IARIA

COMPUTATION TOOLS 2010

The First International Conference on Computational Logics, Algebras,
Programming, Tools, and Benchmarking

November 21-26, 2010 - Lisbon, Portugal

ComputationWorld 2010 Editors

Ali Beklen, IBM Turkey, Turkey
Jorge Ejarque, Barcelona Supercomputing Center, Spain
Wolfgang Gentzsch, EU Project DEISA, Board of Directors of OGF, Germany
Teemu Kanstren, VTT, Finland
Arne Koschel, Fachhochschule Hannover, Germany
Yong Woo Lee, University of Seoul, Korea
Li Li, Avaya Labs Research - Basking Ridge, USA
Michal Zemlicka, Charles University - Prague, Czech Republic



COMPUTATION TOOLS 2010

Foreword

The First International Conference on Computational Logics, Algebras, Programming, Tools, and
Benchmarking [COMPUTATION TOOLS 2010], held between November 21 and 26 in Lisbon, Portugal,
inaugurated an event under the umbrella of ComputationWorld 2010 dealing with logics, algebras,
advanced computation techniques, specialized programming languages, and tools for distributed
computation. Mainly, the event targeted those aspects supporting context-oriented systems, adaptive
systems, service computing, patterns and content-oriented features, temporal and ubiquitous aspects,
and many facets of computational benchmarking.

We take here the opportunity to warmly thank all the members of the COMPUTATION TOOLS
2010 Technical Program Committee, as well as the numerous reviewers. The creation of such a broad
and high quality conference program would not have been possible without their involvement. We also
kindly thank all the authors who dedicated much of their time and efforts to contribute to
COMPUTATION TOOLS 2010. We truly believe that, thanks to all these efforts, the final conference
program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the COMPUTATION TOOLS 2010
organizing committee for their help in handling the logistics and for their work to make this professional
meeting a success.

We hope that COMPUTATION TOOLS 2010 was a successful international forum for the
exchange of ideas and results between academia and industry and for the promotion of progress in the
areas of computational logics, algebras, programming, tools, and benchmarking.

We are convinced that the participants found the event useful and communications very open.
We also hope the attendees enjoyed the beautiful surroundings of Lisbon, Portugal.
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Debugging PVS Specifications of Control Logics
via Event-driven Simulation

Cinzia Bernardeschj Luca Cassarip Andrea Domenici and Paolo Maséi
*Department of Information Engineering, University of Riftaly
fInformation Science and Technologies Institute, NatidResearch Council, Pisa, Italy
Email: {Cinzia.Bernardeschi,Luca.Cassano,Andrea.DomenalpRdasci @ing.unipi.it

Abstract—In this paper, we present a framework aimed at on simulation and testing. A rigorous development process
simulating control logics specified in the higher-order logic of \would benefit from the combined application of formal verifi-
the Prototype Verification SystenThe framework offers a library cation, simulation, and testing. In particular, simulatisould

of predefined modules, a method for the composition of more b t lidat ificati inst . t
complex modules, and an event-driven simulation engine. A € a means 10 validate specitications against requirements.

developer simulates the specified system by providing its input However, verification tools (such as theorem provers and
waveforms as functions from time to logic levels. Once the sim- model checkers) and simulation tools use different langsag
U:(attri]%nseégﬁifg:t?gés t%ig?n Zléfgﬂg‘nt SCgrr\llfédggf;ebigstifﬁocr?[]fg%r;ﬁf; and few designers are versed in the use of both kinds of tools.
0 . . . . ..
verificat?on of desiréd properties of interest. A simple case study This work is a f!rst step in a research activity yyho§e
from a nuclear power plant application is shown. This paper is €xpected outcome is a toolset that translates specifisation
a contribution to research aimed at improving the development from an application-oriented language into a high-ordgido
process of safety-critical systems by integrating simulation and theory that guides the execution of the simulator described
formal specification methods. o o in this paper. When the simulation results make developers
Index Terms—PVS; simulation; formal specification; validation confident that the specifications are correct, a more detaile
and formal analysis may be done by theorem proving. The
| INTRODUCTION theorem proving approach was chosen as it may be expected to

avoid the problem of state space explosion that model chgcki

Control systems are an important field of application fqgg|s face in the analysis of complex real-time systems.
formal methods and rigorous engineering practices, since

they combine real-time requirements and non-trivial aantr

tasks whose failure may compromise safety. Subtle design 1. PVS AND PVSO

faults, which are often difficult to avoid and tolerate, ahd t

possibility of failures caused by the occurrence of noniobsy ~ The PVS [1] specification language builds on classical

combinations of events, make such systems hard to certify wiyped higher-order logic with the usual base typbsol ,

respect to safety requirements. nat, i nt eger, r eal , among others, and the function type
In this paper, we present a methodology aimed at simulgenstructor (e.g., typpA -> B] is the set of functions from

ing control logics specified in the higher-order logic of théetA to setB). Predicates are functions with range typeol .

Prototype Verification System (PVR]. We have developed a The type system of PVS also includes record types, dependent

library of (purely logic) specifications for typical contdogic  types, and abstract data types.

components, a methodology to combine them into more com-PVS specifications are packaged theoriesthat can be

plex systems, and a simulation engine capable of animatipgrametric in types and constants. A collection of built-

the formal specifications with the PVS ground evaluator. in (preludg theories and loadable libraries provide standard
Section |l exposes the motivations for this work. We inspecifications and proved facts for a large number of theorie

troduce the PVS system in Section lll, then we describe tie theory can use the definitions and theorems of another

theories for the logical specification of control compomsentheory byimportingit.

(Section IV) and the theory defining the simulator (Sectign V. PVS has an automated theorem prover. A less frequently

In Section VI we describe a simple case study from the fieltsed component is itground evaluatorf4], used to animate

of control logics for nuclear power plants (NPPs), and finallfunctional specifications by translating executable PV8-co

the conclusion and related work are found in Section VII. structs into efficient.isp code. ThePVSiopackage [5] extends

the ground evaluator with a library of imperative programgni

language features such as side effects, unbounded loops,
The use of formal methods is increasingly being required land input/output operations. Thus, PVS specifications @n b

international standards for the development of safetycetit conveniently animated within theead-eval-printloop of the

digital control systems (e.g., [2], [3]), but, in industrigrac- ground evaluator that reads PVS expressions from the user

tice, verification and validation of such systems reliesviiga interface and returns the result of their evaluation.

II. MOTIVATION

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-112-0 1
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IV. MODELING CONTROL LoOGICS

In this section we describe the PVS theories developed to r q
formally model control logics. We start with the PVS theerie ] o
that model time, logic levels, signals, and basic operatiaom SR
signals. Then, we introduce samples of the library for th&da Yy r

digital modules of a system, such as logic gates and timers.
Finally, we show how to build complex components out of
basic elements. The developed theories are executablai-defi @
tions always use interpreted types and quantification isydw

performed over bounded types. In the following section$y on

thet i nme_t h theory will be shown in a syntactically complete

form; to save space, only fragments of PVS code will be show# the values of signals at each given time are defirsgaR(
in the rest of the paper for the other theories. SAND, sNOT). Sample definitions of this theory follow.

A. Time and LOgiC Levels I MPORTING time_th, logic_levels_th
) signal: TYPE = [tine -> logic_level]

Theoryti me_t h (shown below) contains the type definitres: {t: interval | t > 0}

tion of time (modeled as ranging over the continuous domaffike_periodic(s: signal, T interval): signal =
% definition not shown

of real numbers) and time interval. constval (v: logic_level): signal =
. . LAMBDA (t: tine): v
tgggl—}\lh' THECRY step(tau: tine): signal =
time: TYPE = real e 4 Ny mezl':HEN ELSE ENDI F
interval: TYPE = {t: time | t >= 0} o= tau one = 2€70
END time th pul se(tau: tine, d: posreal): signal =
- % definition not shown
. . . _rising_edge?(i: signal, tau: time): bool =
Bes@es _thaer o and one__loglcal values, modeling hard zero?(i(tau - tres)) AND one?(i(tau + tres))
ware circuits requires additional levels fonknownvalues AND one?(i (tau))
andhigh impedanceUnknown values are useful to model théAND(LSAl, DiZZ signal ): ISIAEInaI 1= X
logic level when the digital circuit is powered up, while hig VBDA (t: time): [TAND(s1(t), s2(1))
impedance represents open cwcu@s (deS|gneel or faulty). ¢ Digital Modules
Theoryl ogi c_| evel s_t h provides the definitions of the | ; K | logic i te digital
logic levels and of the basic logical operators over the -four n our framework, a control logic is @omposite digita

valued logic [ AND, | OR, | NOT). In the following fragment module obtained by connectinasic digital modules
we show the first definitions of the theory. Digital modules are characterized by a sepofts astate

_ that is the collection of all signals present at its portsd an
logic_level: TYPE = bel ow(4) a transition functionthat specifies how the state changes

Fig. 1. An SR flip-flop.

zero: logic_level = 0; . . . .
one: |Ogigc_reve| =1 according to a module’s functionality. The behavior of each
Z: logic_level = 2; %- high inpedance module in the framework is defined by its transition function
5 H _ . 0/ - . . . .
|U-AN' ogic_level ~ =3; 9%- unknown value Ports are abstractions of the terminals of physical devices
D(v1l, v2: logic_level): logic_level = .. g . .
I F one?(vl) AND one?(v2) THEN one Each port is identified by itgategory(one of input, output
ELSIF zero?(vl) OR zero?(v2) THEN zero internal) and its port number within the category. Basic
ELSE U ENDI F modules have only input and output ports, whereas composite
, modules also have internal ports. In a composite module, the
B. Signals

input and output ports are its externally visible termipals
A signal describes the variation of a logic level over timend its internal ports are the ports of the (basic) component
and we represent signals as functions from the domain mbdules that are not externally visible.
time to logic levels. Theorsi gnal s_t h contains, besides For example, a NOR gate is modeled as a module with two
the definition ofsi gnal , the symbolic constant for time input ports, one output port, and no internal ports. Another
resolution,t r es, which models the minimum time betweerexample is an SR flip-flop, which can be modeled either as a
two observable variations of a signal, and the definition of Basic module (Figure 1(a)) with two input ports, two output
utility function to build periodic signalsnieke_peri odi ¢). ports and no internal ports, or as a composite module built
Basic signals provided in the theory areonstval , a from two NOR gates. In the latter case, the resulting system
constant logical levelst ep, a signal that goes from zero tois shown in Figure 1(b), where porig, of gateGy andz1;
one at timer; pul se, a signal that is one only in the timeof gateG; are input ports, portgy of Gy andy, of G, are
interval [, 7 4+ d), whered is the interval size. output ports, and portsy; andx, are internal ports.
Some useful predicates on signals are defined, such a¥heorydi gital _nodul es_t h contains type definitions
ri sing_edge?, used to detect if a signa has a rising for the state of a digital modules{ at e) and for transition
edge at timet au. Operations that apply logical connectivesunctions @i gi t al _nodul e). Type st at e the value of

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-112-0 2
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the signals present at any time is a record that maintainsl) Logic gates: The | ogi c_gat es_t h theory defines
the lists of signals applied at any time on its ports. It habke transition functions of the basic combinatorial galdse
one list of signals for each of the three port categories, atittory is parameterized by the propagation delay of thesgate
a port of the system is identified by its position in the list As the state is defined by tregnalsat the ports (and not
of the corresponding category. In the rest of this paper thige instantaneous values), the new state will normally hmleq
term signal will sometimes be used instead pbrt, so that to the previous one, unless the environment applies differe
“signal " means “the signal present at part The transition signals to the inputs (e.g., a pulse replaces a constarl).leve

function typedi gi t al _nodul e is time-dependent and hasThe definition for the NOR gate is shown below.

the signaturgtime — [state — state]].

| ogi c_gates_th[del ay: nonneg_real]: THEORY

Note that the state of a module is defined as the set BREG N | MPORTI NG basi c_di git al _nodul es_t h

si gnal s applied to, or generated by, the module at a givedft ENOR basic_di gi tal _nodul e(2,

time, and not as the set of their instantaneous values.

The theory includes also a number of auxiliary functions to

build lists of ports (i.e., of signals) and to select a spegfirt
of a module, such gsort s(n), ports(s,n), etc. The first
definitions of the theory follow.

| MPORTI NG signals_th

ports: TYPE = list[signal]
state: TYPE = [# input: ports, output: ports,
internal: ports #]

digital _nmodule: TYPE = [tine -> [state -> state]
% - port constructors

ports(n: nat): RECURSIVE
{p: ports | length(p) = n} =
IF n =0 THEN null
ELSE cons(constval (U), ports(n - 1)) END F
MEASURE n
ports(s: signal, n: nat): RECURSIVE
{p: ports | length(p) = n} =
% definition not shown
% - port selectors
port(p: ports, i: below(length(p))): signal =

nth(p,i)

Typesstate anddi gi tal _nodul e are very general

digital modules and composite digital modules.

