
EMERGING 2025

The Seventeenth International Conference on Emerging Networks and Systems

Intelligence

ISBN: 978-1-68558-292-0

September 28th - October 2nd, 2025

Lisbon, Portugal

EMERGING 2025 Editors

Nader Mir, San Jose State University, USA

 1 / 35

EMERGING 2025

Forward

The Seventeenth International Conference on Emerging Networks and Systems Intelligence

(EMERGING 2025), held between September 28th, 2025, and October 2nd, 2025, in Lisbon, Portugal,

continued a series of international events to present and evaluate the advances in emerging solutions

for next-generation architectures, devices, and communications protocols. Particular focus was aimed at

optimization, quality, discovery, protection, and user profile requirements supported by special

approaches such as network coding, configurable protocols, context-aware optimization, ambient

systems, anomaly discovery, and adaptive mechanisms.

Next generation large, distributed networks and systems require substantial reconsideration of

exiting ‘de facto’ approaches and mechanisms to sustain an increasing demand on speed, scale,

bandwidth, topology and flow changes, user complex behavior, security threats, and service and user

ubiquity. As a result, growing research and industrial forces are focusing on new approaches for

advanced communications considering new devices and protocols, advanced discovery mechanisms,

and programmability techniques to express, measure and control the service quality, security,

environmental and user requirements.

We take here the opportunity to warmly thank all the members of the EMERGING 2025 technical

program committee, as well as all the reviewers. The creation of such a high-quality conference program

would not have been possible without their involvement. We also kindly thank all the authors who

dedicated much of their time and effort to contribute to EMERGING 2025. We truly believe that, thanks

to all these efforts, the final conference program consisted of top-quality contributions. We also thank

the members of the EMERGING 2025 organizing committee for their help in handling the logistics of this

event.

We hope that EMERGING 2025 was a successful international forum for the exchange of ideas and

results between academia and industry for the promotion of progress in the field of emerging networks

and systems intelligence.

EMERGING 2025 Chairs

EMERGING 2025 Steering Committee
Euthimios (Thimios) Panagos, Perspecta Labs, USA
Raj Jain, Washington University in St. Louis, USA
Dimitris Kanellopoulos, University of Patras, Greece
Robert Bestak, Czech Technical University in Prague, Czech Republic
Jason Zurawski, Lawrence Berkeley National Laboratory / Energy Sciences Network (ESnet), USA
Emilio Insfran, Universitat Politècnica de València, Spain
Linda R. Elliott, Army Research Laboratory, USA

EMERGING 2025 Publicity Chairs
Laura Garcia, Universidad Politécnica de Cartagena, Spain
Lorena Parra Boronat, Universidad Politécnica de Madrid, Spain

 2 / 35

EMERGING 2025
Committee

EMERGING 2025 Steering Committee

Euthimios (Thimios) Panagos, Perspecta Labs, USA
Raj Jain, Washington University in St. Louis, USA
Dimitris Kanellopoulos, University of Patras, Greece
Robert Bestak, Czech Technical University in Prague, Czech Republic
Jason Zurawski, Lawrence Berkeley National Laboratory / Energy Sciences Network (ESnet), USA
Emilio Insfran, Universitat Politècnica de València, Spain
Linda R. Elliott, Army Research Laboratory, USA

EMERGING 2025 Publicity Chairs

Laura Garcia, Universidad Politécnica de Cartagena, Spain
Lorena Parra Boronat, Universidad Politécnica de Madrid, Spain

EMERGING 2025 Technical Program Committee

Andrea F. Abate, University of Salerno, Italy
Dorel Aiordachioaie, Dunarea de Jos University of Galati, Romania
Mohammed GH. AL Zamil, Yarmouk University, Jordan
Firkhan Ali Bin Hamid Ali, Universiti Tun Hussein Onn Malaysia, Malaysia
Nik Bessis, Edge Hill University, UK
Robert Bestak, Czech Technical University in Prague, Czech Republic
Adil Bilal, University of Canterbury, New Zealand
Tetiana Biloborodova, G.E. Pukhov Institute for Modelling in Energy Engineering - National Academy of
Sciences of Ukraine, Kyiv, Ukraine
Lucas Botoni de Souza, Federal University of Technology - Paraná, Brazil
Alessandro Casavola, University of Calabria, Italy
Graziana Cavone, Polytechnic of Bari, Italy
Chin-Chen Chang, Feng Chia University, Taiwan
Hyung Jae (Chris) Chang, Troy University, USA
Hongxu Chen, University of Technology, Sydney
Arun Das, Visa Inc., USA
David de Andrés, Universitat Politècnica de València, Spain
Renato De Leone, University of Camerino, Italy
Ramadan Elaiess, University of Benghazi, Libya
Linda R. Elliott, Army Research Laboratory, USA
Stefka Fidanova, Institute of Information and Communication Technologies - Bulgarian Academy of
Sciences, Bulgaria
Nuno Gonçalves Rodrigues, Polytechnic Institute of Bragança, Portugal
Chunhui Guo, San Diego State University, USA
Mohd Helmy Abd Wahab, Universiti Tun Hussein Onn Malaysia, Malaysia
Seyed Mohsen Hosseini, Free University of Bozen-Bolzano, Italy

 3 / 35

Sergio Ilarri, University of Zaragoza, Spain
Oleg Illiashenko, National Aerospace University "KhAI", Ukraine
Emilio Insfran, Universitat Politecnica de Valencia, Spain
Raj Jain, Washington University in St. Louis, USA
Jin-Hwan Jeong, SK telecom, Republic of Korea
Dimitris Kanellopoulos, University of Patras, Greece
Ah-Lian Kor, Leeds Beckett University, UK
Igor Kotsiuba, PIMEE NAS of Ukraine, Ukraine
Marcos Levano, Catholic University of Temuco, Chile
Vitaly Levashenko, University of Zilina, Slovakia
Keqian Li, Yahoo Research, USA
Yanjun Liu, Feng Chia University, Taiwan
Zoubir Mammeri, IRIT - Paul Sabatier University, Toulouse, France
Christopher Mansour, Mercyhurst University, USA
Nada Matta, University of Technology of Troyes, France
Andrea Michienzi, University of Pisa, Italy
Nader Mir, San Jose State University, USA
Ioannis Moscholios, University of Peloponnese, Greece
Chika Oshima, Saga University, Japan
Euthimios (Thimios) Panagos, Perspecta Labs, USA
Isidoros Perikos, University of Patras, Greece
Przemyslaw (Przemek) Pochec, University of New Brunswick, Canada
Chuan Qin, University of Shanghai for Science and Technology, China
Danda B. Rawat, Howard University, USA
Muhammad Hassan Raza, Dalhousie University, Halifax, Canada
Federica Rollo, University of Modena and Reggio Emilia, Italy
Francesco Rundo, STMicroelectronics Srl - ADG Central R&D, Italy
Khair Eddin Sabri, The University of Jordan, Jordan
Christian Schulz, Heidelberg University, Germany
Ivan Serina, University of Brescia, Italy
Hirokazu Shimauchi, Future University Hakodate, Japan
Masakazu Soshi, Hiroshima City University, Japan
Olarik Surinta, Mahasarakham University, Thailand
Bashir Tenuche, Kogi State University, Anyigba, Nigeria
Hui Tian, National Huaqiao University, China
Joseph G. Vella, University of Malta, Malta
Antonio Virdis, University of Pisa, Italy
Wuyi Yue, Konan University, Japan
Daqing Yun, Harrisburg University, USA
Elena Zaitseva, University of Zilina, Slovakia
Jie Zhang, Amazon AWS, USA
Minfan Zhang, Aviva, Canada
Sotirios Ziavras, New Jersey Institute of Technology, USA
Jason Zurawski, Lawrence Berkeley National Laboratory / Energy Sciences Network (ESnet), USA

 4 / 35

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 5 / 35

Table of Contents

Latency Optimization in IoT Networks Using SD-WAN Edge Computing
Rashmi Vaidya and Nader Mir

1

Intelligent Pest Identification for Precision Agriculture using Deep Learning
Anika Bhat and Atul Dubey

6

A Neural Approach to Ray Tracing for Realistic Wireless Channel Simulation in Indoor and Urban Scenarios
Francisco Javier Somolinos-Simon, Adina Murg, Hanli Liu, Carlos Javier Hellin, Josefa Gomez, and Abdelhamid
Tayebi

13

A Lightweight Hybrid AI Framework for Cataract Detection Using Fundus Images: Real-World Evaluation on
Clinical Data
Ishaan Kunwar

20

Powered by TCPDF (www.tcpdf.org)

 1 / 1 6 / 35

Latency Optimization in IoT Networks Using SD-WAN Edge Computing

 Rashmi S. Vaidya

Department of Electrical Engineering

San Jose State University in California

San Jose, CA, 95195, U.S.A

email: rashmi.s.vaidya@sjsu.edu

Nader F. Mir

Department of Electrical Engineering

San Jose State University in California

San Jose, CA, 95195, U.S.A

email: nader.mir@sjsu.edu

Abstract — This paper aims to reduce latency in Internet of

Things (IoT) sensor networks using Software-Defined Wide Area

Network (SD-WAN) edge computing. The motivation comes from

the strong necessity of rapid decision-making in the emerging

IoT applications such as smart cities and autonomous vehicles. In

the real communications world, the processing speed of devices

and sensor nodes in an IoT network is slow as nodes and devices

have limited power and processing resources, while cloud-based

methods are time-consuming to access distant servers. This paper

uses a custom SD-WAN controller to coordinate the task

allocation to nearby edge servers to lower the response time as

well as data processing delays. Algorithms such as the ones for

traffic prioritization based on QoS requirements, edge computing

resource allocation, and edge caching techniques are also

deployed to achieve the goal. Software implementation and

simulations are used to quantify the latency reduction achieved.

Through SD-WAN and edge computing, the paper focuses on

techniques for reducing the IoT network latency to improve IoT

operations’ safety and efficiency.

Keywords—IoT Networks; Sensors; Latency Optimization;

Software-Defined Wide Area Networking (SD-WAN); Traffic

Prioritization; Quality of Service (QoS); Cloud Computing; Edge

Computing; Edge Caching; Smart Cities; Autonomous Vehicles.

I. INTRODUCTION

 Internet of Things (IoT) networks consist of interconnected
sensor nodes that collect and transmit data over the Internet
[1]. These networks are key to the ecosystem, enabling
various industry applications such as smart homes, healthcare,
industrial automation, and agriculture by integrating data
collection, transmission, processing, storage, and user
interaction.

Latency, defined as the round-trip delay in data
transmission, is a critical factor in IoT networks where real-
time responses are essential. IoT applications engage large
amounts of data transfers requiring response rates and
efficiency. For instance, autonomous cars need instant
decisions for safety, and any data delay could cause accidents.
Similarly, quick responses are crucial for smart city
applications like traffic management and emergency response
at the time of a natural disaster. Latency may occur due to
various factors like propagation times, transmission delays,
processing delays, and queuing delays [2]. Factors like
distance, network congestion, transmission medium, and
hardware efficiency may also affect latency.

Reducing latency in IoT networks is crucial, however, IoT
devices often use small, low-cost sensors with limited memory
and power, and poor network connectivity. Computing tasks
can be slow or impossible on IoT devices. Cloud computing

on the other hand can help, but the fact that servers might be
in distant locations may add wait time, which can be hectic for
IoT applications needing low delays [3].

Software-Defined Wide-Area Network (SD-WAN) is a
technology that uses defined software to optimize wide area
network connections resulting in more flexibility and control
over traditional WAN architectures. With SD-WAN, certain
network management features allow organizations to
efficiently connect users across multiple locations. Similar to
the software-defined networking in data centers, as long as
configuration messages are supported by all the network
hardware device makers, SD-WAN decouples the networking
hardware from its control system and creates a central control
plane in the WAN. This concept is like how software-defined
networking [2] implements virtualization technology resulting
in significant simplification in managing a network. The most
promising feature of SD-WAN is its ability to construct
higher-performance software-defined based networks. SD-
WAN creates an environment through which a wide area
network uses software-defined networking control for
communicating over the Internet using overlay tunnels which
are encrypted when destined for internal organization
locations.

The current trend of designing IoT networks is
traditionally concentrated on connecting IoT devices to wide
area networks [4]. We try in this paper to explore certain
strategies including the deployment of SD-WAN to allow
centralized control of the network, enabling dynamic
adjustments to traffic flow. This deployment provides easy
programmability for efficient network management and
automates network behavior through software applications.
We also demonstrate the deployment of QoS-based traffic
prioritization by prioritizing critical IoT data over less time-
sensitive information, where the Quality of Service (QoS)
[5][6] ensures that high-priority tasks, like emergency alerts
are transmitted with minimal delay. Additionally, we apply
edge computing [7] in our study where processing data is
placed closer to the sensors, at the edge of the network, to
minimize the need to send data to distant cloud servers. This
reduces the round-trip time and enables quicker decision-
making for time-sensitive applications. Finally, we run our
study in this paper with the use of edge caching [8][9] through
which frequently accessed data at the edge helps reduce
latency by minimizing the need to retrieve data from the
cloud, speeding up access times for repeated requests.

The rest of this paper is organized as follows. In Section

II, we present the details of a proposed architecture for IoT

networks that optimizes the latency. In Section III, we present

1Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 7 / 35

detailed results of our analysis, and in Section IV, a conclusive

statement is presented.

II. PROPOSED ARCHITECTURE

The proposed architecture uses SD-WAN to enhance the
latency performance of IoT sensor networks. This can be done
by implementing a network topology with a central SD-WAN
controller, OpenFlow SD-WAN switches, QoS based traffic
prioritization, edge servers and edge cache, as shown in Figure
1. The key components of the architecture are SD-WAN
controller to manage the traffic flow and implement adaptive
strategies, and SD-WAN switches that perform switching and
forwarding in layers 2 and 3. The SD-WAN controller
optionally uses Ryu software [10]. Ryu is an open, software-
defined networking controller, written in Python and is
supported and used in cloud data centers. In this networking
set-up, IoT sensor devices send data of varying rates and sizes
while edge servers and caches preprocess data and store
frequently accessed information.

Data path

Control path
Edge

Cache

SD-WAN

Controller

Edge

Servers

SD-WAN

Switch

Cloud Computing Facility

Edge

Servers
IoT Device

IoT Network

Figure 1. The setup for the IoT network with SD-WAN features.

For implementing effective traffic management, we utilize
the Type of Service (ToS) byte existing in the IP packet
header, as shown in Figure 2. The ToS field is used for
enforcing Quality of Service (QoS) and prioritizing packets.
The field uses its first 6-bits as Differentiated Services Code
Point (DSCP) to classify traffic based on better QoS. The
remaining two bits of ToS is called Explicit Congestion
Notification (ECN) which is used for signaling a network for
congestion. Based on this available feature, we classify
packets from IoT devices into three types; each assigned a
specific DSCP value to facilitate QoS prioritization. The SD-
WAN controller uses DSCP values to prioritize certain traffic
based on its importance, ensuring that real-time data receives
preferential treatment over less critical traffic. Also, to

implement QoS-based prioritization, each SD-WAN-enabled
switch or router maintains three separate queues.

Byte: 1121124440 22

S
o
u
rc

e
IP

A
d
d
re

ss

D
es

ti
n
at

io
n
 I

P

A
d
d
re

ss

Options

V
er

si
o
n

F
la

g

P
ad

d
in

g

F
ra

g
.
O

ff
se

t

T
y
p
e

o
f

S
er

v
ic

e

T
o
ta

l
L

en
g
th

Id
en

ti
fi

ca
ti

o
n

T
im

e
to

 L
iv

e

P
ro

to
co

l

H
ea

d
er

 C
h
ec

k
su

m

H
L

 DSCP (6 bits) + ECN (2 bits)

Figure 2. DSCP fields in IP header for QoS enforcement.

