
COMPUTATION TOOLS 2022

The Thirteenth International Conference on Computational Logics, Algebras,

Programming, Tools, and Benchmarking

ISBN: 978-1-61208-954-6

April 24 - 28, 2022

Barcelona, Spain

COMPUTATION TOOLS 2022 Editors

Claus-Peter Rückemann, Leibniz Universität Hannover / Westfälische Wilhelms-
Universität Münster / North-German Supercomputing Alliance (HLRN), Germany

 1 / 17

COMPUTATION TOOLS 2022

Forward

The Thirteenth International Conference on Computational Logics, Algebras, Programming, Tools, and
Benchmarking (COMPUTATION TOOLS 2022), held between April 24 - 28, 2022, continued a series of
events dealing with logics, algebras, advanced computation techniques, specialized programming
languages, and tools for distributed computation. Mainly, the event targeted those aspects supporting
context-oriented systems, adaptive systems, service computing, patterns and content-oriented features,
temporal and ubiquitous aspects, and many facets of computational benchmarking.

Similar to the previous edition, this event attracted excellent contributions and active participation from
all over the world. We were very pleased to receive top quality contributions.

We take here the opportunity to warmly thank all the members of the COMPUTATION TOOLS 2022
technical program committee, as well as the numerous reviewers. The creation of quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
that dedicated much of their time and effort to contribute to COMPUTATION TOOLS 2022. We truly
believe that, thanks to all these efforts, the final conference program consisted of top quality
contributions.

Also, this event could not have been a reality without the support of many individuals, organizations and
sponsors. We also gratefully thank the members of the COMPUTATION TOOLS 2022 organizing
committee for their help in handling the logistics and for their work that made this professional meeting
a success.

We hope COMPUTATION TOOLS 2022 was a successful international forum for the exchange of ideas
and results between academia and industry and to promote further progress in the area of
computational logics, algebras, programming, tools, and benchmarking. We also hope that Barcelona
provided a pleasant environment during the conference and everyone saved some time to enjoy the
historic charm of the city

COMPUTATION TOOLS 2022 Steering Committee

Cornel Klein, Siemens AG, Germany
Claus-Peter Rückemann, Westfälische Wilhelms-Universität Münster (WWU) / DIMF / Leibniz Universität
Hannover, Germany

COMPUTATIONAL TOOLS 2022 Publicity Chairs

Lorena Parra, Universitat Politecnica de Valencia, Spain
Javier Rocher, Universitat Politècnica de València, Spain

 2 / 17

COMPUTATION TOOLS 2022

Committee

COMPUTATION TOOLS 2022 Steering Committee

Cornel Klein, Siemens AG, Germany
Claus-Peter Rückemann, Westfälische Wilhelms-Universität Münster (WWU) / DIMF / Leibniz Universität
Hannover, Germany

COMPUTATIONAL TOOLS 2022 Publicity Chairs

Lorena Parra, Universitat Politecnica de Valencia, Spain
Javier Rocher, Universitat Politècnica de València, Spain

COMPUTATION TOOLS 2022 Technical Program Committee

Lorenzo Bettini, Università di Firenze, Italy
Ateet Bhalla, Independent Consultant, India
Narhimene Boustia, University Saad Dahlab, Blida 1, Algeria
Azahara Camacho, Opinno, Spain
Angelo Ciaramella, University of Naples Parthenope, Italy
Cornel Klein, Siemens AG, Germany
Emanuele Covino, Universita' di Bari, Italy
Marcos Cramer, TU Dresden, Germany
Santiago Escobar, VRAIN - Universitat Politècnica de València, Spain
Andreas Fischer, Deggendorf Institute of Technology, Germany
Roderick Melnik, Wilfrid Laurier University, Canada
Corrado Mencar, Università degli Studi di Bari Aldo Moro, Italy
Ralph Müller-Pfefferkorn, Technische Universität Dresden, Germany
Keiko Nakata, SAP SE - Potsdam, Germany
Adam Naumowicz, University of Bialystok, Poland
Cecilia E. Nugraheni, Parahyangan Catholic University, Indonesia
Alberto Policriti, University of Udine, Italy
James Tan, Singapore University of Social Sciences, Singapore
Hans Tompits, Technische Universität Wien, Austria
Miroslav Velev, Aries Design Automation, USA
Kristin Yvonne Rozier, Iowa State University, USA

 3 / 17

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 4 / 17

Table of Contents

Efficient Formal Verification with Confidence Intervals
Naif Alasmari and Radu Calinescu

1

High-pass Filters Preprocessing in Image Tracing with Convolutional Autoencoders
Andreas Fischer and Zineddine Bettouche

7

Powered by TCPDF (www.tcpdf.org)

 1 / 1 5 / 17

Efficient Formal Verification with Confidence Intervals

Naif Alasmari
Department of Computer Science

University of York
York, U.K.

email: nnma500@york.ac.uk

Radu Calinescu
Department of Computer Science

University of York
York, U.K.

email: radu.calinescu@york.ac.uk

Abstract—Formal verification with confidence intervals is a
model checking technique that computes confidence intervals for
parametric Markov model properties when observations of the
unknown transition probabilities of these models are available.
However, the high computational costs of the technique limit
its scalability severely. To address this limitation, we introduce
efficient formal verification with confidence intervals (eFACT),
a model checking tool that enables the efficient analysis of
parametric discrete-time Markov chains. eFACT supports the
verification of reliability, performance, and other non-functional
requirements for larger systems than currently possible. To that
end, eFACT integrates recent advances in parametric model
checking into a previous tool for formal verification with confi-
dence intervals, and employs an efficient binary search technique
to further speed up the determination of the highest confidence
level at which a non-functional requirement can be deemed
violated or satisfied.

Keywords—confidence intervals; formal verification; non-
functional software requirements; probabilistic model checking.

I. INTRODUCTION

Over the years, quantitative verification has been a powerful
means for analysing the performance, reliability, and other
non-functional properties of systems. However, the analysed
system should be modelled carefully and accurately as a
Markov model in order to obtain a precise verification result.
Building a Markov model for the system is a time-consuming
task because it requires determining the system’s states and
the transitions between them, as well as their probabilities.
Establishing the precise probabilities of transitions is chal-
lenging [1] since the probabilities can only be estimated,
with error margins, from run-time observations of the system,
system logs, or based on input obtained from domain experts.
Therefore, the error values of probabilities estimation could
be accumulated by quantitative verification and can produce
inaccurate outcomes due to the non-linearity of Markovian
models. The formal verification with confidence intervals
(FACT) [1] resolves this limitation by providing an interval
for the verification result rather than a single value [2].

