IARIA

CONTENT 2025

The Seventeenth International Conference on Creative Content Technologies

ISBN: 978-1-68558-262-3
April 6 - 10, 2025

Valencia, Spain

CONTENT 2025 Editors

Steve Chan, VTIRL, VT/DE-STEA - Orlando, USA

CONTENT 2025

Forward

The Seventeenth International Conference on Creative Content Technologies (CONTENT 2025), held on
April 6 — 10, 2025, continued a series of events targeting advanced concepts, solutions and applications
in producing, transmitting and managing various forms of content and their combination. Multi-cast and
uni-cast content distribution, content localization, on-demand or following customer profiles are
common challenges for content producers and distributors. Special processing challenges occur when
dealing with social, graphic content, animation, speech, voice, image, audio, data, or image contents.
Advanced producing and managing mechanisms and methodologies are now embedded in current and
soon-to-be solutions.

Similar to the previous edition, this event attracted excellent contributions and active participation from
all over the world. We were very pleased to receive top quality contributions.

We take here the opportunity to warmly thank all the members of the CONTENT 2025 technical
program committee, as well as the numerous reviewers. The creation of a high quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
that dedicated much of their time and effort to contribute to CONTENT 2025. We truly believe that,
thanks to all these efforts, the final conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals, organizations and
sponsors. We also gratefully thank the members of the CONTENT 2025 organizing committee for their
help in handling the logistics and for their work that made this professional meeting a success.

We hope CONTENT 2025 was a successful international forum for the exchange of ideas and results
between academia and industry and to promote further progress in the area of creative content

technologies. We also hope that Valencia provided a pleasant environment during the conference and
everyone saved some time to enjoy this beautiful city.

CONTENT 2025 General Chair

Hans-Werner Sehring, NORDAKADEMIE - University of Applied Sciences, Germany
CONTENT 2025 Steering Committee

Raouf Hamzaoui, De Montfort University - Leicester, UK

Manfred Meyer, Westfalische Hochschule, Germany

Mu-Chun Su, National Central University, Taiwan

CONTENT 2025 Publicity Chair

Francisco Javier Diaz Blasco, Universitat Politecnica de Valencia, Spain
Ali Ahmad, Universitat Politecnica de Valencia, Spain

José Miguel Jiménez, Universitat Politecnica de Valencia, Spain
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain

CONTENT 2025

Committee

CONTENT 2025 General Chair
Hans-Werner Sehring, NORDAKADEMIE - University of Applied Sciences, Germany
CONTENT 2025 Steering Committee

Raouf Hamzaoui, De Montfort University - Leicester, UK
Manfred Meyer, Westfalische Hochschule, Germany
Mu-Chun Su, National Central University, Taiwan

CONTENT 2025 Publicity Chair

Francisco Javier Diaz Blasco, Universitat Politecnica de Valencia, Spain
Ali Ahmad, Universitat Politecnica de Valencia, Spain

José Miguel Jiménez, Universitat Politecnica de Valencia, Spain
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain

CONTENT 2025 Technical Program Committee

Kambiz Badie, Research Institute for ICT & University of Tehran, Iran

René Berndt, Fraunhofer Austria Research GmbH, Austria

Mario Bisson, Politecnico di Milano, Italy

Christos J. Bouras, University of Patras, Greece

Vincent Charvillat, Toulouse University, France

Xuanbai Chen, Amazon, USA

Juan Manuel Corchado Rodriguez, Universidad de Salamanca, Spain

Rafael del Vado Virseda, Universidad Complutense de Madrid, Spain

Sotiris Diplaris, Information Technologies Institute - Centre for Research and Technology Hellas, Greece
Jimmy Eadie, Trinity College Dublin, Ireland

Hannes Fassold, Joanneum Research - Digital, Graz, Austria

Joshua A. Fisher, Columbia College Chicago, USA

Valérie Gouet-Brunet, IGN / LaSTIG, France

Raouf Hamzaoui, De Montfort University, UK

Yuntian He, The Ohio State University, USA

Verena Kantere, National Technical University of Athens, Greece / University of Ottawa, Canada
Wen-Hsing Lai, National Kaohsiung University of Science and Technology, Taiwan

Alain Lioret, Université Paris 8, France

Junhua Liu, The Chinese University of Hongkong, Shenzhen, China

Yong Liu, Universiti Brunei Darussalam, Brunei

Nadia Magnenat-Thalmann, University of Geneva, Switzerland & Nanyang Technological University,

Singapore

Prabhat Mahanti, University of New Brunswick, Canada

Maryam Tayefeh Mahmoudi, ICT Research Institute, Iran

Manfred Meyer, Westphalian University of Applied Sciences, Bocholt, Germany
Cise Midoglu, Simula Metropolitan Center for Digital Engineering, Oslo, Norway
Yurij Mikhalevich, QA Wolf, United Arab Emirates

Li Mingming, JD.com Beijing, China

Mohit Mittal, INRIA, Lille, France

Mohammad Alian Nejadi, Universiteit van Amsterdam, The Netherlands
Stefania Palmieri, Politecnico di Milano, Italy

Hans-Werner Sehring, NORDAKADEMIE Hochschule der Wirtschaft, Germany
Anna Shvets, GFl Informatique, Toulouse, France

Mu-Chun Su, National Central University, Taiwan

Stella Sylaiou, Aristotle University of Thessaloniki, Greece

Shengeng Tang, Hefei University of Technology, China

BoZo Tomas, University of Mostar, Bosnia and Herzegovina

Paulo Urbano, Universidade de Lisboa, Portugal

Sergej Zerr, Computational Data Center | University of Bonn, Germany

Yechao Zhang, Huazhong University of Science and Technology, Wuhan, China
Ziqi Zhou, Huazhong University of Science and Technology, China

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the
dissemination of the published material. This allows IARIA to give articles increased visibility via
distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that | represent the authors of this article in
the copyright release matters. If this work has been done as work-for-hire, | have obtained all necessary
clearances to execute a copyright release. | hereby irrevocably transfer exclusive copyright for this
material to IARIA. | give IARIA permission or reproduce the work in any media format such as, but not
limited to, print, digital, or electronic. | give IARIA permission to distribute the materials without
restriction to any institutions or individuals. | give IARIA permission to submit the work for inclusion in
article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or
otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and
any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above
provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any
individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of
manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without
limitation, negligence), pre-contract or other representations (other than fraudulent
misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that
case, copyright to the material remains with the said government. The rightful owners (authors and
government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and
IARIA's partners to further distribute the work.

Table of Contents

Integrating Creative Artifacts into Software Engineering Processes 1
Hans-Werner Sehring

The Generation of Piano Music in the Style of Johannes Brahms Using Neural Network Architectures 7
James Doherty and Brendan Tierney

Practical Applications of State-Of-The-Art Large Language Models to Solve Real-World Software Engineering 13
Problems Autonomously
Yurij Mikhalevich

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

Integrating Creative Artifacts into Software Engineering Processes

Hans-Werner Sehring
Department of Computer Science
Nordakademie
Elmshorn, Germany
e-mail: sehring@nordakademie.de

Abstract—Model-driven software engineering processes are
based on formal models that are automatically transformed
into each other. Many software development approaches involve
creative activities that result in manually generated and informal
documents that prevent automatic model transformations. The
content of these documents must be accessed in a structured way
to enable transformation steps. Manually maintained documents
are subject to frequent changes, including modifications of their
structure. To enable model-driven processes in the presence
of creative activities and their documents, we are currently
experimenting with parsing techniques that combine the structure
of documents with domain knowledge about their content.
First experiments are based on the Minimalistic Metamodeling
Language and its ability to integrate semantic descriptions with
syntactic representations.

Keywords-software development; software engineering; computer
aided software engineering; top-down programming; document
handling.

I. INTRODUCTION

Software engineering processes involve the creation and
consumption of a series of documents. Such documents link
different phases of activity in software creation processes, be
they sequential work performed by experts in phase-oriented
projects or simultaneous cooperation in cross-functional teams
in agile approaches.

A class of software engineering processes that are based on
documents that contain formal models are called Model-Driven
Software Engineering (MDSE) or Model-Driven Software
Development (MDSD) processes.

Some software engineering processes include creative activ-
ities, such as conceptual modeling or interaction design [1].
Such creative actitivies are supported by documents that have
neither a common format [2] nor formal semantics. Instead,
they reflect subjective impressions, case-based presentations,
alternatives, and similar content directed at a human audience.

Documents that lack formal structure cannot participate in
MDSE processes per se. However, they can be annotated by
their creators with, for example, with references to relevant
content that are sufficiently fine-grained to address well-
formed content. Such annotations allow creative documents to
participate in MDSE processes.

However, such annotations refer to specific document in-
stances. Documents used in creative activities are, in particular,
working documents that are subject to constant change. This
includes changes in the structure of the documents. Therefore,
any fixed reference to content in such a document will poten-
tially become invalid and metadata may become inconsistent
as work progresses.

In this paper, we investigate means of integrating informal
documents, in particular ones that are subject to change,
into (model-driven) software engineering processes. We are
currently experimenting with linguistic means of recognizing
the content of documents with changing structures. First
experiments with document recognition are based on a mod-
eling language and its special ability to integrate semantic
descriptions with syntactic representations.

Preliminary results show that at least some content can be
extracted from documents that lack formal representations. In
this way, model-driven approaches can potentially be applied
to software projects with creative aspects.

The remainder of this paper is organized as follows: In
Section II, we revisit model-driven software engineering
and discuss the need for incorporating informal documents.
Section III presents typical ways of referencing content in
single documents, and it addresses means of managing volatile
references to content of mutable documents. Section IV
briefly introduces a modeling language that is used for initial
experiments in this paper. An experimental implementation of
these concepts is presented in Section V. The paper concludes
in Section VI with a summary and an outlook on future work.

II. VISUAL SOFTWARE ENGINEERING ARTIFACTS

The discourse in this paper does not require a comprehensive
introduction to model-driven approaches. However, this section
introduces some basic terms and highlights the challenges of
integrating creative work.

A. Model-Driven Software Engineering

In software development processes, a series of documents is
created. The kinds of documents may differ depending on the
kind of software being created and on the methodology used
for the process. But all documents serve common purposes,
such as linking activities by the results represented in them,
allowing traceability of activities [3], and others.

MDSE formalizes the flow of documents and thus the
connection of development steps. Documents are models with
a formal semantics. Models are derived by means of model-
to-model transformations and finally to code in model-to-
text transformations on a (semi-) automatic basis. This way,
development steps can be performed (semi-) automatically and
changes to models can be propagated down the model chain.

One of the first prominent examples of MDSE is the Object
Management Group’s Model-Driven Architecture (MDA). Var-
ious other approaches have emerged that differ in the way in

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

Concept Lo-Fi Prototypes Hi-Fi Prototypes
Dlaaaeiia el Information
7 Architecture Style guide
Personas X
K % Solution Software
\4 W ‘ Wireframes v Click dummy Architecture Architecture + Code
Customer journeys Module catalog Touchpoint- X
‘ / 9 Y ‘ data mapping Software architecture
v v v YR Tests Touchpoint- ¥
Solution hypothesis Navigation function mapping y Code
‘ (Semiformal (code, ‘ VY Libraries
fil f prototyping tool: .
iles of prototyping tools) High-level Y Configuration
architecture [P

Informal descriptions
Formal descriptions

Architecture description

Figure 1. A typical software development process that integrates creative activities [4].

which they implement transformations, for example, by means
of metaprogramming [5], code templates [6], or generative
artificial intelligence [7].