D. Basic Digital Modules

1) =
LAMBDA (t: time): LAMBDA (s: state(2, 1)):
s WTH [output := ports(tine_shift(
SNOR(port O(i nput(s)), portl(input(s))),
delay))]

2) Timers: The ti mers_t h theory defines devices that
generate a single pulse when they receive a rising edge on the
input port. The pulse duration is a parameter of the device.
Their response to the input depends on previous values of the
output and possibly of the input(s).
timers_th[del ay: nonneg_real]: THEORY
BEG N | MPORTI NG basi c_digital _npdul es_th

timerMd: posreal): basic_digital _module(l, 1) =

LAMBDA (t: tine): LAMBDA (s: state(l, 1)):
I F rising_edge?(portO(input(s)), t) AND
zero?(portO(output(s)), t)
THEN s WTH [output := ports(pul se(t+delay, d))]
ELSE s ENDI F

The theory defines also resettable timers (not shown), whose
output drops to zero on receiving a rising edge at the reset po

3) Flip-flops: The fli pfl op_th theory defines 1-bit
registers, such as the SR flip-flop (Figure 1(a)). Perédr

i e , ' are the set and reset terminals, the stored bit is on the butpu
and they are refined by subtyping in the theories for basrﬁarkedq

andgq’ is its complement. Portg andq’ hold their

previous value wher andr are both zero. I becomes one
while r is zero, thery is one, and stays at one even after
returns zero. Similarly, if- becomes one while is zero, then

Basic digitgl modules are elgments without a visible irmdernq is zero, and stays at zero even aftereturns zero.
structure, defined only by their input and output ports and b

their transition function. The state of a basic module has

empty list of internal signals, and the lists of input andpout
signals have a predefined length.

The theory is parametric with respect to a parameterL

i pfl op_th[del ay: nonneg_real]: THEORY
G N | MPORTI NG basi c_di gital _nodul es_th
flipflopSR basic_digital _nmodule(2, 2) =
LAVBDA (t: time): LAMBDA (st: state(2, 2)):
ET r = portO(input(st)), s = portl(input(st)),
g = portO(output(st)), g_prinme = portl(output(st))

del ay, representing the time needed by the component toIN I F zero?(s, t) AND zero?(r, t) THEN st

change its outputs when its inputs change.

In addition to the parameterized definitions for the stat an

transition function types, the theory contains a state ttootor
(new_st at e). Part of the theory is shown below.

basi c_di gital _nodul es_th[del ay: nonneg_real]: THEORY
BEG N | MPORTI NG di gi tal _nmpbdul es_th
state(nlN, nOQUT: nat): TYPE =
{s: state | length(input(s)) = nIN AND

I ength(out put(s)) = nOUT AND
length(internal (s)) =0 }
basi c_digital _nodul e(nIN, nOQUT: nat): TYPE =
[time -> [state(nI N, nOUT) -> state(nIN, nQOUT)]]

ELSI F one?(s, t) AND zero?(r, t)
THEN | F zero?(q, t) AND one?(q_prime, t)
THEN st W TH [output := ports
(step(t+delay), sNOT(step(t+delay)))]
ELSE st ENDI F
ELSIF zero?(s, t) AND one?(r, t)
THEN | F one?(q, t) AND zero?(q_prinme, t)
THEN st WTH [output := ports
(sNOT(step(t+delay)), step(t+delay))]
ELSE st ENDI F
ELSE st WTH [output := ports(2)] END F

E. Composite Digital Modules
Basic digital modules can be connected together to create

This theory is imported by other theories that define varioe®mposite digital module§he corresponding theory contains
classes of basic blocks, such as logic gates, timers, and fljmly the high-level definition for the state and the trawositi

flops, presented in the following.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-112-0
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BEG N | MPORTI NG di gi tal _nodul es_th
state(nl N, nOQUT, nINT: nat): TYPE =
{s: state | length(input(s)) = nIN AND
I engt h(out put (s)) = nOJT AND

I ength(internal (s)) = nlNT}
conposi te_digital _nmodul e(nl N, nQUT, nINT: nat):
TYPE = [tine -> [state(nI N, nOUT, nlNT)
-> state(nlN, nOUT, nINT)]]

V. THE EVENT-DRIVEN SIMULATOR

This section describes an event-driven simulator of digita
modules. First, we introducaventsi.e., instants when a signal
may change its value. Second, we enrich the specification of
the system with events. Third, we present the event-driven
simulation engine, which uses the enriched specification to
evaluate the system only at specific instants, instead of at

1) Building Composite Digital ModulesA composite mod- periodic steps as in time-driven approaches [6].

ule is modeled by the composition of the transition functioh

its components, whose form depends on the interconnectighsEvents

of the components.

Theory event s_t h defines the typeevent as a record

In order to build the composite module, one must fird¥ith fieldst, the instant of a single event or of the first of
define thesystemstate, i.e., the union of its input, output@ Series of periodic events, arld the period of the series
and internal ports. Then the subsets of the composite s{&ingle events havd=0). The theory includes the ordering
tem state relative to the componentifiponent substates relation between events and operations on list of eventsieSo
must be identified. Then the transition function is define@efinitions are shown below.
along the following lines: (i) Each port of the composite BEG N | MPORTING tine_th

module is assigned a unique name by equating the port tdive”ti

a variable of typesi gnal in a LET expression (e.gf =

portO(i nput (st)) gives the nameg to the first input

TYPE = [# t: time, T:

(el, e2: event): bool =
(t(el) <t(e2)) OR

(t(el) =t(e2) AND T(el) < T(e2));

interval #];

port of statest ); (ii) for each basic component, we define its

current substate by selecting its input and output sigmals f

B. Annotated Signals

the current system state; (iii) for each basic component, weln theory annot at ed_si gnal s_t h we annotate the
define its next substate as a variable of tgteat e, and we formal specification of signals with the list of events asatsel
equate it to the basic component’s transition function iggpl with each signal. We redefine the typégnal as a record

to the current substate defined in the previous step; (iv) thth the fieldsval , the functional specification of the signal,
output signals of the new system state are the union of taed evt s, the set of instants when the waveform changes
output signals of the new substates of the basic componevadue. For example, the set of events associated with aanst
connected to the system output; (v) the internal signalhief tlevel generator is empty, while the set of events associaiibd
next system state are the union of the internal signals of thegpulse generator at time and durationd contains events

new substates of the basic components.

As an example, we show the composite module of the SR
flip-flop built from a pair of cross-coupled NOR logic gates:

With reference to Figure 1(b), in this example pafl is
renamed as 1, andx10 ass1.

flipflopSR conposite_digital _nodule(2, 2, 2) =

LAVBDA (t: time): LAMBDA (st: state(2, 2, 2)):

LET r = portO(input(st)), s = portl(input(st)),
q = portO(output(st)), qg_prime = portl(output(st)),
rl = portO(internal (st)), sl = portl(internal(st)),
nor0 = gateNOR[tres](t)(new state(2, 1)

WTH [input := ports(r, rl),
output := ports(q)]),
norl = gateNOR[tres](t)(new state(2, 1)
WTH [input := ports(s, sl),
output := ports(qg_prime)])

IN st WTH [output := ports(portO(output(nor0)),
portO(out put(norl))),
;= ports(portO(output(norl)),

por t 0( out put (nor 0)))]

i nt ernal

In the system transition functiofl i pfl opSR, we let
signalr be the signal on the first input ponpdr t 0) of the
current system statst , and similarly fors, q, q_pri ne,

s1, andr 1. Then, substateor 0 of gate@ is the result of

and T + d, both with periodI’ = 0.
The basic operators on signals are re-defined to calculate th
events of the resulting signal, whose events are the union of
events of the operator parameters. Some events in theingsult
signal may not affect the signal value. For example, if atlii
one of thesOR inputs is a constarine, no set of events on
the other input changes the output. Such redundant events,
however, do not affect the simulation.

The following fragment shows the definition 8NOR.

BEG N | MPORTI NG events_th, logic_levels_th

sNOR(sla, s2a: signal): signal =
LET s1 = val (sla), s2 = val(s2a),
f = LAMBDA (t: tine):

I F one?(s1(t)) OR one?(s2(t)) THEN zero
ELSI F zero?(s1(t)) AND zero?(s2(t)) THEN one

ELSE U ENDI F,
e = evts(sla) + evts(s2a)
IN (# val :=f, evts := e #)

Annotated signals carry all the information needed by the
simulator to handle events, so the specification of the aligit
modules is unchanged.

C. Simulator
The simulator maintains a list of eventsvdrklist), ini-

transition functiongat eNOR. The argument of this function tialized with the starting time of the simulation. The ewent

is a state with input signals andr 1, and output signad|. A
similar description applies toor 1.
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are listed in ascending order without duplicates. At each
simulation step, the simulator extracts the first eventrent
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evenj from the worklist, and then it computes the next state  final _s = sinul ate_systen(N_STEPS) (fli pfl opSR)
by applying the system transition function at the time sipeti E: n : ! g: _‘;“t ; (outf, pn)
by the event. Then, the new events associated with the signal, y True -

in the generated state are inserted in the worklist. _ _ _ _ .
1) Worklist: Theory worklist_th defines the type 1Nhe simulation trace can be a list of event times, signal

worklist as a list of events, provides the functionv@lues and worklist contents at gach .step, afahue Change
get first that, given a current time, returns the firsPUmMP[7] output, readable by a visualization tool (e.GTK-
event associated with a set of signals and greater than ¥Yave[8))-

current time, and the functionpdat e_w that updates the ~3) Automated Execution of Test-Cas&@Hhe universal and
worklist. Functionupdat e_w finds the new events in the existential quantifiers of PVS can be used to automaticafly s
next state and inserts them in the worklist. Note that, sihee UP different simulation studies, e.g., to analyze the raspo
model of the system may contain ideal modules that upd&gthe system to different input waveforms. This allows, for
instantaneously their output ports, functiopdat e W must instance, instrumenting the framework for the execution of
not remove the current event from the worklist as |0n§imulations in order to discover interesting test cases.

as the generated state is not stable. These simple worklisth the following example, thé est _f i pf| opSR func-
manipulators are not shown. tion uses theFORALL quantifier to generate all possible

2) Simulation Engine:The simulation engine applies thecombinations of logical levels. Each combination defines an

system transition function and returns the state of theegystinitial state for an SR flip-flop, and each state is used to
after a certain number of steps. It uses a customizdblgp COMPUte a next state.

function to output a simulation trace. test _flipflop_th: THEORY BEG N %-inports onmitted
_ % ...
simul ate_system(n_steps: nat) discrete_time: TYPE = bel ow2)
(f: [tinme -> [state -> state]]) R ! _
(W: worklist)(outf: OStream pn: port_names): test_flipflopSR bool =

RECURSI VE [state -> state] = FORALL (t_set, t_reset: discrete_tine):
LAMBDA (s: state): FOR’ALL_ (yl_, v2: logic_level): vl /=v2 =>
IF n_steps > 0 AND length(w) > 0 (LET initial st = new_state(2, 2, 2)
THEN LET current _t = t(get_first(w)), WTH [input := ports(pul se(t_reset, 1),
s_prime = update_state(s)(current_t, f), pul se(t_set, 1)),
w _prime = update_ w (W) (current_t, s, s_prinme), output := ports(constval (vl),
dbg = dump(outf, pn, s, s_prine, ) constval (v2)),
w, W _prinme, current_t) internal := ports(consiva: Evi;)]
i i constval (v ,
INSInulate_systen}gats;‘ep;n)(g)'(Dlti)%_pr|ne) initiaI_V\A _:worklist(initial_s_t, 0),
ELSE s ENDI F - final _s = simulate_systen(5) (flipflopSR)

(initial_wW)(outf,pn)(initial_st)
The input parameters are the maximum number of steps, the I'N TRUE)
system transition function, the worklist, the output stne®r  gnp test f1ipfiop_th
the trace, and the names of the signals. The function isccalle
with an initial worklist containing all events of the initiatate VI. CASE STUDY: A STEPWISESHUTDOWN LOGIC

and an event for the initial time. _ o As an illustration of the practical applicability of the fre-
At_each step_, the functlon 0] gets the simulation time frongqo ik presented in this paper, we report on a simple case
the first event in the worklist, (ii) generates the next systesydy from the field of Instrumentation and Control for NPPs.
state, (iii) updates the worklist, and (iv) outputs the eyt A high-level description of a control logic, expressed as a
state. The simulation terminates when either the new w&irklienction Block Diagram [9], has been manually translated
is empty, or the maximum number of steps is reached.  into 4 PVS specification using the presented framework, and
The following excerpt shows how the digital modulghe specification has been animated to simulate the control
f1ipflopSRis simulated. In functiorsi m f1i pfl opSR,  |ogic. Simulated test cases have been automatically gekra

the initial state is constructed from the signals at theqydhe  4jjowing a possible malfunction to be detected at this early
worklist is initialized, andsi mul at e_syst emis invoked giage of development.

