
DBKDA 2016

The Eighth International Conference on Advances in Databases, Knowledge, and

Data Applications

ISBN: 978-1-61208-486-2

GraphSM 2016

The Third International Workshop on Large-scale Graph Storage and Management

June 26 - 30, 2016

Lisbon, Portugal

DBKDA 2016 Editors

Friedrich Laux, Reutlingen University, Germany

Andreas Schmidt, Karlsruhe University of Applied Sciences | Karlsruhe Institute of

Technology, Germany

Dimitar Hristovski, University of Ljubljana, Slovenia

 1 / 107

DBKDA 2016

Foreword

The Eighth International Conference on Advances in Databases, Knowledge, and Data
Applications (DBKDA 2016), held between June 26 - 30, 2016 - Lisbon, Portugal, continued a series of
international events covering a large spectrum of topics related to advances in fundamentals on
databases, evolution of relation between databases and other domains, data base technologies and
content processing, as well as specifics in applications domains databases.

Advances in different technologies and domains related to databases triggered substantial
improvements for content processing, information indexing, and data, process and knowledge mining.
The push came from Web services, artificial intelligence, and agent technologies, as well as from the
generalization of the XML adoption.

High-speed communications and computations, large storage capacities, and load-balancing for
distributed databases access allow new approaches for content processing with incomplete patterns,
advanced ranking algorithms and advanced indexing methods.

Evolution on e-business, ehealth and telemedicine, bioinformatics, finance and marketing,
geographical positioning systems put pressure on database communities to push the ‘de facto’ methods
to support new requirements in terms of scalability, privacy, performance, indexing, and heterogeneity
of both content and technology.

DBKDA 2016 also featured the following Workshop:
- GraphSM 2016: The Third International Workshop on Large-scale Graph Storage and

Management

We take here the opportunity to warmly thank all the members of the DBKDA 2016 Technical
Program Committee, as well as the numerous reviewers. The creation of such a high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
who dedicated much of their time and efforts to contribute to DBKDA 2016. We truly believe that,
thanks to all these efforts, the final conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the DBKDA 2016 organizing committee
for their help in handling the logistics and for their work to make this professional meeting a success.

We hope that DBKDA 2016 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the fields of databases,
knowledge and data applications.

We are convinced that the participants found the event useful and communications very open.
We also hope that Lisbon provided a pleasant environment during the conference and everyone saved
some time for exploring this beautiful city.

DBKDA 2016 Chairs:

Friedrich Laux, Reutlingen University, Germany
Aris M. Ouksel, The University of Illinois at Chicago, USA
Serge Miranda, Université de Nice Sophia Antipolis, France

 2 / 107

Andreas Schmidt, Karlsruhe University of Applied Sciences | Karlsruhe Institute of Technology, Germany
Maribel Yasmina Santos, University of Minho, Portugal
Filip Zavoral, Charles University Prague, Czech Republic
Maria Del Pilar Angeles, Universidad Nacional Autonoma de Mexico - Del Coyoacan, Mexico
Dimitar Hristovski, University of Ljubljana, Slovenia
Christian Krause, SAP Innovation Center Potsdam, Germany

 3 / 107

DBKDA 2016

Committee

DBKDA Advisory Committee

Friedrich Laux, Reutlingen University, Germany
Aris M. Ouksel, The University of Illinois at Chicago, USA
Serge Miranda, Université de Nice Sophia Antipolis, France
Andreas Schmidt, Karlsruhe University of Applied Sciences | Karlsruhe Institute of Technology, Germany
Maribel Yasmina Santos, University of Minho, Portugal
Filip Zavoral, Charles University Prague, Czech Republic
Maria Del Pilar Angeles, Universidad Nacional Autonoma de Mexico - Del Coyoacan, Mexico

DBKDA 2016 Technical Program Committee

Nipun Agarwal, Oracle Corporation, USA
Suad Alagic, University of Southern Maine, USA
Abdullah Albarrak, University of Queensland, Australia
Toshiyuki Amagasa, University of Tsukuba, Japan
Bernd Amann, Université Pierre et Marie Curie (UPMC) - LIP6, France
Fabrizio Angiulli, University of Calabria, Italy
Masayoshi Aritsugi, Kumamoto University, Japan
Zeyar Aung, Masdar Institute of Science and Technology, United Arab Emirates
Ana Azevedo, Algoritmi R&D Center/University of Minho & Polytechnic Institute of Porto/ISCAP,
Portugal
Gilbert Babin, HEC Montréal, Canada
Ilaria Bartolini, University of Bologna, Italy
Orlando Belo, University of Minho, Portugal
Fadila Bentayeb, University of Lyon 2, France
Arnab Bhattacharya, IIT Kanpur, India
Zouhaier Brahmia, University of Sfax, Tunisia
Francesco Buccafurri, University Mediterranea of Reggio Calabria, Italy
Erik Buchmann, Karlsruhe Institute of Technology (KIT), Germany
Martine Cadot, LORIA-Nancy, France
Ricardo Campos, Polytechnic Institute of Tomar / LIAAD - INESCT TEC Porto, Portugal
Michelangelo Ceci, University of Bari, Italy
Chin-Chen Chang, Feng Chia University Taiwan, Taiwan
Chi-Hua Chen, National Chiao Tung University - Taiwan, R.O.C.
Qiming Chen, HP Labs - Palo Alto, USA
Ding-Yuan Cheng, National Chiao Tung University, Taiwan , R.O.C.
Yangjun Chen, University of Winnipeg, Canada
Yung Chang Chi, National Cheng Kung University, Taiwan
Camelia Constantin, UPMC, France
Theodore Dalamagas, ATHENA Research and Innovation Center, Greece
Gabriel David, University of Porto, Portugal
Maria Del Pilar Angeles, Universidad Nacional Autonoma de Mexico - Del Coyoacan, Mexico

 4 / 107

Taoufiq Dkaki, IRIT - Toulouse, France
Cédric du Mouza, CNAM - Paris, France
Gledson Elias, Universidade Federal da Paraiba, Brazil
Markus Endres, University of Augsburg, Germany
Bijan Fadaeenia, Islamic Azad University- Hamedan Branch, Iran
Feroz Farazi, University of Trento, Italy
Manuel Filipe Santos, Algoritmi research centre / University of Minho, Portugal
Sergio Firmenich, CONICET and LIFIA - Facultad de Informática, Universidad Nacional de La Plata,
Argentina
Ingrid Fischer, University of Konstanz, Germany
Robert Gottstein, Technische Universität Darmstadt, Germany
Michael Gowanlock, Massachusetts Institute of Technology, Haystack Observatory, USA
Jerzy Grzymala-Busse, University of Kansas, USA
Dirk Habich, TU Dresden, Germany
Phan Nhat Hai, University of Oregon, USA
Takahiro Hara, Osaka University, Japan
Bingsheng He, Nanyang Technological University, Singapore
Erik Hoel, Esri, USA
Tobias Hoppe, Ruhr-University of Bochum, Germany
Martin Hoppen, Institute for Man-Machine Interaction - RWTH Aachen University, Germany
Wen-Chi Hou, Southern Illinois University at Carbondale, USA
Hamidah Ibrahim, Universiti Putra Malaysia, Malaysia
Dino Ienco, Irstea Montpellier, France
Yasunori Ishihara, Osaka University, Japan
Vladimir Ivancevic, University of Novi Sad, Serbia
Savnik Iztok, University of Primorska, Slovenia
Wassim Jaziri, ISIM Sfax, Tunisia
Sungwon Jung, Sogang University - Seoul, Korea
Vana Kalogeraki, Athens University of Economics and Business, Greece
Konstantinos Kalpakis, University of Maryland Baltimore County, USA
Mehdi Kargar, York University, Toronto, Canada
Rajasekar Karthik, Geographic Information Science and Technology Group/Oak Ridge National
Laboratory, USA
Nhien An Le Khac, University College Dublin, Ireland
Sadegh Kharazmi, RMIT University - Melbourne, Australia
Peter Kieseberg, SBA Research, Austria
Daniel Kimmig, Karlsruhe Institute of Technology, Germany
Christian Kop, University of Klagenfurt, Austria
Michal Kratky, VŠB - Technical University of Ostrava, Czech Republic
Jens Krueger, Hasso Plattner Institute / University of Potsdam, Germany
Bart Kuijpers, Hasselt University, Belgium
Fritz Laux, Reutlingen University, Germany
YoonJoon Lee, KAIST, South Korea
Carson Leung, University of Manitoba, Canada
Sebastian Link, The University of Auckland, New Zealand
Chunmei Liu, Howard University, USA
Corrado Loglisci, University of Bari, Italy
Qiang Ma, Kyoto University, Japan

 5 / 107

Sebastian Maneth, University of Edinburgh, UK
Murali Mani, University of Michigan - Flint, USA
Gerasimos Marketos, University of Piraeus, Greece
Michele Melchiori, Università degli Studi di Brescia, Italy
Ernestina Menasalvas, Universidad Politécnica de Madrid, Spain
Antonio Messina, Italian National Research Council - High Performances Computing and Networking
Institute, Italy
Elisabeth Métais, CEDRIC / CNAM - Paris, France
Cristian Mihaescu, University of Craiova, Romania
Serge Miranda, Université de Nice Sophia Antipolis, France
Mehran Misaghi, Educational Society of Santa Catarina – Joinville, Brazil
Mohamed Mkaouar, Sfax, Tunisia
Jacky Montmain, LGI2P - Ecole des Mines d'Alès, France
Yasuhiko Morimoto, Hiroshima University, Japan
Franco Maria Nardini, ISTI-CNR, Italy
Khaled Nagi, Alexandria University, Egypt
Shin-ichi Ohnishi, Hokkai-Gakuen University, Japan
Benoît Otjacques, LIST - Luxembourg Institute of Science and Technology, Luxembourg
Aris M. Ouksel, The University of Illinois at Chicago, USA
George Papastefanatos, Athena Research and Innovation Center, Greece
Francesco Parisi, University of Calabria, Italy
Alexander Pastwa, Ruhr-Universität Bochum, Germany
Dhaval Patel, IIT-Roorkee, Singapore
Przemyslaw Pawluk, York University - Toronto, Canada
Bernhard Peischl, Softnet Austria | Institut für Softwaretechnologie | Technische Universität Graz,
Austria
Alexander Peter, AOL Data Warehouse, USA
Alain Pirotte, University of Louvain (Louvain-la-Neuve), Belgium
Pascal Poncelet, LIRMM, France
Philippe Pucheral, University of Versailles & INRIA, France
Ricardo Queirós, ESEIG-IPP, Portugal
Mandar Rahurkar, Yahoo! Labs, USA
Praveen R. Rao, University of Missouri-Kansas City, USA
Peter Revesz, University of Nebraska-Lincoln, USA
Mathieu Roche, TETIS, Cirad, France
Miguel Romero, University of Chile, Chile
Florin Rusu, University of California, Merced, USA
Gunter Saake, Otto-von-Guericke-University Magdeburg, Germany
Satya Sahoo, Case Western Reserve University, USA
Fatiha Saïs, LRI (CNRS & Paris Sud University), France
Emanuel Sallinger, University of Oxford, UK
Abhishek Sanwaliya, Indian Institute of Technology - Kanpur, India
Ismael Sanz, Universitat Jaume I - Castelló, Spain
Maria Luisa Sapino, Università degli Studi di Torino, Italy
M. Saravanan, Ericsson India Pvt. Ltd -Tamil Nadu, India
Idrissa Sarr, Université Cheikh Anta Diop, Senegal
Najla Sassi Jaziri, ISSAT Mahdia, Tunisia
Andreas Schmidt, Karlsruhe University of Applied Sciences | Karlsruhe Institute of Technology, Germany

 6 / 107

Yong Shi, Kennesaw State University, USA
Damires Souza, Federal Institute of Education, Science and Technology of Paraiba (IFPB), Brazil
Lubomir Stanchev, California Polytechnic State University, San Luis Obispo, USA
Ahmad Taleb, Najran University, Saudi Arabia
Tony Tan, National Taiwan University, Taiwan
Maguelonne Teisseire, Irstea - UMR TETIS, France
Telesphore Tiendrebeogo, Polytechnic University of Bobo-Dioulasso, Burkina Faso
Gabriele Tolomei, CNR, Italy
Jose Torres-Jimenez, CINVESTAV 3C, Mexico
Nicolas Travers, CNAM-Paris, France
Thomas Triplet, Computer Research Institute of Montreal (CRIM), Canada
Marina Tropmann-Frick, Christian-Albrechts-University of Kiel, Germany
Robert Ulbricht, Robotron Datenbank-Software GmbH, Germany
Marian Vajtersic, University of Salzburg, Austria
Maurice van Keulen, University of Twente, Netherlands
Genoveva Vargas, Solar | CNRS | LIG-LAFMIA, France
Marcio Victorino, University of Brasília, Brazil
Fan Wang, Microsoft Corporation - Bellevue, USA
Zhihui Wang, Dalian University of Technology, China
Kesheng (John) Wu, Lawrence Berkeley National Laboratory, USA
Guandong Xu, Victoria University, Australia
Maribel Yasmina Santos, University of Minho, Portugal
Jin Soung Yoo, Indiana University-Purdue University - Fort Wayne, USA
Feng Yu, Youngstown State University, USA
Filip Zavoral , Charles University Prague, Czech Republic
Wei Zhang, Amazon.com, USA
Jiakui Zhao, State Grid Information & Telecommunication Gruop, China

GraphSM 2016 Advisory Committee

Dimitar Hristovski, University of Ljubljana, Slovenia
Andreas Schmidt, Karlsruhe University of Applied Sciences & Karlsruhe Institute of Technology, Germany
Christian Krause, SAP Innovation Center Potsdam, Germany

GraphSM 2016 Technical Program Committee

Khaled Ammar, University of Waterloo, Canada
Blaz Fortuna, Jozef Stefan Institute, Slovenia
Holger Giese, Hasso-Plattner-Institut, Germany
Dimitar Hristovski, University of Ljubljana, Slovenia
Yasunori Ishihara, Osaka University, Japan
Christian Krause, SAP Innovation Center Potsdam, Germany
Dejan Lavbic, University of Ljubljana, Slovenia
Khaled Nagi, Alexandria University, Egypt
Elena Ravve, Ort-Braude College - Karmiel, Israel
Andreas Schmidt, Karlsruhe University of Applied Sciences & Karlsruhe Institute of Technology, Germany
Jim Webber, Neo Technology, USA
Tatjana Wezler, University of Maribor, Slovenia

 7 / 107

Kokou Yetongnon, Université de Bourgogne, France
Albert Zündorf, Kassel University, Germany

 8 / 107

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 9 / 107

Table of Contents

Object-Relational Mapping in 3D Simulation
Ann-Marie Stapelbroek, Martin Hoppen, and Juergen Rossmann

1

A Text Analyser of Crowdsourced Online Sources for Knowledge Discovery
Ioannis Markou and Efi Papatheocharous

8

A Novel Reduced Representation Methodology for Provenance Data
Mehmet Gungoren and Mehmet Siddik Aktas

15

An Efficient Algorithm for Read Matching in DNA Databases
Yangjun Chen, Yujia Wu, and Jiuyong Xie

23

A Simplified Database Pattern for the Microservice Architecture
Antonio Messina, Riccardo Rizzo, Pietro Storniolo, and Alfonso Urso

35

Multidimensional Structures for Field Based Data. A Review of Models
Taher Omran Ahmed

41

Some Heuristic Approaches for Reducing Energy Consumption on Database Systems
Miguel Guimaraes, Joao Saraiva, and Orlando Belo

49

A Framework for Semantic Web of Patent Information
Yung Chang Chi, Hei Chia Wang, and Ying Maw Teng

54

A Comparison of Two MLEM2 Rule Induction Algorithms Applied to Data with Many Missing Attribute Values
Patrick G. Clark, Cheng Gao, and Jerzy W. Grzymala-Busse

60

A Distributed Algorithm For Graph Edit Distance
Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, and Patrick Martineau

66

Discovering the Most Dominant Nodes in Frequent Subgraphs
Farah Chanchary, Herna Viktor, and Anil Maheshwari

72

Managing 3D Simulation Models with the Graph Database Neo4j
Martin Hoppen, Juergen Rossmann, and Sebastian Hiester

78

Subgraph Similarity Search in Large Graphs
Kanigalpula Samanvi and Naveen Sivadasan

84

Implementing Semantics-Based Cross-domain Collaboration Recommendation in Biomedicine with a Graph 94

 1 / 2 10 / 107

Database
Dimitar Hristovski, Andrej Kastrin, and Thomas C. Rindflesch

Powered by TCPDF (www.tcpdf.org)

 2 / 2 11 / 107

Object-Relational Mapping in 3D Simulation

Ann-Marie Stapelbroek,
Martin Hoppen

and Juergen Rossmann

Institute for Man-Machine Interaction
RWTH Aachen University
D-52074 Aachen, Germany

Email: ann-marie.stapelbroek@rwth-aachen.de {hoppen,rossmann}@mmi.rwth-aachen.de

Abstract—Usually, 3D simulation models are based on complex
object-oriented structures. To master this complexity, databases
should be used. However, existing approaches for 3D model
data management are not sufficiently comprehensive and flexible.
Thus, we develop an approach based on the relational data
model as the most widespread database paradigm. To successfully
combine an object-oriented 3D simulation system and a relational
database management system, a mapping has to be defined
bridging the differences in between. These are summarized as the
object-relational impedance mismatch. Theoretical foundations
of object-relational mapping are researched and existing, semi-
automatic object-relational mappers are evaluated. As it turns
out, existing mappers are not applicable in the presented case.
Therefore, a new object-relational mapper is developed based on
the utilized simulation system’s meta information system. Key
aspects of the developed approach are a necessary adaptation
of the theoretical object-relational mapping strategies, database
independence in conjunction with data type mapping, schema
mapping by schema synchronization, and strategies for saving
and loading model data as well as for change tracking. The
developed prototype is evaluated using two exemplary simulation
models from the fields of industrial automation and space
robotics.

Keywords–Object-Oriented 3D Simulation System; Relational
Data Model; Relational Database Management System; Object-
Relational Mapper; Object-Relational Mapping; Object-Relational
Impedance Mismatch.

I. INTRODUCTION

3D simulation systems are used in different areas like
space robotics and industrial automation to derive properties –
especially, spatial properties – of a planned or existing system’s
behavior. Usually, 3D simulations are based on complex and
extensive models. Therefore, databases are appropriate for data
management to master the complex object-oriented structures
of 3D simulation models and to make simulation states persis-
tent [1]. As a result, different simulation runs can be recorded
and analyzed [2]. In comparison with flat file storage, the usage
of databases has key advantages, in particular, if data indepen-
dence, multi-user synchronization, data integrity, data security,
reliability, efficient data access and scalability are required [3].
However, existing approaches for 3D model data management
using databases are not sufficiently comprehensive and flexible,
motivating the development of a new approach.

The most widespread database paradigm is the relational
data model. If relational databases should be used as a
persistence layer for object-oriented 3D simulation systems,

a mapping has to be defined bridging the differences be-
tween both paradigms. These differences are summarized as
the object-relational impedance mismatch. The term object-
relational mapping (OR mapping) describes the process of
mapping the objects of an application (here, a 3D simulation
system) to table entries of a relational database and vice versa.
A manual mapping between the object-oriented concept and
the relational database model is complex and error-prone so
that object-relational mappers (OR mappers) are used. An
OR mapper is a tool that builds a translation layer between
application logic and relational database to perform a semi-
automatic object-relational mapping.

Figure 1. OR mapping for a 3D simulation system with an object-oriented
runtime database (data: [4]).

In this paper, we present an OR mapper for 3D simulation
systems with an object-oriented runtime database and a meta
information system, see Figure 1. The work was conducted as
a student project and is based on our previous work [1] [2].
A prototypical implementation is based on the 3D simulation
system VEROSIM [5] and PostgreSQL [6] as a relational
database management system (RDBMS). However, the under-
lying approach itself provides database independence allowing
the usage of other RDBMSs. A key aspect of the presented
OR mapping is the schema mapping that is build during a
schema synchronization (based on [2]). The introduced concept
considers both forward and reverse mapping. Furthermore, the
OR mapper supports change tracking and resynchronization of
changes. The OR mapper provides an eager and a lazy loading
strategy. The prototype is evaluated using simulation models
for industrial automation and space robotics (Figure 11).

The rest of this paper is organized as follows: In the next
section, similar applications with a 3D context that integrate
database technology are analyzed. Section III contains a short
summary regarding the theoretical principals of OR mapping

1Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 12 / 107

and Section IV introduces the utilized 3D simulation system
VEROSIM and evaluates existing OR mappers. Subsequently,
the newly developed concept for OR mapping is introduced in
Section V and evaluated in Section VI. Finally, the paper is
concluded in Section VII.

II. RELATED WORK

In general, many applications with a 3D context have
data management requirements similar to 3D simulation. Yet,
the use of database technology is not widespread and files
are still predominant. When databases are utilized at all, in
many scenarios, they are used to store additional information
(meta information, documents, films, positions, hierarchical
structure . . .) on scene objects or parts [7] [8] [9] [10] [11]
[12] [13]. Yet, we need to manage the 3D model itself to
obtain all the benefits from using database technology. Another
important aspect for 3D simulation is arbitrary application
schema support to be able to work with native data and
avoid friction loss due to conversions. Many systems use
a generic (scene-graph-like) geometric model, in most cases
with attributes [7] [14] [15] [16] [17]. In such scenarios,
schema flexibility can be achieved to a certain extent by
providing import (and export) to different file formats [15]
[18] [19] [20]. Some approaches support different or flexible
schemata. For example in [14], schema alteration is realized
by adding attributes to generic base objects. Other systems
support a selection of different static [15] or dynamic [16]
[21] schemata. However, most approaches focus on a specific
field of application, thus, requiring and supporting only a
corresponding fixed schema [22] [23] [24]. While Product Data
Management (PDM) systems [8] [9] or similar file vaulting
approaches for 3D data [25] [26] [27] in principle support
arbitrary schemata they are not explicitly reflected within the
database schema due to their ”black box integration” approach.
Most scenarios provide a distributed architecture in terms of
multiuser support, a client-server model, or access control
and rights management. However, only some build it on a
Distributed Database (DDB)-like approach [21] [28] [17] with
client-side databases. The latter is favorable for 3D simulation,
e.g., to provide schema flexibility or a query interface on client-
side, as well.

Altogether, while there are many existing approaches to use
database technology in applications with a 3D context, none
of them provides a comprehensive and flexible solution that
fulfills all the requirements for 3D simulation.

III. OBJECT-RELATIONAL MAPPING

Some RDBMSs provide additional object-relational fea-
tures. For example, PostgreSQL supports some object-oriented
extensions like user defined types or inheritance. However,
these features are not provided uniformly by all RDBMSs
contradicting the desired database independence. Therefore,
the OR mapping is realized with standard relational concepts
only.

There are several references in literature dealing with the
differences between object-oriented concepts and the relational
data model. To solve the object-relational impedance mismatch
and successfully generate an OR mapper, it is important to
consider the properties of both paradigms and the consequent
problems. For example, one main idea of object-orientation
is inheritance [29]. However, the relational data model does

not feature any comparable concept. Thus, rules have to be
defined how inheritance can be mapped onto table structures.
Further differences between both paradigms that contribute to
the object-relational impedance mismatch are polymorphism,
data types, identity, data encapsulation, and relationships.

The following subsections summarize the state-of-the-art
of theoretical mapping strategies for inheritance, relationships
and polymorphism.

A. Inheritance
The approaches to map objects onto tables differ in to

how many tables one object is mapped. Most authors name
three standard mapping strategies for inheritance. They are
illustrated in Figure 3 regarding the exemplary inheritance
hierarchy from Figure 2.

Figure 2. Exemplary inheritance hierarchy (adapted from [30, p. 62f]).

The first strategy is named Single Table Inheritance [30]
and maps all classes of one inheritance hierarchy to one table,
see Figure 3(a). A discriminator field is used to denote the type
of each tuple [31]. An advantage is that all data is stored in one
table preventing joins and allowing simple updates [30, p. 63].
Unfortunately, this strategy leads to a total denormalization,
which is contrary to the concept of relational databases [31].

(a) Single Table
Inheritance.

(b) Concrete Ta-
ble Inheritance.

(c) Class Table
Inheritance.

Figure 3. Standard mapping strategies for inheritance (adapted from [30, p.
62f]).

The Concrete Table Inheritance [30] strategy maps each
concrete class to one table, see Figure 3(b). This mapping
requires only few joins to retrieve all data for one object.
A disadvantage is that schema changes in base classes are
laborious and error-prone. [30, p. 62f]

The third standard mapping strategy for inheritance is
named Class Table Inheritance [30] and uses one table for

2Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 13 / 107

each class of the hierarchy, see Figure 3(c). It is the easiest
approach to map objects onto tables [30, p. 62] and uses a
normalized schema [31]. However, due to the use of foreign
keys, this approach realizes an is-a relationship as a has-a
relationship [31]. Thus, multiple joins are necessary if all data
of one object is required. This aspect can have an effect on
performance. [30, p. 62f] [32, p. 7]

Another possibility to map objects onto tables not men-
tioned in every reference on OR mapping is the generic
approach [33]. It differs from the strategies mentioned above as
it has no predefined structure. Figure 4 shows an exemplary
set-up, which can be extended as required. The approach is
particularly suitable for small amounts of data because it maps
one object to multiple tables. It is advantageous if a highly
flexible structure is required. Due to the generic table structure,
elements can easily be added or rearranged. [33]

Figure 4. Map classes to generic table structure (adapted from [33, chapter
2.4]).

In conclusion, there is no single perfect approach to map
objects onto tables yielding an optimal result in all situations.
Instead, a decision has to be made from case to case depending
on the most important properties. For this purpose, the three
standard mapping strategies for inheritance can also be com-
bined, however, to the disadvantage of more complexity. [30,
p. 63]

B. Relationships
In contrast to relationships between two objects, which can

be unidirectional, relationships between tables in a relational
database are always bidirectional. In unidirectional relation-
ships, associated objects do not know if and when they are ref-
erenced by another object [32]. Due to the mandatory mapping
of unidirectional onto bidirectional relationships, information
hiding cannot be preserved regardless of the relationship’s
cardinality, i.e., 1:1 (one-to-one), 1:n (one-to-many) or n:m
(many-to-many) relationships.

1:1 relationships can simply be mapped onto tables using
a foreign key. To map 1:n relationships, structures have to
be reversed. [33] [30, p. 58f] In case of n:m relationships,
additional tables are mandatory: A so-called association table
is used to link the participating tables. [33] [30, p. 60] It is
also possible to map an n:m relationship using multiple foreign
keys in both tables if constant values for n and m are known.
[33]

Several references describe the aforementioned mapping
strategies for relationships. Besides, [34] describes an approach
using an additional table regardless of the cardinality. Thus,

objects can be mapped onto tables regardless of their relation-
ships. Following [34], one disadvantage of the aforementioned
approaches is the violation of the object-oriented principle of
information hiding and abstraction. Furthermore, tables are
cluttered by foreign key columns which reduce maintainability
and performance. The authors prove (by a performance test)
that their own approach shows no performance degradation.
[34, p. 1446f]

C. Polymorphism
Polymorphism is an essential concept in object-orientation.

However, relational databases do not have any feature to
reference entries of different tables by one foreign key column.
The target table and column have to be explicitly defined
for each foreign key constraint. It is not possible to define
a foreign key that references more than one table [35, p. 89].
Thus, a mapping is required to map polymorphic associations
onto a relational database. Following [35], [36], there are three
mapping approaches for polymorphic associations.

The first approach is named Exclusive Arcs and uses
a separate foreign key column for each table that can be
referenced by the polymorphic association, see Figure 5. This
approach requires NULL values for foreign key columns. For
each tuple, at most one of the foreign key columns may be
unequal to NULL. Due to foreign key constraints, referential
integrity can be ensured. However, the administrative effort for
the aforementioned NULL rule is high. An advantage of this
approach is that queries can easily be formulated.

Figure 5. Mapping of polymorphic associations using Exclusive Arcs.

Another approach is named Reverse the Relationship and
is shown in Figure 6. It uses an intermediate table with two
foreign key columns like the aforementioned approach for n:m
relationships. Such an intermediate table has to be defined
for each possible type (table) that can be referenced by the
polymorphic association. [35], [36] The application has to
ensure that only one entry of all subordinate tables is assigned
to the entry of the superordinate table. [35, p. 96ff]

Figure 6. Mapping of polymorphic associations using Reverse the
Relationship.

The third approach uses a super table (or “base table”)
and is named Base Parent Table. It is based on the basic idea
of polymorphism where subtypes can be referenced using a
common, often abstract supertype. In most cases, these super-
types themselves are not mapped to the relational database.

3Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 14 / 107

The strategy uses a table to represent a supertype for all its
subtypes’ tables as shown in Figure 7.

Figure 7. Mapping of polymorphic associations using Base Parent Table.

Such a base table only consists of one column containing
a primary key value. The assigned subordinate entry has the
same primary key value as the entry of the base table. Thus,
an unambiguous assignment is possible. This approach has the
big advantage that base tables do not have to be considered
in queries. They are only used to ensure referential integrity.
[35, p. 100ff]

IV. EXISTING SOLUTIONS

For a long time, differences between both the object-
oriented and relational paradigm were bridged by simple
protocols like Java Database Connectivity (JDBC) and Open
Database Connectivity (ODBC), which provide a general in-
terface to different relational databases. These interfaces have
the disadvantage that the programmer itself is responsible for
data exchange between objects and tables. Due to the mixing
of SQL statements and object-oriented commands, this usually
leads to complex program code that is not easily maintained.
[31]

OR mappers are used to realize a simpler and smarter
mapping between objects and table entries on the one side
and a clear separation between the object-oriented and rela-
tional layer on the other side. Thus, the application can be
developed independently of the mapping and the database. As
a consequence, different development teams can be deployed.
[31]

There are several tools for OR mapping with different
features and documentation. Examples are Hibernate (Java),
NHibernate (.NET), ADO.NET Entity Framework (.NET),
LINQ to SQL (.NET), Doctrine (PHP), ODB (C++), LiteSQL
(C++), and QxOrm (C++). Not every existing mapper features
all three standard mapping strategies for inheritance. Another
main difference is how the mapping approach can be specified.
In particular, OR mappers like Hibernate [37] and NHibernate
[38] recommend an XML-based mapping while mappers like
ODB [39] and QxORM [40] recommend the opposite.

The applicability of an OR mapper depends on the utilized
application. In the presented scenario, this is the 3D simulation
system VEROSIM, which is subsequently introduced before
presenting the evaluation of existing OR mappers.

VEROSIM uses an in-memory runtime database called
Versatile Simulation Database (VSD) for its internal data
management. It is an object-oriented graph database providing
the means to describe structure as well as behavior of a
simulation model. Besides interfaces for data manipulation, it
provides a change notification mechanism for updates, inserts
and deletes. In VSD, objects are called instances and their
classes are described by so-called meta instances representing

the meta information system of VSD. Instances can have
properties for simple values (e.g., integers or strings) or for
referencing other instances – either a single target (1:1) or a
list of targets (1:n). During runtime, instances can be identified
by a unique id. VEROSIM and VSD are implemented in C++.
[5]

Thus, an OR mapping is required that maps data of a
runtime database like VSD onto a relational database. None
of the existing OR mappers support a direct mapping of a
runtime database’s meta information system. They only map
object-oriented classes and objects of a specific programming
language. Similarly, the approach used in our previous work [2]
maps a relational database to a generic object interface that is
subsequently mapped to VSD. Thus, if one of these mappers is
used, a second mapping is required to map between the meta
information system and the object-oriented layer of the OR
mapper.

Based on meta instances, any VSD instance can be clas-
sified during runtime. This is a key advantage for the OR
mapping with regard to the generation and maintenance of
all mappings. Thus, the decision was made to develop a new
OR mapper. This allows the OR mapping to be tailored to the
requirements of runtime simulation databases like VSD.

V. OBJECT-RELATIONAL MAPPER FOR 3D SIMULATION
SYSTEMS

A basic decision criterion for OR mapping is the def-
inition of the database schema. Given an existing object-
oriented schema, forward mapping is used to derive a relational
database schema. In contrast, if the initial situation is a given
relational database schema, reverse mapping is used to derive
an object-oriented schema. As already mentioned, database
independence is a key aspect of OR mapping. In reverse
mapping, this aspect is omitted as a specific database schema
of a particular RDBMS is used as the basis for the mapping.
[31] The focus of the presented OR mapper is forward mapping
to map existing model data of the 3D simulation system onto
an arbitrary relational database. Nevertheless, reverse mapping
is supported in the concept as well to use the 3D simulation
system for other existing databases (see the upper path in
Figure 8).

The designed forward mapping of the presented OR map-
per is briefly described in the following paragraph and the
overall structure of the OR mapper is shown in Figure 8.

First of all, the database schema has to be generated to be
able to store object-oriented simulation data in the relational
database. Subsequently, a schema synchronization defines a
schema mapping between the object-oriented and the relational
schema. More details on this are given in [2]. The schema
mapping defines which meta instance is mapped to which
table. Based on this mapping, initial simulation model data
can be stored. Generate Schema Based on Meta Information
and Export Model Data in Database are performed only once
and can be seen as the initialization of the OR mapping.
Subsequently, model data can be loaded from the relational
database and updated within the simulation database. A change
tracking mechanism keeps track of changes within the simu-
lation database and allows for their resynchronization to the
relational database.

4Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 15 / 107

Figure 8. Sequence diagram of the presented OR mapping approach.

In most cases, structural aspects are associated with OR
mapping. Behavioral and architectural aspects are often con-
sidered secondarily although they are not less important [30,
p. 58]. All three aspects should be regarded when developing
an OR mapper.

Architectural aspects define the communication between
business logic and database. The basic principle is not to mix
up the business logic with SQL statements, but rather to use
separate classes for database access. These can be classified in
four strategies: Row Data Gateway, Table Data Gateway, Ac-
tive Record and Data Mapper. To completely isolate business
logic, [30] recommends a Data Mapper. Although this is the
most complex strategy, it is used for the developed OR mapper
to realize an independent layer between the 3D simulation
system and the selected relational database. As a result, both
systems can independently be extended. Furthermore, Data
Mapper is especially well suited for complex structures. [30,
p. 49f]

Behavioral aspects define how data can be loaded from or
saved to the relational database. With only a few instances to
manage, it is easy to keep track of loaded, modified or removed
instances and to synchronize these changes with the database.
The more instances must be managed, the more complex this
process gets. In addition, if various users or processes can
access the database, it is even more complex. Here, it has to
be ensured that a loaded instance contains valid and consistent
data. Following [30], the pattern Unit of Work is indispensable
to solve this behavioral and concurrency problem, see Figure 9.
A Unit of Work can be seen as a control for OR mapping.
It registers all loaded, removed or newly created instances
as well as changes. A central concept of the Unit of Work
is that it aggregates all changes and synchronizes them in
their entirety rather than letting the application call separate
stored procedures. Alternatives to a central Unit of Work are
to immediately synchronize changes or to set dirty flags for
each changed object. [30, p. 54f]

Given its many advantages, a Unit of Work is used in
the presented OR mapper. To avoid repetitive loading of the
same instances, the Unit of Work is combined with the pattern
Identity Mapping as shown in Figure 9. An Identity Mapping
records each instance loaded into the simulation database and
maps it to the related tuple in the relational database. Before
loading an instance from its tuple, the Unit of Work checks if
there already is an Identity Mapping for this instance, which
is especially important for lazy loading. [30, p. 55f] Compared

Figure 9. Combination of the patterns Unit of Work and Identity Mapping
(adapted from [30]).

to literature [30] we extended the dirty mechanism. Instead of
only registering whole instances as dirty, modified properties
are registered as well. This allows to synchronize changes more
efficiently.

The fundamentals of structural aspects are described in
Section III. To minimize the overall number of joins, the
Concrete Table Inheritance strategy was chosen for mapping
inheritance. Furthermore, two strategies are selected to map
relationships. 1:1 relationships are mapped to simple foreign
key columns whereas 1:n relationships are mapped to asso-
ciation tables. However, this is only possible for monomor-
phic associations. For the polymorphic case, the strategies
described in Subsection III-C have to be evaluated. Due to the
high administrative effort, Exclusive Arcs is inapplicable. The
other two strategies are compared regarding the formulation
of queries. Base Parent Table allows for simpler queries.
However, the theoretical mapping of this strategy (Figure 7)
does not fit in combination with the aforementioned selected
mappings for inheritance and monomorphic associations. In
practice, a subordinated instance can be referenced by both a
monomorphic and a polymorphic association of superordinated
instances. As a consequence, the foreign key constraint could
be violated. So the theoretical mapping of Base Parent Table is
adapted to fit in combination with the aforementioned selected
mappings for inheritance and monomorphic associations as
shown in Figure 10. As an advantage, both the base table and
the additional foreign key column do not need to be considered
in queries. They are only used to ensure referential integrity.

Figure 10. Adapted Base Parent Table mapping of polymorphic associations.

Another important part of an OR mapper is data type
mapping. Data types of the object-oriented data model can
differ from those of the relational data model. Thus, a data
type mapping has to be defined. The developed OR mapper
comprises an interface to use a dynamic data type mapping,
which can be adapted for each database and its related data
types. This is one main aspect of the supported database
independence. Furthermore, the utilized Qt framework [41]
(QSqlDatabase) allows for a vendor-independent database
communication. Altogether, the developed OR mapper can
easily support different RDBMSs.

After schema synchronization, model data can be loaded

5Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 16 / 107

from the relational database populating the simulation database
with corresponding instances. A so-called eager loading strat-
egy is used to immediately load and generate all model
instances. The Unit of Work generates an identity mapping for
each loaded instance. This provides an unambiguous mapping
between each loaded instance and the corresponding tuple in
the relational database. Furthermore, a so-called lazy loading
strategy is specified for selectively loading model data from
the database. It is based on the ghost strategy presented in [30,
p. 227ff]. Here, typically necessary information, like primary
key and table name, is determined for all tuples from all
tables regardless whether the instance is loaded or not. Ghost
instances are generated containing only this partially loaded
data. [30, p. 227ff] The presented OR mapper uses a Ghost
Identity Mapping (Figure 9). The advantage of this modified
approach is that only “complete” instances are present in the
3D simulation system’s runtime database.

VI. APPLICATION

As mentioned before, schema generation and synchroniza-
tion work independently of the selected simulation model.
All required structures are defined during schema generation.
In the evaluated configuration of the 3D simulation system
VEROSIM, 910 tables, 1, 222 foreign key columns, and 2, 456
association tables are generated to map all meta instances and
1:1 as well as 1:n relationships. The schema generation takes
about 200 seconds on a local PostgreSQL 9.4 installation.
The required schema mapping is built up during schema
synchronization and takes about 2.7 seconds.

Due to its flexibility, the OR mapper can be used for
any simulation model. The prototype is evaluated using two
exemplary models from two different fields of application:
industrial automation and space robotics. Given the current
functional range of the presented prototype, further tests do
not appear to provide any additional insights.

Figure 11(a) shows the first model from the field of indus-
trial robotics. The robot model contains only a few objects so
that only 173 primary keys have to be generated to map all
objects to table entries. It takes about 0.43 seconds to store the
whole robot into the relational database and about 4.7 seconds
to load it.

(a) Industrial robot simulation
model.

(b) Modular satellite simulation
model (data: [4]).

Figure 11. Evaluated simulation models.

The second model (Figure 11(b)) is a modular satellite.
In comparison, it contains much more objects so that 19, 463
primary keys are generated to map all objects to table entries.
In this case, it takes about 22 seconds to store all objects of

the satellite and about 7.1 seconds to load all of them from
the relational database.

As mentioned in Section IV, a comparable interface to
existing ORM solutions would be less efficient as well as
more complex and time-consuming to realize due to the
necessary second mapping. Thus, we refrain from performing
such comparisons.

VII. SUMMARY, CONCLUSION AND FUTURE WORK

In contrast to flat files, database technology provides many
advantages for managing 3D simulation models. However,
existing approaches for database integration into applications
with a 3D context do not provide a sufficiently comprehensive
and flexible solution. Given the prevalence of relational DBMS
and the preferred object-oriented modeling of 3D simulation
models, an OR mapping approach is recommended. Using
existing ORM solutions (including our previous work [2]), an
intermediate layer cannot be avoided. Thus, in this work, we
develop a direct OR mapping approach.

The presented OR mapper allows a flexible and generic
mapping between an object-oriented runtime simulation
database and a relational database. It is based on the meta
information system so that an OR mapping can be performed
for arbitrary simulation models. The mapper detects schema
changes, i.e., new or modified meta instances, and automati-
cally adapts the used mapping without the need for a manual
definition of persistent elements. Hence, compared to existing
OR mappers, a complex and error-prone manual maintenance
of the defined mapping can be omitted. The presented OR
mapper separates the 3D simulation system and the used
relational database so that business logic is not mixed with
SQL statements. As a result, the 3D simulation system can
be developed independently from data storage. Future projects
can profit by time saving as they do not have to realize
persistent data storage separately. Following [42, p. 525], the
programming effort for storing objects in relational databases
accounts for 20-30% of the total project effort. Finally, the
presented OR mapping is successfully evaluated using two
simulation models from two different fields of application
(industrial automation and space robotics).

In future, data type mapping can be extended by more
specialized data types and further RDBMSs can be combined
with the prototype. Furthermore, the currently generated struc-
tures within the relational database do not contain explicit
information on the inheritance relationships as they are not
needed by the simulation system itself (they can be retrieved
from its meta information system). However, to allow third
party applications to interpret the data, inheritance structures
would be of interest. Another aspect to investigate is the
mapping of queries and operations. For the former, an object-
based query language meeting VSD’s demands, e.g., XQuery
or (a variation of) Java Persistence Query Language (JPQL)
or Hibernate Query Language (HQL), needs to be mapped to
proper SQL queries. Further performance optimizations and,
with an extended functional range of the mapper, evaluations
beyond the results from the student project could be performed,
as well. Finally, we could examine further applications, e.g.,
from other fields like forestry.

6Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 17 / 107

REFERENCES
[1] M. Hoppen and J. Rossmann, “A Database Synchronization Approach

for 3D Simulation Systems,” in DBKDA 2014,The 6th International
Conference on Advances in Databases, Knowledge, and Data Applica-
tions, A. Schmidt, K. Nitta, and J. S. Iztok Savnik, Eds., Chamonix,
France, 2014, pp. 84–91.

[2] M. Hoppen, M. Schluse, J. Rossmann, and B. Weitzig, “Database-
Driven Distributed 3D Simulation,” in Proceedings of the 2012 Winter
Simulation Conference, 2012, pp. 1–12.

[3] A. Kemper and A. Eickler, Database Systems – An Introduction (orig.:
Datenbanksysteme–Eine Einführung), 9th ed. München: Oldenbourg
Verlag, 2013.

[4] J. Weise et al., “An Intelligent Building Blocks Concept for On-
Orbit-Satellite Servcing,” in Proceedings of International Symposium on
Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS),
2012, pp. 1–8.

[5] J. Roßmann, M. Schluse, C. Schlette, and R. Waspe, “A New Ap-
proach to 3D Simulation Technology as Enabling Technology for
eROBOTICS,” in 1st International Simulation Tools Conference &
EXPO 2013, SIMEX’2013, 2013, pp. 39–46.

[6] The PostgreSQL Global Development Group, “PostgreSQL: About,”
2015, URL: http://www.postgresql.org/about/ [retrieved: May, 2016].

[7] B. Damer et al., “Data-Driven Virtual Environment Assembly and
Operation,” in Virtual Ironbird Workshop, 2004, p. 1.

[8] U. Sendler, The PLM Compendium: Reference book of Product Life-
cycle Management (orig.: Das PLM-Kompendium: Referenzbuch des
Produkt-Lebenszyklus-Managements). Berlin: Springer, 2009.

[9] Verein Deutscher Ingenieure (VDI), “VDI 2219 - Information technol-
ogy in product development Introduction and economics of EDM/PDM
Systems (Issue German/English),” Düsseldorf, 2002.

[10] Y. Zhao et al., “The research and development of 3D urban geographic
information system with Unity3D,” in Geoinformatics (GEOINFOR-
MATICS), 2013 21st International Conference on, 2013, pp. 1–4.

[11] D. Pacheco and S. Wierenga, “Spatializing experience: a framework
for the geolocalization, visualization and exploration of historical data
using VR/AR technologies,” in Proceedings of the 2014 Virtual Reality
International Conference, 2014.

[12] A. Martina and A. Bottino, “Using Virtual Environments as a Visual In-
terface for Accessing Cultural Database Contents,” in International Con-
ference of Information Science and Computer Applications (ICISCA
2012), Bali, Indonesia, 2012, pp. 1–6.

[13] T. Guan, B. Ren, and D. Zhong, “The Method of Unity3D-Based 3D
Dynamic Interactive Query of High Arch Dam Construction Informa-
tion,” Applied Mechanics and Materials, vol. 256-259, 2012, pp. 2918–
2922.

[14] G. Van Maren, R. Germs, and F. Jansen, “Integrating 3D-GIS and
Virtual Reality Design and implementation of the Karma VI system,”
in Proceedings of the Spatial Information Research Centre’s 10th
Colloquium. University of Otago, New Zealand, 1998, pp. 16–19.

[15] J. Haist and V. Coors, “The W3DS-Interface of Cityserver3D,” in
European Spatial Data Research (EuroSDR) u.a.: Next Generation
3D City Models. Workshop Papers : Participant’s Edition, Kolbe and
Gröger, Eds., Bonn, 2005, pp. 63–67.

[16] M. Kamiura, H. Oisol, K. Tajima, and K. Tanaka, “Spatial views and
LOD-based access control in VRML-object databases,” in Worldwide
Computing and Its Applications, ser. Lecture Notes in Computer Sci-
ence, T. Masuda, Y. Masunaga, and M. Tsukamoto, Eds. Springer
Berlin / Heidelberg, 1997, vol. 1274, pp. 210–225.

[17] E. V. Schweber, “SQL3D - Escape from VRML Island,” 1998, URL:
http://www.infomaniacs.com/SQL3D/SQL3D-Escape-From-VRML-
Island.htm [retrieved: May, 2016].

[18] T. Scully, J. Doboš, T. Sturm, and Y. Jung, “3drepo. io: building the
next generation Web3D repository with AngularJS and X3DOM,” in
Proceedings of the 20th International Conference on 3D Web Technol-
ogy, 2015.

[19] Z. Wang, H. Cai, and F. Bu, “Nonlinear Revision Control for Web-
Based 3D Scene Editor,” in Virtual Reality and Visualization (ICVRV),
2014 International Conference on, 2014, pp. 73–80.

[20] J. Doboš and A. Steed, “Revision Control Framework for 3D Assets,”
in Eurographics 2012 - Posters, Cagliari, Sardinia, Italy, 2012, p. 3.

[21] D. Schmalstieg et al., “Managing complex augmented reality models,”
IEEE Computer Graphics and Applications, vol. 27, no. 4, 2007, pp.
48–57.

[22] M. Nour, “Using Bounding Volumes for BIM based electronic code
checking for Buildings in Egypt,” American Journal of Engineering
Research (AJER), vol. 5, no. 4, 2016, pp. 91–98.

[23] B. Domı́nguez-Martı́n, “Methods to process low-level CAD plans
and creative Building Information Models (BIM),” Doctoral Thesis,
University of Jaén, 2014.

[24] S. Hoerster and K. Menzel, “BIM based classification of building
performance data for advanced analysis,” in Proceedings of International
Conference CISBAT 2015 Future Buildings and Districts Sustainability
from Nano to Urban Scale, 2015, pp. 993–998.

[25] H. Eisenmann, J. Fuchs, D. De Wilde, and V. Basso, “ESA Virtual
Spacecraft Design,” in 5th International Workshop on Systems and
Concurrent Engineering for Space Applications, 2012.

[26] M. Fang, X. Yan, Y. Wenhui, and C. Sen, “The Storage and Management
of Distributed Massive 3D Models based on G/S Mode,” in Lecture
Notes in Information Technology, vol. 10, 2012.

[27] D. Iliescu, I. Ciocan, and I. Mateias, “Assisted management of product
data: A PDM application proposal,” in Proceedings of the 18th Interna-
tional Conference on System Theory, Control and Computing, Sinaia,
Romania, 2014.

[28] H. Takemura, Y. Kitamura, J. Ohya, and F. Kishino, “Distributed
Processing Architecture for Virtual Space Teleconferencing,” in Proc.
of ICAT, vol. 93, 1993, pp. 27–32.

[29] D. J. Armstrong, “The Quarks of Object-Oriented Development,” Com-
munications of the ACM, vol. 49, no. 2, 2006, pp. 123–128.

[30] M. Fowler, Patterns of Enterprise Application Architecture, 1st ed.
Addison Wesley, 2002.

[31] A. Schatten, “O/R Mapper und Alternativen,” 2008, URL:
http://www.heise.de/developer/artikel/O-R-Mapper-und-Alternativen-
227060.html [retrieved: May, 2016].

[32] T. Neward, “The Vietnam of Computer Science,” 2006, URL:
http://www.odbms.org/2006/01/the-vietnam-of-computer-science/
[retrieved: May, 2016].

[33] S. W. Ambler, “Mapping Objects to Relational
Databases: O/R Mapping In Detail,” 2013, URL:
http://www.agiledata.org/essays/mappingObjects.html [retrieved:
May, 2016].

[34] F. Lodhi and M. A. Ghazali, “Design of a Simple and Effective Object-
to-Relational Mapping Technique,” in Proceedings of the 2007 ACM
symposium on Applied computing. ACM, 2007, pp. 1445–1449.

[35] B. Karwin, SQL Antipatterns: Avoiding the Pitfalls of Database Pro-
gramming, 1st ed. Railegh, N.C.: Pragmatic Bookshelf, 2010.

[36] ——, “Practical Object Oriented Models in Sql,” 2009, URL:
http://de.slideshare.net/billkarwin/practical-object-oriented-models-in-
sql [retrieved: May, 2016].

[37] Hibernate, HIBERNATE–Relational Persistence for Idiomatic
Java, 2015, URL: http://docs.jboss.org/hibernate/orm/5.0/manual/en-
US/html/index.html [retrieved: May, 2016].

[38] NHibernate Community, NHibernate–Relational Persistence for Id-
iomatic .NET, 2015, URL: http://nhibernate.info/doc/nhibernate-
reference/index.html [retrieved: May, 2016].

[39] Code Synthesis Tools CC, ODB: C++ Object-Relational Mapping
(ORM), 2015, URL: http://www.codesynthesis.com/products/odb/ [re-
trieved: May, 2016].

[40] L. Marty, QxOrm (the engine) + QxEntityEditor (the graphic editor)
= the best solution to manage your data in C++/Qt !, 2015, URL:
http://www.qxorm.com/qxorm en/home.html [retrieved: May, 2016].

[41] The Qt Company, “Qt Documentation,” 2016, URL: http://doc.qt.io/qt-
5/index.html [retrieved: May, 2016].

[42] A. M. Keller, R. Jensen, and S. Agarwal, “Persistence Software:
Bridging Object-Oriented Programming and Relational Databases,” in
ACM SIGMOD Record, vol. 22, no. 2. ACM, 1993, pp. 523–528.

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 18 / 107

A Text Analyser of Crowdsourced Online Sources for Knowledge Discovery

Ioannis Markou

Information and Communication Systems Engineering

University of the Aegean, Samos, Greece

e-mail: janis.markou@gmail.com

Efi Papatheocharous

Swedish Institute of Computer Science (SICS)

Kista, Stockholm, Sweden

e-mail: efi.papatheocharous@sics.se

Abstract—In the last few years, Twitter has become the centre

of crowdsourced-generated content. Numerous tools exist to

analyse its content to lead to knowledge discovery. However,

most of them focus solely on the content and ignore user

features. Selecting and analysing user features such as user

activity and relationships lead to the discovery of authorities

and user communities. Such a discovery can provide an

additional perspective to crowdsourced data and increase

understanding of the evolution of the trends for a given topic.

This work addresses the problem by introducing a dedicated

software tool developed, the Text Analyser of Crowdsourced

Online Sources (TACOS). TACOS is a social relationship search

tool that given a search term, analyses user features and

discovers authorities and user communities for that term. For

knowledge representation, it visualises the output in a graph, for

increased readability. In order to show the applicability of

TACOS, we have chosen a real example and aimed through two

case studies to discover and analyse a specific type of user

communities.

Keywords-User communities; Authorities; Social Network

Analysis.

I. INTRODUCTION

Over the years, micro-blogging platforms have become a
popular means of exchanging current crowdsourced
information. Twitter, counting over 500 million tweets sent
per day [1], holds a large share of that information traffic. One
of Twitter’s success factors is that the exchanged information
is highly concentrated, as a tweet is limited to 140 characters
in length. The unstructured nature of that information has led
to the development of numerous content analysis methods.
Such methods can be applied on tweet datasets to perform
various tasks such as opinion mining and topic extraction.
These tasks can be useful for various reasons, from
discovering users’ movie opinions to predicting voting
outcomes [2].

Many of the available content analysis methods are quite
accurate. However, they cannot evaluate comprehensively the
credibility of the analysed information. Twitter, like all micro-
blogging platforms, is challenged by the credibility of the
information that is being exchanged [3]. In this work, we
propose that the key to evaluating content lies in Twitter’s
second success factor, the open access to information. In
particular, a Twitter user can access other users’ feeds just by
following them, requiring no approval from the user being
followed. Additionally, a user can comment, like, reply and
mention other users without the two-way friendship feature
found in other social networks. This one-way relationship is
the foundation of Twitter’s rapid spread of information and it

forms a unique way of evaluating a user’s content by the
Twitter community. As a result, users with higher evaluation
have created more credible content. Consequently, it is
imperative in order to discover credible information, to first
focus on who creates content and then on what the content is
about [4].

Most approaches analysing Twitter focus on the content
rather than the users who create the content [5]. Even the few
approaches that analyse user data [6]-[11], focus on
identifying information about separate users and lack to
provide information about the relationships between users.
The importance of having relationship data lies in the need to
understand people interactions and group effects over the
Internet. Furthermore, by tracking relationships of authority
users (i.e., users that influence the content and type of
information spread), additional credible users can be
discovered. Finally, relationship data can discover user
communities, in which users share some features or
communal goals.

Conclusively, analysing user data has become paramount
to knowledge discovery, whether it targets building
recommendation engines, marketing campaigns to specific
audiences, predicting user trends or understanding buyers’
behaviour. Based on the above mentioned reasoning, it is
apparent that there is a need for approaches that are capable of
complementing the current ways of analysing Twitter data in
terms of content, by focusing on users and their relationships.
In this work, we have targeted to address this gap and have
developed an approach implemented in a software tool
(named TACOS for Text Analyser of Crowdsourced Online
Sources) that extracts user attributes from tweets and
evaluates them to structure user and relationship data. We
explain our approach and show the applicability of the tool
developed through two explorative use cases.

The rest of this paper is structured as follows: in Section
II, the related work is presented. In Section III, the steps taken
in order to design and implement the TACOS tool are
described. In Section IV, our approach is analysed in detail. In
Section V, the tool is validated against two use cases and in
Section VI, the results are discussed. Finally, in Section VII,
some conclusions are drawn and future directions are
suggested.

II. RELATED WORK

Numerous Twitter analysis tools have been around since
the popular micro-blogging platform was founded. Even
though their implementations provide several advantages,
they come with some limitations (described in Table I). The

8Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 19 / 107

lower part of the table contains three services that are recent
approaches focusing on user attributes rather than the content
of tweets. A significant benefit for targeting the analysis of
Twitter users and their attributes is that it can offer insights on
‘authorities’ on a given topic as well as help discover user
communities that are related to the topic.

In summary, all of these tools and services lack
fundamental functionality related to the users, such as locating
the most influential users, visualising their relations and
community connections that could enable for example
targeted advertising for businesses. These functionalities, can
offer insights beyond who-follows-who and number of
favourites. They can highlight users and user communities in
a particular domain, by also pinpointing the closest users that
authorities interact with. Such information can help identify
reliable sources (i.e., authorities) that generate information
related to a particular topic. The effect of acquiring this
knowledge is particularly important, both for popular and not
so popular topics. For not popular topics, the detection of even
a single influential user is as valuable as finding numerous
influential users for popular topics with thousands of daily
generated tweets. The suggested approach, described in the
rest of this paper, covers this limitation from the existing
implementations and visualises the retrieved, analysed user
data in user-relationship graphs, where authorities and user
communities are easily distinguishable.