The following DSCP values and queue types are used in
this paper to differentiate between three types of traffic: EF
46: high-priority time-sensitive traffic, such as real-time
sensor data. The traffic is marked as Expedited Forwarding
(EF) with a DSCP value of 46 (binary 101110), guaranteeing
it is processed ahead of other traffic. The High-Priority Queue
is used for this real-time traffic ensuring minimal latency.
AF31 26: medium-priority routine sensor data, such as
periodic status updates. The traffic is marked as Assured
Forwarding (AF) with a DSCP value of 26 (binary 011010),
providing medium-level priority. This queue is processed only
when the high-priority queue is empty. CS1-8: low-priority
non-urgent data, such as software updates or system logs,
which do not require immediate processing and can tolerate
longer delays. The traffic is assigned a low priority DSCP
value, typically CS1 with a value of 8 (binary 001000),
processed only after higher-priority traffic. For this traffic
(CS1-8 or unmarked), a low priority queue is used and is
processed only when the high and medium-priority queues are
empty, ensuring real-time traffic is not delayed.

For the analysis of our network set-up, we utilized several
software tools and platforms such as Virtual Machine,
Mininet, Ryu controller, Python test scripts, Wireshark, iperf,
and ping tools. The virtual machine setup includes VMware
Fusion running Ubuntu OS Desktop 22.04 LTS “Jammy
Jellyfish” Daily Build for Arm64 architecture on macOS
(Apple ATM M2 silicon), with 4 GB of RAM and 2 CPU
cores. The VM uses the same network adapter as the host OS.
Mininet serves as the primary tool for network emulation,
capable of creating both traditional non-SD-WAN- and SD-
WAN-enabled IoT networks with edge computing
capabilities. Although Mininet provides its own controller by
default, this project uses the Ryu SD-WAN controller. The
SD-WAN controller using the Ryu controller has been
installed within the Ubuntu VM and serves as the central
control unit for the SD-WAN-enabled network. It enables
dynamic network management and policy implementation.
Different network topologies are defined using Python scripts
that run Mininet and instantiate hosts, switches, and routers.
Various tests, such as the QoS test, Edge Server offloading
test, and Edge Cache test, were also implemented using
Python scripts. The QoS test requires C code to generate
traffic of different sizes and QoS values. These test scripts
save latency values into CSV files, which are later imported

2Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 8 / 35

by another set of Python scripts to generate graphs from the
results.

The network simulation also uses Wireshark to capture and
analyze network traffic within the Mininet environment. It is
used for verifying QoS policies, monitoring data flow, and
measuring latency improvements. Ping and iperf command-
line tools are used for network performance analysis. Ping
measures Round-Trip Time (RTT) between hosts, providing
information on minimum, average, and maximum latency,
while iperf measures maximum achievable bandwidth on IP
networks.

The SD-WAN topology is set up using Mininet emulator
with the inclusion of an external Ryu controller. Initial packet
captures show the exchange of OpenFlow messages between
the SD-WAN controller and SD-WAN switches, establishing
the SD-WAN control plane and subsequent network
operations.

Upon initializing the topology, OpenFlow Hello messages
are exchanged between the SD-WAN controller and each
switch to negotiate the OpenFlow version. Following this,
Feature Request and Feature Reply messages are exchanged,
with the controller sending a Feature Request to each switch
and the switches responding with Feature Reply messages
containing their capabilities and available ports. Packet-In
messages are sent from switches to the controller when
packets without matching flow entries are encountered, and
the controller responds with Flow-Mod messages instructing
the switches on packet handling. The flow tables can be
examined to verify the appropriate flow entries installed by
the SD-WAN controller. The following SD-WAN request
response pairs are used to make QoS settings on the SD-WAN
switches. The request response pairs show how the queues are
set along with DSCP flow rules [10]. For example, note the
queue type in response to the request 46 which is a high
priority traffic, as explained earlier.

Request:

{"port_name":"s1-eth1","type":"linux-

htb","max_rate":"1000000","queues":[{"min

_rate":"800000"},{"min_rate":"500000"},{"

max_rate":"500000"}]}

Response:

[{"switch_id":"0000000000000001","command

_result":{"result":"success","details":{"

0":{"config":{"min-

rate":"800000"}},"1":{"config":{"min-

rate":"500000"}},"2":{"config":{"max-

rate":"500000"}}}}}]

Request:

{"match":{"ip_dscp":"46"},"actions":{"que

ue":"1"}}

Response:

[{"switch_id":"0000000000000001","command

_result":[{"result":"success","details":"

QoS added. : qos_id=1"}]}]

 III. ANALYSIS AND RESULTS

A. Effect of QoS Marking on Latency

 To capture the effect of QoS marking on the network
latency, a test was set up that sends three types of messages
continuously on the network link and shows how the network
performs with and without QoS settings. The test creates three
concurrent threads, each simulating a different traffic type:
real-time sensor readings, periodic status messages, and
system logs. Each thread runs for 30 seconds, both with and
without QoS settings to obtain latency values. The results
included in Table I show a comparison of latencies from three
readings: high priority real-time readings, medium status
readings, and low priority periodic readings. QoS effectively
manages network congestion and prioritizes traffic. Without
QoS, latency rapidly increases for all traffic types, reaching
several seconds by the end of the test. In contrast, the QoS-
enabled scenario shows consistent, low latencies for all traffic
types, with a preference for higher-priority traffic.

TABLE I. COMPARISON OF LATENCIES FROM THREE READINGS:
HIGH PRIORITY REAL-TIME SENSORS, MEDIUM STATUS

MESSAGES, AND LOW PRIORORITY PERIODIC MESSAGES.

Sim.

Run

Time

(sec)

High Priority real-

time sensor readings

(100-byte messages)

Medium Priority

real-time sensor

readings (250-byte

messages)

Low Priority real-

time sensor readings

(2000-byte messages)

Latency

(ms)

Without

QoS

Latency

(ms)

With QoS

(DSCP

value EF

46)

Latency

(ms)

Without

QoS

Latency

(ms)

With QoS

(DSCP

value

AF31 26)

Latency

(ms)

Without

QoS

Latency

(ms)

With

QoS

(DSCP

value

CS1-8)

0 18.4 15.8 17.8 16.7 26.7 33.9

5 1261 80.8 1485 81.2 1538 95.4

10 2782 82.9 3081 72.4 3083 93.9

15 4345 80.2 4508 90.8 4659 92.8

20 5054 87.3 5096 84.3 5100 97.7

25 5349 74.6 5448 95.1 5446 90.2

30 8244 80.5 7906 87.6 8172 85.4

B. Effect of Edge Server Offloading on Latency

 The next test measures the latency of the SD-WAN
topology when an edge server offloads part of the workload of
the main cloud server. This task implements offloading
percentages ranging from 10% to 90% and measures the
latency for each scenario. The results presented in Figure 3
show a trend across different distances between the edge and
cloud servers (1,600 km to 8,000 km). As the offloading rate
increases due to more tasks processed in the edge server,
latency decreases, particularly for greater distances. At lower
rates offloading near 10% (mostly cloud computing), the

3Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 9 / 35

latency ranges from about 7.5ms (1,600 km) to about 30.5ms
(8,000 km). At higher rates offloading near 90% (mostly edge
processing), latency ranges from about 0.5ms (1,600 km) to
5.0ms (8,000 km). Figure 3 also expresses that edge
computing significantly reduces latency, especially with
higher offloading percentages. The impact is more pronounced
as the distance to the cloud server increases. Even a small
percentage of edge offloading can provide noticeable latency
improvements, particularly for longer distances. It is
noticeable that implementing 90% offloading reduces latency
significantly.

0

5

10

15

20

25

30

35

10% 20% 30% 40% 50% 60% 70% 80% 90%

La
te

nc
y

(m
s)

Rate of Offloading

8,000 km 6,400 km 4,800 km

3,200 km 1,600 km

Figure 3. Latency reduction with edge server offloading.

C. Effect of Edge Cache Size on Latency

This study evaluates the impact of different edge cache
sizes and request frequencies on latency in the SD-WAN
topology. It checks how the latency is impacted by increasing
request frequencies (10, 100, 500 and 1000 requests/sec) on
increasing Edge Cache sizes (50, 100, 150 and 200 KB).
Random requests are generated to derive different hit ratios
based on the cache size and the Round-Trip Time (RTT) is
measured for requests to both a cloud server and an edge
server. Cache eviction policy is Least Recently Used (LRU).
The code reads the Minimum; Average and Maximum
Latency obtained from the test and plots the maximum latency
values on the graph.

The results in Figure 4 show that increasing the edge cache
size improves performance, with lower latencies and higher
hit rates. However, the improvement is not linear and gives
diminishing returns as cache size grows. Higher request
frequencies lead to slightly increased latencies due to
increased system load and cache contention, however, this is
not consistently seen across all cache sizes. In general, it can
be concluded that a four times bigger cache gives about 20%
lower latency values.

D. Future Trends Based on the Use of AI

The future research and development efforts of this project
can focus on various aspects such as security enhancement,
and the deployment of Artificial Intelligence (AI). Security

measures such as blockchain and encryption techniques could
be incorporated to protect against cyberattacks. AI integration
could particularly enable predictive traffic management, and
resource allocation resulted in enhancing network
performance of the IoT networks.

0
5

10
15
20
25
30
35
40

100 150 200 250 300

La
te

nc
y

(m
s)

Edge Cache (KB)

1000 Req/s 500 Req/s 100 Req/s 10 Req/s

Figure 4. Latency reduction with edge cache sizes.

IV. CONCLUSIONS AND FUTURE WORK

This paper addressed the improvement of latency in IoT
networks by using the combination of Software-Defined
Wide-Area Network (SD-WAN), traffic prioritization, and
edge computing. IoT applications, such as smart cities and
autonomous vehicles, require rapid data processing. We
discussed in this paper how IoT device processing and power
limitations and the use of cloud computing introduce
noticeable delays. The framework we suggested required SD-
WAN's centralized control and edge computing's localized
processing to create a low-latency IoT infrastructure. We
created SD-WAN, QoS prioritization, and edge computing,
and demonstrated substantial latency reductions. In the QoS
network setup with the help of DSCP field of IP packet
headers, high-priority traffic experienced a dramatic decrease
in latency compared to the network setup without QoS. This
highlighted the effectiveness of SD-WAN's centralized control
in managing network congestion and prioritizing critical data.
The edge server offloading test revealed noticeable reduction
in latency when high-rate tasks were offloaded to nearby edge
servers, particularly in scenarios involving greater distances
between edge and cloud servers. Edge caching study
confirmed its role in minimizing data retrieval delays. By
increasing the size of cache, the traffic latency was reduced.
The future work must mainly concentrate on the inclusion of
Artificial Intelligence (AI) in the structure of SD-WAN to
enable predictive traffic management, resource allocation, and
anomaly detection.

REFERENCES

[1] H. Xu, W. Liu, L. Li, and Q. Zhou, “An IoT-based low-cost
architecture for smart libraries using SDN,” Scientific Reports,
2024.

[2] J. Kurose and K. W. Ross, “Computer Networks, A Top-Down
Approach,” Pearson, 2017.

[3] K. Liu, Y. Meng, and G. Sun, “An Overview on Edge
Computing Research,” IEEE Access. pp. 1-1, 2020, [Online].
Available from:

4Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 10 / 35

https://www.researchgate.net/publication/341096184_An_Overv
iew_on_Edge_Computing_Research [Accessed Apr. 9, 2024].

[4] W. Stallings, “Foundations of Modern Networking SDN, NFV,
QoE, IoT, and Cloud,” Pearson Education, Inc, 2016.

[5] M. Beshley, N. Kryvinska, H. Beshley, O. Panchenko, and M.
Medvetskyi, “Traffic Engineering and QoS/QoE Supporting
Techniques for Emerging Service-Oriented Software-Defined
Network”, Journal of Communications and Networks, vol. 26,
no. 1, Feb. 2024.

[6] Hillstone Networks, “Introduction to QoS.” [Online]. Available
from:
https://www.hillstonenet.com/support/4.5/en/preface.html#confi
g_qos_intro.html, [Accessed Sept. 11, 2024].

[7] S. Douch, M. R. Abid, K. Zine-Dine, D. Bouzidi and D.
Benhaddou, “Edge Computing Technology Enablers: A
Systematic Lecture Study,” IEEE Access, vol. 10, pp. 69264-
69302, 2022. [Online]. Available from:

https://ieeexplore.ieee.org/document/9797685 [Accessed Apr. 9,
2024].

[8] A. Jebamani and G. Winster, “A Survey of Edge Computing in
IOT devices,” Proceedings of the International Conference on
Innovative Computing & Communication (ICICC) 2022.
[Online]. Available from: https://ssrn.com/abstract=4023176
[Accessed Apr. 9, 2024].

[9] H. Li, M. Sun, F. Xia, X. Xu, and M. Bilal. “A Survey of Edge
Caching: Key Issues and Challenges”, Tsinghua Science and
Technology, ISSN 1007-0214 14/20 pp. 818−842 DOI:
10.26599/TST.2023.9010051, vol. 29, no. 3, June 2024.

[10] RYU Project Team, “RYU SDN Framework: Using OpenFlow
1.3”, 2014. [Online]. Available from:
https://osrg.github.io/Ryu-book/en/Ryubook.pdf, [Accessed
Nov. 30, 2024].

5Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 11 / 35

Intelligent Pest Identification for Precision Agriculture using Deep Learning

Anika Bhat
Moreau Catholic High School

Hayward, CA, USA
email: anika.bhat1022@gmail.com

Atul Dubey
AIClub Research Institute
Mountain View, CA, USA

email: atul.dubey@aiclub.world

Abstract—Global wheat production suffers annual losses of
~157 million metric tons due to pests, causing food insecurity and
economic damages exceeding $70 billion. Traditional detection
methods, such as manual inspections, are slow, labor-intensive,
and often fail to identify early infestations, forcing farmers to use
excessive pesticides. To address this, an image analysis system
driven by Artificial Intelligence (AI) was developed, trained on pest
imagery, and deployed via an accessible web application, enabling
early detection to prevent crop losses. The IP102 dataset with
wheat pest categories only was used to train the Machine Learning
(ML) models. Two approaches were used to build an ML model
that can detect wheat pests. The first employed transfer learning on
MobileNetV2, and it gave the best validation accuracy of 55.32%.
The second used ConvNeXtLarge to extract robust image features
of 9 categories of wheat pests. Four ML algorithms, K-Nearest
Neighbors (KNN), Random Forest, Multi-Layer Perceptron (MLP),
and XGBoost, were trained and evaluated. The MLP model,
optimized with 30 epochs and a learning rate of 0.001, achieved
the highest validation accuracy of ~79% and test accuracy of ~75%.
The system was integrated into a user-friendly web application,
paired with a low-cost, WiFi-enabled camera device for field
image capture. This system facilitated early-stage pest detection,
enabling farmers to remotely monitor and take preventative
measures promptly. This AI-driven model can contribute to
efficient, sustainable, and precise agricultural practices and bolster
global food security.

Keywords-Wheat pest identification; Deep Learning; Machine
Learning; MobileNetV2; ConvNeXtLarge; Internet of Things.

I. INTRODUCTION

Wheat is the second most produced grain in the world, 785
tons in 2023-24 [1], and the US is the 4th largest producer.
Wheat provides 21% of the global food requirement, but pests
destroy ~157 million tons of grain/yr, causing food insecurity
[1][2]. 20–40% of global crop loss/yr due to pests: $70 billion
loss/yr [3].

The most common wheat pests are Aphids, Green bugs,
Ceredonta Denticonis, Spider mites, Penthaleus Major, Wheat
Blossom midges, and Wheat sawflies. In current pest monitor-
ing methods, farmers rely on reactive and delayed pest detection,
leading to irreversible crop damage and overuse of pesticides.
They rely on visual monitoring, which is time-consuming and
labor-intensive. Some of them use satellite/drone imagery, but it
provides low-resolution images and delayed information, which
can lead to missed detections and hinder early intervention
efforts.

Current pest monitoring challenges include variable life cycle,
nighttime activity, being hidden within plant canopies, and the
need for precise timing to catch peak activity. The overuse of
broad-spectrum pesticides increases pest resistance.

AI-powered agricultural image analysis is crucial in modern
agriculture [4]. The AI-driven image analysis in wheat pest
control can enable continuous monitoring and early detection
of pests to prevent yield loss. The Deep Learning (DL)
based classification and detection techniques could be very
effective in identifying the type of pest from the images.
Specifically, different types of Convolutional Neural Network
(CNN) architectures can identify image features easily and
can be effective in pest classification. This can enable rapid,
scalable, and precise pest identification. Figuring out a way to
put a pest detection model in a device and be able to deploy
it in the field will increase the effectiveness of early detection.

