
COMPUTATION TOOLS 2017

The Eighth International Conference on Computational Logics, Algebras,

Programming, Tools, and Benchmarking

ISBN: 978-1-61208-535-7

February 19 - 23, 2017

Athens, Greece

COMPUTATION TOOLS 2017 Editors

Claus-Peter Rückemann, Leibniz Universität Hannover / Westfälische Wilhelms-
Universität Münster / North-German Supercomputing Alliance, Germany

 1 / 21

COMPUTATION TOOLS 2017

Forward

The Eighth International Conference on Computational Logics, Algebras, Programming,
Tools, and Benchmarking (COMPUTATION TOOLS 2017), held between February 19-23, 2017 in
Athens, Greece, continues an event under the umbrella of ComputationWorld 2017 dealing
with logics, algebras, advanced computation techniques, specialized programming languages,
and tools for distributed computation. Mainly, the event targets those aspects supporting
context-oriented systems, adaptive systems, service computing, patterns and content-oriented
features, temporal and ubiquitous aspects, and many facets of computational benchmarking.

We take here the opportunity to warmly thank all the members of the COMPUTATION
TOOLS 2017 technical program committee, as well as all the reviewers. We also kindly thank all
the authors that dedicated much of their time and effort to contribute to COMPUTATION
TOOLS 2017. We truly believe that, thanks to all these efforts, the final conference program
consisted of top quality contributions.

We also gratefully thank the members of the COMPUTATION TOOLS 2017 organizing
committee for their help in handling the logistics and for their work that made this professional
meeting a success.

We hope that COMPUTATION TOOLS 2017 was a successful international forum for the
exchange of ideas and results between academia and industry and to promote further progress
in the area of computational logics, algebras, programming, tools, and benchmarking. We also
hope that Athens, Greece provided a pleasant environment during the conference and
everyone saved some time to enjoy the charm of the city.

COMPUTATION TOOLS 2017 Committee

COMPUTATION TOOLS 2017 Steering Committee
Ricardo Rocha, University of Porto, Portugal
Cristian Stanciu, University Politehnica of Bucharest, Romania
Ekaterina Komendantskaya, Heriot-Watt University, UK

COMPUTATIONAL TOOLS 2017 Industry/Research Advisory Committee
Miroslav Velev, Aries Design Automation, USA
Cornel Klein, Siemens AG, Germany

 2 / 21

COMPUTATION TOOLS 2017

Committee

COMPUTATION TOOLS Steering Committee
Ricardo Rocha, University of Porto, Portugal
Cristian Stanciu, University Politehnica of Bucharest, Romania
Ekaterina Komendantskaya, Heriot-Watt University, UK

COMPUTATIONAL TOOLS 2017 Industry/Research Advisory Committee
Miroslav Velev, Aries Design Automation, USA
Cornel Klein, Siemens AG, Germany

COMPUTATION TOOLS 2017 Technical Program Committee

Lorenzo Bettini, DISIA - Università di Firenze, Italy
Ateet Bhalla, Independent Consultant, India
Narhimene Boustia, University Saad Dahlab, Blida 1, Algeria
Azahara Camacho, Universidad Complutense de Madrid, Spain
Emanuele Covino, Università degli Studi di Bari Aldo Moro, Italy
Marc Denecker, KU Leuven, Belgium
António Dourado, University of Coimbra, Portugal
Tommaso Flaminio, DiSTA - University of Insubria, Italy
George A. Gravvanis, Democritus University of Thrace, Greece
Fikret Gurgen, Bogazici University - Istanbul, Turkey
Hani Hamdan, Université de Paris-Saclay, France
Cornel Klein, Siemens AG, Germany
Ekaterina Komendantskaya, Heriot-Watt University, UK
Annie Liu, Stony Brook University, USA
Glenn Luecke, Iowa State University, USA
Roderick Melnik, Wilfrid Laurier University, Canada
Ralph Müller-Pfefferkorn, Technische Universität Dresden, Germany
Adam Naumowicz, University of Bialystok, Poland /
Cecilia Esti Nugraheni, Parahyangan Catholic University, Indonesia
Javier Panadero, Open University of Catalonia, Spain
Mikhail Peretyatkin, Institute of mathematics and mathematical modeling, Almaty, Kazakhstan
Alberto Policriti, Università di Udine, Italy
Enrico Pontelli, New Mexico State University, USA
Ricardo Rocha, University of Porto, Portugal
Patrick Siarry, Université Paris-Est Créteil, France
Cristian Stanciu, University Politehnica of Bucharest, Romania
Martin Sulzmann, Karlsruhe University of Applied Sciences, Germany

 3 / 21

James Tan, SIM University, Singapore
Miroslav Velev, Aries Design Automation, USA
Marek B. Zaremba, Université du Québec, Canada

 4 / 21

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 5 / 21

Table of Contents

Composite Event-Driven Programming
Fredy Cuenca

1

A Logic-based Service for Verifying Use Case Models
Fernando Bautista and Carlos Cares

5

An Answer Set Solution for Information Security Management
Carlos Cares and Mauricio Dieguez

11

Powered by TCPDF (www.tcpdf.org)

 1 / 1 6 / 21

Composite Event-Driven Programming
New Concepts for New Types of Interaction

Fredy Cuenca

School of Mathematical Sciences and Information Technology
Yachay Tech

San Miguel de Urcuquı́, Ecuador
Email: fcuenca@yachaytech.edu.ec

Abstract—Implementing multi-touch and multi-modal systems
requires splitting the code across several event handlers, which
complicates programmers work. The present paper finds the root
of this problem in the event-driven paradigm; more concretely,
in the fact that event-driven languages lack abstractions for
representing event sequences. It then suggests to augment event-
driven languages so that programmers can have the possibility
to define event sequences –herein called composite events– that
can then be bound to event handlers. The main features of
the composite event-driven language developed by the authors
are outlined, as well as its benefits and problems. The paper
suggests that, since its design, the event-driven paradigm was
tailored for mouse-based interactions, and it may be important
to question its suitability for implementing multi-touch and multi-
modal interactions.

Keywords–Multi-modal Systems; Multi-touch Systems; Interac-
tive Systems; Event Languages; Composite Events.

I. INTRODUCTION

Many researchers agree that implementing (multi-)touch
and multi-modal systems results in programs that are difficult-
to-read and difficult-to-maintain [1][2][3]. In the domain of
(multi-)touch systems, even simple gestures, such as the pinch-
to-zoom gesture, require the system to handle a stream of
touch-down, touch-move, and touch-up events, from within
the intention of the user to enlarge a particular region of
the touchscreen has to be unveiled. Similarly, multi-modal
commands, like speech-and-pointing commands, will be per-
ceived by multi-modal systems as a series of speech events
and pointing events. Thus, such multi-modal systems have the
difficult task of having to continuously identify which speech
events and pointing events are part of the same command.

The implementation of those interactions that are reflected,
in the system, as sequences of interrelated events, forces
programmers to litter their code with a multitude of flags
and global variables that have to be updated across different
event handlers in order to keep track of the event sequences.
The resulting difficult-to-read, difficult-to-maintain “callback-
soup” [1][2] is not a consequence of bad programming habits
or poor comprehension of event-driven principles. Rather, it is
accidental complexity: complexity caused by the languages and
tools chosen for programming [4]. This type of complexity can
only be reduced by selecting or developing better programming
languages and tools [4]. The present work intends to shed some
light on how to develop better languages and tools.

We believe that the appearance of the “callback-soup” is
largely due to the fact that event-driven languages, which

are widely used to implement interactive systems [5][6], only
offer abstractions, called events, for representing simple user
actions, such as a touch-down or a speech input; but these
languages do not offer abstractions for representing sequences
of user actions.

This paper proposes a programming model that enables
programmers to compose events. In the proposed model,
there is an abstraction called composite event, this being
a programmer-defined event sequence. Composite events are
defined by connecting primitive events, such as touch events
or speech inputs, through a set of operators, where each
operator represents a temporal, spatial, or semantic relation
among their operands. Composite events can then be bound to
event handlers, callback functions that implement the system’s
runtime behavior.

For instance, two basic interactions with a touchscreen
photo viewer can be described by binding the composite event
touch-flicking-left to the event handler ShowNextPhoto(),
and the speak-and-touch remove-this event to the event handler
RemovePhoto(). The two aforementioned composite events
would be defined by the programmer as a combination of touch
events (former case) or as a mix of touch events and speech
events (latter case).

In the proposed programming model, at runtime, the event
handlers are to be launched every time their associated com-
posite events are automatically detected by a composite event-
driven tool. This model will save programmers from having
to implement a supervisory mechanism for tracking event
sequences; such a mechanism would be incorporated in the
composite event-driven tool to be exploited by programmers.
By delegating the detection of event sequences to the com-
posite event-driven tool, programmers can clean their source
codes of the flags and global variables that were necessary for
this task when using event-driven languages.

The remainder of this paper proceeds as follows: In Sec-
tion 2, the proposed approach is compared against others
that also intend to ease the creation of multi-modal/multi-
touch interaction. Section 3 outlines the main features, gains,
and limitations of a composite event-driven tool that was
implemented as part of a PhD project. Finally, Section 4 argues
in favor of augmenting event-driven languages with composite
events.

