
DBKDA 2019

The Tenth International Conference on Advances in Databases, Knowledge, and

Data Applications

ISBN: 978-1-61208-715-3

June 2 - 6, 2019

Athens, Greece

DBKDA 2019 Editors

Fritz Laux, Reutlingen University, Germany
Lisa Ehrlinger, Johannes Kepler University Linz, Austria / Software Competence

Center Hagenberg GmbH, Austria

                             1 / 69



DBKDA 2019

Forward

The Eleventh International Conference on Advances in Databases, Knowledge, and Data
Applications (DBKDA 2019), held between June 02, 2019 to June 06, 2019 - Athens, Greece,
continued a series of international events covering a large spectrum of topics related to
advances in fundamentals on databases, evolution of relation between databases and other
domains, data base technologies and content processing, as well as specifics in applications
domains databases.

Advances in different technologies and domains related to databases triggered substantial
improvements for content processing, information indexing, and data, process and knowledge
mining. The push came from Web services, artificial intelligence, and agent technologies, as
well as from the generalization of the XML adoption.

High-speed communications and computations, large storage capacities, and load-
balancing for distributed databases access allow new approaches for content processing with
incomplete patterns, advanced ranking algorithms and advanced indexing methods.

Evolution on e-business, ehealth and telemedicine, bioinformatics, finance and marketing,
geographical positioning systems put pressure on database communities to push the ‘de facto’
methods to support new requirements in terms of scalability, privacy, performance, indexing,
and heterogeneity of both content and technology.

We welcomed academic, research and industry contributions. The conference had the
following tracks:

 Knowledge and decision base

 Databases technologies

 Data management

 GraphSM: Large-scale Graph Analysis, Management and Applications
We take here the opportunity to warmly thank all the members of the DBKDA 2019

technical program committee, as well as all the reviewers. The creation of such a high quality
conference program would not have been possible without their involvement. We also kindly
thank all the authors who dedicated much of their time and effort to contribute to DBKDA
2019. We truly believe that, thanks to all these efforts, the final conference program consisted
of top quality contributions.

We also thank the members of the DBKDA 2019 organizing committee for their help in
handling the logistics and for their work that made this professional meeting a success.

We hope that DBKDA 2019 was a successful international forum for the exchange of ideas
and results between academia and industry and to promote further progress in the areas of
databases, knowledge and data applications. We also hope that Athens, Greece provided a
pleasant environment during the conference and everyone saved some time to enjoy the
historic charm of the city.

DBKDA 2019 Chairs

                             2 / 69



DBKDA Steering Committee
Friedrich Laux, Reutlingen University, Germany
Andreas Schmidt, Karlsruhe Institute of Technology / University of Applied Sciences
Florin Rusu, University of California Merced, USA
Jerzy Grzymala-Busse, University of Kansas, USA
Filip Zavoral, Charles University Prague, Czech Republic
Konstantinos Kalpakis, University of Maryland Baltimore County, USA

DBKDA Industry/Research Advisory Committee
Peter Kieseberg, St. Pölten University of Applied Sciences, Austria
Shin-ichi Ohnishi, Hokkai-Gakuen University, Japan
Thomas Triplet, Ciena inc. / Polytechnique Montreal, Canada
Stephanie Teufel, iimt - international institute of management in technology | University of
Fribourg, Switzerland
Rajasekar Karthik, Oak Ridge National Laboratory, USA
Erik Hoel, Esri, USA
Lisa Ehrlinger, Johannes Kepler University Linz, Austria / Software Competence Center
Hagenberg GmbH, Austria
Daniel Kimmig, solute GmbH, Germany

                             3 / 69



DBKDA 2019
Committee

DBKDA Steering Committee
Friedrich Laux, Reutlingen University, Germany
Andreas Schmidt, Karlsruhe Institute of Technology / University of Applied Sciences
Florin Rusu, University of California Merced, USA
Jerzy Grzymala-Busse, University of Kansas, USA
Filip Zavoral, Charles University Prague, Czech Republic
Konstantinos Kalpakis, University of Maryland Baltimore County, USA

DBKDA Industry/Research Advisory Committee
Peter Kieseberg, St. Pölten University of Applied Sciences, Austria
Shin-ichi Ohnishi, Hokkai-Gakuen University, Japan
Thomas Triplet, Ciena inc. / Polytechnique Montreal, Canada
Stephanie Teufel, iimt - international institute of management in technology | University of
Fribourg, Switzerland
Rajasekar Karthik, Oak Ridge National Laboratory, USA
Erik Hoel, Esri, USA
Lisa Ehrlinger, Johannes Kepler University Linz, Austria / Software Competence Center
Hagenberg GmbH, Austria
Daniel Kimmig, solute GmbH, Germany

DBKDA 2019 Technical Program Committee

Taher Omran Ahmed, Aljabal Algharby University, Azzentan, Libya / College of Applied Sciences,
Ibri, Sultanate of Oman
Baris Aksanli, San Diego State University, USA
Markus Aleksy, ABB AG, Germany
Ioannis Anagnostopoulos, University of Thessaly, Greece
Jose L. Arciniegas H., Universidad del Cauca, Columbia
Zeyar Aung, Masdar Institute of Science and Technology, UAE
Gilbert Babin, HEC Montréal, Canada
Edmon Begoli, Oak Ridge National Laboratory / The University of Tennessee, Knoxville, USA
Amel Borgi, University of Tunis El Manar, Tunisia
Zouhaier Brahmia, University of Sfax, Tunisia
Erik Buchmann, Hochschule für Telekommunikation Leipzig, Germany
Martine Cadot, LORIA-Nancy, France
Gabriel Campero Durand, University of Magdeburg, Germany
Ricardo Campos, Polytechnic Institute of Tomar, Portugal
Paola Carrara, CNR IREA, Italy
Chin-Chen Chang, Feng Chia University, Taiwan
Yung Chang Chi, National Cheng Kung University, Taiwan

                             4 / 69



Byron Choi, Hong Kong Baptist University, Hong Kong
Malcolm Crowe, University of the West of Scotland, UK
Gabriel David, INESC TEC | University of Porto, Portugal
Maria del Pilar Angeles, UNAM, Mexico
Konstantinos Demertzis, Democritus University of Thrace, Greece
Vincenzo Deufemia, University of Salerno, Italy
Juliette Dibie, AgroParisTech, France
Efrén Díez Jiménez, Universidad de Alcalá, Spain
Cedric du Mouza, CNAM, Paris
Lisa Ehrlinger, Johannes Kepler University Linz, Austria / Software Competence Center
Hagenberg GmbH, Austria
Gledson Elias, Federal University of Paraíba (UFPB), Brazil
Manuel Filipe Santos, Universidade do Minho | Research Centre Algoritmi, Portugal
Ingrid Fischer, Universität Konstanz, Germany
Sainyam Galhotra, University of Massachusetts Amherst, USA
Barbara Gallina, Mälardalen University, Sweden
Faïez Gargouri, University of Sfax, Tunisia
Pedro Gil Madrona, UCLM, Spain
Shenoda Guirguis, LinkedIn Co, USA
Ana González-Marcos, Universidad de La Rioja, Spain
Bernard Grabot, Ecole Nationale d'Ingénieurs de Tarbes, France
William Grosky, University of Michigan-Dearborn, USA
Jerzy Grzymala-Busse, University of Kansas, USA
Robert Gwadera, Cardiff University, UK
Dirk Habich, Technische Universität Dresden, Germany
Erik Hoel, Esri, USA
Martin Hoppen, Institute for Man-Machine Interaction - RWTH Aachen University, Germany
Ali Hurson, Missouri University of Science and Technology, USA
Hamidah Ibrahim, Universiti Putra Malaysia, Malaysia
Abdessamad Imine, INRIA-LORIA Nancy Grand-Est, France
Vladimir Ivančević, University of Novi Sad, Serbia
Wassim Jaziri, Taibah University, KSA
Imed Kacem, Université de Lorraine, France
György Kálmán, Norwegian University of Science and Technology (NTNU)/mnemonic AS,
Research Group on Critical Infrastructure Protection, Norway
Konstantinos Kalpakis, University of Maryland Baltimore County, USA
Verena Kantere, University of Geneva, Switzerland
Benjamin Karsin, University of Hawaii, USA
Rajasekar Karthik, Oak Ridge National Laboratory, USA
Timo Kehrer, Humboldt-Universität zu Berlin, Germany
Peter Kieseberg, St. Pölten University of Applied Sciences, Austria
Daniel Kimmig, solute GmbH, Germany
Petr Křemen, Czech Technical University in Prague, Czech Republic
Anne Laurent, University of Montpellier, France

                             5 / 69



Friedrich Laux, Reutlingen University, Germany
Martin Ledvinka, Czech Technical University in Prague, Czech Republic
Lenka Lhotska, Czech Institute of Informatics, Robotics and Cybernetics | Czech Technical
University in Prague, Czech Republic
Chu-Ti Lin, National Chiayi University, Taiwan
Jerry Chun-Wei Lin, Harbin Institute of Technology, China
Tobias Lindaaker, Neo4j Inc., Sweden
Chunmei Liu, Howard University, USA
Yanjun Liu, Feng Chia University, Taiwan
Shangyu Luo, Rice University, USA
Stephane Maag, Telecom SudParis, France
Tanu Malik, DePaul University, USA
Andrea Marino, University of Pisa, Italy
Gerasimos Marketos, Hellenic Open University, Greece
Elio Masciari, ICAR-CNR, Italy
Michele Melchiori, Università degli Studi di Brescia, Italy
Fabio Mercorio, University of Milan - Bicocca, Italy
Mario Mezzanzanica, University of Milan Bicocca, Italy
Cristian Mihaescu, University of Craiova, Romania
Mohamed Mkaouar, ISAAS, Tunisia
Francesc D. Muñoz-Escoí, Universitat Politècnica de València (UPV), Spain
Lammari Ilham Nadira, Conservatoire National des Arts et Métiers, France
Khaled M. Nagi, Alexandria University, Egypt
Joshua C. Nwokeji, Gannon University - Erie Pennsylvania, USA
Shin-ichi Ohnishi, Hokkai-Gakuen University, Japan
Benoît Otjacques, LIST - Luxembourg Institute of Science and Technology, Luxembourg
Francesco Parisi, University of Calabria, Italy
Shirish Patil, Sitek Inc., USA
Bernhard Peischl, Institute for Software Technology | Graz University of Technology, Austria
Hai Phan, New Jersey Institute of Technology, USA
Gianvito Pio, University of Bari Aldo Moro, Italy
Elaheh Pourabbas, National Research Council | Institute of Systems Analysis and Computer
Science "Antonio Ruberti", Italy
Praveen R. Rao, University of Missouri-Kansas City, USA
Manjeet Rege, University of St. Thomas, USA
Jan Richling, South Westphalia University of Applied Sciences, Germany
Marta Rukoz, Université Paris Dauphine, France
Miguel Romero, University of Oxford, UK
Florin Rusu, University of California Merced, USA
M. Saravanan, Ericsson Research, India
Idrissa Sarr, Université Cheikh Anta Diop, Dakar, Sénégal
Andreas Schmidt, Karlsruhe Institute of Technology / University of Applied Sciences Karlsruhe,
Germany
Sebastian Schrittwieser, TARGET Research Center, Austria

                             6 / 69



Wieland Schwinger, Johannes Kepler University Linz (JKU), Austria
Erich Schweighofer, University of Vienna, Austria
Nematollaah Shiri, Concordia University, Canada
Patrick Siarry, Université Paris-Est Créteil, France
Günther Specht, Universität Innsbruck - Institut für Informatik, Austria
Spyridon Symeonidis, Information Technologies Institute (ITI) of the Centre for Research &
Technology Hellas (CERTH), Thessaloniki, Greece
Sergio Tessaris, Free University of Bozen-Bolzano, Italy
Olivier Teste, University of Toulouse 2 Jean Jaurès - IRIT
Stephanie Teufel, iimt - international institute of management in technology | University of
Fribourg, Switzerland
Nicolas Travers, ESILV - Pôle Léonard de Vinci, Paris, France
Thomas Triplet, Ciena inc. / Polytechnique Montreal, Canada
Robert Ulbricht, Robotron Datenbank-Software GmbH, Dresden, Germany
Lucia Vaira, University of Salento, Italy
Maurice van Keulen, University of Twente, Netherlands
Genoveva Vargas-Solar, French Council of Scientific Research, LIG-LAFMIA, France
Ismini Vasileiou, Plymouth University, UK
Damires Yluska de Souza Fernandes, Federal Institute of Education, Science and Technology of
Paraíba, Brazil
Feng George Yu, Youngstown State University, USA
Filip Zavoral, Charles University Prague, Czech Republic
Qiang Zhu, University of Michigan, USA

                             7 / 69



Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

                             8 / 69



Table of Contents

Utilizing Citation Context in a Two-Level Topic Model for Knowledge Discovery
Lixue Zou, Li Wang, and Xiwen Liu

1

A Schema Readability Metric for Automated Data Quality Measurement
Lisa Ehrlinger, Gudrun Huszar, and Wolfram Woess

4

StrongDBMS: Built from Immutable Components
Malcolm Crowe, Santiago Matalonga, and Martti Laiho

11

A Denormalization Approach to Answering Join Queries
Mohammed Hamdi, Kavya Narne, Hamzah Arishi, Feng Yu, and Wen-Chi Hou

17

Graph Learning for Prediction of Drug-Disease Interactions: Preliminary Results
Andrej Kastrin and Dimitar Hristovski

28

Exploring and Comparing Table Fragments With Fragment Summaries
Fatma-Zohra Hannou, Bernd Amann, and Mohamed-Amine Baazizi

31

A Context Data Metamodel for Distributed Middleware Platforms in Smart Cities
Julio Lopes, Lucas Silva, and Gledson Elias

39

Strongly Possible Keys in Incomplete Databases with Limited Domains
Munqath Alattar and Attila Sali

46

A Skyline Query Processing Approach over Interval Uncertain Data Stream with K-Means Clustering Technique
Zarina Dzolkhifli, Hamidah Ibrahim, Fatimah Sidi, Lilly Suriani Affendey, Siti Nurulain Mohd Rum, and Ali Amer
Alwan

51

Towards a Knowledge Graph to Describe and Process Data Defects
Joao Marcelo Borovina Josko, Lisa Ehrlinger, and Wolfram Woss

57

Powered by TCPDF (www.tcpdf.org)

                               1 / 1                             9 / 69



Utilizing Citation Context in a Two-Level Topic Model for Knowledge Discovery

Lixue Zou, Li Wang, Xiwen Liu
National Science Library, Chinese Academy of Sciences

University of Chinese Academy of Sciences
Beijing, China

E-mail: zoulx@mail.las.ac.cn, wangli@mail.las.ac.cn, liuxw@mail.las.ac.cn

Abstract—Knowledge discovery from academic articles has
received increasing attention since full text has been made
available by the development of the digital databases. In a
corpus of scientific articles, documents are connected by
citations and one document has two different parts in the
corpus: citation context and autonomous text. We believe that
the topic distributions of these two parts are different and
related in a certain way. In the existing topic models, little
effort is made to incorporate the citation context. In this paper,
we propose a citation context topic model which considers the
corpus at two levels: cited topic level and citing topic level,
utilizing citation context extracted from the full text. Each
document has two different representations in the latent topic
space. We apply our model to a dataset of PubMed Central,
where the full text is available from the XML data. The results
clearly show that the citation context can help to discover the
latent two-level topics and demonstrate a very promising
knowledge discovery capability.

Keywords-Topic model; Citation context; Knowledge Discovery;
XML data.

I. INTRODUCTION

Proliferation of large electronic document collections in
the recent past has posed several interesting challenges in
knowledge discovery. Latent topic models, such as
Probabilistic Latent Semantic Analysis (PLSA) [1] and
Latent Dirichlet Allocation (LDA) [2], have become very
popular as completely unsupervised techniques for topic
discovery in large document collections. These approaches
model the co-occurrence patterns present in text and identify
a probabilistic membership of the words and the documents
in the lower-dimensional topic space [3].

Then, variants of PLSA and LDA allow incorporating
more aspects of articles, and here we consider the citation
information. As an extension of PLSA, Probabilistic
Hypertext-Induced Topic Selection (PHITS) [4] proposed a
topical clustering of citations in a manner similar to the
topical clustering of words proposed in PLSA, while PLSA-
PHITS [5] performed a simultaneous modeling of the
citations associated with word occurrences. The Bayesian
version of PHITS was proposed as mixed membership model
and linked-LDA [6]. In addition, the Citation Network Topic
Model (CNTM) [7] presented a non-parametric extension of
a combination of the Poisson mixed-topic link model and the
author-topic model.

There is also existing work on modeling citation
influence. The Copycat and the Citation Influence Model
(CIM) [8] introduced the influence parameter to determine
how the cited papers are blended into the citing document.
The Pairwise-Link-LDA model combines the ideas of LDA
and Mixed Membership Block Stochastic Models, while the
Link-PLSA-LDA model combines the LDA and PLSA
models, assuming that the link structure is a bipartite graph
[9]. Additionally, similar models include the Inheritance
Topic Model (ITM) [10], the Bi-citation-LDA [11], the
Bernoulli Process Topic (BPT) model [12], etc.

Although current citation related topic models are
quantitatively successful in clustering the citations and in
identifying the citation influence and transitive property, they
overlook how those documents influenced the content of this
document. That is, the process of incorporation of the
citation information ignores the citation context in which that
citation appeared in the document.

In our work, we present a two-level topic model utilizing
the citation context in a document to discover the latent
topic, called the citation context topic model. We define the
citation context for a cited document as a bag of words that
contains a certain number of words appearing before and
after the citation’s mention in the citing document. These
words can help identify the major topics in the cited
document. Moreover, the citation context does not
necessarily portray the entire content of the cited document,
but provides a description from the authors’ perspective in
relation to the citing document’s topic. This allows us to
identify both the cited topics and the autonomous topics.

The rest of this paper is organized as follows: In Section
II, we describe the model and the data we dealt with for
analysis. Then, Section III gives the experiments and results.
Finally, in Section IV, we summarize this paper and prospect
our future plans.

II. METHODS

We assume that when the authors write an article, they
often reuse ideas and techniques from references, and then
based on the inherited thoughts, they generate their own
innovative ideas. Thus, each document can be separated into
two parts, the citation context and the autonomous text.
Moreover, the citation context can be reflected by the cited
sentences, while the autonomous text is composed of words
that appear outside the citation context. In other words, the
topics of each document include two parts: the “citing

1Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            10 / 69



topics” from the document itself and the “cited topics” from
the citations. Further, we let the citation context or the
autonomous text choose to “generate” the topic of a word in
the autonomous text by incorporating the Bernoulli
distribution into the model, to handle the associations among
the autonomous text and the citation context.

Our model assumes the following generative process for
each document in the corpus: (1) for the citation context,
choose a topic from the multinomial distribution of cited
topic conditioned on the document, where the distribution
parameter is drawn from a Dirichlet distribution; (2) for the
autonomous text, toss a coin s ~ Bernoulli (λ), then if s=0, 
choose a topic from the multinomial distribution of cited
topic; if s=1, choose a topic from the multinomial
distribution of citing topic, where the distribution parameter
is drawn from a Dirichlet distribution; (3) for each topic,
choose a word which follows the multinomial distribution
conditioned on the topic with the distribution parameter
drawn from a Dirichlet distribution.

Similar to LDA, we also need to infer the posterior
probability. Considering that the Markov Chain Monte Carlo
sampling methods, such as Gibbs sampling, come with a
theoretical guarantee of converging to the actual posterior
distribution and the recent advances that make its fast
computation feasible over a large corpus, we utilize Gibbs
sampling as a tool to approximate the posterior distribution.

We performed our experiments on a dataset of PubMed
Central [13], where the full text was extracted from the XML
files. The dataset corresponds to brain aging and 246 articles
that were cited for more than once were chosen for the test.
We extracted one sentence surrounding the citation
mentioned in the document as the citation context for each
cited document.

For the preprocessing, firstly, we used the tokenization
and lemmatization to extract and lemmatize words from the
citation context and autonomous text, respectively. Then, we
filtered out certain words that were stop words, common
words and rare words. We define common words as words
that appear in more than 80% of the publications, and rare
words are words that occur less than 10 times. Finally, the
vocabulary size was 2348 unique words.

III. RESULTS

For each paper, we extracted the citation context and its
position in the full text. There were a total of 13858 cited
documents with 16316 citation sentences in the collection of
246 articles. In these citation sentences, 8673 sentences were
labeled with their location in the full text, which mainly
contained four types, introduction (including background),
methods, results, conclusion (including discussion). As
shown in Figure 1, over two thirds of 8673 sentences were
located in the introduction part and the conclusion part, at 30
percent and 38 percent, respectively, whereas those in
methods and results made up 20 percent and 12 percent,
respectively.

Then, we applied our topic model to the dataset with the
number of topics fixed at 10. The parameter was also fixed.
One main advantage of the model is the capacity of
differentiating the two-level topics. For each paper, we can

obtain the topic probabilities at the cited topic level and the
citing topic level.

Figure 1. Distribution of citation context in the full text.

Four topics and the top ten words were selected from the
output learned by our model, as illustrated in Table Ⅰ. The
topic probability conditioned on the dataset has a high value
on “memory” and “mitochondrion and damage” at the cited
topic level, while “brain structure” and “dementia” have
strong probability at the citing topic level.

TABLE I. DETECTION OF TWO-LEVEL TOPICS

Cited topics Associated words

Memory

hippocampal (0.069), synaptic (0.054), learn
(0.045), plasticity (0.034), receptor (0.034), signal
(0.023), impairment (0.020), bdnf (0.015), rodent
(0.014), channel (0.014)

Mitochondrion
and Damage

mitochondrial (0.032), oxidative (0.030), damage
(0.022), neurodegenerative (0.020), pathway
(0.018), sirt (0.017), dna (0.016), signal (0.012),
antioxidant (0.011), neurodegeneration (0.011)

Citing topics Associated words

Brain
Structure

cortex (0.071), pattern (0.038), cortical (0.0354),
rest (0.031), connectivity (0.027), refrontal
(0.022), stimulus (0.021), lobe (0.019), neural
(0.019), gyrus (0.017)

Dementia

clinical (0.048), dementia (0.044), mild cognitive
impairment (0.043), risk (0.033), atrophy (0.031),
apoe (0.025), mri (0.025), hippocampal (0.024),
diagnosis (0.016)

IV. DISCUSSION AND FUTURE WORK

In this paper, we propose a citation context topic model
to jointly model the generation process of the autonomous
text and citation context for each document to discover the
two-level topics. The experiment results demonstrate the
effectiveness of the model.

In the future, we will test the efficiency of our topic
model on a large collection. Additionally, we want to
compare with the state of art topic models and evaluate the
likelihood performance and the link prediction task.
Furthermore, the investigation of the various applications
suggests the promising knowledge discovery capability of
this model from the full text, such as topic evolution. Wewill
couple our method with other bibliometric methods to
portray the inherent dependence among topics in the topic
evolution.

2Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            11 / 69



ACKNOWLEDGMENT

The research reported in this paper has been supported by
the Knowledge Innovation Program of the Chinese Academy
of Sciences.

REFERENCES

[1] T. Hofmann, “Probabilistic latent semantic analysis,”
Fifteenth Conference on Uncertainty in Artificial Intelligence,
1999, pp. 289-296.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” J Machine Learning Research Archive, 2003, vol.
3, pp. 993-1022.

[3] S. Kataria, P. Mitra, and S. Bhatia, “Utilizing context in
generative bayesian models for linked corpus,” Twenty-
Fourth AAAI Conference on Artificial Intelligence, 2010, pp.
1340-1345.

[4] D. Cohn and H. Chang, “Learning to probabilistically identify
authoritative documents,” Seventeenth International
Conference on Machine Learning, 2000, pp. 167-174.

[5] D. Cohn and T. Hofmann, “The missing link: a probabilistic
model of document content and hypertext connectivity,”
International Conference on Neural Information Processing
Systems, 2001, pp. 409-415.

[6] E. Erosheva, S. Fienberg, and J. Lafferty, “Mixed-
membership models of scientific publications,” Proceedings

of the National Academy of Sciences of the United States of
America, 2004, vol. 101, pp. 5220.

[7] K. W. Lim and W. Buntine, “Bibliographic Analysis with the
Citation Network Topic Model,” Proceedings of the Sixth
Asian Conference on Machine Learning (ACML), 2014, pp.
142-158.

[8] L. Dietz, S. Bickel, and T. Scheffer, “Unsupervised prediction
of citation influences,” International Conference on Machine
Learning (ACM), 2007, pp. 233-240.

[9] R. Nallapati, A. Ahmed, E. P. Xing, and W. W. Cohen, “Joint
latent topic models for text and citations,” ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, 2008, pp. 542-550.

[10] Q. He, B. Chen, J. Pei, B. J. Qiu, P. Mitra, and C. L. Giles.
“Detecting topic evolution in scientific literature: how can
citations help,” ACM, 2009, pp. 957-966.

[11] L. Huang , H. Liu, J. He, and X. Y. Du, “Finding Latest
Influential Research Papers Through Modeling Two Views of
Citation Links,” Asia-pacific Web Conference, 2016, pp. 555-
566.

[12] Z. Guo, Z. M. Zhang, S. H. Zhu, Y. Chi, and Y. H. Gong, “A
Two-Level Topic Model Towards Knowledge Discovery
from Citation Networks,” IEEE Transactions on Knowledge
& Data Engineering, 2014, vol. 26, pp. 780-794.

[13] PubMed Central, https://www.ncbi.nlm.nih.gov/pmc/
[accessed May, 2019]

3Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            12 / 69



A Schema Readability Metric for Automated Data Quality Measurement

Lisa Ehrlinger∗†, Gudrun Huszar∗, Wolfram Wöß∗
∗Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria

†Software Competence Center Hagenberg, Softwarepark 21, 4232 Hagenberg, Austria
email: lisa.ehrlinger@jku.at, wolfram.woess@jku.at

Abstract—Data quality measurement is a critical success factor
to estimate the explanatory power of data-driven decisions.
Several data quality dimensions, such as completeness, accuracy,
and timeliness, have been investigated so far and metrics for
their measurement have been proposed. While most research
into those dimensions refers to the data values, schema quality
dimensions in general, and readability in particular, have not
gained sufficient attention so far. A poorly readable schema has
a negative impact on the data quality, e.g., two attributes with
different purpose, but synonymous labels may cause incorrectly
inserted attribute values. Thus, we specifically observe the data
quality dimension readability on schema-level and introduce a
metric for its measurement. The measurement is based on a
dictionary-approach using a wordnet, which takes into account
the semantics of the words used in the schema (e.g., attribute
labels). We implemented and evaluated the schema readability
metric within the data quality tool QuaIIe.

Index Terms—Data Quality; Metrics; Readability; Semantics.

I. INTRODUCTION

Data Quality (DQ) is a prerequisite to trust data-driven
decisions, which can, for example, be strategic decisions in
companies, or artificial intelligence algorithms for self-driving
cars. Eckerson [1] estimated the costs arising from poor
customer data for companies to be more than 600 billion
US dollars a year. These costs include failed prints and loss
of customers due to incorrect addressing, as well as staff
overhead. According to Loshin [2], the primary categories of
negative impacts related to DQ are financial (e.g., decreased
revenues and increased penalties), confidence and satisfaction-
based impacts, productivity impacts (e.g., decreased through-
put), and risk and compliance impacts (e.g., investment risks).

Data quality is usually measured in different dimensions,
such as, completeness, accuracy, consistency, and minimal-
ity [3][4]. Those dimensions can either refer to the extension
of the data (i.e., data values), or to their intension (i.e., the
schema) [4]. While a lot of research has been conducted
for DQ dimensions on the data-level (cf. [5]–[8]), schema
quality dimensions in general, and readability in particular,
have not gained sufficient attention so far. In existing research,
the measurement of readability is usually associated with
textual documents and not primarily to Information Systems
(ISs). To the best of our knowledge, there exists no metric
to measure the readability of IS schemas. Thus, the major
contribution of this paper is a discussion of the schema quality
dimension readability along with a newly developed metric
for its measurement. An essential feature of the metric is the
incorporation of semantics of attribute labels using a wordnet.

According to Vossen [9], the quality dimension readability
describes the condition, in which a schema represents the
modeled domain in a natural and clear way, which means, it is
self-explanatory to the user. From a more general perspective,
the readability of IS schemas is important for two aspects: (1)
the understandability of a schema for humans, as described
by [9], and (2) the degree to which a schema can be used for
automated schema fusion, integration, or matching approaches.
An example are two IS schemas within a company, where one
schema has a table product for storing product types, and
the second schema has a corresponding table prod.Type,
which stores the same entity type. An automated schema
integration algorithm requires a sufficient level of readability
and standardization in order to merge both tables. Also,
an employee, who is not familiar with the schemas, might
consider the tables as not equivalent. This scenario could lead
on the one hand to duplicate entity types (because both tables
are populated separately), and on the other hand to incomplete
inventory counts (because only one table is queried for sales
statistics). To show the applicability of our readability metric,
we implemented it in the DQ tool QuaIIe [10] and evaluated
the ratings of several databases (DBs).

This paper is structured as follows: Section II summarizes
related work concerning the measurement of readability. In
Section III, we present our approach how to measure the
readability of IS schemas, with our newly developed metric.
The metric is demonstrated and discussed in Section IV. We
conclude in Section V with an outlook on future work.

II. STATE OF THE ART AND RELATED WORK

In this section, we provide an overview of related work
about readability and explain why existing readability metrics
are not sufficiently developed. The DQ dimension readability
is most commonly described as the degree to which a schema
represents the modeled domain in a natural and clear way, with
the aim to be self-explanatory to the user [9]. Since clarity is
subjective, no generally valid formal definition for this DQ
dimension exists [4]. In alignment with the “fitness for use”
principle of DQ [3][11], the readability dimension depends on
the intended use and user group. For this definition, the knowl-
edge of the user, the vocabulary and the format of the data is
important. In addition to the user perspective, readability is an
important aspect for automated schema matching approaches,
e.g., in the area of information fusion or information fusion.

When considering the topic from a more general viewpoint,
research about the readability of texts in documents has al-

4Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            13 / 69



ready been published since 1900 [12][13]. In those philology-
based approaches, sentence features (e.g., sentence length,
syllables in words, word length and popularity) are used to
measure the readability of texts. Renzis et al. [14] define
readability in this context as the difficulty or simplicity of
text comprehension for the intended user. One frequently used
index is the Automated Readability Index (ARI) [13], which
computes the readability based on syllables per word:

ARI =
w

s
+ 9 ∗ z

w
, (1)

where w
s is the number of words w per sentence s, and z

w
is the number of characters z per word. However, Zhao and
Khan [12] observed that such philology-based approaches do
not consider domain-specific terms sufficiently. For example,
myocardium is shorter than myocardal muscle and thus easier
to read with respect to the philology-based approach. The
words are synonyms, but a non-expert will rate texts with
myocardium less readable than texts with myocardal mus-
cle. Consequently, readability measures might not represent
the “real” readability for non-experts adequately, if domain-
specific terms are not considered [12].

However, those philology-based approaches are not useful
for measuring schema readability, because instead of sen-
tences, only single words (e.g., attribute labels) are available.
While the readability of a conceptual schema in its graphical
representation also includes aesthetic criteria, such as the
arrangement of entities or crossing lines [15], the readability
of a logical schema is limited to the actual naming of entities
and relationships.

In the frame of DQ research, Cai et al. [5] observed
DQ standards for big data in five dimensions including pre-
sentation quality, which covers the readability and structure
of data representation. Data with high presentation quality
allows the user to understand and interpret the data. However,
this understanding requires knowledge about commonly used
terms, for example, units, codes, and abbreviations. Cai et
al. [5] suggested the following indicators to assess the degree
of readability in data: (a) data (content, format, semantics,
etc.) are clear and understandable, (b) it is easy to judge that
the data provided meet requirements, and (c) data description,
classification, and coding content satisfy specification and are
easy to understand. There is no formal definition of those three
indicators, which would allow a direct application to measure
the readability in a company IS. The first indicator clear
and understandable [5] is closely connected with the term
comprehension from the philological readability definition by
Renzis et al. [14]. If a text is clear and understandable, a reader
can simply comprehend it. In the context of data, a human
can interpret the data and eventually derive information and
knowledge.

Yan et al. [16] presented a domain-specific and ontology-
based readability measure, which is based on two document
properties: cohesion and scope. Cohesion refers to the re-
latedness of words and is influenced by the association of

terms in an ontology. The closer the words in an ontology, the
higher is the cohesion. The scope refers to experts knowledge.
Assuming n > 1, and i < j, cohesion is calculated according
to [16]:

Cohesion(di) =

∑n
i,j=1 Sim(ci, cj)

NumberOfAssociations
, (2)

Sim(ci, cj) = −log
len(ci, cj)

2D
, (3)

NumberOfAssociations =
n(n− 1)

2
, (4)

where di is a document, n is the total number of domain
concepts, and c is a concept. Sim(ci, cj) computes semantic
similarity of concepts. The function len(ci, cj) calculates the
shortest path between two concepts. NumberOfAssociations is
the total number of associations among domain concepts.

All mentioned approaches do not provide a definition nor
a metric for readability of IS schemas. Thus, we tackle this
research issue with a specification of the DQ dimension
readability on IS schema-level and a metric to measure it,
which is presented in the following section. The approach aims
at automated readability measurement, which can be employed
for continuous DQ monitoring.

III. AN APPROACH TO MEASURE SCHEMA READABILITY

In this section, we present our approach to achieve a
sufficient level of readability in IS schemas. The approach
can be divided into three steps, which are explained in the
following subsections: (1) schema preprocessing in order to
achieve comparability of different schemas and extract words
for the readability calculation, (2) the development of a set
of readability criteria, and based on these criteria, (3) the
calculation of our readability metric.

A. Schema Preprocessing

For each evaluated schema, a machine-readable description
using the Data Source Description (DSD) vocabulary [17]
is generated. The DSD vocabulary is an abstraction layer
for different schemas. An excerpt of such a DSD file is
shown in Figure 1, which contains the description of the
employees table and the attribute “first name” from the
employees DB [18].

The labels (rdfs:label) contained in the DSD files are
the basis to extract “words” for further processing. A word can
be either the complete label, or part of it. If a schema uses
delimiters like underscores ( ), hyphens (-), or camel case, one
label is split into several words. For example, “first name”
(or alternatively “firstName”) is split into “first” and “name”.
This string splitting enables the usage of each substring of
a concatenated label for the readability calculation. One IS
schema may consist of several concepts, which are, e.g., tables
in relational DBs. In that case, the readability is calculated for

5Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            14 / 69



1 ex:employees a dsd:Concept;
2 rdfs:label "employees";
3 dsd:hasPrimaryKey ex:employees.pk;
4 dsd:hasAttribute ex:employees.emp_no,
5 ex:employees.first_name,
6 ex:employees.last_name,
7 ex:employees.birth_date,
8 ex:employees.hire_date,
9 ex:employees.gender.

10

11 ex:employees.first_name a dsd:Attribute;
12 rdfs:label "first_name";
13 dsd:isOfDataType xsd:string;
14 dsd:maxCharacterLength "14"ˆˆxsd:long ;
15 dcterms:title "first_name" .

Fig. 1. Data Source Description of Employees

each concept and the mean of all concept-level readability
ratings is used as overall rating for the entire schema.

One challenge faced during this work was the accumula-
tion of duplicate words due to the splitting of concatenated
strings. Prefixes and suffixes are a common tool to associate
attributes to the respective concepts, e.g., “employeeName”
and “employeeNumber”. After the splitting, a large number
of duplicates (e.g., in this case “employee”) is generated and
needs to be further processed. We resolved this issue in the
implementation by storing all words in a hashmap and, thus,
those duplicate words are only considered once.

B. Readability Criteria

For our approach, we developed a set of readability criteria,
which are applied to “words”. In the following paragraphs,
each of these criteria is discussed in more detail and exempli-
fied with the help of a DB for storing employees (cf. Table I).
As a result of the readability calculation proposed in this
paper, a quality report is produced, which in addition to
the readability rating (from the metric) contains a set of
annotations that provide further information about the quality
of a schema. Figure 2 shows a flowchart diagram of our
approach, including the extraction of words from a DSD file,
the evaluation of the criteria, and the annotations that are set
for each criterion.