In this study, we used 2 different approaches to build
classifiers to identify wheat pests. In the first approach, we
performed training on transfer learning on MobileNetV2 [5] by
removing the top layer and adding some custom neural network
layers. In the second approach, we used ConvNeXtLarge
[6] model to extract features from the images and used the
features and dataset to build various classifiers using techniques
like KNN, Random Forest, XGBoost, and MLP. The best-
performing model was used with a web app to classify different
types of pests. The web app gets input from a device that
captures images of wheat pests in the field. The detection
information is displayed in a web application with suggestions
for remedy.

The rest of the paper is laid out as follows: Section II
discusses the existing research done in the pest identification
and control domain. Section III elaborates on the steps that
were followed to perform the study and build the required ML
model and device with the web application. Section IV contains
the results from various experiments performed. In Section V,
we present the behavior of the models and the results obtained
from different experiments. Finally, Section VI concludes the
research and mentions future work.

II. RELATED WORK

Multiple studies have been done to identify wheat crop
diseases. The study by Mundada and Gohokar [7] focused
on the detection and classification of pests in greenhouses
using traditional image processing techniques. Images of
infected leaves were captured, and properties like entropy,
mean, standard deviation, contrast, energy, correlation, and
eccentricity were extracted. These features were then used to
train a Support Vector Machine (SVM) for classification. They
developed a software prototype system for early pest detection
in greenhouses, achieving a training accuracy of 100% with the

6Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 12 / 35

SVM classifier. By utilizing featurization techniques, images
from the existing dataset were filtered to form a new dataset,
enhancing the ML model’s effectiveness.

Shi et al. [8] conducted research on pest and disease
detection in winter wheat using spectral indices and kernel
discriminant analysis. Hyperspectral reflectance datasets at
both leaf and canopy levels were utilized, involving fourteen
Spectral Vegetation Indices (SVIs) as input. The approach
showed better performance over conventional linear methods,
achieving classification accuracies between 76% and 95% for
various infestations.

Haider et al. [9] explored a generic approach to wheat disease
classification, incorporating field surveys, expert opinion, and
crowd-sourced data. Using symptoms as predictor variables, a
decision tree model was developed for disease classification,
utilizing a reduced error pruning algorithm (RepTree). This
approach was supplemented by expert opinions to verify data,
achieving a classification accuracy of 97.2% with a CNN
model. Their methodology demonstrates a blend of traditional
approaches with modern data collection methods.

The research by Kasinathan et al. [10] delved into insect
classification and detection using modern ML techniques. They
utilized datasets, such as the Wang dataset and the Xie dataset,
extracting nine insect shape features after preprocessing images
to grayscale. These shape features were classified using various
algorithms, like Artificial Neural Network (ANN), SVM, KNN,
and Naive Bayes (NB). The study demonstrated that CNNs
provided the highest classification accuracy of 91% on certain
insect datasets, showcasing a gradual shift towards more
complex ML methods.

Abbas et al. [11] employed fuzzy logic-based histogram
equalization to enhance image quality for better disease
recognition in wheat leaves. This approach leverages fuzzy logic
to improve image contrast, leading to more accurate disease
recognition. The application of this technique represents an
advancement beyond basic image processing, enhancing the
quality and interpretability of images for subsequent analysis.

In their work, Kang et al. [12] proposed a DL model for
pest detection, introducing an attention mechanism-enhanced
single-stage object detection framework with multiscale feature
fusion. This model focused particularly on identifying small-
scale pests in complex backgrounds. It outperformed models,
such as You Only Look Once (YOLO), EfficientDet, RetinaDet,
and MobileNet, achieving the highest mean Average Precision
(mAP) value of 0.91.

Xu et al.’s research [13] on wheat leaf disease identification
leveraged an integrated DL framework called Recursive Feature
Elimination-Convolutional Neural Network (RFE-CNN), which
incorporates Residual Channel Attention Blocks (RCAB),
Feedback Blocks (FB), and Elliptic Metric Learning (EML). It
begins with using parallel CNNs to extract features from healthy
and diseased leaves, optimizing them with RCABs, training
them with FBs, and concluding with a CNN for classification.
This approach resulted in an overall classification accuracy of
98.83% and a maximum testing accuracy of 99.95%.

Liu et al. [14] introduced PestNet, a DL model for multi-class

pest detection and classification. PestNet blends a Channel-
Spatial Attention (CSA) mechanism with a CNN backbone,
utilizing a Region Proposal Network (RPN) and a Position-
Sensitive Score Map (PSSM). This integration of attention
mechanisms and advanced network architectures produced
an mAP of 75.46%, outperforming other methods, indicating
complexity in both design and application.

Chamara et al.’s [15] project is an effort toward real-time
crop monitoring utilizing edge devices. They deployed a stack
of Deep Convolutional Neural Networks (DCNN) models:
CropClassiNet for crop type classification, CanopySegNet
for canopy cover quantification, PlantCountNet for plant and
weed counting, and InsectNet for insect identification. With
CropClassiNet achieving 94.5% accuracy and CanopySegNet
92.83% accuracy, the project illustrated an implementation of
DCNNs for integrated crop management solutions.

There are multiple dimensions explored in the earlier re-
search; however, no ready-to-use practical solution is currently
available to be used in the field. Some of them built edge
devices, but they are not power-efficient and can not run for
long in the field. The solutions also lack real-time monitoring
capabilities. In our study, we used the IP102 dataset [16]
with DL to create a real-time system for identifying pests in
wheat crops. Our method improves upon past approaches by
combining ConvNeXtLarge for feature extraction and MLP
for classification, making it both accurate and efficient. Unlike
earlier studies that relied on manual inspections or limited
models, our solution includes a solar-powered device and a
web app for easy, continuous monitoring. This makes pest
detection faster, cheaper, and more practical for farmers, helping
reduce crop losses early on. Table I compares the results and
techniques of existing literature with this research.

III. MATERIALS AND METHODS

A. Dataset

A database of images of pests was downloaded [16], and
the images of wheat crop pests were extracted (9 categories).
The distribution of images in each class is presented in Figure
1. The wheat crop pests database was split into training (2048),
validation (340), and testing (1030) sets.

Figure 1. Distribution of images of wheat crop pests in the dataset.

B. Deep Learning models

1) MobileNetV2: A lightweight CNN model with 3.5M
parameters and the ability to run on resource-constrained mobile

7Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 13 / 35

TABLE I. SUMMARY OF DATASETS, TECHNIQUES, AND RESULTS FROM DIFFERENT STUDIES.

Ref Dataset Type ML/DL Technique Results
[7] Camera captured whiteflies &

aphids images
SVM Training to the SVM is done

with 100% accuracy
[8] Leaf (314) and canopy (187) level

hyperspectral reflectance datasets
Spectral Vegetation Indices-based Ker-
nel Discriminant Approach (SVIKDA)

At leaf level: 89.2%
At canopy level: 87%

[9] 2324 symptoms samples from our
symptom-based text dataset

Decision Tree, Error Pruning Tree (Rep-
Tree), CNN

97.20%

[10] Wang dataset (225 images) with
nine insect classes and Xie dataset
with 24 classes

ANN, SVM, KNN, and NB classifier 91%

[12] Rice pest images with complex
backgrounds and small-sized pests

Attention Mechanism, Multi-Scale Fea-
ture Fusion, Single-Stage Object De-
tection Model, YOLO, EfficientDet,
RetinaDet, and MobileNet

91% mAP

[13] CGIAR, Plant Diseases, LWDCD
2020

RCAB, FB, EML, and CNN 98.83%

[14] Multi-class Pest Dataset 2018
(MPD2018) with over 80,000 im-
ages and 580,000 labeled pests
across 16 classes

CNN with CSA, RPN, and PSSM 75.46% mAP

[15] 43,000 field crop images collected
offline

Stack of four DCNN models: Crop-
ClassiNet, CanopySegNet, PlantCount-
Net, and InsectNet

94.5% accuracy

This
research

IP102 dataset with wheat pest cate-
gories

MobileNetV2 (transfer learning), Con-
vNeXtLarge (featurization), KNN, Ran-
dom Forest, MLP, and XGBoost

Validation accuracy: 78.72%
Test accuracy: 74.51%

devices. This model introduces the concept of inverted residuals
with linear bottlenecks. This approach preserves the input and
output dimensions while performing the intermediate layers in
a lower-dimensional space, reducing the computational cost.

2) ConvNeXtLarge: A CNN model with 197.7M parameters,
with weights trained on the ImageNet dataset. ConvNeXt is a
type of neural network that is built based on another design
called Vision Transformers (ViTs). It uses a technique called
depth-wise convolution. It is a special way of processing
images where the network looks at different parts of the
image separately. This technique helps to reduce the amount
of calculations needed while still maintaining accuracy. We
have used this model to featurize the images.

C. Machine Learning

The development of the ML model follows two main
approaches. The first approach uses transfer learning on
MobileNetV2, and the second approach uses feature extraction
using ConvNeXtLarge and the application of classical ML
techniques on the output features. Transfer learning with
MobileNetV2 is similar to featurizing using MobileNetV2
and building a classifier using MLP. The dataset was featurized
using ConvNeXtLarge and those features were used to create
different ML models. The performance of these models was
compared with the performance of the models created using
MobileNetV2.

1) Transfer Learning on MobileNetV2: Considering the size
of our dataset, it will not be an appropriate approach to train
an architecture from scratch. This is where transfer learning
works better, where we have the possibility of building high-
performing models even with smaller datasets. This is the
reason we decided to take this approach.

As mentioned in the left part of the flowchart in Figure 2,
the final layer of a pre-trained MobileNetV2 model is removed
to perform transfer learning. GlobalAveragePooling2D was
applied to the output from the second-to-last layer to reduce
the spatial dimensions of the input tensors. Next, a neural
network layer with 100 neurons and a Rectified Linear Unit
(ReLU) activation function was added. Finally, another neural
network layer with 9 neurons and a softmax activation function
was added to give the classification probabilities.

The model is then trained using the training dataset and
then validated on the validation dataset. While training, the
hyperparameters, such as learning rate (between 0.0001 and
0.01) and the number of epochs (between 10 and 50), are tuned
to find the best-performing model. The ranges of learning rates
and epochs are arbitrarily selected, and the plan was to extend
them if the model converges in the right direction. The best
model is then tested on the test dataset, and the performance
is recorded in a Google sheet.

2) ConvNeXtLarge and Classical ML: As shown in the right
part of the flowchart in Figure 2, ConvNeXtLarge without the
last layer was used as a feature extractor to convert the images

8Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 14 / 35

into a set of features, and the extracted features are saved
into a CSV file. Generally, a CNN architecture is designed
to extract various features, such as edges, shapes, etc., and
the extracted features are nothing but a set of numbers. Those
numbers stored in tabular data can be used with classical ML
techniques to build various classifiers. Using ConvNeXtLarge,
we have converted each image into a vector of size 2048. We
have used various classical ML techniques, including KNN,
Random Forest, XGBoost, and MLP, to train a model. The
KNN technique was selected due to its simplicity and ability to
work with fewer resources. During training, the K-values were
varied from 2 to 14, and performance was recorded for the
validation dataset. Similarly, the Random Forest technique is
an ensemble of various decision trees, which are again faster to
run and consume less computational resources. During training,
the number of trees was varied from 10 to 100, and the depth
from 1 to 7, to find the best-performing model on the validation
dataset. The same settings were used for the XGBoost (which
is an improvement on the Random Forest model by adding
gradient boosting to it), and the performance on the validation
dataset was recorded. The MLP technique is one of the simplest
DL techniques and works well with datasets with fewer features.
While training, the number of epochs varied from 10 to 100,
and the learning rate varied from 0.00001 to 0.05; the validation
results were recorded in a Google sheet. The best-performing
model is then tested on the test dataset.

Figure 2. Machine Learning pipeline: steps followed for building ML models.

D. Device Development and Model Deployment

As depicted in the hardware architecture diagram in Figure
3, for the device, the controller is a Seeed Studio XIAO
ESP32S3 Sense, optimized for ML and suitable for real-time
image recognition tasks. The controller has a dual-core 32-bit

processor with a 240 MHz Frequency and 512 KB of SRAM.
The module also has 8 MB of PSRAM that allows it to process
images faster and run them through the neural network model.
The controller is WiFi-enabled, which ensures it can be made
part of the internet, and the captured data can be sent to an
app via the cloud. It includes a built-in camera sensor with a
maximum resolution of 1600 x 1200 pixels, with a Camera
Serial Interface (CSI) connecting the camera to the controller.
The system uses a solar-powered power bank for energy supply
to ensure nonstop working even in a remote setup. As shown
in the firmware flowchart in Figure 4, once the controller
and camera are initialized, an image is captured and saved.
The image is then serialized and sent to the web app for pest
detection, where the type of pest is identified. After each image
capture, the device waits five minutes before capturing the next
image to ensure continuous monitoring. For demonstration
purposes, pest predictions in the app are user-initiated.

Figure 3. Hardware architecture diagram.

Figure 4. Firmware flowchart: logic implemented in the device.

E. Web App

The web app is developed using the Streamlit Python
library and then deployed in the Streamlit cloud. The required
featurizer and model are deployed as part of the app itself.

As shown in the application flowchart presented in Figure
5, when an image is received from the device in the web app,
it is resized to 224 x 224 pixels and then featurized using
ConvNeXtLarge. The image is processed, and the features are
passed through the MLP classifier. The image and prediction
of the model are then displayed to the user. Users can also see
the time of detection and targeted pest removal suggestions.
Each pest prediction is saved in the app for future reference.

9Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 15 / 35

The code for the web application and notebooks used for
featurization and training the models can be found in [17].

Figure 5. Application flowchart.

IV. RESULTS

We have experimented with various ML techniques using
2 approaches. In the first, we performed transfer learning on
MobileNetV2, and in the second, we used the ConvNeXtLarge
model to featurize the images and then used features with ML
techniques, such as KNN, Random Forest, XGBoost, and MLP,
to build various models.

A. MobileNetV2

A total of 25 experiments were performed by varying the
learning rates from 0.0001 to 0.01 and the epochs from 10
to 50. The best validation accuracy of 55.32% was achieved
at a learning rate of 0.0005 with 40 epochs. The variation in
validation accuracies with epochs for different learning rates
is presented in Figure 6.

B. KNN

A total of 13 experiments were performed by varying the K
values from 2 to 14. The best validation accuracy of 66.81%
was achieved at a K value of 8. The variation in validation
accuracies with the K values can be found in Figure 7.

C. Random Forest

A total of 70 experiments were performed by varying the
depth from 1 to 7 and the number of trees from 10 to 100. The
best validation accuracy of 62.98% was achieved at a depth of

Figure 6. MobileNetV2: Validation accuracy vs. epochs for different learning rates.

Figure 7. KNN: Validation accuracy vs. K values.

7 with 70 trees. The variation in validation accuracies with the
number of trees for different depths is presented in Figure 8.

Figure 8. Random Forest: Validation accuracy vs. number of trees for different depths.

D. XGBoost

A total of 70 experiments were performed by varying the
depth from 1 to 7 and the number of trees from 10 to 100. The
best validation accuracy of 71.91% was achieved at a depth of
4 with 50 trees. The variation in validation accuracies with the
number of trees for different depths is presented in Figure 9.

10Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 16 / 35

Figure 9. XGBoost: Validation accuracy vs. number of trees for different depths.

E. MLP

A total of 50 experiments were performed by varying the
learning rates between 0.0001 and 0.01, and epochs between 10
and 50. The best validation accuracy of 78.72% was achieved
at a learning rate of 0.001 with 30 epochs. The variation in
validation accuracies with epochs for different learning rates
is presented in Figure 10.

Figure 10. MLP: Validation accuracy vs. epochs for different learning rates.

F. Results summary

TABLE II. VALIDATION ACCURACIES FOR THE BEST MODELS.

ML Model Validation Accuracy Precision Recall F1 Score
MobileNetV2 55.32% 46% 47% 46%

KNN 66.81% 72% 67% 67%
Random Forest 62.98% 64% 63% 62%

XGBoost 71.91% 74% 73% 73%
MLP 78.72% 77% 77% 77%

Out of all the ML techniques, MLP gave the best validation
accuracy of 78.72%. The final model was then tested with the
test dataset and achieved an accuracy of 74.51%.