III. APPROACH

A. Requirements Collection

At the early stages of the project, we conducted a set of
interviews with researchers and industrial practitioners. In the
interviews, a total of 5 people were questioned about their
perceived possible usage and usefulness of the developed tool.
One of the interviewees was female and the rest were male.
We performed two structured interviews with the two
researchers and three semi-structured interviews with the
three industrial practitioners. The structured interviews lasted
for about an hour each and included open-ended questions,
dichotomous questions as well as Likert questions. The semi
structured interviews included an open discussion with
practitioners in a small-to-medium start-up company working
in social network analysis. The discussions took place during
one of the authors’ ex-job placement in the company and the
interviewees were working in the field of linguistics for
several years.

Both types of interviews gave a different flavour of
opinions which served as valuable input to the requirements
for the system developed. Researchers expressed an interest in
detecting the users that post content related to a specific
research domain. In Twitter, the homophily principle is
observed [12], so discovering relationships between users for
a specific domain could help researchers expand their contacts
on that domain. Industrial practitioners stressed that
customers were more interested in users that create trends
rather than the actual trends. These observations directed our
efforts in defining the requirements for the solution proposed,
as well as understanding the arising challenges.

B. Challenges

Such challenges concerned mainly the process of
structuring and analysing user data [13]. At first, ‘users’ in
Twitter are abstract entities, since users might be individuals,
groups or organisations. Additionally, according to a user’s
posted content and activity, the user can be considered, among
others, an ‘authority’, a ‘topic expert’ or a ‘spammer’. Another
challenge is analysing, modelling, interpreting and
quantifying abstract social phenomena such as ‘authority’,
‘domain expertise’ and ‘influence’ [14]. The challenge lies in
defining the appropriate classifiers for labelling a user as an
authority or a domain expert. A last challenge is that user
analysis alone is not enough to provide actionable information
to an end-user. In order to provide insights regarding users and
their relationships, information needs to be represented in an
intuitive manner. This can be achieved by creating
visualisations of the analysed user data.

TABLE I. MOST POPULAR NON-COMMERCIAL TWITTER USER

ANALYSIS TOOLS AND SERVICES

Name Description Limitation

Nokia
Internet

Pulse [6]

Detects the most popular
words for a topic in Twitter

and visualises them in

word-clouds. Word-clouds
can be used to find popular

users.

Does not show relationships
between users or user-

communities.

Optimised for Nokia-
specific keywords, which

can lead to bias.
CO
GNOS

[7]

Locates topic experts by
analysing user generated

lists. Improves upon Who

To Follow ([9]) by focusing
on all users related to a

topic.

Ignores other relevant users
on a subject.

Does not analyse

relationship attributes such
as mentions, retweets and

replies.

Does not offer visualisation.

Twitter
rank [8]

Measures users’ influence
for a given topic. First

applies topic modelling.

Then it analyses users’
followers and friends lists

to create relationship

networks for each topic.

Uses only followers and
friends attributes and

ignores other relationship

attributes such as favourites,
mentions and replies.

Does not offer visualisation.

Twitter

Who to

Follow
(TWF)

[9]

Detects suggested users to

follow by analysing user-

provided attributes such as
e-mail, contacts and

location.

Ignores topics and
attributes such as followers,
mentions and replies to
suggest users.

Tweet

Reach
[10]

Analyses tweets relevant to

a search term. It supports
statistics for tweets’

impressions as well as
distribution of tweets

through time and

percentage of replies and
retweets.

Does not provide a high

level of user analysis,
besides detecting top

contributors for a term.

Tweet

chup [11]

Analyses user, connections,

keywords and hashtags.

Offers a high level of detail
to improve engagement

between users.

User engagement is limited

to retweets and mentions.

Does not offer information
on communities of users for

a given search term.

C. Suggested Solution

In this work, we have considered and targeted to address
all of these challenges mentioned, and we defined and
quantified the abstract concepts (i.e., authority, domain

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 20 / 107

expertise and influence) by assigning a set of classifiers to
them. In order to accurately quantify these concepts, weights
have been used to assign the contribution of each values used
to the estimation of the classifiers. These weights are based on
the importance of each contributing factor in the equations.
Classifiers were created by studying the different tweet and
user attributes. By understanding what each attribute
represents and how it is used by the users, we were able to
create the formulae for each classifier. Weights were assigned
to the classifiers by applying a classification algorithm to
retrieved datasets. The confidence of the predictions was
taken into account in order to assess weights to the selected
classifiers. By doing so, we were able to determine which of
the classifiers were most important for classifying a user as
influential.

Prior to the analysis of the equations, it is important to
define tweet types. Tweet types include original, retweets and
replies. Original tweets are authored by the user that posted
them. Retweets refer to tweets that are forwarded by a user
that did not create the original content. Lastly, replies are
tweets that their content refer to other tweet’s content.

In detail, the influence score (i) shows the degree in which
a user’s tweets make other users interact with the content. It is
calculated by:

 i = 0.5 * a + 0.5 * de. (1)

In (1), i is influence, a is authority and de is domain expertise.
We define authority as the degree that a user posts original
content that is shared by a large audience. It is calculated by:

 a = 0.05*ps+0.35*rr+0.35*orr+0.05*pprr+0.2*vs. (2)

To calculate (2), equations (3) – (6) were defined.

 ps = (followers – friends)/max(followers, friends), (3)

 rr=(authT –nonAuthT)/max(authT, nonAuthT), (4)

 orr = (original – retweets) / max(original, retweets), (5)

 pprr= (puR–prR) / max(puR, prR). (6)

In (3), ps is a user’s popularity score and it is based on the
observation that popular users have disproportionate number
of followers and friends, with friends being a lot fewer than
followers. followers is the number of the user’s followers and
friends is the number of the user’s friends (i.e., the users that
the user follows). In (4), rr is the retweet ratio of the user (i.e.,
the user’s relevant-to-the-topic tweets that are retweeted).
authT is the number of the user’s authority tweets (i.e., tweets
that are retweeted by other users) and nonAuthT is the number
of non-authority tweets of the user. In (5), orr is the original
to retweet ratio of the user and we defined it as a metric for
tweets originality. original is the number of tweets that the
user posted and retweets is the number of the tweets that user
retweeted from other user profiles. Finally, in (6), pprr refers
to the public replies (puR) to private replies (prR) ratio (i.e.,

the replies that a user made and are viewed by anyone
following either one of these two users). Based on our
observation, many authority users reply publicly by adding a
‘.’ symbol before they mention the username that they are
replying to. As a result, this metric takes that behaviour into
consideration for the influence score. Last but not least, vs is
the verification status of a user and shows if the user is verified
by Twitter. If yes, vs = 1, otherwise vs = 0.

Domain expertise (de) is defined as the degree that a user
is involved in a topic as well as the quality of the content that
the user shares. It is calculated by:

 de=0.15*aes+0.1*rd+0.2*mr+0.25*tc+0.2*cq+0.1*ud. (7)

To calculate (7), equations (8) – (16) were defined.

 aes = 0.2 * rp + 0.8 * cp, (8)

 rp = (replies–repliesR) / max(replies,repliesR), (9)

 cp= (convR–convNonR)/max(convR, convNonR), (10)

 rd=times_retweeted/retweeters*tweets, (11)

 mr = total_mentions / num_of_relevant_tweets, (12)

 tc = user_associated_tweets / relevant_tweets, (13)

 cq = ∑ 𝑓𝑎𝑣𝑜𝑢𝑟𝑖𝑡𝑒𝑠𝑁𝑢𝑚𝑘
𝑖=1 k * turtnr, (14)

ud = total_user_relevant_tweets / total_user_tweets, (15)

total_U_relevant_T = U_DB_relevant_T_before_retrieval +
relevant_retrieved_tweets (16)

In (8), aes refers to audience engagement score and shows
the degree that a user responds to conversations. In (9), rp
refers to the replies participation of a user which is defined by
the ratio of replies (replies) and replies received (repliesR). In
(10), cp refers to the conversation participation of a user. It
is defined as the ratio of conversations replied (convR) and
conversations non replied (convNonR). Equation (11)
calculates a user’s retweets dedication (rd) and shows the
degree in which users’ retweets are retweeted by all users. In
(12), mr is the mentions rate of a user and represents how often
a user is mentioned. The num_of_relevant_tweets includes
only original tweets. This means that it does not include
retweets, as these are taken into account in other metrics. In
(13), tc stands for topic contribution and represents the activity
of a user for a particular topic for a single retrieval. Every day,
a single retrieval is performed for each topic. By using this
metric, a user’s activity for a particular topic can be monitored
through time. The variable user_associated_tweets refers to
the total number of a user’s relevant tweets, plus retweets and
tweets retweeted by other users. In (14), cq refers to the
content quality of a user’s relevant to a topic tweets. turtnr
refers to the number of a user’s relevant tweets, without
including retweets. In (15), ud reflects a user’s dedication by

10Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 21 / 107

calculating how many of the user's total tweets are related to
the particular term. total_user_tweets can be found in each
user’s attributes. Last but not least, in (16), T stands for tweet,
U for user and DB for database.

The implemented tool (named TACOS for Text Analyser
of Crowdsourced Online Sources) uses (1) – (16) to calculate
these classifiers based on extracted user attributes from
tweets. It then evaluates users in terms of authority, domain
expertise and influence. The final influence score (i) is
calculated using (1). Moreover, TACOS uses activity
attributes to detect relationships between analysed users and
evaluate them in terms of interactivity. By detecting
relationships, user communities are discovered. The
relationship score (rs) between two users is calculated as:

 rs = max(A_B_Score, B_A_Score). (17)

A_B_Score shows the degree in which user A interacts with
user B and it is calculated by:

 A_B_Score = 0.3 * A_Mentions_B + 0.3* A_Replies_B +
0.05 * A_Retweets_B + 0.15 * A_Favourites_B + 0.2 *
A_Follows_B. (18)

A_Mentions_B shows the times that user A mentioned user B
in relevant tweets and so on. Respectively, B_A_Score is
similar with scores reflecting user B’s activity. For example
B_Mentions_A shows how many times user B mentioned user
A in his/her tweets.

Interaction score is shows the degree that both users
interact with each other. Let’s assume that A = A_B_Score and
B = B_A_Score. Then, if A and B are 0, then is = 0. Otherwise,

 is = max(A, B) – min(A, B) / max(A, B). (19)

Finally, to offer intuitive analysis reports, TACOS
presents results in the form of graph visualisations that show
influential users and their communities. In that visualisation,
nodes represent users and edges represent relationships
between users. Influence score (i) is represented by the size of
the node, with larger nodes belonging to more influential
users. Authority and domain expertise are not apparent at first
glance, but are available by clicking on a node, together with
other information. The weight of an edge represents the
relationship score between two users, with a thicker edge
showing high activity, at least from one of the users towards
the other. If there is activity from both users, then the
relationship is considered as interactive, and the edge is shown
in blue colour to represent that. Last but not least, relationship
graphs in Twitter are not necessarily two-way, since a user
might follow another user but not being followed by the
second user. For our graphs, we wanted to emphasize on the

flow of information, according to the HITS – hubs and
authorities algorithm [15] [16]. For that reason, edges in our
graphs don’t show following status but influence, so the edges
point towards the more influential between two users.

IV. SYSTEM DESCRIPTION

In this section, our approach’s system design is described.
TACOS consists of 7 modules. In Figure 1, our approach’s
system design is illustrated. The front end interacting with the
user includes the Query Validator (QV) and Graph
Visualisation (GV) modules. The QV consumes the user’s
input as a query. The query can consist of one or more words,
it may contain hashtags, at-signs and special symbols to limit
the search results, following the rules of the Twitter Search
API [17]. The GV module is responsible for the graph
visualisation, i.e., the final result produced. The user can
interact with the result by zooming in and out, panning and
clicking on nodes and edges to reveal information about users
and their relationships. The GV module is using JavaScript
frameworks and so the graph has the same functionalities in
desktops, smartphones and tablets.
Moving on to the back end, the Gavagai Lexicon Connector
(GLC) module handles the transactions between the Gavagai
Living Lexicon API and our tool. The Gavagai Living
Lexicon [18] is a tool that finds semantically similar and
associatively related terms for a given topic. These terms are
then presented to the users where they can choose to include
some, all or none of them to the retrieval process. The Data
Retrieval (DR) module includes all methods responsible for
the communication with the Twitter Search API in order to
retrieve tweets and users from Twitter. The Data Analysis
(DA) module is the core module of the tool and is responsible
for analysing the output of the DR module. The DA module
handles operations such as extracting features from the
retrieved data and linking tweets to users. Moreover, it gathers
additional information about each user concerning their
activity and finally calculates the influence and relationship
scores, which are the input of the GG module. The Graph
Generator (GG) module is responsible for preparing analysed
data for visualisation. The output of the GG module is the the
input of the GV module.

The last module is the MongoDB no-SQL Database (MDB)
which is responsible for handling transactions with the QV,
DR, DA and GG modules. In detail, the database holds
collections of tweet, user and search documents. Each search
document contains the ids of the tweets and users that are
associated with it, as well as sub-collections such as influence
and relationship scores. After each search, new users and
tweets are added to the respective collections and existing
documents are updated. These updates also serve a purpose of
reducing the amount of requests that our tool must make and
thus, minimising the times where the request limit is
exceeded.

11Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 22 / 107

Figure 1. TACOS system design

V. VALIDATION

Due to the large amount of information posted on Twitter,
it is challenging to aggregate tweet and user data for specific
topics and events. In order to demonstrate our approach’s
ability to track the activity for specific events, we selected an
event, the XP2015 conference on agile development practices,
as an ideal scenario of use to validate our tool against, due to
its manageable volume of data. With TACOS we retrieved
about 500 users and 2100 tweets within a 25-day period,
including the dates that the conference was held. We then
analysed that data and detected that ‘XPConf’ was the most
influential user of the event (something reasonable as it was
the event organizer). Besides user activity, many trending
terms linking to companies tweeting about using agile
practices (Ericsson), blogs about agile development (42stc)
and cities (Helsinki, which hosted the conference) were
discovered. The term ‘agile development’ was one of the
popular trends with a broader meaning. That motivated us to
perform an additional analysis with the ‘agile development’
term. For that term, TACOS retrieved about 5000 users and
9500 tweets within a 25-day period. After analysing the
retrieved data, the terms ‘DevOps’, ‘cloud’ and ‘IoT’ were
discovered among the most popular trends. These results are
valuable, since they describe the current state of agile
development methodologies.

It is therefore evident from the above use case that our
approach is performed well for following both specific and
broad trends and understanding how trends are connected to
through time.

Equally important to discovering popular trends is
detecting influential users and relationships between users that
post content related to those trends. Moreover, it is meaningful
to present results in a readable way, such as graph
visualisations, where user communities can be seen. In the

generated graph, influential users and users with interactive
relationships were easily distinguishable. By clicking on user
nodes, additional information was available, including a link
to the user’s Twitter account. By visiting many accounts that
our approach evaluated as influential, we realised that all of
them had posted relevant content and that themselves were
heavily involved in agile development practices and
communities. As a result, our approach can successfully
detect influential users and user communities for a given topic.
At the same time, it can visualise that information in a
readable and intuitive way.

VI. RESULTS AND DISCUSSION

Detailed results obtained from the use case example
(described in the previous section) can be found in [19].

It is evident that our approach successfully identified top
trending topics and users for both terms used for validation
purposes. Moreover, it is important to highlight that our
approach presents satisfactory results regardless of query type.
As a scientific conference, ‘#XP2015’ refers to a seasonal
event – it has a narrow context, so this term is a navigational
query – it seeks content of a single entity [20]. On the other
hand, ‘agile development’ refers to a broader term and thus, it
represents an informational query [20]. As indicated with the
above use case, the type of the query affected both the dataset
size and data type distribution in the results.

Specifically, regarding the dataset size, Figure 2 shows the
amount of retrieved tweets for both terms for every day of
retrieval. As expected, the first term (‘#XP2015’) refers to an
event happening in a specific point in time, thus higher
volume of tweets are retrieved around that time period. On the
other hand, the second term (‘agile development’) is broader,
and so the number of tweets retrieved is distributed more
evenly across time. The total number of retrieved tweets

12Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 23 / 107

(9476) and users (5010) for the second term exceeds the
respective numbers of the first (2106 and 496 respectively).

Data types can refer to tweets or users. Tweet types have
been analysed in a previous chapter. User types include plain
users, retweeters and domain experts. When a tweet is original
but not retweeted, its user is classified as plain. Accordingly,
when a tweet is original and retweeted, its user is classified as
domain expert. Last but not least, if a user posts a non-original
tweet, the user is classified as a retweeter. Figures 3 and 4
show tweet types (i.e., original, retweets and replies) and user
types (i.e., plain users, retweeters and domain experts)
distribution for both terms of the use case.

Figure 2. Retrieved tweets date distribution.

Figure 3. Retrieved tweets type distribution.

Figure 4. Retrieved users type distribution.

Seasonal events, such as the XP2015 conference, include
fewer original tweets but a lot of retweets and replies. On the
other hand, broader terms, such as ‘agile development’
include more original tweets and less retweets and replies.
Consequently, from a user type perspective, seasonal terms
include more retweeters and broad terms include more users
posting original content. It can be therefore assumed that
interaction between users is higher in seasonal terms than in
broader ones. With our approach, the analysis and evaluation
of tweets and users offered satisfactory results for both query
types. Moreover, our approach visualises most popular users
for the “#XP2015” term, in a clear way, as seen in Figure 5a.
The produced graph is star-like, showing that all relationships
have one user in common. However, this is rarely the case,
especially for broad, not seasonal terms.

The second use case included the retrieval and analysis of
data for the general term ‘agile development’ for a single day.
We focused on a short timeframe in order to demonstrate our
approach’s ability to perform well, even when processing
small datasets. In total, 100 tweets were retrieved and
analysed, resulting in the evaluation of 125 users and the
creation of 58 relationships between them.

For the produced graph, the most influential user is
‘gclaps’, as shown in Figure 5b. This user writes articles about
agile development and start-ups. Several authority sources are
also shown in the graph. Moreover, single-node and multi-
node communities can be seen in the graph. Single-node
communities are created because the analysis module checks
for additional content for newly-retrieved users. Additionally,
many of these single-node graphs represent new tweets that
haven’t been retweeted yet.

As can be observed, discovering influential users and their
relationships with topic communities can be easily done with
our approach. By using JavaScript, optional information is
hidden for each node and edge, thus increasing graph
readability considerably.

Regarding other data sources, our models can be modified
to support other social networks as well. From the developer
oriented StackOverflow to the topic-generic Reddit, it is
possible to discover influential users by replacing Twitter
attributes with the equivalent ones of each network and then
assigning specific weights to them, based on the results of the
classification algorithm. For LinkedIn the process should be
easier since the attribute “Influencer” is already included in
the social network’s feature list.

VII. CONCLUSIONS

In this work, we described an approach for analysing
Twitter data in order to model abstract social terms such as
influence, authority and domain expertise, and apply that
model to evaluate users and enhance knowledge discovery.
We then validated our approach against two case studies that
demonstrate the performance of our approach, regardless of
the type of the search query, making it suitable for analysing
Twitter data. Many approaches focus solely on tweets analysis
or offer limited user data analysis features. Moreover, there is
a need for proper visualisation of user communities in a way
that can allow big datasets to be presented in a readable way.
As it was demonstrated in our results section, our approach
can successfully visualise users in terms of influence metrics
so that user communities and relationships between users can
be easily distinguished. Based on these results, we are
confident that our approach can be used in many scenarios in
industrial environments and academia. From gaining insights
for a company’s marketing campaign to complementing
scientific material by supporting scoping studies [21], and
other existing scientific research methods (such as mapping
studies [22], literature reviews [23]). Scoping studies are
concerned with contextualizing knowledge in terms of
identifying the current state of understanding; identifying the
sorts of things we know and do not know; and then setting this
within policy and practice contexts.

We plan to continue carrying out work in this domain to
further study the results and improve our models’ accuracy.
Moreover, we plan to conduct a user study in order to
determine the best way to release our tool as an open-source
web application. Lastly, we plan to target other audiences, like
software developers [24], and thus, enhancing our retrieval
and analysis modules to support a wider range of social
networks, blogs and forums.

13Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 24 / 107

Figure 5. (a) Most popular users for the ‘#XP2015’ term. (b) The most influential user for the second use case for the ‘agile development’ term.

REFERENCES

[1] S. Haustein, et al., "Tweets as impact indicators: Examining the
implications of automated “bot” accounts on Twitter." Journal
of the Association for Information Science and
Technology 67.1, 2016, pp. 232-238.

[2] A. Tumasjan, T. O. Sprenger, P. G. Sandner, I. M. Welpe,
“Predicting elections with twitter: What 140 characters reveal
about political sentiment.”, ICWSM, 10, May 2010, pp. 178-
85.

[3] S. Ravikumar, R. Balakrishnan and S. Kambhampati,
"Ranking tweets considering trust and relevance.” In
Proceedings of the Ninth International Workshop on
Information Integration on the Web, ACM. Vancouver, 2012,
May, p. 4.

[4] J. Brown, A. J. Broderick, N. Lee, “Word of mouth
communication within online communities: Conceptualizing
the online social network.” Journal of interactive marketing,
21(3), 2007, pp. 2-20.

[5] My Top Tweet – https://mytoptweet.com, retrieved: May,
2016.

[6] J. J. Kaye, et al., “Nokia internet pulse: a long term deployment
and iteration of a twitter visualization.” In CHI'12 Extended
Abstracts on Human Factors in Computing Systems, ACM,
2012, May, pp. 829-844.

[7] S. Ghosh, N. Sharma, F. Benevenuto, N. Ganguly, K.
Gummadi, “Cognos: crowdsourcing search for topic experts in
microblogs.” In Proceedings of the 35th international ACM
SIGIR conference on Research and development in
information retrieval, ACM. Vancouver, 2012, August, pp.
575-590.

[8] J. Weng, E. P. Lim, J. Jiang, Q. He, “Twitterrank: finding topic-
sensitive influential twitterers. In Proceedings of the third
ACM international conference on Web search and data mining.
ACM, Vancouver, 2010, February, pp. 261-270.

[9] About Twitter's suggestions for who to follow | Twitter Help
Center – https://support.twitter.com/articles/227220?lang=en,
retrieved: May, 2016.

[10] How Far Did Your Tweets Travel? | TweetReach –
https://tweetreach.com/, retrieved: May, 2016.

[11] Twitter analytic tool | Tweetchup – http://tweetchup.com/,
retrieved: May, 2016.

[12] D. Stojanova, M. Ceci, A. Appice, S. Džeroski, “Network
regression with predictive clustering trees.” Data Mining and
Knowledge Discovery, 25(2), 2012, pp. 378-413.

[13] R. Zafarani, M. A. Abbasi, H. Liu, ”Social media mining: an
introduction.” Cambridge University Press, 2014.

[14] F. H. Khan, S. Bashir, U. Qamar, ”TOM: Twitter opinion
mining framework using hybrid classification scheme.”
Decision Support Systems, 57, pp. 245-257, 2014.

[15] F. Fouss, M. Saerens, J.M. Renders, “Links between
Kleinberg's hubs and authorities, correspondence analysis, and
Markov chains.” In Data Mining, 2003. ICDM 2003. Third
IEEE International Conference on, IEEE, Vancouver, 2003,
November, pp. 521-524.

[16] J.M. Kleinberg, “Authoritative sources in a hyperlinked
environment.” Journal of the ACM (JACM), 46(5), 1999, pp.
604-632.

[17] The Search API | Twitter Developers –
https://dev.twitter.com/rest/public/search, retrieved: May,
2016.

[18] Gavagai Living Lexicon online - Gavagai – Next generation
text analytics. – https://gavagai.se/blog/2015/05/01/gavagai-
living-lexicon-online/, retrieved: May, 2016.

[19] TACOS – http://johnmarkou.com/tacos/agile_development/,
retrieved: May, 2016.

[20] B. J. Jansen, D. L. Booth, A. Spink, “Determining the user
intent of web search engine queries.” In Proceedings of the
16th international conference on World Wide Web, ACM,
2007, May, pp. 1149-1150.

[21] H. Arksey and L. O'Malley, “Scoping studies: towards a
methodological framework.” International journal of social
research methodology, 8(1), 2005, pp. 19-32.

[22] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, “Systematic
mapping studies in software engineering.” In 12th international
conference on evaluation and assessment in software
engineering, 2008, June, Vol. 17, No. 1, pp. 1-10.

[23] S. Keele, et al., “Guidelines for performing systematic
literature reviews in software engineering.” In Technical
report, Ver. 2.3 EBSE Technical Report. EBSE, 2007.

[24] A. Zagalsky, O. Barzilay, A. Yehudai, “Example overflow:
Using social media for code recommendation.” In Proceedings
of the Third International Workshop on Recommendation
Systems for Software Engineering, 2012, June, pp. 38-42,
IEEE Press.

14Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 25 / 107

A Novel Reduced Representation Methodology for Provenance Data

Mehmet Gungoren1, Mehmet S. Aktas2

Computer Engineering
Yildiz Technical University

İstanbul, Turkey
e-mail: 1mehmet.gungoren@std.yildiz.edu.tr, 2aktas@yildiz.edu.tr

Abstract— Learning structure and concepts in provenance
data have created a need for monitoring scientific workflow
systems. Provenance data is capable of expanding quickly due
to the catch level of granularity, which can be quite high. This
study examines complex structural information based
provenance representations, such as Network Overview and
Social Network Analysis. Further examination includes
whether such reduced provenance representation approaches
achieve clustering effective for understanding the hidden
structures within the execution traces of scientific workflows.
The study applies clustering on a scientific dataset from a
weather forecast to determine its usefulness, compares the
proposed provenance representations against prior studies on
reduced provenance representation, and analyzes the quality of
clustering on different types of reduced provenance
representations. The results show that, compared to prior
studies on representation, the Social Network Analysis based
representation is more capable of completing data mining tasks
like clustering while maintaining more reduced provenance
feature space.

Keywords- scientific workflows; scientific data provenance;
complex structural information; data provenance; provenance.

I. INTRODUCTION

Provenance can be used as a ground basis for various
applications and use cases, such as identifying trust values
for data or data fragments [1]. The scientific data provenance
collected from the life cycle of a data product is a record of
the actions that contribute to the existence of the product. In
other words, it identifies the object: the measures that have
been implemented, and how, where, and by whom these
actions have been implemented. Data provenance determines
the extent to which a data product results from raw data.
Recording the lineage of a data product is the latest series of
activities (or "workflow") applied [2].

Scientific digital data is an important component of
metadata for a data object. It can be used to determine the
allocation, to identify relationships between objects, and to
trace the differences in similar results [3]. Furthermore, in a
broader purpose, digital data can help a researcher determine
whether a given acquired object can be reused in its work by
providing lineage information to support the quality of the
data set.

One model that represents such entities and relationships
is the Open Provenance Model (OPM) [4]. OPM defines the
historical dependencies between entities. The source may be
very large, and the catch may be carried out at a high level of

granularity. This may occur, for instance, in a workflow
system that encourages grained nodes (ex: at a mathematical
operation) instead of coarse grains (i.e., at a great work
parallel computing.). Moreover, XML-based OPM
representation makes it difficult to conduct data analytics
tasks on data provenance.

Chen, Plale, and Aktas introduced an approach to deal
with large volumes of OPM-based provenance by assuming
that the volumes would be large, and then selectively
reducing the feature space while simultaneously preserving
interesting features so that data mining on the reduced space
will yield useful information [5][6]. To do this, they used
statistical feature space integrated with a temporal
representation of provenance data. Simple structural features
(such as the number of in-degree/out-degree) and attribute
features (such as number of characters in node name) were
also used.

This study takes a slightly different approach in
providing a reduced provenance representation of scientific
datasets by investigating various complex structural
information based representations for scientific data
provenance. Algorithms for Network Overview (NO)-metric
and Social Network Analysis (SNA)-metric representations
of provenance data are introduced. Similar to the work of
Chen, Plale, and Aktas, the present study also uses data
mining tasks such as clustering to evaluate the usability of
the NO-metric and SNA-metric representations of the
datasets [5][6]. Such clustering tasks include understanding
structures that describe and distinguish the general properties
of the datasets in provenance databases to help with
detecting any defective provenance data.

This paper provides several new factors to the scientific
community. First, it introduces algorithms that convert OPM
compatible provenance graphs to Network Overview metrics
and Social Network Analysis based reduced provenance
representations. It also assesses these complex structural
information based representations by using data mining
techniques on scientific provenance datasets. The paper
evaluates a large weather forecast scientific provenance
dataset with provenance traces generated from a real-life
workflow [7]. The results demonstrate that, compared with
other representation approaches, the SNA-metric
representation is more capable of achieving data mining
tasks like clustering while maintaining more reduced
provenance feature space without any information loss.

The remainder of the paper is organized as follows:
Section II reviews related work. Section III introduces the

15Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 26 / 107

complex structural information based representation
approach. The methodology is explained in Section IV,
followed by the experimental evaluation of a large database
of provenance in Section V. Section VI concludes the paper
and discusses future work.

II. RELATED WORK

Extraction and representation of information about the
data-sources has been a subject of research for many years.
Many studies have been conducted to represent data sources
with reduced representation models and to provide extensive
survey studies on data representation methods [1][8].
Agrawal et al. provides one of the first surveys in the context
of applied scientific data processing [8]. Antunes et al.
offers, in a more general context, a taxonomy for
understanding and comparing various data representation
techniques [1]. Simmhan et al. first suggested the value that
provenance brings to e-Science applications [9]. Davidson et
al. introduced the problem of mining and extracting
information from provenance for the first time [10].

Santos et al. use clustering techniques to organize
collections of workflow graphs [11]. They discuss reduced
representations using labeled graphs and multidimensional
vectors. However, their representation becomes too large
when the workflow is big, and the structural information is
lost when using multidimensional vectors.

Bose and Frew introduce a comprehensive survey of
lineage retrieval for scientific data processing [12]. In this
study, they also introduce a meta-model to identify and
assess the components of lineage retrieval systems.

Dealing with temporal data dependencies is yet another
problem in discovering hidden information. The goal of
temporal data mining is to find hidden relationships between
sequences and subsequences [1]. Chen, Plale and Aktas
investigate the use of statistical features in order to represent
provenance graphs [5][6]. Their study uses non-structural
features, such as the number of characters in node labels, and
structural features, such as the number of in-degree/out-
degree of a node. Chen et al. [5] proposed a temporal graph
partitioning algorithm as the basis for an abstract provenance
representation. Based on this approach, the non-structural
and structural features for each node within each partition are
calculated, processed (with statistical operations (average)),
and converted into a reduced abstract provenance
representation. Chen et al. [5] address the problem of
extraction and knowledge discovery from graphs of origin
while overcoming the problem of scalability by reducing the
large graphic source to a small sequence of temporal
representation.

The present study differs from previous work by
investigating the use of complex structural information, such
as network overview metrics or social network metrics, for
the reduced representation of provenance datasets. With the
use of temporal representation, the representation sequences
of provenance graphs may not be the same length, as the
number of partitions will differ between provenance graphs.
For example, in large provenance graphs, the number of
partitions is high. In return, this increases the size of the
reduced temporal provenance representation. However, this

study explores the use of network metrics based
representation in which the representation sequence is
always the same length, regardless of the size of graphs.

III. NETWORK METRICS BASED REDUCED PROVENANCE

REPRESENTATION

This study defines the complex structural information
(network-metrics) feature space vector of a provenance
graph. Then, a function that creates the feature vector of the
provenance graph based on the network-metrics feature
space is defined. In addition two different categories of
network metrics are introduced: Network Overview Metrics
and Social Network Analysis Metrics. The following
definitions work with both categories.

Definition 1. For a feature space (vector) N = (V, F, D),
V = {v1, …, vn} denotes all the nodes in the provenance
graph, the function F: V D1 x D2 x … x Dd is a feature
function that assigns a feature vector to any node v ∈ V, and
the set D = {D1,D2,D3, …, Dd} is called the feature space of
N. Here, each feature is a network metric and has a
numerical value. For example, the diameter of a node within
a provenance graph is a feature. For each node in the V, D
needs to be calculated.

Definition 2. For a network metric based feature space
(vector) N = (V, F, G, D, S), a representation function G: D1

x D2 x … x Di Si applies average operation to feature Di
∈ D of all nodes in V and the set S = {S1, S2, S3, …, Sd} is
called the feature space of N. Here, for a provenance graph,
set S becomes the reduced provenance representation.

(5,5)

(6,6)

accessor

+1 +1

55

constructor

66

(2,2,2)

(3,3,3)

accessor

+1 +1

22

constructor

33

+1

2

3

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

a) b)

Figure 1. An example illustrating Temporal Partition [4].

A. Network Overview Based Reduced Provenance
Representation

Networks have certain attributes that can be calculated to
analyze the network’s properties or characteristics. These
attributes are often called network overview metrics. Due to
the directed link structure of the provenance graphs, the
present study investigates whether network overview metrics
can be utilized as distinguishing features in provenance
representation. For this investigation, six commonly used
network properties are used: average degree is the degree of
a node, or the number of edges that are adjacent to the node;

16Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 27 / 107

diameter is the maximal distance between all pairs of nodes;
path length is the graph-distance between all pairs of nodes;
density is the measurement of how completeness of the
network; modularity is the measurement for how well a
network decomposes into modular communities; connected
component count is the measurement that determines the
number of connected components in the network; and
finally, giant component is a connected component of a
given random graph that contains a constant fraction of the
entire graph's vertices.

The pseudo code for the algorithm that creates the
network overview metric based reduced representation is
presented in Figure 6, and the process through which the
NO-metric based representation of a provenance graph is
generated is illustrated with an example. Each provenance
graph has a link structure. Structural features such as NO-
metrics are used as the representative features of a given
provenance graph. To facilitate testing the use of NO-
metrics, the commonly used NO-metrics were chosen as
described above. Therefore, the feature space for each node
in Figure 1(a) is Di = {Average Degree, Diameter, Path
Length, Density, Modularity, Connected Component Count,
Giant}. For example, the resulting feature space values for
the “accessor” node in Figure 1(a) is Daccessor = {3.0, 2.0, 0.2,
0.111, 0.34, 0.0, 0.0}. After applying the average to D over
all nodes belonging to Figure 1(a), the NO-metrics based
reduced feature space is S = {1.0, 2.0, 1.2, 0.111, 0.34, 0.0,
0.0}. Note that, to facilitate testing the representation power
of the NO-metrics, this study uses a statistical operation
(average) to calculate the signature-representation of a given
provenance graph. Other statistical operations may also be
tested. Since this study’s focus was mainly on the features, it
only uses the average function.

B. SNA-Metric based Reduced Provenance Representation

This study also investigates the use of SNA-metrics in
provenance representation. Social network analysis is the
measurement of relationships between participating entities
in a network. In general, the nodes in the network are the
people and groups, while the links show relationships or
flows between the nodes. To understand networks and their
participants, SNA provides metrics to evaluate the location
of participating actors in the network. The present research
was aimed to find out whether SNA-metrics can capture
enough information from provenance graphs to use them as
feature space for reduced provenance representation. To do
this, commonly used SNA metrics as described below are
utilized. Degree centrality measures the "importance" or
"influence" of a particular node within a network;
betweenness centrality measures the influence over what
flows in the network; and closeness centrality measures the
visibility of nodes to monitor the information flow in the
network. Eccentricity is a measurement that reflects how far,
at most, each node is from every other node, and proximity
prestige measures how close other actors are to a given actor.
The pseudo code for the algorithm that creates the SNA-
Metric based reduced representation is presented in Figure 7.

In this representation, SNA-metrics are considered the
representative features of a given provenance graph, so the
feature space for each node in Figure 1(a) will be Di =
{Degree Centrality, Betweenness Centrality, Closeness
Centrality, Density, Eccentricity}. For example, the resulting
feature space values for “accessor” node in Figure 1(a) will
be Daccessor = {0.0, 0.0, 0.222, 2.0, 2.0, 0.0}. After applying
the average to D over all nodes that belong to Figure 1(a),
the SNA-metrics based reduced feature space is S = {0.012,
0.0, 0.049, 1.13, 1.086, 0.0}. Similar to the NO-Metric
representation, to test the representation power of the SNA-
metrics, a statistical operation (average) is used to calculate
the signature-representation of a given provenance graph.
To further test the use of network-metrics based feature
space as a representation, the researchers also apply the
Temporal Representation approach introduced by Chen et al.
[5][6]. Temporal Representation defines a strict, totally
ordered partition that divides a provenance graph into a list
of non-empty subsets. Given any provenance graph, Chen’s
Temporal Representation algorithm (Logical-P algorithm)
generates a unique strict totally ordered partition. Figure 1
shows the temporal partitions obtained from three different
provenance graphs. To test the usability of the Temporal
Representation approach for feature space, simple structural
feature sets were used in previous studies, including the
node’s in-degree and out-degree amounts [5][6]. In this study
complex structural information based feature space is used
for structural features.

C. Temporal Representation with NO and SNA metrics
Based Feature Spaces

Chen et al. [5] define the feature space for a node subset
and the statistical feature function that converts the
provenance graphs, partitioned into subsets using Logical-P
algorithm, into statistical feature space. Based on these
definitions, the present study captures the following features
for NO-metrics feature space from each subset Vi: <Average
Degree, Diameter, Path Length, Density, Modularity,
Connected Component Count, Giant>. The Temporal
Representation with NO-metric based Feature Space is tested
on the partitioned provenance graph shown in Figure 1. For
example, the resulting provenance partition of Figure 1(a) is
represented as: S={<1.0, 2.0, 0.2, 0.111, 0.34, 0.0, 0.0>,
<3.0, 2.0, 0.2, 0.111, 0.34, 0.0, 0.0>, <2.0, 0.0, 0.0, 0.111,
0.34, 0.0, 0.0>, <2.0, 1.0, 0.1, 0.111, 0.34, 0.0, 0.0>, <2.0,
1.0, 0.1, 0.111, 0.34, 0.0, 0.0>, <3.0, 2.0, 0.2, 0.111, 0.34,
0.0, 0.0>, <1.0, 2.0, 0.2, 0.111, 0.34, 0.0, 0.0>}. Likewise,
the following features for SNA-metrics feature space from
each subset Vi are: <Degree Centrality, Betweenness
Centrality, Closeness Centrality, Density, Eccentricity>. The
Temporal Representation with SNA-Metric based Feature
Space was tested on the partitioned provenance graph shown
in Figure 1. The resulting provenance partition of Figure 1(a)
is represented as: S={<0.111, 0.0, 0.111, 1.0, 1.0, 0.0>, <0.0,
0.0, 0.222, 2.0, 2.0, 0.0>, <0.0, 0.0, 0.0, 0.0, 0.0, 0.0>, <0.0,

17Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 28 / 107

0.0, 0.111, 1.0, 1.0, 0.0>, <0.0, 0.0, 0.111, 1.0, 1.0, 0.0>,
<0.0, 0.0, 0.222, 2.0, 2.0, 0.0>, <0.111, 0.0, 0.111, 1.0, 1.0,
0.0>}.

D. Feature Selection Methodology

The selection of an optimal feature set depends upon both
the mining targets and the nature of the provenance [5][6]. In
this study, the target in unsupervised clustering is to group
together provenance instances based on their original
experiment. Therefore, the aim is to select a feature set that
can discriminate between provenance instances of different
experiments. In other words, the distance between two
representations of provenance derived from the same
experiment should be smaller than the distance between
representations of provenance derived from different
experiments. More features result in more distinguishing
power while adding irrelevant features to a dataset often
decreases the accuracy of the unsupervised clustering
approaches. This study investigates whether network
overview metrics or social network analysis metrics have
enough discriminating power for unsupervised clustering
tasks in scientific provenance datasets.

This study assumes that provenance graphs from related
experiments have similar structure and similar attribute
information, while provenance graphs from different
experiments are either different in attribute information or in
structural information. To this end, while using any feature
set, Figure 1(a) and Figure 1(b) should be clustered together.
To test this assumption, the Euclidean distance, calculated
from the simple structural feature set (proposed by [5][6]),
NO-metrics, and SNA-metrics based complex structural
feature sets were investigated. The results of this
investigation are shown in Table I. These distances show
whether two graphs are relatively closer to each other for
differing metrics. The results indicated that the distance
between the provenance graphs in Figure 1(a) and Figure
1(b) turned out to be closer to each other for certain features
more than others, meaning the distances calculated from
complex structural information based feature space
representations had more distinguishing power compared to
other representations. It is important to note that the values
of features were normalized before calculating the Euclidean
Distance to make sure that all metrics contribute equally to
the results. The normalized feature values scaled between 0
and 1.

TABLE I. EUCLIDEAN DISTANCE FOR DIFFERING FEATURE SETS
AMONGST DIFFERENT REPRESENTATIONS

Distance in Simple Structural Feature Set (from [5][6])
Figures
1(a) – 1(b)

0.7454

Distance in NO-Metric Based Structural Feature Set
Figures
1(a) – 1(b)

0.5408

Distance in SNA-Metric Based Structural Feature Set
Figures
1(a) – 1(b)

0.4429

Chen reported that the disadvantage of the simple
structural feature set (i.e., amount of in-degree/out-degree) is
that if two provenance graphs have the same structure but
different node/edge information, it would be impossible to
distinguish between the two through the structural feature set
alone. To this end, Chen proposed an extension to the set by
further splitting the edges into different types in OPM (i.e.,
used, wasGeneratedBy, wasControlledBy, wasTriggeredBy,
wasDerivedFrom), so that one can discriminate graphs that
have similar structure but are semantically different. The
present study follows similar methodology, but assigns
differing weights to each semantically different edge. In
distinguishing the semantically different but structurally the
same provenance graphs, the approach works with both
network overview and social network analysis metrics.

IV. METHODOLOGY

This study addresses whether it is possible to detect
failed workflows in a provenance dataset without the
guidance of a workflow script or to detect provenance
variants caused by either workflow execution failure or
provenance capture failure. To answer these questions, the
usability of complex structural information based reduced
provenance representations is explored with a focus on
finding variants to help detect faulty provenance data by
checking cluster centroids in the case where correct and
faulty provenances are naturally separated into different
clusters.

Much like the study by Chen et al., the present study
investigates the best unsupervised algorithm for the graph
structure based provenance representation from several
popular clustering algorithms: centroid-based (k-means),
distribution-based (DBScan), and density-based (EM
algorithm) [5][6]. Results indicated that the k-means
algorithm produced the highest quality clusters. Hence, in
this study, the k-means algorithm was selected to show the
usefulness of the proposed representations.

Weka libraries and SimpleKmeans were used in the k-
means algorithm. Using Euclidean distance as the similarity
function in k-means limited the application of k-means to
same-length representation. Since both NO-metric and SNA-
metric based representations provide same-length
representation for all provenance graphs, this was not
problematic. However, when testing the temporal
representation with network-metric based representation, this
issue was limiting. To overcome this, the researchers
followed the same approach as Chen et al., filling missing
features with a special value of 0 to provide good
performance in clustering results.

V. EXPERIMENTAL EVALUATION

To prove that the provenance representations using the
graph partitioning approach can support scalable analysis
while being resilient to errors in provenance data, the
experiment is conducted using a 10GB provenance database
with known failure patterns [7]. This 10GB database of
provenance is populated from a workload of roughly 48,000
workflow instances that are modeled based on six real

18Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 29 / 107

workflows. The LEAD NAM, SCOOP, and NCSF are
weather and ocean modeling workflows, Gene2Life and
MOTIF are bioinformatics and biomedical workflows, and
the Animation workflow carries out computer animation
rendering. Some of the workflows are small, having few
nodes and edges, while others like Motif have a few hundred
nodes and edges. In the 10GB database, each of the six
workflow types has 2000 instances per failure mode, with
the failure modes as following: No failures and dropped
notifications (success case), 1% failure rate, 1% dropped
notification rate, 1% failure rate, and 1% dropped
notification rate.

The Karma provenance system is used to store the 10GB
provenance dataset and to export the provenance in the form
of OPM graphs [9]. From the provenance graphs, the
adjacency matrix is generated. Then the complex network
metrics and social network analysis metrics are calculated
and stored.

The evaluation strategy used here follows the
methodological analysis first described by Chen, Plale and
Aktas [5][6]. No structural information is assumed in the
representation of the provenance datasets within the 10GB
database.

In order to help understand how the graph-structure
based representations identify clusters, NAM workflow
provenance datasets from weather forecast workflow were
chosen, as Chen et al. identified that this is the best
illustration of provenance capture from scientific workflows
[5][6]. The temporal representation of the NAM provenance
datasets has shown that NAM datasets include provenance
graphs with varying numbers of partitions, ranging from 2 to
10. It turns out that a NAM provenance graph with 10
subsets is a complete graph, while provenance graphs with
less than 10 partitions are incomplete and caused by dropped
notifications. To test the usefulness of the graph structure
based reduced representation approaches, a k-means
clustering algorithm was applied to the provenance
representations of NAM provenance datasets. Purity,
Normalized Mutual Information (NMI), and Within-Cluster
Sum of Squares (WCSS) were used to compare the
performance of different clustering techniques.

The grouping of the NAM provenance dataset (based on
the temporal length defined by Chen et al.) is shown in
Figure 2. The grouping results indicate that 78% of the NAM
provenance graphs have the largest possible number of
partitions, and 6% of the graphs have small partitions
ranging from 2 to 4. Small-partitioned provenance graphs
indicate dropped notifications or early failures that might
happen in the NAM workflow execution.

Figure 2. NAM workflow clusters - Grouping Based on Temporal
Representation

To test the clustering on the reduced representations, the
grouping results (shown in Figure 2) are used as the golden
standard for Purity and NMI metrics. The clustering is
evaluated on both NO-metric and SNA-metric based reduced
provenance representations. The SimpleKMeans clustering
algorithm with Euclidean Distance measurement is then
applied to these representations. Unlike the temporal
representation, the graph structure based representation has
representation sequences of uniform length. Thus, the k-
means clustering algorithm is applied without any
limitations.

TABLE II. NAM WORKFLOW CLUSTERING RESULTS FOR K=9
AND VARYING REDUCED PROVENANCE REPRESENTATIONS

Purity NMI WCCS
Network

Overview 0.798375 0.503209 171.6229
SNA 0.922 0.516648 43.1794

TR+SNA 0.938625 0.555053 561.3776

Table II gives the summary of the quality of clustering
results when k = 9. The results indicate that SNA-metric
based representation and Temporal Partitioning with SNA
representation lead to high quality clustering results. SNA
metrics were better than NO metrics in capturing the
complex structural information as features. Purity and NMI
metrics were computed by calculating the correctly assigned
workflow instances. To do this, the grouping results shown
in Figure 2 were used as the golden standard. To further
understand the behavior of clustering for varying reduced
representation sizes, different k values were tested. To
choose the number of cluster k, the quality of resulting
clusters was plotted by computing Purity as an external
evaluation criterion.

0

0,5

1

1,5

2 3 4 5 6 7 8 9

Network
Overview

TR+SNA

SNA

Figure 3. NAM - Purity results

19Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 30 / 107

Figure 3 shows that SNA-metrics based reduced
provenance representation produced high quality clustering
results for Purity Metric. This is because the link structure of
the directed graphs contains enough information that can be
used as features to differentiate the features and produce
good clustering results. For example, an SNA-metric like
prestige captures the popularity information of the nodes
within a highly connected graph. The overall popularity
value is expected to be higher in large graphs compared to
small graphs. Similarly, the number of central nodes in large-
scale linear provenance graphs is expected to be higher than
in small-scale ones. Hence, the overall centrality value is
expected to be high for large-scale graphs. The present
investigation has shown that graph-structure based metrics
can produce high quality clustering results while maintaining
reduced provenance representation. The results also indicate
that SNA metrics (such as centrality and prestige) capture the
directed link structure of given provenance graphs better than
network overview metrics based representation.

0

500

1000

1500

2000

2500

3000

2 5 8 11 14 17 20 23 26 29

wccs

Figure 4. NAM – SNA k = [2,30] WCSS

0

0,5

1

1,5

2 5 8 11141720232629

nmi

purity

Figure 5. NAM - SNA k=[2,30] NMI Purity

Figure 4 and Figure 5 show the results of an experiment
evaluating a k-means clustering algorithm on SNA-metric
based representation by plotting the within cluster sum of
squares and computing NMI and Purity for increasing values
of k. The results indicated that after K reaches a value of 9,
the Purity value is high and stable. This shows that the
reduced representation in SNA-metric domain can lead to
efficient unsupervised clustering.

As mentioned earlier, provenance graphs with few
partitions indicate small provenance graphs. These graphs
are often incomplete and may be caused by early failures in
workflow execution or failures in provenance capture. Since
the size of such graphs is small, their link structure
information will not be enough to provide accurate
clustering. Hence, if a provenance database contains a high
number of small-size provenance graphs, graph structured
based feature space is not expected to be effective in

clustering. However, for scientific workflows where the
number of nodes is high, such as NAM whether forecast
workflow, such provenance representation can be useful. The
present experiments indicated that, for a noisy large-scale
scientific workflow dataset such as a NAM dataset, SNA-
metric based representations provided high quality
clustering.

VI. CONCLUSIONS AND FUTURE WORK

This study investigates various graph structure based
representations, such as Network Overview and Social
Network Analysis metric representations for scientific data
provenance. It also investigates whether such reduced
provenance representation approaches lead to effective
clustering on scientific data provenance for understanding
the hidden structures within the execution traces of scientific
workflows. Clustering was applied to the graph structure
based representations on 10 GB scientific dataset to
determine their usefulness. The graph structure based
provenance representations were compared against other
reduced provenance representation approaches. The quality
of clustering on different types of reduced provenance
representations was analyzed, and the results were reported.
The results show that, compared with other representation
approaches, the SNA-metric representation is more capable
of data mining tasks like clustering while maintaining more
reduced provenance feature space. In future work, the
researchers plan to test the network-metrics based
representations with a real-life dataset obtained from the
AMSR-E satellite. They also plan to extend their work to
combine both Network Overview metric and Social Network
Analysis metric representations in one vector. Work remains
to test whether complex structural information based
provenance representation is useful in other data mining
tasks, such as classification and association rule mining. The
researchers plan to adapt state-of-the-art approaches for
dimensionality reduction and high-contrast feature selection
in future work, and to expand tests on the other scientific
workflow datasets that are available in the 10GB provenance
database introduced by Cheah et al. [7].

ACKNOWLEDGMENTS

The authors would like to thank Dr. Beth Plale, the
director of the Data to Insight Center (D2I) from Indiana
University, for helping us throughout our studies, including
but not limited to the use of Karma Service implementation,
the computational facilities of the D2I Center, and the 10GB
scientific provenance database. The authors also thank Dr.
Peng Chen for his valuable insights on the use of temporal
provenance representation. This study was supported by
TUBITAK’s (3501) National Young Researchers Career
Development Program (Project No: 114E781, Project Title:
Provenance Use in Social Media Software to Develop
Methodologies for Detection of Information Pollution and
Violation of Copyrights).

20Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 31 / 107

REFERENCES

[1] C. M. Antunes, and A. L. Oliveira, “Temporal data mining: An
overview” KDD Workshop on Temporal Data Mining, 2001, pp. 1–
13.

[2] M. Aktas, B. Plale, D. Leake and N. K. Mukhi, “Unmanaged
Workflows: Their Provenance and Use”, Q. Bai, Q. Liu eds. Data
Provenance and Data Management in eScience, Studies in
Computational Intelligence series, Springer, Vol 426, 2013, pp. 59-
81.

[3] S. Bechhofer, D. D. Roure, M. Gamble, C. Goble and L. Buchan,
“Research objects: Towards exchange and reuse of digital
knowledge” The Future of the Web for Collaborative Science, 2010.

[4] L. Moreau, and et al., “The open provenance model core
specification (v1. 1)” Future Generation Computer Systems. 27, 2011,
pp. 743–756.

[5] P. Chen, and B. Plale, and M. Aktas, “Temporal representation for
scientific data provenance” eScience 2012, pp. 1-8.

[6] P. Chen, and B. Plale, and M. Aktas, “Temporal Representation for
Mining Scientific Data Provenance” Future Generation Comp. Syst.
36, 2014, pp. 363-378.

[7] Y. Cheah, B. Plale, J. Kendall-Morwick, D. Leake and L.
Ramakrishnan, “A Noisy 10GB Provenance Database” 2nd Int’l
Workshop on Traceability and Compliance of Semi-Structured
Processes (TC4SP), co-located with Business Process Management
(BPM), 2011, pp. 370-381.

[8] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules” 20th Int. Conf. Very Large Data Bases, VLDB. 1215, pp. 487-
499, 1994.

[9] Y. L. Simmhan, B. Plale, and D. Gannon, “A Survey of Data
Provenance in e-Science” ACM SIGMOD Record. 34, 2005, pp. 31–
36.

[10] S. B. Davidson and J. Freire, “Provenance and scientific workflows:
challenges and opportunities” SIGMOD Conf., 2008, pp. 1345–1350.

[11] E. Santos, L. Lins, J. P. Ahrens, J. Freire, and C. T. Silva, “A first
study on clustering collections of workflow graphs” IPAW, 2008, pp.
160-173.

[12] R. Bose and J. Frew., “Lineage retrieval for scientific data processing:
a survey” ACM Comput. Surv. 37(1), March 2005, pp. 1-28.

21Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 32 / 107

Figure 6. Pseudo code for the algorithm CN metrics based reduced provenance representation

Figure 7. Pseudo code for the algorithm SNA metrics based reduced provenance representation

1: assign 0 to total_avg, total_dia, total_pLen, total_dns, total_mdl, total_ccc, total_gia
2: for all nodes n in D do
3: assign convertOPMtoAdjacencyMatrix(n) to adjacency_matrix
4: assign averageDegree(adjacency _matrix) to avg
5: assign diameter(adjacency _matrix) to dia
6: assign pathLength(adjacency _matrix) to pLen
7: assign density(adjacency_matrix) to dns
8: assign modulartiy(adjacency_matrix) to mdl
9: assign connectedComponentCount(adjacency_matrix) to ccc
10: assign giant (adjacency_matrix) to gia
11: assign total_avg + avg to total_avg; total_dia + dia to total_dia; total_pLen + pLen to total_pLen;
total_dns + dns to total_dns; total_mdl + mdl to total_mdl; total_ccc + ccc to total_ccc; total_gia + gia to total_gia
12: end for
13: assign {total_avg/n, total_dia/n, total_pLen/n, total_dns/n, total_mdl/n, total_ccc/n, total_gia/n} to Feature_Space

1:T <- set of all node in G
2:for all node k in T do
3: assign empty to Stack(S)
4: assign empty to LinkedList(Q)
5: addLast k to LinkedListQ)
6: while LinkedList(Q) is not empty do
7: assign removeFirst from LinkedList(Q) to v
8: add Stack(S) to v
9: for all edge of v do
10: add opposite node to Linked(Q)
11: end for
12: end while
13: for all nodes in T do
14: if count of neighbour of s > 0 do
15: add count of neighbour of s to closenessCentrality
16: add count of neighbour of s to proximityPrestige
17: add max in count of neighbour of s or eccentricity of s to eccenricity
18: end if
19: end for
20: for all out going edges from s do
21: if count of neighbour of s > 0 do
22: add count of neighbour of s to degreeCenrality
23: end if
24: end for
25: for all incoming edges from s do
26: if count of neighbour of s > 0 do
27: add count of neighbour of s to degreePrestige
28: end if
29: end for
30: if s is reachable from other nodes
31: closenessCentrality /= reachableCount
32: proximityPrestige /= reachableCount
33: end if
34: closenessCentrality /= All nodes count - 1
35: degreeCentrality /= All nodes count - 1
36: degreePrestige /= All nodes count - 1
37:end for
38:do normalization for all attributes of SNA

22Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 33 / 107

An Efficient Algorithm for Read Matching in DNA Databases

Yangjun Chen, Yujia Wu

Dept. Applied Computer Science

University of Winnipeg, Canada

email: y.chen@uwinnipeg.ca, wyj1128@yahoo.com

Jiuyong Xie

Dept. Physiology &Pathophysiology, College of Medicine

University of Manitoba, Canada

email: xiej@umanitoba.ca

Abstract—In this paper, we discuss an efficient and effective

index mechanism to support the matching of massive reads

(short DNA strings) in DNA databases. It is very important to the

next generation sequencing in the biological research. The main

idea behind it is to construct a trie structure over all the reads,

and search the trie against a BWT-array L created for a genome

sequence s to locate all the occurrences of every read in s once for

all. In addition, we change a single-character checking against L

to a multiple-character checking, by which multiple searches of L

are reduced to a single scanning of L. In this way, high efficiency

can be achieved. Experiments have been conducted, which show

that our method for this problem is promising.

