
DBKDA 2020

The Twelfth International Conference on Advances in Databases, Knowledge, and

Data Applications

ISBN: 978-1-61208-790-0

September 27th – October 1st, 2020

DBKDA 2020 Editors

Malcolm Crowe, University of the West of Scotland, UK
Lisa Ehrlinger, Software Competence Center Hagenberg GmbH, Austria

Fritz Laux, Reutlingen University, Germany
Andreas Schmidt, Karlsruhe Institute of Technology, Germany

 1 / 51

DBKDA 2020

Forward

The Twelfth International Conference on Advances in Databases, Knowledge, and Data
Applications (DBKDA 2020) continued a series of events covering a large spectrum of topics
related to advances in fundamentals on databases, evolution of relation between databases
and other domains, data base technologies and content processing, as well as specifics in
applications domains databases.

Advances in different technologies and domains related to databases triggered substantial
improvements for content processing, information indexing, and data, process and knowledge
mining. The push came from Web services, artificial intelligence, and agent technologies, as
well as from the generalization of the XML adoption.

High-speed communications and computations, large storage capacities, and load-balancing
for distributed databases access allow new approaches for content processing with incomplete
patterns, advanced ranking algorithms and advanced indexing methods.

Evolution on e-business, ehealth and telemedicine, bioinformatics, finance and marketing,
geographical positioning systems put pressure on database communities to push the ‘de facto’
methods to support new requirements in terms of scalability, privacy, performance, indexing,
and heterogeneity of both content and technology.

We take here the opportunity to warmly thank all the members of the DBKDA 2020
technical program committee, as well as all the reviewers. The creation of such a high quality
conference program would not have been possible without their involvement. We also kindly
thank all the authors who dedicated much of their time and effort to contribute to DBKDA
2020. We truly believe that, thanks to all these efforts, the final conference program consisted
of top quality contributions. We also thank the members of the DBKDA 2020 organizing
committee for their help in handling the logistics of this event.

DBKDA 2020 Chairs

DBKDA 2020 Steering Committee
Friedrich Laux, Reutlingen University, Germany
Lisa Ehrlinger, Johannes Kepler University Linz, Austria / Software Competence Center
Hagenberg GmbH, Austria
Andreas Schmidt, Karlsruhe Institute of Technology / University of Applied Sciences, Germany
Peter Kieseberg, St. Pölten University of Applied Sciences, Austria
Erik Hoel, Esri, USA

DBKDA 2020 Publicity Chair
Joseyda Jaqueline More, Universitat Politecnica de Valencia, Spain
Marta Botella-Campos, Universitat Politecnica de Valencia, Spain

 2 / 51

DBKDA 2020 Industry/Research Advisory Committee
Jerzy Grzymala-Busse, University of Kansas, USA
Filip Zavoral, Charles University Prague, Czech Republic
Konstantinos Kalpakis, University of Maryland Baltimore County, USA
Shin-ichi Ohnishi, Hokkai-Gakuen University, Japan
Thomas Triplet, Ciena inc. / Polytechnique Montreal, Canada
Stephanie Teufel, iimt - international institute of management in technology | University of
Fribourg, Switzerland
Rajasekar Karthik, Oak Ridge National Laboratory, USA

 3 / 51

DBKDA 2020
Committee

DBKDA 2020 Steering Committee
Friedrich Laux, Reutlingen University, Germany
Lisa Ehrlinger, Johannes Kepler University Linz, Austria / Software Competence Center Hagenberg
GmbH, Austria
Andreas Schmidt, Karlsruhe Institute of Technology / University of Applied Sciences, Germany
Peter Kieseberg, St. Pölten University of Applied Sciences, Austria
Erik Hoel, Esri, USA

DBKDA 2020 Publicity Chair
Joseyda Jaqueline More, Universitat Politecnica de Valencia, Spain
Marta Botella-Campos, Universitat Politecnica de Valencia, Spain

DBKDA 2020 Industry/Research Advisory Committee
Jerzy Grzymala-Busse, University of Kansas, USA
Filip Zavoral, Charles University Prague, Czech Republic
Konstantinos Kalpakis, University of Maryland Baltimore County, USA
Shin-ichi Ohnishi, Hokkai-Gakuen University, Japan
Thomas Triplet, Ciena inc. / Polytechnique Montreal, Canada
Stephanie Teufel, iimt - international institute of management in technology | University of Fribourg,
Switzerland
Rajasekar Karthik, Oak Ridge National Laboratory, USA

DBKDA 2020 Technical Program Committee
Zeyar Aung, Masdar Institute of Science and Technology, UAE
Gilbert Babin, HEC Montréal, Canada
Flavio Bertini, University of Bologna, Italy
Zouhaier Brahmia, University of Sfax, Tunisia
Martine Cadot, LORIA, Nancy, France
Ricardo Campos, Polytechnic Institute of Tomar, Portugal
Sanjay Chaudhary, AhmedabadUniversity, India
Yung Chang Chi, National Cheng Kung University, Taiwan
Monica De Martino, Istituto per la Matematica Applicata e Tecnologie Informatiche "Enrico Magenes" |
Consiglio Nazionale delle Ricerche, Italy
Marianna Di Gregorio, University of Salerno, Italy
Anton Dignös, Free University of Bozen-Bolzano, Italy
Ivanna Dronyuk, Lviv Polytechnic National University, Ukraine
Cedric du Mouza, CNAM (Conservatoire National des Arts et Métiers), Paris, France
Lisa Ehrlinger, Johannes Kepler University Linz, Austria / Software Competence Center Hagenberg
GmbH, Austria
Gledson Elias, Federal University of Paraíba (UFPB), Brazil
Barbara Gallina, Mälardalen University, Sweden
Ana González-Marcos, Universidad de La Rioja, Spain
Luca Grilli, University of Foggia, Italy
Robert Gwadera, Cardiff University, UK

 4 / 51

Mohammed Hamdi, Najran University, Saudi Arabia
Hamidah Ibrahim, Universiti Putra Malaysia, Malaysia
Md Johirul Islam, Iowa State University, USA
Vladimir Ivančević, University of Novi Sad, Serbia
Ivan Izonin, Lviv PolytechnicNational University, Ukraine
Tahar Kechadi, University College Dublin (UCD), Ireland
Jam Jahanzeb Khan Behan, Université libre de Bruxelles (ULB), Belgium / Universidad Politécnica de
Cataluña (UPC), Spain
Daniel Kimmig, solute GmbH, Germany
Sotirios I. Kontogiannis, University of Ioannina, Greece
Nadira Lammari, CEDRIC-Cnam, France
Friedrich Laux, Reutlingen University, Germany
Martin Ledvinka, Czech Technical University in Prague, Czech Republic
Yuening Li, Texas A&M University, USA
Tobias Lindaaker, Neo4j, Sweden
Chunmei Liu, Howard University, USA
Yanjun Liu, Feng Chia University, Taiwan
Michele Melchiori, Università degli Studi di Brescia, Italy
Fabrizio Montecchiani, University of Perugia, Italy
Francesc D. Muñoz-Escoí, Universitat Politècnica de València (UPV), Spain
Roberto Nardone, University of Reggio Calabria, Italy
Nikola S. Nikolov, University of Limerick, Ireland
Joshua C. Nwokeji, Gannon University, Erie Pennsylvania, USA
Shin-ichi Ohnishi, Hokkai-Gakuen University, Japan
Taher Omran Ahmed, College of Applied Sciences, Ibri, Sultanate of Oman / Azzentan University, Libya
Moein Owhadi-Kareshk, University of Alberta, Canada
Shirish Patil, Sitek Inc., USA
Fabiano Pecorelli, University of Salerno, Italy
Elaheh Pourabbas, National Research Council | Institute of Systems Analysis and Computer Science
"Antonio Ruberti", Italy
Manjeet Rege, University of St. Thomas, USA
Peter Revesz, University of Nebraska-Lincoln, USA
Jan Richling, South Westphalia University of Applied Sciences, Germany
Peter Ruppel, CODE University of Applied Sciences, Berlin, Germany
Andreas Schmidt, Karlsruhe Institute of Technology / University of Applied Sciences Karlsruhe, Germany
Jaydeep Sen, IBM Research AI, India
Shahab Shamshirband, NTNU, Norway
Zeyuan Shang, Einblick Analytics, USA
Fatemeh Sharifi, University of Calgary, Canada
Ankur Sharma, Saarland University, Germany
Carmine Spagnuolo, Università degli Studi di Salerno, Italy
Günther Specht, University of Innsbruck, Austria
Sergio Tessaris, Free University of Bozen-Bolzano, Italy
Nicolas Travers, ESILV - Pôle Léonard de Vinci, Paris, France
Thomas Triplet, Ciena inc. / Polytechnique Montreal, Canada
Maurice van Keulen, University of Twente, Netherlands
Chenxu Wang, Xi'an Jiaotong University, China
Shaohua Wang, New Jersey Institute of Technology, USA

 5 / 51

Shibo Yao, New Jersey Institute of Technology, USA
Damires Yluska Souza Fernandes, Federal Institute of Paraíba, Brazil
Feng Yu, Youngstown State University, USA
Qiang Zhu, University of Michigan - Dearborn, USA

 6 / 51

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 51

Table of Contents

A Graph Database Storage Engine for Provenance Graphs
Changhong Liu and Hancong Duan

1

Solving a Combinatorics Challenge by Exploiting Computational Techniques Available on Relational Databases
Wei Hu and Mirco Speretta

7

The Typed Graph Model
Fritz Laux

13

Automated Generation of Graphs from Relational Sources to Optimise Queries for Collaborative Filtering
Ahmad Shahzad and Frans Coenen

20

Reconsidering Optimistic Algorithms for Relational DBMS
Malcolm Crowe and Fritz Laux

27

Comparative Analysis of RDBMS and NoSQL Databases
Jam Jahanzeb Khan Behan, Ali Inam, Meesum Ali, and Muhammad Talha Khan

31

Tackling Semantic Shift in Industrial Streaming Data Over Time
Lisa Ehrlinger, Christian Lettner, and Johannes Himmelbauer

36

Principle Structure and Architecture of a Code Generator
Andreas Schmidt

40

Powered by TCPDF (www.tcpdf.org)

 1 / 1 8 / 51

A Graph Database Storage Engine for Provenance Graphs

Changhong Liu

School of Computer Science and Engineering,
University of Electronic Science and Technology,

Chengdu, China 610000
Email: 314979677@qq.com

Hancong Duan

School of Computer Science and Engineering,
University of Electronic Science and Technology,

Chengdu, China 610000
Email: duanhancong@uestc.edu.cn

Abstract—The rapid development of high-speed networks has
created a massive amount of data. Storing and mining such data
is of great research value. Knowledge graphs and graph databases
have widely been studied and applied as an effective means
to mine the associated data in the past few years. Provenance
graphs provide powerful ways to observe the changes in a graph,
especially in graph analysis. The update operation will produce
massive provenance graphs from a given graph as time goes on. It
is a challenge to store and query these massive provenance graphs
efficiently. Meanwhile, the query performance itself must be
guaranteed. To address this challenge, this paper presents a graph
database storage engine called T-GDB (Temporal dimension -
Graph Database). This system binds the topology of the graph
to each vertex in the graph and rebuilds the graph in real-
time when analyzing the graph. T-GDB can analyze the changes
in a graph over time and can also access the provenance of
the specified graph through the index tree. T-GDB can support
these application scenarios such as the knowledge reasoning
of knowledge graphs and the information mining for specified
graphs. This paper describes the format of data storage, the
index, and the implementation of this system. Finally, this paper
compares the proposed graph database storage engine to several
existing mainstream graph databases to verify the feasibility and
efficiency of this design. Our experimental results demonstrate
that the proposed graph database storage engine has better
performance and more efficient graph analysis than existing
methods.

Keywords–Graph Database; Graph Analytics and Storage;
Provenance Graphs.

I. INTRODUCTION

In the age of big data, big graph analysis has widely been
studied in recent years because of its many applications in a
wide variety of practical fields. Many algorithms of graph com-
puting are NP-hard (non-deterministic polynomial-time hard)
problems such as Graph Partition [1]. It is challenging to study
how to store graph-structured data and reduce the computing
latency for graph computing. As a research field of artificial
intelligence, knowledge graphs [2] play an important role in
intelligent data analysis. Knowledge graphs can be stored in
Resource Description Framework (RDF) [3], XML (Extensible
Markup Language) [4], or other formats. Property graphs [5]
(see Figure 2) are also effective data models for applying
knowledge mining in graph databases. Graph databases can
efficiently query the properties attached to vertices and edges
of the graph, while RDF is less effective at doing that. NoSQL
(Not Only Structured Query Language) databases have several
storage types: Key-Value like Redis Graph [6], Document like
CouchDB [7], Column-oriented like Bigtable [8] and graph

database like Neo4j [9]. Therefore, graph database is one type
of NoSQL databases. However, existing graph databases still
employ several storage formats. In this paper, the storage
format of the storage engine is similar to Key-Value. The
simple statement queries of graph databases do not care much
about the memory usage. However, memory usage is vital for
graph analysis because it always traverses the whole graph.
To address this, Trinity [10] presented an optimized memo-
ry management for graph-structured models. Although graph
databases have great advantages in dealing with relationships
between data, graph indexing [11] is also necessary to speed
up graph computing. This paper’s contributions are as follows:

• Propose a unique tree-structured index for provenance
graphs and an efficient graph storage model for graph
traversal.

• Provide a storage engine architectural design. This
system can read, write and analyze the graph-
structured data conveniently and quickly.

The rest of this paper is structured as follows. This paper
describes the background of the system and the related work in
Section II. In Section III, this paper details the storage format
of the system, both in memory and on the disk. In Section IV,
this paper provides the architecture and implementation of the
system. This paper discusses the performance of T-GDB and
compares the results with other graph databases in Section V.
This paper discusses the future work related to the research in
Section VI.

II. BACKGROUND AND RELATED WORK

In many existing graph databases, the changes in a graph
over time can not be queried. Graph databases usually deal
with the relationships between data. However, many exist-
ing graph databases can not do anything about the relevant
causality of data. For example, the process of knowledge
reasoning will produce the relevant causality of data. Data
provenance has widely been studied in the field of databases.
Provenance graphs provide powerful ways to analyze the
graph-structured data like Ariadne [12]. However, developers
did not specially design effective storage for provenance graphs
in graph databases. Knowledge mining must be considered
in our system. Knowledge mining can mine the potential
information of the graph-structured data and can also deduce
new knowledge through knowledge mining algorithms. Cook
et al. [13] present the details of many kinds of graph mining
algorithms. In the research field of knowledge graphs, DBpedia
[14] is the leader in knowledge storage. Freebase [15] is

1Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 9 / 51

a graph database for building human knowledge. However,
these previous studies can not query provenance graphs. Many
existing graph databases can also not query knowledge graphs
or lack support for knowledge mining. There are some major
graph databases, such as Neo4j, TigerGraph [16] and Janus-
Graph [17]. These major graph databases are not suitable
for storing knowledge graphs or provenance graphs. Neo4j
uses an orthogonal list to represent the graph-structured data.
JanusGraph uses an adjacency matrix to represent the graph-
structured data. However, T-GDB uses an array to represent
the graph-structured data. Neo4j uses the ID of vertices or
edges as the graph indexing. Neo4j reads the graph-structured
data from disk through the graph indexing. JanusGraph uses
the Key-Value to read the graph-structured data from disk.
These existing graph databases can not compactly store the
graph-structured data according to the characteristics of graph.
The compact storage can help graph databases read the graph-
structured data from disk sequentially. T-GDB provides a
special design for compact storage. The final goal of T-GDB
is to meet both OLAP (On-Line Analytical Processing) and
OLTP (On-Line Transaction Processing) requirements.

1

2

43

5

6

7

1 43 5 72 6
Time

Figure 1. The logical relationship of provenance graphs.

Knowledge reasoning [18] is a key technology in knowl-
edge graphs. Knowledge graphs deduce new knowledge over a
given graph according to different rules. Knowledge reasoning
may need to access the provenance of the specified graph and
reason repeatedly. That (see Figure 1) is a good explanation for
provenance graphs. Pugliese et al. [18] proposed a temporal
RDF model. Lu et al. [19] proposed a temporal data storage
based on TDSQL. Time is a key metadata to query the changes
in data according to [18] and [19]. Leskovec et al. [20] describe
the changes in graph over time. Knowledge reasoning can
form the logical relationship of provenance graphs (shown in
Figure 1) according to the above studies. Each node of the
tree-structure represents an index file for the special graph.
Time properties are also important for the graph databases to
observe the subtle changes in a graph.

III. DATA MODEL

The storage engine uses property graphs as the data model
in this paper. Property graphs are directed graphs consisting
of vertices, edges, and properties (see Figure 2). Labels and
relationship types are particular properties of vertices and
edges, respectively. Graph queries can filter out a lot of useless
data according to labels and relationship types. The time is

also a unique property in our storage engine. Because these
particular properties always play an essential role in graph
query, our storage engine stores them in different formats. This
storage engine has mainly two parts: memory storage format
and disk storage format. This paper will describe them in detail
below.

Name:

School:

Company:

Name:

Producer:

Name:

Age:

Address:

movie

director,teacher

student

Date:

Location:

Date:

Date:

Figure 2. An example of property graphs.

A. Memory Storage Format
Many existing graph databases usually use adjacency lists

or cross lists to store the graph-structured data. However, we
use arrays to store the graph-structured data in this paper.
Every vertex and edge of property graphs has a fixed-length
byte in arrays. Each vertex accesses its neighbors through
the array address. The time complexity is O(1) when this
system traverses property graphs. The storage format is an
excellent benefit for graph queries. Because all delete, update,
and insert operations of our graph database are done in an
append manner, this system has no restrictions on storing
graph-structured data in arrays. The graph has three parts:
vertices, edges, and topologies. The graph-structured data will
be serialized from disk to memory when graph queries need to
access the specified graph. However, simple graph queries can
get data directly through graph indexing without rebuilding the
graph.

TABLE I. THE STRUCTURE OF THE VERTEX.

type: uint32 uint32 uint32 uint32
vertex array: Pid+VertexId TopoOffset Flag+OEOffset Time

The structure of the vertex is shown in Table I. All vertices
of a graph are stored in a vertex array. Each vertex has a fixed-
length byte in the vertex array. The Pid is short for partition id.
Because a big graph will be divided into many subgraphs, the
partition id is the id of one subgraph. The VertexId is a unique
vertex number in one subgraph. The TopoOffset (Topology
Offset) is the topology index of topology array. The Flag field
is reserved for particular purposes. The OEOffset (OutEdge
Offset) is an offset relative to TopoOffset. This system needs
to distinguish incoming edges and outcoming edges by the
OEOffset. The Time is a property of the vertex. This system
can observe the subtle changes in a graph through the Time.

2Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 10 / 51

Index tree

Memory

Block Block Block

Graph(version_time)

Incremental graph

logIndex files

Disk

Write op

Merge op

Read op

API

Figure 3. The framework of T-GDB.

TABLE II. THE STRUCTURE OF THE EDGE.

type: uint32 uint32 uint32 uint32 uint32
edge array: Pid+SrcId Flag+DistId EdgeId RelType Time

The structure of the edge is shown in Table II. All edges
of a graph are stored in an edge array. Each edge has a fixed-
length byte in the edge array. The SrcId and DistId are the id of
source and destination of the edge, respectively. They are the
vertex index of vertex array. This system will assign a unique
EdgeId number to each edge. The EdgeId is the edge index
of edge array. Relationship types and labels will be stored in
a dictionary mode. The RelType is the dictionary number in
edge array.

TABLE III. THE STRUCTURE OF THE TOPOLOGY.

type: uint32 uint32 uint32 uint32 uint32
topo array: VertexId Flag Label OutEdgeId InEdgeId

Vertex Struct Prop_key

Edge Struct Prop_key

Topology Struct

...

Graph Block HeadProptery Block Head

Prop_value

Prop_value

Prop_value

...

Figure 4. Left is the storage of the graph, and Right is the properties of the
graph.

The structure of the topology is shown in Table III. The
topo array is an array containing all topologies of a graph. The
Label is the dictionary number of labels. The OutEdgeId is the
id of outcoming edges. The InEdgeId is the id of incoming

edges. The topology is attached to the vertex. The state of
topologies will be changed depending on the state of vertices
and edges. Meanwhile, this system can finish graph queries
within a limited time through the topology structure.

B. Disk Storage Format
The graph-structured data is stored in 4G-sized file blocks

(see Figure 4). The size of file blocks is 4G because of the
uint32 type. Meanwhile, our system will merge data on disk
periodically to speed up graph queries. It is also beneficial
to implement multiple replicas with 4G-sized file blocks. The
latest file block holds the newest data because new data is
appended to the existing one. The period information of file

Index Head

VertexId+Time Block+offset

EdgeId+Time Block+offset

Topo_flag Block+offset

...

Figure 5. The index files.

blocks can help this system speed up searching provenance
graphs. This system can directly access the properties of
vertices and edges through the prop key.

C. Index File
In this system, there is a unique index for provenance

graphs. There are parallel meanings and chronological order
between provenance graphs, according to the Figure 1. Our
storage engine stores the relationship between provenance
graphs in a multi-fork tree. Each node of the multi-fork tree
is an index file. An index file may be full or incremental

3Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 11 / 51

index for a graph. The head of index file has some important
basic informations. This system can directly access the graph-
structured data through index files (see Figure 5). Index files
play a crucial role in building the graph or accessing partial
graph. Index files are compressed to reduce storage overhead
according to the contents of index files.

IV. IMPLEMENTATION

In this section, this paper details our storage engine im-
plementation written in C++ (see Figure 3). The core design
of our system reflects the features of provenance graphs. So
far, we have only implemented a stand-alone system. In future
work, we will implement a distributed graph database with
the ability to handle large-scale storage and graph computing.
The architecture of our storage engine is straightforward.
The architecture has three major parts: reading, writing and
merging the graph-structured data. The components of this
system are described in detail below.

1) Index Tree: The index tree is a critical component in
our storage engine. Each node of the index tree includes an
index file and the basic informations of provenance graphs.
The path from the root node to the leaf node in the index tree
represents the changes of provenance graphs. There are two
storage forms for index files. One is the incremental index
based on the parent index file. The other is the full index for
a graph. The form of index files depends on the changes of
provenance graphs. It takes a little time to read index files
because of the serialization of index files. The index tree is
beneficial for this system to observe the changes of provenance
graphs base on the timeline.

