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Forward

The Ninth International Conference on Cyber-Technologies and Cyber-Systems (CYBER 2024), held

between September 29th, 2024, to October 3rd, 2024, in Venice, Italy, continued a series of international

events covering many aspects related to cyber-systems and cyber-technologies; it was also intended to

illustrate appropriate current academic and industry cyber-system projects, prototypes, and deployed

products and services.

The increasing size and complexity of the communications and the networking infrastructures are

making difficult the investigation of resiliency, security assessment, safety and crimes. Mobility,

anonymity, counterfeiting, are characteristics that add more complexity in Internet of Things and Cloud-

based solutions. Cyber-physical systems exhibit a strong link between the computational and physical

elements. Techniques for cyber resilience, cyber security, protecting the cyber infrastructure, cyber

forensic, and cyber-crimes have been developed and deployed. Some new solutions are nature-inspired

and social-inspired, leading to self-secure and self-defending systems. Despite the achievements,

security and privacy, disaster management, social forensics, and anomalies/crimes detection are

challenges within cyber-systems.

We take here the opportunity to warmly thank all the members of the CYBER 2024 technical

program committee, as well as all the reviewers. The creation of such a high-quality conference program

would not have been possible without their involvement. We also kindly thank all the authors who

dedicated much of their time and effort to contribute to CYBER 2024. We truly believe that, thanks to all

these efforts, the final conference program consisted of top-quality contributions. We also thank the

members of the CYBER 2024 organizing committee for their help in handling the logistics of this event.

We hope that CYBER 2024 was a successful international forum for the exchange of ideas and results

between academia and industry for the promotion of progress related to cyber-technologies and cyber-

systems.
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Abstract— Artificial Intelligence (AI) continues to grow into 

areas such as Natural Language Processing (NLP) and other 

arenas where understanding the meaning behind speech, 

images, and symbols is of increasing importance, such as 

education. These realms of understanding are not merely 

semantic, but semiotic in scope, carrying with them the 

potential for AI to grow toward the understanding of the 

meaning behind what is being said, written, pictured, or 

symbolized. This growth necessitates the advancement of 

techniques in semiotic learning such as neural sketch learning, 

paradigmatic associations, and advanced heuristics. In this 

paper, semiotic learning will be defined and discussed. 

Additionally, some techniques and strategies for AI semiotic 

learning will be discussed and modeled including an AI 

accommodation/assimilation model. These strategies are 

ultimately useful for defensive cyber operations and offensive 

cyber operations through the use of semiotic context matching 

to improve defensive and offensive strategies. 

Keywords- cyber; artificial intelligence; semiotics; 

accommodation; assimilation; heuristics. 

I. INTRODUCTION 

As the world of Artificial Intelligence (AI) continues to 
expand exponentially, the need for these technologies to 
comprehend various types of discrete and esoteric 
information grows as well. AI is one of those terms that is 
often confusing, with many people inferring that it means 
only one thing. The reality, however, is that AI expresses 
itself in at least three major ways: semantic, semiotic, and 
singular. The semantic characterization deals primarily with 
data associations with some decision functions at a basic 
level, absent of the true “understanding” of how those data 
interrelate. Semiotic relationships include much of the data 
association methodologies in semantic AI but work toward 
helping neural networks to make idiomatic associations for a 
level of networked “meaning” regarding the data within a 
particular system or framework. The “singular” or 
“singularity” refers to machine consciousness with a full 
understanding of meaning, relationships, idioms, and 
feelings similar in scope to how human beings navigate 
stimuli, data, and personal emotions. This discussion will 
focus primarily on the semiotic realm of AI with some 
explanation of semantic AI for differentiation. These 
strategies are ultimately useful for defensive cyber 

operations and offensive cyber operations through the use of 
semiotic context matching to improve defensive and 
offensive strategies. The rest of the paper is structured as 
follows. In Section II, computational semiotics will be 
defined. Section III details neural sketch learning for 
semiosis. Paradigmatic associations will be discussed in 
Section IV to give a solid frame of reference for how to 
translate paradigms into code and algorithms. Section V 
deals with advanced heuristics or mental shortcuts and how 
these can be used to improve efficiency and understanding in 
algorithmic applications. The AI accommodation and 
assimilation model will be detailed in Section VI followed 
by the conclusion in Section VII.  

II. DEFINING COMPUTATIONAL SEMIOTICS 

Before one can embark upon sifting through the complex 
territory of semiotic support for AI, a full understanding of 
computational semiotics is necessary. Semiosis is the “study 
of meaning and communication processes…from the point of 
view of formal sciences, linguistics, and philosophy” 
including the situational control of logical systems to 
produce automatic control of systems [1]. This definition 
flows directly into the fundamental premise of AI to provide 
meaningful and intelligible information to humans for use in 
understanding and using information more rapidly while also 
making improved predictions concerning numerous systems 
and data. Semiotics is the study of signs and symbols, 
especially as a means of language or communication. It is a 
multidisciplinary perspective that incorporates the thinking 
and theory fragments of many different thinkers, including 
linguists, phenomenologists, and philosophers. The 
foundation of semiotic computational relationships was 
developed in the 1970s by Russian AI researcher D.A. 
Pospelov who connected AI theory to human reasoning 
through studying two models: a deductive “maze model” and 
an inductive “chess model” [2]. The “maze model” was an 
earlier concept developed in the 1950s drawing on the work 
of cognitive psychologists who based human thought on the 
premise of linear decision-making.  

However, the maze hypothesis began to fall into dispute 
as it came under increased scrutiny, leading to the more 
inductive “chess model” which offered more probability 
across human thought and meaning construction. This 
divergence of human and computer thought is captured well 
by Deb Roy in her study concerning schema theory and 

1Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-186-2
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semiotics. Human beings generally construct meaning 
through forming concepts around ideas in scaffolds called 
“schemas” which are used constantly to produce and express 
ideas between humans that are filled with meaning [3]. This 
leads to “a causal-predictive cycle of action and perception” 
where people create meaning and share complex 
relationships about events, places, and numerous other value 
associations [3].  While numerous methodologies for 
meaning-making have been explored in recent years, the use 
of automatic reasoning through pattern recognition has 
shown a great deal of promise [4]. This method of semiotic 
computing is based on systems that learn paradigms, which 
are then transformed into new symbols on which 
syntagmatic and paradigmatic analysis can be performed 
again [4]. This analysis and reanalysis of concepts, words, 
paradigms, and schemas leads to semiotic functions that can 
then be bolstered through iterative processing and syntactic 
connection scaffolding. This spiral model allows for the 
exponential reinforcement of syntax and paradigms similar 
to how humans learn and integrate knowledge and complex 
information through language using accommodation and 
assimilation. Accommodation can best be described as the 
changing of one’s knowledge schema to accommodate new 
information. Whereas assimilation is the changing of the 
information being adopted into one’s knowledge schema to 
more easily fit current information and understanding. This 
action of assimilation and accommodation is performed 
primarily through symbolic understanding.  

Humans are very skilled at grouping information into 
semiotic symbolic databases within our schemata allowing 
us to rapidly understand and predict numerous, complex 
circumstances [5]. Generally, this process is seen as intuitive 
and related to human ability to make predictive decisions. 
This is commonly based on probabilistic decision-making 
similar to the processes found in quantum computers [6]. 
Taking this intuitive approach and combining it with 
symbolic reasoning, has the potential to transform semantic 
reasoning machines into semiotic reasoning machines 
capable of understanding symbolic meaning and constructing 
that meaning into higher order understanding and schemas 
[5]. If AI is to become the powerhouse it is meant to be, 
semantic constructions must be transformed into semiotic 
scaffolds. While Generative Pre-trained Transformers 
(GPTs) and Generative Adversarial Networks (GANs) will 
continue to be useful for general understanding and 
information construction, semiotic AI offers a bridge into a 
world where Artificial General Intelligence (AGI) is a 
reality. With this capability within the reach of human use 
and development, humanity is poised to see enormous leaps 
in rapidity of decision-making and predictive analysis. 
Through these predictive algorithms and with the use of 
more rapid decision-making as a result, cyber offense and 
defense will be transformed in rapidity, accuracy, and utility.  

III. NEURAL SKETCH LEARNING FOR SEMIOSIS 

If computational semiotics are the connection between 
human schematic symbolic understanding, neural sketch 
learning is the network of pathways mapped out in the most 
anthropomorphic sense. Human beings are naturally suited to 

making connections semiotically that allow us to reason and 
connect disparate data seamlessly. However, computer 
systems are not innately so capable of tying concepts 
together as humans. This is where the strategy of neural 
sketch learning can potentially undergird semiotic learning 
processes for AI systems. In the following discussion, 
learning compositional rules through neural program 
synthesis will be explored to gain insight into how neural 
sketch learning may be used to support symbolic information 
scaffolding. Also, neural models for Natural Language 
Processing (NLP) will be discussed in reference to how we 
might use neural sketches to bridge the gaps between 
semantic NLP and semiotic processing with symbolic sketch 
models. Next, learning to infer program sketches will be 
examined for information regarding inference-based 
programs and methods that can be used semiotically for 
higher-level computational understanding. Then, neural 
sketch learning for conditional program generation will be 
analyzed to reveal how conditional programs can be 
leveraged more robustly through neural sketch learning for 
symbolic understanding and reasoning in emerging semiotic 
processing. Finally, idiomatic synthesis and parsing will be 
defined and discussed to make connections between human 
idiomatic understanding and teaching semantic and semiotic 
processing platforms how to recognize and connect these 
difficult, esoteric linguistic obstacles. 

When human beings reason and connect thoughts and 
patterns, we often tend to draw on connected meaning 
between numerous words and meaning constructs. For 
example, when two people talk about growing up in different 
places with different parents, and different siblings, they 
automatically form meaningful constructs around the people 
and places being represented by the other person in the 
conversation based on meaning constructs held within their 
own emotional, social, and cultural schemata. This act of 
meta-cognition or thinking about thinking, allows each 
person to accommodate and assimilate information about the 
other person’s experiences and emotions. In semantic 
relationships using NLP, these relationships, as complex as 
they are, are not present. One way to potentially address this 
lack of connection is through what can be referred to as 
“meta-grammar” and “meta-learning [7].” These learning 
methodologies for semantic systems have the propensity to 
learn entire rule systems from examples. In other words, 
schemas can be generated and then taught to these learning 
systems to promote and sustain semiotic connections to form 
meaning for semiotic reasoning. Meta-learning or learning 
about learning is supported through scaffolding and 
explaining informational attributes and connected concepts 
within semantic programs with NLP. This is further 
supported through meta-grammar or grammar about 
grammar that takes conceptual, holistic frameworks and 
teaches them to semantic systems to build and bolster 
discrete connections between words, phrases, and concepts 
[7].  

Part of the roadblock to semiotic expression in 
computing frameworks has been the inability of these 
systems to parse and understand formal language that is not 
machine-friendly [8]. To avoid this issue, natural language 

2Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-186-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CYBER 2024 : The Ninth International Conference on Cyber-Technologies and Cyber-Systems

                            11 / 53



interfaces have been developed to assist in linguistic 
connections between humans and machines. What machines 
often do not grasp is the underlying meaning of human 
expression, however, though symbolically modeling these 
expressions and building appliances in code using 
algorithmic means, a functionally semiotic interpretation 
could be manifested [8]. This method, overlaid with program 
synthesis [7] reveals promise toward semiosis due to its NLP 
underpinnings; namely the ability to take multiple complex 
concepts and scaffold them together to promote language 
accommodation and assimilation.  

Another area inherently connected to semiotic processing 
is the ability for machine systems to infer meaning from data 
provided by human input. As humans, we are able to take 
large sets of disparate and convoluted data and draw 
inferences from that data to synthesize and explain new data. 
This complex cognitive computation is part of the non-linear 
capability human beings have developed through 
communication with other humans and experiences in the 
natural world that present a particular survival advantage. 
However, these inferences are not intrinsic to machine 
systems due to several reasons including complexity and the 
lack of imprint of human survival instincts on these systems. 
Nye, et. al., propose “a system which mimics the human 
ability to dynamically incorporate pattern recognition and 
reasoning to solve programming problems from examples or 
natural language specification [9]. It is this ability to 
recognize and respond to patterns and symbolic meaning that 
lends itself to semiosis. Through understanding and 
connecting information at the meta level, machines can 
address the gaps found in semantic processing where 
machines cannot understand the multiple levels of connected 
meaning innately found through human cognition. 

Semantic programming through syntactical interpretation 
has traditionally been a roadblock to conditional program 
generation, but great strides have been made in recent years 
toward semantic and potential semiotic solutions. Through 
leveraging combinatorial and neural techniques, conditional 
programs could make the leap toward human-like decisions 
and predictions by creating and synthesizing language and 
patterns such that rapid processing of large and complex data 
sets will be tenable [10]. This is accomplished through neural 
sketches that combine numerous data attributes and 
connections allowing for program synthesis of data for 
program generation [10]. This capability can be further 
supported using programs like SKETCHADAPT, which are 
useful for data and program synthesis [9]. Ultimately, the 
goal is to flow together methods and tools that can bolster 
complex data combinations for potential semiosis. 

One of the most interesting expressions of human 
thought and experience is our linguistic propensity for 
creating idioms. An idiom is usually a word or phrase that is 
directly tied to a social or cultural concept. For instance, in 
the United States people often use idioms taken from 
American sports like football and baseball. If someone says 
that you “hit a home run” or “knocked that one out of the 
park” they are complimenting you on a great success since 
these phrases are ties to the concept of great success in the 
game of baseball in America that allows the team to score 

points and win the game. However, terms like this are not 
just a potential language barrier between different cultures, 
but also present numerous difficulties for semantic AI. The 
idiomatic problem is in fact even more pronounced in 
machine systems since idioms are a peculiarly human way of 
communication. A potential solution for this issue is to 
incorporate high-level and low-level reasoning at every step 
of the linguistic translation process in semantic programming 
and NLP [11]. While most idiomatic interpretations in code 
language are accomplished through the use of tokens that 
symbolically represent common patterns, human beings use 
high-level and low-level reasoning to ascertain idiomatic 
language, formulate definitions and predictions, and select 
appropriate linguistic responses. Shin, et. al., suggest 
alleviating this issue by “interleav[ing] high-level idioms 
with low-level tokens at all levels of program synthesis, 
generalizing beyond fixed top-level sketch generation [11].” 
This method of neural sketch learning offers the advantage 
of incorporating complex levels of language interpretation 
and generation to assist in translating language semantically 
within AI systems. This level of understanding and meaning 
making has great potential in further supporting semiotic AI 
translation and generation. 

Neural sketch learning offers numerous opportunities to 
support and grow AI toward semiosis by allowing for the 
synthesis and translation of large, complex, and esoteric 
datasets. Compositional rules are a first step toward forming 
a linguistic foundation for semiotic learning and processing. 
These rules can then be expanded into learning models using 
neural interfaces and sketches for cognitive modeling like 
how humans accommodate and assimilate information. The 
next level of semiotic understanding can be supported by the 
ability of semiotic machines to infer data and meaning from 
large and complex datasets for the purpose of understanding 
seemingly disparate information and making inferred 
connections for complex language processing and 
generation. From these large datasets, cyber defense and 
offense can also be bolstered through the rapid association of 
threats and vulnerabilities to identify and assess cyber risks 
and offensive cyber opportunities. Conditional program 
generation adds another layer to the foundation of semiosis 
using neural sketch learning for making conditional 
connections. Finally, idiomatic understanding and processing 
through low-level and high-level reasoning bolsters semiosis 
through supporting AI synthesis of language based on a wide 
array of human social and cultural understandings. All of 
these neural processing and learning schemas can be 
mutually beneficial for semiotic AI language and task 
processing. 

IV. PARADIGMATIC ASSOCIATIONS 

Paradigms hold great power in human estimation as they 
often define the zeitgeist surrounding historical, societal, and 
cultural events and experiences. The same is true at the 
logical later of coding, processing, and parsing information 
as paradigms are powerful representations of symbolic 
realities meant to be understood by the AI systems in 
question. As we explore paradigmatic associations in 
semiotic AI, the areas of structural linguistics, implicitly 
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learned paradigmatic relations, syntagmatic and 
paradigmatic associations, computation of word associations, 
and a syntagmatic paradigmatic model will be discussed. As 
discussed earlier, linguistic structures are foundational to 
building meaning in semiotic AI as they provide the basis for 
understanding paradigms. Also, taking these linguistic 
approaches and applying them directly to implicit structures 
where paradigms can be associated discretely with each 
other adds another layer of potential semiosis. The process of 
relating syntactical paradigms across numerous levels of 
computational understanding is the next level of meaning 
making. This is undertaken through the association of words, 
syntax, symbols, and groups of related data to form complex 
computational models and relationships for building 
meaning for accommodating and assimilating information. 
Finally, modeling these syntagmatic and paradigmatic 
relationships is necessary to make the final meaning 
generation imperative for paradigmatic semiosis. 

Structural linguistics have been used for human 
communication for as long as language has existed. As we 
navigate social and cultural relationships, human beings 
build immense cognitive databases for understanding 
linguistic structures such as symbols, paradigms, syntax, and 
numerous other linguistic relationships. In AI systems, these 
connections are extremely advantageous since semantic 
processing is central to the ability of GPTs to translate 
information into actionable syntagmatic content. The central 
proposition of structural linguistics rests on the ability to 
interpret the meaning of a word based on its paradigmatic 
and syntagmatic associations [12]. In other words, when a 
person reads the word “wet”, they automatically associate 
that word with multiple other words and build meaning maps 
for those terms. One might associate “wet” with rain, water, 
clouds, ocean, river, etc. This is a syntagmatic association 
model. However, when building a paradigm, all of these 
terms and perhaps even antonyms might be grouped together 
to form a central concept of the word “wet.” This 
understanding of word associations has led to the advent of 
synonymous models such as the Tensor Encoding (TE) 
model which can perform numerous semantic tasks including 
synonym judgement [12]. In AI semiotic systems, the ability 
to form paradigmatic and syntagmatic associations for 
meaning creation is at the center of the process of semiosis. 
Without the basic association of words and scaffolding of 
paradigmatic content, meaning creation and association 
would not be possible. With these semiotic strategies, 
however, query expansion, intrinsic linguistic synthesis and 
expression, and internal paradigmatic evaluation are made 
possible, contributing to the realization of semiosis. 