Keywords—string matching; DNA sequences; tries; BWT-

transformation

I. INTRODUCTION

The recent development of next-generation sequencing has
changed the way we carry out the molecular biology and
genomic studies. It has allowed us to sequence a DNA
(Deoxyribonucleic acid) sequence at a significantly increased
base coverage, as well as at a much faster rate. This facilitates
building an excellent platform for the whole genome
sequencing, and for a variety of sequencing-based analysis,
including gene expressions, mapping DNA-protein interactions,
whole-transcriptome sequencing, and RNA (Ribonucleic acid)
splicing profiles. For example, the RNA-Seq protocol, in which
processed mRNA is converted to cDNA and sequenced, is
enabling the identification of previously unknown genes and
alternative splice variants. The whole-genome sequencing of
tumour cells can uncover previously unidentified cancer-
initiating mutations.

The core and the first step to take advantage of the new
sequencing technology is termed as read aligning, where a
read is a short nucleotide sequence of 30 - 1000 base pairs (bp)
generated by a high throughput sequencing machine made by
Illumina, Roche, ABI/Life Technologies, which is in fact a
sequence fragment fetched from a longer DNA molecule
present in a sample that is fed into the machine. Most of the
next-generation sequencing projects begin with a reference
sequence which is a previously well studied, known genome.
The process of a read aligning is to find the meaning of reads,
or in other words, to determine their positions within a
reference sequence, which will then be used for an effective
statistical analysis.

Compared to the traditional pattern matching problems, the
new challenge from the read aligning is its enormous volume,
usually millions to billions of reads need to be aligned within

a same reference sequence. For example, to sequence a human
molecule sample with 15X coverage, one may need to align
1.5 billion reads of length about 100 characters (bps).

In general, three kinds of alignment algorithms are
practically applied: hash-based, string-matching-based, as
well as inexact matching (including edit-distance computation
and k-mismatching). By the hash-based methods, short
subsequences called seeds are extracted from a pattern
sequence and their hash values are computed, which are used
to search against a reference genome sequence. By the string-
matching-based methods, different efficient algorithms are
utilized, such as Knuth-Morris-Pratt [22], Boyer-Moore [9],
and Apostolico-Giancarlo [3], as well as the algorithms based
on different indexes like suffix trees [37][45], suffix arrays [35],
and BWT-transformation (Burrows-Wheeler Transform) [10,
16, 40]. By the edit-distance computation, a score matrix to
represent the relevance between characters is defined and an
alignment with the highest total score is searched, for which
the dynamical programming paradigm is typically employed.
However, a recent research shows that the BWT can also be
used as an index structure for the k-mismatching problem [30].

All the methods mentioned above are single-pattern
oriented, by which a single string pattern is checked against an
entire database to find all the alignments in all the sequences
stored in the database. In the current research of the molecular
biology, however, we need to check a bunch of string patterns
each time and the size of all string patterns can be even much
larger than the database itself. This requires us considering all
the string patterns as a whole, rather than separately check
them one by one. By the Aho-Corasick algorithm [1], the
multiple patterns are handled. However, it cannot be utilized
in an indexing environment since it has to search a target
sequence linearly while by using indexes to expedite a search
this is not expected.

In this paper, we address this issue and present a holistic
string matching algorithm to handle million-billion reads. Our
experiment shows that it can be more than 40% faster than
single-pattern oriented methods when multi-million reads are
checked. The main idea behind our method is:
1. Construct a trie T over all the pattern sequences, and check

T against a BWT-array created as an index for a target
(reference) sequence. This enables us to avoid repeated
search of the same part of different reads.

2. Change a single-character checking to a multiple-character
checking. (That is, each time a set of characters
respectively from more than one read will be checked

23Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 34 / 107

against a BWT-array in one scan, instead of checking them
separately one by one in multiple scans.)
In this way, high efficiency has been achieved.
The remainder of the paper is organized as follows. In

Section II, we review the related work. In Section III, we
briefly describe a string matching algorithm based on the
BWT-transformation. In Section IV, we discuss our basic
algorithm in great detail. In Section V, we improve the basic
method by using multiple-character checkings. Section VI is
devoted to the test results. Finally, a short conclusion is set
forth in Section VII.

II. RELATED WORK

The matching of DNA sequences is just a special case of
the general string matching problem, which has always been
one of the main focuses in the computer science. All the
methods developed up to now can be roughly divided into two
categories: exact matching and inexact matching. By the
former, all the occurrences of a pattern string p in a target
string s will be searched. By the latter, a best alignment
between p and s (i.e., a correspondence with the highest score)
is searched in terms of a given score matrix M, which is
established to indicate the relevance between characters (more
exactly, the meanings represented by them).

A. Exact Matching

Scanning-based By this kind of algorithms, both pattern p
and s are scanned from left to right, but often with an auxiliary
data structure used to speed up the search, which is typically
constructed by a pre-processor. The first of them is the famous
Knuth-Morris-Pratt algorithm [22], which employs an
auxiliary next-table (for p) containing the so-called shift
information (or say, failure function values) to indicate how
far to shift the pattern from right to left when the current
character in p fails to match the current character in s. Its time
complexity is bounded by O(m + n), where m = |p| and n = |s|.
The Boyer-Moore approach [9] works a little bit better than
the Knuth-Morris-Pratt. In addition to the next-table, a skip-
table (also for p) is kept. For a large alphabet and small
pattern, the expected number of character comparisons is
about n/m, and is O(m + n) in the worst case. Although these
two algorithms have never been used in practice, they sparked
a series of research on this problem, and improved by different
researchers in different ways, such as the algorithms discussed
in [1][27]. However, the worst-case time complexity remains
unchanged. The idea of the ‘shift information’ has also been
adopted by Aho and Corasick [1] for the multiple-string
matching, by which s is searched for an occurrence of any one
of a set of k patterns: {p1, p2, …, pk}. Their algorithm needs

only O(

k

i
im

1

 + n) time, where mi = |pi| (i = 1, …, k). However,

this algorithm cannot be adapted to an index environment due
its working fashion totally unsuitable for indexes.

Index-based In situations where a fixed string s is to be
searched repeatedly, it is worthwhile constructing an index
over s [46], such as suffix trees [37][45], suffix arrays [35],
and more recently the BWT-transformation
[10][16][30][31][40]. A suffix tree is in fact a trie structure
[21] over all the suffixes of s; and by using the Weiner’s

algorithm it can be built in O(n) time [37]. However, in
comparison with suffix trees, the BWT-transformation is more

suitable for DNA sequences due to its small alphabet since

the smaller is, the smaller space will be occupied by the
corresponding BWT index. According to a survey done by Li
and Homer [30] on sequence alignment algorithms for next-
generation sequencing, the average space required for each
character is 12 - 17 bytes for suffix trees while only 0.5 -
2 byte for the BWT. Our experiments also confirm this
distinction. For example, the file size of chromosome 1 of
human is 270 Mb. But its suffix tree is of 26 Gb in size while
its BWT needs only 390 Mb – 1 Gb for different compression
rates of auxiliary arrays, completely handlable on PC or laptop
machines. The huge size of a suffix tree may greatly affect the
computation time. For example, for the Zebra fish and Rat
genomes (sizes 1,464,443,456 pb, and 2,909,701,677 pb,
respectively), we cannot finish the construction of their suffix
trees within two days in a computer with 32GB RAM.

Hash-based Intrinsically, all hash-table-based algorithms [18,
20] extract short subsequences called 'seeds' from a pattern
sequence p and create a signature (a bit string) for each of
them. The search of a target sequence s is similar to that of the
Brute Force searching, but rather than directly comparing the
pattern at successive positions in s, their respective signatures
are compared. Then stick each matching seed together to form
a complete alignment. Its expected time is O(m + n), but in the

worst case, which is extremely unlikely, it takes O(mn) time.
The hash technique has also been extensively used in the DNA
sequence research [19, 28, 29, 34, 39], and all experiments
shows that they are generally inferior to the suffix tree and the
BWT index in both running time and space requirements.

B. Inexact Matching

The inexact matching ranges from the score-based to the k-
mismatching, as well as the k-error. By the score-based

method, a score matrix M of size || || is used to indicate
the relevance between characters. The algorithm designed is to
find the best alignment (or say, the alignment with the highest
scores) between two given strings, which can be DNA
sequences, protein sequences, or XML documents; and the
dynamic programming paradigm is often utilized to solve the
problem [14]. By the k-mismatching, we will find all those

subsequences q of s such that d(p, q) k, where d() is a
distance function. When it is the Hemming distance, the
problem is known as sequence matching with k mismatches
[4]. When it is the Levenshtein distance, the problem is known
as sequence matching with k errors [6]. There is a bunch of
algorithms proposed for this problem, such as [4, 5, 24, 25, 42,
43] for the k-mismatch; and [6, 11, 15, 44] for the k-error. All

the methods for the k-mismatch needs quadratic time O(mn)
in the worst case. However, the algorithm discussed in [2] has

the best expected time complexity O(n k logm). Especially,

for small k and large , the search requires sublinear time on
average. In addition, the BWT can also be used as an index
structure for this problem [30]. For the k-error, the worst case
time complexity is the same as the k-mismatching. But the

expected time can reach O(kn) by an algorithm discussed in
[11]. As a different kind of inexact matching, the string
matching with Don’t-Cares (or wild-cards) has also been an

24Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 35 / 107

active research topic for decades, by which we may have wild-
cards in p, in s, or in both of them. A wild card matches any
character. Due to this property, the ‘match’ relation is no
longer transitive, which precludes straightforward adaption of
the shift information used by Knuth-Morris-Pratt and Boyer-
Moore. All the methods proposed to solve this problem also
needs quadratic time [38]. But using a suffix array as the
index, however, the searching time can be reduced to O(logn)
for some patterns, which contain only a sequence of
consecutive Don’t Cares [36].

III. BWT-TRANSFORMATION

In this section, we give a brief description of the BWT
transformation to provide a discussion background.

A. BWT and String Compression

We use s to denote a string that we would like to transform.
Assume that s terminates with a special character $, which
does not appear elsewhere in s and is alphabetically prior to all
other characters. In the case of DNA sequences, we have $ < A
< C < G < T. As an example, consider s = acagaca$. We can
rotate s consecutively to create eight different strings as shown
in Figure 1(a).

By writing all these strings stacked vertically, we generate

an n n matrix, where n = |s| (see Figure 1(a).) Here, special

attention should be paid to the first column, denoted as F, and

the last column, denoted as L. For them, the following

equation, called the LF mapping, can be immediately observed:

 F[i] = L[i]’s successor, (1)

where F[i] (L[i]) is the i
th

 element of F (resp. L).

From this property, another property, the so-called rank

correspondence can be derived, by which we mean that for

each character, its ith

appearance in F corresponds to its ith

appearance in L, as demonstrated in Figure 1(b), in which the

position of a character (in s) is represented by its subscript.

(That is, we rewrite s as a1c1a2g1a3c2a4$.) For example, a2

(representing the 2nd

appearance of a in s) is in the second

place among all the a-characters in both F and L while c1 the

first apperance in both F and L among all the c-characters. In

the same way, we can check all the other appearances of

different characters.

Now we sort the rows of the matrix alphabetically. We

will get another matrix, called the Burrow-Wheeler Matrix [7]

[12][23] and denoted as BWM(s), as demonstrated in Figure

1(c). Especially, the last column of BWM(s), read from top to

bottom, is called the BWT-transformation (or the BWT-array)

and denoted as BWT(s). So for s = acagaca$, we have BWT(s)

= acg$caaa.

By the BWM matrix, the LF-mapping is obviously not

changed. Surprisingly, the rank correspondence also remains.

Even though the ranks of different appearances of a certain

character (in F or in L) may be different from before, their

rank correspondences are not changed as shown in Figure 2(b),

in which a2 now appears in both F and L as the fourth element

among all the a-characters, and c1 the second element among

all the c-characters.

The first purpose of BWT(s) is for the string compression

since same characters with similar right-contexts in s tend to

be clustered together in BWT(s), as shown by the following

example [10][16][40]:

 BWT(tomorrow and tomorrow and tomorrow)

 = wwwdd nnoooaatttmmmrrrrrrooo $ooo

Such a transformed string can be effectively compressed
and then decompressed. Due to the LF-mapping and the rank
correspondence, it can also be easily restored to the original
string.

The second purpose is for the string search, which will be
discussed in the next subsection in great detail. We need this
part of knowledge to develop our method.

B. String Search Using BWT

For the purpose of the string search, the character

clustering in F has to be used. Especially, for any DNA

sequence, the whole F can be divided into five or less

segments: $-segment, A-segment, C-segment, G-segment, and

T-segment, denoted as F$, FA, FC, FG, FT, respectively. In

addition, for each segment in F, we will rank all its elements

from top to bottom, as illustrated in Figure 2(a). $ is not

ranked since it appears only once.

From Figure 2(a), we can see that the rank of a4, denoted

as rkF(a4), is 1 since it is the first element in FA. For the same

reason, we have rkF(a3) = 2, rkF(a1) = 3, rkF(a2) = 4, rkF(c2) =

1, rkF(c1) = 2, and rkF(g1) = 1.

It can also be seen that each segment in F can be

effectively represented as a triplet of the form: <; x, y>,

where {$}, and x, y are the positions of the first

and last appearance of in F, respectively. So the whole F

Figure 2. LF-mapping and tank-correspondence

$ a4

a4 c2

c2 a3

a3 g1

g1 a2

a2 c1

c1 a1

a1 $

F L

(a) (b)

1

1

2

1

4

2

3

rkF

1

2

1

4

2

3

By ranking the

elements in F,
each element in

L is also ranked

with the same
number.

rkL

F$ = <$; 1, 1>

Fa = <a; 2, 5>

Fc = <c; 6, 7>

Fg = <g; 8, 8>

Figure 1. Rotation of a string

$ a c a g a c a

a c a g a c a $

c a g a c a $ a

a g a c a $ a c

g a c a $ a c a
 a c a $ a c a g
 c a $ a c a g a

a $ a c a g a c

$ a c a g a c a
 a $ a c a g a c

c a $ a c a g a

a c a $ a c a g

g a c a $ a c a

a g a c a $ a c

c a g a c a $ a

a c a g a c a $

(a) (c)

a

g

a

c

a

$

(b)

a

g

a

c

a

$

a1 $

c1 a1

c2 a3

a2 c1

$ a4

a3 g1

a4 c2

g1 a2

F L

F L

25Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 36 / 107

can be effectively compacted and represented as a set of || +

1 triplets, as illustrated in Figure 2(b).

Now, we consider j (the jth

appearance of in s).

Assume that rkF(j) = i. Then, the position where j appears in

F can be easily determined:

 F[x + i - 1] = j. (2)

Besides, if we rank all the elements in L top-down in such a

way that an j is assigned i if it is the ith appearance among all

the appearances of in L. Then, we will have

 rkF(j) = rkL(j), (3)

where rkL(j) is the rank assigned to j in L.

This equation is due to the rank correspondence between F

and L. (See [10][16][40] for a detailed discussion. Also see

Figure 2(a) for ease of understanding.)

With the ranks established, a string matching can be very

efficiently conducted by using the formulas (2) and (3). To see

this, let’s consider a pattern string p = aca and try to find all

its occurrences in s = acagaca$.

We work on the characters in p in the reverse order.

First, we check p[3] = a in the pattern string p, and then

figure out a segment in L, denoted as L, corresponding to Fa =

<a; 2, 5>. So L = L[2 .. 5], as illustrated in Figure 3(a), where

we still use the non-compact F for explanation. In the second

step, we check p[2] = c, and then search within L to find the

first and last c in L. We will find rkL(c2) = 1 and rkL(c1) = 2.

By using (3), we will get rkF(c2) = 1 and rkF(c1) = 2. Then, by

using (2), we will figure out a sub-segment F in F: F[xc + 1 -

1 .. xc + 2 - 1] = F[6 + 1 - 1 .. 6 + 2 - 1] = F[6 .. 7]. (Note that

xc = 6. See Figure 2(b) and Figure 3(b).) In the third step, we

check p[1] = a, and find L = L[6 .. 7] corresponding to F =

F[6 .. 7]. Repeating the above operation, we will find rkL(a3) =

2 and rkL(a1) = 3. See Figure 3(c). Since now we have

exhausted all the characters in p and F[xa + 2 – 1, xa + 3 – 1] =

F[3, 4] contains only two elements, two occurrences of p in s

are found. They are a1 and a3 in s, respectively.

C. RankAll

The dominant cost of the above process is the searching of
L in each step. However, this can be dramatically reduced by

arranging || arrays each for a character such that [i]

(the ith

entry in the array for) is the number of appearances

of within L[1 .. i]. See Figure 4(a) for illustration.

Now, instead of scanning a certain segment L[x .. y] (x y)

to find a subrange for a certain , we can simply look up

the array for to see whether [x - 1] = [y]. If it is the case,

then does not occur in L[x .. y]. Otherwise, [[x - 1] + 1,

[y]] should be the found range. For example, to find the first

and the last appearance of c in L[2 .. 5], we only need to find

c[2 – 1] = c[1] = 0 and c[5] = 2. So the corresponding range is

[c[2 - 1] + 1, c[5]] = [1, 2].

In this way, the searching of L can be saved and we need

only a constant time to determine a subrange for a character

encountered during a pattern searching.

The problem of this method is its high space requirement,

which can be mitigated by replacing [] with a compact array

A for each , in which, rather than for each L[i] (i

{1, …, n}), only for some entries in L the number of their

appearances will be stored. For example, we can divide L into

a set of buckets of the same size and only for each bucket a

value will be stored in A. Obviously, doing so, more search

will be required. In practice, the size of a bucket (referred to

as a compact factor) can be set to different values. For

example, we can set = 4, indicating that for each four

contiguous elements in L a group of || integers (each in an A)

will be stored. That is, we will not store all the values in

Figure 4(a), but only store $[4], a[4], c[4], g[4], t[4], and $[8],

a[8], c[8], g[8], t[8] in the corresponding compact arrays, as

shown in Figure 4(b). However, each [j] for can be

easily derived from A by using the following formulas:

 [j] = A[i] + , (4)

where i = j/ and is the number of ’s appearances within

L[i + 1 .. j], and

 [j] = A[i] - , (5)

where i = j/ and is the number of ’s appearances within

L[j + 1 .. i].

Thus, we need two procedures: sDown(L, j, ,) and

sUp(L, j, ,) to find and , respectively. In terms of

whether j - i i - j, we will call sDown(L, j, ,) or

sUp(L, j, ,) so that fewer entries in L will be scanned to

find [j].
Finally, we notice that the column for $ can always be

divided into two parts. In the first part, each entry is 0 while in
the second part each entry is 1 (see Figure 4(a)). So we can

Figure 3. Sample trace

$ a4 1

a4 c2 1

c2 a3 2

a3 g1 1

g1 a2 4

a2 c1 2

c1 a1 3

a1 $

F L

(a) (b)

$ a4 1

a4 c2 1

c2 a3 2

a3 g1 1

g1 a2 4

a2 c1 2

c1 a1 3

a1 $

F L

$ a4 1

a4 c2 1

c2 a3 2

a3 g1 1

g1 a2 4

a2 c1 2

c1 a1 3

a1 $

F L

To find

the first c

to find

the last c
to find

the first a

to find

the last a

(c)

rkL

rkL

rkL

Figure 4. LF-mapping and rank-correspondence

$ a4

a4 c2

c2 a3

a3 g1

g1 a2

a2 c1

c1 a1

a1 $

F L

0

1

0

1

1

1

$

1

1

2

1

4

1

3

1

a

0

1

2

1

2

2

2

1

c

0

0

1

1

1

1

1

1

g

0

0

0

0

0

0

0

0

t

4

1

Aa

2

1

Ac

1

1

Ag

0

0

At

0 0 0 0

i

2

1

0

2

6

3

8

5

7

j

(a) (b)

For each = 4
values in L, a
rankAll value
is stored.

26Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 37 / 107

simply keep a number to indicate where it is divided, instead
of storing the whole column.

D. Construction of BWT arrays

For self-explanation, we describe how a BWT array is
constructed [10][16][26][40] in this subsection.

As mentioned above, a string s = a0a1 ... an−1 is always

ended with $ (i.e., ai for i = 0, …, n – 2, and an−1 = $). Let
s[i] = ai (i = 0,1, …, n – 1) be the ith character of s, s[i.. j] =
ai ... aj a substring and s[i .. n − 1] a suffix of s. Suffix array H
of s is a permutation of the integers 0, ..., n − 1 such that H[i] is
the start position of the ith smallest suffix. The relationship
between H and the BWT array L can be determined by the
following formulas:

Once L is determined. F can also be created immediately

by using formula (1).

IV. MAIN ALGORITHM

In this section, we present our algorithm to search a bunch

of reads against a genome s. Its main idea is to organize all the

reads into a trie T and search T against L to avoid any possible

redundancy. First, we present the concept of tries in

Subsection A. Then, in Subsection B, we discuss our basic

algorithm for the task. We improve this algorithm in Section

V.

A. Tries over Reads

Let D = {s1, …, sn} be a DNA database, where each si (i =

1, …, n) is a genome, a very long string
*

(= {A, T, C,

G}). Let R = {r1, …, rm} be a set of reads with each rj being a

short string
*
. The problem is to find, for every rj’s (j =

1, …, m), all their occurrences in an si (i = 1, …, n) in D.

A simple way to do this is to check each rj against si one by

one, for which different string searching methods can be used,

such as suffix trees [37][45], BW-transformation [10], and so

on. Each of them needs only a linear time (in the size of si) to

find all occurrences of rj in si. However, in the case of very

large m, which is typical in the new genomic research, one-by-

one search of reads against an si is no more acceptable in

practice and some efforts should be spent on reducing the

running time caused by huge m.

Our general idea is to organize all rj’s into a trie structure

T and search T against si with the BW-transformation being

used to check the string matching. For this purpose, we will

first attach $ to the end of each si (i = 1, …, n) and construct

BWT(si). Then, attach $ to the end of each rj (j = 1, …, m) to

construct T = trie(R) over R as below.

If |R| = 0, trie(R) is, of course, empty. For |R| = 1, trie(R)

is a single node. If |R| > 1, R is split into || = 5 (possibly

empty) subsets R1, R2, …, R5 so that each Ri (i {1, …, 5})

contains all those sequences with the same first character i

{A, T, C, G} {$}. The tries: trie(R1), trie(R2), …, trie(R5)

are constructed in the same way except that at the kth step, the

splitting of sets is based on the kth characters in the sequences.

They are then connected from their respective roots to a single

node to create trie(R).

Example 1 As an example, consider a set of four reads:

 r1: ACAGA

 r2: AG

 r3: ACAGC

 r4: CA

For these reads, a trie can be constructed as shown in Figure

5(a). In this trie, v0 is a virtual root, labeled with an empty

character while any other node v is labeled with a real

character, denoted as l(v). Therefore, all the characters on a

path from the root to a leaf spell a read. For instance, the path

from v0 to v8 corresponds to the third read r3 = ACAGC$. Note

that each leaf node v is labelled with $ and associated with a

read identifier, denoted as (v).

 C

The size of a trie can be significantly reduced by replacing

each branchless path segment with a single edge. By a

branchless path we mean a path P such that each node on P,

except the starting and ending nodes, has only one incoming

and one outgoing edge. For example, the trie shown in Figure

5(a) can be compacted to a reduced one as shown in Figure

5(b).

B. Integrating BWT Search with Trie Search

It is easy to see that exploring a path in a trie T over a set

of reads R corresponds to scanning a read r R. If we explore,

at the same time, the L array established over a reversed

genome sequence s , we will find all the occurrences of r

(without $ involved) in s. This idea leads to the following

algorithm, which is in essence a depth-first search of T by

using a stack S to control the process. However, each entry in

S is a triplet <v, a, b> with v being a node in T and a b, used

to indicate a subsegment in Fl(v)[a .. b]. For example, when

searching the trie shown in Figure 5(a) against the L array

shown in Figure 2(a), we may have an entry like <v1, 1, 4> in

S to represent a subsegment FA[1 .. 4] (the first to the fourth

entry in FA) since l(v1) = A. In addition, for technical

convenience, we use F to represent the whole F. Then, F[a ..

b] represents the segment from the ath

to the bth entry in F.

In the algorithm, we first push <root(T), 1, |s|> into stack S

(lines 1 – 2). Then, we go into the main while-loop (lines 3 –

16), in which we will first pop out the top element from S,

stored as a triplet <v, a, b> (line 4). Then, for each child vi of v,

(6)

a

g

a

c

a

$

L[i] = $, if H[i] = 0;

L[i] = s[H[i] – 1], otherwise.

Figure 5. A trie and its compact version

A

(a) (b)

C

A

G

A

$

G

C

v0

v1

v2

v3

v4

v5

v6

v7

v9

C

A

v11

v12

r1

r3

r2

r4

A

CAG

A$

G$

C$

u0

u1

u2

u3

u4

u5

CA$

u6

r1

r3

r2

r4

$

v8

$

v10

v1

3

$

27Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 38 / 107

we will check whether it is a leaf node. If it is the case, a

quadruple <(vi), l(v), a, b> will be added to the result (see

line 7), which records all the occurrences of a read represented

by (vi) in s. (In practice, we store compressed suffix arrays

[35, 40] and use formulas (1) and (6) to calculate positions of

reads in s.) Otherwise, we will determine a segment in L by

calculating x and y (see lines 8 – 9). Then, we will use

sDown(L, x - 1, ,) or sUp(L, x - 1, ,) to find [x - 1] as

discussed in the previous section. (See line 10.) Next, we will

find [y] in a similar way. (See line 11.) If [y] > [x - 1],

there are some occurrences of in L[x .. y] and we will push

<vi, [x - 1] + 1, [y]>) into S, where [x - 1] + 1 and [y]

are the first and last rank of ’s appearances within L[x .. y],

respectively. (See lines 12 – 13.) If [y] = [x - 1], does

not occur in L[x .. y] at all and nothing will be done in this

case. The following example helps for illustration.

ALGORITHM readSearch(T, LF,)

begin

1. v root(T); ;

2. push(S, <v, 1, |s|>);

3. while S is not empty do {

4. <v, a, b> pop(S);

5. let v1, …, vk be the children of v;

6. for i = k downto 1 do {

7. if vi is a leaf then {<(vi), l(v), a, b>};

8. else{assume that Fl(v) = <l(v); x, y>;

9. x x + a - 1; y x + b - 1; l(vi);

10. find [x - 1] by sDown(L, x-1, ,) or sUp(L, x-1, ,);

11. find [y] by sDown(L, y, ,) or sUp(L, y, ,);

12. if [y] > [x - 1] then

13. push(S, <vi, [x - 1] + 1, [y]>);

14. }

15. }

16. }

end

Figure 6. Algorithm readSearch()

Example 2 Consider all the reads given in Example 1 again.

The trie T over these reads are shown in Figure 5(a). In order

to find all the occurrences of these reads in s = ACAGACA$,

we will run readSearch() on T and the LF of s shown in

Figure 7(b). (Note that s = s for this special string, but the

ordering of the subscripts of characters is reversed. In Figure

7(a), we also show the corresponding BWM matrix for ease of

understanding.)

In the execution of readSearch(), the following steps will be

carried out.

Step 1: push <v0, 1, 8> into S, as illustrated in Figure 7(c).

Step 2: pop out the top element <v0, 1, 8> from S. Figure out

the two children of v0: v1 and v11. First, for v11, we will use Ac

to find the first and last appearances of l(v11) = C in L[1 .. 8]

and their respective ranks: 1 and 2. Assume that = 4 (i.e., for

each 4 consecutive entries in L a rankAll value is stored.)

Further assume that for each A ({a, c, g, t}) A[0] = 0.

The ranks are calculated as follows.

 To find the rank of the first appearance of C in L[1 .. 8],

we will first calculate C[0] by using formula (4) or (5)

(i.e., by calling sDown(L, 0, 4, C) or sUp(L, 0, 4, C)). Recall

that whether (4) or (5) is used depends on whether j - i

 i - j, where i = j/ and i = j/. For C[0], j = 0.

Then, i = i = 0 and (4) will be used:

 C[0] = Ac[0/4] + .

 Since Ac[0/4] = Ac[0] = 0 and the search of L[i .. j] =

L[0 .. 0] finds = 0, C[0] is equal to 0.

 To find the rank of the last appearance of C in L[1 .. 8],

we will calculate C[8] by using (4) for the same reason as

above. For C[8], we have j = 8 and i = 2. So we have

 C[8] = Ac[8/4] + .

 Since Ac[8/4] = Ac[2] = 2, and the search of L[i .. j] =

L[8 .. 8] finds = 0, we have C[8] = 2.

So the ranks of the first and the last appearances of C are

C[0] + 1 = 1, and C[8] = 2, respectively. Push <v11, 1, 2> into

S.

Next, for v1, we will do the same work to find the first and

last appearances of l(v1) = A and their respective ranks: 1 and

4; and push <v1, 1, 4> into S. Now S contains two entries as

shown in Figure 8(a) after step 2.

Step 3: pop out the top element <v1, 1, 4> from S. v1 has two

children v2 and v9. Again, for v9 with l(v9) = G, we will use Ag

to find the first and last appearances of G in L[2 .. 5]

(corresponding to FA[1 .. 4]) and their respective ranks: 1 and

1. In the following, we show the whole working process.

 To find the rank of the first appearance of G in L[2 .. 5],

we will first calculate G[1]. We have j = 1, i = j/ =

1/4 = 0 and i = 1/4 = 1. Since j - i = 0 < i - j = 3,

formula (4) will be used:

 G[1] = Ag[1/4] + .

 Since Ag[0/4] = Ag[0] = 0 and search of L[i .. j] = L[0 ..

0] finds = 0, G[1] is equal to 0.

 To find the rank of the last appearance of G in L[2 .. 5],

we will calculate G[5] by using (4) based on an analysis

similar to above. For G[5], we have j = 5 and i = j/ = 1.

So we have

 G[5] = Ag[5/4] + .

<v0, 1, 8>
(a)

S:

Figure 7. Illustration for Step 1

(b) (c)

$ A4 C2 A3 G1 A2 C1 A1

 A1 $ A4 C2 A3 G1 A2 C1

C1 A1 $ A4 C2 A3 G1 A2

A2 C1 A1 $ A4 C2 A3 G1

G1 A2 C1 A1 $ A4 C2 A3

A3 G1 A2 C1 A1 $ A4 C2

C2 A3 G1 A2 C1 A1 $ A4

A4 C2 A3 G1 A2 C1 A1 $

$ A4

A4 C2

C2 A3

A3 G1

G1 A2

A2 C1

C1 A1

A1 $

F L

2

6

3

8

5

7

j

28Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 39 / 107

 Since Ag[5/4] = Ag[1] = 1, and search of L[i .. j] =

L[4 .. 5] finds = 0, we have G[5] = 1.

We will push <v9, G[1] + 1, G[5] > = <v9, 1, 1> into S.

For v2 with l(v2) = C, we will find the first and last

appearances of C in L[2 .. 5] and their ranks: 1 and 2. Then,

push <v2, 1, 2> in to S. After this step, S will be changed as

shown in Figure 8(b).

In the subsequent steps 4, 5, and 6, S will be consecutively

changed as shown in Figure 8(c), (d), and (e), respectively.

In step 7, when we pop the top element <v5, 4, 4>, we meet a
node with a single child v6 labeled with $. In this case, we will
store <(v6), l(v5), 4, 4> = <r1, A, 4, 4> in as part of the
result (see line 7 in searchRead().) From this we can find that
rkL(A3) = 4 (note that the same element in both F and L has

the same rank), which shows that in s the substring of length

|r1| staring from A3 is an occurrence of r1.

C. Time Complexity and Correctness Proof

In this subsection, we analyze the time complexity of

readSearch(T, LF,) and prove its correctness.

C.1 Time complexity

In the main while-loop, each node v in T is accessed only

once. If the rankAll arrays are fully stored, only a constant

time is needed to determine the range for l(v). So the time

complexity of the algorithm is bounded by O(|T|). If only the

compact arrays (for the rankAll information) are stored, the

running time is increased to O(|T|), where is the

corresponding compact factor. It is because in this case, for

each encountered node in T, O(
2

1
) entries in L may be

checked in the worst case.

C.2 Correctness

Proposition 1 Let T be a trie constructed over a collections of

reads: r1, …, rm, and LF a BWT-mapping established for a

reversed genome s . Let be the compact factor for the

allRank arrays, and the result of readSearch(T, LF,).

Then, for each rj, if it occurs in s, there is a quadruple {<(vi),

l(v), a, b>} such that (vi) = rj, l(v) is equal to the last

character of rj, and Fl(v)[a], Fl(v)[a + 1], …, Fl(v)[b] show all the

occurrences of rj in s.

Proof. We prove the proposition by induction on the height h

of T.

Basic step. When h = 1. The proposition trivially holds.

Induction hypothesis. Suppose that when the height of T is h,
the proposition holds. We consider the case that the height of

T is h + 1. Let v0 be the root with l(v0) = . Let v1, …, vk be the

children of v0. Then, height(T[vi]) h (i = 1, …, k), where T[vi]
stands for the subtree rooted at vi and height(T[vi]) for the

height of T[vi]. Let l(vi) = and F = <; a, b>. Let vi1, …, vil
be the children of vi. Assume that x and y be the ranks of the

first and last appearances of in L. According to the induction
hypothesis, searching T[vij] against L[a′ .. b′], where a′ = a + x
- 1 and b′ = a + y - 1, the algorithm will find all the locations
of all those reads with l(vi) as the first character. This

completes the proof.

V. IMPROVEMENTS

The algorithm discussed in the previous section can be

greatly improved by rearranging the search of a segment of L

when we visit a node v in T. Such a search has to be done once

for each of its children by calling sDown() or sUp() (see

lines 10 - 11 in readSearch().) Instead of searching the

segment for each child separately, we can manage to search

the segment only once for all the children of v. To this end, we

will use integers to represent characters in . For example, we

can use 1, 2, 3, 4, 5 to represent A, C, G, T, $ in a DNA

sequence. In addition, two kinds of simple data structures will

be employed:

- Bv: a Boolean array of size || {$} associated with node

v in T, in which, for each i , Bv[i] = 1 if there exists a

child node u of v such that l(u) = i; otherwise, bv[i] = 0.

- ci: a counter associated with i to record the number of

i’s appearances during a search of some segment in L.

See Figure 9 for illustration.

With these data structures, we change sDown(L, j, ,)

and sUp(L, j, ,) to sDown(L, j, , v) and sUp(L, j, , v),

respectively, to search L for all the children of v, but only in

one scanning of L.

In sDown(L, j, , v), we will search a segment L[j/ +

1 .. j] from top to bottom, and store the result in an array D

of length ||, in which each entry D[i] is the rank of i

(representing a character), equal to ci + Ai[j/], where ci is

the number of i’s appearances within L[j/ + 1 .. j].

(a)

Figure 8. Illustration for stack changes

(b)

<v1, 1, 4>

<v11, 1, 2>

S:

<v5, 4, 4>

<v9, 1, 1>

<v11, 1, 2>

<v3, 2, 3>

<v9, 1, 1>

<v11, 1, 2>

<v4, 1, 1>

<v9, 1, 1>

<v11, 1, 2> (c) (d) (e)

<v2, 1, 2>

<v9, 1, 1>

<v11, 1, 2>

Figure 9. Illustration for extra data structures

Bv: 1 1 0 1 0

A C G T $

1 2 3 4 5 T A C

c1 c2 c3 c4 c5 L:

L[l]

Bv[L[l]] = 1?

.

.
.

29Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 40 / 107

In the algorithm, L[j′ .. j] is scanned only once in the main

while-loop (see lines 3 – 6), where j′ = j/ + 1 (see line 2.)

For each encountered entry L[l] (j′ l j), we will check

whether Bv[L[l]] = 1 (see line 4.) If it is the case, cL[l] will be

increased by 1 to count encountered entries which are equal to

L[l]. After the while-loop, we compute the ranks for all the

characters respectively labeling the children of v (see lines 7 –

8).

FUNCTION sDown(L, j, , v)

begin

1. ci 0 for each i ;

2. l j/ + 1;

3. while l j do {

4. if Bv[L[l]] = 1 then cL[l] cL[l] + 1;

5. l l + 1;

6. }

7. for k = 1 to || do {

8. if Bv[k] = 1 then D[k] Ak[j/] + ck;

9. }

10. return D;

end

Figure 10. Algorithm sDown()

sUp(L, j, , v) is dual to sDown(L, j, , v), in which a

segment of L will be search bottom-up.

FUNCTION sUp(L, j, , v)

begin

1. ci 0 for each i ;

2. l j/;

3. while l j + 1do {

4. if Bv[L[l]] = 1 then cL[l] cL[l] + 1;

5. l l - 1; }

6. }

7. for k = 1 to || do {

8. if Bv[k] = 1 then D[k] Ak[j/] - ck;

9. }

10. return D;

end

Figure 11. Algorithm sUp()

See the following example for illustration.

Example 3 In this example, we trace the working process to

generate ranges (by scanning L[2 .. 5]) for the two children v2

and v9 of v1. For this purpose, we will calculate C[1], C[5] for

l(v2) = C, and G[1], G[5] for l(v9) = G. First, we notice that

1vB = [0, 1, 1, 0, 0] and all the counters c1, c2, c3, c4, c5 are set

to 0.

By running sDown(L, 1, 4, v1) to get C[1] and G[1], part

of L will be scanned once, during which only one entry L[1] =

A (represented by 1) is accessed. Since
1v

B [L[1]] =
1v

B [1] =

0, c1 remains unchanged. Especially, both c2 (for C) and c3

(for G) remain 0. Then, C[1] = Ac[1/4] + c2 = 0 and G[1] =

Ag[1/4] + c3 = 0.

By running sDown(L, 5, 4, v1) to get C[5] and G[5],

another part of L will be scanned, also only once, during

which merely one entry L[5] = C (represented by 2) is

accessed. Since
1v

B [L[5]] =
1v

B [2] = 1, c2 will be changed to

1. But c3 (for G) remain 0. Then, we have C[5] = Ac[5/4] +

c2 = 2 and G[5] = Ag[5/4] + c3 = 1.

Thus, the range for l(v2) = C is [C[1] + 1, C[5] = [1, 2],

and the range for l(v9) = G is [G[1] + 1, G[5] = [1, 1].

By using the above two procedures, our improved

algorithm can be described as follows.

ALGORITHM rS(T, LF,)

begin

1. v root(T);

2. push(S, <v, 1, ||>);

3. while S is not empty do {

4. <v, a, b> pop(S);

5. let v1, …, vk be all those children of v, which are labeled with $;

6. let u1, …, uj be all the rest children of v;

7. for each j {1, …, k} do { {<(vj), l(v), a, b>};

8. assume that Fl(v) = <l(v); x, y>;

9. x x + a - 1; y x + b - 1;

10. call sDown(L, x - 1, , v) or sUp(L, x - 1, , v) to find the

ranks of the first appearances of all the labels of the

children of v: r(u1), …, r(uj);

11. call sDown(L, y, , v) or sUp(L, y, , v) to find the

ranks of the last appearances of all the labels of the

children of v: r(u1), …, r(uj);

12. for l = j downto 1 do { push(S, <ul, r(ul), r(uj)>) };

13. }

end

Figure 12. Algorithm rR()

The main difference of the above algorithm from

readSearch() consists in the different ways to search L[a .. b].

Here, to find the ranks of the first appearances of all the labels

of the children of v, sDown() or sUp() is called to scan part of

L only once (while in readSearch() this has to be done once

for each different child.) See line 10. Similarly, to find the

ranks of the last appearances of these labels, another part of L

is also scanned only once. See line 11. All the other operations

are almost the same as in readSearch().

VI. EXPERIMENTS

In our experiments, we have tested altogether five different

methods:

- Burrows Wheeler Transformation (BWT for short),

- Suffix tree based (Suffix for short),

- Hash table based (Hash for short),

- Trie-BWT (tBWT for short, discussed in this paper),

- Improved Trie-BWT (itBWT for short, discussed in this

paper).

Among them, the codes for the suffix tree based and hash

based methods are taken from the gsuffix package [7] while all

the other three algorithms are implemented by ourselves. All

of them are able to find all occurrences of every read in a

genome. The codes are written in C++, compiled by GNU

make utility with optimization of level 2. In addition, all of

our experiments are performed on a 64-bit Ubuntu operating

30Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 41 / 107

system, run on a single core of a 2.40GHz Intel Xeon E5-2630

processor with 32GB RAM.

The test results are categorized in two groups: one is on a

set of synthetic data and another is on a set of real data. For

both of them, five reference genomes are used:

TABLE I. CHARACTERISTICS OF GENOMES

Genomes Genome sizes (bp)

Rat chr1 (Rnor_6.0) 290,094,217

C. merolae (ASM9120v1) 16,728,967

C. elegans (WBcel235) 103,022,290

Zebra fish (GRCz10) 1,464,443,456

Rat (Rnor_6.0) 2,909,701,677

A. Tests on Synthetic Data Sets

All the synthetic data are created by simulating reads from

the five genomes shown in Table I, with varying lengths and

amounts. It is done by using the wgsim program included in

the SAMtools package [33] with default model for single reads

simulation.

Over such data, the impact of five factors on the searching

time are tested: number n of reads, length l of reads, size s of

genomes, compact factors f1 of rankAlls (see Subsection C in

III) and compression factors f2 of suffix arrays [35][40], which

are used to find locations of matching reads (in a reference

genome) in terms of formula (6) (see Subsection D in III).

A.1 Tests with varying amount of reads

In this experiment, we vary the amount n of reads with n =

5, 10, 15, … , 50 millions while the reads are 50 bps or 100

bps in length extracted randomly from Rat chr1 and C. merlae

genomes. For this test, the compact factors f1 of rankAlls are

set to be 32, 64, 128, 256, and the compression factors f2 of

suffix arrays are set to 8, 16, 32, 64, respectively. These two

factors are increasingly set up as the amount of reads gets

increased.

In Figures 13(a) and (b), we report the test results of

searching the Rat chr1 for matching reads of 50 and 100 bps,

respectively. From these two figures, it can be clearly seen

that the hash based method has the worst performance while

ours works best. For short reads (of length 50 bps) the suffix-

based is better than the BWT, but for long reads (of length 100

bps) they are comparable. The poor performance of the hash-

based is due to its inefficient brute-force searching of genomes

while for both the BWT and the suffix-based it is due to the

huge amount of reads and each time only one read is checked.

In the opposite, for both our methods tBWT and itBWT, the

use of tries enables us to avoid repeated checkings for similar

reads.

In these two figures, the time for constructing tries over

reads is not included. It is because in the biological research a

trie can be used repeatedly against different genomes, as well

as often updated genomes. However, even with the time for

constructing tries involved, our methods are still superior

since the tries can be established very fast as demonstrated in

Table II, in which we show the times for constructing tries

over different amounts of reads.

TABLE II. TIME FOR TRIE CONSTRUCTION OVER READS OF

LENGTH 100 BPS

No. of reads 30M 35M 40M 45M 50M

Time for Trie Con. 51s 63s 82s 95s 110s

The difference between tBWT and itBWT is due to the

different number of BWT array accesses as shown in Table III.

By an access of a BWT array, we will scan a segment in the

array to find the first and last appearance of a certain character

from a read (by tBWT) or a set of characters from more than

one read (by itBWT).

TABLE III. NO. OF BWT ARRAY ACCESSES

No. of reads 30M 35M 40M 45M 50M

tBWT 47856K 55531K 63120K 70631K 78062K

itBWT 19105K 22177K 25261K 28227K 31204K

Figures 14(a) and (b) show respectively the results for

reads of length 50 bps and 100 bps over the C. merolae

genome. Again, our methods outperform the other three

methods.

Figure 13. Test results on varying amount of reads

0

1000

2000

3000

4000

5000

6000

7000

5 10 15 20 25 30 35 40 45 50

Suf f ix Hash BWT

t BWT it BWT

0

200

400

600

800

1000

1200

1400

1600

1800

2000

5 10 15 20 25 30 35 40 45 50

time (s)
time (s)

amount of reads (million)

(b) (a)

amount of reads (million)

Figure 14. Test results on varying amount of reads

time (s)

amount of reads (million) amount of reads (million)

(b) (a)

0

300

600

900

1200

1500

1800

5 10 15 20 25 30 35 40 45 50

time (s)

31Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 42 / 107

A.2 Tests with varying length of reads

In this experiment, we test the impact of the read length on

performance. For this, we fix all the other four factors but vary

length l of simulated reads with l = 35, 50, 75, 100, 125, … ,

200. The results in Figure 15(a) shows the difference among

five methods, in which each tested set has 20 million reads

simulated from the Rat chr1 genome with f1 = 128 and f2 = 16.

In Figure 15(b), the results show the the case that each set has

50 million reads. Figures 16(a) and (b) show the results of the

same data settings but on C. merlae genome.

Again, in this test, the hash based performs worst while the

suffix tree and the BWT method are comparable. Both our

algorithms uniformally outperform the others when searching

on short reads (shorter than 100 bps). It is because shorter

reads tend to have multiple occurrences in genomes, which

makes the trie used in tBWT and itBWT more beneficial.

However, for long reads, the suffix tree beats the BWT since

on one hand long reads have fewer repeats in a genome, and

on the other hand higher possibility that variations occurred in

long reads may result in earlier termination of a searching

process. In practice, short reads are more often than long reads.

A.3 Tests with varying sizes of genome

To examine the impacts of varying sizes of genomes, we

have made four tests with each testing a certain set of reads

against different genomes shown in Table 1. To be consistent

with foregoing experiments, factors except sizes of genomes

remain the same for each test with f1 = 128 and f2 = 16. In

Figure 17(a) and (b), we show the searching time on each

genome for 20 million and 50 million reads of 50 bps,

respectively. Figures 18(a) and (b) demonstrate the results of

20 million and 50 million reads but with each read being of

100 bps.

These figures show that, in general, as the size of a

genome increases the time of read aligning for all the tested

algorithms become longer. We also notice that the larger the

size of a genome, the bigger the gaps between our methods

and the other algorithms. The hash-based is always much

slower than the others. For the suffix tree, we only show the

matching time for the first three genomes. It is because the

testing computer cannot meet its huge memory requirement

for indexing the Zebra fish and Rat genomes (which is the

main reason why people use the BWT, instead of the suffix

tree, in practice.) Details for the 50 bp reads in Figure 17 and

Figure 18 show that the tBWT and the itBWT are at least 30%

faster than the BWT and the suffix tree, which happened on

the C. elegans genome. For the Rat genome, our algorithms

are even more than six times faster than the others.

Now let us have a look at Figures 18(a) and (b). Although

our methods do not perform as good as for the 50 bp reads due

to the increment of length of reads, they still gain at least 22%

improvement on speed and nearly 50% acceleration in the best

case, compared with the BWT.

0

1000

2000

3000

4000

5000

C. merlae C. elegans Chr1 of Rat Zebraf ish Rat

suf f ix hash BWT t BWT it BWT

0

1000

2000

3000

4000

5000

C. merlae C. elegans Chr1 of Rat Zebraf ish Rat

Figure 18. Test results on varying sizes of genomes

time (s) time (s)

(b) (a)

0

1000

2000

3000

4000

5000

C. merlae C. elegans Chr1 of Rat Zebraf ish Rat

Figure 17. Test results on varying sizes of genomes

time (s) time (s)

(b) (a)

Figure 16. Test results on varying length of reads

0

200

400

600

800

1000

1200

35 50 75 100 125 150 175 200

time (s) time (s)

read length (pb)

(b) (a)

read length (pb)

Figure 15. Test results on varying length of reads

0

300

600

900

1200

1500

1800

35 50 75 100 125 150 175 200

time (s) time (s)

read length (pb)

(b) (a)

0

500

1000

1500

2000

2500

3000

35 50 75 100 125 150 175 200

read length (pb)

C. merlae C. elegans Chr1 of Rat Zebrafish Rat

suff ix hash BWT tBWT itBWT

32Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 43 / 107

A.4 Tests with varying compact and compression factors

In the experiments, we focus only on the BWT method,

since there are no compressions in both the suffix tree and the

hash-based method. The following test results are all for 20

million reads with 100 bps in length. We first show the impact

of f1 on performance with f2 = 16, 64 in Figures 19(a) and (b),

respectively. Then we show the effect when f2 is set to 64, 256

in Figures 20(a) and (b).

From these figures, we can see that the performance of all

three methods degrade as f1 and f2 increase. Another noticeable

point is that both the itBWT and the tBWT are not so sensitive

to the high compression rate. Although doubling f1 or f2 will

slow down their speed, they become faster compared to the

BWT. For example, in Figure 19, the time used by the BWT

grows 80% by increasing f1 from 8 to 64, whereas the growth

of time used by the tBWT is only 50%. In addition, the factor

f1 has smaller impact on the itBWT than the BWT and the

tBWT, since the extra data structure used in the itBWT

effectively reduced the processing time of the trie nodes by

half or more.

B. Tests on Real Data Sets

For the performance assessment on real data, we obtain

RNA-sequence data from the project conducted in an RNA

laboritary at University of Manitoba [23]. This project

includes over 500 million single reads produced by Illumina

from a rat sample. Length of these reads are between 36 bps

and 100 bps after trimming using Trimmomatic [8]. The reads

in the project are divided into 9 samples with different amount

ranging between 20 million and 75 million. Two tests have

been conducted. In the first test, we mapped the 9 samples

back to rat genome of ENSEMBL release 79 [13]. We were

not able to test the suffix tree due to its huge index size. The

hash-based method was ignored as well since its running time

was too high in comparison with the BWT. In order to balance

between searching speed and memory usage of the BWT

index, we set f1 = 128, f2 = 16 and repeated the experiment 20

times. Figure 17(a) shows the average time consumed for each

algorithm on the 9 samples.

Since the source of RNA-sequence data is the transcripts,

the expressed part of the genome, we did a second test, in

which we mapped the 9 samples again directly to the Rat

transcriptome. This is the assembly of all transcripts in the Rat

genome. This time more reads, which failed to be aligned in

the first test, are able to be exactly matched. This result is

showed in Figure 21(b).

From Figures 21(a) and (b), we can see that the test results

for real data set are consistent with the simulated data. Our

algorithms are faster than the BWT on all 9 samples. Counting

the whole data set together, itBWT is more than 40% faster

compared with the BWT. Although the performance would be

dropped by taking tries’ construction time into consideration,

we are still able to save 35% time using itBWT.

VII. CONCLUSION AND FUTURE WORK

In this paper, a new method to search a large volume of

pattern strings against a single long target string is proposed,

aiming at efficient next-generation sequencing in DNA

databases. The main idea is to combine the search of tries

constructed over the patterns and the search of the BWT

indexes over the target. Especially, the so-called multiple-

character checking has been introduced, which reduces the

multiple scanning of a BWT array to a single search of it.

Extensive experiments have been conducted, which show that

our method improves the running time of the traditional

methods by an order of magnitude or more.

As a future work, we will extend the discussed method to

handle inexact string matches, such as the string matching

with k-mismatches and k-errors, as well as patterns containing

Figure 21. Test results on real data

0

300

600

900

1200

1500

S1 S2 S3 S4 S5 S6 S7 S8 S9

BWT it BWT t BWT

0

400

800

1200

1600

2000

2400

S1 S2 S3 S4 S5 S6 S7 S8 S9

time (s) time (s)

(b) (a)

Figure 20. Test results on varying compact and compression factors

0

200

400

600

800

1000

32 64 128 256

time (s) time (s)

(b) (a)

Figure 19. Test results on varying compact and compression factors

0

200

400

600

800

1000

8 16 32 64

BWT t BWT it BWT

0

200

400

600

800

1000

8 16 32 64

time (s)
time (s)

(b) (a)

0

200

400

600

800

1000

32 64 128 256

BWT tBWT itBWT

33Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 44 / 107

‘don’t-cares’. It is very challenging to integrate the existing

techniques for treating mismatches into the BWT-

transformation.

REFERENCES

[1] A.V. Aho and M.J. Corasick, “Efficient string matching: an aid to

bibliographic search,” Communication of the ACM, Vol. 23, No. 1, pp.

333 -340, June 1975.
[2] A. Amir, M. Lewenstein and E. Porat, “Faster algorithms for string

matching with k mismatches,” Journal of Algorithms, Vol. 50, No.

2, Feb.2004, pp. 257-275.
[3] A. Apostolico and R. Giancarlo, “The Boyer-Moore-Galil string

searching strategies revisited,” SIAM Journal on Computing, Vol. 15,

No. 1, pp. 98 – 105, Feb. 1986.
[4] R.A. Baeza-Yates and G.H. Gonnet, “A new approach to text

searching,” in N.J. Belkin and C.J. van Rijsbergen (eds.) SIGIR 89, Proc.

12th Annual Intl. ACM Conf. on Research and Development in
Information Retrieval, pp. 168 – 175, 1989.

[5] R.A. Baeza-Yates and G.H. Gonnet, “A new approach in text

searching,” Communication of the ACM, Vol. 35, No. 10, pp. 74 – 82,

Oct. 1992.

[6] R.A. Baeza-Yates and C.H. Perleberg, “Fast and practical approximate

string matching,” in A. Apostolico, M. Crocchemore, Z. Galil, and U.
Manber (eds.) Combinatorial Pattern Matching, Lecture Notes in

Computer Science, Vol. 644, pp. 185 – 192, Springer-Verlag, Berlin.

[7] S. Bauer, M.H. Schulz, P.N. Robinson, gsuffix: http:://gsuffix.
 Sourceforge.net/, retrieved: April 2016.

[8] A.M.Bolger, M. Lohse and B. Usadel, “Trimmomatic Bolger: A

flexible trimmer for Illumina Sequence Data,” Bioinformatics, btu170,
2014.

[9] R.S. Boyer and J.S. Moore, “A fast string searching algorithm,”

Communication of the ACM, Vol. 20, No. 10, pp. 762 -772, Oct. 1977.
[10] M. Burrows and D.J. Wheeler, “A block-sorting lossless data

compression algorithm,” http://citeseer.ist.psu.edu/viewdoc/summary?

doi=10.1.1.121.6177, retrieved: 2016.
[11] W.L. Chang and J. Lampe, “Theoretical and empirical compaisons of

approximate string matching algorithms,” in A. Apostolico, M.

Crocchemore, Z. Galil, and U. Manber (eds.) Combinatorial Pattern

Matching, Lecture Notes in Computer Science, Vol. 644, pp. 175 – 184,

Springer-Verlag, Berlin, 1994.

[12] L. Colussi, Z. Galil, and R. Giancarlo, “On the exact complexity of
string matching,” Proc. 31st Annual IEEE Symposium of Foundation of

Computer Science, Vol. 1, pp. 135 – 144, 1990.

[13] F. Cunningham, et al., “Nucleic Acids Research,” 2015, 43, Database
issue:D662-D669.

[14] S.R. Eddy, “What is dynamic programming?” Nature Biotechnology 22,

909 - 910, (2004) doi:10.1038/nbt0704-909.
[15] A. Ehrenfeucht and D. Haussler, “A new distance metric on strings

computable in linear time,” Discrete Applied Mathematics, Vol. 20, pp.

191 – 203, 1988.
[16] P. Ferragina and G. Manzini, “Opportunistic data structures with

applications,” In Proc. 41st Annual Symposium on Foundations of
Computer Science, pp. 390 - 398. IEEE, 2000.

[17] Z. Galil, “On improving the worst case running time of the Boyer-

Moore string searching algorithm,” Communication of the ACM, Vol.
22, No. 9, pp. 505 -508, 1977.

[18] M.C. Harrison, “Implementation of the substring test by hashing,”

Communication of the ACM, Vol. 14, No. 12, pp. 777- 779, 1971.
[19] H. Jiang, and W.H. Wong, “SeqMap: mapping massive amount of

oligonucleotides to the genome,” Bioinformatics, 24, 2395–2396, 2008.

[20] R.L. Karp and M.O. Rabin, “Efficient randomized pattern-matching
algorithms,” IBM Journal of Research and Development, Vol. 31, No. 2,

pp. 249 – 260, March 1987.

[21] D.E. Knuth, The Art of Computer Programming, Vol. 3, Massachusetts,
Addison-Wesley Publish Com., 1975.

[22] D.E. Knuth, J.H. Morris, and V.R. Pratt, “Fast pattern matching in

strings,” SIAM Journal on Computing, Vol. 6, No. 2, pp. 323 – 350,
June 1977.

[23] lab website: http://home.cc.umanitoba.ca/~xiej/, retrieved: April 2016.

[24] G.M. Landau and U. Vishkin, “Efficient string matching in the presence
of errors,” Proc. 26th Annual IEEE Symposium on Foundations of

Computer Science, pp. 126 – 136, 1985.

[25] G.M. Landau and U. Vishkin, “Efficient string matching with k
mismatches,” Theoretical Computer Science, Vol. 43, pp. 239 – 249,

1986.

[26] B. Langmead, “Introduction to the Burrows-Wheeler Transform,”
www.youtube.com/watch?v=4n7N Pk5lwbI, retrieved: April 2016.

