well. While GPUs often perform faster floating point arithmetics
than CPUs, modern chips provide vectorization with AVX512
and therefore can heavily boost performance, and in some cases
even outperform GPUs [2].

In operation, power consumption monitoring can be used to
allocate resources to users. Traditional job managers allocate
available nodes by considering real-world time slots, CPU time
or a type of credit. Instead of providing a 6-hour time slot on
a machine, the job manager could implement a power limit
that could be set over a certain time span. This would motivate
users to use more energy-efficient code, to maximize runtimes
of programs, and be mindful when planning jobs. Managers
like SLURM [3] support power management natively, which
can manage nodes power caps and allows for accounting of
consumed energy.

III. RELATED WORK

Reliable power measurement is a prerequisite to energy
efficiency as the key optimization goal in HPC systems. Despite
considerable efforts, there is a wide spectrum of applications
that yet demand more flexible power measurement in HPC
systems. Power monitoring solutions are usually dictated by the
applications’ power profiles, which affect the required sampling
rate, measurement accuracy, spatial granularity, scalability and
instrumentation. More often than not, it is highly desirable
to leverage existing flexibility that lends itself to a variety of
applications and customizations [4].

External power measurement is a common practice to
study power consumption at node level in computing systems.
Power Supply Units (PSUs) and Power Distribution Units
(PDUs) often provide the overall power consumption of a
computing node via the Intelligent Platform Management
Interface (IPMI) with a relatively low precision and sampling
rate [5]. However, they fail to capture power traces that last
only a few seconds [6]. Professional AC wattmeters, such
as ZES Zimmer, offer accurate average power measurement

externally at node level but their low sampling rate cannot
reflect fast power fluctuations for detailed analysis [7]. The
external power measurement approach usually suffers from a
low spatial granularity that is an obstacle in the power analysis
at component level.

Internal power measurement is, however, a way forward
to achieve more flexible power monitoring as it usually
offers higher spatial and temporal granularities. PowerIn-
sight, designed by Sandia National Laboratories and Penguin
Computing, is an internal wattmeter with 15 channels and
provides instantaneous DC power measurement at a maximum
total sampling rate of 1,000 Sa/s [8]. It offers a probe-based
monitoring connected to a BeagleBone for data collection and
forwarding. Its design supports standard power plugs as well
as PCI-e risers to monitor devices such as GPUs. PowerMon2
is also an internal wattmeter that provides instantaneous power
measurement at a maximum sampling rate of 1,024 Sa/s and
supports up to 8 DC channels [9]. PowerPack is another
internal power monitoring system that supports dynamic
power management configurations [10]. It provides component-
based power monitoring through a dedicated data acquisition
mechanism with support for multicore processors and power-
performance analysis affected by the DVFS mechanism.

New HPC systems embed vendors’ proprietary solutions
to estimate energy consumption system-wide from node level
to the component level. As a prominent example, the High
Definition Energy Efficiency Monitoring (HDEEM) is a sophis-
ticated approach, designed by Technische Universität Dresden
and Bull S. A. S. [11]. Its goal is a fine-grained power
measurement enabled by a sampling rate of 8,000 Sa/s over
a fine spatial granularity, e.g., for per-CPU measurements.
Cray XC30 system series also offers an integrated power
measurement infrastructure at component level that includes
blade and GPU measurements at 10 Sa/s [12]. IBM applies a
similar integrated circuits approach to Power7 processors to
monitor power consumption at a component level [13].

While the PowerInsight [8] approach is similar to
ArduPower in regard to deployment, the feature sets differ vastly.
Featuring a BeagleBone board, PowerInsight has potential to
directly store captured data on a drive or stream it to another
endpoint via Ethernet, but is limited in terms of connectivity,
as the internal 7-channel ADC only is referenced to 1.8V,
making it crucial to implement a dedicated ADC for 5V
references sensors on the “Power Cape” board. ArduPower,
on the other hand, is better geared towards customization,
featuring an Arduino Mega. This provides 16 native 5V
referenced ADC channels and more connectivity via GPIO
pins, allowing implementation of SPI or serial buses for further
devices, not just for power monitoring, but also for arbitrary
sensors like thermal probes. Providing a richer interface for
sensors, the automatic configuration feature enables plug and
play installation, leading to fast deployment.

IV. THE ARDUPOWER PLATFORM

The first implementation of ArduPower was presented by
Dolz et al. and was based on a custom shield for the Arduino
Mega platform, providing 16 inputs for power lines [14]. After
a configuration process, the system could be connected to a
power wiring harness inside a computation node, by cutting
wires and rerouting them to the shield, and data was sent with
an 8-bit serial interface to the monitoring node.
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While the wattmeter itself worked flawlessly, the system
required much manual configuration. Version 2 re-implements
the idea of using Hall-effect sensors for current measurement
and introduces new features, such as an automatic configuration
of the device and an improved serial protocol. To enable fast
setup and modularity, the platform was split into a collector
unit, consisting of an Arduino Mega 2560 and a shield, which
is used for internal line routing and automatic configuration
circuitry. Moreover, the Hall-effect sensors were moved onto
dedicated probe devices to modularize the approach.

Probes are designed to be female-male extension cables
equipped with Hall-effect sensors. This allows integration into
the existing wiring harness with no further manipulation. All
installed probes then need to be connected with the collector
unit by cable to be forwarded to the monitoring node.

A. Hardware
In the following, ArduPower v2’s hardware design will be

described in detail, which is illustrated in Figure 1.
Probes: Voltages on internal power lines are known to be

either 3.3V, 5V or 12V with an error of 5 %, as given by the
ATX specification. Components with high power consumption
like CPUs or GPUs normally use 12V for power delivery, while
Solid-State Drives (SSDs) and USB devices do not consume as
much power and, therefore, mainly rely on lower voltages. The
reason to use different voltage levels is to keep currents low.
Both voltage and current are a linear factor in electric power,
therefore, it is possible to transport 60W of power with 5V
and 12A or by using a voltage of 12V and 5A of current. The
reasons to choose higher voltages are smaller wire diameters,
reduced magnetic fields (induced by the Hall-effect) and safety.

As the voltages are known due to standardization, probes
need to be put in series with the power supply and power
consuming component. For simple connection, a probe is
designed similar to an extension cable with a small circuit board
interrupting the power carrying line. This circuit then contains
an ACS723 Hall-effect sensor by Allegro and connections to
provide power to the probe and return data to the collector
unit. To allow for better accuracy, the bidirectional, 40A-rated
sensor for high power probes (e.g. PCI-e power to GPUs) and
the bidirectional, 20A variant for lower-powered devices were
chosen. Connection pins on the probe are used for 5V power
in and GND for power delivery and for an analog signal from
the ACS723 sensor which represents the current, a type pin to
determine the used ACS723 variant and a pin carrying the line
voltage to the ArduPower collector unit, that is used by the
automatic configuration.

Shield: Arduino shields are circuit boards with a layout
that can directly be stacked onto a device’s pins and allow for
hot-pluggable reconfiguration of functionalities. ArduPower’s
version 1 directly mounted the Hall-effect to this board, while
version 2 moved the sensors to the probes and used the shield
for internal wire routing. It also features an analog multiplexer
chip, a voltage divider and connection pins to interface with
the probes.

ArduPower v2 implements an automatic configuration that
collects information on the connected probes to determine their
type and the voltage of the measured line. As for this, an analog
voltage must be digitalized and each voltage has to be sensed
by the Arduino’s Analog-Digital-Converter (ADC). But, as the

Figure 1. Implementing ArduPower v2 is done by placing probes between the
power supply unit and each different consumer components, such as CPU,
GPU or storage devices. Each probe then is connected to the ArduPower

collector unit, which itself is connected to a monitoring node.

output signal from the probes also is an analog signal, this,
too, has to be sent to the ADC, which maxes out the Arduino’s
capabilities, as the ADC only provides 16 inputs. An external
multiplexer was built onto the shield to allow for input of 32
analog signals, enabling sensing all probed lines’ voltages and
the output values of the sensors.

Another crucial step identifying the line voltages on the
probes was the introduction of a voltage divider. The Arduino
Mega has a rated pin voltage of 5V, while computer power
lines carry up to 12V and therefore would destroy the device.
To circumvent this, a voltage divider was set up, remapping the
0V to 12V range to a 0V to 5V range, which can be read
by the ADC.

Automatic Configuration: Previous versions of ArduPower
required a configuration file for voltage information like probe
voltage. Version 2 implements an automatic configuration
feature. By forwarding the voltage of the probed line or another
set voltage between 5V and 12V from the probe to the collector
unit, the voltage can be automatically identified and used for
power calculation. The user only must identify the measured
line, e.g., whether a 12V line is connected to an EPS connector,
providing power to a CPU or a PCI device, like a GPU.
This feature requires a combination of hardware and software.
While a voltage divider and an additional analog multiplexer
were introduced on the ArduPower shield, the control of the
multiplexer is realized with software. Voltage measurement is
handled by the Arduino’s ADC with the analogread method,
while voltage identification is done in software, as the voltage
divider shifts the measured voltages into a 0V to 5V range.

Further optimization is done by only considering connected
probes when performing a measurement step. Analog-digital-
conversion is a relatively slow operation, therefore, only a rate
of 9,600Hz can be achieved, as each ADC cycle takes about
110µs. With each start of a measurement, connected probes
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are stored and only the corresponding ports are then covered
in the measurement cycle.

Deployment: Deploying the ArduPower wattmeter is a
process of installing the probes between the components
that should be power-traced and the PSU. For this, standard
power headers such as ATX, PCI-e or EPS and a probe
featuring the corresponding connector are required. Physically,
no modifications have to be done other than adding the probes
to the existing wire harness and routing wires from the probes
to the collector unit and from this unit to an available USB
port.

Server style mainboards are often fed with only a 12V line
providing most of the power, which then is transformed to the
respective operating voltage of the component. Such boards
are currently not supported due to the limitation of space in
such chassis.
Larger scale deployments can be realized by installing probes
into multiple nodes and feeding the probe’s connections to
either a dedicated ArduPower collector unit per node (similar
to 1) or by connecting probes of multiple nodes to a single
collector unit. Traces then can be collected by the profiled
node itself or by a dedicated node that all collector units are
connected to.

B. ArduPower v2 Firmware
Microcontrollers like the Atmel ATmega2560, which is the

processor used on the Arduino Mega platform, not only can
interact with hardware like Hall-effect sensors, but also can be
flashed with a custom firmware that enables processing of data.
While ArduPower provides an Arduino-compatible shield and
probes to plug into a computer’s wiring harness, a complemen-
tary firmware is required to control the serial communication
with a monitoring node, optimize data for efficient transport
and enable features like automatic configuration.

Serial Protocol: A standard serial interface uses a frame
length of 8 bits for data. The result of the analog-digital-
conversion has a precision of 10-bits. For better efficiency
in serial communication, the channel-combination-protocol
was developed for ArduPower v1. This protocol features a
synchronization bit and splits data of two probes to fit into
three serial frames. This protocol leaves one bit unused in every
three frames and cannot fill 4 bits of a frame for every uneven
number of probes, leaving

bn/2c+ (n mod 2) ∗ 4

bits unused per n probes. By altering the serial connection
to use 6 data bits, a 10 bit result can be split into two 5 bit
frames and therefore each probe requires two serial frames.
This change uses 100 % of all available data bits while having
a 4 bit shorter overall length if the number of probes is odd.

C. Collector Program
While the hardware collects data on power consumption,

calculation of the actual current, storing of values and analysis
are handled externally by either the analyzed node itself or by
a dedicated monitoring computer. To retrieve data, a collector
program is provided, which handles receiving data from the
ArduPower unit over a serial connection and deciphering the
protocol. Also, the automatic configuration results are stored
and used to determine power consumption.

All measurement values sent by the ArduPower unit are
raw 10 bit ADC values, representing the output voltage of the
ACS723 sensors. This value first has to be used to derive the
actual sensor’s output voltage, which then must be mapped to
a current. This is done by solving

I =
type
2
∗
(

analogReadVal− 5V

1,024V
− 2.5

)
where type is the sensor’s range (e.g., 20A or 40A) and
analogReadVal is received from the ArduPower unit.
Furthermore, the program enables starting and stopping of
read cycles on the ArduPower unit, can request the current
sensor configuration and handles synchronization errors.

V. EVALUATION

Evaluation is done by comparing the results of our approach
to similar works. Song et al. profiled the HPC Challenge
benchmark set and can be used for cross-comparison of power
draw behavior [15]. Comparing against the now deprecated
ArduPower v1 platform shows improvements of the new device
and allows to check the accuracy of the gained results.

For testing, a Nehalem based Intel machine was used. The
system was equipped with two Xeon X5560 CPUs with a
rated Thermal Design Power (TDP) of 95W each. The TDP
provides the maximum heat output of a chip in reference to
the base clock frequency, therefore it is not the maximum
electrical power draw of a chip, which can be higher. Power
draw increases quadratically with frequency, therefore resulting
in a much higher power draw than in the product specification
when turbo boosting.

Data was collected from ArduPower v2 using a standalone
collector script. However, a custom collector for the Diamond
daemon is also available in the paper repository at [16]. It also
includes ArduPower v2’s firmware, schematics and more.

When interpreting the following results, a preliminary
remark must be kept in mind, namely, the expected behavior
in a dual socket system would be nearly identical power draw
on both CPUs. As the boards feature two EPS connectors for
power delivery to the CPU, the wattage on both should be the
same. All experiments show an offset between both EPS lines,
which leads to the assumption that power delivery to the CPUs
is asymmetrical on both connectors. The difference between
both inputs is a constant of 20W, therefore it is assumed that
this is due to the mainboard design.

A. High-Performance LINPACK
Aiming to rate the peak performance Rpeak, the High-

Performance LINPACK Benchmark (HPL) was developed. The
benchmark in its core is a solver for dense linear equations
leveraging LU factorization with partial pivoting, which then
results in a number of 64-bit floating point operations that
can be performed per second (FLOPS). The most common
implementation of the LINPACK Benchmark was developed
by Petitet et. al. and leverages MPI for scalability [17].

The LINPACK benchmark works in a loop with calculation
and communication phases. While a computation phase applies
load to the CPU, in the communication phase, performance
data is shared over MPI, resulting in waiting times in different
processes, due to non-parallel execution times.

In Figure 2, these phases can be seen as local minima. The
total CPU power consumption peaks at close to 280W. This
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Figure 2. Excerpt of a HPL run measurement. The shown run time is 27.6 s
with a total of 30,000 samples. Vertical lines mark the communication

sections. Only every 15th sample is plotted for better visibility.

is much higher than the expected TDP of 190W, but backed
by the measurements of ArduPower v1, which also detects
wattage peaks. The excess of 90W therefore can be explained
by the aforementioned Turbo Boost features, which overclock
the CPU by 0.4GHz over the base clock. Over the course of the
run no thermal throttling could be observed, as this would be
recognizable by valleys in the graph. In the future, information
about application phases could be used to improve application
performance, as well as energy efficiency. For instance, during
computation phases, the network is typically idle and could be
used for asynchronous I/O or other tasks.

B. MPI Fast Fourier Transform
Similar to the HPL, the MPI Fast Fourier Transform (FFT)

benchmark is also contained in the HPC Challenge benchmark
suite. It implements the fast Fourier transform operation over
all MPI processes and can be used to identify scaling issues
and MPI/communication-link limitations.

The MPI FFT’s power draw graph is shown in Figure 3.
The general course of power draw is a spike, which is a
short computation or generation phase, followed by a plateau
that represents MPI activity in communicating data. The
measurements were done on a single node, which impacts the
timings of these phases. As they are tightly linked to a single
system’s load, huge variation can be expected. The wattage
in these phases is lower because of synchronization on MPI
processes and memory copy operations that normally are not
handled by the CPU. Again, information about computation
and communication phases could help to use the system more
efficiently. For instance, Turbo Boost could be selectively
switched on for the short computation spikes.

C. High Performance Conjugate Gradients
While benchmarks such as the HPL test the performance

of computation systems by producing huge arbitrary loads, the
High Performance Conjugate Gradients benchmark proposed by
Dongarra et. al. targets to model data access patterns as found
in the real world by leveraging sparse matrix calculations and
local Gauss-Seidel smoothing, besides other commonly used
engineering methods [18]. The HPCG benchmark is known to
consume much less power than the HPL, while maintaining a
more stable draw [19]. In contrast to the HPL, this benchmark
is memory bound, without the aim to calculate peak system
performance. The results in Figure 4 are again confirmed with
ArduPower v1, cross-validating the measurement.
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Figure 3. Power consumption of the MPI FFT test in the HPCC benchmark.
Vertical lines signal peaks, which indicate computation/generation phases,

followed by communication activity. The data is reduced to show every 10th
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Figure 4. Excerpt of a HPCG power draw analysis. The shown duration is
4.6 s with a total of 5,000 samples. This plot shows every captured data

sample.