2) Updating and Building Graph: Although the graph-
structured data is updated by appending data, there is still
a memory buffer for a graph named Incremental graph. The
Incremental graph sorts the graph-structured data according to
the time in memory and puts the graph-structured data on disk.
The Incremental graph can store the same provenance graphs
together. It can reduce the reading time by reading data in
micro blocks. Meanwhile, the update operation must be logged
to ensure that the data can be recovered in the event of a system
crash.

Simple statement queries typically access a part of the
graph. This system can finish simple statement queries by the
index of vertices or edges. This system reads the particular
provenance graphs in micro blocks according to index files.
The size of micro blocks depends on the distribution informa-
tion of graph-structured data on disk. This system can batch
load the graph when it needs the whole graph. Our storage
engine is also very efficient for graph computing.

3) Merge Block: There will be hot and cold data because of
the graph changes based on the timeline. The fragmented data
of a graph is distributed across many file blocks. Therefore,
this system will regularly merge the data of a particular graph
on disk. The merge operation does not affect the previous
provenance graphs. At the same time, this system removes
the unused graph-structured data to increase disk utilization.
The merge operation is very effective for reading data.

V. PERFORMANCE EVALUATION

In the section, this paper presents experiments to demon-
strate the performance of the proposed system. These experi-
ments were based on a machine with Intel(R) Xeon(R) CPU

e5-2603@1.80GHz, ubuntu 16.04.10 server, 96GB RAM, and
300G SSD (DELL PERC H310 2.12). Because this system
is only a stand-alone version now in this paper, all of the
following experiments were tested on a single-core CPU to
achieve fairness.

The datasets having Graph500 [21] and com-Orkut [22]
for experiments are from the website of public datasets (see
Table IV). This paper performed the experiments according
to the benchmark of TigerGraph [23]. Neo4j, TigerGraph,
and JanusGraph were compared in the following experiments.
The version of Neo4j is community-3.4.17. The version of
TigerGraph is 2.5.0-developer. The version of JanusGraph is
0.2.1-hadoop2. This paper evaluates the performance of each
system according to three query types:

TABLE IV. THE INFORMATION OF DATASETS

data: vertices edges Description
Graph500 2396019 67108864 Synthetic Kronecker Graph
com-Orkut 3072441 117185083 Orkut online social network

A. The common query in graph database
The most common queries are the one-hop traversal of the

graph in graph databases. It means that the one-hop traversal
operation is executed from a source vertex to destination vertex
through the edge. Then queries can access the properties of
vertices or edges during one-hop traversal. The other common
query is the three-hop traversal of the graph. However, it puts
more pressure on the system.

This paper made ten thousand initial vertices to Graph500
and five hundred thousand initial vertices to com-Orkut in
one-hop traversal, respectively. Figure 6(a) and Figure 6(b)
are the result of a one-hop traversal query for Graph500 and
com-Orkut, respectively. Because the three-hop traversal can
almost traverse the whole graph, this experiment only made
ten initial vertices to Graph500 and com-Orkut in three-hop
traversal. Figure 7(a) and Figure 7(b) are the result of a three-
hop traversal query for Graph500 and com-Orkut, respectively.
It can seen that our system has an absolute advantage in the
one-hop query of Graph500 and com-Orkut from Figure 6.
Because our system does not have a cache yet, a vertex or edge
will be reread from disk each time. TigerGraph has a built-in
memory component that benefits from its data compression
technology to reduce the overhead of disk. Therefore, our
system is a little bit slower than TigerGraph in the three-hop
traversal query. However, our system still has more advantages
than the comparative databases.

B. The graph analysis
There are many complex queries, such as PageRank, SSSP

(Single Source Shortest Path), WCC (Weighted Community
Cluster). This experiment chose the classic PageRank [24]
algorithm. Figure 8 and Figure 9 are the results of the
PageRank query for Graph500 and com-Orkut, respectively.
It can see from Figure 8 and Figure 9 that our system still has
a great advantage in graph computing.

C. The query of provenance graphs
Our system has better performance in graph queries and

graph analysis from the above experimental results. Different
knowledge graphs can be deduced according to different rules

4Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 12 / 51

4.127

8.19

10.151

17.897

0

4

8

12

16

20

T-GDB TigerGraph Neo4j JanusGraph

a
v
e
ra

g
e
 r

e
sp

o
n
se

 t
im

e
 (

m
s)

One-hop(Graph500) testVertex:10000 avgNeighbor:1546

0.38

5.279

1.69

23.421

0

4

8

12

16

20

24

T-GDB TigerGraph Neo4j JanusGraph

a
v
e
ra

g
e
 r

e
sp

o
n
se

 t
im

e
 (

m
s)

One-hop(com-Orkut) testVertex:500000 avgNeighbor:82

(a) (b)

Figure 6. (a): The average response time of one-hop query for Graph500. (b): The average response time of one-hop query for com-Orkut.

17.21 8.07
95.56

1234.8

0

200

400

600

800

1000

1200

1400

T-GDB TigerGraph Neo4j JanusGraph

a
v
e
ra

g
e
 r

e
s
p

o
n
s
e
 t

im
e
 (

s
)

Three-hop(Graph500) testVertex:10 avgNeighbor of

three-hop: 672308

1.18 0.83

9.93

13.41

0

2

4

6

8

10

12

14

16

T-GDB TigerGraph Neo4j JanusGraph

a
v
e
ra

g
e
 r

e
s
p

o
n
s
e
 t

im
e
 (

s
)

Three-hop(com-Orkut) testVertex:10 avgNeighbor of

three-hop: 216375

(a) (b)

Figure 7. (a): The average response time of three-hop query for Graph500. (b): The average response time of three-hop query for com-Orkut.

220.4 215.6 205.5

830.6 814.6 795.8
375.3 376.3 367.1

8737.2 8564.2 8477.7

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3

F
in

is
h
 t

im
e
 (

s)

PageRank(Graph500, iterations:10, dampingFactor:0.85)

T-GDB TigerGraph Neo4j JanusGraph

Figure 8. The finish time of PageRank having 10 iterations in graph500, Test
three times.

in knowledge reasoning. The subtle changes of the graph
can be observed through time properties. Because other graph
databases do not support this kind of queries, the paper only
does this queries experiment on our system. The experiment

359.9 365.1 356.5

1459.5 1396.2 1400.9
620.5 610.7 621.5

15018.9 14898.4 14952.7

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3

F
in

is
h
 t

im
e
 (

s)

PageRank(com-Orkut, iterations:10, dampingFactor:0.85)

T-GDB TigerGraph Neo4j JanusGraph

Figure 9. The finish time of PageRank having 10 iterations in com-orkut,
Test three times.

reads different provenance graphs from massive provenance
graphs. For example, the Gaph500 produces many provenance
graphs over a period of time (see Figure 1). This system
randomly updates the time properties of vertices or edges

5Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 13 / 51

without changing the size of the Graph500.

0.8

0.9

1

1.1

1.2

1.3

1.4

base v1 v2 v3 v4 v5 v6 v7

q
u

e
ry

 t
im

e
,
n

o
rm

a
liz

e
d

Figure 10. The cost of getting the different provenance graph.

The result of the query is shown in Figure 10. The costs are
almost the same when this system reads different provenance
graphs. The performance of our system does not change with
the amount of data and the length of time, only with the size of
the graph. Meanwhile, this system can detect partial changes
of the graph through the time properties. This experiment
demonstrates that the storage engine is useful for storing
provenance graphs in this paper.

VI. CONCLUSION AND FUTURE WORK

In this work, this paper proposed T-GDB, a high-
performance graph database storage engine for provenance
graphs. This system has a unique design to store provenance
graphs efficiently without affecting the performance of graph
queries and graph computing. We presented the index tree to
apply the function of the provenance graphs. In this system,
both index and data are stored in an append mode. The append
mode is effective to observe the changes in a graph over time.
Meanwhile, time plays a critical role to observe subtle changes
in a graph. Although our system does not fully support the
applying function of the time-series databases, it is a key to
support the graph query that having time properties. Another
critical point is that our system can support writing effectively
because of updating the data in an appended mode.

In future work, we will focus on implementing a distributed
graph database. We will ensure the data fault tolerance and the
consistency of the distributed graph database. Meanwhile, we
will support the application needs of artificial intelligence as
much as possible.

ACKNOWLEDGMENT

Firstly, the authors would like to express their gratitude for
the support from colleagues. Finally, they would also like to
thank the benchmark of the TigerGraph.

REFERENCES
[1] T. Ayall, H. Duan, and C. Liu, “Edge property based stream order reduce

the performance of stream edge graph partition,” Journal of Physics:
Conference Series, vol. 1395, 2019, p. 012010.

[2] L. Ehrlinger and W. Wolfram, “Towards a definition of knowledge
graphs,” in Joint Proceedings of the Posters and Demos Track of 12th
International Conference on Semantic Systems, 2016.

[3] F. Manola, E. Miller, and B. McBride, “Rdf primer,” W3C recommen-
dation, vol. 10, no. 1-107, 2004, p. 6.

[4] C. C. Aggarwal, N. Ta, J. Wang, J. Feng, and M. Zaki, “Xproj: a
framework for projected structural clustering of xml documents,” in
Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2007, pp. 46–55.

[5] M. A. Rodriguez and P. Neubauer, “Constructions from dots and
lines,” Bulletin of the American Society for Information Science and
Technology, vol. 36, no. 6, 2010, pp. 35–41.

[6] “Redis Graph.” URL: https://github.com/tblobaum/redis-graph/ [ac-
cessed: 2020-02-08].

[7] J. Mondal and A. Deshpande, “Managing large dynamic graphs ef-
ficiently,” in Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. ACM, 2012, pp. 145–156.

[8] F. Chang et al., “Bigtable: A distributed storage system for structured
data,” Acm Transactions on Computer Systems, vol. 26, no. 2, pp. p.1–
26.

[9] I. Robinson, J. Webber, and E. Eifrem, Graph databases. ” O’Reilly
Media, Inc.”, 2013.

[10] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine
on a memory cloud,” in Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data. ACM, 2013, pp.
505–516.

[11] X. Yan, P. S. Yu, and J. Han, “Graph indexing: a frequent structure-
based approach,” in Proceedings of the 2004 ACM SIGMOD interna-
tional conference on Management of data. ACM, 2004, pp. 335–346.

[12] V. Papavasileiou, K. Yocum, and A. Deutsch, “Ariadne: Online prove-
nance for big graph analytics,” in Proceedings of the 2019 International
Conference on Management of Data, 2019, pp. 521–536.

[13] D. J. Cook and L. B. Holder, Mining graph data. John Wiley & Sons,
2006.

[14] S. Auer et al., “Dbpedia: A nucleus for a web of open data.” in Semantic
Web, International Semantic Web Conference, Asian Semantic Web
Conference, Iswc + Aswc, Busan, Korea, November, 2007.

[15] K. Bollacker, P. Tufts, T. Pierce, and R. Cook, “A platform for scalable,
collaborative, structured information integration,” in Intl. Workshop on
Information Integration on the Web (IIWeb07), 2007, pp. 22–27.

[16] A. Deutsch, Y. Xu, M. Wu, and V. Lee, “Tigergraph: A native mpp
graph database,” arXiv preprint arXiv:1901.08248, 2019.

[17] “Compose for JanusGraph,” URL: http-
s://www.ibm.com/cloud/compose/janusgraph/ [accessed: 2020-02-08].

[18] A. Pugliese, O. Udrea, and V. Subrahmanian, “Scaling rdf with time,” in
Proceedings of the 17th international conference on World Wide Web.
ACM, 2008, pp. 605–614.

[19] W. Lu et al., “A lightweight and efficient temporal database management
system in tdsql,” Proceedings of the VLDB Endowment, vol. 12, no. 12,
2019, pp. 2035–2046.

[20] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:
densification laws, shrinking diameters and possible explanations,” in
Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining. ACM, 2005, pp. 177–187.

[21] “Graph500 Large Network Dataset Collection.” URL:
https://graph500.org/ [accessed: 2020-02-08].

[22] “Stanford Large Network Dataset Collection.” URL:
http://snap.stanford.edu/data/ [accessed: 2020-02-08].

[23] “Benchmark for TigerGraph.” 2018, URL: http-
s://www.tigergraph.com/benchmark/ [accessed: 2020-02-08].

[24] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep.,
1999.

6Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 14 / 51

Solving a Combinatorics Challenge by Exploiting Computational Techniques
Available on Relational Databases

Wei Hu

Software Engineering, Fairfield University
Fairfield, Connecticut USA

e-mail: wei.hu@student.fairfield.edu

Mirco Speretta
Gateway Community College
New Haven, Connecticut USA

e-mail: msperetta@gwcc.commnet.edu

Abstract—Experimental studies are based on data that,
sometimes, needs to be manually created. Moreover, the data is
handled in relational databases to exploit their capabilities of
manipulating (i.e., sorting, combining, and inserting) data. In
this study, we show how this approach was successful in
solving a combinatorics challenge to create a data set used in a
separate research study that involves all the possible card
combinations of the SET game®. The data required for the
study was very extensive. The exact number was unknown, as
this is an open combinatorics question, but the estimate was in
the order of hundreds of millions. We solved this challenge by
using a relational database (i.e., MySQL) as a computational
tool to generate the data set. Advanced SQL scripts, based on
cross joins, were applied to generate all the data. Table
partitioning was also applied to improve the database
performance of tables whose number of records exceeded the
size capability of the database table. The data set created from
this project was then used to support a Web based user
interface that collects data to be used in a separate research
study based on the SET® game.

Keywords-MySQL; partitioning; computation; cross join.

I. INTRODUCTION

SET game® [1] is a popular card game created by
Marsha Jean Falco in 1974. She is also the founder of Set
Enterprises, Inc., the company that published the game in
1981. In this game, 12 cards (i.e., a hand), randomly selected
from a deck of 81 cards, are placed in front of the players.
The winner of a hand is the first player that identifies a group
of three cards that makes a SET. There are four types of SETs
that a player can identify.

Two professors from the department of mathematics, at
Fairfield University, were responsible for a Math club in a
middle school of the town. They incorporated the SET game
into the sessions with the students. Noticing the selection of
specific SETs by the students, the professors wanted to
investigate further this behavior with a research study whose
main goal was to explore whether the personal information
of the player, such as gender, age, or academic interests, can
influence the types of SET identified. The study is based on a
statistical analysis of data collected from anonymous users
that are playing the game using a Web based interface. To
avoid any statistical bias in the study, each hand must
include one (and only one) instance of each of the four types
of SET. To give a rough estimate of the amount of data to be
processed, first we needed to look at the total of possible
combinations: given 81 cards (i.e., the deck) there are 7.07

× 10�� possible ways to choose a hand (i.e., 12 cards). Out
of this number of combinations, we had to identify and
remove all the hands that did not satisfy the requirement of
the statistical design. This requirement presented the
following two main challenges. The first challenge is the
combinatorics challenge, which can be described as follows:
it is not known how to count the total number of
combinations of hands that comply with the requirements
mentioned above. This is still an open question in the
mathematical community. The second challenge is the
technical challenge to guarantee efficiency, which can be
described as follows: the number of combinations is too high
and it would take too much time to select the cards that form
a hand in real time; lots of time would be wasted generating
combinations that do not comply with the requirement.
Because of the two challenges explained above, the users of
the Web interface would not be able to play the game
properly.

The solution to both challenges was to pre-generate four
types of SET to compose all the possible hand combinations
and store them into a database table. This approach would
allow to show a randomly picked hand of cards in real time.

In this paper, we describe the process of generating and
storing the data set using the MySQL® [2] relational
database. More specifically, in Section II, we list the
software used in the study. In Section III, we provide the
context to this study by describing specific features of the
SET game. Section IV outlines the details of the
methodology, along with the information about the final data
generated. We conclude our work in Section V.

II. BACKGROUND

MySQL [2] is a popular database that supports SQL
along with transactions. The idea to use a relational database
to manipulate data in our study comes from various research
ideas, especially in the context of testing data [7].

We implemented our database on a MySQL 5.7.22
server, to store pre-generated hand data set. The server we
used was equipped with 16 CPU (2.4 GHz) and 64 GB of
RAM, running Linux Ubuntu (version 18.04.4 LTS). In our
study, the largest amount of computational effort is needed to
fulfill the following tasks: 1) joining tables to get the
maximum number of possible card combinations; 2)
validating that no more than one occurrence of a card
appears in one hand; 3) validating that each hand card
combination included only one instance of the four types of
SET. Cross joins, comparisons between data tuples and row

7Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 15 / 51

by row computations are all very time and resource
consuming due to the big size of data. In this study, we show
that all these tasks can be carried out using a relational
database in a simple and efficient way.

III. THE SET GAME

The SET game is a popular card game that has been
widely disseminated by online media such as the New York
Times. It has been used in mathematics learning by several
educational institutions at different school levels [3]-[6].

A. Cards of the SET game

The game SET has a rich mathematical structure based
on combinatorics principles. An example of cards is shown
in Figure 1.

Cards have four attributes: number, shading, color, and
shape. Each attribute has three features. The complete list is
given in Table I.

TABLE I. SET CARD ATTRIBUTES AND THEIR VARIATIONS.

Attribute Feature
Number {One, Two, Three}
Shading {Solid, Striped, Open}
Color {Red, Green, Purple}
Shape {Oval, Squiggle, Diamond}

The deck of the SET game has eighty-one cards, one for
each possible combination of attributes.

B. Rules of the SET game

Three cards are called a SET if, with respect to each of
the four attributes, the cards are either all the same or all
different. The goal of the game is to find collections of three
cards satisfying this rule. For example, the three cards in
Figure 2 compose a SET because all cards have different
shapes, different colors, and different shading, and each card
has the same number of shapes (three).

C. Four types of SETs

Case 1: One attribute has different features; three
attributes have the same features

a) different: shape; same: shade, color, number
b) different: shade; same: shape, color, number
c) different: color; same: shape, shade, number
d) different: number; same: shape, shade, color

Case 2: Two attributes have different features; two
attributes have the same features

a) different: shape, shade; same: color, number
b) different: shape, color; same: shade, number
c) different: shape, number; same: shade, color
d) different: shade, color; same: shape, number
e) different: shade, number; same: shape, color
f) different: color, number; same: shape, shade

Case 3: Three attributes have different features; one
attribute has the same feature

a) different: shape, shade, color; same: number
b) different: shape, shade, number; same: color
c) different: shape, color, number; same: shade
e) different: shade, color, number; same: shape

Case 4: All four attributes have different features

a) different: shape, shade, color, number

Figure 3. Typical hand of the SET game.

D. Hands of the SET game

To play the game, twelve cards, called a hand as shown
in Figure 3, are dealt face up in front of players. Players
search for SETs. After all SETs in the hand are found, the
hand is refreshed and another twelve random cards are dealt
out of the deck.

IV. METHODOLOGY

As the question on how to count the number of hand
combinations containing exactly four SETs, one for each
type, remains open, we could not know the exact number of
records we were supposed to generate. The only solution to
this problem was to work on an efficient algorithm to
generate all the possible combinations.

Our goal is to find all possible hand card combinations
that satisfy the requirements of the experimental study: every
hand includes exactly four SETs, one for each type. In a
typical play, 12 cards are dealt randomly out of the 81 cards
deck. The total number of hand combinations to consider is
about 7.07 × 10��. This number of combinations is too big
to be handled practically. For this reason, we had to apply
some heuristic to reduce it to a number that was
computationally feasible. If we start from the four types of
SETs and we consider them as the basic components that
form a hand, the biggest number of hand combinations to

Figure 1. Typical cards of the SET game.

Figure 2. Typical SET.

8Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 16 / 51

screen is no more than number of Type 1 SET × number of
Type 2 SET × number of Type 3 SET × number of Type 4
SET = 432 × 324 × 108 × 216 = 3,265,173,504 =
3.265×109. The number of each type of SET is shown in
Table III. All sets for each type can be stored in a table and
all four tables can be merged using cross joins. In this way,
the four types of SETs are automatically combined to form
all the possible hands. From this number, we need to remove
the combinations that do not satisfy the requirements:

1. each card occurrence is unique in one specific hand.
2. no extra new SETs are formed other than the four

built-in SETs.
We used the database server MySQL (version 5.7.22) to

store and manipulate all the card combinations. The data
flow from the generation of four types of SETs through the
generation of the final hand combinations is illustrated in the
following three steps.

Step 1: We implemented a Java program to generate the
four basic tables storing the four types of SET (Figure 4).

Figure 4. Java program generating the four basic tables.

Step 2: We implemented an SQL script to combine the

four attributes of each card into a 4-digit number. This step

also includes the generation of a new group of the four basic

tables storing all the 4-digit numbers (Figure 5).

Figure 5. SQL script combining basic tables.

Step 3: We implemented an SQL script to cross join the

four types of SETs. Then, we removed the records where any

card occurred more than once, along with the records where

the new SETs are formed (Figure 6).

Figure 6. SQL script generating more SET hands and removing
duplications.

In the remaining part of this section, we will provide more
details about the work involved in carrying out the above
steps.

A. Card Value Definition

We numbered all the cards using the following
representation. A four-digit number is assigned to each card
based on its specific attributes. From left to right, each digit
refers to one attribute. Each digit can be either 0, 1, or 2.
Each value represents one variable of an attribute (shown in
Table II.) Using this representation, each card can assume a
value in the range [0000] - [2222].

TABLE II. CARD DEFINITION.

Attribute
Variable

Number Shading Color Shape

Position (from left to right)

0 One Open Red Diamond

1 Two Striped Green Oval

2 Three Solid Purple Squiggle

One example is shown in Figure 7.

Figure 7. Visual representation of the card [2101].

This card value is [2101]: three, striped, red, and ovals.
Another example is shown in Figure 8.

Figure 8. Visual representation of the card [0010].

This card value is [0010]: one, open, green, and diamond.

B. SET Type Definition

We define four types of SET as Type 1, Type 2, Type 3
and Type 4. The details of the definition are described below.

9Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 17 / 51

1) Type 1 SET: Only one attribute is the same, the other
three attributes are different. The number of this type of SET
is 432.

2) Type 2 SET: Two attributes are the same and the
remaining two attributes are different. The number of this
type of SET is 324.

3) Type 3 SET: Three attributes are the same, only one
attribute is different. The number of this type of SET is 108.

4) Type 4 SET: All attributes are different. The number
of this type of SET is 216.

C. Four Basic Tables Creation

We created four basic tables, one table for each type of
SET. Potential card combinations of hands are created using
these four basic tables (Table III).

TABLE III. FOUR BASIC TABLES DEFINITION.

Every SET has three cards, namely Card1, Card2 and
Card3. Each card has four attributes namely A1, A2, A3 and
A4. We run a Java program to generate data for the four
basic tables type1, type2, type3 and type4. We create one
attribute of each card at one time. The structure of table is
shown in Figure 9 (cNaM – card N attribute M, N = 1, 2, 3
M = 1, 2, 3, 4).