[27] T. Lecroq, “A variation on the Boyer-Moore algorithm,” Theoretical

Computer Science, Vol. 92, No. 1, pp. 119 – 144, Jan. 1992.
[28] H. Li, et al., “Mapping short DNA sequencing reads and calling

variants using mapping quality scores,” Genome Res., 18, 1851–1858,

2008.
[29] R. Li, et al., “SOAP: short oligonucleotide alignment program,”

Bioinformatics, 24, 713–714, 2008.

[30] H. Li and R. Durbin, “Fast and accurate short read alignment with
Burrows–Wheeler Transform,” Bioinformatics, Vol. 25 no. 14 2009, pp.
1754–1760.

[31] H. Li and R. Durbin, “Fast and accurate long-read alignment with
Burrows–Wheeler Transform,” Bioinformatics, Vol. 26 no. 5 2010, pp.
589–595.

[32] H. Li and. Homer, “A survey of sequence alignment algorithms for next-
generation sequencing,” Briefings in Bioinformatics. 2010;11(5):473-

483. doi:10.1093/bib/bbq015.

[33] H. Li, “wgsim: a small tool for simulating sequence reads from a
reference genome,” https://github.com/lh3/wgsim/, 2014.

[34] H. Lin, et al., “ZOOM! Zillions of oligos mapped,” Bioinformatics, 24,

2431–2437, 2008.
[35] U. Manber and E.W. Myers, “Suffix arrays: a new method for on-line

string searches,” Proc. the 1st Annual ACM-SIAM Symposium on

Discrete Algorithms, pp. 319 – 327, SIAM, Philadelphia, PA, 1990.
[36] U. Manber and R.A. Baeza-Yates, “An algorithm for string matching

with a sequence of don’t cares,” Information Processing Letters, Vol. 37,

pp. 133 – 136, Feb. 1991.
[37] E.M. McCreight, “A space-economical suffix tree construction

algorithm,” Journal of the ACM, Vol. 23, No. 2, pp. 262 – 272, April

1976.
[38] R.Y. Pinter, “Efficient string matching with don’t’ care patterns,” in A.

Apostolico and Z. Galil (eds.) Combinatorial Algorithms on Words,

NATO ASI Series, Vol. F12, pp. 11 – 29, Springer-Verlag, Berlin, 1985.
[39] M. Schatz, “Cloudburst: highly sensitive read mapping with

mapreduce,” Bioinformatics, 25, 1363–1369, 2009.

[40] J. Seward, “bzip2 and libbzip2, version 1.0. 5: A program and library for
data compression,” URL http://www. bzip. org, 2007.

[41] A.D. Smith, et al, “Using quality scores and longer reads improves

accuracy of Solexa read mapping,” BMC Bioinformatics, 9, 128, 2008.
[42] J. Tarhio and E. Ukkonen, “Boyer-Moore approach to approximate

string matching,” in J.R. Gilbert and R. Karlssion (eds.) SWAT 90, Proc.

2nd Scandinavian Workshop on Algorithm Theory, Lecture Notes in
Computer Science, Vol. 447, pp. 348 – 359, Springer-Verlag, Berlin,

1990.

[43] J. Tarhio and E. Ukkonen, “Approximate Boyer-Moore String
Matching,” SIAM Journal on Computing, Vol. 22, No. 2, pp. 243 -260,

1993.

[44] E. Ukkonen, “Approximate string-matching with q-grams and maximal
matches,” Theoretical Computer Science, Vol. 92, pp. 191 – 211, 1992

[45] P. Weiner, “Linear pattern matching algorithm,” Proc. 14th IEEE
Symposium on Switching and Automata Theory, pp. 1 – 11, 1973.

[46] Y. Chen, D. Che and K. Aberer, “On the Efficient Evaluation of Relaxed

Queries in Biological Databases,” in Proc. 11th Int. Conf. on
Information and Knowledge Management, Virginia, U.S.A.: ACM, Nov.

2002, pp. 227 – 236.

34Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 45 / 107

A Simplified Database Pattern for the
Microservice Architecture

Antonio Messina, Riccardo Rizzo, Pietro Storniolo, Alfonso Urso
ICAR - CNR
Palermo, Italy

Email: {messina, ricrizzo, storniolo, urso}@pa.icar.cnr.it

Abstract—Microservice architectures are used as alternative to
monolithic applications because they are simpler to scale and
more flexible. Microservices require a careful design because each
service component should be simple and easy to develop. In this
paper, a new microservice pattern is proposed: a database that
can be considered a microservice by itself. We named this new
pattern as The Database is the Service. The proposed simplified
database pattern has been tested by adding ebXML registry
capabilities to a noSQL database.

Keywords–microservices, scalable applications, continuous de-
livery, microservices patterns, noSQL, database

I. INTRODUCTION

The microservice architectural style [1] is a recent approach
to build applications as suite of services, independently de-
ployable, implementable in different programming languages,
scalable and manageable by different teams.

Microservices architectures are opposed to monolithic ap-
plications. Monolithic applications are simpler to build and to
deploy, but their structure forces the developers to work in
team. Working in team the developers tends to deploy large
applications that are difficult to understand and to modify.

Moreover, if a required service is implemented by a single
application, the transactions volume can be increased only by
running multiple copies of the same application, that has to
access to the same database.

On the other side, developing a system based on microser-
vices requires a special attention because it is a distributed
system. In this case, even the team of developers can be
distributed, it requires a special effort in coordination and
communication.

In microservices based systems, one of the biggest chal-
lenge is the partition into separated services, each of them
should be simple enough to have a small set of responsibilities.
Data management require a special attention, because it can
be one of the bottleneck of the system. So that it is convenient
that only one or few microservices access the data, but this
can affect the responsiveness of the whole system.

When a careful project solves all these issues, microser-
vices became an effective architectural pattern, in fact studies
have shown how this architectural pattern can give benefits
when enterprise applications are deployed in cloud environ-
ments [2] and in containers [3], e.g., Docker [4]. Microservices
are also considered the natural fit for the Machine-to-Machine
(IoT) development [5].

The microservices pattern implies several important auxili-
ary patterns, such as, for example, those which concern how
clients access the services in a microservices architecture, how
clients requests are routed to an available service instance, or
how each service use a database.

In the new microservice pattern proposed in this paper,
a database, under certain circumstances and thanks to the
integration of some business logic, can be considered a mi-
croservice by itself. It will be labeled as The database is the
service pattern.

The remainder of the paper is organized as follows: Section
2 presents a brief overview about the old monolithic style and
its drawbacks. The microservices architectures and the related
pattern are described in Section 3. Section 4 presents the
proposed pattern. In Section 5, we show a proof of concept of
the pattern and its improved performances. Finally, conclusions
are reported.

II. BACKGROUND

To better understand the microservice style it is useful to
compare it to the monolithic style: a monolithic application
built as a single unit. Modern enterprise applications are
typically built in three main parts: a client-side user interface,
a server-side application, and a relational database. The server-
side application handles the requests, executes domain logic,
retrieves and updates data from the relational database, and
selects and populates the views to be sent to the client-side.
This server-side application can be defined as monolith, a
single logical executable.

Essentially, a monolith application is the one where all
its functionalities are packaged together as a single unit or
application. This unit could be a JAR, WAR, EAR, or some
other archive format, for which is all integrated in a single unit.
This style of application is well known, because this is how
applications have been built so far, it is easy to conceptualize
and all the code is in one place. The most of existing tools,
application servers, frameworks, scripts are able to deal with
such kind of applications. In particular, IDEs are typically
designed to easily develop, deploy, debug, and profile a single
application. Stepping through the code base is easy because
the codebase is all together.

Finally, a monolith is easy to share, to test and to deploy. A
single archive, with all the functionality, can be shared between
teams and across different stages of deployment pipeline.
Once the application is successfully deployed, all the services,
or features, are up and available. This simplifies testing as

35Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 46 / 107

there are no additional dependencies to wait for in order to
begin the test phase. Accessing or testing the application is
simplified in either case. It is easy to deploy since, typically,
a single archive needs to be copied to one directory. The
deployment times could vary but the process is pretty straight
forward. However, a monolithic application, no matter how
modular, will eventually start to break down as the team grows,
experienced developers leave and new ones join, application
scope increases, new ways to access the applications are added,
and so on. Moreover, it has a very limited agility, because
every tiny change to the application means full redeployment
of the archive. This means that developers will have to wait
for the entire application to be deployed if they want to see
the impact of quick change made in their workspace. Even if
not intentional, but this may require tight coupling between
different features of the application. This may not be possible
all the time, especially if multiple developers are working
on the application. This reduces agility of the team and the
frequency by which new features can be delivered. If a single
change to the application would require entire application to
be redeployed, then this could become an obstacle to frequent
deployments, and thus an important obstacle for continuous
delivery.

Choice of technology for such applications are evaluated
and decided before their development starts. Everybody in the
team is required to use the same language, persistence stores,
messaging system, and use similar tools to keep the team
aligned. It is typically not possible to change technology stack
mid stream without throwing away or rewriting significant part
of existing application.

Figure 1. Services provided by horizontally scaled monolithic application

Monoliths can only scale in one dimension, i.e., they have
to be entirely duplicated across a set of servers (see Figure 1).
This way, each application instance will access all of the
data. This makes caching less effective, increases memory
consumption and i/o traffic.

Systems based on microservices present many advantages
if compared to monolithic applications. Some of these ad-
vantages came from their distributed architecture and will be
explained in the next section.

III. MICROSERVICES ARCHITECTURE AND RELATED
PATTERNS

In the last years, several large Internet companies have used
different mechanisms, strategies and technologies to address

the limitations of the monolithic architecture: they can be
referred as the microservices architecture pattern.

Microservices is a software architectural style that require
functional decomposition of an application. A monolithic
application is broken down into multiple smaller services, each
deployed in its own archive, and then composed as a single
application using standard lightweight communication, such as
REST over HTTP (see Figure 2).

Figure 2. Tipical microservice-based application with lightweight frontend

The decomposition into a set of collaborating services is
usually done applying the Y-axis scaling of the three dimension
scalability model named the Scale Cube [6]:

• X-axis scaling: it is the simplest commonly used
approach of scaling an application via horizontal du-
plication, namely running multiple cloned copies of
an application behind a load balancer.

• Y-axis scaling: it represents an application’s split by
function, service or resource. Each service is responsi-
ble for one or more closely related functions. We can
use a verb-based decomposition and define services
that implement single use cases, or we can decompose
the application by noun and create services responsible
for all operations related to a particular entity.

• Z-axis scaling: it is commonly used to scale databases,
because the data is partitioned across a set of servers.
Each server runs an identical copy of the code and
each service request is routed to the appropriate server
according to a routing criteria.

Basically, the service design should be made by applying
the Single Responsibility Principle [7], that defines a respon-
sibility of a class as a reason to change, and states that a class
should only have one reason to change.

There are several patterns [8] related to the microservices
pattern. We mainly focus our attention on the following:

• The API Gateway pattern, that defines how clients
access the services in a microservices architecture.

• The Client-side Discovery and Server-side Discovery
patterns, used to route requests for a client to an availa-
ble service instance in a microservices architecture.

• The Service Registry pattern, a critical component that
tracks the instances and the locations of the services.

• The Database per Service pattern, that describes how
each service has its own database.

36Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 47 / 107

A. The API Gateway Pattern
Microservices typically provide fine-grained APIs, which

means that clients need to interact with multiple services.
However, different clients need different data and network per-
formance is different for different types of clients. Moreover,
the number of service instances and their locations (host+port)
changes dynamically and partitioning into services can change
over time and should be hidden from clients.

An API gateway is the single entry point for all clients
and handles requests in one of two ways. Some requests are
simply proxied/routed to the appropriate service. It handles
other requests by fanning out to multiple services. Rather than
provide a one-size-fits-all style API, the API gateway can
expose a different API for each client. It might also implement
security, e.g., verify that the client is authorized to perform the
request. There is a couple of obvious drawbacks, at least:

• Increased complexity, due to another moving part that
must be developed, deployed and managed.

• Increased response time, due to the additional network
hop through the API gateway. However, for most ap-
plications the cost of an extra roundtrip is insignificant.

B. The Discovery Patterns
In a monolithic application, services invoke one another

through language-level method or procedure calls. In a tra-
ditional distributed system deployment, services run at fixed,
well known locations (hosts and ports) and so they can
easily call each using HTTP/REST or some RPC mechanism.
However, a modern microservice-based application typically
runs in a virtualized or containerized environments where the
number of instances of a service and their locations changes
dynamically. Consequently, the service clients must be enabled
to make requests to a dynamically changing set of transient
service instances.

• Client-side: The clients obtain the location of a service
instance by querying a Service Registry, which knows
the locations of all service instances. This implies
fewer moving parts and network hops compared to
Server-side Discovery, but clients are coupled to the
Service Registry and you need to implement a client-
side service discovery logic for each programming
language/framework used by the application (see Fig-
ure 3).

Figure 3. Client-side discovery pattern

• Server-Side: When making a request to a service,
the client makes a request via a router (a.k.a. load
balancer) that runs at a well known location. The
router queries a service registry, which might be built
into the router, and forwards the request to an available
service instance. Compared to client-side discovery,

the client code is simpler since it does not have to
deal with discovery. Instead, a client simply makes
a request to the router, but more network hops are
required (see Figure 4).

Figure 4. Server-side discovery pattern

C. The Service Registry Pattern
A service registry is a database of services, their instances

and their locations. Service instances are registered with the
service registry on startup and deregistered on shutdown.
Client of the service and/or routers query the service registry
to find the available instances of a service. Unless the service
registry is built in to the infrastructure, it is yet another
infrastructure component that must be setup, configured and
managed. Moreover, the Service Registry is a critical system
component. Although clients should cache data provided by
the service registry, if the service registry fails that data
will eventually become out of date. Consequently, the service
registry must be highly available.

D. The Database per Service Pattern
According to this pattern, we should keep each microser-

vice’s persistent data private to that service and accessible only
via its API. It means that the service’s database is effectively
part of the implementation of that service and it cannot be
accessed directly by other services. There are a few different
ways to keep a service’s persistent data private:

• Private-tables-per-service: each service owns a set of
tables that must only be accessed by that service.

• Schema-per-service: each service has a database
schema that is private to that service

• Database-server-per-service: each service has its own
database server. When the service has to be scaled,
the database can be also scaled in a database cluster,
no matter the service.

Figure 5. The Database per Service pattern applied to
a scaled service using a database cluster

37Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 48 / 107

Figure 5 shows a typical architecture of a scaled
service using its own database cluster.

IV. THE Database is the Service PATTERN

The granular nature of the microservice architectures may
bring many benefits, but also comes with the cost of increased
complexity.

Breaking a monolith into microservices simplifies each
individual component, but the original complexity goes to sur-
face when, at some point, someone has to put it all together [9].
Certainly, there is a sort of law of conservation of complexity
in software and, if we break up big things into small pieces,
then we push the complexity to their interactions [10].

Moreover, IT complexity in enterprise today continues
to grow at a dizzying rate. Technology innovation, vendor
heterogeneity, and business demands are major reasons why
organizations are exposed to new risks, based on the gaps
opened between the options and features of each IT element
and product, and how they are implemented to support a well-
defined policy and company strategy. The impact of such risks
increases exponentially by failing to identify the handshakes
and correlations of interrelated elements. Products, vendors,
and IT layers must work together to prevent potential black
holes: risks related to availability, resiliency and data loss.

It is not hard to understand how microservice architectures
may amplify such risks, because their distributed nature. More-
over, in a monolithic application there was a method call acting
as a subsystem boundary, in the microservice architecture we
now introduce lots of remote procedure calls, REST APIs
or messaging to glue components together across different
processes and servers.

Once we have distributed a system, we have to consider
a whole host of concerns that we didn’t before. Network
latency, fault tolerance, message serialisation, unreliable net-
works, asynchronicity, versioning, varying loads within our
application tiers etc.

Starting from the Database-Server per Service Pattern, the
addition of new behaviors and business logic at the database
level may be a possible approach to reduce complexity, and
thus the related risks, and also to gain improvements in terms
of speed and scalability.

Problem: If each scalable service has its own database
(cluster), as shown in Figure 5, is there any way to reduce the
complexity of the architecture and the related risks, while also
gaining more improvements in terms of speed and scalability?

Solution: Whenever the database has an open architecture
and provides the necessary hooks to extend its capabilities,
then it can embed the business logic that implements the
desired service. The service is strictly coupled to the data,
hence this pattern is even stronger than the Database-Server
per Service Pattern, because the database itself acts as a
business service. As shown in Figure 6, clients requests are
routed via a load balancer, following the guidelines of the
Server-side Discovery Pattern.

Some benefits of such approach are immediately clear at
first sight:

a) the traditional service layer disappears, thanks to the whole
removal of related hosts and application servers or contain-
ers;

Figure 6. The Database is the Service pattern: DBMS with business logic

b) services deployed into the database have instant access to
data, accessible at no cost (no third party libraries, no
network issues, and so on);

c) less the involved components, less the complexity, the
interactions and the potential risks.

If the database cluster layer is also available to clients, i.e.,
thanks to a specific library, we may achieve further simplifica-
tion, because clients requests reach directly the service. Unlike
Client-side Discovery Pattern, there’s no need to implement
a discovery logic into clients, there isn’t any balancer, and
the cluster layer supplies, at least, the same Service Registry
capabilities. Figure 7 shows the way that super-simplified
architecture looks.

Figure 7. The Database is the Service pattern with client-side cluster support

Drawbacks are also obvious, first and foremost the depen-
dency on the chosen database, because the service becomes
integral to, and inseparable from, the database engine. Test and
debug activities must also involve the database because of his
primary role. For this reason, the database source code must
be available, an open source product is the obvious choice.

V. PROOF OF CONCEPT

As a proof of concept for the proposed pattern, we have
added ebXML registry capabilities to a noSQL database,
starting from EXPO [19], a prototypal extension for OrientDB
derived from eRIC [20], our previous SQL-based ebXML
registry implemented as web service in Java.

An ebXML registry [15][16] is an open infrastructure
based on XML that allows electronic exchange of business
information in a consistent, secure and interoperable way.

The eXtensible Markup Language (ebXML) is a stan-
dard promoted by the Organization for the Advancement of
Structured Information (OASIS) and was designed to create

38Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 49 / 107

a global electronic market place where enterprises of any
size, anywhere, can find each other electronically and conduct
business using exchange of XML messages according to stan-
dard business process sequences and mutually agreed trading
partner protocol agreements.

Nowadays, ebXML concepts and specifications are reused
by the Cross-Enterprise Document Sharing (XDS) architectural
model [17], defined by Integrating the Healthcare Enterprise
(IHE) initiative [18], which is promoted by healthcare profes-
sionals and industries to improve the way computer systems
in healthcare share informations.

In the following subsections, we introduce the noSQL
database engine we have chosen and we briefly illustrate what
we have done and some interesting performances results.

A. Brief overview on OrientDB
OrientDB [11] is an open source NoSQL DBMS developed

in Java by Orient Technologies LTD and distributed under
the Apache 2 license [14]. It collects features of document
databases and graph databases, including object orientation. In
graph mode, referenced relationships are like edges, accessible
as first-class objects with a start vertex, end vertex, and
properties. This interesting feature let us represent a relational
model in document-graph model maintaining the relationships.

OrientDB supports an extended version of SQL, to allow
all sort of CRUD (Create, Read, Update and Delete) and
query operations, and ACID (Atomicity, Consistency, Isolation,
Durability) transactions, helpful to recover pending document
at the time of crash. It is easily embeddable and customizable
and it handles HTTP Requests, RESTful protocols and JSON
without any 3rd party libraries or components. It is also fully
compliant with TinkerPop Blueprints [12], the standard of
graph databases. Finally, his feature can be easily customized
and it supports a multi-master distributed architecture, a 2nd
level shared cache and the other features offered by embedded
Hazelcast [13].

B. A multi-model noSQL DBMS as an ebXML Registry
OrientDB is also a customizable platform to build pow-

erful server component and applications: since it contains
an integrated web server, it is possible to create server side
applications without the need to have a J2EE and Servlet
container. The customizations can be obtained by developing
new Handlers, to build plugins that start when OrientDB starts,
or implementing Custom Commands, the suggested best way
to add custom behaviors or business logic at the server side.

The multi-model nature of the OrientDB engine allows
it to support Object data model, too. This model has been
inherited by Object Oriented programming and supports the
inheritance between types (sub-types extends the super-types),
the polymorphism when you refer to a base class, and the direct
binding from/to objects used in programming languages.

The OrientDB Object Interface works on top of the
Document-Database and works like an Object Database: man-
ages Java objects directly. This makes things easier for the
Java developer, since the binding between Objects to Records
is transparent. In that context, the Objects are referred as
POJOs: Plain Old Java Objects. OrientDB uses Java reflection
and Javassist [21] to bound POJOs to Records directly. Those
proxied instances take care about the synchronization between

a POJO and its underlying record. Every time you invoke a
setter method against the POJO, the value is early bound into
the record. Every time you call a getter method, the value is
retrieved from the record if the POJO’s field value is null. Lazy
loading works in this way too.

The ebXML RIM objects are perfect POJOs, because they
are serializable, have a no-argument constructor, and allow
access to properties using getter and setter methods that follow
a simple naming convention. They are also fully described by
the standard set of Java XML annotation tags because they
need to be transferred over the line properly encapsulated using
the Java Architecture for XML Binding (JAXB) [22]. This
means that we can add new custom properties preceded by
the @XMLTransient tag without breaking things. We have used
those new properties and the related getter and setter methods
to add native OrientDB links between objects, which can be
transparently serialized/deserialized by the OrientDB engine in
their enriched form.

This approach has a great impact on the management of
ebXML objects:

a) they are still used in the standard way within the client-
server SOAP interactions;

b) the binding to the database records is transparent;
c) there is no need of extra data class object (DAO) hierarchy

to manage the persistence;
d) we are able to make full use of the OrientDB capabilities.

An extension of the OrientdDB OServerCommandAbstract
class has replaced the old Java servlet in the registry requests
management. In particular, the execute() method is invoked
at every HTTP request and let us to read the input HTTP
stream and to write into the output HTTP stream. This is the
place where we intercept, elaborate and reply to the incoming
requests, by calling the real ebXML registry layer.

Figure 8. EXPO vs eRIC/PostgreSQL

To verify ebXML specifications compliance and to evaluate
the performances, we have run the same ebXML test suite
developed with the JAebXR API [23] and then we have
compared the results in some different configurations. Figure 8

39Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 50 / 107

shows the interesting performance improvements obtained with
EXPO service.

VI. CONCLUSIONS

While monoliths have been the norm for some time,
microservices have emerged as an alternative to deal with
certain limitation in monoliths. However, that doesn’t mean
that monoliths are completely obsolete. Just because others
are gravitating to one more than the other, doesn’t mean that
it’s going to be the best decision. Obviously, it’s important
to look at advantages and disadvantages of each and, as much
information as possible, to make the aware decision. Keep also
in mind that, due to the significant architectural differences, a
direct comparative quantitative analysis is actually not easy to
achieve, but we are working on it.

In this paper, we introduced a new microservice pattern
where the database is the service. The proposed pattern has
been tested adding ebXML registry capabilities to a noSQL
database. Experimental tests have shown improved perfor-
mances of the proposed simplified microservice architecture
compared with SQL-based ebXML registry implemented as
traditional Java web service.

REFERENCES
[1] M. Fowler, ”Microservices, a definition of this new architectural

term”, URL: http://martinfowler.com/articles/microservices.html [ac-
cessed: 2016-02-12].

[2] M. Villamizar, et al., ”Evaluating the monolithic and the microservice
architecture pattern to deploy web applications in the cloud”, ”Computing
Colombian Conference (10CCC), 2015 10th”, 2015, pp. 583–590, DOI:
10.1109/ColumbianCC.2015.7333476.

[3] M. Amaral, et al., ”Performance Evaluation of Microservices Architec-
tures Using Containers”, ”2015 IEEE 14th International Symposium on
Network Computing and Applications (NCA)”, 2015, pp. 27–34, DOI:
10.1109/NCA.2015.49.

[4] Docker Inc., ”Docker, An open platform for distributed applications
for developers and sysadmins”, URL: https://www.docker.com [accessed:
2016-02-12].

[5] D. Namiot and M. Sneps-Sneppe, ”On micro-services architecture”,
”International Journal of Open Information Technologies”, 2014, vol.
2, no. 9, pp. 24–27, ISSN: 2307-8162.

[6] M. Abbott, T. Keeven, and M. Fisher, ”Splitting Applications or Services
for Scale”, URL: http://akfpartners.com/techblog/2008/05/08/splitting-
applications-or-services-for-scale/ [accessed: 2016-02-16].

[7] R. C. Martin, ”Agile Software Development: Principles, Patterns, and
Practices”, Pearson Education, Nov. 2009, ISBN: 978-0-13597-444-5

[8] C. Richardson, ”Microservice architecture patterns and best practices”,
URL: http://microservices.io/index.html [accessed: 2016-02-12].

[9] H. Hammer, ”The Fallacy of Tiny Modules”, URL:
http://hueniverse.com/2014/05/30/the-fallacy-of-tiny-modules/ [accessed:
2016-02-28].

[10] M. Feathers, ”Microservices Until Macro Complexity”, URL:
https://michaelfeathers.silvrback.com/microservices-until-macro-
complexity [accessed: 2016-02-28].

[11] Orient Technologies LTD, ”OrientDB”, URL: http://orientdb.com [ac-
cessed: 2016-02-10].

[12] Apache Software Foundation, ”Apache TinkerPop”, URL:
http://tinkerpop.incubator.apache.org [accessed: 2016-02-11].

[13] Hazelcast Inc., ”Hazelcast, the Operational In-Memory Computing
Platform”, URL: http://hazelcast.com [accessed: 2016-02-10].

[14] Apache Software Foundation, ”Apache License v2.0”, Jan. 2004, URL:
http://www.apache.org/licenses/LICENSE-2.0 [accessed: 2016-02-11].

[15] OASIS ebXML Registry Technical Committee, ”Registry
Information Model (RIM) v3.0”, 2005, URL: http://docs.oasis-
open.org/regrep/regrep-rim/v3.0/regrep-rim-3.0-os.pdf [accessed: 2016-
02-10].

[16] OASIS ebXML Registry Technical Committee, ”Registry Services and
Protocols v3.0”, 2005, URL: http://docs.oasis-open.org/regrep/regrep-
rs/v3.0/regrep-rs-3.0-os.pdf [accessed: 2016-02-10].

[17] R. Noumeir, ”Sharing Medical Records: The XDS Architecture and
Communication Infrastructure”, ”IT Professional”, Sep. 2010, Volume:
13, Issue: 4, ISSN: 1520-9202, DOI: 10.1109/MITP.2010.123.

[18] Integrating the Healthcare Enterprise (IHE), 2010, URL: http://ihe.net
[accessed: 2016-02-17].

[19] A. Messina, P. Storniolo, and A. Urso, ”Keep it simple, fast and scal-
able: a Multi-Model NoSQL DBMS as an (eb)XML-over-SOAP service”,
”The 30th IEEE International Conference on Advanced Information
Networking and Applications (AINA-2016)”, IEEE, in press.

[20] A. Messina and P. Storniolo, ”eRIC v3.2: ebXML Registry by
ICAR CNR”, Technical Report: RT-ICAR-PA-13-03, Dec. 2013, DOI:
10.13140/RG.2.1.2108.9124.

[21] JBoss Javassist, ”Javassist (Java Programming Assistant)”, 2015, URL:
http://jboss-javassist.github.io/javassist/ [accessed: 2016-02-29].

[22] Java Community Process, ”JSR 222: Java Architecture for XML
Binding (JAXB) 2.0”, 2009, URL: https://jcp.org/en/jsr/detail?id=222
[accessed: 2016-02-29].

[23] A. Messina, P. Storniolo, and A. Urso, ”JAebXR: a Java API for
ebXML Registries for Federated Health Information Systems”, ”DBKDA
2015: The Seventh International Conference on Advances in Databases,
Knowledge, and Data Applications”, Rome, Italy, May 2015, pp. 33–39,
ISBN: 978-1-61208-408-4.

40Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 51 / 107

Multidimensional Structures for Field Based Data

A Review of Models

Taher Omran Ahmed

IT Department, College of Applied Sciences,

Sultanate of Oman,

Computer Science Department, Faculty of Science

Aljabal Algharbi University, Azzentan, Libya

e-mail: taher.ibr@cas.edu.om, fenneer@yahoo.com

Abstract— The growth in size of geographical data collected by

different types of sensors and used in diverse applications have

led to the adoption of spatial data warehouses (SDW) and

spatial OLAP (SOLAP). Spatial data are represented as either

discrete (objects) or continuous (raster), also called field-based

data. The latter representation deals with data about natural

phenomena that exist continuously in space and time.

Continuity was not taken into account during the early days of

SDW and SOLAP, however, during the last decade there were

attempts to include this concept within SOLAP. In this paper,

we present some of the concepts, issues and discuss the models

proposed to represent spatiotemporal continuity in a decisional

context and attempt to foresee where the research in this area

is heading.

Keywords-Data Warehousing; Field Based Data; Models;

Multidimensional; SOLAP; Spatial Data.

I. INTRODUCTION

Data warehouses rely on multidimensional structures,
which are based on the concept of facts or measures and
dimensions. Facts are the subject of analysis and they are
usually numeric values. Facts are defined by the combination
of values (members) of dimensions if a corresponding value
exists. Dimensions represent the context in which measures
or facts are analyzed. Usually, dimensions are organized in
hierarchies composed of several levels; each level represents
a level of detail as required by the expected analysis. A
hierarchy is a set of variables which represent different levels
of aggregation of the same dimension and which are
interlinked by a mapping [18]. Traditional data warehouses
deal with alphanumeric data; however, most businesses take
geographical location seriously when they seek good
decisions and hence a large segment of data stored in
corporate databases is spatial. It has been estimated that
about 80% of data have a spatial component to it, like an
address or a postal code [8]. In order to obtain maximum
benefits of the spatial component of data, there had been
important efforts that led, eventually, to the introduction and
implementation of spatial data warehousing (SDW) and
spatial OLAP (SOLAP).

Spatial data warehousing has been recognized as a key
technology in enabling the interactive analysis of spatial data
sets for decision-making support [11][19]. According to [22]
a spatial data warehouse is a subject oriented, integrated,

time-variant and non-volatile collection of both spatial data
and non-spatial data in support of management’s decision-
making process. In plain terms, it is a conventional data
warehouse that contains both spatial and non-spatial data
where these two types of data complement each other in the
support of the decision making process.

OLAP is a tool for analysis and exploration of
conventional (alphanumeric) data warehouses. It can also be
used for spatiotemporal analysis and exploration. However,
the lack of cartographic representations leads to serious
limitations (lack of spatial visualization, lack of map-based
navigation, and so on) [19]. To overcome these limitations,
visualization tools and map-based navigation tools have to
be integrated within the conventional OLAP. The result
would be a OLAP that can be seen as a client application on
top of a spatial data warehouse [2]. The presence of these
components would give specialists from multiple disciplines
(forestry, public health, transport,…etc.) a new exploration
and analysis potential known as Geographic Knowledge
Discovery (GKD) [3].

This paper sheds a light on the research carried on spatial
OLAP for continuous field data and the different models that
have been proposed. In order to achieve our objective, a brief
overview of spatial data warehousing is presented in Section
2. The rest of the paper is organized as follows: In Section 3,
we discuss the major concepts of several multidimensional
models for continuous field data that have been proposed. A
comparison between models is presented in Section 4 and we
conclude the paper in Section 5.

II. SPATIAL DATA WAREHOUSINGA AND SPATIAL OLAP

A spatial data warehouse contains three types of spatial
dimensions; non-spatial, mixed and spatial dimensions.

The first type is a hierarchy containing members that are
only located with place names (an address or a postal code)
and not represented geometrically. The absence of
geometrical representation handicaps the spatiotemporal
exploration and analysis but it is still possible for the users to
carry out the spatial cognition [13]. The second type is a
hierarchy whose detailed level members have a geometric
representation but general levels do not have one (at a certain
level of aggregation). An example of this type of dimensions
is using maps with polygons for cities and regions but neither

41Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 52 / 107

for states nor country. In the last type of spatial dimensions,
all members have a geometric representation.

In addition to spatial dimensions, two types of spatial
measures are also distinguished, the first being a geometric
shape or a set of shapes obtained by a combination of several
geometric spatial dimensions. The second type is a result of
spatial metric or topological operators [20].

A literature review of SOLAP shows an extensive
amount of work, unfortunately most of the published
research focused on the implementation side and on showing
the advantages and potential uses of SOLAP. To the best of
our knowledge, there is not enough solid attempts to go in-
depth in the theory behind the concepts or to propose a sound
mathematical model. Hence, SOLAP remained just an
application that can be seen - by many - merely as a coupling
between OLAP and GIS. Moreover, SOLAP solely deals
with the discrete representation of GIS and hence it cannot
grasp the essence of continuity in natural phenomena. Even
when continuous field data are dealt with in a decisional
context [14] they are treated as discrete and hence they lack
their main characteristic that is, spatiotemporal continuity.
For instance, [24] proposed a logical model to integrate
spatial dimensions representing incomplete field data at
different resolutions in a classical SOLAP architecture.
Nonetheless, during the last ten or more years, serious
attempts were made at integrating continuity in
multidimensional structures.

III. MODELS

There is no consensus on one specific model to represent
multidimensional structures for field-based data. In fact,
even conventional multidimensional structures, which are
more established, use different models. Over the last few
years, several models were proposed for spatiotemporal
multidimensional structures such as [21], where a logical
multidimensional model to support spatial data on SDW is
proposed. But, most of them concentrate on spatial
continuity rather than spatiotemporal continuity.

In this section we present an overview of the main
concepts of (four) major models.

A. Ahmed and Miquel, 2005

The model presented in [1] is one of the earliest models
for multidimensional structures that attempts to include
continuous field data as measures and dimensions. The
researchers present the concepts, research issues and
potentials of continuous multidimensional structures and
propose a model for continuous field data. The model is
based on the concept of basic cubes, which are used as the
lowest level of detail of dimensions. To imitate the behavior
of natural phenomena a continuous data warehouse will be
treated as a second layer on top of the discrete data
warehouse.

1) Basic Definitions
There are n dimensions with r being the rank of

dimension levels starting from (level 1) all the way up to
(level r) and k being the cardinality (number of members) of
a given dimension level DLi. The domain of values dom(DLi)

for a given dimension level DLi may contain two types of
members: predefined members and any possible value
between any two given members to give a continuous
representation of the dimension level. A value x belonging to
a specific dimension level DLi can have ancestors and
descendants which are specific instances related to x at
higher and lower dimension levels respectively.

2) Basic Cubes
A basic cube is a cube at the lowest level of detail. The

discrete basic cube discCb is a 3-tuple <Db, Lb, Rb> where Db
is a list of dimensions including a dimension measure M. Lb
is the list of the lowest levels of each dimension and Rb is a
set of cell data represented as a set of tuples containing level
members and measures in the form of x = [x1, x2,...xn, m]
where m is the dimension that represents the measure.

To obtain a continuous representation of the basic cube,
estimated measures related to the infinite members of a given
spatial and temporal levels are calculated using actual cell
values from discCb. This involves applying interpolation
functions to a sample of discCb values to calculate the
measures corresponding to the new dimension members,
which will result in continuous basic cube contCb.

A continuous basic cube contCb is 4-tuple <Db, (D’b, F),
Lb, R’b>. Discrete and continuous dimensions are
represented by Db, D’b respectively. In addition, F is a set of
interpolation functions associated with the continuous
dimensions and has the same cardinality as D’b. The lowest
levels of dimensions are represented by Lb. The continuous
representation is defined over a spatial and/or temporal
interval. Hence, R’b is a set of tuples of the form x = [x1,

x2,… xn, m] where xi ∈ [minDom(Lbi) - , maxDom(Lbi)+

] with being a small predefined value used to allow for
continuous representation around the values of the domain of
the dimension levels, and to predict values outside the
specified interval. The measure m ⊆ M can be either
interpolated (approximated) or exact. When measures are
interpolated m is defined as:
 m= f(m1, m2,…,mk) where ƒ is a spatial or temporal

interpolation function,

 m= f(m1, m2,…,mk) using values lying within a

predefined spatial or temporal distance d, or

 m = f1 o f2 (m1, m2,…,mk) or m = f2 o f1 (m1, m2,…, mk).

The order of applying interpolation functions.

It can be concluded that discCb contCb

3) Cubes
Cubes at higher levels are built by applying a set of

operations on data at the basic cube level. A cube C is
defined as 4-tuple <D, L, contCb, R> where, D is a list of
dimensions including M as defined before, L is the respective
dimension level, R is cell data and contCb is the basic cube
from which C is built. Because of the nature of the
continuous field data, different aggregation functions are
used to build the cube at higher dimension hierarchies. For
example, the sum of measures for a specific region or a
specific period will be represented as an integral. Other
aggregation functions like min, max or average will be

42Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 53 / 107

performed on contCb and their results will be assigned to the
higher levels of the hierarchy.

4) Aggregations
On a continuous field, two classes of operations are

defined. The first deals with discrete operations and the
second groups the continuous operations:

Discrete operations. Only the sample points are used.

DiscMax = vi such that vi ≥ f(sk) ∀ sk ∈ S

DiscMin = vi such that vi ≤ f(sk) ∀ sk ∈ S

DiscSum =

DiscCount = Card(S)

DiscAvg =

Continuous operations. All values of the field are used.

ContMax = vi such that vi ≥ f(Sk) ∀ Sk ∈ D × T

Cont Min = vi such that vi ≤ f(Sk) ∀ Sk ∈ D × T

ContSpatSum =

ContTempSum=

ContSpatAvg=

ContTempAvg =
where [t1:t2] is a time interval

B. Vaisman and Zimányi, 2009

Vaisman et al. [23] base their multidimensional model
for continuous fields in spatial data warehouses on MultiDim
model presented in [12]. A multidimensional schema
consists of a finite set of dimensions and fact relationships. A
dimension consists of at least one hierarchy, containing at
least one level. A basic hierarchy is hierarchy with only one
level. Several levels are related to each other through a

binary relationship that defines a partial order between

levels. For any two consecutive related levels li, lj, if li lj
then li is called child and lj is called parent. A level
representing the less detailed data for a hierarchy is called a
leaf level.

For spatial levels, the relationship can also be topological
requiring a spatial predicate, e.g., intersection. A fact
relationship may contain measures that can be spatial or
thematic. The thematic measures are numeric that are
analyzed quantifiably whereas the spatial measure can be
represented by a geometry or field, or calculated using
spatial operators, such as distance or area.

The dimension levels have two types of attributes
(category and property). For parent level, the category
attribute defines how child members are grouped. In the leaf
level, the category attribute indicates the aggregation level of

a measure in the fact relationship. The property attribute can
be spatial (represented by geometry or field) or thematic
(descriptive, alphanumeric data types). Hence, property
attribute provides additional features of the level. A level is
spatial if it has at least one spatial property attribute.
Likewise, a hierarchy is spatial if it has at least one spatial
level.

A field type is defined as a function from the spatial
domain to a base type. Field types are obtained by applying
the field(.). Therefore, the result of field(real) (e.g.
representing a natural phenomenon) is a continuous function
f : point → real. There are two types of fields (temporal and
nontemporal). Field types are partial functions, i.e., they may
be undefined for certain regions of space. Along with field
types a set of operations over fields are defined and classified
as in Table 1.

TABLE I. FIELDS AND OPERATION SETS

Class Operations

Projection to

Domain/Range
defspace, rangevalues, point, val

Interaction with

Domain/Range

atpoint, atpoint, atline, atregion, at, atmin,

atmax, defined, takes, concave, convex, flex

Rate of change partialder_x, partialder_y

Aggregation
operators

integral, area, surface, favg, fvariance, fstdev

Lifting
Operations on discrete types are generalized for

field types

1) Relational Calculus
To express SOLAP queries [23], use a query language

based on the tuple relational calculus (as in [7]) extended
with aggregate functions and variable definitions. They show
that this language expresses standard SOLAP queries and
that, by extending the calculus with field types
multidimensional, queries over fields can be expressed. The
query language is introduced by example.

Figure 1 and Figure 2 show a query over discrete data and
SOLAP operations respectively.

Figure 1. Query over discrete data

Figure 2. SOALP operations

43Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 54 / 107

2) Extending OLAP Operations with Continuous Fields
In addition to operations defined on fields specified in

3.2.1, they also define another set of operations that allows
the interaction with domain and range. These operations are
listed in Figure 3.

atpoint,
atpoints,
atline, atregion

restrict the function to a given
subset of the space defined by a
spatial value.

at : restricts the function to a point
or to a point set (a range) in the
range of the function.

concave,
convex:

restrict the function to the
points where it is concave or
convex, respectively

flex : restricts the function to the
points where convexity changes

Figure 3. Domain and range operators

There are also operators to compute how the field
changes in space. Moreover, there are three aggregate
operators defined as follows:

Field average favg : integral/area

Field variance fvariance : dxdy

Field Standard deviation fstdev :

A class of multidimensional queries over fields denoted

SOLAP-CF queries is also defined. Fields are classified as

temporal identified by f(,) pictogram and Non-temporal

identified by f() pictogram. In the Non-temporal field, each
point in the space has a value (e.g., soil type) whereas for
temporal field there is a value that changes with time instant
at each point in the space (e.g. temperature). The model also
supports field measures that can be pre-computed in the pre-
processing stage as a function of many factors.

C. Bimonte and Kang, 2010
Prior to introducing their model, Bimonte et al. [4] define

four requirements for definition of a formal model for field
data as dimension and measures:

1. Measures as continuous field data
2. Hierarchy on continuous field data
3. Aggregation functions as Map Algebra functions
4. Independence of implementation
They argue that no existing model satisfies all 4

requirements.

1) Definitions
As in the previous models, Bimonte et al. [4] start by

providing a uniform representation for field and vector data,
which are used to define measures and dimensions members
of the multidimensional model.

Real world entities are represented by 3 types of objects
described by alphanumeric attributes. An object can
represent levels and members of dimensions.

a) An object

An Object Structure Se is a tuple 〈a1 …an〉 where i

[1,…n] ai is an attribute defined on a domain dom(ai)

An Instance of an Object Structure Se is a tuple

〈val(a1),…val(an)〉 where i [1,…n], val(ai) dom(ai)

'I(Se)' denotes the set of instances of Se

b) Geographic Object
A geographic object is a geometry (geom) and an optional

set of alphanumeric attributes ([a1, … an]) whose values are

associated to the whole geometry according to the vector

model.
Let g R2. An Object Structure Se = 〈geom, [a1,… an]〉 is a

Geographic Object Structure if the domain of the attribute

geom is a set of geometries: dom(geom) 2g

geom is called 'geometric support'

c) Field Object
A Field Object extends a Geographic Object with a function that

associates each point of the geometry to an alphanumeric value.

Let Se = 〈geom, field, [a1,… an]〉 a Geographic Object

Structure. Se is a Field Object Structure if the domain of

the attribute field is a set of functions defined on m sub-

sets of points of geom having values in an alphanumeric

domain domfield : dom(field)= {f1 … fm}

An Instance of a Field Object Structure Se is a tuple 〈g,

fj, val(a1),…val(an)〉 where:

- i [1,…n] val(ai) dom(ai), g dom(geom)

- fj : g → domfield and fj {f1 , …, fm}

'field support' is the input domain of fj

2) Spatio-multidimensional Model for Field Data
A spatio-multidimensional model uses data as

dimensions composed of hierarchies, and facts described by
measures. A hypercube is an instance of the spatio-
multidimensional model.

a) Hierarchies and facts

Vector objects are organized in a hierarchical way. A
Spatial Hierarchy organizes the Geographic Objects into a
hierarchy structure using a partial order ≤h where Si ≤h Sj
means that Si is a less detailed level than Sj. Measures are
aggregated according to the groups of spatial members
defined by the tree <h.

Field Hierarchy is defined as a hierarchy of field objects.

A Field Hierarchy Structure, Hh, is a tuple 〈Lh, h, h, ≤h〉
where:

- h, h, are of Field Object Structures, and Lh is a set of

Field Object Structures
- ≤h is a partial order defined on Lh, h, h.

An Instance of a Field Hierarchy Structure Hh is two

partial orders: <h and <f such that:
- <h is defined on the instances of h, h, h. Noted as

<h 'geographic objects order'

44Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 55 / 107

- <f is defined on the field supports of the instances of

Lh, h, h such that:
- if coodi <f coodj then Si ≤h Sj , where coodi belongs

to a field support of an instance of Si, and coodj belongs to a
field support of an instance of Sj, (coodi and coodj are
geometric coordinates)

- coodi which does not belong to the field supports of

the instances of h, one coodj belonging to the field

support of an instance of Sj such that coodi <f coodj

- coodi which does not belong to the field supports of

the instances of h, coodj belonging to the field support of
an instance of Sj such that coodj <f coodi.

<f is 'field objects order'

The set of leafs of the tree represented by <h with root ti

are denoted as leafs(Hh, ti).

The set of leafs of the tree represented by <f with root
coodi are denoted as leafsFieldSupport(h, coodi).

Based on the definitions above, the model uses a concept
of Field Cube Structure that represents the spatio-
multidimensional model schema. The model supposes the
existence of only one spatial dimension and one field
measure.

b) Field Cube

A Field Cube Structure, FCc , is a tuple 〈H1,… Hn,

FieldObject 〉 where:

- H1 is a Field Hierarchy Structure (Spatial dimension)

- i [2,…n] Hi is a Hierarchy Structure.

- FieldObject is Field Object Structure.

An Instance of a Field Cube Structure FCc, I(FCc), is a set

of tuples {〈tb1,…tbn, tbf〉} where:

- i [1,…n] tbi is an instance of the bottom level of

Fi (i).

- tbf is an instance of FieldObject.
The instance of the spatio-multidimensional model is a

hypercube. A hypercube can be represented as a hierarchical

lattice of cuboids.

Field measures are aggregated from fact table data (basic

cuboid) to represent non-basic cuboids.

Aggregations from cuboids to higher levels are classified
as in Figure 4.

Figure 4. Types of aggregations

3) Aggregation of Field Measures
I. spatial aggregation

Let G be the geometric attribute. Its aggregation is

defined by means of a function O G that has as input n

geometries of the attribute G, and that returns one

geometry:

OG : dom(G)×…× dom(G) → 2G where G is a subset of

the Euclidian Space R2

II. alphanumeric aggregations

Let A be an alphanumeric attribute. Its aggregation is

defined by means of a function OA that has in input n

values of the attribute A, and that returns one value of

the attribute A:

OA : dom(A)×…× dom(A) → dom(A)

4) Gómez and Gómez, 2011, 2012
The model proposed in [23] is extended in [9][10]. The
extension includes proposition of a closed generic map
algebra over continuous fields. The algebra serves as basis
for a language that allows analyzing continuous field data
and OLAP cubes using traditional OLAP operations. For the
sake of briefness, we will present cube operations for
continuous data starting by basic definitions.

a) Spatial Dimension Schemas

A spatial schema is a tuple <nameDS, L, →> where:

(a) nameDS is a literal;

(b) L is a non-empty finite set of names called levels (e.g.

province, country) which contains a distinguished level

name All;

(c) Each level l L has a non-empty finite set of names,

called level descriptions LD(l);

(d) Each level description is associated with a base type,

called its domain;

(e) → is a partial order (rollup) relation on the levels in L.

(f) The closure of rollup has a unique bottom level and a

unique upper level called all such that LD(all)={all}

Based on this, a spatial dimension schema is a dimension

schema <nameDS, L, →> where at least one level l L

has exactly one level description with domain of type
geometry.

b) Cube Schema and Operations over Fields

A cube schema is a tuple <nameCS, D, M> where nameCS

is a literal, D is a finite set of dimension schemas and M are

also a finite set measures.

According to the definition of discretized fields, the value of

the field at that point is the measure and the coordinates of

the point are the dimension. The fact is represented by the

field and its schema <cubeName, D, M>. Therefore, a field

can be seen as an OLAP Cube. It is shown that DFields and

45Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 56 / 107

traditional OLAP cubes can be easily integrated for data

analysis.

They also define a set of aggregate functions A = {Max,

Min, Avg, Sum}.

Dice operator. This operation selects values in

dimensions or measures based on a Boolean condition
which may introduce discontinuity. To avoid discontinuity,

the operator is defined by setting the value of samples with

values where the operator is not satisfied.

ROLL-UP operator. It aggregates facts according to
dimension hierarchy. In this model the spatial dimension is a
single-level dimension which implies that rollup hierarchies
must be introduced externally. Three roll-up operations are
defined (spatial over spatial field, spatial over spatiotemporal
field and temporal over spatiotemporal fields).

Drill-Down. This operations aggregates facts according
to dimension hierarchy. In this model, the spatial dimension
is a single-level dimension which implies that rollup
hierarchies must be introduced externally. They define 3 roll-
up operations (spatial over spatial field, spatial over
spatiotemporal field and temporal over spatiotemporal
fields).

Roll-Up. This operation reverses the effect of Roll-Up so
it is just the inverse of the mentioned operator.

IV. DISCUSSION

The approaches used in the above listed proposals (and in
others) are diverse to say the least. Moreover, it seems that
there is no build up on previous work or any attempts to
criticize or enhance what has already been done which leads
to a plethora of models without a clear attempt to define a
mainstream model.

To compare the 4 models, one needs to define criteria
and search which model meets the necessary requirements to
become an applicable model. According to [6], true data
models should have 3 components: A structure that defines
how data are structured, integrity rules that define how data
are kept correct and consistent and operators which define
how data are manipulated. Therefore we will compare these
models using the above mentioned conditions in addition to
the requirements defined by [4] and additional requirements
defined in [16][17]. The different models are evaluated
against these six requirements (Table 2):

1) Structure

The common structure between all models is the hypercube.

Each model proposes a different way of building its

hypercube.

2) Integrity rules

Multidimensional structures are not concerned with integrity

as much as they are concerned with fast response to

analytical queries.

3) Operators

This complexity of SOLAP queries implies long query

processing time. Therefore, most queries are run in advance

and the results are stored as materialized views. Operators

are either for navigation along the analysis dimensions or

for returning previously computed results.

4) Continuous data as measures

Usually measures are numerical values that are analyzed

according to axis of analysis (the dimensions). In the models

we reviewed only one proposal imposes continuous data as

measures constraint.

5) Explicit hierarchies in dimensions
The hierarchy should be explicit to allow the user to

navigate with clear knowledge of the relationship between

the different levels [15].

6) Symmetric treatment of dimensions and measures:
Since measures can be a level of a dimension, it is

essential that measures can be transformed into attributes and
vice versa [5]. This will provide an important functionality to
any OLAP system.

TABLE II. MULTIDIMENSIONAL MODEL COMPARISON CRITERIA

To clarify some of the differences between the 4 models,

we will present examples of how the aggregate average is

handled by each model.

In [1], to find the average pollution for a specific region,

the aggregation is done by applying interpolation functions

to the basic cubes to obtain a continuous representation of

the field. The sum of all values is calculated as in integral of

the function representing the field. The average is then

obtained by dividing the sum by the area of the field. In

[23], the average monthly temperature for a land plot is

calculated as follows :

{l.number, m.month, temp | LandPlot(l) ^ Month(m)^

first=min({t.date|Time(t) ^ t.month = m.id}^last=

max({t.date|Time(t)^t.month=m.id}^ temp = avg

({atperiods (atregion(t.geometry,l.geometry), range(first,

last)) | Temperature(t)})} Where first and last represent

first and last day of the month.

Criteria
Ahmed

et al. [1]

Vaisman

et al. [23]

Bimonte

et al. [4]

Gómez et

al. [9][10]

Structures

Integrity rules x x x x

Operators

Continuous data

as measures
x x x

Explicit

hierarchies
 x x

Symmetric

treatment of

dimensions and

measures

 x x x

46Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 57 / 107

In [4], the aggregation is performed by applying the

average on the Field Hierarchy Hregres.

F4(x;y)=AVG(leavesFieldSupport(Hdeptres, (x2;y2))) =

AVG(f3(x;y), f3(x1;y1)).

For more details about the examples we refer the reader to

[1][4][9][23].

From Table 2, none of the proposed models satisfies all

criteria. Models proposed by Vaisman et al. [23] and Gómez

et al. [9][10] satisfy only structure and operators constraints.

The major weakness is the lack explicit hierarchies, which is

essential for navigation in cubes. The model presented by

Ahmed et al. [1] lacks treatment of continuous data as a

measure which is supported in [4]. However, Bimonte et al.

[4] does not treat dimensions and measures symmetrically.

V. CONCLUSION

Spatial data warehouses have been around for some time
now. Most of the early work on this topic was oriented
towards discrete spatial data. The combination of
cartographic display and OLAP resulted in SOLAP.
However it was also limited to discrete spatial
representation. Attempts at integrating continuous or field
based data in multidimensional structures began about 10
years ago. During this period, a number of models to
represent spatial and/or spatiotemporal continuity were
proposed. In this paper, we studied some of these models and
compared them with respect to different criteria and
conditions for multidimensional models. None of the
different proposals covered all comparison criteria and hence
there is still a considerable amount of work to be done on the
subject. The other remark is that most of the work
concentrated on the theoretical side without a mention of
solid model that can be used in real life application. To the
best of our knowledge, even though there is still an
undiscovered wealth mine for research and development,
there is a lack of recent work on this domain.

REFERENCES

[1] T. O. Ahmed and M. Miquel. “Multidimensional Structures
Dedicated to Continuous Spatiotemporal Phenomena”. In
proceedings of the 22nd British National Conference on
Databases (BNCOD), (Sunderland, UK, July 5-7, 2005) 29-
40.

[2] T. O. Ahmed. “Spatial On-line Analytical Processing
(SOLAP): Overview and Current Trends”. In proceedings of
Internationa Conference on Advanced Computer Theory and
Engineering (ICACTE), (Phuket, Thailand, December, 20-22,
2008) 1095-1099.

[3] Y. Bédard, T. Merrett and J. Han. “Fundamentals of Spatial
Data Warehousing for Geographic Knowledge Discovery in
Geographic Data Mining and Knowledge Discovery”.
Research Monographs in GIS Series. Edited by Peter Fisher
and Jonathan Raper. 2001. 53-73.

[4] S. Bimonte and M. A. Kang. “Towards a Model for the
Multidimensional Analysis of Field Data”. In proceedings of
the 14th East European Conference (ADBIS10) (Novi Sad,
Serbia, Sep 20-24, 2010. 300-311.

[5] L. Cabibbo and R. Torlone. “From a procedural to a visual
query language for OLAP”. In proceedings of the 10th
International Conference on Scientific and Statistical

Database Management (SSDBM’98), IEEE Computer Society
Press, Washington, DC, USA pp. 74–83, 1998.

[6] E. F. Codd. “Data Models in Database Management”. ACM
SIGMOD Record 11(2), 1981, pp. 112-114.

[7] R. Elmasri. and S. Navathe. Fundamentals of Database
Systems. Pearson, 7th edition, 2015.

[8] C. Franklin. “An Introduction to geographic Information
Systems: Linking Maps to databases”. Database, 1992. pp.
13-21.

[9] L. Gómez, S. Gómez and A. Vaisman. “Analyzing
Continuous Fields with OLAP Cubes”. In proceedings of the
14th Workshop DOLAP (DOLAP’11), (Glasgow, Scotland,
Oct 24-28, 2011). pp. 89-94

[10] L. Gómez, S. Gómez and A. Vaisman. “A Generic Data
Model and Query Language for Spatiotemporal OLAP Cube
Analysis”. In proceedings of the 15th International Conference
on Extending Database Technology (EDBT2012) (Berlin,
Germany) Mar 27-30, 2012, pp. 300-311.

[11] J. Han, R. Altman, V. Kumar, H. Mannila and D. Pregibon.
“Emerging Scientific Applications in Data Mining”.
Communication of the ACM, 45,8 (Aug 2002), pp. 54-58.

[12] E. Malinowski and E. Zimányi. “Advanced Data Warehouse
Design: From Conventional to Spatial and Temporal
Applications”. Data-Centric Systems and Applications,
Springer, 2008.

[13] P. Marchand, A. Brisebois, Y. Bedard and G. Edwards.
“Implementation and Evaluation of a Hypercube-Based
Method for Spatiotemporal Exploration and Analysis”. ISPRS
Journal of Photogrammetry and Remote Sensing. (Aug 2004)
59(1-2), pp. 6-20.

[14] F. Moreno, J. A. E. Arias and B. M. Losada. “A Conceptual
Spatio-temporal Multidimensional Model”. Revista
Ingenierías Universidad de Medellín. (2011) 9(17), pp. 175-
184.