B. Creative Software Development Activities

Certain kinds of software solutions, for example, one with a
focus on the human-machine interface, include creative steps.
Examples of creative activities are the definition of interaction
patterns, of user experience in general, and user interface design
in particular.

In [8], we use the term Model-Supported Software Creation
(MSSC) to distinguish this kind of software development from
general MDSE that relies purely on formal representations.

Figure 1 shows typical development steps and artifacts
created to model aspects of a software solution. Models,
such as the Domain model, the High-level architecture, and
the Software architecture can typically be expressed in a
suitably formal way as to be derived from each other by
model-to-model transformations. However, other documents
are typical representatives of informal documents, such as
Personas, Customer journeys, and Style guides. There may
even be dynamic artifacts, such as a click dummy that needs
to be experienced by a human observer who interacts with it.

C. Creative Artifacts in Model-Driven Processes

Depending on the type of software, there are different
steps in the development process that are of an informal
nature. Some software solutions require creative development
activities. Typical such activities are those from the disciplines
of domain modeling, conceptual modeling, and visual design.
Such development steps are typically performed manually and
lead to subjective results. As a result, tools that support creative

activities often produce informal representations and documents.

Therefore, software projects that involve creative activities
cannot be fully covered by model-driven processes in most
approaches.

In order to include creative actitivies in model-driven
processes, the informal documents that are generated have
to be interpreted in such a way that their content can be
referenced and can be extracted in a defined structure. Through

such an interpretation, content may be used in software models
or during model transformations.

Interpretations of documents that lack formal structure can
be added explicitly. For example, their creators may provide
annotations with content references and metadata to guide
access to relevant content. Such annotations, however, refer to
specific document instances.

Creative activities typically consist of numerous iterations.
As a consequence, documents used in creative activities are
subject to constant change. Changes include changes to the
structure of the documents. Therefore, any fixed reference to
content in such a document will potentially become invalid
and metadata may become inconsistent as work progresses.
As a consequence, documents are required to be constantly
reinterpreted.

III. REFERENCING CONTENT IN DOCUMENTS

In order to extract content from documents in a form that
is suitable for use in a formal development process, parts of
that content must be addressable. This requires documents to
be structured, or to allow superimposed structures for content
references.

Digital documents can be structured to varying degrees.
Typically, document formats are categorized as structured, semi-
structured, and unstructured.

A. Structured Documents

Structured documents are created according to a well-defined
structure and they can be analyzed precisely according to that
structure. This can be realized in three different ways. The
structure of documents may be used to query for content,
such as object paths based on JSON definitions. To be able to
address specific parts of a document, structure elements must
have stable names (paths) or stable IDs. A different approach
is grammars, which can be used both to create documents of
a certain form and to parse documents to identify structural
elements according to linguistic constructs.

A common structure to which multiple documents conform
calls for a schema or document format. Schemas of structured
documents differ in the meaning they convey. A format may

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

reflect visual layout like, for example, in the case of HTML, it
may use a generic semantics like, for example, XML formats
for formal languages, or it may carry domain knowledge as,
for example, application-specific XML formats.

B. Semistructured Documents

Documents that have a recognizable structure, but no com-
mon schema to which they conform, are called semistructured.
Any interpretation rules applied to such documents are fragile
in the sense that they may not be applicable to all document
instances, or else all possible forms of documents must be
considered.

If there is some technical structure that allows referencing
parts of a document, then some pragmatics can be applied
to interpret combinations of structure elements and content.
For example, in a text document, there may be a recognizable
structure of single-line terms written entirely in bold font. That
may be interpreted as the term being a section heading. If
the document is a software architecture description, and if
the term is interpreted as a subsection of a section “Software
Components”, then the term may be interpreted as the name
of a software component.

In this way, semistructured documents are required to expose
some recognizable structure, and interpreting them requires
some known domain semantics and pragmatics to apply some
interpretation rules.

C. Unstructured Documents

Unstructured documents, exhibit no structure that would
allow referencing parts of a document. Typical examples of
such documents are media files in binary format.

To reference parts of an unstructured document, some
technical ways of addressing can be used, for example, pixel
ranges in an image or timecode sequences in movies. Such
references depend on the concrete document or, more precisely,
on the actual presentation of it. For example, areas of an image
that are defined by pixel coordinates relate to the resolution
of that image. Such references are, therefore, volatile. For
example, a selection of pixel coordinates is not valid for an
equivalent image in different resolution.

There is no precise way to semantically reference content,
although the semantics of unstructured documents can be
analyzed by various algorithms.

D. Aggregating Documents from Different Sources

When accessing document collections that originate from
different sources, the problem of different or varying schemas
may aries. A typical approach to cope with such a situation is
employing adapter components that allow accessing structured
documents according to a common schema or by transforming
them into a common schema [9].

E. Extracting Content from Mutable Documents

As mentioned earlier, documents created during creative
activities in software engineering processes are subject to
change, which means they have to be mutable (volatile,
sometimes called /iving documents).

In MDSE processes, the contents of documents are used
to create software models from them, or such models are in
other ways related to the contents of documents. Changing
documents can generally break such relationships.

One solution is to create copies of documents once they
are referenced and to keep these copies stable. But this would
exclude further work on those documents from the process.

Parsing is a standard approach to identifying meaningful
content in a document. For formal languages, a parsing
process operates on the syntactic structures of a document
and applies a defined semantics to interpret those structures.
Documents resulting from creative processes do not follow a
fixed semantics. Therefore, classical parsing approaches based
on formal languages alone do not work on them. In our current
research, we augment document parsing with the application
of domain knowledge.

Parsing of semistructured documents requires pragmatics
since not all parts of the document have an identifiable structure.
An open question is whether pragmatics can be provided by
domain knowledge: two equally formatted expressions may be
distinguished by some significant content. In general, domain
knowledge may be necessary to decide on a parsing strategy.

Parsing is well understood for formal and, to a limited extent,
semistructured representations, but it is usually applied once.
Updating models based on subsequent parsing results of a
modified document requires, according to our current findings,
an additional relationship between document structure and
domain semantics.

IV. THE M3L AS A MODELING LANGUAGE

The Minimalistic Metamodeling Language, short M>L, is
a metamodeling language. As such, it can be employed for
models for different kinds of applications. We use it for first
experiments in document recognition by capturing domain
semantics as well as document formatting.

The M3L allows defining and deriving concepts. Definitions
are of the general form
A is aB {CisaD} |=E {F} |-GH
Such a statement matches or creates a concept A. All parts of
such a statement except the concept name are optional.

In the course of this paper we use a graphical notation of the
MB3L as shown in Figure 2 for the different parts of a concept
definition. For concept refinement we borrow notation from
the Unified Modeling Language (UML), see Figure 2c for is a
relationships and Figure 2d for is the relationships.

The concept A is a refinement of the concept B. Using the “is
the” clause instead defines a concept as the only specialization
of its base concept.

The concept C is defined in the context of A; C is part of the
content of A. Contexts define (hierarchical) scopes. Concepts,
such as A are defined in an unnamed top-level context.

There can be multiple statements about a concept visible
in a scope. Statements about a concept are cumulated. This
allows concepts to be defined differently in different contexts.

For an example of modeling with the the M3L, consider
the definition of a conditional statement found in imperative

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

A
- 7
c
(a) hanging,A M3L A
concept (b) M3L concept
containment

(c) M3L concept
refinement

A E Eﬂﬂ

(d) Unique M3L
concept refinement

(f) Syntactic rules of
M3L concepts

(e) Semantic rules of
MB3L concepts

Figure 2. A graphical notation of M3L concepts.

ConditionalStatement is a Statement {
Condition is a Boolean
ThenStatement is a Statement
ElseStatement is a Statement }

Figure 3. Sample base model of procedural programming.

IfTrueStmt is a ConditionalStatement {
True is the Condition

} |= ThenStatement

IfFalseStmt is a ConditionalStatement {
False is the Condition

} |= ElseStatement

Figure 4. Sample semantics of conditional statements.

programming languages in Figure 3. It consists of Condition
to decide whether to execute ThenStatement or ElseStatement.

Semantic rules can be defined on concepts, denoted by “I=".
A semantic rule references another concept, that is returned
when a concept with a semantic rule is referenced. Like for any
other reference, a non-existent concept is created on demand.

Context, specializations, and semantic rules are employed
for concept evaluation. A concept evaluates to the result of its
syntactic rule, if defined, or itself, otherwhise. Syntactic rules
are inherited from explicit base concepts (given by is alis the)
and implicit base concepts (concepts with matching content).

By means of concept evaluation, semantics can be assigned
to concepts. The code in Figure 4 uses syntactic rules to assign
semantics to the conditional statement from the example above.
A concrete statement is matched against the two subconcepts
IfTrueStmt and IfFalseStmt. If one of them is recognized as
a derived base concept of the given statement, the semantic
rule of the matching concept is inherited. This way, the “then”
statement or the “else” statement is executed (evaluated next).

Concepts can be marshaled/unmarshaled as text by syntactic
rules, denoted by “I-”. A syntactic rule names a sequence of
concepts whose representations are concatenated. A concept
without a syntactic rule is represented by its name. Syntactic

Java is a ProgrammingLanguage {
ConditionalStatement
|- if (Condition) ThenStatement
else ElseStatement . }
Python is a ProgrammingLanguage {
ConditionalStatement
|- if Condition

"\n " ThenStatement
else:
"\n " ElseStatement . }

Figure 5. Sample syntax of the conditional statement.

rules are used to represent a concept as a string as well as to
create a concept from a string.

Figure 5 shows syntactic rules that map the conditional state-
ment from the example to different programming languages.

V. FIRST EXPERIMENTS USING THE M3L

Describing static documents with metadata provided as
concepts that make reference to relevant parts of the content
has been researched in the past. Some initial experiments with
simple documents have been conducted to investigate means
of linguistic document interpretation.

A. Static Document References

As a first example of document descriptions using the
M3L, Figure 6 illustrates static references to (fragments of)
documents. It uses an example from art history. A picture of a
painting shown on the bottom of Figure 6 is described using
(M3L) concepts.

The concept hierarchy starting with the concept Document-
Reference defines references to (fragments of) documents. A
Documentld defines some address of a document (file name,
URL, or similar), and FragmentSelector defines a part of a
document that holds interesting content. For the example, we
see a sketch of a refinement hierarchy which specifies concepts
for references to two-dimensional images, for those depicting
paintings, and paintings that specifically show a ruler.

A second concept hierarchy starting with DocumentDescrip-
tion contains concepts that describe the subject of a document.
The two hierarchies meet at the PaintingDescription. An
application-specific concept RulerPaintingDescription refines
it for the area of interest, and NapoleonCrossesTheAlps finally
provides an “instance” of a ruler painting.