Yes

No

Yes 

Yes

isSynonymOf = 
<synonyms>

isHypernymOf = 
<hyponyms>

isInWordNet = false

No 

extract words

Annotations 
 

DSD File

NoExists word in
abbreviations file?

Abbreviations file
available? 

Exists word in
dictionary?

Synonyms? 

Hypernyms?

detect case

Yes 

isAbbreviationOf = 
<abbreviation, word> 

 caseIs = <case>

Fig. 2. Readability Measurement Approach

1) Wordnet existence: To detect and process cognates
(e.g., synonyms and hypernyms), it must be initially checked
whether a word exists in a publicly available online dictionary,
and therefore can be considered as generally known. For
an automated approach, the usage of a wordnet, which is a
combination of a dictionary and a thesaurus, is reasonable.
A comprehensive list of wordnets is provided in [19] with
prominent examples like DBPedia [20], WoNeF [21], or
WordNet [22]. For our approach, we selected the widely used
WordNet [22][23], which is developed at Princeton University
since 1985. In contrast to a dictionary, the terms in WordNet
are categorized into nouns, verbs, adjectives, adverbs, and
functors, and are sorted according to their semantics [24].
Terms are grouped to sets of synonyms, so called synsets. The
structure of WordNet is based on psycho-linguistics, which is
the science of the human psyche and explores the task of
learning and using a language [25]. A word is annotated with
isInWordNet (set to true or false) to indicate if it is in WordNet.

If a word was not found in the wordnet, it still may be an
abbreviation. Abbreviations can impede readability, because
they might lead to ambiguities. An example is the abbreviation
MI, which refers to Myocardial Infarction (heart attack) in the
medical context, but could also stand for the state Michigan.
Furthermore, there exist ambiguities within a single domain.
MI can, for example, also refer to Mental Illness, a mental
disorder of a person. Depending on a persons field of expertise
(cardiology or neurology), the same abbreviation would be
interpreted differently. In our approach, it is possible to add
domain-specific abbreviations, which are frequently used in
a specific context, but are not contained in WordNet. This
measure is also recommended by Hoberman [15] to increase
the readability of conceptual IS schemas.

In QuaIIe, it is possible to add abbreviations in form of a
Comma-Separated Values (CSV) file [26]. If such a file is pro-
vided and contains a word, which was not found in a wordnet,
the annotation isAbbreviationOf is set to link the abbreviation
to its corresponding full word. An example is provided in
Table I, where a relation for storing employees includes an
attribute with the label “emp”, which is an abbreviation for
“employee”. Without additional information, this label would
not be found in a wordnet and no further processing (e.g.,
checking for synonyms) would be possible.

TABLE I. EMPLOYEES TABLE

emp worker SALARY date product ware
Doe Jones 1400 01012010 car wheel

Smith Green 1600 01042018 bike settle

2) Consistent cases: The consistent use of cases is im-
portant for a readable schema [15]. Possible variants are
uppercase only, initial uppercase, lowercase, camel case, with
or without blanks and/or hyphens. If one attribute is written in
lowercase and another attribute in uppercase, this might lead
to ambiguities. Thus, the inconsistent usage of cases decreases
the readability rating. In addition, the annotation caseIs gives

6Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            15 / 69



evidence about the case detected per word. The attribute
“SALARY” in Table I is an example for inconsistently used
cases compared to the other attributes.

3) Cognates: The semantics, that is, the meaning of the
words, is the most important aspect for humans to interpret,
understand, and efficiently work with a IS schema. The term
cognates has its origin in linguistics and describes related
words, which have the same origin or share the same meaning,
for example, synonyms, hypernyms, or homonyms. Cognates
can lead to ambiguities and therefore to a less readable IS
schema. Those relations are considered in our readability met-
ric and discussed in the following paragraphs. Josko et al. [27]
defined “synonymous values” and “homonymous values” in
their formal taxonomy on data defects on IS content-level.
We refined the original definitions from [27] to Definitions 1
and 2, to adopt them to synonyms and homonyms within IS
schemas.

a) Synonyms: The term synonym is derived from the
Greek word “syn”, which means “together”, and describes
words, which share the same meaning.

Definition 1 (Synonyms [27]): Let sp : w(S) × w(S) →
{true, false} be a function that returns if the graphy and
pronunciation of two words within S are equal, according
to LEX . Let me : w(S) × w(S) → {true, false} be a
function that returns if the meaning of two words within S
are equal or nearly the same, according to LEX . A schema
has synonyms iff ∃wi, wj ∈ S, where i 6= j, such that
sp(wi, wj) = false and me(wi, wj) = true. Synonyms
denote distinct terms in writing that share the same or similar
meanings. Such terms can be expressed as vernacular words,
acronyms, abbreviations, or symbols. This defect arises when
synonymous terms are used interchangeably to indicate the
same fact about objects within a schema.

Here, LEX is a universal thesaurus (i.e., a set of lexical
definitions, relationships and similarity degrees [27]) and w(S)
the set of n words {w1, w2.., wn} within an IS schema S.
The attributes “product” and “ware” in Table I are synonyms,
because the distinction between the two words is not clear.
Thus, the existence of synonyms in an IS schema decreases
the readability rating. Additionally, the affected attributes are
annotated with isSynonymOf to link them to their correspond-
ing synonyms.

b) Hypernyms: The term hypernym is derived from the
Greek word “hyper”, which means “above”, and denotes a
superordinate concept [25]. An IS schema, which includes a
specific word (i.e., a hyponym), as well as its superordinate
concept (hypernym), leads to ambiguities in the interpretation
of a schema. Thus, we decrease the readability, if hyponym-
hypernym relations are detected. Each hypernym is annotated
with isHypernymOf to refer to its hyponyms within an IS
schema. An example for such a relation is shown in Table I,
where “worker” is a hypernym of “employee”.

c) Homonyms: The term homonym is derived from the
Greek word “homo”, i.e., “equal”, and describes words with

the same syntax and pronunciation but different meaning.
Thus, homonyms unite the cognates homographs (same syn-
tax, different meaning) and homophones (same pronunciation,
different meaning) [25]. Josko et al. [27] defined homonyms
according to:

Definition 2 (Homonyms [27]): Let sp : w(S) × w(S) →
{true, false} be a function that returns if the graphy and
pronunciation of two words within S are equal, according to
LEX . Let me : w(S)×w(S)→ {true, false} be a function
that returns if the meaning of two words within S are equal or
nearly the same, according to LEX . A schema has homonyms
iff ∃wi, wj ∈ S, where i 6= j, such that sp(wi, wj) = true
and me(wi, wj) = false. Homonyms are words that sound
alike or are spelled alike, but have different meanings. The
data defect “homonymous values” arises when homonymous
terms are applied interchangeably and indicate the same fact
about objects within a schema.

The majority of ISs in productive use implement the rela-
tional data model, and therefore lack a semantic annotation
of the words within a schema. For example, the meaning of
the word “bank”, which can refer to the financial institution,
or to a river bank, is not explicitly defined. The meaning is
only implicitly available through the IS content, or known
by domain experts. In such schemas, the distinction between
homonyms and synonyms is not possible due to the lack of
explicitly available semantics. Therefore, homonym detection
is not part of our current implementation. However, more
complex data models, like ontologies, would enable homonym
detection. Part of our future work is to extend the readability
metric with homonym detection.

C. A Metric to Measure Schema Readability

Based on the criteria from Section III-B, we suggest calcu-
lating the readability of an IS schema according to

Red(s) =

∑|w|
i=1 #fcriti/#crit

|w|
, (5)

where |w| is the total number of words in schema s, #crit is
the number of considered criteria, and #fcriti is the number
of fulfilled criteria per word wi. The metric delivers readability
ratings that are normalized by [0,1], where 0.0 represents
absolute poor readability, and 1.0 perfectly good readability.
This characteristic aligns with the five requirements a sound
DQ metric should fulfill by Heinrich et al. [28]. To discuss
these requirements with respect to our readability metric, we
calculated all possible ratings for a schema with 100 attributes.
Figure 3 shows on the left side a boxplot, which indicates the
distribution of the resulting metric ratings. On the right side
of the figure, a line plot illustrates the metric rating per total
number of fulfilled criteria, that is, number of attributes (100)
multiplied by number of criteria (here 4: wordnet existence,
case consistency, synonyms, and hypernyms).

The first requirement by [28] (Existence of Minimum and
Maximum Metric Values) states that the metric results have to

7Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            16 / 69



Readability
Distribution

0.0

0.2

0.4

0.6

0.8

1.0
Re

ad
ab

ilit
y 
Ra

tin
g

0.5

0 100 200 300 400
Fulfilled Criteria

Fig. 3. Readability Metric Results

be normalized by [0,1], where 0.0 represents least readability,
and 1.0 best readability. The whiskers of the boxplot in Fig-
ure 3 are bound by 0.0 and 1.0, which illustrates the fulfillment
of this requirement. The second requirement (Interval-Scaled
Metric Values) states that the steps of the metric result have
to be equally spaced [28]. Both plots in Figure 3 show the
fulfillment of this requirement, because (1) the median of
all possible readability rating is with 0.5 the exact mean
between the minimum and maximum values, and (2) for every
fulfilled criteria per word, the gradient is increased with a fixed
step size. If the readability rating of a schema is improved
from 0.6 to 0.7, this corresponds to an improvement of the
readability from 0.2 to 0.3. Consequently, the differences
between the units of the metric results are always equally
spaced. Although the fourth requirement (Sound Aggregation
of the Metric Values) originally referred to the aggregation on
IS data-level in terms of aggregating record-level QQ to table-
level DQ, our metric also allows to aggregate the readability
ratings between the single tables to an aggregated value for
the entire IS schema. The remaining requirements R3 (Quality
of the Configuration Parameters and the Determination of the
Metric Values) and R5 (Economic Efficiency of the Metric)
refer to the degree of automation, the parameters for the metric
can be determined and measured with. We claim that both
requirements are fulfilled, since we showed how to measure
the criteria crit in an automated way using WordNet.

IV. PROOF-OF-CONCEPT IMPLEMENTATION

The readability metric proposed in this paper has been im-
plemented and demonstrated in the Java-based DQ tool QuaIIe
(Quality Assessment for Integrated Information Environments,
pronounced [’kvAl@]), introduced in [10]. QuaIIe automatically
performs domain-independent quality measurement on both
data-level and schema-level. Although the current version of
the readability metric in QuaIIe was originally developed for
the schema-level, it could be easily modified to assess the
readability of string values on the content-level likewise. In
this section, we demonstrate the functionality and applicability
of our readability metric. For the interaction with WordNet,

we used a Java WordNet API developed at the Massachusetts
Institute of Technology (MIT) [29].

The selection of data sources for our proof-of-concept
demonstration follows the evaluation suggestions for DQ met-
rics by Sadiq et al. [30], who promoted to use both, common
synthetic data sets (for a manual verification of the readability
calculation), as well as large real world data sets to show the
applicability in practice. Thus, we selected the following DBs:
(1) Alphavantage is highly volatile real-world stock exchange
data, (2) Chinook [31] is a relational DB for digital media,
(3) Employees [18] is a sample MySQL DB with six tables
and about three million records that stores employees and
departments within a company, (4) Northwind [32] is the
well-known SQL DB from Microsoft, (5) Metadynea is a
productive Cassandra DB from one of our industry partners
that stores about 60 GB of chemometrics data distributed on
three nodes, and (6) Sakila [33] is a MySQL sample DB for
the administration of a film distribution with a more advanced
schema (16 tables) than the employees DB. Table II, which
is explained in the following sections, shows the readability
ratings for each DB schema.

A. Alphavantage

We collected real-world stock exchange data with the al-
phavantage API [34], which yields a schema with information
about the “time stamp”, “open” and “close” date, and the
“volume” per stock. The observed table about IBM stock data
achieves a quite high readability rating of 0.8750. Lowercases
are used consistently in the entire schema. The main reason
for the degraded readability is the attribute label “timestamp”,
which has no exact match in WordNet, because the corre-
sponding entry is “time stamp”. No synonyms or hypernyms
are detected. However, additional cognates could be detected,
if the attribute label “timestamp” would have been split into
“time” and “stamp”, and both words are found in WordNet.

B. Chinook

The readability of the Chinook schema with 10 tables
achieves the second-lowest rating with 0.5172. Lowercase is
consistently used in the entire schema. A major point for
the low readability are string concatenations. Several attribute
labels have the table name as prefix, e.g., “customerid” or
“artistid”. Here, an automated split during the preprocessing
process is not possible, because no delimiter is used. Con-
sequently, those attribute labels are treated as single words,
which are not found in WordNet. The highest readability has
the table customer (0.6731). It includes customer contact
data, such as “email”, “phone”, and “address”, where the labels
are single words that exist in the wordnet. The two synonyms
“state” and “country” decrease the readability further.

C. Employees

The employees schema has a readability of 0.6902. The
attribute labels are consistently written in lowercase and sev-
eral labels are concatenated with an underscore, and therefore

8Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            17 / 69



TABLE II. READABILITY MEASUREMENTS

Schema Readability Concatenations Cases Abbreviations Synonyms Hypernyms
Alphavantage 0.8750 no split point lower - - -
Chinook 0.5172 no split point lower - state ↔ country -
Employees 0.6902 underscore lower - - first ← birth
Employees 0.8585 underscore lower file provided - first ← birth
Northwind 0.4247 no split point lower - - description ← picture; region ← country
Metadynea 0.9803 underscore lower - - level ← quality, intensity; time ← hour;

type ← version
Sakila 0.9904 underscore lower - duration ↔ length code ← address; film ← feature

split during the preprocessing. In contrast to Chinook, this
word concatenation does not lead to a deterioration of the
readability, because both words are individually looked up in
WordNet. For humans, the schema is easy readable due to the
fact that most of the abbreviations are commonly used. For
example, the abbreviations “dept” for departments and “emp”
for employees are used as prefixes for attribute labels, such
as “dept name” and “emp no”. However, the abbreviations
“dept” and “emp” are not part of WordNet and therefore
decrease the calculated readability. This issue can be resolved
by including an abbreviations CSV file, which increases the
readability ranking to 0.8585 (see Table II). An additional
impact on the readability has the fact that “first” is recognized
as hypernym of “birth”.

D. Northwind

The Northwind DB achieves with 0.4247 the lowest read-
ability rating of all observed schemas, despite the fact that
all words are consistently written in lowercase. Analogue to
Chinook, the major reason for the low rating are string con-
catenations without delimiters. Many attribute labels include
substrings, for example, “categoryname”, “companyname”, or
“contacttitle”. Since no split point can be detected, those
concatenations cannot be resolved.

E. Metadynea

The readability of the Metadynea schema is the second-best
with 0.9803. All words are consistently written in lowercase
and concatenated with underscores, which allows splitting. No
unknown abbreviations are used and all words are included in
WordNet. The only drawbacks found are several hypernyms,
e.g., “time” is a hypernym of “hour”.

F. Sakila

The overall best readability rating with 0.9904 is achieved
by Sakila, where all words except “username” are included
in WordNet. Labels used for attributes are consistently writ-
ten in lowercase. One minor problem is the attribute label
“address2”, which can neither be splitted nor has a match
in WordNet. Further, several cognates are detected, e.g., the
word “code” contained in the attribute label “postal code” is
identified as hypernym of the word “address”.

V. CONCLUSION

The readability of IS schemas is of particular importance
to ensure automated schema integration and to allow humans
a correct interpretation of table and attribute names. In this
paper, we have introduced a novel metric for the readability of
IS schemas, which is based on a set of readability critera that
are applied to words extracted from a schema. In the current
state, the metric considers the criteria (a) entry in a wordnet,
(b) consistency of cases, and the cognates (c) synonyms and
(d) hypernyms. To demonstrate the applicability of our metric,
we implemented it in the DQ tool QuaIIe and measured the
readability of multiple synthetic and real data sources.

In our ongoing and future work, we plan to extend the
readability metric with (1) text-based approaches, (2) string
similarity, (3) normalization with respect to the schema size,
as well as (4) further investigation on string splitting. Since
there is a lot of related work about readability concerning
text-based approaches, it could also be beneficial to take into
account word complexity [13]. Words with many syllables
are more complex and a schema with a lot of complex
words is less readable. The second possible improvement
with string similarity could be used to detect similar attribute
names that are only distinguished by a typo, for example,
“productNumber” and “porductNumber”. Those words would
not be considered similar with the presented algorithm, but
could be taken into account with string similarity algorithms,
like the Levensthein distance. The current implementation does
not consider the size of the evaluated IS. Since larger ISs
tend to have more (readability) errors, an interesting index
could be the consideration of errors per hundred tables. In
addition, we think that the challenging topic of splitting strings
without a clear split point, e.g., “categoryname”, would be
worth to be investigated in the future. Last, but not least, we
are going to extend and refine the evaluation of our metric by
(1) additionally using benchmark data sets for federated ISs,
and (2) conducting a user study to compare the readability
ratings of the metric to the assessment of real users.

ACKNOWLEDGMENT

The research reported in this paper has been partly sup-
ported by the Austrian Ministry for Transport, Innovation and
Technology, the Federal Ministry of Digital and Economic
Affairs, and the Province of Upper Austria in the frame of
the COMET center SCCH.

9Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            18 / 69



REFERENCES

[1] W. W. Eckerson, “Data Quality and the Bottom Line – Achieving
Business Success through a Commitment to High Quality Data,” The
Data Warehousing Institute, Technical Report, 2002.

[2] D. Loshin, The Practitioners Guide to Data Quality Improvement.
Elsevier Inc., 2011.

[3] Y. Wand and R. Y. Wang, “Anchoring Data Quality Dimensions in
Ontological Foundations,” Communications of the ACM, vol. 39, no. 11,
Nov. 1996, pp. 86–95.

[4] C. Batini and M. Scannapieco, Data and Information Quality: Concepts,
Methodologies and Techniques. Springer International Publishing,
2016.

[5] L. Cai and Y. Zhu, “The Challenges of Data Quality and Data Quality
Assessment in the Big Data Era,” in Data Science Journal, vol. 14.
Ubiquity Press, 2015, pp. 1–10.

[6] N. A. Emran, S. Embury, P. Missier, M. N. M. Isa, and A. K. Muda,
“Measuring Data Completeness for Microbial Genomics Database,” in
5th Asian Conference on Intelligent Information and Database Systems.
Springer-Verlag Berlin Heidelberg, 2013, pp. 186–195.

[7] O. Foley and M. Helfert, “The Development of an Objective Metric
for the Accessibility Dimension of Data Quality,” in 4th International
Conference on Innovations in Information Technology. IEEE, 2007,
pp. 11–15.

[8] L. Pipino, Y. Lee, and R. Y. Wang, “Data Quality Assessment,” in
Communications Of The ACM. ACM New York, April 2002, pp. 211–
218.

[9] G. Vossen, Datenmodelle, Datenbanksprachen und Datenbankmanage-
mentsysteme [Data Models, Database Languages, and Database Man-
agement Systems]. Oldenbourg Verlag, 2008.

[10] L. Ehrlinger, B. Werth, and W. Wöß, “QuaIIe: A Data Quality As-
sessment Tool for Integrated Information Systems,” Proceedings of the
Tenth International Conference on Advances in Databases, Knowledge,
and Data Applications (DBKDA 2018), 2018, pp. 21–31.

[11] R. Y. Wang and D. M. Strong, “Beyond Accuracy: What Data Quality
Means to Data Consumers,” Journal of Management Information Sys-
tems, vol. 12, no. 4, March 1996, pp. 5–33.

[12] J. Zhao and M. Kan, “Domain-Specific Iterative Readability Compu-
tation,” in Proceedings of the 10th annual joint conference on Digital
libraries. ACM New York, June 2010, pp. 205–214.

[13] R. J. Senter and E. A. Smith, “Automated Readability Index,” United
States Air Force Aerospace Medical Research Laboratories, Technical
Report, AMRLTR-66-220, November 1967.

[14] A. D. Renzisa et al., “A Domain Independent Readability Metric for
Web Service Descriptions,” in Computer Standards and Interfaces.
Elsevier, 2017, pp. 124–141.

[15] S. Hoberman, Data Model Scorecard. Technics Publications, 2015.
[16] X. Yan, D. Song, and X. Li, “Concept-based Document Readability in

Domain Specific Information Retrieval,” in Proceedings of the 15th ACM
International Conference on Information and Knowledge Management
(CIKM ’06). NY, USA: ACM, 2006, pp. 540–549.

[17] L. Ehrlinger and W. Wöß, “Semi-Automatically Generated Hybrid
Ontologies for Information Integration,” in Joint Proceedings of the
Posters and Demos Track of 11th International Conference on Semantic
Systems. CEUR Workshop Proceedings, 2015, pp. 100–104.

[18] Oracle Corporation, “Employees Sample Database,” https://dev.mysql.
com/doc/employee/en [retrieved: April, 2019].

[19] The Global WordNet Association, “Global Wordnet Association,”
http://globalwordnet.org/ [retrieved: April, 2019].

[20] DBpedia Association, “DBpedia,” http://wiki.dbpedia.org [retrieved:
April, 2019], 2018.

[21] “WordNet du Franais,” https://wonef.fr [retrieved: April, 2019].
[22] Princeton University, “WordNet - A Lexical Database for English,”

https://wordnet.princeton.edu [retrieved: April, 2019].
[23] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller, “In-

troduction to WordNet: An On-line Lexical Database,” in International
Journal of Lexicography, vol. 3. Oxford University Press, 12 1990, pp.
235 – 244.

[24] M. A. Finlayson, “Java Libraries for Accessing the Princeton Wordnet:
Comparison and Evaluation,” in Proceedings of the 7th International
Global WordNet Conference, H. Orav, C. Fellbaum, and P. Vossen, Eds.
Association for Computational Linguistics, January 2014, pp. 78–85.

[25] Oxford University Press, “Oxford Dictionaries,” https://en.oxforddic-
tionaries.com/definition [retrieved: April, 2019].

[26] L. Ehrlinger, B. Werth, and W. Wöß, “Automated Continuous Data
Quality Measurement with QuaIIe,” International Journal on Advances
in Software, vol. 11, no. 3 & 4, 2018, pp. 400–417.

[27] J. M. B. Josko, M. K. Oikawa, and J. E. Ferreira, “A Formal Taxonomy
to Improve Data Defect Description,” in Database Systems for Advanced
Applications, H. Gao, J. Kim, and Y. Sakurai, Eds. Springer Interna-
tional Publishing, 2016, pp. 307–320.

[28] B. Heinrich, D. Hristova, M. Klier, A. Schiller, and M. Szubartowicz,
“Requirements for Data Quality Metrics,” Journal of Data and Infor-
mation Quality, vol. 9, no. 2, January 2018, pp. 12:1–12:32.

[29] Massachusetts Institute of Technology, “The MIT Java Wordnet Inter-
face,” https://projects.csail.mit.edu/jwi [retrieved: April, 2019].

[30] S. Sadiq et al., “Data Quality: The Role of Empiricism,” ACM SIGMOD
Record, vol. 46, no. 4, 2018, pp. 35–43.

[31] Microsoft Inc., “ChinookDatabase,” https://archive.codeplex.com/?p=
chinookdatabase [retrieved: April, 2019].

[32] Microsoft Inc., “Northwind and pubs Sample Databases for SQL
Server 2000,” 2018, https://www.microsoft.com/en-us/download/de-
tails.aspx?id=23654 [retrieved: April, 2019].

[33] Oracle Corporation, “Sakila Sample Database,” https://dev.mysql.com/
doc/sakila/en [retrieved: April, 2019].

[34] Alpha Vantage Inc., “ALPHA VANTAGE,” 2018, https://www.alpha-
vantage.co [retrieved: April, 2019].

10Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            19 / 69



StrongDBMS: Built from Immutable Components

Malcolm Crowe, Santiago Matalonga
University of the West of Scotland

Paisley, UK
email:{malcolm.crowe; santiago.matalonga}@uws.ac.uk

Martti Laiho
DBTechNet

Helsinki, Finland
emal:martti.laiho@gmail.com

Abstract—StrongDBMS is a new relational Database
Management System (DBMS). Atomicity, Consistency,
Isolation and Durability (ACID) properties are guaranteed
through the use of an explicit transaction log and immutable
software components. The shareable data structures used allow
instant snapshots and provide thread-safety even for iterators,
and minimize the need for locking mechanisms without
compromising consistency. StrongDBMS has been
implemented in C# and Java, and both versions are inter-
operable on Windows and Linux. Benchmarking measures are
included in this paper. StrongDBMS is open-source and free to
use. This paper presents the design rationale for StrongDBMS
and benchmarks its current version. Benchmarking results
using the Transaction Processing Council’s TPC/C benchmark
show performance comparable with standard commercial
products.

Keywords– optimistic; relational; thread-safety; transactions.

I. INTRODUCTION

StrongDBMS has as its design goal to build a simple
fully-ACID relational DBMS, based on an append-only
transaction log file, and shareable data structures. The
transaction log file gives guarantees of transaction isolation
and durability, and shareable data structures, as described
below, provide guarantees of atomicity and consistency.

The rest of Section 1 gives some background to the
work, Section 2 introduces shareable data structures,
Section 3 describes the resulting database architecture, and
Section 4 discusses some benchmarking data on the
resulting DBMS.

A. Background

Most modern DBMSs, including StrongDBMS and
Pyrrho [1], employ Multi-Version Concurrency Control
(MVCC), in which each transaction effectively works with a
private copy of the DB. For higher levels of isolation, such
as Snapshot Isolation (SI) and Serializable SI (SSI), a
transaction which reads a data item x sees a private copy of x
with value that it had when the transaction began, and a
transaction which writes x does so on a private copy of x
which is only made available globally (i.e., to other
transactions) upon a successful commit operator of the
writer.

However, in most systems, this ideal strategy is made
more complex by the sharing of index structures between
concurrent transactions, so that many DBMS use the First
Updater Wins strategy (FUW) so that the first transaction to
announce an update locks the index until it commits [2].
With StrongDBMS and Pyrrho, each transaction uses its own

indexes and access data structures, and so these DBMS are
able to implement First Committer Wins (FCW), in which
transactions proceed without interfering with each other until
commit time. Upon commit, if there have not been other
commits on objects which T has written or read, it is allowed
to commit. Otherwise, T must be aborted. With this
approach, integrity constraints against commits made since
the start of T cannot be made until T begins to commit.

Both StrongDBMS and Pyrrho use immutable objects
with maximal sharing for indexes and access structures. The
objects are immutable in the sense that any modification of
the value of a data object results in a new object; pointers
cannot be updated, and values are never overwritten. The
objects admit maximal sharing in that when an object is
modified (or a new object is created), that part which is the
same as the previous object is re-used; only the part which is
different uses new storage.

StrongDBMS extends the use of immutable objects to all
serializable objects and all objects used in query processing
including row sets, and so these desirable properties can be
guaranteed throughout the transaction implementation. The
main goal of this paper is to show how such immutable
objects with sharing may be used in the implementation of a
DBMS.

B. Relationship to previous work

In Pyrrho and StrongDBMS, each database is stored on
disk as a single append-only transaction log file. The data
format is independent of machine architecture, word size,
byte order, or locale. Entries in the log from each transaction
are appended as a group for atomicity and serialization, as
explained below. Database objects have a unique identity
given by their definition point in the log. They retain this
identity when updated or modified even though the
modification details are recorded later in the log.

In this way, both are optimistic-execution DBMS with
persistent row-versioning, as discussed in [3]. Unlike Pyrrho,
StrongDBMS is implemented in Java as well as C#, taking
advantage of its novel aspects of the features of each
programming language, and both implementations can run
on Windows and Linux.

StrongDBMS’ internal data structures (in the Shareable
namespace) are serializable and used both in the server and
the client, with a binary API. SQL parser in the client library.
There are some system tables that provide relational access
to the internal mechanisms of the DBMS.

The DBMS is still under development and many standard
Structured Query Language (SQL) features will be added
later. It currently supports integrity constraints, aggregation,

11Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            20 / 69



grouping, and joins. Roles, views and support for “big live
data” [4] will be added during 2019, followed by executable
modules and triggers.

The data types supported are arbitrary-precision integers
and numeric, unicode string, date and timespan, and row.
Identifiers are case-sensitive. The set of system tables is
currently limited to the log and the list of base tables.

StrongDBMS uses a client-server architecture with a
client Application Programming Interface (API) based on
serializable objects rather than SQL. Parsing of SQL is
performed in the client library (StrongLink). The server,
StrongDB, opens a Transmission Control Protocol (TCP)
port on 50433. There is a command-line utility StrongCmd.
The implementation uses .NET framework 4.7.2, C# version
8.0 (2019), and Java 11. It is open-source and free to use.
The source code is on github.com [5], together with an
introduction to the serializable classes of StrongDBMS.

StrongDBMS is available for use by anyone and in any
product without fee, provided only that its origin and original
authorship is suitably acknowledged.

II. SHAREABLE DATA STRUCTURES

The unique interest of StrongDBMS is the use of
shareable (or immutable) data structures. Such structures are
particularly appropriate for DBMS, since they are inherently
thread-safe, provide instant snapshots, and do not require
locking. This section briefly introduces this concept.

A. On value semantics and thread-safety

The study of data structures is an essential early stage in
any Computing program [6] and needs to be revisited later
on when the student has mastered threading [7]. Students
quickly learn that the standard string data type in modern
languages, such as Java and C#, is immutable, but are often
not told why.

As an unsafe example, consider arrays of characters in
Java. Suppose A, declared as char[] A, contains the
characters NOW. If we assign this array to a similar array B,
then both A and B share the same data. After an update to A,
say A[2] = 'T', they both contain NOT. This may be what the
programmer intended, but from the viewpoint of this study,
this behaviour is seen as unsafe. There is nothing wrong with
the original assignment of A to B or with sharing the array
elements. But A[2] = 'T' represents a problem (and Java
wisely disallows such an operation for Strings). So, for a
shareable list structure we support A=A.InsertAt('T',2) and
A=A.RemoveAt(1), and both these operations create new
lists without changing the contents of B. The
implementation, of course, will be as a linked list.

This is not to criticize Java, which has built on its String
structure and championed interfaces such as Cloneable.
Linked lists are not the best structures for databases either,
but shareable data structures with logarithmic behaviour can
transform the performance of databases.

When a shareable structure such as a linked list or tree is
updated, new nodes are required from the start of the
structure to the updated position. The rest of the structure is
unchanged and does not need to be copied.

Before leaving the notion of thread-safety, consider the
behaviour of data structures passed as parameters. Java (as a
requirement) and C# (by default) pass parameters “by
value”, a comfortable phrase that obscures a major source of
difficulty. There is nothing to stop the called procedure from
modifying a structure passed in. Such modifications are often
useful but can be a difficult source of error.

The solution to both problem areas is to use, as far as
possible, data structures that contain no mutable fields. In C#
and Java, immutable fields can be declared public readonly
or public final; they receive their values in constructors and
these cannot be changed. It is a huge advantage that whole
indexes and even whole databases in memory can then be
copied by a single machine instruction, and database rollback
or Prolog Unbind consists simply of forgetting the new
pointer. With such data structures, there is no need for
locking, because the values inside can never change.
Managing locking in complex software has been a problem
for many decades (9) and it is a great relief to reduce this
burden.

The most commonly used shareable data structure in
StrongDBMS is a key-value dictionary called SDict<K,V> ,
which is used to build shareable searchable arrays (e.g.,
SDict<int,bool>) and multi-level indexes that use such
dictionaries at each level. In C#, it is possible to define
operators so that we can use d += (k,v) for adding an entry to
dictionary d, which is safer than having to remember to write
d= d.Add(k,v) . (Java’s dictionaries are not safe, and many
programmers used to them will accidentally write d.Add(k,v)
and lose the updated dictionary.)

Instead of using linear linked lists or arrays, for
scalability it is strongly recommended to use structures with
logarithmic behaviour such as B-Trees. Figure 1 shows the
picture of an update for a B-tree, reproduced from [8], and
shows that only a few nodes need to be created on an update.

Figure 1. Updating a B-Tree (from[8])

Figure 2 shows how this approach affects the scenario of
databases and transactions described in the Introduction.

12Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            21 / 69



Let us start with a database D initially synchronized with
the data abase file. There will be data structures including
a list of objects and a list of names, but we show just one
in the illustration.

A transaction T starts by using the same data structures as
the database.

When the transaction makes a change, it creates new root
nodes as required, but continues to share the rest of the
data structures (indexes, lists of objects etc.).

If another transaction commits in the meantime, the
database will be replaced by a new one sharing the same
data structures apart from the new root node.

These changes do not affect the transaction’s data
structures.
When our transaction commits, (it can only do so after
checking for no conflicts), its new information is added
into the database’s data structures, creating new root
nodes as required.

Figure 2. Shareable data structures and transaction behaviour

Care is needed when shareable data structures are used
inside mutable structures. If such an unsafe object A contains
an immutable dictionary d, then we need to remember to
write
lock(A) d += (k,v); in Java we use a synchronized block
synchronized(A) { d = d.add(k,v); }. The only place
StrongDBMS finds it necessary to use such locking is for the
global list of databases. File and stream objects are also
locked when required to facilitate operating system
interactions

The memory allocator must work harder with shareable
data structures, but in complex software, this happens
anyway, and if arrays are used, a lot of time is spent in
copying.

B. Bookmarks instead of Enumerators

Both C# and Java always use Enumerators or Iterators in
the standard libraries [9][10]. For an enumerator E, one
moves to the next item in a collection using E.MoveNext().
This is obviously unsafe even for an immutable collection, as
E might have been passed in as a parameter or copied
somewhere else. In this work, we exclusively use
Bookmarks for our shareable collections.

For any shareable collection as defined here, there is a
method called First() that returns a bookmark to the first
entry of the collection (First() returns null if the collection is
empty). And given any Bookmark B, we get a bookmark to
the next entry if any by B = B.Next().

Neither language provides us with a useful syntax for
iteration using bookmarks, but it is easy to get used to
writing

for (var b=C.First(); b!=null; b=b.Next())
Bookmarks iterate through the list as it stood when the

First() bookmark was created. It is very convenient to be
allowed to modify the list as it is being traversed. (The
standard libraries do not allow mutable List structures to be
modified during iteration.)

III. ARCHITECTURE OF THE DBMS

The design goals mentioned at the start of Section I
almost dictate some important features of the DBMS
architecture. Each element of the binary API should be
serializable, for transport from the client to the server and for
serialization to the transaction log as persistent database
objects. Some of the serializable objects represent SQL
constructs, translated from SQL into this form in the client
library. Each database object has a readonly uid field
consisting of its immutable file position on disk.

A. Permanent uids for database objects

A file position will not be known until it is committed
(serialized) to disk, and so because of the readonly nature of
the uid, the commit will be done inside a constructor. In this
section we will use C# for the code illustrations (the Java
code is similar and can be reviewed in [4] ):
protected SDbObject(SDbObject s, AStream f)
:base(s.type)
{

uid = f.Length;
f.uids = f.uids + (s.uid, uid);
f.WriteByte((byte)s.type);

}

D0

D0
T0

D0 T1

D1D2

D1 T1

13Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            22 / 69



In this fragment, we can see the uid being set as the
current file length before we write the first byte (the type) of
the SDbObject subclass. We also see a dictionary called uids
maintained by the file stream structure f, which associates
the previous unique identifier with the new permanent uid.

The next step in the design is to decide what the previous
uid was. This is assigned at the time the SDbObject is
created for addition to the transaction. The transaction
maintains a private sequence of uids for its SDbObjects.
When the SdbObject is created for the transaction we have:
protected SDbObject(Types t,STransaction tr) :base(t)
{

uid = tr.uid+1;
}

Objects such as table or column references arriving from
the client may have uids assigned by the client-side parser if
the names alone would be ambiguous. Because of separation
of concerns between client and server, the client does not
interpret these (for example, it will not know what columns
are defined for a table). This is an important point since any
schema information held in the client will, in general, be out
of date.

B. Database

The database knows what its schema objects are, indexed
by their permanent uids, and has a name catalogue for top-
level objects such as base tables.

The first constructor for a database (cold start) gives the
name and initializes the other information:
SDatabase(string fname)
{

name = fname;
objects = SDict<long, SDbObject>.Empty;
names = SDict<string, SDbObject>.Empty;
curpos = 0;

}

If there is a database file on disk, it is loaded into
memory, deserializing its contents from the file and
installing them in the database structure. We see some
examples of this process below.