Figure 9. Basic SET table (type1-type4).

We then create and run an SQL script to validate the
correctness of the data stored in these four tables.

In order to facilitate the calculation and improve the
efficiency of the database, we combined the four attributes of
each card into a one 4-digit number. The output of this
process was to create the four new tables type1_concat,
type2_concat, type3_concat, and tyep4_concat. They store
the four types of SETs represented by the four-digit attribute
value of cards. See a sample of these data in Figure 10.

Every SET is composed by three 4-digit numbers, each 4-
digit number representing one card. For example:
[0000,0111,0222] is a type 1 SET. The value of the first card
is [0000] and refers to “one open red diamond".

Eight tables were created after validating and
concatenating the data. For the remainder of the process,
only the four tables with concatenated attributes were used.

Figure 10. Basic SET table with concatenated attributes (type1_concat-
type4_concat).

D. Cross join of the Four basic Tables and Deduplication

In order to work with the smallest possible amount of
data, at any given time, we started the merging process using
the two tables with the fewest number of records. They are
represented by the tables type3_concat and type4_concat.
Their joined table was then cross joined with type2_concat.
As the last step, we cross joined this newly created table with
the biggest table, type1_concat.

Due to the exponential increase of data size, after each
cross join, we used SQL queries to validate records and filter
out those records where the same cards were used more than
once. In this study, this deduplicate validation is different
from the typical deduplicate operation, which is responsible
to remove redundant records from the table. We then
performed another cross-join, the goal of which was to
minimize the number of records of each cross join as much
as possible. Table IV describes the number of records, the
table size and the time spent to create each specific table.
The tables whose names end by ‘_unique’ refer to the tables
created after the deduplication operation. In table IV we can
notice the reduction in terms of both number of records and
table size. The last table, ‘crossjoin_1234_concat_valid’,
stored the valid hand combinations that were used in the
research study.

TABLE IV. CROSS JOIN TABLES.

E. Hand Combination Validation

Once the four tables type1_concat, type2_concat,
type3_concat, and type4_concat were cross joined into one
table, the number of records grew fast. Although, upon the
completion of each cross join, we removed the records where
the instance of specific cards appeared more than once, still,
a large amount of calculation had to be carried out to validate
the SETs that were added. This was necessary because each
group of three cards, one from each type of SET, could have
made up a new SET. We used SQL queries again to validate
which hand combinations contain exactly four SETs, one for

Table No. Table Name SET Type Number of SETs
1 type1 Type 1 432
2 type2 Type 2 324
3 type3 Type 3 108
4 type4 Type 4 216

Table name Number of
records

Table
size
(MB)

Time
elapsed

crossjoin_34_concat 23328 2 NS
crossjoin_34_concat_unique 20736 2 NS
crossjoin_234_concat 6718464 277 NS
crossjoin_234_concat_unique 5351040 216 NS
crossjoin_1234_concat 2311649280 118410 7h, 5m
crossjoin_1234_concat_valid 269635392 13121 27h,

40m

10Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 18 / 51

each type excluding the new SETs added after the cross join
operations. To improve the performance of the database and
accelerate the speed of the calculation, we used the
partitioning technique, built-in in MySQL, to organize each
cross joined table into (~20) partitions.

TABLE V. POTENTIAL NEWLY FORMED SET COMBINATIONS.

Group Potential SETs
Type 3

+
Type 4

+
Type 2

card1+card4+card7 card1+card4+card8 card1+card4+card9
card1+card5+card7 card1+card5+card8 card1+card5+card9
card1+card6+card7 card1+card6+card8 card1+card6+card9
card2+card4+card7 card2+card4+card8 card2+card4+card9
card2+card5+card7 card2+card5+card8 card2+card5+card9
card2+card6+card7 card2+card6+card8 card2+card6+card9
card3+card4+card7 card3+card4+card8 card3+card4+card9
card3+card5+card7 card3+card5+card8 card3+card5+card9
card3+card6+card7 card3+card6+card8 card3+card6+card9

Type 3
+

Type 4
+

Type 1

card1+card4+card10 card1+card4+card11 card1+card4+card12
card1+card5+card10 card1+card5+card11 card1+card5+card12
card1+card6+card10 card1+card6+card11 card1+card6+card12
card2+card4+card10 card2+card4+card11 card2+card4+card12
card2+card5+card10 card2+card5+card11 card2+card5+card12
card2+card6+card10 card2+card6+card11 card2+card6+card12
card3+card4+card10 card3+card4+card11 card3+card4+card12
card3+card5+card10 card3+card5+card11 card3+card5+card12
card3+card6+card10 card3+card6+card11 card3+card6+card12

Type 3
+

Type 2
+

Type 1

card1+card7+card10 card1+card7+card11 card1+card7+card12

card1+card8+card10 card1+card8+card11 card1+card8+card12

card1+card9+card10 card1+card9+card11 card1+card9+card12

card2+card7+card10 card2+card7+card11 card2+card7+card12

card2+card8+card10 card2+card8+card11 card2+card8+card12

card2+card9+card10 card2+card9+card11 card2+card9+card12

card3+card7+card10 card3+card7+card11 card3+card7+card12

card3+card8+card10 card3+card8+card11 card3+card8+card12

card3+card9+card10 card3+card9+card11 card3+card9+card12

Type 4
+

Type 2
+

Type 1

card4+card7+card10 card4+card7+card11 card4+card7+card12
card4+card8+card10 card4+card8+card11 card4+card8+card12

card4+card9+card10 card4+card9+card11 card4+card9+card12

card5+card7+card10 card5+card7+card11 card5+card7+card12

card5+card8+card10 card5+card8+card11 card5+card8+card12

card5+card9+card10 card5+card9+card11 card5+card9+card12

card6+card7+card10 card6+card7+card11 card6+card7+card12

card6+card8+card10 card6+card8+card11 card6+card8+card12

card6+card9+card10 card6+card9+card11 card6+card9+card12

We represented a hand, including the four types of SETs,
with the labels card1, card2, card3 through card12. In these
12 cards, there are 4 groups (i.e., 27 3-card combinations per
group) that could make up new SETs (Table V). We need to
check all the possible 3-card combinations (27 × 4 = 108) to
filter out those hands that include extra SETs (i.e., more
combinations than the four built-in SETs that are required.)

TABLE VI. ATTRIBUTE CHECK OF 3-CARD COMBINATION.

Each card has four attributes, for example [0000]. To
validate a 3-card combination, we need to check each of their
attributes. Only when three cards are either all-the-same or
all-different with respect to their four attributes, they form a
SET. If any attribute of 3 cards is neither all-the-same nor all-
different, the 3-card combination is not a SET. Let us
consider the color attribute of three cards to explain how to
check each attribute. TABLE VI illustrates this process.

We summed up the value of the color attributes of three
cards, then we divided the sum by three and we looked at the
remainders. When the attributes are either all different or all
the same, then the remainders are zero. Otherwise, the
remainder is either one or two.

Figure 11. Typical hand records before validation

Let us consider two hand records, shown in Figure 11 as
an example to illustrate how to check four attributes of 3-
card combinations. From the two hand records shown in
Figure 11, we took a 3-card combination namely card1,
card4 and card7 of each hand (shown in Table VII.). For
each hand, we summed up the corresponding four attributes
of three cards to get four sums, then divided the four sums by
three. Only when the four remainders are all zeros, the 3-card
combination forms a SET. Otherwise, they are not a SET.
Table VII shows the details of the validation, where A1
refers to attribute 1 of the card, and so on.

TABLE VII. 3-CARD COMBINATION VALIDATION

Next, we converted this algorithm into an SQL script that
can be run on the database to validate every hand by
checking each 3-card combination that could form a SET. As
an example, let us consider the validation of the 3-card
combination of card 1, card4 and card7. We used the
condition sentence of Not (((card1+card4+card7) div 1000)
mod 3) + (((card1+card4+card7) div 100) mod 10 mod 3)
+(((card1+card4+card7) div 10) mod 10 mod 3) +
((card1+card4+card7) mod 10 mod 3) = 0 to validate that
the 3-card combination is not a SET; and added the condition
in a WHERE clause of a SELECT statement to retrieve the
records that do not include new SETs.

After validation, those hand combinations having extra
SETs other than the four built-in ones were all filtered out.
Finally, we achieved 269,635,392 hand combinations that
were meeting our requirements and stored them into a table.

Color
attribute of 3
cards

All different All the
same

Neither
(Non-SET)

Attribute
value of 3
cards

0+1+2 All 0, 1 or 2 0+0+1,
0+0+2,
1+1+2,
1+1+0,
2+2+0,
2+2+1

Sum of
attribute value

3 0, 3 or 6 1, 2, 4 or 5

Remainder
(Sum%3)

0 0 1 or 2

Hand
(id=1)

A
1

A
2

A
3

A
4

Hand
(id=2)

A
1

A
2

A
3

A
4

Card 1 0 0 0 1 Card 1 0 0 0 1
Card 4 0 2 2 2 Card 4 0 0 0 0
Card 7 0 1 1 0 Card 7 0 1 0 0
Sum 0 3 3 3 Sum 0 1 0 1
Remainder
(Sum%3)

0 0 0 0
Remainder
(Sum%3)

0 1 0 1

SET Non-SET

11Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 19 / 51

V. CONCLUSIONS

Experimental studies, which are based on the users’
feedback, face various challenges. The main goal of this
study was about answering the question whether the
identification of SETs in the card game SET is to be linked to
personal traits. In this paper, we tackled the specific problem
of generating the data used to support a user facing Web
application that was required in the process of collecting the
experimental data.

The amount of data to be generated was very
considerable and presented a challenge since it was not
possible to count mathematically the number of card
combinations (i.e., hands) to consider. By implementing our
computational design into a relational database server, we
were able to generate all the card combinations required in
the Web based user interface.

Our process solved the following two main problems.
The first one was about defining the appropriate
representation of the cards in the SET game. This task
required to consider minimal memory usage and quick
validation of SET card combinations. The second challenge
was about using a database server that could handle the
required amount of data and could easily generate SET cards
combinations by applying advanced SQL scripts.

Not only our methodology was successful in generating
the required data, but also provided a computational answer
to the mathematical challenge of providing the counts of
hands combinations. We believe that this approach can be
used in many other scenarios in which the creation of data
generation is required. Experimental studies based on users’
feedback should particularly benefit from this approach.

ACKNOWLEDGMENT

We would like to thank Dr. Janet Striuli and Dr. Laura
McSweeney for sharing their research idea and providing
support throughout the project. We would also like to
express our gratitude to the faculty and students of Fairfield

University and Gateway Community College for their
commitment to our data collection. A special mention to the
Physics department of Fairfield University to let us use their
server where we were able to run our code. Thanks also to
Set Enterprises, Inc. for allowing us to implement our study
based on their SET game. Finally, we would like to thank
Dr. Rankin and the Graduate Student Research Committee
for providing financial support to our study.

REFERENCES

[1] PlayMonster. LLC, "SET - PlayMonster," [Online].
Available: https://www.playmonster.com/product/set/.
[Accessed 07 2020].

[2] Oracle Corporation, "MySQL," [Online]. Available:
https://www.mysql.com/. [Accessed 07 2020].

[3] B. L. Davis and D Maclagan, "The Card SET game," The
Mathematical Intelligencer, vol. 25, no. 3, pp. 33-40, 2003.

[4] J. Vinci, "The maximun number of SETs for N cards and the
total number of interal SETs for all partitions of the deck,"
June 2009. [Online]. Available:
https://www.setgame.com/sites/default/files/teacherscorner/S
ETPROOF.pdf. [Accessed 07 2020].

[5] P. J. Fogle, "SET® AND MATRIX ALGEBRA," 15 03 2019.
[Online]. Available: https://www.setgame.com/set-and-
matrix-algebra. [Accessed 07 2020].

[6] N. Taatgen, M. van Oploo, J. Braaksma, and J.
Niemantsverdriet, "How to construct a believable opponent
using cognitive modeling in the game of Set," in The fifth
international conference on cognitive modeling, pp. 201-206,
Bamberg, 2003.

[7] C. De La Riva, M. J. Suárez-Cabal, J. Tuya, "Constraint-
based test database generation for SQL queries," in
Proceedings of the 5th Workshop on Automation of Software
Test (i.e., AST) pp. 67–74, 2010.

12Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 20 / 51

The Typed Graph Model

Fritz Laux
Fakultät Informatik

Reutlingen University
D-72762 Reutlingen, Germany

email: fritz.laux@fh-reutlingen.de

Abstract—In recent years, the Graph Model has become in-
creasingly popular, especially in the application domain of social
networks. The model has been semantically augmented with
properties and labels attached to the graph elements. It is difficult
to ensure data quality for the properties and the data structure
because the model does not need a schema. In this paper, we
propose a schema bound Typed Graph Model with properties
and labels. These enhancements improve not only data quality
but also the quality of graph analysis. The power of this model
is provided by using hyper-nodes and hyper-edges, which allows
to present a data structure on different abstraction levels. We
demonstrate by example the superiority of this model over the
property graph data model of Hidders and other prevalent data
models, namely the relational, object-oriented, and XML model.

Keywords–typed hyper-graph model; semantic enhancement;
data quality.

I. INTRODUCTION

The popularity of the Graph Model (GM) stems primarily
from its application to social networks. Commercial graph
database products like Neo4J [1], ArangoDB [2], JanusGraph
[3], Amazon Neptune [4], and others have been successfully
applied to many domains. There are applications to medicine,
drug analysis, scientific literature analysis, power and tele-
phone networks.

The flexibility of the GM and its schema-less implementa-
tions are prone to data quality problems. Advocates of the GM
like Robinson et al. of Neo4J recommend in their book [5] to
use specification by example, which builds on example objects.
But this reaches not far enough as the following example
taken from Robinson’s book shows. It is depicted in Figure
1 and shows a User named Billy with its 5-star Review on a
Performance dated 2012/7/29. From this example we cannot
know if Billy is allowed to have multiple reviews (on the same
performance). For good data quality, a review should depend
on the existence of a user and a performance. But this cannot
be derived from one example. This means that we have to deal
with class things (like a generic Person) and not only with real
objects (like Billy) and specify if a relationship is mandatory
or optional.

In order to express this information, it is necessary to
abstract from a particular situation and specify integrity con-
straints. The use of a schema would help to ensure data in-
tegrity and would clarify the intended situation of the example.
Daniel et al. [6] also point out the importance of a schema
for data consistency and efficient implementation of a graph
database.

Figure 1. Example graph taken partially from [5], p. 42

Another weakness of the GM is that it has no notation
to support different levels of detail and abstraction, which
is apparently important for modeling large and complex data
structures.

A. Contribution

To overcome these limitations we introduce in this paper
a new typed graph model allowing hyper-nodes with com-
plex structured properties (even sub-graphs) and hyper-edges
connecting (recursively) one, two or more hyper-nodes. The
graph schema provides data types, which allow type checking
for instance elements. This ensures a formal data quality. Our
model has a higher semantic expressiveness and precision
than the prevalent data models, namely the relational, object
oriented, and XML data model. This will be demonstrated with
typical modeling patterns.

B. Structure of the Paper

With the following overview of Related Work the context
for our new typed graph model will be settled. Section III in-
troduces and defines formally the Typed Graph Model (TGM)
consisting of a typed schema and a hyper-graph instance
connected to the schema. We present a compact and easy to
read visualization of the model. The definitions are illustrated
by some examples. In the next Section IV our TGM is
compared to the Graph Data Model (GDM) of J. Hidders [7].
Then, the semantic expressiveness of the TGM is demonstrated
with typical data structures and compared with the prevalent
data models, namely the relational, object oriented, and XML

13Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 21 / 51

data model. The paper ends with a summary of our findings
and gives an outlook on ideas for future work.

II. RELATED WORK

Since the beginning of 1980 many papers on the GM have
been published. DBLP [8] alone retrieves 757 matches for
the key words ”graph data model”. If we ignore the papers
that present specific applications for the GM incl. XML or
Hypertext applications a few dozen of relevant papers remain.
In the following, we discuss only papers that present the GM
and its extensions (e. g., the Property Graph Model (PGM))
with a formal foundation or papers that use a graph schema:

The notion of PGM was informally introduced by Ro-
driguez and Neubauer [9]. Spyratos and Sugibuchi [10] use
property graphs with hyper-nodes and hyper-edges for their
graph data model. The main difference to our approach is
that no schema is used and properties have no predefined data
type. Another approach with hyper-edges is presented by Bu
et al. [11] who treats a label like a node connecting a set
of nodes, which he calls hyper-edge. The nodes itself can be
of different types. In this case Bu calls the graph a unified
hyper-graph. The unified hyper-graph model is then applied
to problem of ranking music content and combining it with
social media information. Compared to our TGM the unified
hyper-graph of Bu is only defined for graph instances. It is not
not clear if the nodes have any type checking and if the whole
graph is ruled by a schema.

Ghrab et al. [12] present GRAB, a schemaless graph
database based on the PGM. It supports integrity constraints
but cannot ensure data quality because of missing data types
for properties and labels. Neo4J [5] has similar foundations and
features. It has optional support for integrity constraints and
comes with a powerful and easy to use graph query language,
called Cypher.

All these PGM originate as instance graphs and no special
attention is given to the graph schema. No attempt is made
to specify the different types of edges and the multiplicity of
connections (edges) between different node types. Nodes are
not typed and labels are not a proper substitute.

Amann and Scholl [13] seem to be the first authors who
connect a graph schema with its graph database instance.
Nodes and edges do not have properties but both must conform
to the schema. Their model is used for an algebra (hyperwalk
algebra) for traversing the graph.

Marc Gyssens et al. [14] and Jan Hidders [7] use a labeled
GM to represent a database schema where each property of an
object is modeled as a node in the graph. Labels are used to
name node classes and edges. The models become confusing
because a node represents either an object, a property or a
data type. Still, it is not possible to restrict the cardinality of
schema edges (relationships). Hidders’ model is explained in
more detail and compared to our TGM in Section IV.

Similar to Amann and Scholl the paper of Pabón et al.
[15] uses a graph schema to query the graph database. They
distinguish different node types, which they call ”sort”. The
supported types are: object class nodes (complex objects),
composite-value class nodes (for aggregate values), and basic-
value class nodes (primitive data types). This model seems

to be equivalent to (complex) nodes with properties governed
by a schema. A mechanism to abstract and group sub-graphs
would help to make the model easier to communicate.

Pokorný [16] uses a binary ER-Model as graph conceptual
schema. For the graphical rendering he uses a compact entity
representation for the nodes with attribute names inside the
entity box. This solves the problem using the same node
symbol for entities and attributes (properties) as it is the
case with Gyssens [14] and Hidders [7] models. The edge
cardinality is represented in a form of crow-foot notation.

In order to make the GM usable for real life scenarios
with hundreds of schema elements, it is necessary to group
or combine graph elements to higher abstracted objects. This
would make the model easier to handle.

The need for grouping graph elements is addressed by
Junghanns et al. [17]. Their model allows to form logical
sub-graphs (graph collections) with heterogeneous nodes and
edges. With this it is possible to aggregate sub-graphs, e.
g., user communities. The authors use UML-like graphical
rendering of nodes to make the model better readable but their
model fails to specify the cardinality of schema edges.

A step toward to complex composite nodes as an alternative
approach to aggregation presents Levene [18] by allowing the
graph vertices to be recursively defined as a finite set of graphs.
These hyper-nodes do not form a well-founded set as a node
may contain itself, which violates the foundation axiom for
the Zermelo-Fraenkel set theory.

A relatively new formal definition including integrity con-
straints was given by Angles [19]. However, his model does
not allow structured objects and grouping or aggregation. In
the following section, we simplify his definitions and use it as
basis for our TGM.

A. Comparison with Ontology Languages

Ontology languages like RDFS [20] and OWL [21] are
designed to specify ontologies and have their strength in
allowing reasoning over instances of it. They are often used
to semantically describe Linked Open Data (LOD) and the
statement triples are usually visualized as graph structures.
RDFS and OWL provide a general type system that could be
used to form user defined types. This would allow to use it
as basis for a graph schema language. But if we look at the
W3C OWL 2 Structural Specification [22] it seems difficult
to define user specific classes and W3C itself uses UML class
diagrams to illustrate OWL structures.

The specification of data structures is not their core in-
tention. In RDFS for instance it is not possible to define the
cardinality of relationships. Likewise, OWL Lite has strong
limitations on allowing only 0 or 1 as multiplicity of properties.
Simple unique requirements and relations like one-to-one, one-
to-many and many-to-one are cumbersome to define even in
OWL Full. Complex data structures need a modeling language
that allows to define different levels of abstraction, which is
not the strength of these ontology languages. Most examples
of RDFS or OWL do not care about the multiplicity of
relationships (cardinalities may be guessed via property names)
and grouping of attributes seems to be on the same level as
objects or subjects.

14Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 22 / 51

III. THE TYPED GRAPH MODEL

Our TGM informally constitutes a directed property hyper-
graph that conforms to a schema. In the following definitions
our notation uses small letters for elements (nodes, edges, data
types, etc.) and capital letters for sets of elements. Sets of sets
are printed as bold capital letters. A typical example would be
n ∈ N ∈ N ⊆ ℘(N), where ℘(N) is the power-set of N .

A. Graph Schema

Let T denote a set of simple or structured (complex)
data types. A data type t := (l, d) ∈ T has a name
l and a definition d. Examples of simple (predefined)
types are (int,Z), (char,ASCII), etc. It is also
possible to define complex data types like an order line
(OrderLine, (posNo, partNo, partDescription, quantity)).
The components need to be defined in T as well, e. g.,
(posNo, int > 0). Recursion is allowed as long as the defined
structure has a finite number of components.

Definition 1 (Typed Graph Schema). A typed graph schema
is a tuple TGS = (NS , ES , ρ, T, τ, C) where:

• NS is the set of named (labeled) objects (nodes) n with
data type t := (l, d) ∈ T , where l is the label and d the
data type definition.

• ES is the set of named (labeled) edges e with a structured
property p := (l, d) ∈ T , where l is the label and d the
data type definition.

• ρ is a function that associates each edge e to a pair of
object sets (O,A), i. e., ρ(e) := (Oe, Ae) with Oe, Ae ∈
℘(NS). Oe is called the tail and Ae is called the head of
an edge e.

• τ is a function that assigns for each node n of an edge e
a pair of positive integers (in, kn), i. e., τe(n) := (in, kn)
with in ∈ N0 and kn ∈ N. The function τ defines the min-
max multiplicity of an edge connection. If the min-value
in is 0 then the connection is optional.