FACT is a probabilistic model checker that calculates confi-
dence intervals for properties of parametric Markov chains that
have observations for unknown transition probabilities. The
current FACT version invokes PRISM [3] to get the algebraic
expression for the targeted property of a parametric Discrete-
Time Markov Chain (pDTMC) model. However, when the
algebraic expression is too large to analyse (i.e., it exceeds
the memory or computational resources available), or the
behaviour of the parametric model is complex (e.g., has

continual change), the capability of FACT becomes limited.
Thus, FACT does not scale well to large pDTMCs.

To extend the capability of FACT, our paper introduces
efficient Formal verificAtion with Confidence inT ervals
(eFACT), a new model checker that is able to calculate such
confidence intervals for larger pDTMC models. eFACT ex-
ploits efficient parametric model checking (ePMC), which uses
domain-specific modelling patterns [4] in order to produce sets
of closed-form subexpressions of the analysed properties, and
uses these subexpressions as terms in the main formula for the
analysis of the whole pDTMC model. The ePMC derives an
abstraction model from the original pDTMC. The abstraction
model consists of fragments, and each fragment represents a
single state in the abstraction model and a subset of states
in the original model. The main formula is the abstraction
model’s algebraic expression, and the component formula is a
formula related to the fragment. In this way, eFACT computes
the confidence intervals for each closed-form expression, and
then uses the obtained results to calculate the confidence
interval for the main formula. Furthermore, eFACT exploits
a binary search technique to enable engineers to obtain the
highest confidence level at which a non-functional requirement
of a system can be confirmed as violated or satisfied—an
important feature unavailable in the FACT tool. Furthermore,
since we are concerned about the safety and business-critical
systems, it is vital to consider a high confidence level before
deploying the system.

The paper is organised as follows. Section II explains how
eFACT computes the confidence intervals for the properties
of large pDTMC models. Next, Section III demonstrates the
use of binary search to efficiently find the required confidence
level. Section IV describes the case studies used to evaluate
eFACT. Next, Section V discusses the experimental results,
and Section VI compares our solution to related work. Finally,
Section VII briefly summarises this work, and highlights
directions for future work.

II. CONFIDENCE INTERVALS FOR LARGE PDTMCS

For a given pDTMC model and a property of this model en-
coded in Probabilistic Computation Tree Logic (PCTL), FACT
obtains an algebraic expression from PRISM to compute con-
fidence intervals. However, FACT cannot produce confidence
intervals when the model is large (as explained in the previous
section). eFACT aims to analyse large pDTMC models with
at least one unknown transition probability, provided that

1Copyright (c) IARIA, 2022. ISBN: 978-1-61208-954-6

COMPUTATION TOOLS 2022 : The Thirteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 6 / 17

observations of the unknown transition exist. To achieve this
purpose, we exploit a recent advance in probabilistic model
checking and the model checker ePMC [4][5] that produces
closed-form expressions (i.e., component formula) for the
property being analysed, and then combines them into one
main formula. eFACT analyses each expression separately to
produce its confidence intervals for the provided confidence
levels. The confidence intervals of the expression then sub-
stitute into the main formula. Therefore, the outcomes of all
expressions contribute to calculating the confidence intervals
for the analysed property of a given large pDTMC.

Keys:
CI: Confidence Intervals
c_expr: Component Formula

1

2

5

7

4

3

6

8

Figure 1. eFACT structure.

At a given confidence level α, computing confidence in-
tervals for a large pDTMC model consists of three main
steps: confidence interval quantitative verification, ePMC, and
substitution. The confidence interval quantitative verification is
used to receive the inputs and compute the confidence intervals
for closed-form expression. ePMC is employed to produce the
closed-form expressions and the main formula of the property.
The substitution component is used to substitute the outcome
of all closed-form expressions in the main formula of the
property. The substitution component handles two equations
representing the main formula: one to substitute all lower
intervals of each expression into the main formula and the
other is used to substitute the upper level of expressions in
the main formula.

Figure 1 illustrates the steps followed to compute the
confidence intervals for a large pDTMC in detail. First, the
confidence interval quantitative verification will receive the
pDTMC model, property, and a range of confidence intervals
as inputs. The model and property are then sent to ePMC to
obtain all possible closed-form expressions formulae (Steps
2 and 3 in Figure 1). There are two kinds of produced
formulae: the component formula (closed-form expression)
and the model formula used to analyse the system model. The
component formula could be a part of the model formula in the
latter formula. In general, the formula represents an algebraic
expression related to the analysed property of the model. The
component formulae (denoted as c expr1,c expr2,...,c exprn

in the figure) are then sent for confidence interval quantitative
verification to compute their confidence intervals sequentially
(Step 4). The results of analysing the component formulae are
sent to the substitution component to substitute their results
into the model formula (as shown in Steps 5 and 6). Finally, the
model formula is sent to the confidence interval quantitative
verification unit to calculate the final confidence intervals that
will appear to the end-user.

III. FINDING THE HIGHEST CONFIDENCE LEVEL

When engineers use eFACT to compute confidence inter-
vals for a PCTL-encoded pDTMC property, they are often
interested in comparing these intervals with a bound that the
property must satisfy per the analysed system’s non-functional
requirement. Furthermore, they are particularly interested in
finding the highest confidence level αMAX at which the
requirement can be shown as violated or satisfied, given
the available set of observations of the unknown pDTMC
transitions. For confidence levels α > αMAX , the observations
available are insufficient for deciding whether the requirement
is satisfied. Finding the value of αMAX (or a close approxi-
mation of it) enables important decision-making. For instance,
if a requirement can be shown to be satisfied at the highest
confidence level αMAX = 0.99, the system can be confidently
deployed (based on the requirement being met). In contrast, if
a requirement can only be shown as satisfied at the highest
confidence level αMAX = 0.75, the decision of whether
to deploy the system cannot be made. Further observations
should be obtained, for example, by testing the relevant system
components.

eFACT can compute a potentially very large number of
confidence intervals at different confidence levels α to find
a close approximation of αMAX . eFACT is highly inefficient
in achieving this, given the overheads of formal verification
with confidence intervals. Therefore, we developed an effi-
cient method (implemented in eFACT) for computing this
close approximation. This method employs a binary search to
efficiently approximate the highest confidence level αMAX .
Therefore, instead of slowly performing verification for each
confidence level to determine where the requirement is sat-
isfied or violated, the binary search technique will speed up
the process of achieving this. When the user inserts the model
(non-functional requirement and range of confidence levels),
eFACT starts its work by verifying the first inserted confidence
level and computing its confidence intervals. Following this,
it moves to the last inserted confidence level to calculate its
confidence intervals. Now, there are two confidence levels
with their intervals, enabling eFACT to check whether the
analysed property requirement is located inside those intervals.
If the requirement is located inside all intervals, the process
will terminate with a message stating that the requirement is
undecidable for the given range of confidence levels. Other-
wise, eFACT moves to the middle confidence level (e.g., if
the range of confidence levels is between 89 and 99, then
the middle level is 94) and computes the confidence intervals.
eFACT then checks the requirement’s position over the current

2Copyright (c) IARIA, 2022. ISBN: 978-1-61208-954-6

COMPUTATION TOOLS 2022 : The Thirteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 7 / 17

Figure 2. An example of using binary search in eFACT.

confidence intervals and compares it with the obtained ones
over the confidence intervals from the first and last levels.