D. ArduPower v2 Performance
Redesigning the ArduPower platform was done with the

goals of increased usability, higher modularity for any given use
case and increased performance. To increase throughput of cap-
tured data, a new protocol based on 6-bit serial communication
was implemented. The sampling speed is mostly determined
by the analog-digital-conversion. The new serial protocol on
the other hand only increases performance marginally, as the
effect only is noticeable with odd probe counts. The achievable
sample rate with a varying number of connected probes is
shown in Figure 5.

VI. CONCLUSION

ArduPower v2 is a modular and open design for an internal
wattmeter that allows power measurements on a component
level. We make use of an Arduino Mega 2560, as well as
custom-built shield and software to enable high-frequency
measurements using probes. In contrast to coarse-grained
external solutions, this allows us to capture and correlate the
power impact of individual application phases. This information
can then be used to improve the energy efficiency of the overall
software stack. ArduPower v2 is an evolutionary improvement
of our previous design that delivers verified results while
providing a richer feature set than its predecessor.

Since we follow an open approach, we make all necessary
schematics, firmware, scripts, etc. available in a repository at
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Figure 5. ArduPower v2 sample collection performance. The graph shows the
achieved samples per second for each probe configuration. The rapid falloff is

due to rising analog-digital-conversion impact on the cycle duration.

[16]. Interested parties can use the provided information to
build their own version of ArduPower and use it for fine-grained
power measurements. We welcome collaboration to improve
both the hardware architecture itself, as well as its integration
into the software stack. ArduPower v2 should be usable for
computer clusters of any size and can be integrated without
having to modify existing hardware. It can therefore provide a
convenient building block for research on performance analysis
and energy efficiency across many different fields.

VII. FUTURE WORK

Being built around modularity, the ArduPower platform can
be extended to provide even more insights. In its current state,
the focus is on internal power measurement, but a probe for
mains electricity power consumption can be implemented to
enable efficiency rating of power supply units and easier overall
power consumption figures. Currently, there is no possibility
to capture power draw from the mainboard to a component.
Sophisticated adapters for memory slots, PCI-e or even M.2/U.2
slots, can be made to break down power consumption in even
more detail. The open, modular design can also be used for
analysis of different performance factors. Temperature probes
tracking thermals and cooling capacity, anemometers for airflow
analysis or even security mechanisms like intrusion detection
can be developed and connected with via the simple five-pin
interface. Besides analog values, as shown in the project, also
digital communication, such as UART/USART or One-Wire,
can be realized. Firmware modification could even allow SPI
by providing a clock signal on the voltage return line.

Moreover, ArduPower could be used to provide additional
functionality within existing software, such as SLURM. Due
to its open design and modest costs, even clusters not
equipped with vendor-specific solutions could be upgraded
using ArduPower to enable fine-grained power measurements.
In contrast to the first version of our approach, ArduPower v2
does not require cutting cables and can thus be integrated and
removed easily. While ArduPower v2 still must be embedded
into the actual system, its small form factor fits even into
relatively small cases.

Due to the high resolution of ArduPower v2’s captured
measurements, it becomes possible to observe even small
variations in power consumption, such as during waiting phases
making use of spinlocks. Moreover, the data would make it
possible to automatically determine even short application

phases. This information could then be used to tune the
underlying hardware appropriately.
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Abstract—Power grids are transitioning from an infrastructure
model based on reactive electronics towards a smart grid that
features complex software stacks with intelligent, pro-active and
decentralized control. As the power grid infrastructure becomes a
platform for software, the need for a reliable roll-out of software
updates on a large scale becomes evident. In order to validate
resilient large-scale software roll-out protocols, corresponding
test beds are needed, which mirror not only Information and
Communication Technology (ICT) networks, but also include the
actual software being deployed, and show the interaction between
the power grid and the ICT network during the roll-out, and
especially during roll-out failures. In this paper, we describe the
design implementation of a large-scale co-simulation test bed
that combines ICT and power grid simulators. We pay specific
attention to the details of integrating containerized software in
the simulation loop.
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I. INTRODUCTION

The transition of the power grid to the smart grid is
happening on a large scale. From the first introduction of
the term smart grid [1], assets in the power grid have evolved
into software platforms that feature a vast array of services.
Transformers have become tools in asset management [2],
while Multi Agent Systems (MAS) represent nodes in the
power grid [3].

The numerous use and business cases enabled by this kind of
infrastructure obviously require special attention to the software
stack deployed on these devices. The life and, hence, innovation
cycle in the power grid of 30–60 years that was dominating
in the traditional power grid does not hold anymore. As the
evolution of energy systems to Cyber-Physical Systems (CPS)
based on ICT technologies has happened, so has, with increased
complexity, risen the inherent risk of the overall system [4]:
Power grids have become a target in terms of cyber security,
as proven by the attacks on the Ukrainian power grid between
2015 and 2017 [5][6]. Specifically, software solutions based
on Artificial Intelligence (AI) technologies have been regarded
as major factors in technical debt, causing frequent updates to
be made [7][8].

In a recent literature survey, we noted that the emerging
smart grid yields numerous attack vectors, many stemming
from the inclusion of ICT, AI technologies or tight market
integration [9]. A major research gap exists in AI-based analysis
of complex CPS, i.e., the combination of power grid and ICT.

Specifically, the interaction of both components has hitherto
seldom been discussed. On this basis, Adversarial Resilience
Learning (ARL) offers an approach based on AI to explore any
CPS without domain-specific knowledge and find weaknesses
in its configuration [10][11]. This can very well be applied to
software roll-out and update processes, too, provided a test bed
for this exists. Software update roll-outs are, for a simulation
testbed, a special case, as they require the actual software to
be deployed within the simulation in order to assess the impact
of the roll out.

To this end, we present a co-simulation approach that features
power grid, ICT, and software-in-the-loop simulators. We will
detail the specific development to facilitate a software-in-the-
loop simulation on a large scale. The rest of this paper is
structured as follows: Section II provides context for this work.
We will detail possible, generalized models for our testbed in
Section III. We then offer insights into the ICT co-simulation
in Section IV, which accounts for a major portion of this paper.
We discuss the overall development in Section V, and conclude
with pointers to future work in Section VI.

II. RELATED WORK

Simulators for specific domains exist for many years now,
drawing from the standard rationale that, once the system
and the interaction of its components become too complex to
describe them in terms of formulæ and automatons, a simulation
to assert assumptions is in order. For each individual domain,
a sound selection of simulators exist, such as pandapower by
Thurner et al. [12] and SIMONA by Kittl et al. [13] for power
grids, or OMNeT++ by Varga et al. [14] for ICT simulations.

However, to witness effects of the two domains interacting
with each other, none of the two is fully suited. Specifi-
cally when smart grid messaging is considered—which is
crucial to optimization protocols, such as COHDA [15][16]
or Winzent [17]—, this part of the simulation becomes
crucial. Previous simulation environments for testing smart
grid messaging have focused on other parts of the problem,
such as using a Geospatial Information System (GIS) layer to
model the feed-in of renewable energy sources [18]. Since a
modern power grid has, essentially, become a CPS, ICT has
become an integral part. Therefore, the interaction between
these two complex domains has become paramount for our
research.
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The combination of two or more simulators from different
domains is facilitated through co-simulation. A co-simulator
provides an infrastructure to schedule, synchronize different
simulators, and enable data exchange between model instances
run by the different simulators. One solution is provided
by the mosaik co-simulator [19]—the one, in fact, used
to develop the test bed presented in this paper—; other
approaches to co-simulation are employed, e.g., by OpSim [20],
or PTOLEMY II [21]. A co-simulation of power grid and ICT
has been described by different authors using different pieces
of software [22, 23, 24], but without taking the question of
software roll-out into account.

This paper introduces a smart grid software roll-out testbed,
based on the idea discussed by Kintzler et al. [25]. It details
the reasoning behind using a Software-In-the-Loop (SIL)
approach—namely, that the software being rolled out itself
is complex enough that an approximation through models is
not feasible. If the subject to the experiment, i.e., the software,
is abstracted away, the result of the roll-out protocol cannot
be validated.

SIL co-simulation is not new. Pieper et al. [26] use the
SIL technique to validate railway controllers; real-time SIL
co-simulation in the smart grid for performance measurements
is done by, e.g., Bian et al. [27]. The OMNeT++ simulation
environment offers facilities for Hardware in the Loop (HIL)
integration [28][29]. However, when the software itself is
subject to change in a co-simulation/SIL scenario, an extension
needs to be developed to allow the integration of changing,
virtualized software containers. This research gap is addressed
by our solution.

III. MODELLING POWER GRID AND ICT

Figure 1 shows the data exchange schema of our co-
simulation approach, including all software bridges that connect
the simulation with the SIL part. The following sections will
refer to the schema when locating individual pieces of software.

A. Power Grid Reference Model

To capture the complex dynamics of and possible effects
caused by the large-scale roll-out of smart power devices, a
realistic and complete model of the power system model is
a necessity. The model needs to be detailed that could later
be simulated along with the other related components. It is,
therefore, important to choose a modeling and simulation tool
that fulfills these requirements. There are many good power
system modeling and simulation tools such as pandapower by
Thurner et al. [12] and SIMONA by Kittl et al. [13] for power
grids. After a survey and discussion, DIgSILENT PowerFactory
was selected for the power system modeling as it meets the
selection criteria better than the other available tools. It provides
detailed and fine-grained modeling and simulation of many
aspects of the power system. The model needs to be simulated
in a co-simulation setting and allow to receive the set-point and
measurements from and to the coupled sub-system, as shown
in Figure 2.

Co-Simulation

Docker Containers

mosaik-vif

Software in the Loop

[rx]

[tx]

ICT Simulation

mosaik-omnetpp

ict-sim

[rx][tx]
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Power Grid Simulation
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Figure 1. Data Exchange Schema of the Co-Simulation

Power Grid
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Coupled
Sub-systems

Measurements

Control Set-points

Figure 2. Power grid (co-)simulation design rationale

DIgSILENT PowerFactory is a sophisticated, highly spe-
cialized, flexible, and extendable platform for power system
modeling and simulation. It supports fine-grained power system
modeling and simulation through a combination of both
graphical and scripting based methods for almost all the major
areas of the power system, including generation, transmission,
distribution, etc. There is a large library of models available
that can be extended by writing custom components using
the DIgSILENT Simulation Language (DSL). For a dynamic
simulation of the power system, the tool provides many
functionalities including load and power flow calculations,
reliability and contingency analysis, and many more. The tool
also supports Application Programming Interfaces (APIs) that
can be used to communicate with other simulators. It further
supports the automation using DIgSILENT Programming
Language (DPL).

AIT Lablink is a multipurpose, highly efficient, and dis-
tributed middleware for coupling both hardware and software
components in a co-simulation. It is used for coupling the
individual components and thus makes the power grid simula-
tion flexible and extendable. AIT Lablink provides interfaces,
simulation control, and data exchange capabilities. By using it,
it is possible to do either simulations or an emulation and it
has been used extensively [30, 31, 32] for performing various
validation and verification activities. A large set of hardware
and software components is already supported by bridges that
make extending the testbed very easy.
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In the present setup, depicted in Figure 1, AIT Lablink
provides a message bus that the participating components
(software/hardware) can connect to through a bridge. This
bridge facilitates the data exchange and simulation control,
including the synchronization. The bridge and the participating
component have a one-to-one correspondence. Two important
such bridges are the DIgSILENT PowerFactory and mosaik
bridge. There are some other AIT Lablink system components
like Synchronizer, Simulation Manager, etc., that provide useful
services, but are excluded here for brevity, as they are part of
every setup created with AIT Lablink.

As the co-simulation is managed by mosaik, AIT Lablink
coordinates with mosaik for data exchange and synchronization
of the simulation. All the data exchange requests received
from the coupled systems through mosaik are forwarded to
the respective component (DIgSILENT PowerFactory in this
case), while simulation synchronization requests are forwarded
to Synchronizer that takes care of running the co-simulation
components in sync.

B. The Communications Infrastructure Model

The ICT model serves to provide a number of realistic
network areas to test the software roll-out scenarios. It is
independent from the test bed software, i.e., it was developed
in parallel as part of the test bed, but can be used on its own, e.g.,
without software in the loop. It features a number of subnets,
with each subnet area designating a certain characteristic
network environment, such as a well-built fibre channel network
or a spotty wireless area. To this end, it models an Autonomous
System (AS) with routers and intra-AS traffic/routing. These
subnets have real IPv4 addresses assigned, as the ICT model
needs to process actual Internet Protocol (IP) traffic generated
by the existing software. The ICT infrastructure network is
fully contained in the class C subnet

10.64.0.0/10 .

Table I contains the relevant subnet specifications for the
areas that are described in the following paragraphs.

The reason for choosing this particular kind of subnet
is its rather remarkable subnet range and the fact that
10.64.0.0/10 is seldom used as an IPv4 address space.
This way, the ICT model does not collide with existing private,
class C IPv4 addresses, such as those assigned by Virtual Private
Network (VPN) software. This leaves room for 8192 subnets
with 254 hosts each in every defined network. The /24-subnet
should be the only network size, regardless of how many hosts
are contained in it. Routers always get the lowest IP addresses
assigned, i.e., .1, .2, .3, etc., before the first hosts are added.

The test bed consists of 3 areas, which differ by their Quality
of Service (QoS) parameters. We assume that most visible
traffic we consider is either based on the Transmission Control
Protocol (TCP) or employs similar mechanisms. This especially
means that the protocol features a retransmission algorithm.
Since packet loss can be caused either by a low-quality link
or by network congestion, delay (denoted by d) is, for the

TABLE I. ICT MODEL SUBNET SPECIFICATION

Network 10.64.0.0/10
Network Range 10.64.0.1 – 10.127.255.255
Dedicated Network 10.64.0.0/12
Shared Links Network 10.80.0.0/12
High-Impairment Network 10.96.0.0/12
Misc./Unallocated 10.112.0.0/12

purposes of this test bed, the most describing parameter of a
link (besides its data rate).

The first area is the Dedicated Network Area. The underlying
assumption is that of the best possible infrastructure, where
a grid operator has deployed dedicated ICT cabling. Thus,
the network is of high quality. This does not only create a
realistic scenario, but also serves as the test case for the whole
simulation infrastructure. The assumed nominal data rate is
1GBit/s; the delay is modeled stochastically per packet as:

d ∼ 10 + 50 · fλ(x, 1) [ms] . (1)

The function fλ(x, 1) denotes the drawing of a random
number from an exponential distribution.

The second designated area is the Shared Links Area. Here,
we assume that a grid operator uses the public infrastructure,
such as Internet-facing connections. While we can assume that
the necessary security precautions are taken (e.g., by deploying
a VPN solution and generally encrypting traffic), other traffic
interferes with the QoS of the update traffic we examine. I.e.,
we can assume that there are occasional packet drops due to
congestion. As such, we model the delay as the drawing of a
random number from a normal distribution:

d ∼ N (250; 20) [ms] . (2)

The area is well suited for variable-situation test cases. The
link data rate is still good, being at 1GBit/s nominally.

The extreme end of the spectrum is modeled by the High-
Impairment Area. It features low-datarate links (configurable
from 50 kBit/s up to 100MBit/s with frequent congestion.
This area also models the deployment of wireless connections,
such as 4G/CDMA 450 or similar technologies. It is character-
istic for an area where the development of the infrastructure
was hindered by, e.g., existing building situations, harsh terrain,
cost constraints, etc. As such, there are frequent packet drops
and even connection drops. The delay is modeled as:

d ∼ U [100;∞] [ms] , (3)

i.e., the drawing of a random number from a uniform distribu-
tion with the interval [100;∞] (inclusive). A delay of infinity
means the link is broken.

IV. ICT AND SOFTWARE-IN-THE-LOOP DEVELOPMENT

A. Data Exchange Flows

All simulators appear in the system twice, as Figure 1
suggests. For each simulator process—like the ICT simulation,
the power grid simulation, or each containerized SIL—there
exists also a representation as an entity object in mosaik. This
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object is responsible for connection data exchange channels as
well as communicating with the simulator processes. Overall,
there are at least four simulator processes with corresponding
entity objects.

The ICT Simulation is responsible to run the communica-
tion network simulation. Some nodes are also providing an
interface to the co-simulation as a bridge between the ICT
simulation and the SIL components. I.e., it also injects real IP
packets from the containerized applications into the simulation
environment and reads packets received from other simulated
nodes and transfers them back to the software containers. In
Figure 1, it is represented as the ict-sim object during a
mosaik run.

The Power Grid Simulation is responsible for calculating
load flows and line loads. It receives data through mosaik
from the actual applications. For example, an application
representing an intelligent substation would appear in the power
grid simulation as substation; the substation software would
receive readings from the power grid simulation and issue
setpoints to it. This data flow is depicted in Figure 1 as an
exchange between the SIL container, the app-sim entity
objects, and the powergrid-sim.