Creating a copy of the database is just:
protected SDatabase(SDatabase db)
{

name = db.name;
objects = db.objects;
names = db.names;
curpos = db.curpos;

}

We see that copying (taking a snapshot of) a database
costs almost nothing (just four pointers).

The database structure is immutable so that any update
requires the construction of a new instance. The database
structure has a constructor that updates its dictionaries of
schema objects in a new instance:
protected virtual SDatabase New(SDict<long,SDbObject>

o, SDict<string,SDbObject> ns, long c)
{

return new SDatabase(this, o, ns, c);
}

The current database (this) is made available to the
constructor so that other data pointers (in this case, just the
database name) that have not been changed can be copied
into the new object. Here is the constructor:

protected SDatabase(SDatabase db, SDict<long,
SDbObject> obs, SDict<string,SDbObject> nms, long c)
{

name = db.name;
objects = obs;
names = nms;
curpos = c;

}

C. Installing database objects

The method in the database class for installing a table,
e.g., when loading the database on startup, is very simple –
of course it returns a new database object using the New
method given above:
public SDatabase Install(STable t, long c)
{

return New(objects+(t.uid, t),names+(t.name, t), c);
}

Tables maintain their own readonly lists of columns,
rows and indexes, so installing a column creates a new
version of the table object as well as a new database:
public SDatabase Install(SColumn c, long p)
{

var obs = objects;
if (c.uid >= STransaction._uid)

obs += (c.uid, c);
var tb = ((STable)obs[c.table])+c;
return New(obs+(c.table,tb), names+(tb.name,tb), p);

}

It is important that very little data copying is required to
make a new table object: it contains merely a small set of
references to the roots of tree structures, some of which will
have been updated.

The database does not directly include columns in its list
of objects (but transactions do, as described below). There is
a global static mutable collection of file streams with
exclusive access to the databases currently open on the
server, and a database looks up the appropriate file and locks
it when it needs to access the disk.

Records, updates and deletes do not need to be in these
memory structures as they can be retrieved from the disk file
when required (However, if a lot of clients use the same
database, the saving in memory is at the cost of increased
contention on the file stream. An object cache would also be
worth considering).

D. Transaction

We make STransaction a subclass of SDatabase so that it
inherits the immutable information from the database on
creation, including the current file position of the database (c
in the above New method) at the start of the transaction. The
code for starting a transaction is just a constructor:
public STransaction(SDatabase d,bool auto) :base(d)
{

autoCommit = auto;
rollback = d._Rollback;
uid = _uid;
readConstraints = SDict<long, bool>.Empty;

}

The code called for the base constructor is just the code
for copying a Database, shown earlier.

Objects proposed for addition in the transaction
(including records, updates and deletes) are added to the
transaction’s objects using its private sequence of uids, and

14Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            23 / 69



this sequence is traversed on commit. (Recall that
transactions cannot see other transactions so their sequences
of uids are separate.)

In order to support long transactions, we recall that
schema objects and records defined in a transaction should
be usable in the transaction, so the transaction needs to
install them in the dictionaries and indexes it has inherited
from the database. It uses the same install code as the
database, but with its own version of the New method that
creates a transaction object instead of a database object.

When the transaction commits, the transaction’s objects
are installed in the database, and the transaction object can
be forgotten.

E. Detection of transaction conflicts

The Commit method for the transaction object needs to
consider whether conflicting changes may have occurred in
the database before a commit can be agreed. As mentioned
above, the transaction already has the file position at the start
of the transaction. The transaction now looks at the current
state of the file: if objects have been added by other
transactions, it compares with the changes to be committed.
If there are conflicts or anything read by the transaction has
been modified, the commit cannot proceed, and a transaction
conflict exception will be raised. If all is well, the database
file is locked, and the process is repeated for any commits
that may have happened before the lock. If there are still no
conflicts, as the file is already locked the transaction’s
objects can be committed to the database using the
mechanism described at the start of subsection A above.
These installation steps result in a new database object,
which is then installed in the server’s static mutable list of
databases:
public static void Install(SDatabase db)
{

lock(files) databases = databases+(db.name, db);
}

The database file is then unlocked.

F. Query processing and RowSets

StrongDBMS follows the SQL standard closely except
that it allows case-sensitive identifiers and a small set of
primitive data types. Full details are in [5], but some example
SQL statements may help:
create table Voc (Id integer, Word string, Notes
string)
insert Voc values (1,'a','Indefinite article')
select from Voc where Word>'Z'

As mentioned above, parsing of SQL queries is done on
the client, so that the client sends the server a Serialisable
object such as an SQuery or an SInsertStatement. As the
server receives these, there is a Lookup method to identify
the columns and tables referred to by name, and construct
versions of the received object where the object references
are to the correct schema objects.

The next step is that a RowSet is constructed for the
results of the query or the data for the insert or other
command. In the presence of subqueries or grouping, etc.,
this process may be recursive, so that the query’s RowSet
method supplies a stack called Context in which the current

values of selectors can be found. The RowSet contains a
copy of the transaction that has the readConstraints list
populated during this recursion.

RowSets are traversed using a special subclass of
Bookmark (RowBookmark), which holds a row object for
the current row of the traversal, and a base table record if this
is a row of a base table. In general, the selectors in the query
can be expression objects, so that for returning results to the
client, the selector expressions use the same Lookup method
to compute the results, using new Context extended by the
current RowBookmark.

The RowSet method recursively constructs row sets for
traversing tables in joins and subqueries, for applying an
ordering or a search condition and for evaluating
aggregations. For join processing the row sets participating
in the join are first ordered using the columns specified in the
join-condition or implied by a natural join.

The final traversal for the client serializes the results
using Json format. Non-query client requests that use
RowSets include insert, update and delete statements for
base tables, and these use the records referred to in the
RowBookmark.

G. Transaction Programming Paradigm

As described above, a transaction in StrongDBMS
operates on the database as if it were private since the start of
the transaction. This isolation provides true conflict
serializability [11], which is strictly stronger than that
required by the ISO SQL standard [12]. The private
transaction context allows a straight-forward programming
for the transaction logic without concern on lock timeouts or
concurrency conflicts before the COMMIT. Further details
on the isolation model are given in Chapter 1 section
“Concurrency Control” in [3].

IV. BENCHMARKING STRONGDBMS

A. Parameter tuning

As suggested above, StrongDBMS adopts a standard data
format for the database file that is independent of locale or
machine architecture. Within the server it is obvious that
standard int and long data types will be used for integers
where possible and a multibyte alternative for big integers.

It is less obvious how to fine-tune the size of B-Tree
“buckets”. B-Trees have a fixed bucket size N, and then
allow nodes other than the root to have between N and 2N
(or 2N+1) child nodes. Experimentally it can be established
that performance is independent of the value of N over the
range 6 to 32. Currently StrongDBMS uses N=8. With
smaller values of N there are more nodes and deeper trees,
while if N is larger the cost of copying bucket contents
becomes more significant.

B. Performance Benchmarks

Relational DBMS traditionally use the Transaction
Processing Council’s TPC/C benchmark [13] which models
a 1980s-style Online Transaction Processing application. An
interesting measure is provided by the New Order
transaction, which models a clerk filling in a warehouse

15Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            24 / 69



order for a customer. Each warehouse serves ten districts,
each with 3000 customers, and 100000 products. An order
may have up to 20 lines, each a given quantity of a specific
product identified by its code. As the clerk enters the fields
on the form the database supplies details: the customer’s
name and address, the customer’s discount, orders to date,
etc., and for each line of the order supplies the product
description and price, updates the current stock level, and
computes the total cost per line and per order. On completion
of the order the transaction is committed. Each order takes
dozens of server round-trips.

On a personal computer, an implementation following
the details prescribed by TPC typically will execute about 20
New Order transactions per second. The initial state of the
database on Strong occupies 100MB. In Table 1, this initial
database file has already been constructed (it was excessively
slow to recreate in the Java on Linux configuration), and
timings were taken for the initialization of the system (cold
start) and for 2000 New Order transactions. The client and
hardware were the same for all four tests (Intel i5 processor,
16 GB of memory).

TABLE I. TPC/C 2000 NEW ORDER TRANSACTIONS

Server
Implementation

Operating System Cold start
2000 New

Orders

C# 8.0 Windows 10 16 sec 48 sec

C# Debian 9 (mono) 10 sec 79 sec

Java 11 (32 bit) Windows 10 7 sec 51 sec

Java 11 (32 bit) Debian 9 (mono) 6 sec 242 sec

V. CONCLUSIONS

This paper has introduced StrongDBMS, a new database
management system based on the ideas of append-only
transactions log-file and shareable data structures. Together
they provide the capabilities of transaction isolation,
durability, atomicity and consistency. This paper presented
the design rationale and trade-off for the StrongDBMS
approach. StrongDBMS has been co-developed in Java and
C#, and will continue to be supported in both programming
languages. As mentioned above, StrongDBMS is still under
development. The current state has enabled us to envision
and discuss the benefits and limitations of the approach. The
design of StrongDBMS is intended to support
multithreading, so that the server handles each transaction in
a different thread, and threads sharing a database use the
database file for synchronization when a commit is
requested. Our next steps will include tests for verifying
performance with multithreading.

We have presented how the current implementation of
StrongDBMS performs in the Transaction Processing
Council’s TPC/C benchmark.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the inspiration,
encouragement and contributions of members of the DBTech
community and from Stephen Hegner.

REFERENCES

[1] M. K. Crowe, “Transactions in the Pyrrho Database Engine.
in Databases and Applications” [ed.] M H Hamza. Innsbruck,
Austria : ACTA Press, 2005. pp. 71-76.

[2] A. Fekete, D. Liarokapis, E. J. O'Neil, P. E. O'Neil, and D. E.
Shasha, “Making snapshot isolation serializable”, ACM
Transactions on Database Systems, 30:2. 2005 pp. 429-528.

[3] M. Laiho, M. Kurki, M. Crowe, F. Laux, D. Dervos, and K.
Hirvonen, Introduction to Transaction Programming:
DBTechNet.org, [Online] 2019.
dbtechnet.org/papers/IntroToTransactionProgramming.pdf.

[4] M. Crowe, C. Begg, F. Laux, and M. Laiho, “Data Validation
for Big Live Data. Barcelona” : DBKDA 2017, The Ninth
International Conference on Advances in Databases,
Knowledge and Data Applications, 2017, pp.30-36.

[5] M. Crowe, “Shareable Data Structures”. GitHub. [retrieved:
March, 2019]
https://github.com/MalcolmCrowe/ShareableDataStructures.

[6] M. Ardis, D. Budgen, G. W. Hislop, J. Offutt, M. Sebern, and
W. Visser, SE 2014: “Curriculum Guidelines for
Undergraduate Degree Programs in Software Engineering”,
Long Beach, CA : 2015, Computer, Vol. 48 (11), pp. 106-
109.

[7] B. P. Shults, “Teaching Data Structures: thread safety and
components”. Boston, MA : IEEE, 2002. 32nd Annual
Frontiers in Education.

[8] T. Krijnen, and G. L. T. Meertens, “Making B-Trees work for
B”. Amsterdam: Stichting Mathematisch Centrum, 1982,
Technical Report IW 219/83.

[9] Microsoft. System. Collections. Immutable. 2015
www.nuget.org [retrieved: March, 2019].

[10] Oracle. Java Collections Framework.

[11] H. Berenson, J. Gray, J. Melton, E. J. O'Neill, and P. E.
O'Neill, “A Critique of ANSI SQL Isolation Levels”. San
Jose, CA: ACM. Proceedings of the 1995 ACM SIGMOD
International Conference. 1995. pp. 1-10.

[12] J. Melton, Information Technology - Database Languages -
SQL : ISO/IEC, 2016. 9075.

[13] Transaction Processing Council. [retrieved: March, 2019].
http://www.tpc.org.

16Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            25 / 69



  

A Denormalization Approach to Answering Join Queries 

  

Mohammed Hamdi1, Kavya Narne2, Hamzah Arishi3, Feng Yu4, and Wen-Chi Hou2  
1Department of Computer Science, Najran University,  

Najran, Saudi Arabia 

E-mail: mahamdi@nu.edu.sa 

2Department of Computer Science, Southern Illinois University,  

Carbondale, IL, USA 

E-mail:{kavya, hou}@cs.siu.edu 
3College of Commuting and Informatics, Saudi Electronic University 

Riyadh, Saudi Arabia 

E-mail: a.hamzah@seu.edu.sa 

4Department of Computer Science and Information Systems 

Youngstown State University 

Youngstown, OH, USA 

 E-mail: fyu@ysu.edu  

  

Abstract— Relational databases may not be an efficient solution 

to store highly connected data. Graph traversals over high-

connected data require complex join operations. These join 

operations are generally very expensive and hard to compute. 

In the light of this, a data structure, called Join Core is 

emerging. Join Core pre-stores equi-join relationships of tuples 

on inexpensive and space abundant devices, such as disks, to 

facilitate query processing. The equi-join relationships are 

captured, grouped, and stored as various tables on disks. This 

methodology assists the join queries to be answered quickly by 

merely merging these tables without having to perform 

expensive joins. We use Join Core and Neo4j graph database in 

our experiments as they deal with highly connected data. 

Experiments are performed to compare the query processing 

time and space consumptions between them. Preliminary 

experimental results showed that Join Core outperforms Neo4j 

when complex queries are processed.  

    Keywords—Query Processing; Join Queries; Graph Databases; 

Equi-Join. 

I.   INTRODUCTION 

          In many applications, such as Semantic Web, Social 

and Computer Networks, and in Geographic Applications, 

data are highly connected and have a natural representation 

as a graph.  In these contexts, relational databases may not be 

suitable for those highly connected data where data are spread 

among relations, and it is hard to capture and group the join 

relationships among data over traditional systems [24]. 

Moreover, graph traversals over high-connected data involve 

complex join operations [7][24]. These join operations are 

generally very expensive and hard to compute. Complex 

queries involving multiple joins of large relations can easily 

take minutes or even hours to compute over the target 

database. For the above reasons, we previously proposed an 

anti-relational approach, called Join Core in [22].  

 Here, the paper extends the work of Join Core in [22] and 

makes the following contribution: 

- Detailed discussions on answering cyclic join queries, and 

queries with other joins. 

- We analyze the time and space consumption of using Join 

Core. 

- We propose effective methods that can significantly reduce 

the space consumption of the Join Core. 

- We implement the Join Core and perform experiments to 

compare its performance efficiency with a Neo4j graph 

database instead of MySQL. 

The technique can ease the job of the query optimizer 

because there are fewer or no joins to perform and provide 

less resources consumptions, e.g., Central Processing Unit 

(CPU) and memory. A number of experiments have been 

done to compare the performance of Join Core and Neo4j 

[24]. The experimental results show that processing queries 

with Join Core is faster than with Neo4j. This is because there 

is no need to perform join operations at run time with Join 

Core while in Neo4j, the path traversal operations depend 

upon the complexities of the relationships of tuples. We 

believe the benefits of Join Core, namely instant responses, 

fast query processing, and small memory consumptions, are 

well worth the additional storage space incurred. 

The rest of the paper is organized as follows. Section II 

surveys work in materialized views and Section III introduces 

the terminology. Section IV shows a sample Join Core and 

how it can be used to answer equi-join queries. Section V lays 

down the theoretical foundation for answering equi-join 

queries using the Join Core. Section VI extends the 

framework to queries with other types of joins and set 

operations. Section VII analyzes the time and space 

17Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            26 / 69



  

consumptions of the Join Core, and discusses measures to 

reduce the space consumption. Section VII reports 

experimental results. Finally, conclusions are presented in 

Section VIII. 

II. LITERATURE SURVEY 

In this section, we discuss briefly the literature survey. 

Materialized views, join indices, and graph databases are 

related to our work as both attempt to pre-compute data to 

facilitate query processing.  

Materialized views generally focus on Select-Project-Join 

(SPJ) queries and, perhaps, on final grouping and aggregate 

functions. The select and project operations in the views 

confine and complicate the uses of the views. As a result, 

much research has focused on how to select the most 

beneficial views to materialize [8][10][15][19] and how to 

choose an appropriate set of materialized views to answer a 

query [1][9][16]. 

Materialized views materialize selected query results, 

while Join Core materializes selected equi-join relationships. 

Therefore, materialized views may benefit queries that are 

relevant to the selected queries, while Join Core can benefit 

queries that are related to the selected equi-join relationships, 

which include queries with arbitrary sequences of equi-, 

semi-, outer-, anti-joins and set operators.  

A join index [14][21] for a join stores the equi-join result 

in a concise manner as pairs of identifiers of tuples that would 

match in the join operation. It has been shown that joins can 

be performed more efficiently with join indices than the 

traditional join algorithms. However, it still requires at least 

one scan of the operand relations, writes and reads of 

temporary files (as large as the source relations), and 

generating intermediate result relations (for queries with 

more than one join). On the other hand, with Join Core, join 

results are readily available without accessing any source or 

intermediate relation. Very little memory and computations 

are required. In addition, join indices are not useful to other 

join operators, such as outer-joins and anti-joins. 

Graph databases use the graph data model to structure and 

perform the main database systems operations (Create, Read, 

Update, and Delete). The graph data model has two basic 

elements: node and relationship. Unlike the relational 

databases, the graph databases store the relationships as 

entities which make it more flexible and scalable. This is 

because when the data model expands or business 

requirement changes, it is easier to add connection 

(relationship) between entities [7][24].   

Graph databases also use the graph model to pre-store the 

join relationships of tuples and query connections at creation 

time and make them readily available for any later join query 

operation [24]. This can result in no penalties for complex 

join queries at runtime as the Join Core does. They use the 

index- free so that the query processing time depends on the 

searched graph length rather than the total size of the graph. 

However, the path traversal operations in the complex 

relationships of nodes sometimes decelerate the query 

processing time. In contrast, the result size of the query, not 

the complexity of join query determines the query processing 

time with Join Core. 

III.   TERMINOLOGY 

In this paper, we assume all the data model and queries 

are based on the set semantics. The equi-join operator is the 

most commonly used operator to combine data spread across 

relations. Other useful joins, such as the semi-join, outer-join, 

and anti-join, are all related to the equi-join. Therefore, we 

shall first lay down the theoretical foundation of Join Core 

based on the equi-join, and then extend the framework to 

other joins in Section VI. Hereafter, we shall use, for 

simplicity, a join for an equi-join, unless otherwise stated. 

A join graph is commonly used to describe the equi-join 

relationships between pairs of relations. These relationships 

are generally defined before the database has been created. 

Certainly, one can also include other frequently referenced 

ad-hoc equi-join relationships in the graph.  

For simplicity, we assume there is at most one equi-join 

relationship between each pair of relations. 

Definition 1. (Join Graph of a Database). Let D be a 

database with n relations R1, R2, …, Rn, and G (V, E) be the 

join graph of D, where V is a set of nodes that represents the 

set of relations in D, i.e., V = {R1, R2, R3, ..., Rn}, and E = {⟨Ri, 

Rj⟩ | Ri, Rj ∈ V, i ≠ j)}, is a set of edges, in which each 

represents an equi-join relationship that has been defined 

between Ri and Rj, i ≠  j.s 

If the join graph is not connected, one can consider each 

connected component separately. Therefore, we shall assume 

all join graphs are connected. 

Each join comes with a predicate, omitted in the graph, 

specifying the requirements that a result tuple of the join must 

satisfy, e.g., R1.attr1=R2.attr2. For simplicity, we shall use a 

join, a join edge, and a join predicate interchangeably. We 

also assume all relations and join edges are numbered.  

Example 1. (Join Graph). Figure. 1(a) shows the join 

graph of a database with five relations R1, R2, R3, R4, and R5, 

connected by join edges, numbered from 6 to 9.  

To round out the theoretical framework, we shall 

introduce a concept, called the trivial equi-join. Each tuple in 

a relation Ri can be considered as a result tuple of a trivial join 

between Ri and itself with a join predicate Ri.key = Ri.key, 

where key is the (set of) key attribute(s) of Ri. Trivial join 

predicates are not shown explicitly in the join graphs. All join 

edges in Figure. 1(a), such as 6, 7, 8, and 9, are non-trivial or 

regular joins.  

      We have reserved predicate number i, 1≤ i ≤5, for trivial 

join predicate i, which is automatically satisfied by every 

tuple in relation Ri. The concept of trivial join predicates will 

be useful later when we discuss a query that contains outer-

joins, anti-joins, or no joins. Hereafter, all joins and join 

predicates refer to non-trivial ones, unless otherwise stated. 

18Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            27 / 69



  

To conserve space, a database and its join graph refer to 

only the parts of the database and join graphs that are of our 

interest and for which we intend to build Join Cores. We will 

discuss other space conservation measures in Section VII. 

 

Definition 2. (Join Queries). Let ⋈({Ri, …, Rj}, E’) be a 

join query, representing joins of the set of relations {Ri, …, 

Rj} ⊆ V, 1 ≤ i, …, j ≤ n, with respect to the set of join 

predicates E’ ⊆ E among them.  

Definition 3. (Join Graph of a Join Query). The join graph 

of a join query ⋈({Ri, …, Rj}, E’), denoted by G’(V’, E’), is 

a connected subgraph of G (V, E), where V’ = {Ri, …, Rj} ⊆ 

V, and E’ ⊆ E is the set of join predicates specified in the 

query. 

       The join graph of a join query is also called a query 

graph. We shall exclude queries that must execute Cartesian 

products or θ-joins, where θ ≠ “=”, from discussion as Join 

Core cannot facilitate executions of such operators. 

      Example 2. (Matching of Join Attribute Values). Figure. 

1(b) shows the matching of join attribute values between 

tuples. Tuples are represented by their IDs in the Figure. That 

is, R1 has 3 tuples, A, B, C, i.e., R1 = {A, B, C}. R2 = {a, b, c}, 

R3 = {I}, R4 = {α, β, γ}, R5 = {μ, λ}. 

The edges between tuples represent matches of join 

attribute values. For example, tuples A and B of R1 match 

tuples a and b of R2, respectively. Tuple a has two other 

matches, I of R3 and α of R4. c of R2 matches γ of R4, and α 

matches μ of R5. 

Definition 4. ((Maximally) Extended Match Tuple). 

Given a database D = {R1, …, Rn} and its join graph G, an 

extended match tuple (tk, …, tl), where 1≤ k, ..., l ≤ n, tk ∈ Rk, 

…,  tl ∈ Rl, and Rk, …,Rl are all distinct relations, represents 

a set of tuples {tk, …, tl} that generates a result tuple in {tk} 

⋈ …⋈ {tl}. A maximally extended match tuple (tk, …, tl), is 

an extended match tuple if no tuple tm in Rm (∉ {Rk, …, Rl}) 

matches any of the tuples tk, …, tl in join attribute values.  

It can be observed that in Figure. 1(b), (A, a, I, α, μ) is a 

maximally extended match tuple. The same can be said of (B, 

b) because the match cannot be extended by any tuple in 

relations other than R1 and R2. Similarly, (c, γ), as well as (C), 

(β), and (λ), is also a maximally extended match tuple.  

IV.    JOIN CORE STRUCTURE AND 

CONSTRUCTION 

In this section, we show an example of a Join Core and 

explain how it is structured and used to answer equi-join 

queries. 

A. Join Core Structure and Naming 

Consider Figure. 1 again. The join relationships we wish 

to store are (A, a, I, α, μ), (B, b), (c, γ), (C), (β), and (λ), each 

representing a maximally extended match tuple. We intend to 

store these maximally extended match tuples in various tables 

based on the join predicates, both trivial and non-trivial ones, 

they satisfy. These tables form the Join Core. 

Example 3. (Sample Join Core). Figure. 2 shows the Join 

Core for the database in Figure. 1. The attributes of the Join 

Core tables, i.e., 1, 2, 3, 4, and 5, represent the sets of 

(interesting) attributes of R1, R2, R3, R4, and R5, respectively, 

and are called the R1, R2, …, R5 components of the tables. 

 

 (B, b) is stored in J1,2,6 because (B, b) satisfies join 

predicate 6, and trivial predicates 1 (B ∈ R1) and 2 (b ∈ R2). 

Similarly, (c, γ) is stored in J2,4,8 and (A, a, I, α, μ) is stored in 

J1,2,3,4,5,6,7,8,9. C (∈ R1), β (∈ R4), and λ (∈ R5) satisfy only trivial 

predicates and thus are stored in J1, J4, and J5, respectively. 

Assume join predicate numbers 1, …, n are reserved for 

trivial joins between R1, …, Rn and themselves, respectively, 

and non-trivial predicates are numbered from n+1 to n+e, 

where e is the number of join edges in the join graph.  

Definition 5. (Join Core). A join Core is composed of a set 

of tables Jk, …, l, 1 ≤ k, …, l ≤ n+e, each of which stores a set 

of maximally extended match tuples that satisfy all and only 

the join predicates k, …, l. Each table Jk, …, l is called a Join 

 

 

 

 
 

 

 

 

 

(a) A Join Graph 
 

 

 

 

 

 

 

 

  

(b) Matching of Join Attribute Values 

Figure 1. A Join Graph and Matching Tuples 
 

1  4  5  1 2  2 4 

C  β      λ  B b  c γ 

J1  J4  J5  J1,2,6  J2,4,8 

 1 2 3 4 5 

A a I α μ 

J1,2,3,4,5,6,7,8,9 

 

 

 

 
Figure 2. Join Core 

R1 

R4 

7 

9 

7 

8 

6 

6 

8 
9 

R1                     

 

R2                     

 

R5                    

 

R4                     

 

R3                      

 

I 

C   

B   

A 

R5 

R3 

R2 

c   

b   

a 

γ    

β    

α 

 

 

λ       

μ 

 

19Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            28 / 69



  

Core table (or relation). The indices k, …l of the table Jk, …, l 

is called the name of the table for convenience. 

For simplicity, we shall call a maximally extended match 

tuple in a Join Core table a match tuple, to be differentiated 

from a tuple in a regular relation.  

B. Answering Queries using Join Core 

The name of a Join Core table specifies the join predicates 

satisfied by the match tuples stored in it. On the other hand, 

a join query specifies predicates that must be satisfied by the 

result tuples. Therefore, to answer a query is to look for Join 

Core tables whose names contain the predicates of the query. 

Consider Figure.1 and 2 and the query ⋈({R1, R2, R3, R4, 

R5}, {6, 7, 8, 9}). The components of the result tuples must 

satisfy predicates 6, 7, 8, and 9. In addition, the components 

themselves also satisfy trivial predicates 1, 2, 3, 4, 5. Thus, 

we look for Join Core tables whose names contain predicates 

1, 2, 3, 4, 5, 6, 7, 8, and 9. That is, ⋈({R1, R2, R3, R4, R5}, {6, 

7, 8, 9}) = J1,2,3,4,5,6,7,8,9. 

As for ⋈ ({R1, R2}, {6}), while J1,2,6 certainly contains 

some result tuples, J1,2,3,4,5,6,7,8,9 also contains some result 

tuples because tuples in J1,2,3,4,5,6,7,8,9 also satisfy 1, 2, and 6. 

That is, ⋈({R1, R2}, {6}) = π 1,2 (J1,2,6) ∪ π 1,2 (J1,2,3,4,5,6,7,8,9). 

Similarly, ⋈({R2, R4}, {8}) = π 2,4 (J2,4,8) ∪ π 2,4 (J1,2,3,4,5,6,7,8,9); 

⋈({R2, R3}, {7}) = π 2,3 (J1,2,3,4,5,6,7,8,9).  

It even holds for queries containing no non-trivial joins. 

For example, R1 = π1J1 ∪ π1 (J1,2,6) ∪ π1 (J1,2,3,4,5,6,7,8,9), R2 = π2 

(J1,2,6) ∪ π2 (J2,4,8) ∪ π2 (J1,2,3,4,5,6,7,8,9), R3 = π3 (J1,2,3,4,5,6,7,8,9), 

R4 = π4J4 ∪ π4 (J2,4,8) ∪ π4 (J1,2,3,4,5,6,7,8,9), and R5 = π5J5 ∪ π5 

(J1,2,3,4,5,6,7,8,9). It is observed that Ri can be reconstructed from 

the Join Core, which implies that a Join Core can itself be the 

database, if one wishes to not store the relations in traditional 

ways. 

Notice that when a non-trivial join predicate, such as 6, is 

satisfied by a match tuple, the associated trivial predicates on 

its operand relations, i.e., 1 and 2, are also satisfied 

automatically. Therefore, there is no need to match the trivial 

predicates of a query with the Join Core table names. That is, 

given a join query with a non-empty set of predicates {u, …, 

v}, the result tuples can be found in Join Core tables whose 

names contain u, …, v, without regard to trivial predicates. 

Trivial predicates cannot be ignored when a query contains 

no non-trivial joins, such as those described above or contains 

outer- or anti-joins, discussed later. 

Duplicates need not be eliminated in individual π i, …, j(Jk, 

…, l) above; they can be eliminated all at once when match 

tuples are merged in the final union operations. To identify 

duplicate result tuples, a simple hashing scheme is sufficient. 

Note that this is the only place that requires major memory 

consumption (in building a hash table).  

The database system can begin to generate result tuples 

once the first block of a relevant Join Core table is read into 

memory, that is, instantly. The total computation time is also 

drastically reduced because there are no (or fewer) joins to 

perform. 

C.  Join Core Construction 

Now, let us discuss how to construct a Join Core for a 

database. Tuples that find no match in one join may find 

matches in another join. For example, b finds no match in R2 

⋈ R3, but finds a match B in R1 ⋈ R2.  Unfortunately, such 

join relationships can be lost in successive joins, for example, 

in (R1 ⋈ R2) ⋈ R3. 

Full outer-joins, or simply outer-joins, retain matching 

tuples as well as dangling tuples, and thus can capture all the 

join relationships. Any graph traversal method can be used 

here as long as it incurs no Cartesian products during the 

traversal.  

For illustrative purpose, we assume a breadth-first 

traversal is adopted here. Relations are numbered based on 

the order encountered in the traversal. An outer-join is 

performed for each join edge. The output of the previous 

outer-join is used as an input to the next outer-join. The result 

tuples are distributed to Join Core tables based on the join 

predicates, both trivial and non-trivial ones, they have 

satisfied in the traversal.  

Example 4. (Join Core Construction). Assume a breadth-

first traversal of the join graph (Figure. 1(a)) from R1 is 

performed.  An outer-join is first performed between R1 and 

R2. It generates (intermediate) result tuples (A, a), (B, b), (C, 

-), and (-, c). The next outer-join with R3 generates (A, a, I), 

(B, b, -), (C, -, -) and (-, c, -).  Then, the outer-join with R4 

generates (A, a, I, α), (B, b, -, -), (C, -, -, -), (-, c, -, γ), and (-, 

-, -, β). The final outer-join with R5 generates (A, a, I, α, µ), 

(B, b, -, -, -), (C, -, -, -, -), (-, c, -, γ, -), (-, -, -, β, -), and (-, -, -

, -, λ), which are written, without nulls, to J1,2,3,4,5,6,7,8,9, J1,2,6, 

J1, J2,4,8, J4, and J5, respectively, based on the join predicates 

they satisfy. 

      V.    ANSWERING EQUI-JOIN QUERIES 

In this section, we formally discuss how a join query can 

be answered using the Join Core. First, we consider databases 

with acyclic join graphs, followed by databases with cyclic 

join graphs. 

A.  Acyclic Join Graph 

As illustrated in the previous section, join queries with 

acyclic join graphs can be answered by simply extracting 

the requested components from Join Core tables whose 

names contain the join predicates specified in the queries. 

Theorem 1. Let ⋈ ({Ri, …, Rj}, {u, …, v}) be joins of 

the set of relations {Ri, …, Rj} with respect to a set of join 

predicates {u, …, v}≠ø. Let e be the number of join edges in 

the join graph, 

⋈ ({Ri, …, Rj}, {u, …, v})  = ∪{k, …, l} ⊇ {u, …, v} π i, …, j (Jk, …, l) 

where 1 ≤ i, …,  j ≤ n, 1 ≤ k, …,  l, u, …, v  ≤ n+e. 

20Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            29 / 69



  

Here, we shall call {k, …, l} ⊇ {u, …,  v} or equivalently, k 

∈{u, …,  v} ˄… ˄ l ∈{u, …,  v} shall be called (table name) 

selection criteria. 

B.  Cyclic Join Graph 

Figure. 3(a) shows a cyclic join graph. When a relation is 

visited in a, for example, breadth-first traversal, its attributes 

are added to the resulting schema. In a cyclic join graph 

however, a node may be visited more than once. For example, 

R4 is visited through edge ⟨R2, R4⟩ for the first time, and then 

through ⟨R3, R4⟩ for the second time when the cycle forms. 

To differentiate matches associated with different edges, we 

shall create two copies of R4, named R4 (the original name) 

and R5 (the next available relation number). Note that this is 

effectively converting a cyclic graph into an acyclic one. We 

shall call all copies of R4, i.e., R4 and R5, alias relations of R4. 

Note that a cycle-completing relation, such as R4, may 

replicate more than once if it completes more than one cycle 

in the traversal. Figure. 3(b) shows the converted graph.  

 

With a cyclic join graph converted into an acyclic one, a 

Join Core can be constructed in the same way as before. 

However, to determine whether an extended match tuple 

contains a cycle or not, we need to check if the alias 

components have the same value. 

Example 5. (Answering Cyclic Join Queries). Figure. 4 

shows the join relationships and the Join Core for Figure 3. 

Consider a cyclic join query: ⋈ ({R1, R2, R3, R4}, {6, 7, 8, 9}). 

To ensure that it is the same tuple in the cycle-completing 

relation that satisfies both predicates 8 and 9, the alias 

components R4 and R5 must be the same. That is, a selection 

condition, σ4=5, must be imposed. Thus, ⋈({R1, R2, R3, R4}, 

{6, 7, 8, 9}) = π 1,2,3,4 (σ4=5 (J1,2,3,4,5,6,7,8,9)) = {(A, a, α, I)}. On 

the other hand, (B, b, β, II, III) does not contain an answer to 

the query because its R4 and R5 components (i.e., II and III) 

are not the same. 

Consequently, cycles in a query graph can be treated like 

ordinary acyclic join predicates, with the exception that 

additional constraints on the equalities of alias components 

must be added. 

Theorem 2. Let ⋈ ({Ri, …, Rj}, {u, …, v}), 1 ≤ i, …, j ≤ n, 

be a query contains cycles. 

⋈({Ri, …, Rj}, {u, …, v}) = ∪{k, …, l} ⊇ {u, …,  v} π i, …,  j(σF 

(Jk,…,l)) 

C. Multiple Join Edges Between Relations 

 It is possible that there is more than one join edge between 

a pair of relations. This situation can be easily resolved by 

treating it as a cycle. 

 Example 6. (Multiple Edges between Relations) Assume 

there are two join edges, e1 and e2, between R1 and R2. Then, 

one can pick any relation, say R2, as the cycle completing 

relation, replicate it, and call the replica R3. Finally, let e1 be 

the edge between R1 and R2, and e2 be the edge between R1 

and R3. 

VI. QUERIES WITH OTHER JOINS 

Now, a join can be an equi-, semi-, outer- or anti-join. A 

join generates result tuples dependent upon whether the equi-

join predicate between the operand relations are satisfied (in 

an equi- or semi-join) or not satisfied (in an anti-join). A little 

deliberation reveals that match tuples that do not satisfy an 

equi-join predicate can be found in Join Core tables whose 

names do not contain that predicate, recalling that Join Core 

table names specify all and only the equi-join predicates 

satisfied. An outer-join generates a result tuple no matter 

whether the equi-join predicate is satisfied or not.  

A join query consisting of a sequence of join operators 

has a query predicate that is a logical combination of the 

individual predicates of constituent joins. We attempt to 

obtain query result tuples from Join Core tables whose names 

satisfy the query predicates. Here, we focus on how to 

formulate the query predicates as (table name) selection 

criteria for Join Core tables that contain the query result 

tuples. For example, satisfying predicate p is rewritten as p ∈ 

{k, …, l}, where {k, …, l} is the set of indices of a Join Core 

table name. 

Afterward, specific handlings, such as removal of 

unwanted attributes, equality checking for alias components 

(for cycle-completing relations), and padding null values for 

“missing” attributes (for outer-joins), are performed. For 

simplicity, we shall only briefly describe these afterward 

handlings. 

A. Single-Join Queries 

We start by deriving the selection criteria, denoted by S, 

for queries with only one join operator. Let p be the equi-join 

predicate between Ri and Rj. Consider Ri op Rj, where op is 

either an equi-join, semi-join, outer-join, or anti-join. 