Paradigmatic relationships are another important area 
associated with semiosis since these connections happen 
“within the same event, either simultaneously, immediately 
following each other, or separated by one or more other 
elements [13].” These close connections between words, 
phrases, occurrences, and other events make the construction 
of paradigms possible. The question posed by Yim, et. al. in 
their 2019 article is: “Can paradigmatic relations be learned 
implicitly?” This question has been posed numerous times in 
research as it deals with the central tenet of meaning-making 

around syntagmatic and paradigmatic structures. 
Interestingly, this research was performed on human subjects 
to grasp how humans might associate words syntagmatically 
to build paradigms implicitly. The research supported the 
implicit learning of paradigmatic relations where participants 
had strong syntagmatic connections [13] suggesting that 
paradigmatic relationships were implicitly possible. This is a 
promising finding for potential semiosis in machine 
constructs as well, since similar syntagmatic relationships 
have been noted in semantic processing and relationship 
building. 

Syntagmatic and paradigmatic associations share many 
connected articulations with semiotic AI. Attributional and 
relational similarities form the central base for understanding 
semantic similarity in human and machine systems, 
supporting learning schemas at numerous levels [14]. 
Humans depend on semantic similarity for numerous 
communication and socialization circumstances. For 
instance, when someone says, “you wear that well” they 
might be referring to shoes, clothes, a particular social or 
work position, a smile, or many other semantic possibilities. 
As humans, we learn to draw on these semantic similarities 
to interpret meaning. These same meaning-making and 
semantic relationships are central to semiosis in machines as 
these are relationships that are idiomatic and require 
potentially massive amounts of context to understand and 
interpret. The simplest way to begin these associations is 
through forming semantic relationships between pairs of 
words [14] and subsequently building expanded paradigms 
and syntax around them. This action of paradigmatic and 
syntagmatic scaffolding can enrich the semiotic relationships 
necessary for semiosis in AI. 

Computing word associations carries a heavy burden of 
the necessary capability to form and process semiotic AI 
scaffolds. The construction of paradigmatic algorithms for 
semiotic AI is tied directly to their relationship as either 
relationally paradigmatic or syntagmatic. “There is a 
syntagmatic relation between two words if they co-occur in 
spoken or written language more frequently than expected 
from chance and if they have different grammatical roles in 
the sentences in which they occur. Typical examples are the 
word pairs coffee – drink, sun – hot, or teacher – school. The 
relation between two words is paradigmatic if the two words 
can substitute for one another in a sentence without affecting 
the grammaticality or acceptability of the sentence. Typical 
examples are synonyms or antonyms like quick – fast, or eat 
– drink [15].” Given this example, semiosis is possible in 
systems (human and machine) with paradigmatic and 
syntagmatic connections that can be made, sustained, 
synthesized, and perpetuated incorporating hyper-
assimilation and -accommodation. With these capabilities 
brought to bear, meaning-making and understanding at a 
basic level have the potential to support and develop 
semiotic AI capabilities. This is accomplished using 
“algorithms that automatically retrieve words with either the 
syntagmatic or the paradigmatic type of relationship from 
corpora [15] suggesting meaningful connections between 
semantic-layer information and semiotic-layer schemata. 
Through building scaffolds and schemata through 

4Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-186-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CYBER 2024 : The Ninth International Conference on Cyber-Technologies and Cyber-Systems

                            13 / 53



associations, cyber defense systems such as Intrusion 
Prevention Systems (IPS) can make informed and accurate 
predictions concerning malicious programs, thereby adding 
virtually precognitive protections to networks, databases, and 
critical information. 

In their work on sentence processing, Dennis and 
Harrington developed a Syntagmatic Paradigmatic (SP) 
model that makes associations across large linguistic 
frameworks, suggesting that semiotic AI schemas are 
potentially rooted in complex meaning generation and 
association. This is accomplished through characterizing 
sentence processing as retrieval from memory using 
distributed representations [16].  This ability to “generalize 
beyond the specific instances in memory” lends credence to 
the potential semiotic capacity of AI systems in that it is 
based more on large, complex attributes instead of more 
discrete increments. Another area of promise with the SP 
model is its ability to provide systematicity, making arbitrary 
relationships using relational representations [16]. This 
function of the model allows the system to make connections 
between numerous disparate data sets suggesting potential 
semiotic utility for AI. From a structural linguistic 
perspective [12], the use of sentence processing is the next 
level in syntagmatic and paradigmatic processing adding 
potential to the development of semiotic AI. 

Semiosis is dependent on numerous, complex methods to 
construct meaning across systems, language, and algorithms. 
This is nowhere more evident than in the areas of 
syntagmatic and paradigmatic associations. With a view into 
how syntax and paradigms are constructed and used in 
language, logic, and processing, semiotic AI has the potential 
to draw together numerous complex threads algorithmically 
to support greater communication, understanding, and 
meaning generation. With the use of automatic query 
expansion for structuring language exponentially, AI systems 
can generate more meaningful responses and process larger, 
deeper data stores for increased meaning and context. 
Through implicitly learned paradigmatic associations, 
semiosis can be supported intrinsically to offer more 
endemic capability and data synthesis. Syntagmatic and 
paradigmatic word associations through understanding word 
similarity also undergirds semiosis as the connections 
between words can created syntax and paradigms necessary 
for meaning-making and algorithmic growth and synthesis. 
Additionally, computation of word associations adds another 
layer of capability to AI semiosis as the syntagmatic and 
paradigmatic capabilities inherent in these processes 
underscores the process of connectedness of language for 
making meaning. All of these methods and capabilities 
together construct potential sentence analysis and synthesis 
withing semiotic AI to further grow and expand 
understanding and meaning across the AI enterprise. 

 

V. ADVANCED HEURISTICS 

Heuristics or mental shortcuts, have been an item of study 

related to semantic AI for some time as they are focused on 

efficiency and rapidity of processing. However, the power 

of heuristics also have deep application within the realm of 

semiotic AI, since these mental shortcuts are directly related 

to the abstract symbolic thought necessary for the synthesis 

of meaning in human cognition. There are numerous ways 

to explore heuristic models, from the basis of efficient, 

parallel processing to the application of heuristics to 

cybersecurity. However, the following analysis will delve 

primarily into how heuristic capabilities can support 

cognitive and affective frameworks for semiosis. First, an 

examination of heuristics using rules-based algorithms for 

aggregation of common data sets will be employed. Next, 

metaheuristics for metacognition and information depth will 

be examined. Then, an empirical study related to heuristics 

will be explored to get a sense of the discretely scientific 

and mathematical processes being used to produce more 

complex heuristic models. Finally, two game-related 

heuristics models will be explored and related to how 

humans use semiosis when playing games. 

Rules are the currency humans and machines use to 

understand and navigate data in complex systems. 

Algorithms contain numerous rule sets in their detailed 

instructions to ensure an AI is operating efficiently and 

correctly. Within heuristic frameworks, rules are also of 

critical importance as they help direct the processing and 

confluence of data for synthesis [17]. Heuristic frameworks 

operate on the premise of providing efficient, direct 

correlation of data within specific scaffolds to build 

schemas capable of assimilating and accommodating 

various types of information. This is a critical aspect of 

meaning making in semiotic frameworks since symbolic 

intricacies related to metacognition rest in understanding the 

information behind the information. This means that 

grouping parallel information and using primary, secondary, 

and tertiary rule sets to check and relate disparate data can 

lead to building efficient and effective mental shortcuts 

within machine systems that allow them to recognize and 

communicate effectively at the semiotic level [17]. This is 

generally accomplished using multiple running processing 

threads, load balancing, and granularity control to ensure the 

data is being sorted, related, and processed efficiently and 

rapidly [17].  

The act of using rules to bring together disparate data to 

establish schemata relates directly to the next level of 

heuristic semiosis: metaheuristics. “Metaheuristics exploit 

not only the problem characteristics but also ideas based on 

artificial intelligence methodologies, such as different types 

of memory structures and learning mechanisms, as well as 

analogies with optimization methods found in nature [18].” 

Built on this methodology, mechanisms for information 

synthesis toward semiosis have potentially solid purchase. 

This method of forming data connections and relationships 

is akin to what has been observed for centuries in human 

metacognitive capability. The act of “thinking about 

thinking” carries with it the most foundational 

characteristics of building and creating meaning [4]. In 

machine systems, the act of metacognition and 
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metaheuristics rests primarily on the ability of the system to 

correlate not only data, but complex sets of data that can be 

semiotically woven together. IPS and other mechanisms 

used form cyber defense use heuristics to make predictions 

and decisions concerning protective tactics for information 

networks.  Tarantilis, et. al. suggests that, “a metaheuristic 

algorithm can also use one or various neighbor structures 

during the search process…or metaheuristic algorithm or a 

sophisticated combination of different metaheuristic 

concepts, a hybrid metaheuristic algorithm [18].” Using 

these metaheuristic structures, semiosis can be promoted by 

the interleaving of data and concepts toward the building of 

semiotic AI. 

Kask and Dechter espouse an empirical framework in 

their study concerning mini-bucket heuristics [19]. The 

concept rests on “using a branch and bound search for 

finding the Most Probable Explanation (MPE) in Bayesian 

networks [19].” The use of Bayesian networks in this case 

can be leveraged for predictive analysis, which is critical for 

semiotic approaches. Part of the human ability to tie 

information together for the construction and synthesis of 

meaning is based on what most people would consider 

Bayesian or historical data. This is a foundational precept 

from the affective domain of learning as it draws on past 

information and experiences to develop cognitive, 

psychomotor, and affective linkages for accessing and 

creating meaning [3]. Through the use of elimination of 

mini-buckets through Bayesian analysis, Kask and Dechter 

found that, “search can be competitive with the best known 

approximation algorithms for probabilistic decoding such as 

Iterative Belief Propagation (IBP) when the networks are 

relatively small, in which case search solved the problems 

optimally [19]” indicating heuristic capabilities offer a way 

toward connecting information and efficiently processing 

and interrelating said data.  

Games have been used as mechanisms toward meaning 

synthesis in the human experience from time immemorial. 

Games are a way to not only model human and machine 

learning, but to guide meaningful interactions that can be 

used to scaffold connections for semiosis. Ancient historical 

and cutting-edge modern context surround the eastern game 

of Go; a mainstay in China and one studied most recently 

through a contest between a Chinese Go champion and 

Google’s Deep Mind. Bergmark and Stenberg study the 

heuristic relationships surrounding Go as they examine 

heuristics using a Monte Carlo Tree Search (MCTS) model 

[20]. The outcome of their research gave insight into how 

decisions can be made and related to one’s opponent in a 

game situation; a central aspect of AI algorithmic 

representations in GANs. Interestingly, AI can use 

metaheuristic analysis to predict all possible moves to 

probabilistically select the best move; [20] a metacognitive 

advantage over the semantic capabilities of most humans. 

While this capability is more closely related to semantics, 

there are numerous foundational components present which 

allow for the construction of meaning based on the machine 

capability to “outthink” an opponent. Another study using 

the game of Connect Four, delves into teaching computers 

to “think [21].” The researchers in this case decided to build 

a “genetic algorithm” to “evolve” proper weight values in 

the systemic thought processes of the program. “A genetic 

algorithm is an optimization technique that uses a fitness 

function to attempt to find the best value for a variable over 

many iterations, in a manner that mimics natural selection 

[21].” Again, this is a more semantic representation of data, 

but has direct application to potentially semiotic AI due to 

the decision processes that leverage integrated meaning 

behind the thought processes employed.  

Heuristic models and techniques lend themselves well to 

semiotic AI through their ability to groups information into 

mental shortcuts that can be used for the construction of 

meaning in machine systems. Rules-based systems are a 

natural starting point for establishing algorithmic properties 

for building meaning since it is those rule sets that make 

processing and interleaving of data practicable. This 

naturally leads to the process of metaheuristics where 

heuristic methods are further refined and based on 

analogies; another particularly meaning-based area of 

human thought in the affective domain. Bayesian analysis 

adds another important later to this framework as it is based 

on prior information that can be leveraged for semiosis, 

much the same way we as humans use memory. Of course, 

human experience and processing of information through 

gamification is an area of human practice that has existed 

for as long as humanity. Through gaming, machine systems 

have the opportunity to game out information and begin to 

build potential meaning scaffolds that may be used in 

assimilation and accommodation of data into future 

schemata. 

VI. AI ACCOMMODATION/ASSIMILATION MODEL 

The following model is descriptive of the aforementioned 
data concerning neural sketch learning, paradigmatic 
associations, semiotics, and advanced heuristics for semiotic 
AI scaffolding. As mentioned earlier, accommodation and 
assimilation are integral parts of learning theory. 
Accommodation “is where the new element does not and 
cannot fit the new schema and thus a process of 
transformation of both takes place, involving the original 
stimulus or object of learning and the schema that is 
attempting some form of accommodation with it [21].” As 
relates to semiotic machine systems, accommodation is the 
level at which an AI would necessarily have to make 
allowances for information not specific to its particular 
learning or knowledge schema. As a contrast, assimilation 
“is where a new element has to be addressed and made sense 
of by the individual, but this process is still essentially 
passive. The new elements are easily absorbed, indeed 
assimilated, into the existing schema of the individual [21].” 
Again, assimilation requires a semiotic AI to take 
information that may be unfamiliar or new and make sense 
of that information; an integral aspect of semiosis. 
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Figure 1. AI Accommodation/Assimilation Model 

Figure 1 depicts the AI Accommodation/Assimilation 
Model, indicating the four areas discussed earlier and 
relating these areas to their functions and support to AI 
semiosis through inputs for accommodation and assimilation 
of information and meaning for semiotic AI. Neural Sketch 
Learning supports semiosis through neural program 
synthesis where structures mimicking human neural 
networks can provide the underlying layer of logical and 
semiotic pathways necessary for information construction 
and creation. Advanced Heuristics provide the mental 
shortcuts machines will need to take abstract concepts and 
disconnected data and provide inputs into the neural 
networks within a semiotic AI superstructure. Paradigmatic 
Associations are pivotal for creating the structural linguistics 
necessary to form words, phrases, sentences, etc. for the 
construction of meaning from a semantic standpoint. 
Paradigmatic Associations further carry the weight of 
bridging the linguistic infrastructure between neural 
networks and heuristic structures. Finally, Semiotics are the 
glue that binds all of the other structures together through the 
process of meaning making, allowing for the construction of 
meaning for accommodation and assimilation. All of these 
elements work together to form the necessary basis for AI to 
accommodate and assimilate new knowledge and meaning 
(understanding) for the synthesis necessary for basic 
semiosis.  

VII. CONCLUSION 

Semiotic AI, from a meaning-making perspective, is 
essentially the next level of artificial intelligence following 
the semantic AGI so many are striving for currently. If we 
are to reach this next echelon, several types of programming, 
learning theories, and linguistic structures must first be 
understood and modeled. Semiotics in general must first be 
understood as they are not merely about pure information, 
but also about the accommodation and assimilation of 
meaning. To get closer to this level of understanding and 
meaning synthesis, neural sketches must be considered as 
they provide components of information that can be 
leveraged across neural networks. Layered atop these 
network scaffolds are paradigmatic associations necessary 
for understanding the paradigmatic, syntagmatic, and 
idiomatic language and components necessary for semiosis. 
Also, advanced heuristics must be considered as they provide 
the mental shortcuts generally missing across current AI 

structures that could assist with the further construction and 
synthesis of semiotic meaning. Finally, a holistic model is 
presented above to suggest a way toward a confluence of 
these disparate methodologies into an apparatus for the 
accommodation and assimilation of information into and by 
semiotic AI. These strategies are foundational to cyber 
offensive and defensive operations through the use of 
predictive decision support to ensure advanced risk 
avoidance and mitigation. Altogether, the research and 
recommendations herein provide an overview of the 
potential tools and methods for machine semiosis. 
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Abstract—Cybersecurity includes preventing, detecting, and 

reacting to cyber-security attacks. Cyber resilience goes one step 

further and aims to maintain essential functions even during 

ongoing attacks, allowing to deliver an intended service or to 

operate a technical process, and to recover quickly back to 

regular operation. When an attack is carried out, the impact on 

the overall system operation is limited if the attacked system 

stays operational, even with degraded performance or 

functionality. Control devices of a cyber physical system 

typically monitor and control a technical process. This paper 

describes a concept for a control device that can adapt to a 

changing threat landscape by adapting and limiting its 

functionality. If attacks have been detected, or if relevant 

vulnerabilities have been identified, the functionality is 

increasingly limited towards essential functions, thereby 

reducing the attack surface in risky situations, while allowing 

the cyber physical system to stay operational.  

Keywords–cyber resilience; cyber physical system; industrial 

security; cybersecurity. 

I. INTRODUCTION 

A Cyber Physical System (CPS), e.g., an industrial 
automation and control system, contains control devices that 
interact with the real, physical world using sensors and 
actuators. They implement the functionality to control and 
monitor the operations in the physical world, e.g., a 
production system or a power automation system. A control 
device can be a physical device, e.g., an industrial Internet of 
Things (IoT) device, a Programmable Logic Controller (PLC), 
or a virtualized control device, e.g., a container or virtual 
machine executed on a compute platform.  

Control devices communicate via data networks to 
exchange control commands and to monitor the CPS 
operation to realize different automation use cases. These use 
cases may comprise predictive maintenance or the 
reconfiguration of control devices for flexible automation and 
for optimizing operational systems (Industry 4.0), or specific 
line protection features in power system operation. The 
connectivity of control devices is thereby increasingly 
extended towards enterprise networks and towards cloud-
based services, increasing the exposure towards attacks 
originating from external networks or the Internet [1]. 

Being resilient means to be able to withstand or recover 
quickly from difficult conditions [2][3]. It extends the focus 
of “classical” Information Technology (IT) and Operational 
Technology (OT) cybersecurity, which put the focus on 
preventing, detecting, and reacting to cyber-security attacks, 
to the aspect to continue to deliver an intended outcome 
despite an ongoing cyber attack, and to recover quickly back 
to regular operation. When an attack is carried out, the impact 
on the overall system operation is limited if the attacked 
system stays operational, even with degraded performance or 
functionality.  

This paper describes a concept for a control device that can 
adapt to a changing threat landscape by adapting and limiting 
its functionality. If attacks have been detected, or if relevant 
vulnerabilities have been identified, devices can limit their 
functionality increasingly towards only essential functions, 
thereby reducing their attack surface in risky situations. 
Essential functions here relate to the contribution of the device 
to the intended operational use case and the embedding 
operational environment.  

The remainder of the paper is structured as follows: 
Section II gives an overview on related work. Section III 
describes the concept of graceful degradation under attack, 
and Section IV presents a possible usage example in industrial 
automation systems. Section V provides a preliminary 
evaluation of the presented approach. Section VI concludes 
the paper and gives an outlook towards future work. 

II. RELATED WORK 

Cybersecurity for Industrial Automation and Control 
Systems (IACS) is addressed in the standard series IEC62443 
[4]. This series provides a holistic security framework as a set 
of standards defining security requirements for the 
development process and the operation of IACS, as well as 
technical cybersecurity requirements on automation systems 
and the used components.  