with the transition function as an argument. Tiesetport is
initially fed with a constant zero signal, theet port with a A. Description of a Stepwise Shutdown Logic

pulse of4s at time0.3, andq (¢') holds a constant zero (one). A stepwise shutdowprocess keeps process variables (such

simflipflopSR(N_STEPS: nat): bool = as, e.g., temperature or neutron flux) within prescribedstim
LET r = constval (zero), s = pul se(0.3, 4), olds by applying corrective actions (e.g., inserting contr
?{zcgnznﬁuzgrlo):’ qf‘—pr' me = constval (one), rods) not immediately to their full extent, but gradually, i
initial_st = newstate(2, 2, 2) a series of discrete steps separated by settling periods.
WTH [ioﬂfuht 5 ?_Pogﬁfgzy s). i o) A Stepwise Shutdown Logic (SSL) was analyzed in [10]
int 2r nal P port 2'(,‘1—'”31)] . with a model checking approach. The framework proposed in
initial_w = worklist(initial_st, 0), this paper is used to analyze the same system.
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The requirements of the SSL, as described in [10], cdf™ ! ‘ ‘ ‘
be informally stated as follows: if amlarm signal (e.g., | | ‘ — [
overpressure in a pipe) is asserted, the system must assert a
control signal to drive a corrective action for 3 secoraldiye Fig. 5. Output of simsystem2, displayed with GTKWave.
period), then the control signal is reset for twelve seconds
(wait period and the cycle is repeated until either the alarm. . ) . . ) o
signal is reset or a complete shutdown is reached. An operatgmulation 2 Signalp is a step function with the rising edge
however, by activating manual tripsignal, may force the wait &t = 0-3s and signamis a step function with the rising edge
periods to be skipped in order to accelerate the process. atf = 5s. This means that the trip switch is pushed during the

Figure 2 shows the main part of one of the SSL implemef{'St Wait period. As expected, that wait period is interegt
tations analyzed in [10], whenmis the manual tripp is an a new3s output pulse is generated, and the subsequent pulses

alarm signal, anaut is the control signal. When all signals&® generated with the normtds cycle, since the trip switch
are low, the output 2_out of timer T2 is low, and the AND has not been released and the resettable timer responds only

gate is enabled. Whep is asserted, its rising edge passeté) a rising edge (Fig. 5).
through the AND gate to the input of the T1 timer that sends m systen2: bool =

i i ET initial _st =
a 3s pulse to the output. The output is fed back to the mpui—new_st ate(nl N, nOUT, niNT)

of T2, a resettable timer with a pulse duration Idfs. The WTH [input := ports(step(5), step(0.3)),
output pulse of T2 disables the AND gate that in turn resets output := ports(constval(zero)),
the input of T1. Since T1 is not resettable, its output pulse. internal .= ports(constval(zero), niNT)],

.. initial_w = worklist(initial_st, 0),
lasts for three seconds, then returns to low for the rem@inin i ha) s7™= sj mul ate_syst en{ NSTEPS) ( syst enC)

12s of the T2 pulse. After this wait period, the output of T2 (initial _w)(outf, pn)(initial_st)
goes low, the AND gate is enabled, and T1 starts a new pulsé N TRUE
if an input signal is still asserted. Simulation 3 In this instance, signg is a step function with

If p is high, andmis asserted during a wait period, T2 ishe rising edge at = 1s and signalmis a pulse of duration
reset and its output enables the AND gate, allowing the trig starting att = 2s followed by another pulse of duration
signal to reach T1 and restart it at the end of $sepulse. 35 at ¢+ = 10s. In this case, the manual intervention occurs

The SSL is modeled by theyst enC transition function during the active period of the first output pulse. Contrary
(see Figure 3), according to the guidelines in Section IV. to expectation, after the end of this output pulse, the dutpu

is stuck at zero and no further corrective action takes place
B. Simulation of the Stepwise Shutdown Logic even if the alarm (high pressure) persists and the manyal tri

In this section we show some simulated situations. switch is pressed again. A fundamental safety requirengent i
thus violated (Fig. 6).

Simulation 1 Signal p is a step function with the rising si m systen8: bool =

edge att = 0.3s, and signalmis a constant zero (no manual LET initial_st =
new_state(nl N, nQUT, nlNT)

mterve_ntlon). The control logic produces a series of p_ulse WTH [input - = ports(sOR(pul se(2,1), pul se(10,3)),
that drive the plant towards a shutdown, as expected (Fig. 4) step(1)),
In the following, we show the PVS code for this simulation. output := ports(constval (zero)),
internal := ports(constval (zero), nINT)],
simsysteml: bool = initial_w = worklist(initial_st, 0),
LET initial _st = final _s = sinul ate_syst en( NSTEPS) ( syst en(C)
new st ate(nl N, nOUT, nlNT) (initial _w)(outf, pn)(initial_st)
WTH [input := ports(constval (zero), step(0.3)), I'N TRUE
out put := ports(constval (zero)),
internal := ports(constval (zero), nINT)],
initial_w = worklist(initial _st, 0), Test-Cases Interesting simulation examples, such as
final _s = sinmul ate_syst en( NSTEPS) ( syst enC) . . . .
(initial _w)(outf, pn)(initial_st) si m systenB, can be discovered by instrumenting the
IN TRUE framework for the execution of test cases.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-112-0 6
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systenC: conposite_digital _nodul e(nIN, nOUT, nINT) =
LAVBDA (t: tinme): LAMBDA (st: state(nIN, nQUT, nINT)):
LET m = portO(input(st)), p = portl(input(st)), out = portO(output(st)),

t2_in = portO(internal (st)), t2_out = portl(internal(st)),

% simlar definitions for or_in, and_en, and_out

rtimer = rtimerM T1] (D2) (t)(new_ state(2,1) WTH [input:=ports(t2_in,n), output:=ports(t2_out)]),

or2 = gateOR[ TO] (t) (new_state(2,1) WTH [input:=ports(or_in,p), output:=ports(or_out)]),

inh_and = gat eANDH[ TO] (t) (new_state(2,1) WTH [input:=ports(and_en, and_in), output:=ports(and_out)]),
timer = tinmerM T2](D1)(t)(new state(2,1) WTH [input:=ports(tl_in), output:=ports(out)])

INst WTH [input := ports(m p), output := ports(portO(output(tinmer))),
internal := ports(portO(output(timer)), portO(output(rtimer)), m portO(output(or2)),
portO(output(rtinmer)), portO(output(or2)), portO(output(inh_and)), portO(output(inh_and)))]
Fig. 3. PVS model of the Stepwise Shutdown Logic.
e — ~———| is based on the paradigm of event-driven-simulation, asd it
— — core component is defined as a function in the higher-order
or _out . . .
I E— logic language of the P\(S system_. proving enwronment. The
i approach has been applied to a simple case study in the field
S FR m— of NPPs. The same case study had been previously studied by
Fig. 6. Output of simsystem3, displayed with GTKWave. other researchers with a model checking approach [10].

This work is part of our current research activity aiming at
developing a simulation and analysis framework for control

In the following example, functiort est _syst em uses
the FORALL quantifier to automatically generate the initia
state for the different test cases. The initial states diffg
the starting time of the pulse applied to the manual trip .port
The ground evaluator implicitly transforms the univengall [
guantified formula ort 0 into a loop that, at each iteration,
generates a new initial state with a pulse startingt at
= 0,1,..,N1 on the manual trip port, and applies the!Z
simulator forNSTEPS steps.

simsystemtest(N nat): bool = (3l
FORALL(tO: belowmN)):
LET initial_state = [4]
new_state(nl N, nOUT, nlNT)
WTH [input := ports(pulse(t0,1), step(l)),

out put := ports(constval (zero)), [5]

internal := ports(constval (zero), nINT)],
initial_wW = worklist(initial_st, 0), [6]

final _s = sinul ate_systen NSTEPS) (syst enC)
(initial _w)(outf, pn)(initial_st) 7]
I N TRUE

[8]
VII. CONCLUSION AND RELATED WORK [9]

PVS has been used in various works to describe hardware
systems, e.g., in [11], [12], [13]. With our approach, therfal [10]
specifications are executable and they can be simulated with
the ground evaluator of PVS. This way, once the simula-
tion experiments give developers sufficient confidence @& th
correctness of the specification, the same PVS models ¢5H
serve as the basis for the formal verification of propertres i
the theorem prover of PVS. It is known that a large share
of defects in computing systems stem from errors in tHe?]
formulation of specifications [14].

In the present work, a library of (purely logic) specifi{13]
cations for typical control logic components is presented,
and an approach to define an event-driven simulator capaglg
of executing the logic specifications is shown. The library
includes theories to model logic signals over time, whereti
is a variable in the domain of real numbers. The simulator

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-112-0

logics that enables developers to rely both on simulatiah an
[heorem proving to assess the correctness of specificatiahs
designs.
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Abstract - Across Europe police organisations aresing
numerous systems, both computerised and manualcapture
information about firearm crimes. The Odyssey plati
intends to address this issue by providing policganisations
with the ability to access ballistics data from ethEuropean
law enforcement agencies. The Odyssey platform @atotype
system that has been developed to identify stanslefat the
development of a European wide ballistics informati system.
In this paper, we outline the investigation toolsudnd within
the platform and discuss how these were develop&te
prototype has been demonstrated to law enforcement
communities across Europe and is in its final stageof
development.

Keywords - ballistics; sharing; law enforcement; tda
mining; Europe.

l. INTRODUCTION

Police organisations across Europe deploy man

different systems, both computerised and manualed¢ord
information about crimes which involve the useiofdrms.
Ballistics crime is relatively rare — just 0.2%af crimes in
the UK involve firearms, but justifiably this isken very

seriously by Law Enforcement Agencies. The disgarat

systems used today are well suited to resolvingesiwhen
they are committed locally, but problems arise whe
crossing jurisdictions. Although individual offex are
unlikely to cross borders, guns and bullets are edov
between European Countries [4]. Exchanging infolonat
so that, for example, guns can be tracked or pattef
usage followed has always been difficult. Inforroatiis
often exchanged via the telephone, email or oneam-
meetings. Before information can be shared, ingestis
need to have some indication that the ballistimits linked
to another offence.

The Odyssey project addresses this problem
providing users with access to a plethora of infation
from investigations across Europe. Incidents arauated
to find ones which aresimilar to the one under
investigation. Detectives are then alerted to thsisdlar
incidents. The Odyssey platform provides policersisgth
access to information such as expert and withessrsents,
images and videos, as well as details of bullestridge-
cases and firearms. All of this information is mmet®d
through directed graphs or a historical timelinewiof an
investigation. Odyssey improves crime resolutiones by
facilitating communication between experts.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-112-0

In this paper we will describe the data structusbséch
underpin Odyssey. We will provide an overview ofngoof
the most recent developments in police information
management systems followed by a description of the
Odyssey platform prototype. The paper conclude$ \ait
discussion about the standards that were identifiealigh
the development of the prototype.

Il.  BEYOND STATE OF THE ART

Internationally, there are a number of crime dadaba
systems in use by different law enforcement agen&eme
of these systems include: COPLINK, NABIS (National
Ballistics Intelligence Service), HOLMES (Home Q@i
Large Major Enquiry System) 2 and 1-24/7.

COPLINK is an information and knowledge
management system aimed at capturing, accessing,

%nalysing, visualising and sharing information besw

nited States (US) law enforcement agencies. CORLIN
comprises of two components COPLINK Connect (CQ) an
COPLINK Detect (CD).
CC is designed to integrate disparate heterogodates
sources, including legacy systems, to facilitaterimation
sharing between police departments. CC providegeol

nofﬁcers with access to one central data repositadyich

allows them to carry out four types of independsedrches
(person, vehicle, incidents or locations). In additto this,
police officers can carry out partial and phondtiased
searching, access previous searches and uploa@snaagl
documents.

CD expands the functionality of CC to automatically
find associations within police databases. It imed at
supporting detectives and crime analysts in finding
associations between people, vehicles, incidentsl an

bg)cations. At present the system is able to fingbamtions

etween individual entities, but is unable to miagnt onto
a geographical map. The strength of an associaton
determined through the use of co-occurrence arsasd
clustering. The system is able to search for megnin
terms in both structured (database tables) anduatsted
(witness statements) data [1].

UK police forces have access to a number
independent database systems. These databasesedréou
record, monitor and manage offences in such arsaea
offences, gun crimes and major incident management.

of
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NABIS provides ballistic examination services, for
twenty UK based police forces, through three hwldsich
are based in London, Birmingham and Manchester [7].

The database is fundamental to the service thatISAB
provides. The NABIS database supports the recoasady
analysis of ballistic items. Associations betwedss ballistic
information, people, objects and events are fortoecteate
tactical intelligence. Security is implemented opea-user
basis so that users are only able to access infemmihat is
relevant to their role [6].

HOLMES? is an information management system which

assists police forces in the investigation of sesigrimes,
such as serial murders, large scale fraud and rd&jasters.
HOLMES?2 lets police forces share information anehiify

links between independent incidents. HOLMES2 is an

Oracle based database that resides on a UNIX syS{em

Across Europe, Interpol has implemented the 1-24/7

Algebras, Programming

, Tools, and Benchmarking

e ot 2B A
Figure 1. Ballistic systems in place across Europe

global police communications system that allows 188 g js in contrast to the United States of America

member countries to share information about critsiaad

criminal activities. 1-24/7 provides member couesriwith

24 hour access to a vast array of police infornmat®uch

information is related to suspected terrorists, tedn
persons, fingerprints, DNA profiles and stolen eigds. In

addition to this, the 1-24/7 system provides eactmiper

country with access to other member’s national lkdas
[4].