 

 

 

 

            (a) A Cyclic Join Graph           (b) A Converted Join Graph 

Figure 3. Converting A Cyclic Graph 

 

1 2 3 4 5 

A a α I I 

B b β II III 

J1,2,3,4,5,6,7,8,9 

 

 

 

 

 

        (a) Cyclic Join Relationship 

Figure 4. Cyclic Join Relationship and Join Core 

7 

6 
9 

R5 

R2 

R3 

R4 

R1 R3 R1 

R4 R2 8 

7 

8 

6 
9 

R3 

R4 R2 

R1 

      a 
b 

B 

      A 
       β 

α 

 

I    III     

II 

 

(b) Join Core Tables 

 

21Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            30 / 69



  

1) Equi-Join. As discussed, to compute Ri ⋈ Rj with a 

join predicate p, we look for Join Core tables Jk,…,l whose 

indices contain p, i.e., S= p ∈ {k, …, l}. As mentioned, trivial 

predicates i and j need not, but can, be included in S because 

they are satisfied automatically and must have appeared as 

part of the names of the tables satisfying p. 

2) Semi-Join. The left semi-join Ri ⋉ Rj  and right semi-

join Ri ⋊ Rj extract only the Ri and Rj components from Ri ⋈ 
Rj, respectively. Here, we shall not be concerned about the 

projection operations. Consequently, the selection criterion S 

for a semi-join is the same as that for an equi-join, that is, S 

= p ∈ {k, …, l}.  

3) Outer-Join. While computing Ri ⟗ Rj during the 

construction of the Join Core, each pair of tuples satisfying 

predicate p forms an output tuple. In addition, each non-

matching tuple from either Ri (satisfying the trivial predicate 

i) or Rj (satisfying the trivial predicate j) also forms an output 

tuple. Consequently, to answer the query Ri ⟗ Rj, we look 

for Join Core tables Jk, …, l such that (i ∈ {k, …, l} ˄ (¬ (p ∈ 

{k, …, l}))) ˅  (j ∈ {k, …, l} ˄ (¬(p ∈ {k, …, l}))) ˅ p ∈ {k, 

…, l}, where ¬ is the logical “not” operator and ˅ is the 

logical “or” operator. Since  p ∈ {k, …, l} implies i ∈ {k, …, 

l} ˄  j ∈ {k, …, l}, the selection criteria S can be simplified 

to S= i ∈ {k, …, l} ˅  j ∈ {k, …, l}. Trivial predicates i and j 

cannot be omitted from S because no non-trivial predicates 

that reference i and j are satisfied. 

A left outer-join Ri ⟕ Rj asks for matching tuple pairs and 

non-matching tuples from Ri. Therefore, S= i ∈ {k, …, l}. 
Similarly, for a right outer-join Ri ⟖ Rj, S=j ∈ {k, …, l}. 

After identifying the Join Core tables, tuples that do not 

find a match in the other operand relation need to be padded 

with null values for those attributes of the other relation. 

Example 7. (Outer-Join). Let us consider Figure. 1 and 2.  

R1 ⟗ R2:  S= 1 ∈ {k, …, l} ˅ 2 ∈ {k, …, l}. Only J1, J1,2,6, 

J2,4,8, and J1,2,3,4,5,6,7,8,9 satisfy S. The answer is {(C, -), (B, b), 

(-, c) (A, a)}. Note that tuples in J1 and J8 need to be padded 

with null values for the set of attributes of the other operand 

relations, while unwanted components 3, 4, and 5 need to be 

removed from J1,2,3,4,5,6,7,8,9. 

R1 ⟕ R2:  S= 1 ∈ {k, …, l}. Only J1, J1,2,6, J1,2,3,4,5,6,7,8,9 

satisfy S, and the result is {(C, -), (B, b), (A, a)}. 

R1 ⟖ R2: S= 2 ∈ {k, …, l}. Only J1,2,6, J2,4,8, J1,2,3,4,5,6,7,8,9 

satisfy S, and the result is {(B, b), (-, c) (A, a)}.  

4) Anti-Join. An anti-join Ri ⊳ Rj, defined as Ri – (Ri ⋉ 
Rj), returns tuples in Ri that do not find a match in Rj.  When 

the outer-join for the edge p was performed during the 

construction of the Join Core, such tuples (from Ri) must have 

found no match in Rj and were stored in tables whose names 

contain i, but not p. Therefore, to answer the query Ri ⊳ Rj, 

we look for Jk, …, l,  i ∈ {k, …, l}  ˄ ¬ (p ∈{k, …, l}), namely, 

S= i ∈ {k, …, l}  ˄ ¬ (p ∈{k, …, l}). Trivial predicate i cannot 

be omitted. 

 

Example 8. (Anti-Join).  

R1 ⊳ R2: S= 1 ∈ {k, …, l} ˄ ¬ (6 ∈ {k, …, l}). Only J1 

satisfies and the answer is {C}.  

R2 ⊳ R4: S= 2 ∈ {k, …, l} ˄ ¬ (8 ∈ {k, …, l}). Only J1,2,6 

satisfies and the answer is {b}. 

B. Multi-Join Queries 

A Join Core consists of regular and extended Join Core 

tables. For simplicity, we shall not mention explicitly what 

types of Join Core tables the query predicates are applied to. 

Readers are advised that if the query is of Type (i), then the 

selection criteria should be applied to both types of Join Core 

tables; otherwise, they should only be applied to regular Join 

Core tables.  

Let E = E1 op E2, where E, E1, and E2 are expressions that 

contain arbitrary legitimate sequences of equi-, semi, outer- 

and anti-join operators, and op is one of these join operators 

with a join predicate p. We assume the query graphs for E, 

E1, and E2 are all connected subgraphs of G. Let S1 and S2 be 

the selection criteria on the Join Core tables for E1 and E2, 

respectively, and S the criteria for E. We discuss how to 

derive S from S1 and S2. 

1) Equi-Join. Consider E = E1 ⋈ E2. Each tuple in E is a 

concatenation of a pair of extended matches in E1 and E2 that 

satisfy p, and such “longer” extended matches must have 

been captured by successive outer-joins (and complementary 

joins for cycle-completing relations) performed during the 

Join Core construction and stored in Join Core tables whose 

names satisfy S1 ˄ S2 ˄ p∈ {k, …, l}. On the other hand, the 

components of each tuple in such Join Core tables that satisfy 

S1 and S2 must be result tuples of E1 and E2, respectively. In 

addition, the two components satisfy the join predicate p and 

thus can generate a result tuple in E. Thus, S = S1 ˄ S2 ˄ p ∈ 

{k, …, l}. 

2) Semi-Join. E = E1 ⋉ E2 and E = E1 ⋊ E2. As explained, 

a semi-join is basically an equi-join, except that only the 

attribute values of one of the operands is retained. Thus, S = 

S1˄S2˄p∈{k,…,l}. 

       3) Outer-Join.  E = E1 ⟗ E2. Tuples in E represent 

extended matches that come from non-matching tuples of E1 

and E2, and matching pairs of E1 and E2. All these extended 

match tuples in E were captured by successive outer-joins 

(and complementary joins for cycle-completing relations) 

performed during construction of the Join Core and stored in 

tables whose names satisfy (S1 ˄ (¬p∈ {k, …, l})) ˅ (S2 ˄ 

(¬p∈ {k, …, l})) ˅ (S1 ˄ S2 ˄ p∈ {k, …, l}), which can be 

simplified to S1 ˅  S2 because p∈ {k, …, l} implies S1 ˄  S2.  On 

the other hand, each tuple in a Join Core table whose name 

satisfies S1 ˅ S2 must provide a result tuple to E1, E2, or E. 

Thus, S = S1 ˅ S2. Similarly, for E1 ⟕ E2, S = S1; for E1 ⟖ E2, 
S = S2. 

22Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            31 / 69



  

4) Anti-Join. E = E1 ⊳ E2. Tuples in E are extended 

matches in E1 that do not find matches in E2. Thus, tuples in 

E must have been captured by successive outer-joins (and 

complementary joins) performed and stored in Join Core 

tables whose names satisfy S1 but not (S2 ˄ p∈ {k, …, l}). On 

the other hand, Join Core tables whose names satisfy S1 but 

not (S2 ˄ p∈ {k, …, l}) contain tuples of E1 that do not join 

with tuples in E2, which are exactly the result tuples of E. 

That is, S = S1 ˄ ¬(S2 ˄ p ∈ {k, …, l}). 

Example 9. (Multi-Anti-Join Queries).  

(R1 ⋈ R2) ⊳ R3: S= 6 ∈ {k, …, l} ˄ ¬ (7 ∈ {k, …, l}). Only 

J1,2,6 satisfies S and the answer is {(B, b)}.  

(R2 ⊳ R1) ⊳ (R4 ⋈ R5): S=(2 ∈ {k, …, l} ˄ ¬ (6 ∈ {k, …, 

l})) ˄ ¬ (9 ∈ {k, …, l} ˄ 8∈ {k, …, l}). Only J2,4,8 satisfies S, 

and the answer is {(c)}. 

Theorem 3. Let E = E1 op E2, where E, E1, and E2 are 

arbitrary legitimate expressions that contain equi-, semi-, 

outer- and anti-joins, and op is one of these join operations 

with a join predicate p. Let S1 and S2 be the selection criteria 

for identifying Join Core tables from which the resulting 

tuples of E1 and E2 can be derived, respectively. Then, the 

selection criteria S for E is (i) if op = ⋈, S = S1 ˄ S2 ˄ p∈ {k, 

…, l}; (ii) if op = ⋉ or ⋊, S = S1 ˄ S2 ˄ p∈ {k, …, l}; (iii) if 

op = ⟗, S = S1 ˅ S2; if op = ⟕; S = S1; if op = ⟖, S = S2; (iv) 

if op = ⊳, S = S1 ˄ ¬(S2 ˄ p∈ {k, …, l}). 

 

C. Join Queries with Intersections, Unions, and Differences 

 Here, we consider join queries with commonly 

encountered set operators, intersections, unions, and 

differences. Note that an intersection can be treated as an 

equi-join in which the join attribute is the primary key. Here, 

we assume that the join graph includes edges specifying the 

equalities of primary keys between two schema compatible 

relations. 

 Let p be a join predicate specifying the equality of primary 

key attributes of two schema compatible relations. The 

intersection operation requires matches in the key values. 

Consequently, the resulting tuples of Ri ∩ Rj can only be 

found in Join Core tables Jk, …, l whose names contain 

predicate p, i.e., S = p ∈ {k, …, l}.  This is exactly the same 

selection criterion as that for an equi-join or a (left or right) 

semi-join. As for the union operation, the resulting tuples of 

Ri U Rj  can be found in Join Core tables  whose names contain 

trivial predicate i or j, i.e., S = i ∈ {k, …, l} ˅ j ∈{k, …, l}, 

the same selection criteria as for a full outer-join. Similarly, 

for the difference operation, the resulting tuples of Ri – Rj can 

be found in Join Core tables whose indices contain the trivial 

predicate i, but not j, i.e., S = i ∈ {k, …, l} ˄ ¬ (j ∈ {k, …, 

l}), the same selection criteria as for an anti-join. 

 By the same reasoning as presented in the previous 

section (B) and Theorem 3, we can extend the usage of Join 

Core tables to queries with arbitrary legitimate sequences of 

unions, differences, and intersections, in addition to equi-, 

semi-, outer- and anti-joins. The theorem follows. 

 Theorem 4. Let E = E1 op E2, where E, E1, and E2 are 

arbitrary legitimate expressions that contain equi-joins, semi-

joins, outer-joins, anti-joins, unions, differences, and 

intersections, and op is one of these operations with a join 

predicate p. Let S1 and S2 be the selection criteria for 

identifying Join Core tables from which the result tuples of 

E1 and E2 can be derived, respectively. Then, the selection 

criteria S for E is (i) if op = ⋈ or ∩, S = S1 ˄ S2 ˄ p∈ {k, …, 

l}; (ii) if op = ⋉ or ⋊, S = S1 ˄ S2 ˄ p∈ {k, …, l}; (iii) if op = 

⟗ or U, S = S1 ˅ S2; if op = ⟕, S = S1; if op = ⟖, S = S2; (iv) 

if op = ⊳ or –, S = S1 ˄ ¬(S2 ˄ p ∈ {k, …, l}). 

VII. COST ANALYSIS 

In this section, we analyze the time and space 

consumption of using Join Core. In addition, we also discuss 

measures to reduce the size of Join Core. 

A) Time Consumptions 

1) Disk Accesses Time 

 To answer a query, Join Core tables containing the result 

tuples are read into memory. Thus, the total number of disk 

accesses is dependent upon the size of the query result, not 

the complexity of the query.  

2) CPU Time 

 Once desired Join Core tables are read into memory, all 

that is remaining is to perform equality checking between 

alias components (of cycle-completing relations), pad 

“missing” attributes with null values (for outer-join 

operations), and eliminate unwanted attributes and 

duplicates. All these tasks should take only a very small 

amount of CPU time. 

B) Space Consumptions 

 To simplify discussions, we assume no dangling tuple 

exists in any of the equi-joins in the graph, which represents 

a worst case space consumption scenario since dangling 

tuples can shorten the matches. We further assume that in 

each join, all tuples of a relation find exactly the same number 

of matches in the other relation, namely a uniformity 

assumption on the matching of a join. 

 Consider a join between Ri (with Ti tuples), and Rj (with 

Tj tuples). We shall call Tj/Ti, denoted as rij, the join ratio of 

Ti with respect to Tj, that is, the average number of matches 

found in Rj for each tuple in Ri. In a one-many relationship 

from Ri to Rj, rij ≥1. On the other hand, in a many-one 

relationship from Ri to Rj, Tj/Ti ≤ 1. Since each tuple in Ri still 

can find one match in Rj, as we have assumed no dangling 

tuples exist in the joins, rij is set to 1 (i.e., rij=1) when Tj/Ti ≤ 

1. 

 To estimate the size of a Join Core, we first estimate the 

total number of match tuples, denoted by M, in the Join Core, 

and multiply it by the length of each match tuple. 

23Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            32 / 69



  

 To estimate the number of different matches, we can start 

from any relation, say Ri, by setting M = Ti, and then marking 

Ri as visited. For each edge ⟨Ri, Rj⟩, where Ri is a visited node 

while Rj is not, M=M ×rij. Once all relations are visited, the 

final M is the estimate. 

 Now, let us compute the length of each match tuple. Let e 

be the number of join edges and n the number of relations in 

the join graph. Each outer-join adds the set of attributes of 

one relation to the schema of the output, recalling the 

construction of a Join Core. Therefore, the final output of the 

outer-joins consists of the values of the attributes of e+1 

relations, e+1 ≥ n. For simplicity of analysis, we assume 

tuples in all relations have the same or a similar length L. 

Therefore, the size the Join Core is  

                                      M×(e+1)×L                            (1) 

  As compared to the database size Tavg×n×L, where 

Tavg=Avg{T1, …, Tn} is the average number of tuples in a 

relation. 

 Note that when all relations are of similar sizes, i.e., 

Tavg≈T1 ≈…≈ Tn, all rij’s ≈1 and M≈Tavg. In addition, if the 

graph has no (or few) cycles, i.e., e+1=(≈) n,  the Join Core 

size would be close to the database size, that is, M× (e+1)× 

L≈ Tavg×n× L, which is the best case scenario. 

C) Space Reduction Methods 

Many data compression techniques [4][5][13] can be used 

to compress the Join Core. Here, we shall only discuss 

methods that are specifically related to the reduction of the 

Join Core structure. 

Storing all join relationships of a complex graph can 

consume large amounts of space. Here, we discuss heuristics 

that can significantly reduce the space consumption of the 

Join Cores, however, at the price of incurring additional join 

operations. Further research is still needed to analyze the cost 

and benefits of these heuristics. 

(H1). Store only useful relations, relationships, and 

attribute values. Statistics and knowledge on the usages of 

relations, relationships, and attributes may be available or can 

be collected to assist in making such decisions. 

 (H2). Remove smaller relations from a join graph. Smaller 

relations, in terms of the numbers of tuples in the relations, 

need replicate their tuples more times to generate M match 

tuples, which will make updates (on smaller relations) more 

expensive. In addition, if a removed relation is referenced in 

a join query, then a join operation must be performed. 

Removing smaller relations incurs less penalty because joins 

with smaller relations are faster to perform. Moreover, 

smaller relations have better chances of fitting in memory to 

make the joins faster.  

 (H3). Remove cycle-completing relations. Removal of a 

cycle-completing relation from a graph implies removal of all 

its aliases too, which can significantly reduce the storage 

consumption. Since any graph traversal method can be used 

in construction a Join Core, one is given the opportunity to 

select “good” relations to be cycle-completing relations. 

Here, we recommend relations that are small (following H2) 

and, if possible, complete multiple cycles.  

      1) Constructing Join Core with Space Constraint 

 Without detailed cost-benefit measures, here is a simple 

way to construct a Join Core that satisfies a given space limit. 

First, one can, following (H1), remove unwanted relations, 

relationships, and attributes if a priori knowledge or statistics 

are available. If the Join Core is still too large, one can 

consider removing a smallest relation, following (H2), or a 

cycle-completing relation, following (H3), until the desirable 

size is met. 

VI. NEO4J GRAPH DATABASE  

     In this section, we discuss Neo4j in details as it will be 

used in later performance evaluation against Join Core. 

Neo4j is most popular graph databases according to [24]. 

It is an open-source graph database management system that 

provides high scalability and read/write performance [24]. 

The high performance is mainly owing to the use of both a 

native processing and storage model. Native processing 

model is referred to the leverage of index-free adjacency 

(where related nodes are physically connected to each other) 

in graph database. The use of index- free means that the query 

time depends on the searched graph length rather than the 

total size of the graph [4]. On the other hand, native storage 

model refers to the underlying physical structure of the 

database, where nodes and relationships are stored in a graph 

structure. This technology ensures that the graph database is 

optimized by storing related entities close to each other [24].  

Neo4j employs the property graph data model [24]. 

Property graph model consists of nodes, relationship, 

properties and labels [7]. Both node and relationship hold a 

number of properties that are stored in the form of key-value 

pairs. Relationship links nodes to each other and each 

relationship has a name, direction and start and end nodes. 

Labels tag nodes to group them, and to identify their role in 

the dataset. Figure. 5 explains the consumer complaints 

against the company’s products and sub-products, and issues 

that rose and the company’s responses to. Each and every 

node is associated with the labels and the properties. 

       In Neo4j, each type of element is stored in a separate data 

store. For instance, physical file neostore.nodestore.db 

contains all nodes in the dataset where 

neostore.propertystore.db and neostore. relationshipstore.db 

stores properties and relationship, respectively [7].  Records 

inside node and relationship data store are fixed in size which 

accelerates record lookups in the file, as any known record 

ID can be used compute the record’s location in the file. 

 Neo4j can be queried in many ways, such as Traverser 

API and Cypher query language [17]. Cypher is a declarative 

graph query language provides an efficient way to create, 

update and query the graph database [3]. It is considered as a  

24Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            33 / 69



  

 
 

Figure 5. The labelled property graph Model 

 

powerful language that focuses on what to get rather than 

how to get it.  Cypher’s structure is inspired by SQL to make 

it easier and more familiar for the SQL users, although it 

focuses on finding and describing patterns in the graph. 

Cypher uses clauses (like most query languages) to query 

from the graph, a simple read query would be consist of 

MATCH, WHERE and RETURN clauses. Cypher execution 

engine optimizes and turn each query into an execution plan. 

The plan is a pattern of number of connected operators, where 

each operator is responsible for a small section of the query 

execution. 

VII. EXPERIMENTAL RESULTS 

A) Space Consumptions 

 We have performed experiments on the graph database 

NEO4J 3.0.6 community edition along with the Join Core to 

compare their performance efficiency. We have performed 

all experiments on a laptop computer with a 2.40 GHz CPU, 

8GB RAM, and a 1 TB hard drive. 1.2GB consumer 

complaint dataset was generated. Consumer Complaints 

dataset has 4 relations, i.e. Product table, Issue table, 

Response table and Complaint table. The dataset which we 

took was from the Neo4j dataset.  After processing the dataset 

in the join core tables, we get 3 GB dataset. These tables are 

stored in the hard disk. The larger size of Join Core is due to 

replications of tuples of relations. Similarly, after loading all 

the data and the relationships between them in the Neo4j 

database we get a data size of 2.4GB. The data is stored in the 

disks. The increase in the size of the database is due to 

summation of actual size of database, ratio of size of graph.db 

to index and ratio of size of graph.db to schema [24]. Table 1 

shows the size of Join Core and Neo4j. 

 

 

 

 B) Query Processing Time 

 We measure the elapsed time of the test queries. In Neo4j, 

the consumer complaint dataset has some cypher queries in 

[23]. We use the same queries and modify them to be worked 

in Join Core. While keeping (most of) the selections and 

projections, we remove any “group by”, “order by”, “limit”, 

aggregate functions, from the queries so that we can focus 

mainly on the join query processing. We add “distinct” to the 

queries as we have implicitly assumed the set semantics in 

the paper. 

 Join Core tables are read from disks into memory for 

processing, and the result tuples are written back to the disks. 

Elapsed time measures the time from beginning to end, after 

writing all result tuples to the disks.  

 Table 2 shows the query processing time. In the first 

column, the ID of the consumer complaint query is shown 

first, followed by the relations involved in the join operations. 

For simplicity, relations are referenced by the numbers 

assigned to them in Figure. 6. All times are measured in 

milliseconds. 

 With Join Cores, all queries saw their first responses 

instantly. As explained, all it takes is the retrieval of a block 

of a relevant Join Core table into memory and simple 

manipulations before output it after simple manipulations.

 The result size of the query, not the complexity 

determines the query processing time because the join result 

is readily available in the Join Core. Queries 2 and 3 best 

illustrate this characteristic of Join core. Query 2 has only one 

join but generates large numbers of result tuples. On the other 

hand, Query 3 has two joins, but generates much smaller 

numbers of result tuples. Therefore, it took much longer to 

process Query 2 than Query 3. As shown in Table 2, in Join 

Core, it took 253milliseconds to process Query 2 for 1.2 GB 

dataset, but it took only 13milliseconds, respectively, to 

process Query 3. Since there were no joins to perform in the 

Join Core, many queries completed instantly. Whereas in 

Neo4j, path traversal operations in the complex relationships 

of nodes determines the query processing time because in 

Neo4j, it first travels through the relationship table and then 

retrieves the resultant tuples from the disk. Queries 1 and 6 

are best to illustrate this characteristic of Neo4j. Both queries 

1 and 6 have no joins. But the complexities of relationships 

involved in the query makes to retrieve small number of 

result tuples in more time compared to query 1, which 

TABLE 1. SPACE CONSUMPTIONS 

Consumer Complaint 

Dataset 
Join Core Neo4j 

1.2 GB 3 GB 2.4 GB 

 

 

 
 

 

 

 

 

 

           Figure 6.  Consumer Complaints Join Graph 

 

1. Product 

4. Response 

3. Complaint  

2. Issue 

25Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            34 / 69



  

retrieved large number of result tuples in less time compared 

to query 6. 

 From the results, it can be inferred that, if the query has  

the complex relationships in it then Neo4j takes more time 

than the join core. From the above experimental results, it can 

be observed that when the queries require large joins one can 

use join core, which is portable and can be used for any 

application domain irrespective of the API. Join Core retrieve 

results instantly when compared to the Neo4j. From this 

study, it can be concluded that to process complex queries 

join core is the best option irrespective of the size of the data. 

 Another advantage of the proposed methodology is that it 

does not consume much memory. All it needs is to build a 

hash table for the final duplicate elimination. 

 We believe the instant responses, fast query processing, 

and small memory consumption of the Join Core are well 

worth its required additional storage space. 

 

VIII. CONCLUSIONS AND FUTURE WORK 

In this paper, an anti-relational approach, called Join 

Core, has been presented. Join Core technique stores the equi-

join relationships of tuples on various tables. The join queries 

can be answered quickly by merely merging these tables 

without having to perform expensive joins. We use Neo4j as 

graph database to perform experiments and compare its time 

and space consumptions with a Join Core. Preliminary 

experimental results showed that Join Core outperforms 

Neo4j when complex join queries are processed. This is 

because in Join Core, there was no need to perform join 

operations at run time while in Neo4j, the path traversal 

operations depend upon the complexities of the relationships 

of tuples. In the future work, we will implement all possible 

scenarios discussed in the above sections, such as the semi-

join, outer- or anti-join. We will also perform experiments in 

the SSD and compare the performance with the hard disk. 

Furthermore, we will assess the impact of the page cache size 

used in Neo4j. 

REFERENCES 

[1] A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava, 
“Answering queries using views”, In ACM PODS Conf., 1995, 
pp. 95-104. 

[2] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and 
P. Sander, “Relational joins on graphics processors”, In ACM 
SIGMOD Conf., 2008, pp. 511-524. 

[3] B. Kenny, Understanding How Neo4j Cypher Queries are 
Evaluated: 
http://www.kennybastani.com/2014/07/understanding-how-
neo4j-cypher-queries.html, [retrieved: 12, 2017]. 

[4] C. Kim, E. Sedlar, and J. Chhugani, “Sort vs. Hash Revisited: 
Fast Join Implementation on Modern Multi-Core CPUs”, In 
VLDB Conf., 2009, pp. 1378-1389. 

[5] D. Abadi, S. Madden, and M. Ferreira, “Integrating 
Compression and Execution in Column-Oriented Database 
Systems”, In SIGMOD, 2006, pp. 671–682. 

[6] D. DeWitt and R. Gerber, “Multiprocessor hash-based join 
algorithms”, In VLDB, 1985, pp. 151–164. 

[7] E. Eifrem, J. Webber and I. Robinson, Graph Databases. 2nd 
Edition “O’Reilly Media, Inc.", 2015 

[8] H. Karloff and M. Mihail, “On the complexity of the view-
selection problem”, In ACM PODS Conf., 1999, pp. 167-173. 

[9] J. Goldstein and P.-A. Larson, “Optimizing queries using 
materialized views: a practical, scalable solution”, In ACM 
SIGMOD, 2001, pp. 331-342. 

[10]  J. Yang, K. Karlapalem, and Q. Li, “Algorithms for 
materialized view design in data warehousing environment”, In 
VLDB, 1997, pp. 25-29. 

[11]  M. Kitsuregawa, H. Tanaka, and T. Moto-Oka, “Application 
of  hash to data base machine and its architecture”, New 
Generation Computing 1(1), 1983, pp. 63-74. 

[12]  M. W. Blasgen and K. P. Eswaran, “Storage and access in 
relational data bases”, IBM Systems Journal 16.4, 1977, pp. 
363-377. 

[13]  M. Zukowski, S. Héman, N. Nes, and P. Boncz, “Super-scalar  
RAM-CPU cache compression”, In ICDE, 2006, 
-  http://doi.org/10.1109/ICDE.2006.150. 

[14]  P. Valduriez, “Join indices”, ACM Transactions on Database 
Systems (TODS), 1987, 12(2), pp. 218-246. 

[15]  R. Derakhshan, F. Dehne, O. Korn, and B. Stantic, “Simulated 
Annealing for Materialized View Selection in Data 
Warehousing Environment”, In Databases and applications, 
2006, pp. 89-94.  

[16]  R. Pottinger and A. Levy, “A scalable algorithm for answering 
queries using views”, In VLDB Conf., 2000, pp. 484-495.  

[17]  R. Kaliyar, Graph Databases: A Survey, International 
Conference on Computing, Communication and Automation 
(ICCCA2015), p785-790 

[18]  R. De Virgilio, A. Maccioni, and R. Torlone, Converting 
Relational to Graph Databases. In First International Workshop 
on Graph Data Management Experiences and Systems 
(GRADES ’13), 2013, pp. 1–6, New York, New York, USA, 
ACM Press. 

[19]  S. Agarawal, S. Chaudhuri, and V. Narasayya, “Automated 
Selection of Materialized Views and Indexes for SQL 
Databases”, In VLDB , 2000, pp. 496-505. 

[20]  S. Chu, M. Balazinska, and D. Suciu, “From Theory to 
Practice: Efficient Join Query Evaluation in a Parallel Database 
System”, In ACM SIGMOD Conf., 2015, pp. 63-78. 

 TABLE 2. TIME CONSUMPTIONS 

Query 

Join Core Neo4j 

Result 

Tuples 

Elapsed 

Time (ms) 

Elapsed 

Time (ms) 

1       R2 18 714 68 

2 ⋈ {R1, R4} 253 31,824 1,976 

3 ⋈ {R1, R2, R3} 13 262 18 

4 ⋈ {R1, R2, R4} 49 317 447 

5       R2 19 319 95 

6       R3 18 130 5 

7       R4 17 860 7 

8 ⋈ {R2, R3, R4} 19 752 84 

9 ⋈ {R2, R4} 19 856 106 

26Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            35 / 69



  

[21]  Z. Li, and K. A. Ross, “Fast joins using join indices”, The 
VLDB Journal—The International Journal on Very Large Data 
Bases”, 1999, 8(1), pp. 1-24. 

[22]  M. Hamdi, F. Yu, S. Alswedani, and W.C. Hou, “Storing Join 
Relationships for Fast Join Query Processing”. In International 
Conference on Database and Expert Systems Applications 
(DEXA), 2017, pp. 167-177. Springer, Cham.. 

[23]  Importing CSV Data into Neo4j, 
https://neo4j.com/developer/guide-import-csv/#load-csv-
webinar , [retrieved: 1, 2018]. 

[24]  Graph database (Neo4J): https://neo4j.com, , [retrieved: 1, 
2018]. 

27Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            36 / 69



Graph Learning for Prediction of Drug-Disease Interactions: Preliminary Results

Andrej Kastrin∗ and Dimitar Hristovski†
Institute of Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana

Ljubljana, Slovenia
Email: ∗andrej.kastrin@mf.uni-lj.si, †dimitar.hristovski@mf.uni-lj.si

Abstract—One of the fundamental problems to complex network
research is understanding of link formation. We study the prob-
lem of representation learning in a bipartite drug-disease network
of semantic predications extracted from biomedical literature.
We employ DeepWalk and node2vec node embedding methods
with deep learning link predictor, as well as standard baseline
predictors including common neighbors, Jaccard coefficient, and
Adamic/Adar. Experimental results show that both network
embedding algorithms outperform traditional link predictors.

Keywords–Complex networks; Network analysis; Network learn-
ing; MEDLINE.

I. INTRODUCTION

The corpus of biomedical papers is growing at an exponen-
tial rate. For instance, MEDLINE [1], the largest bibliographic
database in biomedicine, at the time of this writing, aggregates
more than 28 million citations to life science papers. However,
a significant amount of potentially useful knowledge still re-
mains undiscovered. It is hard to synthesize divergent research
evidence into coherently interpretable knowledge. Here, we
tackle the problem of unravelling hidden relations between
drugs and diseases using link prediction methodology from
biomedical literature.

An elementary problem in graph research is the analysis
of the connections between the nodes. In computer science
and statistics, this is known as link prediction problem. Al-
though novel research area, link prediction attracted numerous
researchers in the last decade. Link prediction refers to the
discovery of relations between nodes that are not connected in
the current snapshot of a given network but will be connected
in the future. The aim of link prediction in general is to
estimate the probability that a link exists among a pair of
nodes, based on the topology of existing nodes, edges, and
their attributes.

In the case of link prediction, we need to encode pairwise
properties between nodes, such as the number of common
neighbors or relationship strength. Traditional approaches rely
on summary network statistics (e.g., centrality measures) to ex-
tract structural information from networks. However, recently,
approaches have emerged that seek to learn representations that
encode structural information about the network and present
a powerful alternative to traditional feature engineering. The
general idea behind representation learning is to learn a map-
ping that embeds nodes as points in a low-dimensional vector
space (i.e., embedding space). The goal is to optimize this
mapping so that geometric relationships in this space reflect
the structure of the original network. The learned embeddings
can then be used as feature inputs for machine learning tasks.
Embedding methods can be generally categorized into three
groups [2]: (i) factorization methods (e.g., locally linear em-
bedding [3]), (ii) random walk techniques (e.g., DeepWalk [4],

node2vec [5]), and (iii) deep learning (e.g., structural deep
network embedding [6]).

In this work, we investigate the performance of two net-
work embedding algorithms, namely DeepWalk and node2vec.
More formally, we examine, how neural network predictor,
using computed embeddings from DeepWalk and node2vec,
behaves on the task of link prediction in a large-scale network
of semantic predications extracted from biomedical literature.
In addition, we examine these methods in contrast to tradi-
tional baseline predictors such as common neighbors, Jaccard
coefficient, and Adamic/Adar.

The rest of the paper is structured as follows. In Section II,
we present dataset and methodology used in this study. Results
are presented in Section III. Finally, we conclude in Section IV.

II. METHODS

A. Dataset

SemRep is a symbolic natural language processing tool that
extracts semantic predications from MEDLINE citations [7].
A predication is a formal representation of textual content
that consists of a subject, predicate, and object. Subject
and object arguments are concepts from the Unified Med-
ical Language System (UMLS) Metathesaurus [8] as avail-
able through MetaMap [9]. The predicate is from UMLS
Semantic Network [10]. These predications provide a nor-
malized representation of the meaning of the source text in
a machine-readable form for automatic processing. SemRep
extracts about 30 predicate types, related to clinical medicine
(e.g., TREATS, DIAGNOSES), substance interactions (e.g.,
INTERACTS_WITH, STIMULATES), genetic etiology of dis-
ease (e.g., ASSOCIATED_WITH), and pharmacogenomics
(e.g., AFFECTS). In this paper, we focus only on TREATS
relation. We extract all TREATS relations that connect drugs
(Metathesaurus concepts with semantic type “Pharmacologic
Substance”) and diseases (concepts with semantic type “Dis-
ease or Syndrome”).

B. Baseline Predictors

We implemented a link prediction baseline using various
proximity measures, which are used to find similarity among
a pair of nodes. Our assumption is that similar nodes are more
likely to form a link in the future. For each non-observed
link (u, v) in a testing network, a link prediction computes
a score s(u, v), which can be considered as an estimate of the
presence of edge creation between nodes u and v. In our initial
settings we used common neighbors, Jaccard coefficient, and
Adamic/Adar.

28Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            37 / 69



C. Network Embeddings

For network representation learning models, we used
two state-of-the-art algorithms, namely DeepWalk [4] and
node2vec [5]. Both methods employ random walk algorithm
to sample topological properties and node representations are
learned to preserve pairwise similarities of nodes.

DeepWalk learns an embedding by sampling random walks
from each node and applying skip-gram learning on those
walks. We use the default parameters described in the seminal
paper, i.e., walk length t = 80, number of walks per node
γ = 80, and window size w = 10. node2vec improves the
random walk step of DeepWalk by defining hyperparameters
p and q that control the depth and breadth of random walks,
respectively. The special case with parameters p = 1 and
q = 1 corresponds to DeepWalk. In our settings we used the
same values for parameters as for DeepWalk; the remaining
parameters were set to p = 2 and q = 4.

After network embedding, we need to set up a statistical
classification framework for link prediction. Both algorithms,
DeepWalk and node2vec, described above, are designed to
learn feature representations for nodes in a network. However,
in our study we are interested in prediction involving pairs of
nodes and not individual nodes. To this end, we need to define
a binary operator ◦ over the corresponding feature vectors
f(u) and f(v) in order to generate a composite representation
g(u, v). We consider three different alternatives for the ◦
operator:

1) concatenation: ui + vi,
2) average: (ui + vi)/2, and
3) Hadamard product: (ui ∗ vi),

where u and v are two vectors and ui and vi are i-th element
of u and v, respectively.

D. Machine Learning

For the classification task, we use deep learning model im-
plemented in TensorFlow [11] as feed-forward neural network
with a single hidden layer. Input to the model is a vector
representation with the binary operator defined above. The
output of the model is a probability of a link formation between
the input nodes. We draw a fixed proportion of the existing
edges for training, and use the rest of edges for the testing.
Training was defined for a time period from 1843 to 2003 and
testing for a time range from 2004 to 2018.

In this study, we used the following five measures to com-
pare the performance of the statistical learning: area under a
receiver operating characteristic curve (AUROC), area under a
precision-recall curve (AUPR), mean average precision (mAP),
and precision at k (Prec@k).