The confidence levels that lie between the middle con-
fidence level and the other confidence level, in which the
requirement’s position matches its place in the middle level,
will be discarded. Again, eFACT moves to the middle of the
remaining confidence levels and repeats the same procedure
until it determines the highest confidence level αMAX .

Figure 2 shows the verification result, where eFACT is
looking for the confidence level at which the requirement is
violated or satisfied. The test was conducted between confi-
dence levels 0.85 and 0.99, where the increment step was 0.01.
Instead of completing 15 verification tests to determine the
required confidence level, we performed six verification tests
until the required result was found. The discarded area (red
area) has a list of confidence levels with intervals containing
the requirement; therefore, performing additional tests in this
area is useless. The solution area (green area) is where the
requirement’s position moves from outside the confidence
intervals to be inside the next intervals.

IV. CASE STUDIES

A. Service-based systems

Service-based systems (SBSs) are applications that pro-
vide services that are dependent on or connected to each
other [6]. SBSs comprise internal system components and
possible independent third-party components implemented as
services. There are different ways in which services can
conduct operations similar to those of SBSs but with different
probabilities in their execution time (t1,...,tn), costs (c1,...,cn)
and successes (p1,...,pn). The patterns are adopted from [4]:
sequential execution (SEQ), sequential execution with a retry
(SEQ-R), sequential execution with retry1 (SEQ-R1), proba-
bilistic execution (PROB), probabilistic execution with a retry
(PROB-R), probabilistic execution with retry1 (PROB-R1),
parallel execution (PAR), and parallel execution with a retry
(PAR-R). They are used to implement the SBS operations with
n services equivalent to those operations described below:

1) SEQ (p1, t1, c1, ..., pn, tn, cn): There are n services in-
voked in order, terminated after the last service or upon
a first successful request.

2) SEQ-R (p1, t1, c1, ..., pn, tn, cn, r): This is similar to
SEQ. However, if all service invocations fail, the opera-
tion is re-executed from the first service with probability
r or it fails with probability 1-r.

3) SEQ-R1 (p1, t1, c1, r1, ..., pn, tn, cn, rn): This is similar
to SEQ. However, service i will be re-invoked with
probability ri if the invocation of this service fails.

4) PAR(p1, t1, c1, ..., pn, tn, cn): There are n services in-
voked simultaneously. The operation will use the output
of the first successful invocation.

5) PAR-R (p1, t1, c1, ..., pn, tn, cn, r): This is similar to
PAR. However, if all service invocations fail, the op-
eration is re-executed with probability r or it fails with
probability 1-r.

6) PROB (x1, p1, t1, c1, ..., xn, pn, tn, cn): There is a single
service to request. The probability that indicates the
service i is xi, where Σn

i=1 xi =1.
7) PROB-R(x1, p1, t1, c1, ..., xn, pn, tn, cn, r): This is sim-

ilar to PROB. However, if the service invocations fail,
the operation is re-executed with probability r or it fails
with probability 1-r.

8) PROB-R1(x1, p1, t1, c1, r1, ..., xn, pn, tn, cn, rn): This
is similar to PROB. However, if the service invocations
fail, the service is re-invoked with the probability of r
or it fails with probability 1-r.

9) Combination: This is a combination of the above pat-
terns.

Figure 3. Foreign Exchange System Workflow, from [7].

To evaluate eFACT, a foreign exchange system (FX system)
from the SBS area that aims to assists the trader is adopted
from [7]. As shown in the Figure 3, the FX system offers the
trader two operational modes: expert or normal. The expert
mode executes the trade automatically when the transaction
meets the customer’s objectives. It begins with the market-
watch component to obtain the current price of the chosen
currency, then it uses the technical-analysis component to
assess the market and estimate the price movement. The
analysed outputs could be one of three options:

3Copyright (c) IARIA, 2022. ISBN: 978-1-61208-954-6

COMPUTATION TOOLS 2022 : The Thirteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 8 / 17

1) The transaction can be performed because the objectives
that the traders set up are satisfied;

2) The market watch component is re-invoked since the
objectives were not met; and

3) The objectives are incorrect, and the Alarm unit will be
triggered to warn the trader.

Conversely, the FX system utilises the fundamental-analysis
component in its normal mode to determine whether to con-
duct a transaction, retry the analysis or end the session.

eFACT aims to analyse the following properties of the
pDTMC model of the FX system with multiple services (from
1 to 6), and under different patterns:

1) P1: The possibility of completing a transaction success-
fully, written in the PCTL format as P =?[F (state =
WF SUCC)];

2) P2: The estimated time to execute the transaction, writ-
ten in the PCTL format as R{”time”} =?[F ((state =
WF SUCC)|(state = WF FAIL))]; and

3) P3: The estimated cost of running the transaction suc-
cessfully, written in the PCTL format as R{”cost”} =
?[F ((state = WF SUCC)|(state = WF FAIL))].

B. Three-tier software architectures
The three-tier server [8], as shown in Figure 4, provides

three services: web, database and application services. The
services are hosted on four different physical servers (A, B, C
and D) and operate on different virtual machines (VMs). The
system can be scaled-up to include more servers, VMs and
service instances. This case study presents the following three
patterns:

• Basic (B): Several tier instances are running on a server.
If the server crashes, the running tier instances are lost.

• Virtualised (V): There are a number of tier instances,
and each one is running on its own virtual machine on a
server.

• Virtulised-M (VM): This is similar to the virtualised
pattern. However, when the server crashes, a monitoring
component can detect a crash before it occurs. Therefore,
the virtual machine can be migrated to other running
servers. For example, consider a server with several
components, including processors, disks, and memory
chips, that are now working but are prone to crash over
time. If a substantial quantity of components crashes,
the detection monitoring component discovers the crashes
and begins migrating all the VMs in this server to another
server.

If the engineers intend to evaluate the probability of deploy-
ing options for the three-tier software on different servers, they
could evaluate the following properties:

1) P1: This measures the likelihood of the system failing
within a determined time due to all tier instances failing.
It can be written in PCTL as P =?[F done & fail];
and

2) P2: This assesses the possibility of a single failure point
during the analysis. The PCTL encoded for this property
is P =?[F done & spf].

Figure 4. Three-tier architecture deployed on a Cloud, from [8].