II. RELATED WORK

The benefits of using composite events for rapid proto-
typing of multi-modal systems have already been highlighted

1Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 7 / 21

[3][7]. Additionally, this paper reports similar gains when
prototyping (multi-)touch gestures and, most importantly, pro-
poses composite events as a unified solution to the “callback
soup” problem that infects both multi-modal and multi-touch
interactive systems.

Other (mostly visual) languages have also been proposed
with the aims of easing the “callback soup” problem. One
important contrast is that while our composite event-driven
model allows describing interactions in terms of events and
event binding, other existing languages require concepts (e.g.,
Petri nets and block diagrams) and programming practices
(e.g., depicting visual models) that may be unfamiliar to
programmers of interactive systems. As the rankings of pro-
gramming popularity published by IEEE [6] and TIOBE [5]
attest, programmers are more accustomed to textual, event-
driven languages. Given that familiarity with a language has
a strong, positive influence on programming language adop-
tion (even stronger than intrinsic properties of the language,
such as performance, reliability, and simple semantics) [8],
the proposed programming language retains the textual and
event-driven nature of mainstream programming languages.
Other more concrete differences of our approach and existing
languages can be found below.

A. Multi-modal interaction description languages
In Squidy [9], multi-modal interactions are represented

as block diagrams that programmers can use to channel and
transform the data coming from different input modalities
to the application. One issue of this model is that each
modality has its own independent channel. Data from different
modalities must be collected in the application as the human-
machine interaction occurs. With our approach, a composite
event can be defined by combining events from the same or
different modalities. The data carried by these events is stored
in parameters that arrive to the application all at once –no need
for queuing events in the application.

Similar to our model, SMUIML [10] allows composing
events so that each composite event can be bound to one event
handler. At runtime, these handlers are launched once their
associated composite events have occurred. We generalize this
approach by allowing programmers to attach event handlers
to very specific stages of a composite event —in our model,
event binding has a time component. This allows launching
several event handlers at different moments of the lifecycle of
a composite event, which makes it possible to provide the end
user with partial feedback.

ICO [11] is a formal language for modeling both multi-
modal and multi-touch interactions. It has an underlying math-
ematical apparatus that allows predicting properties of the
interaction in static time, without having to run the ICO model.
One of its drawbacks is that Petri nets were not tailored for
modeling interaction, thus ICO models do not map close to the
problem domain. ICO users have to tweak their interaction
models to fit them into a Petri net. Our approach, instead,
makes use of a domain-specific notation that has designated
symbols for representing time constraints among events and
special keywords for specifying modalities.

B. (Multi-) touch gesture definition languages
Besides the already reported gains experienced when pro-

totyping multi-modal systems [3][7], composite events also

bring about advantages over existing, salient gesture definition
languages, such as GDL [12], Proton [1] and GestIT [2]. To
a greater or lesser extent, all these languages have proven to
ease the description of touch gestures: programmers can define
gestures in a declarative fashion without having to write fine-
grained code for tracking the gesture state.

GDL [12] is intended for simple description of touch
gestures that can be used across multiple hardware platforms.
A touch gesture is defined as a set of rules that must be met
by the raw touch data along with the value(s) to be returned
when the gesture is detected. GDL allows defining multi-
stroke gestures (e.g., a cross) as long as the strokes can be
issued sequentially. Our language, in contrast, allows defining
gestures involving both sequential and parallel strokes (e.g.,
simultaneous vertical flicks). Furthermore, unlike the proposed
language, GDL does not allow specifying temporal constraints.

On the other hand, Proton allows users to represent gesture
interaction as tablatures. A user study proved that tablatures
are easier-to-comprehend than event-callback code [13]. The
expressiveness of Proton was shown by implementing multi-
user touch-based applications like the classic Pong game, a
tennis-like game between two opponents [13]. One issue with
Proton is its lack of time variables, which makes it difficult
to calculate the duration of a gesture, for instance. In contrast,
our approach allows defining and maintaining different types of
variables (including time variables) throughout the composite
event lifecycle.

As to the Petri nets-based language GestIT, partial feedback
is only possible by decomposing gestures definitions into
smaller, sub-gestures definitions. This is because GestIT only
launches event handlers at the end of a (sub-)gesture. Our ap-
proach does not force programmers to make such decomposi-
tions because multiple event handlers can be bound to different
stages of one single gesture. Furthermore, Proton and GestIT
do not include timeout events, which make it unnecessarily
complex to define recursive gestures. For instance, the single,
double, and triple tap require three separate definitions with
Proton and GestIT. In our approach, timeout events exist and
can be connected with any input event (e.g., touch events
or speech inputs) to be part of a composite event. By using
timeout events, our approach makes it possible to describe
the three aforementioned gestures with one single definition:
a sequence of N taps that end after a period of “silence”.

C. Languages for reactive systems
It should be made clear that the goal of the proposed

approach differs from that of languages such as P [14], Esterel
[15], or Lustre [16].

P is oriented more towards the development of distributed
systems. Therefore, the type of interaction to be modeled with
P is among the components of the intended system. Such a
component-component interaction is uncoordinated and con-
sists of messages sent from different sources. In contrast, the
proposed language is designed for human-machine interaction,
a type of interaction where the inputs are coordinately issued
by one single agent, the end user. Due to this fundamental
difference, P focuses on forcing asynchronous events to be
responded within a reasonable timeframe. For this, P includes
notations for explicit declaration of event deferrals. Our lan-
guage, instead, focuses on describing relations between user
actions and system responses, which can be done concisely
with the proposed composite event binding notations.

2Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 8 / 21

Similar contrasts can be found against Esterel or Lustre,
which are intended to develop real-time, embedded systems.
Thus, these are much closer to P than to the proposed language.

III. A FIRST COMPOSITE EVENT-DRIVEN TOOL

In the context of a PhD research, a composite event-
driven language along with its supporting tool was devel-
oped and evaluated for rapid prototyping of multi-modal
systems [3][17][7].

A. Automatic detection of composite events
A composite event-driven tool must be in charge of track-

ing every programmer-defined composite event and launching
its associated event handler(s) in a timely manner. In our
particular implementation, every composite event is internally
represented as a finite state machine [3]. The human-machine
interaction is described with a textual notation, as a mapping
of composite events to event handlers, and, under the hood,
the proposed tool generates a set of finite state machines
by means of specialized algorithms [3]. As the constituent
events of a composite event occur, in the specified order,
its reciprocal finite state machine switches to different states.
Finally, the end-node of this machine is reached when its
reciprocal composite event has occurred. Programmers can
attach event handlers to every node or link of a finite state
machine when writing event binding code [17]. Given that
a composite event can be reused in the definition of other,
more complex composite events, our finite state machines are
hierarchical.

B. Experimental results
This language was compared against C#, a mainstream

event-driven language, by means of a within-subjects exper-
iment. A user study involving twelve participants (experi-
enced developers) was conducted to compare programming
efficiency. After modifying an interaction model with both the
composite event-driven language and the baseline language, it
was revealed that the former leads to higher completion rates,
lower completion times, and less code testing [7]. Another
study with non-developers is being conducted to measure
whether the proposed language is simple enough to be under-
stood and used as a discussion tool within multidisciplinary
teams (e.g., in a robotics project). We have not yet conducted
experiments about tool performance (e.g., recognition rate or
recognition speed of composite events). For now, our focus is
on evaluating the feasibility and efficacy of composite event-
driven programming rather than the efficiency of our particular
implementation.

C. Expressiveness
The expressiveness of the proposed language has already

been evaluated by implementing a variety of interactions in-
volving mouse gestures, keystrokes, and speech inputs [3][17].
Later, as part of a PhD research, we implemented a proof-
of-concept application that recognizes hand gestures, body
movements, and a variety of touch gestures (e.g., single-
stroke, multi-stroke, free-form, and multi-touch). More re-
cently, composite events have also been applied in the field
of robotics [18]. The size of the developed applications is
small: we always used less than 30 composite events in our
applications. We still do not have indications, neither in favor
nor against, of whether the easiness-to-maintain will increase
linearly with the size of the applications or not.

D. Limitations
The current version of the proposed composite event-driven

language does not include general-purpose constructs (e.g.,
for’s and if’s). It is a declarative language that includes no-
tations for describing human-machine interaction as mappings
of user actions to system responses or, more concretely, as
mappings of composite events to event handlers. But the fine-
grained code required to implement the event handlers and
the graphical user interface has to be written with a general-
purpose language, as part of a canned application that has to
be imported into our composite event-driven tool. The separa-
tion of interaction code from application code brought about
many problems, such as the inability to create autonomous
executable files (e.g., the imported application is developed
with a general-purpose language whose syntax is unknown
to the developed composite event-driven tool), the excessive
amount of function calls required to exchange data between
the external application and the composite event-driven tool
(e.g., application variables have to be maintained by calling
functions; these variables cannot be set directly from the
composite event-driven language), and the difficulty to debug
a program that is broken into two separate, independent pieces
(e.g., composite event variables are traced within the proposed
tool whereas external application variables are traced with
external tools), among others.