The Application Simulators each represent one container-
ized piece of software. They are not simulators in the strict
sense, but the SIL component. The simulator is responsible
for starting and stopping the containers gracefully, and also
for setting and collecting data coming from the co-simulation
or going to another simulator. Each application container has
its own application simulator and, hence, a corresponding
app-sim entity object.

Application logic will dictate communication with other
containers. For example, a distributed real power schedule
optimization heuristic like Winzent works on MAS basis, and,
therefore, requires communication with other applications. I.e.,
the application containers are the logical connection between
ICT and the power grid simulation. For the roll-out scenario,
it is not sensible to modify the application software to be part
of the ICT simulation directly. Thus, we leave the applications
in the container undisturbed, and deploy a virtual network
interface to connect the applications to the ICT simulation.
This virtual network interface, called vif for short, also has
a corresponding mosaik-vif entity object in the mosaik
process. Thus, in our scenario, there exist exactly as many
app-sim objects as there are vif-sim entities.

The connection between the virtual interfaces and the
corresponding nodes in the ICT simulation is done in mosaik.
Any ICT-related simulator offers at least one model that
represents the respective node. These models have exactly
two attributes, rx (“receive”) and tx (“transmit”). Attribute
is a mosaik term that designates a data exchange interface
for a simulator. Referring back to Figure 1, we see that each
vif-sim has these two attributes. The rx attributes always
receive data from mosaik, whereas tx attributes transmit data
to mosaik. The ICT simulation has more than one tx/rx pair:
one for every node in the simulation for which a corresponding
application container exists.

someapp_vif_entity = \
someapp_vif_simulator.vif()

someapp_ict_entity = next(
x for x in ict_model.children
if x.eid == \

'SimulatedNetwork/SomeApp/app-0')

world.connect(someapp_vif_entity,
someapp_ict_entity,
('tx', 'rx'))

world.connect(someapp_ict_entity,
someapp_vif_entity,
('tx', 'rx'),
time_shifted=True,
initial_data={'tx': None})

Figure 3. Example of a connection between an entitity in the ICT
simulation and the SIL container

An example of a connection in mosaik can be achieved as
shown in Figure 3.

B. Virtual Network Adapter & Packet Injection

The code example in the previous section also shows how
the hierarchical addressing for entities in simulators in mosaik
is done. The vif entities here denote a SIL entity, i.e., a
container with a unmodified piece of software. Each entity
denotes two software instances: first, the virtual interface vif
that exists in a container, and, second, the vif-sim that translates
data between the container’s networking stack and the mosaik
co-simulation protocol. These two pieces of software must
exists separately as to avoid timing issues. The startup behavior
of the container and its software cannot be observed by the
simulator; there exists a natural delay between launching the
container and being actually able to integrate it in the simulation
run, i.e., the containerized application sending and being able
to receive packets. Since multiple containers will normally
be started, there is a time gap between the first container’s
application being online and the last one being ready. As SIL
implies no modification on the software, we cannot signal these
applications to hold until the simulation is ready to be started;
hence, each vif must transparently buffer all data until the
vif-sim is launched by the co-simulator.

In general, the vif must act as if it was just a standard network
device. For this reason, the Linux kernel’s tun/tap device driver
was chosen. It establishes a tun device that appears as tun0
(or any higher index number) in the output of ip address
show, can carry IPv4 and IPv6 addresses, and can be the
subject of the default route. Moreover, the tun device needs
no gateway address, i.e., ip route add default dev
tun0 without a via stanza is possible. This way, the tun
device transparently receives all traffic from the application,
which does not need to be changed; the kernel delivers all this
traffic to a user space application, i.e., the vif. Injecting traffic
is done the same way.

Since the userspace application needs to transmit this data
to the co-simulator, a second, specific rule for the IP address
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Figure 4. Experimental Measurements of Average Ping Times and Throughput

of the mosaik instance is added, so that traffic between the
simulator and the vif still flows via the standard eth0 device.

As the tun device now tunnels all regular traffic, the
communication protocol between vif and vif-sim needs to
be carefully chosen as to avoid race conditions. Tunneling
TCP in TCP is discouraged, as two nested congestion control
algorithms interfere with each other, creating cascading time
lags that can stall the application, known as TCP Meltdown [33].
Since User Datagram Protocol (UDP) needs to be chosen,
the external address of the container is not known to the co-
simulator, which hinders the ICT simulation from injecting
data first before any data is received from the container (and,
thus, the container’s address becomes known). We solve this
be simply sending a burst of zero UDP ‘hello’ packets to
announce the container.

Each byte of packet data received by the vif is immediately
transmitted to the vif-sim, which takes care of assembling the
packets. Assuming that the first transmission will contain the
start of an IP packet and no intermediate packet data will be
lost between container, vif and vif-sim, the vif-sim reads the
packet length from the IP header field in order to assemble
whole packets. These packets are then encoded in Base64
format so that they can be transmitted to mosaik via mosaik’s
Java-Script Object Notation (JSON) communication protocol.

The vif-sim as well as the mosaik-OMNeT++ adapter are
single-threaded, but use a cooperative, asynchronous I/O
multitasking pattern to handle the communication flow. Under
the assumption that these applications are I/O-heavy, but not
computationally demanding, the single-threaded, multi-process
paradigm where much time is spent in the kernel’s I/O space
suggests itself [34].

V. DISCUSSION

As the general feasibility of co-simulation has already
been established, we focused prominently on the ICT SIL
simulations. For this, we have set up a co-simulation with a
number of containers in which the iPerf3 [35] application was
running. We have deployed pairs of clients and servers so that
an iPerf client can send and receive data from a dedicated iPerf

server container. We used this set up to test both the average
round-trip times (i.e., ping echo request/echo reply timings)
and TCP bulk transfer speeds. All data was routed through
the simulated ICT environment, so that the flow of data was
as follows: vif —vif-sim—mosaik—OMNeT++—mosaik—vim-
sim’—vif’. The simulated ICT environment does not impose
additional artificial delays in its network model.

Figure 4 shows the behavior for both metrics given a rising
number of nodes. Each data point represents a different number
of nodes and the average over 100 repeated simulation runs.
Delays rise sharply as the number of nodes rises, but not
exponentially. With ping times in the area of 23ms to 447ms,
we assume that applications that do not rely on real-time or,
in general, low-latency communication can be accommodated
by this SIL setup. However, the bulk throughput rate between
6102 kB/s to 3654 kB/s is far below a characteristic data rate
normally achieved by standard Ethernet connections.

We have investigated the reason for the low data rate and
have identified three major points. First, mosaik currently uses
non-compressed JSON messages in a request-reply pattern for
data exchange with out-of-process co-simulators. As both the
vif-sim and the mosaik-OMNeT++ adapter are written in C++,
an additional network round-trip is introduced, even if the
simulation runs locally. In addition, mosaik’s single-threaded
request-response communication pattern with its associated
simulators means that dependent simulators expect a delay
when other simulators are being stepped or queried for data.

Furthermore, mosaik has currently no facilities to allow
simulators to signal the necessity to be stepped; simulator
control is completely in the hands of mosaik. This means that
mosaik must poll all vif-sims as often as possible, since the co-
simulator has no other way of knowing when data is available
from a SIL container. In contrast to the ICT simulation, data
from applications arrives in a non-deterministic way. In general,
we have observed delays in message processing stemming from
the context switches between kernel space and user space that
frequently occur as data from the containerized applications
travel through several network stacks.

Moreover, we currently launch one vim-sim process per
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container, as this is the easiest way from a software engineering
organization perspective. However, this means a separate TCP
connection per container, a new process, and a new data stream.
We, therefore, plan to implement a multiplexing architecture
in the vim-sim part in order to reduce the number of processes,
and, hence, reduce task and context switches.

We believe that this approach offers great flexibility and
ease in modelling ICT networks with SIL. As the development
of mosaik is open source and already aimed at providing
higher throughputs and lower delay in the communication
with external simulators—e.g., a ZeroMQ implementation to
replace the socket API already exists—, and the co-simulator
is extended to allow for event-discrete, non-deterministic
simulators as they exist in this scenario, we see an increase in
the throughput in the near future.

VI. CONCLUSION & FUTURE WORK

In this paper, we have detailed requirements and issues
encountered in a SIL co-simulation of software roll-outs in the
power grid. We have shown how an interaction of ICT and the
power grid can be simulated and how complete containerized
software stacks can be embedded into this co-simulation.

In the future, we expect optimizations on implementation
level, e.g., more efficient transports and serialization techniques,
as well as implementing zero-copy primitives to reduce the
number of copy operations and context switches. On a broader
research perspective, we expect that abstracting parts of the
system through surrogate models [36][37] will provide for a
way to simulate large-scale roll-out procedures.
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Abstract— Smart grids brought huge added value to classical
power grids in terms of advanced monitoring, metering
control, trustworthiness and efficiency. This comes with some
challenges, a major one being assuring the security of the grid
against cyber-attacks. Obviously, such concerns are serious
because of the impact and risks on electrical energy
provisioning. To prevent and react to possible attacks,
intrusion detection appears as a critical component. Previous
literature work shows that an intrusion onto the grid translates
into a small glitch that a phasor may help in identifying. In this
work, we suggest to detect the glitches directly from electrical
signals (current, voltage, frequency and power). We suggest
using the detection of changes in the signals properties as an
indicator of intrusion. To this end, classical approaches in
ruptures detection have been experimented. A new approach
based on deep Long Short-Term Memory (LSTM) filtering is
proposed. The main focus of our work is on intrusions
occurring in the distribution domain. In order to conduct
experiments for the validation of the techniques, simulated
data have been produced. The built simulator is also described
in the paper. Benchmark results permit to confirm that our
newly proposed deep nonlinear LSTM-based method is a
viable solution to consider for intrusion detection for the
distribution domain in a smart grid.

Keywords-Cyber security; Smart Grid; Intrusion Detection;
Ruptures Detection; Deep Filters; LSTM.

I. INTRODUCTION

The smart grid is the result of connecting the grid
components using a communication network and extending
the functionality through advanced monitoring, metering
control and actuation devices. This permits to achieve better
productivity, trustworthiness and efficiency [1]. Such
achievement does not come without a major cost. In this
particular case, concerns are raised about the security of the
smart grid and the serious consequences of any cyber-attack
[2]. With cyber facilities added, the grid does not only face
power failures such as single line-to-ground, line-to-line, and
two-phase-to-earth, but it also faces attacks on the security of
the communication. If the network is compromised, an
intruder can cause faults and more critical threats that
endanger the power generation, transmission and
distribution. A hacker getting control of the system may
induce a big shut down, a change in the loads, a change in
the pricing of the kilowatt and many more. The induced

faults might be cascaded throughout the grid where a failure
in one component can affect many others around it [3].

Cyber-attack on the smart grid can occur at different
levels and in various domains. In this work, we are
particularly interested in the attacks within the distribution
domain. Jamei et al. [4] propose to build resilient Cyber-
Physical Systems (CPS) by using tools that monitor and
analyze data collected from Micro-Phasor Measurement
Units (PMU). The authors show that an intrusion onto the
grid translates into a small glitch that a phasor may help in
identifying.

In the present paper, we assume that an intrusion leads to
glitches in the electrical signals. Thus, the detection of
glitches alerts about possible intrusion. We suggest to collect
normal electrical signals (current, voltage, frequency and
power) from the distribution domain of a smart grid and to
apply ruptures detection algorithms in order to localize
glitches and, thereby, possible intrusions.

Detecting changes in stochastic signals has been a major
domain of research in the past few decades [5]-[8].
Applications exist in several sectors. In order to detect an
abrupt change in signal characteristics, two components are
needed: i) a model providing a cost function and ii) a search
strategy. The model generally compares the properties of
local parts of the signals to background properties of the
same signals. Parametric and statistical models or statistical
hypothesis testing may be used. Once the model is identified
and trained, a search strategy is needed in order to select and
slide the local and background windows of the observed
signals across time. In this paper, we use the ruptures open
source to detect the glitches [8]. We suggest using two deep
neuronal nonlinear predictive filters in order to estimate the
costs of an abrupt change, i.e., the presence of glitches. An
interface between our nonlinear filters and the ruptures is
also being developed in order to apply the same search
strategies.

The paper is organized as follows. Section II provides a
short description of smart grids and cyber security. Section
III describes the approaches used to perform the detection of
intruders. Section IV presents the simulator that has been
specifically developed to obtain data for the experiments.
The experiments conducted in order to validate the approach
and benchmark the different technologies are detailed in
Section V. Finally, the paper ends with the major
conclusions and several perspectives.
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II. SMART GRIDS AND CYBER SECURITY

Kim et al. [9] define the smart grid as an electrical grid
that couples the power system with an Information
Technology (IT) system. This offers several advantages in
terms of advanced monitoring, control and efficiency, but
introduces new risks, a major one being the threats related to
security.

A. Smart Grids

National Institute of Standards and Technology (NIST)
identifies seven domains in a smart grid [10]: Generation,
Transmission, Distribution, Customer, Operations, Markets,
and Service Provider. The electrical power is generated at
different generation stations in the generation domain. The
transmission domain is where the energy produced is being
transmitted to the consumers. The distribution domain is
where the test feeder is situated, and it is the domain the
customers are connected to. It is the place where the high
voltages are lowered and regulated for common use. The
customer domain is where the energy is finally consumed.
Customers are the end users. These four domains:
generation, transmission, distribution and customer, form the
physical system of a grid. Electrical power lines connect the
different components of these four domains. In this work,
we are particularly interested in the distribution domain.

Besides the physical system, three other domains exist in
a smart grid. Service providers are just like any type of
service providers in a different sector. To illustrate this, one
can compare them to the Internet service providers where
they are the direct contact with the customers. The operations
domain is where the controller of the grid resides. The
controller receives measurement and other monitoring
information about the grid through the communication
network. Based on the received information, the controller
takes informed decision and sends commands to the different
controlled units in the grid. Finally, the markets domain is
where the marketing issues related to power production and
consumption are treated.

Secure network communication links interconnect all the
components of the seven domains. This network allows
devices, systems or programs to exchange necessary
information and interact for executing advanced applications
within the smart grid.

B. Cyber Security

The introduction of the cyber system to the smart grid did
not just bring technological advancements, it also introduced
new and critical problems. Now, the grid not only faces
power failures, such a single line-to-ground, line-to-line, and
two-phase-to-earth, but it also faces attacks on the security of
the communication. This can let a hacker in, and that can
introduce faults and more critical threats that endanger the
power generation, transmission and distribution. A hacker
getting control of the system may induce a big shut down, a
change in the loads, a change in the pricing of the kilowatt
and many more. The induced faults might be cascaded
throughout the grid where a failure in one component can
affect many others around it [3]. Generally, the concerns are
about two major classes: power grid safety and data safety.

Actually, a cyber-attack can occur on different nodes in any
part of the grid and in any domain. It can be a distributed
denial of service, false injection of data, gaining access and
control over the system, tapping the system and
eavesdropping on the data passing, spreading a malware and
many more. In this work, the objective is to build an
intrusion detection system to cope with attacks that might
occur in the distribution domain in order to assure better
power grid safety.

C. Intrusion Detection

The methodologies of intrusion detection are categorized
as “Anomaly-Based Detection” (AD), “Signature-Based
Detection” (SD), and “Stateful Protocol Analysis” (SPA)
[12]. A “Signature-Based Detection” is a detection where the
attack is known and, thus, the method to solve it is also
known. It can be described as Knowledge-Based detection.
The “Anomaly-Based Detection” identifies deviations from
the expected behavior. The normal behavior is picked up
from studying the background data for a while. It can be
described as Behavior-based Detection. The “Stateful
Protocol Analysis” may look like the “Anomaly-based
Detection”, however, it is based on knowing and tracing the
protocol. SPA is also known as Specification-based
detection.

Several studies have been conducted to build an Intrusion
Detection System (IDS) for smart grids. Sedjelmaci and
Senouci studied a combination of both distributed and
centralized IDS with a focus on attacks such as Denial of
Service (DoS), faulty data injection and resource injection
[13]. They focused on the use of machine learning along
with rule-based detection. They discovered that using rule-
based alone consumed more energy, while the combination
of machine learning and rule-based detection led to lowering
the use of energy needed in detection. In addition, the
detection turned out to be improved when combining both.
Yu et al. presented an anomaly-based and watermarking-
based IDS to counter false data injection [14]. Using
watermarking, they insert hidden data to be able to verify the
authenticity of the exchanged information and to detect any
malicious injection.

Jamei et al. used microphasors to detect intruders [4].
Phasors are usually used in the transmission domain and
much less in the distribution domain. The authors introduced
microphasors in the distribution domain for cyber-attack
detection. They compared the results using those
microphasors to those from a distributed SCADA system.

Ozay et al. [15] use machine learning algorithms to
detect complications in the smart grid system. These
algorithms are also used to detect attacks and be able to
differentiate faults from attacks. The fewer the False
Positives and False Negatives, the higher the accuracy of the
machine learning algorithm. The lack of data to train these
machines presents a serious challenge. The use of machine
learning algorithms is found extensively in a lot of
researches to monitor and control systems [15]. It is also
used now to detect attacks and be able to differentiate faults
from attacks.

38Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-788-7

ENERGY 2020 : The Tenth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

                            45 / 68



In the present work, we aim at building an anomaly-
based IDS in the distribution domain using deep predicting
filters that detect changes in measured electrical signals.

III. INTRUSION DETECTION BY DETECTING RUPTURES

As mentioned above, the proposed approach to intrusion
detection relies on ruptures detection in electrical signals.
Classical ruptures detection approaches are studied and
experimented. We suggest performing rupture detection
using a deep nonlinear filter.

The key idea in our intrusion detection is to catch a
change in the electrical signals’ properties, i.e., one or more
of the measurements of voltage, current, frequency and
power as a function of time.

Ruptures can be detected when changes in signal
properties are observed. In order to achieve such detection,
several approaches can be used. One approach consists in
building a model representing the signals’ background
characteristics and to decide if such a model fits with each
short window of the signals [7]. Another approach compares
statistical properties or performs statistical tests in order to
verify if the signals in different windows are the results of a
unique process [8].

In this paper, we adopt the same formulation as in [8].
Let y = {y1, …, yT} be a Multivariate non-stationary random
process where ytℝ

d. It is supposed that y is piecewise
stationary, i.e., there exist K unknown instants of ruptures
t1*, …, tK* where some characteristics of y change. In order
to determine K as well as the instants of ruptures, a criteria
function is defined as:

� = ������ , … ,���+1
�

�−1

�=1

(1)
In (1), c(.) is a cost function which measures goodness-

of-fit of the signal segment to a specific model, as defined in
[8]. If K is unknown, the cost is compared to a threshold in
order to decide on the ruptures. The model represents the
background information while local signals are to be tested
against the background model in order to compute the cost.
Once the model-cost function is defined, a search algorithm
must be adopted. This algorithm defines how the local and
background windows are set and used to explore the signals.

The models-cost functions are categorized into
parametric and non-parametric [8]. Some parametric cost
functions are: Maximum Likelihood Estimation, Multiple
Linear Model, and Mahalanobis-type Metric. Some non-
parametric cost functions are: Non-Parametric Maximum
Likelihood Estimation, Rank-Based Detection, and Kernel-
Based Detection.

In [8], search methods are classified into three different
categories:

 Window-Sliding
 Binary Segmentation
 Bottom-Up Segmentation

Binary segmentation is “greedy sequential algorithm”
[8]. The Bottom-up segmentation of a signal is used to
perform fast segmentation of a signal. It works just the
opposite of Binary segmentation. It starts first with multiple

points of change and then decreases them by taking out the
less important ones (the ones with least inconsistency) until
there remains only the one that actually represents the correct
number of changes. This is done by splitting the signal into
various small sub-signals and then merging these parts
sequentially until there remains the number of change points
only. The window-sliding method computes the difference
between two adjacent windows. The discrepancy can be
described by the function below:

d(ya..t, yt..b) = c(ya..b) - c(ya..t) - c(yt..b) [8] (2)
where 1  a < t < b  T
This function identifies how this approximation method
measures the difference between one window and the one
just after it. The distance is higher if the cost of the
concatenation of the two adjacent windows is higher than the
sum of the costs relative to each window taken separately.

For identifying the number of change points, certain
constraints are taken based on whether the points of change
are known or not. The accuracy of any detection method is
the ability to estimate correctly the place of change points.

A. Classical Models

In the present work, the following models have been
experimented for cost calculation:

 Autoregressive (AR)
 Least Absolute Deviation
 Least Squared Deviation
 Linear Model Change

An autoregressive model of order p computes an estimate
of the present sample of a signal as a linear combination of
the p previous samples. In case of scalar signals, this can be
written as:

��� = �����−�

�

�=1

(3)
The autoregressive combination coefficients are

determined in a way to minimize the mean square prediction
error.

�� = argmin
�

������ … ��� = argmin
�

� ‖�� − ���‖
2

�

�=�+�

(4)
The linear model change minimizes the mean square

prediction error. Let 0 < t1 < t2 < … < n be the unknown
points of change. The linear regression model is described
as:

yt = zt
Tj + t,  t = tj, …, tj-1 – 1 for j > 1 (5)

where yt is the observed dependent variable, zt is the
covariate vector and t is the prediction coefficients vector.

The cost function over an interval I is the minimum mean
square of the prediction error t.

� ��� = �‖��‖
2

�∈�

= ���� − ��
����

2

�∈� (6)

B. Deep Prediction Model

In addition to the previous models, two deep learning
nonlinear models were also introduced with a customized
cost function [8]. These are the Long Short-Term Memory
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(LSTM) and the Multivariate machine learning. These
machines have been used as nonlinear predictors of the
current values of the electrical signals. It is assumed that, if
the machines are well trained and if the signals do not
change their properties, i.e., no glitch is present, then the
prediction error shall be relatively small. In contrast, a large
prediction error shall be observed when a glitch is present.

x +

x x

tanh

tanh

Xt-1 Xt Xt+1

yt-1 yt yt+1

Figure 1. LSTM predictive filter (Reproduced from [16]).

The LSTM is a recurrent neural network. Its architecture
is shown in Figure 1. Its name shows that it keeps
information for a short term from past inputs. Because of its
continuous learning process capability, it increases its
resistance to noise and overcomes technical problems that
might arise. The two practical complications overcome by
LSTM are exploding and vanishing gradients, both linked to
how the network is trained.

Multivariate predictive filter is a recurrent neural network
as well [17]. Just like the LSTM, the Multivariate is resistant
to noise and has a learning capability to be able to detect
changes such as abrupt changes in the system. Figure 2
shows the relation of the different layers to the output layer.
The purpose of this bidirectional neural network is to train
the system both forward and backward while having both the
forward and backward layers connected to the output.

Figure 2. Multivariate prediction filter (Reproduced from [17]).

The LSTM and Multivariate are best used since they can
take Multivariate signals, i.e., multiple electrical
measurements. Convolutional layers may be added at their
input in order to make the filter deeper. The predicted signal
at their output serves to compute a cost function that is the
mean square of the prediction error.

� ��� = �‖��‖
2

�∈�

= ���� − ����
2

�∈�

(7)

where ỹt is the predicted signal by the neural filter.
The mean square prediction error cost function is being

used as for non-neural algorithms in order to detect the
presence of ruptures in the electrical signals, which identifies
possible intrusion.

IV. SIMULATOR

A simulator has been developed in order to generate the
data that served in our experimentations. We focus on
intrusions occurring in the distribution domain. However, a
glitch resulting from an intrusion will be carried back to the
main center where appropriate action shall be taken. Thus,
the simulation must cover the distribution grid, the
transmission grid and the control center. This helps narrow
down the section where the problem is occurring. For this
reason, the simulator system used here considers the three
domains: transmission, distribution, and network.

The simulation system is made up from open-source
components: Hierarchical Engine for Large-scale
Infrastructure Co-Simulation (HELICS), Network Simulator
– 3 (NS-3), GridDyn, and Gridlab-d, in addition to
MATLAB. The HELICS acts as the main connector between
all the different parts [18]. The NS-3 is used as the network
of the system that connects the various parts [19]. The
GridDyn [20] is used for creating and simulating the
transmission grid. The Gridlab-d [21] and the MATLAB [22]
are used for the creation and the simulation of the
distribution grid.

HELICS is used to combine GridDyn (Transmission
Grid) with NS-3 (Communication Network) along with
MATLAB (Distribution Grid with static changes) or
Gridlab-d (Distribution Grid with dynamic changes). To set
up the system, a server and a client need to be created. The
server collects and stores all the data. The client side is
where all the action will be taken. The attack is taken up on
the distribution grid and, for that reason, the system is
created in a way to focus and grab data from that point.

After the setup of the system is completed, several tests
are run where a simulation is created as if the hacker is going
into the system. The attack creates a glitch for a fraction of
time. Attacks in various time frames, phases, and grid states
are simulated. A breaker switches on and off for a fraction of
time to recreate the same glitch. Data is collected for the
current, voltage, power and frequency. An XML file is
generated for each test and keeps track of each experiment’s
context and conditions. For Gridlab-d, the IEEE 13-bus test
feeder is used.

Jamei et al. [4] show how the glitch occurs and it was
replicated with the setup provided.
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Figure 3. Power Variation with Simulated Glitch.

Figure 3 shows a sample of the simulation where the
power signal is generated with a glitch in it. The x-axis
represents the time axis while the y-axis shows the power
value for phases A, B and C of the power grid.

V. EXPERIMENTS AND RESULTS

Using the simulator, forty different cases have been
generated. For each simulation, the instance of the glitch is
known. The electrical signals collected are voltage, current,
frequency and power. A threshold value is specified on the
cost in order to decide on a possible rupture. Ruptures
detection algorithms may yield several consecutive detection
points. A range of 500 points around the detected point is
taken as the same point in order to smooth the detection
results. Two types of errors can occur: a detection of rupture
when it does not exist (False Acceptance) and a non
detection of a rupture (False Rejection). False Acceptance
(FA) and False Rejection (FR) rates are calculated based on
the number of points detected and their location within the
accepted range and based on the known reference points.

A. Classical Ruptures Detection

The forty simulations are fitted into five different models
which are AR Order 4, Gaussian Process Change, Least
Absolute Deviation, Least Squared Deviation and Linear
Model Change. We have experimented several thresholds to
which the cost functions are compared. In this paper, we
report identical results on two different threshold values 5
and 0. The Gaussian Process Change was not taken into
consideration when checking the FA and FR since most of
the results did not give any break points, although they
existed.

TABLE I. FA AND FR RATES FOR CLASSICAL RUPTURES
DETECTION

FA (%) FR (%)

AR Order
4

Current 25557.30 0
Power 20377.67 0

Voltage 19819.06 0

Least
Absolute
Deviation

Current 8063.17 290.36
Power 8861.98 0

Voltage 11433.17 0

Least Current 6851.54 0

Squared
Deviation

Power 7695.77 0
Voltage 8374.67 0

Linear
Model
Change

Current 9195.32 37.50
Power 16865.10 0

Voltage 21716.36 22.50

Table I shows the results of FA and FR for the different
cost functions. For all the different cost functions, the
number of falsely accepted points is high, which makes it far
from acceptable for the real application. For the LSTM and
Multivariate, the check gets updated every 200-point range.
The error is calculated based on cost function the square root
of the square sum. Below is the pseudo-code of the error()
function.

def error(self, start, end):
if end - start < self.min_size:

raise NotEnoughPoints
max = 0.0
b = start
s = 200
while b <= end-s:

sub=self.signal[b:b+s]
y=np.sqrt(sum(np.square(sub)))/s
if y[0] > max:

max = y[0]
b = b+s

self.win_num = self.win_num+1
return max

def sum_of_costs(self, bkps):
epsilon=0.01
for start, end in pairwise([0] + bkps):

value=self.error(start, end)
if value < epsilon:

return value
soc = max(self.error(start, end)

for start, end in pairwise([0] + bkps))
return soc

In the error function above, we define a start point and a
window size. The error is calculated based on the square root
of the square sum of this window. It is then compared with
the threshold. If it surpasses the threshold, then this point
will be considered as a glitch point.

TABLE II. LSTM PREDICTION ERROR SIGNALS USED AS
INPUT OF RUPTURES DETECTION ALGORITHMS.

FA (%) FR (%)

AR Order 4
Current 263.11 3.40
Power 189.23 5.46

Voltage 190.82 6.98

Least
Absolute
Deviation

Current 234.61 1.03
Power 297.20 3.05

Voltage 256.15 0.31

Least Current 391.13 0.67
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Squared
Deviation

Power 285.20 4.83
Voltage 455.57 0.67

Custom
Cost

Current 430.15 3.27
Power 268.57 3.76

Voltage 414.78 3.27
Normalized

Custom
Cost

Current 388.79 1.74
Power 244.02 4.98

Voltage 438.90 1.71

TABLE III. MULTIVARIATE PREDICTION ERROR SIGNALS
USED AS INPUT OF RUPTURES DETECTION

ALGORITHMS.

FA(%) FR(%)

AR Order 4
Current 234.17 4.74
Power 165.72 6.23

Voltage 267.07 5.50

Least
Absolute
Deviation

Current 217.39 4.07
Power 263.01 4.12

Voltage 328.85 4.12

Least
Squared

Deviation

Current 344.23 3.72
Power 278.18 4.48

Voltage 344.11 5.15

Custom
Cost

Current 397.03 5.70
Power 231.03 4.74

Voltage 420.12 2.24
Normalized

Custom
Cost

Current 281.18 2.38
Power 247.42 4.48

Voltage 374.49 4.07

B. Deep Nonlinear Ruptures Detection

The LSTM and Multivariate predicted signals are being
compared to the real signals and error signals are generated.
These signals are fitted into different models which are AR
Order 4, Gaussian Process Change, Least Absolute
Deviation, Least Squared Deviation, Custom Cost (Square
root of the square sum), and Normalized Custom Cost
(Normalize the square root of the square sum). The rupture
detection threshold is set to 0. The Gaussian Process Change
in most of the cases does not deviate into giving a result and
detecting any breakpoints. This makes it get ruled out when
calculating the FA and FR afterwards.

The same experiments were conducted for Multivariate
prediction. The Linear Model Change did not deviate at all
and did not give results. The Gaussian Process Change
reacted the same way as it did when it was applied to LSTM.
For that reason, both the Linear Model Change and the
Gaussian Process Change got removed when calculating the
FA and FR later.

Tables 2 and 3 present the results in terms of FA and FR
rates when the LSTM and Multivariate methods are first
applied and then the generated prediction error signal is
entered into the various cost functions, i.e., detecting changes
of properties in the prediction error signal. Significant

improvements are observed. However, the high FA makes it
unacceptable as a precision for the electrical sector.

Figure 4. FR function of FA rates for LSTM with normalized cost.

Figure 5. FR function of FA rates for Multivariate with normalized
cost.

The prediction error signals obtained at the output of the
deep nonlinear filters are now used directly to compute the
cost. In this case, the cost becomes the mean square over the
signal window (7). FA and FR rates are computed for
different thresholds {0.01, 0.05, 0.07, 0.1, 0.2}.

Figure 4 presents the results of the LSTM method. The
number of detected points is optimal when threshold is 0.07.
A lower number of points is detected as the threshold
increases over 0.07. A higher number of breakpoints are
detected as the threshold decreases. Both FA and FR are low.
The FR is the lowest which means that the system will rarely
miss out any of the attackers getting into the system. This
combination makes it the optimal thus far.

The same procedure is applied for the Multivariate
method. The thresholds used are 0.01, 0.05, 0.07, 0.1, and
0.2. Figure 5 presents the data of the FA and FR rates
obtained. The number of detected points is optimal when
epsilon is 0.07. A lower number of points is detected as the
threshold increases over 0.07. A higher number of
breakpoints is detected as the threshold decreases. However,
the performance is lower than for LSTM when the
threshold=0.07.

By comparing all the above results, it can be concluded
that the optimal method applied is when applying the LSTM,
considering the cost as the mean square prediction error, and
taking the threshold epsilon as 0.07. It gives the optimal
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result with a low number of FA. It also yields the minimal
FR. This shows that the newly introduced modified system
gives the most accurate results.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we proposed and studied an Anomaly-
Based IDS in the distribution domain that uses deep
predicting filters applied on electrical signals to detect
ruptures. We assumed that an intrusion in the distribution
domain yields a glitch in the electrical signals that might be
identified when applying rupture detection techniques.

In order to perform the study, a simulator has been
developed and a set of forty signals have been generated
representing a variety of grids profiles and intrusions. The
simulator covers the three domains: transmission,
distribution and networking.

Classical ruptures detection algorithms have been first
applied on the signals and provided poor performances. A
new deep nonlinear rupture detection technique has been
thus proposed. Two deep prediction filters have been
developed, an LSTM and a Multivariate recurrent network.
Satisfactory results were obtained when mean square
prediction error was considered as the cost function. LSTM
seems to provide the best performance.

As a perspective, we plan to study a combination of the
experimented detectors.
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Abstract—The smart energy system is characterized by a broader
combination of various energy sources and energy storage devices
with smart control management and increased attention to
optimization for increasing energy efficiency. The fundamental
dimension in the smart energy system design is the power
assessment of the possible design architecture. This demand
imposes a need for accurately tracking the system’s power flow,
simulating and validating the system’s behavior, and applying
additional optimization and exploration during the design time.
Thus, it is evident that simulation is a critical step in the
design flow of a smart energy system. One essential element
to enable such accurate simulation is the precise model of the
power generation and consumption. While sophisticated models
for energy sources exist, the power flow in the system does not
perfectly match the power drawn from the energy storage devices
because the battery, as the primary energy storage device in the
smart energy system, has non-ideal discharge characteristics. We
propose adopting an elaborate battery model for the smart energy
system’s accurate power assessment in this work. We show the
importance of battery model accuracy when conducting a power
assessment using two different case studies.