Cyber resilience gets increasing attention, as can be seen 
by recent security standards and the draft regulation of the 
Cyber Resilience Act (CRA) [5] and the Delegated Regulation 
for the Radio Equipment Directive (RED) [6]. Technical 
standards are currently developed addressing RED and CRA 
regulative requirements. The standard NIST SP800-193 [7] 
describes technology-independent guidelines for resilience of 
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platform firmware. Resilience-specific roots of trust are 
defined for update of platform firmware, for detection of a 
corrupted firmware, and for recovery from a compromised 
platform state. England et al. give a high-level overview of the 
Cyber Resilient Platforms Program (CyReP), describing 
hardware and software components addressing NIST SP800-
193 requirements [9]. A working group on “cyber resilient 
technologies” of the Trusted Computing Group (TCG) is 
working on technologies to enhance cyber resilience of 
connected systems. Here, different building blocks for cyber 
resilient platforms have been described that allow to recover 
from a malfunction reliably back into a well-defined 
operational state [8]. Such building blocks enhance resilience 
as they allow to recover quickly and with reasonable effort 
from a manipulation. Basic building blocks are a secure 
execution environment for the resilience engine on a device, 
protection latches to protect access to persistent storage of the 
resilience engine even of a compromised device, and 
watchdog timers to ensure that the resilience engine can in fact 
perform a recovery.  

The draft regulation of the Cyber Resilience Act 
(CRA) [5] includes in Annex I requirements related to 
maintain essential functions under attack, by the requirement 
“protect the availability of essential functions, including the 
resilience against and mitigation of denial of service attacks”. 
Furthermore, it is also required that devices “minimize their 
own negative impact on the availability of services provided 

by other devices or networks”. Specifically, the latter is also a 
prominently stated requirement of RED [6].  

The NIST Cybersecurity Framework (CSF) 2.0 [10], 
which gives general guidance on managing risk, addresses 
resilience for normal and adverse situations. A further 
document from ETSI, EN 303 645 [11], describes specific 
requirements for the consumer device domain.  

III. CONTROL DEVICE WITH GRACEFUL DEGRADATION 

UNDER ATTACK 

Control devices of a cyber physical system monitor and 
control a technical process via sensors and actuators. The 
proposed enhanced control device can adapt to a changing 
threat landscape by adapting and limiting its functionality 
depending on the current threat landscape. If attacks have been 
detected, or if relevant vulnerabilities have been identified, the 
functionality of the device is increasingly limited towards 
essential functions. This graceful degradation under attack 
reduces the attack surface in risky situations, while 
maintaining essential functions of the device. This allows the 
cyber physical system, in which the control device is 
deployed, to stay operational even during attack. 

Figure 1 shows the concept of a control device that is 
designed for graceful degradation under attack. The main 
functionality of the device is realized on its processing system 
by multiple SoftWare Components (SWC) that are executed 
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Figure 1. Control Device with graceful degradation under attack. 
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by an Operating System (OS) and/or an app RunTime 
Environment (RTE). Software components may, e.g., 
implement the control function and diagnostic functions. The 
components interact with the physical world via sensors and 
actuators that are connected via an Input/Output (I/O) 
interface. The processing system uses a Secure Element (SE) 
for secure key storage and cryptographic operations, a 
Random Access Memory (RAM), a flash memory, and a 
Communication Module (ComMod).  

An attack detection and criticality evaluation module 
monitors the operation of these device components to detect 
unexpected device behavior, here by matching the detected 
monitoring events with an attack pattern database. It would 
also be possible to check the device monitoring data against 
reference states providing the expected behavior. Such a 
check could be done against static reference data, but could 
also be done in conjunction with a digital twin, providing a 
simulation of the ongoing process. If a suspicious device 
behavior is detected, a criticality is determined, and depending 
on that, the functionality of the device is adapted by the 
Graceful device functionality Degradation Manager (GDM). 
For example, a SWC implementing a simplified control 
function with reduced functionality can be activated instead of 
the regular control function, reducing the threat exposure.  

This example shows a self-contained realization in which 
the attack detection and graceful degradation functionality is 
realized as part of the device. A distributed implementation 
involving also device-external components would be possible 
as well, but would require tight protection of all external 
interfaces to ensure a reliable operation even during ongoing 
attacks.  

In industrial automation, the control functionality is 
usually not fixed, but is commissioned by the automation 
system operator, a machine builder, or an integrator. For this 
application domain, the need is therefore foreseen to allow 
also commissioning the graceful degradation functionality of 
a control devices, allowing to define the device resilience 
behavior under attack. This specifically relates to the 
definition of essential functions, depending on the application 
use case.  

IV. USAGE EXAMPLE 

This section describes the usage in an exemplary way, 
distinguishing software components of varying criticality 
from the perspective of maintaining the CPS operation under 
attack.  

Figure 2 shows example software components that are 
grouped according to the operational criticality. The graceful 
degradation manager activates the software components of the 
respective functionality group depending on the current attack 
scenario. In this example, three sets of software components 
are defined, defining the software components that are active 
in full, reduced, and in minimum functionality mode.  

To ensure cyber resilience, the functionality is reduced to 
a limited control functionality that can be less optimized and 
lead to reduced CPS performance, and to keep limited remote 
access. In more critical attack scenarios, a fail-safe operation 
mode is activated, i.e., if even the reduced functionality 
operation cannot be ensured reliably.  
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Figure 2. Software components with different operational criticality. 

As an industrial example, a protection device of a 
substation may be considered that is attacked via the network 
interface. In the extreme case, the network interface may be 
switched off for a limited time by the GDM, keeping the 
protection functionality based on local sensor readings and 
connected actors. That way, the protection device will not 
communicate its measurements to other substation devices in 
the substation, but it retains the local protection functionality 
and thus the safety of the connected power line. 

V. EVALUATION 

This section gives a preliminary evaluation of the 
presented concept from different perspectives.  

CPS availability perspective: Availability and the 
flexibility to adapt to changing production requirements are 
important requirements for OT operators [5]. The proposed 
approach allows to maintain CPS operation in a limited way 
even under ongoing attacks or in specific failure situations. A 
reliable CPS operation can be maintained, avoiding the need 
to shutdown the CPS operation completely. This is considered 
to be the main advantage of enhanced control device 
resiliency with graceful degradation under attack, as the 
availability of the CPS is improved.  

CPS operational performance perspective: The limited 
function mode may lead to a reduced productivity and less 
efficiency of the CPS. The exact impact depends on the 
limitations of the limited control operation functionality.  

Implementation perspective: Devices have to implement 
the functionality for attack detection and resilience 
management / graceful degradation in a highly protected 
execution environment that can be relied upon even if the 
main processing system of the control device should be 
attacked. The overhead depends on the specific technical 
implementation approach, e.g., requiring an additional 
protected hardware component, e.g., a secure microcontroller 
or a secured Field Programmable Logic Controller (FPGA). 
Both development effort and hardware costs are increased, 
which would have an impact in particular for cost-optimized 
control devices. 
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Engineering perspective: The graceful degradation 
functionality (attack criticality determination, as well as the 
definition of use case specific essential functions) has to be 
planned and defined so that it can be commissioned on the 
control device, leading to additional commissioning effort. It 
may be required that the same functionality has to be realized 
in different versions, e.g., in fully flexible, optimized 
operation mode and a limited operation mode. Blueprints that 
give practice-proven engineering examples can limit the 
required additional engineering effort. 

Testing perspective: The graceful degradation 
functionality has to be tested carefully to ensure that relevant 
attack scenarios are reliably detected, and also to validate that 
the limited control operation mode is reliably activated and 
performs reliably even under the detected attack scenarios. 
Testing has to be performed both on device-level for a single 
control device, as well as on system level for a CPS that uses 
multiple control devices, where some may be enhanced with 
graceful degradation under attack. As testing attack scenarios 
in real-world operational systems is often not possible, 
simulation tools are essential that allow simulating the CPS 
operation realistically under various attack scenarios when the 
engineered graceful degradation functionality is in place. 
Testing can be performed not only during the planning and 
engineering phase, but also during regular CPS operation to 
test the impact of recent attacks. 

Overall, implementing, engineering, and testing graceful 
degradation under attack implies additional effort that, in the 
end, has to be justified by the increased availability of the 
CPS. The benefit depends on the attacks observed in real-
world operations. Simulation tools (like digital twins) can be 
used also for this purpose to determine key performance 
indicators of the real-world CPS for which resilience under 
attack is protected with control devices implementing the 
engineered graceful degradation functionality and comparing 
it with a simulated CPS using control devices not 
implementing the engineered graceful degradation 
functionality.  

VI. CONCLUSION AND FUTURE WORK 

The proposed concept for cyber resilient control devices 
can enhance CPS availability even under ongoing attack 
scenarios. However, it comes with relevant additional effort 
for implementation, engineering, testing, training, and with 
overhead for the trusted execution environment required for 
resilience functionality that requires besides hardware support 
also specific security-focused implementation effort. 
However, cyber resilience requirements and technologies are 
increasingly defined in cybersecurity standards and 
regulations, and are adopted in real-world solutions, e.g., for 
data centers [12].  

The additional effort needed for implementing cyber 
resilience for control devices has to be justified by the positive 
impact on CPS operation, allowing to maintain a reliable CPS 
operation during ongoing attacks. The CPS operation may 
relate to a business model focusing on providing a continuous 
service like energy provisioning or may focus on the 
preservation of a safety function, like the availability of a 
protection system. Simulation tools for CPS and their control 

devices allow investigating cyber resilience for CPS in both 
the planning and operation phases, reducing in particular the 
testing effort, and allowing to analyze the effectiveness for 
different types of attack. 
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Abstract—Autonomous vehicles’ rise in society represents
an important technological advancement in the transportation
sector, promising improved financial investments, mobility, and
efficiency. Connectivity to cloud-based or fifth generation cellular
networks increases autonomous vehicles’ exposure to cyber
threats, compromising vehicle safety, privacy, and economic
stability. Ensuring resilient cyber security measures are critical
for safeguarding transportation’s critical infrastructure. This
paper presents a taxonomy of cyber attacks and mitigation
mechanisms of autonomous vehicles. Analysis of recent literature
reveals a diverse range of threats, from Global Positioning
System spoofing to malware attacks, countered by mitigation
mechanisms, such as cryptography, software and network security
solutions. Examination of current challenges has identified several
future research directions, such as architectural solutions and
adversarial machine learning, presenting continuous opportunities
for innovation and advancement in the transportation field.
Developing robust cyber security mechanisms is essential to
closing the gap in protecting autonomous vehicles and ensuring
the integrity of transportation infrastructure.

Keywords-autonomous vehicles; critical infrastructure; cyber
security; cyber resilience; taxonomy.

I. INTRODUCTION

Autonomous Vehicles (AVs) represent a continuing techno-
logical innovation in the transportation sector. The evolution
of AVs includes state-of-the-art sensor technology, computing
power, and Artificial Intelligent (AI) Systems. Employing AVs
in the urban transport landscape has the potential to improve
efficiency, lower costs, reduce emissions, increase mobility
and accessibility [1][2][3]. AVs function through their inter-
connected systems and communication protocols, increasing
the potential attack surface. Consequences of such attacks
include compromised safety, breaches of information, financial
losses, and damage to reputation [4]. Current taxonomies for
understanding and mitigating cyber attacks on AVs address
various elements of cyber security but fails to include all critical
areas of AV security. These gaps in knowledge poses risks
of accidents, financial losses, and widespread transportation
disruptions [5][6][7][8]. Following research questions are
developed to address the gaps in securing AVs:

1) What types of cyber-attacks are most pertinent to AV
systems, and how can they be categorised?

2) What are the effective mitigation mechanisms for these
attacks, and how can they be systematically classified?

This paper proposes a new taxonomy of cyber attacks
and mitigation mechanisms on AVs. The taxonomy will

classify attack types and countermeasures, facilitating improved
identification of system vulnerabilities and offer areas for future
research to safeguard transportation infrastructure.

The remainder of the paper is as follows: Section II
introduces AVs, discussing their architecture, and impact on
society. Section III presents a taxonomy of cyber-attacks,
categorising them based on attack types. In Section IV,
mitigation mechanisms are investigated, labelling them as
network security, software security, and cryptography. Section
V provides an analysis of current challenges in securing AVs
and Section VI outlines potential areas for future research in
developing resilient cyber security measures.

II. INTRODUCTION TO AUTONOMOUS VEHICLES

First introduced in the 1980s, AVs integrate physical and
computational processes to improve safety, mobility and
efficiency [9].

A. Architecture of Autonomous Vehicles
AVs architecture can be separated into three distinct layers:

perception and sensor integration, decision and control, and
chassis [10][11].
Perception and Sensor Integration: AVs integrate various
sensors, such as Radio Detection and Ranging (Radar), Light
Detection and Ranging (LiDAR), Cameras (Image sensors),
Global Positioning System (GPS) to perceive the vehicle’s
surroundings and position localisation.
Decision and Control: Processed sensor data is used to
perform higher-level decision-making to outline pathways,
predict actions, avoid obstacles, and control vehicle motion.
Chassis: The chassis layer interfaces with the decision and
control layer, regulating vehicle mechanical components.

B. Level of Vehicle Autonomy
The Society of Automotive Engineers (SAE) defines vehicle

automation into six levels, ranging from 0 (requiring full human
control) to 5 (complete automation), dependent on the extent
of human interaction necessary for operation [9][12]. The six
levels are defined as follows:
● Level 0: All tasks accomplished by human drivers.
● Level 1: Human driver controls the vehicle, automation

systems can assist.
● Level 2: Human driver controls driving process and

monitors the environments with automated functions
applied.
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● Level 3: Automated vehicle with human operator prepared
to assume command of the vehicle at any instance.

● Level 4: Under specific circumstances, automated driving
occurs, otherwise the operator can assume control of the
vehicle.

● Level 5: Under all conditions, automated driving occurs,
and the operator can take control of the vehicle.

Societal impact of AVs is multifaceted and largely dependent
on their autonomy level. These levels of autonomy have
potential to increase independence and access to transportation,
and improve road safety.

III. TAXONOMY OF CYBER ATTACKS

A. Methods of Cyber Attacks and Targeted Components

Several attack pathways in AVs exist. These include:
● Remote Access and Control: Exploitation of electronic

control systems, gaining unauthorised access and critical
functions control [6].

● Sensor Manipulation: AVs’ reliance on sensor technology
for manoeuvring in their surroundings, poses a significant
threat. Attackers can spoof sensor data or jam signals,
causing the system to misinterpret its environment. Such
manipulation could result in hazardous driving and breach
of privacy [13][14].

● Wireless Networks: Utilised by AVs facilitate communi-
cation with nearby vehicles and infrastructure, this reliance
introduces vulnerabilities exploitable by attackers. By
targeting these communication networks, adversaries can
disrupt operations or inject false information into the
vehicle’s system. This interference can lead to confusion
or incorrect decision-making by the vehicle’s system,
compromising its ability for safe and reliable operation
[15]. These include vehicle-to-vehicle (V2V), vehicle-
to-network (V2N), vehicle-to-infrastructure (V2I), and
vehicle-to-everything (V2X) [16].

● Software Vulnerabilities: AVs operate as sophisticated
computer systems using a variety of algorithms and
software. Consequently, software vulnerabilities emerge as
a prominent threat to vehicle safety and security. Malicious
software, such as ransomware, poses a potential risk to
AV operations by disrupting operations or extorting users
for financial gain [17].

● Hardware Vulnerabilities: Hardware components, such
as the Electronic Control Units (ECUs), On-Board Diag-
nostic Port (OBD) and Controller Area Network (CAN),
can pose potential weaknesses to their physical compo-
nents and systems. These vulnerabilities may be exploited
by through tampering and unauthorised access [5]. Devel-
oping a taxonomy of cyber attacks and and identifying
corresponding mitigation mechanisms is essential for
protecting AVs.

B. Motivations and Perpetrators Behind Cyber Attacks

Cyber attacks on AVs are typically perpetrated by hackers,
cyber criminals, and disgruntled individuals. Motivations behind
these attacks can be divided into three principal objectives:

operational disruptions, gaining vehicle control, and data theft
[16].
● Operational Disruptions: Compromises critical AV

components that are essential for driving functionality,
rendering autonomous driving inoperative.

● Gaining Vehicle Control: Allows attackers to manipulate
critical vehicular functionalities, such as route deviation,
emergency braking, and speed modulation.

● Data Theft: Stealing data from AV systems, potentially
fuelling subsequent cyber attacks.

Cyber criminals can infect the AVs’ network with malware,
disrupting system operations, harming users, their surroundings,
and causing financial losses [18].

C. Cyber Attack Classification
Cyber attacks on AVs can be classified as follows:
● Man-in-the-Middle (MITM) Attacks: MITM attacks

occur when attackers intercept and alter communications
between two components, compromising the integrity and
confidentiality of the data exchanged. Methods include
intercepting and tampering with vehicle communications,
impersonating legitimate entities, exploiting wireless inter-
faces, rerouting messages and attacking dynamic rerouting
[19].

● Infection Attacks: Infection attacks involve injecting ma-
licious code into a vehicle’s systems, which can potentially
compromise its functionality and safety. Methods include
exploiting software vulnerabilities, violating wireless in-
terfaces, supply chain attacks, infecting removable media,
and compromising backend systems [20].

● Tampering Attacks: These attacks involve the unautho-
rised manipulation of data, software, or hardware compo-
nents on AVs, potentially affecting their performance and
safety. Methods include sensor data tampering, such as
intercepting camera perception by physically obscuring
its view, spoofing LiDAR signals, jamming or injecting
noise into sensors [21]. Communication mechanisms
can be tampered with by injecting malicious data or
MITM attacks. Software/firmware tampering exploits
vulnerabilities in the vehicle’s ECUs by introducing
malicious code into the in-vehicle infotainment system
or compromising vehicle software through supply chain
attacks. Physically tampering with AVs can grant access
to the vehicle’s internal networks and components. Rogue
commands can be sent from the CAN bus through internal
access, and actuators can be tempered with to control AV
driving operations [5].

1) Identity-based:
● Spoofing Attacks: An attacker feeds false information to

vehicle systems or sensors to disrupt their data. Spoofing
can occur with sensors and communication systems [6].

● Impersonation Attacks: Attackers disguise themselves
as legitimate entities to access or influence AV systems.
Methods include spoofing vehicle identities, impersonat-
ing infrastructure, compromising wireless interfaces and
cryptographic keys [21].
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● Sybil Attacks: A single malicious entity creates multiple
identities to gain influence. Methods include impersonat-
ing multiple vehicles, overwhelming legitimate entities,
disrupting platoon operations, exploiting authentication
vulnerabilities, and colluding with malicious insiders [6].

● Replay Attacks: Capturing and replaying valid data
transmissions to bypass authentication. Replay attacks
can target GPS signals, sensor data, and communication
mechanism. Cryptographic and sensor fusion replay at-
tacks exist [6].