As per the confusion matrix in Figure 11, the model has
performed well for most of the categories except "Wheat
sawfly" and "English grain aphid". To make it perform well
for those 2 categories as well, we might need to add more
dataset and clear images for those categories.

G. Real-world test results

The model was deployed with a web application in Streamlit
Community Cloud. The device was connected to the application
using a port forwarder. Once the application is ready, it takes
~6 seconds to perform inference.

Figure 11. MLP: Confusion matrix of test results.

V. DISCUSSION

For MobileNetV2, at a learning rate of 0.01, the accuracy
varied with no consistent improvement as epochs increased,
indicating possible instability, likely due to the higher learning
rate causing weight oscillations. Conversely, at a lower learning
rate of 0.0005, a more stable accuracy was achieved, peaking at
0.5531 with 40 epochs, suggesting better gradual convergence
despite minor fluctuations at 30 epochs. The learning rate
of 0.001 emerged as particularly effective, demonstrating a
continual improvement across epochs, achieving a maximum
accuracy of 0.5362 at 40 epochs.

For KNN experiments, as the K value increased beyond 10,
a decrease in precision was observed, with K = 11, 12, 13, and
14 producing lower precision, reaching a minimum of 0.6255
at K = 14. This trend suggests that larger K values might
oversmooth the decision boundary, leading to underfitting.

Regarding Random Forest, increasing both the number of
trees and the depth contributes to improved accuracy, but with
varying degrees of effectiveness. At a depth of 1, performance
is limited in all tree counts, with the highest accuracy reaching
only 36.17% at 80 and 90 trees. This underperformance
is expected due to the insufficient depth to make complex
decisions. The results suggest that deeper trees offer better
performance, provided that there is a sufficiently large number
of trees to offset the variance associated with deeper models.
However, increasing the number of trees beyond 70 generally

11Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 17 / 35

yields diminishing returns with high-depth models, likely due
to saturation in ensemble benefits.

Regarding XGBoost, the influence of depth is prominent
at levels 4 and 5, where accuracies consistently approach or
exceed 71.91% beyond 50 trees, indicating that deeper trees can
effectively tackle complexity and provide robust performance
as the ensemble size grows. However, with depths 6 and 7, the
incremental gain in accuracy decreases, suggesting a potential
overfitting tendency or saturation, where additional depth does
not necessarily translate to substantial improvements.

Regarding MLP, at a higher learning rate of 0.05, perfor-
mance was moderate with fluctuating accuracies across epochs,
peaking at 70.64% at both 30 and 70 epochs. This suggests
that while a higher learning rate allows for rapid convergence
early on, it may cause instability, leading to non-consistent
improvements. As the learning rate decreases to 0.001, we
observe some of the highest performance metrics, achieving
a maximum accuracy of 78.72% at 30 epochs. This learning
rate allows the model to explore the solution space, leading to
consistent performance and better generalization. Lowering the
learning rate further to 0.0001, the model maintained stability,
with accuracies consistently high, peaking at 77.02% at both
80 and 90 epochs. This stability reflects the advantage of
smaller learning rates, although it requires more epochs to
reach effective solutions.

Overall, the best accuracy achieved out of all the experiments
was from the MLP technique, suggesting the effectiveness
of DL techniques with complex image datasets. However,
the performance can improve with architectural changes or
experimenting with other CNN models for featurization.

VI. CONCLUSION AND FUTURE WORK

A DL model is developed for wheat pest detection, as well as
a web application for real-time pest identification and targeted
pest-removal suggestions. The best model achieved the best
test accuracy of ~75%, and once deployed with a device, it can
help mitigate crop loss in the early stages of pest infestation.
The device offers low-cost, easy-to-use, efficient, convenient,
and remote monitoring capabilities, eliminating the need for
manual pest monitoring. The device and web app can lead to
better pest control, leading to less economic loss and improved
food security. However, there are limitations and areas for
future study. The current image resolution is not ideal, and
better images could improve model accuracy. Additionally,
multiple devices (cameras) are needed to cover a large wheat
field; future studies may explore the use of drone cameras with
higher resolution. Notification features can also be added to
the app so that the user can be notified when a pest is detected,
as well as building a mobile app to enhance functionality.

REFERENCES

[1] Wheat Production by Country 2025 — worldpopulationre-
view.com, https://worldpopulationreview.com/country-rankings/
wheat-production-by-country, [Accessed 08-21-2025].

[2] Wheat — agmrc.org, https://www.agmrc.org/commodities-
products/grains-oilseeds/wheat, [Accessed 08-21-2025].

[3] S. P. A. S. Lori Tyler Gula, Researchers Helping Protect Crops
From Pests, https : / /www.nifa .usda .gov/about- nifa /blogs/
researchers - helping - protect - crops - pests, [Accessed 08-21-
2025], 2023.

[4] J. Yang and Y. Zhou, “Efficient pest classification using
lightweight neural networks for sustainable pest control”,
in 2024 4th International Conference on Computer Com-
munication and Artificial Intelligence (CCAI), IEEE, 2024,
pp. 119–123.

[5] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks”,
in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 4510–4520.

[6] Z. Liu et al., “A convnet for the 2020s”, in Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, 2022, pp. 11 976–11 986.

[7] R. G. Mundada and V. V. Gohokar, “Detection and classification
of pests in greenhouse using image processing”, IOSR Journal
of Electronics and Communication Engineering, vol. 5, no. 6,
pp. 57–63, 2013.

[8] Y. Shi, W. Huang, J. Luo, L. Huang, and X. Zhou, “Detection
and discrimination of pests and diseases in winter wheat
based on spectral indices and kernel discriminant analysis”,
Computers and electronics in agriculture, vol. 141, pp. 171–180,
2017.

[9] W. Haider, A.-U. Rehman, N. M. Durrani, and S. U. Rehman,
“A generic approach for wheat disease classification and verifi-
cation using expert opinion for knowledge-based decisions”,
IEEE Access, vol. 9, pp. 31 104–31 129, 2021.

[10] T. Kasinathan, D. Singaraju, and S. R. Uyyala, “Insect
classification and detection in field crops using modern machine
learning techniques”, Information Processing in Agriculture,
vol. 8, no. 3, pp. 446–457, 2021.

[11] F. I. Abbas, N. M. Mirza, A. H. Abbas, and L. H. Abbas,
“Enhancement of wheat leaf images using fuzzy-logic based
histogram equalization to recognize diseases”, Iraqi Journal of
Science, pp. 2408–2417, 2020.

[12] H. Kang et al., “A novel deep learning model for accurate pest
detection and edge computing deployment”, Insects, vol. 14,
no. 7, p. 660, 2023.

[13] L. Xu et al., “Wheat leaf disease identification based on
deep learning algorithms”, Physiological and Molecular Plant
Pathology, vol. 123, p. 101 940, 2023.

[14] L. Liu et al., “Pestnet: An end-to-end deep learning approach
for large-scale multi-class pest detection and classification”,
Ieee Access, vol. 7, pp. 45 301–45 312, 2019.

[15] N. Chamara, G. Bai, and Y. Ge, “Aicropcam: Deploying
classification, segmentation, detection, and counting deep-
learning models for crop monitoring on the edge”, Computers
and Electronics in Agriculture, vol. 215, p. 108 420, 2023.

[16] X. Wu, C. Zhan, Y. Lai, M.-M. Cheng, and J. Yang, “Ip102:
A large-scale benchmark dataset for insect pest recognition”,
in IEEE CVPR, 2019, pp. 8787–8796.

[17] A. Bhat, GitHub - anikaaa22/Pest-Identification — github.com,
https://github.com/anikaaa22/Pest- Identification, [Accessed
08-21-2025].

12Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 18 / 35

A Neural Approach to Ray Tracing for Realistic Wireless Channel Simulation in
Indoor and Urban Scenarios

Francisco Javier Somolinos-Simón , Adina Murg, Hanli Liu ,
Carlos J. Hellín , Josefa Gómez and Abdelhamid Tayebi

Department of Computer Science
University of Alcalá

Alcalá de Henares, Spain
e-mail: {francisco.somolinos|adina.murg|hanli.liu
|carlos.hellin|josefa.gomezp|hamid.tayebi}@uah.es

Abstract—Accurate modeling of wireless channels is essential
for the design and optimization of next generation communi-
cation networks such as 6G. Traditional ray tracing techniques
provide physically consistent simulations but suffer from high
computational complexity, limiting their scalability and real-
time applicability. This work proposes a neural network based
surrogate model for ray tracing in complex 3D environments.
This approach leverages multilayer perceptrons to predict the
interaction of electromagnetic rays with surfaces, estimating
critical channel parameters such as gain, time-of-flight, and
propagation angles. The model is trained and validated using
datasets generated by the Sionna ray tracing engine in both
indoor and large urban scenarios. Results demonstrate that the
neural surrogate achieves low prediction errors in key metrics
and generalizes well across different environments. This neural
ray tracing framework offers a scalable, flexible, and efficient
alternative to conventional physics based simulators.

Keywords-neural networks; ray tracing; MIMO systems.

I. INTRODUCTION

In recent years, many 6G network research topics have re-
quired the simulation of specific radio environments using ray
tracing. This requirement arises from the need for a spatially
consistent correspondence between a physical location in a
scene and the impulsive channel response, a feature not readily
provided by widely used stochastic channel models. The main
challenges for the design, deployment and optimization of
wireless communication networks are based on understanding
and accurately modeling the characteristics of the real-time
propagation channel, allowing fast and accurate simulations of
complex scenarios such as massive Multiple-Input Multiple-
Output (MIMO) systems and the deployment of digital twins,
among others [1].

The physics of such ElectroMagnetic (EM) wave propaga-
tion between a transmit and receive point are analytically given
by the Maxwell equations: the transmitted wave undergoes
different interactions with the environment (e.g., reflection),
and the receiver gets the wave through multiple paths with
different times-of-flight and powers, and from different direc-
tions. However, solving the Maxwell equations with boundary
conditions requires in-depth knowledge of the propagation
environment, therefore, classically modeling EM propagation
is intractable for most engineering applications [2].

Ray tracing-based simulators are commonly employed for
modeling wireless channel properties [3]–[6]. In the ray tracing

process, electromagnetic rays are uniformly launched from the
transmitter antenna, undergoing reflections, transmissions, and
diffractions with various buildings and floors, ultimately reach-
ing the receiver locations. These ray paths and interactions
yield valuable wireless channel information, such as channel
gain, channel transfer function, and channel impulse response
[7].

While ray tracing has been a popular tool in wireless
channel modeling, its computational complexity escalates with
the number of ray-object interactions. To address these needs,
neural network based forward surrogate models emerge as an
attractive solution.

A neural network is a mechanism that takes inputs and
learns associations to predict some outputs [8]. Artificial
Neural Network (ANN) models are gaining importance in
the field of predictive modeling because of their capability to
model nonlinear relationships in a high-dimensional dataset.
ANN models can predict a complex relationship between
variables, which is not otherwise possible with other models
such as logistic regression models [9].

ANN models work on the principles of biological neural
networks containing nodes (analogous to cell bodies) that com-
municate with other nodes through connections (analogous to
axons and dendrites) [10]. An ANN consists of an input layer,
hidden layers and an output layer while the information is fed
into the model through the input layer, processed through the
hidden layers and put out from the output layer [9] (Figure 1).

Figure 1. Structure of a neural network showing input features, hidden layers
for pattern learning, and output neurons representing predicted quantities.

13Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 19 / 35

Among the main types of neural network models generally
used in predicting, Multi-Layer Perceptron (MLP) stands out.
It is one of the feedforward networks where the input values
are multiplied with their corresponding weights and fed into
the hidden layer while the hidden layer process transfers the
weighted input to the output layer with values of multiplied
weights corresponding to the output layer. MLP uses the
backpropagation algorithm to recalculate the weights [9]. It
uses commonly conventional activation functions such as the
Sigmoid function or the Tanh function, however, any non-
linear and continuous function, such as Rectified Linear Units
(ReLU), is suitable for use in an MLP [11].

The major highlights of this model are as follows [12]:

• The neural network contains one or more intermediate
layers between the input and the output nodes, which are
hidden from both input and output nodes.

• Each neuron in the network includes a non-linear activa-
tion function that is differentiable.

• The neurons in each layer are connected with some or
all the neurons in the previous layer.

Then, the objective of this paper is to train neural networks
to predict interactions between wireless beams and objects
in a three-dimensional environment. This approach involves
simulating ray-surface interactions to estimate transmission-
reception paths, considering characteristics such as time of
flight and gain. The proposed neural network learns how
surfaces impact wireless ray propagation, predicting factors
such as attenuation and direction of the outgoing ray based on
attributes of the incident ray. This approach offers the advan-
tage of applying to new scenarios, improving its versatility to
adapt to different situations.

Compared to existing neural ray tracing methods in the
literature, the proposed work excels in scalability and flexi-
bility, accommodating diverse levels of geometric complexity
while maintaining high-quality channel prediction. This neural
ray tracing framework is validated across indoor and outdoor
scenes and shows potential for real-time or large-scale de-
ployment, particularly in the context of next generation 6G
communication systems and digital twin technologies.

The remainder of this paper is organized as follows: Section
II gives a short overview of the work related to the idea to
be put forward. Section III details how datasets are generated
using the Sionna ray tracing engine in both indoor and outdoor
3D scenes. Section IV introduces the architecture of the pro-
posed model. Section V explains the model training process.
Section VI presents three metrics: Overall Error, Geometry
Error, and Average Delay Mean Absolute Error (MAE), to
assess how accurately the model predicts the physical behavior
of wireless paths compared to ground-truth data. Section VII
presents the results of the proposed neural ray tracing model
in various scenarios and evaluates its performance using the
defined metrics. Finally, Section VIII summarizes the main
contributions of the paper and outlines potential directions for
future research.

II. RELATED WORK

Physically based simulation guided by neural networks is
gaining popularity across various scientific domains. In the
field of applied and computational electromagnetics, several
approaches leveraging neural networks have been proposed
to accelerate or approximate ray-based simulations [13]–[15].
For instance, Jin et al. [15] redefine ray trajectory generation
as a sequential decision making problem, introducing the
SANDWICH framework, a fully differentiable, scene aware
neural architecture that jointly learns optical, physical, and
signal properties of the environment.

On the other hand, other approaches from the domain of
neural rendering and computer graphics also employ neural
networks to model ray tracing and light transport. Knodt et al.
[16] explicitly model light transport between scene surfaces
using disentangled neural representations of geometry and
reflectance, allowing for efficient inverse rendering. Zeng et
al. [17] propose MirrorNeRF, a neural rendering framework
capable of learning accurate geometry and mirror reflection,
supporting scene manipulations such as adding new objects or
modifying reflective surfaces and synthesizing corresponding
reflections.

Many of these neural surrogates aim to learn the scattering
process involving obstacles in free space.

A recent work addressing this task is WiNeRT [2]. In
the authors’ approach, a neural surrogate to model wireless
electromagnetic propagation effects in indoor environments
is implemented. Such neural surrogates provide a fast, dif-
ferentiable, and continuous representation of the environment
and enable end-to-end optimization for downstream tasks.
Specifically, they render the wireless signal (e.g., time of flight,
power of each path) in an environment as a function of the
sensor’s spatial configuration (e.g., placement of transmit and
receive antennas). That is to say, their approach inscribes
within the ray tracing channel modeling paradigm, where
wireless propagation is precisely modeled by tracing wireless
rays.

Another work in this area is RayProNet [7]. The authors
introduce a novel machine learning-empowered methodology
for wireless channel modeling. The key ingredients include a
point-cloud-based neural network and a Spherical Harmonics
encoder with light probes. Their approach offers the flexibility
to adjust antenna radiation patterns and transmitter/receiver
locations, the capability to predict radio path loss maps, and
the scalability of large-scale wireless scenes. This work is
validated in various outdoor and indoor radio environments.

Additionally, widely adopted datasets such as DeepMIMO
[18] support the training and benchmarking of data-driven
channel models in ray-traced environments, and are instrumen-
tal in standardizing the evaluation of neural surrogates. More
recently, physics-informed learning techniques have been pro-
posed to embed propagation physics into deep models, im-
proving generalizability and interpretability in scenario aware
channel modeling [19].

14Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 20 / 35

III. DATA COLLECTION

The datasets in this project are generated using an open-
source ray tracing simulator: Sionna [20]. Sionna Ray Tracing
(RT) is a ray tracing extension for radio propagation modeling
that is built on top of Mitsuba 3 [21] and TensorFlow [22].
Sionna RT relies on Mitsuba 3 for the rendering and scene han-
dling, e.g., its XML-file format, as well as the computation of
ray intersections with scene primitives, i.e., triangles forming
a mesh modeling a surface [23]. Scene files for Mitsuba 3
may be created, edited, and exported using the popular open-
source 3D content creation suite Blender [24] and the Mitsuba-
Blender add-on. The dataset is generated in various scenes
such as a cube (small indoor room scene) (Figure 2), and
Munich (large urban city scene) (Figure 3).

Figure 2. Cube: small indoor room scene which contains marble material.

Figure 3. Munich: large urban city scene with a rich material composition,
including both marble and metal.

The first scene contains marble material consistent with its
simple indoor layout. In contrast, the second scene features a
richer material composition, including both marble and metal,
to better reflect the diversity of an urban landscape [25].
Table I shows the properties of these materials, as relative
permittivity (εr) and conductivity (σ).

TABLE I. CONSTITUENT MATERIAL PROPERTIES (RELATIVE
PERMITTIVITY εr AND CONDUCTIVITY σ)

Material name εr σ [S/m]
Marble 7.074 0.018
Metal 1 107

As described in Table II, datasets comprise 20 transmitter
locations with Third Generation Partnership Project (3GPP)
TR 38.901 pattern [26] and 40 sampled receiver locations with
short dipole pattern with linear polarization pattern for each
scene. To position the transmitters and receivers in the scene, a
random uniform sampling strategy was adopted. Specifically,
antenna positions were sampled uniformly in the plane within
the bounding box of the scene, centered around the scene’s
geometric center. A fixed random seed was used to ensure re-
producibility. This uniform spatial sampling avoids positional
bias and ensures that the antennas are evenly distributed across
the area of interest (671 m2 for small indoor room scene and
4,082,653 m2 for large urban city). The operating frequency
is 3.5 GHz. Reflection is activated whereas diffraction and
scattering are not activated.

TABLE II. DATA COLLECTION: CONFIGURATION DETAILS OF DATASETS

Dataset Cube Munich
Scale Small indoor room

scene
Large urban city

Covered area (m2) 671 4,082,653
Transmitters 20 20
Receivers 40 40
Antenna pattern Transmitter: 3GPP

TR 38.901[26]
Receiver: short
dipole pattern with
linear polarization

Transmitter: 3GPP
TR 38.901[26]
Receiver: short
dipole pattern with
linear polarization

Frequency (GHz) 3.5 3.5
Number of
bounces

3 3

Number of rays to
trace

106 106

Reflected paths are
computed

True True

Diffracted paths
are computed

False False

Scattered paths are
computed

False False

IV. NEURAL MODEL

The general goal of the project is to contribute to the
advancement of next generation networks by designing, de-
veloping, and testing an innovative neural network based ray
tracer. The model takes three configuration parameters as
input: a 3D representation of the environment and the spatial
coordinates of the transmitter and receiver devices. The model
predicts the wireless scene where the output is a variably-
sized set of K paths. A path consists of a sequence of ray
segments (r, r+1 ...) connecting a transmitter to a receiver.
Each path encodes three channel attributes: gain (ak), time-

15Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 21 / 35

of-flight (τk) and angles (Φk). This approach allows for the
effective encoding of interacting objects, with a particular
emphasis on learning geometric features. Therefore, the final
state is modeled as an evaluation of the interactions the ray
experiences with its environment which is represented as a 3D
mesh composed of F faces and V vertices, where each face
corresponds to some surface on a wall.

An MLP model is built to predict the transformation to the
incident ray (the new direction (d(r+1)

k) and gain (a(r+1)
k)).

The network predicts an attenuation factor s and a rotation
matrix A (4-dim Euler-Rodrigues parameterization), which is
then used to determine the updated gain and direction.

Specifically, this neural model consists of two MLP net-
works, an MLP spatial network with 2 hidden layers, each with
64 hidden units and ReLU activation to encode EM properties
specific to a spatial region, but independent of the incidence
direction and an MLP directional network with 1 hidden layer
with 64 hidden units and ReLU activation which predicts the
rotation a ray incident taking into account the direction.

The first network takes as inputs: fi, a one-hot encoded
identifier of the face where the relay point x(r+1)

k lies; ni, the
surface normal vector at that face, representing the geometric
orientation of the surface; and, bi, a 3D conditioning vector
based on signed distances (sdf). These signed distance func-
tions measure how far a given coordinate (e.g., the transmitter,
receiver, or relay point) is from the face fi, taking into account
whether the point is inside or outside the face. This helps the
network contextualize the interaction based on geometry.

The second network takes as input the spacial encoding vi
(output of the first network) and incorporates the direction of
incidence d

(r)
k (the direction of the incoming ray) to model

how the ray interacts with the surface, including how much of
it is reflected or transmitted, and how its direction changes.

The final output is scaling and additive coefficients s for the
gain magnitude (a(r+1)

k = s1a
(r)
k +s2) and 4-dim parameters for

rotation (based on Euler-Rodrigues formulation). The rotation
parameters ρi are mapped to a 3×3 rotation matrix A to
transform the incident to outgoing ray d

(r+1)
k = Ad(r)k .

The new angles and time-of-flight have been calculated from
the new direction. The new angle Φ

(r+1)
k describes the hori-

zontal direction in which the ray travels after the interaction,
measured in the XY plane, then it has been calculated using the
arctangent function which gives the angle between the Y and
X components of the direction vector. The new time-of-flight
τ
(r+1)
k represents the time it takes for the ray to travel from the

current point of interaction to the next point where it hits an
object or reaches the receiver. It is a measure of propagation
delay. To calculate it, the path of the ray is simulated using
the Mitsuba renderer. For each predicted outgoing direction: a
new ray is created starting from the interaction point; this ray
is traced through the 3D scene using Mitsuba’s ray_intersect
method; if the ray intersects with an object, the distance along
the ray to that point is recorded; and, this distance is then
divided by the speed of light (3x108 m/s) to convert it into
time. Only rays that intersect with valid surfaces are used; rays

that go off to infinity are ignored.

V. TRAINING

In this section, the implementation details are introduced in
the training settings of this project.

In these experiments, K rays are initially launched om-
nidirectionally from the transmitter location, agnostic to the
environment and location of the receiver location. For each
ray, its interaction with the environment is evaluated. These
data are separated into training and validation sets. Among
them, about 85% are used for training, with the remaining
15% reserved for validation.

The MLP architecture models were coded in Python 3
(v3.10.6), using the PyTorch framework (v2.7.0), while Mit-
suba 3 (v3.5.2) was employed for physically based rendering
and ray intersection computations. Supporting tools include
NumPy (v1.23.5) and SciPy (v1.15.2) (Rotation module) for
quaternion operations.

The models were trained and tested on a laptop computer
with a GPU environment NVIDIA GeForce RTX 2070 and 8
GB of RAM. Each of these models is trained in a supervised
setting for 100 epochs with a learning rate of 0.001 and
batch size of 1. Adam optimizer and the Mean Square Error
(MSE) loss function for scalar-valued attributes and cosine
distances loss function between angular attributes are utilized
for received path loss optimization in this project. Set based
Channel Loss compares two sets of multi-path channels:
the predicted set and the ground-truth set. This comparison
provides feedback to improve model training. To compare two
paths the difference between each pair is measured. For scalar
attributes, the differences directly are calculated whereas for
angular attributes, the angular difference by treating the angles
as unit vectors in Cartesian coordinates is measured and using
a cosine-based distance.

This approach ensures that the loss considers both the
matching of paths and the accuracy of their attributes, leading
to meaningful guidance for training the model.

Training time for the model was approximately 4.70 seconds
per epoch for indoor scenes and 0.03 seconds per epoch
for outdoor scenes on an NVIDIA RTX 2070 GPU. The
computational complexity scales linearly with the number
of rays and interactions due to the feedforward architecture
of the MLP. This efficiency enables the training of larger
models or generalization to new environments using standard
computational resources.

The inputs include normalized geometric features such as
surface normals and signed distance functions, while face iden-
tifiers are one-hot encoded. The model architecture, described
in Section IV, comprises two MLPs with ReLU activations,
trained jointly to predict path direction and gain.

VI. EVALUATION METRIC

The evaluation metric serves as a quantitative measure
to assess the performance of the proposed method in the
prediction. In this work, absolute error metrics are used rather
than relative errors, because some channel parameters, such

16Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 22 / 35

as gain and delay, can be close to zero, which would make
relative errors unstable or less meaningful. Therefore, absolute
errors provide a more reliable and interpretable assessment of
the accuracy of the prediction. Three evaluation metrics are
considered to evaluate this approach:

• Overall prediction error (’Overall’): This metric measures
how well the entire set of predicted paths matches the set
of ground-truth paths. To compare the two sets of paths
(predicted vs. ground truth), correspondences between
them are established using a linear sum assignment
problem (also known as the Hungarian algorithm). This
algorithm finds the best one-to-one matching between
predicted and ground-truth paths that minimizes the total
error. The final error considers all relevant path attributes,
including gain, angles and time-of-flight. A lower value
indicates better overall alignment between predicted and
true multipath components.

Erroverall =
1

N

N∑
k=1

(
|ak − âk|+ |τk − τ̂k|+ |Φk − Φ̂k|

)
where:

– N is the total number of predicted paths.
– ak and âk are the true and predicted gain of path k,

respectively.
– τk and τ̂k are the true and predicted time-of-flight of

path k.
– Φk and Φ̂k are the true and predicted angles of path

k.
• Geometry prediction error (’Geometry’): This is a more

focused version of the overall error. It still uses the match-
ing mechanism from metric, but instead of evaluating
all attributes, it specifically looks at two that describe
the geometry of the path: angles and time-of-flight. This
metric evaluates whether the predicted rays follow the
same geometric routes as the ground truth, meaning
they bounce off the same surfaces and follow similar
trajectories between the transmitter and receiver. As with
the overall error, lower values indicate better geometric
consistency.

Errgeometry =
1

N

N∑
k=1

(
|τk − τ̂k|+ |Φk − Φ̂k|

)
where:

– N is the total number of predicted paths.
– τk and τ̂k are the true and predicted time-of-flight of

path k.
– Φk and Φ̂k are the true and predicted angles of path

k.
• Average Delay Time - MAE (’AvgDelay’): This metric

summarizes the average time delay (τ) of all the predicted
paths in a channel and compares it to the average delay of
the ground-truth paths. For each path, its average time-of-
flight is calculated and weighted by the linear power of
the path. Then, the Mean Absolute Error (MAE) between

the predicted average delay and the true average delay is
computed. Lower values here indicate that the temporal
structure of the predicted channel closely matches the true
one.

Erravg_delay =

∣∣∣∣∣
∑N

k=1 ak · τk∑N
k=1 ak

−
∑N

k=1 âk · τ̂k∑N
k=1 âk

∣∣∣∣∣
where:

– N is the total number of predicted paths.
– ak and âk are the true and predicted linear gains of

path k.
– τk and τ̂k are the true and predicted time-of-flight of

path k.

VII. EXPERIMENTAL RESULTS

This section presents the performance evaluation of the
proposed neural network based ray tracing model through
experiments conducted in both indoor and outdoor environ-
ments. The model’s ability is evaluated to predict key wireless
propagation characteristics, including path gain, direction or
time-of-flight, using the datasets generated with the Sionna
ray tracing simulator. Performance metrics, as described in
previous section, are used to evaluate the model’s accuracy,
generalization, and ability to learn complex interactions in
realistic 3D scenarios.

Table III presents the quantitative evaluation of the model’s
performance in two distinct scenarios: a small indoor room
and a large urban city environment. The results are reported
across three metrics: Overall, Geometry and AvgDelay.

TABLE III. QUANTITATIVE RESULTS. COMPARING ERRORS OF THIS
APPROACH IN TWO DIFFERENT SCENARIOS

Metrics Small indoor room scene Large urban city
Overall 2.374163 2.313505

Geometry 2.372437 2.312989
AvgDelay 0.001727 0.000516

The Overall error reflects the model’s ability to predict
complete ray paths accurately. The values are quite similar
across both scenes (2.37 for the indoor scene vs. 2.31 for the
city), indicating consistent overall performance regardless of
scene complexity.

The Geometry error focuses specifically on the accuracy of
the predicted ray geometry. Again, the model shows similar
performance in both environments (2.37 vs. 2.31), suggesting
that it effectively captures the geometric characteristics of the
propagation paths.

The AvgDelay error, measured as MAE, shows a greater
difference between scenes. The model achieves better delay
prediction in the large urban city (0.000516) compared to the
indoor room (0.001727). This may be attributed to the richer
variety of multipath effects in urban settings, which enhance
the model’s ability to learn delay patterns effectively.

When compared to WiNeRT [2], the proposed model
demonstrates competitive performance. Although WiNeRT
achieves a superior geometry error of 0.084 in controlled

17Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 23 / 35

indoor settings, the AvgDelay error of this model (0.0005
in urban environments) is significantly lower than WiNeRT’s
best-case error of 0.828. These results underscore the model’s
strong predictive accuracy, particularly in complex outdoor
scenarios with greater environmental variability.

A time performance evaluation is also proposed comparing
this model to traditional ray tracing (Table IV).

TABLE IV. RUNTIME COMPARISON BETWEEN THE PROPOSED MODEL
AND SIONNA RAY TRACING SIMULATOR

Dataset Small indoor
room scene

Large urban
city

Runtime (neural
model)

470.07 s 2.97 s

Runtime (Sionna ray
tracing)

1.07 s 14.39 s

The runtime comparison between the proposed neural model
and the traditional Sionna ray tracing simulator reveals inter-
esting behavior across different environments. As shown in
Table IV, the neural model achieves significantly faster infer-
ence in the large urban city scenario (2.97 seconds vs. 14.39
seconds for Sionna), demonstrating its potential for efficient
large-scale deployment. However, in the small indoor room,
the neural model exhibits a notably higher runtime (470.07
seconds compared to 1.07 seconds with Sionna). This disparity
is likely due to the higher density of multipath reflections in
indoor environments, increasing the computational load for the
neural network.

When compared to RayProNet [7], which leverages con-
tinuous neural point-field representations for efficient runtime
performance, the proposed model exhibits a more scene de-
pendent behavior. RayProNet achieves inference times under
100s for complex indoor and outdoor environments, while
the proposed model excels in outdoor scenarios with sparse
geometries.

Overall, the proposed neural network based model demon-
strates robust generalization across diverse environments, with
notable strengths in predicting propagation delays and efficient
runtime performance in large-scale urban settings. These find-
ings suggest that the model is well-suited for applications re-
quiring high accuracy and scalability in wireless environments.

VIII. CONCLUSION AND FUTURE WORK

In this work, a neural network based surrogate model for
ray tracing in wireless communication environments has been
presented. By learning how electromagnetic rays interact with
3D surfaces, this proposed model effectively predicts critical
channel attributes such as gain, angle of departure/arrival,
and time-of-flight. This approach has been validated using
the Sionna ray tracing simulator in both indoor and outdoor
settings, demonstrating consistent performance across different
levels of scene complexity. Notably, this model shows strong
generalization capabilities and achieves low error in average
delay prediction, especially in urban environments where
multipath effects are more diverse.

These findings suggest that neural ray tracing offers a
scalable and efficient alternative to traditional physics-based
simulators, with the potential for real-time or large-scale
deployment in the context of 6G and digital twin technologies.

Despite the promising results, this study has several lim-
itations that should be addressed in future work: simplified
material properties, the materials used in the dataset have
fixed relative permittivity and conductivity values. While this
ensures consistency, it does not capture the variability found in
real-world materials; limited scene diversity, only two scenes
were considered for dataset generation. These environments,
while representative of some scenarios, do not encompass
the full range of conditions encountered in practical wireless
communication system; exclusion of diffraction and scattering,
the dataset was generated without accounting for diffraction
and scattering effects. These phenomena, however, can sig-
nificantly influence propagation characteristics, particularly in
environments with sharp edges or complex surfaces; and,
fixed frequency, all experiments were conducted at a single
operating frequency of 3.5 GHz.