Keywords–Power Modeling and Simulation; Battery Modeling;
Smart Energy System; Design Time Optimization; Energy Opti-
mization.

I. INTRODUCTION

The smart energy system contains different scales of energy
systems executed by the smart control management policy. It
covers applications from watts to kilowatts levels, from small-
scale Internet of Things (IoT) nodes to large-scale smart grid
applications. High energy efficiency is a critical requirement
for the small-scale smart energy systems since they only have a
small-size energy storage device and power source component.
Some of them even do not install the power source component.
A typical small-scale example is a battery-powered IoT sensor
node. Maximizing this kind of sensor node’s lifetime is critical
during the design time since the nodes are distributed in a
very dispersed manner and the cost of replacement is very
high. For large-scale smart energy systems, the adoption of
green power sources and energy storage devices is considered
a promising solution to reduce the impact on the environment
and save users’ costs. Therefore, these kinds of large-scale
smart energy systems need a careful design to overcome the
oscillating nature of the harvested environmental quantities
and the users’ undisciplined power consumption to achieve an
optimal balance between power generation and consumption.

To improve the smart energy system’s energy efficiency, the
designer must assess the system’s real-time power flow during
the design time using computer-aided modeling and simulation
tools. The traditional approach in the academic and industry
fields to designing a smart energy system relies on a model-

based methodology that depends on existing models pro-
vided by commercial simulation tools like Matlab/Simulink.
Commercial tools have enhanced features and functionalities,
and they are ordinarily user-friendly. Still, there are several
limitations of the commercial tools: (1) it is hard to extend
them as proprietary tools; (2) it is difficult to extend the
performance of the built-in classic models to generate more
accurate results; (3) commercial tools are not designed for
efficiently and simultaneously simulating the physical por-
tion (usually continuous-time) and the cyber portion (usually
discrete-time) of the systems, while these two portions are the
intrinsic features coexisting in the smart energy system; and
(4) a smart energy system is a typical heterogeneous system
composed of various components, with different parts possibly
needing different models of computations in the simulation;
commercial tools and platforms lack this kind of heterogeneous
modeling and simulation support.

To tackle these limitations, several methodologies have
been proposed in the literature that borrowed the existing
approaches from the domain of electronic system design.
One common feature shared by these solutions is building a
database filled with pre-characterized models of the system’s
various components. This feature does allow the designer to
select a model of an element from the pre-defined model
database by assuming a given level of abstraction and a given
semantics of the model. It speeds up modeling the whole
smart energy system; however, one critical issue is ignored
during the power assessment. The smart energy system is
typically composed of three main categories: power source
components, energy storage components, and power consump-
tion components. When the battery plays the power source
role in the system, the power consumed by the load does
not have a perfect 1:1 match with the power provided from
the battery, as it is not an ideal electric device. The reason
for the mismatch is that the actual power delivered by the
battery depends on its current State Of Charge (SOC), the
current magnitude, and the load frequency. More specifically,
the higher the current amplitude and load frequency, the more
power is being consumed from the battery. Hence, under the
same conditions, a larger discharge current or high-frequency
discharge current profile will consume more battery capacity.

To address this issue, in this paper, we propose to incor-
porate one circuit equivalent battery model, which has SOC
and dynamic current dependency characteristics, in the power
simulation of a smart energy system. We adopt an elaborated
battery model to simulate the smart energy system for tracking
accurate real-time power flow in the system. Two case studies
relative to different smart energy system scales are simulated
in our work to illustrate the importance of an accurate battery
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model for power/energy assessment in various smart energy
system applications.

The rest of the paper is organized as follows. Section II
provides the required background and the motivation of this
work; Section III describes the battery model adopted in our
work; Section IV reports the simulation framework used in our
experiments; Section V shows two case studies to indicate our
proposal; finally, Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

A large number of research activities are currently devoted
to optimizing energy efficiency in the smart energy system. A
high energy-efficient design relies on an accurate power/energy
analysis, and modeling and simulation of the smart energy
system are using widely approved techniques to conduct
power/energy assessment during the early design time. Several
approaches for modeling and simulation of smart energy sys-
tems have been proposed in the literature to address different
application contexts, ranging from general-purpose electrical
energy systems [1], small-scale IoT devices [2], large-scale
system like smart grids [3], and medium-scale systems as
Electric Vehicles (EV) [4]. Several different popular simulation
approaches are introduced in the following paragraphs.

Hardware-in-the-loop approaches mix software simulated
models with sensors and actuators or integrate power electronic
devices such as inverters to test the combination of new
technology in a controlled environment [5]. The resulting ac-
curacy is higher than software simulation, but applications are
restricted to small- and medium-scale smart energy systems.
Proprietary tools, such as Simulink, are usually considered the
de-facto standard. However, they are proprietary tools, thus
not easily extensible and accessible. The designer can choose
among several predefined components or instead implement
his/her designs by relying on the provided libraries, which
restricts the chances of developing custom component libraries
and evaluating alternative models. Equation-based approaches,
such as Modelica, decompose the system into elementary
components, modeled with fundamental physics equations, or
with predefined models [6]. This method restricts the kind
of descriptions supported by each simulation infrastructure.
It does not allow designers to model the cyber portion of
a smart energy system effectively. Co-simulation approaches
simulate specific aspects of the energy systems in their native
environment, combined with other tools to estimate, e.g., the
impact of network latency on control policies or the application
of electricity rates [7]. This co-simulating mechanism leads to
a very time-demanding and error-prone process for integrating
components implemented with different characteristics, e.g.,
with discrete-time or continuous-time behaviors. Additionally,
co-simulation moves the focus from smart energy system
design to its interaction with other domains, thus not accurately
reproducing the energy system components’ behavior. It also
lacks a big picture estimation of the power assessment in the
smart energy system.

The main limitation of the previously presented approaches
is that support for smart energy system modeling is limited,
either in the kind of models or in the scale of supported
systems. To overcome these limitations, the work in [2] targets
more comprehensive support for the smart energy system in
a SystemC-based framework, thus avoiding the integration of
various tools and allowing the application of the methodology

to a wide range of component models. Previous attempts in
the literature have been made to adopt the standard SystemC
simulation framework in the smart energy system. [8] uses
SystemC for abstracting and modeling physical behaviors.
However, the support for the power domain is limited to high-
level waveforms or physical equations. It is also limited to
the sole DC domain, and the modeling of the environment or
physical evolution is restricted to input traces. The work in [9]
takes inspiration from [2], but extends the support for cyber-
physical electrical energy systems, targeting the Alternating
Current (AC) domain and more accurate modeling of those
physical aspects that profoundly affect power production and
consumption.

Although previous works solve the unified simulation of
AC and Direct Current (DC) domains of the smart energy
system, there is one critical point that is ignored in the earlier
works when conducting a simulation. The battery is usually the
energy storage component in the current smart energy system,
from small-scale to large-scale applications. Simultaneously, it
is not an ideal electric device because the power drawn from
the battery is not entirely equal to the power consumed by
the load. The delivered power from the battery is strongly
dependent on the SOC of the battery and the load current
profile [10]. Especially in the smart energy system, the power
load consumption is typically non-stationary, e.g., the electric
motor’s load consumption in the EV and all the household
appliances in the home. The simple battery model directly
provides the same power quantity as the load requests, but
it is not the battery’s natural discharge characteristics. To
compensate for this defect in the smart energy system’s power
simulation, we need a battery model sensitive to its SOC
and the current load profile. Otherwise, the power simulation
results cannot generate the accurate power/energy flow in the
smart energy system, which leads to an overly optimistic power
assessment because the battery is treated as an ideal electric
device. Therefore, in this work, we propose incorporating one
circuit equivalent battery model with SOC and load current
dependence features in the power simulation to obtain an
accurate power assessment in the smart energy system.

III. BATTERY MODELING

The battery is the most popular energy storage device
from small-scale to large-scale smart energy systems due to
its excellent performance on power delivery capability and
high energy storage density. Therefore, the elaborated battery
model plays a vital role in the design and optimization of smart
energy systems. For instance, battery-powered IoT sensor
nodes lifetime estimation and EV driving range prediction are
possible only through advanced battery models and accurate
simulation techniques. According to the various battery mod-
eling techniques in the literature, there are three main battery
models categories: : mathematical models, electrochemical
models, and electrical equivalent circuit models. Although the
mathematical models and electrochemical models have good
accuracy, the complexity of the parameter identification and
heavy computation are not convenient for the power assess-
ment in the design time. An electrical equivalent circuit battery
model is an excellent choice for power simulation of a smart
energy system due to its high accuracy, accessible parameters
identification, and light computation. An electrical equivalent
circuit battery model is composed of resistors, capacitors, and
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voltage or current sources. Fig. 1 shows a widely used circuit
equivalent battery model, which is considered as a sort of
standard in the electronic design field because of its relatively
good trade-off between simplicity and accuracy.
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Figure 1. The widely used circuit equivalent battery model [11].

The left part of the model in Fig. 1 includes a ca-
pacitor C representing the nominal capacity and a current
generator modeling the discharge current Ibatt. The voltage
across the capacitor tracks the SOC (node SOC). In the right
part, a voltage-controlled generator expresses the dependence
of battery open-circuit voltage Voc on SOC. The Resistor-
Capacitor (RC) network models the battery impedance, the
series resistance R(SOC) represents the internal resistance,
and the two RC pairs track the short-term (RS , CS) and long-
term (RL, CL) time constants of an instant response. Notice
that all these parameters are, in the most general scenario,
a function of the SOC. The model can track the battery
voltage Vbatt over time for load current profiles with different
dynamics (in both time and frequency domains), even if they
have the same average current values. In terms of tracking
the SOC, the current generator Ibatt on the left side will give
the same result among different load current profiles with the
same average current values as indicated in [12], which is not
the expected behavior because of the Rated Capacity effect
exists in a battery. Rated Capacity effect is a well-known non-
ideal property of a battery. It reveals that the usable capacity
depends on the magnitude of the discharge current: a battery
is less efficient in converting its chemically stored energy into
electrical energy if the current is large.

To integrate the Rated Capacity effect in the battery model
shown in Fig. 1, the previous work [13] proposed to include
this effect by adding a voltage generator Vlost(Iload) in series
to the left part of the model (see Fig. 2). With this addition,
SOC can be tuned to become more sensitive and accurate
to different current magnitudes. However, the model cannot
observe the difference between two current square-wave load
profiles with the same average and swing values, but dif-
ferent frequencies. The frequency of the load profile is an
important aspect; it can affect the SOC of battery like the
current magnitude and is always ignored when conducting a
power assessment of the energy system. Intuitively, a higher
frequency load depletes the battery more since low-efficiency
electrochemical reactions occur at a higher frequency. This
dependency on load current frequency is underrated in pre-
vious works, while this effect is not negligible, as illustrated
in [12]. This frequency dependency should be considered in
the power analysis since the smart energy system’s load profile
is always irregular and unpredictable. The different frequency
components are hidden in the current load profile, affecting
the available battery charge.

For this purpose, another circuit equivalent battery model
is proposed, as shown in Fig. 2. The frequency dependence is
modeled by integrating the voltage generator Vlost(fload) on

Figure 2. The circuit equivalent model sensitive to current dynamics [12].

the left side of the circuit, which will cause a voltage drop (a
loss of SOC) depending on the frequency of the current load
profile. In this work, we incorporate the battery model in Fig. 2
for the power assessment of the smart energy system. For a
given battery, the methodologies to derive the dependencies of
battery capacity on current load magnitude and frequency are
used on the left side of the battery model in Fig. 2 and are
described in [12]. It also introduces how to use the model in
the simulation, particularly for the battery frequency-dependent
simulation. The battery model shown in Fig. 2 represents one
single battery cell; it can be directly adopted in the small-scale
smart energy system with only one battery cell. However, for
the battery energy storage system installed in the large-scale
smart energy systems, the systems typically have a battery pack
composed of massive cells connected in series and parallel
to achieve expected power and energy rates. A commonly
used approach to build the battery pack model assumes all
the cells behave identically within the pack, then ideally scale
up the battery cell’s electrical parameters according to the
serial and parallel connectivity. This method guarantees a faster
simulation and higher flexibility in modeling and simulation
of a large battery pack. In this way, not all the cells have
to be simulated individually; a battery pack behaves at the
electrical terminals the same way as a single battery cell, while
the electric values have been ideally scaled-up.

IV. SYSTEMC-AMS SIMULATION FRAMEWORK

A. Simulation Framework Architecture
To conduct the smart energy system’s power assessment,

the designer needs to run a smart energy system simulation
to track power production, power distribution, and power
consumption. We can classify four main categories in the smart
energy system: power source, power load, energy storage,
and conversion components. The small-scale systems typically
operate in the DC domain, while both DC and AC domains
are covered for the large-scale system. Fig. 3 shows a generic
architecture template of the smart energy system; it comprises
all kinds of components included in the smart energy systems
from DC to AC domain.

Figure 3. Generic smart energy system modular architectural template.

We adopted the simulation framework proposed in [2]
in this work, although it only focuses on small-size smart
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electronic systems and targets various non-functional proper-
ties. In our work, we concentrate on the power property and
extend the support of small-size smart electronic systems to the
general smart energy system, as shown in Fig. 3. The adopted
simulation framework indicated in Fig. 3 shows a bus-based
modular architecture; it mimics the structure of a typical smart
energy system. Notice that the small-scale system only works
in the DC domain. Four main components are included in this
framework, loads (acting as energy consumers), power sources
(acting as power generators), converters, and energy storage
devices (storing energy from power generators and providing
to energy consumers).

The ports of the modules in the DC and AC domains shown
in Fig. 3 are different, where the DC ports are modeled as V
and I and the AC ports are modeled as P and PF . The reason
is that the AC domain’s power is not the same as the power
in the DC domain. The power can be directly modeled as
voltage and current in the DC domain. However, the AC power
is composed of two components, namely, active and reactive
power. The sum of these two powers is called apparent power.
In general, the current and voltage in the AC domain are not
the same sinusoidal curves; the two curves may be out of phase
by a degree depending on the type of component. The PF is
called the power factor, which is the parameter that represents
this degree. Therefore, we can use P to describe the active
power and the corresponding power factor PF to compute the
apparent power.

Components are connected through a power bus in both
AC and DC domains, which allows the power to combine
and propagate within the system. The power management
policy is implemented in the system buses (either AC or
DC). Additionally, the policy considers the power balance
between generation and consumption, to activate or de-activate
components through enabling ports, as indicated by EN in
Fig. 3. The connections of different components to the buses
need converters, to maintain the same voltage level of the bus,
or inverters, to convert between the DC and the AC domains.
Connections between different domains are finally managed
by bridges that behave the same as an inverter.

B. Implementation Simulation Framework
As described in the previous sections, a smart energy

system is typically composed of various components. Het-
erogeneity is one main feature of the smart energy system.
Manipulating different heterogeneous models in one system is
not an easy task. We adopted the methodology proposed in [9]
to model different components in the smart energy system by
using SystemC-AMS language, which is also the reference
language to implement the whole simulation framework. It
supports multiple abstraction levels for the modeling and
simulation in a wide range of domains by using a single
language, which satisfies the heterogeneous modeling and
simulation of the smart energy system. Models can be built
by choosing the most suitable abstraction level, and native
converters can be exploited to simulate different abstraction
levels simultaneously.

SystemC is an extension of C/C++ language with specific
libraries to describe hardware, and it is widely used in digital
design for early-stage analyses. Its Analog Mixed Signal
(AMS) extension [14] was invented for modeling and sim-
ulating the interactions between analog/mixed signal systems..

It provides three different Models of Computation (MoC) to
cover various domains. Timed Data-Flow (TDF) models are
scheduled statically by considering their producer-consumer
dependencies in the discrete-time domain. Each TDF module
is characterized by a simulation time step used by the TDF
solver to insert timed activation events in the standard SystemC
event queue. This event queue ensures efficient computation,
as it avoids any runtime dynamic event management. Another
two abstraction levels support continuous-time models. Linear
Signal Flow (LSF) supports continuous-time modeling through
a library of pre-defined non-conservative primitive modules
that can be used for modeling the sophisticated mechanical
model, e.g., the wind turbine model. Electrical Linear Network
(ELN) MoC model the electrical network by connecting the
instantiations of pre-defined primitives, which is used for
modeling the circuit equivalent model, e.g., our adopted circuit
equivalent battery model.

V. SIMULATION RESULTS OF TWO CASE STUDIES

We use two case studies to illustrate the importance of the
elaborated battery model for the power assessment in the smart
energy system. All simulations conducted in this section are
implemented with SystemC-AMS version 2.3 and run on a
server with Intel Xeon 2.40 GHz CPU and 128GB RAM, as
well as Ubuntu operating system version 18.04.