2) Service-based:
● Denial of Service (DoS) Attacks and Distributed Denial

of Service (DDoS) Attacks: DoS and DDoS attacks
overwhelm systems with data to impair operations. Meth-
ods include flooding wireless communication channels,
jamming sensor signals, exploiting software vulnerabilities,
and targeting backend infrastructure [22].

● Jamming Attacks: Jamming attacks interfere with wire-
less communication channels. Methods include jamming
sensor and wireless communications [16].

● Routing Attacks: Routing attacks disrupt routing pro-
tocols to create network instability. Methods include
wormhole attacks, sinkhole attacks, black hole attacks,
and grey hole attacks [6].

3) Software-based:
● Malware Attacks: Introduces malicious code to com-

promise systems. Methods include exploiting software
vulnerabilities, compromising wireless interfaces, supply
chain attacks, removable media infection, and compromis-
ing backend systems [7].

4) Data Privacy:
● Location Trailing Attacks: Monitors a vehicle’s location

without authorisation. Methods include exploiting localisa-
tion algorithms, compromising wireless communications,
and exploiting GPS vulnerabilities [4].

● Eavesdropping Attacks: Intercepts and accesses private
data transmissions. Methods include intercepting wireless
communications, exploiting vulnerabilities in communica-
tion protocols, and compromising wireless access points
[5].

In classifying each type of cyber attack, their characteristics,
techniques, and goals are identified.

D. Potential Consequences of Cyber Attacks on Autonomous
Vehicles

Cyber attacks on AVs can cause harm to their users and
surroundings. Potential consequences are as follows:
● Safety Risks: Effective cyber attacks can cause accidents

and endanger surroundings by allowing malicious actors
to hijack critical vehicle functions, including path control,
acceleration, and braking. Spoofing or jamming of the sen-
sors can disrupt navigation. Based on disrupted collected
data, incorrect decisions can lead to vehicle malfunctions.
If vehicles used for public transport, emergency services

or law enforcement are compromised, public safety can
be endangered [5].

● Loss of Vehicle Control: Malicious attacks have the
potential to gain unauthorised remote access to a vehicle’s
ECUs, paralysing the car or causing erratic behaviour.
Software vulnerabilities allow attackers to compromise
safety-critical functions [5].

● Privacy and Data Breaches: Sensitive data collected by
AVs, such as location tracking, driver behaviour, and other
personal information, could be exposed by cyber attacks.
If this data is breached, it could enable stalking, identity
theft, and other privacy violations [6].

● Traffic Disruptions and Infrastructure Damage: Com-
promised AVs could be rerouted or have their navigation
systems manipulated, potentially causing major traffic
jams, road blockages, and damage to infrastructure [21].

● Financial Losses and Legal Liabilities: Cyber attacks
may lead to a loss of public trust, potentially resulting in
costly vehicle recall and legal liabilities [6].

Securing AVs from cyber attacks is essential to the formulation
of mitigation methods in harm prevention.

IV. MITIGATION MECHANISMS

Mitigation mechanisms are classified as follows:

A. Network Security

Network security mitigation mechanisms protect AV com-
munication networks and systems from cyber attacks.

1) Intrusion Detection Systems: Intrusion detection systems
(IDSs) are employed to detect and mitigate various network-
based attacks. There are four main IDSs implemented to secure
AVs [6][23]:

● Signature-based IDS: Functions by comparing observed
behaviour against a database of known signatures.

● Anomaly-based IDS: Operates by recognising anomalies
in a vehicle’s behaviour that deviate from the normal or
expected patterns.

● Specification-based IDS: Monitors a vehicle’s behaviour
against a set of predefined rules or specifications.

● Hybrid-based IDS: Combines the strengths of signature-
based and anomaly-based detection methods to defend
against a broader spectrum of cyber threats.

B. Malware Detection

Malware detection systems, an extension of IDSs, employ
signature and behaviour-based techniques to mitigate cyber
attacks. In addition to these, malware detection includes [7]:

● Heuristic-based Techniques: Employ heuristic rules
and algorithms to identify potential malware based on
characteristics or patterns associated with malicious code.

● Cloud-based Techniques: Leverages cloud computing
services for efficient and scalable malware detection in
AVs.
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1) Machine Learning and Deep Learning for Intrusion De-
tection: Network IDSs in AVs utilise Machine Learning (ML)
and Deep Learning (DL) models for their fast detection and
response times to cyber threats, and ability to leverage insights
from data analytics. Models include k-nearest neighbour (KNN),
decision trees, auto-encoders and long short-term memory
(LSTM) networks [23].

These mechanisms can mitigate cyber attacks, such as
spoofing, flooding, modifying hardware components, replay
attacks, firmware attacks, and identifying unauthorised access
[7].

C. Software Security

1) Machine Learning Algorithms: ML models are employed
for various security tasks, including intrusion detection, mal-
ware analysis, and vulnerability assessment. Similar to ML for
IDSs, ML models detect anomalies and deviations in normal
software behaviour, identifying previously unseen attack vectors
and zero-day exploits [6].

2) Software Analysis Techniques: Static and dynamic anal-
ysis methods are used to analyse AV software for potential
vulnerabilities and malicious code [7]:
● Static: Examines code without executing it to identify

potential vulnerabilities.
● Dynamic: Executes code in a controlled environment and

monitors for anomalies.
Software techniques can address vulnerabilities like code

injection and memory corruption, while ML models counter
spoofing, flooding, and replay attacks [21].

D. Cryptography

1) Encryption Techniques: Encryption (symmetric and asym-
metric) techniques are used to secure data transmissions and
communications in AVs. Public-key cryptography is employed
for secure key distribution and authentication in V2V/V2I
communications [16].
● Symmetric: Encrypts data transmissions in V2V/V2I

communications.
● Asymmetric: Secures key distribution and authentication

in V2V/V2I communications.
Encryption helps mitigate attacks like eavesdropping, spoofing,
and MITM attacks, safeguarding the privacy and integrity of
transmitted data [16].

2) Authentication Technique:
● Digital Signatures: Authenticate the source and integrity

of messages or data transmitted between vehicles and
infrastructure.

● Message Authentication Codes: Provide data origin
authentication and integrity verification for V2V/V2I
communications.

3) Blockchain Technology: Blockchain (BC) technology is
used to store and share information on an advanced database.
Each dataset is stored in blocks, linked together in a chain.
BC technology has gained popularity with its ability to
prevent cyber attacks through its inherent security measures

of decentralisation, transparency, encryption, and immutability
[24].

These mitigation mechanisms can counter attacks like
spoofing, replay attacks, and injection of fake data [16].

E. Comparison of Existing Literature

A systematic review of current literature on cyber attack
taxonomies and mitigation mechanisms for AVs was conducted
for comparison Table I presents a comparison of existing
literature [6][8][16][17][23][25]. This method is performed
to reduce bias in the literature. All literature presents a detailed
classification of cyber attacks and mitigation mechanisms.
Papers [6][8][17][23][25] are lacking in conveying the mo-
tivation behind cyber attacks and those responsible. While
papers [8][16][17][23][25] do not detail AV architecture.

TABLE I. COMPARISON OF EXISTING LITERATURE

Literature [17] [16] [6] [23] [25] [8] Analysis
of
Paper

Architecture of AV ✗ ✗ ✓ ✗ ✗ ✗ ✓
Motivation and Per-
petrators of cyber at-
tacks

✗ ✓ ✗ ✗ ✗ ✗ ✓

Cyber Attack Classi-
fication

✓ ✓ ✓ ✓ ✓ ✓ ✓

Target Components ✓ ✓ ✓ ✓ ✓ ✓ ✓
Potential
Consequences
on Society

✓ ✓ ✓ ✗ ✓ ✗ ✓

Mitigation
Mechanisms

✓ ✓ ✓ ✓ ✓ ✓ ✓

Current Challenges
and Future Work

✓ ✓ ✗ ✓ ✓ ✓ ✓

Comparison of literature reveals significant gaps in current
research on AV cyber security taxonomies, highlighting the
need for the proposed taxonomy.

V. DISCUSSION

A. Current Challenges in Securing Autonomous Vehicles from
Cyber Attacks

The complexity of cyber attacks and securing AVs will
continue to grow with advancements in technology. AVs are
computers comprised of complex software algorithms, large
amounts of data, and a multitude of electronic components,
making them difficult to integrate into traditional security
approaches. Their complex and interconnected nature allows
for multiple potential entry points for attack points, making it
a complicated task to secure all these vectors.

Real-time operation is critical for functioning AVs. High
volumes of data must be processed and analysed to detect
and combat cyber security risks in real-time. Advancements
in high-speed computer processing systems and algorithms
are imperative for such progress. AV architecture should be
designed to manage system faults and scalability issues [5].

Securing vehicle communication is essential to successful
functionality. Breaches in AVs have sequential impacts on
critical infrastructure, vice versa. V2X technologies require
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robust protective methods and the implementation of secure
communication networks to ensure reliability. Existing mitiga-
tion mechanisms against DDoS attacks in V2V communications
are largely theoretical and require verification in a trusted
testing environment [16].

AVs depend on ML algorithms to decipher real-time data
and formulate operational decisions. These algorithms can be
vulnerable to adversarial attacks, manipulating sensor data
and leading to potentially hazardous decisions. Errors, such
as misclassification, can be triggered by specifically crafted
adversarial inputs in deep-learning models. Updating these
models with new incoming data from the vehicle has the
potential to leak private information [20][26].
These challenges in cyber security provide potential areas for
future research.

VI. CONCLUSION AND FUTURE WORK

A. Future Work

1) Securing Sensor Data: Securing sensor data is vital for
AVs to accurately observe their surroundings, make informed
decisions, and ensure safe performance. Research is required to
improve sensor fusion techniques to combine data from various
sensors, providing an accurate view of the environment.

2) Adversarial Machine Learning Algorithms: Restricted
availability of standardised datasets has limited the development
of Adversarial Machine Learning (AML) mitigation mecha-
nisms against cyber attacks. Current datasets do not account
for advancement in AML and adversarial attacks. Compiling
an accessible, up-to-date dataset that represents different attack
scenarios and network traffic diversity is critical for developing
effective AML mitigation mechanisms [27].

3) Real time decision making: AVs require sophisticated
algorithms and computing processors to effectively evaluate
vast amounts of data, posing challenges in real-time decision
making [5].

4) Securing Autonomous Vehicles with AI and BC Tech-
nologies: BC technologies demonstrate promise in preventing
cyber attacks through their inherent security measures of
decentralisation, transparency, encryption, and immutability.
In comparison to traditional security approaches, AI has shown
greater efficiency and a faster detection rate when addressing
cyber threats. There is a lack of research concerning the
interrelationship between BC and AI, and consequently, an
understanding of AVs’ security and privacy [24].

5) Communication Mechanisms: Challenges exist in imple-
menting strong communication networks in AVs. These systems
require networks that can manage low-latency communications,
high volumes of complex data flows, and resilient connectivity
in harsh environments. 5G cellular V2X products are still
under development and security attacks have currently not
been prominent. Security features are well defined and rely
on authentication and encryption. However, their effectiveness
needs to be tested before and after AV deployment [16] [23].

6) Architectural Solution: Future research has the potential
to combine an architectural solution for AVs with Supervi-
sory Control and Data Acquisition (SCADA) integration. A

hierarchical self-aware architectural solution allows for real-
time operational analysis, decision formulation, and integration
with remote locations. The architecture includes four layers:
monitoring, analysis, decision-making, and visualisation. A
Security-specific In-vehicle Black Box (STCB) is employed
to execute the security models and algorithms within a
trusted environment [28]. This architectural solution provides
security coverage through multiple hierarchical layers, enabling
proactive and tailored security measures. SCADA has multiple
integration points:
● Monitoring layer collects data from various sensors.
● Analysis layer uses machine learning techniques for

anomaly detection.
● Decision layer determines the severity of incidents and

triggers appropriate responses.
● Visualisation layer is a human-machine interface (HMI)

module.
Integration of in-vehicle security components with an external
Virtual Security Operation Centre (VSOC) facilitates coordi-
nated responses across vehicle fleets. The STCB enhances
situational awareness and timely mitigations through security-
specific logging and analysis, real-time threat detection, and
automated responses. Leveraging SCADA’s capabilities, the
hierarchical self-aware architecture can be implemented for
unified security management of AVs.

B. Conclusion

The increasing reliance on connectivity in AVs has intro-
duced vulnerabilities to cyber attacks, posing significant risks to
safety, privacy, and economic stability. This paper has provided
a taxonomy of cyber attacks, mitigation mechanisms, and
future research areas. Analysis of current challenges reveals
the potential for a multidisciplinary approach that integrates
an architectural solution with SCADA systems to counter the
diverse range of threats facing AVs. As the transportation
sector continues to evolve, it is imperative that resilient cyber
security methods are developed and implemented to safeguard
AVs while maintaining the integrity of critical infrastructure.
Future research should focus on addressing the identified
challenges and developing innovative solutions to ensure secure
and reliable operation of AVs.
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Abstract—Due to the improvement of Machine Learning (ML)
techniques, ML has been used extensively in the cyber security area
and Machine Learning based Network-based Intrusion Detection
Systems (ML-NIDS) is a one of those examples. However, arising
methods to attack ML systems are becoming new threats to
them. A poisoning attack is one of those threats and has adverse
effects on the classification performance. As a threat on ML-NIDS,
we are concerned about a threat where an attacker distributes
manipulated traffic session data as a new dataset, aiming at a
poisoning attack on ML-NIDS. In this paper, we try to identify
whether newly added training data is poisoning attack data or
not based on the displacement of an internal coefficient of a
classifier. This research utilizes Support Vector Machine (SVM)
as a classifier so that the internal coefficient vector is represented
as a gradient coefficient vector of hyperplane in SVM classifier.
We assumed that manipulated traffic session data for poisoning
attack will largely confuse the internal coefficient vector. Thus, if
the internal coefficient vector displaces largely after retraining
with newly added data, we estimate that the newly added data is
a poisoning attack data. We also propose a method to define a
threshold value that distinguishes poisoning attack data and clean
data. We evaluated our proposal with SVM based NIDS with an
open traffic session dataset and poisoning attack with Biggio’s
SVM poisoning algorithm. We confirmed that our proposal can
detect poisoning attack data and achieves 0.9838 F1 score at 8%
poisoning rate (ratio of newly added poisoning attack training
data to existing clean data), which is better performance compared
to the existing poisoning attack data detection method.

Keywords–poisoning attack detection; machine learning based
NIDS.

I. INTRODUCTION

Due to the improvement of Machine Learning (ML)
techniques, machine learning has been used extensively in
the field of cyber security. Machine Learning based Network-
based Intrusion Detection Systems (ML-NIDS) is a one of
those examples. However, many people are proposing new
attack methods to ML systems and they are becoming new
threats in the cyber security area. There is a poisoning attack
that has an adverse effect to the classification performance.
The poisoning attack distributes malicious data in advance and
that malicious data contaminate and pollute training data. As
a threat on ML-NIDS area, we are concerned about a threat
where an attacker distributes manipulated traffic session data

as a new dataset with aiming poisoning attack, and some ML-
NIDS system maintainers wrongly include them in training
data.

Although several methods have been proposed to detect and
exclude poison data from training data, there are few studies
that evaluate the effectiveness of defense methods in machine
learning-based NIDS. In this paper, we try to identify whether
newly added training data is poisoning attack data or not based
on the displacement of an internal coefficient of a classifier.
This research utilizes Support Vector Machine (SVM) for a
classifier so that the internal coefficient vector is represented as
a gradient coefficient vector of hyperplane in SVM classifier.
We assumed that manipulated traffic session data for poisoning
attack will largely confuse the internal coefficient vector.
Thus, if the internal coefficient vector displaces largely after
retraining with newly added data, we estimate that the newly
added data is a poisoning attack data. This method requires a
threshold value to distinguish poisoning attack data and clean
data. We also proposed how to define the threshold value
from existing clean data. Our proposed method creates the
threshold value by dividing existing clean data into baseline
data, additional clean data, and additional local poisoning attack
data which is generated by some poisoning attack algorithm
from existing clean data. By comparing internal coefficient
vector displacements between additional clean data learning
result and additional local poisoning attack data learning result,
we can obtain the threshold value. We assume that ML-NIDS
system maintainer perform such an evaluation of additional data
to exclude poisoning attack data comes from some attackers.

We evaluated our proposal with Kyoto 2016 Dataset [1][2]
which is a traffic session dataset with malicious/benign ground
truth label. We created SVM classifier and performed the
poisoning attack with Biggio’s SVM poisoning algorithm
[3] for baseline. Then, we evaluated our internal coefficient
displacement based detection with Euclidean distance and
compared it with existing SVM poisoning attack detection
method Curie [4]. We confirmed that our proposal can detect
poisoning attack data effectively in many poisoning rate (ratio
of newly added poisoning attack training data to existing clean
data) and it achieves 0.9838 F1 score at 8% poisoning rate
as a best score. On the other hand, Curie gives moderate
performance because Curie evaluates in individual traffic session
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sample level so that it cannot exclude a poisoning attack traffic
session sample that have quite similar characteristic to existing
clean data samples.

The rest of the paper is organized as follows. Section
II introduces related works about ML-NIDS, traffic datasets,
poisoning attacks, and poisoning attack data detection. Section
III introduces our proposal that distinguishes poisoning attack
data with the displacement of the internal coefficient vector
before and after retraining. We also propose a method to define
the threshold value to distinguish poisoning attack data and
clean data. Section IV shows evaluation setups, evaluation
results of our proposal, and evaluation results of Curie as a
comparison target. Finally, we conclude and introduce future
works in Section V.

II. RELATED WORK

A. Network-based Intrusion Detection Systems and Researches

Network-based Intrusion Detection Systems (NIDS) are
widely used for observing malicious network traffic and some
of them are working as Network-based Intrusion Protection
Systems (NIPS). Nowadays, we equip NIDS not only at a
border, like the Internet gateway, but also some observation
points in intranet. The detection method is largely separated
into signature based detection and behavior based detection and
ML (ML-NIDS) is widely used for behavior based detection.

Researches on ML-NIDS start from comparatively ancient
age. For example, Mukkamala et al. proposed ML-NIDS using
Neural Network and support vector machine in 2002 [5].
Currently, there are too many successor researches in ML-NIDS.
Nowadays, ML-NIDS is already used in commercial security
appliances and many companies consider that ML technologies
are effectively working in their security appliances. For example,
Sophos Ltd. is applying deep learning protection in their
Sandstorm UTM (Unified Threat Management) appliance or
software [6].

B. Traffic Dataset

To promote NIDS research, we have to obtain traffic data
including malicious/benign traffic data. However, it is hard for
many researchers to create own experimental network which can
generate both malicious/benign traffic so that many researcher
use traffic dataset to promote their own research.