Future work could explore the scalability to larger and more
diverse scenes, extend to additional propagation phenomena,
and use different frequency ranges to further enhance the
robustness and applicability of the model. In particular, future
extensions of this work could target environments such as
multi-floor indoor settings and dense urban areas with complex
obstructions. The inclusion of additional physical effects like
diffraction and scattering would improve modeling in scenar-
ios with sharp edges and rough surfaces. Evaluating the model
at other frequency bands, especially sub-THz ranges relevant
to 6G, would further validate its generalizability. Moreover, in-
tegrating neural surrogates with physics-based modules could
help balance efficiency with physical interpretability. Finally,
online learning or reinforcement learning approaches could
enable the model to adapt in real time within digital twin
applications.

ACKNOWLEDGMENT

This work was supported by the program “Programa de
Ayudas para la Realización de Proyectos de Investigación
UAH” of the Vice-Rectorate for Research and Knowledge
Transfer of the University of Alcala (Spain) through project
PIUAH24/IA-076, and by the contract Programa Investigo ref.
04-UAH-INV2024 provided by the Comunidad de Madrid.

REFERENCES

[1] T. K. Sarkar, The physics and mathematics of electromagnetic
wave propagation in cellular wireless communication, 1st edi-
tion. 2018, ISBN: 9781119393139. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/book/10.1002/9781119393146.

[2] T. Orekondy et al., “WineRT: Towards neural ray tracing for
wireless channel modelling and differentiable simulations,” in
The Eleventh International Conference on Learning Represen-
tations, 2023. [Online]. Available: https : / / openreview. net /
forum?id=tPKKXeW33YU.

18Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 24 / 35

[3] F. Aguado Agelet, A. Formella, J. Hernando Rabanos, F. Isasi
de Vicente, and F. Perez Fontan, “Efficient ray-tracing acceler-
ation techniques for radio propagation modeling,” IEEE Trans-
actions on Vehicular Technology, vol. 49, no. 6, pp. 2089–
2104, 2000. DOI: 10.1109/25.901880.

[4] Z. Ji, B.-H. Li, H.-X. Wang, H.-Y. Chen, and T. Sarkar, “Effi-
cient ray-tracing methods for propagation prediction for indoor
wireless communications,” IEEE Antennas and Propagation
Magazine, vol. 43, no. 2, pp. 41–49, 2001. DOI: 10.1109/74.
924603.

[5] D. He et al., “The design and applications of high-performance
ray-tracing simulation platform for 5g and beyond wireless
communications: A tutorial,” IEEE Communications Surveys
& Tutorials, vol. 21, no. 1, pp. 10–27, 2019. DOI: 10.1109/
COMST.2018.2865724.

[6] F. Saez de Adana, O. Gutierrez Blanco, I. Gonzalez Diego,
J. Perez Arriaga, and M. Catedra, “Propagation model based on
ray tracing for the design of personal communication systems
in indoor environments,” IEEE Transactions on Vehicular
Technology, vol. 49, no. 6, pp. 2105–2112, 2000. DOI: 10 .
1109/25.901882.

[7] G. Cao and Z. Peng, “Raypronet: A neural point field frame-
work for radio propagation modeling in 3d environments,”
IEEE Journal on Multiscale and Multiphysics Computational
Techniques, vol. PP, pp. 1–12, Jan. 2024. DOI: 10 . 1109 /
JMMCT.2024.3464373.

[8] N. Purkait, Hands-on neural networks with Keras : design and
create neural networks using deep learning and artificial in-
telligence principles, 1st edition. 2019, ISBN: 9781789533347.
[Online]. Available: https : / / github . com / PacktPublishing /
Hands-On-Neural-Networks-with-Keras?tab=readme-ov-file.

[9] V. Renganathan, “Overview of artificial neural network models
in the biomedical domain,” vol. 120, pp. 536–540, Jul. 2019.
DOI: 10.4149/BLL_2019_087.

[10] E. Choi, M. T. Bahadori, A. Schuetz, W. F. Stewart, and J.
Sun, Doctor ai: Predicting clinical events via recurrent neural
networks, 2016. arXiv: 1511 . 05942 [cs.LG]. [Online].
Available: https://arxiv.org/abs/1511.05942.

[11] A. Nguyen, K. Pham, D. Ngo, T. Ngo, and L. Pham, “An anal-
ysis of state-of-the-art activation functions for supervised deep
neural network,” CoRR, vol. abs/2104.02523, 2021. arXiv:
2104.02523. [Online]. Available: https://arxiv.org/abs/2104.
02523.

[12] S. Dutt, Machine learning, [First edition]. 2019, ISBN:
9789353067373. [Online]. Available: https://www.oreilly.com/
library/view/machine-learning/9789389588132/.

[13] Y. Ge, L. Guo, and M. Li, “Physics-informed deep learning
for time-domain electromagnetic radiation problem,” in 2022
IEEE MTT-S International Microwave Biomedical Conference
(IMBioC), 2022, pp. 114–116. DOI: 10.1109/IMBioC52515.
2022.9790302.

[14] L. Li et al., “Deepnis: Deep neural network for nonlinear
electromagnetic inverse scattering,” IEEE Transactions on
Antennas and Propagation, vol. 67, no. 3, pp. 1819–1825,
2019. DOI: 10.1109/TAP.2018.2885437.

[15] Y. Jin et al., Sandwich: Towards an offline, differentiable, fully-
trainable wireless neural ray-tracing surrogate, 2025. arXiv:
2411.08767 [cs.NI]. [Online]. Available: https://arxiv.org/
abs/2411.08767.

[16] J. Knodt, S. Baek, and F. Heide, “Neural ray-tracing: Learning
surfaces and reflectance for relighting and view synthesis,”
CoRR, vol. abs/2104.13562, 2021. arXiv: 2104.13562. [On-
line]. Available: https://arxiv.org/abs/2104.13562.

[17] J. Zeng et al., “Mirror-nerf: Learning neural radiance fields for
mirrors with whitted-style ray tracing,” in Proceedings of the
31st ACM International Conference on Multimedia, ser. MM
’23, ACM, Oct. 2023, pp. 4606–4615. DOI: 10.1145/3581783.
3611857. [Online]. Available: http : / / dx . doi . org / 10 . 1145 /
3581783.3611857.

[18] A. Alkhateeb, “Deepmimo: A generic deep learning dataset
for millimeter wave and massive MIMO applications,” CoRR,
vol. abs/1902.06435, 2019. arXiv: 1902 . 06435. [Online].
Available: http://arxiv.org/abs/1902.06435.

[19] E. Zhu, H. Sun, and M. Ji, Physics-informed generaliz-
able wireless channel modeling with segmentation and deep
learning: Fundamentals, methodologies, and challenges, 2024.
arXiv: 2401 . 01288 [cs.IT]. [Online]. Available: https : / /
arxiv.org/abs/2401.01288.

[20] J. Hoydis et al., Sionna, version 1.1.0,
https://nvlabs.github.io/sionna/, 2022.

[21] W. Jakob et al., Mitsuba 3 renderer, version 3.1.1,
https://mitsuba-renderer.org, 2022.

[22] M. Abadi et al., “Tensorflow: Large-scale machine
learning on heterogeneous distributed systems,” CoRR,
vol. abs/1603.04467, 2016. arXiv: 1603 . 04467. [Online].
Available: http://arxiv.org/abs/1603.04467.

[23] J. Hoydis et al., “Sionna RT: Differentiable Ray Tracing for
Radio Propagation Modeling,” arXiv preprint, Mar. 2023.

[24] Blender Online Community, Blender - a 3d modelling and
rendering package, Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. [Online]. Available: http : / /
www.blender.org.

[25] Recommendation ITU-R, Effects of building materials and
structures on radiowave propagation above about 100 mhz
p series radiowave propagation, 2015. [Online]. Available:
https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.2040-1-
201507-S!!PDF-E.pdf.

[26] ETSI TR 138 901, Study on channel model for frequencies
from 0.5 to 100 ghz (3gpp tr 38.901 version 16.1.0 release 16),
2020. [Online]. Available: https://www.etsi.org/deliver/etsi_
tr/138900_138999/138901/16.01.00_60/tr_138901v160100p.
pdf.

19Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 25 / 35

A Lightweight Hybrid AI Framework for Cataract Detection Using Fundus Images:
Real-World Evaluation on Clinical Data

Ishaan Kunwar
STEM Program

Edison High School
Edison, United States

e-mail: ishaankunwar19@gmail.com

Abstract—Cataract is one of the most prevalent eye diseases
affecting the elderly population. In underserved regions, a low
ophthalmologist-to-patient ratio and a scarcity of specialized
medical devices pose challenges for early detection. This study
aims to harness recent advancements in Deep Learning (DL)
to automate cataract detection. Although numerous studies
have been conducted in this area, improving model accuracy
and minimizing overfitting, all while maintaining a simple
architecture that requires fewer computational resources, remains
challenging. This research proposes a hybrid method that merges
featurization achieved by a Convolutional Neural Network (CNN)
with classification techniques to improve prediction accuracy.
The model’s predictive performance is evaluated not only on
the original test dataset but also on a newly acquired image
set collected independently from a hospital. Experiments are
conducted across different model architectures, such as CNNs
and hierarchical Vision Transformers (ViTs) in combination
with classifiers, such as multi-layer perceptron (MLP), K-nearest
neighbors, and RandomForest. The highest accuracy is achieved
using a combination of the ConvNeXtXLarge architecture for
feature extraction coupled with a MLP classifier, reaching 92.3%
on the original test dataset and improving to 94% on the new
hospital-based dataset.

Keywords- cataract, convolutional neural network, vision trans-
former, multilayer perceptron.

I. INTRODUCTION

Cataracts are a predominant cause of visual impairment
and blindness, accounting for approximately 33% of cases of
impaired vision and 51% of first causes of blindness worldwide
[1]. This eye ailment occurs due to the clumping of proteins
in the lens, which significantly reduces its transparency. The
ophthalmologists detect it by performing a manual retinal exam.
They administer eye drops to dilate the pupil and then use the
slit lamp, which is a specialized microscope with bright light,
to clearly examine the retina for opacity.

Early detection of cataracts is crucial to preventing pro-
gressive blindness or avoiding costly surgical interventions,
particularly in underserved regions where the ophthalmologist-
to-patient ratio can be alarmingly low, often around 1 to 10,000.

Currently, cataract detection and diagnosis in hospitals are
primarily based on clinical examinations by ophthalmologists
using devices, such as slit lamps, ophthalmoscopes, and
biomicroscopy. These methods involve direct visualization of
the eyes’ lens to assess opacity levels, and in some cases,
specialized imaging techniques like ultrasound biomicroscopy
and Scheimpflug imaging may also be employed. However,
these procedures depend heavily on the availability of trained

medical professionals and advanced equipment, often resulting
in significant delays in diagnosis and treatment initiation,
particularly in underserved areas.

Fundus imaging, however, presents a simpler and more
accessible alternative, particularly suitable for underserved
regions. Fundus cameras are relatively portable, cost-effective,
and easy to operate, requiring less specialized training com-
pared to traditional ophthalmic diagnostic methods. These
characteristics enable broader deployment, even in remote
or resource-constrained settings, facilitating early detection
and continuous monitoring of cataracts. Thus, leveraging
fundus imaging could substantially improve the scalability and
reach of cataract screening programs, particularly benefiting
communities with limited healthcare infrastructure.

Recent advances in Artificial Intelligence (AI), particularly
Deep Learning (DL), have shown promising potential for au-
tomating medical diagnostics across various domains, including
ophthalmology. Deep learning-based systems, especially Con-
volutional Neural Networks (CNNs) and Vision Transformers
(ViTs), have successfully demonstrated high performance in
recognizing pathological conditions in ophthalmic imaging [2].
However, despite these successes, existing models often face
critical challenges, including overfitting, excessive computa-
tional complexity and costs, and limited generalizability when
exposed to datasets collected from diverse and independent
clinical settings [3][4].

To address these issues, it is crucial to develop streamlined
yet highly accurate models that are computationally efficient,
generalizable, and robust to varied imaging conditions and
demographic differences encountered in different regions. This
paper proposes a hybrid approach that integrates deep feature
extraction through advanced CNN architectures, specifically
ConvXtnet-large, with traditional classification methods, includ-
ing multi-layer perceptron (MLP), K-nearest neighbors (KNN),
and RandomForest classifiers, with MLP being the chosen
classification method. Evaluating the model performance not
only on standard benchmarking datasets but also on indepen-
dently acquired hospital datasets provides a more rigorous and
realistic assessment of its generalization capabilities.

Such comprehensive validation across diverse datasets is
essential for ensuring reliability and clinical applicability in
underserved regions where disparities in healthcare accessibility
demand robust, efficient, and accurate automated diagnostic
tools. The developed approach aims to bridge gaps in oph-

20Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 26 / 35

thalmic care by providing a scalable, accessible, and precise
cataract detection system.

The remainder of the paper is structured as follows: In
Section II, the paper discusses prior work in the area of
automating cataract detection using machine learning, including
prior successes and limitations. Section III discusses the design
of the experiment, including data collection, data preprocessing,
feature extraction, architecture of classification models and of
the proposed approach, and experimental procedures. In Section
IV, the validation and testing results of the experiments are
disclosed. In Section V, the results are discussed and explained
and the limitations of the study are revealed. In Section VI,
future prospects of the proposed method are detailed, and in
Section VII, the paper is concluded and final thoughts are
summarized.

II. RELATED WORK | METHODS

Several studies have leveraged Machine Learning (ML)
and Deep Learning (DL) approaches to automate cataract
detection. Typically, these methodologies involve three primary
stages: data preprocessing, feature extraction, and classification.
Traditionally, CNNs have dominated this domain due to their
strength in image-based feature extraction. However, recently
ViTs have gained significant traction, demonstrating promising
results in ophthalmic disease diagnosis.

Multiple researchers have employed ViT-based methods with
considerable success. Ali et al. [5] introduced a hyperparameter-
optimized ViT model combined with Explainable AI techniques
to diagnose various eye diseases from a diverse medical image
dataset, achieving an accuracy of 91.40%. Similarly, Purba et al.
[6] utilized a ViT architecture tailored for human eye disease
classification, optimizing hyperparameters to attain an accuracy
of 92.86% and recall of 85.72%. Another pertinent work by
Gummadi et al. [7] implemented ViT for ocular disease classifi-
cation, achieving an F1-score of 83.49%. Complementing these
findings, Kumar et al. [8] conducted a comparative evaluation
between traditional CNNs, specifically Visual Geometry Group-
16 (VGG16) and ResNet50, and ViT on a consistent dataset,
concluding that ViT demonstrated superior performance with
an accuracy score of 70%.

Further advancements have been achieved through hybrid
transformer models and specialized feature engineering ap-
proaches. Wang et al. [9] proposed a Transformer-based
Knowledge Distillation Network (TKDNet) specifically tailored
for cortical cataract grading. Their innovative methodology
includes a zone decomposition strategy for extracting precise
features and introduces specialized sub-scores addressing key
clinical indicators, such as opacity location, area, and density.
Their multi-modal mix-attention Transformer efficiently fused
these sub-scores with image modalities, achieving a notable
accuracy of 95.1% and recall of 81.6%.

Despite the growing popularity of ViTs, CNN-based methods
remain highly relevant due to their computational efficiency
and high accuracy. Khan et al. [10] successfully utilized a pre-
trained VGG19 CNN model to detect cataracts from color fun-
dus images, reaching accuracy and precision scores of 97.47%.

Lai et al. [11] developed a custom CNN architecture comprising
seven layers—including convolutional, max-pooling, flatten,
and dense layers for cataract detection from digital camera
images, achieving outstanding accuracy and recall scores of
98.5% and 97.9%, respectively. Weni et al. [12] introduced
a CNN-based method incorporating dropout regularization to
mitigate overfitting, obtaining an accuracy of 88%. Further,
Ganokratanaa et al. [13] compared a LeNet-based CNN to a
traditional Support Vector Machine (SVM) classifier, with their
LeNet-CNN approach yielding an impressive 96% accuracy.

While significant progress has been made in automating
cataract detection, several challenges persist. Critical areas
for future research include enhancing prediction accuracy,
minimizing model overfitting and computational costs, and
improving generalizability by testing the model on different
geographical locations.