III. RESULTS AND DISCUSSION

In our experiment we used the knowledge network, con-
structed as a subset of SemMedDB network [12], as defined
previously in the Methods section. The network comprises
13,182 unique vertices that refer to drugs and 8856 vertices
that refer to diseases. In total, there were 170,707 relations
between both sets of nodes. The mean degree of the bipartite
network was 12.95 links and the average path length was 1.76
hops.

The results in terms of classification performances of the
performed experiment are summarized in Table I. The best per-
former across all four performance measures is node2vec with
average merge type. If we consider only AUROC and AUPR
measures, the baseline predictors are slightly better than Deep-
Walk and node2vec. Common neighbors measure performs
best, followed by Jaccard coefficient, and Adamic/Adar. mAP
and Prec@k scores for DeepWalk and node2vec are an order
of magnitude higher in comparison to baseline predictors.

TABLE I. PERFORMANCE MEASURES OF LINK PREDICTION ALGORITHMS

Method Binary operator AUROC AUPR Pred@k mAP

CN – 0.86 0.86 0.86 0.64
JC – 0.85 0.84 0.86 0.62
AA – 0.81 0.74 0.82 0.54

DeepWalk
Co 0.83 0.86 0.96 0.79
Av 0.83 0.86 0.97 0.80
Ha 0.72 0.72 0.82 0.65

node2vec
Co 0.83 0.86 0.96 0.80
Av 0.83 0.86 0.97 0.81
Ha 0.72 0.73 0.83 0.65

Note: CN = Common Neighbors, JC = Jaccard Coefficient, AA =
Adamic/Adar; (Co)ncatenate, (Av)erage, and (Ha)damard merge type;
further details are provided in text

As far as we know, this is the first work discussing
knowledge network, network embeddings as well as deep
learning approach to discover new drug-disease interactions
from literature. Results of this study show that both network
embedding algorithms, DeepWalk and node2vec, outperform
traditional link predictors such as common neighbors or Jac-
card coefficient.

IV. CONCLUSION

We investigate the representation learning in bipartite drug-
disease network of semantic predications. We design a deep
learning model that includes the network structure into the em-
bedding. Experimental results demonstrated that performance
measures in terms of AUROC and AUPR are comparable.
However, we found evidence that DeepWalk and node2vec
outperformed baseline predictors in terms of Pred@k and mAP
measures.

REFERENCES

[1] “PubMed,” https://www.ncbi.nlm.nih.gov/pubmed, accessed: 2019-06-
27.

[2] P. Goyal and E. Ferrara, “Graph embedding techniques, applications,
and performance: A survey,” Knowledge-Based Systems, vol. 151,
2018, pp. 78–94.

[3] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 5500, 2000, pp. 2323–
2326.

[4] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2014, pp. 701–710.

[5] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2016,
pp. 855–864.

[6] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
in Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2016, pp. 1225–1234.

29Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            38 / 69



[7] T. C. Rindflesch and M. Fiszman, “The interaction of domain knowl-
edge and linguistic structure in natural language processing: Interpreting
hypernymic propositions in biomedical text,” Journal of Biomedical
Informatics, vol. 36, no. 6, 2003, pp. 462–477.

[8] O. Bodenreider, “The Unified Medical Language System (UMLS):
Integrating biomedical terminology,” Nucleic Acids Research, vol. 32,
no. Database issue, 2004, pp. D267–D270.

[9] A. R. Aronson and F.-M. Lang, “An overview of MetaMap: Historical
perspective and recent advances,” Journal of the American Medical
Informatics Association, vol. 17, no. 3, 2010, pp. 229–236.

[10] D. A. Lindberg, B. L. Humphreys, and A. T. McCray, “The Unified
Medical Language System,” Methods of Information in Medicine,
vol. 32, Aug. 1993, pp. 281–291.

[11] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system
for large-scale machine learning,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’16), 2016, pp.
265–283.

[12] H. Kilicoglu, D. Shin, M. Fiszman, G. Rosemblat, and T. C. Rindflesch,
“SemMedDB: A PubMed-scale repository of biomedical semantic pred-
ications,” Bioinformatics, vol. 28, no. 23, 2012, pp. 3158–3160.

30Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            39 / 69



Exploring and Comparing Table Fragments With Fragment Summaries

Fatma-Zohra Hannou

Sorbonne Université, CNRS, LIP6
4, place Jussieu

75252 Paris, France
Email: Fatma.Hannou@lip6.fr

Bernd Amann

Sorbonne Université, CNRS, LIP6
4, place Jussieu

75252 Paris, France
Email: Bernd.Amann@lip6.fr

Mohamed-Amine Baazizi

Sorbonne Université, CNRS, LIP6
4, place Jussieu

75252 Paris, France
Email: Mohamed-Amine.Baazizi@lip6.fr

Abstract—In this article, we introduce a new pattern-based
summarization framework for representing and reasoning about
fragmented data sets. A fragment summary is a concise, complete
and precise representation of a data fragment and its information
contents relatively to the whole data set. We formally define the
notion of fragment summary and the use of Structured Query
Language (SQL) queries over fragment summaries for analyzing
data fragments. We introduce an algorithm for computing sum-
maries and present an experimental evaluation using two real-life
data sets.

Keywords–data fragments; summarization; patterns; reasoning.

I. INTRODUCTION

Summarization is the process of generating a concise
representation of a data set for some specific processing tasks.
Compared to data compression, the goal of summarization
is, usually, to preserve enough information for fulfilling these
tasks without the need for decompression. Data summarization
has been applied to various data types (text, data streams,
graphs, structured data, music, etc.) for different tasks related
to information retrieval, data monitoring, data visualization,
query processing, and data integration as witnessed by recent
works [1]–[5].

In this article, we introduce a new pattern-based summa-
rization framework for representing and analyzing fragmented
data sets. A fragment summary is a concise representation of
a data fragment and its information contents relative to the
whole data set. Data fragments can be the result of user-defined
filtering queries or any other data extraction task over some
data set. They can also correspond to data tables (sources)
that partially cover a complete reference table like a dimension
table in some analytic data set. Fragment summaries can then
be used to rapidly decide if a data tuple or a category of tuples
(defined by attribute/value pairs) is completely or partially
included in the corresponding data fragment.

To better understand the potential of fragment summaries,
consider Energy in Table I reporting the daily energy con-
sumption for rooms (ro) in two floors (fl). The table contains
a tuple for each location and time defined by the week (we)
and the day (da), and indicates missing information with Null.
The first data fragment is defined by query Qavail returning
all tuples with existing kWh values. The second fragment,
denoted with Qmiss, contains all tuple identifiers with missing
kWh values ; it is complementary to the first fragment. Both
fragment summaries are presented in Table II. A fragment
summary corresponds to a table of patterns that concisely

TABLE I. DATA TABLE

Energy fl ro we da kWh
t0 f1 r1 w1 Mon 10
t1 f1 r1 w1 Tue 12
t2 f1 r1 w2 Mon 10

m0 f1 r1 w2 Tue Null
t3 f1 r2 w1 Mon 8
t4 f1 r2 w1 Tue 10

m1 f1 r2 w2 Mon Null
m2 f1 r2 w2 Tue Null
t5 f2 r1 w1 Mon 12
t6 f2 r1 w1 Tue 7
t7 f2 r1 w2 Mon 8
t8 f2 r1 w2 Tue 8

TABLE II. FRAGMENT SUMMARIES OF QAV AIL AND QMISS

Pavail fl ro we da
p0 ∗ ∗ w1 ∗
p1 f2 ∗ ∗ ∗
p2 f1 r1 ∗ Mon

Pmiss fl ro we da
p3 ∗ r2 w2 ∗
p4 f1 r1 w2 Tue

summarizes all data categories contained in the fragment. The
summary Pavail describes all complete categories of available
information (for example, all values are available for category
[we=’w1’] and any sub-category), whereas the summary Pmiss

describes all empty categories (e.g. all values are missing
for category [ro=’r2’, we=’w2’]). Observe that both fragment
summaries contain the minimal set of all attribute/value pairs
that are necessary to precisely characterize this fragment (and
all categories it subsumes). For example, categories [fl=’f1’,
ro=’r1’] and [we=’w2’] are not subsumed by any pattern in
both tables and therefore contain tuples with missing and with
available measures. Observe also that the intersection of both
summaries is empty and the union is the “wildcard” template
∗ covering the whole data set.

Fragments summaries are meant to provide a precise se-
mantic characterization of data fragments and, thus, can be
exploited for performing complex analytical tasks such as
analyzing the completeness and correctness of analytic aggre-
gation queries. To illustrate this case, consider the following
query over the original data table Energy(fl, ro, we, da, kWh):

select fl, ro, we, sum(kWh) from Energy
group by fl, ro, we

By examining this data table, it is easy to notice that the
computed sum for the partition [f1,r1,w1] is be incorrect since
this partition is incomplete. This examination allows inferring

31Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            40 / 69



that no value is returned for the partition [f1,r2,w2] whose
values are missing. Fragment summaries are very useful in
supporting such analysis tasks especially when data becomes
large and not amenable to visual inspection ; in this case, SQL
turns out to be helpful as illustrated with the following queries
over fragment summaries:

• select fl,ro, we from Pavail where da=’*’

retrieves the summary of all partitions with a correct
aggregation result (e.g., the fragment characterized
with week=w1 and floor=f2)

• select fl,ro, we from Pavail where da<>’*’

returns the partitions with incorrect results (all results
are incorrect for room ’r1’ at floor ’f1’) and

• select fl,ro, we from Pmiss where da=’*’ char-
acterizes the missing results (all results are missing
for room ’r2’ at week ’w2’).

Fragment summaries characterize all complete categories
in a fragment and their compactness ratio (summary size/frag-
ment size) can be very high (see Section VI). This space loss is
compensated by the speedup of complex decision tasks, such as
identifying complete and missing data and annotating incorrect
query results.

In our previous example, all fragments (and their sum-
maries) were defined over a set of attributes that are part
of the table key. In this case, the summary of any fragment
is ”complete” in the sense that it allows to decide for each
tuple if it is part of the fragment or not. It is also possible
to build summaries over sets of attributes that are insufficient
to separate fragment tuples from non-fragment tuples. In this
case, some tuple categories can be formally identified as
belonging to some fragment, but other categories may be non-
distinguishable.

To illustrate the notion of non-distinguishable (ND)
fragments, consider the Adult dataset [6] that is widely
used for learning population classes based on income. This
dataset reports census data about income for 32, 561 in-
dividuals described by 14 attributes including one numeri-
cal attribute Age with domain [17, 90] and seven categor-
ical attributes Workclass, Education, Marital-Status, Occu-
pation, Race, Sex and Income [<50k,≥50k]. In [7], this
data-set was used for producing approximate summaries
of highly frequent data categories. An example of such
a summary is the one stating that 69% of individuals
with [race=’White’, sex=’Male’, Marital-Status=’married-
civ-spouse’] have a high-income (i.e., >50K). Instead of
producing approximate summaries, we are interested in obtain-
ing exact ones by exploiting additional attributes like: Age,
Workclass, Education and Occupation and classify the
individuals into High, Low and Non-Distinguishable (ND) as
reported in Table III.

Here, we can see that (1) all white married male soldiers
between 40 and 50 and all employees of the federal govern-
ment with a PhD have a high income, (2) all white married
males that have a low income, are young or have never worked
or have a preschool diploma and (3) it is not possible to decide
for white married males with a Master degree, or are old with
a PhD, whether they belong to high or low-income class. We
will show in Section V how this kind of detailed analysis can
be done by evaluating simple SQL queries over pre-computed
fragment summaries.

TABLE III. “MARRIED-WHITE-MALE” FRAGMENT

High age workc education occupation
40-50 ∗ ∗ Armed-Forces
∗ federal-gov Doctorate ∗

Low age workc education occupation
< 20 ∗ ∗ ∗
∗ Never-worked ∗ ∗
∗ ∗ Preschool ∗

ND age workc education occupation
∗ ∗ Masters ∗

> 60 ∗ Doctorate ∗

Contributions: In this article, we formalize the notion
of fragment summary and show how fragment summaries
can be exploited for characterizing data fragments in data
sets and query results. Our approach leverages the relational
representation of fragment summaries by taking advantage of
SQL for achieving these different analyses. We introduce an
algorithm for efficiently generating fragment summaries and
sketch a mechanism for reasoning on fragment summaries to
gain knowledge about data.

Outline: This article is organized as follows. In Section
II, we survey related work before introducing our data model in
Section III. Sections IV and V are dedicated to presenting the
fragment generation algorithm and the reasoning mechanism,
respectively. Experimentation results are discussed in Section
VI, and we conclude the article in Section VII.

II. RELATED WORK

Our contribution lies in the intersection of two mainstream
topics: data summarization and relative data completeness,
which is a special case of data completeness. We report on
works addressing both topics.

A. Data summarization
The main goal of most approaches in this family is to

reduce the data size while preserving as much information as
deemed useful for achieving specific operations like evaluating
aggregate queries [4] or returning approximate answers with
correctness guarantees [1]. Different techniques are used. Some
approaches exploit semantic knowledge like fuzzy thesauri
and linguistic variables [8][9] or OLAP hierarchies [2][3]
to generate concise descriptions of large data sets. Efficient
encoding of data has also been used for compressing columns
and rows [10] but our work is more reminiscent to the family
of pattern mining approaches [7][11][12] where summaries
are expressed using patterns. In [7], summaries are built by
selecting the most representative patterns that capture the
largest fragments of data. The approach uses the Minimum
Description Length principle for guiding the extraction process
that searches for a minimal patterns-set with maximal infor-
mativeness. Differently from [7], our approach is concerned
with extracting an exhaustive set of patterns characterizing a
table fragment w.r.t. entire table and a set of attributes.

B. Relative data completeness
Information completeness is a major data quality issue that

received attention in the database context [13]–[16]. Several
approaches have addressed the problem of assessing the query

32Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            41 / 69



answer completeness when queries are evaluated on a database
with possibly missing tuples or Null values. Relative infor-
mation completeness assumes the existence of a virtual or
materialized reference database DBC describing the full extent
of data. The data set can be described by views over a virtual
DBC [15] and assessing the completeness of a query resorts
to determining whether it can be answered using these views.
In [17], data completeness is defined by a set of containment
constraints between the database D and a master dataset DBC ,
and D is complete for a query Q relative to DBC , if adding
tuples to D either violates some constraints or does not change
the answer of Q.

The use of metadata for describing the data completeness
has been investigated in [13][14][16][18]. C-tables [13] and
m-tables [18] have been proposed for annotating tuples with
certainty information and propagating certainty to query an-
swers. In [16], patterns were used to annotate tables with
completeness information and a pattern algebra was designed
for reasoning on query answer completeness. Differently from
[16], which assumes the existence of a set of patterns describ-
ing complete data fragments, our approach investigates how
to efficiently extract such patterns from reference data and,
more importantly, how to ensure that the extracted patterns
exhaustively capture completeness information. Moreover, we
do not restrict ourselves to the study of completeness but
use patterns as means to characterize any data fragment with
respect to a reference dataset and a set of attributes.

III. DATA MODEL

In this section, we introduce the notion of fragment sum-
mary as a comprehensive description of all complete data
categories in a data fragment. Let S and T be two relational
tables such that S ⊆ T . Then S is called a fragment of
source or reference table T and the pair F = (S, T ) is
called a constrained fragment. For example, any table T
with Null values for a given attribute A can be decomposed
into two constrained fragments Fnotnull = (Snotnull, T ) and
Fnull = (Snull, T ) where fragment Snull contains all tuples in
T with null values for A and fragment Snotnull contains all
tuples in T without null values. In the following, we assume
that the source table T of each constrained fragment is known
and use without distinction the terms fragment and constrained
fragment.

A. Fragment Summaries and Patterns
Let A = {a1, a2, ..., an} be a set of attributes where

the domain of each attribute is extended by a distinguished
wildcard value ∗. A pattern p = [a1 : v1, a2 : v2, ..., an : vn]
over A is a tuple that assigns to each attribute ai ∈ A a value
vi ∈ dom(ai) ∪ {∗} in the extended domain of ai. A set of
patterns P (A) = {p1, p2, . . . , pk} over a set of attributes A is
called a pattern table. We denote by [∗] the wildcard pattern
where all pattern attributes are assigned to wildcards. Observe
that a pattern table might contain only data tuples, i.e. patterns
without any wildcards.

A pattern table P defines a hierarchy of patterns LF =
(P ∗,≤) where p ≤ p′ if p can be obtained from p′ by
replacing zero or more constants by wildcards (p is called
a specialization of p′) and P ∗ contains all patterns p′ such
that there exists a pattern p ∈ P where p′ ≤ p or p ≤ p′.
Then, the pattern instance /(p, S) of a pattern p over pattern

attributes A in some table S is the sub-fragment or category
of tuples t ∈ S where t[A] ≤ p (t[A] denotes the projection
of t on attributes A). It is also easy to show that the following
properties hold for pattern instances:

• /([∗], S) = S;
• /(p, /(p, S)) = /(p, S);
• S ⊆ S′ ⇒ /(p, S) ⊆ /(p, S′).

The notion of instance can naturally be extended from patterns
to pattern tables P and constrained fragments F = (S, T ) :
/(P, S) =

⋃
p∈P /(p, S) and /(P, F ) = (/(P, S), /(p, T )).

The following definitions introduce several properties for
pattern sets that are necessary for defining the notion of frag-
ment summary. Constrained fragments are related to pattern
tables through the notion of pattern satisfaction. A constrained
fragment F = (S, T ) satisfies a pattern p if the instance of p
in the data table T is equal to the instance of p in the fragment
S: /(p, T ) = /(p, S). We also say that pattern p characterizes
fragment F . By extension, a constrained fragment F satisfies
a completeness pattern table P if F satisfies all patterns
in P . We can show that all fragments Fi in Section I
satisfy the corresponding pattern tables Pi. A pattern table
P covers a constrained fragment F if for all patterns p
characterizing fragment F , there exists a pattern p′ ∈ P where
p ≤ p′. We can show that all pattern tables Pi in the
introduction cover the corresponding fragments Fi. Observe
that a pattern table P covering a constrained fragment F is
not necessarily satisfied by F . In particular, all pattern table
containing the universal pattern cover (but are not satisfied
by) all constrained fragments. Then, a pattern table P strictly
covers a constrained fragment F if P covers F and F satisfies
P . Finally, a pattern table P is reduced if there exists no pair
of distinct patterns p ∈ P and p′ ∈ P such that p′ ≤ p.

Proposition 1: For each constrained fragment F , there ex-
ists a unique reduced strict cover, called the fragment summary
of F , and denoted by .(F ).
All pattern tables Pi in the introduction are fragment sum-
maries of the corresponding fragments Fi.

First, observe that a fragment summary .(F ) is not nec-
essarily minimal with respect to instantiation, i.e., there might
exist a subset of patterns P ′ ⊂ .(F ) where /(P ′, F ) =
/(.(F ), F ) (all categories described .(F ) are subsumed by the
patterns in P ′). This makes our summarization model different
from other models, which try to maximize the compression
ratio, whereas fragment summaries are compact representa-
tions of all characteristic data categories. Second, a fragment
summary might only cover a strict subset of its fragment F =
(S, T ), i.e., /(.(F ), T ) ⊂ F [A]. We call the set of all tuples in
t ∈ F−/(.(F ), T ) the rest of F : R(F ) = S[A]−/(.(F ), F ).
The rest R(F ) defines all categories of tuples in F that cannot
be distinguished from other data tuples t′ 6∈ F by pattern
attributes A, i.e. t[A] = t′[A]. This rest can again be considered
as a new fragment that can be summarized. We also can easily
show that, if A is a key in the source data table T , the rest is
empty, i.e., /(.(F ), F ) = S[A] for all fragments F = (S, T ).

IV. COMPUTING FRAGMENT SUMMARIES

Algorithm FoldData (Algorithm 1) computes for a given
constrained table F = (S, T ) a strict cover .(F ) over a set of
attributes A. If A is the set of all attributes in F , FoldData

33Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            42 / 69



produces the summary of F . The algorithm explores the data
table by searching for complete sub-fragments (categories) that
correspond to some specific pattern. It starts from the most
general pattern i.e. wildcard pattern [∗] (level 0) and explores
top-down and breadth-first the pattern subsumption lattice LS

generated by the active attribute domains in the data table S.
Each level l corresponds to all patterns p with l constants. For
checking if some pattern p is satisfied by S, the algorithm
compares the size of the instances in p in S and T . After each
level, all specializations of the derived complete patterns p are
by definition also complete and the tuples covered by p can
be pruned from S before executing the next level. Algorithm
FoldData uses the following functions:

• powerSet(A, level) produces all sets of level at-
tributes in A.

• patterns(A,S) produces for a set of attributes A all
patterns πA(S)× {[∗]}

• checkComp(p, S, T ) checks if /(p, S) = /(p, T )

• prune(P, S) deletes from S all tuples satisfied by
patterns p ∈ P .

Observe that operations checkComp and patterns can be im-
plemented by standard SQL queries. In particular, patterns is
a simple projection on S and checkComp can be implemented
by comparing the result of two count-queries on S and T (we
suppose that S ⊆ T ). In the worst case, FoldData explores

Algorithm 1: Algorithm FoldData

Data: constrained table F = (S, T ), attribute set A
Result: summary .(F )

1 P := ∅ ; for level := 0 to |A| do
2 X := ∅ ;
3 for B ∈ powerSet(A, level) do
4 for p ∈ patterns(B,S) do
5 if checkComp(p, S, T ) then
6 P := P ∪ {p} ; X := X ∪ {p} ;
7 prune(X , S) ;
8 return P

(almost) the whole pattern lattice LS that is generated by all
attribute×value combinations in the fragment. The number
of patterns size(LS) of LS depends on the active attribute
domains in the fragment S and the number of attributes
n = |A|: size(LS) =

∑n
i=1(C

n
i ) ∗ Di where Di is the

maximum size of the Cartesian product of the active domain
of i attributes in the data table. The size of the source table
influences the cost of checking pattern satisfaction. We also
can estimate an upper bound for the fragment summary size
as follows. Each tuple in the fragment generates between 0 (for
tuples that are subsumed by patterns generated by other tuples)
and k patterns, where k is the number of identifiers of the tuple
in the source (reference) table. In the worst case, the size of the
generated summary is max1≤i≤nCn

i ' Cn
n/2 times the size of

the fragment where n = |A| is the number of attributes in A.
Such a worst-case scenario corresponds to the particular case
of random missing data with highly correlated attribute values
and no pruning opportunities. If all attributes are necessary to
identify any tuple in the source table (independent attribute
domains), the fragment summary cannot get bigger than the
fragment. As we show in our experiments, real-world data

generally follows more regular incompleteness schemes, which
increase the compression rate and folding performance.

V. REASONING WITH FRAGMENT SUMMARIES

A. Formal reasoning model
Fragment summaries and fragment patterns in general are

concise characterizations of data fragments and can be used
for analyzing and comparing data fragments extracted from a
given reference data set. By the previous definition of fragment
summary, the following constraints hold for all constrained
fragments F = (S, T ) where T 6= ∅ and all patterns p ∈ .(F )
of their summaries :

• the instance /(p, S) is complete with respect to T and
not empty.

• the instances /(p′, S) of all specializations p′ of p are
complete with respect to T (but might be empty) and

• the instances /(p′, S) of all generalizations p′ 6= p of
p are incomplete with respect to T and not empty.

Similarly, let F = (S, T ) denote the complement of
fragment F where S contains all tuples “missing” in S w.r.t. T
and .(F ) be the summary of F . Then as before, we can show
for all F = (S, T ) where T 6= ∅ and all patterns p ∈ .(F ) in
the summary of F :

• the instance /(p, S) is incomplete with respect to T
and empty.

• the instances /(p′, S) of all specializations p′ of p are
empty (but might be complete) and

• the instances /(p′, S) of all generalization p′ 6= p of
p are incomplete with respect to T and not empty.

We can show that the rest of a fragment summary is equal
to the rest of its complement R(.(F )) = R(.(F )). We denote
the summary of this rest of ”indistinguishable” patterns by
ND(F, F ) = .(R(.(F )) = .(R(.(F )).

For all patterns p where there exists no generalization in
.(F ) ∪ .(F ) the following holds :

• the intersection between the instance /(p, F ) and both,
F and F is not empty.

• if p is a tuple (only constant attribute values), then p
and all generalizations of p are in ND(F, F ).

Based on these properties, all patterns in the summary of
a fragment F can be classified into (1) C patterns, which
have a complete instance in the fragment, (2) ND patterns,
which have a incomplete and indistinguishable instance in
the fragment, (3) E patterns, which have an empty instance
in the source (reference) table and (4) IN patterns, which
cover all other patterns. Recall from our introduction example
in Section I the ”White Male Married” fragment from the
Adult dataset. Table III shows some patterns of each fragment
summary of fragments ”high income”, ”low income” and
”indistinguishable” (ND). For simplification, we assume in
the following that these tables represent the entire fragment
summaries. Consider the patterns in Table IV. We want to
reason and decide for each pattern the fragment belongs to.

Figure 1 is a tree representation of patterns where each
node at some level i corresponds to a pattern of length i
and each node corresponds to an attribute value at a given
level. The wildcard pattern [∗] is the root; the first level

34Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            43 / 69



TABLE IV. ADULT DATASET PATTERNS

age workc education occupation
∗ ∗ ∗ ∗

< 20 ∗ ∗ ∗
40− 50 ∗ ∗ ∗
∗ ∗ masters ∗
∗ ∗ doctorate ∗

40− 50 ∗ preschool ∗
> 60 ∗ doctorate ∗
∗ federal-gov doctorate ∗

40− 50 ∗ ∗ Armed-force
40− 50 never-worked ∗ Armed-force

Figure 1. Labeled completeness pattern hierarchy

corresponds to patterns [∗, ∗,masters, ∗], [40 − 50, ∗, ∗, ∗],
[∗, ∗, doctorate, ∗] and [< 20, ∗, ∗, ∗] with one attribute. The
second level specializes the patterns at level one by replacing
one wildcard by a constant. All patterns in summary .(High)
are complete and labeled by Chigh (in blue) and all patterns
in summary .(Low) are labeled Clow (in orange). All an-
cestors of these patterns nodes are IN -patterns (incomplete,
not empty, distinguishable). Patterns [∗, ∗,masters, ∗] and
[> 60, ∗, Doctorate, ∗] are indistinguishable (ND) (in red).
Finally, pattern [40−50, never−worked, ∗, Armed−Forces]
is empty (label E) since it specializes a complete high income
pattern [40 − 50, ∗, ∗, Armed − Forces] and a complete low
income pattern [∗, never − worked, ∗, ∗] (not shown in Fig-
ure 1).

B. Reasoning with SQL Queries

Let RAext = RA∪{., /} be the relational algebra extended
by two operators . and / where (1) /A(P ) generates for a
given pattern table P an equivalent pattern table P ′ where all
values of attributes ai ∈ A are constant values and (2) .A(P )
generates for a given pattern table P an equivalent pattern table
where there exists no pattern p and subset S ⊆ P ′ with more
than one pattern that is equivalent to p : 6 ∃p, S ⊆ P ′, |S| > 1 :
{p} ≡ S. Using this extended algebra, we can define queries
over fragment summaries. First we can define two operators
.(F ) = .A(F ) and /(P ) = /A(P ) that compute the summary
of some fragment F and the instance of a pattern table P ,
respectively. Unfolding / can directly be translated into the
relational algebra by joining the pattern table with the data
table, whereas folding . over a set of attributes needs recursion,
which is not expressible in relational algebra (see Section IV
for implementations of .). Based on this formalization, it is
then possible to rewrite any pattern query without folding into

a relational SQL query over source tables and their fragment
summaries. We will illustrate this by two examples.

First, selection can be applied for checking if some given
pattern p is a specialization/generalization of a pattern p′ ∈ P .
For example, when considering the summary P in Table IV,
pattern [40− 50, ∗, Doctorate, Armed−Forces] is complete
(C) in fragment High or empty(E) in the source table if the
result of following query over the summary P(High) is not
empty:

select * from P (High)
where (age=’40-50’ or age=’*’)
and (education=’Doctorate’ or education =’*’)
and (occupation=’Armed-Forces’ or occupation=’*’)

It is easy to see that the result contains pattern [40− 50, ∗, ∗,
Armed− Forces].

Joining two summaries needs unfolding. Consider two
summaries P1(age, workc) and P2(workc, education) of
two fragments S1 and S2 of data table Adult. The natu-
ral join of these two summaries generates a new summary
P (age, workc, education) characterizing the fragment S1 on
S2:

select P1.age,T.workc,P2.education
from P1, P2, Adult
where (P1.age=Adult.age or P1.age=*)
and (P1.workc=Adult.workc or P1.workc=*)
and (P2.workc=Adult.workc or P2.workc=*)
and (P2.education=Adult.education or P2.education=*)

Observe that we have to join both summaries with the data
set on attribute workc to filter out all empty result patterns.
The resulting pattern table might not be minimal and has to be
re-folded over attribute workc to obtain a minimal summary.

VI. EXPERIMENTS

We conducted a set of experiments on two real-life data
sets. In each data set, we chose the characteristics that fit a
specific use case, in order to evaluate the use and efficiency
of our model in a targeted fashion.

A. Completeness summaries for sensor data

The first use case of our study considers a real sensor data
set recorded by the network of our university campus. This
data set includes measures about various campus resources
(lighting, electricity, water, temperature, etc.). We restrict on
measures pertaining to temperatures collected in 12 buildings
equipped with temperature sensors and refer to this data set
with Temp.

We build two reference data sets with different spatial
coverage and over the same time interval. The first reference,
noted TAll, includes all spatial locations of the campus re-
gardless of the existence of temperature sensors. The second
reference, noted TTemp, restricts on localities equipped with
a temperature sensor, that is, localities present in Temp. The
schema of the data and the reference tables are as follows
whereas their sizes are reported in Table V.

Temp(building, floor, room, year,month, day, hour, temp)

Locx(building, floor, room) Cal(year,month, day, hour)

35Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            44 / 69



Both reference tables Tx (where x = All or x = Temp) are
defined by the Cartesian product of a location table Locx and
the same calendar table Cal and contain the key of Temp.

TABLE V. SIZE OF REFERENCE TABLES TALL AND TTEMP

x |Locx| |Calx| |Tx| = |Locx| × |Calx|
All 10,757 8,760 94,231,320

Temp 2,810 8,760 24,615,600

1) Complete and missing fragments: In addition to frag-
ment Temp, we build two smaller data fragments by restricting
Temp spatially to one building (building 25) and temporally to
one month (January). The resulting fragments are respectively
denoted by Temp OneBlg and Temp OneMon. For each data
fragment ds we also define two ”narrower” reference data sets
Tds

All and Tds
Temp obtained by using same spatial or temporal

restriction of ds on reference tables TAll and TTemp.
Complete pattern summaries remain unchanged with the

reference extension, but it is more efficient to restrict the study
to the areas covered by sensors to avoid producing extra pattern
sets (missing summary) and decrease the execution time when
producing fragment summaries (see Table VI).

TABLE VI. PATTERN DERIVATION: EXECUTION TIME

data set ds |P (ds)| Execution time (sec)
T Temp T All

Temp 11, 269 5, 983 32, 620
Temp OneBlg 39 45 45

Temp OneMon 119 75 90

2) Compactness: We measure the effectiveness of pat-
terns in terms of compactness and the efficiency of Algo-
rithm FoldData. The compactness of a pattern table P is
defined by the ratio |P |/|S| between the size of summary P
and the size of the data fragment S (low compactness means
high compression ratio). We consider for this part the restricted
reference TTemp , and report results in table VII.

TABLE VII. PATTERN DERIVATION: PRELIMINARY RESULTS

data set ds |PC | |Comp.C | |PM | |CompM |
Temp 11,269 85× 10−4 7,086 2.86× 10−4

Temp OneBlg 39 1.1× 10−4 36 0.28× 10−4

Temp OneMon 119 13× 10−4 222 1.1× 10−4

3) Performance: In the following experiment, we evaluate
the performance of algorithm FoldData. Table VI reports the
execution time for the three data sets and both reference data
sets. We notice that the execution time mainly depends on the
number of generated patterns and the reference data size and
the fragment size itself has a low impact on running time.

To study the evolution of the execution time w.r.t the
number of patterns and the fragment size, we derive from the
original data fragment Temp, 30 sub-fragments grouped into
three categories with approximately the same completeness
ratio but of different size. Figure 2 shows the running time of
FoldData for all fragments according to the number of gen-
erated patterns. Points of different colors denote fragments of
different size (orange = 15%, violet = 10% and green = 3%
of the reference data set).

Figure 2. FoldData performance

Notice that execution time is not impacted by the fragment
size but grows exponentially with the number of generated
patterns.

B. Census income (Adult) data set
The Adult data set is a public data set from the UCI

(University of California Irvine) machine learning repository
[6], which contains census data about population income.
The data set consists of 32, 561 tuples over 14 attributes.
For our experiments, we keep a subset of 8 attributes: one
numerical attribute, age ranging from 17 to 90, and seven
categorical attributes: Workclass (Private, Federal-Gov...), Ed-
ucation (Bachelors, Doctorate,...), Marital-Status (Married,
Divorced..), Occupation (Tech-Support, Sales,...), Race (Black,
White,...), Sex (Female, Male), Income (<50k,≥50k). This data
set is widely used for learning population income classes (high
income >50K, and low <=50k). We achieve different tasks
using this data set: 1) completeness/missingness characteriza-
tion regarding the occupation attribute and 2) income classes
summarization.

1) Data completeness analysis: In this data set, Occupation
and Workclass are the only attributes with Null values and
generate the same complete and missing fragments with/with-
out Null values. The preliminary results of the completeness
analysis are shown in Table VIII.

TABLE VIII. COMPLETENESS AND MISSING PATTERNS FOR
OCCUPATION/WORKCLASS

workclass/occupation complete missing
data set data patterns data patterns
Adult 30718 3363 1843 521

2) Income class summarization: The results are reported
in table IX. We can see that by decreasing the number
of attributes, the coverage of the corresponding summaries
decreases and the size of the rest increases. We also can see
that the number of patterns in a summary might be higher
than the data set it describes (for example, the summary for
high income in D1). This is due to the fact that a summary
precisely characterizes the fragment with respect to the whole
data set and therefore contains more information about the data

36Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            45 / 69



TABLE IX. INCOME CLASSES SUMMARIES WITH VARIABLE ATTRIBUTES SETS

data set
Age : numerical Age : categorical

Attributes High income Low income Not distinguishable High income Low income Not distinguishable
Data Patterns Data Patterns Data Patterns Data Patterns Data Patterns Data Patterns

D1 Ag,Wo,Ed,MS,Oc,Ra,Se 4382 5485 20848 10924 7544 1995 1591 1813 15227 4096 15743 1454
D2 Ag,Ed,MS,Oc,Se 2283 1786 18164 4736 12114 1859 394 284 11235 971 20932 736
D3 Ag,Ed,MS,Oc 1712 1106 16964 3131 13858 1762 184 133 9363 493 23014 645

Ag:age, Wo:Workclass, Ed:Education,MS:Marital-Status,Oc:Occupation,Ra:Race,Se:Sex

(a) Seven attributes (b) Five attributes (c) Four attributes

Figure 3. Income classes pattern summaries with variable attributes sets (Age as a numerical attribute)

fragment than the fragment itself. The table also shows that
reducing the attribute Age domain, by aggregating values (nu-
merical to categorical), lead to increasing the size of ND, which
can be explained by the fine-grained correlation between the
Age attribute and the Income. Figure 3 shows the distribution
of patterns according to their length (number of constant values
in a pattern). For example, in D2 we infer that 74 patterns of
length 2, are in the high-income summary, while 1, 033 belong
to low-income summary. This means that for data covered
by both patterns sets, we can decide about their income by
knowing only two attributes among 7. We also observe the
evolution of the size of the pattern set corresponding to non-
distinguishable data (in yellow), increasing with attribute set
restriction.

The running time increases with the number of attributes.
The larger the attribute set is, the more attribute combinations
have to be checked during pattern generation. Table X sum-
marizes the running times for fragment Low in all data sets.