B. Interpretation of Semistructured Documents

As a foundation of the interpretation of some kind of
documents, some general concepts are defined first. Figure 7
shows an example of documents that represent customer
journeys and that are exported from a (hypothetical) whiteboard
software. A concept Board allows to reference a whiteboard,
a concept Page some page (assuming the whiteboard software
allows to subdivide whiteboards). On a whiteboard, there is no
recognizable structure below the page level. Starting with the
concept CustomerJourney, we look for semantic structures on a

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

DocumentReference

2DImageReference

FragmentSelector

ImageReference
Documentid

<]_

TextReference

FragmentSelector

PaintingDescription

AreaSelector

| Origin I—[>| Point (from Geometrics) |

Painter

—| ImageDescription m— |

y

| Width l—[>| Integer (from Arithmetics) |

|DocumentDescription |<]-

—| TextDescription

| Height l—[>| Integer (from Arithmetics) |

NapoleonCrossingTheAlps

RulerPaintingDescription

- URL

NapoleonBonaparte
(from RulerDatabase)

> Documentlid

E

HistoricalPerson (from History)

| RulerDepiction I—[>| AreaSelector

-|- { NapoleonSelector

y

RulerDepiction

Figure 6. Static references to documents and document fragments.

BoardModels

Board

| String (from BaseTypes) |

/\

Page

| Name l—[>| String (from BaseTypes) |

CustomerJourney
| Name |
Name TouchPoint
| Persona | | Name
Service

Visitor

Step

| VisitBefore |—[>|TouchPoint |

| VisitAfter |—[>| TouchPoint |
==

. "rectangle" "shape": "chevron"

"name": Name "connection": VisitBefore

Figure 7. Example of a pattern for mutable documents.

whiteboard page. A customer journey is some named (graphical)
object that consists of elements that represent Touchpoints and
ones that represent Steps. A touchpoint is characterized by a

Name and a Service. Syntactic rules define how such concepts
are represented on a whiteboard page. Figure 7 sketches some
rules that generate/recognize JSON code as it might come out
of a whiteboard software that is provided as a Cloud service.

Once a customer journey has been developed on a whiteboard
of that form, the syntactic rules can be used to recognize the
structure and to extract the content of it. Figure 8a shows a
sample customer journey. Also in the example of that figure, a
(MB3L) concept for the board has been created as a subconcept
of Board from Figure 7 with a reference to the board document.

When the board is interpreted according to the syntactic
rules for Boards, the result is the concept structure from
Figure 8b. The concepts that have been created from the board
reflect some of the design decisions contained in the customer
journey representation, such as the participating persona and
the relationships to the touchpoints it visits and the sequence
of touchpoints along the customer journey.

The extracted information can be used in subsequent activi-
ties of the software development process. Using the M3L, the
resulting concepts can be related to concepts that represent
models created in such subsequent activities.

C. Reinterpretation of Mutable Documents

Mutable documents are handled by repeatedly applying
the parsing process. When reinterpreting a document after
a change, fresh concept definitions are made in the M3L. Due
to M3L’s way of matching definitions against existing concepts
before creating new ones, previous interpretations are found and
used in the parsing process. Depending on the concept model,
existing concept references that were established by model-to-
model transformations are preserved. In this way, documents
can be modified even if they have already been interpreted and
related to other models during an MDSE process.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

CustomerJourneys:CustomerJourney3

John ;mith

gwarene» Interest \> Conversio&ng%eme» Advocacy>
] —
v Online Ad ‘ , Website ‘ d Shop g q RegistralionJ lSOCia

CustJourneyBoardsWithDirectMailStep

2 ks URL Page
| Name | |CustomerJourney3 |e[>| Name
% CustomerJourney
| CustomerJourneys | TouchPoint
| Website |e[>| Service |

(a) Example of a query to mutable documents.

BoardInstances

SomeBoard

| CustomerJourneys |

Page

| CustomerJourney3 |

CustomerJourney3

| FrominterestToLoyalty || John Smith |

TouchPoint3.1 Step

| Banner || OnlineAd | |Awareness TouchPoint3.1

TouchPoint3.2 |

TouchPoint3.2 Step
Information Website | Interest Touchpoint3.2 ||TouchPoint3.3 |
| TouchPoint3.3 | | TouchPoint3.4 || TouchPoint3.5 |

(b) Example result of mutable document recognition.

Figure 8. Parsing of documents and document fragments.

Recognition of existing concepts requires some stable
information. These may, for example, be unique names as
well as a certain location in the document structure where it
is placed. In the example of the digital whiteboards above,
names might be given in a specially positioned text field. As
a consequence, the documents are not completely mutable, at
least not in terms of content.

An agreement on some recognizable information constitutes
a restriction to the idea of mutable documents. Finding ways
of leveraging this situation is subject to future work.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigate an approach to integrate
semi-structured documents supporting creative activities into
MDSE processes. Using the M3L, documents can be parsed
based on their syntactic structure in conjunction with the
semantics of the concepts represented in such documents. A
first simple experiment shows that content can be extracted from
a document in a suitably formal form if the document follows
some conventions. The concepts recognized in a document can
serve as model elements that link the documents to the chain
of model-to-model transformations of MDSE processes.

Future work will need to test this approach with a range
of existing file formats and service APIs to further investigate
the limits of document interpretation and possibly identify
additional requirements for parsing technology. There are limits
to the extent to which documents can be modified without
losing existing links to software models. These limits are not
well researched. We need to find the limits, ways to extend
them, and notations to describe parts of documents that must
not be altered. Another future research direction concerns a
form of roundtrip engineering in which documents are not only
interpreted, but also generated from models that need to be
presented in a form suitable for non-technical stakeholders.

ACKNOWLEDGEMENT

The author thanks the Nordakademie for granting the
opportunity to publish this work.

REFERENCES

[1] G. Liebel et al., “Human factors in model-driven engineering:
Future research goals and initiatives for mde”, Software and
Systems Modeling, vol. 23, no. 4, pp. 801-819, 2024.

[2] E. Herac, L. Marchezan, W. Assuncdo, R. Haas, and A. Egyed,
“A flexible operation-based infrastructure for collaborative model-
driven engineering”, in Modellierung 2024, ser. Lecture Notes
in Informatics (LNI), Gesellschaft fiir Informatik e.V., 2024.

[3] I. Galvao and A. Goknil, “Survey of traceability approaches
in model-driven engineering”, in Proceedings of the 11th
IEEE International Enterprise Distributed Object Computing
Conference, 2007, pp. 313-313.

[4] H.-W. Sehring, “Visual artifacts in software engineering pro-
cesses”, in Proceedings of the Sixteenth International Conference
on Creative Content Technologies, ThinkMind, 2024, pp. 1-6.

[5] S. Trujillo, M. Azanza, and O. Diaz, “Generative metaprogram-
ming”, in Proceedings of the 6th international conference on
Generative programming and component engineering GPCE
’07, Association for Computing Machinery, 2007, pp. 105-114.

[6] J. Arnoldus, M. Van den Brand, A. Serebrenik, and J. J.
Brunekreef, Code generation with templates. Springer Science
& Business Media, 2012, vol. 1.

[71 K. Lano and Q. Xue, “Code generation by example using
symbolic machine learning”, SN Computer Science, vol. 4, Jan.
2023.

[8] H.-W. Sehring, “Model-supported software creation: Towards
holistic model-driven software engineering”, in Proceedings
of the 2023 IARIA Annual Congress on Frontiers in Science,
Technology, Services, and Applications, ThinkMind, 2023,
pp. 113-118.

[91 I Amous, A. Jedidi, and F. Sedes, “A contribution to multimedia
document modeling and querying”, Multimedia Tools and
Applications, vol. 25, pp. 391-404, 3 Oct. 2005.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

The Generation of Piano Music in the Style of Johannes Brahms Using Neural
Network Architectures

James Doherty

Technological University Dublin
Central Quad, Grangegorman Lower, Dublin 7, DO7TADY7
Dublin, Ireland
e-mail: d14126143@mytudublin.ie

Abstract - Neural network architectures currently are only able
to employ music generation tasks to similar levels of human
composers when the music is at a basic compositional standard
as they struggle with the complex motifs and harmonic
structures of Western Classical Music. This study aims to
determine if various data preprocessing and augmentation
techniques can train a neural network model to generate pieces
of piano music to a similar level of musicality and emotion as
Romantic Period composer Johannes Brahms. Quantitative
experimentation involving Music Information Retrieval was
conducted, as well as a quantitative survey with respondents
consisting of only professional musicians, composers, and
conductors. Analysis of the results demonstrated that
Transformer models using various attention mechanisms
generated statically similar results to the original piano works
of Brahms and that survey participants struggled to
distinguish between the pieces generated by Brahms and the
models. The results indicate that various data preprocessing
and augmentation methods do have an impact on model
accuracy resulting in the ability to generate longer sequences
of music containing the composite motifs and harmonic
structures of romantic period piano music.

Keywords-artificial Intelligence; music generation; neural
network architecture; Brahms.

I. INTRODUCTION

The intention of this project is to generate piano music in
the style of classical music composer Johannes Brahms by
training a Recurrent Neural Network (RNN), a Long Short-
Term Memory (LSTM) based RNN, Transformer models
with different attention mechanisms, and a Perceiver AR
model. These models will be trained with a pre-processed
and augmented dataset containing MIDI files of Brahms’
piano works. To deem the success of the project, the best
musical pieces generated from the neural network models
must show statistical similarities in various musical
variables using Music Information Retrieval (MIR). Along
with this, the pieces must also be mistaken by professional
musicians, composers, and conductors as one of Brahms’

Brendan Tierney

Technological University Dublin
Central Quad, Grangegorman Lower, Dublin 7, DO7ADY7
Dublin, Ireland
e-mail: brendan.tierney@tudublin.ie

own works through a quantitative survey. Although there
have been many examples of AI models generating music in
the style of particular composers, no models have been
created to generate the work of Brahms. The lack of a
detailed computational analysis of Brahms shows a gap in
the study of romantic period composers, which Brahms was
a key figure of [1]. According to studies taken, computer-
generated music has traditionally only sounded human-like
when short excerpts were created and struggled with the
complex motifs and harmonic cadences of romantic period
piano music. This could be down to them being poor at
handling higher-level musical structures due to the models
only learning how to play the next note according to the
previous [2]. In their paper, Child et al. developed a sparse
transformer and stated that it was able to extract complex
patterns from sequences up to 30 times longer than possible
previously [3]. Likewise, Hawthrone et al. developed a
Perceiver AR model which had the ability to effectively
handle longer sequences with an improved memory
efficiency [4]. After listening to the examples from the
papers, the generated pieces still consisted of basic
harmonic and rhythmic structures and struggled with the
complex motifs and harmonic cadences of romantic period
piano music. The importance of the research problem not
only addresses Al’s ability to generate music but also
highlights the potential significance of how music could be
composed in the future, particularly for those with no
previous musical knowledge [5]. The research assumes that
neural network models can already be trained to learn the
general characteristics and patterns of various musical
composers. To help with producing optimal results, the
selected MIDI files for the dataset were exact replications of
Brahms’ piano music without errors and inconsistencies.
Based on the issues raised above, this study focused on
understanding what configurations of the neural network
models performed best when tasked with producing music
in the style of Brahms. Therefore, the research question is:
To what extent can the accuracy of various Neural
Network Models, trained with Long Short-Term Memory

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

and numerous Attention mechanisms, be significantly
improved by augmenting MIDI files containing the
compositional works of Johannes Brahms with an
augmentation pipeline to generate pieces of music that are
mistaken by professional musicians, composers and
conductors as one of Brahms’ own works?