When ballistics crimes are investigated, recovéieus
such as guns, bullets or cartridge-cases can bpareah by
forensic specialists. Test-fired bullets are exsdi for a
range of marks made as they pass down the bartleé @jun
[2]. By comparing the marks on different bulletgrained
examiner can determine if two bullets come from shene
weapon. The process of examining bullets under
microscope is time-consuming and difficult. A nuenlof
systems such as IBIS, Papillon and EVOFINDER hasenb
built to automate the evaluation process; howetleese
systems do not inter-operate [11]. A bullet scanmfrone
manufacturer's system cannot be used on anothers.

The Odyssey project is helping to define standéods
sharing ballistics data between systems across pEuro
Figure 1 provides some indication of the differbatlistic
matching systems in place across Europe.
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(USA), where IBIS has first mover advantage and has
developed a centralised IBIS system. Furthermodys€ey

is different to NABIS and the 1-24/7 database cuoilsein
place in the UK and across Europe, as the NABI&liate

is specifically designed to manage the examinatifn
ballistic items. The 1-24/7 database has a Européda
database which largely retains information relatedthe
individual. The 1-24/7 system doesn’t integratead&iom
ballistic systems due to the heterogeneous nattidaia.
Odyssey is different to other US and European polic
systems, as Odyssey seamlessly combines relational
querying and data mining results from multiple eliéint
domains.

a Ill.  INTELLIGENT SEARCHING

Odyssey retains data within two main databaseeca
database and a central database called CEON. Tda lo
database is maintained by the individual policeanigation,
whilst CEON holds ballistics data uploaded by pmlic
organisations across Europe. The data within thmallo
database is replicated within CEON through an XML
transfer structure, which is updated on a dailyidathe
central database is interrogated, using supervised
unsupervised data mining techniques, to find astiocis
with other ballistic incidents that have been cottedi
across Europe. It is anticipated that the centahlzhse will
handle at least six hundred thousand new ballisticlents
per year. This is based on the average numberredrin
offences committed in the UK between 1999 and 2009,
multiplied by the number of member states [3]. Epolice
organisation with a related ballistic incident isrged to the
fact that an association has been found. An aagenerated
when a potential match is identified in the centtalabase.
An automated message is then sent back to the taser
inform them that a potential match has been fourtds
message is delivered to an e-mail type inbox withenGUI
(Graphical User Interface). In addition to thise thlatform
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allows individual police organisations to restraxtcess at
the individual ballistic incident level to their da

Extracting intelligence using the GUI is achievadwo
stages. First, the usefefines the search iterthen they

browse the resultsyhich can then lead to further searches.

Figure 2, below, shows a search that has beenedaorit
through the Odyssey GUI.

File Edit View Navigate Source Refactor Run Debug Tools Window Help

47 = B
[ patette qn:‘:cﬁexr@ﬂmm 8] sewthod 5 } 7
s (N o e s | = = W 7
“’. ot & oaten || o ; iewLEL Lo
N
2 Person | gl Vehide s082

s

| = Ballistic Tactical | ‘g
Bulet

‘ o Incide

(e

| coe.

-

nia
v

Burglary

2010-05-13 D0:00:00
20080813 D0:00:00
Burglary

DateClearedUp
DateTimeReported
CrimeType
CrimeCode L

#.7_’.::

Burglary person

|
N
? Qjo
L
Niefendt

Figure 2. Odyssey GUI

First, the user selects kmsic or ballistic tactical item
and refines their search in tisearch propertiesThe user
then has the option to add further tactical itemd &nk
them to the results of the previous search. Searehe
refined, in the platform, through the search prtopsmwhich
converts the query into OSL (Odyssey Semantic Lagg)
Querying with OSL allows the user to access infdioma
directly from the database and combines it witlelligence
from the data mining backend. Below is an examgla o
simple OSL query generated through the GUI.

able to identify any updates that have occurredthes
investigation has progressed, which includes
identification of additional ballistic incidents @rchanges
made to the underlying information.

The intelligent searching services found within
Odyssey’s arsenal are vital to facilitating theotason of
ballistic incidents committed across Europe.

IV. ODYSSEYHUB
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Figure 3. Architecture of the Odyssey Platform
The Odyssey platform is pragmatic software thatrcemnon
any standard off the shelf system. It was develdhesligh
the integration and repurposing of open sourcecantmon
off the shelf software applications. These includiaya,
NetBeans, PostgreSQL, Antlr and SAS. Whilst thefaten

Historical

QUERY person WHERE weapon HAS VALUE Sig Sauer crently utilities SAS for the integration and rinig of data

P238 AND country HAS VALUE France

Expanding the query to determine similar ballisgticidents
by using the data mining backend and within a cmnfce
limit is expressed as follows:

the software could quite easily be replaced witterop

sourced software such as Python and WEKA. Figure 3

above provides an overview of the architecture loé t
Odyssey platform.

External data, from European police organisatiass,
extracted and transformed using SAS IntegratiordiStu

QUERY person WHERE weapon HAS VALUE Sig SauerThis data is then loaded into the local authorigyathase,

P238 AND country HAS VALUE France WITH
CONFIDENCE > 0.7

Having identified the high level information, thigtuthe
GUI, the user is able to drill down into it. Thisitd is
contained within the Odyssey Evidence RepositorizRD
The OER provides access to some of the physicelaats
collected through the investigation process, inicigd
images, videos and expert and witness statements.

In addition to this, Odyssey also provides hist@@ridata
views of related incidents. These views are presketd the
user as a timeline. This promotes transparenchieasger is

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-112-0

which is a replication of the central database. séhe
databases were developed using PostgreSQL andasee b
on the database structures currently in place aBISA
Europol and CiFEx (Centre for Information on Firaarand
Explosives) — CiFEx are ballistic experts in the .UKhis
helped to focus the development of the databaseards
ballistic incidents. This allows the user to man#gsr own
data and helps to insure the smooth transfer aedriation
of data between the local and central databasesreTére
over fifty tables in the database that are linkeohg Object
Identifiers (OIDs). An OID is automatically genezdtwhen
data is uploaded into the database, which is unapuess
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the entire instance of the database. Referentiagiity
between items is not maintained by the databasks T
causes scalability problems as associations betviats
items have to be made outside of the database.ihie is
further compounded by the predicted size of theluke,
given the number of ballistic incidents per yeadded, as
the platform stores images, videos and statemehts,
anticipated size of the database is expected w grtw the
terabytes. A binary items table was therefore immaleted
within the database which works as a file systeat goints
to the stored images, videos and statements.

Data is uploaded into the local component throtigh
GUI. This is achieved through a number of autonadic
generated SQL insert statements, which is thendggleap ;
through the use of OIDs. It is at this point whtre user is \
able to specify the initial sharing permissionsisTis done
through the GUI, by selecting t.LOW or DENY option
followed by theuser specified optionsThe user specified
options allow the user to grant or restrict access at five
levels: country, region, police organisation, dépant and
user. These options are then changed into numeracids
that are later translated, along with the inseateshents,
into OSL. These codes are then retained within th
permissions table of the authorisation databasda D=
loaded into the local database through the GUI,FSgere
4.

update has occurred the users receive an aleraskatthem
to re-run their query.

The shared data is based on the options spedifiede
user, which is retained in the permissions tabliwithe
authorisation database. The shared data is sekttbabe
local component through the XML structure whereisit
serialised within the platform. It is presentedhe user as a
related result within the GUI. Figure 5 below shothe
results of an Odyssey search.

e
BAILEY

I"\I

CA

HA
HBEY

CA

HA,

GUI CEON

F

1TC

Local Component
—

—— || @
=] )=

HA

oT
Figure 5. Search Result

This shows the related crimes committed
Cooper and Bailey.

Querying the database is carried out through usieg

GUI, or by creating OSL with the built in assisfedctions.

Querying with the GUI, the user drags a tacticatnitfrom

Figure 4. Odyssey XML Transfer Structure the tool bar and specifies the search options énstarch

The GUI translates the OSL into SQL which is usegass Properties. The user specified options are tramstdrinto
data to the local database as XML. The data is theRSL using the backend semantic engine. OSL is @i
transferred to CEON using the same XML structureeng ~ that was developed in Antlr, which translates tbarsh into

it is interrogated for associations. Through the o6 SAS ~SQL and is specifically designed to hide the unyeg
integration studio, we have demonstrated that figssible ~ Structure of the database from the user. The séenant
to extract, transform and load data from ballistind language was created through understanding hovcepoli
incident systems into a relational database strectu investigators communicate and think during investans
When a match is identified an alert is then triggeand @nd by capturing domain specific knowledge abow th
sent back to the local component. If permissiograsited to ~ Méaning of police language. Below is an exampl©8t
view the data, the related data is also sent bactket local ~ and its translation into SQL:

users through the XML structure. Following on treadis
then retained in the cache of the local compondmrevit is

1T

by Edwards,

QUERY ballistic incident WHERE weapon_manufactur

serialised within the platform. The platform aldtoas the
user to modify their data, which is done througle th

HAS VALUE Sig Sauer AND victim_gender HAS VALU
female

translation of SQL update or delete statements &L

The process of uploading and returning a resuért(and
data) is completed in twenty four hours. The user
restricted from directly changing the data in thentcal
database due to batch data mining and user pragessi
change to the central database would occur witlienty

four hours of a user modifying the local datab&8ben the

SELECT *

i FROM odyssey.ballistic_incident
LEFT JOIN ballistic_incident_has_recovered_firea@hl
(ballistic_incident_has_recovered_firearm.recoveriéear
m_oid = ballistic_incident.oid)
LEFT JOIN ballistic_incident_has_recovered_firea@hl

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-112-0
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(ballistic_incident_has_recovered_firearm.recoverfickar Historical data are presented to the user as elitimof
m_oid = recovered_firearm.oid) events, which shows any updates to the incidentsaay
LEFT JOIN ballistic_incident_has_case ON associated incidents that the user has the authoritiew.
(ballistic_incident_has_case.ballistic_incident_easid = An update is defined as the user deleting, updating
ballistic_incident.oid) inserting data into an existing ballistic incidehhe timeline
LEFT JOIN ballistic_incident_has_case ON of historical events is created through using amoth
(ballistic_incident_has_case.ballistic_incident_easid = PostgreSQL database, which stores the delta alamgtive
case.oid) author and date/time of the change. The updated ige
WHERE case.gender_of_victim = “female” AND identified in the historical database by the OIDthué initial
recovered_firearm.manufacturer = “Sig Sauer”; item, combined with an SQL timestamp. The approach

adopted by the platform is quite unique as othstohical
If the user specifics a confidence limit then Quys databases that use OIDs with timestamps have eetdire
will return the results ranked in descending oradr historical data in the same database. The maimaguto

confidence. The confidence is calculated on a dailsis, by ~SUPPOTt this is that consistency and speed of wat@val is
applying prebuilt algorithms to a merged copy af tentral Maintained when the historical data is stored i same
database tables the Odyssey data mining mart (DMk#. ~ database [10]. Whilst speed of retrieval and coesey of
data is merged using SAS Data Integration Studid ian ~data items is important to the platform, the iniam is to
scored using prebuilt algorithms that were create@AS ~ 'eturn the latest view of the ballistic incident ttre user.
Enterprise Miner. The score is returned to theidial 1he speed in which historical data is returnechouser is
incident table by matching the OID from the DMM twihe ~ Nowever improved, through the use of the OID and
OID in the ballistic incidents table. The ballisiicidents ~ fimestamp, as the requested data is easily rarfienigh
table is then sorted in descending order of scdtee  SOrng these values in ascending order.

following is an example of an OSL query with an egsed Vv

. o T . TOWARDS COMPLETION
confidence limit, which is translated into SQL.:

Further development of the platform will focus dret

QUERY ballistic incident WHERE weapon_manufactur automatic identification of key words in expert aniiness

HAS VALUE Sig Sauer AND victim_gender HAS VALUE Statements — the Odyssey Statement Miner (OSM} Wi
female WITH CONFIDENCE > 0.7 present the user with a list of key words, rankedrider of

4
m &

occurrence, from the associated statements. Wectxpeat

this will help the police experts to assess thdulisess of
the documentation.

The OSM will be developed using SAS Text Miner in
conjunction with a bespoke java programme, which
removes any conjunctive adverbs from the statem&#&S
Text Miner will be used to identify any words thatcur
more than three times within a statement. From this
dictionary of words, along with the frequency otooence
will be created. This will then be presented to tiser as a
list of words in descending order of frequencyislhoped
that this will help the user to decide whether ot to view
the statement.

It is noticeable and disappointing that no EU-wide
standards exist for secure police data systemssg@gyhas
been able to demonstrate that widely available open
software can be repurposed easily to build suchesys
The project will be recommending a list of such
technologies.