A. Small-scale smart energy system case study
One multi-sensor IoT device described in [15] is selected

as the first small-scale case study. It has (1) four sensors
to monitor four different environmental quantities, namely,
wind speed and direction, gas, PM2.5 and infrared; (2) one
microcontroller that manages the scheduling of the sensors
activities by controlling their power state; (3) one transmission
unit for sending data to the data center, and (4) one lithium
battery that provides the power to the device. This case study
only operates in the DC domain, and there is only power
consumed and energy storage components in the system. Fig. 4
shows the skeleton of this small-scale smart energy system.

Figure 4. Modular architecture of smart IoT sensor nodes energy system.

All the components in the system are modeled by SystemC-
AMS. The sensors, Radio Frequency (RF) transceiver, and
microcontroller components are modeled by TDF MoC since
they are pure power consumed units. Table I lists the power
consumption of these units in both active and idle states.
The battery is modeled by ELN MoC, as shown in Fig. 2.
We selected the Panasonic 18650B lithium battery in our
simulations. It has 3,200 mAh nominal capacity and 3.6V rated
voltage. All the converters in the system are modeled by the
same methodology proposed in [4].

This smart system’s operating scenario is composed of a
periodic sequence of the following tasks: sensing, computation,
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TABLE I. POWER CONSUMPTION OF EACH COMPONENT IN THE SYSTEM.

Component State Voltage (V) Current (mA)

Infrared Sensor Idle 2.5 0.0001
Active 5.0 10.0

Wind Sensor Idle 5.0 0.001
Active 12.0 50.0

Gas Sensor Idle 2.0 0.0015
Active 5.0 168.9

PM2.5 Sensor Idle 2.0 2.0
Active 5.0 220.0

RF Idle 0 0
Active 1.8 18.8

Microcontroller Idle 3.0 0.002
Active 3.0 6.0

and transmission. When the system executes these tasks, it is
in the active period (Tactive), then the system enters a longer
idle period (Tidle) after these operations. The executive order
of different components within the Tactive interval becomes
a critical point for improving the system’s energy efficiency.
Notably, different scheduling of sensors generate different load
current profiles, finally affecting the available SOC of battery,
which determines the lifetime of the system.

To show the influence of the battery model accuracy, we
tested two scheduling policies of these four sensors. One is all
the sensors work concurrently; the other is the sensors operate
individually one by one. Both schedules are simulating with
the simple battery model shown in Fig. 1 and the elaborated
battery model indicated in Fig. 2. We set the sensing tasks to
spend 10s individually, the computational task and transmitting
task both execute for 5s, and the total length the working period
is 120s. We run the simulations in a one-day length to compare
the difference between two battery models and two schedules.
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Figure 5. Results from two battery models with different schedules.

Fig. 5-a shows the battery discharge current profile within
two periods for both schedules; it indicates that the parallel
schedule has higher peak currents; thus, it should generate
more significant Rated Capacity effect on the battery. However,
the battery model shown in Fig. 1 cannot show this effect as
illustrated in Fig. 5-b, the SOC profiles within one day of these
two schedules are the same. We can see the difference between
these two schedules clearly by using the more elaborate battery
model in the simulations, as shown in Fig. 5-c. This reveals
that the parallel schedule consumes 6.14% more than the

series sensing schedule. Designing the optimal energy-efficient
schedule is not the target of this work; our aim is to illustrate
that a more comprehensive battery model allows exploring the
optimal schedule during the design time accurately.

B. Large-scale smart energy system case study
The second case study is a large-scale smart energy system

composed of is an EV, a Photovoltaic (PV) array, a house, and
the utility grid. The architecture of this case study is shown
in Fig. 6 and it covers both the DC and AC domains. The
PV array is modeled by starting from a single PV module
model [16], then ideally scaling up to the size of the PV
array with 15 300W rated power PV modules. The single
battery cell model is the same as in our previous case study.
It scaled up to a 30kWh EV battery pack model according to
a 50s50p configuration. The EV motor model is derived by
the method provided in [4]. The power consumption of the
house is extracted from the dataset [17]. The input traces of
solar irradiance used in the simulation are extracted from the
dataset provided by the National Renewable Energy Labora-
tory (NREL) Measurement and Instrumentation Data Center
(MIDC) [18]. For the driving profile, we assumed the EV
operates a daily commute routine. The grid is modeled by a
module that can absorb the system’s surplus power and provide
the system’s power deficit.

Figure 6. Modular architecture of smart house energy system.

The EV operates the daily commute routine between the
house and the working place. The operational scenarios of this
case study have two phases:1) when the EV is not plugged in
at the house, the PV array provides the solar power to support
power consumption of the house; if any additional power, it
will be sold to the grid; any power deficit will be bought
from the grid; 2) when the EV is connected to the house,
the power consumption of the house is provided by the EV
first, then the house starts to buy power from the utility grid if
the battery pack is depleted; finally, the EV and the house start
to buy the power from the grid during the lowest electricity
price period. A time-dependent electricity price is adopted in
the simulation, as indicated in Table II. These are the basic
operations of this case study. Smart management policies can
be explored in this case study in order to improve the efficiency
of energy or for cost saving. While this is beyond the target
of this work, we aim to show the accuracy improvement of
the power assessment after incorporating an elaborated battery
model.

Fig. 7 shows the EV battery pack SOC evolution for
the weekdays in one week. Fig. 7-a and Fig. 7-b show the
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TABLE II. ELECTRICITY PRICES FOR DIFFERENT TIMES OF THE DAY.

Price Category Value ($/kWh) Time span

Buying F1 0.220 10am-3pm 6pm-9pm

Buying F2 0.215 7am-10am 3pm-6pm
9pm-11pm

Buying F3 0.200 11pm-7am
Selling 0.030 all day

power consumption and generation in the system. Fig. 7-c
compares the SOC profiles derived from two different battery
models. This reveals that the battery pack has full charge
at the beginning; then, it starts to discharge power after the
EV leaves the house to the working place; the SOC remains
stable when the EV is parked at the working place; then, the
SOC decreases again when the EV returns the house; the EV
provides the power to the house if needed; finally, the battery
pack is charged after 11 pm since the electricity price decreases
to the lowest price. We assume the constant speed of the EV
during the driving period, and we focus on the period when
the EV interacts with the system.
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Figure 7. Simulation results from two different battery models.

This case study verifies the importance of the battery model
accuracy in the power simulation of a smart energy system
again. Fig. 7-c illustrates that the simple battery model makes
an underestimated power assessment during the simulation; the
SOC profile derived by the elaborated battery model is below
the simple battery model one, which means the battery pack
needs to be charged more after 11 pm. The simple battery
model leads to an optimistic inaccurate power estimation of
the smart energy system. For a long term comparison, the total
bought energy from the grid after one year is 4,163 kWh for
simulating with the elaborated model and 3,882 kWh with the
simple model, which has a 7.2% difference.

VI. CONCLUSION

An accurate power assessment in the smart energy system
simulation requires sophisticated models of different compo-
nents in the system, and the battery model is the critical
one due to its non-ideal properties. This paper proposed
incorporating one elaborated circuit equivalent battery model
that accounts for SOC and current load dynamics in the power

simulation of the smart energy system. The elaborated model
can conduct a more accurate power assessment of the smart
energy system than using the traditional circuit equivalent
battery model. We demonstrate the importance of the battery
model accuracy for the power estimation of the smart energy
system by using two different scales of case studies.
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Abstract—The driving range of Battery Electric Vehicles (BEVs)
has been fairly extended during recent years, as a consequence
of improvements in energy density of lithium-based batteries. As
the scope of application of electric vehicles has expanded, electric
motors have been used in trucks and buses, as well as simple
passenger vehicles. There are several issues in electric buses for
the decision of daily route and finding the optimal battery size. In
this work, we propose and incorporate an electric bus powertrain
model into a range estimator that takes into account slope, speed
limits as well as traffic information. We introduce two case studies
as applications of the proposed range estimator: (i) the fast route
decision and (ii) the iteration-based bus battery sizing.

Keywords–Electric vehicle; powetrain model; range estimator.

I. INTRODUCTION

Although most of the recent Battery Electric Vehicle (BEV)
models have significantly extended the driving range (even less
costly EVs can reach the 200-250 miles autonomy), range
anxiety is still perceived as a major issue. This is due to
both the limited battery performance, which largely depends
on working and operating conditions, and the still lacking
installations of charging stations, especially in Europe [1].

All BEVs include some form of a real-time driving range
estimator based on battery State-of-Charge (SoC). Many re-
searchers have addressed the issue of improving the estimator
by accounting for all the possible factors contributing to energy
consumption: among others, road topology and grade, speed,
acceleration/deceleration, weather conditions, vehicle current
location, use of on-board electric devices (e.g., A/C), and
driving styles (e.g., normal vs. aggressive) [2][3].

As electric motors are used in various types of gasoline
vehicles, electric buses have also been introduced on the mar-
ket [4]. The bus is a good candidate for converting the gasoline
powertrain system into an electric power system because of the
motor’s characteristics, such as being emission free, having
low noise, having small vibration, being easy to maintain, etc.
However, there are several issues with using electric buses
in the public transportation system. We should know which
route is more efficiency for the electric bus considering the
road slope and the traffic. Also, for a given bus route, optimal
battery sizing is another issue. Performing driving tests with
different battery sizes is the most obvious way to find the
optimal battery size, however, this is very time consuming.

In this work, we propose an electric bus powertrain mod-
eling and simulation framework. We first implement several
parameters and component models for a complex vehicle
simulation system. Then, we implement an equation-form
powertrain model to reduce runtime for energy simulation by

extracting coefficients from complex simulation results. The
powertrain model is incorporated in a range estimator that
updates EV power consumption along with a given driving
cycle characteristics including road slope, speed limit and
traffic conditions.

The proposed fast electric bus powertrain model and range
estimator are useful for runtime decision making and off-line
battery sizing. We introduce two case studies as applications
of the proposed range estimator: (i) the fast route decision and
(ii) the iteration-based bus battery sizing.

The paper is organized as follows: Section II reports the
related work; Section III describes the system models (i.e.,
powertrain, battery and route models) and the powertrain
modeling process. Section IV reports simulation results and
case studies. Finally, Section V draws some conclusions.

II. BACKGROUND AND RELATED WORK

As a consequence of the worldwide increase in the num-
ber of BEVs, the automotive industry is facing some new
challenges related to battery pack volume, weight, lifetime
and cost. Furthermore, nowadays charging stations are not
widespread in all geographical areas, and charging time is still
too long with respect to the traditional refueling [5].

While driving range estimation is not a significant issue
for Internal Combustion Engine Vehicles (ICEVs), it is more
challenging for BEVs because some parameters largely affect
the lithium-based battery pack energy at each charge/discharge
cycle: current rate, temperature, and even driving style [6][7].
Despite the progress made in producing battery cells with
similar energy yield at different discharge currents, depleting
a battery at different rates generally leads to different total
capacity (Ah) [8]. On top of that, the maximum battery energy
decreases over time, even in case of non-connection to a load,
as a consequence of deteriorating chemical processes [9].

There are many published papers addressing the issue of
energy analysis and optimization in EVs. Most of these works
leverage upon linear battery models [10]–[12] and, therefore,
they do not include some important non-linear characteristics,
such as the real dependency of battery voltage, current and
efficiency to SoC. This non-linearity is sometimes just approx-
imated [13] or described by a rather simplified mathematical
model as in [14], where the authors proposed a steady-
state (i.e., resistive) equivalent circuit. Three energy prediction
methods are presented in [15]; however, the related frame-
work should be simplified in order to have a more practical
application. Recently, some papers suggest non-linear battery
simulation working with EV driving simulation [16][17].
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III. SYSTEM MODEL AND ESTIMATION

A. Powertrain Model

The power consumption of an EV depends on body shape
including facial area, curb weight, road slope and types of tires
as well as on the speed and acceleration of the EV. Figure 1
shows the dynamic power by a motor rotating with torque T
and angular velocity ω. Four resistances are acting on a vehicle,
where FR, FG, FI , and FA are the rolling, gradient, inertia
and aerodynamic resistances, respectively.

Figure 1. Forces on an EV.

The power consumption at the EV powertrain is the fol-
lowing [16][17]:

Pdyna = Tω = F
ds

dt
= Fv = (FR + FG + FI + FA)v

FR ∝ CrrW, FG ∝Wsinθ, FI ∝ ma, FA ∝
1

2
ρCdAv

2

Pdyna ≈ (α+ βsinθ + γa+ δv2)mv
(1)

where Crr, W , θ, m, v, a, Cd, A are the rolling coefficient,
weight, road slope, vehicle mass, vehicle speed, acceleration,
drag coefficient, and vehicle facial area, respectively. This
relation is simplified as a function of four coefficients α, β, γ
and δ.

The powertrain efficiency of the electric motor and driv-
etrain is less than 100%. The efficiency depends on the
operating RPM (revolutions per minute) and torque when the
EV drives. On top of that, the drivetrain mechanical movement
causes a power loss while delivering power to the wheels. The
following EV specific power model considers power losses by
the motor and drivetrain [17]:

PEV = Pdyna + C0 + C1v + C2v
2 + C3T

2 (2)

where C0, C1, C2, and C3 are the coefficients for constant
loss, iron and friction losses, drivetrain loss, and copper loss,
respectively.

Unlike ICEVs, the electric motor works like a power
generator when EV reduces its speed. This is done by a
regenerative braking system, which converts the kinetic energy
on the wheel into electric energy and sends it to the battery.
The power generation by regenerative braking is modeled by
a function of the negative motor torque and vehicle speed, as
follows:

Pregen = εTv + ζ (3)

where ε and ζ are regenerative braking coefficients.

B. Powertrain Modeling Process
There are several powertrain simulators in academia and

industry. ADvanced VehIcle SimulatOR (ADVISOR) is one
of well-organized vehicle simulators that takes into account
various factors of vehicles including engines, electric traction
motors, types of drivetrains, shape of chassis, etc. [18]. It is
possible to implement a certain type of vehicle in ADVISOR
by setting powertain parameters and simulating various vehicle
driving environments by changing its powertrain or driving
profile. Power consumption, battery state of charge and emis-
sion over time are simulated for a given driving cycle and
vehicle setup.

ADVISOR, however, is not suitable to simulate power
consumption in a live manner because of its relatively long
runtime. ADVISOR considers overall vehicle dynamics and
energy flow from torque on the wheels to the engine or battery
pack. Overall vehicle simulation results show energy flow in
detail, and this is important for energy analysis. However, it
is not efficient to estimate the current load from the battery
point of view and make a decision to find the optimal route
or vehicle velocity.

Based on the arguments above, instead of using ADVISOR
itself, we adopt the vehicle powertrain models from (1) to (3)
and use ADVISOR for the extraction of model coefficients.
Figure 2 shows the overall process for the electric bus charac-
terization. The process consists of three phases: i) parameter
extraction phase, ii) modeling phase and iii) simulation phase.

1) Parameter extraction phase: First, we choose a vehicle
for the ADVISOR simulation. ADVISOR requires several
parameters and models for the simulation (e.g. motor model,
vehicle chassis model and battery model). Vehicle manufac-
turers officially unveil their vehicle specifications on their
website, such as the maximum motor power and torque and
the time to reach 100 km/h. This information is used to
implement detailed parameters and models for ADVISOR.
In this parameter extraction phase, we implement an electric
motor model and a drivetrain efficiency model, and a battery
model for the ADVISOR simulation. We implement a motor
torque map from the maximum motor torque/RPM, the time to
reach 100 km/h and vehicle curb weight. We then implement
a motor efficiency map using the torque map, battery size and
driving range. The drivetrain efficiency model is obtained from
the driving range and resistances acting on a vehicle where
we calculate resistances using the vehicle body shape and the
type of tires. The battery model is easily obtained from battery
architecture and the battery cell specification. These models are
imported into the ADVISOR system and used to simulate the
complex energy flow.

2) Modeling phase: ADVISOR simulates energy flow with
an electric vehicle model obtained from Section III-B1 and
a driving cycle. We perform simulations to obtain plentiful
driving data with various vehicle speeds and road slopes. The
simulation results include power consumption by vehicle speed
and road slope over time. The driving cycles include driving
on flat road with various vehicle speeds and accelerations on
various road slopes. Test driving on various road slopes is also
performed. We use a multi-variable linear regression method
to extract coefficients of the powertrain models from (1) to
(3) [17].

3) Simulation phase: The equation form powertrain
model from (1) to (3) is used to extract the power consumption
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Figure 2. Overall process for the electric bus characterization.

by a given driving cycle promptly. We use the obtained power
consumption to simulate the battery charging/discharging op-
eration. The following Section III-C describes the details of
battery SoC estimation.