IV. DISCUSSION

The proposed shift up from events to composite events
would be the reflection of a fundamental change in human-
computer interaction: in the past, systems were mainly com-
manded by simple user actions such as clicks on widgets;
but modern multi-modal/multi-touch systems are intended to
be commanded by several coordinated user actions, such as
pointing-and-speech. These sets of coordinated actions would
be abstracted as composite events in the proposed model.

It is true that existing event-driven languages have enough
expressiveness to develop multi-modal and multi-touch inter-
active systems, but the complexity of the resulting code can
be reduced by using composite events: the interaction state
that has to be updated manually with event-driven languages
is maintained automatically by composite event-driven tools.
This benefit was noticed by twelve participants of a compara-
tive user study: All of them agreed that the task of modifying
interaction descriptions was simpler when using composite
events than when using C#, a mainstream event language [7].

The event-driven paradigm was inspired in academic re-
search (e.g., University of Alberta UIMS and Sassafras) carried
out in the 80’s [19], when mouse-based interactions were pre-
dominant. By 2000, the mouse-based interactions introduced
by the Apple Macintosh, in 1984, had been widely adopted
by almost all applications [19]. Mainstream event-driven lan-
guages such as Visual Basic and Java were released within
that period; more concretely, in 1991 and 1995, respectively.
Therefore, it should not be a surprise to realize that the event-
driven paradigm with all its underlying concepts was likely
tailored to deal with a type of interaction that is much simpler
than multi-touch and multi-modal interaction, which now claim
silently their own paradigm and tooling.

In a seminal paper, published in 2000, when discussing
event-driven languages, Myers et al. [19] foretold that, in order
to deal with the then-emerging modalities, such as touch and

3Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 9 / 21

speech, a new paradigm may be needed. To the best of our
knowledge, no one has yet given a clue about how to start
building the new programming paradigm. Based on 4+ years
of research, this paper is suggesting one direction: to extend
the fundamental concept of event to composite events.

We expect that the first, positive results obtained after
implementing our programming model can encourage other
researchers and practitioners to create more full-fledged com-
posite event-driven tools, which, aside from including code
editors, runtime environment, and debugging tools, like our
tool, must also include interface builders and a language
enriched with general-purpose constructs. With such a set of
tools, programmers will no longer need to separate application
code from interaction code and, thus, the aforementioned
limitations might disappear.

ACKNOWLEDGEMENTS

We would like to acknowledge the effort of our former
colleagues of Hasselt Universiteit, namely, Jan Van der Bergh,
Kris Luyten, and Karin Coninx, for helping us implement a
first version of the vision exposed in this paper.

REFERENCES

[1] K. Kin, B. Hartmann, T. DeRose, and M. Agrawala, “Proton: multi-
touch gestures as regular expressions,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI’12), 2012.

[2] L. Spano, A. Cisternino, F. Paterno, and G. Fenu, “Gestit: a declarative
and compositional framework for multiplatform gesture definition,” in
Proceedings of the EICS’13. ACM, 2013.

[3] F. Cuenca, J. Van den Bergh, K. Luyten, and K. Coninx, “A domain-
specific textual language for rapid prototyping of multimodal interactive
systems,” in Proceedings of EICS’14. ACM, 2014.

[4] C. Scholliers, L. Hoste, B. Signer, and W. De Meuter, “Midas: a
declarative multi-touch interaction framework,” in Proceedings of the
fifth international conference on Tangible, embedded, and embodied
interaction. ACM, 2011.

[5] “TIOBE Index,” http://www.tiobe.com/tiobe-index/, 2016, [Online; ac-
cessed 21-December-2016].

[6] “IEEE Spectrum,” http://spectrum.ieee.org/computing/software/the-
2016-top-programming-languages/, 2016, [Online; accessed 21-
December-2016].

[7] F. Cuenca, J. V. d. Bergh, K. Luyten, and K. Coninx, “A user study
for comparing the programming efficiency of modifying executable
multimodal interaction descriptions: a domain-specific language versus
equivalent event-callback code,” in Proceedings of the PLATEAU’15.
ACM, 2015.

[8] L. A. Meyerovich and A. S. Rabkin, “Empirical analysis of program-
ming language adoption,” ACM SIGPLAN Notices, vol. 48, no. 10,
2013.

[9] W. König, R. Rädle, and H. Reiterer, “Interactive design of multimodal
user interfaces,” Journal on Multimodal User Interfaces, vol. 3, no. 3,
2010.

[10] B. Dumas, D. Lalanne, and R. Ingold, “Description Languages for
Multimodal Interaction: A Set of Guidelines and its Illustration with
SMUIML,” Journal of multimodal user interfaces, vol. 3, no. 3, 2010.

[11] D. Navarre, P. Palanque, J.-F. Ladry, and E. Barboni, “ICOs: A Model-
Based User Interface Description Technique dedicated to Interactive
Systems Addressing Usability, Reliability and Scalability,” ACM Trans-
actions on Computer-Human Interaction, vol. 16, no. 4, 2009.

[12] S. H. Khandkar and F. Maurer, “A domain specific language to define
gestures for multi-touch applications,” in Proceedings of the 10th
Workshop on Domain-Specific Modeling. ACM, 2010.

[13] K. Kin, B. Hartmann, T. DeRose, and M. Agrawala, “Proton++: a
customizable declarative multitouch framework,” in Proceedings of
the 25th annual ACM symposium on User interface software and
technology. ACM, 2012.

[14] A. Desai, V. Gupta, E. Jackson, S. Qadeer, S. Rajamani, and D. Zufferey,
“P: safe asynchronous event-driven programming,” ACM SIGPLAN
Notices, vol. 48, no. 6, 2013.

[15] G. Berry and G. Gonthier, “The esterel synchronous programming
language: Design, semantics, implementation,” Science of computer
programming, vol. 19, no. 2, 1992.

[16] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language lustre,” Proceedings of the IEEE,
vol. 79, no. 9, 1991.

[17] F. Cuenca, J. Van den Bergh, K. Luyten, and K. Coninx, “Hasselt uims:
a tool for describing multimodal interactions with composite events,”
in Proceedings of the EICS’15. ACM, 2015.

[18] J. Van den Bergh, F. Cuenca Lucero, K. Coninx, and K. Luyten,
“Toward specifying human-robot collaboration with composite events,”
2016.

[19] B. Myers, S. E. Hudson, and R. Pausch, “Past, present, and future of
user interface software tools,” ACM Transactions on Computer-Human
Interaction (TOCHI), vol. 7, no. 1, 2000.

4Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 10 / 21

A Logic-based Service for Verifying Use Case Models

Fernando Bautista, Carlos Cares
Computer Science and Informatics Department, University of La Frontera (UFRO)

Temuco, Chile
Email: fernandobautis@gmail.com, carlos.cares@ceisufro.cl

Abstract—Use cases are a modeling means to specify the required
use of software systems. As part of UML (Unified Modeling
Language), it has become the de facto standard for functional
specifications, mainly in object-oriented design and development.
In order to check these models, we propose a theoretical solution
by adapting a general quality of models framework (SEQUAL),
and, following our approach, a rule-based solution that includes
both expert-based and definition-based rules. In order to promote
a distributed set of quality assessment services, a Web service has
been developed. It works on XMI (XML Metadata Interchange)
files which are parsed and verified by Prolog clauses.

Keywords–Rule-based quality; UseCase verification; Logic-
based services; XMI; Prolog.

I. INTRODUCTION

In Software Engineering, use cases are a means to specify
the required uses of software systems. Typically, they are used
to represent what the system is supposed to do. Use cases are
part of UML (Unified Modeling Language) specifications and
they have become so wide spread that they are now considered
the de facto standard for requirements specification of object-
oriented software systems [1].

Quality assurance of use cases is a common topic in
Software Engineering. For example, some heuristics including
UML use cases, have been proposed for model revision [2].
Moreover, preparing good use cases for connection with other
static and dynamic models remains important as they are a key
representation for verification and validation [3].

Other studies have tried to assist in the semi-automatic
verification / validation of use cases. Kotb and Katayama [4]
present a novel approach to check the verification of the use
case diagrams. Shinkawa [5] proposes a formal verification
process model for UML use case, and Gruner [6] details a
meta model of possible relations between use cases, which
may, in the future, be implemented in Prolog. However, these
proposals assume that the set of steps in order to implement
it (known as basic course or basic flow) is always part of
the use case specification. However, this assumption is not
broadly true, and, moreover, it is shown that the way of this
narrative presents ambiguity [7]. From a formal perspective,
an interesting summary is found in [8], where different lapses
are identified for the analyzed approaches.

The objective is to show a tool for supporting a quality
assessment process of use case diagrams, even, when some of
these use cases have no proper narrative inside of them. The
theoretical base is given by SEQUAL (SEmiotic QUALity)
[9]. It is a highly spread quality framework for models and
it addresses different kinds of qualities including syntactic,
semantic, pragmatic and social qualities which make it very
complex to include all these quality perspectives from the
scratch. Under this assumption, a rule-based system is a

modular and scalable solution in order to initially implement
some types of verifications and then another group of them
under an incremental development.