KDD (Knowledge Discovery and Data mining) Cup 1999
Data is one of the most famous traffic dataset [7]. It summarizes
traffic data of 1999 DARPA Intrusion Detection Evaluation
Dataset [8] into traffic session level so that it can list many
traffic data with small file size. It is also famous for adding
statistical data as a feature of a traffic session mainly derived
from relationships among sessions.

Kyoto 2006+ dataset is a dataset which is generated by Song
et al. [9]. The data source is honeypot at Kyoto University
and they generate KDD Cup 1999 Data like traffic session
level dataset with malicious/benign ground truth label given
by security appliances. It equips not only statistical features
existing in KDD Cup 1999 Data but also newly generated
statistical features. Kyoto 2016 dataset [1][2] is an extension
of Kyoto 2006+ dataset. The duration of Kyoto 2006+ dataset
is 3 years, but the duration of Kyoto 2016 dataset is 9 years.

Kyoto 2016 dataset also gives much more session data even in
Kyoto 2006+ duration because PC and software advancement
makes additional interpretation to pcap file which could not be
interpreted in Kyoto 2006+ age.

C. Poisoning Attack Data Generation

Several researchers touch poisoning attack data generation
and its performance.

Biggio et al. proposed SVM poisoning attack algorithm that
generates poisoning attack data [3]. It is one of a gradient ascent
methods and similar to a gradient descent method on Neural
Network. An outlined algorithm is shown as Algorithm 1. It
updates L to maximizing loss function in SVM. In this research,
we use this algorithm for poisoning attack data generation.

Apruzzese et al. evaluated a poisoning attack to ML-NIDS
in an experimental network with normal traffic and malware
originated attack traffic [10]. They generated poisoning data
with randomly increasing feature vector values from clean attack
traffic data and confirmed dramatic degradation of True Positive
Rate (TPR) in Random Forest, Multiple Layer Perception, K-
Nearest Neighbor methods.

Algorithm 1 Biggio’s SVM poisoning attack[3].
Input: training data Dtr, validation data Dval, feature vector
and ground truth label of initial attack point {x(0)

c , yc}, step
size t

Output: Feature vector of one adversarial training data xc

1: Train SVM with Dtr

2: Current iterations k ← 0.
3: repeat
4: Train SVM again with Dtr ∪ (x

(k)
c , yc)

5: Calculate gradient of loss function dL
du with Dval

6: Let u to parallel vector to dL
du

7: Update adversarial training data by k ← k + 1, x(k)
c ←

x
(k−1)
c + tu

8: until L
(
x
(k)
c

)
− L

(
x
(k−1)
c

)
< ϵ

9: return: xc = x
(k)
c

D. Countermeasure to Poisoning Attack Data

There are two directions on countermeasures to poisoning
attack data. The one is a hardening a classifier training algorithm
not to be affected by poisoning attack data and the other one
is a method to detect and exclude poisoning attack data.

Zhou et al. have promoted research in the hardening the
classifier training algorithm [11]. They proposed AD-SVM
(ADversarial Support Vector Machine) which has additional
constraints that is designed for considering poisoning attack
data may try to maximize hinge loss. However, it gives some
adversarial affect to classification performance because a typical
SVM tries to minimize hinge loss.

There are several researches in the method to detect and
exclude poisoning attack data. Steinhardt et al. have proposed a
method to detect poisoning attack data by combining estimating
a barycenter of data class and outlier detection algorithm
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[12]. They also confirmed resistance to poisoning attack data.
They find that MNIST-1-7 dataset and Dogfish data have high
resistance to poisoning attack data but IMDB Sentiment dataset
has low resistance. Taheri et al. have tried to estimate an original
ground truth label which is flipped when generating poisoning
attack data [13]. They utilized Neural Network for estimation
and rated data as poisoning attack data if ground truth label is
differed from an estimated label.

Laishram et al. proposed Curie that is an algorithm to
exclude poisoning attack data generated by SVM poisoning
attack [4]. An outlined algorithm of Curie is shown as
Algorithm 2. Curie also exploits flipped label similar to
Taheri’s method. Curie firstly compresses training data to two
dimensions and performs clustering with DBSCAN (Density-
Based Spatial Clustering of Applications with Noise). Then,
Curie adds class label that is weighted with constant and treated
as 3rd dimension. Fianlly, Cuirie calculates an average distance
between samples in a same cluster. If a sample is a clean data,
the distance tend to become small. If a sample is a poisoning
attack data, distance tend to become large. Curie detects and
excludes poisoning attack data with an above criterion.

Algorithm 2 Algorithm of Curie [4].
Input:Data = (F,C) for inspection. (F is a set of feature
vector, C is a set of class label)
Output:Set of vector M which has excluded poisoning attack
data

1: PcaData ← PCA(Data.F ) {Compress data to two
dimension}

2: Clusters ← DBSCAN(PcaData) {Clustering data by
DBSCAN}

3: for point ∈ Data do
4: point.F ← Append(point.F, point.C × ω) {Add

weighted ground truth label as 3rd dimension of feature}

5: cls← GetCluster(point, Clusters)
6: sample← Sample(cls, count)
7: for s ∈ sample do
8: s.F ← Append(s.F, s.C × weight)
9: d← EucledianDistance(point.F, s.F )

10: Dist.point← Dist.point+ d
11: end for
12: Dist.point← Dist.point/Size(cls) {Calculate average

distance from randomly selected 10 samples in same
cluster}

13: Dist← ZScore(Dist) {Normalization with Z value}
14: end for
15: for point ∈ Data do
16: if Dist.point ≤ θ then
17: Result← Append(Result, point)
18: end if
19: end for{Choose samples that have over θ reliability}
20: return: Result

III. PROPOSAL OF INTERNAL COEFFICIENT
DISPLACEMENT BASED DETECTION

A. Assuming Poisoning Attack Scenario

Figure 1 shows an assumed scenario of poisoning attack
threat. A company working on security measures is working
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Figure 1. Assuming scenario: perform poisoning attack by distributing
poisoning attack data.

for updating a classifier of ML-NIDS to catch up with
latest cyber attacks. To update classifier, the company gathers
traffic data including malicious and benign traffic data from
published traffic dataset. Some attacker considers attacking
some organization that is using ML-NIDS of the company
and the attacker try to weaken ML-NIDS to pass through
attack traffic (considering backdoor attack). The attacker tries
to generate poisoning attack data from an existing traffic dataset
and publish it as a new traffic dataset. If the company includes
the poisoning attack data to ones training dataset, the company
creates classifier from polluted dataset and it may generate a
polluted classifier that have a backdoor. If the polluted classifier
has been published, an intention of the attacker has succeeded.

B. Idea of Internal Coefficient Displacement Based Detection

To detect a block of poisoning attack data, we assumed
“Poisoning attack data are designed to confuse classification
criterion (e.g., hyperplane) so that it may largely displaces an
internal coefficient of a classifier” so that we considered to
detect the poisoning attack data from the internal coefficient
distance between before and after retraining with additional data.
Based on above assumption, we also assumed “The internal
coefficient distance between before and after retraining may
become large value if the additional data contain poisoning
attack data. On the other hand, if the additional data is only
clean data, internal coefficient distance becomes moderate
value.” so that we created a following procedure to detect
poisoning attack data.

Figure 2 represents a poisoning attack data detection method
based on an above assumption. Firstly, we create a classifier
from reliable datasets O. Then, we add some additional training
data A to O. We obtain classifier CO and COA from both data
blocks and obtain internal coefficient vectors vO and vOA from
them. Then, we calculate Euclidean distance D between vO
and vOA and compare with threshold value Dth. If D is larger
than Dth that means classifier has largely displaced, we judge
the data block A as poisoning attack data or the data block A
contains some poisoning attack data. Otherwise, the data block
A becomes clean data.

As shown in Section IV, we choose SVM for a classifier
so that the internal coefficient becomes a gradient coefficient
vector of SVM classifier. So, we evaluated the distance of the
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Figure 2. Proposal of internal coefficient distance based detection.

gradient coefficient vector in Section IV. But we think that
many of ML algorithms have internal coefficient vectors so
that this method can easily to be adopted into versatile ML
algorithms.

C. Method to Define Threshold from Existing Data

To define threshold value Dth in Figure 2, we propose a
method that generates Dth from existing clean data. To obtain
displacement when we retrain the classifier with poisoning
attack data, we generate poisoning attack training data from a
part of the existing clean data.

Figure 3 shows an outlined flow of the proposal. Firstly, we
divide existing clean training data O to following data blocks.

• Large size data block O0 which is used for generating
baseline classifier CO0.

• Small size data blocks Ox which is used for generating
classifier with additional clean data CO0Ox(x = 0, ..., n−
1).

• Small size data blocks Oy which is used for generating
classifier with additional poisoning attack training data
CO0Py(y = 0, ..., n− 1).

To generate poisoning attack training data, Oy is converted
to Py with an existing poisoning attack model in a poisoning
attack detecting organization (e.g., security measure company).

The classifier generation part is similar to Figure 2. The
baseline classifier CO0 is generated by training with training
data O0 and obtain coefficient vector vO0. The classifier CO0Ox

is generated from merged data of training data O0 and training
data Ox and obtain coefficient vector vO0Ox. The classifier
CO0Py is generated from merged data of training data O0 and
training data Py and obtain coefficient vector vO0Py. Then,
we calculate distances between vO0 and vO0Ox. We repeatedly
calculate distances with different data blocks with varying x
and y for n times and get an average. This average becomes
an average coefficient perturbation when the classifier retrains
with additional clean data. Similarly, we calculate distances
between vO0 and vO0Py and get average. This average becomes
an average coefficient perturbation when the classifier retrains
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Figure 3. How to generate threshold value.

with poisoning attack data as additional data. We defined that
the Dth is a middle of both averages.

In next section, we evaluate an adequacy of Dth definition
with cross validation and compare it with an existing poisoning
attack data exclusion method.

The method is partially introduced in domestic conference
with malware binary feature classification [14]. This proposal
extends the method with extending the method to NIDS
including a time series update operation of the classifier.

IV. EVALUATION

A. Experimental Setup

Before presenting the experimental results, we introduce
an experimental setup. As a classifier to realize NIDS that
classifies traffic session data into malicious or benign, we
created a classifier with SVM. To generate poisoning attack
data, we used Biggio’s SVM poisoning algorithm [3] which is
introduced Section II-C.

We used Kyoto 2016 [1][2] traffic dataset which is in-
troduced Section II-B as a session level traffic dataset with
malicious/benign ground truth label. We randomly picked up
malicious/benign traffic sessions from November 2015 month
of Kyoto 2016 dataset with keeping malicious:benign ratio to
1:1. We used 12 numeric parameters (duration, source bytes,
destination bytes, same destination count, same service rate,
SYN error rate, same service SYN error rate, same destination
host count, same destination host and service count, same
source port rate in same destination host count, SYN error
rate in same destination host count, SYN error rate in same
destination host and service count) of session data to generate
SVM classifier.

To generate poisoning attack data, we choose 10,000
traffic session samples and generated poisoning attack data
samples with Biggio’s SVM poisoning algorithm [3] using
Adversarial Robustness Toolbox library [15]. We confirmed
that the generated poisoning attack data degrades SVM based
ML-NIDS classification accuracy and classification accuracy
degrades dramatically if poisoning attack data occupies more
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TABLE I. HYPER-PARAMETER OF CURIE OBTAINED WITH BAYESIAN OPTIMIZATION.

Parameter Value Definition
omega 1030.6 Coefficient when adding ground truth to 3rd dimension (in step 4 of Algorithm 2)
theta 0.581 Threshold to distinct poison/clean based on average distance from cluster member (in step 16 of Algorithm 2)
sample_size 36 Sampling amount from the same cluster (in step 6 of Algorithm 2)
eps 0.732 Distance to define the same cluster (in step 2 of Algorithm 2)
min_samples 15 Distinct as noise if a number of samples in eps distance is smaller than this value (in step 2 of Algorithm 2)

TABLE II. RESULTS OF INTERNAL COEFFICIENT DISPLACEMENT
METHOD.

Poisoning rate
(num of data blocks) Accuracy Precision Recall F1 score

1% (303 blocks) 0.8861 0.8104 0.9551 0.8768
2% (147 blocks) 0.9592 0.9592 0.9592 0.9592
3% (96 blocks) 0.9430 0.9641 0.9250 0.9441
4% (72 blocks) 0.9510 0.9583 0.9446 0.9514
5% (57 blocks) 0.9421 0.9553 0.9308 0.9429
6% (45 blocks) 0.9500 0.9667 0.9355 0.9508
7% (39 blocks) 0.9558 0.9500 0.9611 0.9555
8% (33 blocks) 0.9841 0.9682 1.0000 0.9838
9% (30 blocks) 0.9825 1.0000 0.9662 0.9828

10% (27 blocks) 0.9639 0.9833 0.9465 0.9646
15% (15 blocks) 0.9500 0.9700 0.9327 0.9510
20% (12 blocks) 0.9625 0.9625 0.9625 0.9625

TABLE III. RESULTS OF CURIE METHOD.

Poisoning rate Accuracy Precision Recall F1 score
0.0% 0.7830 NaN 0.0000 NaN
2.5% 0.7902 0.8400 0.0905 0.1634
5.0% 0.7909 0.7692 0.1613 0.2667
7.5% 0.8039 0.8272 0.2528 0.3873

10.0% 0.8047 0.7838 0.3107 0.4450
12.5% 0.8074 0.7676 0.3682 0.4977
15.0% 0.8121 0.7614 0.4281 0.5481
17.5% 0.8152 0.7311 0.4814 0.5805
20.0% 0.8176 0.7400 0.5316 0.6187

than 20% of training data. These 10,000 poisoning attack data
samples are treated as Py. We choose different 12,960 traffic
session samples as clean training data O. Data O is separated
into 3,240 O0 samples and 9,720 Ox samples. Data Ox and
Py are divided into 3 groups (around 3,000 samples per each
group) to perform cross validation in our proposal. So, when we
define threshold value Dth, from 1st group of Ox and Py , we
evaluate Dth with 2nd and 3rd group of Ox and Py . Similarly,
when we define Dth from 2nd and 3rd groups of Ox and Py ,
we evaluate Dth with another groups. In this way, we achieve
cross validation of Dth and obtain classification performance
metric values.

As a comparison target to our proposal, we implemented
Curie [4] from scratch. To tune hyper-parameter of Curie
for traffic session samples, we used Bayesian optimization
in Scikit-Optimization library [16]. Table I shows obtained
hyper-parameters of Curie.

B. Evaluation results

Table II shows detection performance of our proposed inter-
nal coefficient displacement method under different poisoning
rate. Poisoning rate means a rate of additional (poisoning) data
block amount compared to original training data. If a number of
original training data is 3,000 and additional (poisoning) data is
30, the poisoning rate becomes 1%. If additional training data
is poisoning attack data and Dth distinguishes it as poisoning
attack data, the result becomes True Positive. If additional
training data is clean data and Dth distinguishes it as clean
data, the result becomes True Negative. False Positive and

False Negative classes are defined as similar. We can obtain
multiple additional training data blocks from Ox and Py so
that we evaluate with many additional training data blocks as
possible. For example, in 1% poisoning rate, we can create 101
additional data blocks from each group of Ox and Py so that
we evaluated with 303 times trial (101 additional data blocks
per group times 3 groups) in 1% poisoning rate. The number
of data blocks are noted beside individual poisoning rates in
Table II.

As shown from Table II, our proposal achieves good
performance because it achieves 88% accuracy even in 1%
poisoning rate and achieves more than 94% accuracy at more
than 2% poisoning rate. The performance of the proposal
increases in proportion to the poisoning rate and it achieve
quite high distinguish performance at 8% and 9% poisoning
rate. At greater than 10% poisoning rate, one outlier dominated
data block has generated and the outlier dominated data block
degrades performance at greater than 10% poisoning rate
area. We think that an advantage of our proposal comes from
evaluating with data block level. In practical additional training,
we add data at block level and not at individual sample level so
that distinguishing at data block level may become a moderate
assumption in practical viewpoint.

Table III shows detection performance of Curie under
different poisoning rates. Poisoning rate 0% means “all data
are clean data” so that precision becomes not a number due to
both no True Positive and False Positive samples. Compared to
our proposal shown in Table II, Curie increases its performance
in proportion to the poisoning rate especially in a precision
viewpoint, but an increment of accuracy is comparatively slow.
This characteristic comes from that Curie perform detection in
each sample granularity but our proposal performs detection in
block of data granularity. So, there is a possibility that Curie
increases performance if we treat each block of data as one
sample (e.g., set a virtual averaged sample that represents the
block of data). We also confirmed that Curie cannot distinguish
a poisoning attack traffic session sample that have quite similar
characteristic to existing clean data samples.

V. CONCLUSION AND FUTURE WORK

This paper proposes a method to identify whether newly
added training data is poisoning attack data or not based on the
displacement of the internal coefficient vector before and after
retraining. We assumed that manipulated traffic session data for
poisoning attack will largely confuse the internal coefficient
vector which is an internal state of ML classifier. Thus, if the
internal coefficient vector displaces largely after retraining with
newly added data, we estimate that the newly added data is
the poisoning attack data. We also proposed how to define the
threshold value from the existing clean data.

We evaluated our proposal with SVM classifier, Biggio’s
SVM poisoning algorithm, and Kyoto 2016 Dataset and

23Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-186-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CYBER 2024 : The Ninth International Conference on Cyber-Technologies and Cyber-Systems

                            32 / 53



compered with the existing method Curie. By utilizing SVM
for classifier, the internal coefficient vector is represented as
the gradient coefficient vector of hyperplane in SVM classifier.
We confirmed that our proposal can detect poisoning attack
data effectively and achieves 0.9838 F1 score at 8% poisoning
rate in best case. This performance may come from our method
treat and evaluate additional training data at data block level.
On the other hand, Curie gives moderate performance because
Curie evaluates at individual traffic session sample level so that
it cannot distinguish the poisoning attack traffic session sample
that have quite similar characteristic to an existing clean data
samples.

For the future extension, our proposal may give good
performance in the other ML algorithms so that we want
to evaluate this method with different ML-NIDS algorithms.
Furthermore, we want to apply this method to some other cyber-
security area such as malware detection/classification, spam
detection/classification, process activity detection/classification,
and so on.
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Abstract—We propose a prototype for automating the General
Data Protection Regulation compliance checking, in particular
for consent-related principles. Our solution leverages provenance
graphs to model compliance-related information. We present a
prototype implementation of our model, based on Prolog.
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I. Introduction
In recent years, the quantity of personal data managed

by systems has been growing steadily. In order to protect
users and their data, the European Union (EU) has established
the General Data Protection Regulation (GDPR) [4], which
applies to European countries since 2018. Among the principles
that are described [GDPR art.5], such as transparency, data
minimization, consent, etc., we focus on four principles :

• consent compliance [GDPR art.6] : personal data is used
only for purposes the user has given consent to.