V. EVALUATION

We performed a set of experiments to compare eFACT
and FACT using two different case studies from different
areas. Those case studies are described in Section IV. All
experiments were conducted on an OSX 10.14.6 MacBook
Pro laptop with an 8 GB 1600 MHz DDR3 RAM and CPU
2.5 GHz Intel Core i5 processor.

A. Experimental environment

eFACT was developed using JAVA and required installing
the following tools and applications:

1) PRISM/Storm [9] are model checker tools used to
analyse properties and produce algebraic expressions.
eFACT tested using PRISM v4.4 and Storm v1.5.1.

2) MATLAB is used for computing confidence intervals,
and the used version is R2019a.

3) YALIMP [10][11] is a MATLAB-based modelling lan-
guage that was developed by Johan Lofberg and contains
several free and commercial solvers. It is used to model
and formulate both convex and non-convex optimisa-
tion problems. It is invoked in the background by
eFACT/FACT to solve the convex optimisation problem.
Our work was applied using version 20210331.

4) Gurobi [12] is an optimisation solver that YALIMP can
invoke to solve the optimisation problem.

5) ePMC repository defines the model’s patterns and con-
tains the expressions related to the properties of the
model.

B. Results

For the first case study that SBS explained in Section IV-A,
we carried out several experiments to analyse three properties
(P1, P2, P3), produce the confidence intervals from α=0.90
to α = 0.99, and record the execution time in seconds. The
analysis was carried out under different patterns and with
different services. Table I summarises the results and shows
the execution time (in seconds) taken to analyse each property
using eFACT and FACT. The table contains the following
symbols:

• (T) denotes the time out, which means that the execution
time exceeds the predefined time of 1800 seconds without
completing the analysis.

4Copyright (c) IARIA, 2022. ISBN: 978-1-61208-954-6

COMPUTATION TOOLS 2022 : The Thirteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 9 / 17

TABLE I. THE RESULTS OF FX SYSTEM, (THE EXECUTION TIME IS IN SECONDS).

Pattern Services eFACT FACT
P1 P2 P3 P1 P2 P3

SEQ

1 141.405 175.357 188.243 98.817 105.328 100.098
2 147.276 194.089 194.503 T T T
3 188.993 225.028 227.659 - - -
4 286.416 354.003 353.514 - - -

SEQ-R
2 197.213 284.967 282.978 T T T
3 253.189 348.103 355.679 - - -
4 1507.257 1314.996 1285.241 - - -

SEQ-R1
2 187.587 270.305 272.994 T* T T
3 222.844 322.971 322.634 - - -
4 423.71 501.281 510.492 - - -

PAR
2 141.299 189.637 185.0 T T T
3 186.318 269.309 221.306 - - -
4 290.874 384.679 296.634 - - -

PAR-R
2 199.079 299.229 280.785 T T T
3 248.545 380.596 337.698 - - -
4 1487.141 1787.865 1352.024 - - -

PROB
2 138.287 183.473 182.499 182.595 1130.434 1025.849
3 143.724 187.631 192.325 - - -
4 148.537 197.401 200.723 - - -

PROB-R
2 197.09 262.869 263.637 T T T
3 220.979 294.346 295.803 - - -
4 238.253 339.933 334.826 - - -

PROB-R1
2 186.974 262.863 260.842 T T T
3 216.312 293.574 294.891 - - -
4 230.583 337.127 345.044 - - -

Combination

Min 155.351 199.017 197.774 T T T
Max 292.297 290.975 286.386 - - -
Mean 177.582 231.562 222.059 - - -
Stdev 30.139 24.23 24.952 - - -

• (T*) means the tool is failed to produce an algebraic
expression for the property being analysed during the
predefined time.

• (-) indicates that we skipped this experiment since the
previous model is smaller than the current one, and it
failed to compute the confidence intervals in the deter-
mined time frame.

As shown in Table I, the execution time recorded for eFACT
is better than FACT’s execution time, except for the first row,
where the model has a single service (SEQ pattern with one
service). Further, to analyse the model in the first row, eFACT
requires more time to compute confidence intervals for the
component expressions (more than one expression) before
substituting their results into the model formula. Moreover,
we notice that the difference is not so significant. The table
shows that eFACT takes less time than FACT for the analysis
of other patterns and services.

For the second case study mentioned in Section IV-B,
several experiments were performed to evaluate their two
properties (P1, P2) and calculate the confidence intervals from
α=0.90 to α = 0.99. Table II illustrates the results for four
models of four servers with different patterns. FACT takes less
execution time to analyse the model of deployment D1, which
is found in the first row. The model is simple and produces
a small expression that FACT can handle. In deployment D2,
the model has some complexity (loop), and the expressions
for both properties are too large. Therefore, FACT failed to
analyse them before the time was out. eFACT can handle this
model since it deals with small component expressions to first

analyse them and then exploit their outcomes in analysing the
main formula. The third row is for deployment D3, which is
a loop-free model. We note that FACT can analyse this model
but is higher than eFACT analysis time. The last row shows
the superiority of eFACT, where FACT cannot analyse the
properties of this model since the algebraic expression failed
to be produced in 1800 seconds.

VI. RELATED WORK

Software engineers can exploit the probabilistic model
checking to analyse and assess the reliability, correctness,
potential performance and other key attributes of systems with
probabilistic behaviour. However, the model can be affected
by the unquantified estimation errors of transition probabilities,
leading to uncertainty. Specifically, the probabilities of transi-
tions from one state to another in DTMC could be unrealistic
since statistical experiments calculate them. Multiple studies
have been conducted to diminish the uncertainty that arises
in DTMC models. The studies accomplished by [13][14]
have sought to capture this kind of problem. Kozine and
Utkin [13] supposed that the probability value should be
included between two bounds (upper and lower) instead of
being a specific value. They exploited the theory of interval-
valued coherent prevision to generalise discrete Markov chains
and introduce interval-valued, discrete-time Markov chains
(IDTMCs). Škulj [14] attempted to refine the IDTMCs and
develop consecutive steps to make the IDTMCs suitable for
the models with generic convex sets of probabilities. The work
in [15] applied upper and lower bounds on the complexity

5Copyright (c) IARIA, 2022. ISBN: 978-1-61208-954-6

COMPUTATION TOOLS 2022 : The Thirteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 10 / 17

TABLE II. THE RESULTS OF THE MULTI-TIER SYSTEM.