• C is a set of integrity constraints, which the graph
database must obey.

The notation for defining data types T, which are used for
node types NS and edge types ES , can be freely chosen. This
makes the expressiveness of the TGS at least as strong as the
models to which it is compared in Section IV.

B. Typed Graph Model

Definition 2 (Typed Graph Model). A typed graph Model is
a tuple TGM = (N,E, TGS, φ) where:

• N is the set of named (labeled) nodes n with data types
from NS of schema TGS.

• E is the set of named (labeled) edges e with properties
of types from ES of schema TGS.

• TGS is a typed graph schema as defined in Subsection
III-A.

• φ is a homomorphism that maps each node n and edge
e of TGM to the corresponding type element of TGS,
formally:

φ : TGM → TGS

n 7→ φ(n) := nS(∈ NS)
e 7→ φ(e) := eS(∈ ES)

The fact that φ maps each element (node or edge) to exactly
one data type implies that each element of the graph model
has a well defined data type. The homomorphism is structure
preserving. This means that the cardinality of the edge types
are enforced, too. Data type and constraint checking is applied
for all nodes and edges before any insert, update, or delete
action can be committed. If no single type can be defined,
union type or anyType (sometimes called variant) may be
applied. Usually this is an indication for a weak data model
and it should be clear that this could affect data quality and
processing.

As graphical representation for the TGS we adopt the
UML-notation for nodes and include the properties as
attributes including their data type. Labels are written in the
top compartment of the UML-class. Edges of the TGS are
represented by UML associations. For the label and properties
of an edge we use the UML-association class, which has the
same rendering as an ordinary class but its existence depends
on an association (edge), which is indicated by a dotted line
from the association class to the edge. This not only allows
to label an edge but to define user defined edge types. The
correspondence between the UML notation and the TGS
definition is the following:

TABLE I. TGS correspondence with UML notation

TGS UML
n ∈ NS class
e ∈ ES association
t = (l, d) ∈ T l = name of n resp. e; d = type of n resp. e
ρ(e) all ends of e
τe(n) (min,max)-cardinality of e at n
C constraints in [] or { }

The use of hyper-nodes n ∈ NS and hyper-edges e ∈ ES
instead of simple nodes resp. edges allow to group nodes and
edges to higher abstracted complex model aggregates. This is
particularly useful to keep large models clearly represented
and manageable. Large graph models may then be grouped
into sub-graphs like in Junghanns et al.[17]. Each sub-graph
can be rendered as a hyper-node. If the division is disjoint
these hyper-nodes are connected via hyper-edges forming a
higher abstraction level schema (see Figure 3 (b)).

C. Examples

Lets recall the example graph from Figure 1 and model
its corresponding schema. We want to make clear that a user
may write as many reviews as he likes, but only one for a
particular performance. A rating needs to refer exactly to one
performance and one user. This is reflected in Figure 2 by the
”1:many” and ”0 or many:1” relationships. We use the UML-
notation for the schema and keep the notation from Figure 1
for the instance graph for clarity.

15Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 23 / 51

Figure 2. Example graph with schema in UML notation

The homomorphic mapping φ guaranties that the instance
graph obeys the schema, i. e. type, cardinality, and constraint
checking. Now, it is clear from the schema that a user must
have at least one review. The review is existence dependent
on the user and a performance. The ”wrote review” edge is a
1:many relation and ”review of” is an optional many:1 relation.
This has the consequence that a review needs a person and a
performance. But, a performance may exist without any review.

In the next example we present a commercial enterprise
that sells products and parts to customers. The enterprise
assembles products from parts and if the stock level is not
sufficient it purchases parts from different suppliers. Figure 3
models this situation using UML rendering. It demonstrates the
abstraction power of the TGM showing two schema abstraction
levels. The upper part (a) shows the TGM on a detailed level.
The properties are suppressed in the diagram for simplicity
except for Customer and CustOrder. The schema is grouped
into 3 disjoint sub-graphs depicted with dashed shapes.

In the lower part (b) these sub-graphs are shown as hyper-
nodes of the graph schema. This allows a simplified and more
abstracted view of the model. Also, some aggregate properties
(e. g. #orders) are shown to illustrate the modeling capabilities.
The hyper-edges connecting these abstracted nodes must use
the most general multiplicity of the multiple edges it combines.
In the example the edge orders/from combines two edges, i.
e., orders with 0..1 - 1 multiplicity and from with 0..* - 0..*
multiplicity, which leads to the most general multiplicity.

IV. COMPARISON WITH OTHER DATA MODELS

In the following, we compare our TGM to other models
with respect to structural differences and schema support. We
point out modeling restrictions of these models and show how
such situations are modeled with TGM. Query and manipula-
tion languages are beyond the scope of this paper.

A. Comparison with GDM of Jan Hidders

Jan Hidders’ [7] model added labels and properties together
with their data types to nodes and edges (relationships).
Property names are modeled as edges in the schema. This

allows to model labeled relationships with complex properties.
Structured and base data types share the same graphical
representation, which makes it difficult to distinguish both. The
ISA-relationship is rendered as a double line arrow. Hidders’
model does not allow to restrict the cardinality of relationships.
This restriction limits its modeling power compared to the
TGM, which provides a min-max notation for the cardinality.

The example in Figure 4 is from the publication of Hidders
[7]. The schema shows Employee and Department classes
linked by a Contract. The relationship Contract is existence
dependent on the connected nodes. The properties of Contract
are salary of type int, begin-date and end-date of structure-type
date = (day,month, year). In Hidders’ model these dates
are modeled on the element level using data type int. Hidders’
schema elements, i. e., nodes (objects), edges (properties) and
data types appear on the same visual level, which makes it
difficult to read and obscures semantics. The modeling power
of complex data types provide a clear advantage for the TGM.

B. Comparison with the Relational Model (RM)

There is a 1:1 correspondence between attributes and
properties and any relation can be modeled as a node with
properties. The min-max notation for relationship multiplicity
can model any link cardinality. The TGM can therefore easily
represent tabular structures, foreign key constraints (many-to-
one relationships), and join-tables as the building blocks of
the RM. Beyond this, the TGM is able to directly model
many-to-many relationships of any min-max multiplicity. This
makes the TGM strictly stronger than the relational model.
Another difference to the RM is that foreign keys (FK) are
not necessary because their function is taken over by an edge
linking the FK-node (Table 1 without FK) with the referenced
node (Table 2). This can be seen in Figure 5 (a).

A join-table in the RM is existence dependent on the tables
it refers to by FKs. The FKs forming the primary key (PK)
of the join table are not necessary in the TGM because of the
same reason as mentioned above.

In Figure 5 (b) the join-table RST maps directly to an
hyper-edge labeled RST with property col3 and without FKs.
To make the ternary relationship example less abstract the RST
could be an offer of products from Table 1 from a supplier of
Table 3 to the client of Table 2. With this in mind it is clear that
an offer depends on the product, the supplier, and the client.

The TGM can also represent non-normalized tables be-
cause the model supports complex structured data types having
multivalued or array data. It is only necessary to define the
necessary data types in the set of available data types T .

C. Comparison with XML Schema

XML documents represent hierarchical hypertext docu-
ments. The document structure is defined by an XML schema.
The hierarchy of XML-documents is directly supported by the
TGM using directed edges. XLink provides references (arcs)
between elements of internal or external XML-documents.
Extended XLinks can connect to more than one element,
but the references are always instance based, i. e. the target
elements must be listed by URI. The TGM is more abstract
and expressive allowing the definition of non-hierarchical
references on the schema level.

16Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 24 / 51

Figure 3. Example TGM of a commercial enterprise showing two levels of detail

Figure 4. Comparison by example with Hidders’ GDM

Figure 5. Modeling a many-to-one relationship (FK) and a ternary join-table
with TGM

As example serves a bookstore offering an unlimited num-
ber of books. A simple XML-schema for the bookstore is given
by w3schools.com. The schema defines books with elements
like ”title”, ”author”, etc. and its corresponding data types.
Some data types are not as precise as they could, e. g. the data
type xs:double for the price element. We will replace cs:double
in our TGM by the money-type euro to be more precise. Some
elements have attributes attached like the language (”lang”)
of a book title. The attribute minOccurs=”1” of xs:sequence
requires the bookstore to have a least one book.

17Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 25 / 51

Figure 6. Comparison by example with the XML Schema

<?xml version="1.0" encoding="utf-8"?>
<xs:schema ... >

<xs:element name="bookstore" >
<xs:complexType >

<xs:sequence minOccurs="1"
maxOccurs ="unbounded" >

<xs:element name="book" >
<xs:complexType>

<xs:sequence>
<xs:element name="title" >
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="lang"

type="xs:string" />
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>
<xs:element name="author"

type ="xs:string"/>
<xs:element name="year"

type ="xs:integer"/>
<xs:element name="price"

type ="xs:double"/>
</xs:sequence>
<xs:attribute name="category"

type="xs:string"/>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

If we model the XML-elements as nodes in TGM then
XML-attributes and the element values should be represented
as properties. The name of an XML-element is mapped to
a node label. The order of the XML-elements cannot be
represented with this approach and XML-element values can
be distinguished from XML-attributes by convention only.

An alternative TGM model represents the complete book
structure as one node. In this case the XML-elements and their
attributes are modeled as structured properties of the book. The
order of the elements and their associated attributes can be
preserved. In fact, if XML Schema is used for specifying the
data types NS and ES (see Subsection III-A) all the flexibility
and semantics provided be XML Schema can be represented
with the TGS. This argument shows that the TGM is at least
as powerful as the XML model.

The example bookstore is depicted in Figure 6 where the
left part (a) shows the compact version with the whole book

Figure 7. Comparison by example with the OOM

modeled as one node and the right part (b) shows the version
where each XML-element is modeled as node. We see from
this example another possibility to use sub-graphs for higher
abstracted models.

D. Comparison with the Object-Oriented Model

Because we already use the UML for rendering the TGM,
it is easy to see that classes correspond one-to-one with typed
hyper-nodes. Any methods are simply ignored as we only deal
with the network structure of OOM. Any complex internal
class structure can be directly modeled by appropriate data
types t ∈ T . The type set T is defined beforehand but can
contain any user defined structures. In contrast to the OOM
the TGM allows different levels of abstraction in the modeling
depending whether a structure is modeled by a detailed graph
with simple types or a more compact graph using complex
data types. This shows the same semantic expressiveness for
structures, but a higher flexibility of the TGM. Considering
the operations on data the OOM has the advantage to specify
the allowed operations by methods.

The UML provides a rich set of association types, which
need to be mapped to the label of the edges. Our TGM provides
types not only for nodes but also for edges (called associations
in UML). With this information it is possible to model different
association types like aggregation, generalization, etc. Even
user defined associations are possible, e. g., an aggregate could
be further qualified as un-detachable or detachable composition
or a loose containment. The arrow of the edge only indicates
the reading direction of the association but does not limit the
navigation of the TGM.

It is also possible to model recursive structures as the exam-
ples from Figure 7 illustrates. The bill of material (BOM) is an
important example for a recursive structure used in production
planning and control. It defines recursively a (compound) part
with its components until a single part is reached. As example
a table is given in Figure 7 (b) consisting of 4 table legs and
a tabletop consisting of a drawer and a mounting.

If the edge of contains in Figure 7 (a) is followed against
the arrow direction it is possible to find the component where

18Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 26 / 51

an individual part is built-in. A complete where-used list for
a generic (not an individual) part may be obtained with a
small schema modification. The from-end of the contains-edge
needs to change its multiplicity from 0..1 to 0..*. With this
modification all components can be identified where a generic
part is used.

V. CONCLUSION AND FUTURE WORK

This paper presents a structure definition of the TGM and
an UML-like notation to visualize a graph database and its
graph schema. Due to the TGS with predefined and user-
defined data types the TGM improves the formal data quality
compared to other graph models. We have demonstrated the
superior modeling power in comparison to other graph data
models and prevalent data models, namely relational, object
oriented and XML model. The model supports built in and user
defined complex data types, which allow different abstraction
levels. Another possibility for abstraction is to compress a sub-
graph into a hyper-node reducing the visible complexity.

Because of its semantic modeling power the TGM could
serve as a model that supports data integration from various
data sources with different data models. The main challenge
for an automated data integration are incompatible data sources
where the TGM could help to solve quality issues and resolve
inconsistent data. Details still need to be investigated. The
development of a manipulation and query language for the
TGM is future work. The idea is to combine elements of other
graph languages with the dot-notation known from object-
oriented languages.

REFERENCES

[1] Neo4J - Homepage, [Online] URL: https://neo4j.com [retrieved: 2020-
04-14]

[2] ArangoDB - Graph and Beyond, [Online] URL:
https://www.arangodb.com [retrieved: 2020-04-14]

[3] JanusGraph - Homepage, [Online] URL: https://janusgraph.org [re-
trieved: 2020-04-14]

[4] Amazon Neptune, [Online] URL: https://aws.amazon.com/de/neptune
[retrieved: 2020-04-14]

[5] I. Robinson, J. Webber, and E. Eifrem, Graph Databases, 2nd

ed.,O’Reilly Media, 2015.
[6] G. Daniel, G. Sunyé, and J. Cabot, ”UMLtoGraphDB: Mapping Con-

ceptual Schemas to Graph Databases”, in Proceedings of Concep-
tual Modeling - 35th International Conference ER, Gifu, Japan, pp.
430 - 444, 2016. [Online] URL: https://hal.archives-ouvertes.fr/hal-
01344015/document [retrieved: 2020-02-04]

[7] J. Hidders, ”Typing Graph-Manipulation Operations”, In Proceedings of
the 9th International Conference on Database Theory” (ICDT), Siena,
Italy, pp. 391 - 406, 2003.

[8] DBLP computer science bibliography, [Online] URL: https://dblp.uni-
trier.de [retrieved: 2020-04-14]

[9] M. A. Rodriguez and P. Neubauer, ”Construction from dots and lines”,
Bulletin of the American Society for Information Science and Technol-
ogy, Vol. 36(No 6), pp. 35-41, ISSN:1550-8366, 2010. [Online] URL:
https://arxiv.org/pdf/1006.2361.pdf [retrieved: 2020-04-14]

[10] N. Spyratos and T. Sugibuchi, ”PROPER - A Graph Data Model Based
on Property Graphs”, ISIP 10th International Workshop, Communi-
cations in Computer and Information Science, vol.622,pp. 23 - 35,
Springer, 2015.

[11] J. Bu, S. Tan, C. Chen, C. Wang, H. Wu, L. Zhang, and X. He, ”Music
Recommendation by Unied Hypergraph: Combining Social Media In-
formation and Music Content”, In Proceedings of the 18th International
Conference on Multimedia (ACM Multimedia 2010), Firenze, Italy, pp.
391-400, 2010

[12] A. Ghrab,O. Romero, S. Skhiri, A. Vaisman, and E.
Zimányi, ”GRAD: On Graph Database Modeling”, Cornell
University Library,arXiv:1602.00503, 2016. [Online] URL:
https://arxiv.org/ftp/arxiv/papers/1602/1602.00503.pdf [retrieved:
2020-04-14]

[13] B. Amann and M. Scholl, ”Gram: A Graph Data Model and Query
Language”, In Proceedings of the ACM Conference on Hypertext
(ECHT ’92), pp. 201 - 211, Milan, Italy, 1992.

[14] M. Gyssens, J. Paredaens, J. Van den Bussche, and D. Van Gucht,
”A Graph-Oriented Object Database Model”, IEEE Transactions on
Knowledge and Data Engineering, Vol 6 No 4., pp. 572 - 586, 1994.

[15] M. C. Pabón, C. Roncancio, and M. Millán, ”Graph Data Transfor-
mations and Querying”, In Proceedings of the 2014 International C*
Conference on Computer Science & Software Engineering (C3S2E
’14), Montreal Canada, Article No 20, pp. 1 - 6, 2014. [Online] URI:
https://doi.org/10.1145/2641483.2641521 [retrieved: 2020-04-14]

[16] J. Pokorný, ”Conceptual and Database Modelling of Graph Databases”,
In Proceedings of the 20th International Database Engineering &
Applications Symposium (IDEAS 2016), Montreal, Canada, pp. 370
- 377, 2016.

[17] M. Junghanns, A. Petermann, N. Teichmann, K. Gómez, E. Rahm,
”Analyzing extended property graphs with Apache Flink”, Proceedings
of the 1st ACM SIGMOD Workshop on Network Data Analytics
(NDA@SIGMOD 2016), San Francisco, USA, pp. 3:1 - 3:8 2016.

[18] M. Levene and A. Poulovassilis, ”The hypernode model and its associ-
ated query language”, In Proceedings of the 5th Jerusalem Conference
on Information Technology, Jerusalem, pp. 520 - 530, 1990.

[19] R. Angles, ”The Property Graph Database Model”, Proceedings of the
12th Alberto Mendelzon International Workshop on Foundations of
Data Management, Cali, Colombia, CEUR WS Proc., 2018, [Online]
URL: http://ceur-ws.org/Vol-2100/paper26.pdf [retrieved: 2020-04-14]

[20] D, Brickley and R.V. Guha (eds.), RDF Schema 1.1 W3C
Recommendation, published 25 February 2014, [Online] URL:
https://www.w3.org/TR/rdf-schema/ [retrieved: 2020-04-14]

[21] W3C OWL Working Group, OWL 2 Web Ontology Language Docu-
ment Overview (Second Edition) W3C Recommendation, published 11
December 2012, [Online] URL: https://www.w3.org/TR/owl2-overview/
[retrieved: 2020-04-14]

[22] B. Motik, P. F. Patel-Schneider, and B. Parsia (eds.), OWL 2 Web
Ontology Language Structural Specification and Functional-Style Syn-
tax (Second Edition) W3C Recommendation, published 11 December
2012, [Online] URL: https://www.w3.org/TR/2012/REC-owl2-syntax-
20121211/ [retrieved: 2020-04-14]

19Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 27 / 51

Automated Generation of Graphs from Relational Sources to Optimise Queries for
Collaborative Filtering

Ahmad Shahzad
School of Electrical Engineering and

Computer Science
University of Liverpool, Liverpool, L69 3BX, U.K

Email: ahmads@liverpool.ac.uk

Frans Coenen
School of Electrical Engineering and

Computer Science
University of Liverpool, Liverpool, L69 3BX, U.K

Email: coenen@liverpool.ac.uk

Abstract—Graph abstraction is an intuitive and effective
approach for collaborative filtering as used in, for example,
recommender engines. However, for many collaborative
filtering applications, the transactional data is kept in
a relational database and, through bespoke processes, is
Exported, Transformed and Loaded (ETL) into a graph
database where collaborative filtering algorithms can be
applied. However, the ETL process requires knowledge of
the source relational database, the target graph database
and the application domain. The ETL process, therefore,
tends to be expensive, non-optimised for graph queries
and relies heavily on application domain knowledge and
understanding of the property graph engine for the graph
database. In this paper, a mechanism is presented whereby
data in a relational format, which is normalised to 5th

normal form, can be automatically converted to a graph
database format, through an automated process. The
presented evaluation demonstrates, using the recommen-
dation engine application domain as an example, that the
proposed mechanism is more efficient than comparable
approaches to reduce the execution time required for
collaborative filtering.

Keywords—Graph Construction; Collaborative Filtering;
Query Optimization; Normalization; Cold Start.

I. INTRODUCTION

Graphs are featured in a range of different applica-
tion domains. They play a pivotal role for the solution
of a variety of problems, from simple path finding
problems to much more complex problems, such as
collaborative filtering for Recommendation Engines.
The principal advantage of representing data as
graphs is that, at the physical level, a graph database
satisfies the so called index-free adjacency property
in which each node stores information about its
neighbours only; there is no requirement for a global
index of the connections between nodes. As a result,
the traversal of an edge is independent of the size of

the data. This makes it very efficient to conduct local
analysis of the graph and means it is well suited to
the processing of large data collections, or tasks, like
collaborative filtering, where for any given vertex v
it is required to find the most similar vertices from
a set of vertices V . Although relational databases
can provide a basis for collaborative filtering, they
feature slow runtime, especially when there are many
joins between entities. Graph databases are inherently
faster in modelling and identifying associations be-
tween entities because they do not require expensive
join operations and can be instantiated on distributed
data frameworks. Hence, it is desirable to transform
a relational database into a graph database for the
purpose of performing graph analytical queries, for
example collaborative filtering for recommender
engines. However, the transformation process, which
involves Export, Transform and Loading (ETL), is
usually a bespoke process. Thus, the ETL processes
tend to be expensive and require knowledge of
the relational and graph databases used, and the
mapping functions to associate relation and graph
database entities. In this paper, a mechanism is
proposed to automate the process of migration from
a relational database format to a graph database
format. The generated graph database shows better
performance compared to other approaches in terms
of the efficient execution of collaborative filtering
algorithms.

A good example of a graph analytical query
application is collaborative filtering in the context
of Recommendation Engines. This is the exemplar
graph analytical application domain used throughout
this paper to illustrate the proposed approach. Rec-
ommendation Engines have a significant impact on

20Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 28 / 51

the success of business and diversity of sales [1]. The
intuition underpinning Recommendation Engines is
to take advantage of past history to make predictions.
However, this means that users with little or no
history cannot be provided with recommendations
to any degree of accuracy. This is known as the cold
start recommendation engine problem. There have
been various techniques which have been effectively
used to make recommendations given the cold start
problem [2][3][4]. However, all these techniques rely
on auxiliary information concerning the target user
for whom recommendations need to be generated.
This extra information is compared with other users
to identify a “user group”. Recommendations are
then made based on the identified user group and
candidate items for recommendation are ranked
according to some criteria.

The problem of migrating from a relational
database to a graph database, to support the faster
execution of collaborative filtering algorithms, can
be stated as follows. Let S(R1, R2,Rn) be a
relational schema which consists of a set of Re-
lations. Each Relation Ri from schema S consists
of a set of attributes, Ai(Ai1, Ai2, . . . , Aim), which
can be uniquely identified by a set of Primary
Keys, PKi(PKi1, PKi2, . . . , PKin). A primary key
attribute Pkij ∈ Pki can be used as a reference
to another relation Rj , also known as a Foreign
Key. The set of foreign keys for a relation Rj is
defined as FKj(FKj1, FKj2, .., FKjn). Note that
FKj ⊂ PKj , and that r is an instance of R and
comprises a tuple of the form 〈r1, r2, .., rk〉.