• data access [GDPR art.15(1)]: a report is sent in time
after a user request.

• data erasure [GDPR art.17] : personal data is erased in
time after a user request.

• storage limitation [GDPR art.5(1)]: personal data must
not be stored for too long after its last use.

Note that time intervals are specific to the system and must be
adhered to without undue delay. The data subject (the owner of
the personal data) should be informed of the status of his/her
request within one month [GDPR art.12(3)], with a possible
extension of up to two additional months, if necessary.

The idea of our approach is to automate GDPR compliance
checking [1] [3] by storing system data and their dependencies
in the form of a provenance graph [2] and specifying GDPR
principles as paths to be retrieved in the graphs. Compliance
checking is then realized by taking advantage of the efficient
reasoning capabilities for path condition resolution provided
by Prolog solvers. In Section II, we introduce the data model
we use, as well as the specification of the GDPR principles to
be checked. We present our prototype in Section III, and apply
it on a use case in Section IV. We conclude in Section V.

II. Provenance graph model
In this work, we extend the Open Provenance Model (OPM)

[2] with GDPR data. The system information is represented as a
directed labelled acyclic graph, called provenance graph, where
nodes and edges represent system data and their dependencies.
The standard OPM model captures provenance entities called
artifacts, processes and agents. Each dependency, with its

timestamp(s), shows causality between entities: used (process
on artifact) and wasGeneratedBy (artifact on process), where
the timestamp indicates when the artifact was used (resp.
generated); wasControlledBy (process on agent), where two
timestamps give the beginning and the end of the process
execution; wasDerivedFrom (artifact on artifact) and wasTrig-
geredBy (process on process), with a timestamp indicating
when the first entity was created (resp. triggered). Note the
dependencies may contain a role, used to further specify them.
Timestamps are useful for compliance verification, where a
total order between processes may be needed.

To reason about personal data and GDPR compliance, we
have extended the nodes of the provenance graph with a
list of attributes related to the GDPR context. In particular,
artifacts that contain personal data are extended with an attribute
personal, while processes are extended with an attribute action,
identifying the purpose for which the process is executed.
Consent is modeled as an artifact, generated by the consent
giving process of the data subject. The consent artifact has an
attribute purposes, specifying a list of consented purposes for
the corresponding personal data. The consent artifact can be
updated, thereby creating a new consent artifact (since artifacts
are immutable pieces of data in OPM).

Figure 2 depicts a sample of a provenance graph representing
an online forum application. User Bob creates an account before
joining a group of discussion of interest to him. After creating
his account, which implies to enter some personal information
such as his phone number and email address, an identifier
id bob is automatically created by the system. User personal
information and identifiers are represented as artifacts, with
the attribute personal set to True (for the sake of readability,
node attributes are not depicted in the graph).

Bob is asked to provide his privacy preferences via the filling
of a policy template provided by the system (e.g., a cookies
acceptance policy). As a result, an artifact consent bob v0
is created with the attribute purposes, whose value is a list of
pairs (personal data, purpose of use). For instance, Bob gives
consent for using his identifier for statistical analysis purposes,
but not for sharing with third parties, i.e., purposes = [(id bob,
analysis)].

III. Prototype: Architecture and Implementation
We describe here the components and architecture of our

prototype, as depicted in Figure 1.
a) Interface: Via the interface, an auditor can specify the

system he wants to verify and optionally a subset of processes
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Fig. 1. Prototype Architecture.

(or a subset of personal data) he wants to focus on. The interface
retrieves the system log files (in the form of a provenance
graph), and possibly specific personal data, users or processes
to check (by default, the whole system is audited). The auditor
can also choose the GDPR principle(s) he wants to verify via
the suitable menu, as depicted in Figure 3(a).

b) Translator: The translator module converts interface
inputs into Prolog queries. If no option is specified via the
interface, the module returns one query per GDPR principle
to check, with no specific parameters (i.e., using variables
that Prolog will instantiate by graph nodes). Otherwise, several
queries can be returned, with parameters adequately instantiated
to cover user selection. Queries and system data are sent to
the Prolog solver, using the JPL library.

c) Reasoning module: The reasoning module contains the
Prolog solver, which resolves path queries based on the obtained
provenance graph, and the GDPR patterns specification. Each
GDPR principle is encoded as a Prolog rule. Here is an extract
of the pattern concerning consent compliance:

consent(DP, PU, T) : −
wasControlledBy(P1, S, ”owner”, TB, TE),
wasGeneratedBy(C, P1, ”consent”, T), isPurpose(PU, DP, C)

When queried, this rule verify if there exists an artifact
consent C with the attribute ”purposes” containing the purpose
PU for the personal data artifact DP. The variables T, TB, TE
correspond to timestamps and P1 to the consent process
controlled by the data subject S.

The solver returns all possible paths matching the query. In
case of non-compliance, the user is given enough information
to identify the issue (see Figure 3(b)).

IV. Demonstration
Consider an online forum platform, where users can, e.g.,

create accounts and join discussion groups. We are interested in
user Bob and his activities in the system (a snapshot is depicted
in Figure 2, where timestamps are expressed in minutes).

Let us suppose we want to check the compliance of Bob’s
personal data processing w.r.t. Bob’s privacy preferences, as
registered in his consent (see Figure 3(a)). The reasoning
module receives the query, it looks for all processes using
Bob’s personal data and checks if the purpose of the process
has been consented by Bob.

In our example, at time t =21, Bob joins a group, which
generates a marketing cookie using DP =id bob. At time
t =26, this cookie is used by the process P =sendCookie,
associated to a purpose PU =sendThirdParties (provided
by the system). The solver tries to instantiate the predicate
consent(DP, PU, T) with the previous values, however Bob
has consented to use his identifier only for analysis purposes,
i.e., consent(id bob, analysis, 17). As a result, the system
is non-compliant. The solver returns the non-compliant process
details, displayed in the interface (see Figure 3(b)).

V. Conclusion
We have presented an extension of the provenance model

to automate GDPR compliance verification. We have also
developed a proof-of-concept prototype to demonstrate the
feasibility our approach. Future work includes automating
provenance graph generation on various scenarios (e.g., social
networks, public services, webstores) for more extensive testing.
We also plan to extend the approach to other regulations, such
as GDPR-UK or the United States Health Insurance Portability
and Accountability Act (HIPPA).
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Fig. 2. Online forum application: provenance graph sample.

Fig. 3. Interface: (a) option and (b) results screens.
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Abstract—As the threat landscape continues to escalate, 

organisational leaders are realising that they cannot prevent 

every cyber incident. The cyber security lens is shifting its 

focus toward the need for resilience, and the ability to recover 

from Major Cyber Security Incidents. Cyber incident recovery 

differs from every day IT incident recovery. The threat actors 

will have been in the systems domain establishing a foothold, 

installing malware, and exfiltrating data prior to their 

presence being noticed. Following the standard IT recovery 

playbooks will exacerbate the situation, causing confusion and 

delays. Preparation is the key to cyber incident and recovery 

readiness. This paper outlines a practical approach for IT and 

cyber operational teams to apply that will prepare them for 

major cyber events so that in the heat of an incident, they have 

the tools at hand, the confidence, and the capability to deal 

with the situation and the ability to recover within resilience 

appetite and tolerance. 

Keywords-cyber resilience; recovery; major cyber security 

incident; playbook. 

I.  INTRODUCTION 

Cyber Security resilience describes the ability to protect 

against, respond to, and recover from cyber threats [16]. The 

preceding decade has seen significant focus and uplift in 

cyber security protection investment in Australian critical 

infrastructure. And as organisations realise that they cannot 

expect to prevent 100% of cyber incidents, they are shifting 

their attention toward preparing for them. This paper 

provides guidance on how organisations can move to a 

position where they can recover from significant cyber 

incidents, and that they are able do so within a reasonable 

timeframe. Cyber security is different from IT disaster 

recovery. Prior to the incident being raised, the cyber threat 

actor has already made-ready, ensuring they can maintain 

access even when discovered, finding and stealing valuable 

information assets, and compromising data, backups, 

configuration files, and applications throughout the 

environment. All this is achieved well before anything as 

visible as ransomware is triggered. Applying normal IT 

recovery processes will only exacerbate the problem, and 

extend the recovery times. In addition, cyber incident 

recovery necessitates teams from different areas to work 

together towards a shared outcome [19]. 

Preparation is the key [6][16]. Endeavouring to address 

system and environmental shortcomings whilst attempting to 

recover business critical systems in the heat of a major 

incident is not ideal. This will further delay, and may even 

inhibit the ability to recover. Well before the incident is 

experienced, the environment needs to be remediated to limit 

exposure of critical systems, slow lateral movement, close 

vulnerabilities, correct misconfigurations, tighten privileged 

user access, and reduce the blast radius of the incident. 

Section II outlines how cyber security incident recovery 

differs from normal IT recovery. Section III walks through 

the five elements that need to be addressed when developing 

the ability to recover from a Major Cyber Security Incident. 

Section IV explains the top six threat scenarios that teams 

should be prepared to recover from. Section V focuses on 

recovery testing and continuous improvement. Section VI 

addresses the organisational challenges of cyber resilience 

readiness. Section VII discusses the metrics use to uplift 

response performance, and the conclusion reiterates the need 

for early preparation, and closes the article. 

II. CYBER RECOVERY IS DIFFERENT 

It is common for the Information Technology (IT) 

technical support teams to assume that the approach for 

recovering from cyber security incidents is the same as that 

used for every-day incidents. This introduces the risk of the 

intended recovery actions actually making the situation 

worse and causing further delays. The difference with cyber 

security incidents is that, prior to being discovered the cyber 

threat actors have escalated their access privileges, 

established backdoors, moved laterally across the systems 

domain, deployed malware to compromise systems and data, 

altered configuration files and applications across the 

environment, exfiltrated valuable data and compromised or 

deleted backups. Their goal is to inflict the most damage on 

their victim, remove any opportunity of recovery, and 

maximise the likelihood that their target will be willing to 

pay, in the instance of ransomware, for example [2]. 
This means that cyber incident recovery differs. Backups 

are likely to be deleted or compromised over a period of 
time. The standard recovery approach exacerbates the 
situation by reinstalling the malware into the production 
environment; Restoring a backup compromised with 
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malware will restart the attack process and further extend the 
recovery times [7]. 

A. The Cyber Recovery Process 

NIST’s Cyber Incident Response Lifecycle, NIST 800-

61r3, incorporates the steps needed to prepare for and 

recover from a cyber incident (Figure 1) [16].  
 

 
Figure 1. Incident response lifecycle model based on CSF 2.0 Functions 

[15][16]. 

 

In addition to the normal IT recovery steps, cyber 

recovery incorporates containment and eradication. 

1) Containment 

The purpose of containment is to prevent the 

threat spreading further across the environment, to 

reduce the extent of the immediate damage and the 

opportunity for further exfiltration. If third-parties are 

needed to help co-ordinate the recovery, or to provide 

technical guidance or hands-on-keyboard for the 

recovery actions, now is the time to engage them. 

2) Eradication 

During eradication, the Cyber Security Operations 

Centre (CSOC) and IT technical support teams work 

together to ascertain scale of the threat, and assess the 

extent of the damage or potential damage. Prior to 

deleting or rebuilding, snapshots of impacted systems, 

devices, and files need to be taken for the forensic 

analysts to review [7]. They may be able to map these 

against known threat actor Tactics, Techniques, and 

Procedures (TTPs), which will enable the recovery 

team to predict likely methods and next steps for the 

attacker.  Compromised user accounts are disabled 

and credentials reset, any malware installed by the 

threat actor is erased, and vulnerabilities that were 

exploited during the attack are closed. Immutable 

backups are scanned to identify any missing or 

compromised components. Once a clean set of 

backups are identified, the recovery teams need to 

establish a clean recovery environment. The 

unspoiled backups are restored into this secure, clean 

environment, assured and tested to ensure production 

readiness. If preparation has not provided secured 

baseline configuration system-state backup from 

which to rebuild from, there may be a need to rebuild, 

reinstall and reconfigure platforms and environments 

from scratch. Once this has been achieved, patches 

will need to be installed, passwords updated, and 

security controls overlayed [16][18]. 

3) Recovery 

Only when production readiness is assured, and the 

team are confident the threat has been contained and 

eradicated will they be ready to recover the system fully 

by switch it over to Production [16].  

III. PREPARING TO RECOVER RROM A MAJOR CYBER 

SECURITY INCIDENT 

A. Pre-work 

Prior to working with any specific technology teams or 

systems, the first step, when preparing to recover from a 

Major Cyber Security Incident (MCSI), is to understand the 

organisation’s resilience appetite and its tolerance for 

outages impacting customers [17]. This will provide the 

basis for system prioritisation, and targets for acceptable 

recovery times. The second step is to identify the critical IT 

systems that, if compromised, would have significant impact 

on the organisation’s ability to continue to deliver services. 

These include access and identification control systems, such 

as Microsoft’s Active Directory, connectivity products, such 

as VPN & Citrix Netscaler, and data storage, such as private 

and public cloud.  

The IT teams supporting these critical systems will need 

to be heavily involved in preparing for cyber incident 

recovery, as they know these systems best. Support from 

their leaders is essential to ensuring resilience is a priority for 

these teams, amongst their usual workload. Top-down leader 

engagement is the most effective approach: Educating 

leaders and then their teams, ensuring objections are handled, 

resilience is prioritised, and skilled Subject Matter Expert 

(SME) resources are made available. Resilience and 

recovery preparation activities will need to be prioritised and 

incorporated into the teams’ delivery plans or backlogs, to be 

appropriately allocated to sprints or epics, in line with other 

priorities in the team’s backlogs.  

B. Elements contributing to recover-ability 

There are five elements to be addressed when 

developing the ability to recover efficiently from a MCSI 

impacting one or more of company's critical IT systems, in 

order to meet the organisation’s resilience appetite and 

impact tolerance [17]. These are: 

1) Environmental Remediation 

Work with the IT support team, the cyber red team, 

and the cyber risk and controls’ assurance teams to 

identify and prioritise environment remediation 

requirements, such as: vulnerabilities and control gaps; 
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risks and issues; insecure configurations and 

misconfigurations; lack of network, system and access 

segregations; excessive and inappropriate use of 

privileged access; and poor password management 

practices. Vendors may be able to provide scanning 

scripts and threat simulation capabilities to assist with 

identifying these remediation opportunities. But the 

platform support teams will have a list of items they 

know should be fixed. Capture and prioritise all these 

remediation items. Develop a plan to group them, map 

them to existing uplift and re-platforming projects and 

allocate resources to close them. This will significantly 

lower the initial risk of a cyber incident, slow down the 

threat actors’ transgressions, reduce the blast radius, and 

streamline recovery. Funding will need to be considered 

for the big-ticket items, such as retiering or major 

platform upgrades. 

2) Recovery Preparation based on RE&CT  

GitHub’s RE&CT Enterprise Matrix provides 

comprehensive guidelines on how to prepare for 

efficient recovery from cyber security incidents. Based 

on the MITRE ATT&CK and D3FEND MATRICES, 

the GitHub RE&CT Enterprise Matrix outlines actions 

for all stages of the Cyber Incident Response Lifecycle 

[6][11]-[13][16]. Exhaustive examples are provided for 

multiple attack sequences in the RE&ACT Enterprise 

Matrix. They include practical actions that expose 

assumptions and facilitate comprehensive and complete 

preparation of capabilities to enable accelerated 

response. These include basic, but essential items, such 

as: 

i) taking a system-state (golden) image; a snapshot of 

the baselevel system configuration on critical 

systems, and storing a clean copy of this in a secure 

offsite and offline location. This simple mitigation 

ensures the recovery team won’t ever need to 

rebuild the entire system from scratch, by 

establishing immutable backups that will be 

accessible only to those who need them in times of 

crisis.  

ii) building the capability to trigger bulk access 

revocation and re-enablement, and bulk password 

resets for compromised accounts, user groups and 

suppliers’ accounts (Figure 2) [3][6].  

Use the RE&CT Matrix as a guideline by reviewing 

each item listed, first determining if this item is relevant 

to the platform under review, and then assessing 

whether this has already been addressed, or needs to be 

actioned. All action items are added to the remediation 

list to be tracked through to completion. 

 

 
Figure 2. RE&CT Enterprise Matrix extract [6]. 

 

3) Response-Recovery Scenarios, including who does 

what. 

Validated and assured recovery plans build capability 

and confidence for swift recovery. 

a) Prepare cyber-specific response plans for the most 

common, and highest impacting threat scenarios.  

The IT support teams understand the technology 

best and as such are major contributors to determining 

the most streamlined and comprehensive recovery 

process [16]. The playbooks need to be composed for 

the average person in the support team to follow, not the 

most knowledgeable or experienced SME. GitHub’s 

RE&CT site and some vendor sites provides standard 

recovery playbooks for the common cyber incidents, 

such as ransomware [6][8]. Complete recovery plans 

and playbooks are developed by the cyber and IT teams 

walking through and documenting each cyber scenarios, 

identifying each step in the recovery process, who is 

doing that action, and what additional information and/ 

or materials are needed. 

Together, the playbooks will provide end-to-end 

concise and easy to follow instructions for the team 

members to follow in the heat of a major incident. When 

dependencies are identified and accountabilities span 

more than one team, all the respective specialists need to 

be involved in developing the complete set of 

playbooks.  

b) Table-top Test  

Completeness is assessed through tabletop testing 

where the CSOC and IT support teams all work 

together, walking through the playbooks for the chosen 

scenario, with each person practicing performing their 

role in the playbook. Testing the set of playbooks end-

to-end in conjunction with the CSOC will quickly 

highlight omissions and refinements needed. Tabletop 

testing should be repeated until all parties are willing to 

sign-off on the complete set of playbooks for that 

scenario.  
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4) Vendor engagement to assist with MCSIM.  

Vendor involvement in cyber incidents will depend 

upon the organisation’s sourcing strategy, previous 

agreements and contractual arrangements. Specialist IT 

vendors, advisory, and cyber insurance companies offer 

services to assist with coordinating Major Cyber 

Security Incident Management (MCSIM) during the 

event. This will only be effective if they have a clear 

understanding of the environment, and/ or up-to-date 

architectural documentation, and recovery playbooks 

available [16]. Capacity to manage the situation during 

the event will be heavily reliant on the amount of 

preparation performed across all the relevant teams prior 

to the incident. 

When vendors are active in supporting the 

applications and infrastructure, they will have a hands-

on-key board role to play during the recovery 

preparation and incident recovery. In this instance, it is 

imperative that these personnel participate in the 

preparation and testing activities, and that arrangements 

are made during the preparation phase to ensure this 

assistance will be made available when it is needed. The 

supplier contracts may need to be updated to include this 

requirement. 