SELECT *

FROM odyssey.ballistic_incident

LEFT JOIN ballistic_incident_has_recovered_firea@ml
(ballistic_incident_has_recovered_firearm.recoveriéear
m_oid = ballistic_incident.oid)

LEFT JOIN ballistic_incident_has_recovered_firea@ml
(ballistic_incident_has_recovered_firearm.recoveriear
m_oid = recovered_firearm.oid)

LEFT JOIN ballistic_incident_has_case ON
(ballistic_incident_has_case.ballistic_incident_easid =
ballistic_incident.oid)

LEFT JOIN ballistic_incident_has_case ON
(ballistic_incident_has_case.ballistic_incident_easid =
case.oid)

WHERE case.gender_of_victim = “female” AND
recovered_firearm.manufacturer = “Sig Sauer” AND
ballistic_incident.score > 0.7;

Documents are stored in a separate PostgreSQL VI. CONCLUSION

database as blobs. Using local compatible softwzokce This paper provides an overview of some of the most
experts are able to share information across w#opin. It ¢ rrent crime information management systems icepla
helps to facilitate communication between expeatsthey ihe USA, UK and across Europe. It highlights thare is a
are able to access documents from other law enf@oe neeq for a platform which combines data from tHéedint
agencies, along with their contact details. Suchygiistic systems currently in place across Europe.
communication is believed to be vital in helpingrésolve 4y erview of the functions found within the protogypre
crimes that have been carried out in differenttioos [8]. also discussed, which focuses upon accessing, nigadi
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sharing and querying of data. The development & th[5]
investigation tools within the platform are alsopksined

and future work in relation to the completion ofeth [6]
prototype is outlined. The paper concludes with reefb
discussion regarding the standards that will
recommended at the end of the project.

bg7)
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Abstract—Offering an easy access to programming languages
that are difficult to approach directly dramatically reduces
the inhibition threshold. The Generative Modeling Language
is such a language and can be described as being similar
to Adobe’s PostScript. A major drawback of all PostScript
dialects is their unintuitive reverse Polish notation, which
makes both - reading and writing - a cumbersome task. A
language should offer a structured and intuitive syntax in order
to increase efficiency and avoid frustration during the creation
of code. To overcome this issue, we present a new approach
to translate JavaScript code to GML automatically. While this
translation is basically a simple infix-to-postfix notation rewrite
for mathematical expressions, the correct translation of control
flow structures is a non-trivial task, due to the fact that there
is no concept of “goto” in the PostScript language and its
dialects. The main contribution of this work is the complete
translation of JavaScript into a PostScript dialect including all
control flow statements. To the best of our knowledge, this is
the first complete translator.

Keywords-PostScript; JavaScript; translator; transpiler

1. MOTIVATION

The language PostScript [1] by JOHN WARNOCK and
CHARLES GESCHKE at Adobe Systems is a dynamically
typed concatenative programming language which is known
for its use as a page description language for desktop
publishing. Beginning in the 1980s PostScript (PS) and its
descendants, namely the Portable Document Format (PDF)
[2], are still the standard for electronic distribution of final
documents for publication. Besides desktop publishing, the
programming language PostScript has been used in display
[3] and window systems [4] [5] as well. Nowadays it
has its revival in procedural 3D modeling. The Generative
Modeling Language (GML) [6] is a programming language
based on PostScript. It follows the “Generative Modeling”
paradigm [7], where complex data sets are represented by
algorithms and parameters rather than by lists of objects.
With ever increasing computing power becoming available,
generative approaches [8] [9] become more important since
they trade processing time for data size. At run time the com-
pressed procedural description can be “unfolded” on demand
to very quickly produce amounts of meshes, textures, etc.
that are several orders of magnitude larger than the input
data.
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A. PostScript in 3D

GML is very similar to Adobe’s PostScript, but without
any of the 2D layout operators. Instead, it provides a number
of operators for creating 3D models.

PostScript and GML are interpreted, stack-based lan-
guages with strong dynamic typing, scoped memory, and
garbage collection. The language syntax uses reverse Polish
notation, which makes the order of operations unambiguous,
but reading a program requires some practice, because one
has to keep the layout of the stack in mind [10]. Most
operators and functions take their arguments from the stack,
and place their results onto the stack. Literals (numbers,
strings, etc.) have the effect of placing a copy of themselves
on the stack. Sophisticated data structures can be built on
array and dictionary types, but cannot be declared to the type
system. They remain arrays and dictionaries without further
type information.

B. JavaScript

PostScript programs are typically not produced by hu-
mans, but by other programs, e.g., printer drivers and de-
vices. However, it is possible to write computer programs in
PostScript just like in any other programming language.

In order to simplify the GML development and 3D design
process, 3D modeling tools (Autodesk Maya, 3ds Max, etc.)
can be used. Unfortunately, these tools do not preserve the
generative nature. They can only export the generated result.

Encoding shape as program code clearly has the greatest
flexibility, but up to now it requires coding (programming),
which is usually done by humans. To accelerate the GML
creation process and to increase efficiency we propose
a JavaScript (JS) translator to GML. JS is a structured
programming language featuring a rather intuitive syntax,
which is easy to read and to understand. It also incorporates
features like dynamic typing and first-class functions. The
most important feature of JS is that it is already in use
by many non-computer scientists, namely designers and
creative coders [11]. JS and its dialects are widely used
in applications and on the Internet: in Adobe Flash (called
ActionScript), in interactive PDF files, in Microsoft’s Active
Scripting, in VRML97, etc. Consequently, a lot of documen-
tation and tutorials to introduce the language exist [12]. In
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order to be used for procedural modeling, JS is missing some
functionality, which we added via libraries.

C. Overview

Euclides (www.cgv.tugraz.at/euclides) is a transpiling
framework written in Java. Euclides will also translate an
input JS program to Java or documents its structure in
HTML. It features its own integrated development environ-
ment (IDE), from which one can transpile to the supported
target languages. Our translation to GML makes the rich
feature set of the Generative Modeling Language accessible
to a wider range of users, because it hides much of the
complexity involved in writing GML programs.

In the subsequent sections, we explain the JS to GML
translator. Having parsed JS using ANTLR [13], the trans-
lation process begins with a correct (according to EC-
MAScript, ECMA-262, ISO/IEC 16262) Abstract Syntax
Tree (AST). Then we show how data types, functions and
operators are translated and explain the control flow.

II. DATA TYPES

In JS each variable has a particular, dynamic type. It may
be undefined, boolean, number, string, array, object,
or function. GML also has a dynamical type system.
Unfortunately, both type systems are incompatible to each
other. Therefore, translating JS data types to GML poses two
particular problems: On the one hand, the dynamic types
must be inferred at run time. On the other hand, GML’s
native data types lack distinct features needed by JS. GML-
Strings, for example, cannot be accessed character-wise.
We solved these problems by implementing JS-variables
as dictionaries [6] in GML. Dictionaries are objects that
map unique keys to values. These dictionaries hold needed
metadata and type information as well as methods which
emulate JS behavior. As we will show later, we will utilize
GML’s dictionaries for scoping as well.

The system translation library for GML (which every JS-
translated GML program defines prior to actual program
code) contains the function sys_init_data, which defines
an anonymous data value in the sense of JS data.

/sys_init_data {
dict begin
/content dict def
content begin

/type edef
/value edef
/length { value length } def
end
content
end
} def

sys_init_data opens a new variable-scope by defining a
new, anonymous dictionary and opening it. In this new
scope, another newly created dictionary is defined by the
name content. This content-dictionary receives three en-
tries: type, value and the method 1ength. Each entry value
is taken from the top of GML’s stack. The newly created
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dictionary is then pushed onto the stack and the current
scope is destroyed by closing the current dictionary, leaving
the anonymous dictionary on the stack. In GML notation, a
JS-variable’s content is defined by pushing the actual value
and a pre-defined constant to identify the type of the variable
(such as Types.number, Types.array, etc.) onto the stack,
and calling sys_init_data. The translator prefixes all JS-
identifiers with usr_ (in order to ensure that all declarations
of identifiers do not collide with predefined GML objects)
and uses the following translations:

Undefined: Variables of type undefined result from op-
erations that yield an undefined result or by declaring a
variable without defining it. var x; leads to x being of type
undefined. It is translated to

/usr_x Nulls.Types.undefined
Types.undefined sys_init_data def

Boolean: In JS, boolean values are denoted by the keywords
true and false. The translation simply maps these values to
equivalent numerical values in GML, which interprets them.
The JS-statement var x = true; becomes

/usr_foo 1 Types.bool sys_init_data def

Number: All JS numbers (including integers) are repre-
sented as 32-bit floating point values. As GML stores
numbers as 32-bit floats internally as well, we simply map
them to GML’s number representation. For the sake of
completeness, var x = 3.14159; is translated to

/usr_x 3.14159 Types.number sys_init_data def

String: Although GML does support strings, they cannot
be accessed character-wise. We cope with this limitation by
defining strings as GML-arrays of numbers. Each number
is the Unicode of the respective character. As GML allows
to retrieve and to set array-elements based on indexes, this
approach meets all conditions of JS-strings. The statement

var x = "Hello World"; becomes

/usr_x [ 72 101 108 108 111 32 87 111 114 108 100 ]
Types.string sys_init_data def

Array: JS arrays allow to hold data with different types, the

array’s contents may be mixed. This behavior is in line with

GML. The JS-example var x =

has a straightforward translation:

[true, false, "maybe"];

1 Types.bool sys_init_data
0 Types.bool sys_init_data
[109 97 121 98 101] Types.string sys_init_data
Types.array sys_init_data def

/usr_x [

Object: In JS an object consists of key-value-pairs, e.g., var
x ={ x: 1.0, y: 2.0, z: 42}; This structure is mapped
to nested GML-dictionaries. The value of a variable’s con-
tent is a dictionary of its own. This dictionary contains the
entries corresponding to JS-object’s members, which are also
defined as variable contents.

The example above defines a JS-object of name x with
key-value-pairs x to be 1, y to be 2, and z to be 42:
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/usr_x dict begin
/obj dict def obj begin
/usr_x 1.0 Types.number
/usr_y 2.0 Types.number
/usr_z 42.0 Types.number
end obj
Types.object sys_init_data end def

sys_init_data def
sys_init_data def
sys_init_data def

Opening an anonymous dictionary creates a new scope. In
this scope, a dictionary is created and bound to the name
/obj. It is then opened and its members are defined, just like
anonymous variables would be. The object dictionary is then
closed, put on the stack, and used to define an anonymous
variable. The enclosing anonymous scoping dictionary is
then closed and simply discarded.

JS objects may hold functions. Our translator Euclides

handles JS object-functions like ordinary functors (next
subsection) and assigns their internal name to a key-value-
pair.
Function: JS has first-class functions. Therefore, it is possi-
ble to assign functions to variables, which can be passed as
parameters to other functions, for example. In the following
example, a function function do_nothing() {} is declared
and defined. Afterwards, it is assigned to a variable var x =
do_nothing;. If we abstract away from the translation of the
function do_nothing, the statement var x =
becomes:

do_nothing;

/usr_do_nothing {
%% ... definition of function omitted ...
} def

/usr_x /usr_do_nothing Types.function sys_init_data def

In JS, x can now be used as a functor, which acts the
same ways as do_nothing. Because such functors can be
reassigned, it is necessary to handle functor calls (x())
differently than ordinary function calls (do_nothing()). In
this situation Euclides creates a temporary array, which
contains the functor parameters and passes this array as well
as the variable referencing the function name to a system
function sys_execute_var. This system function resolves
the functor and determines the referenced function, unwraps
the array and performs the function call.

III. FUNCTIONS
A. Translation of JS Functions

In GML, functions are defined using closures, such as
/my_add { add } def. If this function my_add is executed,
the closure { add } is put onto the stack, its brackets are
removed, and the content is executed.

To execute a GML function, its parameters need to be put
on the stack prior to the function call: 1.0 2.0 my_add The
resulting number 3.0 will remain on the stack. Please note,
that GML functions may produce more than one result (left
on the stack) at each function call. This allows to define
functions with more than one result value. Following JS,
called functions return only one value by convention. The
number and names of function parameters are known at
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compile time. Only functors (referenced functions stored in
variables) may change at run time and cannot be checked
ahead of time.

Translated functions and parameters are named just like
their JS-counterparts (except for their usr_ prefix).

B. Scopes

As JS uses a scoping mechanism different to GML, it has
to be emulated. This is a rather difficult task, which has to
take the following properties of JS scopes into account.

« JS functions may call other functions or themselves.

o Called functions may declare the same identifiers as the
calling functions.

« Within functions other functions may be defined.

« Blocks might be nested inside functions, redefining
symbols or declaring symbols of the same name.

The translator uses GML’s dictionary mechanism to emulate
JS-scopes. A dictionary on the dictionary stack can be
opened and it will take all subsequent assignments to GML-
identifier (variables). Since only the opened dictionary is
affected, this behavior is the same as the opening and closing
scopes in different scoped programming languages, such as
C or Java.