This paper proposes a hybrid, computationally efficient
approach that integrates deep feature extraction through
advanced CNN architectures, specifically ConvNeXtXLarge,
with traditional classification methods, including Multi-Layer
Perceptron (MLP) [14], K-Nearest Neighbors (KNN) [15],
and RandomForest classifier [16]. Evaluating the model per-
formance not only on standard benchmarking datasets but
also on independently acquired hospital datasets provides a
more rigorous and realistic assessment of its generalization
capabilities.

III. METHODS AND MATERIALS

A. Dataset

This study uses the Ocular Disease Intelligent Recognition
(ODIR) dataset [17] from Shanggong Medical Technology
Co., Ltd. It is a structured ophthalmic database of 5,000
patients with age, color fundus photographs from left and
right eyes and doctors’ diagnostic keywords from doctors. This
dataset represents a real life set of patient information collected
by Shanggong Medical Technology Co., Ltd. from different
hospitals and medical centers in China. It has images of normal
eyes and images of eyes with cataract. It is then randomly
divided into three parts, with 80% of the images being used
for training, 10% for validation and the remaining 10% for
testing the accuracy of the model. These three datasets contain
nearly equivalent numbers of normal and cataract eye images.
This study also utilizes additional fundus images of normal
(40 patients) and cataract (10 patients) eyes obtained from
GSVM Medical College, which is a public medical college
in Kanpur, India. This dataset represents a real life set of
fundus images of Indian patients. It is used only as a testing
dataset to assess the generalizability of the model trained on
the ODIR dataset. Figure 1 shows the retinal fundus images of
normal and cataract eyes. Both the ODIR and GSVM datasets
used in this work are publicly available and fully comply with
Health Insurance Portability and Accountability Act (HIPAA)
in protecting patients’ health information.

21Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 27 / 35

Figure 1. Eye Fundus Images. (a) Cataract. (b) Normal.

B. Data Preprocessing

A pre-processing stage is crucial in standardizing the input
of fundus images obtained from multiple sources, as they may
have different characteristics. The ODIR dataset is from several
medical institutions in China where fundus images are captured
by various cameras in the market, such as Canon, Zeiss and
Kowa, resulting in varied image resolutions. The GSVM dataset
of raw images contained irrelevant visual components like
computer monitors and medical devices, which are cropped
out to have only retinal fundus images. Each fundus image
is then resized to 224x224 pixels for uniformity and then
converted to RGB color space resulting in a three-dimensional
(3D) array of 224x224x3. The three 2D arrays represent red,
green and blue channels respectively. It is then converted from
RGB to BGR and each color channel is zero-centered with
respect to the ImageNet dataset, without scaling, as required
by ConvNeXtXLarge.

C. Feature Extraction

ConvNets have always been popular for computer vision
related tasks due to their inherent inductive biases like transla-
tion equivariance and sliding window strategy. Translation
equivariance is important for object detection and sliding
window strategy allows neighbors to share computations, which
is essential for visual processing. Recently, ViTs have entered
this space with better accuracy rate than traditional ConvNets
and are getting increasingly dominant. The primary reason
for their superiority is their global attention design, which
has quadratic complexity with respect to the input image size
and can quickly become unmanageable with higher resolution
images. To address this limitation, hierarchical Transformers
like Swin Transformer have been developed, which incorporates
some of the inductive biases of ConvNets like sliding window
strategy. But the resulting design is still complex, requiring
significantly more computational resources than ConvNets.
ConvNeXtXLarge model [18] is an enhanced traditional Con-
vNets, which retains the design simplicity of convolution and
then incorporates features like depthwise convolution, inverted
bottleneck and large kernel sizes taken from the architecture of
hierarchical Transformers. It outperforms vanilla ViTs, while
maintaining the simplicity and efficiency of standard ConvNets
and for these reasons is used here to extract image features.

The weights used are from the pretraining of this model on the
ImageNet-21k dataset and then fine-tuned on the ImageNet-
1k dataset. The top layer of the ConvNeXtXLarge model is
replaced with a global average pooling layer to avoid overfitting.
It also ensures that some spatial information is retained by
averaging each feature map, which allows for higher versatility
across different input variations evident in datasets of this
study. It also helps in keeping the architecture simple, which
leads to faster featurization and less computational resource
consumption. Essentially, the idea was that intially featurizing
the images and then classifying them based on these numerical
features would provide better accuracies than solely applying
a CNN-variant. By stripping off the classifier head of the
ConvNextXlarge model, the model extracts 2048 features
from the images. As opposed to the classifier head making
the prediction, additional predictive models were added on
the ConvNextXLarge model to improve accuracy. The set of
features extracted from the dataset are randomly reshuffled
to avoid subsequent classification models from learning the
patterns based on the order of the images in the dataset.

In order to determine the importance of the ConvNextXLarge
featurizer in the proposed pipeline, an ablation study was
conducted. One of the variants of the pipeline tested in the
ablation study involved substituting the ConvNextXLarge model
for DenseNet-201, another featurizer model, pairing DenseNet-
201 with MLP. A DenseNet-201 model, pretrained on the
ImageNet-1k dataset, is a CNN that has dense connectivity,
meaning that each layer takes input from all the layers that
were before that particular layer and provides output to all
layer subsequent to that particular layer. The model has several
dense blocks, with each block containing a certain amount
of layers. Each block is separated from other blocks by
transition layers, which are composed of a 1 by 1 convolution
layer followed by a pooling layer, with the goal being to
compress the feature maps. Due to these characteristics of
the DenseNet-201 model, it has several advantages, such as
reducing the occurrence of vanishing gradients and cutting
down on parameter redundancy. The DenseNet-201 model
extracts 1920 numerical features from the fundus images
and also has its top layer stripped away, replaced with
a global average pooling layer for similar reasons as the
ConvNextXLarge model. The reason for choosing DenseNet-
201 as the substitute for ConvNextXLarge in this ablation study
lies in the fact that DenseNet-201, being a classic CNN, lacks
the ViT-like enhancements that ConvNextXLarge possesses,
such as inverted bottleneck, depthwise convolution, and large
kernels. The ablation study, in part, aims to determine the
effect of removing ViT-like enhancements on the performance
of the model.

D. Classification

The extracted features are then used to train MLP, KNN, and
Random Forest classifiers. The MLP Classifier is a feedforward
neural network having at least three layers, an input layer, one
or more hidden layers, and an output layer. Each node in
the input layer corresponds to a feature in the feature map.

22Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 28 / 35

There can be any number of hidden layers and each can have
any number of nodes. They calculate a weighted sum of the
inputs followed by an activation function, which adds bias
and introduces nonlinearity. The output layer generates the
final prediction, so in this study acts as the binary classifier
having two nodes for "Normal" and "Cataract" prediction. The
predicted output is compared to the actual label using a loss
function and to minimize its value, weights of the nodes and
activation function are adjusted during backpropagation.

The KNeighborsClassifier is a simple yet powerful lazy
learning algorithm. It preserves the entire training data from
the training phase and uses it to classify based on similarity
measures. The class of a data point is determined by the
majority or average of its K neighbors, which are found based
on a distance metric.

The RandomForest Classifier is an ensemble tree learning
algorithm. During the training phase, it creates a number of
decision trees using random subsets of the features from the
feature map. Each individual tree makes its prediction and
the final prediction is determined by voting where the most
frequently predicted result is chosen. These three different
classifiers are paired with ConvNextXLarge and compared
in an ablation study to isolate the contributions of the MLP
classifier in the proposed pipeline and to assess its individual
importance to the performance of the proposed pipeline.

Figure 2 demonstrates the architecture of the proposed
method, including preprocessing, featurization, and the different
classification models that ConvNeXtXLarge is paired with.

In order to evaluate the performance of the proposed
methodology, the results have been compared with traditional
CNN models like ResNet50 [19], EfficientNetb2 [20], and
MobileNetv2 [21] as well as computationally costly ViTs, such
as Swin transformer [22] and vanilla ViT [23].

ResNet50 is a type of Deep Convolutional Neural Network
(DCNN) with 50 layers, a part of a group called Residual
Networks. It uses special connections, known as residual
connections, to help gradients flow effectively and overcome
issues like vanishing gradients, making it reliable for tasks like
image classification. EfficientNetB2 is a CNN that enhances
width, depth, and resolution of images through a calculated
scaling method. As the third model in the EfficientNet series,
it expands upon previous models (B0 and B1) with more
layers, wider channels, and higher resolution. This allows
EfficientNets to achieve high accuracy with fewer parameters
and less computational demand compared to older models
like ResNet. ViTs break down images into small, equal sized
patches, flatten these patches, and feed them into a global
attention module, using positional embeddings for each patch.
This approach allows ViTs to focus on broad patterns in images,
often surpassing traditional CNNs, especially in large-scale
datasets. SwinTransformers are a specialized version of ViTs
that apply attention mechanism within local windows that are
shifted across the image. By incorporating convolutional layers,
they create hierarchical feature maps similar to those in CNNs,
which helps them be effective in classification tasks.

E. Experimental Procedures

For training MLP, the hyperparameter learning_rate_init,
which controls the step size in updating the weights during
backpropagation to minimize loss function, is evaluated for
values 0.01, 0.05, 0.001, 0.0001, 0.00001, 0.1 and 0.000001. For
each value of learning_rate_init, the hyperparameter max_iter,
which is the epoch value, is evaluated for values ranging from
10 to 110 increasing in intervals of 10.

For KNN, the hyperparameter n_neighbors, which is the
number of nearest neighbors to consider in deciding the class
of a data point, is evaluated for values ranging from 1 to 15.

For RandomForest, the hyperparameter max_depth, which
is the depth of the decision tree, is evaluated for values in the
range 1 to 7. For each value of max_depth, the hyperparameter
n_estimators, which is the number of the decision trees in the
forest, is evaluated for values ranging from 10 to 110.

The performance of the proposed methodology is also bench-
marked against the MobileNetV2, ResNet50, EfficientNetB2,
SwinTransformer, ViT model, which has a similar architecture,
to assess improvements in detection accuracy, highlighting the
effectiveness of the featurization over classification methods
in enhancing cataract prediction performance. The hyperpa-
rameter epochs values ranging from 10 through 50 with the
learning_rate hyperparameter ranging from 0.000001 to 0.05,
depending on the model, are used to fine-tune the models.

Performance metrics like accuracy, precision and recall
are used to identify the most effective model. Accuracy is
the percentage of true prediction out of the total prediction.
Precision is the percentage of true positive prediction (i.e.,
cataract eye) out of total positive prediction. Recall is the
percentage of true positive prediction out of the total positive
samples. For tasks like medical diagnosis, the cost of false
negative prediction (i.e., cataract eye predicted as normal) is the
highest, so a higher recall value is given the highest precedence
followed by precision and then accuracy.

Finally, the computational efficiency and speed of the
proposed pipeline was quantified by measuring the wall time
(s) as well as CPU time (s) of the entire pipeline, including
both featurization and classification, during training, validation,
and testing. Wall time is the elapsed time from when the task
began to when it ended, taking into account computation of the
models, waiting for inputs and outputs, network delays, and
several other real world factors to represent the real world time
that a user must wait for the result. On the other hand, CPU
time is the amount of time that the computer processing spent
executing the pipeline. For the validation, testing, and collected
testing dataset, two additional performance metrics were
measured: inference latency (s) and throughput (samples/s).
Inference latency is the total elapsed time it takes a trained ML
model to take in a singular input, in this case a fundus image,
and make a prediction. Inference latency is critical in this
context as it measures how long a user may have to wait for a
diagnosis for cataract, with speed being essential to lessen the
impact of cataract. Throughput, which is mathematically the
inverse of inference latency, measures the amount of predictions

23Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 29 / 35

Figure 2. Architecture of proposed hybrid approach.

a trained ML model can make within a certain unit of time.
Throughput is essential in this context as it measures the
efficiency of the pipeline, which is essential when processing
batches of patients, a common occurrence in overwhelmed and
understaffed rural clinics.

IV. RESULTS

In the case of MLP, the highest accuracy of 98.28% is
achieved, with minimum number of epochs, when epochs are
40 and learning rate is 0.01. In Figure 3, the performance of
MLP based on different pairs of epochs and learning rates
is shown. Other combinations of epochs and learning rate
result in this accuracy, including 50 epochs and 0.01 learing
rate, 60 epochs and 0.01 learning rate, 80 epochs and 0.01
learning rate, and 70 epochs and 0.05 learning rate. This is the
highest validation accuracy, higher than every model except
RandomForest.

In the case of KNN, the highest accuracy of 96.55% is
achieved with 2 neighbors and the lowest accuracy of 89.50%
is achieved when the number of neighbors increases to 5, 6,
7, and 13. This performance is demonstrated by Figure 4a
based on different numbers of neighbors. For RandomForest,
the highest accuracy of 98.28% is achieved with 20 trees and
a depth of 2. This performance is demonstrated by Figure 4b
based on different pairs of trees and depths.

In the ablation study, which is documented in Table I, the
combination of ConvNextXLarge and MLP yielded an accuracy
of 98.28% in the validation dataset, 92% in the testing dataset,
and 94% in the collected GSVM testing dataset. These were
the highest recorded accuracies out of all combinations of
components tested in the ablation study. The combination
of ConvNextXLarge and KNN yielded a testing accuracy
of 90.40% and a GSVM testing accuracy of 75.50%. The
combination of ConvNextXLarge and RandomForest yielded a
testing accuracy of 88.50% and a GSVM testing accuracy of

79.60%. The combination of DenseNet201 and MLP yielded a
validation accuracy of 93.10%, a testing accuracy of 86.30%,
and a GSVM testing accuracy of 91.80%.

TABLE I. ABLATION STUDY ACCURACY RESULTS

Variant Val.(%) Test(%) GSVM(%)
ConvNextXLarge+MLP 98 92 94
ConvNextXLarge+KNN 97 90 76
ConvNextXLarge+RF 98 89 80
DenseNet-201+MLP 93 86 92

For each classification model paired with ConvNeXtXLarge,
each of the graphs depicting their validation accuracy has
learning rate on the horizontal axis, validation accuracy on the
vertical axis, and each line represents a different epoch number
in the sequence 10, 20, 30, 40, and 50. The performance metrics
of each model on the testing portion of the ODIR dataset as
well as on the collected GSVM dataset are depicted in Table
II and Table III, respectively.

For EfficientNetB2, according to Figure 5a, the highest
validation accuracy was 96.55% at 30 epochs and 0.01 learning
rate. For ResNet50, according to Figure 5b, the highest
validation accuracy was 98.28% at 10 epochs and 0.001 learning
rate. For MobileNetv2, according to Figure 5c, the highest
validation accuracy was 94.83% at 30 epochs and 0.005 learning
rate.

Moving on to ViTs, for Swin Transformer, the highest
validation accuracy, according to Figure 6a was 94.83% at
30 epochs and 0.0001 learning rate. Finally, for the vanilla
ViT, according to Figure 6b the highest validation accuracy
was 98.04% at 50 epochs and 0.000001 learning rate.

In Table II and Table III, the performance of the classification
models on ODIR and GSVM test dataset is summarized,
respectively. The testing of the ODIR test dataset on the MLP
model resulted in an accuracy score of 92.30%. The same

24Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 30 / 35

Figure 3. Hyperparameter tuning of the MLP model.

model is also tested using the GSVM test dataset resulting in
an accuracy of 94%. Each of these is depicted by Figures 7a
and 7b, respectively.

(a) K-Nearest Neighbors

(b) RandomForest

Figure 4. Validation accuracy of ML models across their parameters.

The computer system performance metrics for the proposed
pipeline when applied to each dataset were measured to
quantify its computational efficiency. For the training dataset,
the recorded CPU time was 2 hours, 43 minutes, and 43
seconds. The recorded wall time was 2 hours, 17 minutes, and
30 seconds. The wall time of the validation dataset was 21

(a) EfficientNetB2 model

(b) ResNet50 model

(c) MobileNetv2 model

Figure 5. Validation accuracy of CNN models across learning rates and
epochs.

25Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 31 / 35

(a) Swin Transformer

(b) Vanilla ViT

Figure 6. Validation accuracy of ViT models across their parameters.