C. Battery Pack Model
The EV battery pack typically includes a large number of

Lithium battery cells. For example, a Tesla Model 3 battery
pack consists of 444 Panasonic NCR18650B cells of 3,400
mAh nominal capacity with 74p6s arrangement. Hence, to
model a pack, we need to model each individual cell, taking the
load current and SoC variations of the usable battery capacity
into account. This can be done with a circuit-equivalent model
accounting for the capacity dependency on current magnitude
and dynamics [19][20], as represented in Figure 3. The left-
hand part of the circuit models the battery lifetime, with a
capacitor C representing the battery storage capacity (Ah)

R(SOC)

Voc(SOC)

Ibatt

+

SOC

Ibatt

+

CS(SOC) CL(SOC)

+
Vlost(Ibatt)

+

Vlost(fload)

C

RS(SOC) RL(SOC)

Vbatt

Figure 3. Circuit-equivalent model for battery cell [19].

and a current generator Ibatt representing the battery current
requested by the load. As the available capacity of the battery
is affected by the load current values distribution, there are two
voltage generators on the left part representing the dependency
of the battery capacity (i.e., energy) on current values and the
dependency on load current frequency, respectively. Both gen-
erators decrease the voltage at the SoC node (which represents
the SoC) when either the current magnitudes or frequencies
increase.

Starting from this model, we built a pack model by simply
scaling parameters based on series/parallel connection. Besides
its simplicity (e.g., cell mismatches are not considered) this is
still a more realistic model than a linear one neglecting state-
dependent information. Consideration of battery temperature
is also a very important issue of battery SoC estimation.
However, we leave the topic as a future work and focus on
the state-dependent SoC estimation in this paper.

D. Driving Cycle Model

We extract a driving cycle, which represents a vehicle
driving in a city. The driving cycle includes vehicle speed
and road slope over time. We first extract a route to a
destination and use related traffic information or rules and
altitude information. We use speed limit and road traffic to
synthesize the vehicle speed, whereas the altitude profile along
the route is converted into road slopes. Figure 4 shows the road
traffic and altitude of an example route from Google Maps [21]
on the upper and lower subplots, respectively. Each color on
the route means different levels of traffic: red means heavy
traffic, orange means medium traffic, and blue means no traffic,
respectively. We easily obtain the road slope from the change
of altitude per distance unit.
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Figure 4. An example route on Google Maps [21] and its related altitude
data.
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We do not consider the acceleration/deceleration occurring
in correspondence to speed changes. Such approximation is
not critical however, because the acceleration energy is small
compared with the total energy consumption of each segment:
acceleration/deceleration seldom last more than a few seconds.

IV. SIMULATION RESULTS

We implemented a powertrain model of a BYD K9
bus from the vehicle specification and experiment re-
sults [4][22][23]. The gross vehicle weight of BYD K9 is
18,000 kg and the facial area of K9 is 2.55 by 3.36 m. K9
includes two electric motors whose maximum motor torque
and power are 350 Nm and 90 kW, respectively. The motor
type is in-wheel BYD-TYC90A Brushless Permanent Magnet
Synchronous Motor. The maximum RPM is 7,500 and the gear
box ratio is 17.7:1. The manufacturers unveiled the driving
range of K9 as being an average 250 km, based on their
experience. Battery size is 320 kWh and the maximum road
slope to climb is 15%.

A. Vehicle Parameter Extraction
We used [24] to set the parameters of the electric motor

that Larson transportation institute tested on the BYD electric
bus more than eight months (from August 29, 2013 to May
13, 2014). The institute reported the maximum acceleration of
the bus from stop: 4.8 s to 10 mph, 9.0 s to 20 mph, 16.2 s
to 30 mph, 32.4 s to 40 mph and 47 s top speed (43 mph),
respectively. We extracted (a) the maximum motor torque map
and (b) the maximum motor power by RPM, with repeataed
ADVISOR simulations, as shown in Figure 5.

MC PM 100kW motor in Advisor library
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(a) Maximum motor torque map. (b) Maximum motor power.

Figure 5. Motor parameter extraction results. (a) is the maximum motor
torque map and (b) is maximum power map.

We specified the detailed vehicle parameters as indicated
in Figure 6; this figure also shows the ADVISOR user inter-
face for parameter extraction. The motor, together with the
efficiency and battery models, are imported into ADVISOR,
and based on the simulation results, we set the parameters
so that the simulation results follow the experimental results.
Figure 7 shows the difference between experimental results and
simulation results of the driving range. We set the parameters
for drivetrain efficiency to follow the trend of driving range by
vehicle speed. There are about 200 km range difference be-
tween two lines respecting the experimental driving range and
the simulation driving range in Figure 7. However, the range
trend by the speed is similar enough. Also, the range difference
is resolved by updating the battery model, as explained in the
following section.

Figure 6. ADVISOR simulation setup.
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Figure 7. Driving range validation under efficiency parameter extraction.

B. Vehicle Powertrain Modeling

We extracted the coefficients of (1), (2) and (3) with a
number of ADVISOR simulations. Table I summarizes the
model coefficients of BYD K9. Figure 8 shows the difference
between the estimation of power consumption by the vehicle
simulator and the powertrain models; the normalized root-
mean-square error is 9.12%.

TABLE I. MODEL COEFFICIENTS FOR BYD K9.

α 0.098 β 9.7562 γ 1.2016 δ 0.0001
C0 1000.0 C1 1378.2 C2 0.00001 C3 0.000015
ε 0.4095 ζ 2178.5

C. Vehicle Simulation Setup

In our experiment, we followed the battery pack configura-
tion provided by BYD to build our battery model. The battery
is LiFePO4 (Lithium Iron Phosphate) with 540 V battery pack
voltage. The battery pack consists of three battery modules and
has 108 kWh capacity. We assumed that each battery cell in
the pack is ideally balanced in the following experiments, then
we built the battery pack model as indicated in Section III-A.
Concerning the regenerative braking phase, we assume that
charging efficiency is 20%, which means that 20% of the
kinetic energy is converted to electric energy and transferred
into the pack.
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Figure 8. Powertrain model validation result.

Figure 9. Routes from home to TUM and vice versa.

TABLE II. A ROUTE INFORMATION.

Route Distance (km) Avg. slope (degree) Avg. speed (km/h)
Home to TUM 31.2 -0.1728 24.67
TUM to Home 26.2 0.2221 22.24

D. Case study 1: Fast Driving Energy Estimation

We extract a route going to Technische Universitat
Munchen (TUM) and another one returning from TUM, as
shown in Figure 9. Table II summarize the information of the
routes: distance, average slope along the route and average
vehicle speed.

The simulation results for the routes are shown in Fig-
ure 10. The first two graphs show the road altitude from
home to TUM and the speed profile that we obtained from
the road speed limit and the Google Maps traffic information.
The third graph shows the corresponding power and energy
consumption over time. The power consumption is low in the
first half compared with the second half because the degree of
negative slope along the road is high. Fourth and fifth graphs
show the road altitude and speed profile from TUM to home.
The sixth graph shows the power and energy consumption.
The road slope is positive in this case. Therefore, the energy
consumption is higher than the energy consumption to go to

0 5 10 15 20 25 30

Distance (km)

500

550

A
lt

it
u
d

e 
(m

)
0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)

0

20

40

S
p
ee

d
 (

k
m

/h
)

0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)

0

100

200

P
o

w
er

 (
k

W
)

0

20

40

E
n

er
g

y
 (

k
W

h
)

0 5 10 15 20 25 30

Distance (km)

500

550

A
lt

it
u
d

e 
(m

)

0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)

0

20

40

S
p
ee

d
 (

k
m

/h
)

0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)

0

100

200

P
o

w
er

 (
k

W
)

0

20

40

E
n

er
g

y
 (

k
W

h
)

Figure 10. Simulation result from home to campus (first to third graphs) and
from the campus to home (fourth to sixth graphs).

TUM. The driving distance going to TUM is longer than the
route returning from TUM. However, the energy consumption
to go to TUM (27.4 kWh) is nearly 10% lower than the energy
consumption to return from TUM (30.8 kWh) because of the
road slope. The proposed equation-form energy model helps us
immediately estimate the energy consumption along the road,
taking slope and traffic into consideration, and to decide which
route is economic based on the fast simulation results.

E. Case Study 2: Battery Size Analysis
One important merit of the proposed power model is to

estimate energy consumption in a short time, which is useful
for iteration-based parameter sizing. For example, we can find
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the optimal battery size using iterative vehicle simulation.
A short simulation time is mandatory in this approach. We
perform the driving simulation on a flat 100 km distance with
different battery pack sizes. We assume that the vehicle speed
is 50 km/h, which is the average bus speed in the suburb of
the city. We assume that the battery pack voltage is the same,
and additional battery modules are attached in parallel. We
assume that the battery pack is ideally balanced during battery
charging and discharging.

We performed the vehicle simulations by changing the
battery size from 70% of nominal battery size of BYD K9
to to 130%. Figure 11 shows the simulation results. As
we increase battery size, the driving range also increases.
However, the driving efficiency (energy consumption per unit
distance) decreases because of the increase in battery weight.
The driving range increases nearly 28% if we increase the
battery size by 30%. On the other hand, the driving efficiency
decreases up to 21%. Therefore, we should carefully decide the
battery size with the consideration of cost of electricity per unit
distance (efficiency) and bus service time (driving range with
a fully charged battery).
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Figure 11. Simulation results by battery size.

V. CONCLUSION

We have proposed an improved EV range estimator incor-
porating (i) parameter extraction for complex EV simulation,
(ii) equation-form powertrain modeling by coefficient extrac-
tion and (iii) fast vehicle energy simulation with a traffic- and
altitude-aware driving cycle. We introduced two case studies
as application of the proposed range estimator: (i) fast energy
consumption estimation along the route information and (ii)
bus battery sizing considering driving efficiency and range.

The estimator can work either offline, by estimating the
range upfront without intermediate updates like a traditional
GPS navigator, or online, refining the estimate at the cost
of a route re-calculation. Our range estimator is meant as a
“plug-in” for traditional or traffic-aware (e.g., Google Maps)
GPS navigators, allowing route decisions besides traditional
information based on travel time and route distance.
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Abstract—Non-Intrusive Load Monitoring (NILM) algorithms are
actively being researched to disaggregate the electricity usage of
a whole household into the contribution of individual appliances.
While understanding the usage patterns of individual appliances
can be beneficial for flattening the peak demand, reducing the
electricity bill, and improving the energy usage efficiency, NILM
algorithms raise privacy concerns. Residential energy storage
could be used to relieve such concerns by modifying the monitored
electricity profile. However, residential energy storage systems
are yet costly, and hence assessing the financial overhead of
privacy protection techniques is important. In this paper, we
provide motivational examples and early results on how much
residential energy storage would be required to fool a state-of-
the-art NILM algorithm. Our preliminary results on the trade-
off between NILM accuracy and privacy protection indicate that
some intuitive approaches that require a significant amount of
battery capacity are not necessarily the most effective in reducing
the disaggregation accuracy.

Keywords–Privacy; Non-Intrusive Load Monitoring; smart me-
ter; energy storage.

I. INTRODUCTION

Smart meters are becoming an essential component in
smart grids because they allow high-resolution, real-time mon-
itoring of electricity generation/consumption and communica-
tion of the pricing information [1]. Smart meter information is
key for utility companies to provide information for the design
and implementation of demand side management strategies and
better cope with fluctuating electricity demands [2]. This re-
sults in more effective matching of the electricity demand and
generation. In addition, smart meter information is expected
to also bring benefits to electricity consumers, as it provides
them with more transparent billing information and enables a
better control over their electricity usage [3].

Motivated by the need to provide demand management
programs with better understanding, models, and forecasts of
electricity demand with high spatial and temporal resolution,
there have been recent rapid advances in the development
of Non-Intrusive Load Monitoring (NILM) algorithms. NILM
algorithms allow automatic decomposition of the aggregated
electric load measured by a smart meter at the household
level into the electricity usage patterns of individual appliances
(e.g., fridge, air conditioning system, etc.) [4]. One digital
AC monitor, i.e., a smart meter, measuring the single-phase

power into a household instead of individual sensors for each
appliance, suffices to provide a low cost and non-intrusive
solution. The information on electricity demand obtained via
NILM algorithms can be used to support consumption-based
feedback programs and customer segmentation for demand
management, flatten the peak demand, identify faulty appli-
ances, and provide hints on the effectiveness of demand side
management programs [5].

However, NILM algorithms inherently generate privacy
concerns. Besides detailed information on electricity usage
behaviors, sensitive private information such as how many
people are present in a home at a given time, absence of
a resident, or even gender and age information could be
potentially estimated using NILM algorithms [6][7]. What is
even more of a concern is that, from the user side, it would be
impossible to detect whether or not a NILM algorithm is being
used by the utility provider or a third-party unless explicitly
communicated. Resolving the existing trade-off between the
expected benefits of coupled smart metering-NILM systems
and the privacy challenges that they include is thus key
to facilitate the development of privacy-aware smart meter
deployments.

A potentially effective way of alleviating the privacy con-
cerns is to physically modify the electricity profile seen by
the smart meters [8]. This can be achieved by the use of a
residential energy storage. Existing commercial products, such
as Tesla Powerwall [9] or Encharge from Enphase [10], are
primarily designed for the purpose of compensating the fluc-
tuating power generation of the rooftop solar arrays. However,
their marketability is still being carefully evaluated as it is
highly dependent on the battery purchase cost, depreciation
cost due to aging as well as the local electricity cost. Hence,
using a residential energy storage for privacy protection could
harm the return-on-investment unless it is properly sized and
utilized.

In this paper, we investigate the cost-effectiveness of the
potential usage of a residential energy storage for privacy
protection against NILM algorithms. We first perturb the
electricity signal seen by the single-point smart meter of
a sample household to simulate different privacy protection
scenarios. These scenarios include the superimposition of
simple Gaussian noise on the smart meter signal, or a flattened
signal due to the usage of residential energy storage (i.e.,
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batteries) of different size and cost. We then investigate the
trade-off between privacy protection and NILM capabilities by
analyzing how the performance of a state-of-the-art NILM al-
gorithm changes in scenarios determined by increasing privacy
protection. The contributions of this paper can be summarized
as follows.

• We analyze the accuracy and effectiveness of the
NILM algorithm over modified household consump-
tion profiles using residential energy storage (i.e.,
batteries).

• We analyze the trade-off between different privacy
protection schemes and the battery size needed to
implement them.

• We provide recommendations on how to effectively
use residential energy storage to protect the privacy
of electricity users against NILM algorithms.

The ultimate goal of this paper is not to condemn the detailed
investigation of household energy demand at the end use level,
which can be very important to provide demand management
programs, or also coordinated water-energy conservation/peak
shifting programs. Rather, we aim to foster the conversation
about the privacy implications of NILM and to set the basis for
a wider discussion about the conflicting trade-off of demand
management programs in terms of technical feasibility, overall
economic and environmental benefits and social acceptance.

The rest of the paper is organized as follows. Section II
summarizes the related works on the usage of an energy stor-
age in the residential sector and NILM. Section III describes
the system setup and experimental settings for the NILM
algorithm used in this study. Section V analyzes some early
experimental results. Section VI concludes the paper.

II. RELATED WORKS

The development of smart energy grids and the uptake of
smart metering devices have fostered many recent research
efforts in two potentially conflicting directions, i.e., (i) elec-
tricity demand modeling at the end use level, and (ii) privacy
protection.

On the one hand, the increased availability of smart me-
ter data at the household level and recorded with sub-daily
sampling resolution has fostered the development of NILM
algorithms for electricity demand modelling at the end use
level, following the 1992 seminal study by Hart [11]. NILM
algorithms thus aim at estimating the electricity consumption
(or consumption pattern) of each appliance contributing to the
aggregate electricity profile recorded by a single-point smart
meter, installed at the household level. Given the aggregate
household electricity consumption Yt caused by N appliances
and recorded by the single-point smart meter at time t, NILM
algorithms estimate the non-metered consumption yit of each
individual appliance i, where

Yt =

N∑
i=1

yit + et (1)

and et is the measurement noise. This process is non-intrusive,
as the installation of multiple sensors at the appliance level is
avoided. In the last two decades, several NILM algorithms have
been proposed in the literature: optimization-based methods
(e.g., integer or sparse optimization [12]); pattern recognition

methods, which model the temporal structure of electricity
signals (e.g., methods based on Markov Models [13]); hybrid
methods [14]; and unsupervised algorithms [15]. More recent
approaches primarily exploited deep neural networks (e.g., [4])
and explored the potential of transfer learning to generalize
and transfer NILM algorithms among different domains [16].
The above methods have been extensively tested and cross-
compared on benchmark data sets [17][18] and with widely
adopted performance metrics [19].

On the other hand, the state-of-the-art literature includes
approaches for privacy protection that use a residential energy
storage to modify the usage pattern of appliances and human
activities [8][20]. These studies often target flattening out,
i.e., water-filling, the household electricity profile for privacy
protection. However, this usually results in an extensive use of
the storage requiring a large capacity and leads to accelerated
aging, thus rendering the solution impractical. An alternative
approach to privacy protection consists of randomizing the
household electricity profile by adding, for instance, Gaussian
noise [21]. However, the lack of a precise definition of privacy
has limited so far the possibility to come up with a cost
effective and general solution. Most previous works made use
of the concept of signal “flatness” to quantify the privacy level
of a modified electricity signal, and formulate it by proxy
indicators, including the sum of Root Mean Square (RMS)
error, the mutual information [22], or the entropy [23] between
the original and the modified profile. However, such metrics
are only weakly linked to the people’s perception of privacy as
it is hard to grasp the feeling of how much private information
can be extracted by just flattening the electricity profile.