Thus an assignment /x 42 def can be put into an isolated
scope by creating a dictionary (dict), opening it (begin),
performing the assignment, and closing the dictionary (end).
The following example shows how such GML scopes can
also be nested:

dict begin
/x 3.141 def %% x is 3.141
dict begin %%
/x 4 def %% x is 4.0
end %% x is 3.141
end %% x 1is unknown

As noted before, JS supports redefinition of identifiers that
were declared in a scope below the current one. Fortunately,
GML exhibits just the same behavior when reading out the
values of variables/keys from dictionaries of the dictionary
stack. Consequently, the following example works as ex-
pected.
dict begin

/x 42 def
dict begin
/y x 1 add def

end
end

%% y 1s now 43

However, assignments to variables have to be handled
differently in GML. The Generative Modeling Language
does not distinguish between declaration and definition, any
declaration must be a definition and vice versa.

The translator solves this problem. It uses a system
function (which is included into all translated JS sources
automatically) called sys_def. This function applies GML’s
where operator to the dictionary stack in order to find the
uppermost dictionary, where the searched name is defined.
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The operator returns the reference to the dictionary, in which
the name was found.

C. Control Flow for Functions

The Generative Modeling Language and all PostScript
dialects lack a dedicated jump operation in control flow.
Imperative functions often require the execution context to
jump to a different point in the program at any time - and
to return from there as well.

Fortunately, GML provides an exception mechanism. A
GML exception is propagated down GML’s internal execu-
tion stack until a catch instruction is encountered. In this
way it overrides any other control structure it encounters. We
use GML’s exception mechanism to jump outside a function
as illustrated in the following empty function skeleton:

/usr_foo {
dict begin
/return_issued 0 def
{ dict begin

%% ... function body omitted ...
end }

{ /return_issued 1 def }

catch

return_issued not
{ Nulls.Types.undefined
Types.undefined sys_init_data } if
end
sys_exception_return_handler
} def

In this empty skeleton, the function opens a new anony-
mous scope. Inside this scope dict begin end the
local identifier /return_issued is set to 0. Afterwards
a GML try-catch-statement { try block } { catch_block
} catch contains the JS-function implementation. In this
translation, the catch block redefines /return_issued
to 1 to indicate that a JS statement has
been executed in the function body. JS functions with-
out any statement, automatically return null
resp.in GML Nulls.Types.undefined Types.undefined
sys_init_data. A corresponding JS-return statement, e.g.,
return 42;, is translated to

return

return

42.0 Types.number sys_init_data end throw

In this example, the number 42.0 is put onto the stack. The
actual function body’s scope is closed end, and the throw
operator is applied. The distinction of whether the end of
the function body was reached by normal program flow or
via a return statement determines, if a return value needs to
be constructed (nu11) and put onto the stack.

Parameters to functions are simply put on the stack. The
function body retrieves the expected number of parameters
and assigns them to dictionary entries of the outer scope
defined in the function translation. A complete example of a
translated JS-function shows the interplay of all mechanisms.
The simple JS-function

function foo(n) { return n; }

is translated to
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/usr_foo {

dict begin
/usr_n edef
/return_issued 0 def
{ dict begin

usr_n

end

throw

end }
{ /return_issued 1 def }
catch

return_issued not
{ Nulls.Types.undefined
Types.undefined sys_init_data } if

end

sys_exception_return_handler
} def
A function call, for example foo (3), yields the translation
3.0 Types.number sys_init_data usr_foo. If we asﬁgn
the function foo to a variable foo_functor, the calling
convention in GML would change significantly.

/usr_foo_functor /usr_foo Types.function sys_init_data def

is called via

[ 3.0 Types.number sys_init_data ]
usr_foo_functor sys_execute_var

and represents the JS call foo_functor (3.0);

D. Exceptions

The language JS supports throwing exceptions; e.g., throw
"Error: unable to read file.";. Its syntax is similar to
a return statement. To implement such behavior, we also
use GML’s exception handling mechanism. The Euclides
translator adds a call to the predefined system function
sys_exception_return_handler at the end of each trans-
lated function (see example above).

Throwing an exception in JS translates into a global
GML variable exception_thrown being set to 1, clos-
ing the current dictionary and calling GML’s throw.
The sys_exception_return_handler will check if an ac-
tual exception is being thrown, and if so, calls throw
again. A catch-block inside a JS program would set

exception_thrown to 0.

IV. OPERATORS

The evaluation of expressions demands variables to be
accessed. While GML provides operators that operate on
their own set of types, they obviously cannot be used to
access the translated/emulated JS-variables. For this reason,
the Euclides translator automatically includes a set of pre-
defined GML functions that substitute operators defined in
JS.

A. Value Access

Performing the opposite operation to sys_init_data,
sys_get_value Will retrieve the data saved in a JS-variable
resp. its GML-dictionary. For example, to retrieve v.value
the function sys_get_value is applied to v.

/sys_get_value { begin value end } def
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B. Element Access

The system function sys_get implements string, array and
object access. Applied to a string / an array Arr and index
k, it will return the element arr(x]. If its parameters are
an object ob3 and an attribute name, the function sys_get
executes ob7j.name. This may result in a value, which is put
on the stack or in a function, which is called. Conforming
to JS, it returns JS undefined for any requested elements
that do not exist.

/sys_get {

dict begin
/idx exch def /var exch def

var.type Types.string eq {
%% ... handling strings ...
}Oif

var.type Types.array eq {
%% ... handling arrays
} if

var.type Types.object eqg {
var sys_get_value idx known 0 eqg ({

o

%% return null, if element doesn’t exist
Nulls.Types.undefined
Types.undefined sys_init_data

} if

var sys_get_value idx known 0 ne {

%% access element

var sys_get_value idx get
} if
} if
end
} def

Analogous to sys_get, sys_put inserts data into strings and
arrays, or defines members of objects. If sys_put encounters
an index k that is out of an array’s range, the array is resized
and filled with JS undefineds.

C. Functors

The already mentioned routine sys_execute_var inspects
a given variable. If it is a function, it will retrieve the array
supplied to hold all parameters and execute the function.
The dynamic binding of functions to variables requires to
consider two situations at run time: The functor receives
the correct amount of parameters for its function, or the
number of parameters does not correspond to the referenced
function. In the later case, the function is not called and
null is returned instead.

At compile time, a function is defined to expect a concrete
number of parameters. This information is kept to perform
parameter checks at run time. In this way, the correct number
of parameters for all functors can be determined any time.

D. JS built-in Operators

To illustrate the translation of relational, arithmetical or
bit-shift operators defined by JS, we discuss the equal
operator ==. It is (like all such operators) mapped to a
corresponding routine sys_eq. Depending of the operands’
types it delegates the comparison to subroutines such as
bool_eq, string_eqg O array_eq that perform the actual
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comparison. If the types and the values do match, sys_eq
directly returns the JS-value true. If types do not match, the
variable is converted to the type of the respective operand,
as specified by JS, and then compared.

V. CONTROL FLOW
A. Conditional Statement

The JS if-then-else statement corresponds one-to-one to
the same GML statement. Consequently, the conditional ex-
pression is translated straightforwardly. Using the expression
mapping introduced in the previous section (e.g. sys_eq
implements the equality operator), the JS statement if (a
=D) { c=a; } else { c = b; } is translated info:

%% if (a==b)
usr_a usr_b sys_eq sys_get_value
{ %% then:
dict begin {
dict begin
/usr_c usr_a sys_def
end

} exec end

}

{ %%

else:
dict begin {
dict begin
/usr_c usr_b sys_def
end
} exec end
} ifelse

The exec-statements (and their closures) stem from the fact
that both sub-statements, the then-part and the else-part, are

statement blocks { ... }. These blocks are executed within
their own, new scopes.

B. Loops

GML supports different types of looping control struc-
tures, which have similar names to JS-loops (e.g., both
languages have a for-loop). However, the GML counterparts
have different semantics (e.g., GML’s for-loop has a fixed,
finite number of iterations, which is known before execution
of the loop body, whereas JS-loops evaluate the stop condi-
tion during execution, which may result in endless loops).
The Euclides translator uses the GML 1ocop mechanism,
which is an infinite loop that can be quit using the exit
operator.

An important problem is that control structures such as
for, while and do-while are not only controlled by the loop’s
stop condition, but also by JS statements such as continue
and break within the loop body (besides return and throw
as mentioned before). The statement break immediately
stops execution of the loop and leaves it, whereas continue
terminates the execution of the current loop iteration and
continues with the next iteration of the loop. Therefore, we
translate an empty while loop while(false) { ... } to

{ /continue_called 0 def
{ 0 Types.bool sys_init_data

sys_get_value not { exit } if

{ dict begin
%% ... loop body omitted ...
end
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} exec
} loop
continue_called not { exit } if
} loop

GML’s exit keyword terminates the current loop. This
behavior is leveraged by the Euclides translator to implement
break and continue. The translation uses two nested loops
that will run infinitely.

Prior to the begin of the inner 100p /continue_called is
set to 0. At the top of the inner loop, the loop condition is
tested. If the condition evaluates to false, the inner loop is
exited using GML’s exit. Otherwise a new scope is created
and the loop-statement executed within that scope.

During loop iterations, there are three scenarios under
which a loop can terminate:

1) If the loop condition is met: When the condition
evaluates to false, the inner loop is exited. Since
continue_called is not set to true, the outer loop
will terminate as well.

2) If the loop body encounters JS break (resp. GML
exit): Again, the inner loop is left. continue_called
will not be set to true, hence the outer loop will also
terminate.

3) If the function returns: GML’s exception throwing
mechanism will unwind the stack until the catch-
handler at the end of the function is encountered.

If the loop body encounters a JS-continue statement,
continue_called will be set to true and the GML exit
command will immediately stop the inner loop. Since
continue_called i8S set, execution does not leave the outer
loop, however. As a consequence, continue_called be-
comes 0 again, and execution re-enters the inner infinite
loop.

The do-while-statement is translated very similar to the
while-statement. The only semantic differences in JS are
that execution will enter the loop regardless of the loop-
condition and that the loop-condition is tested after loop
body execution. Euclides translates an empty do-while-
statement do { ... } while (false) as follows:

{ /continue_called 0 def
{ { dict begin
%% ... loop body omitted ...
end
} exec
0 Types.bool sys_init_data

sys_get_value not { exit } if
} loop
continue_called not { exit } if
0 Types.bool sys_init_data
pop
} loop

Due to a semantic difference of JS continue in do-while-
loops, this statement needs to be handled differently. If
continue is encountered, the loop condition must still exe-
cute before the loop body is re-entered, because side effects
inside the loop condition may occur (such as incrementing
a counter). Euclides handles this problem by executing the
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condition expression a second time in the outer loop. Since
expressions always return values, any value resulting from
the loop-expression has to be popped off the stack.
Although GML has a for operator, it is semantically in-
compatible with JS’s one. Its increment is a constant number,
and so is the limit. In JS, both increment and limit must
be evaluated at each loop body execution. Therefore, we
translate for just like the previous constructs by two nested
loops with the increment condition repeated in outer loop
(due to continue semantics). Finally, Euclides translates the
JS statement for (var i=0; i < 1; i++) { } to GML via

dict begin
$% initialization (i=0)
/usr_i 0.0 Types.number sys_init_data def
{ /continue_called 0 def
{ %% condition (i<1)

usr_i 1.0 Types.number sys_init_data sys_1t

sys_get_value not { exit } if

{ dict begin

%% ... loop body ...

} exec
%% increment
usr_i
usr_i 1 Types.number sys_init_data sys_add
/usr_i sys_edef
pop
} loop
continue_called not { exit } if
%% increment again (i++)
usr_1i
usr_i 1 Types.number sys_init_data sys_add
/usr_i sys_edef
pop
} loop
end

(1++)

The JS for-in statement for (var x in array) statement;
is semantically equivalent to:

for (var i = 0; 1 < array.length; i++) {
var x=array[i]; statement;

}

This construction loops over the elements of an array
provides the loop body with a variable holding the current
element.

C. Selection Control Statement

The translation of the JS switch statement poses several
difficulties:
« If a case condition is met, execution can “fall through”
till the next break is encountered.
o If a break is encountered, the currently executed
switch statement must be terminated.
o Of course, switch statements may be nested.