TABLE X. EXECUTION TIME DEPENDING ON ATTRIBUTES
NUMBER

Data set Number of attributes Running time (s)
D1 7 259.19
D2 5 60.96
D3 4 32.87

C. Compactness study for synthetic data sets
We showed in previous experiments various results for

pattern summary compactness for both data sets (Temp and
Adult). While the compactness for complete and missing data
fragments summaries over Temp was very low, we can observe
in Table IX that high/low-income fragment summaries suffer
from a bad compactness, that even exceeds 1 in some cases
(D1: Age numerical : High income). This difference can be
explained by the data distribution over the fragments: sensors
fail in a continuous time intervals, leading to long complete
and incomplete data sequences, which can be summarized by
a small number of generic patterns. On the other hand, high
and low-income tuples in the Adult data set are distributed in a

Figure 4. Random evolution

random way over the attributes domains, which leads to large
sets of specific patterns. To better understand this phenomena,
we created two series of synthetic data sets starting from the
Temp data set and simulated a set of sensors producing data
with different missing/available data distributions.

1) Dense distribution data sets are obtained by sequen-
tially (in time order) adding new measures to TTemp.

2) Sparse distribution data sets are generated by ran-
domly deleting measures from TTemp.

We generate a series of data sets by increasing and
decreasing the completeness of three initial data sets with
completeness fixed to 0% (empty), 30% and 50% respectively.
For each initial data set, we simulate two types of evolution
(1) by successively inserting tuples from the reference until
reaching full completeness and (2) by successively deleting
tuples until reaching emptiness. The insertion and deletions
follow two strategies: i) a sequential strategy that selects the
(inserted or deleted) tuples using their spatial and temporal
domain order preserving the original data distribution and
which we call sequential evolution, and ii) a random strategy
that picks these tuples in a random fashion, we call random
evolution.

Figures 4 and 5 depict the variation of compactness for
each data set and its evolution. In the randomly evolving data

37Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            46 / 69



Figure 5. Sequential evolution

sets (Figures 4), the compactness of a random data set with
30% completeness evolves symmetrically in both directions
(insertion and deletion). Random insertions and deletions first
generate new patterns and cause at some point the fusion
of fine-grained patterns to coarser-grained ones to achieve
maximum compactness at both extremities. In the sequentially
evolving data sets, we observe the same trend with a lower am-
plitude for a data set with 50% initial completeness: insertions
lead to a faster completion of the partial partitions (thanks to
order sensitive updates) and thus to faster derivation of coarser
patterns without deriving all their subsumed patterns.

VII. CONCLUSION

We have proposed a formal summarization model and
introduced reasoning mechanisms for characterizing the con-
tents of data fragments relative to a complete dataset. We
illustrated the use of our framework within two application
scenarios for reasoning about information completeness and
for characterizing fragment summaries. We have illustrated our
approach and validated its implementation experimentally on
two data sets. A natural extension under study is the use of
Apache Spark [19] for computing and querying summaries for
very large fragmented data sets. We also intend to implement
a visual query interface for the interactive exploration of
fragment summaries.

REFERENCES

[1] W. A. Voglozin, G. Raschia, L. Ughetto, and N. Mouaddib, “Querying
a summary of database,” Journal of Intelligent Information Systems,
vol. 26, no. 1, Jan. 2006, pp. 59–73.

[2] F. Buccafurri, F. Furfaro, D. Sacca, and C. Sirangelo, “A Quad-tree
Based Multiresolution Approach for Two-dimensional Summary Data,”
in Proceedings of the 15th International Conference on Scientific and
Statistical Database Management, ser. SSDBM ’03. Washington, DC,
USA: IEEE Computer Society, 2003, pp. 127–140.

[3] A. Cuzzocrea and D. Sacc, “H-IQTS: A Semantics-aware Histogram
for Compressing Categorical OLAP Data,” in Proceedings of the 2008
International Symposium on Database Engineering & Applications, ser.
IDEAS ’08. New York, NY, USA: ACM, 2008, pp. 209–217.

[4] H.-J. Lenz and A. Shoshani, “Summarizability in OLAP and statistical
data bases,” in Scientific and Statistical Database Management, 1997.
Proceedings., Ninth International Conference on. IEEE, 1997, pp.
132–143.

[5] L. V. Lakshmanan, J. Pei, and J. Han, “Quotient cube: How to
summarize the semantics of a data cube,” in Proceedings of the
28th international conference on Very Large Data Bases. VLDB
Endowment, 2002, pp. 778–789.

[6] “Adult income dataset,” Accessed on March 2019, https://archive.ics.
uci.edu/ml/index.php.

[7] J. Chen, J.-Y. Pan, C. Faloutsos, and S. Papadimitriou, “TSum: fast,
principled table summarization,” in Proceedings of the Seventh Inter-
national Workshop on Data Mining for Online Advertising - ADKDD
’13. Chicago, Illinois: ACM Press, 2013, pp. 1–9.

[8] G. Raschia and N. Mouaddib, “SAINTETIQ: a fuzzy set-based ap-
proach to database summarization,” Fuzzy sets and systems, vol. 129,
no. 2, 2002, pp. 137–162.

[9] R. Saint-Paul, G. Raschia, and N. Mouaddib, “General Purpose
Database Summarization,” in Proceedings of the 31st International
Conference on Very Large Data Bases, ser. VLDB ’05. Trondheim,
Norway: VLDB Endowment, 2005, pp. 733–744.

[10] M.-L. Lo, K.-L. Wu, and P. S. Yu, “Tabsum: A flexible and dynamic
table summarization approach,” in Distributed Computing Systems,
2000. Proceedings. 20th International Conference on. IEEE, 2000,
pp. 628–635.

[11] M. van Leeuwen and J. Vreeken, “Mining and Using Sets of Patterns
through Compression,” in Frequent Pattern Mining, C. C. Aggarwal
and J. Han, Eds. Cham: Springer International Publishing, 2014, pp.
165–198.

[12] A. Koopman and A. Siebes, “Characteristic Relational Patterns,” in
Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’09. New York,
NY, USA: ACM, 2009, pp. 437–446.

[13] T. Imieliński and W. Lipski, “Incomplete information in relational
databases,” in Readings in Artificial Intelligence and Databases. Else-
vier, 1988, pp. 342–360.

[14] A. Motro, “Integrity = Validity + Completeness,” ACM Trans. Database
Syst., vol. 14, no. 4, Dec. 1989, pp. 480–502.

[15] A. Y. Levy, “Obtaining Complete Answers from Incomplete Databases,”
in Proceedings of the 22th International Conference on Very Large Data
Bases, ser. VLDB ’96. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1996, pp. 402–412.

[16] S. Razniewski, F. Korn, W. Nutt, and D. Srivastava, “Identifying
the extent of completeness of query answers over partially complete
databases,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia,
May 31 - June 4 2015, pp. 561–576.

[17] W. Fan and F. Geerts, “Relative Information Completeness,” ACM
Trans. Database Syst., vol. 35, no. 4, Oct. 2010, pp. 27:1–27:44.

[18] B. Sundarmurthy, P. Koutris, W. Lang, J. F. Naughton, and V. Tannen,
“m-tables: Representing missing data,” in 20th International Conference
on Database Theory, ICDT, Venice, Italy, March 2017, pp. 21:1–21:20.

[19] M. Zaharia et al., “Apache spark: a unified engine for big data
processing,” Communications of the ACM, vol. 59, no. 11, 2016, pp.
56–65.

38Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            47 / 69



 

A Context Data Metamodel for Distributed Middleware Platforms in Smart Cities 

Júlio Suzuki Lopes 

Federal Institute of Paraíba (IFPB) 

João Pessoa, Brazil 

email: julio.lopes@ifpb.edu.br 

 

 

Lucas Vale F. da Silva, Gledson Elias 

Federal University of Paraíba (UFPB) 

João Pessoa, Brazil 

email: lucasfaustino@ppgi.ci.ufpb.br, gledson@ci.ufpb.br 

 
Abstract—The concept of smart cities is related to the 
development of services, systems and applications to 
provide sustainable solutions for a huge and fast-
growing population in urban areas. In a smart cities 
context, the wide range of application domains leads to a 
variety of large independent local repositories with non-
unified data models that support very limited 
interoperability and, more importantly, hinder data 
reuse, integration, extension and partitioning. In order 
to address such issues, this paper presents a metamodel 
for specification and instantiation of context data in 
smart cities driven by interoperable distributed 
middleware platforms, enabling data integration, reuse, 
extension and partitioning, supplied by several 
independent data providers across a lot of application 
domains. Supported by an experimental prototype 
implementation, empirical results based on a semi-real 
dataset evince the potential benefits and practical 
applicability of the proposed metamodel. 

Keywords-smart cities; context modeling; context-awareness; 

data integration and partitioning. 

I. INTRODUCTION  

The concept of smart cities has gained a lot of attention 
from researchers around the world [1]. The core of this 
concept has explored the fact that the adoption of ICTs 
(Information and Communication Technologies) can 
improve quality of life and mitigate urban issues resulted 
from rapid population growth [2]. Among such ICTs, IoT 
(Internet of Things) is a key technology to solve major 
problems faced by people living in cities, enabling a range 
of services and applications by interconnecting digital and 
physical things (e.g., smartphones, TVs, vehicles) to share 
data and resources [3]. 

Nowadays, in large cities, a number of services, systems 
and applications have been developed with focus on specific 
urban problem domains, for instance, traffic and waste 
management, smart health and smart education [4]. Most of 
such software solutions are developed and managed by 
several public or private stakeholders, which adopt different 
ICT platforms and infrastructures [5], leading to a variety of 
large independent, local repositories with non-unified data 
models [6] and segmented data [5], resulting in the 
formation of the information island phenomenon [7]. 
Consequently, current solutions for smart cities support very 
limited interoperability and, more importantly, hinder data 
integration, reuse, extension and partitioning. 

As a means to avoid information islands, in a way 
similar to the concept of virtual data warehouses [8], one of 
the main challenges in distributed middleware platforms for 
smart cities is to find a way to provide an integrated view of 
big urban data, enabling the development of interoperable 
services, systems and applications that communicate with 
each other for creating holistic and contextualized views of 
the cities [9][10]. 

In such a scenario, the adoption of a unified data model 
plays an important role, acting as a kind of glue that can 
bind services, systems and applications together. However, 
a unified data model for data integration is not enough. 
Regarding the dynamic, elastic and changeable nature of big 
urban data, such a unified data model ought also to facilitate 
data reuse, extension and partitioning. 

In order to address such issues, this paper presents a 
metamodel for specification and instantiation of context data 
associated to all kinds of entities in smart cities. More 
importantly, the proposed metamodel, called DCDS 
(Distributed Context Data Schema), can be adopted as a 
unified data model in interoperable distributed middleware 
platforms for enabling data integration, reuse, extension and 
partitioning, supplied by several independent data providers 
across a lot of application domains. Supported by an 
experimental prototype implementation, empirical results 
based on a semi-real dataset evince the potential benefits 
and practical applicability of the proposed metamodel. 

The remainder of the paper is structured as follows. 
Section 2 identifies the requirements related to data models 
for smart cities. Then, Section 3 discusses some related 
work, highlighting how identified requirements are handled 
by each one. Section 4 presents the proposed metamodel, 
detailing how to create schemas and instances related to 
smart cities entities, whose context data can be integrated, 
reused, extended and partitioned. Next, Section 5 shows a 
use case based on a large semi-real dataset on public urban 
transport. Concluding, Section 6 presents some final 
remarks, limitations and future work. 

II. REQUIREMENTS FOR SMART CITIES DATA MODELS 

This section identifies some requirements for data 
models that aim to ease the development of interoperable 
services, systems and applications in the smart cities 
scenario. To do that, an initial list of requirements has been 
derived through a literature review, covering a reasonable 
set of studies and proposals [11]-[20]. Note that the goal is 
not to be comprehensive, but rather to provide an overview 
of the main requirements. Accordingly, the conducted 
literature review has identified the following requirements: 

39Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            48 / 69



 

● Flexibility – enables easy adaptation to different 
smart cities contexts, being not bounded to a single 
application or even a specific domain [13]. 

● Expressivity – concerned with the generic problem 
of knowledge representation [11], ensures a wide 
data design space for specification and instantiation 
of several data types related to smart cities entities. 

● Simplicity – adopts a minimal number of structuring, 
composition and control rules, making more 
intelligible and easier data modelling processes [12]. 

● Semanticability – attaches semantic annotations as a 
means to enable human or automatic inspection and 
transformation of context data in heterogeneous 
distributed shared scenarios [14][15]. 

● Granularability – represents the characteristics of 
the context data at different levels of detail [13], 
including composite entities, structured datatypes 
and partial attribute assignments. 

● Interoperability – supports structured unambiguous 
schemas to define entities and their attributes [17], 
which are helpful in data exchange among 
heterogeneous distributed platforms. 

● Reusability – boosted also by structured schemas 
that act as reusable data contracts, encouraging to 
develop data-driven services in which ecosystem’s 
actors can publish and share reusable datasets [18]. 

● Integrability – represents a step beyond reuse, in 
which ecosystem’s actors can integrate other 
different external datasets, providing added value 
services or adapting to different target purposes [18]. 

● Extensibility – allows schemas and their associated 
instances to evolve over time and accommodate 
changes readily, dealing with the inherent diversity 
and dynamism of smart cities [19]. 

● Partitionability – enables context data related to 
smart cities entities to be partitioned or splitted up in 
multiple hosting nodes [20], supporting concurrent 
access to increase performance and scalability [16]. 

III. RELATED WORK 

Data models have been proposed for platforms, systems, 
services and applications in several smart cities contexts. 
However, most of them have been adopted in centralized 
approaches, in which a single module, service, repository or 
node, herein called broker, is responsible for storing and 
managing the whole urban data, which obviously do not 
scale very well. Inversely, the proposed metamodel can be 
adopted in distributed approaches, in which multiple brokers 
can store context data related to smart cities entities in a 
distributed and even partitioned manner.  

Based on XML (Extensible Markup Language), 
ContextML (CML) is a language designed by the C-Cast 
project [21] and adopted in the IoT architecture proposed by 
Cippra [22]. In both, it has been adopted as a common 
representation for exchanging context data between their 
respective components. Thus, it defines a markup language 
for context representation and mainly communication that 
should be supported by all components of compliant 
architectures. As a result, CML can meet the interoperability 

requirement, however, has a not so simple syntax. Note that 
the C-Cast project [21] and the Cippra architecture [22] 
propose centralized approaches that do not deal with issues 
related to partitionability. 

Other two projects, SENSEI [23] and IoT-A [12], define 
data models to provide interoperability. Context entities are 
called resources in SENSEI and virtual entities in IoT-A. In 
both, the respective data models allow to represent real-
world entities making possible to be aware of the context or 
environment in which such entities operate or can be 
accessed. Due to that, SENSEI and IoT-A can adequately 
meet the expressivity requirement, however, do not adopt a 
simple way to represent such entities, requiring expertise in 
low-level protocols, device standards and data formats. As a 
result, the effort for modelling entities is quite high and full 
of challenges even in simple cases. Despite that, both 
projects propose methods to orchestrate IoT services in 
order to combine together several resources or virtual 
entities in different granularities, providing high-level 
services based on semantic and ontological concerns. 

NGSI (Next Generation Service Interfaces) [24][25] 
defines a context management information model that 
adopts the concept of entities as virtual representation of all 
kinds of real-world physical objects. In NGSI, each entity 
has a state represented by attributes, providing context-
awareness in a simple, flexible and expressive way to 
compliant platforms and applications [12][24]. Despite 
defining mechanisms to manage references to external 
entities [25], in essence, NGSI presupposes the adoption of 
centralized approaches in compliant middleware platforms. 
As a result, a reasonable effort is required to explore 
partitioned context data among multiple brokers, imposing 
an issue related to scalability. 

Based on the requirements identified for smart cities 
data models, Table I contrasts CML, SENSEI, IoT-A, NGSI 
and the proposed DCDS metamodel. The comparison takes 
as a starting point the evaluation presented by Jara et al. 
[12] and Nitti et al. [26] but enriched with new requirements 
and proposals. In all cases, the evaluated proposals were 
analyzed based on a set of concepts, properties and 
observations, directly extracted by us from their respective 
documentations. In Table I, note that the conducted 
evaluation adopts black dots to represent the degree of 
attendance for each proposal with respect to each 
requirement, varying from zero to three dots. 

TABLE I. SMART CITY DATA MODELS 

 CML SENSEI IoT-A NGSI DCDS 

Flexibility ●●● ●●● ●●● ●●● ●●● 

Expressivity ●●● ●●● ●●● ●●● ●●● 

Simplicity ● ● ● ●●● ●●● 

Semanticability ● ●●● ●●● ●● ●● 

Granularability ● ●● ●● ●● ●●● 

Interoperability ●● ●● ●● ●● ●●● 

Reusability ● ●● ●● ●● ●●● 

Integrability ● ●● ●● ●● ●●● 

Extensibility ●●● ●● ●● ●● ●●● 

Partitionability - - - ● ●●● 

40Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            49 / 69



 

As can be observed in Table I, among related work, 

NGSI has higher levels of attendance for almost all 

requirements, representing a promising data model to deal 

with smart cities entities. In fact, due to that, some existing 

projects have adopted the NGSI model, including the 

Fiware platform [27] that has gained a lot of attention in 

smart cities research communities. Despite that, as can be 

noticed, NGSI has limitations related to granularability, 

reusability, integrability, extensibility and partitionability. 

Regarding that smart cities scenarios require the ability to 

deal with massive urban data produced by a very large 

number of data sources and providers, such NGSI 

limitations have direct and strong impact on compliant 

smart cities platforms in respect to their scalability, usability 

and so practical applicability. Acting as a complementary 

approach, taking NGSI capabilities as a basis, the proposed 

DCDS metamodel introduces some simple but key 

additional features in order to better deal with several issues 

related to granularability, reusability, integrability, 

extensibility and partitionability. 

IV. A DISTRIBUTED CONTEXT DATA SCHEMA 

In order to improve existing proposals for smart cities 
data models, this section presents a context data metamodel, 
called DCDS, which provides the means to specify and 
instantiate context information associated to all kinds of 
real-world entities in a broad range of smart cities domains. 
As the main benefits and contributions, DCDS can be 
adopted as a unified data model in interoperable distributed 
middleware platforms for enabling data integration, reuse, 
extension and partitioning, supplied by several independent 
data providers across a lot of application domains. The 
remainder of this section describes the DCDS metamodel in 
more depth, including how to specify and instantiate smart 
cities entities, and how to support data partitioning. 

A. Specifying and Instantiating Entities 

DCDS adopts the concepts of entity schema and entity 
instance for representing the unambiguous single 
specification and the multiple associated instances for each 
context entity, respectively. Using UML (Unified Modeling 
Language), as illustrated in Figure 1, the representation of 
an entity schema has four constituting model elements. 

+ name: string

+ type: string
+ value: any

Schema Description

+ name: string

+ type: string
+ refs: <int> list

Attribute Schema

+ id: string {id}

+ version: string
+ owner: URI

+ providers: <URI> list

Entity Schema

+ name: string

+ type: string

Metadata Schema
1 1..*

1
1

1
*

* *

 
Figure 1. DCDS UML representation. 

As the starting point of an entity schema, the Entity 
Schema model element has the following terms: 
id – provides a globally unique identifier for each entity 

schema; version – indicates the version of the respective 
entity schema, enabling providers to manage the entity 
schema lifecycle; owner – identifies the owner/provider that 
has specified the entity schema, allowing all providers to 
share schemas among them; and providers – defines a list of 
multiple providers in which related instances of the entity 
schema can be integrally or partially stored and retrieved. 

Each context entity can have several context attributes, 
each one represented in the respective schema by the 
Attribute Schema model element, which has the following 
terms: name – provides a unique identifier for each attribute 
associated to the given entity schema; type – indicates the 
type of the respective attribute (e.g., string, integer and 
float); and refs – defines a list of references to providers in 
which the given attribute can be stored and retrieved. Note 
that, as explained later, the terms providers and refs are the 
basis for two distinct data partitioning types, which in turn 
leverage data granularity in an innovative way. 

The other two model elements Metadata Schema and 
Schema Description are related to different types of optional 
metadata, which can be adopted to enrich information about 
schemas and instances, varying among simple textual 
descriptions, rich semantic annotations, and well-known 
adopted metrics, patterns and even standards. On the one 
hand, Metadata Schema denotes different types of metadata 
that can be associated to the given attribute during the 
instantiation of context entities. On the other hand, Schema 
Description represents metadata descriptions that can be 
associated to the specification of the own schema and the 
respective attributes. Each Metadata Schema and Schema 
Description model element has two terms, name and type, 
providing a unique identifier for each metadata and 
indicating the type of the given metadata, respectively. 
Besides, each Schema Description has the value term for 
representing the specific metadata content. 

Based on entity schemas, DCDS provides a simple, 
flexible and expressive way to describe unambiguous 
context entities in smart cities scenarios. As another 
important feature, each entity schema can be evaluated by 
compliant parsers and even engines to syntactically and 
semantically validate distributed context entity data, making 
possible to interoperate and integrate reusable context data 
managed by different providers in smart cities scenarios. 

A step further, versioned schemas leverage extensibility, 
enabling to evolve context entity specifications and their 
instances over time, accommodating changes as a means to 
deal with the dynamic nature of urban data. For instance, 
new attributes and metadata can be included in schemas and 
subsequently their instances. Besides, already existing 
attributes and metadata can be renamed, updated or even 
removed. Therefore, it is possible to support CRUD (Create, 
Read, Update and Delete) operations for context entity 
schemas and instances. More importantly, such operations 
can also be employed in the list of providers where related 
instances and their attributes can be integrally or partially 
stored and retrieved. Of course, a compliant platform ought 
to define an API (Application Programming Interface) for 
dealing with the extensibility related to entity schemas and 
their attributes. 

41Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            50 / 69



 

In practice, the DCDS UML representation must be 
converted to a context representation language. Among 
existing languages, for instance XML, CSV (Comma-
Separated Values) and RDF (Resource Description 
Framework), JSON (JavaScript Object Notation) [28] has 
gained more and more attention in IoT scenarios, since it is 
simpler, smaller, faster and more readable than XML [29]. 
Figure 2 shows an example of a DCDS JSON schema. 

{
"id":"bus",
"version":"1.0",
"owner":"dcds.provider1.br",
"providers":["dcds.provider1.br", "dcds.provider2.br", "dcds.provider3.br"],
"schema-description":{

"description":{
"type":"text",
"value":"Buses of the public transport system"}},

"location":{
"type":"point",
"refs":[1, 2],
"schema-description":{

"format":{
"type":"text",
"value":"GeoJson georeferenced location"}}},

"speed":{
"type":"double",
"refs":[1, 3],
"metadata-schema":{

"unit":{
"type":"string"}}},

"people-ammount":{
"type":"integer",
"refs":[1, 2, 3]}

}
 

Figure 2. DCDS JSON schema representation. 

In smart cities platforms, systems and applications, each 
real-world physical entity (e.g., sensors, actuators, 
automobiles and users) can be modeled and represented as a 
virtual context entity, which is denoted as an entity instance 
in the DCDS metamodel. Using a UML representation, as 
illustrated in Figure 3, an entity instance has three 
constituting model elements. Note that each entity instance 
must be compliant with its respective entity schema. As 
such, an entity instance can only have attributes and 
metadata previously specified in its corresponding entity 
schema. 

+ name: string

+ type: string

+ value: any

Entity Attribute
1 1..* 1

*
+ name: string

+ type: string

+ value: any

Attribute Metadata

+ id: string {id}

+ schema: string

+ version: string

+ owner: URI

Entity Instance

 

Figure 3. Context entity UML model. 

Acting as the starting point of an entity instance, the 
Entity Instance model element has the following terms: 
id – provides a local identifier for each entity instance from 
the producer viewpoint; schema – indicates the compliant 
entity schema that defines the context information for the 
respective type of entity instance; version – denotes the 
version of the respective entity schema; owner – identifies 
the owner/provider that specified the compliant entity 
schema. Note that, together, the terms id, schema, version 
and owner provide a globally unique identifier for each 
entity instance, enabling compliant middleware platforms to 
provide naming services to leverage location transparency 
for schemas and their respective instances. 

Each entity instance can have several context attributes, 
each one represented in the respective entity instance by the 
Entity Attribute model element, which has the following 
terms: name – denotes the attribute name defined in the 
corresponding entity schema; type – indicates the type of the 
respective attribute (e.g., string, integer and float); and value 
– represents the current value of the attribute in the given 
entity instance. In order to provide high granularity levels, a 
compliant middleware platform must have the capability of 
storing and retrieving integrally or partially the attributes of 
managed entity instances. 

As specified in an entity schema, each entity instance 
can have optional associated metadata for providing 
contextual information about the given attribute instance. To 
do that, DCDS adopts the Attribute Metadata model 
element, which has three terms, name, type and value, 
denoting respectively the metadata name, type and specific 
content, all of them defined in the associated entity schema. 

Figure 4 illustrates a simple example of a DCDS JSON 
instance, compliant with the DCDS JSON schema 
previously defined in Figure 2. As can be noticed, DCDS 
defines a context information model similar to NGSI [24] 
but enriched with the concept of entity schemas for 
leveraging the support to the identified requirements. 

{
"id":"CT01-1 Circular-Tourism",
"schema":"bus",
"version":"1.0",
"owner":"dcds.provider1.br",
"location":{

"type":"point",
"value":[30.52, 10.25]},

"speed":{
"type":"double",
"value":60.35,
"unit":{

"type":"string",
"value":"kilometer per hour - km/h"}},

"people-ammount":{
"type":"integer",
"value":32}

}  

Figure 4. DCDS JSON instance representation. 

In order to provide a formal DCDS representation, 
EBNF (Extended Backus-Naur Form) grammars have been 
specified for entity schemas and instances, making possible 
to develop DCDS parsers. Due to space limitations and for 
the sake of simplicity, Figure 5 illustrates the EBNF 
grammar for entity schemas only, but without including the 
Schema Description model element. 

dcds_schema ::= '{' entity_schema (',' attribute_schema)+ '}'

entity_schema ::= '"id":' '"' string '"' ','
'"version":' '"' string '"' ','
'"owner":' '"' uri '"' ','
'"providers":' '[' uri (',' uri)* ']'

attribute_schema ::= attribute_spec (',' metadata_schema)*

attribute_spec ::= '"' attr_name '"' ':' '{'
'"type":' '"' string '"' ','
'"refs":' '[' integer (',' integer)* ']'
'}'

metadata_schema ::= '"metadata-schema:"' '{'
'"' meta_name '"' ':' '{‘

'"type":' '"' string '"' '}'
'}'

attr_name ::= string
meta_name ::= string  

Figure 5. EBNF grammar for DCDS schemas. 

42Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            51 / 69



 

B. Partitioning Context Instances and Attributes  

Based on the DCDS metamodel, compliant middleware 
platforms can provide data partitioning in a two-fold 
perspective: context instance partitioning and context 
attribute partitioning. Such partitioning perspectives have a 
direct influence on requirements related to integrability, 
granularability and reusability, making possible services, 
systems and applications to integrate reusable context data 
from multiple providers in different granularity levels. 
Figure 6a and Figure 6b depict both partitioning approaches. 

people-amount temperature

(a) Context Instance Partitioning (b) Context Attribute Partitioning

speed

A B C D

location

A B A B

 

Figure 6. Data partitioning approaches. 

In the context instance partitioning (Figure 6a), multiple 
independent data providers can store and manage subsets of 
entity instances related to the same entity schema. Thus, 
instead of storing the whole set of entity instances in a 
single provider, subsets of them are partitioned in multiple 
providers based on organizational, economical or 
geographical policies. Note that, for each entity instance, all 
currently valued attributes of the instance are integrally 
stored in a single provider, but without the need of assigning 
values to all attributes. 

For example, in large cities, where there can be several 
bus operator companies responsible by providing the public 
transportation system, it sounds interesting that every 
company stores and manages context data about its own bus 
fleet. Figure 6a presents an example of instance partitioning, 
in which two providers manage all context data (location, 
people-amount, speed and temperature) associated with the 
bus fleet of two independent bus operator companies, which 
have the buses A/B and C/D, respectively. To do that, the 
providers term of the respective entity schema must simply 
include the URI (Uniform Resource Identifier) list of the 
authorized providers. Figure 7 illustrates the instance 
representation for buses A and C, which are integrally 
stored in different data providers with all attributes. 

{
"id":"Bus-A",
"schema":"bus",
"version":"1.0",
"owner":"dcds.provider1.br",
"location":{

"type":"point",
"value":[-23.56, -46.65]},

"speed":{
"type":"double",
"value":60.35},

"people-ammount":{
"type":"integer",
"value":32},

"temperature":{
"type":"double",
"value":22.25}

}

{
"id":"Bus-C",
"schema":"bus",
"version":"1.0",
"owner":"dcds.provider1.br",
"location":{

"type":"point",
"value":[-50.12, -18.20]},

"speed":{
"type":"double",
"value":25.35},

"people-ammount":{
"type":"integer",
"value":10},

"temperature":{
"type":"double",
"value":19.00}

}  

Figure 7. Instance partition example. 

Differently, in the context attribute partitioning 
(Figure 6b), multiple independent data providers can store 
and manage subsets of attributes related to the same type of 
entity instances. That is, instead of storing all attributes of a 
given entity instance in a single provider, subsets of them 
are partitioned in multiple providers, probably based on 
expertise and capabilities of such providers. Again, there is 
no need of assigning values to all attributes. 

For instance, in several cities, where the public 
transportation system is only provided by the municipal 
government, it seems interesting to hire distinct specialized 
companies for gathering and managing different context 
data types of interest. Figure 6b shows an example of 
attribute partitioning, in which two providers separately 
manage two distinct context attributes (location/people-
amount and speed/temperature) associated with the 
municipal bus fleet. To do that, similarly, the providers term 
of the target entity schema must have the URI list of the 
authorized providers; but differently, for each attribute, the 
refs term must have the ordinal positions in the URI list of 
the providers that can store the respective attribute. Figure 8 
illustrates the instance representation for bus A, which are 
partially stored in two different data providers without the 
need of assigning values to all attributes in each provider. 

{
"id":"Bus-A",
"schema":"bus",
"version":"1.0",
"owner":"dcds.provider1.br",
"location":{

"type":"point",
"value":[-23.56, -46.65]},

"people-ammount":{
"type":"integer",
"value":32}

}

{
"id":"Bus-A",
"schema":"bus",
"version":"1.0",
"owner":"dcds.provider1.br",
"speed":{

"type":"double",
"value":25.35},

"temperature":{
"type":"double",
"value":19.00}

}  

Figure 8. Attribute partition example.  

In order to manage both partitioning perspectives, a 
compliant DCDS provider ought to adopt an integration 
process for combining all required instances associated to a 
given schema, version and provider. In the context instance 
partitioning, the requesting provider has to retrieve partial 
collections of instances stored in different providers and 
thereafter to integrate all them to provide the whole set of 
required instances. In the context attribute partitioning, the 
same process must be performed but, additionally, the 
requesting provider has to concatenate partial attributes of 
instances retrieved from different providers to reconstruct 
the whole set of attributes for all required instances. 

It is important to emphasize that, in case of relational 
storage, both partitioning perspectives can be mapped to 
horizontal and vertical partitioning, as indicated in [30] for 
RDBMS (Relational Database Management Systems). In 
such a case, on the one hand, the context instance 
partitioning can be mapped to the horizontal partitioning, in 
which context instances are partitioned into disjoint sets of 
rows that are physically stored and accessed separately in 
different RDBMS-based providers. On the other hand, the 
context attribute partitioning can be mapped to the vertical 
partitioning, in which context attributes are partitioned into 
disjoint sets of columns that are physically stored and 
accessed separately in different RDBMS-based providers. 

43Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            52 / 69



 

V. EXPERIMENTAL EVALUATION 

In order to evaluate DCDS, based on HTTP (Hypertext 
Transfer Protocol) and REST (Representational State 
Transfer), a prototype implementation of a compliant 
distributed middleware platform, called Sirius, has been 
developed as a set of RESTful services for integrating 
multiple data providers, supporting the development of 
services, systems and applications in a broad range of smart 
cities domains. 

As illustrated in Figure 9, Sirius adopts a service-
oriented architecture. The Context Schema Manager deals 
with the versioned lifecycle of entity schemas, including 
CRUD operations for schemas and their respective attributes 
and metadata. Taking such specified schemas as a basis, the 
Context Instance Manager coordinates communication 
among other distributed Sirius brokers for storing, retrieving 
and integrating instances, including CRUD operations for 
instances and their respective attributes and metadata. By 
implementing a query processor, the Context Query Engine 
deals with a simple query language that can be adopted to 
transparently access and integrate context data from 
multiple providers. In order to provide independence from 
low-level database technologies, each Context Broker 
Adapter acts as a translator among DCDS JSON 
representations and a given low-level representation model. 
Therefore, several Context Broker Adapters can provide a 
way to map or transform different structured or unstructured 
data models into DCDS schemas. 

Context Instance
Manager

Context Schema
Manager

Context Query
Engine

Context Broker 
Adapter

Context
Broker

CIM-REST-API CSM-REST-API CQE-REST-API

 

Figure 9. Sirius middleware platform. 

Sirius was developed using Flask, a lightweight Python 
microframework for developing web applications and 
RESTful services. In addition, Sirius adopts Orion Context 
Broker [31] as a local broker for persisting instances. In 
order to define a distributed platform, virtual machines 
deployed in the AWS (Amazon Web Services) cloud 
infrastructure [32] act as context providers, running 
complete Sirius platform instances. 

In the DCDS experimental evaluation, a semi-real 
dataset is adopted, taking as a basis the real-time database of 
the urban transport system provided by the São Paulo town 
hall in Brazil. Such a database provides an HTTP RESTful 
API to access the real-time context data related to all bus 
fleets provided by bus operator companies in São Paulo. 
Originally, the context database provides information 
related to the name of the line, location and travel direction 
of about 10,000 buses. However, for enriching the context 
attributes associated to buses, the conducted experiments 
have included additional synthetic attributes. Thus, in the 

bus schema, each bus instance has the following attributes: 
location, people-amount, temperature and speed. 

In a way similar to Figure 6a and Figure 6b, two 
different experiments have been successfully evaluated 
using six virtual machines in the AWS cloud infrastructure, 
four of them to deploy Sirius instances, another one to 
deploy Orion and the last one to use as a client to dispatch 
operations. In the first experiment, the context instance 
partitioning approach was evaluated, spreading 10,000 bus 
instances in four Sirius brokers, which means around 2,500 
bus instances in each broker. In such a case, each bus 
instance has all four attributes stored in the respective 
broker. In the second experiment, the context attribute 
partitioning approach was evaluated, storing all 10,000 bus 
instances repeatedly in each Sirius broker. However, 
differently, each bus instance has only one attribute stored 
in each Sirius broker. As a mean to define a comparing 
baseline, the experiment also has a third configuration in 
which all buses are stored a centralized Orion broker. 

As an initial performance evaluation, a configurable set 
of concurrent users, varying from 10 to 100, dispatch read 
requests for each configuration of the experiment, each one 
recovering the whole set of 10,000 stored instances. Then, 
for each set of concurrent users, the total time for processing 
such requests was measured. The experiment was conducted 
using the JMeter load testing tool [33], which allows to 
configure different load profiles and calculate their 
respective response times for a variety of services. In 
JMeter, HTTP requests can be modeled as users, which 
perform concurrent requests to target services. 

Figure 10 shows the total response time for each 
configuration (instance partitioning, attributed partitioning 
and centralized Orion) and the set of concurrent users (10, 
20, 40, 60, 80, 100). Of course, the lower the response time, 
the better performance has the evaluated configuration. 

 

Figure 10. Performace evaluation. 

As can be noticed, in both partitioning configurations, as 
the number of concurrent users increases, the Sirius’ 
distributed approach provides better and better performance 
when contrasted with the Orion’s centralized approach. For 
example, considering 100 concurrent users, the gains of the 
instance and attribute partitioning approaches are around 
79.4% and 18.9%, respectively. 

44Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            53 / 69



 

VI. CONCLUSION AND FUTURE WORK 

In order to evolve from not so scalable, centralized smart 
cities platforms, this paper presents the DCDS metamodel, 
which provides a means to specify and instantiate 
distributed, partitioned and versioned context information 
associated to all kinds of real-world entities in a broad range 
of smart cities domains. As the main contributions, DCDS 
can be adopted as a unified data model in interoperable, 
scalable and distributed middleware platforms, enabling the 
development of services, systems and applications that can 
easily deal with capabilities related to data integration, 
reuse, extension and partitioning, supplied by several 
independent providers across a lot of smart cities domains. 