A graph G is defined as G = (V,E, TV , TE),
where V is a finite set of nodes, E ⊆ V × V is
a finite multi-set of edges, TV is a finite set of node
types, and TE is a finite set of edge types. Each node
is mapped to a node type by a mapping function
φV : V → TV , and each edge is mapped to an edge
type by another mapping function φE : E → TE .
A node vi ∈ V , or an edge ek(vi, vj) ∈ E, has a
set of 〈attribute, value〉 pairs which constitute the
properties of the vertex or edge. The schema of
a property graph G is defined as a directed graph
GS = (TV , TE), where TV is a finite set of node
types, and TE ⊆ TV × TV is a finite set of edge
types. The task is to transform S into GS.

In this paper, a comprehensive approach to the
automated migration of relational to graph database

storage is proposed. The proposed approach converts
a relational database schema S into a graph database
schema GS. As already noted, the advantage offered
is that the execution of queries, which require
filtering over values of low cardinality, will be
more efficient than alternative relational to graph
databases processes. The translation takes advantage
of integrity constraints assuming 5th normal form.
This paper targets property graph databases to model
graph data and the associated graph engine specific
query language. This makes the approach indepen-
dent of the specific graph engine implementation.
In order to test the feasibility of the proposed ap-
proach, a complete software solution was developed
for converting relational to graph databases. The
solution was evaluated in the context of the cold
start recommendation engine collaborative filtering
problem using the Movielens data set. The evaluation
demonstrated that there was no loss of data in
translation and that the execution of queries was
more efficient than in the case of other compatible
approaches to achieve the same result.

The rest of this paper is organized as follows. An
overview of relevant previous work is presented in
Section II. This is followed by a description of the
proposed approach in Section III. The evaluation of
the approach is given in Section V. The paper is
then completed with some conclusions presented in
Section VI.

II. RELATED WORK

There has been some previous work directed at
automating the ETL process. In [5], an approach
was presented to convert a relational database into a
graph database founded on the property graph model.
The significance of the property graph model was
that it was expressive enough to cover many real
world applications and it was applicable to a range
of graph database realisations, such as Neo4J[6],
Titan[7] and OrientDb[8]. The authors focused on
speeding up the processing of queries over the
constructed graph by building a graph structure
based on joinable tuple aggregations. However, the
approach had two main limitations: (i) a simplified
version of a property graph was considered where
only nodes have properties, while edges have labels
that represent relationships between the data at nodes,
and (ii) only relational database style queries were

21Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 29 / 51

considered. The work presented in [9] improved
on the ideas presented in [5] by considering graph
edge properties and n-way relationships when more
than two foreign keys were involved. However, this
led to a design which added redundant information
to the edges, information that semantically did not
exist. In [10], a scalable “map reduce” approach was
proposed for converting relational databases into
graph databases, however, the design and mapping
of the relational to graph database remained a choice
for the user; in other words, it was a semi-automated
approach. In the context of collaborative filtering,
Filho et al. [11] proposed topological analysis for
the generation of heuristics in terms of betweenness,
closeness and degree centrality, so as to identify
nodes which could be considered to be hubs and/or
authorities, so as to improve collaborative filtering
results. However, the approach did not improve the
run time performance. The approach presented in
this paper addresses the disadvantages associated
with this earlier work.

The cold start problem in context of collaborative
filtering has been well studied. Suggested solutions
can be categorised according to how the missing
information is collected [12]: (i) explicit information
collection and (ii) implicit information collection.
However, in the “real world”, it is not always possible
to explicitly gather information about a user, hence,
implicit information is typically the most feasible
approach. Implicit information collection relies on
using information about the user which is already
available in the system or freely available in public
space, such as social media. An implementation
of Quantitative Association Rules (QAR) [13] for
implicit information collection of Recommendation
Engines was used with respect to the cold start
Recommendation Engine problem presented in this
paper.

III. CONVERTING A RELATIONAL DATA MODEL
TO A GRAPH MODEL

The proposed relational to graph transformation
is founded on the application of a set of rules. Let
K be the total number of foreign keys in a relation
Ri. For any given relation Ri with a set of primary
keys defined by PKi, and any given attribute of
this relation Aij , let |CAij| be the cardinality of that

attribute. Thus, |PKi| is the total number of rows
in a relation. The ratio of values to rows is:

λ = |CAij|/|PKi| (1)

Let T be the selected threshold for a given domain.
Then the following proposed rule set can be applied
to transform a relational schema S to a graph schema
GS:

Rule1: If K == 1 in Ri, which references Rj .
For each ri ∈ Ri referencing rj ∈ Rj

create two vertices for ri and rj linked
by an edge with the property FKi1.

Rule2: If K == 2 in Ri, which references Rj

and Rk. For each ri ∈ Ri, referencing rj ∈
Rj and rk ∈ Rk, create two vertices for rj

and rk linked by an edge with properties
equivalent to all the attributes of ri.

Rule3: If K ≥ 3 in Ri, which references
Rj...Rn. For each ri ∈ Ri, referenc-
ing rj ∈ Rj...rn ∈ Rn, create n + 1
vertices ri, rj...rn with edge properties
FKi1...Fkin, respectively.

Rule4: For any Ai at any node, if λ is less
than threshold T , create a new node with
a relationship to the node Ai where the
property belongs. An automated Id will be
generated for such new node and it will be
connected to the parent node where it was
originally located.

Rule5: If a vertex ri already exists, then it will
not be created again; instead, it will be
used with other vertices created using the
first three rules.

The above can be applied in parallel as only
one of the above rules will be applicable to each
relational table contained in the relational database
to be transformed.

Database normalisation ensures integrity of the
data and prevents the chance of the duplication of
data. A good database design should conform to at
least 3rd normal form. If a schema is in 3rd normal
form, then, in most cases, although not all, it can
qualify to be in 5th normal form. In practice, this
is generally true for all transactional data. However,
some applications do not enforce any constraints
on the database side and, hence, do not have any
foreign keys in the relations. In these special cases,

22Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 30 / 51

Figure 1. Entity Relationship Diagram of Movilens Database in 5th normal form.

Figure 2. Generated Graph Schema for Movielens Dataset.

23Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 31 / 51

constraints are handled in the software application
layers instead of the database. Also, in some cases,
for the sake of faster insertion into the database, some
transactional tables do not enforce normalisation
principles. However, if data is not in 5th normal form,
then there are well-understood techniques through
which the database design can be adjusted so that it
is in 5th normal form[14][15]. In this paper, in the
context of the proposed mechanism for translating
a relational database into a graph database, it is
assumed that the input relational database is already
in 5th normal form. The reason that the relational
database schema S is required to be in 5th normal
form is because, for any lower normalisation, there
may exist a relation in which all columns could
form a composite primary key; in other words, there
will be no non-key columns. When migrating such a
relational database to a graph database format, each
relational row will be recorded as a new vertex, thus
unnecessarily increasing the number of vertices and
hence slowing down the resolution of any query that
may be directed at the graph databases.

IV. MOVIELENS EXAMPLE

The Movielens database [16] is a popular choice
for the study of collaborative filtering algorithms.
MovieLens is a Web-based recommender system
that can be used to recommend movies to its
members according to their film preferences. It
operates by applying collaborative filtering to its
members’ movie ratings and reviews. It contains
some 11 million reviews for some 8500 movies.
Ratings are expressed using the numeric range 1 to 5.
For the evaluation presented in the following section,
100,000 ratings, provided by 943 members with
respect to 1682 movies, were used. Figure 1 shows
the entity relationship diagram for the Movielens
database. It shows the relational database in 5th

normal form. From figure1, it can be seen that, for
the User and Occupation tables, Rule 1 will be
applicable, because the Users table has only one
foreign key. As a result, all rows within the User
table become nodes in the graph that have edges
linking to occupations with occupation_id as
the edge property. Rule 2 is applicable to the Ratings
table which features two foreign keys, therefore all
user nodes have edges to movies nodes, and all the
attributes of Ratings are set as properties of the edge

between users and movies nodes. If T = 0.1 is
assumed, then age and gender of users falls within
the threshold T and, thus, are allocated generated
Ids, taken out of the users node and placed in their
own new nodes with a link to the users node. Figure
2 shows the resulting graph scheme, GS, after the
proposed automated translation has been applied.

V. EXPERIMENTAL RESULTS

The performance evaluation of the proposed ap-
proach was conducted by comparing it against an
approach founded on Neo4j (Neo4j ETL) which
adopted the first three steps defined in Section III.
An implementation of Quantitative Association Rules
(QAR) [13] for recommendation engines was used
with respect to cold start users. The QAR-based
implementation only had limited information like
age, gender, zipcode and occupation for cold start
users. Based on this information, the graph database
could be queried. A recommendation engine, written
in Scala, was used to make recommendations ac-
cording to the similarity between users based on the
information provided. Experiments were conducted
using five fold cross validation with 80% of users
as the training data set and the remaining 20% as
the test set. Both approaches produce a success
rate of 67% for the recommended movies. The
proposed approach, referred to as the Optimised
Collaborative Filtering (OCF) approach, was faster
by a substantial margin, as shown in Figure 3. The
same results in terms of recommendation quality
were produced by both approaches. However, the
advantage offered by the proposed OCF approach
was that it was more efficient in that it only selected
a handful of nodes within the graph database to find
similar nodes according to the input information, as
opposed to scanning all user nodes and then filtering
according to the input information. All property
graphs can find a node in a constant time given its
Id, resulting in a significant speed-up advantage for
the proposed method with respect to recommender
query resolution.

To further strengthen the idea, a number of exam-
ple queries were executed to find the execution time
taken to search the graph databases according to the
given information for a simulated new MovieLens
member. The results with respect to five of these
queries are shown in Figure 4. With reference to the

24Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 32 / 51

Figure 3. Five fold cross validation results comparing OCF operation with Neo4j ETL.

Figure 4. Runtime for five example community detection queries comparing OCF operation with Neo4j
ETL.

figure, it should be noted that each “bin” represents
a separate graph query. The aim was to find all users
which matched the criteria for the specified member.
Of course, for comparison purposes, the queries had
to be expressed differently because the underlying
graph schemas were different, however, the end result
was the same. From the figure, it can be seen that
the proposed OCF approach provided significant
efficiency gains over the Neo4j ETL approach. It
should also be noted that the efficiency gains were
more marked when larger datasets were returned as
a consequence of the query resolution.

VI. CONCLUSIONS AND FURTHER SUGGESTIONS

In this paper, an approach to the automated
generation of a graph database from a given re-
lational database has been described. The proposed
approach operates in a more sophisticated manner
than earlier approaches. Compared to an alternative
current approach, the Neo4j ETL approach, the
proposed approach operates much more efficiently

while producing the same outcomes. This approach
can be extended and tried with further splitting up
the properties of edges into separate vertices if the
edge property conforms to a particular threshold set
in the same manner as for the proposed approach to
vertex properties. The results can also be tried on
distributed graph databases to reinforce the results
presented in this paper.

REFERENCES

[1] D. Fleder and K. Hosanagar, “Blockbuster culture’s next rise or
fall: The impact of recommender systems on sales diversity.”
Management Science, vol. 55, no. 5, pp. 697–712, 2009.
[Online]. Available: https://pubsonline.informs.org/doi/10.1287/
mnsc.1080.0974

[2] X. N. Lam, T. Vu, T. D. Le, and A. D. Duong,
“Addressing cold-start problem in recommendation systems,”
in Proceedings of the 2nd International Conference on
Ubiquitous Information Management and Communication,
ser. ICUIMC ’08. New York, NY, USA: Association for
Computing Machinery, 2008, p. 208âĂŞ211. [Online]. Available:
https://doi.org/10.1145/1352793.1352837

[3] N. Mirbakhsh and C. X. Ling, “Improving top-n recommendation
for cold-start users via cross-domain information,” ACM Trans.

25Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 33 / 51

Knowl. Discov. Data, vol. 9, no. 4, Jun. 2015. [Online].
Available: https://doi.org/10.1145/2724720

[4] J. Zhu, J. Zhang, C. Zhang, Q. Wu, Y. Jia, B. Zhou, and P. S. Yu,
“Chrs: Cold start recommendation across multiple heterogeneous
information networks,” IEEE Access, vol. 5, pp. 15 283–15 299,
2017.

[5] R. D. Virgilio, A. Maccioni, and R. Torlone, “Converting
relational to graph databases.” Graph Data Management
Experiences and Systems, pp. 1–6, 2013. [Online]. Available:
https://dl.acm.org/doi/10.1145/2484425.2484426

[6] J. J. Miller, “Graph database applications and concepts with
neo4j,” in Proceedings of the Southern Association for Informa-
tion Systems Conference, Atlanta, GA, USA, vol. 2324, no. 36,
2013.

[7] R. Angles, “The property graph database model.” in AMW, 2018.
[8] “Orient db, property graph model.” [On-

line]. Available: https://orientdb.org/docs/3.0.x/datamodeling/
Tutorial-Document-and-graph-model.html

[9] D. W. Wardani and J. Kiing, “Semantic mapping relational to
graph model.” in Proceeding - 2014 International Conference
on Computer, Control, Informatics and Its Applications,
"New Challenges and Opportunities in Big Data", IC3INA
2014, Sebelas Maret University, 2014, pp. 160–165. [Online].
Available: https://ieeexplore.ieee.org/document/7042620

[10] S. Lee, B. H. Park, S. Lim, and M. Shankar, “Table2graph: A
scalable graph construction from relational tables using map-
reduce,” in IEEE First International Conference on Big Data
Computing Service and Applications, 2015, pp. 294–301.

[11] S. P. L. Filho, M. C. Cavalcanti, and C. M. Justel, “Graph
modeling for topological data analysis.” Enterprise Information
Systems, pp. 193–214, 2019. [Online]. Available: https:
//link.springer.com/chapter/10.1007/978-3-030-26169-6_10

[12] J. Gop and S. Jain, “A survey on solving cold start
problem in recommender systems.” in Proceeding - IEEE
International Conference on Computing, Communication and
Automation, ICCCA 2017, vol. 2017-January, no. Proceeding -
IEEE International Conference on Computing, Communication
and Automation, ICCCA 2017, Department of Computer
Engineering, National Institute of Technology, 2017, pp. 133–
138. [Online]. Available: https://ieeexplore.ieee.org/document/
8229786

[13] S. Tyagi and K. K. Bharadwaj, “Enhanced new user
recommendations based on quantitative association rule mining,”
Procedia Computer Science, vol. 10, pp. 102 – 109, 2012,
aNT 2012 and MobiWIS 2012. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1877050912003742

[14] M. L. Wilson, “A requirements and design aid for relational
data bases,” in Proceedings of the 5th International Conference
on Software Engineering, ser. ICSE ’81. IEEE Press, 1981, p.
283âĂŞ293.

[15] B. Lira, A. Cavalcanti, and A. Sampaio, “Automation of a normal
form reduction strategy for object-oriented programming,” in
Proceedings of the 5th Brazilian workshop on formal methods,
2002, pp. 193–208.

[16] F. M. Harper and J. A. Konstan, “The movielens datasets:
History and context.” ACM Transactions on Interactive
Intelligent Systems, no. 4, 2015. [Online]. Available: https:
//dl.acm.org/doi/10.1145/2827872

26Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 34 / 51

Reconsidering Optimistic Algorithms for Relational DBMS

Malcolm Crowe

School of Computing, Engineering and Physical Sciences

University of the West of Scotland

Paisley, UK

e-mail: malcolm.crowe@uws.ac.uk

Fritz Laux

Department of Informatics

Reutlingen University

Reutlingen, Germany

e-mail: fritz.laux@fh-reutlingen.de

Abstract—At DBKDA 2019, we demonstrated that

StrongDBMS with simple but rigorous optimistic algorithms,

provides better performance in situations of high concurrency

than major commercial database management systems

(DBMS). The demonstration was convincing but the reasons

for its success were not fully analysed. There is a brief account

of the results below. In this short contribution, we wish to

discuss the reasons for the results. The analysis leads to a

strong criticism of all DBMS algorithms based on locking, and

based on these results, it is not fanciful to suggest that it is time

to re-engineer existing DBMS.

Keywords - transactions; concurrency; optimistic.

I. INTRODUCTION

While the Standard Query Language (SQL) standard [9]
famously describes the well-known four transaction levels of
read uncommitted, read committed, repeatable read, and
serializable, it wisely does not mandate any particular
strategy for ensuring correct transaction behaviour, as
explained in Note 47 [9]. However, all commercial database
management systems (DBMS) use locking to ensure correct
transactional behaviour in the face of concurrent accesses to
a database.

This approach, with the attendant use of pessimistic
concurrency algorithms, may have seemed attractive in 1974,
and is still the easiest to explain. If the client has acquired
locks on all the data it needs, it appears that a successful
commit can be guaranteed. However, if the client and server
are communicating over a network, the Consistency-
Availability-Partition tolerance (CAP) theorem and the two-
army thought experiment both demonstrate that the success
of the commit may be indefinitely delayed unless the client’s
locks are overridden. To these theoretical objections two
practical considerations can be added, first, that locking
systems are complex, so that deadlocks are almost
unavoidable, and, second, that client-side locks are subject to
timeout. As a result, the apparent guarantee of success does
not work well over the internet where interactive clients
expect to have a comparatively long time to complete a
transaction.

In practice, many software developers instead use
application-level protocols to provide optimistic concurrency
for distributed applications communicating with web-servers
that handle all access to the database. The resulting mismatch
of concurrency strategies between application and database

has led to middleware trying to provide a concurrency
mechanism that is more application affine and abstract from
the database provided concurrency control (e.g., see [2, 3,
14]). But, far from solving the problem of transaction
coordination, this only compounds the problem by adding
another competing source of persistence, and the difference
in approach to concurrency does not help. It becomes natural
to ask whether the database server itself should also use
optimistic algorithms for concurrency control

The significance of the StrongDBMS [7] demonstration

[1][15] was that its optimistic algorithms were extremely

simple and startlingly effective in providing fully serializable

transactions under conditions of high data conflict. The

experiment was set up so that correct operation would

necessitate most transactions failing to commit, but much

greater overall throughput resulted from StrongDBMS’

optimistic operation. StrongDBMS’s transaction log

demonstrated that all committed transactions had been

serialised, despite the large number of overlapping long

transactions.
The implementation of StrongDBMS was also interesting

in featuring the use of immutable data structures, and it
seems plausible that all the usual DBMS features could be
implemented using this approach. Work has been
progressing since DBKDA 2019 to achieve this by
modifying the existing PyrrhoDB to use a similar
architecture to StrongDBMS.

The structure of this paper is as follows. Section 2
contains an analysis of the reasons for the demonstrated
differences in performance between optimistic DBMS (such
as StrongDBMS and PyrrhoDB) and other systems. Section
3 explains some minor departures from standard SQL
semantics in the test. Section 4 discusses the details of the
modified benchmark test used in the demonstration. Section
5 presents a synopsis of the test results. Finally, Section 6
summarises the conclusions of this study.

II. CONFLICT DETECTION AND ROLLBACK

The essential point of optimistic transactions is that
conflicts are detected only at the end of the transaction when
commit is attempted. At this point, if it is found that conflicts
have occurred, the commit will fail, and none of the
transaction’s work will be written to the database.

This approach is sometimes called First Committer Wins
(FCW). It has the advantage that short transactions are more
likely to succeed. In the literature [4, page 170], it has been

27Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 35 / 51

assumed that FCW systems would have high validation costs
or reduced throughput because of unnecessary rollbacks that
would occur if the check includes only ‘dangerous
structures’ [5]. But the demonstration showed that, when
combined with optimistic execution, throughput was
enhanced through use of FCW. Some database textbooks
suggest that optimistic execution is inherently less effective
than the usual locking-based approach when load is high, but
this is now seen to be another myth. In the rare situation
where transactions access the same data (hot spot), it might
be possible that a transaction is repeatedly aborted (starving
problem).

III. SOME DEROGATIONS

For simplicity, we focus exclusively on SERIALIZABLE
transactions. It seems worthwhile here to explain other
technical respects in which the implementations depart from
the standard description. The standard stipulates that all
changes made on commit are accessible to concurrent
transactions. We interpret this as excluding concurrent
serializable transactions, as it is more natural that a
serialisable transaction continues to see the database as it
stood at the time the transaction started (“snapshot
isolation”), apart from the changes it is making. In the case
that the transaction does not intend to commit changes, it is
intrusive to advise on changes that other users have made.

It is well known that snapshot isolation is insufficient to
ensure consistency [6]. Even optimistic algorithms need to
lock the database during commit while the transaction is
checked for conflicts. This however is quite different from
acquiring locks at an earlier stage in the transaction.

One further simplification in our work is always to
enforce constraints and integrity checks . For example, the
“no action” options are disallowed for referential constraints.
This ensures that the database is kept in a consistent state
even after each step in a schedule. For constraints that cannot
be satisfied with one SQL-statement, our chosen solution is
to allow deferral of triggers to the end of a transaction.

IV. THE CASE STUDY

The demonstration of StrongDBMS used the Transaction
Processing Council Benchmark C (TPC-C) [13] with a
modification to create high levels of data conflict between
clerks who enter new orders for a warehouse.

To begin with, the TPC-C benchmark normally has 1
clerk per warehouse, so that the conflict rate is around 4%. In
the reported tests, we deliberately increased the concurrency
challenge by using multiple clerks for a single warehouse.
When the number of clerks goes above 10, most New Order
tasks will fail with a write-write conflict on the next order
number for the district (NEXT_O_ID) as there are only 10
districts. Worse, the single row in the WAREHOUSE table
contains a running total for the year (W_YTD), which is
updated by the payment task, and fields from this row are
read by all the NewOrder tasks and others so that a great
many more tasks are aborted because of read/write conflicts.
In all the products tested, apart from PyrrhoDB and
StrongDBMS, read/write conflicts are detected at the row
level or wider.

Both PyrrhoDB and StrongDBMS see no conflict
between the Payment and NewOrder task because Payment
is the only task that accesses W_YTD, and one of the
available tests in the ReadConstraint for detecting read/write
conflicts is a set of fields in a specific single row of a table.

There are actually three levels of read/write conflict
detection in these DBMS. The following comment in the
source code for Read Set dates from about 2005 [8] (tb refers
to the base table affected):
“ReadConstraints record all of the objects that have been
accessed in the current transaction so that this transaction
will conflict with a transaction that changes any of them.
However, for records in a table, we allow specific non-
conflicting updates, as follows:
“(a) (CheckUpdate) If unique selection of specific records
cannot be guaranteed, then we should report conflict if any
column read is updated by another transaction.
“(b) (CheckSpecific) If we are sure the transaction has seen a
small number of records of tb, selected by specific values of
the primary or other unique key, then we can limit the
conflict check to updates of the selected records (if any), or
to updates of the key TableColumns.
“(c) (BlockUpdate) as (a) but it is known that case (b) cannot
apply.”