[15] T. B. Pederson. “Managing complex multidimensional data”.
Business Intelligence: Lecture Notes in Business Information
Processing. (2013) vol. 138. pp. 1-28.

[16] T. Pedersen and C. Jensen. “Multidimensional Data Modeling
for Complex Data”. In proceedings of the 15th International
Conference on Data Engineering (ICDE99)(Sydney,
Australia) March 23-26 1999, pp. 336-345.

[17] G. Pestana and M. Mira da Silva. “Multidimensional
Modeling based on Spatial, Temporal and Spatio-Temporal
Stereotypes”. 5th ESRI International User Conference (ESRI)
(San Diego, USA) Jul 25-29, 2005, pp. 5-15.

[18] E. Pourabbas and M. Rafanelli. “Characterization of
Hierarchies and Some Operators in OLAP Environment.” In
proceedings of the 2nd ACM International Workshop on Data
Warehousing and OLAP. (Kansas City, USA). Nov 2-6, 1999,
pp. 54 - 59.

[19] S. Rivest, Y. Bedard and P. Marchand. “Towards better
Support for Spatial Decision Making: Defining the
Characteristics of Spatial On-Line Analytical Processing
(SOLAP)”. Journal of Canadian Institute of Geomatics, 55(4),
2001, pp. 539-555.

[20] S. Rivest, Y. Bedard, M. J. Proulx and M. Nadeau. “SOLAP:
A New Type of User Interface to Support Spatiotemporal
Multidimensional Data Exploration and Analysis”. In
proceedings of ISPRS workshop on Spatial, Temporal and
Multi-Dimensional Data Modeling and Analysis, (Québec,
Canada) Oct 2-3, 2003.

[21] M. Sampaio, A. Sousa and C. Baptista. “Towards a Logical
Multidimensional Model for Spatial Data Warehousing and
OLAP”. In proceedings of 9th ACM International Workshop
on Data Warehousing and OLAP (New York, USA) Nov 5-
11, 2006, pp. 83-90.

47Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 58 / 107

[22] N. Stefanovic, J. Han and K. Koperski. “Object-based
Selective Materialization for Efficient Implementation of
Spatial Data Cubes”. IEEE Transactions on Knowledge and
Data Engineering, (Nov-Dec 2000) 12(6), pp. 938 – 957.

[23] A. A. Vaisman and E. Zimányi. “A Multidimensional Model
Representing Continuous Fields in Spatial Data Warehouses”.
In proceedings of the International Conference on Advances
in Geographic Information Systems (ACM SIGSPATIAL GIS
2009)(Seattle, USA) Nov 4-6, 2009, pp. 168-177.

[24] M. Zaamoune, S. Bimonte, F. Pinet and P. Beaune. “A New
Relational Spatial OLAP Approach for Multi-resolution and
Spatio-multidimensional Analysis of Incomplete Field Data”.
In proceedings of International Conference on Enterprise
Information Systems (ICEIS 2013)(Angers, France) 4-7 Jul
2013, pp. 145 -152.

48Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 59 / 107

Some Heuristic Approaches for Reducing Energy Consumption on Database

Systems

Miguel Guimarães João Saraiva Orlando Belo
ALGORITMI R&D Center

University of Minho
Portugal

pg22800@alunos.uminho.pt

HasLab R&D Center
INESC/University of Minho

Portugal
jas@di.uminho.pt

ALGORITMI R&D Center
University of Minho

Portugal
obelo@di.uminho.pt

Abstract—Today, one of the major concerns of administrators
and managers of data centers is related with the cost of the
energy that each database component consumes when involved
in activities and processes they manage. In fact, it is not
necessary to conduct a detailed assessment to realize that the
cost of energy consumed in this type of systems is really great.
So, it is not surprising the significant growing interest that
researchers have in this domain. Various techniques have been
developed to assess the energy consumption on database
systems, demonstrating their utility in managing the power
they use to consume. Basically, they come to confirm the
paradigm shift on the issue of energy concern in database
systems towards the reduction of its consumption. In this
paper, we present and discuss a set of heuristics that we
suggest to reduce, in particular, the energy consumption on the
execution of a given query inside a relational database system.
With this work, we intend to contribute to design and
implement more efficient queries in terms of energy, i.e., green
queries, based on the analysis of the various components that
are used in their physical implementation, reducing as much as
possible their energy consumption, taking into consideration
the characteristics of the database operators used and the
querying execution plans established for them.

Keywords-data centers; database management systems;
querying execution plans, database queries consumption, green
queries; consumption heuristics.

I. INTRODUCTION
The assessment of energy consumption of any component

is not an easy task. To carry out appropriately this kind of
evaluation, it is necessary to study in detail how the
component behaves and how it is used in practice. The same
may be applied to the study of power consumption of a
DataBase Management System (DBMS) or, in particular, of
any query that can be performed in its environment [1]. Any
process for the establishment of energy-efficient queries,
usually recognized as green queries, and not its optimization
in terms of processing time or usage of computing
resources, requires a fairly deep knowledge of how queries
are processed and optimized in the environment of a DBMS.

Database querying processing [2][3] is one of the most
important activities of a DBMS, which involves a well-
defined set of processes for supporting the way the system
responds to users’ queries. Optimizing querying processing
is something that has been worked over the years by
researchers in the databases field. See, for example, the
work of Ceri and Gottlob [4] that presented a way to
transform a SQL statement into relational algebra
expressions representing equivalent SQL sub statements, a
method revealed by Taniar [5] especially oriented to add
additional instructions (e.g., optimizer hints, access method
hints, or table joins hints) into SQL statements to instruct
the SQL optimizer for executing the statement in an
alternative better way, or how Li et al. [6] suggested a
manner to improve querying performance with
configuration options – e.g., table partitioning, materialized
views, or storing plan outlines – increasing as well the
efficiency of the code application.

However, as the number and capacity of data centers
increases, beside the so usual issues of performance and
querying processing abilities – always critical aspects for
any DBMS –, the issue of power consumption is appearing
very clear in their cost operational reports, year after year
[7]. This caught the attention of data centers’ managers all
over the world up sharply their concerns related to energy
consumption, not only because of the cost of electricity
itself but also because of relevant environmental issues. In
general, database servers are the biggest customers of
computational resources of a conventional data center,
which makes them also one of its biggest energy consumers
[8]. Although these systems are very well equipped today,
with powerful tools for querying optimization, quality of
service, or overall performance, usually in terms of energy
consumption DBMS do not have any means especially
oriented to the management and control of consumption
power. With the current trends and needs of the markets and
DBMS users, this lack is considered quite serious. The non-
availability of data about the energy consumption of a
DBMS has been motivating a large diversity of research
initiatives aiming to create means so that we can in addition

49Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 60 / 107

to defining query optimization plans in DBMS
environments also create energy consumption plans for
executing queries.

In a previous work [9], we developed a study that
allowed us to develop an energy consumption plan for a
query that is usually executed in a conventional data center
environment. At that time, the goal was reducing, as much
as possible, the energy consumption of data centers queries
without affecting their usual performance. We believed that
such small reduction in the consumption of a simple query
could be a great help in reducing the overall consumption of
a data center – that was proved easily by multiplying these
tiny savings by the huge number of queries (and
transactions) that are executed per minute in a data center.
Continuing this work, we studied a set of specific heuristics
that we suggest to reduce, in particular, the energy
consumption on the execution of a given query inside a
relational DBMS, which we expect that contribute to design
and implement more efficient queries in terms of energy –
green queries.

In this paper, we present and discuss the referred energy
consumption heuristics, giving particular attention to other
related works (Section II), showing how we categorized the
energy consumption of a SQL query, what kind of
transformation rules were applied, and how the energy was
consumed by each one of the transformation rules studied
(Section III). Finally, we finish this paper with some brief
conclusions and pointing out some future research lines
(Section V).

II. RELATED WORK
Today, energy efficiency is a trend topic in terms of

researching and development. Researchers of different fields
of expertise work and discuss possible solutions to solve the
energy crisis that we are facing today. On the one hand,
saving energy allow us to reduce the energy billing costs;
and on the other hand, by doing that, we are also preserving
environment resources. Thus, saving energy and creating
policies to develop green software is beneficial for
everybody. Steps towards that direction have been already
made. At software level, for instance, the works presented in
[10] and [11] are some good examples of techniques and
methods used to detect energy consumption. In [10], the
authors adapted a technique known as Spectrum-based Fault
Localization to identify parts of code responsible for a
higher energetic consumption. The work done in [11]
focused more on finding and detecting anomalous energy
consumption in Android systems. Both works show us that
reducing energy consumption has been tackled in a variety
of systems by several researches, and its popularity in
computer science domains has increased.

Database systems have also taken small steps towards
green guidelines. The Claremont report was one of the first
approaches concerning energy consumption in database
systems [12]. The main goal of this report was to take into
consideration, during the devise and implementation stages

of a database system, the energy consumed by different
tasks. Reinforcing such concerns, the work presented in [13]
provided us a clear survey of how to control efficiently
energy in data management operations. Later, other studies
emerged approaching the same topic [14][15][16].
However, most of them have focus essentially on hardware
questions. In terms of software, in [9] it was redesigned the
execution plan of a DBMS in order to include, not only the
default estimative values for query execution, but also an
estimative of energy that will be consumed to run a specific
query. Later, it was proposed a solution to redesign a DMBS
kernel, in order to reduce energy consumption [15].
Afterward, in [17] other alternatives were suggested to
reduce the high levels of energy consumption in DBMS, in
general terms, while other works, were concerned about the
prediction of the consumption of large join queries [18], or
how to optimize queries to reduce global consumption of
energy within a DBMS [19]. However, as far as we know,
there are no works approaching the effect of regular
querying optimization heuristics on the consumption of
energy of a DBMS. Thus, we selected some of the most
used heuristics on relational querying processing and
studied their effect in terms of energy consumption.

III. ENERGY CONSUMPTION CATEGORIZATION
The energy consumption paradigm has been increasing

its importance over the last few years, slowly replacing the
performance paradigm, in terms of main concerns, to take
into account when developing any kind of database querying
task. Query processing is one of the most important activities
performed by a DBMS. Today, it is possible to analyze and
optimize the cost of a database query in terms of
performance, establishing better execution plans and
reducing querying processing time. Having access to these
plans, we can also measure the energy that database
operations consume in a similar way as we can measure their
processing time. We only need appropriate tools.

A. Data and Test Configuration

In this work, we developed a tool with the ability to
measure the energy consumption of SQL queries,
categorizing which ones are green and which ones are not.
We used the tool gSQL, shorten for greenSQL, to categorize
the energy consumption of SQL queries. This tool uses as
support the jRAPL framework, which allows for monitoring
the energy consumption of different hardware levels for a
certain code block [20]. In order to use jRAPL, there are
certain conditions that must be fulfilled. The processor has to
be from Intel architectures and support Machine-Specific
Registers (MSR). The later are the registers used for storing
the energy consumption information for code block that was
monitored. Therefore, the role played by the jRAPL
framework is exclusively dedicated to categorize and analyze
the energy consumption of SQL queries. Regarding the
gSQL tool, even though its use is simple, it gives us the
required information to devise hypothesis and thus create

50Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 61 / 107

heuristics to reduce the queries energy consumption. To run
the tests it is necessary to specify three different parameters:

1) an input file, with all the queries that going to be
tested;

2) the number of times each query will be repeated;
3) the number of times each test will be repeated.

In Figure 1, it is possible to see a brief description of the
overall behavior of the gSQL tool, written in pseudo code.
After all the tests have been executed, we obtain as result the
energy and the time consumption for each query tested. The
calculated aggregated values were maximum, minimum,
average, and standard deviation. This set of aggregated
values allows for us to find out if a certain test need to be
executed again, by analyzing the standard deviation as well
as the amplitude between maximum and minimum values.
For the test environment, we choose the PostgreSQL DBMS,
populated with data based on the TPC-H benchmark.
Depending on the scaling factor, the database can assume
different dimensions. In this case study, we used a scale
factor of two, which means that we multiplied by two the
cardinality of the tables that depends from the scale factor.

begin
resultsList ← initializeResults()
 for each query in queriesList do
 begin
 for each execution in executionsList do
 being
 for each repetition in repetitionList do
 begin
 initialEnergy ← getEnergy()
 initialTime ← getTime ()
 executeQuery(query)
 finalEnergy ← getEnergy()
 finalTime ← getTime()
 energy ← initialEnergy - finalEnergy
 time ← finalTime - initialTime
 storeValues(resultsList, energy, time)
 end
 end
 end
 aggregate ← aggregateResults(results)
 writeFile(aggregate)
 end

Figure 1. A pseudo code excerpt describing the behavior of the gSQL tool

B. Transformation Rules
Often, we start a querying optimization process by

analyzing the structure of the query, trying to see if it is well
designed and use the most appropriated resources. In this
kind of processes, it is common to see if some practical
querying heuristics can be applied at a certain stage of the
process, in order to improve the way the query is processed,
having the goal to reduce its execution time. There are a set
of heuristics well establish in the literature to improve
querying processes [21]. In some particular application
cases, such heuristics give us clear processing advantages,
reducing the resources involved with and the response time
of the query. The question now is: do those querying
heuristics also help in reducing querying energy
consumption?

The transformation rules used for the relational algebra
operations suit well the requirements presented in [22] and

posteriorly in [21]. The first six rules were tested using the
gSQL tool. The results we got were analyzed in order to
create the heuristics to optimize querying energy
consumption. Each transformation rule (1-6) that was used
will be explained and illustrated with a specific SQL query
example. The SQL queries were devised specifically for
each transformation rule. Due to the variety of tables in the
TPC-H benchmark, there are plenty of options that could be
used to design queries for each different transformation rule.
However, TPC-H benchmark has a set of queries which, in
this case study, were adapted to better represent
transformation rules. Results can be consulted later in Table
1.

Transformation Rule 1 – this rule states that conjunctive
selection operations can be separated into individual
selection operations. To demonstrate this transformation
rule, we create two SQL queries that are presented in Figure
2.

a) select * from lineitem where l_quantity>40
 and l_discount>0.03;
b) select * from (select * from lineitem

 where l_discount>0.03) as sub

 where sub.l_quantity>40;

Figure 2. The SQL queries for testing rule 1.

The first query (Figure 2a) represents the conjunctive
selection operations whereas the second one (Figure 2b)
represents individual selections with the application of some
filtering conditions.

Transformation Rule 2 – this second rule shows us how
the selection operations have commutative proprieties. This
means that doing the selection of a given predicate p
followed by a predicate q have the same result as doing first
the selection of the predicate q followed by the predicate p
(Figure 3).
a) select * from (select * from lineitem
 where l_discount>0.03) as sub
 where sub.l_quantity>40;

b) select * from (select * from lineitem
 where l_quantity>40) as sub
 where sub.l_discount>0.03;

Figure 3. The SQL queries for testing rule 2.

Transformation Rule 3 – this rule denotes that in any
sequence of projection operations, only the last one in the
sequence is necessary. For instance, doing in first place the
projection of the attributes a and b followed by b is
equivalent of doing only the projection of the attribute b
(Figure 4).

a) select sub.l_shipmode
 from (select l_quantity, l_discount,
 l_shipmode from lineitem) as sub;

b) select l_shipmode
 from lineitem;

Figure 4. The SQL queries for testing rule 3.

51Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 62 / 107

 Transformation Rule 4 – this rule states that between
selection and projection operations there is a commutative
propriety associated as long as the predicate belongs to the
attributes in the projection list (Figure 5).

a) select sub.l_shipmode, sub.l_quantity
 from (select * from lineitem
 where l_quantity>40) as sub;

b) select sub.*
 from (select l_shipmode, l_quantity
 from lineitem) as sub
 where sub.l_quantity>40;

Figure 5. The SQL queries for testing rule 4.

Transformation Rule 5 – according to this rule, a
cartesian product and theta join operations can be commuted.
Therefore, doing a theta join between two relations, R and S,
it is equivalent to do the theta join between the relation S and
the relation R. The same principle can be applied to the
cartesian product as well as to a natural join or an equijoin
(Figure 6). For this example, we set a limit of five hundred
thousand records to be selected, in order to have a faster
query. Without the limit constraint, the difference between
energy consumptions of both queries will be the same, but
limiting the number of records to be selected, instead of the
full length of the relation, allows us to save time when
running tests.

a) select * from orders
 inner join customer
 on o_custkey = c_custkey limit 500000;

b) select * from customer
 inner join orders
 on o_custkey = c_custkey limit 500000;

Figure 6. The SQL queries for testing rule 5.

Transformation Rule 6 – Rule number six states that
between selection and theta join operations there is a
commutative propriety associated, if the selection predicate
involves only attributes of one of the relations being joined
(Figure 7).

a) select sub.* from (select * from orders
 inner join customer
 on o_custkey = c_custkey) as sub
 where sub.c_mktsegment='BUILDING'
 and sub.o_orderpriority='2-HIGH';

b) select * from
 (select * from customer
 where c_mktsegment='BUILDING') as t1
 inner join (select * from orders
 where o_orderpriority='2-HIGH') as t2
 on t1.c_custkey = t2.o_custkey;

Figure 7. The SQL queries for testing rule 5.

C. Result Analyzes
Through the data presented in Table 1 it is possible to

analyze the average energy consumed for each
transformation rule and take some conclusions regarding the
heuristics for optimizing the energy consumption on SQL

queries. If we observe rule 2, we can see that the second
query (Figure 3b) consumes less energy than the first query
(Figure 3a), because the second SQL query reduces the
number of tuples that are processed by the DBMS. Thus, we
can infer that doing first the selection operation that discards
more tuples translates into an energy saving measure.
Another conclusion that can be deduced based on the gSQL
results, is that doing only the projection of necessary
attributes consumes less energy than the projection of
necessary and unnecessary attributes (transformation rule 3).
An obvious conclusion, since there is less computational
load required, a less execution time leads to a decrease in
the energy consumption. Regarding the transformation rule
4, it is possible to conclude that reducing the cardinality of
the relations it is a good green practice. Hence, eliminating
unnecessary tuples before doing others relational algebra
operations can be seen as a heuristic to optimize the energy
consumption. With the data collected from gSQL tool, for
cartesian products and theta joins operations, we can
inferred the following: if the relation on the left side of the
join operation have higher cardinality than the relation on
the right side, then it consumes less energy (transformation
rule 5).

TABLE I. AVERAGE ENERGY COMSUMPTION FOR EACH QUERY IN A
TRANSFORMATION RULE

Query Average Energy (Joules) Average Time (seconds)
1 a) 251.3028 12.34
1 b) 256.1062 12.5102
2 a) 256.1062 12.5102
2 b) 249.4447 12.16
3 a) 196.2550 9.86
3 b) 195.3628 9.72
4 a) 78.74333 3.98
4 b) 80.18314 4.02
5 a) 77.5720 3.8
5 b) 78.17531 3.72
6 c) 21.04923 1.04
6 d) 21.92778 1.12

	
Queries

Energy (Joules)

Figure 8. Energy consumed by each transformation rule version

Lastly, data from transformation rule 6 suggests that it is
greener to do the selection operation before doing theta-join
operations. As previously mentioned, cardinality reduction
means less energy consumption. Finally, in Figure 8 we can

52Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 63 / 107

see a chart showing the energy consumption of each one of
the queries that were used and tested in each transformation
rule.

IV. CONCLUSIONS AND FUTURE WORK
In this paper, we presented some heuristics to optimize

the energy consumption of relational database queries. The
heuristics presented here were devised by analyzing the data
from gSQL tool. This was a first approach towards the
creation of a more refined set of energy consumption
heuristics. As far as we know, nothing similar was done yet
in this field of expertise. Saving energy on a query that is
executed several times in a data center reduces the monthly
energy bill and therefore, decreases the costs of a data
center. It is interesting to notice different energy
consumptions by doing simple tweaks and transformation
rules. Although, we present some heuristics in this paper,
some of them having a parallel that corresponds to
performance optimization heuristics well defined in the area
database systems. Hence, for systems with the same type of
hardware optimizing a query to be greener is equivalent to
optimizing a query to be faster.

In a near future, we intend to verify if the heuristics
proposed here can be transposed to different DBMS. It is
important to know how to rank the different DBMS, in
order to offer to database administrators the possibility to
adopt an eco-friendlier DBMS to support their operational
systems. Another issue that we expect to explore is the
impact of the established heuristics in DBMS performance
structures, such as indexes, execution plans or materialized
views, in order to prepare DBMS internal configuration
structures regarding energy saving issues.

REFERENCES
[1] G. Graefe, “Database servers tailored to improve energy

efficiency,” in Proceedings of the 2008 EDBT Workshop on
Software Engineering for Tailor-made Data Management,
2008, pp. 24-28.

[2] M. Jarke, “Query optimization in database systems,” in ACM
Computing Surveys, Vol. 16, No. 2, 1984, pp 11-152.

[3] S. Chaudhuri, “An Overview of Query Optimization”. In
Proceedings of the seventeenth ACM SIGACT, 1998, pp. 34-
43.

[4] S. Ceri and G. Gottlob, “Translating SQL Into Relational
Algebra: Optimization, Semantics, and Equivalence of SQL
Queries,” in IEEE Transactions on Software Engineering,
Vol. SE-11, No. 4, 1985, pp. 324-345.

[5] D. Taniar, H. Khaw, T. H. Cokrowijoyo, and E. Pardede,
“The use of Hints in SQL-Nested query optimization,”
Information Sciences, Vol. 177, No 12, 2007, pp. 2493-2521.

[6] D. Li, L. Han, and Y. Ding, “YiSQL Query Optimization
Methods of Relational Database System,” in Second
International Conference on Computer Engineering and
Applications, 2010, pp. 557-560.

[7] S. Mittal, “Power Management Techniques for Data Centers:
A Survey”, 2014. [online] Available at:
http://arxiv.org/abs/1404.6681 [Accessed 11 March 2016].

[8] M. Poess and R. O. Nambiar, “Energy cost, the key challenge
of today's data centers: a power consumption analysis of TPC-

C results,” in Proceedings of the VLDB Endowment, vol. 1,
2008, pp. 1229-1240.

[9] R. Gonçalves, J. Saraiva, and O. Belo, “Defining Energy
Consumption Plans for Data Querying Processes”. In
Proceedings of 2014 IEEE Fourth International Conference
on Big Data and Cloud Computing (BdCloud 2014), IEEE
computer Society, Sidney, Australia, 2014, pp. 641-647.

[10] T. Carção, “Measuring and visualizing energy consumption
within software code”. In: Visual Languages and Human-
Centric Computing (VL/HCC), 2014 IEEE Symposium on,
July, 2014, pp. 181– 182.

[11] M. Couto, T. Carção, J. Cunha, J. P. Fernandes, and J.
Saraiva, “Detecting anomalous energy consumption in
android applications”. In Pereira, F.M.Q., ed.: Programming
Languages - 18th Brazilian Symposium, SBLP 2014, Maceio,
Brazil, October 2-3, 2014. Proceedings. Volume 8771 of
Lecture Notes in Computer Science., Springer, 2014, pp. 77–
91.

[12] R. Agrawal et al., “The claremont report on database
research”. SIGMOD Rec. 37(3), September, 2008, pp. 9–19.

[13] J. Wang, L. Feng, W. Xue, and Z. Song, “A Survey on
Energy-efficient Data Management,” in SIGMOD Rec. 40, 2,
September, 2011, pp. 17-23.

[14] W. Lang, R. Kandhan, and J. M. Patel, “Rethinking query
processing for energy efficiency: Slowing down to win the
race”. IEEE Data Eng. Bull. 34(1), 2011, pp. 12–23.

[15] W. Lang and J. M. Patel, “Towards eco-friendly database
management systems”. In CIDR 2009, Fourth Biennial
Conference on Innovative Data Systems Research, Asilomar,
CA, USA, January 4-7, 2009, Online Proceedings,
www.cidrdb.org, 2009.

[16] Z. Xu, Y. Tu, and X. Wang, “Exploring power-performance
tradeoffs in database systems”. In Li, F., Moro, M.M.,
Ghandeharizadeh, S., Haritsa, J.R., Weikum, G., Carey, M.J.,
Casati, F., Chang, E.Y., Manolescu, I., Mehrotra, S., Dayal,
U., Tsotras, V.J., eds.: Proceedings of the 26th International
Conference on Data Engineering, ICDE 2010, March 1-6,
2010, Long Beach, California, USA, IEEE, 2010, pp. 485–
496.

[17] M. Kunjir, P. K. Birwa, and J. R. Haritsa, “Peak power plays
in database engines”. In E. A. Rundensteiner, V. Markl, I.
Manolescu, S. Amer-Yahia, F. Naumann, and I. Ari, eds.:
15th International Conference on Extending Database
Technology, EDBT ’12, Berlin, Germany, March 27-30,
2012, Proceedings, ACM, 2012, pp. 444–455.

[18] M. Rodríguez et al., “Analyzing power and energy
consumption of large join queries in database systems,”
Industrial Electronics and Applications (ISIEA), 2013 IEEE
Symposium on, Kuching, 2013, pp. 148-153.

[19] Z. Xu, Y. Tu, and X. Wang. “PET: reducing Database Energy
Cost via Query Optimization,” in Proc. VLDB Endow. 5, 12,
August, 2012, pp. 1954-1957.

[20] K. Liu, G. Pinto, and D. Liu, “Data-oriented characterization
of application-level energy optimization”, in: Proceedings of
the 18th International Conference on Fundamental
Approaches to Software Engineering, FASE’15, 2015.

[21] T. Connoly and C. Begg, “Database Systems: A pratical
Approach to Design, Implementation, and Management”,
2005, Addison-Wesley Longman Publishing Co., Inc.,
Boston, USA

[22] A. V. Aho and J. D. Ullman, “Universality of Data Retrieval
Languages”, in Proceedings of the 6th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming
Languages, POPL ’79, (New York, NY, USA), ACM, 1979,
pp. 110–119.

53Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 64 / 107

A Framework for Semantic Web of Patent Information

Yung Chang Chi
1

Hei Chia Wang
2

Department of Industrial and Information Management and

Institute of Information Management,

 National Cheng Kung University,

Tainan City, Taiwan ROC

e-mail:charles.y.c.chi@gmail.com
1

 hcwang@mail.ncku.edu.tw
2

Ying Maw Teng
3

Department of International Business,

 I-Shou University,

Kaohsiung City, Taiwan ROC

 e-mail: morris@isu.edu.tw
3

Abstract - This paper aims to propose a framework for an

ontology-based semantic web of patent information by

employing PATExpert, which is based on the ontological

approach of constructing knowledge and technique from

patent documents. This method will analyze patent

infringement issues from judicial judgments in the USA and

Europe. Having examined relative patent documents and the

analysis of patent infringement by comparison, one can

identify particular kinds of products and technologies that are

interrelated with the analysis of the two different databases

while enhancing the feasible construction of the semantic web

for patent information.

Keywords-patent; PATExpert; patent infringement; content

analysis; Ontology; semantic web.

I. INTRODUCTION

Patents are important sources of knowledge for industrial
research and product development because of their
innovation and practicability. In recent years, patent analyses
have increased in importance for high-technology
management as the process of innovation has become more
complex, the cycle of innovation shorter, and the market
demand more volatile [15].

An emerging research topic, patent mining consists of
patent retrieval, patent categorization, and patent clustering
[1]. So far, little research has been done on the topic.

The European project PATExpert, (Advanced Patent
Document Processing Techniques), coordinated by
Barcelona Media (BM), has successfully accomplished the
objectives after the pre-established 30 months (from
February 2006 to July 2008). Thus, it has been ratified by the
representative and the two external supervisors designated by
the European Commission, in the final review of the project
celebrated on 21st October at the BM headquarters [19].

In the frame of the Sixth Framework Program of
Research and Technological Development (2002-2006),
PATExpert has a global objective to change the present
textual processing of patents to semantic processing (treating
the patents as multimedia knowledge objects) [19].

WordNet was created in the Cognitive Science
Laboratory of Princeton University under the direction of
psychology professor George Armitage Miller starting in
1985 [24].

WordNet superficially resembles a thesaurus, in that it
groups words together based on their meanings. However,
there are some important distinctions. First, WordNet
interlinks not just word forms—strings of letters—but
specific senses of words. As a result, words that are found in
close proximity to one another in the network are
semantically disambiguated. Second, WordNet labels the
semantic relations among words, whereas the groupings of
words in a thesaurus do not follow any explicit pattern other
than meaning similarity [24].

 The applications employ the Semantic Web to make
useable sense out of large, distributed information found
throughout the World Wide Web. A definition for the
Semantic Web begins with defining semantic. Semantic
simply means meaning. Meaning enables a more effective
use of the underlying data. Meaning is often absent from
most information sources, requiring users or complex
programming instructions to supply it. For example, web
pages are filled with information associated tags. Most of the
tags represent formatting instructions, such as <H1> to
indicate a major heading. Semantically, we know that words
surrounded by <H1> tags are more important to readers than
other texts because of the meaning of H1. Some web pages
add basic semantics for search engines by using the
<META> tag; however, they are merely isolating keywords
and lack linkages to provide a more meaningful context.
These semantics are weak and limit searches to find out the
exact matches. Similarly, databases will render more
accurate matches if tables and columns of database are well
named and well organized. Semantics give a keyword
symbol useful meaning through the establishment of
relationships [4].
 Relational databases depend on a schema for structure. A
knowledge base depends on ontological statements to
establish structure. Relational databases are limited to one
kind of relationship – the foreign key. The Semantic Web
offers multidimensional relationships such as inheritance,
part of, associated with, and many other types, including
logical relationships and constraints. One important note is
that the language used to form structure and the instances
themselves may be the same language in a knowledge base
but actually quite different in relational databases [4].

Retrieving patent documents can be done through the
cluster-based approach [10]. Distributed information
retrieval for patents can be done by generating ranking lists

54Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 65 / 107

for the query by CORI (The collection retrieval inference
network) or KL (Kernighan–Lin) algorithms [13].
Categorizing patent documents can be done automatically by
using the k-Nearest Neighbor classifiers and Bayesian
classifiers [12][14], or a variety of machine learning
algorithms [2], the k-Nearest Neighbor on the basis of
patent’s semantic structure [6], or the classifier built through
back-propagation network [23]. Clustering algorithms can
also be adopted to form a topic map for presenting patent
analysis and summarization results [23], and to create a
system interface for retrieving patent documents [5].

Content analysis is indigenous to communication
research and is potentially one of the most important
research techniques in social sciences. It seeks to analyze
data within a specific context in view of the meaning
someone – a group or a culture – attributes to them.
Communications, messages, and symbols differ from
observable events, things, properties, or people in that they
inform about something other than themselves; they reveal
some properties of their distant producers or carriers, and
they have cognitive consequences for their senders, their
receivers, and the institutions in which their exchange is
embedded [7].

Content analysis is a research technique for making
replicable and valid inferences from texts to the contexts of
their use. As a technique, content analysis involves
specialized procedures. It provides new insight, increases a
researcher’s understanding of particular phenomena, or
informs practical actions. Content analysis is a scientific tool
[8].

The judgements of patent infringement, unlike the patent
documents, can be mined by using text mining techniques,
since the judgments are legal documents. The judgments can
be transformed into patterns by content analysis, and readers
can easily access them the same way as reading newspapers
to understand the key points and issues in dispute.

This study proposes to enhance a semantic web of patent
information and patent infringement framework, and the rest
of the paper is structured as follows. Section II presents the
research background and states the objective. In Section III,
we describe our proposed research method. The paper
concludes with expected results and future work
considerations.

II. RESEARCH BACKGROUND AND OBJECTIVE

So far, patent analysis technologies include patent
bibliometric data analysis [3], patent citation analysis [16],
patent statistical analysis [22], and patent classification.
Patent mining consists of patent retrieval, patent
categorization and patent clustering [22]. However, patent
infringement constitutes the biggest threat in patent use.

This framework proposes that through patent document
mining and judgements of patent infringement analysis, one
can discover newly developed products and their similarity
with the claims of other patents, and foresee where potential
patent threats are and the likelihood of patent infringement.
While constructing the patent Semantic Web, the ontology
and rules engines must include it.

This framework of patent database is based on the
databases of United States Patent and Trademark Office
(USPTO) and the European Patent Office (EPO). The patent
infringement judgements are based on the judicial judgments
in United States and European Union.

The purposes of this study is to construct the Semantic
Web of patent information, and reference regarding patent
infringement, technology trends for new product designers
and technology research engineers at the stage before and
after developing a new product or technology. With the
analyzed information, managerial team can make sound
strategic decisions.

It is difficult for laymen or ordinary readers who are short
of legal background to fully grasp the gist of judicial
judgments rendered by judges. With the implementation of
content analysis and the big data concept, ordinary people
can use content analysis technology to analyze patent
infringements with the help of a semantic web.

III. RESEARCH METHOD

 Patent documents can be collected from United States

Patent and Trademark Office (USPTO) patent database and

the European Patent Office (EPO) patent database. The

patent infringement content can be collected from the “West

Law” database.

A. Patent documents analysis

Based on the collected patent documents and the subject-
action-object (SAO) structures extracted by using Natural
Language Processing (NLP), the study uses a content
analysis approach to generate the concepts and relationships
of related patent documents.

NLP is a text mining technique that can conduct syntactic
analysis of natural language; NLP tools include the Stanford
parser (Stanford 2013) [21], Minipar (Lin 2003) [17], and
Knowledgist TM2.5 [11].

NLP tools will be used for building a set of SAO
structures from the collected patents.

Multidimensional scaling (MDS) is a statistical technique
used to visualize similarities in data [9][20]. Patent
documents in different fields have different key issues that
trigger different multidimensional scaling, so the paper will
design a new algorithm to identify which particular patent
field shall correspond to what extent of scaling.

The analysis patent documents for specified keywords
and returns a list of the documents where the keywords were
found. Then, the framework will use data and text mining
technology to design a specified algorithm (still in progress)
in order to analyze the legal documents and try to find out
the most similar patents or patent group.

B. Patent infringement content analysis

The most obvious source of data appropriate for content
analysis is the text to which meanings are conventionally
attributed: verbal discourse, written documents, and visual
representations. The text in the patent infringement
judgements is important because that is where the meanings
are. For this reason, it is essential for the content analysis
technology to analyze the patent infringement text in order to

55Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 66 / 107

develop strategies and preventive measures in patent
litigation.

The judgements of patent infringement, unlike the patent
documents, can be mined using text mining techniques, since
the judgements are legal documents. The judgements can be
transformed into patterns by content analysis, and readers
can easily access them the same way as reading newspapers
to understand the key points and issues in dispute.

Content analyses commonly contain six steps that define
the technique procedurally, as follows:

Design. Design is a conceptual phase during which
analysts (i) define their context, what they wish to know and
are unable to observe directly; (ii)explore the source of
relevant data that either are or may become available; and
(iii)adopt an analytical construct that formalizes the
knowledge available about the data-context relationship
thereby justifying the inferential step involved in going from
one to the other.

Unitizing. Unitizing is the phase of defining and
ultimately identifying units of analysis in the volume of
available data. Sampling units make possible the drawing of
a statistically representative sample from a population of
potentially available data, such as issues of a newspaper,
whole books, television episodes, fictional characters, essays,
advertisements.

Sampling. While the process of drawing representative
samples is not indigenous to content analysis, there is the
need to (1) undo the statistical biases inherent in much of the
symbolic material analyzed and (2) ensure that the often
conditional hierarchy of chosen sampling units become
representative of the organization of the symbolic
phenomena under investigation.

Coding. Coding is the step of describing the recording
units or classifying them in terms of the categories of the
analytical constructs chosen. This step replicates an
elementary notion of meaning and can be accomplished
either by explicit instructions to trained human coders or by
computer coding. The two evaluative criteria, reliability as
measured by inter coder agreement and relevance or
meaningfulness, are often at odds.

Drawing inferences. Drawing inferences is the most
important phase in a content analysis. It applies the stable
knowledge about how the variable accounts of coded data
are related to the phenomena the researcher wants to know
about.

Validation. Validation is the desideratum of any research
effort. However, validation of content analysis results is
limited by the intention of the technique to infer what cannot
be observed directly and for which validation evidence is not
readily available.

The patent infringement content analysis searches the
patent infringement judgements for specific keywords and
returns a list of the documents as above patent documents by
introducing the content analysis technology into specified
design algorithm (still in progress) in order to analyze the
infringement cases/precedents. It also finds the nearest
infringement judgements/precedents.

C. Constructing Semantic Web

Our proposed semantic web, which has a structure based

on Figure 4, is a program that has the following parts:

(1) The first part searches patent documents for specified

keywords and returns a list of the documents where the

keywords were found. Then, the program will use data and

text mining technology to design a specified algorithm in

order to analyze the legal documents and try to find out the

most similar patents or patent group concepts and

relationships. The results from part (1) constructing the

knowledge repository for the Reasoners are shown in Figure

1.

(2) Next, it searches the patent infringement judgments

for specific keywords and returns a list of the documents as

above patent documents by introducing the content analysis

technology into a specified design algorithm in order to

analyze the infringement cases/precedents. It also finds the

nearest infringement judgements/precedents and description

logic. The results from part (2) constructing the knowledge

repository for the Rules engines are shown in Figure 3.

(3) Reasoners: Reasoners add inference to the Semantic

Web. Inference creates logical additions that offer

classification and realization. Classification populates the

class structure, allowing concepts and relationships to relate

properly to others, such as a person is a living thing, father

is a parent, married is a type of relationship, or married is a

symmetric relationship. Realization offers the same, for

example, John H is the same as JH, for instance. There are

several types of reasoners offering various levels of

reasoning. Reasoners often plug in other tools and

frameworks. Reasoners leverage asserted statements to

create logically valid ancillary statements [4].

(4)The semantic web components of Rules engines

support inference typically beyond what can be deduced

from description logic. The engines add a powerful

dimension to the knowledge constructs. Rules enable the

merging of ontologies and other larger logical tasks,

including programming methods such as count and string

searches [4].

 So far, the whole approach is purely theoretical at the

moment. But in the patent document analysis, we have

successful employed WordNet by the word similarity matrix

clustering of words and merged with the similar semantic

terms from a lower term dimensional approach. In the

related data-mining fields, the semantic web system as

WordNet can be employed to identify keywords, connect

similar words, features, and sparse matrix to prevent the

miscarriage of patent retrievals, waste of time and risks of

patent infringement as well. The WordNet can also save

storage memory while advancing the accuracy of text-

mining in regards to ordinary, literal, and professional

meaning of keywords and promoting the retrieval speed of

patent research.

56Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 67 / 107

Figure 1. Part (1) the patent map result construct knowledge repository for
the Reasoners modul

D. The framework for semantic web of patent information

The top part of framework in Figure 2 is the PATExpert,

Ontology Modules and use of the W3C standard RDF. We

implement the patent information in this process. The

framework will construct the ontology base for Semantic

Web shown in Figure 3.

 As Reasoners module, the patent documents analysis

process includes SAO structure extraction (NLP) and patent

characteristic measurement and visualization (MDS). Here,

we attempt to generate the patent concepts and relationships.

In this phase, the study has generated some results based on

the past research.

 The other part in Figure 3 is the Rules engine modules

that represent the content analysis research process [7]. The

process is to implement the patent infringement judgments.

The framework of the process is designed as an algorithm.

Then, the study will construct the knowledge and

technology logic in order to support the semantic web.

Figure 2. PATExpert Ontology Modules[18]

Figure 3. Part (2)content analysis result construct knowledge repository for
the Rules engines

IV. EXPECTED RESULT AND FUTURE WORK

This study proposes to enhance a semantic web of patent
information and patent infringement. When the user enters a
keyword, the semantic web will automatically analyze the
text or phrases in correspondence to related patents and
potential patent threats. It can also provide the knowledge,
technology, knowhow trend, and analysis. The challenge is
in developing a semantic web that has the AI function.

So far the study experiment has explored WordNet to
enhance the accuracy of patent searches. The evaluation
index for this experiment is “Precision”, “Recall” and “F-
measure”, and “Precision” implies that how much documents
are retrieved by the system and how much are necessarily
retrieved. “Recall” means how many documents need to be
retrieved and how many need to be retrieved by the system.
“F-measure” is compared to the harmonic mean of Precision
and Recall.

A patent engineer will mark a most familiar patent
document from the experiment in comparison with ten other
similar articles of different patents, as the first row shows in
Table I. Given the similarity threshold of hypothesis, the
mark over “High” refers to Doca, Docb, Docc and Docd
which is shown by implementing WordNet.

Given the same similarity threshold of hypothesis above,
failure to use the similarity WordNet shown in the second
row in Table I, Doca、 Docb、Docf will be indicated as

retrieved files. Without the implementation of WordNet, the
value of “precision” appears to be “High”, “Recall” is

“Mid”, and “F-measure” is “High”.
By incorporating the similarity of the WordNet as the

third row shows in Table I, given the similarity threshold is
“High” or equivalent to “High” , Doca、Docb 、
Docc 、Docf and Docg are indicated as the retrieved files.

Thus, by incorporating WordNet, the value of “Precision”
tends to be is “High”, “Recall” is becoming “More High”,
and “F-measure” also indicates “More High”. Finally, the
value of “F-measure” with WordNet is higher than the value

semantic

recorder

57Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 68 / 107

of “F-measure” without WordNet. Thus, the integration of
WordNet is more likely to generate more precise meanings
for patent searches.

The finding of the experiment is that WordNet can
generate more wording accuracy of text-mining as to
ordinary, literal and professional meanings of keywords,
while promoting the retrieval speed of patent research and
mitigating waste of time.

TABLE I. WORDNET SIMILARITY COMPARISON TABLE

The study difficulties are in employing different analysis

methods to analyze different databases and further,
integrating these analysis results with the semantic web. An
accurate algorithm in different fields must be constructed and
achieved with the semantic web.

The obstacles are in integrating much more research
math and different databases. Results need to be standardized
and communicated, compared, and exchanged with each
other.

Furthermore, the study aims to employ different analysis
methods to analyze various databases with the analysis
results in Semantic Web. An accurate algorithm in different
fields can be feasibly constructed and achieved in the
analysis of patent information and patent infringement.

The next steps will be to employ the Semantic Web
impacts functions to increase the new data automatically.
Figure 4 indicates major Semantic Web components: the
right side is Rules engine, the left side is the Reasoner, over
the center side is base ontology from the PATExpert
ontology modules, and under the center side is language. The
next steps of Semantic Web will be developed to use
different languages, construct a multi-language Semantic
Web, in order to retrieve from different country’s patent
databases.

Figure 4. Major Semantic Web components [4]

The Semantic Web can employ the image recognition

functions to identify drawings and pictures. If the Semantic
Web has the capability of analyzing drawings and pictures,
the accuracy of the results will be increased in the future.

References

[1] Y. L. Chen, and Y. T. Chiu, “An IPC-based vector space model for
patent retrieval” Information Processing and Management, pp.309-
322.47, 2011.

[2] C. J. Fall, A. Torcsrari, K. Benzineb, and G. Karetka, “SIGIR Forum”
Automated categorization in the international patent classification,
pp.10-25. 37(1), 2003.

[3] V. K. Gupta, and N. B. Pangannaya, Carbon nanotubes; “Bibliometric
analysis of patents”, World Patent Information, pp.185-
189.Vol.22,issue 3, Sep. 2000.

[4] J. Hebeler, M. Fisher, R. Blace and A. Perez-Lopez, “Semantic
Web Programming “Wiley Publishing, Inc.2009.

[5] S. H. Huang, C. C. Liu, C. W. Wang, H. R. Ke, and W. P. Yang,
“International Computer Symposium” Knowledge annotation and
discovery for patent analysis, pp.15-20, 2004.

[6] J.H. Kim, and K.S. Choi, Patent document categorization based on
semantic structural information, “Information processing &
Management”, pp.1200-1215.43(5), 2007.

[7] K. Krippendorff, Content analysis In E. Barnouw, G. Gerbner, W.
Schramm, T. L. Worth, and L. Gross (Eds.), International
encyclopedia of communication New York, NY: Oxford University
Press, pp.403-407.Vol. 1, 1989.

[8] K. Krippendorff, “Content Analysis An Introduction to Its
Methodology” second Edition, Sage Publications, Inc. 2004.

[9] J. B. Kruskal, Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis. Psychometrika, pp.1-27.29(1), 1964.

[10] I. S. Kang, S. H. Na, J. Kim, and J. H. Lee, “Information Processing
& Management”Cluster-based patent retrieval, pp.1173-1182.43(5),
2007.

[11] Knowledgist retrieves, analyzes, and organizes information.
https://invention-machine.com/ , retrieved: Apr., 2016

[12] L. S Larkey., Some issues in the automatic classification of U.S.
patents. In: Working notes for the AAAI-98 workshop on learning for
text categorization, pp.87-90, 1998.

[13] L. S. Larkey, Connell, M. E., and Callan, J. Collection selection and
results merging with topically organized US patents and TREC data.

 Patent
Engineer
marked
similarity

No
include
WordNet
income
of
similarity

Include
WordNet
income
of
similarity

Similarity(Docx,Doca) Most High High More High

Similarity(Docx,Docb) More High More High More High

Similarity(Docx,Docc) More High Mid High

Similarity(Docx,Docd) High Low Mid

Similarity(Docx,Doce) Mid Low Mid

Similarity(Docx,Docf) Low High More High

Similarity(Docx,Docg) More Low Mid High

Similarity(Docx,Doch) More Low Low Mid

Similarity(Docx,Doci) Most Low Most Low More Low

Similarity(Docx,Docj) None Most Low More Low

58Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 69 / 107

In Proceedings of ninth international conference on informaiton
knowledge and management, pp.282-289, 2000.

[14] L. S. Larkey, A patent search and classification system. In:
Proceedings of the fourth ACM conference on digital libraries, pp.79-
87, 1999.

[15] Y. Liang, R. Tan, and J. Ma, “Patent Analysis with Text Mining for
TRIZ” IEEE ICMIT, pp.1147-1151, 2008.

[16] J. Michel, and B. Bettels, “Patent citation analysis: a closer look at
the basic input data from patent search reports”, Scientometrics,
pp.185-201. Vol.51. no. 1, 2001.

[17] MINIPAR http://webdocs.cs.ualberta.ca/~lindek/minipar.htm ,
retrieved:Dec., 2015

[18] PATExpert http://cordis.europa.eu/ist/kct/patexpert_synopsis.htm ,
retrieved: Feb., 2016

[19] PATExpet http://www.barcelonamedia.org/report/the-european-
project-patexpert-coordinated-by-bm-finishes-with-fulfilled-
objectives-and-success , retrieved: Feb., 2016

[20] U. Schmoch, “International Journal of Technology Management”
Evaluation of technological strategies of companies by means of
MDS maps., pp.4-5.10(4-5), 1995.

[21] The Stanford Natural Language Processing Group, The Stanford
Parser: A statistical parser, http://nlp.stanford.edu/software/lex-
parser.shtml

[22] Y. H. Tseng, C. J. Lin, and Y. I. Lin, “Text mining for patent
mapanalysis”, Information Processing & Mangement, pp.1216-1247.
vol.43, issue 5, Sep. 2007.

[23] A. J.C. Trappey, F. C. Hsu, C V. Trappy,and C. I. Lin,”
Development of a patent document classification and search platform
using a back-propagation network”, Expert Systems with
Applications, pp.755-765.31(4), 2006.

[24] WordNet https://wordnet.princeton.edu/, retrieved: May, 2016

59Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 70 / 107

A Comparison of Two MLEM2 Rule Induction Algorithms
Applied to Data with Many Missing Attribute Values

Patrick G. Clark and Cheng Gao

Department of Electrical Engineering
and Computer Science,

University of Kansas
Lawrence, KS, USA

Email: patrick.g.clark@gmail.com
cheng.gao@ku.edu

Jerzy W. Grzymala-Busse

Department of Electrical Engineering
and Computer Science,
University of Kansas,
Lawrence, KS, USA

Department of Expert Systems
and Artificial Intelligence,
University of Information

Technology and Management,
Rzeszow, Poland

Email: jerzy@ku.edu

Abstract—We present results of novel experiments, conducted on
18 data sets with many missing attribute values, interpreted as
lost values, attribute-concept values and “do not care” conditions.
The main objective was to compare two versions of the Modified
Learning from Examples, version 2 (MLEM2) rule induction
algorithm, emulated and true, using concept probabilistic ap-
proximations. Our secondary objective was to check which inter-
pretation of missing attribute values provides the smallest error
rate, computed as a result of ten-fold cross validation. Results
of our experiments show that both versions of the MLEM2 rule
induction algorithms do not differ much. On the other hand,
there is some evidence that the lost value interpretation of missing
attribute values is the best: in seven cases this interpretation was
significantly better (with 5% of significance level, two-tailed test)
than attribute-concept values, and in eight cases it was better than
“do not care” conditions. Additionally, attribute-concept values
and “do not care” conditions were never significantly better than
lost values.

Keywords–Probabilistic approximations; generalization of prob-
abilistic approximations; concept probabilistic approximations; true
MLEM2 algorithm; emulated MLEM2 algorithm.

I. INTRODUCTION

Lower and upper approximations are basic ideas of rough
set theory. Probabilistic approximations, associated with a
probability α, are a generalization of that idea. If α = 1,
the probabilistic approximation is identical with the lower
approximation, if α is a very small positive number, the
probabilistic approximation is identical with the upper approx-
imation. Probabilistic approximations, for completely specified
data sets, were studied, e.g., in [1]–[9]. Probabilistic approxi-
mations were additionally generalized to describe incomplete
data sets in [10]. Experimental research associated with such
probabilistic approximations was initiated in [11][12].

In this paper, missing attribute values are interpreted as lost
values, attribute-concept values, and “do not care” conditions.
A lost value is denoted by “?”, an attribute-concept value is
denoted by “−”, and a “do not care” condition is denoted by
“*”. With lost values we assume that the original attribute value
was erased, and that we should induce rules from existing,
specified attribute values. With attribute-concept value we

assume that such missing attribute values may be replaced by
any actual attribute value restricted to the concept to which the
case belongs. For example, if our concept is a specific disease,
an attribute is a diastolic pressure, and all patients affected by
the disease have high or very high diastolic pressure, a missing
attribute value of the diastolic pressure for a sick patient will
be high or very-high. With the third interpretation of missing
attribute values, the “do not care” condition, we assume that
it does not matter what is the attribute value. Such value may
be replaced by any value from the set of all possible attribute
values.

For any concept X and probability α, its probabilistic
approximations may be computed directly from corresponding
definitions and implemented as a new program. The output of
this program may be used as an input to an implementation of
the MLEM2 algorithm. The respective MLEM2 rule induction
algorithm will be called a true MLEM2 algorithm.

Another possibility is to use the existing data mining sys-
tem Learning from Examples using Rough Set theory (LERS).
LERS computes standard lower and upper approximations for
any concept. In LERS there exists a component that imple-
ments the MLEM2 rule induction algorithm. This component
may be used to compute possible rules from the probabilistic
approximation of X . Some modification of the strength of
induced rules is required. This approach will be called an
emulated MLEM2 algorithm. It is easier to implement since
all what we need to do is to compute the probabilistic ap-
proximation of X and to modify strengths. The main part,
the MLEM2 rule induction algorithm, does not need to be
separately implemented. The idea of the emulated MLEM2
algorithm was introduced in [13] and further developed in
[14][15].

Experiments conducted on eight incomplete data sets with
35% of missing attribute values to compare true version of
the MLEM2 rule induction algorithm with the emulated one
were reported in [16]. All three interpretations of missing
attribute values were used in experiments, so experiments were
conducted on 24 data sets. In these experiments true and
emulated versions of the MLEM2 algorithm were compared

60Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 71 / 107

using the resulting classification error rate of the induced rules
against the ten-fold cross validated data set as the quality
criterion. Results were inconclusive. For six data sets, for all
values of the parameter α, results were identical; for other
14 data sets results did not differ significantly (we used the
Wilcoxon matched-pairs signed rank test, 5% significance
level, two-tailed test). For three other data sets, the true
MLEM2 algorithm was better than emulated, for remaining
one data set the emulated MLEM2 algorithm was better than
the true one.

Usually, experiments conducted on data sets with many
missing attribute values provide for more conclusive results.
As a result our first objective in this paper was to conduct
new experiments with data sets that contain more than 35%
missing attribute values. We used three interpretations of
missing attribute values, resulting in 18 combinations. Results
of the same comparison of error rate of the induced rules are
measurably more conclusive: in five combinations (out of 18)
the emulated approach to MLEM2 algorithm was better, in
one case the true approach was better (5% significance level,
two-tailed test).

Our second objective was to check which interpretation of
missing attribute values should be used to accomplish a lower
error rate. There is some evidence that the lost value interpre-
tation of missing attribute values is the best: in seven cases this
interpretation was significantly better (with 5% of significance
level, two-tailed test) than attribute-concept values, and in eight
cases it was better than “do not care” conditions. Additionally,
attribute-concept values and “do not care” conditions were
never significantly better than lost values.

In Sections II and III background information on incom-
plete data sets and probabilistic approximations is covered.
Section IV describes the two algorithms used in our rule
induction experiments and Section V explains the experimental
setup with our results. Finally we provide concluding remarks
in Section VI.

II. INCOMPLETE DATA SETS

An example of incomplete data set is presented in Table I.
In Table I, the set A of all attributes consists of three variables
Wind, Humidity and Temperature. A concept is a set of all
cases with the same decision value. There are two concepts
in Table I, the first one contains cases 1, 2, 3 and 4 and is
characterized by the decision value yes of decision Trip. The
other concept contains cases 5, 6, 7 and 8 and is characterized
by the decision value no.

The fact that an attribute a has the value v for the case
x will be denoted by a(x) = v. The set of all cases will be
denoted by U . In Table I, U = {1, 2, 3, 4, 5, 6, 7, 8}.

For complete data sets, an attribute-value pair (a, v) = t,
a block of t, denoted by [t], is a set of all cases from U such
that attribute a has a value v. An indiscernibility relation R
on U is defined for all x, y ∈ U by

xRy if and only if a(x) = a(y) for all a ∈ A.

For incomplete decision tables the definition of a block of
an attribute-value pair must be modified in the following way
[17][18]:

• If for an attribute a there exists a case x such that
a(x) =?, i.e., the corresponding value is lost, then the

TABLE I. AN INCOMPLETE DATA SET

Attributes Decision

Case Wind Humidity Temperature Trip

1 low * low yes
2 * low − yes
3 high low low yes
4 low * * yes
5 high high high no
6 ? − high no
7 low low * no
8 high ? low no

case x should not be included in any blocks [(a, v)]
for all values v of attribute a,

• If for an attribute a there exists a case x such that
the corresponding value is an attribute-concept value,
i.e., a(x) = −, then the corresponding case x should
be included in blocks [(a, v)] for all specified values
v ∈ V (x, a) of attribute a, where

V (x, a) = {a(y) | a(y) is specified , y ∈ U,
d(y) = d(x)}, (1)

and d is the decision.
• If for an attribute a there exists a case x such that

the corresponding value is a “do not care” condition,
i.e., a(x) = ∗, then the case x should be included in
blocks [(a, v)] for all specified values v of attribute a.

For a case x ∈ U the characteristic set KB(x) is defined
as the intersection of the sets K(x, a), for all a ∈ B, where
B is a subset of the set A of all attributes and the set K(x, a)
is defined in the following way:

• If a(x) is specified, then K(x, a) is the block
[(a, a(x))] of attribute a and its value a(x),

• If a(x) =? or a(x) = ∗ then the set K(x, a) = U ,
• If a(x) = −, then the corresponding set K(x, a) is

equal to the union of all blocks of attribute-value pairs
(a, v), where v ∈ V (x, a) if V (x, a) is nonempty. If
V (x, a) is empty, K(x, a) = U .

The characteristic set KB(x) may be interpreted as the set
of cases that are indistinguishable from x using all attributes
from B and using a given interpretation of missing attribute
values.

For the data set from Table I, the set of blocks of attribute-
value pairs is

[(Wind, low)] = {1, 2, 4, 7},
[(Wind, high)] = {2, 3, 5, 8},
[(Humidity, low)] = {1, 2, 3, 4, 6, 7},
[(Humidity, high)] = {1, 4, 5, 6},
[(Temperature, low)] = {1, 2, 3, 4, 7, 8},
[(Temperature, high)] = {4, 5, 6, 7}.

For Table I, V (2, T emperature) = {low} and
V (6, Humidity) = {low, high}.