Due to conclusions from studies taken and the general
state of knowledge at the time of beginning the project, the
null hypothesis for this research project is;

HO: Neural network models cannot generate piano works
to the same level of musicality and emotion as Brahms. Due
to this, generated pieces will not be statistically similar
through music information retrieval or mistaken as a work
of Brahms by professional musicians, composers and
conductors through a quantitative survey using Likert
Scales.

Through the utilisation of an augmentation pipeline to
expand the MIDI dataset containing the compositional piano
works of Johannes Brahms, more musical variations could
be created including transposition, rhythmical and note
durations. In addition to this, various preprocessing
techniques including track splitting, quantisation and
normalisation could help make the MIDI files more readable
for the models. This provides an alternate hypothesis;

HI: If an augmentation pipeline is utilised to expand a
MIDI dataset of pre-processed files containing the piano
works of Johannes Brahms, then various neural network
models trained with Long Short-Term Memory and
numerous Attention mechanisms could generate pieces of
music that is statistically similar to Brahms and could be
mistaken as one of Brahms’ own piano works by
professional musicians, composers and conductors through
a quantitative survey using Likert Scales and various
Independent-Samples T-Tests and Hotelling’s T? Tests being
implemented to determine whether the p-value is > 0.05 in
order to reject the null hypothesis.

This paper contains a total of four sections. Section 2
describes the experiment design, methodology and how the
dataset was prepared and pre-processed. Along with this, the
neural network models obtained for the project and MIR
functions will be explained as well as ethical considerations.
Section 3 analyses and evaluates the results of the
quantitative experiment and survey to determine if the
experiments provide evidence that the null hypothesis is
incorrect. Section 4 summarises what has been learnt and
proposes recommendations and adjustments for future
studies.

II. DESIGN AND METHODOLOGY

The research project was carried out through three stages.
Firstly, data was collected, pre-processed, and augmented.
The dataset contained 67 MIDI files of Johannes Brahms’
piano works and was obtained for offline manipulation from
Classical Archives and MIDIworld. An augmentation
pipeline was employed to create variations in melodies,
tempo, rhythm, and transpositions. This was followed by

obtaining and training various neural network models with
the augmented dataset. The models were analysed for
training accuracy and loss to determine the best
configurations. After training, the best generated examples
from each model were analysed through various MIR
functions using MIDIToolbox and MIRToolbox to determine
the best performing models [6][7]. Finally, the best models
generated pieces of music that were evaluated against the
pieces of Brahms’ repertoire for statistical equivalence.
Along with this, the same generated pieces were used in a
quantitative listener survey to test professional musicians,
composers and conductors on whether they could
differentiate between the generated pieces against the
Brahms original. All quantitative experiments involved
evaluation to test the research hypothesis through
Independent-Samples T-tests and Hotelling’s T? Tests.

A. Preparation and Preprocessing of Dataset

The preparation and preprocessing of the dataset
involved numerous steps to optimise the potential of
training the neural network models. Track splitting involved
dividing the MIDI tracks into smaller segments of 30
second clips to make the tracks more digestible for the
models in training [8]. The conversion of MIDI files into a
single track allowed for further simplicity in the files.
Normalisation was performed to ensure that the audio levels
of the files were at the same amplitude to provide consistent
values for training and evaluation tasks. Finally, all the
MIDI files were quantized to semiquavers to adjust the
timings of notes and align them with the correct timing to
ensure consistency in rthythm [9]. An augmentation pipeline
was utilised to create variations in melodies, tempo, rhythm
and transpositions. Several techniques were used to increase
the dataset size. Time-stretching was applied to make each
MIDI file 5% faster or slower. Another method was to
transpose each of the MIDI files so that the pitches would be
raised or lowered by a third [8]. Doing these increased the
dataset by 500% with a total of 445 tracks. In comparison
with prior studies, data preparation and preprocessing was
influenced by previous research, which was collected,
adapted and integrated into this paper.

B. Neural Network Models

Numerous Neural Network Architectures were obtained
for offline manipulation and trained with the augmented
Brahms MIDI dataset. A Recurrent Neural Network was
acquired from TensorFlow [9]. A RNN was described by
IBM as “a type of artificial neural network which used
sequential data or time series data” [10]. Sequential data
was utilised to predict the next output based on previous
elements in the sequence. RNNs suffer from a vanishing
gradient problem. With the neural network using the
gradient descent algorithm to update the weight, the
gradients therefore decreased in growth the further down the
layers the network progressed. A solution to this problem is
the use of LSTM which utilises gating mechanisms to

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

control the movement of information and gradients to allow
for the network to learn and maintain information over
longer sequences. [11] An LSTM-based RNN was obtained
from Huang et al. [12]. Various Transformer models
containing different attention mechanisms were obtained
from Project Los Angeles [13]. Proposed by Google
researchers Vaswani et al., transformer models do not rely
on recurring processing of data. Instead, they operate on an
attention mechanism [14]. Attention allows for neural
networks to concentrate on particular parts of the input. The
attention mechanisms tested were:

e Self-Attention — Processes inputs in the same
sequence, enabling the model to capture
dependencies within the input [15].

e Relative Attention — The relative position of tokens
is considered based on the similarity of other
tokens in the sequence [16].

e Local Windowed Attention — Restricts attention to
a fixed window of tokens, enabling the model to
focus on nearby information [17].

e Relative Self-Attention — Combination of Self and
Relative attention allowing the model to focus on
relevant information based on the positional
relationships of tokens [14].

e Sparse Attention — Attends to a subset of tokens
instead of the entire sequence to improve efficiency
while retaining information [18].

A Perceiver AR model was also obtained from Project
Los Angeles. Seen as an improvement to the Transformer
model using latent array to distinguish the size of inputs and
outputs, allowed for the model to efferently handle longer
sequences with an improved memory efficiency [19].

C. Quantitative Experiment & Survey

A quantitative experiment and survey were conducted to
test the neural network model’s ability to replicate the
musical characteristics and motifs of Brahms’ piano works.
Various MIR variables were utilised to gather various
quantitative data from the models to test against not only
each other but the original works of Brahms. These
variables included:

e Entropy — The measure of uncertainty or
unpredictability

e Duration Distribution — The statistical analysis of
note durations as well as silence

e Pitch Class Distribution — The evaluation of
frequency of musical pitches

e Mean Roughness — The measure of dissonance or
clashing sounds

e Global Energy — The total amount of energy held
within a waveform

e Normalised Pairwise Variability Index (nPVI) —
The analysis of variability between successive
durations

e Pulsation Clarity — The strength of the rhythmic
pulse in a piece of music

The quantitative survey contained a total of 10 questions
all containing the question “Rate the likelihood that this
piece was composed by Johannes Brahms as opposed to
being generated by A"’ In random order, 5 pieces contained
the works of Brahms and 5 were generated by the models.
Answers consisted of a Likert Scale of 5 values ranging
from Definitely generated by Al to Definitely generated by
Brahms. Members of the Irish Defence Forces School of
Music, RTE Concert Orchestra and National Symphony
Orchestra were recruited for the survey to provide
professional expertise in the subject. Participants were
selected based on their extensive experience in classical
music, including familiarity with Brahms’ works, having
performed his pieces in the past.

Using IBM’s SPSS software, quantitative values from the
MIR functions MIRToolbox and MIDIToolbox were tested
to obtain p-values. Various Independent-Samples T-Tests
and Hotelling’s T? tests were implemented to evaluate
musical variables to determine if there was statistical
significance between Brahms’ piano works and the
generated pieces from the Al models.

D. Ethical Considerations

Several ethical considerations were adhered to in order to
correctly conduct research including copyright issues and
collection of data from survey participants A total of 67
pieces of music were obtained for offline manipulation for
the MIDI dataset. According to German Federal Law
Gazette, copyright protection for musical and artistic works
expired 70 years after the death of the creator. With Brahms
passing away in 1897, his compositions therefore resided in
the public domain. The use of MIDI files also prevented any
issues with performers rights as recordings of Brahms’
works were not being used. All the neural network models
obtained for testing were open-source and ran under the
Apache 2.0 License. MIR tasks were performed using the
MATLAB functions MIRToolbox and MIDIToolbox. To
utilise the tools, MATLAB had to be downloaded free of
charge under the GNU General Public License. Ethical
considerations were vital when collecting data from
personnel for the quantitative survey. Participation in the
survey was voluntary and those who chose to partake were
informed of the purpose of the study. No personal
information was required from participants and the
confidentiality of participants was guaranteed from the
designer of the survey. The results of the survey were not
tampered with and therefore were accurate.

III. EVALUATION

Overfitting issues were observed during training, with the
LSTM and Perceiver AR models initially replicating the
training material excessively instead of generating unique
motifs. To mitigate this, the dataset was further augmented
by transposing musical phrases and altering rhythms

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

through quantisation to introduce additional variations in
tempo and phrasing. Experimenting with different
temperature values for each model allowed for control over
the balance between simplicity and randomisation. With
lower temperatures producing more basic outputs that
resembled the training data, while higher temperatures
encouraged greater diversity but could lead to compositions
with less structure.

The model performance metrics stated that the
transformer model with relative self-attention scored the
best training loss and accuracy with scores of 0.015 and
0.995 respectively. The recurrent neural network scored
worst in terms of training accuracy with a score of 0.628.

Through quantitative experimentation and a survey, the
neural network models utilised for the project were
evaluated extensively in a numerical form and through
professional human judgement in order to confirm or refute
the research hypothesis that neural network models could
generate pieces of music with statistically similar musical
characteristics and emotion as Brahms. To conduct a fair
experiment, each model had to generate a two-minute-long
piece which contained 300 prime tokens (30 seconds) from
the beginning of six of Brahms’ piano works. These
generated pieces were then compared with the first two
minutes of the original Brahms piece to evaluate the
evolution of the generated pieces and determine their ability
to maintain the style and structure of Brahms. MIR
evaluation concluded that the Transformer models with self-
attention, local windowed attention and relative global
attention performed best in generating music most similar to
the Brahms original.

Several statistical tests were conducted on the best
performing models to obtain p-values to test the research
hypothesis. The variables Entropy, nPVI, Global Energy,
Mean Roughness and Pulsation Clarity were tested with an
Independent-Samples t-test and the wvariables Duration
Distribution and Pitch Class Distribution were tested with a
Hotelling’s T? test. Testing concluded that no statistical
significance was found with most of the variables therefore
supporting the alternative hypothesis that neural network
models can produce music similar to Brahms. However, the
variables Entropy and Global Energy were deemed to
contain statistical significance within them stating that
further work must be done to improve complexity,
uncertainty and energy to a similar level to Brahms. Using
MIRToolbox, the waveforms of the generated pieces were
evaluated.

Figure 1 shows the brightness curve of Brahms’ 2
Rhapsodies No. 1 alongside the generated piece from the
transformer model with local windowed attention. The
generated piece displays a greater variance of frequencies,
resulting in a higher entropy score.

The difference in global energy is depicted in Figure 2
where the temporal evolution curve reveals a much greater
variance in the generated piece compared to Brahms’
original work. While Brahms’ piece maintains a steady flow

of increase and decrease of tension, the generated piece has
much greater variations in timbre and harmonics
throughout. The evaluation of these waveforms determined
that the entropy and global energy values may have been
much higher than Brahms’ works due to the MuseNet
inspired workflow the transformer models undertook
causing the pieces to be generated in blocks and therefore
sound unnatural.