Deployment Number of
instances

Server
type eFACT FACT

Server
A

Server
B

Server
C

Server
D P1 P2 P1 P

D1 6 V V B B 203.266 214.387 94.088 86.317
D2 6 VM VM B B 331.342 359.419 T T
D3 10 V V V V 337.281 365.966 687.554 730.999
D4 10 VM VM VM VM 824.153 873.638 T* T*

of calculating values for undetermined probabilities in the
model checking of an interval Markov chains that increased
the likelihood of satisfying ω-regular specification. FACT [1]
computes confidence intervals for analysing the properties of
Markov chains instead of giving a single value to resolve
uncertainty. However, FACT fails to compute the confidence
intervals when the produced algebraic expression is too large
or not produced. eFACT employs the ePMC approach to
compute the confidence intervals when FACT cannot.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced eFACT, a new model checker
with confidence intervals that significantly improves the scal-
ability of existing solutions for the analysis of pDTMCs. In
addition, eFACT can benefit engineers who want to establish
the analysed pDTMC model’s confidence level in the satisfac-
tion or violation of a given non-functional requirement. Our
experimental results show that eFACT has better execution
times than the model checker FACT that it builds on, outper-
forming FACT in most cases. One of our work’s limitation is
that the model requires a repository of components’ equations
and an abstract model that require a domain expert. However,
this limitation can be resolved using a recently introduced
generic method for efficient parametric model checking [16].
Integrating this new method into eFACT and further evaluating
the scalability of the tool represent areas of future work for
our project. As another future work direction, the efficiency of
eFACT can be further increased by analysing the component
expressions generated by ePMC in parallel.

REFERENCES

[1] R. Calinescu, K. Johnson, and C. Paterson, “FACT: A probabilistic
model checker for formal verification with confidence intervals,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2016, pp. 540–546.

[2] N. Alasmari, R. Calinescu, C. Paterson, and R. Mirandola, “Quan-
titative verification with adaptive uncertainty reduction,” Journal of
Systems and Software, 2022, in press. Pre-print available at https:
//www.sciencedirect.com/science/article/abs/pii/S016412122200036X.

[3] M. Kwiatkowska, G. Norman, and D. Parker, “Prism: Probabilistic
symbolic model checker,” in International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation. Springer,
2002, pp. 200–204.

[4] R. Calinescu, C. Paterson, and K. Johnson, “Efficient parametric model
checking using domain knowledge,” IEEE Transactions on Software
Engineering, vol. 47, no. 6, pp. 1114–1133, 2019.

[5] R. Calinescu, K. Johnson, and C. Paterson, “Efficient parametric model
checking using domain-specific modelling patterns,” in 2018 IEEE/ACM
40th International Conference on Software Engineering: New Ideas and
Emerging Technologies Results (ICSE-NIER). IEEE, 2018, pp. 61–64.

[6] M. Deubler, J. Grünbauer, J. Jürjens, and G. Wimmel, “Sound devel-
opment of secure service-based systems,” in Proceedings of the 2nd
International Conference on Service Oriented Computing, 2004, pp.
115–124.

[7] S. Gerasimou, G. Tamburrelli, and R. Calinescu, “Search-based synthesis
of probabilistic models for quality-of-service software engineering,” in
2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2015, pp. 319–330.

[8] R. Calinescu, S. Kikuchi, and K. Johnson, “Compositional reverification
of probabilistic safety properties for large-scale complex IT systems,”
in Monterey Workshop. Springer, 2012, pp. 303–329.

[9] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk, “A storm is coming:
A modern probabilistic model checker,” in International Conference on
Computer Aided Verification. Springer, 2017, pp. 592–600.

[10] J. Lofberg, “YALMIP : a toolbox for modeling and optimization in
MATLAB,” in 2004 IEEE International Conference on Robotics and
Automation (IEEE Cat. No.04CH37508), 2004, pp. 284–289.

[11] J. Löfberg, “Modeling and solving uncertain optimization problems in
yalmip,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 1337–1341,
2008.

[12] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2021. [Online]. Available: https://www.gurobi.com

[13] I. O. Kozine and L. V. Utkin, “Interval-valued finite Markov chains,”
Reliable computing, vol. 8, no. 2, pp. 97–113, 2002.

[14] D. Škulj, “Discrete time Markov chains with interval probabilities,”
International Journal of Approximate Reasoning, vol. 50, no. 8, pp.
1314–1329, 2009.

[15] M. Benedikt, R. Lenhardt, and J. Worrell, “LTL model checking of
interval Markov chains,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2013, pp. 32–46.

[16] X. Fang, R. Calinescu, S. Gerasimou, and F. Alhwikem, “Fast parametric
model checking through model fragmentation,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 835–846.

6Copyright (c) IARIA, 2022. ISBN: 978-1-61208-954-6

COMPUTATION TOOLS 2022 : The Thirteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 11 / 17

High-pass Filters Preprocessing in Image Tracing
with Convolutional Autoencoders

Andreas Fischer and Zineddine Bettouche
Deggendorf Institute of Technology

Dieter-Görlitz-Platz 1
94469 Deggendorf

E-Mail: andreas.fischer@th-deg.de, zineddine.bettouche@th-deg.de

Abstract—Image tracing describes the task of converting a
raster image into a vector format. This paper investigates differ-
ent processing pipelines that can extract an abstract representa-
tion of an image by means of high-pass filtering, autoencoding,
and vectorization. Results indicate that reconstructing an image
using Autoencoders, then filtering it with high-pass filters, and
finally vectorizing it, can represent the image more abstractly
while improving the efficiency of the vectorization process.

Index Terms—image quality, vector graphics, neural networks,
autoencoders, high-pass filters, vectorization, complexity theory,
information technology.

I. INTRODUCTION

Graphical information can be represented digitally in two
ways: raster-oriented or vector-oriented. The visual informa-
tion in raster images is encoded as a 2D pixel array (or a
bitmap). This is the case in the well-known Portable Network
Graphics (PNG) or JPEG File Interchange Format (JFIF,
commonly known just as JPEG). However, vector graphics
represent data in a set of mathematical primitives such as
lines and circles. A widely used format for vector graphics
is Scalable Vector Graphics (SVG).

There are many use-cases for conversion between the two
ways of representation. Vector images have to be rasterized
in order to display on a raster-oriented monitor, and raster
images have to be vectorized, if one wants to obtain a scale-
free representation of the image. However, vectorization is not
as accurate as rasterization. The main obstacle of converting
a raster image into a vector graphic is the identification of
mathematical primitives in a way that is appropriately fitting.
On the one hand, a literal representation produces too much
noise and fails to capture the relationships between image
areas. On the other hand, the mapped image should not vary
much from its original version.

This paper investigates different processing pipelines that
can extract an abstract representation of an image by means of
high-pass filtering, autoencoding, and vectorization. It extends
previous work by Fischer and Amesberger [1], investigating
the interplay between autoencoders and high-pass filters in the
vectorization process. The cat dataset by Zhang et al. [2] is
used to demonstrate the applicability of our approach.