On the one hand, in DCDS, versioned schemas and 
instances enable to evolve entity schemas and their 
instances over time, accommodating changes imposed by 
dynamic urban data. On the other hand, DCDS enables data 
partitioning in an innovative two-fold approach. First, 
multiple providers can manage subsets of instances related 
to the same schema. Second, multiple providers can manage 
subsets of attributes related to the same type of instances. As 
contributions, such versioning and partitioning capabilities 
leverage requirements related to extensibility, integrability, 
granularability and reusability, enabling services, systems 
and applications to integrate reusable, extensible context 
data from multiple providers in distinct granularity levels. 

It is important to highlight that both partitioning 
approaches have the potential to provide better response 
time and scalability in compliant middleware platforms due 
to gains imposed by parallel access [16], concentrating 
frequently accessed instances or attributes in providers with 
more available or less overloaded processing power, 
communication bandwidth and storage capacity. 

Despite such contributions, from the viewpoint of 
complaint platforms, DCDS does not have concerns related 
to security requirements, such as access control, 
authentication, confidentiality and denial of service. 
Besides, in collaborative distributed smart cities initiatives, 
business models ought to be adopted in order to regulate 
how to monetize data providers. Together, concerns related 
to security and business models represent key potential 
branches for future work. 

As another future branch, it is important to conduct 
performance, load and stress tests with much bigger 
scenarios, including a lot of data provider nodes and several 
types of context entities in different smart cities domains. 
Such tests enable to gather more confidence about empirical 
findings related to enumerated requirements of interest, but 
also including scalability and availability. 

REFERENCES 

[1] T. Nam and T. A. Pardo, “Conceptualizing Smart City with 
Dimensions of Technology, People, and Institutions”, 12th Int. Conf. 
on Digital Government Research, 2011, pp. 282-291. 

[2] H. Chourabi, et al., “Understanding Smart Cities: An Integrative 
Framework”, 45th Hawaii Int. Conf. on Syst. Sci., 2012, pp. 2289-2297. 

[3] E. Borgia, “The Internet of Things Vision: Key Features, Applications 
and Open Issues”, Computer Commun., vol. 54, pp. 1-31, Dec. 2014. 

[4] M. Naphade, G. Banavar, C. Harrison, J. Paraszczak, and R. Morris, 
“Smarter Cities and their Innovation Challenges”, Computer, Issue 6, 
pp. 32-39, Jun. 2011. 

[5] N. Ben-Sassi, et al., “Service Discovery and Composition in Smart 
Cities”, Int. Conf. on Adv. Inf. Syst. Eng., 2018, pp. 39-48. 

[6] A. J. Jara, et al., “Smart Cities Semantics and Data Models”, Int. Conf. 
on Inf. Technol. & Syst., 2018, vol. 721, pp. 77-85. 

[7] F. J. Villanueva, M. J. Santofimia, D. Villa, J. Barba, and J. C. Lopez, 
“Civitas: The Smart City Middleware from Sensors to Big Data”, 7th 
Int. Conf. on Innovative Mobile and Internet Serv. in Ubiquitous 
Comput., 2013, pp. 445-450. 

[8] M. Crowe, C. Begg, F. Laux, and M. Laiho, "Data validation for big 
live data", 9th Int. Conf. on Advances in Databases, Knowl., and Data 
Appl., 2017, pp. 30-36. 

[9] I. A. Hashem, et al., “The Role of Big Data in Smart City”, Int. J. of 
Inf. Manag., vol. 36, n. 5, pp. 748-758, Oct. 2016. 

[10] M. Strohbach, H. Ziekow, V. Gazis, and N. Akiva, “Towards a Big 
Data Analytics Framework for IoT and Smart City Applications”, In: 
F. Xhafa, L. Barolli, A. Barolli, and P. Papajorgji (eds), Modeling and 
Processing for Next-Generation Big-Data Technologies, vol 4, 
pp. 257-282, 2015. 

[11] P. Bellavista, A. Corradi, M. Fanelli, and L. Foschini, “A Survey of 
Context Data Distribution for Mobile Ubiquitous Systems”, ACM 
Comput. Surveys, vol. 44, n. 4, pp. 24-28, Aug. 2012. 

[12] A. J. Jara, et al., “Semantic Web of Things: An Analysis of the 
Application Semantics for the IoT Moving Towards the IoT 
Convergence", Int. J. of Web and Grid Serv., vol. 10, n. 2/3, 
pp. 244-272, Apr. 2014. 

[13] C. Bolchini, C. A. Curino, E. Quintarelli, F. A. Schreiber, and L. 
Tanca, “A Data-Oriented Survey of Context Models”, ACM SIGMOD 
Record, vol. 36, n. 4, pp. 19-26, Dec. 2007. 

[14] R. Reichle, et al., “A Comprehensive Context Modeling Framework 
for Pervasive Computing Systems”, Int. Conf. on Distrib. Appl. and 
Interoperable Syst., vol.5053, 2008, pp. 281-295. 

[15] A. J. Jara, Y. Bocchi, D.  Fernandez, G. Molina, and A. Gomez, “An 
Analysis of Context-Aware Data Models for Smart Cities: Towards 
Fiware and ETSI CIM Emerging Data Model”, Int. Archives of 
Photogrammetry, Remote Sens. and Spatial Inf. Sci., 
vol. XLLII-4/W3, pp. 43-50, Set. 2017. 

[16] M. Boussard, et al., “A Process for Generating Concrete 
Architectures”, Enabling Things to Talk, Springer, pp. 45-111, 2013. 

[17] W. C. McGee, “On User Criteria for Data Model Evaluation”, ACM 
Trans. on Database Syst., vol. 1, n. 4, pp. 370-387, 1976. 

[18] A. A. García, M. O. U. Criado, and C. P. Heredero, “The Ecosystem 
of Services around Smart Cities: An Exploratory Analysis”, Procedia 
Comput. Sci., vol. 64, pp. 1075-1080, 2015. 

[19] J. Lee, S. Baik, and C. C. Lee, “Building an Integrated Service 
Management Platform for Ubiquitous Ecological Cities”, Computer, 
vol. 44, n. 6, pp. 56-63, 2011. 

[20] R. White and J. Tantsura, “Navigating Network Complexity: Next-
Generation Routing with SDN”, Service Virtualization, and Service 
Chaining, Addison-Wesley, 2015. 

[21] M. Knappmeyer, S. L. Kiani, C. Fra, B. Moltchanov, and N. Baker, 
“ContextML: A Light-Weight Context Representation and Context 
Management Schema”, 5th Inter. Symp. on Wireless Pervasive 
Comput., 2010, pp. 367-372. 

[22] M. R. Crippa, “Design and Implementation of a Broker for a Service-
Oriented Context Management and Distribution Architecture”, 
Undergraduate Thesis, UFRGS, Jul. 2010. 

[23] V. Tsiatsis, et al., “The SENSEI Real World Internet Architecture”, 
In: Towards the Future Internet: Emerging Trends from Europe 
Research, pp. 247-256, 2010. 

[24] OMA, “NGSI Context Management”, version 1.0, May 2012.  

[25] OMA, “NGSI Registration and Discovery”, version 1.0, May 2012. 

[26] M. Nitti, V. Pilloni, G. Colistra, and L. Atzori, “The Virtual Object as 
a Major Element of the Internet of Things: A Survey”, IEEE Commun. 
Surveys & Tuts., vol. 18, n. 2, pp. 1228-1240, Nov. 2016. 

[27] Fiware, http://www.fiware.org [retrieved: April, 2019]. 

[28] JSON, http://www.json.org [retrieved: April, 2019]. 

[29] S. Zunke and V. D’Souza. “JSON vs XML: A Comparative 
Performance Analysis of Data Exchange Formats”, Int. J. of Comp. 
Sci. and Netw., vol. 3, n. 4, pp. 257-261, Aug. 2014. 

[30] S. Agrawal, V. Narasayya, and B. Yang, “Integrating vertical and 
horizontal partitioning into automated physical database design”, Int. 
Conf. on Manag. of Data, 2004, pp. 359-370. 

[31] Orion, http://fiware-orion.readthedocs.io [retrieved: April, 2019]. 

[32] AWS, http://aws.amazon.com/pt/ec2 [retrieved: April, 2019]. 

[33] JMeter, http://jmeter.apache.org [retrieved: April, 2019]. 

45Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            54 / 69



Strongly Possible Keys in Incomplete Databases with Limited Domains

Munqath Alattar

Department of Computer Science and
Information Theory

Budapest University of Technology and Economics
Budapest, Hungary

Email: m.attar@cs.bme.hu

Attila Sali

Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences

Budapest, Hungary
Email: sali.attila@renyi.mta.hu

Abstract—Missing values that may occur in the key attributes of
a database table is an extensive problem and handling it is an
important and challenging task, as the records need to contain
distinct and total values in their key part. The existing effective
approaches include an imputation operation for each occurrence
of a null in the key part of the data. In this paper, we assume the
situation when the attributes domains are not known. For that, a
new concept of keys called strongly possible keys in databases with
null values is introduced. It lies between possible keys and certain
keys introduced by Köhler et. al. earlier. The definition uses only
information extractable from the database table. Furthermore, an
approximation concept of the strongly possible key is provided.

Keywords–Strongly possible keys; null values; approximation of
keys.

I. INTRODUCTION

A basic approach to treat null values in keys of relational
databases is an imputation operation for each occurrence of a
null in the key part of the data with a value from the attribute
domain as explained by [1]. We investigate the situation when
the attributes’ domains are not known. For that, we only
consider what we have in the given data and extract the values
to be imputed from the data itself for each attribute so that
the resulting complete dataset after the imputation would not
contain two tuples having the same value in their key. Köhler
et al. [1] used possible worlds by replacing each occurrence of
a null with a value from the corresponding attribute’s (possibly
infinite) domain. They defined a possible key as a key that is
satisfied by some possible world of a non total database table
and a certain key as a key that is satisfied by every possible
world of the table. In many cases, we have no proper reason
to assume existence of any other attribute value than the ones
already existing in the table. Such examples could be types
of cars, diagnoses of patients, applied medications, dates of
exams, course descriptions, etc. We define a strongly possible
key as a key that is satisfied by some possible world that is
obtained by replacing each occurrence of null value from the
corresponding attribute existing values. We call this kind of a
possible world a strongly possible world. This is a data mining
type approach; our idea is that we are given a raw table with
nulls and we would like to identify possible key sets based on
the data only.

The remainder of the paper is organized as follows. In
Section 2, some definitions are stated. In Section 3, strongly
possible keys, their discovery, and characterization of the
implication problem of systems of strongly possible keys are

provided. Approximation measures are studied in Section 4.
Section 5 presents concluding remarks and future research
directions.

II. DEFINITIONS

Let R = {A1, A2, . . . An} be a relation schema. The set of
all the possible values for each attribute Ai ∈ R is called
the domain of Ai and referred as Di = dom(Ai) for i =
1,2,. . . n. And if X ⊆ R then DX =

∏
∀Ai∈K

Di. An instance

T = (t1,t2, . . . ts) over R is a set of tuples that each tuple is a
function t : R→

⋃
Ai∈R dom(Ai) and t[Ai] is in the dom(Ai)

for all Ai in R. For a tuple tr ∈ T , let tr[Ai] be the restriction
of the rth tuple of T to Ai.

In practice, data models may contain an unknown infor-
mation about the value of some tuple tj [Ai] for j = 0,1,. . . s
that is denoted by ⊥. t1 and t2 are weakly similar on X ⊆ R
denoted as t1[X] ∼w t2[X] as defined by Köhler [1] if:

∀A ∈ X (t1[A] = t2[A] or t1[A] = ⊥ or t2[A] = ⊥)

Furthermore, t1 and t2 are strongly similar on X ⊆ T
denoted by t1[X] ∼s t2[X] if:

∀A ∈ X (t1[A] = t2[A] 6= ⊥)

For the sake of convenience, we write t1 ∼w t2 if t1 and t2
are weakly similar on R and the same for strong similarity. For
a null-free table, a set of attributes K ⊂ R is a key if there are
no two distinct tuples in the table that share the same values
in all the attributes of K:

ta[K] 6= tb[K] ∀ 0 ≤ a, b ≤ s such that a 6= b

The concepts of possible and certain keys were defined
by Köhler et al [1]. Let T ′ = (t′1, t′2, . . . t

′
s) be a table that

represents a total version of T which is obtained by replacing
the occurrences of ⊥ in all attributes t[Ai] with a value from
the domain Di different from ⊥ for each i. T ′ is called a
possible world of T. In a possible world T ′, t′i is weakly similar
to ti and T ′ is completely null-free table. A possible key K
denoted as p 〈K〉, is a key for some possible world T ′ of T ,
so that:

t′1[K] 6= t′2[K], ∀ t′1, t′2 ∈ T ′

Similarly, a certain key K referred as c 〈K〉, is a key
for every possible world T ′ of T . The visible domain of an

46Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            55 / 69



attribute A (V DA) is the set of all distinct values except ⊥
that are already used by tuples in T :

V Di = {t[Ai] : t ∈ T}\{⊥} for Ai ∈ R

The term visible domain refers to the data that already exist
in a given dataset. For example, if we have a dataset with no
information about the attributes’ domains definitions, then we
use the data itself to define their own structure and domains.
This may provide more realistic results when extracting the
relationship between data so it is more reliable to consider
only what information we have in a given dataset.

A possible world T ′ is called strongly possible world if
T ′ ⊆ V D1 × V D2 × . . .× V Dn.

A subset K ⊆ R is a strongly possible key (in notation
sp 〈K〉) in T if ∃ a strongly possible world T ′ ⊆ V D1 ×
V D2 × . . .× V Dn such that K is a key in T ′.

III. RESULTS

Table I implies sp 〈AB〉 as a strongly possible key because
there is a strongly possible world in Table II where AB is a
key. On the other hand, Table I implies neither sp 〈AC〉 nor
sp 〈BC〉 because there is no strongly possible world T ′ that
has AC or BC as keys.

TABLE I. A DATASET WITH NULLS

A B C D
3 2 ⊥ 0
15 1 2 10
⊥ 2 2 ⊥

TABLE II. A STRONGLY POSSIBLE WORLD OF TABLE I

A B C D
3 2 2 0
15 1 2 10
15 2 2 10

Let Σ be a set of strongly possible keys and θ a single
strongly possible key over a relation schema R. Σ logically
implies θ, denoted as Σ |= θ if for every instance T over R
satisfying every strongly possible key in Σ we have that T
satisfies θ.

Theorem 1: Σ |= sp 〈K〉 ⇐⇒ ∃Y ⊆ K s.t. sp 〈Y 〉 ∈ Σ.
Proof: ⇐ : ∃T ′ s.t. t′i[Y ] 6= t′j [Y ],∀i 6= j, so t′i[K] 6=

t′j [K],∀i 6= j holds, as well.
⇒ : Suppose indirectly that sp 〈Y 〉 /∈ Σ ∀Y ⊆ K.

Consider the following instance consisting of two tuples t1 =
(0, 0, . . . , 0), t2[K] = (⊥,⊥, . . . ,⊥), and t2[R \ K] =
(1, 1, . . . 1) as in Table III . Then, the only possible t′2
in T ′ is t′2(0, 0, . . . , 0, 1, 1, . . . , 1). Furthermore, ∀Z where
sp 〈Z〉 ∈ Σ, there must be z ∈ Z \K, thus t′1[Z] 6= t′2[Z] but
t′1[K] = t′2[K] showing that (t1, t2) satisfies every strongly
possible key constraints from Σ, but does not satisfy sp 〈K〉.

TABLE III. INCOMPLETE DATA INSTANCE

K R \K
t1 0 0 0 0 00000000
t2 ⊥⊥⊥⊥ 11111111

Note 1: If Σ |= ¬sp 〈K〉 and Y ⊆ K then Σ |= ¬sp 〈Y 〉.

Note 2: If Σ |= sp 〈K〉, then Σ |= p 〈K〉 but the reverse
is not necessarily true, since DK ⊇ V DK could be proper
containment so K could be made a key by imputing values
from DK \ V DK . For example, in Table III, it is shown that
¬sp 〈K〉 holds, but p 〈K〉 may hold in some T ′ if there is at
least one other value in the domain of K rather than the zeros
to be placed instead of the nulls in the second tuple so that
t′1[K] 6= t′2[K] results.

Note 3: If Σ |= c 〈K〉, then Σ |= sp 〈K〉. As certain keys
hold in any possible world, they hold also if this possible world
is created using visible domain.

Note 4: For a single attribute A, sp 〈A〉 ⇐⇒ t[A] �w
t′[A] ∀t, t′ s.t. t 6= t′, i.e., if there are no nulls occurrences in
A.

In other words, a single attribute with a null value cannot
be a strongly possible key. That is because replacing an
occurrence of null with a visible domain value results in
duplicated values for that attribute.

Let us consider a schema R = {A1, A2, . . . , An} and
let K = {K1,K2, . . .Kp} be a collection of attribute sets
and T = {t1, t2, . . . , ts} be an instance with possible
null occurrences. Our main question here is whether Σ =
{sp 〈K1〉 , sp 〈K2〉 , . . . , sp 〈Kp〉} holds in T ? Let Ei = {t′ ∈
V D1×V D2× . . .×V Dn : t′ ∼w ti}. Let S ⊆ V D1×V D2×
. . . × V Dn be the union S = E1 ∪ E2 ∪ . . . ∪ Es and define
bipartite graph G = (T, S;E) by {t, t′} ∈ E ⇐⇒ t ∼w t′

for t ∈ T and t′ ∈ S. Let (S,M0) be the transversal matroid
(see [2]) defined by G on S, that is a subset X ⊆ S satisfies
X ∈M0 if X can be matched into T . Furthermore, consider
the partitions

S = Sj1 ∪ S
j
2 ∪ . . . ∪ Sjpj (1)

induced by Kj for j = 1, 2, . . . , p such that Sji ’s are maximal
sets of tuples from S that agree on Kj . Let (S,Mj) be the
partition matroid given by (1). We can formulate the following
theorem.

Theorem 2: Let T be an instance over schema R =
{A1, A2, . . . , An} and let K = {K1,K2, . . .Kp} be a col-
lection of attribute sets. Σ = {sp 〈K1〉 , sp 〈K2〉 , . . . , sp 〈Kp〉}
holds in T if and only if the matroids (S,Mj) have a common
independent set of size |T | for j = 0, 1, . . . p

Proof: An independent set T ′ of size |T | in matroid
(S,M0) means that tuples in T ′ form a strongly possible world
for T . That they are independent in (S,Mj) means that Kj

is a key in T ′, that is sp 〈Kj〉 holds.

Conversely, if Σ = {sp 〈K1〉 , sp 〈K2〉 , . . . , sp 〈Kp〉}
holds in T , then there exists a strongly possible world T ′ =
{t′1, t′2, . . . , t′s} ⊆ V D1×V D2×. . .×V Dn such that ti ∼w t′i.
This means that T ′ ⊆ S and that T ′ is independent in
transversal matroid (S,M0). sp 〈Kj〉 holds implies that tuples
t′i are pairwise distinct on Kj , that is T ′ is independent in
partition matroid (S,Mj).

Unfortunately, Theorem 2 does not give a good algorithm
to decide the satisfaction of a system Σ of strongly possible
keys, because as soon as Σ contains at least two constraints,
then we would have to calculate the size of the largest common
independent set of at least three matroids, known to be an NP-
complete problem [3].

47Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            56 / 69



In case of a single strongly possible key sp 〈K〉 constraint,
Theorem 2 requires to compute the largest common indepen-
dent set of two matroids, which can be solved in polynomial
time [4]. However, we can reduce the problem to the somewhat
simpler problem of matchings in bipartite graphs.

If we want to decide whether sp 〈K〉 holds or not, we
can forget about the attributes that are not in K since we need
distinct values on K as a matching from V DA1

×V DA2
×. . .×

V DAb to T = {t1, t2 . . . tr}|K where K = {A1, A2 . . . Ab}.
Thus, we may construct a table T ′ that is formed by finding
all the possible combinations of the visible domains of T |K
that are weakly similar to some tuple in T |K .

T ′ = {t′ : ∃t ∈ T : t′[K] ∼w t[K]} ⊆ V D1×V D2×. . .×V Db

Finding the matching between T and T ′ that covers all the
tuples in T (if it exists) will result in the set of tuples in T ′

that needs to be replaced in T so that K is a strongly possible
key.

Let cv(A) denote the number of tuples that have value v
in attribute A, that is cv(A) = |{t ∈ T : t[A] = v}|. Next are
some necessary conditions to have a strongly possible key.

Proposition 1: Let K ⊆ R be a set of attributes. If sp 〈K〉
holds, then

1) No two tuples ti, tj are strongly similar in K.
2) |T | ≤

∏
∀A∈K

|V DA|.

3) ∀B ∈ K, number of nulls in B ≤∑
∀v∈V DB

(∏
∀A∈K |V DA|
|V DB | − cv(B)

)
.

4) For all v ∈ V DB we have cv(B) ≤
∏
∀A∈K |V DA|
|V DB |

Proof: The first condition is obviously required so that K
is a strongly possible key, where the strong similarity means
that the two tuples are total and equal to each other in the key
part and this violates the general key definition. In addition to
that, for any set of attributes, the maximum number of distinct
combination of their values is the size of the multiplication of
their visible domain, and this proves (2). Moreover, to prove
conditions (3) and (4), when K is sp 〈K〉 in T then there
should exist a T ′ with no two tuples having the same values
in all K attributes after filling all their nulls. So for each set
of tuples S that has the same value v in the attribute B, the
number of distinct combinations of the other attributes is the
multiplication of their V D’s, means the number of tuples in S
should not be more than

∏
∀A∈(K\B) V DA. Thus, the number

of times value v can be used to replace a null in attribute B
is at most

∏
∀A∈K |V DA|
V DB

− cv(B).

Note that sp 〈K〉 holds if a matching covering T exists in
the bipartite graph G = (T, T ′;E) defined as above, {t, t′} ∈
E ⇐⇒ t[K] ∼w t[K]′. We can apply Hall’s Theorem to
obtain

∀X ⊆ T, we have |N(X)| ≥ |X|

for N(X) = {t′ : ∃t ∈ X such that t[K]′ ∼w t[K]}

IV. STRONGLY POSSIBLE KEYS APPROXIMATION

To measure the degree of how much a strongly possible key
holds in a given dataset, we use the g3 measure introduced in
[5]. g3 is based on the idea that the degree to which ASP key is
approximate is determined by the minimum number of tuples

that need be removed from T so that K becomes an ASP
key. To find the tuples that we need to remove, we suggest to
construct the maximum matching in graph G = (T, T ′;E).

g3(K) =
|T | − ν(G)

|T |

where ν(G) denotes the maximum size of a matching in graph
G.

Let M be the collection of connected components in graph
G that hold the strongly possible key condition, i.e., there is a
matching cover all T tuples in that set (∀M∈M @X ⊆M ∩ T
such that |X| > N(X)). Let C ⊆ G be defined as C =
G\
⋃
∀M∈MM and let M′ be the set of connected components

of C. In addition to that, we use the term VM to denote the
set of vertices of T in a component M . So, the maximum
matching can be written as

∑
M∈M(|VM |)+

∑
∀M ′∈M′ ν(M ′).

Therefore we can reformulate the g3 measure as:

g3(K) =
|T | − (

∑
M∈M(|VM |) +

∑
M ′∈M′ ν(M ′))

|T |
Figure 2 shows 7 tables that represent the key part only of the
data where each table has more than one attribute. Tables A,
B and C have 2n tuples, tables E and F have n tuples, and
table D has n+ l tuples while table G has kn tuples. Table D
includes a variable 0 ≤ β ≤ n

2 . We intend to use these cases
to illustrate the differences and give a bound of g3/gc3 where
it is always true that g3 − gc3 ≥ 0. The graphs show the weak
similarity relationship between the data tuples and the visible
domains combinations. The visible domains combinations are
shown on Figure 1. For example, in table A, the first two
tuples of T in the left side of the graph can have a unique
weakly similar tuples in T ′ for each, while for the rest, every
two tuples in T form a connected component that have only
one weakly similar tuple in T ′. On other hand, all the tuples
of table E form connected component of size n that have a
weakly similar relation (matching) to one tuple in T ′.

Measuring the strongly possible keys approximation can
be more appropriate by take into consideration the effect of
each connected component in the graph on the matching.
More specifically, M represents the sets of tuples that do not
require any tuple to be removed to get a strongly possible
key, while the components of M′ represent the sets of tuples
that contain some tuples which need to be removed to have
a strongly possible key. We consider the components of M to
get their effect doubled in the approximation measure because
they represent a part of the data that is not affected by any
tuples removal. So, we propose a derived version of g3 measure
named gc3 that considers the effects of these components.

gc3(K) =
|T | − (

∑
M∈M(|VM |) +

∑
M ′∈M′ ν(M ′))

|T |+
∑
M∈M |VM |

Theorem 3: For any table T and set of attributes K we
have either g3(K) = gc3(K) or 1 < g3(K)/gc3(K) < 2. Fur-
thermore, for any rational number 1 ≤ p

q < 2 there exist tables
of arbitrarily large number of tuples with g3(K)/gc3(K) = p

q .

Proof: g3(K) and gc3(K) are different only in the de-
nominator part. The number of tuples of the components in
M can’t be more than the total number of tuples in the table,
so 0 ≤

∑
M∈M |VM | ≤ |T | and

∑
M∈M |VM | = |T | iff every

48Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            57 / 69



(A) t′i = (i− 1, 0) i = 1, 2, . . . , n+ 1
(B) t′i = (i− 1, 0) i = 1, 2, . . . , n+ 1
(C) t′i = (i− 1, 0) i = 1, 2, . . . , n+ 1
(D) t′i = (i, 0, 0) for i = 1, 2, . . . , n− β, and t′n−β+j = (0, 0, j − 1) for j = 1, 2, . . . , l + 1
(E) t′1 = (0, 0)
(F) t′i = (i, 0) i = 1, 2, . . . , n− 1
(G) t′jn+i = (jn+ i+ j, 0) for i = 1, 2, . . . , n− j − 1 and j = 0, 1, . . . , k − 1

Figure 1. Visible Domains Combinations of Tables of Figure 2

tuple is a member of some connected component in M. In
the latter case g3(K) = gc3(K), otherwise the denominator of
gc3(K) is less than twice the denominator of g3(K) that proves
the inequlaties of the ratio. Table E proves that g3(K) = gc3(K)
can hold for arbitrarily large tables. Now let 1 < p

q < 2 be

given with p
q = 1 + p′

q′ . Consider Table D where

g3(K)/gc3(K) =

(
β − 1

n+ l

)
/

(
β − 1

n+ 2l

)
which can simply be written as 1 + l

n+l . Now taking n =
α(q′ − p′), l = αp′ and any β between 2 and bn2 c we obtain
that

g3(K)/gc3(K) = 1 +
p′

q′
.

Note that g3(K) ranges between 1/n and 1/2 depending
on the choice of β.

V. CONCLUSION AND FUTURE DIRECTIONS

The main contributions of this paper are as follows:

• We introduced and defined strongly possible keys over
database relations that contain some occurrences of
nulls.

• We provided some properties, observations, and num-
ber of necessary conditions so that a strongly possible
key holds in a given dataset. We show that deciding
whether a given set of attributes is a strongly possible
key can be done by application of matchings in bipar-
tite graph, so Hall’s condition is naturally applied.

• We showed that deciding whether a given system of
sets of attributes is a system of possible keys for a
given table can be done using matroid intersection.
However, we need at least three matroids, and matroid
intersection of three or more matroids is NP-complete,
which suggests that our problem is also NP-complete.

• We studied systems of strongly possible keys and we
gave characterization of the implication problem.

• An approximation concept of the strongly possible key
was introduced to measure how close approximation
of a strongly possible key holds in a data relation,
using g3 measure. We derived the measure gc3 from g3
and gave bounds of the two measures.

Strongly possible keys are special cases of possible keys of
relational schemata with each attribute having finite domain.
So, future research is needed to decide what properties of
implication, axiomatization of inference remain valid in this
setting. Note that the main results in [1] consider that at least
one attribute has infinite domain.

We plan to extend our research from keys to functional
dependencies. Weak and strong functional dependencies were
introduced in [6]. A wFD X →w Y holds if there is a
possible world T ′ that satisfies FD X → Y , while sFD
X →s Y holds if every possible world satisfies FD X → Y .
Our strongly possible world concept naturally induces an
intermediate concept of functional dependency. Future research
on possible keys of finite domains might extend our results on
strongly possible keys.

Finally, Theorem 2 defines a matroid intersection problem.
It would be interesting to know whether this particular question
is NP-complete, which we strongly believe it is.

REFERENCES

[1] H. Köhler, U. Leck, S. Link, and X. Zhou, “Possible and certain keys
for sql,” The VLDB Journal, vol. 25, 2016, pp. 571–596.

[2] D. Welsh, Matroid Theory. Academic Press, New York, 1976.

[3] M. Garey and D. Johnson, Computers and Intractability. A Guide to the
Theory of NP-Completeness. Freeman, New York, 1979.

[4] E. Lawler, “Matroid intersection algorithms,” Mathematical Program-
ming, vol. 9, 1975, pp. 31–56.

[5] J. Kivinen and H. Mannila, “Approximate inference of functional depen-
dencies from relations,” Theoretical Computer Science, vol. 149, 1995,
pp. 129–149.

[6] G. L. Mark Levene, “Axiomatisation of functional dependencies in
incomplete relations,” Theoretical Computer Science, vol. 206, 1998.

49Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            58 / 69



t1

t2

t3

t4

t5

t6

t2n−1

t2n

t′1
t′2

t′3

t′4

t′n+1

...

...

(A)

A1 A2

0 0
1 ⊥
2 ⊥
2 ⊥
3 ⊥
3 ⊥
...

...
n ⊥
n ⊥

t1

t2

tn
tn+1

tn+2

t2n

t′1

t′2
t′3

t′n+1

...
...

...

(B)

A1 A2
0 0

n
0 ⊥
0 ⊥
...

...
0 ⊥
1 ⊥
2 ⊥
...

...
n ⊥

t1

t2

t3

t4

tn−1

tn
tn+1

tn+2

t2n

t′1

t′2

t′n
2

t′n
2 +1

t′n
2 +2

t′3n
2

...

...

...

...

(C)

A1 A2

0 0
0 ⊥
1 ⊥
1 ⊥
...

...
n/2 ⊥
n/2 ⊥

n/2 + 1 ⊥
n/2 + 2 ⊥

...
...

3n/2 ⊥

t1

t2

tn − 1

tn
tn+1

tn+2

tn+l

t′1
t′2

t′n−β
t′n−β+1

t′n−β+2

t′n−β+3

t′n−β+l+1

...

...

...

...

(D)

A1 A2 A3
1 ⊥ 0
2 ⊥ 0
...

...
...

n− β ⊥ 0
⊥ 0 0 β⊥ 0 0
...

...
...

⊥ 0 0
0 ⊥ 1
0 ⊥ 2
...

...
...

0 ⊥ l

t1

t2

tn

t′1...

(E)

A1 A2
0 0 n0 ⊥
...

...
0 ⊥

t1

t2

t3

tn

t′1
t′2

t′n−1

...

...

(F)

A1 A2

1 0
1 ⊥
2 ⊥
...

...
n− 1 ⊥

t1
t2
t3

tn−1
tn

tn+1

tn+2

t2n−2

t(k−1)n
t(k−1)n+1

t(k−1)n+2

tkn

t′1
t′2

t′n−1

t′n
t′n+1

t′2n−2

t′(k−1)n
t′(k−1)n+1

t′kn−k

...
...

...
...

...
...

...
...

(G)

A1 A2

1 0
1 ⊥
2 ⊥
...

...
n− 1 ⊥
n+ 1 0
n+ 1 ⊥
n+ 2 ⊥

...
...

2n− 1 ⊥
...

...
n(k − 1) + 1 0
n(k − 1) + 1 ⊥
n(k − 1) + 2 ⊥

...
...

kn− 1 ⊥

Figure 2. Sample Tables for Comparison Results

TABLE IV. MAIN COMPARISON RESULTS

A B C D E F G

g3
n−1
2n

n−1
2n

1
4

β−1
n+l

n−1
n

1
n

1
n

gc3
n−1
2n+2

n−1
3n

1
6

β−1
n+2l

n−1
n

1
2n−2

1
2n−2

50Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            59 / 69



A Skyline Query Processing Approach over Interval Uncertain Data Stream  

with K-Means Clustering Technique 
 

Zarina Dzolkhifli, Hamidah Ibrahim, Fatimah Sidi, 

Lilly Suriani Affendey, Siti Nurulain Mohd Rum 

Faculty of Computer Science and Information Technology 

Universiti Putra Malaysia 

Malaysia 

e-mail: {zarinadzol@gmail.com, hamidah.ibrahim, fatimah, 

lilly, snurulain}@upm.edu.my 

 

 

 

 

Ali Amer Alwan 
Kulliyyah of Information and Communication Technology, 

International Islamic University Malaysia 

Malaysia 

e-mail: aliamer@iium.edu 

 

 
Abstract—Skyline query processing which extracts a set of 

interesting objects from a potentially large multidimensional 

dataset has attracted significant research attention in many 

emerging important applications. Although skyline 

computation has been studied extensively for data streams, 

there has been relatively less work on uncertain data stream. 

Only recently, a few methods have been proposed to process 

uncertain data stream, however data uncertainty in these 

works is restricted to objects having many instances. In 

contrast, there is no work that has considered uncertainty due 

to objects having interval values wherein the exact values of 

the objects are not known at the point of processing. Hence, in 

this paper a skyline query processing approach utilising the K-

Means clustering technique is proposed to efficiently compute 

skyline over interval uncertain data stream.  

Keywords-skyline query processing; uncertain data; data 

stream. 

I.  INTRODUCTION 

Nowadays, real-time data streams processing 
technologies play an important role in enabling time-critical 
decision making in many applications. Handling streaming 
data is particularly challenging since it is continuously 
generated by an array of sources and devices and is delivered 
in a wide variety of formats. The abundance of data streams 
has led to new algorithmic paradigms for processing 
them. Processing data streams is intricate due to several 
reasons: (i) the objects in the streams arrive online, (ii) the 
system has no control over the order in which objects arrive 
to be processed, either within a data stream or across data 
streams, (iii) data streams are potentially unbounded in size, 
and (iv) once an object from a data stream has been 
processed it is discarded or archived, it cannot be retrieved 
easily unless it is explicitly stored in memory, which 
typically is small relative to the size of the data streams [1]. 

For the past last decade, skyline query processing over 

data streams has attracted significant research attention in 

many emerging important applications. Although skyline 

computation for data streams has been studied extensively 

[5][7][12][15][16][17][22][23], there has been relatively 

less work on uncertain data stream. Uncertain data are 

defined as data which are inaccurate, imprecise, untrusted, 

and unknown. In fact, there is no work that focuses on 

uncertainty due to objects having interval values. The fast 

flowing of continuously generated data with uncertainty by 

an array of sources and devices complicates the query 

process and the amount of computations for processing the 

uncertain data stream is generally huge. It becomes more 

complicated when the values of the objects are 

nondeterministic, i.e., objects having interval values 

wherein the exact values of the objects are not known at the 

point of processing. For example, the prices of objects a, b, 

d, e, and g shown in Table 1 are in interval form. Here, one 

cannot derive the exact skyline but can only compute the 

probability of an object being a skyline member. In addition, 

identifying the domination between objects is not 

straightforward especially when the interval values of the 

objects intersect. For instance, one cannot state that object a 

dominates object b or object b dominates object a as the 

values of their prices intersect. Thus, identifying an efficient 

approach that is capable of computing skylines before the 

objects become obsolete to meet the time-critical 

expectancy of the applications is vital. It is also important to 

ensure that the approach can avoid the re-computation of 

probabilities of objects being skylines. 

 
TABLE 1:  A SNAPSHOT OF SAMPLES OF DATA STREAM 

Object Price Rating Distance … Arrival 
Time (ms) 

a 200 – 600 5 1.5   1 

b 300 – 450 3 2.5   2 

c 500 4 4.0   4 

d 100 – 200 2 5.5   6 

e 700 – 800 5 2.0   7 

f 900 5 1.0   12 

g 400 - 500 3 3.5   13 

 
Hence, this paper attempts to tackle the issues of 

efficiently computing skyline over interval uncertain data 
stream. An approach that can handle uncertain data stream is 
proposed with the aim to reduce the cost of skyline 
computation while ensuring that the time-critical expectancy 
of applications is met. Two main tasks are identified, 
namely: clustering and skyline processing. Clustering 

51Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            60 / 69



technique is utilised to group objects that are similar into the 
same cluster. This will assist in identifying objects (clusters) 
that are dominated by other objects (clusters). The skyline 
processing is then employed to select the most dominant 
objects from each cluster and between clusters.   