Brahms

2r .wav

0.7

coefficent value

0.1

o 20 40 60 80 100 120 14c
Temporal location of events (in s.)

Al

Brightness, 2rhapsodies01LOS.wav

coefficient value

20 40 60 80 100 12¢
Temporal location of events (in s.)

Figure 1. Brightness Curve between Brahms and Al

Brahms

<103 RMS energy, 2rhapsodiesO01BRAHMS.wav

coefficient value
N

o 20 40 60 80 100 120 140

Al

«1073 RMS energy, 2rhapsodies01ALLEGRO.wav

o

coefficient value
N © IS
© o & o

- o N O

05

o
o 20 40 60 80 100 120 140

Figure 2. Temporal Evolution curves for Brahms and Al

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

10

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

Figure 3 displays the Pitch Class Distribution in the form
of a box plot for Brahms’ 3 Intermezzi No.l and the
generated piece from the transformer model with local
windowed attention. With the piece being in the key of D#
Major, which has an enharmonic equivalent of C minor, in
order to stay within the key signature, the majority of the
notes must be from the following triads:

o D# Major — D#, G, A#
e CMinor-C,D#, G

The pitch class distribution showed that both the original
Brahms piece and AI generated were kept within these
guidelines, with particular emphasis being placed on the
notes D# and G as they feature in the triads of both D#
major and C minor. Although the transformer model
focused on the notes within the two triads to ensure
consistency in the key signature, it was apparent that the
model was reluctant to incorporate accidentals to further add
colour to the piece. The use of extended chords was a key
factor of the romantic period in which Brahms lived in and
it was an era that bridged the gap between classical and
modern music. MIRToolbox was able to identify both the
Brahms and Al pieces to be in the key of D# major. With
the function mirmode, it identified that the generated piece
scored a higher probability of being in a major key than the
Brahms original. Although it was positive that the generated
piece was able to keep within the key signature for longer
generated sequences, it does show an inability to evolve
melodically into different harmonics.

Brahm

0.3

0.25

0.2

0.15

Proportion (%)

0.05

UDDD mil DD m

C C# DD# E F F# G G# A A# B
Pitch-class

Al

o
w

Proportion (%)

o o
o = o N
= o N &

=
1=}
o

L0

C C# D D# E F F# G G# A A# B
Pitch-class

Fig. 3 Box Plot of the Pitch Class Distribution between Brahms and Al

A quantitative survey was also conducted to obtain human
evaluation on 30 second clips of generated pieces from the
models against the original works of Brahms. A total of 56
participants featuring only professional musicians,
composers and conductors, displayed difficulty in
recognising the distinction between the Brahms and
generated pieces provided, with the majority incorrectly
identifying two of the generated pieces as one of Brahms’
own works.

Table 1 shows the percentages for each of the questions
alongside whether the track was that of Brahms or Al. The
total score was also calculated with the number of responses
per answer being multiplied dependant on how similar to
Brahms it was scored with Definetly generated by Al
scoring 1 and Definitely generated by Brahms scoring 5.
This was designed so that uncertainty was treated as a
reward for the AI models as they still had not been
identified as not Brahms.

An Independent-Samples T-Test was conducted which
stated that there was no statistical significance between the
Brahms and generated pieces therefore supporting the
alternative hypothesis that neural network models trained
with an augmented and pre-processed dataset could generate
music at the level of musicality and emotion as of Brahms
so much that through a quantitative survey the difference
could not be identified by professional musicians,
composers and conductors.

TABLE 1. QUANTITATIVE SURVEY RESULTS

Al Probably AT Unsure Probably Brahms | Brahms | Total Score
Brahms 3.64% 5.45% 3.64% 36.36% 50.91% 237
Brahms 12.50% 25.00% 3.57% 37.50% 21.43% 185
Brahms 0% 2321% 7.14% 39.29% 30.36% 21
Brahms 17.86% 44.64% 3.57% 28.57% 5.36% 145
Brahms 7.27% 7.27% 18.18% 41.82% 25.45% 207
Al 23.21% 32.14% 12.50% 23.21% 8.93% 147
Al 10.71% 19.64% 19.64% 28.57% 21.43% 185
Al 5.36% 41.07% 14.29% 32.14% 7.14% 165
Al 14.55% 34.55% 5.45% 32.73% 12.73% 165
Al 7.27% 30.91% 7.27% 36.36% 18.18% 183

IV. CONCLUSION AND FUTURE WORK

The work conducted in this paper differed to previous
studies as it trained various neural network models with a
dataset containing the piano works of Brahms, an important
figure of the Romantic Period in Classical Music. By doing
this, a gap in the research was addressed by analysing a very
important composer in an era of classical music were
harmonic and rhythmic structures began to diverge from the
traditional aspects of Renaissance and Classical Period
music while also bridging the gap between traditionalism
and modernism. While the literature review stated a gap in
the research that previous models struggled with complex
motifs and harmonic cadences of romantic period piano
music. This paper found that statistical testing in various

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

11

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

musical categories stated there was not statistical
significance between the Brahms and Al generated pieces.
A quantitative survey containing participants who were
educated in the subject mistook two of the neural network
models generated pieces as Brahms’ own works suggesting
the model’s ability to generate pieces of music with the
complexity in rhythmic and harmonic characteristics of
Brahms.

The results from the research carried out suggest that
transformer models with self-attention, relative self-
attention and local windowed attention were able to
generate various characteristics to a statistically similar level
to Brahms with a dataset of his piano works by utilising an
augmentation pipeline and various preprocessing
techniques. A couple of musical characteristics however
proved to be statistically significant to Brahms, these being
entropy and global energy. This concludes that while the
transformer models are able to replicate a vast amount of
Brahms’ compositional traits, they still fall behind in
reproducing the rhythmical and harmonical complexities,
uncertainties and global energy levels of Brahms’ works.
The possibility of increasing the dataset to the orchestral,
ensemble and choral works of Brahms could greatly
increase the abilities of generated music from just solo piano
works. This also could adhere to limitations regarding a
small dataset and therefore improve accuracies in entropy
and global energy from the generated pieces.

While participants noted difficulty in distinguishing
between the Brahms and Al pieces, some commented that
the use of MIDI files made all the music sound robotic and
therefore made it even more challenging to differentiate
between the two. Future work could focus on converting the
generated pieces into musical notation and having a
professional pianist perform them. This would enable an
experiment to assess the generated music on an acoustic
piano, the instrument it was originally intended for.

REFERENCES

[1]1 J. D. Fernandez and F. Vico, “Al Methods in Algorithmic
Composition: A Comprehensive Survey,” Journal of Artificial
Intelligence Research, mno. 48, pp. 513-582, 2013.
https://doi.org/10.48550/arXiv.1402.0585

[2] K. Zheng, R. Meng, C. Zheng, X. Li, J. Sang, J. Cai. and J.
Wang, “EmotionBox: a music-element-driven emotional
music generation system using Recurrent Neural Network,”
Frontiers in Psychology, mno. 13, 1-14, 2021.
https://doi.org/10.3389/fpsyg.2022.841926

[31 R. Child, S. Gray, A. Radford and I. Sutskever, “Generating
Long Sequences with Sparse Transformers. PsyArXiv, no. 1,
pp. 1-10,2019. https://doi.org/10.48550/arXiv.1904.10509

[4] C. Hawthorne, A. Jaegle, C. Cangea, S. Borgeaud, C. Nash,
M. Malinowski, S. Dieleman, O. Vinyals, M. Botvinick, I.
Simon, H. Sheahan, N. Zeghidour, J. B. Alayrac, J. Carreira,
and J. Engel, “General-purpose, long-context autoregressive
modelling with Perceiver AR,” In Proc of the International
Conference on Machine Learning, no. 39, pp. 1-24, 2022.
https://doi.org/10.48550/arXiv.2202.07765

[51 E. Deruty, M. Grachten, S. Lattner, J. Nistal and C.
Aouameur, “On the Development and Practice of Al

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

for

technology for Contemporary Popular Music Production,”
Transactions of the International Society for Music
Information Retrieval, mno. 5, pp. 35-49, 2022.
https://doi.org/10.5334/tismir.100

O. Lartillot, P. Toiviainen, P. Saari and T. Eerola,
“MIRtoolbox,” 2007. [Online]. Available:
https://www jyu.fi/hytk/fi/laitokset/mutku/en/research/materia
ls/mirtoolbox

T. Eerola and P. Toiviainen, “MIDI Toolbox: MATLAB
Tools for Music Research,” 2004. [Online]. Available:
https://citeseerx.ist.psu.edu/document?repid=rep 1 &type=pdf
&doi=6e06906calba0bflac8f2cb1a929f3be95eeadfa

S. Oore, I. Simon, S. Dieleman, D. Eck and K. Simonyan,
“This Time With Feeling: Learning Expressive Musical
Performance,” Neural Computing and Applications, no. 32,
pp. 995-967, 2018. https://doi.org/10.1007/s00521-018-3758-
9

J. A. Franklin, “Jazz Melody Generation from Recurrent

Network Learning of Several Human Melodies,” In Proc of

the International Florida Artificial Intelligence Research
Society Conference, no. 18, pp.57-62, 2005.
https://cdn.aaai.org/FLAIRS/2005/Flairs05-010.pdf

TensorFlow, “Generate music with an RNN,” n.d. [Online].
Available:
https://www.tensorflow.org/tutorials/audio/music_generation

IBM, “What are recurrent neural networks?” n.d. [Online]
Available: https://ibm.com/topics/recurrent-neural-networks

S. Hochreiter and J. Schmidhuber, “Long Short-Term
Memory,” Neural Computation, no. 9, pp. 1735-1780, 1997.
https://doi.org/10.1162/neco0.1997.9.8.1735J.