The remainder of this paper is structured as follows: In
Section II a brief introduction is given on image tracing,

Figure 1. Potrace vectorization

autoencoders and high-pass filters. Section IV introduces the
methodology of this paper. This includes the evaluation meth-
ods used and the reason why they have been chosen. Section V
presents the experiments and their results. This is the part
that attempts to eliminate inefficient processing algorithms, so
that only a few pipelines that score closely are put forwared
to further evaluation. Section VI includes the evaluation of
the different processing pipelines built, and closes with a
summarizing interpretation. Section III discusses related work.
Finally, Section VII concludes the paper and discusses future
work.

II. BACKGROUND

In this section, the three main techniques for image pro-
cessing used in this paper are discussed. Image tracing is used
to produce vector graphics from a raster image. Autoencoders
and high-pass filters are used as pre-processing steps to reduce
the complexity in the image with the goal of achieving an
abstract representation of the image in its vector format.

A. Image Tracing

Image tracing is the process of vectorization raster images.
It works by using edge detection mechanisms to identify areas
in a raster image to be represented as mathematical objects
such as polygons. The vectorization program used in this
work is Potrace by Peter Selinger [3]. It traces the images by
first converting them into black-and-white and then extracting
Bézier-bounded polygons (cf. Figure 1).

B. Autoencoder

Autoencoders are artificial neural networks that can be
trained to reconstruct the input by passing it through an

7Copyright (c) The Government of Germany, 2022. Used by permission to IARIA. ISBN: 978-1-61208-954-6

COMPUTATION TOOLS 2022 : The Thirteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 12 / 17

Figure 2. Example structure of an autoencoding network

Figure 3. Applying Sobel derivatives on a random image

information bottleneck. The network learns how to preserve
the input by an efficient reconstruction. This preservation of
information can reduce the input complexity.

A basic autoencoder architecture is shown in Figure 2. The
input layer is the layer that is the farthest on the left. The
number of neurons becomes smaller the closer the layer is to
the center, and this builds the information bottleneck. When
the information reaches the center layer, it is at its highest
density. By mirroring the architecture to the right, the encoded
data from the center layer gets decoded again to its original
size. The training process encourages the output layer to match
the information that was passed to the input layer.

C. High-pass Filters

A high-pass filter can be used to make an image appear
sharper. These filters (e.g., Sobel [4] and Canny [5]) emphasize
fine details in the image. High-pass filtering works with the
change in intensity. If one pixel is brighter than its immediate
neighbors, it gets boosted. Figure 3 shows the result of
applying a high-pass filter (Sobel) on a random image.

III. RELATED WORK

In a paper done in MIT, Solomon and Bessmeltsev [6]
explored the use of frame fields. The general idea of their
method is to find a smooth frame field on the image plane,
where at least one direction is aligned with nearby contours
of the drawing. Around X- or T-shaped junctions, the two
directions of the field will be aligned with the two intersecting
contours. Then, the topology of the drawing is extracted

by tracing the frame field and grouping traced curves into
strokes. Finally, they created with the extracted topology a
vectorization aligned with the frame field.

Lacroix [7] analyzed some problems of R2V conversion,
and a strategy has been proposed involving a preprocessing
stage generating a mask, from which edges are removed
and lines are kept. A clustering is then performed while
considering only the pixels of the mask. A new algorithm, the
medianshift, has been proposed in this context. Then comes
the labeling process which should also take the pixel type into
account. The last step involves a regularization procedure. The
importance of the pre-processing ignoring edge pixels while
keeping lines has been shown on some examples. Tests also
showed the superiority of the median-shift over the mean-
shift, and over the clustering method used by Vector-Magic.
This paper also showed that a better line vectorization can be
obtained from enabling the extraction of dark lines, which can
support the use of high-pass filters as a preprocessing stage to
put further emphasis on those dark lines.

Xie et al. [8] designed a novel approach, which achieves
a performance comparable to traditional linear sparse coding
algorithm on the simple task of denoising additive white
Gaussian noise. They use autoencoders to reduce image noise
in the area of repairing damaged images.

Gong et al. [9] presented an algorithm that successfully
completes the automatic extraction and vectorization of the
road network. The main obstacles in road extraction in re-
mote sensing images are: first, different scales and strong
connectivity; second, complex backgrounds and occlusions;
and third, high resolution and a small proportion of roads in
the image. The process of road vectorization in this paper is
mainly divided into road network extraction and vectorization
preservation. This work also shows the advantages of using
dense dilation convolution, which points to the possibility of
using autoencoding models for vectorization preservation.

Fischer and Amesberger [1] showed that preprocessing the
raster image with an autoencoder neural network, can reduce
complexity by over 70% while keeping reasonable image
quality. They proved that autoencoders perform significantly
better compared to PCA in this task. We base our our work
on this previous work, having a closer look at the effect of
high-pass filters on autoencoding in an image vectorization
pipeline.

IV. METHODOLOGY

This section describes the methodology of this paper. The
programming implementation is first introduced along with
the autoencoder structure. Then, the common grounds of pro-
cessing pipelines are demonstrated. In addition, the evaluation
methods are presented with the rationale behind their selection.

A. Autoencoder Structure & Software Implementation

The test/evaluation framework was implemented in Python.
The autoencoder was implemented with TensorFlow [10] and
Keras [11]. The convolutional neural network was built with
convolution and pooling layers in three steps to a 32×32

8Copyright (c) The Government of Germany, 2022. Used by permission to IARIA. ISBN: 978-1-61208-954-6

COMPUTATION TOOLS 2022 : The Thirteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 13 / 17

Figure 4. General processing approach

bottleneck. The decoder mirrors this structure with three steps
of transposed convolutional layers and batch normalization
layers. The autoencoder input is set to a 255x255 image (gray-
scaled). The high-pass filters used in this paper are the standard
implementations in OpenCV [12].

B. General Approach of Processing

Regardless of the path an image takes in any pipeline that
will be built, the first processing stage is always going to be
converting the image into gray-scale. The focus of this work
is around single-channel images; however, it can be extended
in the future for multi-channel (RGB) processing. Therefore,
when a pipeline is demonstrated visually, the initial version
of the image displayed is going to be gray-scale, but this is
implying that the raw RGB images were all grayscaled, which
will be a common branch for all the pipelines built in this
work.

After an image is grayscaled, it will be put through a
certain cascade of processing stages. In this paper, the con-
cerned stages are: High-pass Filtering, Autoencoding, and
Vectorization. The experiments of this work are going to
tune the different parameters that these stages can take. More
importantly, the outputs of all pipelines possible are going to
be in a vector format; due to the fact that we are attempting to
enhance the vectorization process, while aiming for an abstract
representation of the image. Therefore, a rasterization stage
is going to always be placed at the end of every pipeline.
Converting images back into their raster format is mandatory
to perform a comparison between the grayscaled image that
was initially fed to a pipeline, and its resulting vector format.
Hence, we rasterize the vector output to be able to evaluate
the efficiency of the pipeline. A general processing approach
for the different pipelines is shown in Figure 4.