In this paper, we aim neither at introducing a comprehen-
sive definition of privacy in the residential electricity sector,
nor at proposing new NILM algorithms. Rather, here, we
explore the influence of different privacy schemes on the
accuracy of state-of-the-art NILM algorithms. The different
privacy schemes are generated by perturbation of the house-
hold electricity signal as caused by operation of a residential
energy storage device. Thus, we measure privacy protection as
the ability of a residential energy storage to alter the household
electricity signal seen by the smart meter and hamper accurate
identification of end use electricity consumption via NILM
algorithms. Such an approach entails that trade-offs between
the privacy scheme defined by the usage (and thus size and
cost) of the residential energy storage and the accuracy may
emerge. The ultimate goal of this paper is, thus, to analyze
this trade-off and come up with recommendations to foster the
identification of cost-effective solutions for privacy protection
in the residential electricity sector, as well as contributing
to the overall discussion on the benefits and challenges of
the advanced metering and analytics tools characterizing the
ongoing digitalization of the utility and house sectors.

III. MATERIAL AND METHODS

A. Residential Electricity System
Figure 1 shows the system setup of the sample household

considered in this study. A smart meter monitors the whole
household energy consumption and communicates the value
to the utility provider. The utility provider makes use of the
smart meter information for demand side management. The
utility provider could run NILM algorithms with the consent
of the residents or there could be a third-party acting on its own
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initiative, potentially malicious, running NILM algorithms. In
the household, there are a number of electricity appliances,
such as washing machines, TVs, ovens, heat pumps, HVAC,
dryers, etc. Optionally, the house includes a battery storage
at home connected to the low-voltage AC network through a
bidirectional DC/AC converter. The storage resembles products
like Powerwall from Tesla (13.5 kWh) [9] or Encharge from
Enphase (3.5 kWh and 10.5 kWh) [10]. There could be
multiple purposes of installing the storage such as leveraging
the electricity price difference over time, stabilizing the local
low distribution grid by participating as a primary control
reserve, etc. In this work, we exploit the presence of a battery
storage for its additional function of privacy protection, as it
can be used to modify the electricity signal seen by the smart
meter, thus hiding the actual electricity usage of individual
appliances.

Battery 
storage

DC/AC

Low-voltage
distribution

Smart 
meter

Household 
appliance 1

Household 
appliance 2

…

Utility provider

3rd party
NILM

Figure 1. Electricity system setup for the sample household.

B. Sparse NILM algorithm
In this paper, we rely on state-of-the-art NILM algorithms

to explore the influence of different privacy schemes via
residential energy storage on NILM capabilities.

Specifically, we adapt the open source NILM algorithm
proposed by [13], a computationally efficient algorithm for
online real-time NILM based on a super-state Hidden Markov
Model (HMM) and a modified Viterbi algorithm that efficiently
manages the sparsity in HMM matrices (the original code used
in [13] is available on GitHub at [24]). In short, the algorithm
follows the following sequential process. First, the data sub-
metered at the level of individual appliance are analyzed to cre-
ate probability mass functions for each appliance and identify
its load states. Second, a super-state HMM is created by com-
bining the individual load states identified in the previous step.
This builds the actual NILM model. Finally, the super-state
HMM model is combined with a sparse Viterbi algorithm to
perform NILM and disaggregate the observed aggregate smart
meter load into the estimated contribution of each appliance.
The Viterbi algorithm is a dynamic programming algorithm
that is usually used to estimate the most likely sequence of
hidden states associated with a measured output of a process
modelled with HMM. The modified Viterbi algorithm proposed
in [13] exploits the high rate of zero-probability terms in the
HMM matrices, thus avoiding unnecessary computations and
efficiently returning a solution. The resulting sparsity-based
NILM algorithm has been demonstrated to outperform other
state-of-the-art NILM algorithms. Moreover, it can handle
disaggregation with data sampled with low-frequency (e.g., 1
min), while many other algorithms require higher frequencies,
and is scalable, i.e., can handle a large number of super-
states [13].

We assess the NILM performance of the sparsity-based
NILM algorithm under different privacy-protection scenarios

according to two performance metrics, i.e., (i) the Finite-State
F-score (FS-fscore) and (ii) the Mean Absolute Percentage
Error (MAPE). The FS-fscore was first introduced in [19] as an
alternative to conventional F-score to account for inaccuracies
in non-binary classification and is formulated as follows:

FSi =
2× PCi ×RCi

PCi +RCi
(2)

where RCi and PCi are the recall and precision, respectively,
formulated for each appliance i in order to take into account
the classification inaccuracy RCi = TPi−inacci

TPi+FNi
and PCi =

TPi−inacci
TPi+FPi

. The inacc term can be defined, for each appliance
i, as:

inacc =

H∑
t=1

∣∣x̂i
t − xi

t

∣∣
Ki

(3)

where x̂i
t and xi

t are the estimated and observed states of
appliance i at time t, H is the considered time horizon, Ki is
the number of states of appliance i, TPi, FPi, and FNi are
the number of true positive, false positive, and false negative
events, respectively. Overall, the FS-fscore metric evaluates
how good a NILM algorithm is in classifying the operating
states of the considered appliances. MAPE is formulated as
follows, for appliance i:

MAPE =
1

H

H∑
t=1

∣∣∣∣yit − ŷit
yit

∣∣∣∣ (4)

where the notation is consistent with the variables previously
defined in this paper. After calculating the FS-fscore and
MAPE performance metrics for each appliance, we compute
their average value across appliances to assess how affected the
NILM performance is on average, for each privacy protection
scheme.

Figure 2. (Upper) Residential electricity profile example with usage of
individual appliances shown [17], (Lower) Battery State-Of-Charge (SOC)

for day-wise water-filling of a battery capacity of 15.04 kWh.

C. AMPds Dataset
To simulate the electricity consumption of the different

appliances included in the sample household of Figure 1 and
train the sparse NILM algorithm, we used the appliance-level
data included in the AMPds dataset [17]. The AMPds dataset
contains electricity, water, and natural gas measurements at
one minute intervals for 2 years of monitoring. The data
was collected at a house in Canada, where a family of three
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live. In this study, we considered the original version of the
dataset, which includes data for 19 appliances monitored over
a period of 1 year [25]. Electricity was measured with 1 Hz
frequency, and 21 loads including a furnace, a fridge, a heat
pump, a clothes dryer, TVs, a wall oven, etc., which makes
it suitable for developing and evaluating NILM algorithms. In
the trade-off analysis presented in this work, we considered an
increasing number of appliances in the AMPds - from 3 to 10
- selected based on their ascending total electricity usage over
the 1-year time series.

IV. PRIVACY PROTECTION SCHEMES

One way to protect privacy is to completely flatten out the
usage profile like water-filling strategy. However, water-filling
strategy could be prohibitive due to the high usage of battery.
For example, to completely filter out the whole house energy
consumption reported in the AMPds dataset shown in Figure 2
(top) over a year, a battery of usable capacity 15.04 kWh has
to be used. Assuming a battery system cost of 700 USD/kWh
including the pack and the electronic equipment, this would
result in more than 10,000 USD for purchasing the battery
system. Assuming a lifetime of 10 years, which is equivalent
to the warranty period of Tesla Powerwall, this would roughly
equate to 1,000 USD/year solely for protecting privacy. There
are other factors that add to cost, such as sub-optimal exploita-
tion of Time-Of-Use (TOU) tariffs and accelerated aging due
to repeated cycle charge/discharge. Such factors, however, will
be left as future works, and we focus on the required capacity
in this work. Next, we present various methods to modify the
original electricity consumption profile to protect the privacy
against the Sparse NILM algorithm presented in Section III-B.
M1: Add Gaussian noise to the whole duration of the
profile. The method is intended to make the profile hard to
analyze regardless of the time of use and appliance usage
patterns. We control the intensity of the noise to see the
impact. Larger noise leads to reduced accuracy of the NILM
algorithms. However, it also involves more usage of the battery
capacity. The upper graph in Figure 3 shows such an example.
We have introduced a Gaussian noise with a standard deviation
of 3 A. The mean of the noise over the long term is of course
zero, but temporary increase and decrease in cumulative energy
from the battery is inevitable, as can be seen from Figure 3.
We observe that a naive implementation of M1 requires an
unnecessarily large battery capacity, so we periodically reset
the SOC of the battery to a pre-defined level. The usage pattern
can still be modified while efficiently making use of the battery
capacity.
M2: Add Gaussian noise only when a particular appliance
of interest is used. For M2, we add noise only to time
slots where a particular appliance is being used. We test this
scheme in order to find out whether we can selectively hide the
usage profile of an appliance, which will be using less battery
capacity compared with M1.
M3: Water-filling for a particular appliance of interest.
For M3, we see whether hiding the usage pattern by flattening
out the appliance profile while it is being used is effective in
reducing the accuracy of the NILM algorithm. Figure 4 shows
how it modifies the profile. In the modified profile, the load
looks rectangular rather than preserving all the “shapes” of the
consumption. Because the load is averaged, the peak becomes
lower than the original profile.

Figure 3. Original (upper) and modified (middle) whole household electricity
consumption using privacy protection scheme M1, and the corresponding

battery energy level (lower) over two days.

Figure 4. Original (upper) and modified (middle) profile of the clothes dryer
using privacy protection scheme M3, and corresponding battery profile

(lower) over two days.

M4: Spread-out the electricity consumption of a particular
application. What can be seen from Figure 4 is that the
appliance, which draws significant current, is still very visible
to the human eye in the overall profile. Hence, we also attempt
to modify the peak value with the support of a battery in
varying degrees. Therefore, we explore M4, which reduces the
size of the peak and spreads out the electricity consumption
evenly among all time slots.

M5: Erase an appliance’s consumption. This is similar to
M4, but completely erases an appliance’s usage profile from
the whole household energy consumption by charging the
battery storage. An equivalent amount of energy is discharged
over the whole period of time just like M4.

M6: Day-wise water-filling for the whole electricity con-
sumption profile. Finally, M6 performs a water-filling tech-
nique, which results in a flat profile seen by the smart meter.
However, doing this for a whole year, i.e., flat profile for a year,
is prohibitive because of the seasonal variations in electricity
consumption, which mandates the use of an excessively large
capacity battery, i.e., tens of kWh of battery capacity over the
course of two years just for introducing the Gaussian noise
of 6 A standard deviation. Therefore, we investigate day-wise
water-filling, which means the smart meter will see a flat
profile within a day, but varying electricity profile among days.

We evaluate the reduction in disaggregation accuracy and
the required battery capacity, and hence the cost, for each
method to provide an insight into developing cost-effective
techniques.

59Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-788-7

ENERGY 2020 : The Tenth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

                            66 / 68



V. EXPERIMENTAL RESULTS

In this section, we present the FS-fscore and MAPE ob-
tained for NILM under the different privacy protection schemes
detailed in the previous section. The overall evaluation pro-
cedure is shown in Figure 5. For the sake of analysis, we
have preprocessed the AMPds dataset and prepared 8 sets
of the Whole Household Energy (WHE) consumption profile.
Each set reconstructs the WHE profile using the top 3, 4,
· · ·, 10 appliances, sorted by increasing contribution to the
whole household energy consumption. Generally speaking, the
disaggregation accuracy is expected to decrease when there are
more appliances to disaggregate. Hence, we varied the number
of appliances to assess the effectiveness of the NILM algorithm
in all cases. We build the NILM models from the preprocessed
WHE profiles. Then, the profile modification algorithms from
Section IV are applied to simulate different privacy protection
schemes. The modified profiles serve as inputs to the sparse
Viterbi algorithm, which estimates the most likely sequence
of hidden states (i.e., appliance states). Finally, the NILM
performance is assessed by FS-fscore and the MAPE metrics.

AMPds

#Appl.: 3

…

#Appl.: 4

#Appl.: 5

#Appl.: 10

Trained models
Preprocessing

SparseNILM

Sparse Viterbi 
algorithm

Input profiles

#Appl.: 3, M1

#Appl.: 3, M2
…

Modified profiles

#Appl.: 10, M6 FS-fscore, MAPE

Figure 5. Overall evaluation procedure of NILM under different privacy
protection schemes.

Figure 6 shows the FS-fscore and MAPE averaged across
all appliances versus the required battery capacity of the
modification algorithm. The required battery capacity varies

Figure 6. Mean FS-fscore (top) and MAPE (bottom) of the sparsity-based
NILM algorithm across all appliances, privacy protection schemes, and their

required battery capacity.

Figure 7. FS-fscore (top) and MAPE (bottom) of the cloths dryer (appliance
of interest) vs required battery capacity of the profile modification methods.

The number of appliances is 5 for all the results. Marker color varies for
each profile modification method (M1-M6). Marker size is proportional to

the noise level of each method (the higher, the more noisy).

from 0 kWh to 12 kWh depending on the six modification
methods. M6 requires the most amount of battery capacity
as it aims at a completely flat profile. The sizes of markers
correspond to the number of appliances and the colors of
markers correspond to the privacy protection scheme. It can
be seen that, overall, a larger number of appliances leads
to slightly less accurate disaggregation within each method.
The privacy protection schemes M1 and M2 require the least
amount of battery capacity as Gaussian noise is relatively small
and averages out over a long period of time, as can be seen
from Figure 2. The most noticeable point is that both FS-
fscore and MAPE do not dramatically change for methods
M3 to M6.This might be due to the fact that the trained NILM
algorithm can still provide accurate estimates for the status of
most of those appliances that operate in a very limited range,
or that fall within the range seen by the smart meter, and thus
the average performance is still good in terms of FS-fscore.
However, the majority of MAPE values are between 0.5 and
1.2, indicating that the different privacy protection algorithms
can successfully hamper the identification of detailed appliance
profiles. Overall, the two most cost-effective methods to protect
privacy against the considered sparsity-based NILM algorithm
appear to be, in this specific sample case, M1 and M2. The
more battery capacity is utilized for M1 and M2, the worse
FS-fscore and MAPE become. The FS-fscore drops almost
to 0.4 when a battery capacity of around 2 kWh is used for
obfuscating the original profile. Other methods require much
more battery capacity, but they do not necessarily result in
a larger drop in NILM accuracy, as far as the FS-fscore is
concerned.

Figure 7 shows the FS-fscore and MAPE for a particular
appliance of interest, in this case, the clothes dryer, instead
of the mean of the metrics across all appliances. For the
sake of illustration, only the results obtained for the NILM
experiments including 5 appliances are reported. The marker
size corresponds to the magnitude of profile modifications, in
each privacy protection scheme. For M1 and M2, it is the
standard deviation of the Gaussian noise. For M4, it is the
amount of change in the mean of the appliance. For those
methods not requiring different profile modification magnitude,
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the marker sizes are depicted as the smallest. In this graph,
it is clearly visible that the disaggregation accuracy is lower
for larger Gaussian noise with M1. Surprisingly, M5 and M6,
which completely hide an appliance’s profile, do not have a
profound impact on the metrics of this appliance. This might
be due to the dominance of the clothes dryer profile over other
appliances. When Gaussian noise is imposed on the aggregate
signal, this specific profile becomes harder to identify, but,
in the other cases, a guess from the sparsity-based NILM
algorithm for this specific appliance is still accurate. Another
noticeable thing is that M2, which is dedicated to modifying
the appliance’s record, has nearly no impact on the metrics,
while M1 degrades the performance of the sparsity-based
NILM algorithm the most. Such an observation motivates
further systematic research on the topic, including a sensitivity
analysis on how these results change for different NILM
algorithms and with different performance metrics.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated the effectiveness of a number
of heuristic algorithms making use of a residential battery
storage in preserving privacy against a NILM algorithm. Most
of the prior works are based on the water-filling technique,
i.e., flattening out the consumption profile as much as possible.
However, they require a significant amount of battery storage
while the amount of privacy protection is hard to quantify.
Therefore, we focus on the accuracy metrics of a NILM algo-
rithm and quantify the effectiveness of the profile modification
methods. Our preliminary results indicate that some intuitive
methods do not necessarily lead to a significant reduction
in the disaggregation performance of the NILM algorithm,
even though they require significant battery capacity. This
points towards further systematic research tailored to providing
protection against NILM algorithms while minimizing the
battery cost overhead.

Also, the cost analysis in this paper is restricted to battery
capacity. A holistic cost analysis incorporating the electricity
bills under flexible pricing policy, the interplay with the rooftop
solar arrays (when available), and the impacts of different
battery usage schemes on battery aging rates should be per-
formed. Finally, future research should look at better linking
the battery capacity to the specific appliance (or appliances)
that a customer would like to hide for privacy protection, if
some are more privacy-sensitive than others.
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