The corresponding characteristic sets are

61Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 72 / 107

TABLE II. CONDITIONAL PROBABILITIES

Case x Characteristic set KA(x) Pr({1, 2, 3, 4} | KA(x))

1 {1, 2, 4, 7} 0.75
2 {1, 2, 3, 4, 7} 0.8
3 {2, 3} 1
4 {1, 2, 4, 7 } 0.75
5 {5} 0
6 {4, 5, 6, 7} 0.25
7 {1, 2, 4, 7} 0.75
8 {2, 3, 8} 0.667

KA(1) = [(Wind, low)] ∩ [(Humidity, ∗)] ∩ [(Temp, low)]

= {1, 2, 4, 7} ∩ U ∩ {1, 2, 3, 4, 7, 8}
= {1, 2, 4, 7},

KA(2) = {1, 2, 3, 4, 7},
KA(3) = {2, 3},
KA(4) = {1, 2, 4, 7},
KA(5) = {5},
KA(6) = {4, 5, 6, 7},
KA(7) = {1, 2, 4, 7},
KA(8) = {2, 3, 8}.

III. PROBABILISTIC APPROXIMATIONS

For incomplete data sets there exist a number of different
definitions of approximations, in this paper we will use only
concept approximations, we will skip the word concept.

The B-lower approximation of X , denoted by appr(X), is
defined as follows

∪ {KB(x) | x ∈ X,KB(x) ⊆ X}. (2)

Such lower approximations were introduced in [17][19].
The B-upper approximation of X , denoted by appr(X), is

defined as follows

∪ {KB(x) | x ∈ X,KB(x) ∩X 6= ∅}
= ∪ {KB(x) | x ∈ X}.

(3)

These approximations were studied in [17][19][20].
For incomplete data sets there exist a few definitions

of probabilistic approximations, we will use only concept
probabilistic approximations, again, we will skip the word
concept.

A B-probabilistic approximation of the set X with the
threshold α, 0 < α ≤ 1, denoted by B-apprα(X), is defined
as follows

∪{KB(x) | x ∈ X, Pr(X|KB(x)) ≥ α}, (4)

where Pr(X|KB(x)) =
|X∩KB(x)|
|KB(x)| is the conditional proba-

bility of X given KB(x). A-probabilistic approximations of
X with the threshold α will be denoted by apprα(X).

For Table I and the concept X = [(Trip, yes)] = {1, 2, 3,
4}, for any characteristic set KA(x), x ∈ U , all conditional
probabilities P (X|KA(x)) are presented in Table II.

There are five distinct conditional probabilities
Pr({1, 2, 3, 4} | KA(x)), x ∈ U : 0.25, 0.667, 0.75, 0.8
and 1. Therefore, there exist at most five distinct probabilistic
approximations of {1, 2, 3, 4} (in our example, there are
only two distinct probabilistic approximations of {1, 2,
3, 4}). A probabilistic approximation apprβ({1, 2, 3, 4}),
with β > 0 and not listed below, is equal to the closest
probabilistic approximation apprα({1, 2, 3, 4}) with α larger
than or equal to β. For example, appr0.7({1, 2, 3, 4}) =
appr0.8({1, 2, 3, 4}). For Table I, all distinct probabilistic
approximations are

appr0.8({1, 2, 3, 4}) = KB(2) ∪KB(3)

= {1, 2, 3, 4, 7} ∪ {2, 3}
= {1, 2, 3, 4, 7},

appr1({1, 2, 3, 4}) = KB(3) = {2, 3},
appr0.25({5, 6, 7, 8}) = {1, 2, 3, 4, 5, 6, 7, 8},
appr0.333({5, 6, 7, 8}) = {2, 3, 4, 5, 6, 7, 8},
appr0.75({5, 6, 7, 8}) = {4, 5, 6, 7},
appr1({5, 6, 7, 8}) = {5}.

IV. RULE INDUCTION

In this section we will discuss two different ways to induce
rule sets using probabilistic approximations: true MLEM2 and
emulated MLEM2.

A. True MLEM2
In the true MLEM2 approach, for a given concept X and

parameter α, first we compute the probabilistic approximation
apprα(X). The set apprα(X) is a union of characteristic sets,
so it is globally definable [21]. Thus, we may use the MLEM2
strategy to induce rule sets [22][23] by inducing rules directly
from the set apprα(X). For example, for Table I, for the
concept [(Trip, no)] = {5, 6, 7, 8} and for the probabilistic
approximation appr0.75({5, 6, 7, 8}) = {4, 5, 6, 7}, using the
true MLEM2 approach, the following single rule is induced

1, 3, 4
(Temperature, high) -> (Trip, no).

Rules are presented in the LERS format, every rule is
associated with three numbers: the total number of attribute-
value pairs on the left-hand side of the rule, the total number
of cases correctly classified by the rule during training, and
the total number of training cases matching the left-hand side
of the rule, i.e., the rule domain size.

B. Emulated MLEM2
We will discuss how the existing rough set based data

mining systems, such as LERS, may be used to induce rules
using probabilistic approximations. All what we need to do,
for every concept, is to modify the input data set, run LERS,
and then edit the induced rule set [14]. We will illustrate this
procedure by inducing a rule set for Table I and the concept
[(Trip, no)] = {5, 6, 7, 8} using the probabilistic approximation
appr0.75({5, 6, 7, 8}) = {4, 5, 6, 7}. First, a new data set
should be created in which for all cases that are members of the
set appr0.75({5, 6, 7, 8}) the decision values are copied from
the original data set (Table I). For all remaining cases, those
not being in the set appr0.75({5, 6, 7, 8}), a new decision value

62Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 73 / 107

TABLE III. A PRELIMINARY MODIFIED DATA SET

Attributes Decision

Case Wind Humidity Temperature Trip

1 low * low SPECIAL
2 * low − SPECIAL
3 high low low SPECIAL
4 low * * yes
5 high high high no
6 ? − high no
7 low low * no
8 high ? low SPECIAL

is introduced. In our experiments the new decision value was
named SPECIAL. Thus a new data set is created, see Table III.

This data set is input into the LERS data mining system.
The concept [(Trip, no)], computed from Table III, is {5, 6,
7}. The LERS system computes the concept upper concept
approximation of the set {5, 6, 7} to be {1, 2, 4, 5, 6, 7},
and using this approximation, computes the corresponding
final modified data set. The MLEM2 algorithm induces the
following preliminary rule set from the final modified data
sets

1, 4, 6
(Temperature, low) -> (Trip, SPECIAL)
1, 1, 4
(Wind, low) -> (Trip, yes)
1, 1, 4
(Wind, low) -> (Trip, no)
1, 2, 4
(Humidity, high) -> (Trip, no)

where the three numbers that precede every rule are computed
from Table III. Because we are inducing rules for the approx-
imation from (Trip, no) ({5, 6, 7}), only the last two rules

1, 1, 4
(Wind, low) -> (Trip, no)
1, 2, 4
(Humidity, high) -> (Trip, no)

should be saved and the remaining two rules should be deleted
in computing the final rule set.

In the preliminary rule set, the three numbers that precede
every rule are adjusted taking into account the preliminary
modified data set. Thus during classification of unseen cases
by the LERS classification system rules describe the original
concept probabilistic approximation of the concept X .

V. EXPERIMENTS

In our experiments, we used six real-life data sets taken
from the University of California at Irvine Machine Learning
Repository, see Table IV. For every data set a set of templates
was created. Templates were formed by replacing incremen-
tally (with 5% increment) existing specified attribute values by
lost values. Thus, we started each series of experiments with
no lost values, then we added 5% of lost values, then we added

25

35

45

55

65

75

85

95

0 0.2 0.4 0.6 0.8 1

Er
ro

r r
at

e
(%

)

Parameter alpha

?, true MLEM2
-, true MLEM2
*, true MLEM2
?, emulated MLEM2
-, emulated MLEM2
*, emulated MLEM2

Figure 1. Breast cancer data set

29

31

33

35

37

39

41

0 0.2 0.4 0.6 0.8 1

Er
ro

r r
at

e
(%

)

Parameter alpha

?, true MLEM2
-, true MLEM2
*, true MLEM2
?, emulated MLEM2
-, emulated MLEM2
*, emulated MLEM2

Figure 2. Echocardiogram data set

15

17

19

21

23

25

27

29

0 0.2 0.4 0.6 0.8 1

Er
ro

r r
at

e
(%

)

Parameter alpha

?, true MLEM2
-, true MLEM2
*, true MLEM2
?, emulated MLEM2
-, emulated MLEM2
*, emulated MLEM2

Figure 3. Hepatitis data set

additional 5% of lost values, etc., until at least one entire row
of the data sets was full of lost values. Then, three attempts
were made to change the configuration of new lost values
and either a new data set with extra 5% of lost values was
created or the process was terminated. Additionally, the same

63Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 74 / 107

50

55

60

65

70

75

80

85

90

95

100

0 0.2 0.4 0.6 0.8 1

Er
ro

r r
at

e
(%

)

Parameter alpha

?, true MLEM2 ?, emulated MLEM2
-, true MLEM2 -, emulated MLEM2
*, true MLEM2 *, emulated MLEM2

Figure 4. Image segmentation data set

35
40
45
50
55
60
65
70
75
80
85
90
95

100

0 0.2 0.4 0.6 0.8 1

Er
ro

r r
at

e
(%

)

Parameter alpha

?, true MLEM2
-, true MLEM2
*, true MLEM2
?, emulated MLEM2
-, emulated MLEM2
*, emulated MLEM2

Figure 5. Lymphography data set

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

Er
ro

r r
at

e
(%

)

Parameter alpha

?, true MLEM2
-, true MLEM2
*, true MLEM2
?, emulated MLEM2
-, emulated MLEM2
*, emulated MLEM2

Figure 6. Wine recognition data set

templates were edited for further experiments by replacing
question marks, representing lost values by “−”s, representing
attribute-concept values, and then by “*”s, representing “do
not care” conditions.

For any data set, there was some maximum for the percent-
age of missing attribute values. For example, for the Breast
cancer data set, it was 44.81%. In our experiments we used
only such incomplete data sets, with as many missing attribute
values as possible. Note that for some data sets the maximum
of the number of missing attribute values was less than 40%,
we have not used such data for our experiments. Thus, for
any data set from Table IV, three data sets were used for
experiments, so the total number of data sets was 18.

Our first objective was to compare both approaches to rule
induction, true MLEM2 and emulated MLEM2, in terms of
the classification error rate of the induced rules. Results of
our experiments are presented in Figures 1–6, with lost values
denoted by “?”, attribute-concept values denoted by “−”, and
“do not care” conditions denoted by “*”.

For five combinations of data set and interpretation of
missing attribute values the error rate was significantly smaller
for the emulated version of MLEM2. The five combinations
included Breast cancer and Image segmentation with “?” and
“−”, and Echocardiogram with “?”. For Wine recognition with
“−”, the error rate was significantly smaller for the true version
of MLEM2. In the remaining 12 combinations the difference
in error rate was not significant (5% significance level, two-
tailed test) and for the Breast cancer with “−” combination,
the error rate for both versions of the MLEM2 algorithm was
identical for all 11 values of α.

Our second objective was to check which interpretation
of missing attribute value provides the smallest error rate,
computed as a result of ten-fold cross validation. In eight
combinations the error rate was significantly smaller for “?”
than for “*”. The eight combinations included both true and
emulated MLEM2 with the Image segmentation, Lymphogra-
phy and Wine recognition data sets, and emulated MLEM2
with the Echocardiogram and Hepatitis data sets.

For the following seven combinations the error rate was
significantly smaller for “?” than for “−”. The seven com-
binations included both true and emulated MLEM2 with the
Breast cancer and Wine recognition data sets, true MLEM2
with Image segmentation and Lymphography, and emulated
MLEM2 with the Echocardiogram data set.

In four combinations the error rate was measurably smaller
for “−” than “?”. The four combinations included both true
and emulated MLEM2 with the Hepatitis data set and emulated
MLEM2 with the Image segmentation and Wine recognition
data sets.

For one combination the error rate was smaller for “*” than
for “−”, true MLEM2 and the Breast cancer data set. However,
for the remaining combinations the difference in error rate was
not significant. In addition, “−” and “*” values were never
significantly better than “?”.

VI. CONCLUSIONS

In our experiments we compared true and emulated ver-
sions of the MLEM2 algorithm using the error rate of the
induced rule set, a result of ten-fold cross validation, as the
quality criterion. Results of the same comparison of error rate
of the induced rules are measurably more conclusive than
previous experiments: in five combinations (out of 18) the
emulated approach to MLEM2 algorithm was better, in one

64Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 75 / 107

TABLE IV. DATA SETS USED FOR EXPERIMENTS

Data set Number of % of

cases attributes concepts missing values

Breast cancer 277 9 2 44.81
Echocardiogram 74 7 2 40.15
Hepatitis 155 19 2 60.27
Image segmentation 210 19 7 69.85
Lymphography 148 18 4 69.89
Wine recognition 178 13 3 64.65

case the true approach was better (5% significance level, two-
tailed test). In addition, there is some evidence that the lost
value interpretation of missing attribute values is the best:
in seven cases this interpretation was significantly better than
attribute-concept values, and in eight cases it was better than
“do not care” conditions. Additionally, attribute-concept values
and “do not care” conditions were never significantly better
than lost values.

REFERENCES

[1] J. W. Grzymala-Busse and W. Ziarko, “Data mining based on rough
sets,” in Data Mining: Opportunities and Challenges, J. Wang, Ed.
Hershey, PA: Idea Group Publ., 2003, pp. 142–173.

[2] Z. Pawlak and A. Skowron, “Rough sets: Some extensions,” Information
Sciences, vol. 177, 2007, pp. 28–40.

[3] Z. Pawlak, S. K. M. Wong, and W. Ziarko, “Rough sets: probabilistic
versus deterministic approach,” International Journal of Man-Machine
Studies, vol. 29, 1988, pp. 81–95.

[4] D. Ślȩzak and W. Ziarko, “The investigation of the bayesian rough set
model,” International Journal of Approximate Reasoning, vol. 40, 2005,
pp. 81–91.

[5] S. K. M. Wong and W. Ziarko, “INFER—an adaptive decision sup-
port system based on the probabilistic approximate classification,” in
Proceedings of the 6-th International Workshop on Expert Systems and
their Applications, 1986, pp. 713–726.

[6] Y. Y. Yao, “Probabilistic rough set approximations,” International Jour-
nal of Approximate Reasoning, vol. 49, 2008, pp. 255–271.

[7] Y. Y. Yao and S. K. M. Wong, “A decision theoretic framework for
approximate concepts,” International Journal of Man-Machine Studies,
vol. 37, 1992, pp. 793–809.

[8] W. Ziarko, “Variable precision rough set model,” Journal of Computer
and System Sciences, vol. 46, no. 1, 1993, pp. 39–59.

[9] ——, “Probabilistic approach to rough sets,” International Journal of
Approximate Reasoning, vol. 49, 2008, pp. 272–284.

[10] J. W. Grzymala-Busse, “Generalized parameterized approximations,” in
Proceedings of the 6-th International Conference on Rough Sets and
Knowledge Technology, 2011, pp. 136–145.

[11] P. G. Clark and J. W. Grzymala-Busse, “Experiments on probabilistic
approximations,” in Proceedings of the 2011 IEEE International Con-
ference on Granular Computing, 2011, pp. 144–149.

[12] ——, “Rule induction using probabilistic approximations and data
with missing attribute values,” in Proceedings of the 15-th IASTED
International Conference on Artificial Intelligence and Soft Computing
ASC 2012, 2012, pp. 235–242.

[13] J. W. Grzymala-Busse, S. R. Marepally, and Y. Yao, “A comparison of
positive, boundary, and possible rules using the MLEM2 rule induction
algorithm,” in Proceedings of the 10-th International Conference on
Hybrid Intelligent Systems, 2010, pp. 7–12.

[14] J. W. Grzymala-Busse, “Generalized probabilistic approximations,”
Transactions on Rough Sets, vol. 16, 2013, pp. 1–16.

[15] J. W. Grzymala-Busse, S. R. Marepally, and Y. Yao, “An empirical
comparison of rule sets induced by LERS and probabilistic rough

classification,” in Proceedings of the 7-th International Conference on
Rough Sets and Current Trends in Computing, 2010, pp. 590–599.

[16] P. G. Clark and J. W. Grzymala-Busse, “A comparison of two versions
of the MLEM2 rule induction algorithm extended to probabilistic
approximations,” in Proceedings of the 9-th International Conference
on Rough Sets and Current Trends in Computing, 2014, pp. 109–119.

[17] J. W. Grzymala-Busse, “Rough set strategies to data with missing
attribute values,” in Notes of the Workshop on Foundations and New
Directions of Data Mining, in conjunction with the Third International
Conference on Data Mining, 2003, pp. 56–63.

[18] ——, “Three approaches to missing attribute values—a rough set
perspective,” in Proceedings of the Workshop on Foundation of Data
Mining, in conjunction with the Fourth IEEE International Conference
on Data Mining, 2004, pp. 55–62.

[19] ——, “Data with missing attribute values: Generalization of indiscerni-
bility relation and rule induction,” Transactions on Rough Sets, vol. 1,
2004, pp. 78–95.

[20] T. Y. Lin, “Topological and fuzzy rough sets,” in Intelligent Decision
Support. Handbook of Applications and Advances of the Rough Sets
Theory, R. Slowinski, Ed. Dordrecht, Boston, London: Kluwer
Academic Publishers, 1992, pp. 287–304.

[21] J. W. Grzymala-Busse and W. Rzasa, “Local and global approxima-
tions for incomplete data,” in Proceedings of the Fifth International
Conference on Rough Sets and Current Trends in Computing, 2006,
pp. 244–253.

[22] J. W. Grzymala-Busse, “A new version of the rule induction system
LERS,” Fundamenta Informaticae, vol. 31, 1997, pp. 27–39.

[23] ——, “MLEM2: A new algorithm for rule induction from imperfect
data,” in Proceedings of the 9th International Conference on Informa-
tion Processing and Management of Uncertainty in Knowledge-Based
Systems, 2002, pp. 243–250.

65Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 76 / 107

A Distributed Algorithm for Graph Edit Distance

Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel and Patrick Martineau

Laboratoire d’Informatique (LI), Université François Rabelais
37200, Tours, France

Email: f_author,s_author@univ-tours.fr

Abstract—Graph edit distance is an error-tolerant matching
paradigm that can be used efficiently to address different tasks
in pattern recognition, machine learning, and data mining.
The literature is rich of many fast heuristics with unbounded
errors but few works are devoted to exact graph edit distance
computation. Exact graph edit distance methods suffer from high
time and memory consumption. In the meantime, heavy compu-
tation tasks have moved from desktop applications to servers in
order to spread the computation load on many machines. This
paradigm leads to re-design methods in terms of scalability and
performance. In this paper, a distributed and optimized branch-
and-bound algorithm for exact graph edit distance computation
is proposed. The search tree is cleverly pruned thanks to a
lower and upper bounds’ strategy. In addition, tree branches
are explored in a completely distributed manner to speed up the
tree traversal. Meaningful performance evaluation metrics are
presented. Experiments were conducted on two publicly available
datasets. Results demonstrate that under time constraints the
most precise solutions were obtained by our method against five
methods from the literature.

Keywords–Pattern Recognition; Graph Matching; Graph Edit
Distance; Branch-and-Bound; Distribution; Hadoop; MPI.

I. INTRODUCTION

Graph is an efficient data structure for object representation
in structural pattern recognition (PR). Graphs can be divided
into two main categories. First, graphs that are only based
on their topological structures. Second, graphs with attributes
on edges, vertices or both of them. Such attributes efficiently
describe objects in terms of shape, color, coordinate, size, etc.
and their relations [1]. The latter type of graphs is referred to
as attributed graphs.

Representing objects by graphs turns the problem of object
comparison into a graph matching (GM) one where evaluation
of topological and/or statistical similarity of two graphs has
to be found [2]. Researchers often shed light on error-tolerant
GM, where an error model can be easily integrated into the GM
process. The complexity of error-tolerant GM is NP-complete
[3]. Consequently, the Graduated Assignment algorithm [4]
has been employed to solve suboptimally error-tolerant GM.
However, its complexity is o(n6) where n is number of vertices
of both graphs. Several methods have a reduced complexity.
However, they are not flexible as they do not cope with all the
types of vertices and edges. For instance, the spectral methods
[5], [6] deal with unlabeled graphs or only allow severely
constrained label alphabets. Other methods are restricted to
specific types of graphs [7]–[9], to name just a few.

Among error-tolerant problems for matching arbitrarily
structured and arbitrarily attributed graphs, Graph Edit Dis-
tance (GED) is of great interest. GED is a discrete optimization

problem. The search space of possible matching is represented
as an ordered tree where a tree node is partial matching be-
tween two graphs. GED is NP-complete where its complexity
is exponential in the number of vertices of the involved graphs
[10]. GED can be applied to any type of graphs, including
hypergraphs [11]. Many fast heuristic methods with unbounded
errors have been proposed in the literature (e.g., [10]–[15]).
On the other hand, few exact approaches have been proposed
[16]–[18].

Recently, an exact Depth-First GED algorithm, referred to
as DF, has been proposed in [18]. DF outperforms a well-
known Best-First algorithm [16], referred to as A∗, in terms
of memory consumption and run time. DF works well on
relatively small graphs. To solve bigger matching problems,
in this paper, we propose to extend DF to a distributed
version which aims at spreading the workload over a clus-
ter of machines. The distribution scheme is based on tree-
decomposition and notification techniques. Instead of simply
proposing a distributed DF algorithm using Message Passing
Interface [19], we propose a master-slave distributed DF on top
of Hadoop [20] with one synchronized variable achieved via
ZooKeeper [21]. Roughly speaking, our algorithm consists of
three main steps: First, a decomposition step where the master
process divides the big matching problem into sub-problems.
Second, a distribution stage where the master dispatches the
sub problems among slave processes or so-called workers (i.e.,
processes to which a portion of work is associated). Third,
a search-tree exploration step where each worker starts to
explore its assigned problem by performing a partial DF. A
notification step occurs when a worker succeeds in finding
a better solution. In this case, the master informs the other
workers and all of them update their upper bound. When a
worker finishes the exploration of its assigned sub-problem,
it asks the master for another one. Finally, the execution of
the algorithm finishes when all the sub-problems generated in
the decomposition stage are explored. The proposed algorithm
is supported by novel evaluation performance metrics [22].
These metrics aim at comparing our algorithm with a set of
GED approaches based on several significant criteria.

The rest of the paper is organized as follows. In Section II,
the notations used in the paper are introduced. Moreover, the
state of the art of GED approaches and distributed branch-and-
bound techniques is presented. In Section III, the proposed dis-
tributed model is demonstrated. In Section IV, the datasets and
the experimental protocols used to point out the performance
of the proposed approaches are determined. Section V presents
the obtained results and raises a discussion afterwards. Finally,
conclusions are drawn and future perspectives are discussed in
Section VI.

66Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 77 / 107

II. RELATED WORKS

In this section, we first define our basic notations and
introduce GED and its computation.

A. Notations
1) Graph Based Notations: An attributed Graph (AG) is

represented by a four-tuple, AG = (V,E, µ, ζ), where V and
E are sets of vertices and edges such as E ⊆ V × V . Both
µ : V → LV and ζ : E → LE are vertex and edge labeling
functions which associate an attribute or a label to each vertex
vi and edge ei. LV and LE are unconstrained vertex and edge
attributes sets, respectively. LV and LE can be given by a set
of floats L = {1, 2, 3}, a vector space L = RN and/or a finite
set of symbolic attributes L = {x, y, b}.

GED is a graph matching method whose concept was first
reported in [3], [23]. Its basic idea is to find the best set of
transformations that can transform graph g1 into graph g2 by
means of edit operations on graph g2.

Let g1 = (V1, E1, µ1, ζ1) and g2 = (V2, E2, µ2, ζ2) be two
graphs, GED between g1 and g2 is defined by:

GED(g1, g2) = min
ed1,··· ,edk∈γ(g1,g2)

k∑
i=1

c(edi) (1)

where c denotes the cost function measuring the strength
c(edi) of an edit operation edi and γ(g1, g2) denotes the set
of edit paths transforming g1 into g2. The penalty, or cost, is
dependent on the strength of the difference between the actual
attributes information. Structure violations are also subject to
a cost which is usually dependent on the magnitude of the
structure violation [24]. And so, the penalty costs of each of
deletion, insertion and substitution affect the matching process.

A standard set of edit operations is given by insertions,
deletions and substitutions of both vertices and edges. We
denote the substitution of two vertices u and v by (u → v),
the deletion of vertex u by (u→ ε) and the insertion of vertex
v by (ε → v). For edges (e.g. e and z), we use the same
notations used for vertices. A complete edit path (EP) refers
to an edit path that fully transforms g1 into g2 (i.e., complete
solution). Mathematically, EP = {edi}ki=1.

2) Distribution Based Notations:

Definition II.1. Master-Slave Architecture
Master-Slave refers to an architecture in which one device (the
master) controls one or more other devices (the slaves).

Definition II.2. Job
A job is a distributed procedure which has one or more workers
(i.e., processes that are assigned to tasks). Each worker takes
a task or a bunch of tasks to be solved.

B. Graph Edit Distance Computation
The methods of the literature can be divided into two

categories depending on whether they can ensure the optimal
matching to be found or not.

1) Exact Graph Edit Distance Approaches: A widely used
method for edit distance computation is based on the A∗

algorithm [25]. This algorithm is considered as a foundation
work for solving GED. A∗ is a Best-First algorithm where the
enumeration of all possible solutions is achieved by means of
an ordered tree that is constructed dynamically at run time by

iteratively creating successor nodes. At each time, the node or
so called partial edit path p that has the least g(p) + h(p)
is chosen. g(p) represents the cost of the partial edit path
accumulated so far while h(p) denotes the estimated cost from
p to a leaf node representing a complete edit path. The sum
g(p) + h(p) is referred to as a lower bound lb(p). Given that
the estimation of the future costs h(p) is lower than, or equal
to, the real costs, an optimal path from the root node to a leaf
node is guaranteed to be found [26]. Leaf nodes correspond to
feasible solutions and so complete edit paths. In the worst case,
the space complexity can be expressed as O(|γ|) [27] where
|γ| is the cardinality of the set of all possible edit paths. Since
|γ| is exponentional in the number of vertices involved in the
graphs, the memory usage is still an issue.

To overcome the memory consumption problem of A∗, a
recent Depth-First GED algorithm, referred to as DF, has been
proposed in [18]. This algorithm speeds up the computations
of GED thanks to its upper and lower bounds pruning strategy
and its some associated preprocessing steps. Moreover, DF
does not exhaust memory as the number of pending edit paths
that are stored in the set, called OPEN, is relatively small
thanks to the Depth-First search where the number of pending
nodes is |V1|.|V2| in the worst case.

2) Approximate Graph Edit Distance Approaches: Variants
of approximate GED algorithms are proposed to make GED
computation substantially faster. A modification of A∗, called
Beam-Search (BS), has been proposed in [28]. Instead of
exploring all edit paths in the search tree, only x most
promising partial edit paths are kept in the set of promising
candidates.

In [26], the problem of graph matching is reduced to
finding an optimal matching in a complete bipartite GM,
this algorithm is referred to as BP. In the worst case, the
maximum number of operations needed by BP is O(n3).
Since BP considers local structures rather than global ones, an
overestimation of the exact GED cannot be neglected. A recent
algorithm [29], named FBP, reduced the size of BP’s matrices.
Recently, researchers have observed that BP’s overestimation
is very often due to a few incorrectly assigned vertices. That is,
only few vertex substitutions from the next step are responsible
for additional (unnecessary) edge operations in the step after
and thus resulting in the overestimation of the exact edit
distance. Thus, recent works have been proposed to swap the
misleading mappings [30], [31]. These improvements increase
run times. However, they improve the accuracy of BP.

C. Distributed Branch-and-Bound Algorithms
Our interest in this paper is to propose a distributed

extension of DF to be able to match large graphs. The
best computing design that suits DF is SPMD [32] where
a portion of the data (i.e., sub-search tree) is given to each
process and all processes execute the proposed method on their
associated sub-search trees. Since DF is a Branch-and-Bound
(BnB) algorithm, we survey the state of art of distributed BnB
approaches. However, before surveying the literature, some
challenging questions should be listed:

• What is(are) the sub-task(s) associated to each pro-
cess?

• What is the estimated time/needed memory per sub-
task?

67Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 78 / 107

• What is the number of needed processes?

• How many sub-tasks one may generate before the
distribution starts?

• How to efficiently distribute the search tree nodes of
the irregular search tree among a large set of pro-
cesses? Note that the decomposition, or distribution,
can be irregular due to the bounding, or pruning with
the help of g(p)+h(p). Such a thing cannot be known
except at run time.

These raised questions will be answered after exploring the
state-of-art’s methods dedicated to distributed BnB.

In [33], a one-iteration MPI approach was proposed. This
approach is dedicated to solving three-phase electrical distribu-
tion networks. In the beginning, a specific number of nodes are
generated by the master process. When this number is reached,
no more nodes could be generated. The master then gives,
or sends, a node to each slave. Then, each slave starts the
exploration of the search tree in a Depth-First way. Once a
slave finds a better upper bound, it sends to the master that
updates all slaves. Once a slave finishes its the exploration of
its assigned node, it sends a message to the master asking for a
new node and the process continues. The drawback of such an
approach is that once all the nodes, generated by the master,
are given to all processes, some processes might become idle
because they finished their associated nodes. Such a fact does
not allow this approach to use all its resources at each time. In
[34], a MPI BnB approach was proposed to solve the knapsack
problem. This work is similar to [33]. However, the way of
exploring the tree is left to the user so one can choose either
Depth-First, a Best-First or a Breadth-First.

To the best of our knowledge, in the literature there is
no distributed BnB method dedicated to solving GED. Both
[33] and [34] are based on MPI which has no fault-tolerance.
That is, if one slave process fails, one needs to re-execute all
the processes. In this paper, instead of proposing an approach
bases on MPI, we build MPI upon Hadoop [20]. Hadoop is
tolerant to faults, thus, if one process fails, a master program
selects another a free process to do its task. Roughly speaking,
only the upper bound UB has to be shared with all processes.
However, Hadoop is a model with restricted communication
patterns. In order to allow processes to send messages and
notify the other processes when finding a better UB, a message
passing tool is adopted [21].

The search tree of GED contains nodes that represent
partial edit paths. When thinking of a distributed approach
of DF, these edit paths can be given to processes as tasks to
be solved. Such a step divides the GED problem into smaller
problems. The GED problem is irregular in the sense of having
an irregular search tree where the number of nodes differs,
depending on the ability of lb(p) to prune the search tree.
Based on that, it becomes hard to estimate the time needed by
processes to explore a branch.

In [33] and [34], the authors did not mention the method
they followed in order to generate nodes before the distribution
starts. In our GED problem, one may think of A∗ since it starts
exploring nodes that lead to the optimal solution, if lb(p) is
carefully chosen. But, there are two key issues: First, how
many nodes shall be generated by A∗ before a DF procedure
starts? Second, how to divide the nodes between processes?.

Input: Non-empty attributed graphs g1 = (V1, E1, µ1, v1) and
g2 = (V2, E2, µ2, v2) where V1 = {u1, ..., u|v1|} and V2 =
{v1, ..., v|v2|}. A parameter N which is the number of the first
generated partial edit paths.
Output: A minimum distance UBCOSTshared and a minimum
cost edit path (UB) from g1 to g2 e.g., UB= {u1 → v3, u2 → ε
, ε→ v2}

1: (UB , UBCOST) ← BP(g1, g2)
2: OPEN ← {φ}
3: Q ← A∗(N)
4: Q ← SortAscending(Q)
5: for q ∈ Q do
6: OPEN.AddFirst(q);
7: end for
8: UBCOSTshared ← UBCOST {put UBCOST in an acces-

sible place to all workers}
9: UBshared ← UB {put UB in an accessible place to all

workers}
10: FileOPENshared ← OPEN
11: parallel for w ∈W do
12: Get-Next-Task: p← FileOPENshared.popFirst()
13: Call PartialDF(p,W ,UBCOSTshared,

UBshared)
14: if FileOPENshared is not empty then
15: Repeat Get-Next-Task
16: end if
17: end parallel for
18: Return (UBshared, UBCOSTshared).

Figure 1. Distributed DF (D-DF).

III. DISTRIBUTED DEPTH-FIRST GED APPROACH

Our distributed approach, referred to as D-DF, consists
of a single job. Figure 1 represents the three main steps of
D-DF. First, the master matches g1 and g2 using BP and
outputs both the matching sequence UB and its edit distance
UBCOST (line 1). Second, A∗ is executed and stopped once
N partial edit paths are generated (line 3). Afterwards, these
partial edit paths (Q) are sorted in ascending order and inserted
to OPEN (lines 4 to 7). The master also saves UB and its
UBCOST in a place/space accessible by all workers W (lines
8 and 9). Finally, the master distributes the work (i.e., Q)
among workers, each worker takes one edit path from the
master at a time (line 12). This step adapts the dynamic
scheduling where tasks are associated to processes at run
time. Thus, each process takes one and only one edit path
at a time t instead of having a predefined list of edit paths.
Workers start the exploration of their associated partial edit
paths (line 13). If a worker finishes its assigned partial edit
path, it sends a message to the master asking for a new edit
path (lines 14 to 16). When finishing all the partial edit paths,
saved in FileOPENshared, the program outputs UBshared and
UBCOSTshared as an optimal solution of matching g1 and g2
(line 18).

Figure 2 demonstrates the function PartialDF that each
worker w executes on its assigned partial edit path p. Note
that each p is given to an available worker by the master.
The procedures of this algorithm are similar to DF, the only
difference is that UBCOST and UB are saved in a shared space
that is accessible by all workers W . These shared variables are

68Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 79 / 107

Input: An edit path p, the set of workers W , UBCOSTshared
and UBshared

1: OPEN ← {φ}, pmin ← φ
2: OPEN .addFirst(p)
3: r ← parent(u1), rtmp ← r
4: UBCOST ← read(UBCOSTshared)
5: Set watch on UBCOSTshared
6: while OPEN != {φ} do
7: p ← OPEN .popFirst() . Take first element and

remove it from OPEN
8: Listp ← GenerateChildren(p)
9: if Listp = {φ} then

10: for vi ∈ pendingV2(p) do
11: q ← insertion(ε , vi) . i.e., {ε→ vi}
12: p.AddFirst(q)
13: end for
14: if g(p) < UB then
15: UB ← g(p), Bestedit path ← p
16: UBCOSTshared ← g(p) + h(p)
17: UBshared ← p
18: MASTER: notify-all-workers w ∈W
19: for w ∈W do
20: UBCOST ← read(UBCOSTshared)
21: Reset watch on UBCOSTshared
22: end for
23: end if
24: else
25: Listp ← SortAscending(Listp) . according to

g(p)+h(p)
26: for q ∈ Listp do
27: if g(q) + h(q) < UB then
28: OPEN .AddFirst(q)
29: end if
30: end for
31: end if
32: end while

Figure 2. Function PartialDF.

referred to as UBCOSTshared and UBshared. All the workers
read the value stored in UBCOSTshared through read message
(line 4). They also put a watch on UBCOSTshared via Set-
Watch message so as to be awaken when any change happens
to its value (line 5). All the workers solve their associated
partial edit path. Whenever worker w succeeds in finding a
better value of its UBCOST, it updates both UBCOSTshared
and UBshared through update messages (lines 15 and 17), the
master then sends a notification via notify-Worker message to
all the other workers (line 18). Workers read the new value,
update their local UB and continue solving their problems.
Moreover, workers re-establish, or reset, the watch for data
changes through Reset-Watch message (lines 19 to 22). The
update of UBCOSTshared is done carefully as only one worker
can change UBCOSTshared at any time t. That is, if two
workers want to change UBCOSTshared at the same time,
one of them is delayed by the master for some milliseconds
before entering the critical point. The final answers (i.e., the
optimal matching and its distance) are found in UBshared
and UBCOSTshared respectively when all workers finish their
associated tasks.

A. Advantages and Drawbacks
D-DF is a fully distributed approach where each worker

accomplishes its task without waiting for each other. Moreover,
the search tree is cleverly pruned. As soon as any worker finds
a better UBCOSTshared, it sends the new value to the master.
Then, the notification to all the other workers is achieved by
the master. Finally, all the workers receive the new value. Such
operations help at pruning the workers’ search trees as fast as
possible. D-DF is a single-job approach and thus the drawback
behind such an approach is that some workers might become
idle because there is no more edit path in FileOPENshared
while the other ones are still working as they have not finished
their assigned edit paths. To overcome such a problem, in
future work, this algorithm can be transformed into a multi-
jobs, or multi-iteration, algorithm.

IV. EXPERIMENTS

A. Environment
D-DF is built on top of Hadoop [20] with a notification

tool called ZooKeeper [21] used to share UBCOSTshared and
UBshared with all workers. Synchronizing these variables does
not break the scalability. On the contrary, it helps in pruning
the search tree as fast as possible. The evaluation of D-
DF is conducted on 5 machines running Hadoop MapReduce
version 1.0.4. Each node contains a 4-core Intel i7 processor
3.07GHz, 8GB memory and one hard drive with 380GB
capacity. Hadoop was allocated 20 workers (4 workers per
machine), each with a maximum JVM memory size of 1GB.
Hadoop Distributed File System is used for dispatching edit
paths with a replication factor that is equal to 3. For sequential
algorithms, evaluations are conducted on one machine.

B. Studied Methods
We compare D-DF with five GED algorithms from the

literature. From the related work, we chose two exact methods
and three approximate ones. On the exact methods’ side, we
have chosen, A∗ and DF. In both algorithms h(p) is calculated
by applying BP on vertices and edges in a separated manner
[18]. On the approximate methods’ side, we include BS-1, BS-
10, BS-100, BP and FBP, see Section II-B.

C. Datasets
Recently, a new repository has been put forward to test the

scalability of graphs [22]. Databases are divided into subsets
each of which represents graphs with the same number of
vertices. In this work, we use two PR datasets (GREC and
Mutagenicity (MUTA)) taken from the repository. However,
we eliminate the easy graph matching problems from both
datasets since we are interested in difficult problems for
distribution issues. To filter these databases, we run DF on
each pair of graphs and stop it after 5 minutes. If there is no
optimal solution found within 5 minutes, then the matching
problem is considered as difficult. This results in 627 problems
on MUTA and 92 problems on GREC. For more details about
these datasets, please visit the GDR4GED repository [35].

D. Protocol
First, the effect the variable N (number of initial edit paths)

is tested on several values. Five values of N are chosen: 20,
100, 250, 500 and 1000, where N=20 represents the least
distributed case (i.e., one edit path per worker), N= 100 and

69Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 80 / 107

250 moderately amortize the communication between master
and slaves whereas N=500 and 1000 is the more complete
case where workers have to cross the network many times in
order to ask for a new edit path once they finish solving an
already assigned one. We also study the effect of increasing
the number of machines, from 2 to 5 machines, on run time.
Both tests are evaluated on GREC-20 (i.e., graphs of GREC
whose number of vertices is twenty) [22].

The deviation was chosen as a metric to compare all the
included methods [22]. We compute the error committed by
each method m over the reference distances. For each pair
of graphs matched by method m, we provide the following
deviation measure:

dev(gi, gj)m =
|d(gi, gj)m −Rgi,gj |

Rgi,gj
, ∀(i, j) ∈ J1, GK2,

∀m ∈M
(2)

where G is the number of graphs. d(gi, gj)m is the distance
obtained when matching gi and gj using method m while
Rgi,gj corresponds to the best known solution among all
the included methods. We also measure the overall time
in milliseconds (ms), for each GED computation, including
all the inherits costs computations. The mean run time is
calculated per subset s and for each method m. Due to the
high complexity of GED methods, we propose to evaluate them
under a time constraint CT that is equal to 300 seconds and
a memory constraint CM that is equal to 1GB. Note that the
only algorithm that violates memory is A∗.

V. RESULTS AND DISCUSSIONS

Figure 3 depicts the parameters study. One can see that
increasing the number of machines decreases the run time.
For some instances, the runtime was not reduced due to the
difficulty of matching problems. As for N , the best case was
when it equals 250, owing to moderately performing tasks-
dispatch. These values were used for the rest of experiments.

GREC−20

GREC−20: Number of Machines

M
ea

n
ru

nn
in

g
tim

e
in

 m
ill

is
ec

on
ds

0e
+

00
1e

+
05

2e
+

05
3e

+
05

D−DF−2machines
D−DF−3machines
D−DF−4machines
D−DF−5machines

GREC−20

Number of Vertices

M
ea

n
ru

nn
in

g
tim

e
in

 m
ill

is
ec

on
ds

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05

20 editpaths
100 editpaths
250 editpaths
500 editpaths
1000 editpaths

Figure 3. Parameters: Left (Number of Machines), Right (Variable N). The
objective of this study is to choose the values that minimize D-DF’s run

time.

Figure 4 illustrates the deviation of the included methods
on GREC and MUTA. Figure 4(a) shows that D-DF has
the least deviation (0%) on all subsets, followed by DF.
However, that was not the case on MUTA, see Figure 4(b).
BS100 outperformed D-DF in terms of number of best found
solutions. The major differences between these algorithms are
a) The search space exploration manner and b) the Vertices-
Sorting strategy which is adapted in DF [18] and not in

BS. In fact, BP is integrated in the preprocessing step of
DF to sort vertices of g1. Since BP did not give a good
estimation on MUTA, it was also irrelevant when sorting the
vertices of g1 resulting in the exploration of misleading nodes
in the search tree. Since the graphs of MUTA are relatively
large, backtracking nodes took time. MUTA contains symbolic
attributes while DF and D-DF are designed for rich attributed
graphs where the use of BP in the vertices sort is meaningful.
However, the deviation of BS and D-DF was relatively similar.
Both D-DF and DF succeeded in finding upper bounds that
are better than BP. D-DF, however, has always outperformed
DF in terms of deviation. This can be remarkably seen on
MUTA where, in average, the deviation of DF was 18% while
the deviation of D-DF was 6.5%.

15 20 MIX

Number of Vertices
M

ea
n

de
vi

at
io

n
in

 (
%

)

0
20

40
60

80
10

0
12

0 FBP
BP
BS1
BS10
BS100
A*
DF
D−DF

20 30 40 50 60 70 MIX

Number of Vertices

M
ea

n
de

vi
at

io
n

in
 (

%
)

0
50

10
0

15
0

FBP
BP
BS1
BS10
BS100
A*
DF
D−DF

Figure 4. Deviation: Left (GREC), Right (MUTA). Note that the lower the
deviation the better the algorithm.

15 20 MIX

Number of Vertices

M
ea

n
ru

nn
in

g
tim

e
in

 m
ill

is
ec

on
ds

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05
5e

+
05

6e
+

05

FBP
BP
BS1
BS10
BS100
A*
DF
D−DF

20 30 40 50 60 70 MIX

Number of Vertices

M
ea

n
ru

nn
in

g
tim

e
in

 m
ill

is
ec

on
ds

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05
5e

+
05

6e
+

05

FBP
BP
BS1
BS10
BS100
A*
DF
D−DF

Figure 5. Run time: Left (GREC), Right (MUTA). Note that the lower the
run time the better the algorithm.

D-DF was always faster or equal to DF, see Figure 5. At
a first glance, one can think that A∗ was faster than both DF
and D-DF. However, that was not the case. In fact, A∗ was
unable to output feasible solutions and was stopped because
of its memory bottleneck. BP was the fastest algorithm (12.3
milliseconds on GREC and 11 milliseconds on MUTA).

VI. CONCLUSION AND PERSPECTIVES

In the present paper, we have considered the problem of
GED computation for PR. GED is a powerful and flexible
paradigm that has been used in different applications in PR. In
the literature, few exact GED algorithms have been proposed.
Recently, a Depth-First GED algorithm (DF) has shown to be
effective. DF, thanks to its Depth-First exploration, upper and
lower bounds pruning strategies, overcomes the high memory
consumption from which a well-known A∗ algorithm suffers.
However, DF can match relatively small graphs. In this paper,
we have proposed to extend it to a distributed version called
D-DF. We build a master-slave architecture over Hadoop in
order to take advantage of the fault-tolerance of Hadoop. Each

70Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 81 / 107

worker gets one partial edit path and all workers solve their
assigned edit paths in a fully distributed manner. In addition,
a notification process is integrated. When any worker finds
a better upper bound, it notifies the master to share the new
upper bound with all workers.

In the experiments part, we have proposed to evaluate both
exact and approximate GED approaches, using novel perfor-
mance evaluation metrics under time and memory constraints,
on two different datasets (GREC and MUTA). Experiments
have pointed out that D-DF has the minimum deviation. BS is
slightly superior to D-DF in terms of deviation on the MUTA
dataset. In fact, one weakness of DF and so D-DF is that
their sorting strategy is BP-dependent. One solution could be
to better learn the upper bound and so the sorting strategy in
function of dataset type/nature. Experiments have also demon-
strated that D-DF always outperforms DF in terms of deviation
and run time. Indeed, D-DF is flexible as one can add more
machines and thus decrease the running time. Results have also
indicated that there is always a trade-off between deviation and
running time. In other words, approximate methods are fast,
however, they are not as accurate as exact ones. On the other
hand, DF and D-DF take longer time but lead to better results.

The main drawback behind D-DF is that it is a single-job
algorithm. When there is no time constraint, some workers
work while others may become idle after finishing the explo-
ration of their assigned partial edit paths. To overcome this
drawback and as future work, we aim at transforming D-DF
into a multi-iteration method where all workers work without
becoming idle. Moreover, two ideas can be applied for both
DF and D-DF. First, coming up with a better lower bound
and thus making the calculations faster. Second, learning to
sort the vertices of each dataset in a way that minimizes its
deviation. Such an extension of DF and D-DF can beat the
approximate approaches when matching graphs of MUTA.

REFERENCES

[1] K. Riesen and H. Bunke, “Iam graph database repository for graph
based pattern recognition and machine learning,” 2008, pp. 287–297.

[2] M. Vento, “A long trip in the charming world of graphs for pattern
recognition,” Pattern Recognition, vol. 48, no. 2, 2015, pp. 291–301.

[3] H. Bunke, “Inexact graph matching for structural pattern recognition,”
Pattern Recognition Letters, vol. 1, no. 4, 1983, pp. 245–253.

[4] S. Gold and A. Rangarajan, “A graduated assignment algorithm for
graph matching,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 18, 1996, pp. 377–388.

[5] S. Umeyama, “An eigendecomposition approach to weighted graph
matching problems,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 10, 1988, pp. 695–703.

[6] R. Wilson, E. Hancock, and B. Luo, “Pattern vectors from algebraic
graph theory,” Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, vol. 27, 2005, pp. 1112–1124.

[7] X. Jiang and H. Bunke, “Optimal quadratic-time isomorphism of
ordered graphs,” Pattern Recognition, vol. 32, no. 7, 1999, pp. 1273
– 1283.

[8] J. E. Hopcroft and J. K. Wong, “Linear time algorithm for isomorphism
of planar graphs (preliminary report),” in Proceedings of the Sixth
Annual ACM Symposium on Theory of Computing. New York, NY,
USA: ACM, 1974, pp. 172–184.

[9] M. Neuhaus and H. Bunke, “An error-tolerant approximate matching
algorithm for attributed planar graphs and its application to fingerprint
classification,” in SSPR WORKSHOP. LNCS 3138. Springer, 2004,
pp. 180–189.

[10] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou, “Comparing
stars: On approximating graph edit distance,” vol. 2, 2009, pp. 25–36.

[11] W.-H. Tsai and K.-S. Fu, “Error-correcting isomorphisms of attributed
relational graphs for pattern analysis,” Systems, Man and Cybernetics,
IEEE Transactions on, vol. 9, no. 12, 1979, pp. 757–768.

[12] J. K. W. Christmas and M. Petrou., “Structural matching in computer
vision using probabilistic relaxation.” IEEE Trans. PAMI,, vol. 2, 1995,
pp. 749–764.

[13] A. D. J. Cross and E. R. Hancock, “Graph matching with a dual-step
em algorithm,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, 1998,
pp. 1236–1253.

[14] e. a. Finch, Wilson, “An energy function and continuous edit process
for graph matching,” Neural Computat, vol. 10, 1998, pp. 1873–1894.

[15] P. Kuner and B. Ueberreiter, “Pattern recognition by graph matching:
Combinatorial versus continuous optimization,” International journal in
Pattern Recognition and Artificial Intelligence, vol. 2, 1988, pp. 527—
-542.

[16] P. Hart, N. Nilsson, and B. Raphael., “A formal basis for the heuristic
determination of minimum cost paths.” IEEE Transactions of Systems,
Science, and Cybernetics., vol. 28, 2004, pp. 100–107.

[17] D. Justice and A. Hero, “A binary linear programming formulation of
the graph edit distance,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 28, 2006, pp. 1200–1214.

[18] Z. Abu-Aisheh, R. Raveaux, J.-Y. Ramel, and P. Martineau, “An exact
graph edit distance algorithm for solving pattern recognition problems,”
Proceedings of ICPRAM, 2015, pp. 271–278.

[19] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra,
MPI-The Complete Reference, volume 1: The MPI Core, 2nd ed.
Cambridge, MA, USA: MIT Press, 1998.

[20] T. White and D. Cutting, Hadoop : the definitive guide. O’Reilly,
2009.

[21] F. Junqueira and B. Reed, Zookeeper: Distributed Process Coordination,
2013.

[22] Z. Abu-Aisheh, R. Raveaux, and J.-Y. Ramel, “A graph database
repository and performance evaluation metrics for graph edit distance,”
in Graph-Based Representations in Pattern Recognition - GbRPR 2015.,
2015, pp. 138–147.

[23] A. Sanfeliu and K. Fu, “A distance measure between attributed relational
graphs for pattern recognition,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 13, 1983, pp. 353–362.

[24] K. Riesen and H. Bunke, Graph Classification and Clustering Based
on Vector Space Embedding. River Edge, NJ, USA: World Scientific
Publishing Co., Inc., 2010.

[25] S. Fankhauser, K. Riesen, and H. Bunke, “Speeding up graph edit
distance computation with a bipartite heuristic,” no. 6658, 2011, pp.
102–111.

[26] B. H. Riesen, K., “Approximate graph edit distance computation by
means of bipartite graph matching.” Image and Vision Computing.,
vol. 28, 2009, pp. 950–959.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[28] H. B. M. Neuhaus, K. Riesen, “Fast suboptimal algorithms for the
computation of graph edit distance,” Proceedings of SSPR., 2006, pp.
163–172.

[29] F. Serratosa, “Computation of graph edit distance: Reasoning about
optimality and speed-up,” Image and Vision Computing, vol. 40, 2015,
pp. 38–48.

[30] K. Riesen and H. Bunke, “Improving Approximate Graph Edit Distance
by Means of a Greedy Swap Strategy,” vol. 8509, 2014, pp. 314–321.

[31] K. Riesen, A. Fischer, and H. Bunke, “Improving approximate graph
edit distance using genetic algorithms,” 2014, pp. 63–72.

[32] M. J. Atallah and S. Fox, Eds., Algorithms and Theory of Computation
Handbook, 1st ed. Boca Raton, FL, USA: CRC Press, Inc., 1998.

[33] L. Barreto and M. Bauer, “Parallel branch and bound algorithm - a
comparison between serial, openmp and mpi implementations,” journal
of Physics: Conference Series, vol. 256, no. 5, 2010, pp. 012–018.

[34] I. Dorta, C. León, and C. Rodrı́guez, “A comparison between mpi and
openmp branch-and-bound skeletons.” in IPDPS, 2003.

[35] “Gdr4ged,” http://www.rfai.li.univ-tours.fr/PublicData/GDR4GED/home.html.,
2015.

71Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 82 / 107

Discovering the Most Dominant Nodes in Frequent Subgraphs

Farah Chanchary

School of Computer Science
Carleton University

Ottawa, Canada K1S 5B6
Email: farah.chanchary@carleton.ca

Herna Viktor

School of Elec Eng. and Comp Sc.
University of Ottawa

Ottawa, Canada K1N 6N5
Email: hviktor@uottawa.ca

Anil Maheshwari

School of Computer Science
Carleton University

Ottawa, Canada K1S 5B6
Email: anil@scs.carleton.ca

Abstract—Recently, there is a growing trend to utilize data mining
algorithms to explore datasets being modeled using graphs. In
most cases, these graphs evolve over time, thus exhibiting more
complex patterns and relationships among nodes. In particu-
lar, social networks are believed to manifest the preferential
attachment property which assumes that new graph nodes have
a higher probability of forming links with high-degree nodes.
Often, these high-degree nodes have the tendency to become the
articulation points in frequent subgraphs (also known as the most
dominant nodes). Thus, their identification is important, because
their disappearance may have greater influence on their peer
nodes. Also, exploring their properties is essential when aiming
to predict future frequent patterns. In this paper, we introduce
a binary classification model DetectMDN to correctly classify the
most dominant nodes in frequently occurring subgraphs. A set
of experimental results confirms the feasibility and accuracy of
our approach.

Keywords–Frequent subgraphs; Graph mining; Most dominant
nodes; Time evolving graph.

I. INTRODUCTION

In recent years, there has been considerable interest in
graph structures arising in technological, sociological, and
scientific settings. These domains include computer networks
(routers or autonomous systems connected together); networks
of users exchanging e-mails or instant messages; citation
networks and hyperlink networks and social networks [25].
Frequent pattern mining provides a way to extract significant
and interesting patterns from large datasets that otherwise
commonly remain unexplored. This idea was first proposed
by Agrawal and Srikant [1] in their work on proposing faster
association rules mining. At present, frequent pattern mining
is used in numerous scientific, business and legal application
domains where the datasets are generally large, multidimen-
sional and dynamic, and traditional approaches of exploratory
data analysis yield limited success [14].

Other than association rule mining, frequent pattern mining
is also used in many standard knowledge discovery tasks such
as classification and clustering to achieve better outcomes
from these patterns. At the same time the applications have
expanded extensively in domains where objects of various
datasets are modeled using graphs [21] [22], trees [19], se-
quences [16] or time evolving networks [7] [24]. Following the
trend, research has been carried out on graph and tree pattern
mining to discover complex associations that are frequent
according to some predefined concept.

Interesting frequent patterns can further be used as a source
of features in a supervised learning task when the database

events are labeled. In many networks, e.g., communication,
social networks, citation and co-authorship networks, this
idea can play a significant role in solving problems like
hidden group identification and link prediction. In cases when
similar patterns of groups or links occur very frequently
within large networks, they can provide important information
for predicting future patterns. This leads to the problem of
efficiently identifying most dominant nodes (MDNs) in these
frequent sub-groups. It follows that MDNs tend to dominate
the interests and activities of their peer nodes. Thus, knowing
their attachment patterns is valuable to many entities, including
marketers, employers, credit rating agencies, insurers, spam-
mers, phishers, police, and intelligence agencies [8].

The main contributions of this study are three-fold. Our
paper describes and presents the performance of DetectMDN
algorithm designed to find, and subsequently correctly label
MDNs in hidden frequent subgraphs of any large network. We
further analyze the impact of different types of networks on
the prediction results. Thirdly, we identify the most relevant
attributes to accurately define frequent subgraphs.

The paper is organized as follows. Section 2 describes the
problem domain and highlights related work. This is followed,
in Section 3, with a description of our DetectMDN algorithms.
Section 4 details our experimental setup and evaluation, while
Section 5 concludes the paper.

II. DESCRIPTION OF THE PROBLEM DOMAIN AND
RELATED WORK

There are generally two distinct settings for subgraph
mining. The first one is the graph-transactional setting, where
a set of graphs {G1, ..., Gn} and a threshold t are given, and
our goal is to find patterns that occur in at least t graphs in
the set. The second graph mining setting is called the single
network setting, where a single graph G and a threshold t are
given, and we aim to find patterns that have a support of at
least t in G according to some appropriate support measure.
We use both settings as inputs to evaluate our classification
model.

Formally, the problem definitions are as follows:
1) In a graph-transactional setting, a graph dataset D1 =

{G1, ..., Gn} and a threshold t are given.
2) In the single network setting, a dataset D2 consisting of

a large graph G and a threshold t are given.
In this setting, our task is thus to correctly identify all

MDNs in D1 and D2.

72Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 83 / 107

All graph datasets used in this study are undirected. We
revisit relevant definitions below.

Definition 1: A graph G = (V,E) has a set of nodes
denoted by V and the edge set denoted by E. A graph G′

is a subgraph of another graph G if there exists a subgraph
isomorphism from G′ to G, denoted by G′ ⊆ G.

Definition 2: A subgraph is frequent if its support (occur-
rence frequency) in a given dataset is no less than a minimum
support threshold t, where t > 0.
Hence, the frequent subgraph is a relative concept, whether or
not a subgraph is frequent depends on the value of t [28].

Definition 3: A subgraph isomorphism is an injective func-
tion f : V (G) → V (G′), such that, (1) ∀u ∈ V (G), l(u) =
l′(f(u)), and (2) ∀(u, v) ∈ E(G), (f(u), f(v)) ∈ E(G′) and
l(u, v) = l′(f(u), f(v)) where l and l′ are the label function
of G and G′, respectively.