5) Full MCSI Simulation(s)  

Complex to plan and organise, but well worth the 

effort, full MCSI simulations enable teams to practice 

MCSIM and recovery in near-real circumstances. This 

builds confidence for both the participants as well as the 

stakeholders observing, and exposes gaps in the 

preparation plans and playbooks that would otherwise 

only be discovered during a real incident. 

Early engagement with the Crisis Management 

Teams to garner support and establish communications 

and co-ordination plans will ensure the simulation is as 

near to real as it can be. 

6) Post Incident Review 

Whether a simulation or a real event, a Post 

Incident Review (PIR) provides opportunity for those 

involved to debrief, capture lessons learned, and apply 

these to improve the process for next time. The focus is 

on what worked well, what was needed that wasn’t 

easily available. Aspects to be addressed for next time 

should all be captured and actioned appropriately to 

ensure readiness improves with each instance.  

IV. RECOVERY SCENARIOS 

A practical, structured approach to building the recovery 

plans and playbooks will ensure greatest benefit for least 

effort. 

A. Focus on common scenarios 

Rather than attempt to develop playbooks that address 

every attack sequence, organisations can be prepared for the 

majority of potential situations by focusing on the most 

likely, largest scale and biggest impacting MCSI threat 

scenarios they will need to be able to recover efficiently 

from. By preparing for these scenarios, incident 

management and recovery teams will be in a strong position 

to recovery from most: 

1) Nation State Actor 

The cyber security intelligence team will be able to 

provide insight into the likely nation state threat actors 

and their typical TTPs. As an example, the People's 

Republic of China’s (PRC) Volt Typhoon has been 

active since at least 2021. This group has been observed 

targeting critical infrastructure organisations where it 

has been actively performing information gathering and 

espionage. More recently Volt Typhoon has been 

attributed as the cause of critical infrastructure outages 

across the United States. The Volt Typhoon TTPs are 

based around “stealth in operations using web shells, 

Living-Off-The-Land (LOTL) binaries, hands on 

keyboard activities, and stolen credentials” [12]. 

2) Ransomware 

Ransomware is highly visible and noisy due to its 

direct impact on the business users. By the time the 

threat actor has triggered the ransom message, files will 

have been exfiltrated, encrypted, backups deleted or 

compromised, configuration files, applications and data 

sets across the domain infected with malware. This can 

take moments or weeks, but the recovery team can 

safely assume that they are dealing with a broadly 

compromised environment. Two-way communication 

with the impacted users will help ascertain the extent of 

the impact as well as providing confidence to the users 

that their data will be recovered, in some form. 

Recovery steps will need to address every aspect of 

the infection in order to contain and eradicate it, 

including and well beyond the encrypted files and 

backups. Depending on the extent of the infection, 

systems may need to be recreated. Preparation will 

include implementing regular immutable system-state 

backups along with clean, secure recovery 

environments for the recovery of critical systems. 

3) Dormant Threat (Prestaging) 

Dormant threat is very similar to ransomware in 

the early phases. This is when the threat actor is 

discovered before they trigger the blast. Malware 

payloads will have been deployed across the 

environment, including backups. The recovery team can 

expect that data, systems, and configuration files are 

already compromised. Containment will be similar to 

ransomware, without the need to replace encrypted files 

or the corresponding noise from the impacted users.  

4) Third Party 

Ahead of the event, the recovery team will need to 

generate a list of critical third-party suppliers, to 

understand the services they provide and their methods 

for access. In the situation when a supplier is 

compromised, the recovery team needs to be able to 

remove connectivity between the organisations swiftly 
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and completely. Access accounts will need to be 

disabled in a seamless and timely manner while the 

supplier focuses on containing the threat in their 

environment. Business processes will need to be pre-

prepared to ensure they can function independently 

through this period. 

Detection testing should determine if the infection 

has spread from the suppliers into the primary 

organisation’s environment, and appropriate 

containment actions taken if it has. When the supplier 

can confirm they have completely eradicated and 

recovered from the threat, only then should the 

connection between the two organsations be re-

established, and the vendor’s user accounts re-enabled.  

5) Zero Day – No patch available 

When a critical system is vulnerable to a threat 

actively exploiting an unpatchable zero day, then 

compensating controls need to be implement to protect 

the critical system. The simplest mitigation is to take 

the platform offline, but this may not be possible for 

key systems used by the business so alternatives need to 

be investigated and tested.  

6) Supply Chain 
The organisation needs to be prepared for when the 

operating system or software update has already been 
infected, as was the case in the SolarWinds compromise 
[10]. Preparing for a supply chain compromise involves a 
full review of the software deployment strategies to 
ensure software is always deployed in stages and tested 
prior to full deployment. This will ensure only limited 
platforms/ devices are impacted. Additionally, all 
deployments will need to have a rollback strategy. This 
may be a straight-forward as uninstalling the update, or 
may involve taking a backup prior to deployment to 
enable an immediate restore if/ when it is needed. 

B. Building recovery plans and playbooks 

In the heat of a major incident, the recovery teams will 
have limited capacity to guess the next step or make-it-up on 
the fly. They will need to have a complete set of logically 
structured recovery plans with comprehensive playbooks to 
address all the interdependencies and actions to be performed 
by each of the teams involved. Teams include the Crisis 
management team, to co-ordinate external communications 
and business continuity, the CSOC, who typically co-
ordinate cyber incident response and recovery activities, the 
relevant IT support teams, any vendors involved as incident 
co-ordinators or extended support team members with hands-
on-keyboards, business and technology leaders, 
communications specialists etc.  

In addition to the playbooks, the recovery plans include 
fundamentals, such as: lists of responsible personnel for each 
system with contact details, and rosters for extended 
outagess; pre-established communications plans and virtual 
war-rooms and bridges for keeping the resolver teams and 
other stakeholders up to date; data capture methods for later 
forensics activities; and handover procedures to ensure 

progress continues smoothy for outages spanning more than 
twelve hours [16]. 

While basic playbooks can be sourced online through 
CISA [3] Microsoft [8], for example, these are very generic 
and do not relate to the specific environment in the 
organisation. Hence, their value is limited. Alternatively, if 
the organisation has engaged a vendor to lead their critical 
incident management, then this vendor may be leaned upon 
to provide the CSOC playbooks for the IT playbooks to plug 
into. 

V. RECOVERY TESTING AND CONTINUOUS 

IMPROVEMENT 

Recovery plans are initially table-top tested with each 

person walking through their role in the playbook. Each IT 

team and the CSOC team bring and use their respective 

playbooks to ensure they fit together, end-to-end. Regular 

reviews, every 6-12 months, ensure the approach is 

continuously improved throughout the process. Once 

complete, these recovery plans need to be reviewed and 

updated, as part of operational readiness, whenever there is a 

change.  

Once a set of recovery play books has been completed, a 

full MCSI simulation, with each person performing their 

role, is the most effective way to test the plans and identify 

any gaps ahead of the real event. If the MCSI simulation 

identifies significant gaps and delays, these need to be 

addressed and retested within 3 months. Once these 

simulations run more smoothly, MCSI simulation should be 

run every 6 months to ensure everyone knows their role in 

the event of a major incident, or cyber-initiated crisis. The 

cyber security intelligence team can provide guidance on 

suitable scenarios for MCSI simulations, based on what they 

are observing in the cyber threat landscape.  

When an organisation has been significantly 

compromised, access to operational document storage 

systems may be hampered. It is recommended that an 

alternative site is established in which to store crisis 

management and MCSIM documentation. This will ensure 

these essential instructions are available when they are 

needed.  

VI. ORGANISATIONAL CHALLENGES 

A. Resistance and avoidance 

Both the CSOC and the IT personnel will be busy dealing 

with their day-to-day response and support activities. Leader 

intervention will be needed to direct them to prioritise these 

MCSI preparation activities. Fear of failure and lack of cyber 

awareness may trigger resistance in those who should be 

involved. Resistance comes in many forms. The most 

common is avoidance: “don’t understand the ask,” “don’t 

have capacity to get involved” or “too busy”. These will 

need to be actively and persistently addressed by leadership. 
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B. Lack of cyber knowledge 

It cannot be assumed that the IT personnel have any 

understanding of cyber security, or any of the additional 

considerations and actions required when recovering from a 

cyber incident. This is best taught early during or before the 

preparation phase, rather than in the heat of a major incident. 

Education sessions need to start with the very basics. With 

explanations of how cyber attacks work, the fundamentals of 

TTPs, and the types of systems and data being targeted [9]. 

Compromise scenarios should be explained in detail so these 

IT professionals begin to understand what they will be facing 

in the event, and how they can be prepared.  

VII. METRICS 

Two sets of metrics need to be considered. Those relating 

to recovery readiness, and those that relate to the recovery 

times. 

1) Recovery readiness 

Recovery readiness is just that. How ready are the teams to 

recover from a MCSI. Readiness can be assessed by tracking 

the completeness and effectiveness of the preparation 

products outlined: Cyber incident recovery plans complete, 

end-to-end, for the top six cyber scenarios; Table-top testing 

completed within the last 6 months, and all shortcomings 

addressed; Remediation items addressed; Control gaps 

closed; React matrix preparation steps completed. Full crisis 

simulation testing completed within the previous 2 years for 

this technology platform; and Contact lists maintained. 

2) Recovery times 

MCSI are less frequent than IT major incidents. This limits 

the value of measuring Mean Time To Recover (MTTR) for 

a MCSI, but it does not detract from the ability to measure 

recovery times for full crisis simulations. By setting targets 

to reduce MTTR, teams identify and address delays, with the 

ultimate objective of aligning recovery times with the 

organisation’s resilience appetite and impact tolerance.  

VIII. CONCLUSION 

Compromise of critical systems can cripple an 

organisation. Preparation will mean the difference between 

taking minutes or hours to recover from a MCSI rather than 

days, weeks or even months. A structured approach to 

prepare for and practice managing such incidents will build 

corporate capability and confidence in those responsible. 

This paper outlined a practical approach that organisations 

can apply when bringing together their IT and CSOC team to 

prepare for the worst, rather than hope for the best. 
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Abstract—The increasing sophistication and evolving nature
of cyber threats pose significant risks to critical infrastructure
systems. This research introduces GenAttackTracker, a novel
algorithmic framework designed for real-time detection and
interpretation of cyber threats in Supervisory Control and Data
Acquisition (SCADA) systems. By integrating dynamic anomaly
scoring with hierarchical Bayesian modeling, GenAttackTracker
enhances situational awareness for identifying potential security
breaches in operational technology environments. This robust
mechanism contributes directly to enhancing cyber resilience by
improving threat detection in critical infrastructure systems, an
essential component of ensuring the continuity and security of
mission-critical processes. The framework leverages primary data
from SCADA systems and secondary contextual data sources,
termed Suspicious Activity Markers (SAMs). Through Bayesian
inference, the model continuously updates its understanding of
the system’s security status, allowing informed decision-making.

Keywords—Cyber Resilience; Critical Infrastructure Security;
Cyber-Physical Systems; Supervisory Control and Data Acquisition
(SCADA); Online Threat Detection; Bayesian Inference, Anomaly
Detection; Suspicious Activity Markers (SAMs); Machine Learn-
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I. INTRODUCTION

Cyber threats continually evolve, exerting new capabilities
and enhancing their metamorphic nature to evade detection
by legacy antivirus products. With evermore sophisticated
threats, such as malware-free intrusions and zero-day exploits
targeting Critical Infrastructure (CI), cybersecurity breaches
become more inevitable—leaving infrastructures on which we
all depend at high risk of global threat activity [1]. This reality
amplifies fears of catastrophic events tailored to incapacitate
CI systems in key infrastructure sectors.

The research project presented here aims at enhancing CI
protection by reinforcing security and resilience of mission-
critical Operational Technology (OT) against advanced cyber
threats. OT is vital to industrial process automation as used
for many types of CI facilities, which are often highly inter-
connected, mutually dependent systems [2]. In manufacturing
and production, process automation frequently hinges on OT
to interoperate with the physical environment, where Industrial
Control Systems (ICS) monitor and control physical processes,
devices, and infrastructures. Most prominently, Supervisory
Control and Data Acquisition (SCADA) architectures allow
large-scale processes to span multiple sites and work over large
distances. A SCADA-based OT system is a Cyber-Physical
System (CPS) that enables supervisory process control by

capturing real-time data of the infrastructure’s operational
status. Industry sectors using SCADA include manufacturing,
oil and natural gas, electrical generation and distribution,
maritime, rail, and utilities [3].

With the paradigm shift to Industry 4.0, intelligent process
control aims at even tighter integration of digital control loops
powered by AI, embedded computing, robotics, and Internet
of Things (IoT) with technical processes in the physical en-
vironment. This trend inevitably increases fragility of process
automation, making OT more vulnerable by amplifying the
risk of cascading and escalating failures. Beyond extensive
disruptions of critical services, highly orchestrated attacks
can result in disastrous physical damage caused by triggering
cascading malfunctions to overload mission-critical system
components.

Considering that complete security of network technology
may be unattainable, the focus shifts to risk mitigation and
remediation. Our work aims at proactive measures that reduce
the likelihood and the potential impact of severe cyberattacks.
Traditional risk mitigation methods are often inadequate for
addressing advanced cyber threats due to their highly so-
phisticated and evolving nature. The gravity of this situation
calls for advanced analytical models and algorithmic methods
to ensure that cyber situational awareness keeps pace with
the evolving threat landscape. Artificial Intelligence (AI) is
instrumental in detecting and interpreting abnormal OT system
behavior by continuously analyzing supervisory control data
streamed from system operations. Abnormal behavior patterns
can signal imminent threat activity after a security breach.
A timely response launching countermeasures is critical to
contain any intrusion before it can spread laterally across
wider networks. The dynamics and anatomy of intricate attack
scenarios requires advanced analytical models and algorithmic
methods for turning cyber situational awareness into actionable
intelligence in real-time.

Research Question. For OT systems relying on supervisory
control system architectures, such as SCADA, we consider the
following research question: how can contextual data and infor-
mation from secondary threat intelligence sources substantiate
evidence of changes in the system’s security status derived from
online analysis of control data? Fusing data and information
from a number of causally related events may arguably result
in more accurate situational awareness as baseline for online
inference and decision-making processes.
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Methodology. Inevitable uncertainty due to lack of ground
truth is problematic for the reliable detection and interpretation
of unexpected behavior patterns relevant a system’s security
status and also increases the rate of false positives. A Bayesian
modeling approach can significantly improve the outcome.
Bayesian inference promotes frequent updating of conditional
probabilities as new information becomes available, providing
a dynamic perspective of security threat levels. Thus, the more
technical question is: how can Bayesian inference and the inte-
gration of contextual data and information, termed Suspicious
Activity Markers (SAMs), enhance situational awareness of
cyber threat activities targeting the operation of CI systems?

Contribution. The novel contribution of this paper is
GenAttackTracker, a generic analytical framework for online
detection and interpretation of abnormal behavior patterns in
supervisory control data streamed from a mission-critical OT
system. Combining dynamic attack scoring with Bayesian in-
ference to fuse results from control data analysis with real-time
contextual information into actionable threat intelligence, the
model uses an end-to-end pipeline for stream-based anomaly
detection with three phases: behaviour prediction, inference
and interpretation. Our earlier work [4] outlines the concept,
while this work describes the technical realization and presents
experimental results.

The remainder of the paper is organized as follows. Section
II explains basic concepts and discusses related work, while
Section III defines the technical problem. Next, Section IV
describes the methodological development of the algorithmic
framework and explains the core model of GenAttackTracker.
Section V presents the experimental setup and the resulting
insights, and Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

Automation enables stable operation of OT: the devices
and the machinery that monitor and control physical pro-
cesses [2][3]; it enhances efficiency, quality of service delivery,
productivity and safe operation of critical assets. Supervisory
control of the cyber-physical system status is critical for
issuing alerts and initiating an emergency shutdown operation
when abnormal behavior patterns approach or violate defined
safety margins.

A. Online Anomaly Detection

Supervisory control data is time series data to be interpreted
as streamed real-value measurements taken at regular time
intervals. Discordant patterns that do not match the expected
normal system behavior but appear to occur “out of place” are
called anomalies or outliers. Online detection of anomalous
behavior in time series data streamed from the operation of
an OT infrastructure can be a very challenging problem:

• Identifying anomalous behavior patterns requires learning
normal behavior to train a robust machine learning model
that not only fits previously observed data but also carries
over to unobserved data. Developing such a model is
usually not a trivial task.

• Anomalous patterns generally occur for various reasons,
such as equipment failures, manual control intervention,
and unauthorized tampering with control settings. Thus,
an even more intricate problem is to differentiate the
typically few anomalies of interest—above all, suspicious
abnormal behavior indicating a potential security threat—
from the vast majority of anomalies caused by noise,
seasonality or other trends that are irrelevant to security.

Real-world physical processes are notoriously liable to
difficult to predict “external” factors, such as fluctuations in
demand and supply, technical instabilities, component failures
et cetera. These phenomena result in hard to predict variance
in the data—commonly referred to as “noise”.

B. Suspicious Activity Markers

Indicators of Compromise (IOCs) are traditionally used in
digital forensics to identify artifacts left behind by attack-
ers, such as malware signatures, unusual traffic patterns, or
file hashes. These are crucial in post-incident investigations,
helping to trace and understand the extent of a breach [5][6].
IOCs are typically reactive, meaning they are often identified
postmortem after the damage has already occurred [7].

In contrast, we present Suspicious Activity Markers (SAMs)
as a concept aiming at real-time detection of threat activity
before a cybersecurity compromise fully manifests. SAMs are
akin to Indicators of Attack (IOAs), which have been promoted
in industry contexts—originally by CrowdStrike—but with a
distinct emphasis. IOAs generally focus on recognizing the
Tactics, Techniques, and Procedures (TTPs) used by attack-
ers. These indicators aim to detect cyberattacks at an early
stage, potentially before significant harm is done and it is
observable before the attack is fully unfolded. An IOA security
strategy focuses on detecting the attacker’s intent, enabling
early intervention. Such indicators can assist security teams in
intercepting even unknown types of attacks [7]–[9]. However,
the definition of IOAs is vague and overlaps with IOCs,
leading to potential confusion [10]. Examples of IOAs include
but are not limited to [7]:

• Communication between public servers and internal
hosts, indicating possible unauthorized data transfer;

• Connections through non-standard ports;
• User logins from multiple locations, potentially indicating

stolen credentials.
• Unusual spikes in SMTP traffic;
• Internal hosts communicating with countries the business

does not serve;
• Numerous honeytoken alerts from a single host.
Our specific focus here is on using SAMs as a secondary

data source to corroborate findings from the primary source,
i.e., supervisory control data. We define SAMs as follows:

Definition of SAM: A SAM is a contextual observation that
provides additional insight into the operational security status
of an SCADA system. SAMs are not intended to identify an
attacker’s intent directly, but rather to refine the understanding
of potentially anomalous activities detected in supervisory
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control data. By integrating SAMs with the primary data
source, we aim to reduce false positives and improve the
accuracy of detecting anomalies of interest, i.e., cyber threats
to mission-critical infrastructures.