If the isolation level is reduced to repeatable-read or
read-committed, most of the competing products achieve
performance comparable with Pyrrho and StrongDBMS.
However, there is a risk that the database may show wrong
results or an inconsistent state. This is what we found for a
commercial product.

The use of escrow methods [11][12] could avoid hot spot
conflicts like in NEXT_O_ID (resp. W_YTD) for many
DBMS if the semantics is known, e.g., an increment
semantic (resp. commutative semantics). Laiho and Laux
[10] also developed a method of using row-versioning to
ensure correct non-blocking operation of distributed
applications. Both these approaches require changes to the
application protocols, but they can be used with existing
commercial DBMS products.

V. THE BENCHMARK RESULTS

The TPC-C benchmark simulates a telephone-based
order entry system for 100000 products where each
warehouse has 30000 customers assigned to 10 districts.
There is one clerk per warehouse, and the simulation
includes a randomised set of tasks with time-delays so that a
realistic work rate for the clerk is simulated, allowing the
clerk to process 16 new orders in 10 minutes: each order has
between 5 and 15 lines. There is some scope for concurrency
verification for the DBMS, as items can be supplied from
other warehouses, and the specification results in about 4%
of conflicting transactions.

We adapted this test by providing multiple clerks for a
single warehouse, and then the database design results in
much higher levels of conflict as described above. In the 10-
minute experiments, the maximum number of new orders per
clerk remains 16, but the actual throughput will be much less
owing to transaction conflict. DBMS generally allow a range
of transaction isolation levels. From the viewpoint of this

28Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 36 / 51

paper, the interesting results are for SERIALIZABLE
transactions only.

The initial state of the database, and the details of what
the tasks involve, are specified in great detail on the TPC-C
website. In simple terms, each task requires committing
some changes to the database. Many of the tasks perform a
single insert or update on a single table. The commit for the
new order task inserts new rows in HISTORY, ORDER and
ORDER_LINE (5 to 15 order lines per order) and updates
WAREHOUSE, DISTRICT, CUSTOMER and 5 to 15 rows
in STOCK. All the updates involved in a new order have a
good chance of conflict since there is only 1 warehouse and
10 districts. There is a smaller chance of conflict on STOCK
and CUSTOMER since there are more of these. The
distinction between ORDER and NEW_ORDER is that
customers are expected to pay for completed ORDERS, and
NEW_ORDERS require delivery. In the 10 minute test, the
delivery for a NEW_ORDER might be scheduled but won’t
complete.

For StrongDBMS, we found the behaviour shown in
Table I. This shows 241 (= 30241 - 30000) new orders for 30
clerks, and also indicates the reported number of failed
transactions (=“Exceptions”).

TABLE I. RESULTS FOR STRONGDBMS

Name Initial 1 clerk 10 clerks 20 clerks 30 clerks

Commits 0 39 302 512 565

Exceptions 0 0 104 387 1071

ORDER 30000 30016 30138 30199 30241

NEW_ORDER 9000 9016 9138 9199 9241

ORDER_LINE 285007 285158 286207 286638 286965

DELIVERY 0 1 13 22 32

A major commercial DBMS, using serializable transaction

isolation, completed only 132 NEW_ORDERS for 30

clerks, as shown in Table II.

TABLE II. RESULTS FOR COMMERCIAL DEBMS

(SERIALIZABLE,USING 2PL)

Name Initial 1 clerk 10 clerks 20 clerks 30 clerks

Commits 0 41 211 276 290

Exceptions 0 0 43 132 213

ORDER 30000 30016 30111 30127 30132

NEW_ORDER 9000 9016 9111 9127 9132

ORDER_LINE 285007 285158 286114 286223 286295

DELIVERY 0 1 12 18 18

The commercial DBMS frequently aborted the transaction

with a report of deadlock, without attempting to commit.

Some investigation took place on using other isolation

levels and other DBMS. These tests are reproducible, and

versions of the software for several major commercial

DBMS are available on the GitHub website [16]. However,

this software is implemented with a thread for each clerk

with its own database connection, and in some cases this

seemed to result in the DBMS erroneously reporting that

transactions were being nested, or already completed.

Callum Fyffe continued the tests for StrongDBMS to

over 100 clerks [14], and while the numbers continued to

rise, eventually the results became less reproducible as the

operating system intervened to deal with memory saturation.

Our collected results for SERIALIZABLE isolation are

shown in Table III, where the asterisks indicate that further

tests were not carried out owing to reducing throughput.

TABLE III. FURTHER RESULTS

Name 1 clerk 2 5 10 20 30 40 50 60

StrongDBMS

laptop
16 138 199 241 *

StrongDBMS

16GB RAM
16 129 220 254 409 331 328

Commercial 1 16 111 127 132 16 *

Commercial2 16 107 114 119 124 117 *

Commercial3 16 33 69 6 *

Figure 1 shows the comparable results from Table III as a

chart.

Figure 1. Comparable test results. The first bar in each group shows
the maximum possible (16x number of clerks), and the second is
StrongDBMS.

VI. CONCLUSIONS

The study reported here makes a case for extending
optimistic algorithms to other database products. This would
provide a radical and welcome way of removing the
“impedance mismatch” between application and DBMS
protocols. Myths about such algorithms are deeply
entrenched in the database community, but it is time for
better and more considered analysis.

29Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 37 / 51

REFERENCES

[1] M. Crowe and C. Fyffe, “Benchmarking StrongDBMS”,

Keynote speech, DBKDA 2019,

https://www.iaria.org/conferences2019/filesDBKDA19/MalcolmC

rowe_CallumFyffee_Keynote_BenchmarkingStrongDBMS.pdf

[retrieved: April, 2020]

[2] Java Platform, Enterprise Edition: The Java EE Tutorial,

“Concurrency Utilities for Java EE”

https://docs.oracle.com/javaee/7/tutorial/concurrency-utilities.htm

[retrieved: April, 2020]

[3] A. Harrer, T. Irgang, N. Sattes, and K. Pfahler, “SoCCR –

Optimistic Concurrency Control for the Web-Based Collaborative

Framework Metafora”, Proceedings of the 18th International

Conference, CRIWG 2012, Raesfeld, Germany, pp. 153-160, 2012

[4] G. Weikum and G. Vossen, Transactional Information

Systems: Theory, Algorithms, and the Practice of Concurrency

Control and Recovery, Morgan Kaufmann, 2002

[5] M. Cahill, U. Röhm, and A. Fekete, “Serializable isolation for

snapshot databases”, ACM Trans. Database Syst., 34(4), pp. 20:1-

20:42, 2009

[6] H. Berenson, P. Berenson, J. Gray, J. Melton, W. O’Neil, and

P. O‘Neil, “A Critique of ANSI SQL Isolation Levels”, Microsoft

Research, 1995 Proceedings of the 1995 ACM SIGMOD

International Conference on Management of Data, San Jose,

California, USA, pp. 1 - 10, 1995

[7] M. Crowe, S. Matalonga, and M. Laiho, “StrongDBMS: Built

from Immutable Components.” The Eleventh International

Conference on Advances in Databases, Knowledge, and Data

Applications. ThinkMind, pp. 11-16, 2019

[8] M. Crowe, An introduction to the source code of the Pyrrho

DBMS. University of Paisley, 2007.

[9] International Standards Organisation: latest edition ISO/IEC

9075-2:2016/Cor 1:2019

[10] M. Laiho and F. Laux, “Implementing Optimistic

Concurrency control for persistence Middleware using row version

verification.” 2010 Second International Conference on Advances

in Databases, Knowledge, and Data Applications. IEEE, pp. 45-

50, 2010

[11] F. Laux and T. Lessner, “Escrow serializability and

reconciliation in mobile computing using semantic properties.”

International Journal on Advances in Telecommunications 2.2, pp.

72-87, 2009

[12] F. Laux and T. Lessner, “Transaction processing in mobile

computing using semantic properties.” 2009 First International

Conference on Advances in Databases, Knowledge, and Data

Applications. IEEE, pp. 87-94, 2009

[13] F. Raab, W. Kohler, and A. Shah, “Overview of the TPC-C

benchmark: The Order-Entry Benchmark”, Transaction Processing

Performance Council, Tech. Rep., 2013,

http://www.tpc.org/tpcc/detail.asp [retrieved: April, 2020]

[14] MS Azure Cosmos DB, Transactions and optimistic

concurrency control (12/04/2019), https://docs.microsoft.com/en-

us/azure/cosmos-db/database-transactions-optimistic-concurrency

[retrieved: April, 2020]

[15] C. Fyffe, “Benchmarking StrongDBMS”, MSc Thesis,

University of the West of Scotland, 2019/ Available in [16]

[16] GitHub,

https://github.com/MalcolmCrowe/ShareableDataStructures

[retrieved: September 2020]

30Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 38 / 51

Comparative Analysis of RDBMS and NoSQL Databases

Jam Jahanzeb Khan Behan
Free University of Brussels

Bruxelles, Belgium
Email: jbehan@ulb.ac.be

Meesum Ali
Institute of Business Administration

Karachi, Pakistan
Email: meesumdex@gmail.com

Ali Inam
Institute of Business Administration

Karachi, Pakistan
Email: ali.inam03@gmail.com

Muhammad Talha Khan
Institute of Business Administration

Karachi, Pakistan
Email: talhakhan298@gmail.com

Abstract—Big Data has been the subject of increased research
since data has been termed the new oil for the 21st century.
Recently, smart grids have been used by energy providers to
store the massive amount of data that is generated at regular
time intervals. K-Electric is one such company in Pakistan that
provides the residents of Karachi City with electrical energy.
The company stores their data in a Not only Structured Query
Language (NoSQL) database, since the smart grid data has
a high volume, accelerated velocity, and tremendous variety.
Hence, we feel that we can provide an important comparison
of NoSQL tools using this data. NoSQL tools have been actively
used for storage purposes in the industry. Companies like eBay,
GitHub, and Amazon have been using these tools for storage and
analytical purposes alike. In this paper, we compare and analyze
four different technologies: MySQL, MongoDB, MonetDB, and
InfluxDB using the data generated by the smart grids of K-
Electric.

Keywords–NoSQL; Big Data; RDBMS; Performance Compari-
son; Smart Grid.

I. INTRODUCTION

A smart grid is an electrical grid that provides a variety of
operations and energy measures. These measures can include
smart meters, smart appliances, renewable energy resources,
and energy-efficient resources. The most important aspects of
the smart grid are electronic power conditioning, control of the
production, and distribution of electricity.

The Big Data phenomenon is defined using 3 Vs, where
we have too much data (volume) that is being collected at
an extremely high rate (velocity) and contains mostly un-
structured data (variety) [1] [2]. Traditionally, data has been
managed and stored in Relational Database Management Sys-
tems (RDBMSs) with the focus to optimize the storage space.
However, querying is a time consuming task in these traditional
RDBMS technologies. In RDBMS, the data is distributed in
different tables, and then these tables are virtually joined
for performing advanced querying, hence the slow response
time. However, with the sudden explosion of data, due to
the Web and data accessibility, the old technologies could not
handle the increasing demand for data storage and querying.
Unfortunately, since this amount of data is not manageable
by traditional RDBMS technologies, we witnessed the rise of
NoSQL databases. These new technologies have been used
to analyze Big Data to reveal new insights and optimize the
decision making strategy for executives. As of present, there
are more than 225 NoSQL databases [3]–[7].

A database system that is distributed does not require a
fixed table schema. The schema is mostly built at runtime

based on the query. As there is no schema, (i) the join op-
erations are usually avoided, (ii) the technology can be scaled
horizontally, (iii) the system does not expose a Structured
Query Language (SQL) interface and (iv) the tool can be open
source [8]. However, even though the NoSQL databases are the
by-products of the Web 2.0 era, these tools were solely used
when the Web service providers had a large number of users.
These providers discovered that the RDBMS can be used either
when the database is small but requires frequent read & write
transactions, or when the database is large but requires batch
transactions while rarely needing write transactions. They
concluded that RDBMS cannot be used for large databases
with heavy read & write workloads [5].

In this paper, we aim to use the data that is stored in the
RDBMS and see how well it can be analyzed using a NoSQL
system. The data is collected from K-Electric, a vertically
integrated investor-owned utility company managing the gen-
eration, transmission, and distribution of energy to consumers.
The purpose of this paper is to analyze the performance of
K-Electric’s relational data in a non-relational environment.

The rest of the paper is structured as follows: Section
II highlights some of the related work done on comparing
RDBMS technologies with NoSQL technologies. In Section
III, we provide a detailed account of the technologies we have
selected for our experiments. Section IV briefly outlines the
structure of the data obtained from K-Electric. Section V ex-
plains the technical setup for the technologies, the experiments
that we have performed, and the results of these experiments.
Finally, we give our concluding remarks in Section VI.

II. RELATED WORK

In this section, we highlight other works that have aimed
at comparing NoSQL databases.

Hadjigeorgiou et al. [9] have compared the performance
of MongoDB and MySQL when they are scaled and sharded.
The metrics they have used are (i) total queries per second
and (ii) total queries per second per thread. The authors tested
the systems on a dataset related to the music industry. Firstly,
they make different schemas for the RDBMS and for the
NoSQL systems. Metrics are recorded for three experiments
that are done using (i) a single node, (ii) multiple nodes, and
(iii) sharding. The authors conclude that the most important
factor was the query type used since MongoDB was able to
handle more complex queries faster, due mainly to its simpler
schema while having to duplicate the data. MongoDB also
performed better during insertions. They also state that MySQL

31Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 39 / 51

performs better when deleting data since it performs better in
simple search queries. This might be the case because deletion
requires finding the record to be deleted first, which is easier in
MySQL since there is only one instance. Finally, the authors
highlight that both databases have had a linear trend in the
benchmarks.

Ansari et al. [10] have selected Hbase, MongoDB, Cas-
sandra, and Elasticsearch NoSQL technologies and compared
them using data from smart grids. The smart grid meter data
that they were using was structural column-based data. For
experimentation purposes, they used the default configuration
of the respective NoSQL technology. They compared the
databases on effectiveness (using the WRITE and READ
parameters) and scalability (by measuring the execution per-
formance of the full mechanism). The results showed that
Cassandra had the smallest average latency in both read and
write processes. This is possible because Cassandra is one of
the best column-based databases and the data to be evaluated
was column-based data.

Venkatraman et al. [11] discussed the four main data
models of non-relational databases and compared them to
SQL databases. They first presented the context of Big Data
analytics and NoSQL databases and then compared them based
on high availability, partition tolerance, high scalability, con-
sistency, auto-sharding, write frequently & read less (priority is
given to write operations as compared to read operations), fault
tolerance (no single point of failure), multiversion concurrency
control (MVCC), and, finally, concurrency control (locks). The
authors performed benchmark tests, however, they did not pro-
vide the results. The authors only discussed and explained the
results. They state that Couchbase processes more operations
per second with lower average latency in reading and writing
data than both MongoDB and Cassandra. Also, Cassandra is
faster in writing than MongoDB, however, both have almost
equal reading speed. The authors conclude that the flexible
data modeling of NoSQL is well suited to support dynamic
scalability and improved performance for Big Data analytics.

Santos et al. [12] have used Geographic Information Sys-
tems (GIS) data to compare PostGIS (a spatial database ex-
tender for PostgreSQL object-relational database), MongoDB,
and Neo4j with Neo4j-Spatial. For comparison purposes, the
authors have performed different types of operations (read,
write, etc.), where each operation contains a group of queries.
Even though all groups include 20 parameterized queries,
the parameter values vary within predefined ranges for each
group. The data comparison metrics used are (i) Nearby Points
of Interest Radius and K-Nearest Neighbors (KNNs), (ii)
Urban Routing, (iii) Map View, and (iv) Position Tracking.
In the conclusion, the authors have highlighted that, since
the spatial attributes are much more complex to handle as
compared to strings, numbers, and other relational data types,
evaluating and benchmarking spatial DBMS performances is
not as simple as doing so in RDBMS. The authors also state
that there was a need for data heterogeneity within the same
RDBMS, as each type of query runs faster in a different data
structure.

III. SELECTED TECHNOLOGIES

In this paper, we have selected three NoSQL technologies
to compare against MySQL [13], the RDBMS technology

in place at K-Electric. We have selected MongoDB [14],
MonetDB [15], and InfluxDB [16] as the NoSQL datastores.

A. MongoDB
In MongoDB, the data is stored in flexible, JavaScript

Object Notation (JSON) like documents, where fields can vary
from document to document and data structure can be changed
over time. The document model maps to the objects in the ap-
plication code, making data easy to work with. Ad hoc queries,
indexing, and real-time aggregation provide powerful ways to
access and analyze the data. It is a distributed database, so high
availability, horizontal scaling, and geographic distribution are
built-in and easy to use while providing querying and index-
ing functionalities. Furthermore, MongoDB is an open-source
project, hence, aiding in its popularity of use. We have selected
MongoDB because it contains the best mixture obtained from
RDBMS and NoSQL technologies, which in turn enables users
to build new applications. It provides the data model flexibility,
elastic scalability, and high performance of NoSQL databases,
hence aiding in a continuous enhancement of applications,
while scaling on commodity hardware [17].

B. InfluxDB
We have selected InfluxDB because it is an open-source

time-series database that is optimized for fast, high-availability
storage, and retrieval of time series data. It has no external
dependencies and provides an SQL-like language with built-
in time-centric functions for querying. Each point consists
of several key-value pairs called the fieldset and a times-
tamp. A series is defined when a set of key-value pairs are
grouped together. Finally, series are grouped together by a
string identifier to form a measurement. Points are indexed
by their time and tagset. Retention policies are defined on
measurement and control of how data is downsampled and
deleted. Continuous queries run periodically, storing results in
a target measurement.

C. MonetDB
MonetDB is an open-source column-oriented database

management system designed to provide high performance on
complex queries against large databases, such as combining
tables with hundreds of columns and millions of rows. Its
architecture is represented in three layers, each with its own
set of optimizers. The front-end provides a query interface
for SQL, where queries are parsed into domain-specific rep-
resentations, like relational algebra for SQL, and optimized.
The generated logical execution plans are then translated into
instructions, which are passed to the next layer. The middle or
back-end layer provides a number of cost-based optimizers.
The bottom layer is the database kernel, which provides
access to the data stored in Binary Association Tables, where
each table consists of an Object-identifier and value columns,
representing a single column in the database. Internal data
representation also relies on the memory addressing ranges
of contemporary CPUs using demand paging of memory-
mapped files and, thus, departing from traditional DBMS
designs involving complex management of large data stores
in limited memory. We have selected MonetDB because it has
been designed to provide high performance on complex queries
against large databases and also because it has been applied
in high-performance applications for better analytics.

32Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 40 / 51

IV. DATA

The data comprises of meter readings from over 9000
smart meters spread throughout Karachi, Pakistan. Based on
the type of the meter installed, the data is generated at different
intervals. These smart meters are installed at consumer sites,
on Pole Mounted Transformers (PMTs), and on distribution
feeders. The data is initially stored in an internal buffer, of
each respective meter. The device then communicates with the
server, based on configurable intervals (using the push/pull
protocol). In case of any communication lapse, the infras-
tructure is designed to record the lost data over a period of
seven days. The data is recorded in Head End, the objective of
which is to acquire meter data and monitor device parameters
automatically, thus avoiding any human intervention.

The data being utilized for this project is collected over
a period of three months, with an uncompressed size of
approximately 45 GB. The devices installed at the consumers
end generate data over a 30 minutes interval, while the devices
placed on distribution assets generate data after every 15
minutes. As a first step, we aimed to understand the data on
hand by (i) manually looking at a smaller chunk of manageable
data and by (ii) asking the domain experts. We also had regular
meetings with the employees of K-Electric, who provided
an extensive explanation regarding the data: what each field
corresponded to, how a particular field is important for further
processing, the type of values that each field contains, and
which fields were of high importance.

Once the data was analyzed, we gained the understanding
of the fields provided in the data. The details of the fields are
stated in Table I.

TABLE I. DATA FIELD DESCRIPTIONS

Field name Field definition
DeviceID The unique meter identification ID

Time The time at which the reading was recorded at
Date The date on which the reading was recorded at in MM/DD/YYYY

format
Value The profile value we obtain against the corresponding Result-

TypeID
MeasuredUnit The unit of measurement we obtain after multiplying Value with

the number (10Ŝcaler)
Scaler Represents the number (10Ŝcaler) to be multiplied with the Value

to get the Value measured according to the units in MeasuredUnit
ResultTypeID The profile for which the value has been generated.

Status This is a 32 bit number to represent the status of the meter itself
Description The description of the DeviceID. Not properly maintained

We imported the original data from the databases to use
the data for querying purposes and then evaluate the query
execution times. Some fields have been highlighted as an
essential part of the analysis. However, we omitted the fields:
Description, Status, MeasuredUnit, and Scalar since these
columns did not provide any information relevant to our
analysis. Moreover, a new field by the name of Timestamp
was created by concatenation of the Time and Date fields.

V. EXPERIMENTATION

In this section, we provide the technical details for each
of the selected technology and how they were set up. Also, in
this section, we provide the queries that have been devised for
comparison purposes, the benchmark we obtained while using
MySQL (since it is the main technology at K-Electric), and

how the other tools performed as compared to the results of
MySQL.

A. Technical Details
Since we wanted to work independently, that is without

the restriction of having to carry the data, or the setup, we
decided to use Amazon Web Services (AWS). To setup the
environment, we created instances (not a VM environment) of
each of the four technologies. We also had to make customized
adjustments to some of the databases instances, and the details
are as follows:

MySQL: As stated in the previous section, the database
deployed at K-Electric is MySQL and, for our purpose, we
created an AWS instance for MySQL and accessed that
instance by means of MySQL Workbench on our personal
computers. To enable working on the data in RDBMS, we
intially required a schema of the data and store data in form
of tables. Fortunately, K-Electric stored the data into one huge
table–and we, therefore, kept our own schema in accordance
to that. For our instance, we stored the data in a table named
“dataset”.

MongoDB: In MongoDB every dataset is a collection,
and we can query each collection using their keys. For the
experimentation, we created a collection called “SM RECS”.
Furthermore, we created custom indexes on two attributes:
DateTime and ID. We would like to mention, due to its nature
of complexity, we decided to opt out of the UNION queries
in MongoDB.

MonetDB: We followed the same procedure as that of
MySQL and created a single table called “dataset”.

InfluxDB: For InfluxDB, we stored our data in a table
named “dataset” and, after much searching, we found out that
InfluxDB does not, in fact, have native support for UNION.
Hence, we were unable to perform the UNION queries [18].