To develop a semantically consistent solution, we did
not want to alter the translation of JS-break inside switch
statements (compared to loops). We solve the problem of
breaking outside the switch statement by implementing it
as a loop that is run exactly once. In GML it reads like 1 {
loop_instructions } repeat. This way our translation of
break shows semantically correct behavior, it terminates the
loop. Consider the following JS-program:
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var x = 0, yv = 0;
function bar () { return 3; }

function foo (i) {

switch (i) |

case 0:

case 1

case 2: x =1

case 4: x = 3

case bar(): x = 2; break;
default: y = 5;

The function foo will be translated to:

/usr_foo
{ dict begin
/usr_i edef
/return_issued 0 def
{ dict begin
/switch_cnd_metl 0 def
1 { usr_i 0.0 Types.number sys_init_data sys_eq
sys_getvalue switch_cnd_metl 1 eqg or {
/switch_cnd_metl 1 def
} if

usr_i 1.0 Types.number sys_init_data sys_eqg

sys_getvalue switch_cnd metl 1 eqg or {
/switch_cnd_metl 1 def

}if

usr_i 2.0 Types.number sys_init_data sys_eqg
sys_getvalue switch_cnd_metl 1 eqg or {
/switch_cnd_metl 1 def
$% x = 1;
/usr_x 1.0 Types.number
sys_init_data sys_def
} if

usr_i 4.0 Types.number sys_init_data sys_eqg
sys_getvalue switch_cnd_metl 1 eq or {
/switch_cnd_metl 1 def
%% x = 3;
/usr_x 3.0 Types.number
sys_init_data sys_def
} if

usr_1i usr_bar sys_eq

sys_getvalue switch_cnd_metl 1 eq or {
/switch_cnd_metl 1 def
$% x = 2;
/usr_x 2.0 Types.number
sys_init_data sys_def
exit

/usr_y 5.0 Types.number
sys_init_data sys_def
} repeat
currentdict /switch_cnd_metl undef end
}

{ /return_issued 1 def } catch

return_issued not {
Nulls.Types.undefined
Types.undefined sys_init_data
} if
end
sys_exception_return_handler
} def

This example shows that we introduce an internal vari-
able /switch_cnd_metx for traversing the case state-
ments. As soon as a case statement condition is met,
/switch_cnd_metx iS set to true, leading execution into
every encountered case statement.
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The Euclides translator takes into account that switch
statements may be nested. As it traverses the AST,
it keeps book of all internal variable to ensure a
Luﬁque name (switchfcndimetl7 switch_cnd_met2, ...,
switch_cnd_metN).

The example translation shows that for foo (3) the cases
0, 1, 2, 4 and 3 (= par()) will only execute case 3, where
the 1 { } repeat statement will be broken out of with the
GML exit operator. The default block will be executed in
any case if execution is still inside the repeat statement, no
further state is checked for default.

VI. EXAMPLE

To demonstrate the interplay of all translational building
blocks, this section shows a non-recursive, subtraction-based
version of the Euclidean algorithm to calculate the greatest
common denominator and its translation to GML. It can be
shown by induction that two successive Fibonacci numbers
are the computational worst-case of the Euclidean algorithm.
We use them as input data.

function fibonacci (index) {
switch (index) {
case O0:
case 1: return 1;
default: return fibonacci (index-2)
+ fibonacci (index-1);

}

function gcd(a,b) {

if (a == 0) return b;
while (b != 0)
if (a > b) a = a - b;
else b=Db - a;

return a;

}

var x = gcd(fibonacci(5), fibonacci(6));

The corresponding GML code is:

/usr_fibonacci {
dict begin
/usr_index edef
/return_issued 0 def
{ dict begin
/switch_cnd_metl 0 def
1 {usr_index 0.0 Types.number sys_init_data
sys_eq sys_getvalue switch_cnd _metl 1 eq or {
/switch_cnd_metl 1 def
} if

usr_index 1.0 Types.number sys_init_data
sys_eq sys_getvalue switch_cnd_metl 1 eq or {
/switch_cnd_metl 1 def
1.0 Types.number sys_init_data
end throw
}Oif

usr_index 2.0 Types.number sys_init_data
sys_sub usr_fibonacci
usr_index 1.0 Types.number sys_init_data
sys_sub usr_fibonacci
sys_add
end throw
} repeat
currentdict /switch_cnd_metl undef end
}
{ /return_issued 1 def } catch
return_issued not {
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Nulls.Types.undefined
Types.undefined sys_init_data
end
sys_exception_return_handler
} def

}oif

/usr_gcd {

dict begin

/usr_a edef

/usr_b edef

/return_issued 0 def

{ dict begin
usr_a 0.0 Types.number sys_init_data
sys_eq sys_getvalue
{ usr_b end throw }
{}

ifelse

{ /continue_called 0 def
{ wusr_b 0.0 Types.number sys_init_data
sys_ne sys_getvalue not { exit } if

usr_a usr_b sys_gt sys_getvalue

{ /usr_a usr_a usr_b sys_sub sys_def }
{ /usr_b usr_b usr_a sys_sub sys_def }
ifelse exec

} loop
continue_called not { exit } if
} loop
usr_a end throw
end
}
{ /return_issued 1 def } catch

return_issued not {
Nulls.Types.undefined
Types.undefined sys_init_data } if
end
sys_exception_return_handler
} def

/usr_x
6.0 Types.number sys_init_data usr_fibonacci
5.0 Types.number sys_init_data usr_fibonacci
usr_gcd

def

VII. CONCLUSION

In this article, we presented a JS to PostScript translator.
While this translation is a simple infix-to-postfix notation
rewrite for mathematical expressions (1+2 becomes basically
1 2 add), the correct translation of control flow structures
is a non-trivial task, due to the fact that there is no concept
of goto in the PostScript language and its dialects.

The main contribution of this work is the complete trans-
lation of JS into a PostScript dialect including all control
flow statements. To the best of our knowledge, this is the first
complete translator. Other projects (PdB by ARTHUR VAN
HOFF, pas2ps by DULITH HERATH and DIRK JAGDMANN)
do not support, e.g., return statements.

As Euclides offers a new access to GML, all GML users
will benefit from its results. The possibility to use GML via
a JS-to-GML translator reduces the inhibition threshold sig-
nificantly. Everyone, who knows any imperative, procedural
language (Pascal, Fortran, C, C++, Java, etc.) is familiar with
the language concepts in JS and can use Euclides. Advanced
GML users, who already know how to program in PostScript
style, can use Euclides to translate algorithms, which are
often presented in a imperative, procedural (pseudo-code)
style [14].
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Abstract— Stream processing is a well-suited application
pattern for embedded computing. This holds true even more
so when it comes to multi-core systems where concurrency
plays an important role. With the latest trend towards more
dynamic and heterogeneous systems there seems to be a shift
from purely synchronous systems towards more asynchronous
ones. The downside of this shift is an increase in programming
complexity due to the more subtile concurrency issues. Several
special purpose streaming languages have been proposed to help
the programmer in coping with these concurrency issues. In this
paper, we take a different approach. Rather than proposing a
full-blown programming language, we propose a coordination
language named PS-Net. Its purpose is to coordinate exist-
ing resource-bound building blocks by means of asynchronous
streaming. Within this paper we introduce code annotations
and synchronisation patterns that result in a flexible but still
resource-boundable coordination language At the example of a
raytracing application we demonstrate the applicability of PS-Net
for expressing the coordination of rather dynamic computations
in a resource-bound way.

Keywords-stream processing; embedded systems; multi-core;
resource-constrained;

I. INTRODUCTION

Stream processing is an apt metaphor of embedded com-
puting. Indeed, owing to the generally static nature of streams
connecting processing nodes, a higher degree of predictability
may be achieved in representing embedded systems as stream-
processing networks than with the dynamism of imperative
and object-orientated milieux, where control and data can be
passed from any point in the program to a given program unit
provided that it is visible in that point’s name space. Tradi-
tionally, stream processing is understood through the prism of
the single-instruction multiple-data (SIMD) perspective. The
paradigm itself is seen as a version of the latter with a different
connectivity principle (streams instead of shared memory).
This understanding is upheld by a number of projects, notably
Stanford-based Merrimac [1] and Brook [2]. As an extreme
form of this approach, one should mention strictly time-
controlled synchronous solutions such as Giotto [3], [4], [5]
and Scade [6], [7]. Here, the trade-off between predictability
and efficiency is tilted towards predictability.

Generally, stream processing need not to be SIMD or even
synchronous. In the most abstract sense, it is a representation
of a program in terms of a static network of entities, each
completely encapsulated and interacting with the rest only via
its input and output streams. When streaming is to be used as
a construction principle for larger systems, an asynchronous
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approach would usually be favoured, i.e., apriori unknown
production rates and message arrival times. An example of
this can be found in the language Streamlt [8], which has
asynchronous messages and bounded nondeterminism. The
most recent offering of an asynchronous streaming language
comes from the project WaveScript [9] whose aim is essen-
tially to integrate the network view and the local, synchronous
view within one language with streams as first-class entities.
Since this is a general-purpose streaming language, here, too,
application programming concerns (i.e., algorithm correctness,
ease of software evolution and accommodation of a continually
changing specification) are intertwined with a whole spectrum
of distributed computing concerns, such as work division,
synchronisation, and load balancing, within a single level of
program representation.

In our view, a more productive approach to applying the
stream processing paradigm to embedded computing is to keep
the concerns separated, with predominantly computational
parts of the application represented as black boxes being
written in a conventional programming language and with
stream communication, data synchronisation and concurrency
concerns being taken care of by a coordination language. We
specifically focus on S-Net [10], [11], where we believe the
above programme has been realised to the fullest possible
extent.

The ground level of S-Net comprises stream-processing
nodes represented as C-functions (or functions written in an
array processing language, such as SAC [12]). These com-
putational entities are called “boxes” and they communicate
with the S-Net world via a single input and a single output
stream. Data elements on these streams are represented as non-
recursive record structures.

In a way, the set of boxes for a given application represents
the nodes of a specialised virtual machine. The coordination
program can abstract from the box functionality, the more so
that the records streamed between boxes are being completely
encapsulated as well: all the coordination level can see is field
labels and some auxiliary integer-valued tags. This opens up
an avenue towards sensible software engineering of embedded
systems, where subject experts could be engaged in writing
box code and describing the computational process informally
in terms of record structures and box connections, and where
concurrency engineers could be in a position to write, debug
and optimise the coordination code with the experts’ minimum
assistance. That is the most attractive feature of the coordina-

22



COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

tion approach compared with the competing strategies cited
earlier.

However, this is not without some new problems either.
The fundamental assumption of S-Net is that the application is
not resource bounded. While not unreasonable in a large-scale
distributed computing domain, this assumption is completely
unrealistic in most embedded systems, where, if coordination
has a chance, it must be essentially resource driven. This
means that the placement of boxes on the system must be
governed by the availability of cores and a predictive estimate
of their load, which in turn means that the coordination layer
must be in possession of accurate information about how much
processing and communication is required for the completion
of each task. By contrast, S-Net achieves its separation of
concerns by relying on asynchronous dynamic adaptation:
nondeterministic stream mergers, for instance, are assumed to
merge in the order of record arrival, thus economising buffer-
ing space and reducing latency. Worse still, more dynamic
features of S-Net namely its serial and parallel replication
facilities, are not even a priori bounded since the boxes are
not assumed to have the knowledge of, or the ability to
communicate, the overall application design.

We set ourselves the challenge of finding a way to reconcile
the need for dynamic behaviour and with the necessity to
project tight enough bounds on the platform as far as the
resource requirements. The S-Net facilities must therefore be
curtailed to allow for static specification of various com-
putational bounds, such as the maximum unfolding of the
replicators, the maximum production rate of the boxes, the
maximum correlation between the output rates dependent on
a single input stream, etc.

In this paper we examine the relevant coordination facilities
of S-Net in Section II and work out in Section III what needs
to be modified and how so that S-Net may become usable with
embedded applications. The result is a new language, called
PS-Net, which is described in Section IV. Section V shows
an example of how to write resource-bounded programs in
PS-Net. Section VI concludes the paper.

II. STREAM-PROCESSING WITH S-NET

In order to present a specialised variant of S-Net that is
resource-boundable, we first give a very brief overview of the
language. A detailed description of S-Net can be found in the
literature [10], [11].

The central philosophy of S-Net is to separate the coor-
dination of concurrent data streams from the computational
part. Computations on data are not expressible in S-Net as
such, but are written in a conventional programming language.
These pieces of “foreign” code are embedded into boxes
and are given an extremely simple API to communicate
with the surrounding S-Net. The API allows them to receive
data from a single input stream via the normal parameter-
passing mechanism, and which provides a small number of
library functions for outputting data down the single output
stream, both streams being anonymous. Boxes may not have
a persistent internal state and consequently can only process
input data individually. Nor can they access each other’s
state in any way during the processing: there are no global
variables or inter-box references. Instead, the output records
are streamed by the coordination layer of S-Net according to a
coordination program that defines the streaming topology, how
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the streams are split and merged, and how individual records
are split, merged and routed to their intended destinations.

In order to guarantee interoperability of computational
entities and all different parts of a streaming network, the
coordination of data flow in S-Net is analysed by means of
a type system and inference mechanism. The type system of
S-Net is based on non-recursive variant records with record
subtyping. Each record variant is a possibly empty set of
named record entries, where a record entry is either a field or a
tag. The values of fields are only accessible by the box imple-
mentations, while the tags are integer variables whose values
can also be accessed and manipulated by both, the S-Net
program and the box implementations. To separate tags from
fields, the tag names are surrounded by angular brackets, e.g.,
<a>. Tags allow to use some logic operations to control the
flow of data. The following is a variant record type that encom-
passes both rectangles and circles enhanced with a tag <id>:
{x,y,dx,dy,<id>} | {x,y,radius,<id>}.Each S-
Net network or subnetwork has a type signature, which is a
non-empty set of variant record type mappings each relating
an input type to an output type. For example, a network that
maps a record {a,b} to either a record {c} or a record
{d} or maps arecord {a} to arecord {b} has the following
type signature: {a,b}->{c} | {d}, {a}->{b}.S-Netalso
supports subtyping. For example, {a, b} is a subtype of {a}.