In previous works like [11]–[15], the integration of sec-
ondary auxiliary metrics into anomaly detection frameworks
has been explored. Our approach differs significantly though
in terms of generalization and method integration. Our focus
is on using SAMs as secondary data sources to dynamically
update our belief systems. This approach allows for a more
refined and contextually aware detection mechanism.

C. Bayesian Analysis
Integrating contextual information from multiple sources

can improve the effectiveness of cyberattack detection [16].
Bayesian modeling offers effective solutions for security threat
detection and information fusion under uncertainty [4]. These
methods can integrate heterogeneous data sources, including
sensor networks and soft information, to improve anomaly
detection in cybersecurity [17][18]. Bayesian models are par-
ticularly suitable for cyberattack detection due to their ability
to update probabilities as new evidence is observed in addition
to incorporating uncertainty. The continuous updating process
makes Bayesian analysis and inference ideal for dynamic
environments where attack patterns evolve over time [17].
Hierarchical Bayesian models, in particular, are well-suited
for this context as they allow for multi-level aggregation of
information, which is crucial for systems with distributed
components and diverse data sources [19].

D. AttackTracker Framework
Attack Tracker is a distributed analytic framework designed

for real-time detection of cyber threat activities in supervisory
control system data [20][21]. By employing a scalable hierar-
chical network of detector agents to monitor various levels
of the control system, the orchestration of threat detectors
naturally matches the organization of SCADA architectures.
Local detectors focus on identifying anomalies within subsys-
tems, while higher-level detectors aggregate this information
to detect and assess threats in different system components.

The framework consists of several key components. The
Behavior Predictor learns and predicts normal subsystem be-
havior to identify any deviations or anomalies. The Inference
Engine processes observations, assigns attack scores, and ag-
gregates results from lower-level detectors to enhance system-
wide threat detection. The Dynamic Scoring method adjusts
detection thresholds dynamically based on the current system
state and historical data, effectively handling contextual noise
and reducing false positives.

Attack Tracker has been successfully applied to the Secure
Water Treatment (SWaT) testbed [22] (see also Sect. V-A),
demonstrating its capability to detect a wide range of cyber
threats in SCADA-based CI systems.

III. PROBLEM DEFINITION

This section defines the problem of identifying anomalous
behavior linked to a cyberattack in the supervisory control data

streamed from the operation of a SCADA-based OT system.
Henceforth, SCADA data is simply referred to as control data.

A. Primary and Secondary Data Sources

We categorize available data and information sources into
a primary source and multiple secondary sources:

• Primary Source: Control data, formally represented as a
multivariate time series X = (xt)

T
t=1, for T ∈ N, consists

of discrete multivariate measurements xt from sensors
and actuators monitoring and controlling the system at
time t, where t refers to logical rather than physical time.
This data is the foremost anomaly detection input, provid-
ing insights into the operational state of the infrastructure.

• Secondary Sources: A given collection of SAMs is char-
acterized as a set of 3-tuples, SAM = {SAMj}Nj=1, where
each SAMj has three attributes, (typej , pj , weightj).
Here, typej denotes the type of suspicious activity;
weightj indicates the importance or impact of SAMj ;
and pj represents the probability value indicating the
likelihood of an attack being in progress. SAMs provide
contextual information that can enhance the detection
capabilities by highlighting potential threat indicators.

In order to effectively utilize both primary and secondary
sources, we must establish a systematic approach that inte-
grates multiple data streams, allowing for a comprehensive
assessment of potential threats within the SCADA system.

At any time step i > l, with i, l ∈ N, the supervisory
control data to be analyzed at time i is given by Xi, for
Xi = (xi−l, . . . , xi), while the corresponding activity marker
values to be considered at time i are given by SAM i,
with SAM i = {(typei,j , pi,j , weighti,j)}Nj=1. The invariable
length of the sliding observation time window is l + 1.

Objectives:
• Calculate the Anomaly Score ASi at step i for Xi, relative

to the estimated behavior X̂i, to assess any deviations of
the actually observed from the expected normal behavior:

ASi = f(Xi, X̂i),with f : X×X 7→ R+,

where the real-valued function f quantifies the result.

• Update the posterior probability of an attack in progress,
given the observed supervisory control data and the
values of contextual markers (SAMs) at timestep i:

P (Attacki|Xi,SAMi) =

P (Xi|Attacki) ·
∑N

j=1 (pi,j × weighti,j) · P (Attacki)

P (Xi) · P (SAMi)
(1)

where:
– P (Xi|Attacki) is the likelihood of observing the

control data given an attack, informed by the
Anomaly Scores ASi,

– P (Attacki) is the prior probability of an attack,
– P (Xi) and P (SAMi) are the marginal probabilities

of the control data and SAMs, respectively.
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The challenge lies in effectively integrating control data and
additional contextual information to provide a comprehensive
and real-time assessment of the threat level. A key difficulty
is determining the extent of deviation from normal behavior
that should be considered indicative of an attack, rather than
a benign anomaly. This challenge of selecting the appropri-
ate threshold for deviation is critical, as setting it too low
may result in false positives (incorrectly identifying normal
behavior as an attack), while setting it too high could lead
to missing true positives (failing to detect actual attacks).
Hence, developing a methodology that accurately analyzes
these deviations and updates the likelihood of an attack based
on new data and contextual markers is essential for more
reliable threat detection. Figure 1 provides an overview of
such a methodological framework. It depicts how primary
supervisory control data Xi are processed by a machine
learning model to generate an anomaly score. This score is
compared against a threshold, with secondary data SAMi

integrated via a Bayesian model to refine the final attack
likelihood score. The Bayesian analysis and inference are
explored in detail in Sections IV and V.

B. Levels of Abstraction

To ensure a clear and structured approach, we consider
different levels of abstraction in our problem definition:

• For the primary source (control data), we focus on
detailed technical aspects, analyzing the data to compute
Anomaly Scores ASi. These scores reflect deviations
between observed system behavior and the predicted
normal behavior at timestep i. In this context, ASi is
used to assess the likelihood of the observed control data
under different scenarios (attack vs. no attack).

• For the secondary sources (SAMs), we adopt a higher
level of abstraction, where SAMs and their associated
probabilities are assumed to be derived from external
sources or specialized tools, which are integrated into our
framework via APIs or similar interfaces. This approach
allows us to efficiently incorporate diverse and potentially
complex information into the decision-making process.

IV. METHODOLOGICAL DEVELOPMENT OF THE
ANALYTICAL FRAMEWORK

While the dynamic scoring system of AttackTracker [20]
achieves effective real-time anomaly detection on the SWaT
testbed (see Sect. V-A), integration into a more comprehensive
model enhances the inference process. Specifically, adding a
hierarchical Bayesian module to the Inference Engine com-
ponent broadens the scope of situational awareness to help
reducing the rate of false positives. This extension allows for
the inclusion of multiple secondary data sources and a more
accurate assessment of the likelihood of cyberattacks.

A. GenAttackTracker

Our extension of the original AttackTracker model results in
a generic model, named GenAttackTracker, which integrates
dynamic anomaly scoring with a hierarchical Bayesian model.

This dual approach leads to a more robust model for real-time
anomaly detection by providing broader and deeper situational
awareness for decision-making.

The main purpose of the hierarchical Bayesian model within
the GenAttackTracker framework is to enhance the accuracy
and reliability of cyberattack detection by integrating multiple
sources of data, such as control data Xi and Suspicious
Activity Markers (SAMs). The model continuously updates
inferred beliefs about the likelihood of an attack in the light
of new information becoming available.

1) Local Detectors: At the local detector level (Level 1),
each detector monitors control data Xi to detect anomalies.
Anomaly scores (ASi) are computed here using modified z-
scores [20], where the modified z-score (Zs) is calculated as:

Zs =
Xi − median(Xi)

MAD(Xi)
, (2)

with Xi representing the observed data point at time i, and
MAD is the median absolute deviation. The anomaly score
ASi at time i is defined as:

ASi = |Zs| (3)

This score indicates the degree of deviation from expected
behavior.

The prior distribution, representing the initial belief about
the likelihood of an anomaly being an attack, is modeled based
on historical SCADA data and the distribution of anomalies.
Let θ1i represent the prior belief at the local detector level:

θ1i ∼ Normal(µH , σ2
H) (4)

where µH and σ2
H are the mean and variance derived from

historical SCADA data anomalies.
Bayesian inference is then applied to update these prior

beliefs with new data, including the current SCADA data Xi

and SAMs. The likelihood function incorporates the anomaly
score ASi and the SAMs, and modifies the prior distribution
θ1i to form the posterior distribution:

P (Attacki|Xi,SAMi) ∝ P (Xi,SAMi|Attacki)·P (Attacki|θ1i )

Expanding the likelihood function:

P (Xi,SAMi|Attacki) = P (Xi|Attacki) · P (SAMi|Attacki)

= P (Xi|Attacki) ·
N∏
j=1

(pi,j × weighti,j) (5)

Plugging in the likelihood defined in Equation 5 and the
prior P (Attacki|θ1i ), we obtain the posterior in Equation 6 as:

P (Attacki|Xi,SAMi) =

P (Xi|Attacki)×
∏N

j=1 (pi,j × weighti,j)× P (Attacki|θ1i )
P (Xi,SAMi)

(6)

where P (Xi,SAMi) is the marginal likelihood, ensuring
that the posterior distribution sums up to one. The prior
P (Attacki|θ1i ) reflects the initial belief about the likelihood
of an attack, influenced by θ1i .
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Figure 1. Integration of primary supervisory control data and secondary contextual data (SAMs) to compute anomaly and attack likelihood scores through a
combined machine learning and Bayesian model.

2) Intermediate Levels: At the intermediate levels (Level
l ≥ 2), the information from multiple local detectors at the
lower level l − 1 is aggregated to refine the estimate of the
attack likelihood at timestep i.

Each intermediate level l begins with a prior belief θ
(l)
i ,

informed by the posteriors from Level l − 1 as follow:

Prior(l)i = P (Attack(l)i |θ(l)i ) ⇒

Prior(l)i = f
(
{P (Attack(l−1)

i |X(l−1,k)
i ,SAM(l−1,k)

i )}Nk=1

)
(7)

Equation 8 represents the likelihood aggregated from the
underlying detector k at timestep i from Level l − 1. N is
the number of detectors contributing to the detector at the
intermediate level l, and w(l−1,k) is the weight for the amount
of contribution of each lower detector. In addition, we this
weight normalized such that the sum of all weights ensures
that the combined likelihood remains a valid probability.

Likelihood(l)i =

N∑
k=1

w(l−1,k)[P (X
(l−1,k)
i |Attack(l)i ) ·P (SAM(l−1,k)

i |Attack(l)i )]

(8)
The aggregated posterior at each detector in the intermediate

level l is then computed as:

P (Attack(l)i |X(l)
i ,SAM(l)

i ) =
Prior

(l)
i × Likelihood

(l)
i

P (X
(l)
i ,SAM(l)

i )
(9)

3) Global Detector: At the global level, the final assess-
ment of the system’s security status is made by aggregating
information from the immediately preceding intermediate level
L. The global detector can be seen as the final detector in the
hierarchical structure, where it integrates all the aggregated
information from the last intermediate level. In the following
equations, (g) is the short form of global.

The prior distribution at the global level, denoted as θ(global)
i ,

or θ
(g)
i for short, is informed by the posteriors from the last

intermediate level L at timestep i. This prior is formulated as:

Prior(g)
i = P (Attack(g)

i |θ(g)i ) (10)

The likelihood at the global level is derived from the
aggregated likelihood from the last intermediate level L, which
has already integrated all the information from lower levels.
P (X

(L,k)
i |Attack(global)

i ) is the likelihood of the SCADA data
from detectors contributing to the global level at time i. The
likelihood is expressed as:

Likelihood(g)
i =

NL∑
k=1

w(L,k)
[
P (X

(L,k)
i |Attack(g)

i )× P (SAM(L,k)
i |Attack(g)

i )
]
=

NL∑
k=1

w(L,k)

P (X
(L,k)
i |Attack(g)

i )×
N∏
j=1

(pL,k
i,j × weightL,k

i,j )


(11)

Here, w(L,k) represents the weight assigned to the contribution
of each detector k from the last intermediate level L.

The posterior probability at the global level at timestep i is
then computed by combining the prior from Equation 10 and
the likelihood from Equation 11:

P (Attack(g)
i |X(g)

i ,SAM(g)
i ) =

Prior(g)
i × Likelihood(g)

i

P (X
(g)
i ,SAM(g)

i )
(12)

where:
• X

(g)
i represents the aggregated SCADA data relevant to

the global level at timestep i.
• SAM(g)

i includes all SAMs to the global level at time i.
This approach ensures that the global level threat assessment

integrates all available evidence at the current time step, taking
into account the data and SAMs from all intermediate levels in
the hierarchy. By continually updating the posterior probability
P (Attack(global)

i ) at each time step, the system maintains a
comprehensive and accurate evaluation of potential threats,
even when different detectors process different portions of the
data.

Promoting a structured and methodical approach based on
a hierarchical Bayesian model, GenAttackTracker integrates
control data and SAMs at each time step i, thereby enhancing
the detection and assessment of cyber threat activity. The
result is a robust tool for improving situational awareness and
decision-making in real-time.
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V. EXPERIMENTS

In this section, we evaluate the performance of GenAttack-
Tracker against the baseline AttackTracker framework using
the SWaT dataset. The experiments aim to demonstrate the
effectiveness of the enhanced dynamic scoring mechanism
combined with Bayesian inference for real-time SCADA-
based cyber-threat detection. We use Monte Carlo simulation
for abstractly modeling externally determined SAM values as
secondary inputs in the calculation of the posterior distribution.

A. Dataset

The SWaT dataset is derived from a Secure Water Treatment
(SWaT) testbed, a scaled-down water treatment facility that
simulates the operations of a real-world critical infrastructure
system [22]. The dataset includes 11 days of continuous data,
with the first seven days representing normal operations and
the last four days containing multiple attack scenarios.

The dataset comprises 51 variables, including sensor read-
ings (e.g., flow rates, water levels, pressure) and actuator
states (e.g., pump statuses, valve positions), recorded at 1-
second intervals. The result is a high-dimensional multivariate
time series that serves as the basis for our analysis. Among
these variables, the most critical for anomaly detection include,
FIT201 (Flow Indicator Transmitter), LIT101 ( Level Indicator
Transmitter), PIT501 ( Pressure Indicator Transmitter) and
AIT502 (Analyzer Indicator Transmitter). These variables are
particularly important due to their direct influence on the
operational state of the water treatment process, making them
key indicators of potential anomalies.

The dataset includes 36 distinct attack scenarios spread
across the last four days, ranging from single-point disruptions
to coordinated attacks affecting multiple components simul-
taneously. These scenarios are designed to simulate various
real-world TTPs, such as tampering with sensor readings,
manipulating actuator states, and disrupting communication
between control components.

B. Implementation

The implementation of the GenAttackTracker framework
was carried out in a Python-based tool environment, leveraging
widely adopted libraries, such as TensorFlow for deep learning
and Scikit-learn for statistical modeling. We used the PyMC3
library to implement the Bayesian inference process, allowing
for efficient posterior estimation using Markov Chain Monte
Carlo (MCMC) sampling. The implementation follows the
steps outlined in Figure 2. For the experiments we used an
Apple M1 Max chipset, featuring a 10-core CPU (3.2 GHz)
and 32-core GPU, with 64GB of unified memory shared
between CPU and GPU.

C. Data Analysis

In this analysis, we demonstrate how the hierarchical
Bayesian model enhances and provides an experimental tool to
study the effect of secondary data updating the probability of
an attack with new observations. Figure 3 shows the combined
likelihoods from four SCADA variables and SAMs. The spike

Figure 2. Bayesian Inference Engine Algorithm in GenAttackTracker.

Figure 3. Combined Likelihood from four variables.

in the likelihood of LIT101 around 10:01:14 AM suggests a
potential anomaly, possibly indicating an attack.

Figure 4 illustrates the evolution from prior belief to pos-
terior distribution as new data is incorporated. Initially, the
prior distribution reflects a low probability of an attack. As
the anomaly in LIT101 and relevant SAMs are observed,
the first posterior distribution shifts rightward, indicating an
increased belief in the likelihood of an attack. A second
posterior update further refines this belief, sharply increasing
the probability and reducing uncertainty. These updates, in-
formed by SAMs (summarized in Table I, demonstrate how
integrating additional contextual data can enhance decision-
making. The tighter confidence intervals in the global posterior
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Figure 4. Updating the prior belief about the system security status.

TABLE I
SUMMARY OF SUSPICIOUS ACTIVITY MARKERS (SAMS)

SAM Type Probability (pi) Weight (weighti)
SAM1 type 1 0.7 0.30
SAM2 type 2 0.6 0.20
SAM3 type 3 0.8 0.25
SAM4 type 4 0.5 0.15
SAM5 type 5 0.9 0.10

reflect a higher certainty in detecting actual attacks. The re-
duced variance demonstrates that GenAttackTracker can more
confidently assess security threats in real-time by incorporating
SAMs as secondary source of data.

VI. CONCLUSION

In this paper, we introduce GenAttackTracker, an innova-
tive framework for enhancing real-time detection of cyber
threats targeting SCADA-based critical infrastructure systems.
By integrating dynamic anomaly scoring with hierarchical
Bayesian models, GenAttackTracker addresses the complexi-
ties of identifying and interpreting cyber threats within highly
interconnected operational technology environments. A key
contribution of this framework is its ability to incorporate
SAMs as secondary contextual data, providing a more assured
threat detection process. This integration not only reduces the
likelihood of false positives but also allows the framework
to serve as a powerful experimental tool by evaluating the
effects of secondary input data on the overall system status,
using Monto Carlo simulation in the calculation of posterior
distributions. By doing so, it enhances decision-making pro-
cesses and improves situational awareness. The experimental
results confirm that the inclusion of contextual information
refines threat assessment, making this approach a valuable
addition to the cybersecurity domain. While putting a spotlight
on SCADA, the strategies we discuss here do likely apply to
a much broader range of industrial process control systems.

In our continued work, we plan to further generalize the
GenAttackTracker model, going beyond analyzing isolated
OT infrastructures, to analyze cyber threat activities across
ecosystems of linked critical infrastructures as outlined in [4].
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