B. Queries
We have written queries of different categories for each

database (see Table III) and ran them on the AWS instances.
The queries belong to one of the following categories:

1) Simple Query
2) Range Query
3) Aggregated Query
4) Nested Query
5) UNION Query

As stated previously, we were unable to perform UNION
queries for MongoDB and InfluxDB.

C. Results
To provide an unbiased experimental runtime, the repeated

the experiments 10 times. The average time required for
experimentation to complete and the results are outlined in
Table II. As it can be seen from the results, all the technologies
were able to obtain the same results (in terms of the number of
records) for identical queries. Hence, we compare the results
based on the Runtime(s) columns in Table II that correspond
to the total time taken to obtain the results while computing on
the given technology instance. As stated previously, the results
obtained from MySQL serve as a baseline for the NoSQL tech-
nologies, and it is safe to say that all the NoSQL technologies
were able to obtain better results than the baseline.

33Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 41 / 51

It can be observed that MonetDB was able to outperform
MySQL, and was still able to provide results for all categories
of queries stated in Section V-B. It is also worth mentioning
that InfluxDB outperformed all the systems in terms of com-
putational time. However, since it does not provide UNION
query facilities, we cannot rely on this system for being a
replacement of the traditional RDBMS.

TABLE II. QUERY RUNTIME AND RESULTS

Query Number Result Runtime (s)
MongoDB 1 84965 row(s) returned 0.65
MongoDB 2 781 row(s) returned 57.26
MongoDB 3 1 row(s) returned 0.04
MongoDB 4 697409 row(s) returned 0.88
MongoDB 5 33856 row(s) returned 854.75
MongoDB 6 33856 row(s) returned 874.18
MongoDB 7 0 row(s) returned 1054.73
InfluxDB 1 84965 row(s) returned 1.38
InfluxDB 2 781 row(s) returned 13.55
InfluxDB 3 1 row(s) returned 10.85
InfluxDB 4 697409 row(s) returned 0.08
InfluxDB 5 33856 row(s) returned 15.37
InfluxDB 6 33856 row(s) returned 10.37
InfluxDB 7 0 row(s) returned 58.88
MonetDB 1 84965 row(s) returned 8.54
MonetDB 2 781 row(s) returned 60.46
MonetDB 3 1 row(s) returned 57.19
MonetDB 4 697409 row(s) returned 1.88
MonetDB 5 33856 row(s) returned 78.64
MonetDB 6 33856 row(s) returned 76.63
MonetDB 7 0 row(s) returned 256.15
MonetDB 8 101444 row(s) returned 265.65
MonetDB 9 3 row(s) returned 9054.64
MySQL 1 84965 row(s) returned 134.70
MySQL 2 781 row(s) returned 121.69
MySQL 3 1 row(s) returned 117.76
MySQL 4 697409 row(s) returned 121.81
MySQL 5 33856 row(s) returned 148.98
MySQL 6 33856 row(s) returned 158.33
MySQL 7 0 row(s) returned 451.45
MySQL 8 101444 row(s) returned 473.36
MySQL 9 3 row(s) returned 18184.06

VI. CONCLUSION

In this paper, we have analyzed the data stored in an
RDBMS, using NoSQL technologies. However, due to their
respective limitations, we were unable to use InfluxDB and
MongoDB to their full potential. We have provided a baseline
for analyzing smart grid data on NoSQL technologies. In the
future, we aim to perform eperimentations on NewSQL [19]
technologies to compare the results of RDBMS, NoSQL, and
NewSQL on smart grid data.

REFERENCES

[1] Gartner, “Gartner Glossary,” https://www.gartner.com/en/information-
technology/glossary/big-data, [Online; accessed April 23rd, 2020].

[2] P. Zikopoulos and C. Eaton, Understanding Big Data: Analytics for
Enterprise Class Hadoop and Streaming Data. McGraw-Hill Osborne
Media, 2011.

[3] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem,
and P. Helland, “The End of an Architectural Era: It’s Time for a
Complete Rewrite,” in Proceedings of the 33rd International Conference
on Very Large Data Bases. VLDB Endowment, 2007, pp. 1150–1160.

[4] A. Reeve, “Big Data and NoSQL: The Problem with Relational
Databases,” http://infocus. emc. com/april reeve/big-data-and-nosql-
the-problem-with-relationaldatabases/, [Online; accessed April 23rd,
2020].

[5] S. Edlich, “Your Ultimate Guide to the Non-Relational Universe!”
http://nosql-database.org/, [Online; accessed April 23rd, 2020].

[6] S. Sagiroglu and D. Sinanc, “Big data: A review,” in 2013 International
Conference on Collaboration Technologies and Systems (CTS). IEEE,
2013, pp. 42–47.

[7] G. Stevens, “List of Nosql Database Management Systems,”
http://nosql-database.org/, [Online; accessed April 23rd, 2020].

[8] R. Agrawal et al., “The Claremont Report on Database Research,” ACM
Sigmod Record, vol. 37, no. 3, 2008, pp. 9–19.

[9] C. Hadjigeorgiou et al., “RDBMS vs NoSQL: Performance and Scaling
Comparison,” MSc in High, 2013.

[10] M. H. Ansari, V. T. Vakili, and B. Bahrak, “Evaluation of big data
frameworks for analysis of smart grids,” J. Big Data, vol. 6, 2019, p.
109.

[11] S. Venkatraman, K. Fahd, S. Kaspi, and R. Venkatraman, “SQL versus
NoSQL movement with Big Data Analytics,” International Journal of
Information Technology and Computer Science, vol. 8, no. 12, 2016,
pp. 59–66.

[12] P. O. Santos, M. M. Moro, and C. A. D. Jr., “Comparative Performance
Evaluation of Relational and NoSQL Databases for Spatial and Mobile
Applications,” in Database and Expert Systems Applications - 26th
International Conference, DEXA 2015, Valencia, Spain, September 1-
4, 2015, Proceedings, Part I, ser. Lecture Notes in Computer Science,
Q. Chen, A. Hameurlain, F. Toumani, R. R. Wagner, and H. Decker,
Eds., vol. 9261. Springer, 2015, pp. 186–200.

[13] Oracle Corporation, “MySQL,” https://www.mysql.com/, [Online; ac-
cessed April 23rd, 2020].

[14] MongoDB, Inc., “MongoDB,” https://www.mongodb.com/, [Online; ac-
cessed April 23rd, 2020].

[15] MonetDB B.V., “MonetDB,” https://www.monetdb.org/Home, [Online;
accessed April 23rd, 2020].

[16] InfluxData Inc, “InfluxDB,” https://www.influxdata.com/, [Online; ac-
cessed April 23rd, 2020].

[17] C. Kristina and D. Michael, “MongoDB: The Definitive Guide,” 2010.
[18] Joson Morn, “Issues with InfluxDB,”

https://groups.google.com/forum/msg/ in-
fluxdb/jGVE3uDStNg/9KYxjY46AQAJ, [Online; accessed 23-
April-2020].

[19] A. Pavlo and M. Aslett, “What’s Really New with NewSQL?” ACM
Sigmod Record, vol. 45, no. 2, 2016, pp. 45–55.

34Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 42 / 51

TABLE III. QUERIES WRITTEN FOR EACH DATABASE

Name Query
MySQL 1 SELECT * FROM dataset WHERE ID = ‘644’
MySQL 2 SELECT DISTINCT(ID) FROM dataset
MySQL 3 SELECT COUNT(*) FROM dataset
MySQL 4 SELECT * FROM dataset WHERE Date >= ‘09/01/2016’ AND Date < ‘09/02/2016’
MySQL 5 SELECT ID,Date,SUM(Value) AS SUM FROM dataset WHERE ResultTypeID = ‘Voltage L1 015min’ GROUP BY ID,Date
MySQL 6 SELECT ID,Date,avg(Value) AS average FROM dataset WHERE ResultTypeID = ‘Voltage L1 015min’ GROUP BY ID,Date
MySQL 7 SELECT ID,ResultTypeID,avg(Value) AS average FROM dataset WHERE ResultTypeID = ‘Current L1 015min’ or ResultTypeID = ‘Current L2 015min’ or

ResultTypeID = ‘Current L3 015min’ GROUP BY ID,ResultTypeID Having avg(Value) > 0 AND avg(Value) < 5
MySQL 8 SELECT ID,Date,avg(Value) AS SUM FROM dataset WHERE ResultTypeID = ‘Voltage L1 015min’ GROUP BY ID,Date UNION SELECT

ID,Date,avg(Value) AS SUM FROM dataset WHERE ResultTypeID = ‘Voltage L2 015min’ GROUP BY ID,Date UNION SELECT ID,Date,avg(Value) AS
SUM FROM dataset WHERE ResultTypeID = ‘Voltage L3 015min’ GROUP BY ID,Date

MySQL 9 SELECT ID, Date, Value FROM dataset WHERE Value = (SELECT MAX(Value) FROM dataset WHERE ResultTypeID = ‘Current L1 015min’) UNION
SELECT ID, Date, Value FROM dataset WHERE Value = (SELECT MAX(Value) FROM dataset WHERE ResultTypeID = ‘Current L2 015min’) UNION
SELECT ID, Date, Value FROM dataset WHERE Value = (SELECT MAX(Value) FROM dataset WHERE ResultTypeID = ‘Current L3 015min’)

InfluxDB 1 SELECT * FROM dataset WHERE ID = ’644’
InfluxDB 2 SELECT DISTINCT(ID) FROM dataset
InfluxDB 3 SELECT COUNT(Value) FROM dataset
InfluxDB 4 SELECT * FROM dataset WHERE TimeStamp >= ‘2016-09-01T00:00:00Z’ AND TimeStamp <= ‘2016-09-02T23:59:59Z’
InfluxDB 5 SELECT SUM(Value) FROM dataset WHERE ResultTypeId = ‘Voltage L1 015min’ GROUP BY time(1d)
InfluxDB 6 SELECT avg(Value) FROM dataset WHERE ResultTypeId = ‘Voltage L1 015min’ GROUP BY time(1d)
InfluxDB 7 CREATE CONTINUOUS QUERY “meter cq” ON “KE SM 1” BEGIN SELECT avg(Value) AS “mean meters” INTO “aggregate meter” FROM dataset

WHERE ResultTypeID = ‘Current L1 015min’ AND ResultTypeID = ‘Current L2 015min’ AND ResultTypeID = ‘Current L1 015min’ GROUP BY time(1d);
SELECT “mean meters” FROM “aggregate meter” WHERE “mean meter” < 5

MongoDB 1 db.SM RECS.find(‘ID’:644)
MongoDB 2 db.SM RECS.DISTINCT(‘ID’)
MongoDB 3 db.SM RECS.find().COUNT()
MongoDB 4 db.SM RECS.find(’Date’ :$gt:‘09/01/2016’, ‘Date’:$lt:‘09/02/2016’)
MongoDB 5 db.SM RECS.aggregate([$match: “ResultTypeID”: “ Voltage L1 015min” , $group: id: “ID”, date:“Date”,SUM: $SUM: “Value”])
MongoDB 6 db.SM RECS.aggregate([$match: “ResultTypeID”: “ Voltage L1 015min” , $group: id: “ID”, date:“Date”,average: $avg: “Value”])
MongoDB 7 db.SM RECS.aggregate([$or: [$match: “ResultTypeID”: “Current L1 015min”,“ResultTypeID”: “Current L2 015min”,“ResultTypeID”: “Cur-

rent L2 015min”], $AND: [$avg:“Value” > 0,$avg:“Value” < 5], $group: id: “$ID”, typeID:“ResultTypeID”,average: $avg: “$Value”], allowDiskUse:
true)

MonetDB 1 SELECT * FROM dataset WHERE ID = ‘644’
MonetDB 2 SELECT DISTINCT(ID) FROM dataset
MonetDB 3 SELECT COUNT(*) FROM dataset
MonetDB 4 SELECT * FROM dataset WHERE Date >= ‘09/01/2016’ AND Date < ‘09/02/2016’
MonetDB 5 SELECT ID, Date,SUM(Value) AS SUM FROM dataset WHERE ResultTypeID = ‘Voltage L1 015min’ GROUP BY ID,Date
MonetDB 6 SELECT ID,Date,avg(Value) AS average FROM dataset WHERE ResultTypeID = ‘Voltage L1 015min’ GROUP BY ID,Date
MonetDB 7 SELECT ID,ResultTypeID,avg(Value) AS average FROM dataset WHERE ResultTypeID = ‘Current L1 015min’ or ResultTypeID = ‘Current L2 015min’ or

ResultTypeID = ‘Current L3 015min’ GROUP BY ID,ResultTypeID Having avg(Value) > 0 AND avg(Value) < 5
MonetDB 8 SELECT ID,Date,avg(Value) AS SUM FROM dataset WHERE ResultTypeID = ‘Voltage L1 015min’ GROUP BY ID,Date UNION SELECT

ID,Date,avg(Value) AS SUM FROM dataset WHERE ResultTypeID = ‘Voltage L2 015min’ GROUP BY ID,Date UNION SELECT ID,Date,avg(Value) AS
SUM FROM dataset WHERE ResultTypeID = ‘Voltage L3 015min’ GROUP BY ID,Date

MonetDB 9 SELECT ID, Date, Value FROM dataset WHERE Value = (SELECT MAX(Value) FROM dataset WHERE ResultTypeID = ‘Current L1 015min’) UNION
SELECT ID, Date, Value FROM dataset WHERE Value = (SELECT MAX(Value) FROM dataset WHERE ResultTypeID = ‘Current L2 015min’) UNION
SELECT ID, Date, Value FROM dataset WHERE Value = (SELECT MAX(Value) FROM dataset WHERE ResultTypeID = ‘Current L3 015min’)

35Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 43 / 51

Tackling Semantic Shift in Industrial Streaming Data Over Time

Lisa Ehrlinger∗†, Christian Lettner∗, Johannes Himmelbauer∗
∗Software Competence Center Hagenberg, Softwarepark 21, 4232 Hagenberg, Austria
†Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria

email: lisa.ehrlinger@jku.at, christian.lettner@scch.at, johannes.himmelbauer@scch.at

Abstract—Industrial production processes generate huge amounts
of streaming data, usually collected by the deployed machines.
To allow the analysis of this data (e.g., for process stability
monitoring or predictive maintenance), it is necessary that the
data streams are of high quality and comparable between
machines. A common problem in such scenarios is semantic shift.
For example, a sensor’s weight unit might shift from tons to
kilograms after a firmware update and still store the collected
values to the same variable. In this paper, we discuss semantic
shift theoretically and by means of an industrial case study from
a production plant in Austria, where several hundred injection
molding machines are employed. The data collected by these
machines is used to monitor the stability of the production process
with machine learning algorithms. In the following, we present
and discuss the data preprocessing system we developed for the
production plant to handle semantic shift for huge amounts of
streaming data.

Keywords–Semantic Shift; Streaming Data; Data Quality; Pro-
cess Stability Monitoring; Data Preprocessing.

I. INTRODUCTION

Semantic shift originally describes the evolution of word
meaning over time [1]. In this paper, we observe the semantic
shift of industrial data streams, where the meaning of variables
(also: attributes, features, column names) changes over time.
Semantic shift has a negative effect on data analysis and thus,
needs to be tackled strategically. We claim that semantic shift
can be seen as a Data Quality (DQ) problem, which however,
has been little discussed in this context so far.

The awareness for this problem has been raised by different
research projects with company partners from industry. In
this paper, we specifically describe the use case from one
production plant in Austria where injection molding machines
are employed to produce plastic products. Such industrial
production processes have natural fluctuations due to the
physical conditions of the machines, as well as the variability
of the used materials [2]. To guarantee the production of high-
quality products, it is essential to continuously monitor process
signals and to ensure it moves within the specified limits [2].
To support stability monitoring of the production process with
statistical measures, we developed L* (pronounce: L-star) a
data preprocessing infrastructure that overcomes semantic shift
in the process variables.

Therefore, we make the following twofold contribution: (1)
a discussion of semantic shift as a data quality problem and
outlook for future research direction, and (2) a case study from
an industrial plant where we deployed the data preprocessing
system L*, which tackles the problem of semantic shift in
industrial data streams. The system has been deployed at our
company partner and is currently under ongoing evaluation.

In Section II, we describe semantic shift as it appears in
literature and related work. The case study at the production

plant, which highlights the practical relevance of the concept
is discussed in Section III. In Section IV, we present L*: a
process data preprocessing system where we specifically de-
scribe the components that tackle semantic shift. We conclude
with an outlook on future work in Section V.

II. SEMANTIC SHIFT – A DATA QUALITY PROBLEM

Historically, semantic shift (also: semantic change, seman-
tic drift) is a term stemming from linguistics and describes
the evolution of word meaning over time [1]. According to
Bloomfield [1], it can have different triggers and different
development. Although used interchangeably in linguistics,
we explicitly want to highlight the focus of our research on
shift (i.e., changes that can be attributed to a specific point
in time [3]) in contrast to drift (i.e., continuous transforma-
tion [3]). The reason is that semantic changes in process data
can usually be traced back to specific triggers, e.g., firmware
update of a machine, or a change in the production process.

A similar and intensively studied term from Machine
Learning (ML) research is concept drift, which refers to a drift
in the target variable predicted by a ML model [4][5]. Such
drifts are usually caused by changes in the hidden context and
can be handled with regular updates of the ML model to ensure
that the properties of the variable remain stable over time [5].
Klenner and Hahn [6] discuss the problem of semantic shift
under the term concept versioning for technical standards.

Although there is a lot of research into DQ dimensions
(cf. [7]–[10]), there is little discussion on the specific topic
“semantic shift”. In terms of DQ assessment in ontologies,
Guarino and Welty [11] introduce the properties “identity”
and “rigity”, which are related to the stability of a variable. A
similar DQ dimension is timeliness, which can be described as
“how current data is for the task at hand” [12]. Semantic shift
generalizes this dimension since the validity of data depends on
the context within it appears (e.g., on the respective machine
and the point in time). Thus, we define semantic shift in the
context of DQ as the circumstance when “the meaning of
data evolves depending on contextual factors”. Consequently,
when these factors are modeled accordingly (e.g., described
with rules), it is possible to handle semantic shift even in very
complex environments as outlined in the following case study.

III. SEMANTIC SHIFT IN INDUSTRIAL DATA STREAMS

In this section, we motivate the problem of semantic
shift with the description of an industrial case study. Due to
confidentiality, we are not allowed to publish details of the
production process.

Our Austrian manufacturing company partner works in the
field of plastics industry with injection molding machines.
These machines are tools being able to produce plastic prod-
ucts and multi material-parts by the injection molding process

36Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 44 / 51

Figure 1. Architecture of the L* Data Infrastructure to Handle Semantic Shift

with a clear focus on mass-production. Injection molding
represents a very complex physical-chemical process and there
exists a wide variety of situations that can lead to a bad, or at
least unstable, condition of a machine, as well as its production
process, often ending up in (increased) production rejects. Con-
sidering that there are usually more than one hundred machines
simultaneously in operation explains the company’s aim for
a monitoring system that can automatically send alerts where
process instabilities that are potentially relevant for production
quality show up. The benefit of such a system is manifold. At
first, detecting unstable process situations is a prerequisite to
actuate countermeasures in order to decrease scrap rates or
to avoid machine damage. Moreover, the company operates
in the field of massive production of very small pieces and
thus complete quality inspection is unfeasible. Time-related
knowledge about the process stability for each machine enables
us to focus the quality inspection on produced pieces from
critical production time periods.

In the collaboration with our company partner, we have
worked towards the design of a data-driven solution being
able to automatically recognize such critical situations. Thus,
it is necessary to note that the machines cyclically supply
status values to a machine data acquisition system. These
machine statuses are recorded shot by shot and currently stored
for several months. By analyzing this data, machine states
should be determined by our data-driven solution. The process
conditions depend on the following factors, which partly in-
fluence each other: machine condition, tool condition, material
condition, environmental influences, and processor operating
point setting. Our data-driven solution can find diverse known
error patterns (ranging from occasionally occurring, isolated
critical shots to slowly (in terms of weeks) deteriorating
machine conditions, e.g., due to wearing of machine parts) in
all machine data. For this purpose, firstly, we analyze in which
data sources it is possible to find relevant information from
which we can benefit. Based on that information, our solution
tries to learn recurrent error patterns. For these tasks, we use

different methods including stream data processing, classical
machine learning algorithms, outlier detection, robust learning
algorithms, and causal discovery.

For use in real production, these developed applications
should be easy to integrate in the existing operation system
and they should be applicable to as many machines as possible
without specific adaptions. Applying certain stability checks to
only a few out of many machines is unsatisfactory. Here, we
want to point out that all these applications are based on mak-
ing use of the data that a machine provides and each algorithm
expects to be fed with data in a predefined standardized format.
Fortunately, the injection molding machines of our customer
are almost exclusively from the same vendor; shipped with a
standardized data Application Programming Interface (API),
which logs data about the injection molding process (in the
following indicated with MD, short for measurement data) in
a system called “MES system”. However, there exist different
machine types and machine versions. Moreover, machines with
identical machine type and version can still provide differences
with respect to provided data as different firmware might
include also changes in the data schema. Due to the fact that all
the machines come from the same vendor, all in all, we found a
high level of data consistency; in the sense that variable names
remain the same and major changes in newer versions mainly
consist in extensions with additional variables. However, there
exist cases when certain variables undergo a semantic shift.
For example, a variable that represents the measurements of
some pressure sensor for one machine might be stored in bar
while for another machine or even for the same in a later
version the same variable is recorded in millibar. Ignoring
such semantic shifts would result in situations when algorithms
produce wrong results.

IV. L* SYSTEM ARCHITECTURE

The entire data preprocessing system has been imple-
mented on four nodes with Linux Ubuntu 16.04 installed,
respectively. Figure 1 illustrates the system architecture of

37Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 45 / 51

the implementation, where the red components (which are
are part of L*) are described in the following subsections.
Each component refers to exactly one node in the system
infrastructure. The system is designed for linear scalability
and therefore employs tools from the Big Data ecosystems.
The gray components illustrate the original data analysis
infrastructure at the production plant used for process stability
monitoring.

A. Data Loading
Initially, process data collected at the injection molding

machines is loaded every 10 seconds with a message queue to
the stream engine. The message queue has been implemented
with Apache Kafka [13] and aims at a robust transmission of
huge amount of messages. One advantage of using an asyn-
chronous solution here is that the message queue represents a
buffer, which is why messages are not lost even if L* is offline
temporarily. We installed Apache Kafka through the Confluent
platform [14], which is an event streaming platform that allows
to manage and organize data streams (from different sources)
for industry applications with high-performance requirements.