In this paper, we present a first Prolog prototype, as proof
of concept, of a tool that can aid the quality assessment of
a use case diagram. Moreover, we have implemented it as a
Web service in order to illustrate that logic-based solutions can
also be part of key quality assessment process in cloud-based
software development environment.

In order to check use case models and their application,
in Section 2 we present a set of verification syntactic and
semantic rules and how they have been derived from SEQUAL
conceptual framework. In Section 3, we show how the derived
rules have been implemented in Prolog clauses into our first
version of the Use Case Checker (UC2). In the Conclusion
section, we summarize the contributions and we outline the
future work on two tracks: technological improvement of UC2
and broadening the scope of the quality assessment approach.

II. WHERE DO VERIFICATION RULES COME FROM

In order to derive verification rules, we have used the
SEQUAL conceptual framework [9]. Although it was proposed
more than 20 years ago, it has had great influence on verifying
the quality of multiple kinds of models [10]. However, it has
never been used to verify use case models. The SEQUAL
framework is based on semiotic, hence it includes syntactic,
semantic and pragmatic qualities where interpretations and
subjectivity of modelers and users are also considered. We
have specializated the SEQUAL framework as it is illustrated
in Figure 1. Therefore, from a theoretical point of view, this
specialization is our quality of models theory’s contribution,
and, our rule-based solution, may also be considered a proof
of concept to it.

Figure 1. SEQUAL specialization for use case models

5Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 11 / 21

Following our SEQUAL specialization, we have generated
rules to principally verify syntactic quality, but also we have
included semantic quality rules in order to illustrate its imple-
mentation.

A use case model may contain several use case diagrams,
and the quality application developed here is applied only to
one use case diagram. Therefore, the process of verifying a
use case model implies verifying all its containing diagrams.

The following rules were generated from the definition
of OMGs (Object Management Group), applicable to UML
use cases (specified in the UML superstructure version 2.4.1).
These rules mainly verify the syntactic quality of a use case
diagram, as defined in the quality model described above.
Later, some of these rules will be verified automatically by
the software prototype developed.

The generated rules are listed and described by adding an
identification number. However, this numbering is arbitrary and
does not represent any kind of hierarchy. In each case, we have
illustrated the right case in opposition to a wrong case.

A. Rule 1 - There must be clear system boundaries
A use case diagram represents the interaction of an actor

with the system. The UML Reference Manual says that the
subject is the system under consideration to which the use
cases apply [1]. Thus, it does not make any sense to model a
use case diagram without a subject or system boundary, which
must be represented either by a package or a classifier. Given
that the existence of a system boundary may be verified in an
explicit diagram structure, we classify this rule as part of the
syntactic verification of a use case model. It is illustrated in
Figure 2.

Right Wrong
System

UseCase

Actor

UseCase

Actor

Figure 2. Example of Rule 1

B. Rule 2 - Actors must not be isolated
The UML Reference Manual says that an actor specifies a

role played by a user or any other system that interacts with
the subject [1]. Modeling an isolated actor does not make any
sense. Although the diagram shows a system boundary and
use cases in it, there is not possible to inference that the actor
interacts with all or some of the present use cases. Given that
the existence of an isolated actor may be verified in an explicit
diagram structure, we classify this rule as part of the syntactic
verification of a use case model. It is illustrated in Figure 3.

Right Wrong
System

UseCase

Actor

System

UseCase

Actor

Figure 3. Example of Rule 2

C. Rule 3 - Use cases must not be isolated/inaccessible
The UML Reference Manual says that a use case represents

a behavior of the system in which an actor or another system
interact with it. Therefore, an isolated use case can never be
executed. Here we refer not only to the fact of being isolated
from actors interactions, but also of other dependencies coming
from its interaction with other use cases. Given that the
existence of an isolated actor may be verified in an explicit
diagram structure, we classify this rule as part of the syntactic
verification of a use case model. It is illustrated in Figure 4.

Right Wrong
System

UseCase UseCase2

Actor

<<Include>>

System

UseCase UseCase2

Actor

<<Include>>

Figure 4. Example of Rule 3

D. Rule 4 - Actors must not be inside the system
The UML Reference Manual says that an actor models a

type of role played by an entity that interacts with the subject
(e.g., by exchanging signals and data), but which is external to
the subject [1]. Therefore, the actor should not be inside the
system or subsystem being modeling. This kind of diagram
does not have nested representation of involved system or
subsystems. Therefore, there is no case in which it can be
possible. Given that an actor being inside the system boundary
may be verified in an explicit diagram structure, we classify
this rule as part of the syntactic verification of a use case
model. It is illustrated in Figure 5.

Right Wrong
System

UseCase

Actor

System

UseCase

Actor

Figure 5. Example of Rule 4

E. Rule 5 - Use cases should be within system boundaries
The UML Reference Manual says that a use case is the

specification of a set of actions performed by a system, which
yields an observable result [1]. We, therefore, created a rule
that a use case should not be outside the system boundary
because it is necessary to specify which system is the owner
of that behaviour. Given that a use case is part of a system, i.e.,
that it belongs to an existing system, then it may be verified
by parsing the diagram structure, then we classify this rule
as part of the syntactic verification of a use case model. It is
illustrated in Figure 6.

F. Rule 6 - Use cases must start with a verb
The UML Reference Manual says that a use case is the

specification of a set of actions performed by a system [1].
Therefore, its description requires, at least, a verb, i.e., the verb
that specifies that action; additionally, as a quality description,

6Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 12 / 21

Right Wrong

System

UseCase

Actor

System

UseCase

Actor

Figure 6. Example of Rule 5

we would ask for that verb to appear in the first place of the
sentence that describes the use case behaviour.

In Spanish language, in which we worked, the verb should
properly be used in the imperative form, but given that this
mode is not commonly used, we recommend the use of verbs
in its infinitive form. This last recommendation is irrelevant in
English where these two forms are identical.

Given that verifying the verb form and its position in a
sentence, i.e., that it is necessary to look for external references
beyond UML structure, we classify this rule as part of the
semantic verification of a use case model. It is illustrated in
Figure 7.

Right Wrong
System

Display

summary of

sales

Actor

System

Summary of

sales

Actor

Figure 7. Example of Rule 6

G. Rule 7 - Use cases must represent an observable behavior
of the system

The UML Reference Manual says that a use case is the
specification of a set of actions performed by a system, which
yields an observable result that is, typically, of value for one
or more actors or other stakeholders of the system [1]. We
therefore created a rule that a use case should represent actions
of the system, which are observable to the actor, written from
the perspective of the system.

In order to make this possible we have described a set
of typical verbs of a system behaviour and other that can be
warnings in the redaction of the use case descriptions. For
example, a common mistake in use cases is the use of non-
observable verbs like “To save” or “To register”. Also a com-
mon mistake is the use of a human actions like entering data
or including high level behaviours like selecting or managing.
In order to verify this feature, we have used additional list of
non-observable actions (verbs) of classical system behaviours
and another of classical human behaviours under a system
interaction in order to give warning about them. Given that
these lists are external to the own nature of UML structures,
we classify this rule as part of the semantic verification of a
use case model. It is illustrated in Figure 8.

H. Rule 8 - Actors names should be singular
UML superstructure says: A single physical instance may

play the role of several different actors [1]. Class modeling

Right Wrong
System

Give the option to

enter invoice details

Actor

System

Save invoice in

database

Actor

Figure 8. Example of Rule 7

assumes that actors are classes, which are required to follow
the standard class nomination, including its expression in the
singular case. Due to this verification goes beyond the UML
structure, i.e. it exceeds syntax, we have classified this rule
as part of the semantic verification of a use case model. It is
illustrated in Figure 9.

Right Wrong
System

UseCase

Engineer

System

UseCase

Engineers

Figure 9. Example of Rule 8

I. Rule 9 - Computable verbs
The verb represents the behavior of the system, therefore

the action represented by the verb must be unambiguous
and capable of being implemented into a computer system.
Therefore, using also a reference list of verbs we can warn
about the use of a verb that is not part of “computable verbs”.
Given that the existence of non computable verbs may not be
verified in an explicit diagram structure, we classify this rule
as part of the semantic verification of a use case model. It is
illustrated in Figure 10.

Right Wrong
System

Display a histogram of

the items in the chart of

accounts

Accountant

System

Analyze

accounting

results

Accountant

Figure 10. Example of Rule 9

III. PROLOG CLAUSES FOR USE CASES VERIFICATION

The system consists of software for analyzing a use case
diagram (XMI file), applying the rules generated and sub-
sequently delivering the result of the application in JSON
(JavaScript Object Notation) format. This software will be
implemented in Web technologies as a service. In Figure 11,
the inputs and outputs of the system are represented.

A. Involved technologies
The XMI (XML Metadata Interchange) standard was de-

fined for the exchange of UML diagrams. XMI is an XML-
based integration framework for the exchange of models, and
any kind of XML data. Thus XMI is used in the integration of
tools, repositories, and model-related applications in general.

7Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 13 / 21

Figure 11. System view of Use Case Checker (UC2) Prototype

The framework defines rules for generating XML schemas
from a metamodel based on the Metaobject Facility (MOF).
Although XMI is most frequently used as an interchange
format for UML, it can be used with any MOF-compliant
language [11].

Table I shows the XMI representation of some elements of
a use case diagram.

TABLE I. XMI REPRESENTATION OF POSSIBLE USE CASE
EXPRESSIONS

Element XMI Representation

<packagedElement name="{NAME}"
xmi:id="{ID}"↪→

xmi:type="uml:UseCase">

</packagedElement>

<packagedElement xmi:id="{ID}"
xmi:type="uml:Association">↪→

<ownedEnd aggregation="none"
association="{ID ELEMENTO
ORIGEN}" xmi:id="{ID}"
xmi:type="uml:Property">

↪→
↪→
↪→

</ownedEnd>
<ownedEnd aggregation="none"
association="{ID ELEMENTO
DESTINO}" xmi:id="{ID}"
xmi:type="uml:Property">

↪→
↪→
↪→

</ownedEnd>
</packagedElement>

<!-- An include is nested in a
packageElement Use Case, this
use case correspond to the UC
arrow source. -->

↪→
↪→
↪→

<include addition="{ID TARGET UC}"
xmi:id="{ID}"
xmi:type="uml:Include">

↪→
↪→

</include>

SWI-Prolog is a portable implementation of the Prolog
programming language. SWI-Prolog aims to be a robust,
scalable implementation supporting a wide range of applica-
tions, providing interfaces to other languages and providing
support for parsing XML and RDF (Resource Description
Framework) documents. The system is particularly suited for
server applications due to its support for multithreading and
HTTP server libraries [12].

To develop UC2 we have used SWI-Prolog v 7.2.3, which
provides some improvements over version 6.x.x in the creation
and reading of JSON structures.

This component is responsible for implementing the pre-

viously generated rules. For this proof of concept, only some
of these rules are shown.

For the implementation of the rules that verify the quality
of a use case diagram, we defined a set of logical Prolog rules
which allow us: 1) to identify the elements of a use case
diagram within a file XMI; and 2) to see if these elements
comply with the quality rules generated.

Figure 12 shows the code that identifies part of the elements
within an XMI file.

%useCase(XML,ID, NAME)
useCase(XML,ID,NAME):-
xpath(XML,

//packagedElement(@'xmi:type'=
'uml:UseCase'),A),

↪→

↪→

xpath(A, /self(@'xmi:id'),ID),
xpath(A, /self(@'name'),NAME).

%association(XML, ArrowSource,
ArrowTarget)↪→

association(XML,Source,Target):-
xpath(XML,

//packagedElement(@'xmi:type'=
'uml:Association'),A),

↪→

↪→

xpath(A, ownedEnd(1),O),
xpath(O, /self(@'type'),Source),
xpath(A, ownedEnd(2),U),
xpath(U, /self(@'type'),Target).

%extend(XML, ArrowSource, ArrowTarget)
extend(XML,Source,Target):-
xpath(XML, //packagedElement,A),
xpath(A, /self(@'xmi:id'),Source),
xpath(A, extend,E),
xpath(E,

/self(@'extendedCase'),Target).↪→

Figure 12. Prolog clauses for parsing XMI input files

When the above-defined rules are implemented, they must
pass as a text parameter in the XMI file (coded as a variable
named “XML”).

When the Prolog Rules have been identified through the
elements of a use case diagram, the hierarchical relationship
between them must be known. To do this, we defined the
Prolog Rule shown in Figure 13.

%in(XML, ChildElement, ParentElement)
in(XML,Child,Parent):-
xpath(XML, //packagedElement,A),
xpath(A, /self(@'xmi:id'),Parent),
xpath(A, packagedElement,E),
xpath(E, /self(@'xmi:id'),Child)

Figure 13. Prolog clause for getting container-content relationships

B. Service Functions
In this section, we describe some of the previous rules in

order to illustrate the high cohesion and low coupling reached
by this Prolog implementation which has been implemented

8Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 14 / 21

as a REST service.

Unrelated Actor. This rule is the implementation in SWI-
Prolog of Quality Rule 2 “Actors must not be isolated”. Figure
14 shows the diagram in the input file and its corresponding
JSON output.

Prolog verfication for unrelated actors
%unrelatedActor(XML, IdActor,

NameActor)↪→

unrelatedActor(XML,ID,NAME):-
actor(XML,ID,NAME),
not(association(XML,ID,_)).

↪→

↪→

Input Output
{

"test":{
"name":"Test
UnrelatedActor",↪→

"message":[
"Actor"

]
}

}

Figure 14. Implementation and sample for Rule 2:
“Actors must not be isolated”

Isolated Use Case. This rule is the implementation in SWI-
Prolog of Quality Rule 3 “Isolated/Inaccessible use case”. Fig-
ure 15 shows the diagram in the input file and its corresponding
JSON output.

Prolog verification for inaccesible use cases
%accesible(XML, IdElement)
accessible(XML, X):-

association(XML,A,X),
actor(XML,A,_), useCase(XML,X,_).

↪→

↪→

accessible(XML,X):- include(XML,Y,X),
accessible(XML,Y).↪→

accessible(XML,X):- extend(XML,X,Y),
accessible(XML,Y).↪→

%isolated(XML, IdUseCase, NameUseCase)
isolated(XML, X, N):-useCase(XML,X,N),

not(accessible(XML,X)).↪→

Input Output
{

"test":{
"name":"Test
Isolated UC",↪→

"message":[
"UseCase2"

]
}

}

Figure 15. Implementation and sample for Rule 3:
“Use cases must not be isolated/inaccessible”

Actor Inside the System. This rule is the implementation in
SWI-Prolog of Quality Rule 4 “Actors must not be inside the
system”. Figure 16 shows the diagram in the input file and its
corresponding JSON output.

Prolog verification for actors inside of system boundary
%actorInsideSystem(XML, IdActor,

NameActor)↪→

actorInsideSystem(XML,X,N):-
actor(XML,X,N), package(XML ,B,_),
in(XML ,X,B).

↪→

↪→

actorInsideSystem(XML,X,N):-
actor(XML,X,N), model(XML ,B,_),
in(XML ,X,B).

↪→

↪→

Input Output
{
"test":{
"name":"Test
ActorInside
System",

↪→

↪→

"message":[
"Actor"

]
}

}

Figure 16. Implementation and sample for Rule 4:
“Actors must not be inside the system”

Use Case Outside of System Boundary. This rule is the
implementation in SWI-Prolog of Quality Rule 5 “Use cases
should be within system boundaries”. Figure 17 shows the
diagram in the input file and its corresponding JSON output.

Prolog verification of use cases outside of system boundary
useCaseInsideBoundaries(XML,X):-

useCase(XML,X,_), package(XML,B,_),
in(XML,X,B).

↪→

↪→

useCaseInsideBoundaries(XML,X):-
useCase(XML,X,_), model(XML,B,_),
in(XML,X,B).

↪→

↪→

useCaseOutsideBoundaries (XML,X,N):-
useCase(XML,X,N),
not(useCaseInsideBoundarie(XML,X)).

↪→

↪→

Input Output
{
"test":{
"name":"Test
UseCaseOutside
Boundaries",

↪→

↪→

"message":[
"UseCase"

]
}

}

Figure 17. Implementation and sample for Rule 5
“Use cases should be within system boundaries”

9Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 15 / 21

Finally, as a sample of a Web site that puts together the
above rules, we show the corresponding Prolog calls in Figure
18.

load_xml(Target, XML, []),
findall(F, isolated(XML,_,F),
Isolated),↪→

findall(F,
useCaseOutsideBoundarie(XML,_,F),
UseCaseOutsideBoundarie),

↪→

↪→

findall(F, actorInsideSystem(XML,_,F),
ActorInsideSystem),↪→

findall(F, unrelatedActor(XML,_,F),
unrelatedActor),↪→

reply_json(json([
test=json([name='Test Isolated',
message=Isolated]),

↪→

↪→

test=json([name='Test
UseCaseOutsideBoundarie',
message=UseCaseOutsideBoundarie]),

↪→

↪→

↪→

test=json([name='Test
ActorInsideSystem',
message=ActorInsideSystem]),

↪→

↪→

↪→

test=json([name='Test UnrelatedActor',
message=UnrelatedActor])

↪→

↪→

])

Figure 18. Prolog clauses for return the result of all the rules as a JSON
response.

Additional expressions like extends or the representation in
XMI of include are not explicitly represented in this document.
The full UC2 source code is available at [13].

IV. CONCLUSION

Use cases are a common choice to specify software re-
quirements. In spite of existing theoretical approach to use
case verification, there are no known implementations that put
together a theoretical background about quality of models and
a derived implementation. In this paper, we propose a general
quality framework and we show an initial implementation for
verifying use case model, represented on demonstrations that
cover the part of our system realized to the moment. This
rule-based approach besides the chosen architecture, shows
that a declarative approach is not only effective but also a
solution presenting two main characteristics: low coupling
and high cohesion which allows an easy maintenance and
high scalability. Moreover, the implemented rules allow to
report both errors and warnings, which can be used in a
software process to improve quality of use cases due to, even
being a partial approach as is, these results are measurable
and repeatable ones, which makes it a valuable under the
perspective of software engineering at any label, as part of
a computer-aided step in a traditional development approach,
or as a part into a model driven development approach.