These labels represent some properties of the nodes (or
edges) from the same domain, e.g., location or gender, and for
simplicity it is assumed that they do not change with time.
We also assume that labels do not represent any combinations
of properties (i.e., both location and gender). Each node (or
edge) of the graph is not required to have a unique label and
the same label can be assigned to many nodes (or edges) in
the same graph. Here, f is called an embedding of G in G′.

Figure 1 presents an example of frequency counts of
subgraphs X and Y in a source graph G. Subgraph X on
top has a frequency count of 2 and the subgraph Y on bottom
has frequency counts of 4 in the source graph on the left.

a

c

a

c

a

c

a c

b

a

b

b

Graph G

Subgraph X

Subgraph Y

Figure 1. Frequency counts of subgraphs.

Definition 4: A most dominant node u ∈ V in an undi-
rected graph G is an articulation point having maximum degree
in a frequent subgraph of G.

Definition 5: A node x ∈ V in an undirected graph G is an
articulation point if removing x disconnects the graph into two
or more connected components. In other words, node x ∈ V
is an articulation point if there exists distinct nodes v and w,
such that every path between v and w goes through x.

Figure 1 has three articulation points but only two of these
are MDNs (shaded nodes). Note that more than one articulation
point may have the same maximum degree, and these are all
considered as MDNs.

Definition 6: A time evolving graph is a conceptual rep-
resentation of a series of undirected graphs G0, · · · , GT ,
so that Gt = (Vt, Et) represents the graph at time t over
time 0 to T . Thus, {G0, G1, · · · , GT } is combined as one
undirected graph G = (V,E) with V = ∪Tt=0Vt = VT and
E = ∪Tt=0Et = ET . To each edge e = (u, v) a time-stamp
t(e) = minj{Ej |e ∈ Ej} is assigned. So, formally a time
evolving graph is defined as G = (V,E, t, λ) with t assigning

time-stamps to E and a labeling function λ : V ∪ E → Σ,
assigning labels to nodes and edges from an alphabet Σ [24].

The edge labels of the graph shown in Figure 2 represent
collaboration time between pairs of authors. Label 0 represents
the starting time (e.g., month, day or year) and it increases by
1 after every time unit.

a b d

c a

0 0

1 1 21

1

0

1

7

6

5

d d

ba

ac

Graph G Pattern X Pattern Y

Figure 2. Time evolving graph.

Time evolving graphs support relative-time pattern match-
ing.

Definition 7: Let G = (V,E, t, λ) be a time evolving
graph and P = (VP , EP , tP , λP) is a pattern subgraph. Let
us assume that P is connected. P occurs in G at relative time
if there exists a ∆ ∈ R and a function ψ : VP → V mapping
the nodes of P to the nodes in G such that, ∀u, v ∈ VP :

1) (u, v) ∈ EP implies (ψ(u), ψ(v)) ∈ E
2) (u, v) ∈ EP implies t((ψ(u), ψ(v))) = t(u, v) + ∆
3) λP (u, v) = λ(ψ(v))λP (u, v) = λ((ψ(u), ψ(v)))

Figure 2 shows an example of how relative-time pattern
matches subgraphs with the source graph. Here, pattern X is
not a valid subgraph of G since node labels do not match
properly. On the other hand, pattern Y is valid according to
property 2 of Definition 7.

Definition 8: Minimum Image Based Support is based on
the number of unique nodes in the graph G = (V,E) that a
node of the pattern P = (V ′, E′) is mapped to, and defined as
δ(P,G) = minv∈V ′ |{ψi(v) : ψi is an occurance of P in G}|.

Figure 3 shows the host graph (a) and a pattern (b).
According to minimum image based support measure the
frequency of the given pattern in the host graph will be 1,
though in general the pattern can be matched with multiple
embeddings of the host graph.

a a

a a

b

c

c c c

c

Graph G

Pattern X

a b c

Figure 3. A graph with possible different occurrences of a pattern.

A. Related Work
A number of research has been carried out on the separate

themes of the effect of node removal from large graphs and
discovering influential or important nodes from large graphs
based on different measurement and characteristics of graph
elements, such as a model based on semi-local centrality
measure [5], another model based on bio-inspired centrality
measure [6], stochastic diffusion models [20], and the infor-
mation transfer probability between any pair of nodes and
the k-medoid clustering algorithm [33]. In [3], Albert et al.
showed that a class of inhomogenously wired networks (such

73Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 84 / 107

as the World Wide Web, social networks and communication
networks) are extremely vulnerable to the selection and re-
moval of a few nodes that play a vital role in maintaining
the network connectivity. Shetty et al. [27] worked on an
entropy model to identify the most interesting nodes in a
graph. Here, the concept of importance depends on the amount
of commands/messages forwarded through the network. A
different measure using principal component centrality has
been used in [15] to identify social hubs, nodes at the center of
influential neighborhoods. Further, the problem of identifying
influential spreaders in complex networks has also been studied
in [34]. As far as we are aware, this paper presents the first
work in which a classifier is used to find the MDN in frequent
subgraphs.

III. DETECTMDN ALGORITHM

This section describes main components of our Detect-
MDN algorithm.

Step 1. Extract frequent patterns: From input graph datasets
D1 = {G1, ..., Gn} and D2, all frequent subgraphs are
extracted where frequency occurs more than a given threshold
t. By applying a graph mining algorithm (gSpan [32]) on D1,
we construct a set of frequent subgraphs D′

1 = {F1, ...Fn}.
Another graph mining algorithm (GERM [24]) is applied
on D2 to obtain another set of frequent subgraphs D′

2 =
{F1, ...Fm}.

We describe these algorithms here briefly. The gSpan
algorithm uses a pattern growth approach to discover frequent
subgraphs from large graphs, as depicted in Figure 4 and 5.
The gSpan method builds a new lexicographic order among
graphs, and maps each graph to a unique minimum depth
first search (DFS) code as its canonical label. Based on this
lexicographic order, gSpan adopts the DFS strategy to mine
frequent connected subgraphs efficiently. This algorithm uses
the DFS lexicographic order and rely on the minimum DFS
concept, which forms a novel canonical labeling system to
support the DFS search [32].

Data: Graph set GS
Result: Set of frequent subgraphs S
sort labels in GS by their frequency;
remove infrequent nodes and edges and relabel
remaining nodes and edges;
S′ ← all frequent 1-edge graphs in GS;
sort S′ in DFS lexicographic order;
S ← S′;
for each edge e ∈ S′ do

initialize s with e, set s.GS by graphs which
contains e;
SubgraphMining(GS,S,s);
GS ← GS − e;
if |GS| < minSupp then

break;
end

end

Figure 4. GraphSet Projection Algorithm

On the other hand, GERM mines patterns from a single
large graph. The GERM algorithm is adapted from gSpan
where the support calculation is replaced by the minimum

Data: Graph set GS , DFS code s
Result: Set of frequent subgraphs S
if s 6= min(s) then

return;
end
S ← S ∪ s;
enumerate s in each graph in D and count its children;
for all c, c is s′ child do

if support(c) ≥ minSupp then
s← c;
SubgraphMining(D,S, s);

end
end

Figure 5. SubgraphMining Algorithm

image based support (see Definition 8). GERM has made
another modification in gSpan’s use of minimum DFS code
by modifying the canonical form used in DFS code. This is
done so that the first edge in the canonical form is always the
one with the lowest time-stamp, as compared to gSpan where
the highest label is used as a starting node [22].

Step 2. Apply LabelMDN algorithm: The algorithm works
as follows (see Figure 7).

For each frequent pattern Fi of every datasets D′
1 and D′

2,
it identifies the set of articulation points A. If |A| = p > 1, we
identify the total number of nodes V (Fi) and edges E(Fi), and
number of connected components BC(Fi). We also calculate
the degree deg(aj) and associated time stamps ts(aj) of each
articulation point aj ∈ A, where 1 ≤ j ≤ p. An articulation
point can be associated with multiple time stamps as it evolves
with time.

To compute the articulation points, we implement the
standard linear time DFS approach proposed by Hopcroft
and Tarjan [18]. All articulation points satisfy the following
conditions: Any node x is an articulation point if and only if
either (a) x is the root of the DFS tree and x has more than
one child, or (b) x is not the root and for some child w of x
there is no back-edge between any descendent of w (including
w) and a proper ancestor of x. (For further reading, we refer
the interested reader to [4].)

a b

c

e

d

f

g

c

e

g

f

b

a

d

(a) Subgraph F (b) DFS tree of F with root node c

Figure 6. Labelling articulation points using DFS tree.

Figure 6 gives an example of a given subgraph F in (a)
and its DFS tree starting at c in (b). Backedges are shown
with dotted lines. It is clear that F has two articulation points
c and e, but only e will be labeled as MDN since it has the
maximum degree in F .

The next step is to correctly label each aj whenever it is a
MDN in Fi. This is done by verifying whether deg(aj) of each
articulation point aj is maximum within it’s corresponding Fi.

74Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 85 / 107

Thus, each ai is labeled with a class label C1 if it is a MDN,
with C0 otherwise. Now, we have a training dataset T having
records for each aj with the expectation to train a classifier
for correctly predicting the labels of unclassified test datasets.
Step 3. Classify MDNs: A number of classification algorithms

Data: Set of frequent subgraphs D′
1, D′

2
Result: Training dataset T
for all frequent subgraphs Fi ∈ D′

1 (or D′
2) do

find set of articulation points A ∈ Fi. [use the
standard DFS based algorithm];
if |A| ≥ 1 then

find V (Fi), E(Fi), and BC(Fi);
for each aj ∈ A from j = 1 to p do

find deg(aj) and ts(aj);
if deg(aj) = max{deg(u) : u ∈ V (Fi)}
then

label aj with class C1. [aj is a MDN];
else

label aj with class C0. [aj is not a
MDN];

end
store information of each aj as a record in
T ;

end
end

end

Figure 7. LabelMDN Algorithm

was used from the WEKA environment [31]. The baseline
model is constructed using ZeroR, where the classifier assigns
all items to the largest class. We also utilized a number of other
classifiers, including the Naive Bayes probabilistic approach,
Support Vector Machines (SMO), a rule based method (JRip)
and a decision tree based classifier (J48). We also built models
using the Boosting and Bagging meta-learning techniques, both
using J48 decision trees as base learner.

IV. EXPERIMENTAL SETUP AND EVALUATION

This section describes our experimental setup and evalua-
tion. We have used the implementations of gSpan and GERM
that are available in [13] and [24] respectively. We made
use of the previously mentioned WEKA classifiers, as noted
earlier. All other algorithms have been implemented in Java
programming language.

A. Datasets
Five datasets have been used for evaluating DetectMDN

algorithm. Brief descriptions of these datasets are given below,
and their summary information is shown in Table I.

(a) Co-authorship network data, DBLP [11]: Three sample
datasets from the same DBLP network span over three periods,
namely 1992-2002, 2003-2005 and 2005-2007. In this dataset,
authors are represented by nodes with a connecting edge if they
are co-authors. The assigned time-stamp on an edge represents
the year of the first co-authorship. The three different samples
each contains the edges created in the corresponding years.
We also aggregate all datasets into one large DBLP dataset
with information from the year 1992 to 2007. This is done for
analyzing both long and short term trends.

(b) Social network dataset, Facebook [12]: This network
describes friendship relations between users of Facebook. It
was collected in April of 2009 through data scraping from
Facebook. Each node represents a user and an edge represents
friendship between two users. The graph is undirected and
unweighted thus all nodes are labeled with the same default
value.

(c) Citation network [10]: The format for the Citation
dataset is similar to the Facebook dataset. It contains a sorted
2 column vector where the left column is the arxiv id of the
paper cited from and the right column is the arxiv id of the
paper being cited.

TABLE I. DATASET PROPERTIES.

Dataset Date Node Edge Avg Degree Time Stamp
dblp92-02 92-02 129073 277081 2.15 0-10
dblp02-05 02-05 109044 233961 2.15 0-3
dblp05-07 05-07 135116 290363 2.15 0-2
facebook 2009 4039 88234 21.85 NA
citation 92-03 27718 352806 12.73 NA

B. Experimental Results

This section generalizes the results we obtained against
the above-mentioned datasets. Firstly, the GERM algorithm
has been applied to all the DBLP datasets to extract frequent
subgraphs. These files are compatible with GERM and need
no further modification. In the DBLP datasets the timestamps
vary from 0 to 10. To normalize this range, each timestamp
has been categorized as initial, middle and final and a three-
digit bit string is generated which later is converted into a
numeric value. Note that, since the Facebook and Citation
datasets do not have timestamps, the ts attribute in Algorithm 7
is not relevant for these datasets. Subsequently, the original
gSpan algorithm has been used for these two datasets. Table
II gives brief explanations of the set of attributes generated
by LabelMDN from all frequent patterns. Table III gives a
summary of the results found in this level. The numbers
under Nodes, Edges, Degrees and BC columns come with the
format min-max-average. The ts column shows only min-max
numbers. Although there is no significant differences in the
average numbers of nodes and edges in frequent subgraphs of
all five datasets, articulation points in Facebook and Citation
datasets have higher degrees than that in the DBLP datasets.

TABLE II. ATTRIBUTES EXTRACTED FROM GIVEN DATASETS.

Attributes Description Type
V (Fi) Total number of nodes in frequent subgraph Fi Numeric
E(Fi) Total number of edges in frequent subgraph Fi Numeric
BC(Fi) Total number of biconnected components in Fi Numeric
deg(aj) Total degrees of articulation point aj Numeric
ts(aj) Time stamps associated with aj Numeric
Ck Class of aj , where k ∈ {0, 1} Binary

TABLE III. SUMMARY OF EXTRACTED ATTRIBUTES.

Datasets Inst Nodes Edges Degrees BC ts
dblp92-02 2471 3-10-5.8 2-9-4.9 2-5-2.4 2-9-4.7 1-5
dblp03-05 1971 3-11-5.7 2-10-4.9 2-6-2.5 2-10 4.6 1-7
dblp05-07 2923 3-12-5.7 2-11-4.9 2-7-2.5 2-11-4.6 1-7
Facebook 65 3-14-6.3 2-13-5.5 2-13-4.2 2-13-5.2 —
Citation 80 3-13-6.0 2-12-5.1 2-12-3.8 2-12-4.9 —

75Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 86 / 107

C. Research Questions
In this study, experiments are conducted to answer the

following research questions:
Q1. Do our DetectMDN algorithm result in accurate models
of the studied networks? (See Section C.1)
Q2. Do different types of networks (co-authorship and social)
influence the prediction results? (See Section C.2)
Q3. What type of frequent pattern attributes are more effective
than others? (See Section C.3)

C1. Performance of DetectMDN Algorithm
Table IV shows the accuracies achieved by each of the

classifiers against all the datasets. In this table the names
DBLP1, DBLP2, DBLP3, FB and Cita are used to repre-
sent dblp92-02, dblp03-05, dblp05-07, Facebook and Citation
datasets respectively. All WEKA classification algorithms are
used with 10-fold cross validation for each of the datasets.
Compared with the baseline all other classifiers performed
significantly better, and for all datasets, the best performances
are shown by JRip and AdaBoost (with J48) both are ranked
as 1. It should be noted that the differences among these
top ranked classifiers’ performances are not significant. Our
algorithm successfully classifies MDNs in both full-term and
short-term time-evolving DBLP datasets, while the classifier
performs equally well for the static graph datasets, namely
Facebook and Citation. These results show that our classifiers
are able to encompass both the duration and the variation of
the relationship patterns among all MDNs.

TABLE IV. ACCURACY OF CLASSIFICATION MODELS (%).

Classifiers DBLP1 DBLP2 DBLP3 DBLP FB Cita Rank
Base 67.5 65.7 66.8 66.7 81.8 82.5 4
JRip 74.3 74.4 74.2 73.8 90.8 85.0 1
NaiveBayes 71.6 72.0 71.8 72.0 80.0 78.8 4
J48 74.1 74.4 74.2 73.6 88.0 86.3 2
SMO 73.3 74.0 74.3 74.0 81.5 82.5 3
Boosting 73.5 74.5 74.3 73.6 90.8 85.0 1
Bagging 73.7 74.4 74.2 73.8 87.7 81.3 2

C2. Influence of Network Types on Prediction Results
Since a classifier’s performance does not only depend

on the percentage of accuracy value, we present another set
of analysis in Table V. We consider two classifiers, namely
Boosting (AdaBoostM1) with a J48 base learner, as well as J48
on its own, for this analysis. These two classifiers were chosen
based on their high rankings during our earlier experiments.

ROC analysis and AUC: For all datasets, the high per-
centage of Area Under Curve (AUC) value demonstrates the
efficiency of our model since it depicts the relative trade-
offs between true positives and false positives across a range
of thresholds of a classification model. Figure 8 shows the
comparison between the ROC graphs of the AdaBoostM1
(J48) and J48 algorithms for the Citation, Facebook and DBLP
datasets.

F-measure represents a harmonic mean between recall and
precision.

F −measure =
2×Recall × Precision
Recall + Precision

A lower recall value (69%) for DBLP results a comparatively
lower F-measure (75%). For the static datasets, the accuracy
rates are more than 90% for Facebook dataset and 85% for

Citation dataset. Figure 9 plots the Precision-Recall (PR) graph
demonstrating performance of the classifier for all datasets.
From these results it can be said that static networks are more
predictable than time evolving graphs.

TABLE V. AUC AND F-MEASURE VALUES USING ADABOOST WITH J48.

Dataset AUC Precision Recall F-measure
DBLP 0.82 0.78 0.69 0.75
Facebook 0.96 0.90 0.91 0.91
Citation 0.93 0.85 0.85 0.85

Figure 8. Comparisons between ROC Graphs of AdaBoostM1 and J48 for
(a) Citation, (b) Facebook and (c) DBLP. The x-axis represents the false

positive (FP) rates and y-axis represents the true posotive (TP) rates.

Figure 9. Precision and Recall graph for (a) Citation, (b) Facebook and (c)
DBLP. Here, x-axis represents Recall and y-axis represents Precision.

C3. Effective Attributes for Classification
The aim of this section is to evaluate the contribution of

a subset of attributes by considering the individual predictive
ability of each feature along with the degree of redundancy
between them. We employed the CfsSubsetEval function for
this task, which has been successfully applied previously in
many studies including [9] [17] [26] to improve the accuracy.
For all datasets, the degrees attribute has been identified as
the most important attribute to aid the classifier, while DBLP
dataset utilizes a second attribute, namely nodes. Both the
Facebook and Citation datasets have comparatively higher
average degrees than the DBLP dataset (see Table I). Recall
that the first two datasets represent a static view of the network
where the communication with peer nodes are not labeled
with time. Therefore, the total number of peer nodes (i.e.,
degrees) associated with each articulation point mostly governs
the classification rules. In the case of the DBLP datasets, our
classifier performs the labeling task based on the total number
of authors (nodes) and consider when they are connected with
peer nodes (degrees). It should be noted that dependency on
different attribute sets do not degrade the overall performance
of our classifier.

D. Discussions
In this study, we are interested to correctly classify all most

dominant nodes in frequent subgraphs of large networks. Based
on the results reported above it can be concluded that our
model can successfully classify both static and time-evolving
graphs with reasonable accuracy. However, the large number

76Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 87 / 107

of frequent subgraphs that are often present in network settings
constitutes some challenges [28]. The first one is redundancy,
in that most frequent subgraphs only differ slightly in structure
and repeat in many subgraphs. The second is the statistical
significance of subgraphs. Since both frequent and infrequent
subgraphs may be uniformly distributed over all classes, only
frequent subgraphs whose presence is statistically significantly
correlated with class membership are promising contributors
for classification.

In our research, MDNs are defined irrespective of their
direction of communications with peer nodes. Although it has
little impact in co-authorship networks, we may expect a con-
ceptual change in social and communication networks where a
MDN either communicates with (both-way) or only broadcasts
to (one-way) their peer nodes in a frequent subgraph. For
example, a fan page of Facebook may have many responses
from a group of members for each post. On the other hand, an
online marketing page may post news to many of its clients,
but typically does not receive responses equally.

V. CONCLUSION AND FUTURE WORK

We presented an algorithm to classify the most dominant
nodes in frequent subgraphs of large networks. We consid-
ered both static and time-evolving graphs. We evaluated the
performance of our algorithm with percentage of accuracy,
precision and recall. We also identified the attributes (i.e.,
degrees in general, and a second attribute nodes in DBLP
dataset) that are the most effective for successful classification.
Our experimental results showed that our method achieved
good performance in terms of accuracy and other statistical
measurements. Our future work will center on finding scalable
solutions to effectively deal with numerous frequent subgraphs
that are similar in structure and scope. We are also interested
in studying the effects of changes in properties, in order to
extend our work to deal with concept drift in a graph setting.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules in Large Databases.” In Proc. of ACM SIGKDD Conference on
KDDM, pp. 12-19, 1994.

[2] A. L. Barabasi and R. Albert, “Emergence of scaling in random net-
works.” Science 286, no. 5439, pp. 509-512, 1999.

[3] R. Albert, H. Jeong, and A. L. Barabasi, “Error and attack tolerance of
complex networks.” Nature, 406(6794), pp. 509-512, 2000.

[4] Biconnected Component, (2016, Mar.) [Online]. Available: https://en.
wikipedia.org/wiki/Biconnected component

[5] D. Chen, L. Lu, M. S. Shang, Y. C. Zhang, and T. Zhou, “Identifying
influential nodes in complex networks,” Physica a: Statistical mechanics
and its applications, 391(4), 2012.

[6] C. Gao, X. Lan, X. Zhang, and Y. Deng, “A bio-inspired methodology
of identifying influential nodes in complex networks,” PloS one, 8(6),
2013.

[7] B. Bringmann and S. Nijssen. “What is frequent in a single graph?.”
In Advances in Knowledge Discovery and Data Mining, Springer Berlin
Heidelberg, pp. 858-863, 2008.

[8] J. Bonneau, J. Anderson, R. Anderson, and F. Stajano. “Eight friends
are enough: social graph approximation via public listings.” In Proc. of
the 2nd ACM EuroSys Workshop on Social Network Systems, ACM, pp.
13-18, 2009.

[9] P. Chanda, Y. R. Cho, A. Zhang, and M. Ramanathan, “Mining of
attribute interactions using information theoretic metrics,” IEEE Inter-
national Conference on Data Mining Workshops, 2009.

[10] Citation network, (2016, Jan.) [Online]. Available: http://www.cs.
cornell.edu/projects/kddcup/datasets.html

[11] Co-authorship Network, (2016, Mar.) [Online]. Available: http://
www-kdd.isti.cnr.it/GERM/

[12] Facebook Dataset, (2016, Mar.) [Online]. Available: http://snap.
stanford.edu/data/egonets-Facebook.html

[13] gSpan: Frequent Graph Mining Package, (2016, Mar.) [Online]. Avail-
able: http://www.cs.ucsb.edu/∼xyan/software/gSpan.htm

[14] M. A. Hasan, “Mining Interesting Subgraphs by Output Space Sam-
pling,” PhD Thesis, Rensselaer Polytechnic Institute, New York, 2009.

[15] M. U. Ilyas and H. Radha. “Identifying influential nodes in online so-
cial networks using principal component centrality.” IEEE International
Conference on ICC, IEEE, pp. 1-5, 2011.

[16] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M. C. Hsu. “Prefixspan: Mining sequential patterns efficiently by prefix-
projected pattern growth.” In Proc. on ICCCN, IEEE, pp. 2-15, 2001.

[17] J. Hancke and D. Meurers, “Exploring CEFR classification for Ger-
man based on rich linguistic modeling,” In Learner Corpus Research
Conference, 2013.

[18] J. Hopcroft and R. Tarjan. “Algorithm 447: efficient algorithms for
graph manipulation.” Communications of the ACM 16 (6), pp. 372-378,
1973.

[19] A. M. Kibriya and J. Ramon, “Nearly exact mining of frequent trees
in large networks.” Machine Learning and Knowledge Discovery in
Databases, Springer Berlin Heidelberg, pp. 426-441, 2012.

[20] M. Kimura, S. Kazumi, N. Ryohei, and H. Motoda. “Extracting influ-
ential nodes on a social network for information diffusion,” Data Mining
and Knowledge Discovery 20, no. 1, pp. 70-97, 2010.

[21] M. Kuramochi and G. Karypis, “Frequent Subgraph Discovery,” In
Proc. IEEE International Conference on Data Mining, ICDM, pp. 313-
320, 2001.

[22] M. Kuramochi and G. Karypis. “An efficient algorithm for discovering
frequent subgraphs,” IEEE Transactions on Knowledge and Data Engi-
neering, 16.9, pp. 1038-1051, 2004.

[23] KDD cup 2003 Datasets, (2016, Mar.) [Online]. Available: http://www.
cs.cornell.edu/projects/kddcup/datasets.html

[24] B. Michele, F. Bonchi, B. Bringmann, and A. Gionis. “Mining graph
evolution rules,” In Machine learning and knowledge discovery in
databases, Springer Berlin Heidelberg, pp. 115-130, 2009.

[25] M. E. J. Newman. “The structure and function of complex networks,”
SIAM Review 45, no. 2, pp. 167-256, 2003.

[26] K. Selvakuberan, M. Indradevi, and R. Rajaram, “Combined feature
selection and classification - A novel approach for categorization of web
pages.” Journal of Information and Computing Science. 3 (2), 2008.

[27] J. Shetty and J. Adibi, “Discovering important nodes through graph en-
tropy the case of enron email database,” In Proc. of the 3rd international
workshop on Link discovery, ACM, pp. 74-81, 2005.

[28] M. Thoma, H. Cheng, A. Gretton, J. Han, H. Kriegel, A. Smola, L.
Song, P. S. Yu, X. Yan, and K. M. Borgwardt, “Discriminative frequent
subgraph mining with optimality guarantees,” Statistical Analysis and
Data Mining 3, no. 5, pp. 302-318, 2010.

[29] The Graph Evolution Rule Miner, (2016, Mar.) [Online]. Available:
http://www-kdd.isti.cnr.it/GERM/

[30] S. Wasserman and K. Faust, Social Network Analysis: Methods and
Applications, Cambridge, ENG and New York: Cambridge University
Press, Vol.8, 1994.

[31] Weka 3: Data Mining Software in Java, Machine Learning Group at the
University of Waikato, (2016, Mar.) [Online]. Available: http://www.cs.
waikato.ac.nz/∼ml/weka/

[32] X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,”
IEEE International Conference on Data Mining, pp. 721-724, 2003.

[33] X. Zhang, J. Zhu, Q. Wang, and H. Zhao, “Identifying influential
nodes in complex networks with community structure,” Knowledge-
Based Systems, 42, 2013.

[34] Z. Zhao, X. Wang, W. Zhang, and Z. Zhu, “A Community-Based
Approach to Identifying Influential Spreaders,” Entropy, 17(4), 2015.

77Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 88 / 107

Managing 3D Simulation Models

with the Graph Database Neo4j

Martin Hoppen, Juergen Rossmann, Sebastian Hiester

Institute for Man-Machine Interaction
RWTH Aachen University

Aachen, Germany
Email: {hoppen,rossmann}@mmi.rwth-aachen.de, sebastian.hiester@rwth-aachen.de

Abstract—Every simulation is based on an appropriate model.
Particularly in 3D simulation, models are often large and complex
recommending the usage of database technology for an efficient
data management. However, the predominant and well-known
relational databases are less suitable for the hierarchical structure
of 3D models. In contrast, graph databases from the NoSQL field
store their contents in the nodes and edges of a mathematical
graph. The open source Neo4j is such a graph database. In
this paper, we introduce an approach to use Neo4j as persistent
storage for 3D simulation models. For that purpose, a runtime
in-memory simulation database is synchronized with the graph
database back end.

Keywords–3D Simulation; 3D Models; Simulation Database;
Graph Database; Database Synchronization

I. INTRODUCTION

Before a technical system can get into mass production
and is ready for execution it has to pass certain stages of
development. Besides the new component’s design, an intense
test phase is compulsory in order to confirm its operability,
increase its prospects and if necessary to initiate some steps of
optimization. For such tests, engineers utilize simulation tools
like block-oriented simulation or 3D simulation to analyze
their target system in a virtual environment. In particular, 3D
simulation systems allow to analyze the spatial properties and
behavior of the intended system and its interaction with its
surroundings in an expressive visual way.

Every simulation is based on an appropriate model describ-
ing properties and behavior of the system under development.
This model data needs to be managed conveniently. The usage
of database technology has established for such requirements.
In contrast to flat files, they offer high performance data
evaluation and simplify data management with regard to secu-
rity, reliability, recovery, replication and concurrency control.
Currently, relational databases are dominating the market. Due
to different problems with scalability and effective processing
of big data with relational databases the field of NoSQL (”Not
only SQL”) databases has emerged [1]. In this context, the
approach of graph databases (GDBs) has become popular.
GDBs save their data in the nodes and edges of a mathematical
graph, in particular, to manage highly linked information.
As such, they are ideally suited for 3D simulation models.
Like in Computer-aided Design (CAD), such 3D data usually
comprises a huge number of parts of many different types
(mostly, each with only few instances), structured hierarchi-
cally with interdependencies. This recommends a graph-like

data structure. For the same reason, the scene graph is a
common approach to manage 3D data at runtime.

In this paper, we present a concept for a synchronization
interface between a GDB and a 3D simulation database, i.e.,
the runtime database of a 3D simulation system. The applied
data mapping strategy is bidirectional and in part incremental.
The approach was developed in the context of a student project
and is based on our previous work [2]. Its feasibility is shown
with a prototypical implementation using the GDB Neo4j
and the 3D simulation system VEROSIM and its Versatile
Simulation Database (VSD) (Figure 1).

Figure 1. Robot model (from Figure 9) loaded from Neo4j into the
in-memory simulation database VSD.

In Section II, we start with the basics of GDBs and a
short introduction to Neo4j and VEROSIM including VSD.
Section III gives an overview of different GDBs and moti-
vates the decision for Neo4j. In Section IV, the prototype’s
general requirements are itemized and Section V describes the
specific implementation of the interface with Neo4j and the
VSD. Subsequently, Section VI presents an evaluation of the

78Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 89 / 107

interface and Section VII recaps our work with a concluding
statement.

II. STATE OF THE ART

In this section, the necessary basics for our work are
presented.

A. Graph Databases
The idea of a GDB relies on the mathematical graph theory.

Information is saved in the nodes (or vertices) and edges (or
relationships) of a graph as shown in Figure 9. A graph is a
tuple G = (V,E), where V describes the set of nodes and
E the set of edges, i.e., vi ∈ V and ei,j = (vi, vj) ∈ E
[3]. To specify records, properties of nodes and (depending on
the GDB) even relationships can be described by key-value
pairs [4]. An important aspect of GDBs is the fact that all
relationships are directly stored with the nodes so that there is
no need to infer them as in relational databases using foreign
keys and joins. Hence, read operations on highly connected
data can be performed very fast. During a read access, the
graph is traversed along paths so that the individual data
records (nodes and edges) can be read in situ and do not have
to be searched globally. Therefore, the execution time depends
only on the traversal’s depth [1].

GDBs also provide standard database features like security,
recovery from hard- or software failures, concurrency control
for parallel access, or methods for data integrity and reliability.

In contrast to flat files, using a (graph) database, data can be
modified with a query language. Such languages are a powerful
tool to manipulate the database content so that the data is not
only stored persistently and securely but can also be handled
simply.

B. Neo4j
Neo4j is a GDB implemented in Java. It can be run in

server or embedded mode. Figure 2 shows its data model. Cen-
tral elements are nodes and relationships containing the stored
records. These records are described by an arbitrary number
of properties (key-value pairs). Neo4j offers the concept of
labels and types to divide the graph in logical substructures. A
node is extendible with several labels characterizing the node’s
classification. Similarly, a relationship is identified by a type
(exactly one). Besides the classification of the data, this also
improves reading performance as just a part of the graph must
be traversed to find the desired record [4][5]. Apart from that,
Neo4j is schemaless, i.e., it does not require any metadata
definition before inserting actual user data.

All Neo4j accesses are processed in ACID (Atomicity,
Consistency, Isolation, Durability) compliant transactions guar-
anteeing the reliability, consistency and durability of the
database content [1]. Accesses are either performed with
Neo4j’s own query language called Cypher or using its Java
API.

C. VEROSIM and VSD
VEROSIM is a 3D simulation system rooted in the field

of robotics [6]. In recent years, it evolved to a versatile
framework for simulation in various fields of application
(in particular: environment, space, industry). During runtime,
simulation models are managed by its VSD. This in-memory

Figure 2. Neo4j data model.

database not only stores the passive structure and properties
of a 3D simulation model but also its active behavior, i.e., the
simulation algorithms themselves. VSD is an object-orientated
GDB.

Objects are called instances and are characterized by prop-
erties. Such properties can either be value properties (Val-
Properties) with basic or complex data types or reference
properties. The latter model 1 : 1 (Ref-Properties) or 1 : n
(RefList-Properties) directed relationships between instances.
Furthermore, these relationships can be marked to contain
target instances using an autodelete flag allowing to model
UML composite aggregations.

Figure 3. VSD data model (top: metadata, bottom: instance data).

VSD comprises a meta information system providing ac-
cess to its schema and also to specify its schema. So-called
meta instances describe an instance’s class (name, inheritance,
etc.) and so-called meta properties its properties (name, type,
etc.). Figure 3 shows VSD’s data model.

III. RELATED WORK

Besides Neo4j, there are many other GDBs in the market.
They differ in their conceptual structure and application area.

DEX is a GDB based on the labeled and directed attributed
multigraph model. All nodes and edges are classified (labeled),
edges are directed, nodes can be extended with properties
(attributes), and edges can be connected with more than two

79Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 90 / 107

nodes (multigraph) [7]. The graph is represented by bitmaps
and other secondary structures. DEX has been designed for
high performance and scalable graph scenarios. The good
performance is achieved by the bitmap-based structure and the
indexing of all attributes, which are efficiently processed by
the C++ kernel [8].

Trinity [9][10] is a memory-based graph store with many
database features like concurrency or ACID-conform transac-
tions. The graph storage is distributed among multiple well
connected machines in a globally addressable memory address
space yielding big data support. A unified declarative language
provides data manipulation and message passing between the
different machines. The great advantage of Trinity is the fast
access to large data records. It is based on a multigraph model,
which can exceed one billion nodes. Since there is no strict
database schema, Trinity can flexibly be adapted to many data
sets.

HypergraphDB stores its data in a directed multigraph,
whose implementation is based on BerkeleyDB. All graph
elements are called atoms. Every atom is characterized by its
atom arity indicating the number of linked atoms. The arity
determines an atom’s type: An arity larger than zero yields an
edge atom, or else, a node atom. Each atom has a typed value
containing the user data [11].

InfoGrid is a framework specialized in the development of
REpresentational State Transfer (REST)-full web applications.
One part of this framework is a proprietary GDB used for
data management. The graph’s nodes are called MeshObjects,
which are classified by one or more so-called EntityTypes,
properties, and their linked relationships. MeshObjects not
only contain the user data but also manage events relevant
to the node [12].

Infinite Graph is a GDB based on an object-oriented
concept. All nodes and edges are derived from two basic
Java classes. Thus, the database schema is represented by
user-defined classes. Besides data management, Infinite Graph
provides a visualization tool [13]. Since the database can be
distributed on multiple machines working in parallel, Infinite
Graph can achieve a high data throughput. To manage concur-
rency, a lock server handles the different lock requests [8].

AllegroGraph [14] provides a REST protocol architecture.
With this interface, the user has full control of the database
including indexing, query and session management. All trans-
actions satisfy ACID conditions.

Despite this wide range of GDBs, for the following reasons,
we decide to use Neo4j in our approach:

• In many tests it proves to process data fast and
efficiently,

• it can handle more than one billion nodes – even
enough for extremely large 3D simulation models –
which could be useful in coming stages of extension,

• Neo4j is a full native GDB so that traversal and other
graph operations can be performed efficiently,

• Neo4j provides a comprehensive and powerful query
language (e.g., for efficient partial loading strategies
in future versions of the presented prototype),

• directed edges allow to model object interdependen-
cies more accurately, however, without disadvantages
in traversal performance,

• properties on relationships allow for a more flexible
modeling (e.g., to distinguish between shared and
composite aggregation relationships),

• finally, Neo4j is currently the most prevalent GDB in
the market indicating it to be especially well explored
and developed. Hence, it provides the best prospects
of success.

Note that while we choose Neo4j for the reasons given above,
the presented concepts are mostly independent of the choice
of the particular GDB.

IV. CONCEPT

In this section, we describe the fundamental concept and
the required features of our synchronization component’s pro-
totype. Its implementation using Neo4j and VSD is described
in Section V.

A. Structure Mapping
An essential question when synchronizing two databases is:

How do we map the different data structures? Depending on
the database paradigm, entities with attributes and relationships
(connecting two or more entities) are represented differently.
For example, a relational database uses relations, attributes
and foreign keys while a GDB uses nodes, relationships and
properties.

1) Schema Mapping: Before synchronizing user data,
a generic schema mapping is performed mapping the
metadata of one database to the other as described in
[15]. This is performed once on system startup. For
example, when performed between a relational and
an object-oriented database, each table of the former
might be mapped to a corresponding class of the latter
(columns and class attributes accordingly).

2) Schemaless Approach: When a schemaless database
is involved, a different approach has to be applied.
Here, metadata from a non-schemaless database must
be mapped onto the user data of the schemaless one.
For example, class names from an object-oriented
database are mapped onto node labels of a schemaless
GDB.

For the schemaless Neo4j, in our prototype, we chose the
second approach.

B. Object Mapper
Another key aspect of the concept is the object mapper. It

maps objects from one database to an equivalent counterpart
in the other database. For example, an object from an object-
oriented database is mapped to a corresponding node in the
GDB. The mapping is based on the counterparts’ identities
and includes a transfer of all property (or attribute) values in
between. Based on these mappings, individual object or prop-
erty changes can be tracked and resynchronized. Summarized
the mapping is bidirectional and in part incremental.

C. Transactions
Any changes (insert, update, delete) to the data are

tracked and stored in transactions, which can be pro-
cessed independently. By executing these transactions, data
is (re)synchronized on object level. During the accumulation
(and before the execution) of such transactions, the operations

80Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 91 / 107

stored within can be filtered for redundancies. For example, a
transaction for creating a new object followed by a transaction
for deleting the very same object can both be discarded.

V. PROTOTYPE

This section gives an insight into the prototypical im-
plementation of the interface between VSD and Neo4j. The
prototype should have the ability to save simulation data from
VSD in Neo4j and to load it back into VSD. Initially, when
storing a simulation model in Neo4j, VSD’s contents are
archived once. Subsequently, changes in VSD are tracked and
updated to Neo4j individually. That is, when a VSD instance
has been changed just the changes are transferred as mentioned
above. In the current version of the interface, only changes
within VSD are tracked for resynchronization. Thus, Neo4j
serves as database back end, which can store simulation models
persistently.

The prototype is realized in a C++ based VEROSIM plugin,
which uses Neo4j’s Java API in embedded mode in order to
communicate with Neo4j.

A. Data Mapping
In the context of this work, synchronization represents data

transfer from one database to another. However, the structure
of one database’s data elements often differs from the other’s.
Thus, it becomes necessary to map these different structures
on each other. Figure 4 shows our intuitive approach.

Figure 4. Data mapping of the synchronization component (top: VSD data
model, bottom: Neo4j data model).

Single VSD instances are mapped to single Neo4j nodes
and references (Ref/List-Properties) from one instance to an-
other are represented by relationships between the correspond-
ing nodes. The relationship is orientated to the referenced
node’s direction. Furthermore, we transfer the Val-Properties
of a VSD instance to Neo4j node properties.

As mentioned above, a basic difference between VSD and
Neo4j is that the former comprises metadata describing (and
prescribing) a schema while the latter is schemaless. VSD
metadata contains important information for the simulation and
is indispensable for a correct data mapping. Thus, it is essential

to transfer this informations as well. We store VSD metadata
on Neo4j’s object level:

1) A VSD instance’s class name is mapped to it’s Neo4j
node’s label,

2) a VSD Ref/List-Property’s name is mapped to it’s
Neo4j relationship’s type, and

3) a VSD Val-Property’s name is mapped to it’s Neo4j
property’s key.

Val-Property values are handled depending on their data
type. If the type corresponds to one of Neo4j’s supported
basic types (e.g., integer, float, string, boolean, etc.) the value
will be transfered directly. More complex data structures
(e.g., mathematical vectors, etc.) are serialized to a binary
representation and transfered as such.

To store additional meta information about VSD Ref/List-
Properties, we take advantage of Neo4j’s feature to add
properties to relationships. Currently, every relationship gets a
boolean property with the key autodelete as introduced above.
Additionally, a RefList-Property entry’s order is stored as an
index in a relationship property.

B. Synchronization Component
Figure 5 depicts the structure of the synchronization com-

ponent (based on [2]). Its core is the (object) mapper managing
mappings between pairs of VSD instances and Neo4j nodes.
Each mapping is stored in form of a so-called ObjectState (OS)
holding all relevant information. The OS contains both objects’
ids, all collected (but not executed) transactions and the state
of the relation between the two. This state indicates whether
the pair is synchronous, i.e., equal, or whether one of them has
been changed and differs from its counterpart. An exemplary
list of object states of the mapper is given in Figure 6.

Figure 5. Synchronization component.

Figure 6. Exemplary list of object states of the mapper.

Each change to a VSD instance is encapsulated in a
transaction stored in the appropriate OS. Subsequently, they
can be executed. Depending on the change’s type, a create,
update, or delete transaction is generated. Furthermore, a
separate load transaction is used to load Neo4j contents into
VSD. Each transaction comprises all type specific information

81Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 92 / 107

necessary for its execution. For example, a create transaction
contains the names and values of all Val-Properties, the class
name, and information on Ref/List-Properties like target ids,
reference names and autodelete values.

The last part of the synchronization component is the
Neo4jAPI, which interacts with Neo4j’s Java API.

1) VSD to Neo4j: VSD is an active database. One aspect
of this activity is that changes to its instances are notified
to registered components like the synchronization component
presented in this work. Notifications include all relevant in-
formation about the modification like the instance’s id or the
changed property. The synchronization component encapsu-
lates this information in an appropriate transaction. Using the
instance id, the mapper is able to identify the corresponding OS
and retrieve the mapping’s state. A change tracking mechanism
is used to filter redundant transactions as mentioned above
(more details are given in Section V-C).

When the user or some automatic mechanism (e.g., a
timer) triggers a resynchronization, all collected transactions
are executed modifying Neo4j’s contents accordingly.

2) Neo4j to VSD: When loading a Neo4j database’s con-
tents to VSD, the Neo4jAPI traverses the graph and generates
a load transaction for each visited node. All data is read
from Neo4j before entries are stored in the mapper. Load
transactions contain the respective node’s id, all its property
keys and values and the ids of adjacent nodes of outgoing
relationships and their respective properties (autodelete and
index for RefList-Properties). Subsequently, the synchroniza-
tion component executes all load transactions. For each, a new
VSD instance with appropriate properties is created and its id
is stored in an OS with the corresponding node’s id.

C. Change Tracking
As mentioned above, when collecting transactions, newly

created ones may cancel out older ones. A change tracking
mechanism performs the necessary filtering of such redundant
transactions.

Change tracking is based on the current state of the con-
sidered OS. Depending on the incoming transaction’s type, the
state changes and the list of collected transactions is updated.

Figure 7. State machine of the change tracking mechanism.

Change tracking is modeled as a state machine as depicted
in Figure 7. Here, the input (triggering state transitions) is
represented by the incoming transaction type and the output
(emitted during state transitions) describes the transaction
list’s modification. The initial state of any OS for a newly
created VSD instance is the MISSING state as there is no

corresponding Neo4j node. This intermediate state is left as
soon as the corresponding create transaction is generated and
the state changes to PENDING CREATE. If this VSD instance
is deleted before the transaction of type create has been
executed, both transactions (create and delete) are removed
and the whole OS is deleted. Else, upon a resynchronization
trigger, a corresponding Neo4j node is generated, the state
changes to SYNCED, and all executed transactions are removed
from the list. The SYNCED state means that a Neo4j node and
its VSD instance counterpart are in sync. It is reached every
time a resynchronization was performed and is left when the
VSD instance is modified (PENDING UPDATE) or deleted
(PENDING DELETE).

In PENDING UPDATE state, the changed property of an
additional update transaction is compared to existing update
transactions to avoid multiple updates of the same property. If
two transactions modify the same property only one of them
needs to be stored. This is represented by the intermediate
PENDING UPDATE UPDATE state.

VI. EVALUATION

Finally, the interface’s effectiveness and performance have
been evaluated using two simulation models of an industrial
robot and a satellite shown in Figure 8. Given the current
functional range of the presented prototype, further tests do
not appear to provide more insights. Initially, both models are
stored in a Neo4j database and, subsequently, loaded back into
an (empty) VSD. The robot model yields 170 Neo4j nodes and
209 relationships. The more complex satellite about 20,000
nodes and 25,000 relationships. The highly connected nature
of the 3D simulation data is apparent making a GDB ideally
suited for its storage.

Figure 8. Robot and satellite (data: [16]) simulation model.

Figures 9 and 1 give an impression of the interface’s
effectiveness. Figure 9 shows an excerpt of the robot model
data within Neo4j. Figure 1 shows the same data loaded into
the VSD in-memory simulation database. The data mapping
operates generically, i.e., independent from the actual data,
making the whole synchronization component very flexible.
The interface can synchronize arbitrary VSD contents to a
Neo4j database.

In Section V, we present the interface’s functionality to
selectively resynchronize changes to VSD instances. This
feature has been tested by changing some VSD instance’s
properties (e.g., name or postion of a component). In the Neo4j
browser, we verified that these modifications were transferred
correctly. Inversely, changes to node properties from the Neo4j
browser show up in VEROSIM when the model is reloaded.

82Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 93 / 107

Figure 9. 3D simulation model data (excerpt) of an industrial robot stored
within Neo4j.

TABLE I. LOADING AND SAVING TIMES OF THE PROTOTYPE.

Neo4j File
Robot Satellite Robot Satellite

Loading 0.14 3.99 0.1 2.8
Saving 2.63 10.53 1.8 9.9

This also shows the advantage of selectively modifying data
within a database in contrast to a file-based approach.

Another important aspect of the evaluation is the interface’s
performance. Here, the initial storage of a simulation model
into Neo4j and the loading of a whole simulation model from
Neo4j were examined and compared to saving and loading
models to and from the native VEROSIM file format. Results
are given in Table I. The access operations to the GDB are
only somewhat slower than the native file operations. For
a prototypical implementation from a student project, these
results are very promising. First of all, compared to the highly
optimized code for reading and writing the native file format,
the current prototype is only optimized to a certain degree.
Furthermore, the more high-level database access operations
will always remain a little more complex than simple, sequen-
tial file reading or writing. Yet, the additional benefit from a
full-fledged database (providing security, multi-user support,
etc.) more than compensates for this small drawback.

Altogether, this shows that a GDB like Neo4j is well suited
for highly connected 3D simulation model data and can be
handled fast.

VII. CONCLUSION AND FUTURE WORK

Our approach to connect the GDB Neo4j with VEROSIM’s
simulation database VSD is motivated by the hierarchical
structure of 3D simulation models that matches well with
a graph structure. The presented interface encapsulates all

VSD modification in independent transactions. A mapper
maps individual VSD instances to single VSD nodes so that
modifications can be processed individually and there is no
need to save the complete VSD contents to Neo4j every time
a single VSD instance changes. The stored data (as shown in
Figure 9) indicates the highly linked structure of the simulation
data so that GDBs are an ideal storage back end.

As future work, further performance optimizations and
evaluations beyond the results from the student project could
be performed. For instance, better traversal algorithms might
improve loading speed. Another idea is to use Neo4j’s batch
inserter in contrast to the transactional structure to reduce
resynchronization time. Furthermore, Neo4j might be used as
a central database in a distributed simulation scenario with
several VEROSIMs and VSDs. Here, an equivalent notification
mechanism is needed for Neo4j to be able to track modifica-
tions in the central database.

REFERENCES
[1] I. Robinson, J. Webber, and E. Eifrem, Graph Databases-New Oppor-

tunities For Connected Data, 2nd ed. O’Reilly, 2015.
[2] M. Hoppen and J. Rossmann, “A Database Synchronization Approach

for 3D Simulation Systems,” in DBKDA 2014,The 6th International
Conference on Advances in Databases, Knowledge, and Data Applica-
tions, A. Schmidt, K. Nitta, and J. S. Iztok Savnik, Eds., Chamonix,
France, 2014, pp. 84–91.

[3] R. Diestel, Graph Theory, 2nd ed. Springer, 2000.
[4] M. Hunger, Neo4j 2.0 A graph database for everyone (orig.: Neo4j 2.0

Eine Graphdatenbank für alle), 1st ed. entwickler.press, 2014.
[5] Neo4j Team, “The Neo4j Manual v2.2.5,” 2015, URL:

http://neo4j.com/docs/stable/ [retrieved: May, 2016].
[6] J. Rossmann, M. Schluse, C. Schlette, and R. Waspe, “A New Approach

to 3D Simulation Technology as Enabling Technology for eRobotics,”
in 1st International Simulation Tools Conference & EXPO 2013,
SIMEX’2013, J. F. M. Van Impe and F. Logist, Eds., Brussels, Belgium,
2013, pp. 39–46.

[7] N. Martinez-Bazan, S. Gomez-Villamor, and F. Escale-Claveras, “Dex:
A high-performance graph database management system,” in Data Engi-
neering Workshops (ICDEW), 2011 IEEE 27th International Conference
on, April 2011, pp. 124–127.

[8] R. Kumar Kaliyar, “Graph databases: A survey,” in Computing, Com-
munication Automation (ICCCA), 2015 International Conference on,
May 2015, pp. 785–790.

[9] Microsoft, “Graph engine 1.0 preview released,” 2016, URL:
http://research.microsoft.com/en-us/projects/trinity/ [retrieved: May,
2016].

[10] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine
on a memory cloud,” in Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data. ACM, 2013, pp.
505–516.

[11] B. Iordanov, “HyperGraphDB: A Generalized Graph Database,” in Web-
Age information management. Springer, 2010, pp. 25–36.

[12] InfoGrid Team, “Infogrid: The web graph database,” 2016, URL:
http://infogrid.org/trac/ [retrieved: May, 2016].

[13] J. Peilee, “A survey on graph databases,” 2011, URL:
https://jasperpeilee.wordpress.com/2011/11/25/a-survey-on-graph-
databases/ [retrieved: May, 2016].

[14] “Allegrograph,” 2016, URL: http://franz.com/agraph/allegrograph/ [re-
trieved: May, 2016].

[15] M. Hoppen, M. Schluse, J. Rossmann, and B. Weitzig, “Database-
Driven Distributed 3D Simulation,” in Proceedings of the 2012 Winter
Simulation Conference, 2012, pp. 1–12.

[16] J. Weise et al., “An Intelligent Building Blocks Concept for On-
Orbit-Satellite Servcing,” in Proceedings of International Symposium on
Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS),
2012, pp. 1–8.

83Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 94 / 107

Subgraph Similarity Search in Large Graphs

Kanigalpula Samanvi

Dept. of Computer Science and Engineering
Indian Institute of Technology Hyderabad, India

Email: cs13m1001@iith.ac.in

Naveen Sivadasan

TCS Innovation Labs Hyderabad, India
Email: naveen@atc.tcs.com

Abstract—One of the major challenges in applications related to
social networks, computational biology, collaboration networks,
etc., is to efficiently search for similar patterns in their underlying
graphs. These graphs are typically noisy and contain thousands
of vertices and millions of edges. In many cases, the graphs are
unlabeled and the notion of similarity is also not well defined.
We study the problem of searching an induced subgraph in a
large target graph that is most similar to the given query graph.
We assume that the query graph and target graph are undirected
and unlabeled. We use graphlet kernels to define graph similarity.
Our algorithm maps topological neighborhood information of
vertices in the query and target graphs to vectors and these local
information are combined to find global similarity. We conduct
experiments on several real world networks and we show that our
algorithm is able to detect highly similar matches when queried
in these networks. Our implementation takes about one second
to find matches on graphs containing thousands of vertices and
million edges, excluding the time for one time pre-processing.
Computationally expensive parts of our algorithm can be further
scaled to standard parallel and distributed frameworks.

Keywords–Similarity Search; Subgraph Similarity Search;
Graph Kernel; Nearest Neighbors Search.

I. INTRODUCTION

Similarity based graph searching has attracted considerable
attention in the context of social networks, road networks, col-
laboration networks, software testing, computational biology,
molecular chemistry, etc. In these domains, underlying graphs
are large with tens of thousands of vertices and millions of
edges. Subgraph searching is fundamental to the applications,
where occurrence of the query graph in the large target graph
has to be identified. Searching for exact occurrence of an
induced subgraph isomorphic to the query graph is known as
the subgraph isomorphism problem, which is known to be NP-
complete for undirected unlabeled graphs.

Presence of noise in the underlying graphs and need
for searching ‘similar’ subgraph patterns are characteristic
to these applications. For instance, in computational biology,
the data is noisy due to possible errors in data collection
and different thresholds for experiments. In object-oriented
programming, querying typical object usage patterns against
the target object dependency graph of a program run can
identify deviating locations indicating potential bugs [1]. In
molecular chemistry, identifying similar molecular structures
is a fundamental problem. Searching for similar subgraphs
plays a crucial role in mining and analysis of social networks.
Subgraph similarity searching is therefore more natural in these
settings in contrast to exact search. In subgraph similarity
search problem, induced subgraph of the target graph that is

‘most similar’ to the query graph has to be identified, where
similarity is defined using some distance function. Quality
of the solution and computational efficiency are two major
challenges in these search problems. In this work, we assume
that both the underlying graph and query graph are unlabeled
and undirected.

Most applications work with a distance metric to define
similarity between two entities (graphs in our case). Popular
distance metrics include Euclidean distance, Hamming dis-
tance, Edit distance, Kernel functions [2]–[5], etc. We use
graph kernel functions to define graph similarity.

Kernels are symmetric functions that map pairs of entities
from a domain to real values which indicate their similarity.
Kernels that are positive definite not only define similarity
between pairs of entities but also allow implicit mapping of ob-
jects to a high-dimensional feature space and operating on this
space without requiring to compute explicit mapping of objects
in the feature space. Kernels implicitly yield inner products
between the feature vectors without explicit computation of
the same in feature space. This is usually computationally
cheaper than explicit computation. This approach is usually
referred to as the kernel trick or kernel method. Kernel
methods have been widely applied to sequence data, graphs,
text, images, videos, etc., as many of the standard machine
learning algorithms including support vector machine (SVM)
and principle component analysis (PCA) can directly work
with kernels.

Kernels have been successfully applied in the past in the
context of graphs [6]–[8]. There are several existing graph
kernels based on various graph properties, such as random
walks in the graphs [9][10], cyclic patterns [11], graph edit
distance [12], shortest paths [13][14], frequency of occurrences
of special subgraphs [15]–[17] and so on.

Graphlet kernels are defined based on occurrence frequen-
cies of small induced subgraphs called graphlets in the given
graphs [18]. Graphlet kernels have been shown to provide good
SVM classification accuracy in comparison to random walk
kernel and shortest path kernel on different datasets including
protein and enzyme data [18]. Graphlet kernels are also of
theoretical interest. It is known that under certain restricted
settings, if two graphs have distance zero with respect to their
graphlet kernel value then they are isomorphic [18]. Improving
the efficiency of computing graphlet kernel is also studied in
[18]. Graphlet kernel computation can also be scaled to parallel
and distributed setting in a fairly straight forward manner. In
our work, we use graphlet kernels to define graph similarity.

84Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 95 / 107

A. Related Work
Similarity based graph searching has been studied in the

past under various settings. In many of the previous works, it is
assumed that the graphs are labeled. In one class of problems,
a large database of graphs is given and the goal is to find the
most similar match in the database with respect to the given
query graph [19]–[24]. In the second class, given a target graph
and a query graph, subgraph of the target graph that is most
similar to the query graph needs to be identified [25]–[28].
Different notions of similarity were also explored in the past
for these classes of problems.