B. Online Datastore
The online datastore has been implemented with Apache

Cassandra [15], a column-based NoSQL DB that is optimized
to manage large amounts of measurement data. Since we
deployed the system for our company partner, we selected
Cassandra also due to its popularity [16] in comparison to
other NoSQL DBs that have similar features. Figure 2 shows
the creation statements of the two tables used for storing the
process data.

1create table MDavro (
2jahr int,
3seriennummer int,
4interval int,
5zeitpunkt timestamp,
6value blob,
7primary key((jahr, seriennummer, interval),

zeitpunkt)
8);
9

10create table MD (
11jahr int,
12seriennummer int,
13metric text,
14zeitpunkt timestamp,
15value text,
16primary key((jahr, seriennummer, metric),

zeitpunkt)
17);

Figure 2. Cassandra Tables to Store Process Data

C. Data Preprocessing
We used Spark [17] to implement the data preprocessing

system, which specifically tackles the problem of semantic
shift for our use case. Three different Spark jobs have been im-
plemented: (1) LoadMD- Avro, (2) PreProMDStream, and
(3) PreProMDBatch, where the first two are implemented as
Spark streaming jobs, and the last one as batch job. Figure 3
displays the three data streams between Cassandra and the
streaming platform Confluent.

Figure 3. Spark Data Streams

1) Stream Engine: PreProMDStream receives data,
which is encoded with the Apache Avro [18] data serialization
from the machines. The data is decoded and preprocessed
according the the defined rules (cf. Table I) to handle semantic
shifts. Eventually, the task returns the encoded data back to
Confluent.

2) Batch Environment: PreProMDBatch basically has
the same functionality as PreProMDStream, only that it is
conducted as Spark batch job. Thus, it requires a defined time
interval (start and end point) to load and process the data.

L* supports linear transformations and the application of
a time offset (lag). The current version does not allow to
represent calculated values, which needs to be done with an
external program.

Table I shows an excerpt of preprocessing rules defined
to handle semantic shift. Depending on the machine type
(machinetype), the table maps a machine internal parameter
name to a consolidated, meaningful parameter name. In addi-
tion, a simple linear transformation (scale and offset),
as well as a time delay (lag) may be applied. In the ex-
ample provided in Table I, a semantic shift has happened
on process_value_3 for machine type T3. Starting with
machine type T3, the production mode is divided into two
phases. Further, in machine type M3, the temperature values
are measured in degrees Fahrenheit. To consolidate these
values to M1 and M2 values, which are measured in degree
Fahrenheit, the values must be multiplied by 1.8 and shifted
by 32. The process parameter Process Temperature1
Previous makes use of a time delay functionality to provide
the previously measured temperature.

D. Performance Metrics
Since L* should be capable for deployment in productive

environments, we calculated a few performance metrics to
verify its suitability to handle Big Data.

In a test, 28.8 million records have been processed from
the MES system, which contained a total of 1,216 million
measurement values. This yielded an average of 42.2 mea-
surement values per record. Table II summarizes the processed
records or measurement values (short “values”) per Spark job.
In total, LoadMDAvro generated disk storage of 5.01 GB
for the Cassandra table MDavro and PreProMDBatch disk
space of 6.49 GB for the table MD in the 2.5 weeks time period.

V. CONCLUSION AND OUTLOOK

In this paper, we presented the data preprocessing system
L*, which tackles semantic shift in data streams used for
process stability monitoring. The rule-based solution is a first
attempt to systematically overcome shift in process variables
and aligns with the predominant idea how to solve DQ issues
in practice (cf. [8]). In the future, we would like to extent

38Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 46 / 51

TABLE I. DATA PREPROCESSING DEFINITION

MD paramname process paramname machinetype scale offset lag datatype
process value 1 Mode Stopped T1, T2, T3 1 0 0 bool
process value 2 Mode Starting T1, T2, T3 1 0 0 bool
process value 3 Mode Production T1, T2 1 0 0 bool
process value 4 Product Counter T1, T2, T3 1 0 0 long
process value 5 Process Temperature1 T1, T2 1 0 0 float
process value 6 Process Preasure T1, T2 1 0 0 float
process value 3 Mode Production Phase 1 T3 1 0 0 bool
process value 7 Mode Production Phase 2 T3 1 0 0 bool
process value 5 Process Temperature1 T3 1.8 32 0 float
process value 6 Process Temperature2 T3 1.8 32 0 float
process value 5 Process Temperature1 Previous T3 1.8 32 1 float
process value 8 Process Preasure T3 1 0 0 float

TABLE II. PERFORMANCE METRICS

Spark Data Stream Unit Throughput
(unit/sec)

Storage
(byte/unit)

LoadMDAvro Records 358 182
PreProMDBatch Values 174,343 5.6
PreProMDStream Values 4,816 -

this rule-based system with a semantic solution that takes into
account the context (e.g., of the respective machine) since it
allows to reach a higher degree of automation.

In our ongoing work, we are going to generalize the
problem of semantic shift by investigating DQ assessment
for streaming data more broadly. Although there exist many
context-independent DQ metrics for batch data sets (cf. [7]), so
far, there is little research specifically on data streams. Thus,
we would like to extract domain-independent properties that
can be applied to measure the DQ of any data stream.

ACKNOWLEDGMENT

The research reported in this paper has been supported by
the Austrian Ministry for Transport, Innovation and Technol-
ogy, the Federal Ministry of Digital and Economic Affairs, and
the Province of Upper Austria in the frame of the COMET
center SCCH.

REFERENCES
[1] L. Bloomfield, Language. Allen & Unwin, 1933.
[2] R. D. Snee, “Crucial Considerations in Monitoring Process Performance

and Product Quality,” Pharmaceutical Technology, vol. 34, no. 10, 2010,
pp. 38–40.

[3] Oxford University Press, “Oxford Dictionaries,”
https://www.lexico.com/?search filter=dictionary [retrieved: April,
2020].

[4] A. Tsymbal, “The Problem of Concept Drift: Definitions and Related
Work,” Computer Science Department, Trinity College Dublin, vol. 106,
no. 2, 2004, p. 58.

[5] G. Widmer and M. Kubat, “Learning in the Presence of Concept Drift
and Hidden Contexts,” Machine Learning, vol. 23, no. 1, 1996, pp.
69–101.

[6] M. Klenner and U. Hahn, “Concept Versioning: A Methodology for
Tracking Evolutionary Concept Drift in Dynamic Concept Systems,” in
ECAI, vol. 94. PITMAN, 1994, pp. 473–477.

[7] B. Heinrich, D. Hristova, M. Klier, A. Schiller, and M. Szubartowicz,
“Requirements for Data Quality Metrics,” Journal of Data and Infor-
mation Quality, vol. 9, no. 2, January 2018, pp. 12:1–12:32.

[8] L. Ehrlinger, E. Rusz, and W. Wöß, “A Survey of Data Quality Mea-
surement and Monitoring Tools,” 2019, https://arxiv.org/abs/1907.08138
[retrieved: April, 2020].

[9] R. Y. Wang and D. M. Strong, “Beyond accuracy: What data quality
means to data consumers,” Journal of Management Information Sys-
tems, vol. 12, no. 4, 03 1996, pp. 5–33.

[10] M. Scannapieco and T. Catarci, “Data Quality Under a Computer
Science Perspective,” Archivi & Computer, vol. 2, 2002, pp. 1–15.

[11] N. Guarino and C. Welty, “Evaluating Ontological Decisions with
OntoClean,” Communications of the ACM, vol. 45, no. 2, 2002, pp.
61–65.

[12] B. Heinrich and M. Klier, “A Novel Data Quality Metric for Timeliness
Considering Supplemental Data,” in Proceedings of the 17th European
Conference on Information Systems. Verona, Italy: Università di
Verona, Facoltà di Economia, Departimento de Economia Aziendale,
2009, pp. 2701–2713.

[13] Apache Software Foundation, “Apache Kafka – A Distributed Stream-
ing Platform,” Online, 2020, https://kafka.apache.org [retrieved: April,
2020].

[14] Confluent Inc., “Confluent,” Online, 2020, https://docs.confluent.io [re-
trieved: April, 2020].

[15] Apache Software Foundation, “Apache Cassandra,” Online, 2020,
http://cassandra.apache.org [retrieved: April, 2020].

[16] solid IT gmbh, “DB-Engines Ranking of Wide Column Stores,” Online,
2020, https://db-engines.com/en/ranking/wide+column+store [retrieved:
April, 2020].

[17] Apache Software Foundation, “Apache Spark,” Online, 2020,
https://spark.apache.org [retrieved: April, 2020].

[18] Apache Software Foundation, “Apache Avro,” Online, 2020,
https://avro.apache.org [retrieved: April, 2020].

39Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 47 / 51

Principle Structure and Architecture of a Code Generator

Andreas Schmidt∗†
∗ Faculty of Computer Science and Business Information Systems,

Karlsruhe University of Applied Sciences
Karlsruhe, Germany

Email: andreas.schmidt@hs-karlsruhe.de
† Institute for Automation and Applied Informatics

Karlsruhe Institute of Technology
Karlsruhe, Germany

Email: andreas.schmidt@kit.edu

Abstract—Code generators often have something mystical about
them. Especially undergraduate students, who can still remember
their first steps in programming, become in awe when they hear
the term ”Software Generator”. The paper is an attempt to take
this awe away from the students and to show them, by means of
a very simple example implementation with well-known tools and
technologies, that software generators are not witches’ work, but
a powerful, but easily understandable tool to support the software
development process.

Keywords–Code generation; template system; (meta) model;
model transformation.

I. INTRODUCTION

In this paper, the general structure of a code generator is
presented. It is intended as additional material to the tutorial
with the title ”Code generation for Database Developers”
which is also given by the author at the DBKDA-2020 confer-
ence in Lisbon [1]. The principle structure and architecture of
a general purpose code generator will be explained with the
help of a simple example implementation, using well known
tools and techniques. The procedure is from the backend of
the generator, over the kernel to the frontend. The advantage
of this approach is that one can see the final result (the
generated code) right at the beginning and then deal with
the details to achieve this result. The Template Engine of
the generator, the internal metamodel, the import module, the
external metamodel and the transformation of XMI (XML
Metadata Interchange) - the standard exchange format for
models - into the previously developed metamodel are then
presented.

A. Principle Function of a Generator
The principle mode of operation of a generator is shown

in Figure 1. The generator obtains as input an abstract model
description and a set of transformation rules, which describe
the transformation of the abstract model into the source code.
It is crucial that the model is formal and the model description
is available in a form that abstracts from implementation
specific details. Through one or more model transformations,
the implementation details are added to the target platform.
This achieves a separation between the business logic and the
technical aspects of the target platform.

B. Advantages of Generative Software Development
Herrington [2] names four main advantages of generative

software development, which are to be presented in the fol-
lowing briefly.

1) Quality: The quality of the software is determined by
the transformation rules. Over time, these rules gain more
and more quality, so that the quality of the generated source
code increases. The automatic transformations avoid careless
mistakes. If individual transformation rules are faulty, these
errors occur at all places that use the faulty transformation rules
and are therefore easy to find and correct. Furthermore, when
developing the transformation rules, more thought is given
to the architecture of the application in advance than when
starting directly with the coding. The previously considered
architecture is then consistently implemented in the complete
source code by the transformation rules.

2) Consistency: Source code generated by transformation
rules is very consistent regarding naming, calling conventions
and parameter passing, so that it is quite easy to understand
and use. This offers a starting point for further possible
automations. Cross-sectional functionalities such as logging or
error handling can be defined centrally and thus be adapted
to changing requirements at any time (analogous to aspect-
oriented programming).

3) Productivity: Productivity in application development
increases. Even if only so-called infrastructure code is gen-
erated, which is often considered to be the boring part of
programming, more time remains to take care of the actual
(exciting) application logic. Furthermore, it is possible to react
faster to design changes or change requirements, because only
the corresponding transformation rules have to be adapted and
the application has to be regenerated.

4) Abstraction: The model represents an abstract descrip-
tion of the application to be realized. The strict separation of
domain-oriented logic (model) and technical aspects (transfor-
mation rules) reduces complexity. This, in turn, allows for a

Figure 1. General Architecture

40Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 48 / 51

better integration of domain experts within the development
project, as they can be involved in the development of the
model. Another advantage is the easier transition to a new
technology, since only the transformation rules have to be
adapted, since the domain-oriented logic of the model remains
valid. On the other hand, transformation rules once developed
can be reused in other applications.

The remaining paper is structured as follows. In Section
2, we will discuss which artifacts can typically be generated.
In Section 3, the development of the generator is presented in
detail, divided into backend, kernel and frontend functionality.
In Section 4, the automation of the single steps using the Unix
tool make is discussed. Section 5 concludes with a discussion
of possible extensions for the generator prototype.

II. WHAT CAN BE GENERATED?
The goal is the partial or complete generation of the source

code for an application to be realized. The degree of automa-
tion usually ranges from 20% to 80% of a application. Higher
levels of automation are possible but often not useful, because
this would make the generator much more complex than
implementing the missing 20% of the software by hand [3].
For web-based applications, a degree of automation of about
60-70% can often be achieved. Typical parts of an application
that can be generated include the following areas:

• Database schemas
• Access layers for databases
• User interfaces
• Parts of the application logic
• Documentation
• Configurations (e.g., in combination with frameworks

like Struts, Spring, Hibernate, etc.)
• Tests (unit tests, constraint tests, generation of mock

objects, load tests, etc.)
• wrapper
• Import/Export Modules
• etc.

III. DEVELOPMENT OF THE GENERATOR

In the following, a multipurpose generator is to be built
up by the simplest means. This is done exemplarily with
the programming language PHP [4]. The reasons for using
PHP are the following: PHP is a macro language and can
therefore also be used as a template system, which can be
used for the definition of the mapping rules. In addition,
there are also special template languages for PHP, which
can be used for this purpose. Due to its primary field of
application as a language for creating dynamic websites, PHP
is characterized by its powerful string handling. This is also
useful for generating source code. Furthermore, there are many
free libraries available for PHP (PHP Extension & Application
Repository - PEAR). Other languages suitable for this task are
Perl, Python and Ruby.

Besides PHP the following tools/technologies are used:

• An XSLT [5] or XQuery [6] processor to transform
XMI into a simpler meta-format

• The Unix tool make [7] for automation of the entire
workflow

Figure 2. Generator Backend

• The Smarty template engine [8].
• An UML modeling tool for graphical modeling

(i.e., [9]).

A. Scope of Functions and Expansion Options
The functionality of the generator to be developed is limited

to the generation of artifacts based on the information of a
simple class model. This does not represent a limitation for the
basic architecture. In Section V it is shown how the generator
can be extended to process further model elements (e.g. state
transition diagrams).

B. Generator Backend
The basic design of the generator jaw is shown in Figure 2.

The backend is responsible for the actual generation of the
source code (1). For this purpose, a template system (2) is
used, whose task it is to create clear mapping rules from
the model to the target language by separating the dynamic
and static parts. For this purpose, the template system uses as
input on the one hand the so-called templates (3), in which the
transformation rules for the generation of the source code in
the form of static text and simple control flow elements, such
as loops and conditional statements as well as placeholders for
the information originating from the model are stored, and on
the other hand the model (4) on which the application to be
generated is based, which contains the dynamic parts of the
source code to be generated.

In the concrete case, the model is available in the form
of an arbitrarily complex object network, which describes the
artifacts to be modeled such as classes, attributes with types, as
well as relationships. The model is also based on the so-called
meta model (5), which defines the modeling possibilities in the
form of classes and the associated methods. This metamodel
is realized by means of PHP classes. Figure 3 shows a code
snippet for defining a model using the Metamodel API. In
the code section, the two classes ”person” and ”film” are
defined with their attributes and furthermore the relationship
”film director”, which models a 1:n relationship between film
and person.

An example of a Smarty template is shown in Figure 4. The
example shows a template for generating the database schema.
Language elements of the template language are indicated by
[@ ... @] brackets. Available language elements include
loops, conditional statements, variable assignments, calling

41Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 49 / 51

Figure 3. Programmatic Model Definition

Figure 4. Template for generating the Database Schema

other templates and calling properties and methods of the meta
model.

In order to make the creation of the templates as simple
and clear as possible, it is often helpful to extend the meta
model (6) or the generator (7) for certain specific language
constructs of the target language instead of formulating these
language constructs within the templates (3).

C. Generator Kernel
The actual heart of the generator is represented by the gen-

erator kernel. Figure 5 shows the transformation and validation
components of the generator. The methods of the metamodel
already monitor a number of constraints in the model, for
example that the classes have different names and that the
attributes must be of certain predefined types. However, there
are also constraints that cannot be enforced in this way, for
example the constraint that each class must have a primary key
or that certain attributes/relationships must exist for each class.
For this purpose, the generator provides an interface for the
formulation of validation rules (11). These are implemented in
the form of PHP methods (12). An example of such a method is
shown in Figure 6. This method monitors that each class must
have a primary key. The methods also work like the templates
on the properties and methods of the Metamodel API.

Furthermore, model transformations (13, 14) can be formu-
lated. In the simple case these are transformations within the
same metamodel (13). For example, additional administrative
information (created at, created from, etc.) can be added to
a model for each class (see Figure 6. For the formulation of

Figure 5. Generator kernel

Figure 6. Example Model Transformation

transformation rules, the generator also provides an interface,
which allows the formulation of transformations in the form
of methods (15). Furthermore, transformations (14) to another
metamodel (16) are also possible (e.g., to a metamodel with
the concepts table, attribute, foreign key, constraints, etc.).

D. Generator Frontend

1) Model Import: Up to now, models can only be built
using the methods available in the metamodel, i.e., program-
matically through a series of API calls. However, this is not
desirable and so an XML format (Figure 7, point 21) is defined
in an extension of the generator, which allows the formulation
of the model as an XML file (22). In this case, the meta
model is represented by the DTD (21) and thus defines what
can be formulated in the model file. In an import process
(24) the DOM tree of the XML file is then created and a
transformation (24) to the internal model (4) is carried out by
the methods available in PHP for processing XML, i.e., the
corresponding methods of the internal meta model are called
during navigation through the DOM tree and thus the internal
model representation (4) is built up. Optionally, the XML file
(22) can be modified by means of an XSLT transformation
(25) before import. Meaningful transformations on this level
are, for example, the addition of further attributes or primary
keys, if these have not already been specified in the UML
model.

42Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

 50 / 51

Figure 7. Generator Frontend

2) Connecting the Frontend: The connection of a UML
modeling tool (26) is realized by the XMI export interface
provided by most tools. XMI is an XML-based, standardized
exchange format for UML models. To connect to the generator,
all that is required is the development of an XSLT stylesheet
(27), which extracts the relevant information from the XMI
file and transforms it into the previously developed XML
format (22). It is also possible to do without the own XML
format and import the XMI file directly from the generator.
The disadvantage of this variant, however, is that XMI is an
extremely ”chatty” format and the import and transformation
into the internal meta model is much more complicated than
via the detour of the intermediate format.

IV. AUTOMATION

From the creation of the UML model to the export as XMI
file, the XSLT transformation into the generator’s own XML
format, the model validation/transformation, the actual code
generation based on the created templates, and any subsequent
source code formatting (Figure 2, point 8), a complete gener-
ator run represents a complex workflow consisting of many
individual steps and dependencies. To automate this, the de-
velopment tool ”make” is used here. It allows the formulation
of sequences of work steps as well as dependencies, which
then cause a conditional execution of parts of the workflow.

V. EXTENSION OF THE GENERATOR

The generator introduced so far supports the generation of
artifacts, which can be derived from a simple class model.
In the context of the lectures carried out at the University
of Applied Sciences Karlsruhe - Technology and Economics
as a compulsory elective subject in the field of Business
Informatics as well as further tutorials [10], [11] it was shown
that a very high learning effect can be achieved by letting
the participants extend the generator by additional diagram
types. In contrast to the initial introduction of the generator,
a forward-looking approach is suitable for the extension, i.e.,
starting from an XMI file generated by a modeling tool, the
own XML format is extended and the corresponding XSLT
transformation is adapted. Subsequently, the internal meta
model must also be extended by the corresponding concepts
and the import filter must be adapted accordingly. The last
step is to create additional templates or to extend the existing

templates. As extension for example the addition of state
transition diagrams or the addition of the inheritance concept
for class diagrams is suitable. A further instructive extension is
the mapping of the present meta model to another meta model,
which represents the concepts of relational databases and the
subsequent adaptation of the templates.

VI. CONCLUSION

The presented framework shows in a simple way how
a software generator works. Due to its easy extensibility, it
can be adapted to own needs very easily. However, it is
not intended to compete with existing tools but is mainly
used in teaching. Nevertheless, it can be used to create own
generators for applications where it is not worthwhile to learn
a commercial or freely available tool.

REFERENCES
[1] A. Schmidt, “Code Generation for Database Developers. Twelfth

International Conference on Advances in Databases, Knowledge,
and Data Applications - DBKDA ,” Lisbon, Portugal, 2020,
URL: https://www.iaria.org/conferences2020/ProgramDBKDA20.html,
last accessed: September 2020.

[2] J. Herrington, Code Generation in Action. USA: Manning Publications
Co., 2003.

[3] T. Stahl, M. Voelter, and K. Czarnecki, Model-Driven Software Devel-
opment: Technology, Engineering, Management. Hoboken, NJ, USA:
John Wiley & Sons, Inc., 2006.

[4] K. Tatroe and P. Macintyre, Programming PHP, O’Reilly. Sebastopol:
O’Reilly, 2006.

[5] T. Doug, XSLT. Sebastopol: O’Reilly, 2008.
[6] P. Walmsley, XQuery: Search Across a Variety of XML Data. Se-

bastopol: O’Reilly, 2007.
[7] R. Mecklenburg, Managing Projects with GNU Make. Sebastopol:

O’Reilly, 2004.
[8] L. Gheorghe, H. Hayder, and J. P. Maia, Smarty PHP Template

Programming and Applications. Packt Publishing, 2006.
[9] “argo UML,” URL: https://github.com/argouml-tigris-org/argouml, last

accessed: September 2020.
[10] A. Schmidt, “Supporting the development of web-based applications

with lightweight software generators. Third International Conference
on Internet technologies and Applications - ITA09,” Wrexham, Wales,
2009, Tutorial session.

[11] A. Schmidt, “The power of regular expressions in the software develop-
ment process. International Conferences on Informatics 2010 Software
Engineering and Applications SEA 2010,” Marina del Rey, USA, 2007,
Tutorial session.

43Copyright (c) IARIA, 2020. ISBN: 978-1-61208-790-0

DBKDA 2020 : The Twelfth International Conference on Advances in Databases, Knowledge, and Data Applications

Powered by TCPDF (www.tcpdf.org)

 51 / 51

http://www.tcpdf.org