This paper is organised as follows: Section II presents the 
works related to the study. In Section III, definitions and 
notations that are used in the rest of the paper are set out. Our 
proposed approach is elaborated in Section IV. We have 
performed two analyses to evaluate the performance of our 
proposed approach. This is presented in Section V. 
Conclusion and future works are presented in the final 
section of this paper, Section VI. 

II. RELATED WORK 

Skyline query processing has been studied extensively 

for the last past decade. The earliest works focus on finding 

algorithm to expedite the process of identifying skylines for 

static dataset. These algorithms, which are based on non-

indexing method include Divide & Conquer (D&C) [2], 

Block Nested Loop (BNL) [2], Sort-Filter-Skyline (SFS) [3], 

and LESS [6]. Then, algorithms using precompute indexes 

were proposed. These include NN [9], Branch-and-Bound 

Skyline (BBS) [17], and ZSearch [10]. There are also works 

that focus on uncertain data, such as p-skyline, which is 

designed for probabilistic skyline queries over static 

uncertain databases [18], Iskyline which supports skyline 

query on data that are represented as continuous ranges [8], 

and SkyQUAD a probabilistic skyline processing on interval 

values with threshold approach [19][20].  

In the last decade, skyline query processing over data 

streams has attracted significant research attention in many 

emerging important applications, such as internet search 

logs, network traffic, sensor networks, and scientific data 

streams (such as in astronomic, genomics, physical 

simulations, etc.). In such applications, the challenge mainly 

lies in the huge volume of data, as well as its fast arrival 

rate. Moreover, it is impossible to reserve all the streaming 

items in memory, thus one-pass algorithms should be 

devised to adapt to the streaming data. Applying the existing 

methods of processing queries on this huge fast flowing data 

streams can be costly, time consuming, and impractical [1]. 

Several algorithms have been proposed for continuously 

monitoring skyline changes over  ing data, which include 

Lazy and Eager algorithms [17], LookOut algorithm [16], 

and FAST algorithm [11]. On the other hand, the work by 

[12] focuses on skyline query of n-of-N data streams model 

in sliding window.  

Recently, works have focused on processing skyline 

queries over uncertain data streams. This includes the work 

by [21] where skylines are identified based on objects 

having many varying instances with time. Works such as 

[24] and [4] have proposed efficient techniques in finding 

probabilistic skyline objects based on sliding windows on 

possible semantic. The work by [13] proposed the Effective 

Probability Skyline Update (EPSU) method by defining the 

interesting probabilistic skyline objects to return to the users 

and efficiently finding these objects without enumerating all 

possible objects. A sliding window partitioning strategy is 

proposed in [14] in order to reduce the processing time of 

the probability skyline computation. However, most of these 

works focus on objects having many instances. On the other 

hand, there is no work that identifies skyline over uncertain 

data stream, where uncertainty is due to objects having 

interval values. 

III. PRELIMINARIES 

In this section, we provide the definitions and notations 

that are related to skyline queries over uncertain data 

stream, which are necessary to clarify our proposed 

approach. Our approach has been developed in the context 

of multidimensional data stream, D, which consists of a set 

of objects, D = {o1, o2, o3, …}. An object of the database D 

is denoted by oi(d1
, d

2
, …, d

m
) where oi is the ith object with 

m-arity and d = {d
1
, d

2
, …, d

m
} is the set of dimensions. In 

the following, we first give the general definitions that are 

related to skyline queries (Definitions 1 to Definition 5). 

Then, we extend these definitions to suit with uncertain data 

stream (Definitions 6 to Definition 9). 

 

Definition 1 (Skyline): The set of skylines, S, is defined as 

those objects that are not dominated by any other objects in 

the dataset.  

 

Definition 2 (Dominate): Given two objects oi and oj  D 

dataset with d dimensions, oi dominates oj (the lesser the 

better) (denoted by oi ≺ oj) if and only if the following 

condition holds:  dk  d, oi.dk ≤ oj.dk ˄ ∃dl  d, oi.dl < 

oj.dl. 

 

Definition 3 (Skyline Queries): Select an object oi from the 

set of objects D if and only if oi is as good as oj (where i  j) 

in all dimensions and strictly in at least one dimension. We 

use S to denote the set of skyline objects, S = {oi | oi, oj  

D, oi ≺ oj}. 

 

There are various forms of uncertain data. In this work, we 

focus on uncertain data where the object is expressed in an 

imprecise way, i.e., the exact value of the object is not 

known at the point of processing. This form of data is 

continuously generated especially in data stream.   

 

Definition 4 (Uncertain Data): An object oi(d1
, d

2
, …, d

m
) 

is said to contain uncertain data if at least one of its 

dimensions, dj, contains value in the form of interval, i.e., 

oi[dj] = [l, u] where l is the lower bound value and u is the 

upper bound value. 

 

Definition 5 (Skyline over Uncertain Data) [19]: An 

object oi  D with uncertain data is a skyline object if it has 

52Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            61 / 69



a probability of not being dominated by other object oj  D 

more than a threshold value, H.   

Figure 1(a) shows objects with exact values for 

dimensions price and distance. If we assumed minimum 

values are preferred in both dimensions, then the set of 

skyline objects returned is {m, l, k, j}. Meanwhile, Figure 

1(b) shows examples of objects with interval values. In this 

example, we cannot state that object A definitely dominates 

object B, and vice versa, or that object F dominates object K 

with 100% probability. 

 

 
(a) 

    
(b) 

 
Figure 1. (a) Skyline Example (b) Example of Uncertain Data [19] 

 
 

                                 

                

 

Since a data stream is often unbounded, a query over a 

data stream is generally specified with a sliding window. 

The sliding-window model works based on recent objects of 

the data stream, whereas older objects are not taken into 

account, as they are considered obsolete.  

 

Definition 6 (Data Stream):  A data stream D contains a set 

of objects, D = {o1, o2, o3, …} that arrive in sequence where 

each object is associated with a timestamp that indicates the 

arrival time of the object. We use the notation toi to indicate 

the arrival time of object oi. 

 

Definition 7 (Sliding Window) [11]:  A sliding window, wi, 

represents equally sized time intervals that are defined based 

on the parameters RANGE and SLIDE where RANGE 

specifies the length of the window extent and SLIDE 

specifies the step by which the window extent moves. Based 

on these parameters, the size of the sliding window can be 

easily determined. 

 

Consider the hotel reservation systems where hotels 

continuously advertise their competitive deals to the system. 

The system contains streaming of millions of hotels for 

booking. Each hotel is associated with rating, distance from 

the city center, price etc. (see Table 1). The price advertised 

by the hotels might be in the form of exact value or within 

some price range. A potential user may ask the most 

preferable deals advertised during the recent 5 hours (w3 in 

Figure 2) and wants to update the results every 1 hour. In 

this example, RANGE = 5 and SLIDE = 1.  

 

 
 

Figure 2.  Sliding Windows [11] 

 

Definition 8 (Skyline of a Sliding Window):  The set of 

skylines of a window wi, Swi, is defined as those objects that 

are not dominated by any other objects in the window wi. 

 

Definition 9 (Skyline over Uncertain Data of a Sliding 

Window):  An object of a given window, oi  wi, with 

uncertain data is a skyline object if it has a probability of not 

being dominated by other object oj  wi more than a 

threshold value, H.   

IV. THE PROPOSED APPROACH 

Figure 3 presents our proposed approach in processing 

skyline queries over interval uncertain data stream. The 

proposed approach consists of four main stages, as 

explained below: 

A. Identifying the Sliding Windows of a Given Skyline 

Query   

Given a skyline query, SQq, the sliding window of the 

query is identified utilising the values of RANGE and 

SLIDE parameters. For each window, wi, the objects that 

fall within the window are analysed. This is depicted in 

Figure 3(a). In this example, the second substream 

(window) contains 20 objects that are A, B, C, …, T. Objects 

like B, E, J, M, N, O, P, R, S, and T contain interval values 

in the first dimension and are considered as uncertain. 

B.  Grouping the Objects of a Sliding Window 

In this stage, objects are grouped based on the type of 

data they contain. Objects with exact values are grouped 

53Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            62 / 69



 
 

Figure 3.  The Proposed Approach of Skyline Query Processing over Interval Uncertain Data Stream  

 
together (GA) while objects with interval values are put 

together in another group (GR). This is shown in Figure 3(b). 

Based on the example, GA = {A, C, D, F, G, H, I, K, L, Q} 

and GR = {B, E, J, M, N, O, P, R, S, T}. 

C. Clustering the Objects 

Objects in the GR group are then clustered. In this work, 

the K-Means clustering technique is utilised. The objects are 

clustered only based on the dimension having interval 

values. Since the clustering technique requires deterministic 

values as input, thus the interval value of an object, for 

instance, oi[dj] = [l, u], is represented by its mean value. We 

have performed several analyses, in which the interval value 

of an object is represented with its min, max, as well as 

mean value. Based on the analyses, representing the interval 

value with its mean value produces better set of clusters. 

However, due to limited space, the results of these analyses 

are not presented here. The result of this stage is a set of k-

clusters denoted as C = {C1, C2, C3, …, Ck}. Figure 3(c) 

presents samples of clusters formed through this stage. 

There are four clusters for this example, labelled as 

cluster_0, cluster_1, cluster_2, and cluster_3.  

D. Identifying the Skylines 

In this final stage, the skylines are determined. Two 

levels of skyline processing are performed, namely: intra-

skyline processing and inter-skyline processing.  

Intra-skyline Processing – At this level, the candidate 

skylines are identified by comparing the objects within the 

group/cluster. The conventional skyline processing is 

utilised for the group of objects with exact values, i.e., those 

in the GA group as shown in Figure 3(d). Here, the 

dominance comparison is performed at the object level. 

Based on the GA derived from the second stage, object C 

dominates object I while object Q dominates object G. Both 

objects I and G are removed from further processing, while 

the other objects are considered as the candidate skylines of 

group GA. 

While those objects in the GR group, the dominance 

comparison is performed at the cluster level instead of 

objects. Since the mean value is used to represent the 

interval value, thus the minimum (Ci-min) and maximum 

(Ci-max) mean values of a cluster are used to identify 

cluster domination, which is defined below:  

 

Definition 10 (Cluster Domination): Given two clusters Ci 

and Cj  C, Ci dominates Cj (denoted by Ci ≺ Cj) if and 

only if the following condition hold: the Ci-max of Ci < Cj-

min of Cj. Ci is called non-dominated cluster, while Cj is 

called dominated cluster.  

  

Obviously, if a cluster, Ci, dominates a cluster Cj, this 

implies that the objects of cluster Ci dominate every object 

in cluster Cj. The objects of Ci are the candidate skylines. For 

example, comparing cluster_0 = {B, E} and cluster_2 = {N, 

S}, the cluster_0-max = 21.5, which is less than the 

cluster_2-min = 44. This means that both objects B and E 

dominate objects N and S. A great number of probability 

computations can be avoided especially if the clusters 

contain a huge number of objects. However, since the 

cluster domination is only based on the dimension with 

interval values, the dominated clusters still have chances to 

be candidate skylines based on the other dimensions. 

54Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            63 / 69



Nevertheless, it will not involve any probability 

computations. 

Inter-skyline Processing – Here, the final skylines are 

identified by performing dominance comparison between 

the candidate skylines produced by conventional skyline 

processing and also those produced through the clustering 

domination. This means domination comparison is 

performed between the candidate skylines of GA, non-

dominated clusters, and dominated clusters. This is as 

shown by Figure 3(e). 

V. EVALUATION 

We have performed two simple analyses to get initial 
findings on the performance of our proposed approach. 
These analyses are conducted using RapidMiner [25] as a 
tool to cluster the objects. The first analysis aims to prove 
that at least one non-dominated cluster is identified. Having 
the non-dominated cluster implies that objects in the cluster 
can be omitted from further processing. The second analysis 
aims to prove that our proposed approach utilising the 
clustering technique can improve skyline processing by 
reducing the number of pairwise comparisons. For both 
analyses, we have varied the number of objects from 50 to 
1000 objects. Every object has only a single dimension with 
interval values, which are generated randomly. Every 
interval value is within 20% of the range of possible values.  

 

 
 

Figure 4. The Number of Non-dominated and Dominated Clusters 

 

Figure 4 presents the results of the first analysis, which 

shows the number of non-dominated and dominated clusters 

formed when the number of objects varies from 50 to 1000. 

From this figure, the following can be observed:  

(i) At least one non-dominated cluster is identified, which 

implies that the objects of the non-dominated cluster 

dominate the objects of the other clusters (dominated 

cluster).  

(ii) The number of non-dominated clusters formed is not 

being affected by the number of objects. This can be 

clearly seen when the number of objects increased 

from 50 to 1000, the number of non-dominated cluster 

is always 1 (except for 200 objects). 

(iii) Although the number of non-dominated and dominated 

clusters formed is almost the same when the number of 

objects varies from 50 to 1000, the number of objects 

in the clusters is not the same, i.e., the size of each 

cluster when the number of objects is 1000 is larger as 

compared to when the number of objects is 50. 

 

 

Figure 5.  Number of Pairwise Comparisons  

 

Figure 5 presents the results of the second analysis, 

which shows the number of pairwise comparisons 

performed by our proposed approach as compared to the 

conventional skyline processing approach. From the figure, 

the followings are observed: 

(i) When the number of objects increases, the number of 

comparisons performed by our proposed approach 

increases steadily. While the number of comparisons 

performed by the conventional skyline approach shows 

a sudden increment as the number of objects increases.  

(ii) On average the percentage of reduction with respect to 

number of pairwise comparisons gained by our 

proposed approach as compared to conventional 

skyline approach is 89.11%. 

VI. CONCLUSION 

This paper addresses the issues of processing skyline 

queries over interval uncertain data stream. An approach 

utilising the K-Means clustering technique has been 

proposed with the aim to reduce the number of pairwise 

comparisons. Two analyses have been conducted to get 

initial findings on the performance of the proposed 

approach. Results show that the approach is able to 

significantly reduce the number of pairwise comparisons. 

We will attempt to perform detailed analyses in the future to 

examine the proposed approach with regards to other 

aspects, such as scalability, distribution of interval values, 

and huge data size. 

REFERENCES 

[1]  B. Babcock, S. Babu, M. Datar, R. Motwani, and J. 

Widom, "Models and issues in data stream systems," 

55Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            64 / 69



Proceedings of the Twenty-first ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of Database Systems, pp. 

1 – 16, 2002. 

 [2]  S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline 

operator,” Proceedings of the 17th. International Conference 

on Data Engineering, pp. 421 – 430, 2001. 

[3]  J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline 

with presorting: theory and optimizations,” Proceedings of 

the Intelligent Information Processing and Web Mining, pp. 

595 – 604, 2005. 

[4] X. Ding, X. Lian, L. Chen, and H. Jin, “Continuous 

monitoring of skylines over uncertain data streams,” Journal 

of Information Sciences, vol. 184(1), Feb. 2012, pp. 196 – 

214, doi:10.1016/j.ins.2011.09.007.  

[5] L. Dong, G. Liu, X. Cui, and T. Li, “Finding group-based 

skyline over a data stream in the sensor network,” Journal of 

Information, vol. 9(2), Feb. 2018, pp. 1 – 22, 

doi:10.3390/info9020033. 

[6] P. Godfrey, R. Shipley, and J. Gryz, “Maximal vector 

computation in large data sets,” Proceedings of the 31st. 

International Conference on Very large Data Bases, pp. 229 

– 240, 2005. 

[7] X. Guo, H. Li, A. Wulamu, Y. Xie, and Y. Fu, “Efficient 

processing of skyline group queries over a data stream,” 

Journal of Tsinghua Science Technology, vol. 21(1), Feb. 

2016, pp. 29 – 39, doi: 0.1109/TST.2016.7399281. 

[8] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski, “Skyline 

query processing for uncertain data,” Proceedings of the 

19th. ACM International Conference on Information and 

Knowledge Management, pp. 1293 – 1296, 2010. 

[9] D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the 

sky: An online algorithm for skyline queries,” Proceedings 

of the 28th. International Conference on Very Large Data 

Bases, pp. 275 – 286, 2002. 

[10] K. C. Lee, W. C. Lee, B. Zheng, H. Li, and Y. Tian, “Z-SKY: 

An efficient skyline query processing framework based on z-

order,” Journal of Very Large Data Bases, vol. 19(3), June 

2010, pp. 333 – 362, doi:10.1007/s00778-009-0166-x. 

[11] Y. W. Lee, K. Y. Lee, and M. H. Kim, “Efficient processing 

of multiple continuous skyline queries over a data stream,” 

Journal of Information Sciences, vol. 221, Feb. 2013, pp. 316 

– 337, doi: 10.1016/j.ins.2012.09.040. 

[12] X. Lin, Y. Yuan, W. Wang, and H. Lu, “Stabbing the sky: 

efficient skyline computation over sliding windows,” 

Proceedings of the 21st. International Conference on Data 

Engineering (ICDE ’05), pp. 502 – 513, 2005. 

[13] C. Liu and S. Tang, “An effective probabilistic skyline query 

process on uncertain data streams,” Proceedings of the 6th. 

International Conference on Emerging Ubiquitous Systems 

and Pervasive Networks, pp. 40 – 47, 2015. 

[14] J. Liu, X. Li, K. Ren, J. Song, and Z. Zhang, “Parallel n-of-N 

skyline queries over uncertain data streams,” Proceedings of 

the International Conference on Database and Expert 

Systems Applications, pp. 176 – 184, 2018. 

[15] H. Lu, Y. Zhou, and J. Haustad, “Efficient and scalable 

continuous skyline monitoring in two-tier streaming 

settings,” Journal of Information Systems, vol. 38(1), Mac 

2013, 68 –81, doi: 10.1016/j.is.2012.05.005. 

[16] M. Morse, J. M. Patel, and W. I. Grosky, “Efficient 

continuous skyline computation,” Journal of Information 

Sciences, vol. 177(17), Sept. 2007, pp. 3411 – 3437, doi: 

10.1016/j.ins.2007.02.033. 

[17] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive 

skyline computation in database systems,” Journal of ACM 

Transactions on Database Systems (TODS), vol. 30(1), Mar. 

2005, pp. 41 – 82, doi: 10.1145/1061318.1061320. 

 [18] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic skylines 

on uncertain data,” Proceedings of the 33rd. International 

Conference on Very Large Data Bases, pp. 15 –26, 2007. 

[19] N. H. M. Saad, H. Ibrahim, A. A. Alwan, F. Sidi, and R. 

Yakoob, “A framework for evaluating skyline query over 

uncertain autonomous databases,” Proceedings of the 

International Conference of Computational Science (ICCS 

2014), pp. 1546-1556, 2014. 

[20] N. H. M. Saad, H. Ibrahim, A. A. Alwan, F. Sidi, and R. 

Yakoob, “Computing range skyline query on uncertain 

dimension,” Proceedings of the Database and Expert System 

Applications (DEXA), pp. 377 – 388, 2016.   

[21] H. Z. Su, E. T. Wang, and A. L. Chen, “Continuous 

probabilistic skyline queries over uncertain data streams,” 

Proceedings of the International Conference on Database and 

Expert Systems Applications, pp. 105 – 121, 2010. 

[22] Z. Wang, J. Xin, L. Ding, J. Ba, and X. Gao, “ρ-Dominant 

skyline computation on data stream,” Journal of IEEE 

Access, vol. 6, Sept. 2018, pp. 53201 – 53213, 

doi:10.1109/ACCESS.2018.2871254. 

[23] J. Xin, G. Wang, L. Chen, X. Zhang, and Z. Wang, 

“Continuously maintaining sliding window skylines in a 

sensor network,” Proceedings of the International 

Conference on Database Systems for Advanced 

Applications, pp. 509 – 521, 2007. 

[24] W. Zhang, A. Li, M. A. Cheema, Y. Zhang, and L. Chang, 

“Probabilistic n-of-N skyline computation over uncertain 

data streams,” Journal of World Wide Web, vol. 18(5), Sept. 

2015, pp. 1331 – 1350, doi:10.1007/s11280-014-0292-2. 

[25]  https://rapidminer.com/. Last accessed 21 February 2019. 

 

 

56Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            65 / 69



Towards a Knowledge Graph to Describe and Process Data Defects

João Marcelo Borovina Josko∗, Lisa Ehrlinger†‡, Wolfram Wöß†
∗Federal University of ABC, Av. dos Estados, 5001 Bairro Santa Terezinha – Santo André, Brazil

email: marcelo.josko@ufabc.edu.br
†Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria

email: lisa.ehrlinger@jku.at, wolfram.woess@jku.at
‡Software Competence Center Hagenberg, Softwarepark 21, 4232 Hagenberg, Austria

email: lisa.ehrlinger@scch.at

Abstract—The reliability and trustworthiness of machine
learning models depends directly on the data used to train
them. Knowledge about data defects that affect machine learning
models is most often considered implicitly by data analysts, but
usually no centralized data defect management exists. Knowledge
graphs are a powerful tool to capture, structure, evolve, and share
semantics about data defects. In this paper, we present an ontol-
ogy to describe data defects and demonstrate its applicability to
build a large public or enterprise knowledge graph.

Keyword Terms— Data Defects; Data Quality Assessment;
Knowledge Graphs.

I. INTRODUCTION

If the data used for Machine Learning (ML) applications
has defects, the resulting ML model will perform poorly and
generate unreliable results. Possible effects are cost increase,
incorrect decision making, customer dissatisfaction, and or-
ganizational mistrust within organizations [1]. Examples for
data defects, which have received increased attention in the
ML community, are missing data (by error) and outlying
values [2]. However, knowledge about such defects is almost
always tacit within organizations and concentrated on a few
data professionals that may have an incomplete understanding
of all data defect implications and characteristics. Knowledge
Graphs (KGs) bear the potential to capture, structure, evolve,
and share semantics about data defects, which constitutes the
basis for comprehensive Data Quality (DQ) management for
ML applications. DQ is most often associated with the “fitness
for use” principle [3][4], which highlights the importance of
taking into account the respective context and the consumer
(i.e., user or service) of the data. While there has been a
lot discussion on Data Quality Assessment (DQA) in general
(cf. [1][5][6]), and data defects in particular (cf. [7]–[9]), an
analysis of the literature reveals a segmented representation of
data defect knowledge.

KGs, which are defined to “acquire and integrate informa-
tion into an ontology and apply a reasoner to derive new
knowledge” [10], have already been successfully applied to
organize the semantic information of different domains, like
scientific documents [11][12]. However, so far, there exists no
KG to describe data defects. To address this gap, we present
a KG model in form of an ontology to represent the semantic
information of data defects and show how to apply it to public
or enterprise KGs, i.e., how to populate such a KG. The

main contribution of this paper is an ontology that allows a
practitioner to know which knowledge about data defects is
required and how to organize it. The high expressiveness of
ontologies [13] allows to incorporate the context (cf. fitness-
for-use principle of DQ [3]) of the data defects within the
model, such as the function or database (DB) table where a
defect occurs.

This paper is structured in three parts: Section II provides an
overview on related work. Section III comprises a theoretical
introduction to data defects, the discussion of our ontology,
and its applicability. We conclude in Section IV.

II. RELATED WORK

DQ literature provides huge knowledge about data de-
fects, with certain papers discussing topics like data defect
structures [7][8][14], methods of data defect detection [6],
DQ dimensions [1][6][3] and DQA process characteriza-
tion [1][5][9]. Despite their considerable contribution, no at-
tention has been paid to represent the relationships among data
defect concepts and the situation they appear in (i.e., context).
In ML applications, explicit knowledge about data defects,
like missing or outlying values, would enhance prediction
accuracy. To incorporate knowledge about data defects into
ML models, it is thus necessary, to describe it semantically.

KGs have already been successfully applied to describe
complex domains like science [11][12] or the Italien cultural
heritage within the ArCo project [15]. Following this line,
some works provide a semantic description of the DQ as-
sessment domain, observing the topic from a general [16] or
domain-specific [17] perspective (e.g., linked data). However,
these works focus on the task of assessing or measuring DQ
and do not go into detail to describe specific data defects.
In this paper, we provide a machine-readable semantic rep-
resentation of the data defect domain, which provides on the
one hand a standardized and centralized repository about data
defects and their handling, and on the other hand, allows to
incorporate this knowledge into automated ML workflows.

III. A KNOWLEDGE GRAPH TO DESCRIBE DATA DEFECTS

In this section, we (1) explain the theory behind data defects,
(2) present an ontology on data defects, which constitutes the
structure of a KG, and (3) demonstrate how to apply this
ontology and build a public or enterprise KG.

57Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            66 / 69



Fig. 1. An ontology to represent the data defect domain

A. Theory on Data Defects

In a nutshell, a data defect is a disagreement between what is
provided by a database and what is expected from it according
to some data semantic. Such disagreement results from rule
violations like organizational business rules (e.g., domain rule,
tax rules) or database implicit rules (e.g., databases should
not have duplicates) [9]. The way in which a rule is violated
denotes the structure of a particular data defect [8].

Data defects also share some implicit properties. The first
property refers to inherently complex nature. A data defect
occurs in more than one granularity (e.g., value, tuple, column,
relation), and its core structure may possess slight variations
or particularities. Moreover, in certain data settings, a data
defect DA may cause a defect DB and, progressively, lead to
a chain reaction [5]. This situation can be especially critical
in the case of temporal data.

The next property refers to level of human supervision
required to determine a data defect [5]. While some defects can
be automatically determined through assessment rules (as used
by data profiling tools), other data defects require knowledge
about a particular business context to be refuted or confirmed.
In any case, each data defect demands a particular assessment
analysis procedure.

As the last property, data defects can also cause distinct
impacts on data life cycle operations (e.g., use, maintain
or purge data) and, consequently, operational and analytical
functions they are part of. Certain defects may totally obstruct
one or more functionalities such as credit concession blockage
for certain customer on account of an incorrect income value.

In contrast, other “less severe” data defects do not inhibit
functionalities, but they “use” them to proliferate defective
data all around organizational databases. An example of this
case refers to determine product discounts based on incorrect
customers ranking.

B. The Data Defect Ontology

Figure 1 shows the ontology (diagrammed in UML) that
provides concepts and constructs for specifying, organizing,
evolving, and communicating semantic content about data
defects, according to data defects properties (Section III-A).
Its key concept is Data Defect. It represents a violation of a
Rule that leads to defective data. Conversely, a rule (or set
of rules) may be used to discover a data defect. Moreover, a
data defect belongs to a particular Data Quality Dimension
(e.g., accuracy, consistency, as proposed in [3]) and refers to
some Notion (Dimension) of Time like snapshot, valid time
and transactional time [7].

The connection to the data is provided by the concept of
Granularity, which defines a specific granularity of the data,
where a data defect can occur on (e.g., value, tuple, column,
or relation in a database). This granularity can for example be
specified with a SQL statement that links to the affected data.

The presence of defective data has the potential to restrict
the use of a number of Operational and Analytical Functions
(OperationalAnalyticalFunction). Besides these impacts, the
ontology also models impacts between data defects, i.e., the
fact that certain data defects may trigger other data defects.
The current version does not contain the impact of the user or
service using the data, which is part of our future work.

58Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            67 / 69



Fig. 2. A KG prototype for the data defect domain

A Detection Method can reveal a specific set of data defects,
but with different efficiency and configuration setting (Detec-
tion Particularity). However, each data defect has a particular
human assessment analysis procedure (assessmentProcedure).
Further, a data defect can occur on one ore more granularity
levels, such as values, tuples, columns, or relations. On the
one hand, defects can be assessed through rules (Rule), which
are, e.g., used by data profiling tools. On the other hand, data
defects can be characterized by the rules they violate. This
interrelation is modeled by the two relationships between rules
and data defects.

Our model does not intend to represent semantically ex-
pected data volatility situations (e.g., missing data values that
do not exist in the real world) since they do not represent a
data defect (cf. Section III-A). In addition we want to point out
that the focus of our research is on DQ assessment (detection,
measurement) and automatic data cleansing activities are not
in the scope of this research work. However, it is necessary
to measure and know the quality of the data to understand the
degree and effectiveness of data cleansing and to define goals
for further cleansing activities [18][19]. The incorporation of
data cleansing is planned in future work, but it requires a
deeper investigation of data cleansing methods to expand the
model appropriately.

C. Application with a Knowledge Graph Prototype

To demonstrate the applicability of our data defect ontology,
we built a KG prototype using the Neo4J graph database [20].
Figure 2 shows an exemplary query result that highlights the
consistency and clarity provided by the data defect ontology. In
order to keep Figure 2 readable, the query has been restricted

to a subset of properties and concepts about two notorious data
defects: Duplicate Tuples and Incorrect Values. Further details
about these and other timeless data defects are discussed in [8].

Each node color in Figure 2 corresponds to one concept
expressed in the data defect ontology (cf. Section III-B) and
each edge color corresponds to its source node color and the
label exhibits its role. We used the following color code:

• Red: data defect
• Blue: rule
• Purple: granularity
• Brown: operational-analytical function
• Green: detection method

The nomenclature used for the labels of the nodes for
data defects (red), granularity (purple), and detection method
(green), exhibit name-based attributes that are notorious in
database literature like [2][8]. Further information on the two
data defects Duplicate Tuples and Incorrect Values is provided
in [8]. A Relation refers to a table in a relational database,
InterRelation to a join between two or more tables, and a Value
to one specific value within a table (e.g., a integer, string, or
boolean). While general information on different data defect
detection methods is reviewed by Dasu and Johnson [9], meth-
ods specifically attributed to duplicate detection are summa-
rized by Elmagarmid et al. [21]. A few examples are Distance-
based methods, which are based on a function that calculates
the distance between two objects [21], Bayesian-Network-
based methods, which compute the conditional dependencies
between objects (variables) using probabilistic inference [22],
Active-Learning-based methods that rely on ML methods,
Visualization as important tool for detection data defects (as
highlighted in [23]), and Crowdsourcing.

59Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

                            68 / 69



Since business rules and operational-analytical functions
(cf. Section III-A) rely on the domain context, their corre-
sponding nodes in Figure 2 (blue and brown respectively) use
fictional labels, e.g., “Assess Rule 1”, or “Function A”. To
maintain the figure readable and demonstrative, we did not
include Notion of Time in the current version.

IV. CONCLUSION AND FUTURE WORK

This paper introduces an ontology to represent semantic
knowledge about data defects, which extends the W3C DQ
vocabulary [16]. The design of the ontology considers several
data defect properties and its applicability was examined by
means of a KG prototype. Such a knowledge graph enables
organizations to acquire, organize, evolve, and promote a
common understanding of data defects within their domain.
In future works, we intend to (1) investigate how knowledge
regarding the data defects domain can be captured automat-
ically, (2) additionally take into account the impact on DQ
from the user or service utilizing the data, and (3) extend our
ontology to fully support spatial data defects. The latter refers
to the ability to full express data defects semantics with respect
to relationships among distinct spatial attributes (e.g., location,
shape, size, and orientation) that are not properly captured by
Granularity, for instance.

ACKNOWLEDGMENT

The research reported in this paper has been partly sup-
ported by the Austrian Ministry for Transport, Innovation and
Technology, the Federal Ministry of Digital and Economic
Affairs, and the Province of Upper Austria in the frame of
the COMET center SCCH.

REFERENCES

[1] T. C. Redman, “The impact of poor data quality on the typical enter-
prise,” Communications of the ACM, vol. 41, no. 2, 1998, pp. 79–82.

[2] C. C. Aggarwal, Outlier analysis. Springer International Publishing,
2017.

[3] R. Y. Wang and D. M. Strong, “Beyond accuracy: What data quality
means to data consumers,” Journal of Management Information Systems,
vol. 12, no. 4, March 1996, pp. 5–33.

[4] N. R. Chrisman, “The role of quality information in the long-term
functioning of a geographic information system,” Cartographica: The
International Journal for Geographic Information and Geovisualization,
vol. 21, no. 2, 1983, pp. 79–88.

[5] J. M. Borovina Josko, “Uso de propriedades visuais-interativas na
avaliação da qualidade de dados (in portuguese),” Ph.D. thesis, Uni-
versidade de São Paulo, 2016.

[6] D. Loshin, The practitioner’s guide to data quality improvement. El-
sevier, 2010.

[7] J. M. Borovina Josko, “A formal taxonomy of temporal data defects,” in
Data Quality and Trust in Big Data, H. Hacid, Q. Z. Sheng, T. Yoshida,
A. Sarkheyli, and R. Zhou, Eds. Cham: Springer International Pub-
lishing, 2019, pp. 94–110.

[8] J. M. Borovina Josko, M. K. Oikawa, and J. E. Ferreira, “A formal tax-
onomy to improve data defect description,” in International Conference
on Database Systems for Advanced Applications. Springer, 2016, pp.
307–320.

[9] T. Dasu, “Data glitches: Monsters in your data,” in Handbook of Data
Quality. Heidelberg, Germany: Springer, 2013, pp. 163–178.

[10] L. Ehrlinger and W. Wöß, “Towards a definition of knowledge graphs,”
in Joint Proceedings of the Posters and Demos Track of 12th Inter-
national Conference on Semantic Systems - SEMANTiCS2016 and 1st
International Workshop on Semantic Change & Evolving Semantics
(SuCCESS16), ser. CEUR Workshop Proceedings, E. F. Michael Martin,
Martı́ Cuquet, Ed., vol. 1695, Aachen, 2016, pp. 13–16.

[11] S. Auer, V. Kovtun, M. Prinz, A. Kasprzik, M. Stocker, and M. E.
Vidal, “Towards a knowledge graph for science,” in Proceedings of the
8th International Conference on Web Intelligence, Mining and Semantics
(WIMS ’18). New York, NY, USA: ACM, 2018, pp. 1:1–1:6.

[12] S. Fathalla, S. Vahdati, S. Auer, and C. Lange, “Towards a knowledge
graph representing research findings by semantifying survey articles,” in
International Conference on Theory and Practice of Digital Libraries.
Springer, 2017, pp. 315–327.

[13] C. Feilmayr and W. Wöß, “An analysis of ontologies and their success
factors for application to business,” Data & Knowledge Engineering,
vol. 101, 2016, pp. 1–23.

[14] E. Rahm and H. H. Do, “Data cleaning: Problems and current ap-
proaches,” IEEE Data Engineering Bulletin, vol. 23, no. 4, 2000, pp.
3–13.

[15] L’Istituto Centrale per il catalogo e la Documentazione (ICCD), “ArCo,”
2019, https://github.com/ICCD-MiBACT/ArCo [retrieved: May, 2019].

[16] R. Albertoni and A. Isaac, “Data on the web best practices: Data quality
vocabulary,” W3C Working Draft, vol. 19, 2016.

[17] J. Debattista, C. Lange, and S. Auer, “daq, an ontology for dataset quality
information,” in Linked Data on the Web (LDOW), 2014.

[18] L. Sebastian-Coleman, Measuring Data Quality for Ongoing Improve-
ment: A Data Quality Assessment Framework. Newnes, 2012.

[19] L. Ehrlinger, B. Werth, and W. Wöß, “Automated Continuous Data
Quality Measurement with QuaIIe,” International Journal on Advances
in Software, vol. 11, no. 3 & 4, 2018, pp. 400–417.

[20] J. J. Miller, “Graph database applications and concepts with Neo4j,”
in Proceedings of the Southern Association for Information Systems
Conference, Atlanta, GA, USA, vol. 2324, 2013.

[21] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate
record detection: A survey,” IEEE Transactions on Knowledge and Data
Engineering, vol. 19, no. 1, 2007, pp. 1–16.

[22] D. Koller and N. Friedman, Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[23] C. Bors, T. Gschwandtner, S. Kriglstein, S. Miksch, and M. Pohl, “Visual
interactive creation, customization, and analysis of data quality metrics,”
Journal of Data and Information Quality (JDIQ), vol. 10, no. 1, 2018,
p. 3.

60Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-715-3

DBKDA 2019 : The Eleventh International Conference on Advances in Databases, Knowledge, and Data Applications

Powered by TCPDF (www.tcpdf.org)

                            69 / 69

http://www.tcpdf.org