C. Z. A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer, 1.
Simon, C. Hawthorne, A. M. Dai, M. D. Hoffman, M.
Dinculescu and D. Eck, “Music Transformer: Generating
Music with Long-Term Structure,” Proceedings of the
International Conference on Learning Representations, no.
17, pp- -14, 2018.
https://doi.org/10.48550/arXiv.1809.04281

A. Sigalov, “Project Los Angeles” 2019. [Online]. Available:
https://github.com/asigalov61

A. K. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser and 1. Polosukhin, “Attention is All
you Need,” Advances in Neural Information Processing
Systems, no. 31, . 1-15, 2017.
https://doi.org/10.48550/arXiv.1706.03762

A. K. Huang, P.A. Szerlip, M. E. Norton, T.A. Brindle, Z.
Merritt and K.O. Stanley, “Visualizing music self-attention”
In Proc of the Conference on Neural Information Processing
Systems, no.32, pp. 1-5, 2018.
https://openreview.net/pdf?id=ryfx VNEajm

P. Shaw, J. Uszkoreit and A. Vaswani, “Self-Attention with
Relative Positional Representations,” In Proc of the 2018
Conference of the North American Chaper of the Association
Computational ~ Linguistics: ~ Human Language
Technologies, no.2, pp. 464-468, 2018.
https://doi.org/10.18653/v1/N18-2074

Z. Liu, Y. Lin, H. Hu, Y. Wei, Z. Zhang, S. Lin and B. Guo,
“Swim Transformer: Hierarchical Vision Transformer using
Shifted Windows,” In Proc of the IEEE/CVF International
Conference on Computer Vision, n0.23, pp. 9992-10002,
2021. https://doi.org/10.48550/arXiv.2103.14030

A. Jaegle, F. Gimeno, A. Brock, A. Zisserman, O. Vinyals
and J. Carreira, “Perceiver: General Perception with Iterative
Attention,” In Proc of the International Conference on
Machine Learning, mno. 38, . 1-43, 2021.
https://doi.org/10.48550/arXiv.2103.03206

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

12

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

Practical Applications of State-Of-The-Art Large Language Models to Solve Real-World Software
Engineering Problems Autonomously

Yurij Mikhalevich
QA Wolf
Dubai, United Arab Emirates
email: yurij@mikhalevi.ch

Abstract—This paper researches the application of state-of-
the-art large language models to autonomously solve real-world
software engineering problems based on the problem description
intended for humans. For this research, we picked 10 outstanding
GitHub issues of different difficulty levels in the Aibyss project.
We tasked an Al agent to autonomously solve them based solely
on the GitHub Issue description intended for human software
engineers. As part of this research, we compared the follow-
ing large language models: Claude Sonnet 3.7, DeepSeek-V3,
DeepSeek-R1, and 03-mini-high. We used the Aider agent to solve
the problems. Additionally, we have evaluated the Claude Code
agent as one of the best closed-source Al software engineering
agents. We have found that the best performance is achieved
by Claude Sonnet 3.7 with reasoning enabled — with the Aider
agent and the Claude Code agent. Both of them provided working
solutions to 5 out of 10 GitHub issues. We analyze the agents’
behaviors, including reasoning steps, common failure modes, and
the impact of reasoning tokens. The results highlight both the
promise and the current limitations of autonomous LLM-based
software engineering.

Keywords-code generation; large language models; Al
agents; natural language processing

I. INTRODUCTION

Recent advances in large language models (LLMs) have
led to powerful code generation systems capable of assisting
software developers. Models like 03-mini and DeepSeek-R1
can translate natural language specifications into code with
impressive accuracy [1][2]. These models underpin tools such
as GitHub Copilot and Cursor Composer, which have been
rapidly adopted as “Al pair programmers” to autocomplete
code and suggest solutions [3][4][5]. Studies show that such
tools can improve developer productivity, but also raise ques-
tions about reliability and how developers interact with Al-
generated code. So far, these Al coding assistants operate with
a human in the loop: the developer guides the process, reviews
suggestions, and tests or debugs the outcomes.

A growing area of interest is whether state-of-the-art LLMs
can operate more autonomously to tackle software engineering
tasks end-to-end. Inspired by agentic frameworks like Re-
Act [6] and the popularity of systems such as AutoGPT [7], re-
searchers have begun treating LLMs as independent problem-
solvers rather than just interactive assistants. For example, the
ReAct paradigm by Yao et al. [6] enables an LLM to generate
reasoning traces and act on them iteratively, and projects like
AutoGPT aim to let an LLM plan and execute a sequence
of steps towards a high-level objective. Meanwhile, multi-
agent approaches have emerged to coordinate multiple LLMs
or tools in specialized roles (e.g., planning vs. coding) to solve

complex tasks [8]. Existing benchmarks of these autonomous
LLM agents indicate that the choice of the underlying model
has a critical impact on success: for instance, GPT-4 can
substantially outperform GPT-3.5 or smaller models in au-
tonomous decision-making tasks [9].

Recent advances in LLM-based agents open up the possi-
bility of automating several steps in the classical software de-
velopment lifecycle. Tasks such as requirement interpretation,
code generation, test creation, and documentation can now be
at least partially handled by these agents. Especially in the
early phases-like prototyping or resolving isolated issues from
natural language descriptions-LLMs show a strong capacity
for autonomous operation [10]. However, phases involving
architectural decisions, integration testing, and final validation
still rely heavily on human expertise and oversight.

Despite the growing capabilities of these models, transi-
tioning from generated code to a trusted, production-grade
system presents significant challenges. These include ensur-
ing correctness, robustness, maintainability, and compliance
with domain-specific standards. Generated code often lacks
integration context, can contain subtle bugs, or may not
align with broader system constraints. Therefore, human-in-
the-loop review, continuous integration pipelines, and formal
verification methods are often critical to close the gap between
raw LLM output and trustworthy software.

Research in software configuration management (SCM) is
increasingly intersecting with Al-driven development. Some
ongoing work investigates how agents can update deployment
configurations, manage dependencies, and track version his-
tory intelligently. Emerging tools explore LLMs not just as
code generators but as collaborative participants in the evolu-
tion of codebases, integrating with version control systems and
automating routine deployment and maintenance tasks [11].

Moreover, there is a growing interest in fine-tuning or
pretraining LLMs for specialized tasks such as software update
management. These niche LLMs aim to support activities like
patch generation, changelog summarization, and semantic ver-
sioning analysis. This area is attracting attention as organiza-
tions seek to reduce the overhead of continuous software main-
tenance through domain-adapted language models [10][12].

In this work, we explore the practical application of cutting-
edge LLMs as autonomous software engineers on real-world
tasks. We design an experiment in which an Al-driven coding
agent is given only the natural-language description of a
software issue (as one would find in a bug tracker or feature
request) and is tasked with resolving the issue by modifying

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

13

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

the codebase, without human assistance. We evaluate the
following state-of-the-art LLMs in this autonomous setting:
Claude Sonnet 3.7 [13], DeepSeek-V3 [14], DeepSeek-R1 [2],
and o3-mini-high [1]. We have used the Aider [15] agent
to solve the problems — one of the best open-source Al
software engineering agents. Additionally, we have evaluated
the Claude Code [13] agent as one of the best closed-source Al
software engineering agents. We examine not only whether the
LLM-powered agent can produce a working solution, but also
the quality of the solution (linting, code style, user experience)
and the computational cost (API calls/tokens consumed).

The results of the research show that the best performance
is achieved by Claude Sonnet 3.7 with reasoning enabled —
with both the Aider agent and the Claude Code agent. Both
of them provided working solutions to 5 out of 10 GitHub
issues. Surprisingly, Aider paired with 03-mini-high performed
the worst out of all the agents and has shown the worst
understanding of the problems.

The rest of the paper is organized as follows. Section 2
provides an overview of the related works. Section 3 describes
the method used in the research. Section 4 presents the
experiment implementation details. Section 5 presents the eval-
uation results. Section 6 presents a detailed analysis of agent
behaviors and failure modes. Finally, Section 7 concludes the

paper.
II. RELATED WORKS

In this section, we examine the existing literature and
research efforts that form the foundation for our current study.
Prior investigations have established several key approaches
and methodologies that inform our work.

A. LLMs for Code Generation and Assistance

The use of large neural models for code generation
has rapidly progressed in recent years. OpenAl’s Codex
model [16], which powers GitHub Copilot, was among the first
to demonstrate that an LLM trained on vast amounts of code
can produce syntactically correct and often functionally correct
code for given descriptions. Subsequent models have pushed
these capabilities further: DeepMind’s AlphaCode achieved
a performance on par with average human competitors in
programming contests[17], signaling the potential of LLMs
to handle complex algorithmic problems.

Recent developments in the field have demonstrated sig-
nificant progress in computational capabilities. Specifically,
models such as OpenAl o3-mini-high, DeepSeek-R1, and
Claude Sonnet 3.7 have established new performance stan-
dards [1][13]. These advancements indicate the continued
rapid evolution of LLM capabilities, with potential implica-
tions for fully autonomous software engineering agents.

B. LLM-Based Autonomous Agents

Beyond single-turn code completion, the idea of an LLM-
driven agent that can perform multi-step tasks has gained
traction. The ReAct framework [6] pioneered the combination
of chain-of-thought reasoning [18] with action execution,

enabling an LLM to decide not only what to think next but
also what action to take in a unified prompting strategy. This
idea of using the LLM’s own output as an intermediate state
has influenced many subsequent systems.

In early 2023, a series of autonomous agent prototypes built
on GPT-4 (such as AutoGPT) captured popular imagination.
These systems prompt the LLM to continuously plan and
execute sub-tasks towards a given objective, simulating an “Al
agent” that can function without user prompts for each step.

Recent developments in Al-powered code generation have
witnessed significant breakthroughs with the emergence of
sophisticated agent-based systems. Notably, Courser Com-
poser and Aider have demonstrated improved capabilities in
autonomous programming tasks [5][15].

Our work can be seen as an instance of an LLM agent
applied to a focused real-world task: given a specific issue in
an existing software project, the agent (backed by an LLM)
must understand the problem, read and modify the project’s
code, and submit a solution. We contribute new data on how
today’s strongest LLMs perform in this autonomous coding
scenario, complementing prior research.

III. METHOD

Our research methodology is designed to evaluate each
LLM’s ability to autonomously resolve real software issues
under controlled conditions. We selected the open-source
project Aibyss, a web-based Al competition game, as our
testbed. Aibyss is a TypeScript project (Nuxt/Vue frontend
with a Node.js backend using Prisma ORM) where users write
Al bots to compete in a game [19]. We chose Aibyss because
it is a non-trivial codebase with realistic features and bugs, yet
manageable in size. From Aibyss’s issue tracker, we picked ten
issues that were open and well-described. These issues covered
a range of feature requests and bug fixes and were labeled by
us based on the perceived difficulty as “easy,” “medium,” or
“harder”.

A. Task Selection

The 10 issues included 3 labeled “easy”, 4 “medium”, and
3 “harder”. Each issue consisted of a title and a description
intended for human developers. We did not provide any
additional hints or test cases to the agent beyond this text.

Below is the complete list of problems that we selected and
their issue titles, presented as-is:

1) easy - “feat: draggable splitter between the code and the
game screen should remember its position between the
page reloads”

2) easy - “feat(rating): highlight top results in k/d, kills,
deaths, and food eaten columns in the rating table”

3) easy - “chore(World): double the frequency of food
spawns”

4) medium - “feat: allow turning off the bots of some users
by setting the “inactive” field in the database on the user
object to ‘true™’

5) medium - “feat: ensure that the game screen occupies
all available free space to the right of the code editor”

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

14

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

6) medium - “feat(rating): add a new column to the rating
table displaying the number of times the user submitted

the code”

7) medium - “feat(sandbox): add an option to turn off
sprites and replace them with circles to make debugging
easier”

8) harder - “bug: fix the issue causing the bot code to

submit when the user opens “API reference”

9) harder - “feat: add code versions and an option to revert
to a previous version”

10) harder - “feat: surface bot execution errors to the user”

The actual GitHub issues with their descriptions can be
found on the Aibyss project GitHub issues page [20].

B. Agents and LLM Variants

We evaluated six agent configurations:

o Aider 0.75.2 + 03-mini-high 2025-01-31

o Aider 0.75.2 + DeepSeek-V3

o Aider 0.75.2 + DeepSeek-R1

o Aider 0.75.2 + Claude Sonnet 3.7 20250219

o Aider 0.78.0 + Claude Sonnet 3.7 20250219 with 32k
thinking tokens — in this variant, we enabled the “thinking
mode” in Aider (using v0.78.0 with thinking support for
Claude 3.7)

e Claude Code 0.2.35 — Anthropic’s Claude Code is a
proprietary agent with a CLI interface very similar to
Aider’s that uses the Claude Sonnet 3.7 model under the
hood; this can be seen as a closed-source counterpart to
Aider, specifically tuned for Claude [13]

C. Autonomy and Stopping Criteria

We configured the agents to operate fully autonomously.
Aider was run with the —-yes-always flag, meaning it
would automatically apply its proposed actions. In the case
of Claude Code, we approved all its prompts manually. Each
agent was allowed to iterate until it produced no further
actions.