Future work is related to limitations of the current ap-
proach. Firstly, the integration of SWI-Prolog as part of a Web
service impose a limitation because it does not provide a good
integration to classical Web services as Apache. Thus, we need

to review the technology behind the current solution approach.
However, the most relevant challenge is to add pragmatics rules
and to work with perceived quality. Classical features of a set
of requirements, i.e., completeness and consistency, can not be
validated without considering the context to which the system
has been conceived to work, i.e., the set of stakeholders’
expectations. However, this approach seems to be a way to
reach it.

ACKNOWLEDGMENT

The authors would like to thank DIUFRO project DI13-
0068 from the Vice-rectory of Research and Development and
the Master Program of Informatics Engineering both from
University of La Frontera, by supporting different aspects of
this work.

REFERENCES
[1] O. UML, “2.4. 1 superstructure specification,” document formal/2011-

08-06. Technical report, OMG, Tech. Rep., 2011.
[2] B. Berenbach, “The evaluation of large, complex UML analysis and

design models,” in Proceedings. 26th International Conference on
Software Engineering. Institute of Electrical & Electronics Engineers
(IEEE), 2004.

[3] G. Kösters, H.-W. Six, and M. Winter, “Coupling use cases and class
models as a means for validation and verification of requirements
specifications,” Requirements Engineering, vol. 6, no. 1, pp. 3–17, Feb
2001.

[4] Y. Kotb and T. Katayama, “A novel technique to verify the uml use
case diagrams.” in IASTED Conf. on Software Engineering, 2006, pp.
300–305.

[5] Y. Shinkawa, “Model checking for UML use cases,” in Software En-
gineering Research, Management and Applications. Springer Science
Business Media, 2008, pp. 233–246.

[6] S. Gruner, “From use cases to test cases via meta model-based rea-
soning,” Innovations Syst Softw Eng, vol. 4, no. 3, pp. 223–231, Aug
2008.

[7] S. Tena, D. Dı́ez, P. Dı́az, and I. Aedo, “Standardizing the narrative of
use cases: A controlled vocabulary of web user tasks,” Information and
Software Technology, vol. 55, no. 9, pp. 1580–1589, 2013.

[8] M. Oliveira Jr, L. Ribeiro, É. Cota, L. M. Duarte, I. Nunes, and F. Reis,
“Use case analysis based on formal methods: An empirical study,” in In-
ternational Workshop on Algebraic Development Techniques. Springer,
2015, pp. 110–130.

[9] J. Krogstie, O. I. Lindland, and G. Sindre, “Towards a deeper under-
standing of quality in requirements engineering,” in Advanced Informa-
tion Systems Engineering. Springer Science + Business Media, 1995,
pp. 82–95.

[10] J. Krogstie, G. Sindre, and O. I. Lindland, “20 years of quality of
models,” in Seminal Contributions to Information Systems Engineering.
Springer, 2013, pp. 103–107.

[11] M. Weiss, “Xml metadata interchange,” in Encyclopedia of Database
Systems. Boston, MA: Springer US, 2009, pp. 3597–3597.

[12] J. Wielemaker, S. Ss, and I. Ii, “Swi-prolog 7.2.3-reference manual,”
2015.

[13] F. Bautista and C. Cares. Uc2: A prolog checker for use
cases. Http://dci.ufro.cl/fileadmin/Software/UC2.zip, [retrieved: Jan-
uary, 2017].

10Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 16 / 21

An Answer Set Solution for Information Security Management

Carlos Cares, Mauricio Diéguez

Computer Science and Informatics Department,
University of La Frontera (UFRO)

Temuco, Chile
Email: {carlos.cares,mauricio.dieguez}@ceisufro.cl

Abstract—Information Security Management is focused on pro-
cesses and it is currently guided by control-based standards such
as ISO27002. Controls may be: management objectives, available
resources or desired behaviours that contribute to information
security. Under this process perspective, to reach some security
level means to accomplish a specific set of controls. There are
qualitative approaches and maturity models that help managers
to select what controls to implement next, whilst quantitative
approaches have just recently emerged under simplified formula-
tions. The purpose of this paper is to show an answer set solution
to the problem of selecting what controls to implement next, based
on a given budget, security profit, and temporal dependencies
between controls. The solution is illustrated by using Clingo.

Keywords–Information security; Controls selection; Answer set
programming; Clingo.

I. INTRODUCTION

A standard for information security consists of a set of
rules that aim to regulate a company's operation, with a
special emphasis on information management and information
assurance. In general, the accomplishment of some information
security standard means to achieve a set of objectives, get
resources or implement actions defined by the standards [1].
All these elements are known as information security controls
[2] and may be grouped by dimensions.

In particular, one of the most widely-known security stan-
dards is ISO/IEC 27001:2013 [3]. This standard proposes
114 controls classified in 14 main dimensions, described in
ISO/IEC 27002:2013 [4]. The degree of compliance with
these controls determines the organization's security level and
whether it can apply for certification.

Therefore, the map of implemented/non-implemented con-
trols becomes a management tool to progress in information
security. In Table I, some examples of controls and their
corresponding dimensions from ISO27002 are shown.

The general problem of managing information security has
been addressed through different approaches and different dis-
ciplines [5]–[7]. Various frameworks have been proposed for
measuring the level of standard compliance [8]–[11]; however,
these approaches do not suggest a plan for the implementation
of controls, obtained quantitatively from the current level of
compliance to some desired security level.

Investigations in this area have led to the incorporation of
quantitative methods for managing security controls, some of
them based on multicriteria analysis, such as, [12]–[14]. Other
investigations [15]–[21], combined the System Grey Theory
[22] with other quantitative techniques of analysis.

TABLE I. EXAMPLES OF INFORMATION SECURITY CONTROLS
AND DIMENSIONS FROM ISO27002.

Domain: Information security policies
Policies for information security
Review of the policies for information security

Domain: Human resource security
Terms and conditions of employment
Information security awareness, education and training

Domain: Cryptography
Policy on the use of cryptographic controls
Key Management

Domain: Physical and environmental security
Physical security perimeter
Equipment maintenance

Domain: Operations security
Documented operating procedures
Information backup

Domain: Compliance
Protection of records
Technical compliance review

Another investigation proposed a simulation-based ap-
proach [23]–[25]. In this approach, simulated attacks are run
over a model of the organization. Each attack occurs under
different scenarios of implemented controls. According to
the results of the simulations, the optimal set of controls is
determined. The difficulty of this method is that choosing
different sets of controls to simulate an attack is a human task
within a combinatorial framework.

It seems clear that optimizing controls implementations
is an open problem where quantitative approaches are just
emerging. In [26] ,the conceptual framework for a quantitative
optimization approach and several types of constraints are de-
scribed. Mainly, we remark the temporal dependency between
controls, the existence of a given budget, and the objective
function focused on maximizing security by minimizing vul-
nerabilities.

To solve this quantitative optimization problem, we propose
an answer set solution approach. Answer set programming is
a research product on knowledge representation, logic pro-
gramming and constraint satisfaction to cope mainly with np-
hard problems [27]. Nowadays, there are some mature tools
allowing the specification and solution of general models [28].

In this paper, we propose a specific solution approach for
selecting controls by using the answer set tool named Clingo
[29]. Clingo is a framework to solve combinatorial problems
with Answer Set Programming (ASP), a simple and powerful
modeling language [30].

In order to show the solution, in section II, we explain

11Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 17 / 21

the basis of the model by means of a small, but illustrative
example. In section III, we show the results of applying the
model using data from a public governmental office. The
conclusion section highlights the simplicity of the proposed
model but also the necessity to compare this approach to
traditional models from operational research.

II. ANSWER SET MODELLING FOR SELECTING SECURITY
CONTROLS

The basic principle to be applicable in an answer set
solution is that there are different possible solutions, i.e.,
there is a space of solutions to be evaluated. An answer set
program may be composed of four sections: (i) the first section
expressing the basic configuration of the problem, (ii) the
second section for generating the different answer sets, (iii)
the third section for the derived or non basic definitions plus
the terms to evaluate solutions, and (iv) the fourth section
containing the problem constraints. These forms are briefly
reviewed.

The basic configuration is composed of true facts, which
are represented as literals (classic propositions) or predicates
on specific literals (objects). The possible forms are as follows:

l0.

P1(l1).

P2(l2, l3).

(1)

To represent the different answer sets, rules are needed.
These rules are known as the disjunctive form because several
alternatives, represented as a set, may be generated starting
from proved facts. These rules have the following form:

l{A0, A1, ..., Ak} u← A1, ..., An. (2)

Under this form, the alternatives in the set stay bound by l
and u, and these values represent the minimum and maximum
number of elements in the set, provided, of course, that it is
possible to derive them from the true conjuctions A1 to An.