C. Evaluation Methods

The case at hand deals with both vector and raster images.
Therefore, for a comparison to take place, a comparison
method for each format needs to be selected.

• Vector: Various methods can be used to measure the
level of the complexity in a vector image. One can be
the size of the file, which can be used to infer the
length of the entire path entries in the file. Furthermore,
investigating the reduction of complexity can be done
through analyzing the longest path tags. The number of
path tags can be taken as a characteristic value of the
complexity. In this paper, it is assumed that the number
of SVG path entries is directly related to the complexity.

• Raster: There are mainly two common ways of com-
paring raster images. The first one is comparing images
based on the Mean Squared Error (MSE) [13]. The MSE
value denotes the average difference of the pixels all
over the image. A higher MSE value designates a greater
difference between the original image and processed
image. Nonetheless, it is indispensable to be extremely
careful with the edges. A major problem with the MSE
is that large differences between the pixel values do
not necessarily mean large differences in content in the
images. The Structural Similarity Index (SSIM) [14] is
used to account for changes in the structure of the image
rather than just the perceived change in pixel values
across the entire image. The implementation of the SSIM
used is contained in the Python library Scikit-image [15].
The SSIM method is significantly more complex and
computationally intensive than the MSE method, but
essentially the SSIM tries to model the perceived change
in the structural information of the image, while the MSE
actually estimates the perceived errors.

In the experiments conducted for this paper, the results of MSE
and SSIM drive to the same conclusion. Therefore, in order
to avoid redundancy, only the SSIM graphs are displayed in
this paper.

V. EXPERIMENTS

Experiments in this paper are essential to tune the different
parameters a pipeline can have. In this section, some of the
important experiments undergone are going to be presented.

Nevertheless, other unmentioned experiments also helped in
cutting down the number of possible pipelines for evaluation.
For instance, at the beginning of the work, three high-pass
filters were selected for their commonality: Gaussian, Sobel,
and Canny. However, the Gaussian filter introduced noise onto
the images, which was not negligible. An experiment was
done that attempted to reduce such noise by applying the
Grain-extract or the Difference filters, but the results were
not acceptable. Therefore, the Gaussian filter was removed
from the set of filters. Another experiment was conducted to
compare the scores of Sobel and Canny filtering. Both SSIM
and MSE indicated that the two filters were so close to each
other that there was not a decisive choice between them.

The two experiments mentioned below deal with the effect
of features’ color on the autoencoding and vectorization stages.
The need for experimentation concerning such effect has risen
when it was found that the conventional implementation of
filters in the programming libraries resulted in images having
a dark background with light features (lines and shapes), which
was perceived as counter-intuitive.

The filters that were succeeded with the word -direct are
the ones that follow the conventional implementation (dark
background with white lines). On the opposite side, filters with
-inverse as suffix refer to the ones that are constituted of white
background with black lines.

9Copyright (c) The Government of Germany, 2022. Used by permission to IARIA. ISBN: 978-1-61208-954-6

COMPUTATION TOOLS 2022 : The Thirteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 14 / 17

Figure 5. Similarity of autoencoded images in relation to the color of their
features

A. Features’ Color Effect on Autoencoding

This experiment was done to obtain the difference between
training an autoencoder with images whose lines are drawn
in black on white background, and training it with the same
images but inverted. Therefore, four models of autoencoders
were trained with 5000 epochs. 50 images were reconstructed,
in order to make the measurement more generalized.

From the plotted results in Figure 5 we conclude that
autoencoders respond better when the training images have
darker features.

B. Features’ Color Effect on Vectorization

This experiment aims to display the effect of high-pass
filters on reconstructed-images vectorization. We took 50
random images, reconstructed them and filtered each image
with Canny and Sobel filters (direct and inverse: 4 versions
per image). Finally, all of the images were vectorized, and
then compared (after rasterization) with their versions pre-
vectorization.

From the box-plots in Figure 6, we conclude that the filters
brought more definition to the lines in the images, which
made the shapes appear clearer, and this has lead to a better
vectorization. Therefore, white images with black lines get
vectorized better when compared to the darker images.

C. Results of Experimentation

Concerning autoencoding, for the sobel-direct, the mean and
standard-deviation values were 0.202 and 0.044, respectively.
Whereas their inverse scored 0.699 and 0.124, respectively.
For the canny-direct, the mean and standard-deviation values
were 0.234 and 0.090, respectively. Whereas the inverse scored
0.741 and 0.150, respectively. These values further states a bet-
ter learning rate for the autoencoder when the most important
features of an image are darker than its other contained data.
Therefore, we can conclude that when training an autoencoder,
the semi-supervised neural network responds better when the
training images have darker lines in their important features.

Figure 6. Similarity of vectorized images in relation to the color of their
features

Following the same pattern, the box-plots show a better
fitness of white images with black lines when compared to
the darker images in vectorization.

VI. EVALUATION

Evaluation is concerned with how abstract the resulting
images are. As there are two pre-processing blocks (filter-
ing and autoencoding), four different pipelines can be built:
autoencoding, filtering, autoencoding-filtering, and filtering-
autoencoding. After one of these selections is fed the images,
a vectorization process is always cascaded at the end.

First, all of the resulting images are going to be evaluated
based on their path count (size) and similarity to the input im-
ages. Then, a summary of evaluation is going to be introduced
for each of the pipelines individually.

Before engaging in the evaluation, it is good to elaborate
on the column naming of the upcoming plots:

• default: the default image.
• sobel, canny: the filtered version of the image by the

respective filter.
• dec: the decoded version.
• vect: the vectorized version.
• A combination of two or more indicates the case of

cascaded stages. A default-dec-sobel label represents the
following: the default image is reconstructed with the
autoencoder then filtered with the sobel filter.

A. Evaluating the size of the produced images

To evaluate the size of the image, we count the number
of path objects generated in the SVG file. From Figure 7
(note that the graph is in logarithmic scale) we see that the
autoencoder (*-dec-*) significantly reduced the size of images,
as it keeps only the most important features. The reconstructed
filtered images (canny-dec, sobel-dec) had a similar path
count. Although it was much smaller than the ones that did
not go through that step, it was still above the default images
that were reconstructed and vectorized without any filtering.
Finally, when filters were applied onto the default images that
were put through an autoencoding stage (default-dec-sobel,

10Copyright (c) The Government of Germany, 2022. Used by permission to IARIA. ISBN: 978-1-61208-954-6

COMPUTATION TOOLS 2022 : The Thirteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 15 / 17

Figure 7. Path count of the resulted groups of vector images

Figure 8. Vectorization accuracy of different pipelines

default-dec-canny), these images scored in size calculations
very similarly to the filtered images when only reconstructed
(canny-dec, sobel-dec).