(a) ODIR Testing Portion (b) Collected GSVM

Figure 7. Performance of proposed model on testing datasets.

minutes and 5 seconds, yielding an average inference latency,
for the validation dataset, of 21.8 seconds per fundus image and
a throughput of 0.046 fundus images per second. For the testing
dataset, the wall time was 18 minutes and 9 seconds, yielding
an average inference latency of 21.4 seconds per fundus image
and a throughput of 0.047 fundus images per second. For the
collected GSVM testing dataset, the wall time was 15 minutes
and 4 seconds, yielding an inference latency of 18.4 seconds
per fundus image and a throughput of 0.054 fundus images
per second. All these measurements are referenced from Table

TABLE II. PERFORMANCE OF CLASSIFICATION MODELS ON ODIR TEST
DATASET

Model Acc.(%) Prec.(%) Rec.(%) F1.(%)
MLP 92 92 92 92
ResNet50 90 90 90 90
EfficientNetB2 92 92 92 92
ViT 90 92 90 90
Swin Trans. 92 92 92 92
MobileNetV2 86 86 86 86

TABLE III. PERFORMANCE OF CLASSIFICATION MODELS ON GSVM TEST
DATASET

Model Acc.(%) Prec.(%) Rec.(%) F1.(%)
MLP 94 97 83 88
ResNet50 92 93 92 92
EfficientNetB2 94 95 94 94
ViT 86 93 61 64
Swin Trans. 96 93 93 93
MobileNetV2 90 94 72 78

IV below.

TABLE IV. COMPUTER SYSTEM PERFORMANCE METRICS OF PROPOSED
PIPELINE

Dataset Wall
time(s)

CPU
time(s)

Inference
Latency(s)

Throughput

Train 8250 9823 - 0.058
Val. 1079 1275 21.8 0.046
Test 850 1089 21.4 0.047
GSVM 904 1059 18.4 0.054

V. DISCUSSION | EVALUATION

The combination of ConvNeXtXLarge and GlobalAverage-
Pooling2D for featurization with MLP Classifier as the classifier
resulted in the highest validation accuracy, which was higher
than similar prior studies, albeit with a different and smaller
dataset. Convolution does not have high computational costs
like global attention design of ViTs, which requires computa-
tionally expensive global attention modules. Additionally, just
one hidden layer with 100 nodes in MLP classifier also helps in
keeping the architecture simple, requiring less resources. KNN
and RandomForest also had decent validation accuracies, with
RandomForest actually matching MLP in validation accuracy.
However, KNN and RandomForest require comparatively more
resources than the proposed method.

For KNN, more neighbors after K=2 results in a drop
in accuracy. This is likely due to the bias-variance tradeoff
involved with involving more neighbors. In the case of
RandomForest, there is not much variation in accuracy for
different combinations of depth and number of trees. Every
evaluated combination results in the accuracy within the
range of 91.38% to 98.28%. It is also evident during tuning
that computational requirements of this classifier are directly
proportional to the number of trees.

26Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 32 / 35

In the case of MLP, the highest accuracy of 98.28% is
achieved when epochs are 40 and learning rate is 0.01. The
accuracy increases with the increase in epochs for every single
value of learning rate. After an optimal value of epochs is
reached, the accuracy plateaus for each learning rate. The
lowest learning rate of 0.00001 has the maximum deviation in
accuracy ranging from around 74% to 97% as epochs increase.
The highest learning rate of 0.05 has second highest deviation
in accuracy ranging from around 89% to 98% with increase in
epochs. It demonstrates that too low or too high learning rate
during backpropagation can adversely impact accuracy. For
higher learning rates, such as 0.05, weights are updated too
quickly, resulting in oscillations around convergence and thus
making number of epochs cause large variation in validation
accuracies. However, since 0.05 as a learning rate is not too
large, the deviation in accuracy based on epochs is not too
drastic and maximum accuracy of 98.28% is still achievable
with this learning rate when paired with enough epochs, in
this case 70.

In the ablation study, given that the combination of ConvNex-
tXLarge as the featurization model and MLP as the classifier
model yielded the highest accuracies in classifying the fundus
images among all three of the datasets (validation, testing, and
GSVM testing), clearly, both of these models contribute heavily
to the performance of the pipeline. Likely, ConvNextXLarge
and MLP outperformed the pairing of ConvNextXLarge and
KNN because when there is a large number of features
involved, such as 2048 features, the Euclidean distances that
KNN calculates between points to classify a point tend to
concentrate as close neighbors and far away neighbors appear
to be roughly equidistant from the datapoint currently being
classified, thus making KNN’s prediction inaccurate. MLP
likely trumped RandomForest’s performance as well since
RandomForest uses the aggregate prediction of axis-aligned
decision trees, which perform optimally on tabular data but
often stumble when trying to classify an image based on the
smooth, high-dimensional feature maps produced by CNNs
such as ConvNextXLarge. The ConvNextXLarge model likely
outperformed the DenseNet-201 model due to its ViT-like
enhancements, such as depthwise convolutions and inverted
bottleneck, which boosted its accuracy without requiring
computationally expensive global attention modules.

The evaluation of various models, including MobileNetv2,
ResNet50, EfficientNetB2, ViT, and SWINTransformer, across
different learning rates and epochs shows the impact of
hyperparameter tuning on model performance. Lower learning
rates frequently demonstrate slower convergence, leading to
suboptimal accuracy, as observed with MobileNetv2 and
similarly noted in other models like EfficientNetB2 and ViT. In
contrast, moderate learning rates, particularly around 0.0001 to
0.005, consistently yield higher stability and precision, resulting
in efficient convergence without the risk of overshooting the
global minimum, a pattern evident across both ResNet50 and
MobileNetv2. High learning rates, such as 0.05, introduce
significant volatility, destabilizing the training process as
illustrated by diminished results in MobileNetv2, ViT, and

EfficientNetB2.
For the ODIR testing performance of each model, the

proposed hybrid approach of pairing ConvNeXtXLarge to
featurize fundus images and using MLP to classify each image
based on these features got the highest accuracy of 92%
and highest recall of 92%. These performance metrics were
matched by Swin Transformer as well as EfficientNetB2. The
proposed approach likely performed one of the best because
ConvNeXtXLarge leverages the strengths of both the CNNs
(ConvNet / CNN) and hierarchical ViTs for featurization. The
inherent inductive biases of CNN, like translation equivariance
and sliding window strategy, work together with the depthwise
convolution and inverted bottleneck of ViTs to extract image
features. Thus, strong spatial representations are fed into MLP,
which allows MLP to make accurate predictions.

EfficientNetB2 also shared the same high performance
metrics due to its compound scaling of fundus images, which
effectively scales the width, depth, and input resolution of
inputted images using a user-specified scaling coefficient.
This scaling allows it to capture finer details and improve
representation of images. For Swin Transformer, it first splits
the images into patches that it then flattens into feature
vectors. By applying self-attention to small local windows
that are then shifted across the image to ensure cross-window
communication, the model is capable of paying attention to
local features as well as maintain global awareness, thus
allowing it to notice small features in the fundus images and
generalize better on new datasets.

On the GSVM dataset, the differences between each of
these three respective model were more. While the hybrid
proposed approach, EfficientNetB2, and Swin transformer had
similar accuracies despite the proposed approach’s simplified
architecture, Swin transformer and EfficientNetB2 had higher
recall values than the proposed approach did. This is likely
because the MLP head, with only 100 nodes in one hidden
layer, was unable to properly detect all positives, hence its
lower recall. The model likely requires more training on noisy
real world hospital data to be able to properly generalize to real
world datasets and their quality issues. The hierachial window-
based self-attention of Swin Transformer and the compound
scaling of EfficientNetB2 likely allowed each model to notice
small details in fundus images of the training dataset, thus
allowing them to generalize to hospital data even with its flaws.

The vanilla ViT likely performed much worse than the
others because ViTs, due to their global attention modules,
require large training datasets to properly generalize to other
datasets and often miss small localized details. MobileNetv2
is a lightweight model that does not translate well to datasets
that have a lot of noise. While the proposed approach has a
lower recall than Swin Transformer and EfficientNetB2 on
real-world hospital data due to the relatively low quality of the
data, the proposed approach still performs on par with, and
sometimes better than (in the case of validation dataset) state
of the art models on quality datasets that resemble its training
dataset, and further training on more real world hospital data
will likely allow it to generalize to imperfect hospital data.

27Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 33 / 35

Additionally, since MLP has only one layer with 100
nodes and ConvNeXtXLarge lacks computationally expensive
attention-based modules, the proposed approach is computa-
tionally more efficient than other models, including vanilla
ViTs with their global attention modules. Finally, the proposed
approach, due to the replacement of ConvNeXtXLarge’s FTC
with a Global Average Pooling Layer, is able to reduce
overfitting of the model on the training dataset.

Considering the computer system performance metrics for
the proposed pipeline, the inference latency times, computed
for each of the three non-training datasets, are roughly similar
to each other. Taking into account the relative number of images
in each of the three datasets, the average inference latency is
20.6 seconds, which is much faster than the standard 30-60
minutes a standard cataract examination may take involving a
specialist and advanced equipment. For each dataset, the CPU
time exceeded the wall time, regardless of the other delays that
the wall time considers. This is because of the use of parallel
processing when running the pipeline, using multiple cores at
the same time as opposed to a single-threaded process.

The limitations of this study include a lack of large datasets
to train classifier models and the local nature of the datasets.
The study uses ODIR dataset for training, which has just a few
hundred fundus images for cataract as opposed to thousands
of images typically required to train models efficiently and
avoid overfitting. Both the ODIR and GSVM fundus image
datasets are of patients from south Asia. It is not clear if the
accuracy of the model will be the same if tested on fundus
image datasets from other parts of the world. Further study
and more diverse sources of datasets are required to address
these aspects.

VI. CONCLUSION AND FUTURE WORK

This study establishes a robust framework for cataract detec-
tion using deep learning and traditional classifiers, showcasing
strong performance on both benchmark and hospital-based
datasets. The few seconds that it takes the web app to predict
the presence of cataract from a fundus image is much faster than
skilled medical personnel, using advanced detection equipment,
would be able to without even considering the fact that these
personnel can only visit a clinic once every few weeks or
even months due to understaffing. Nonetheless, there remain
several promising avenues for future research. Expanding
the dataset size with diverse fundus images from various
geographic locations will help improve the generalizability
and robustness of the model across different populations.
Moreover, incorporating techniques like transfer learning from
larger ophthalmologic datasets or integrating advanced data
augmentation methods could further mitigate overfitting and
improve performance.

Additionally, incorporating explainability methods and vi-
sualization tools to interpret model predictions could provide
clinicians greater confidence in AI-assisted diagnoses, promot-
ing better clinical acceptance and decision-making.

Integration of multimodal data, combining fundus imaging
with other diagnostic modalities, such as Optical Coherence

Tomography (OCT) or clinical patient histories, could further
enhance diagnostic accuracy and reliability. Furthermore,
longitudinal studies assessing the real-world clinical impact and
economic feasibility of deploying this AI-based cataract detec-
tion system will be crucial to translating research advancements
into practical healthcare improvements.

With regards to the use of this web app by clinicians, a
possible improvement to the web app could be "Clinician-in-
the-Loop Testing," where a clinician could participate in the
predictions made by the web app by having the web app identify
certain fundus images that it is unsure of and thus passing
them off to the clinician for a more detailed review. The rate
at which clinicians accept or reject the predictions of the web
app could also be recorded as another metric for performance.
Finally, efficiency benchmarks can be used to demonstrate
the efficiency and speed of the model on different hardware.
For instance, a possible benchmark is throughput, which is
the number of fundus images that can be classified within a
certain amount of time. Other measures, such as CPU usage,
memory consumption, and power draw of the web app when
predicting can also be measured. These benchmarks are heavily
affected by the quality of hardware used. Since rural clinics
will often be limited to hardware with limited computing power,
these metrics help further quantify the computing resources
that the pipeline may require to ensure that it does not exceed
computational limits.

REFERENCES

[1] D. Pascolini and S. Mariotti, “Global estimates of visual
impairment: 2010”, The British journal of ophthalmology,
vol. 96, pp. 614–8, Dec. 2011. DOI: 10.1136/bjophthalmol-
2011-300539.

[2] V. Gulshan et al., “Development and validation of a deep
learning algorithm for detection of diabetic retinopathy in
retinal fundus photographs”, jama, vol. 316, no. 22, pp. 2402–
2410, 2016.

[3] Y. Bao et al., “Self-adaptive transfer learning for multicenter
glaucoma classification in fundus retina images”, in Ophthalmic
Medical Image Analysis: 8th International Workshop, OMIA
2021, Held in Conjunction with MICCAI 2021, Strasbourg,
France, September 27, 2021, Proceedings 8, Springer, 2021,
pp. 129–138.

[4] S. Lu et al., “Deep learning-driven approach for cataract
management: Towards precise identification and predictive
analytics”, Frontiers in Cell and Developmental Biology,
vol. 13, p. 1 611 216, 2025.

[5] M. S. Ali and M. Islam, “A hyper-tuned vision transformer
model with explainable ai for eye disease detection and
classification from medical images”, BS thesis, Faculty of
Engineering and Technology Islamic University, 2023.

[6] S. O. Purba et al., “Classification of eye diseases in humans
using vision transformer architecture model”, in 2024 Inter-
national Conference on Information Technology Research and
Innovation (ICITRI), IEEE, 2024, pp. 71–75.

[7] S. D. Gummadi and A. Ghosh, “Classification of ocular dis-
eases: A vision transformer-based approach”, in International
Conference on Innovations in Computational Intelligence and
Computer Vision, Springer, 2022, pp. 325–337.

28Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

 34 / 35

[8] D. Kumar, B. Bakariya, C. Verma, and Z. Illes, “Cataract
disease identification using transformer and convolution neural
network: A novel framework”, in 2023 3rd International
Conference on Technological Advancements in Computational
Sciences (ICTACS), IEEE, 2023, pp. 1230–1235.

[9] J. Wang et al., “A transformer-based knowledge distillation
network for cortical cataract grading”, IEEE Transactions on
Medical Imaging, vol. 43, no. 3, pp. 1089–1101, 2023.

[10] M. S. M. Khan, M. Ahmed, R. Z. Rasel, and M. M. Khan,
“Cataract detection using convolutional neural network with
vgg-19 model”, in 2021 IEEE World AI IoT Congress (AIIoT),
IEEE, 2021, pp. 0209–0212.

[11] C.-J. Lai et al., “The use of convolutional neural networks
and digital camera images in cataract detection”, Electronics,
vol. 11, no. 6, p. 887, 2022.

[12] I. Weni, P. E. P. Utomo, B. F. Hutabarat, and M. Alfalah,
“Detection of cataract based on image features using convolu-
tional neural networks”, Indonesian Journal of Computing and
Cybernetics Systems, vol. 15, no. 1, pp. 75–86, 2021.

[13] T. Ganokratanaa, M. Ketcham, and P. Pramkeaw, “Advance-
ments in cataract detection: The systematic development
of lenet-convolutional neural network models”, Journal of
Imaging, vol. 9, no. 10, p. 197, 2023.

[14] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors”, nature, vol. 323,
no. 6088, pp. 533–536, 1986.

[15] T. Cover and P. Hart, “Nearest neighbor pattern classification”,
IEEE transactions on information theory, vol. 13, no. 1, pp. 21–
27, 1967.

[16] L. Breiman, “Random forests”, Machine learning, vol. 45,
pp. 5–32, 2001.

[17] G. Challenge, Peking university international competition on
ocular disease intelligent recognition (odir-2019), 2019.

[18] Z. Liu et al., “A convnet for the 2020s”, in Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, 2022, pp. 11 976–11 986.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition”, in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–778.

[20] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks”, in International conference on
machine learning, PMLR, 2019, pp. 6105–6114.

[21] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks”,
in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 4510–4520.

[22] Z. Liu et al., “Swin transformer: Hierarchical vision transformer
using shifted windows”, in Proceedings of the IEEE/CVF
international conference on computer vision, 2021, pp. 10 012–
10 022.

[23] A. Dosovitskiy et al., “An image is worth 16x16 words:
Transformers for image recognition at scale”, arXiv preprint
arXiv:2010.11929, 2020.

29Copyright (c) IARIA, 2025. ISBN: 978-1-68558-292-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

EMERGING 2025 : The Seventeenth International Conference on Emerging Networks and Systems Intelligence

Powered by TCPDF (www.tcpdf.org)

 35 / 35

http://www.tcpdf.org