The third section should represent the definitions in the
universe of discourse. In this case, the rules follow a simplified
version of the previous form, this time without alternative sets,
i.e., having only predicates on variables or literals in the left
part. Thus, classical definitions may have the following form:

P0(V0)← A1, A2, ...

P1(V1, V2)← B1, B2, ...
(3)

The fourth section specifies the constraints. These are
specified similar to the previous rules, but having only the
right part, as follows:

← A0, A1, ..., An. (4)

In order to illustrate the given solution, we consider an
example having ten controls, a set of temporal dependencies,
and each control having its corresponding implementation
cost and also a corresponding security profit. In Fig. 1, we
show the basic configuration of the example. First, we have
the identification of the control (C1 to C10), its cost and
profit (third value). This security profit is abstract and may
be considered from a single increment in the percentage of a

standard accomplishment, to the reduction of vulnerabilities
belonging to key information assets. The dependencies are
represented by the curly brackets. For example, the control
C5 may be implemented if and only if controls C1 and C2
have been already implemented.

Figure 1. Candidate controls to implement, their cost, profit and
dependencies.

Firstly, we notice that there are several possible answers
that match the answer set conditions to be applied, under
a bounded budget. For example, for a given budget of 500,
we may have an implementation plan including the controls
C3, C8 and C10, having a total cost of 390 (150+100+140)
and a total profit of 6 (3+2+1). But also we may have an
implementation plan including the controls C1, C2 and C6
having a total cost of 492 and a total profit of 11.

In order to code the solution, we have used Clingo 4.5.4
[29]. As described above, we divide the explanation in four
parts.

To configure the basic initial state, we have used the
predicates: control, for setting the variables that represent
controls, cost, for specifying the implementation cost of each
control, and require, for representing the dependencies be-
tween controls. In Fig. 2, we show the Clingo sentences for
this configuration.

c o n t r o l (c1 ; c2 ; c3 ; c4 ; c5 ; c6 ; c7 ; c8 ; c9 ; c10) .

c o s t (c1 , 2 0 0) .
c o s t (c2 , 3 0 1) .
c o s t (c3 , 1 5 0) .

% . . .
p r o f i t (c1 , 3) .
p r o f i t (c2 , 5) .
p r o f i t (c3 , 3) .
% . . .
r e q u i r e (c9 , (c4 ; c5 ; c6)) .
r e q u i r e (c5 , (c1 ; c2)) .
r e q u i r e (c10 , (c7 ; c8)) .
r e q u i r e (c8 , c3) .

Figure 2. Partial configuration of current state.

12Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 18 / 21

To represent the answer sets, we have used two rules that
we show in Fig. 3. The first rule represents that it is possible to
plan a specific control (variable Y) provided that this control
does not depend on other controls. The bounds 0 and 1 specify
that this control may or may not be part of the solution. The
second rule states that a control that depend on others can also
be part of the solution, provided that all their required controls
(totalRequired) have been planned (totalIncluded).

%G e n e r a t e
0 { p l a n n e d (Y) } 1

:− t e r m i n a l (Y) .
0 { p l a n n e d (X) } 1

:− t o t a l R e q u i r e d (X,D) ,
t o t a l I n c l u d e d (X,W) , D==W.

Figure 3. Rules generation.

The necessary definitions are in Fig. 4. Here, we define the
formulas for total cost, total profit, total number of required
controls for each control, and total number of planned controls
among the required ones. Finally, we show the definition of
terminal controls that are defined as those controls that do not
require the implementation of previous controls in order to
plan them.

%D ef in e
t o t a l R e q u i r e d (X,D):−

c o n t r o l (X) ,
D = # c o u n t {Z : r e q u i r e (X, Z) ,

c o n t r o l (Z) } .
t o t a l I n c l u d e d (X,D):−

c o n t r o l (X) ,
D = # c o u n t {Z : r e q u i r e (X, Z) ,

p l a n n e d (Z) } .
t o t a l P r o f i t (Y):−

Y = #sum {D,X: p l a n n e d (X) ,
p r o f i t (X,D) } .

t o t a l C o s t (N) :−
N = #sum {D,X: p l a n n e d (X) ,

c o s t (X,D) } .
t e r m i n a l (X):−

c o n t r o l (X) ,
n o t r e q u i r e (X,) .

Figure 4. Definitions.

Finally, the fourth section is shown in Fig. 5. This contains
the definition of the available budget and the constraint that the
total cost needs to always be less than the budget. Moreover,
Clingo allows to add optimization expressions by using the
macro clauses maximize or minimize. In this case, we have
used maximize to search for the best result on information
security profit (totalProfit). In Fig. 6, the result is illustrated,
as displayed by Clingo. For the given example, the solution
included the controls C1, C3, C4, C6 and C7, having a total
cost of 871 and a total profit of 19.

Finally, we present Table II, to illustrate the combinatorial
power of this problem, under the given constraints.

%T e s t
bu dg e t (9 0 0) .
:− t o t a l C o s t (N) ,

bu dg e t (T) ,
N>T .

%O p t i m i z a t i o n
maximize
{ I : t o t a l P r o f i t (I) } .

Figure 5. Constraints and Optimization.

Figure 6. Candidate controls to implement, their cost, profit and
dependencies.

TABLE II. NUMBER OF POSSIBLE ANSWER SETS BY BUDGET.

Budget Answer sets
2000 147
1500 144
1000 103
900 87
700 57

In this table, we summarize, a what-if analysis for the
current example showing the total of possible answer sets given
by different budgets.It is possible to get them running Clingo
with the option -n 0.

III. EXAMPLE

To illustrate the operation of the proposal in a real situation,
we have applied the proposed model to a situation adapted
from a real audit of a public organization of the Chilean State.
The proposal must recommend the optimal set of controls to

13Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 19 / 21

be implemented, considering a limited budget, the costs of
implementing the controls and the benefits obtained by the
progress in complying with the controls of the standard.

In this case, the organization wished to evaluate its compli-
ance with three standards of information security to which it
subscribed. As a public entity, the organization must comply
with the information security regulations established by the
Government of Chile: (i) Supreme Decree 83 (DS83) [31], a
security standard for public offices; and (ii) the methodological
guide for information security (GUI) [32], in the framework
of the Chilean government’s improvement program, which
describes the technical requirements associated with the diag-
nosis, planning and implementation of an information security
system. In addition, the organization decided to evaluate its
compliance with the international ISO Standard 27001, in its
2005 version.

For the purposes of the example, we will only present the
dimension referring to the security of facilities, since it was the
main focus of evaluation after the earthquake of the year 2010
in Chile. In this dimension, we analyzed 30 controls from the
three above standards.

The benefits associated to each control were established
considering the standard to which they belong to. We represent
greater benefits on those controls explicitly mentioned into
the Chilean norms of information security for public insti-
tutions. Therefore, those controls, that belong to more than
one standard, will report a greater benefit to the organization.
Considering this, a higher score was given to the controls
that met the rules of the government of Chile and those that
satisfied more than one norm.

The implementation costs of each control were estimated
based on the operating conditions of the organization. In
addition, a budget constraint was assigned to the problem.

In this way, the model delivers the set of controls that,
considering costs and budget, provides the higher benefit to
the organization. The implementation of the situation yielded
18 possible responses to the problem, which met the con-
straints of the problem. Table III, summarizes the progress
of the optimization process. The table shows the number of
implemented controls (second column), their corresponding
cost (third column) and the previewed benefit (fourth column).

It should be noted that the 18 delivered answers do not
correspond to the total universe of possible solutions. The
implementation only shows those sets of controls that present a
better profit than the previous answers. Therefore, the last line
represents the final recommendation which includes a set of 22
controls that reports a benefit of 55 at a cost of $ 19.950.000
(expressed in Chilean money).

The model, i.e. predicates, rules, and constraints of this
case example can be downloaded from [33]

IV. CONCLUSIONS

A contemporary approach to manage information secu-
rity on organizations is following process-based standards
as the family of norms ISO/IEC27000. This process recom-
mends the implementation of a set of security controls (e.g.
ISO/IEC27002). From this perspective, in order to accomplish
the standard, an information security assessment produces,
as relevant outcomes, a set of controls already implemented
and another set of controls to implement. Making a decision

TABLE III. FEASIBLE ANSWERS IN THE CHILEAN PUBLIC CASE
EXAMPLE.

Answer Number of Controls Total Cost Total Profit
Answer 1 8 $ 11.360.000 21
Answer 2 9 $ 13.360.000 24
Answer 3 10 $ 16.360.000 27
Answer 4 11 $ 17.160.000 30
Answer 5 12 $ 19.960.000 34
Answer 6 14 $ 17.800.000 37
Answer 7 15 $ 18.600.000 38
Answer 8 15 $ 18.500.000 41
Answer 9 16 $ 19.300.000 42
Answer 10 17 $ 19.700.000 43
Answer 11 16 $ 18.760.000 45
Answer 12 17 $ 19.160.000 46
Answer 13 18 $ 19.960.000 47
Answer 14 16 $ 19.720.000 49
Answer 15 21 $ 19.850.000 52
Answer 16 22 $ 19.750.000 53
Answer 17 21 $ 19.250.000 54
Answer 18 22 $ 19.950.000 55

about the next information security controls to implement
is a np-hard problem. This has been demonstrated in [34]
for the general problem of process-based compliance norms.
Under this approach, the unique isomorphism to apply is
to consider as separate tasks the implementation of security
controls, which is what we have modeled in our answer set
programming approach.