B. Evaluating the quality of the produced images

A more accurate way of examining the efficiency of the
vectorization process of each pipeline, is to compare the
images and their vector versions (Figure 8). The pipeline of
autoencoding-filtering-vectorization (two last groups on the
most-right) seems to experience the highest SSIM, which
indicates its fitness in vectorization. It made more sense for
the autoencoder to reconstruct the images and then for the
filters to come afterwards, putting emphasis on the important
features of each image.

Figure 9. Autoencoding-vectorization pipeline

Figure 10. Filtering-vectorization pipeline

C. Implemented Pipelines: an evaluation summary

This is a summary of results evaluation for each of the
pipelines individually.

• Autoencoding-Vectorization: This pipeline was based
on the work of Fischer and Amesberger [1]. However,
the implementation was different, and the evaluation was
about the abstractness of the results. The quality of
the vectorization is acceptable only in terms of general
similarity. However, an abstract representation of the
image is not achieved (Figure 9).

• Filtering-Vectorization: In this pipeline (Figure 10), the
vectorization algorithm finds a difficulty in vectorizing
the filtered images. This is due to the noises caused by the
applied filters. Although the experiments showed that the
quality of the vectorization increased when the images
where taken as a light background with dark features,
the noise involved created an obstacle for Potrace to
convert thoroughly the images into a vector format, which
resulted into losing data.

• Filtering-Autoencoding-Vectorization: This pipeline
was built as an attempt to enhance the Autoencoding-
Vectorization pipeline. Although the autoencoding stage
was efficient in reducing the size of the images, it did not
result in an abstract view of the image features. There-
fore, a filtering stage was placed prior the autoencoding
process. Unfortunately, this pipeline does not achieve the
result intended. The autoencoding stage was supposed
to reconstruct the filtered images in a lower complexity;
but the case at hand is that, the autoencoding model is
attempting to smooth the images, canceling the effect of
the high-pass filters. This has resulted in a significant
drop in the quality of the vector images, which is seen
in Figure 11.

• Autoencoding-Filtering-Vectorization: Due to the
results in the Filtering-Autoencoding-Vectorization

11Copyright (c) The Government of Germany, 2022. Used by permission to IARIA. ISBN: 978-1-61208-954-6

COMPUTATION TOOLS 2022 : The Thirteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 16 / 17

Figure 11. Filtering-autoencoding-vectorization pipeline

Figure 12. Autoencoding-filtering-vectorization pipeline

pipeline, it was clear that the filtering stage would act
in a more proper way if it succeeded the autocoding
process, rather than preceding it. This was concluded
when the autoencoding model was seen to reduce
the complexity of the images while introducing a
smoothing effect. The filters were placed after the
reconstruction stage to preserve the important features
of the reduced-complexity image. This cascade shows
an acceptable vectorization quality while resulting in the
intended abstract representation of the images as shown
in Figure 12.
As for providing more visualizations of the results that

can be obtained with this pipeline, Figure 13 shows some
random images that were fed to the Autoenconding-
filtering-vectorization pipeline along with their respective
output images. As can be seen, the features of the cats
are extracted very clearly in all examples.

VII. CONCLUSION

This paper overall discussed the use of high-pass filters in
vectorization pipelines, along with the autoencoding stage. It
is concluded in this chapter that high-pass filters can enhance
the training of an autoencoder, which in return make the vec-

Figure 13. Some of the output images along with their input images of the
pipeline Autoenconding-filtering-vectorization

torization process more efficient by preserving the important
features of an image.

After evaluating the efficiency of the vectorization algorithm
in every pipeline, it was clear that the images that went through
the cascade of autoencoding-filtering, scored the highest in
similarity, and the lowest in error. This points to the fact
that the images that were reconstructed, preserved the most
important features, which were brought up even more by
the filtering part succeeding the reconstruction, which leads
to not only a better vectorization but also a more abstract
representation of the image.

This cascade of autoencoding-filtering gave decent results
that matched the initial expectations; however, further work
must be put into the structure of the models built, and their
training dataset.

Concerning this future work, experiments showed that dark
features on a light background in images can improve both the
training of autoencoder models and the process of vectoriza-
tion, which can be a good candidate for further investigation.
From another side, the work in this paper deals with single-
channel images (gray-scale); however, the vectorization of
multi-channel images can be put through future experimen-
tation.

REFERENCES

[1] A. Fischer and M. Amesberger, “Improving image tracing with artifi-
cial intelligence,” in 2021 11th International Conference on Advanced
Computer Information Technologies (ACIT), 2021, pp. 714–717.

[2] W. Zhang, J. Sun, and X. Tang, “Cat head detection - how to effectively
exploit shape and texture features,” in ECCV, 2008.

[3] P. Selinger, “Potrace : a polygon-based tracing algorithm,” 2003.
[4] N. Kanopoulos, N. Vasanthavada, and R. L. Baker, “Design of an image

edge detection filter using the sobel operator,” IEEE Journal of solid-
state circuits, vol. 23, no. 2, pp. 358–367, 1988.

[5] J. Canny, “A computational approach to edge detection,” IEEE Transac-
tions on pattern analysis and machine intelligence, no. 6, pp. 679–698,
1986.

[6] M. Bessmeltsev and J. Solomon, “Vectorization of line drawings via
polyvector fields,” 2018.

[7] V. Lacroix, “Raster-to-vector conversion: Problems and tools towards a
solution a map segmentation application,” 03 2009, pp. 318 – 321.

[8] J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with
deep neural networks,” in Advances in Neural Information Processing
Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
Eds., vol. 25. Curran Associates, Inc., 2012.

[9] Z. Gong, L. Xu, Z. Tian, J. Bao, and D. Ming, “Road network extraction
and vectorization of remote sensing images based on deep learning,” in
2020 IEEE 5th Information Technology and Mechatronics Engineering
Conference (ITOEC), 2020, pp. 303–307.

[10] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

[11] F. Chollet et al. (2015) Keras. [Online]. Available:
https://github.com/fchollet/keras

[12] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[13] C. Sammut and G. I. Webb, “Mean squared error,” Encyclopedia of
Machine Learning, no. 4, pp. 653–653, 2010.

[14] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assess-
ment: from error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[15] S. Van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne,
J. D. Warner, N. Yager, E. Gouillart, and T. Yu, “scikit-image: image
processing in python,” PeerJ, vol. 2, p. e453, 2014.

12Copyright (c) The Government of Germany, 2022. Used by permission to IARIA. ISBN: 978-1-61208-954-6

COMPUTATION TOOLS 2022 : The Thirteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Powered by TCPDF (www.tcpdf.org)

 17 / 17

http://www.tcpdf.org