One exception to full autonomy was with the 03-mini-high
model in Aider: often this model did not automatically load
files it needed, and would ask the user to add certain files to
its context. Whenever Aider+o03-mini-high requested a file, we
manually added exactly that file (and no additional help), then
let it continue. No other agent required such interventions.

D. Evaluation Criteria

After each agent run, we collected the resulting code
changes (if any) and deployed/tested the application to judge
success. We evaluated outcomes on several criteria:

+ Works (Yes/No): Did the changes address the issue from
the end-user’s perspective? For a feature request, this
meant the new functionality works as intended. For a
bug, the erroneous behavior was fixed.

« Linting Check Pass: We ran the project’s linting scripts.
If the agent’ss final code did not pass them, we marked
that as a quality issue.

o User Experience (UX): We manually inspected if the
solution introduced any noticeable UX problems (e.g., a
feature works but has a confusing Ul or performance lag).

o Code Quality: We reviewed the diffs to assess if the so-
lution was implemented in a reasonable and maintainable
way. Inefficiencies, unmaintainable code, and obvious
bugs in the implementation were noted.

We selected these criteria because they mirror how work
performed by a human software engineer is usually evaluated.
These qualitative judgments were used to label each successful
solution with additional notes (e.g., “works, but suboptimal
code” or “works, except fails linting”). Finally, we measured
the cost of each solution in USD.

IV. IMPLEMENTATION DETAILS

All agent runs were conducted in a consistent environment.
We created a fresh Docker container for each run, which
checked out the Aibyss repository at commit b4e58b2 (to
ensure all models started from identical code) and installed the
necessary tools (Node.js, Aider, Claude Code, etc.). The agent
was then launched inside the container and given the issue
text to solve. The prompt given to each agent was uniform:
"Please solve the following issue. Title:
<issue title> Description: <issue body>".
We ensured the project’s dependencies and database (SQLite
for this test) were properly set up in each container so that
the agent could run the app or tests if it chose to. The Aibyss
codebase was about 3.5k lines of TypeScript/JavaScript. Each
agent configuration was run on each of the 10 issues, yielding
60 trials in total.

After an agent completed, we committed its changes to a
new branch and opened a pull request on GitHub. This allowed
us to use continuous integration (CI) results as an additional
datapoint. We then manually reviewed and tested the branch
as described in the evaluation criteria. All of the PRs created
as part of this research can be found on GitHub [21].

V. RESULTS

Table I summarizes the performance of each agent config-
uration across the 10 issues. We report for each issue whether
the agent produced a working solution, along with notes on
linting, UX, and code quality. We also report the approximate
API cost incurred for that issue’s attempt. A “doesn’t work™
or “it didn’t understand the problem” indicates the agent failed
to solve the issue.

Looking at the overall success rates (“solved problems”
in the Total row), we see a clear ranking of the models.
The Claude Sonnet 3.7 with reasoning (both with Aider and
Claude Code) solved 5 out of 10 issues, the highest of any
configuration. In contrast, DeepSeek-V3 and -R1 solved 2
each, and the o03-mini model solved only 1. The standard
Aider+Claude (with no reasoning) solved 3. Enabling Claude
to use “thinking” (32k tokens context for chain-of-thought)
allowed it to solve two additional issues that it failed with a
shorter context, showing that reasoning improved performance.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

15

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

TABLE I

AGENT EVALUATION RESULTS

. . Aider 0.78.0 +
Aider 0.75.2 + Aider 0752 + | Aider 0752 + | /Mder 0752+ 1 o de Sonnet 3.7
Problem 03-mini-high Claude Sonnet 3.7 . Claude Code 0.2.35
DeepSeek-V3 DeepSeek-R1 20250219 with 32k
2025-01-31 20250219 .
thinking tokens
cost: $0.12 cost: $0.20 cost: $0.2928
» » " v'works v'works v'works
1 diyzztﬁ’f(\);;/?;rtk Z?)if?g?::g fﬁ:;j?gg?ﬁ linter check fail linter check fail V'linter check pass
’)) UX is bad UX is bad UX is bad
code is bad V'code is good v'code is good
cost: $0.0070 cost: $0.07
. cost: $0.05 cost: $0.0037 | vworks cost: $0.04 | Vworks cost: $0.1175
2 it didn’t understand doesn’t work linter check fail doesn’t work linter check fail doesn’t work
the problem v’ UX is good v UX is good
v code is good v'code is good
cost: $0.03 cost: $0.0033 cost: $0.0066 cost: $0.04 cost: $0.07 cost: $0.1151
v'works v 'works v'works v'works v'works v'works
3 V'linter check pass | linter check pass | linter check fail | vlinter check pass | vlinter check pass V'linter check pass
v'UX is good v'UX is good v'UX is good v'UX is good v'UX is good v'UX is good
V'code is good v'code is good v'code is good v'code is good V'code is good v'code is good
4 cost: $0.07 cost: $0.0043 cost: $0.0070 cost: $0.06 cost: $0.08 cost: $0.4942
doesn’t work doesn’t work doesn’t work doesn’t work doesn’t work doesn’t work
5 cost: $0.04 cost: $0.0042 cost: $0.0079 cost: $0.07 cost: $0.08 cost: $0.2085
doesn’t work doesn’t work doesn’t work doesn’t work doesn’t work doesn’t work
. cost: $0.0046 . cost: $0.07 cost: $0.10 cost: $0.2523
6 di(e):ztli’f(\)n.f(();k it didn’t understand fi(;%ctsnsi?v?/?)?lz it didn’t understand it didn’t understand it didn’t understand
the problem the problem the problem the problem
cost: $0.09 cost: $0.4650
v'works v 'works
cost: $0.22 cost: $0.0090 cost: $0.02 cost: $0.06
7 s 5 s s linter check fail linter check fail
doesn’t work doesn’t work doesn’t work doesn’t work . . .
v'UX is good minor UX issues
code is bad code is bad
cost: $0.0031 cost: $0.04 cost: $0.07 cost: $0.1518
. v'works . v'works v'works v'works
8 df)(;?ri’f%(())?k V'linter check pass 3%;5?32?12 linter check fail linter check fail V'linter check pass
v’ UX is good v UX is good v UX is good v UX is good
code is bad code is bad code is bad V' code is good
cost: $0.53
0 cost: $0.08 cost: $0.0062 cost: $0.01 cost: $0.10 cost: $0.12 limfw}‘l’“f il
doesn’t work doesn’t work doesn’t work doesn’t work doesn’t work er check 1a
UX issues
code is bad
10 cost: $0.07 cost: $0.0082 cost: $0.02 cost: $0.05 cost: $0.16 cost: $0.50
doesn’t work doesn’t work doesn’t work doesn’t work doesn’t work doesn’t work
Total cost: $0.76 cost: $0.05 cost: $0.10 cost: $0.65 cost: $1.04 cost: $3.13
ota 1/10 solved 2/10 solved 2/10 solved 3/10 solved 5/10 solved 5/10 solved
Easy solved 1/3 1/3 2/3 2/3 3/3 2/3
Medium solved 0/4 0/4 0/4 0/4 1/4 1/4
Harder solved 0/3 1/3 0/3 1/3 1/3 2/3

In terms of difficulty, all agents found the easy issues
more approachable: Aider+Claude 3.7 with thinking solved
all 3 easy tasks, and even the weakest model solved one
easy issue. The medium tasks proved challenging: only the
Claude Sonnet 3.7 with reasoning (both with Aider and Claude
Code) managed to solve 1 out of 4 medium issues. Harder
tasks (8, 9, 10) saw partial success: Claude Code solved two
(Issues 8 and 9), while Aider+Claude 3.7 with thinking and
Aider+DeepSeek-V3 each solved one (Issue 8). No model
could handle Issue 10, a complex feature involving tracking
and displaying bot errors.

We also observe notable differences in solution quality.
For instance, Issue 3 was solved by almost all models, but
DeepSeek-R1’s solution failed linting due to minor format
issues, whereas others passed. In Issue 1, all Aider+Claude

solutions worked functionally, but they left some UX issues
(the page loaded with a flicker in the splitter position) and
non-ideal code; the Claude Code agent’s solution was slightly
better (fixing the linting problem) than Aider+Claude’s. The
other models did not even reach a working solution for
Issue 1. Another example is Issue 6. In Issue 6, none of the
agents solved it and most (even Claude) misunderstood the
requirement — they implemented a total count instead of a
7-day count for a metric. This shows that LLMs can misread
context that a human developer is expected to catch. Additional
context or clarification in prompts might be needed for such
cases.

Cost-wise, the DeepSeek-V3 and DeepSeek-R1 are very
cheap to run totalling $0.05 and $0.10 USD per 10 solutions
produced respectfully. While using Claude Sonnet 3.7 was

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

16

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

https://aider.chat/HISTORY . html#release-notes

> Please, solve the following issue. Title: feat: draggable splitter between the code and th
. e game screen should remember its position between the page reloads. Description: Let's pe
. rsist it in the localStorage.

Based on your repository and the issue description, the file most likely to need changes is:

® pages/

propos

Tokens: 4.3k sent, 112 received. Cost: $0.0052 message, $0.0052 session.

> pages/index.vue I

Figure 1. Aider+o03-mini-high prompting the user to manually add the file it
needs

more expensive, these costs were fairly low in absolute terms
(each issue well under $1 for Claude). Notably, Claude Code
consumed roughly 3x the tokens of Aider+Claude, meaning
it took more steps or context per issue. This aligns with
Claude Code’s behavior of running tests and iterating on a
solution autonomously. Aider+Claude with reasoning achieved
the same 5/10 solves at one-third the cost of Claude Code. In
a scenario where API cost is a concern, the improvement in
solution quality by Claude Code may not currently justify its
higher cost.

VI. DISCUSSION

To better understand the experimental outcomes, we per-
formed a qualitative analysis of each agent’s behavior and the
solutions (or attempts) they produced. Here we discuss key
insights and failure modes.

A. Need for Context Awareness

One striking limitation was observed with 03-mini-high.
This agent often failed to load relevant files autonomously. In
multiple issues it would stop and ask for a file (for example,
it did not automatically open the file containing a function
mentioned in the issue). We had to manually provide the file
for it to proceed. This behavior is depicted in Figure 1, which
shows a screenshot of the Aider+o3-mini agent prompting
the user to add a file to the context. Notably, none of the
other models exhibited this limitation — they have added
needed files to the context via the Aider agent’s capabilities. In
addition to this, the Aider+o3-mini-high demonstrated lack of
context awareness that significantly impeded its performance.
Even after adding files, its solutions were usually incomplete
or incorrect.