Although other quantitative solutions have been proposed,
here we have presented a solution having three kinds of
constraints: temporal dependencies between controls, a limited
budget, and different information security profits given by the
different controls to implement. Under the consideration of
this set of different variables, as far as we know, it is the most
complex quantitative solution shown in an academic setting.

We have shown an answer set programming solution simple
and illustrative. Firstly, we have shown that a quantitative
solution is not hard to implement, and, moreover, secondly,
it can be easily extended to support additional controls (facts)
and constraints, due to the modular nature of rules in answer
set programming.

However, it is known that answer set solutions are based
on general optimization settings. For this reason, it logically
follows that specific operational research solutions may present
a better performance. Therefore, in terms of future work, we
will compare this answer set programming solution to classical
optimization algorithms on operation research platforms, but
we would like to add modelling time as a variable to observe.

ACKNOWLEDGMENT

The authors would like to thank DIUFRO project DI13-
0068 from the Vice-rectory of Research and Development from
University of La Frontera, by supporting different aspects of
this work.

REFERENCES

[1] T. Pereira and H. Santos, “Challenges in information security protec-
tion,” Proceedings 13th European Conference on Cyber Warfare and
Security, pp. 160–166, 2014.

[2] H. Yau, “Information security controls,” Advances in Robotics &
Automation, vol. 3, no. 2, 2014, doi: 10.4172/2168-9695.1000e118.

[3] ISO/IEC27001. Information security management. [On-
line]. Available: http://www.iso.org/iso/home/standards/management-
standards/iso27001.htm, [retrieved: January, 2017]

14Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 20 / 21

[4] ISO/IEC27002. Information technology – security techniques – code
of practice for information security controls. [Online]. Available:
http://www.iso.org/iso/catalogue detail?csnumber=54533, [retrieved:
January, 2017]

[5] M. Siponen and H. Oinas-Kukkonen, “A review of information security
issues and respective research contributions,” ACM SIGMIS Database,
vol. 38, no. 1, pp. 60–80, 2007.

[6] K. Padayachee, “Taxonomy of compliant information security be-
havior,” Computers & Security, vol. 31, no. 5, pp. 673–680, 2012,
doi:10.1016/j.cose.2012.04.004.

[7] E. Kolkowska and G. Dhillon, “Organizational power and information
security rule compliance,” Computers & Security, vol. 33, pp. 3–11,
2013, doi:10.1016/j.cose.2012.07.001.

[8] T. Butler and D. McGovern, “A conceptual model and is framework
for the design and adoption of environmental compliance management
systems,” Information Systems Frontiers, vol. 14, no. 2, pp. 221–235,
2009, doi:10.1007/s10796-009-9197-5.

[9] R. Bonazzi, L. Hussami, and Y. Pigneur, “Compliance management
is becoming a major issue in is design,” Information Systems: Peo-
ple, Organizations, Institutions, and Technologies, pp. 391–398, 2009,
doi:10.1007/978-3-7908-2148-2 45.

[10] H. Susanto, M. Almunawar, and Y. Tuan, “Information security chal-
lenge and breaches: Novelty approach on measuring iso 27001 readiness
level,” International Journal of Engineering and Technology, vol. 2,
no. 1, pp. 67–75, 2012, doi:10.1016/j.im.2008.12.007.

[11] M. Montanari, E. Chan, K. Larson, W. Yoo, and R. Campbell, “Dis-
tributed security policy conformance,” Computers & Security, vol. 33,
pp. 28–40, 2013, doi:10.1016/j.cose.2012.11.007.

[12] Y. Yang, H. Shieh, J. Leu, and G. Tzeng, “A vikor-based multiple
criteria decision method for improving information security risk,”
International journal of information technology & decision making,
vol. 8, no. 2, pp. 267–287, 2009, doi:10.1142/s0219622009003375.

[13] J. Lv, Y. Zhou, and Y. Wang, “A multi-criteria evaluation method of
information security controls,” Fourth International Joint Conference
on Computational Sciences and Optimization, pp. 190–194, 2011,
doi:10.1109/cso.2011.43.

[14] Y. Yang, H. Shieh, and G. Tzeng, “A vikor technique based on dematel
and anp for information security risk control assessment,” Information
Sciences, vol. 232, pp. 482–500, 2013, doi:10.1016/j.ins.2011.09.012.

[15] L. Chen, L. Li, Y. Hu, and K. Lian, “Information security solution
decision-making based on entropy weight and gray situation decision,”
Fifth International Conference on Information Assurance and Security,
vol. 2, pp. 7–10, 2009, doi:10.1109/ias.2009.9.

[16] X. Cuihua and L. Jiajun, “An information system security eval-
uation model based on ahp and grap,” International Conference
on Web Information Systems and Mining, pp. 493–496, 2009,
doi:10.1109/wism.2009.105.

[17] C. Yameng, S. Yulong, M. Jianfeng, C. Xining, and L. Yahui, “Ahp-grap
based security evaluation method for mils system within cc framework,”
Seventh International Conference on Computational Intelligence and
Security, 2011, doi:10.1109/cis.2011.145.

[18] J. Breier and L. Hudec, “New approach in information sys-
tem security evaluation,” IEEE First AESS European Confer-
ence on Satellite Telecommunications (ESTEL), pp. 1–6, 2012,
doi:10.1109/estel.2012.6400145.

[19] ——, “On selecting critical security controls,” International Confer-
ence on Availability, Reliability and Security, pp. 582–588, 2013,
doi:10.1109/ares.2013.77.

[20] ——, “On identifying proper security mechanisms,” Information and
Communicatiaon Technology, pp. 285–294, 2013, doi:10.1007/978-3-
642-36818-9 29.

[21] J. Breier, “Security evaluation model based on the score of security
mechanisms,” Information Sciences and Technologies Bulletin of the
ACM, vol. 6, no. 1, pp. 19–27, 2014.

[22] J. Deng, “Introduction to grey system theory,” The Journal of grey
system, vol. 1, no. 1, pp. 1–24, 1989.

[23] E. Kiesling, C. Strausss, and C. Stummer, “A multi-objective decision
support framework for simulation-based security control selection,” Sev-
enth International Conference on Availability, Reliability and Security,
pp. 454–462, 2012, doi:10.1109/ares.2012.70.

[24] E. Kiesling, A. Ekelhart, B. Grill, C. Straub, and C. Stummer,
“Simulation-based optimization of it security controls: Initial expe-
riences with meta-heuristic solution procedures,” in in 14th EUME
Workshop, 2013.

[25] E. Kiesling, C. Strauss, A. Ekelhart, B. Grill, and C. Stummer,
“Simulation-based optimization of information security controls: An
adversary-centric approach,” Winter Simulations Conference (WSC),
2013, doi:10.1109/wsc.2013.6721583.

[26] M. Diéguez, S. Sepúlveda, and C. Cares, “On optimizing the path to
information security compliance,” Eighth International Conference on
the Quality of Information and Communications Technology (QUATIC),
pp. 182–185, 2012.

[27] G. Brewka, T. Eiter, and M. Truszczyński, “Answer set programming
at a glance,” Communications of the ACM, vol. 54, no. 12, pp. 92–103,
2011.

[28] M. Gebser and et al., “Potassco: The potsdam answer set solving
collection,” Ai Communications, vol. 24, no. 2, pp. 107–124, 2011.

[29] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, “Clingo= asp+
control: Preliminary report,” arXiv preprint arXiv:1405.3694, 2014.

[30] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and
S. Thiele, “A user’s guide to gringo, clasp, clingo, and iclingo,” 2008.

[31] E. de Chile. Decreto 83: Norma técnica para los órganos de la ad-
ministración del estado sobre seguridad y confidencialidad de los docu-
mentos electrónicos. Http://www.leychile.cl/Navegar?idNorma=234598,
[retrieved: January, 2017].

[32] G. de Chile. Programa de mejoramiento de la gestión sistema de seguri-
dad de la información: Versión 2011. Http://www.dipres.gob.cl/594/w3-
propertyvalue-16887.html, [retrieved: January, 2017].

[33] C. Cares and M. Diéguez. Oscufro: Asp configuration for op-
timal security controls. Http:// dci.ufro.cl/ fileadmin/ Software/
OptimalSecurityControls-OSCUFRO.zip., [retrieved: January, 2017].

[34] S. C. Tosatto, G. Governatori, and P. Kelsen, “Business process regu-
latory compliance is hard,” IEEE Transactions on Services Computing,
vol. 8, no. 6, pp. 958–970, 2015.

15Copyright (c) IARIA, 2017. ISBN: 978-1-61208-535-7

COMPUTATION TOOLS 2017 : The Eighth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Powered by TCPDF (www.tcpdf.org)

 21 / 21

http://www.tcpdf.org