In [29], approximate matching of query graph in a database
of graphs is studied. The graphs are assumed to be labeled.
Structural information of the graph is stored in a hybrid index
structure based on B-tree index. Important vertices of a query
graph are matched first and then the match is extended pro-
gressively. In [30], graph similarity search on labeled graphs
from a large database of graphs under minimum edit distance
is studied. In [25], algorithm for computing top-k approximate
subgraph matches for a given query graph in a large labeled
target graph is given. In this work, the target graph is converted
into a set of multi-dimensional vectors based on the labels in
the vertex neighborhoods. Only matches above a user defined
threshold are computed. With higher threshold values, the
match is a trivial vertex to vertex label matching. In [26],
algorithm NeMa was proposed which uses a combination
of label similarity and local structural similarity to search
for subgraph similar to query graph in large labeled graphs.
Their query time is proportional to the product of number of
vertices of the query and target graph. Subgraph matching
in a large target graph for graphs deployed on a distributed
memory store was studied in [27]. In [28], efficient distributed
subgraph similarity search to retrieve matches whose number
of missing edges is below a given threshold is studied. It
looks for exact matching and not similarity matching. Though
different techniques were studied in the past for the problem
of similarity searching in various settings, to the best of our
knowledge, little work has been done on subgraph similarity
search on large unlabeled graphs. In many of the previous
works, either the vertices are assumed to be labeled or the
graphs they work with are small with hundreds of vertices.

B. Our Contribution
We consider undirected graphs with no vertex or edge

labels. We use graphlet kernel to define similarity between
graphs. We give a subgraph similarity matching algorithm that
takes as input a large target graph and a query graph and
identifies an induced subgraph of the target graph that is most
similar to the query graph with respect to the graphlet kernel
value.

In our algorithm, we first compute vertex labels for vertices
in both query and target graph. These labels are vectors
in some fixed dimension and are computed based on local
neighborhood structure of vertices in the graph. Since our
vertex labels are vectors, unlike many of the other labeling
techniques, our labeling allows us to define the notion of
similarity between vertex labels of two vertices to capture the
topological similarity of their corresponding neighborhoods
in the graph. We build a nearest neighbor data structure for
vertices of the target graph based on their vertex labels. Com-
puting vertex label for target graph vertices and building the

nearest neighbor data structure are done in the pre-processing
phase. Using nearest neighbor queries on this data structure,
vertices of the target graph that are most similar to the vertices
of the query graph are identified. Using this smaller set of
candidate vertices of target graph, a seed match is computed
for the query graph. Using this seed match as the basis, our
algorithm computes the final match for the full query graph. By
using vertex level vector labels based on graphlet distribution
in the local neighborhood of vertices, we are able to extend
the power of graphlet kernels, which was shown to perform
well for graph similarity search on smaller graphs, to subgraph
similarity search on much larger graphs.

We study the performance of our algorithm on several real
life datasets including facebook network, google plus network,
youtube network, road network, amazon network provided by
the Stanford Large Network Dataset Collection (SNAP) [31]
and Digital Bibliography & Library Project (DBLP) network
[32]. We conduct number of experimental studies to measure
the search quality and run time efficiency. For instance, while
searching these networks with their communities as query
graphs, the computed match and the query graph has similarity
score close to 1, where 1 is the maximum possible similarity
score. In about 30% of the cases, our algorithm is able to
identify the exact match and in about 80% of the cases,
vertices of exact match are present in the pruned set computed
by the algorithm. We validate our results by showing that
similarity scores between random subgraphs and similarity
scores between random communities in these networks are
significantly lower. In other words, similarity score obtained
by chance is significantly lower. We also query communities
across networks and in noisy networks and obtain matches with
significantly high similarity scores. We use our algorithm to
search for dense subgraphs and identify subgraphs with signif-
icantly high density. We also conduct experiments to compare
performance of our algorithm with NeMa [26], which is a
subgraph similarity search algorithm that uses both structural
and label similarity. We use graphs with uniform label for this
purpose.

Computationally expensive parts of our algorithm can be
easily scaled to standard parallel and distributed computing
frameworks such as map-reduce. Most of the networks in
our experiments have millions of edges and thousands of
vertices. We use multi-threaded implementation for the one
time pre-processing phase. Single threaded implementation of
our search algorithm takes close to one second. This excludes
time taken by the pre-processing phase.

C. Paper Organization
In Section II, we present the preliminaries including

graphlet kernels and the problem statement. In Section III, we
present the details of the vertex labeling technique. In Section
IV, we present the details of our algorithm including the pre-
processing phase and the matching phase. In Section V, we
present the experimental results. In Section VI, we present
our conclusions and directions for future research.

II. PRELIMINARIES

Graph is an ordered pair G = (V,E) comprising a set V
of vertices and a set E of edges. To avoid ambiguity, we also
use V (G) and E(G) to denote the vertex and edge set. We
consider only undirected graphs with no vertex or edge labels.

85Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 96 / 107

A subgraph H of G is a graph whose vertices are a subset
of V , and whose edges are a subset of E and is denoted as
H ⊆ G. An induced subgraph G′ is a graph whose vertex set
V ′ is a subset of V and whose edge set is the set of all edges
present in G between vertices in V ′.

DEFINITION 1 (Graph Isomorphism). Graphs G1 and G2

are isomorphic if there exists a bijection b : V (G1)→ V (G2)
such that any two vertices u and v of G1 are adjacent in G1

if and only if b(u) and b(v) are adjacent in G2.

DEFINITION 2 (Subgraph Isomorphism). Graph G1 is
isomorphic to a subgraph of graph G2, if there is an induced
subgraph of G2 that is isomorphic to G1.

DEFINITION 3 (Graph Similarity Searching). Given a
collection of graphs and a query graph, find graphs in the
collection that are closest to the query graph with respect to a
given distance/similarity function between graphs.

DEFINITION 4 (Subgraph Similarity Searching). Given
graphs G1 and G2, determine a subgraph G∗ ⊆ G1 that
is closest to G2 with respect to a given distance/similarity
function between graphs.

A. Graphlet Kernel

Graphlets are fixed size non isomorphic induced subgraphs
of a large graph. Typical graphlet sizes considered in applica-
tions are 3, 4 and 5. For example, Figure 1 shows all possible
non isomorphic size 4 graphlets. There are 11 of them of which
6 are connected. We denote by Dl, the set of all size l graphlets
that are connected. The set D4 is shown in Figure 2.

Figure 1. Set of all non isomorphic graphlets of size 4

Figure 2. Non isomorphic connected graphlets of size 4

DEFINITION 5 (Graphlet Vector). For a given l, the
graphlet vector fG for a given graph G is a frequency vector
of dimension |Dl| where its ith component corresponds to the
number of occurrences of the ith graphlet of Dl in G. We
assume the graphlet vector fG to be normalized by the L2

norm ||fG||2.

If graphs G and G′ are isomorphic then clearly their
corresponding graphlet vectors fG and fG′ are identical. But
the reverse need not be true in general. But, it is conjectured
that given two graphs G and G′ of n vertices and their
corresponding graphlet vectors fG and fG′ with respect to
n−1 sized graphlets Dn−1, graph G is isomorphic to G′ if fG
is identical to fG′ [18]. The conjecture has been verified for
n ≤ 11 [18]. Kernels based on similarity of graphlet vectors
provide a natural way to express similarity of underlying
graphs.

DEFINITION 6 (Graphlet Kernel). Given two graphs G
and G′, let fG and fG′ be their corresponding graphlet
frequency vectors with respect to size l graphlets for some
fixed l. The graphlet kernel value K(G,G′) is defined as the
dot product of fG and fG′ . That is, K(G,G′) = fTGfG′

Graphlet vectors are in fact an explicit embedding of graphs
into a vector space whose dimension is |Dl| if size l graphlets
are used. Graphlet kernels have been shown to give better
classification accuracies in comparison to other graph kernels
like random walk kernel and shortest path kernel for certain
applications [18]. Values of K(G,G′) ∈ [0, 1] and larger
values of K(G,G′) indicate higher similarity between G and
G′. In this work, we use kernel function K(G,G′) to represent
similarity between graphs G and G′. Exact problem statement
is given below.

PROBLEM STATEMENT. Let K(·, ·) be graphlet kernel
based on size l graphlets for some fixed l. Given a large
connected graph G of size n and a connected query graph
Q of size nq with n > nq , find a subset V ∗ of vertices in G
such that its induced subgraph G∗ in G maximizes K(Q,G∗).

III. GRAPHLET VECTOR BASED VERTEX LABELING

Computing vertex labels that capture topological neighbor-
hood information of corresponding vertices in the graph and
comparing vertex neighborhoods using their labels is crucial in
our matching algorithm. Our vertex labels are graphlet vectors
of their corresponding neighborhood subgraphs.

Given a fixed positive integer t and graph G, let N(v)
denote the depth t neighbors of vertex v in G. That is, N(v)
is the subset of all vertices in G (including v) that are reachable
from v in t or less edges. Let Hv denote the subgraph induced
by vertices N(v) in G. We denote by fv , the graphlet vector
corresponding to the graph Hv , with respect to size l graphlets
for some fixed l. We note that for defining the graphlet vector
fv for a vertex, there are two implicit parameters l and t. To
avoid overloading the notation, we assume them to be some
fixed constants and specify them explicitly when required.
Values of l and t are parameters to our final algorithm.

For each vertex v of the graph, its vertex label is given by
the vector fv . Given vertex labels fu and fv for vertices u and
v, we denote by s(u, v) the similarity between labels of fu
and fv , given by their dot product as

s(u, v) = fTu fv (1)

Values of s(u, v) ∈ [0, 1] and larger values of s(u, v)
indicate higher topological similarity between neighborhoods
of vertices u and v. Computing the vertex labels of the target
graph is done in the pre-processing phase. Implementation
details of the vertex labeling algorithm are discussed in the
next section.

IV. OUR ALGORITHM

Our subgraph similarity search algorithm has two major
phases: one time pre-processing phase and the query graph
matching phase. Each of these phases comprise sub-phases as
given below. Details of each of these subphases is discussed
in the subsequent sections.

A. Pre-processing Phase: This phase has two subphases:

86Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 97 / 107

1) In this phase, vertex labels fv of all the vertices of the
target graph G are computed.

2) k-d tree based nearest neighbor data structure on the
vertices of G using their label vectors fv is built.

B. Matching Phase: This phase is further divided into four
subphases:
1) Selection Phase: In this phase, vertex labels fv for

vertices of the query graph Q are computed first. Each
vertex u of the query graph then selects a subset of
vertices from the target graph G closest to u based on
their Euclidean distance.

2) Seed Match Generation Phase: In this phase, a one to
one mapping of a subset of query graph vertices to
target graph vertices is obtained with highest overall
similarity score. Subgraph induced by the mapped
vertices in the target graph is called the seed match.
The seed match is obtained by solving a maximum
weighted bipartite matching problem.

3) Match Growing Phase: The above seed match is used
as a basis to compute the final match for Q.

4) Match Completion Phase: This phase tries to match
those vertices in Q that are still left unmatched in the
previous phase.

A. Pre-processing Phase

1) Computation of vertex labels fv: In this phase, vertex
label fv for each vertex v of the target graph G is computed
first. To compute fv , we require parameter values t and l.
These two values are assumed to be provided as parameters to
the search algorithm. For each vertex v, a breadth first traversal
of depth t is performed starting from v to obtain the depth t
neighborhood N(v) of v. The graph Hv induced by the vertex
set N(v) is then used to compute the graphlet vector fv as
given in [33]. The algorithm is given in Figure 3.

Major time taken by the pre-processing phase is for com-
puting the graphlet vector for Hv . In [18], methods to improve
its efficiency including sampling techniques are discussed. We
do not make use of sampling technique in our implementation.
We remark that finding the graphlet frequencies can easily
be scaled to parallel computing frameworks or distributed
computing frameworks such as map-reduce.

Algorithm 1
Input: Graph G, vertex v, BFS depth t, graphlet size l
Output: Label vector fv

1: Run BFS on G starting from v till depth t. Let N(v) be
the set of vertices visited including v.

2: Identify the induced subgraph Hv of G induced by N(v).
3: Compute graphlet vector fv for graph Hv .
4: Normalize fv by ||fv||2.
5: return fv

Figure 3. Algorithm for computing label fv for vertex v

2) Nearest neighbor data structure on fv: After computing
vertex labels for G, a nearest neighbor data structure on the
vertices of G based on their label vectors fv is built. We use
k-d trees for nearest neighbor data structure [34]. k-d trees are
known to be efficient when dimension of vectors is less than
20 [34]. Since the typical graphlet size l that we work with

are 3, 4 and 5, the dimension of fv (which is |Dl|) does not
exceed 10.

B. Matching Phase
In the following we describe the three subphases of match-

ing phase.
1) Selection Phase: The vertex labels fv for all vertices

of the query graph Q are computed first using Algorithm 1.
Let Rv denote the set of k vertices in G that are closest to
v with respect to the Euclidean distance between their label
vectors. In our experiments, we usually fix k as 10. For each
vertex v of Q, we compute Rv by querying the k-d tree built
in the pre-processing phase. Let R denote the union of Rv
for each vertex v of the nq vertices of Q. For the subsequent
seed match generation phase, we will only consider the vertex
subset R of G. Clearly size of R is at most k.nq which is
typically much smaller than the number of vertices in G.

2) Seed Match Generation Phase: In this phase, we obtain
a one to one mapping of a subset of vertices of the query
graph Q to the target graph G with highest overall similarity
score. We call the subgraph induced by the mapped vertices
in G as the seed match. To do this, we define a bipartite graph
(V (Q), R) with weighted edges, where one part is the vertex
set V (Q) of the query graph Q and the other part is the pruned
vertex set R of G obtained in the previous step. The edges of
the bipartite graph and their weights are defined as follows.
Each vertex v in the part V (Q) is connected to every vertex
w in Rv ⊆ R, where Rv is the set of k nearest neighbors of
v in G as computed in the previous step.

The weight λ(v, w) for the edge (v, w) is defined in the
following manner. Let 0 < α < 1 be a fixed scale factor
which is provided as a parameter to the search algorithm. We
recall that vertex v belongs to query graph Q and vertex w
belongs to target graph G and s(v, w) given by equation (1)
denote the similarity between their label vectors fv and fw.
Let Vw denote the neighbors of vertex w in graph G including
w. Let Q′ denote the subset of V (Q) excluding v such that
each vertex in Q′ is connected to at least one vertex in Vw
in the bipartite graph (V (Q), R). In particular, for each vertex
u ∈ Q′, let s(u) denote the maximum s(u, z) value among all
its neighbors z in Vw in the bipartite graph. Now the weight
λ(v, w) for the edge (v, w) of the bipartite graph is given by

λ(v, w) =

(
s(v, w)α +

∑
u∈Q′ s(u)α

)1/α
(|Q′|+ 1)

(2)

We now solve maximum weighted bipartite matching on
this graph to obtain a one to one mapping between a subset of
vertices of Q and the vertices of G. Defining edge weights
λ(v, w) to edge (v, w) in the bipartite graph in the above
fashion not only takes into account the similarity value s(v, w),
but also the strength of similarity of neighbors of w in G to
remaining vertices in the query graph Q. By assigning edge
weights as above, we try to ensure that among two vertices
in G with equal similarity values to a vertex in Q, the vertex
whose neighbors in G also have high similarity to vertices in
Q is preferred over the other in the final maximum weighted
bipartite matching solution.

Let M denote the solution obtained for the bipartite
matching. Let QM and GM respectively denote the subgraphs

87Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 98 / 107

induced by the subset of matched vertices from graphs Q and
G under the matching M . The connectivity of QM and GM
may differ. For instance, the number of connected components
in GM and QM could differ. Therefore, we do not include all
the vertices of GM in the seed match. Instead, we use the
largest connected component of GM as a seed solution. That
is, let SG ⊂ V (G) denote the subset of vertices in GM cor-
responding to a maximum cardinality connected component.
Let SQ denote their corresponding mapped vertices in QM .
We call SG as a seed match. The pseudo code for seed match
computation is given in Algorithm 2.

Algorithm 2
Input: Vertex sets V (Q), R and Rv for each v ∈ V (Q) and

their labels fv , parameter α
Output: SG and SQ

1: Construct bipartite graph (V (Q), R) with edge weights
given by λ(v, w).

2: Compute maximum weighted bipartite matching M on
(V (Q), R)

3: Let QM and GM respectively denote the subgraphs in-
duced by vertices from Q and G in the matching M .

4: Compute largest connected component in GM . Let SG
denote the vertices in that component. Let SQ denote its
mapped vertices in QM under the bipartite matching M .

5: return SG and SQ

Figure 4. Computing seed match SG in G and its mapped vertices SQ in Q

3) Match Growing Phase: After computing the seed match
SG in G and its mapped vertices SQ in Q, we use this seed
match as the basis to compute the final match. The final
solution is computed in an incremental fashion starting with
empty match. In each iteration, we include a new pair of
vertices (v, w) to the solution, where v and w belongs to G
and Q respectively. In order to do this, we maintain a list of
candidate pairs and in each iteration, we include a pair with
maximum similarity value s(v, w) to the final solution. We
use a max heap to maintain the candidate list. The candidate
list is initialized with the mapped pairs between SG and SQ as
obtained in the previous phase. Thus, the heap is initialized by
inserting each of these mapped pairs (v, w) with corresponding
weight s(v, w).

We recall that the mapped pairs obtained from previous
phase have stronger similarity with respect to the modified
weight function λ(v, w). Higher value of λ(v, w) indicates that
not only s(v, w) is high but also their neighbors share high
s() value. Hence, they are more preferred in the solution over
other pairs with similar s() value. By initializing the candidate
list with these preferred pairs, the matching algorithm tries to
ensure that the incremental solution starts with these pairs first
and other potential pairs are considered later. Also, because of
the heap data structure, remaining pairs are considered in the
decreasing order of their similarity value. Moreover, as will be
discussed later, the incremental matching tries to ensure that
the partial match in G constructed so far is connected. For this,
new pairs that are added to the candidate list are chosen from
the neighborhood of the partial match between G and Q.

The incremental matching might still match vertex pairs
with low s() value if they are available in the candidate
list. Candidate pairs with low s() values should be treated

separately as there could be genuine pairs with low s()
value. For instance, consider boundary vertices of an optimal
subgraph match in G. Boundary vertices are also connected
to vertices outside the matched subgraph. Hence, their local
neighborhood structure is different from their counterpart in
the query graph. In other words, their corresponding graphlet
vectors can be very dissimilar and their similarity value s()
can be very low even though they are expected to be matched
in the final solution. In order to find such genuine pairs, we
omit pairs with similarity value below some fixed threshold h1
in this phase and such pairs are handled in the next phase.

In each iteration of the incremental matching, a pair (v, w)
with maximum s(v, w) value is removed from the candidate
heap and added to the final match. After this, the candidate
list is modified as follows. We recall that v and w belong
to G and Q respectively. We call a vertex unmatched if it is
not yet present in the final match. The algorithm maintains
two invariants: (a) the pairs present in the candidate list are
one to one mappings and (b) a query vertex that enters the
candidate list will stay in the candidate list (possibly with
multiple changes to paired partner vertex) until it is included
in the final match. Let Uv denote the unmatched neighbors of
v in G that are also not present in the candidate list. Let Uw
denote the unmatched neighbors w in Q. For each query vertex
y in Uw, let x be a vertex in Uv with maximum similarity
value s(x, y). We add (x, y) to the candidate list if y is absent
in the list and s(x, y) ≥ h1. If y is already present in the
candidate list, then replace the current pair for y with (x, y) if
s(x, y) has a higher value. The incremental algorithm is given
in Algorithm 3. The candidate list modification is described in
Algorithm 4.

Algorithm 3
Input: Seed match SG and its mapped vertices SQ, threshold

h1
Output: Partial match F

1: Initialize F to empty set.
2: Initialize the candidate list max heap with mapped pairs

(v, w) of the seed match where s(v, w) ≥ h1.
3: while candidate list is not empty do
4: Extract maximum weight candidate match (v, w)
5: Add (v, w) to F
6: updateCandidateList(candidate list, (v, w), h1,F)
7: end while
8: return F

Figure 5. Incremental Matching Algorithm.

4) Match Completion Phase: In this phase, vertices of
the query graph Q that are left unmatched in the previous
phase due to similarity values below the threshold h1 are
handled. Typically, boundary vertices of the final matched
subgraph in G remain unmatched in the previous phase.
As discussed earlier, this is because, such boundary vertices
in G and their matched partners in Q have low s() value
as their local neighborhood topologies vastly differ. Hence,
using neighborhood similarity for such pairs is ineffective. To
handle them, we try to match unmatched query vertices with
unmatched neighbors of the current match F in G. Since the
similarity function s() is ineffective here, we use a different
similarity function to compare potential pairs. Let X denote

88Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 99 / 107

Algorithm 4
Input: candidate list, (v, w), h1 and F

1: Compute Uv which is the set of unmatched neighbors of
v in G that are also not present in candidate list.

2: Compute Uw which is the set of unmatched neighbors of
w in Q.

3: for all vertex y ∈ Uw do
4: Find x ∈ Uv with maximum s(x, y) value.
5: if y does not exist in candidate list then
6: Include (x, y) in the candidate list if s(x, y) ≥ h1.
7: else
8: Replace existing pair for y in the candidate list with

(x, y) if s(x, y) has higher value.
9: end if

10: end for
Figure 6. Algorithm for updateCandidateList

the set of unmatched neighbors of the current match F in G.
Let Y denote the set of unmatched query vertices. Let v ∈ X
and let w ∈ Y . We define the similarity c(v, w) as follows.
Let Zv denote the matched neighbors of v in target graph G
and let Zw denote the matched neighbors of w in query graph
Q. Let Z ′v denote the matched partners of Zv in Q. We now
define c(v, w) using the standard Jaccard similarity coefficient
as

c(v, w) =
|Z ′v ∩ Zw|
|Z ′v ∪ Zw|

(3)

We use a fixed threshold h2 that is provided as parameter
to the algorithm. We now define a bipartite graph (X,Y) with
edge weights as follows. For each (v, w) ∈ X × Y , insert
an edge (v, w) with weight c(v, w) in the bipartite graph if
c(v, w) ≥ h2. Compute maximum weighted bipartite graph
matching on this bipartite graph and include the matched pairs
in the final solution F . In our experiments, size of Y (number
of unmatched query graph vertices) is very small. The pseudo
code is given in Algorithm 5.

Algorithm 5
Input: Partial match F and threshold h2
Output: Final match F

1: Let X denote the set of unmatched neighbors of the match
F in G.

2: Let Y denote the set of unmatched vertices in Q.
3: Construct bipartite graph (X,Y) by introducing all edges

(v, w) with edge weight c(v, w) if c(v, w) ≥ h2.
4: Compute maximum weighted bipartite matching.
5: Add each of these matches to F
6: return F

Figure 7. Match completion algorithm

We remark that our searching algorithm finds the matched
subset of vertices in G and also their corresponding mapped
vertices in the query graph Q.

V. EXPERIMENTAL RESULTS

In this section, we conduct experiments on various real life
graph datasets [31] including social networks, collaboration

networks, road networks, youtube network, amazon network
and on synthetic graph datasets. We also conduct experiments
to compare performance of our algorithm with NeMa [26],
which is a subgraph similarity search algorithm that uses
both label similarity and structural similarity to find subgraph
similar to query graph in large labeled graphs.

A. Experimental Datasets
Social Networks: We conduct experiments on facebook
and google plus undirected graphs provided by Stanford
Large Network Dataset Collection (SNAP) [31].
Facebook graph contains around 4K vertices and 88K
edges. In this graph, vertices represent anonymized users
and an undirected edge connects two friends. google plus
graph contains 107K vertices and 13M edges. google
plus graph also represents users as vertices and an edge
exists between two friends. The dataset also contains
list of user circles (user communities), where user circle
is specified by its corresponding set of vertices. We
use these user circles as query graphs and they are
queried against the entire facebook network. We also
query facebook circles against google plus network to
find similar circles across networks. We also experiment
querying facebook circles against facebook network after
introducing random noise to the facebook network.

DBLP Collaboration Network: We use the DBLP
collaboration network downloadable from [32]. This
network has around 317K vertices and 1M edges. The
vertices of this graph are authors who publish in any
conference or journal and an edge exists between any two
co-authors. All the authors who contribute to a common
conference or a journal form a community. The dataset
provides a list of such communities by specifying its
corresponding set of vertices. We use such communities
as query graphs.

Youtube Network: Youtube network is downloaded
from [31]. Network has about 1M vertices and 2M edges.
Vertices in this network represent users and an edge
exists between two users who are friends. In youtube,
users can create groups in which other users can join.
The dataset provides a list of user groups by specifying
its corresponding set of vertices. We consider these
user-defined groups as our query graphs.

Road Network: We use the road network of California
obtained from [31] in our experiments. This network
has around 2M vertices and 3M edges. Vertices of this
network are road endpoints or road intersections and the
edges are the roads connecting these intersections. We
use randomly chosen subgraphs from this network as
query graphs.

Amazon Network: Amazon network is a product co-
purchasing network downloaded from [31]. This network
has around 334K vertices and 925K edges. Each vertex
represents a product and an edge exists between the
products that are frequently co-purchased [31]. All the
products under a certain category form a product commu-
nity. The dataset provides a list of product communities
by specifying its corresponding set of vertices. We use

89Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 100 / 107

product communities as query graphs and we query them
against the amazon network.

The statistics of the datasets used are listed in Table I.

TABLE I. DATASET STATISTICS

DataSet #vertices #edges
Facebook 4039 88234

Google Plus 107614 13673453
DBLP 317080 1049866

Amazon 334863 925872
Youtube 1134890 2987624

Road Network 1965206 2766607

B. Experimental Setup
All the experiments are carried out on a 32 core 2.60GHz

Intel(R) Xeon(R) server with 32GB RAM. The server has
Ubuntu 14.04 LTS. Our implementation uses Java 7.

The computationally most expensive part of our algorithm
is the computation of vector labels for all vertices of a graph.
The pre-processing phase that computes label vectors for each
vertex of the graph is multi-threaded and thus executes on all
32 cores. Similarly, in the matching phase, computing label
vectors for all vertices of the query graph is also multi-threaded
and uses all 32 cores. Remaining phases use only a single core.

C. Results
To evaluate the accuracy of the result obtained by our

similarity search algorithm, we compute the graphlet kernel
value K(Q,G∗) between the query graph Q and the subgraph
G∗ of G induced by the vertices V ∗ of the final match F in
G. We use this value to show the similarity between the query
graph and our obtained match and we refer to this value as
similarity score in our experiments. We recall that similarity
score lies in the range [0, 1] where 1 indicates maximum
similarity.

There are six parameters in our algorithm: (1) graphlet size
l, (2) BFS depth t for vertex label computation, (3) value of
k for the k nearest neighbors from k-d tree, (4) value of α
in the edge weight function λ and (5) similarity thresholds
h1 for match growing phase and h2 for match completion
phase. In all our experiments we fix graphlet size l as 4. We
performed experiments with different values of k, α, h1 and h2
on different datasets. Based on the results, we chose ranges for
these parameters. The value of k is chosen from the range 5
to 10. Even for million vertex graphs, k = 10 showed good
results. We fix scaling factor α to be 0.3 and the thresholds
h1 and h2 to be 0.4 and 0.95 respectively.

Experiment 1: This experiment shows the effect of bfs
depth t on the final match quality. We performed experiments
with different values of t. We observed that after the depth of
2, there is very little change in the similarity scores of the final
match. But as the depth increases the time to compute graphlet
vectors also increases. Thus, the bfs depth t was taken to be
2 for most of our experiments. Table II shows the similarity
scores of querying amazon communities on amazon network
and and DBLP communities on DBLP collaboration network
for different values of t. These results are averaged over 150
queries.

Experiment 2: For each of the datasets discussed earlier,
we perform subgraph querying against the same network. For

TABLE II. EXPERIMENT 1 : SIMILARITY SCORE VS. t

Dataset t=2 t=3 t=4
Amazon 0.9999823 0.9999851 0.9999858
DBLP 0.9999942 0.9999896 0.9999917

each network, we use the given communities as query graphs
and measure the quality of the search result. That is, we
query facebook communities against facebook network, DBLP
communities against DBLP network, youtube groups against
youtube network and amazon product communities against
amazon network. For road network, we use randomly chosen
induced subgraphs from the network as query graph. Second
column of Table III shows the similarity score of the match.
All the results are averages over 150 queries. The average
community (query graph) size is around 100 for facebook,
around 40 for DBLP, around 50 for youtube and around 300
for amazon. Query graphs for road network have about 500
vertices.

To validate the quality of our solution, we do the following
for each of the network. We compute the similarity score
between random induced subgraphs from the same network.
These random subgraphs contain 100 vertices. We also com-
pute the similarity score between different communities from
the same network. All results are averaged over 150 scores.
Table III shows these results. Second column in the table shows
the average similarity score between query graph and the
computed match. The query graphs are the given communities.
Third column in the table shows the average similarity score
between random subgraphs. Fourth column shows the average
similarity score between communities. The results show that
the similarity score of our match close to 1 and is significantly
better than scores between random subgraphs and scores
between communities in the same network. For road network,
the third column shows the average similarity between its
query subgraphs.

TABLE III. EXPERIMENT 2 : SIMILARITY SCORES.

DataSet Query graph & Between Between
Final Match Random Communities

Subgraphs
Facebook 0.944231 0.702286 0.787296

DBLP 0.975137 0.443763 0.6144779
Amazon 0.999982 0.663301 0.624756
Youtube 0.998054 0.311256 0.524779

Road Network 0.899956 0.770492 0.599620

Table IV shows the #exactMatches which is the number
of queries that yielded the exact match out of the 150 queries
(query graph is a subgraph of the network), and #inPruned
- the percentage of queries where the vertices of the exact
target match are present in the pruned subset of vertices R
of target graph G obtained after the selection phase. Table IV
shows that, for about 30% of the query graphs, our algorithm
identifies the exact match. Also, for about 75% of the queries,
vertices of the ideal match are present in our pruned set of
vertices R in the target graph after selection phase.

Table V shows the timing results corresponding to Experi-
ment 2. The timing information is only for the matching phase
and it excludes the one time pre-processing phase. Here δ
denotes time taken (in secs) to compute the label vectors for
all vertices of the query graph and τ the time taken (in secs)

90Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 101 / 107

TABLE IV. EXPERIMENT 2 : EXACT MATCH STATISTICS

Dataset #exactMatches #inPruned
out of 150 (percentage) (percentage)

Facebook 53 (35.3) 83
DBLP 47 (31.3) 82

Amazon 60 (40.0) 72

for the entire matching phase (including δ). We recall that
the label vector computation is implemented as multi-threaded
on 32 cores and the remaining part is executed as a single
thread. It can be seen that the label vector computation is the
computationally expensive part and the remaining phases take
much lesser time.

TABLE V. EXPERIMENT 2 : TIMING RESULTS

DataSet δ(in sec) τ (in sec)
Facebook 0.213596 0.253706

DBLP 0.159492 0.777687
Amazon 0.199767 0.781500
Youtube 0.225131 0.989452

Road Network 0.216644 1.437619

Experiment 3: In all previous experiments, query graphs
were induced subgraphs of the target network. In this ex-
periment, we evaluate the quality of our solution when the
query graph is not necessarily an induced subgraph of the
target graph. For this, we conduct two experiments. In the first
experiment, we use facebook communities as query graphs and
query them against google plus network. To validate the quality
of our solution, we measure the similarity score of the query
graph with a random induced subgraph in the target graph
with same number of vertices. In the second experiment, we
create a modified facebook network by randomly removing
5% its original edges. We use this modified network as the
target graph and query original facebook communities in this
target graph. Here also, we validate the quality of our solution
by measuring the similarity score for the query graph with a
random induced subgraph of same number of vertices in the
target graph. Table VI shows these results. Second column in
the table shows the similarity score between query graph and
match. Third column shows the score between query graph
and a random subgraph. Values shown for both experiments
are averaged over 150 scores. The results show that similarity
score of our match is close to 1 and is significantly better than
a match by chance.

TABLE VI. EXPERIMENT 3 : SIMILARITY SCORES

DataSet Final Match Random Subgraph
Google Plus 0.912241 0.600442

Facebook with random noise 0.933662 0.701198

Experiment 4: We use our matching algorithm to identify
dense subgraphs in large networks. In particular, we search
for dense subgraphs in DBLP and google plus networks. For
this, we first generate dense random graphs using the standard
G(n, p) model with n = 500 and p = 0.9. We now use
these random graphs as query graphs and query them against
the DBLP and google plus networks. We use the standard
definition of density ρ of a graph H = (V,E) as

ρ =
2|E|

|V | ∗ |V − 1|
∈ [0, 1] (4)

The average density of our random query graphs is 0.9. We
queried these dense random graphs against DBLP and google
plus networks. Table VII shows the results. Column 2 shows
the similarity score between query graph and obtained match.
Column 3 shows the density ρ for the obtained match. The
results are averaged over 150 queries. Results show that the
similarity score with matched result is close to 1 for google
plus. For DBLP the score is close to 0.8 primarily because
DBLP does not have dense subgraphs with about 500 vertices.
Also, the density of the obtained match is close to that of the
query graph, which is 0.9.

TABLE VII. EXPERIMENT 4 : DENSE SUBGRAPH MATCH RESULTS

DataSet Similarity Score ρ for the match
Google Plus 0.926670 0.812

DBLP 0.799753 0.730

Experiment 5 - Comparison with NeMa: We conducted
experiments to compare performance of our algorithm with
NeMa [26]. NeMa uses combination of label similarity and
structural similarity to search similar subgraphs in large labeled
graphs. NeMa was shown to find high quality matches effi-
ciently compared to state-of-the-art graph querying algorithms.
Similarity search using structural similarity alone is harder as
label similarity helps in pruning the search space considerably.
For comparing performance of NeMa with our algorithm, we
considered query and target graphs with same label for all
vertices, which is similar to unlabeled setting. In particular,
we used YAGO and IMDB datasets for our experiments which
were used also for experimental evaluation of NeMa in [26].
Both datasets were modified to make all vertices to have the
same label and all edges unlabeled. IMDB (Internet Movie
Database) dataset consists of relationships between movies,
directors, producers and so on. YAGO entity relationship graph
is a knowledge base containing information from Wikipedia,
WordNet and GeoNames. IMDB dataset consists of about
3 million vertices and 11 million edges and YAGO dataset
consists of about 13 million vertices and 18 million edges.
Induced subgraphs from target graphs were used as query
graphs. Query graph size was restricted to 7 vertices as in
[26].

We considered only search time for comparison and ex-
cluded time taken for one time pre-processing/indexing from
our comparison. For a single query, NeMa ran for more than
13 hours and aborted on these datasets. This is in contrast
to fraction of a second that NeMa takes for similar queries
in the labeled setting. For our algorithm, we considered 50
queries separately on IMDB and YAGO. For IMDB, average
similarity score achieved by our algorithm was 0.91 and 41
out of 50 results were exact matches. For YAGO, average
similarity score achieved was 0.89 and 37 out of 50 results
were exact matches. Average search time in both cases was
less than 0.5 seconds. Upon restricting target graphs to 1000
node induced subgraphs of IMDB and YAGO graphs, NeMa
took 2.5 hours for searching. We finally used 100 node induced
subgraph of IMDB graph as target graph for NeMa. For 50
queries, average search time for NeMa was 8 minutes and 23

91Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 102 / 107

out of 50 results were exact matches. For same experiment,
our algorithm achieved average similarity score of 0.93 and
40 out of 50 results were exact matches. Average search time
for our algorithm was 0.03 seconds.

D. Scalability
Computationally most expensive parts of our algorithm

are the vertex label computation for vertices of query and
target graphs. Since this is a one time pre-processing for
the target graph, it can be easily scaled to a distributed
framework using the standard map-reduce paradigm. Vertex
label computation for each vertex can be a separate map/reduce
job. Vertex label computation for query graph is performed for
every search. This can also be parallelized using the standard
OpenMP/MPI framework as each vertex label computation can
be done in parallel. As shown in the experimental results,
remaining phases take much lesser time even with serial
implementation. Parts of them can also be parallelized to
further improve the search efficiency. Our algorithm can also
support dynamic setting since computation of vertex level label
vectors uses only local structural information. Edge and vertex
modifications can therefore affect only label vectors of vertices
in their local neighborhood and these label vectors can be
recomputed efficiently and the pre-computed index can be
modified accordingly.

VI. CONCLUSIONS

In this paper, we propose an algorithm that performs
subgraph similarity search on large undirected graphs solely
based on structural similarity. In the pre-processing step, our
algorithm computes multi-dimensional vector representation
for vertices in the target graph based on graphlet distribution in
their local neighborhood. These local topological information
are then combined to find a target subgraph having highly
similar global topology with the given query graph. We tested
our algorithm on several large real world graphs and was
shown to obtain high quality matches efficiently. Size of these
graphs ranged from thousand vertices to million vertices. By
using vertex level vector labels based on graphlet distribution
in the local topological neighborhood of vertices, we are able
to extend the power of graphlet kernels, which was shown to
perform well for graph similarity search on smaller graphs,
to subgraph similarity search on much larger graphs. Local
nature of vector label pre-computation of vertices makes our
algorithm amenable to parallelization and to handle dynamic
setting. Efficient parallel/distributed implementations of label
vector pre-computation and matching to handle massive graphs
on billions of vertices, large query graphs and massive graph
streams would be future work.

REFERENCES

[1] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen, “Graph-based mining of multiple object usage patterns,” in
Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering. ACM, 2009, pp. 383–392.

[2] D. Haussler, “Convolution kernels on discrete structures,” University of
California at Santa Cruz, Tech. Rep., 1999.

[3] F. Desobry, M. Davy, and W. J. Fitzgerald, “A class of kernels for sets
of vectors.” in ESANN, 2005, pp. 461–466.

[4] R. Kondor and T. Jebara, “A kernel between sets of vectors,” in ICML,
vol. 20, 2003, pp. 361–368.

[5] S. Vishwanathan and A. J. Smola, “Fast kernels for string and tree
matching,” in Kernel methods in computational biology. MIT Press,
2004, pp. 113–130.

[6] S. Hido and H. Kashima, “A linear-time graph kernel,” in ICDM. IEEE,
2009, pp. 179–188.

[7] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on
graphs via spectral graph theory,” Applied and Computational Harmonic
Analysis, vol. 30, no. 2, 2011, pp. 129–150.

[8] N. Shervashidze and K. M. Borgwardt, “Fast subtree kernels on graphs,”
in Advances in Neural Information Processing Systems, 2009, pp. 1660–
1668.

[9] T. Gärtner, P. Flach, and S. Wrobel, “On graph kernels: Hardness results
and efficient alternatives,” in Learning Theory and Kernel Machines.
Springer, 2003, pp. 129–143.

[10] H. Kashima and A. Inokuchi, “Kernels for graph classification,” in
ICDM Workshop on Active Mining, 2002.

[11] T. Horváth, T. Gärtner, and S. Wrobel, “Cyclic pattern kernels for
predictive graph mining,” in Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2004, pp. 158–167.

[12] M. Neuhaus and H. Bunke, “Edit distance based kernel functions for
attributed graph matching,” in Graph-Based Representations in Pattern
Recognition. Springer, 2005, pp. 352–361.

[13] K. M. Borgwardt and H.-P. Kriegel, “Shortest-path kernels on graphs,”
in ICDM. IEEE, 2005, pp. 74–81.

[14] R. C. Bunescu and R. J. Mooney, “A shortest path dependency kernel
for relation extraction,” in Proceedings of the conference on Human
Language Technology and Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2005, pp. 724–
731.

[15] H. Fröhlich, J. K. Wegner, F. Sieker, and A. Zell, “Optimal assignment
kernels for attributed molecular graphs,” in Proceedings of the 22nd
international conference on Machine learning. ACM, 2005, pp. 225–
232.

[16] J. Ramon and T. Gärtner, “Expressivity versus efficiency of graph
kernels,” in First International Workshop on Mining Graphs, Trees and
Sequences, 2003, pp. 65–74.

[17] S. Menchetti, F. Costa, and P. Frasconi, “Weighted decomposition ker-
nels,” in Proceedings of the 22nd international conference on Machine
learning. ACM, 2005, pp. 585–592.

[18] N. Shervashidze, T. Petri, K. Mehlhorn, K. M. Borgwardt, and S. Vish-
wanathan, “Efficient graphlet kernels for large graph comparison,” in
International conference on artificial intelligence and statistics, 2009,
pp. 488–495.

[19] D. Shasha, J. T. Wang, and R. Giugno, “Algorithmics and applications
of tree and graph searching,” in Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database sys-
tems. ACM, 2002, pp. 39–52.

[20] X. Yan, P. S. Yu, and J. Han, “Graph indexing: a frequent structure-
based approach,” in Proceedings of the ACM SIGMOD international
conference on Management of data. ACM, 2004, pp. 335–346.

[21] S. Zhang, S. Li, and J. Yang, “Gaddi: distance index based subgraph
matching in biological networks,” in Proceedings of the 12th Inter-
national Conference on Extending Database Technology: Advances in
Database Technology. ACM, 2009, pp. 192–203.

[22] M. Mongiovi, R. Di Natale, R. Giugno, A. Pulvirenti, A. Ferro,
and R. Sharan, “Sigma: a set-cover-based inexact graph matching
algorithm,” Journal of bioinformatics and computational biology, vol. 8,
no. 02, 2010, pp. 199–218.

[23] S. Zhang, J. Yang, and W. Jin, “Sapper: Subgraph indexing and
approximate matching in large graphs,” Proceedings of the VLDB
Endowment, vol. 3, no. 1-2, 2010, pp. 1185–1194.

[24] X. Wang, A. Smalter, J. Huan, and G. H. Lushington, “G-hash:
towards fast kernel-based similarity search in large graph databases,” in
Proceedings of the 12th international conference on extending database
technology: advances in database technology. ACM, 2009, pp. 472–
480.

[25] A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and S. Tao, “Neigh-
borhood based fast graph search in large networks,” in Proceedings of

92Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 103 / 107

the 2011 ACM SIGMOD International Conference on Management of
data. ACM, 2011, pp. 901–912.

[26] A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan, “NeMa: Fast graph
search with label similarity,” in Proceedings of the VLDB endowment,
2013, pp. 181–192.

[27] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient subgraph
matching on billion node graphs,” Proceedings of the VLDB Endow-
ment, vol. 5, no. 9, 2012, pp. 788–799.

[28] Y. Yuan, G. Wang, J. Y. Xu, and L. Chen, “Efficient distributed subgraph
similarity matching,” VLDB journal, vol. 24, 2015, pp. 369–394.

[29] Y. Tian and J. M. Patel, “Tale: A tool for approximate large graph
matching,” in ICDE. IEEE, 2008, pp. 963–972.

[30] W. Zheng, L. Zou, X. Lian, D. Wang, and D. Zhao, “Graph similarity
search with edit distance constraint in large graph databases,” in
Proceedings of the 22nd ACM international conference on Conference
on information & knowledge management. ACM, 2013, pp. 1595–
1600.

[31] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, [retrieved: May, 2016].

[32] “DBLP Network,” http://dblp.uni-trier.de/db/, [retrieved: May, 2016].
[33] N. Przulj, D. Corneil, and I. Jurisica, “Efficient estimation of graphlet

frequency distributions in protein-protein interaction networks,” Bioin-
formatics, vol. 22, no. 8, 2006, pp. 974–980.

[34] G. T. Heineman, G. Pollice, and S. Selkow, Algorithms in a Nutshell.
O’Reilly Media, Inc., 2008.

93Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 104 / 107

Implementing Semantics-Based Cross-domain Collaboration Recommendation in
Biomedicine with a Graph Database

Dimitar Hristovski
Faculty of Medicine
Ljubljana, Slovenia

dimitar.hristovski@gmail.com

Andrej Kastrin
Faculty of Information Studies

Novo mesto, Slovenia
andrej.kastrin@guest.arnes.si

Thomas C. Rindflesch
National Library of Medicine

Bethesda, MD, USA
trindflesch@mail.nih.gov

Abstract— We describe a novel approach for cross-domain
recommendation for research collaboration. We first
constructed a large Neo4j graph database representing
authors, their expertise, current collaborations, and general
biomedical knowledge. This information comes from
MEDLINE and from semantic relations extracted with
SemRep. Then, by using an extended literature-based
discovery paradigm, implemented with the Cypher graph
query language, we recommend novel collaborations, which
include author pairs, along with novel topics for collaboration
and motivation for that collaboration.

Keywords- Research collaboration; Recommendation
system; Literature-based discovery; Semantic MEDLINE; Graph
database; Neo4j.

I. INTRODUCTION

Nowadays, high quality science requires collaboration, as
demonstrated by studies reporting that higher levels of
collaboration correlate with higher productivity [1]. Current
systems for recommending scientific collaboration are
largely based on statistical analysis of co-occuring terms
(e.g., ArnetMiner [2]); they provide a list of potential
collaborators, but do not give motivation for the
recommendations. Our methodology enhances previous
work by providing a list of potential collaborators and topics
for collaboration, in addition to compelling motivation for
the collaboration. This innovative approach is based on a
semantic implementation of literature-based discovery
(LBD) methodology.

 LBD is a methodology for automatically generating
research hypothesis by uncovering hidden, previously
unknown relationships from existing knowledge [3]. For
example, suppose a researcher has studied the effect of
substance X on gene Y. Further suppose that a different
researcher has found a relationship between gene Y and
disease Z. The use of LBD may suggest a relationship
between X and Z, indicating that substance X may
potentially treat disease Z. For a recent review of LBD tools
and approaches see [4].

 The relationships on which this project is based are
semantic predications. A semantic predication is a formal
structure representing part of the meaning of a sentence. For
example, “Metformin TREATS Diabetes” represents part of
the meaning of “Metformin is commonly used as first-line
medication for management of diabetes.” A semantic
predication consists of a predicate (“TREATS” in this
example) and arguments (“Metformin” and “Diabetes”). We
used predications extracted by SemRep [5] from all of

MEDLINE (titles and abstracts). SemRep is a rule-based,
symbolic natural language processing system that extracts 30
predicate types expressing assertions in clinical medicine
(e.g., TREATS, ADMINISTERED TO), substance
interactions (e.g., INTERACTS WITH, STIMULATES),
genetic etiology of disease (e.g., CAUSED,
PREDISPOSES), and pharmacogenomics (e.g.,
AUGMENTS, DISRUPTS). The extracted predications are
stored in a MySQL database (SemMedDB) which is publicly
available [6]. The expressiveness inherent in semantic
predications enhances the value of our system over that of
the majority of LBD systems. Such systems are largely based
on simple co-occurrence of phrases or concepts, which does
not express the meaning of the relationship between the co-
occurrences.

This work is a continuation and extension of our previous
work. In [7] we described the basic cross-domain
collaboration recommendation methodology, and in [8] we
explained how to implement LBD with Neo4j graph
database [9]. In this paper, we describe the implementation
of the cross-domain collaboration recommendation
methodology with the Neo4j graph database and its query
language Cypher [9].

The paper is structured as follows. In Section II, we
present the methods used to construct the graph database and
the prediction algorithm, in Section III we present the results,
and in Section IV we preset the conclusions .

II. METHODS

We first construct a large network and load it into the
Neo4j graph database. We have used the Neo4j graph
database because our data can be naturally expressed as a
large graph and because Neo4j is well suited for storing and
working with graphs. The network (graph) consists of two
major types of nodes: authors and biomedical concepts. We
extract the authors from the full MEDLINE bibliographic
database. We extract the biomedical concepts from the set of
arguments (subjects or objects) of semantic relations
extracted from all MEDLINE titles and abstracts with
SemRep. Each biomedical concept has a subtype, such as
Disease or Syndrome or Pharmacologic Substance. We call
the node subtypes semantic types and they come from
Unified Medical Language System (UMLS). We use 126
semantic types. Our network contains several types of arcs
and edges. co_author edges link any two authors that
have been co-authors in at least one paper. We use this edge
type to determine which authors already know each other.
writes_about arcs link authors to biomedical concepts.

94Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 105 / 107

T
f
w
F
w
c
k

t
r
w
F
c
r
f
c
p
d
b
L
(
F
h
a
T
c

c

(
t
d
X
n
n
a
b
a
d
i
Z

These arcs are
from the art
writes_about
Finally, we h
with SemRep
concepts. Th
knowledge.

The large
the foundation
research collab
with the Cyph
For a given
compile the
represents bo
following the
concepts from
phase. For ea
discovery. He
be used to im
LBD propos
(research) top
For all target
have these co
authors who a
The output is
collaborators a
1 is a generic
can be made m

MATCH (aut
(X:Concept
-[Rel_YZ]-
(author2:a
WHERE NOT
AND NOT (a
RETURN aut
author2;

Figure 1. Gene

We provid

(Figure 2). In
the disease” L
drug X maybe
X inhibits gen
necessary inf
network. Also
and B are ex
because they w
as follows: If
disease Z she
is an expert fo
Z.

e derived from
ticles written
arcs to repres

have 30 types
p that link the
hese relations

network of no
n on which t
boration opera
her query lang
input author

author’s to
oth the autho
writes_abo

m the author’
ach input con
ere the method
mprove the pre

es target co
pics that are no

concepts foun
oncepts in th
are already co
s a list of the
and topic(s) fo
c implementat
more specific a

thor1:autho
t) -[Rel_XY
-> (Z:Conce
author)
(X)-[RelXZ
author1)-[C
thor1, X, R

eric implementatio
algorithm w

de an illustra
this example

LBD discovery
e treats diseas

ne(s) Y which
formation for
o from the net
xperts for drug
write about th

f author B wa
should collab

or drug X whic

m the semantic
by the auth

sent the exper
s of semantic
e nodes repre
s represent c

odes, arcs and
the algorithm
ates. We imple
guage and it o
(last and firs

opic (concep
ors interests
out arcs as de
s profile are

ncept we perf
dology of disc
ecision of the
oncepts as n
ot yet publish
nd by LBD, w
eir profiles a

o-authors with
e remaining a
or collaboratio
tion with a Cy
as needed.

or)-[:WRITES
Y]-> (Y:Conc
ept) <-[:WRI

]->(Z)
CO_AUTHOR]-(
Rel_XY, Y, R

on of the collabora
with a Cypher quer

ation for this
we use the “

y pattern [11]
se Z (new hyp
causes disease

this discove
twork we can
g X and disea
hese topics. Th
ants to find a
borate with aut
ch might be be

c relations extr
hors. We us
rtise of the au

relations extr
esenting biom
current biom

d edges describ
for recomme

ement the algo
operates as fo
st names), we
pt) profile, w

and expertis
escribed above
input to the

form an open
covery pattern
LBD process

novel collabo
hed in the liter
we find author
and eliminate

the starting a
authors as pot
n. Shown in F
ypher query, w

S_ABOUT]->
cept)
ITES_ABOUT]

(author2)
Rel_YZ, Z,

ation recommenda
ry.

discovery pr
“inhibit the cau

which states
pothesis) if the
e Z. We have a
ery pattern in
find that auth

ase Z, respect
he explanation
novel way to

thor A, becaus
eneficial for d

racted
se the
uthors.
racted

medical
medical

bed is
ending
orithm
llows.
e first
which

se, by
e. The
LBD
LBD

ns can
s [10].
oration
rature.
s who
those

author.
tential
Figure
which

]-

ation

rocess
use of
that a

e drug
all the
n our

hors A
tively,
n goes
o treat
se she

disease

Fig
b

coll
the

MA
(d
-[
<-
WH
AN
RE
au
Fig

sem
bib
the
and
ther
auth
auth
com
bio

usin
dise
181
dise
reco
poin
Fut
visu
intr
we

larg
cro

gure 2. Illustration
biomedical knowl

Shown in F
laboration rec
disease” disco

ATCH (autho
drug:phsu)-
[:CAUSES]->
-[:WRITES_A
HERE NOT (d
ND NOT (aut
ETURN autho
uthor2;
gure 3. Implemen
with a Cypher qu

The network
mantic relation
liographic rec
network are a

d 269047 bio
re are 18166
hors, 189294
hors and biom

me from Se
medical conce
We applied th

ng the LBD d
ease,” which r
17 distinct dru
eases were inc
ommendations
nt of view.
ture work incl
ualization mo
roduces consid
need to addre

Using a grap
ge network d
ss-domain col

n of the recommen
edge (solid arcs) w

(dashed

Figure 3 is
ommendation
overy pattern.

or1:author)
-[:INHIBITS
> (disease:
ABOUT]- (au
drug)-[:TRE
thor1)-[CO_
or1, drug,

ntation of the colla
uery based on the

discovery

III. R

k we constru
ns extracted

cords using Se
as follows: Th
medical conc
64746 co_a

4999 writes
medical conce
emRep sema
epts.
he collaboratio
discovery patt
returned 27566
ugs, 3218 dist
cluded in the
s need to be e

ludes develop
odule. Author
derable noise i
ss disambigua

IV. CON

ph database su
data structure
llaboration rec

ndation process. B
we recommend no
d arcs).

a Cypher
based on “inh

 -[:WRITES_
]->(gene:gn
dsyn)
thor2:autho
EATS]->(dis
_AUTHOR]-(au
gene, disea

aboration recomm
 “inhibit the cause
y pattern.

RESULTS

ucted consist
from 23657

emRep. The c
here are 95161
cept nodes. R
author edge
s_about arc
epts, and 693

antic relations

on recommen
tern “inhibit t
61539 unique
tinct genes, an
topics for col

evaluated from

pment of a us
r name amb
into the discov
ation in this are

NCLUSIONS

uch as Neo4j
needed for

commendation

Based on the curre
ovel collaboration

query for t
hibit the cause

_ABOUT]->
ngm)

or)
sease)
uthor2)
ase,

mendation algorith
e of the disease”

ts of 693334
386 MEDLIN
characteristics
106 author nod
Regarding edg
es between t
cs between t

333420 arcs th
s between t

ndation algorith
the cause of t
pairs of autho
nd 8698 distin
laboration; the

m the biomedi

ser interface a
biguity curren
very process, a
ea.

j for storing t
semantics-bas

n is more natu

ent
n

the
e of

hm

420
NE
of

des
ges,
the
the
hat
the

hm
the
ors.
nct
ese
ical

and
ntly
and

the
sed
ural

95Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

 106 / 107

and efficient than using a relational database. Implementing
collaboration recommendation algorithms is conceptually
easier and more simple when using a graph query language
such as Cypher when compared to standard SQL.

ACKNOWLEDGMENT

This work was supported by the Slovenian Research
Agency and by the Intramural Research Program of the U.S.
National Institutes of Health, National Library of Medicine.

REFERENCES
[1] J. Katz and B. R. Martin, “What is research collaboration,”

Research Policy, vol. 26, no. 1, pp 1-18, 1997.
[2] J. Tang, J. Zhang, L.Yao, J. Li, L. Zhang, and Z. Su,

“ArnetMiner,” in Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data
mining – KDD 08. New York, NY: ACM Press, pp. 990-998,
2008.

[3] D. R. Swanson, “Fish oil, Raynaud’s syndrome, and
undiscovered public knowledge,” Perspectives in Biology and
Medicine, vol. 30, no. 1, pp. 7-18, 1986.

[4] D. Hristovski, T. Rindflesch, and B. Peterlin, “Using
literaturebased discovery to identify novel therapeutic
approaches,” Cardiovascular & Hematological Agents in
Medicinal Chemistry, vol. 11, no. 1, pp. 14-24, 2013.

[5] T. C. Rindflesch and M. Fiszman, “The interaction of domain
knowledge and linguistic structure in natural language
processing: Interpreting hypernymic propositions in
biomedical text,” Journal of Biomedical Informatics, vol. 36,
no. 6, pp. 462-477, 2003.

[6] H. Kilicoglu, D. Shin, M. Fiszman, G. Rosemblat, and T. C.
Rindflesch, “SemMedDB: A PubMed-scale repository of
biomedical semantic predications,” Bioinformatics, vol. 28,
no. 23, pp. 3158-3160, 2012.

[7] D. Hristovski, A. Kastrin, and T. C. Rindflesch, “Semantics-
bsed cross-domain collaboration recommendation in the life
sciences: Preliminary results,” Proceedings of the 2015
IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining, pp. 805-806, 2015.

[8] D. Hristovski, A. Kastrin, D. Dinevski, and T. C. Rindflesch,
“Towards implementing semantic literature-based discovery
with a graph database,” Proceedings of the GraphSM 2015,
The Second International Workshop on Large-scale Graph
Storage and Management, pp. 180-184, 2015.

[9] Neo4j website. Available at: http://neo4j.com. Last accessed
June 20th 2016.

[10] D. Hristovski, C. Friedman, T. C. Rindflesch, and B. Peterlin,
“Exploiting semantic relations for literature-based discovery,”
AMIA Annual Symposium proceedings, pp. 349-353, 2006.

[11] C. B. Ahlers, D. Hristovski, H. Kilicoglu, and T. C.
Rindflesch, “Using the literature-based discovery paradigm to
investigate drug mechanisms,” AMIA Annual Symposium
proceedings, pp. 6-10, 2007.

96Copyright (c) IARIA, 2016. ISBN: 978-1-61208-486-2

DBKDA 2016 : The Eighth International Conference on Advances in Databases, Knowledge, and Data Applications

Powered by TCPDF (www.tcpdf.org)

 107 / 107

http://www.tcpdf.org