B. Common Reasoning Errors

Several agents made similar mistakes on certain issues,
suggesting the problem might lie in the prompt or the envi-
ronment rather than idiosyncrasies of one model. For example,
in Issue 4 (a medium bug fix involving adding a TypeScript
module import), the DeepSeek and 03-mini-high models all
attempted to import a database object incorrectly (they used

a wrong path), possibly picking up a pattern from elsewhere
in code. This parallel behavior implies that the initial system
might have led the models down a similar path, or they
all latently “agreed” on a plausible but wrong solution. It
highlights that autonomous agents might need better guardrails
or self-checks for such predictable pitfalls. A possible remedy
could be incorporating static analysis: e.g., after a code edit,
have the agent verify imports or run a quick compile step
(which Claude Code was usually doing).

Another pervasive issue was misunderstanding of require-
ments. Issue 6 (add a weekly count to the rating table) was
misinterpreted by every model as a total count. This happened
because the issue title was somewhat ambiguous and the
description didn’t explicitly mention the 7-day window (it
relied on context that all other stats in that table were weekly).
Our LLMs did not infer that context. This kind of mistake is
hard for an agent to catch without more project knowledge.
It suggests that for certain tasks, an autonomous agent might
benefit from a mechanism to ask clarifying questions — some-
thing we did not allow in this study.

C. Behavior of Claude Code vs. Aider

Using the same model (Claude Sonnet 3.7), the Claude Code
agent and the Aider agent exhibited different styles. Claude
Code was much more thorough: it would run the project’s tests
when available, and even run the linter, essentially simulating
what a careful developer would do. Claude Code was also
the only agent that was actually creating the Prisma database
migrations in addition to changing the schema. The downside
was that Claude Code consumed more time and tokens.

D. Successful Case Study (Issue 7 - Sandbox Sprites Toggle)

This was a medium difficulty feature that only the Claude-
based agents solved. The task was to add a user option
to replace graphical sprites with simple circles in the game
(for debugging). The Aider+Claude with reasoning agent
produced a clean solution: it introduced a button to switch
to and from the debug mode and a corresponding logic for
the toggle. The implementation was not trivial — it required
understanding how the rendering loop worked. The other
models failed here likely because they got confused by the
rendering code. Aider+Claude with reasoning’s success in
Issue 7 demonstrates the benefit of reasoning. Interestingly,
Claude Code’s working solution for the same issue was a bit
messy (the circle drawing code is unnecessary complex and
is repeated in two different places). This suggests that while
Claude Code’s strategy of iterative refinement is helpful, it
doesn’t guarantee a better solution design.

E. Partial Success and Limitations (Issue 9 - Code Versioning)

One of the “harder” issues (Issue 9) was to implement
code version tracking and allow reverting to previous versions.
Claude Code was the only agent to achieve a working solution
here. It modified the bot code storing logic to store versions,
added a new API to list code versions, built a frontend com-
ponent to list versions, implemented logic to restore the older

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

17

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

Figure 2. UI added by Claude Code for code versioning (Issue 9)

versions of the bot code, and wired it all together correctly.
The resulting UI can be seen in Figure 2, which shows the
new interface element listing past versions of a user’s code
with a revert option. While this solution technically worked
(the user could revert to past code states), we discovered
a serious performance problem: the agent’s implementation
loaded all stored code versions of all users into memory on
server startup (a costly approach). This highlights a scenario
where the agent solved the letter of the request but not the
spirit of good software engineering — a human developer would
likely avoid loading all of the source code into memory.
This underscores a fundamental limitation of current LLM
agents: they often don’t evaluate trade-offs beyond immediate
correctness. We marked this solution as not production-ready
due to the RAM overhead. It needed human refactoring to
be acceptable. Nonetheless, the fact Claude Code managed to
implement a multi-step full-stack feature is impressive. For
future agents, improving their considerations for performance
might be beneficial, although that is a very difficult general
problem.

VII. CONCLUSION

In this paper, we explored the frontier of using state-
of-the-art LLMs as autonomous software engineers on real
development tasks. Through experiments on ten diverse issues
in an open-source project, we found that today’s top models
can partially fulfill the role of a developer: they wrote code
that solved about half of the tested issues without any human
assistance. This is a notable achievement and highlights the
rapid progress in LLM capabilities for software engineering.
However, our study also reveals the clear limitations and
challenges that remain:

« Autonomous agents are not yet reliable across the board.
They struggled especially with more complex or ambigu-
ous tasks, and often produced suboptimal solutions even
when they met the basic requirements.

o Reasoning and chain-of-thought prompting greatly influ-
ence success. Utilizing the reasoning ability of Claude
Sonnet 3.7 improved outcomes in our trials.

e There is a need for built-in validation and refinement.
Incorporating test execution, linting, and iterative self-
correction (as Claude Code does) helped catch mistakes.
Future agents should leverage all available verification
tools (compilation, static analysis, tests) to ensure higher
quality outputs.

o Certain errors, like misinterpreting the true intent of a
requirement or making inefficient design choices, are
currently beyond the examined agents’ capacity to avoid.
These will likely require changes to the agent’s architec-
ture or a human-in-the-loop to guide the agent.

Despite these limitations, the trend is very encouraging.
We expect that with each iteration, the gap on what tasks
are solvable autonomously will narrow. In practical terms,
autonomous LLLM agents could already take on some tedious
parts of development (like writing boilerplate code, fixing sim-
ple bugs, updating configurations), freeing human developers
to focus on higher-level design and complex problem-solving.

As future work, our immediate next steps include:

« Evaluating newer models: We plan to test open-source
QwQ-32B with Aider to see if it can match Claude’s
performance. If successful, this could open the door
to more accessible autonomous coding (not relying on
closed APIs).

o Architect-editor agent design: We will experiment with
an “architect” mode in Aider, where one model (or one
prompting style) is used to outline the solution (select
files to change, perhaps write pseudo-code or steps), and
another model is used as the “coder” to implement those
steps.

¢ Scaling to more tasks and projects: Our current test
set is small. We want to expand the evaluation to include
a wider variety of issues (Ul-heavy issues, algorithmic
challenges, integration tasks) and on different projects
(perhaps some Python backend projects, mobile app
issues, etc.). This will paint a fuller picture of where
autonomous LLMs excel and where they fail in software
engineering.

In conclusion, state-of-the-art LLMs, when coupled with a
suitable agent framework, are beginning to demonstrate practi-
cal utility in automating segments of software development in
a fully unsupervised manner. They function as knowledgeable
but flawed junior developers: capable of writing code and solv-
ing problems in familiar contexts, yet prone to mistakes that
require oversight. By continuing to improve LLM reasoning,
integrating robust self-checks, and using clever orchestrations
of multiple models, we move closer to a future where Al
agents could handle routine programming tasks autonomously.
Such a development could significantly accelerate software
engineering workflows, allowing human developers to push
the boundaries of innovation with the grunt work delegated to
our Al collaborators.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-262-3

18

CONTENT 2025 : The Seventeenth International Conference on Creative Content Technologies

(1]

(2]

(3]
(4]

(5]
(6]

(7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

OpenAl, OpenAl o03-mini, version 2025-01-31, 2025.
[Online]. Available: https://openai.com/index/openai-
03-mini/.

DeepSeek-Al et al., “Deepseek-rl: Incentivizing reason-
ing capability in 1lms via reinforcement learning,” 2025.
arXiv: 2501 . 12948 [cs.CL]. [Online]. Available:
https://arxiv.org/abs/2501.12948.

GitHub, GitHub Copilot, Oct. 2021. [Online]. Available:
https://github.com/features/copilot.

N. Nguyen and S. Nadi, “An empirical evaluation of
github copilot’s code suggestions,” in 2022 IEEE/ACM
19th International Conference on Mining Software
Repositories (MSR), 2022, pp. 1-5. po1: 10.1145/
3524842.3528470.

Anysphere-Inc, Cursor composer, 2024.
Auvailable: https://docs.cursor.com/composer.
S. Yao et al., “React: Synergizing reasoning and act-
ing in language models,” 2023. arXiv: 2210 .03629
[cs.CL]. [Online]. Available: https://arxiv.org/abs/
2210.03629.

Significant-Gravitas, AutoGPT. [Online]. Available:
https://github.com/Significant-Gravitas/AutoGPT.

J. He, C. Treude, and D. Lo, Lim-based multi-agent
systems for software engineering: Literature review,
vision and the road ahead, 2024. arXiv: 2404.04834
[cs.SE]. [Online]. Available: https://arxiv.org/abs/
2404.04834.

H. Yang, S. Yue, and Y. He, Auto-gpt for online decision
making: Benchmarks and additional opinions, 2023.
arXiv: 2306 .02224 [cs.AI]. [Online]. Available:
https://arxiv.org/abs/2306.02224.

X. Hou et al., “Large language models for software en-
gineering: A systematic literature review,” 2024. arXiv:
2308.10620 [cs.SE]. [Online]. Available: https://
arxiv.org/abs/2308.10620.

A. F. Khan et al., “Lads: Leveraging llms for ai-driven
devops,” 2025. arXiv: 2502.20825 [cs.LG]. [Online].
Available: https://arxiv.org/abs/2502.20825.

M. Sapkal et al., “Ai-driven software patch management
system,” SSRN Electronic Journal, Jan. 2025. DOI: 10.
2139/ssrn.5086731.

Anthropic, “Claude 3.7 sonnet and claude code,”
Feb. 24, 2025. [Online]. Available: https :// www .
anthropic.com/news/claude-3-7-sonnet.

DeepSeek-Al et al.,, “Deepseek-v3 technical report,”
2025. arXiv: 2412.19437 [cs.CL]. [Online]. Avail-
able: https://arxiv.org/abs/2412.19437.

Aider-Al, Aider, version 0.75.2, 2025. [retrieved: Mar.
2025]. [Online]. Available: https://github.com/Aider-
Al/aider.

M. Chen et al., “Evaluating large language models
trained on code,” 2021. arXiv: 2107.03374 [cs.LG].
[Online]. Available: https://arxiv.org/abs/2107.03374.

[Online].

[17]

[18]

Y. Li et al., “Competition-level code generation with
alphacode,” Science, vol. 378, no. 6624, pp. 1092-1097,
Dec. 2022, 1SSN: 1095-9203. poOI: 10.1126/science.
abql158. [Online]. Available: http://dx.doi.org/10.
1126/science.abq1158.

J. Wei et al., Chain-of-thought prompting elicits reason-
ing in large language models, 2023. arXiv: 2201.11903
[cs.CL]. [Online]. Available: https://arxiv.org/abs/
2201.11903.

Move-Fast-and-Break-Things, Aibyss, 2025. [retrieved:
Mar. 2025]. [Online]. Available: https://github.com/
move-fast-and-break-things/aibyss.

Y. Mikhalevich, Aibyss: Issues selected for the “prac-
tical applications of state-of-the-art large language
models to solve real-world software engineering prob-
lems autonomously” research, 2025. [Online]. Avail-
able: https://github.com/move- fast- and- break- things/
aibyss/issues ?q=is % 3Aissue % 20label % 3 Aai- agents-
evaluation-2025-03.

Y. Mikhalevich, Aibyss: Prs created by ai agents as
part of the “practical applications of state-of-the-art
large language models to solve real-world software
engineering problems autonomously” research, 2025.
[Online]. Available: https://github.com/move-fast-and-
break - things/aibyss/pulls ?q=is % 3Apr+label % 3Aai-
agents-evaluation-2025-03+.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025.

ISBN: 978-1-68558-262-3

19

http://www.tcpdf.org