As with conventional subtyping, in S-Net a network or box
also accepts input data being a subtype of the network’s or
box’s input type. Those record entries of the subtype that do
not match a record of the box’s input type simply bypass the
network or the box and are joined with the produced output.
Thus, an S-Net box with the type signature {a}->{b},
for example, also accepts input data of the type {a,c},
like a type signature {a, c}—->{b, c} but where the record
field ¢ simply bypasses the box. This feature is called flow
inheritance.

A. Stream-manipulation with Filter Boxes

In S-Net, so-called filter boxes are used to perform
manipulations of the data stream, like -elimination or
copying of fields and tags, adding tags, splitting records,
and simple operations on the tag values. Filter boxes
are expressed in square brackets and consist of a
semicolon-separated list of filter actions on the right side
of the transformation arrow. For example, the filter box
[{a,b,c} => {a}; {b,<t=1>}; {b=c,<t=2>}] takes
records of type {a,b,c} and splits them into three output
records: one with the field a, one with the field b extended
by a tag <t> with the value 1, and one with the field ¢
renamed to b and extended by a tag <t> with the value 2.
Though the last two output messages contain the same field
name b, they can still be processed differently at S-Net level
due to their different value of tag <t>.

B. Network Combinators in S-Net

S-Net consists of the following four combinators to combine
networks or boxes. For the description of them we assume that
we have two networks net; and nety that we want to combine.

1) Serial Composition (net; nety): This allows

to combine two S-Net networks or boxes in a se-
quential fashion. Though sequential in its dataflow, in
the context of stream-processing this provides parallel
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processing in the form of pipelined execution. The code
nety nety essentially forms a pipeline with the
stages net; and nets.

2) Parallel Composition (net; | nets): This allows
to combine two S-Net networks or boxes in a parallel
fashion, providing concurrent execution. The code net;
| nety describes a split of data flow between the routes
of networks net; and nets. If net; and nety have
different type signatures then the type system of S-
Net will route the data to the best-matching input type,
otherwise the choice is non-deterministically.

3) Serial Replication (net; » {out}): The serial
replication (subsequently also called star operator) cre-
ates a pipeline dynamically by replicating the given
network along a series composition till the output is
a (sub)type of the exit pattern, where in this case the
output is forwarded as the output of the replication op-
erator. net; * {out} means that the data flow through
a series composion of replicas of the network net; till
the type of the output is a (sub)type of {out}.

4) Parallel Replication (net; ! {<id>}): The par-
allel replication is the dynamic variant of parallel exe-
cution, where a given network is replicated dynamically
controlled by the value of a tag in the data records.
net; ! {<id>} means that for each different value
of the tag <id> of the incoming data records an
exclusive path through a replica of the network net;
is dynamically created.

Note that the combinators |, *, ! have an out-of-order
semantics on data routing, while | |, %, ! ! are their order-
preserving variants.

C. Synchronisation with Synchro-cells

Above S-Net operations are all asynchronous and stateless
operations, allowing for an efficient concurrent processing of
data streams. To synchronise the arrival of different message
types, the so-called synchro-cell is used, which is the only
stateful box in S-Net. The synchro-cell is the only means in S-
Net to combine two records into a single record. The synchro-
cell consists of an at least two-element comma-separated list of
type patterns enclosed in [ | and | ] brackets. For example, the
synchro-cell [| {a}, {b,c} |] composes two records
{a} and {b,c} into a single output record {a,b,c}. As
its state, a synchro-cell has storage for exactly one record
of each pattern. When an arriving record finds its place free
in the synchro-cell, it is stored in the synchro-cell, otherwise
it is simply passed through. The synchro-cell is a one-shot
operation, i.e., once all record patterns are filled, the composed
output record is emitted and the synchro-cell from now on
behaves like a simple connector passing all further messages
through. To use synchro-cells in a continuous way on the
input stream, it has to be nested within replication operators
as described above.

IIT. DISCUSSION OF PREDICTABILITY

In the following, we discuss what features of S-Net are hard
to bound for their resource consumption and we discuss how
we address this problem in PS-Net to ensure boundability of
resources. The following mechanisms of S-Net are hard to
bound without doing an exhaustive whole-program analysis:
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o The computational part of S-Net programs is imple-
mented in boxes. Regarding the boundability of the dy-
namic resource allocations, it is, of course, necessary, that
the box implementations are simple enough to bound their
resource requirements. However, the box implementation
is outside the scope of our design of the resource-
boundable coordination language PS-Net.

o In S-Net a network or box may write an arbitrary number
of output messages as the type signature does not restrict
them. Thus it is not know how much system load can be
created within the network. This makes it hard to bound
extra-functional properties such as execution time. Our
solution for PS-Net is to extend the type signature with
the multiplicity of the different output messages.

o The parallel composition in S-Net (|, | |) features a non-
deterministic choice, whose behaviour cannot be analysed
precisely at language level, which makes it challenging to
bound extra-functional properties such as execution time.

o The number of parallel replications in S-Net (!,!!) de-
pends on the possible values of the replication-controlling
tag value, which is hard to bound in general. In order to
bound the number of dynamically created replicas for the
parallel replication operator, we have to know the possible
value range of the index tag. For PS-Net we extend the
parallel replication combinator with an annotation about
the maximum range of the index tag.

o The number of serial replications in S-Net (*,x*) de-
pends on the dynamic creation of the exit type, which is
hard to bound in general. In order to bound the number
of dynamically created replicas for the serial replication
operator, we have to know when latest the exit pattern
is produced. For PS-Net we extend the serial replication
operator with an annotation of the maximal number of
created replications.

A. Synchronisation Mechanisms

The synchronisation issues deserve a special discussion.
On the one side the synchro-cell of S-Net has a single-
shot semantics which is no problem at all to account for
its maximum resource usage. However, as already said, the
synchro-cell is typically embedded into a serial replication
with infinite replications. This infinite replication is not a
problem in S-Net, since every replica with a synchro-cell that
has already shot is automatically discarded and automatically
replaced by a direct stream connection.

However, our general solution of making the serial repli-
cation boundable by adding an annotation about the maximal
number of created replications, is unfortunately not compatible
with the use of the S-Net synchro-cell, as this would rely on
an infinite replication count.

Our solution for PS-Net is to avoid the combination of
synchro-cell and serial replication and instead use special
synchronisation constructs for use patterns of synchro-cells.
We have actually identified two major use patterns for synchro-
cells. They stem from the need to either synchronise a stati-
cally fixed number of records or to synchronise a dynamically
varying number of records, respectively.

In the former case, the records that are to be combined
can be encoded by different types. This facilitates an imple-
mentation of the synchronisation as a cascade of synchro-cells
embedded in serial replications.
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Figure 1 shows an example for such a synchronisation.

([1{at, {b}I1x{a,b} | [1) [I{a,b}, {c}I]x{a,b,c}

Fig. 1. Synchronising records of type {a}, {b}, {c}.

There, three records are being synchronised each, one record
of type {a}, one of type {b}, one of type {c}. The first
synchro-cell within a star combines records {a} and {b}. Any
records that are neither {a} nor {b} are bypassed by means
of the identity filter which is parallel to the synchroniser for
{a} and {b}. Subsequently, the bypassed records of type c
are synchronised with the combined records of type {a, b}.
Again, this second synchro-cell is directly embedded into a
star to enable repeated synchronisation.

In the second case, i.e., when we deal with a statically
not determined number of records to be synchronised, a
type encoding of the individual components of the record
to be combined is no longer possible. Instead, a stepwise
synchronisation needs to be applied to a substream of records
of the same type. The emerging result record needs to be
propagated from one synchronisation to the next similar to
an accumulator within a folding operation. When to terminate
such a folding process needs to be determined either by the
folding operation itself or by the use of “separation records*
of different type in the stream. Figure 2 shows an example
for such a multi-synchronisation. Here, the folding box itself

{a,acc} — {acc}
| {out}
{a} H

{acc}

net multi_sync {

box fold( (a, acc) -> (acc) | (out) );
} connect ( [l{a},{acc}|] .. ( fold | [] ))={out};
Fig. 2. Synchronising multiple records of type {a}.

determines when to emit a value by producing a record with a
field out rather than acc. This network furthermore assumes
that the initial value for each synchronisation comes in as
a record containing acc. Note, that the empty filter that is
parallel to the fold box serves as a by-pass for subsequent
records of type {a} or type {b} so that they can be fed into
subsequent unfoldings of the star combinator.

Within a range of S-Net applications [13], [14], [15], we
could observe various different formes of synchro-cell uses
within serial replication. However, it turns out that all of them
adhere to one of the two use cases above and can be expressed
by nestings of these two pattern. Therefore we capture those
two pattern as two new building blocks in PS-Net, named
syncqg and fold, respectively.
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IV. RESOURCE-BOUNDED PS-NET

In this section we introduce new language constructs
that are boundable. Further we introduce annotations for
existing S-Net language constructs to make them boundable.
These annotations might be written by the programmer
or being automatically derived by program analysis. All
the annotations have the form < | AnnotExpr |>
where AnnotExpr can be of the following forms:

Num .. specifies a constant value
Num : .. specifies a lower bound
: Num .. specifies an upper bound

Num : Num ...specifies an interval

A. Multiplicity of Box Messages
For PS-Net we extend the type signature with an

annotation about the multiplicity of messages. For
example, the following box signature declaration
box foo ((a,b) -> (c)<|2[> | (d)<[1:3]>);

specifies that for each processing of on input record {a,b}
the box creates exactly two output records of type {c} and
between one and three output records of type {d}. Note that
the records of box signatures are written in round brackets to
distinguish them from network type signatures, since for the
box signature the order of record entries matters.

B. Bounded Parallel Replication

The range of the index tag determines the number of
different dynamically created parallel replicas. Assuming
that an index range will always start from zero, we
extend the parallel replication with an annotation of the
upper bound of replications k, resulting in an index range
from O0...k—1. replication index range. For example,
to specify that a network can be at most replicated
four times (i.e., index range O to 3), we can write:

network ! <tag><|4|>;
Note that the total number of replications can be higher if the
network is nested within another network that is replicated as
well.

C. Bounded Serial Replication

We extend the serial replication operator with an anno-
tation of the maximal number of created replications. For
example, to specify that a network can be at most replicated
three times (i.e., a pipeline of length three), we can write:

network * {out}<|:3[>;

D. Synchronisation with the syncqg operator

The first use case of synchronisation (Figure 1) can be
abstracted by means of a synchro-queue, which repeatedly
synchronises records of two flavors defined by means of two
type pattern.

Provided that the synchronic distance [16] between the two
flavors is bounded, such an operator can be implemented as
a finite queue whose length does not exceed that bound. We
introduce synchro-queues as a new operator

syncqll p1, p2 11<| sd |>

where p; and p2 denote type pattern to be synchronised,
and sd denotes an upper bound for the synchronic distance
between the pattern p; and p, on the input of this operator.
For example, if we want to synchronise records of type {a}
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and {b} knowing that the synchronic distance between them
is at maximum 4, then we can write:
syncqll| {a}, {b} [1<14]|>

Formally, the semantics of the syncqg operator is defined

by the following equivalence:
syncqll pi, p2 |1<| sd [> =
[ P P2 11%{p1, p2}

Note here, that the star version on the right hand side
of the equivalence potentially requires unbounded resources.
Only the annotated synchronic distance sd ensures bounded-
ness of the operator. Interestingly, a finite synchronic distance
also implies that all the synchronised patterns have the same
average arrival rate.

E. Synchronisation with the fold operator

The second use case of synchronisation (Figure 2) can be
abstracted into a generic folding operation. Here, we introduce
a network combinator, which transforms a folding network
with a signature (a, acc) —> (acc) into a network that
subsequently synchronises a record of type {acc} with an arbi-
trary number of records of type {a}, until a new record of type
{acc} arrives which triggers a new series of synchronisations.

Syntactically, we denote the fold combinator by

fold[| a, acc, N, Fold|]

where a and acc denote the two different kinds of type
pattern, N denotes a network with a type signature 1 ->
(acc) <| 11> that provides the initial value for acc and Fold
is a network of type (a, acc) —> (acc)<|1|> which
implements the folding operation itself. For example, if we
want to collect partial results of type {d} of a concurrent
computation into result messages of type {res}, with Init
being the network to create the initial {res} message and
Collect being the network name of the fold operation that
merges a partial result of type {d} with the current result
message of type {res}, then we can write:

foldl| {d}, {res}, Init, Collect |]

The semantics of a network fold[| a, acc,
Fold|] then is defined by the S-Net shown in Figure 3.

The main complexity of this network stems from the ne-
cessity to “restart” the folding process upon arrival of a new
record of type {acc}. To achieve this, all incoming data is
tagged with <val> upon arrival. In the core of the network,
this data, i.e., either records of type {a, <val>} or of type
{acc, <val>} are synchronised with the current state of
the folding operator which is kept in an internal accumulator
field 1acc. Depending on the type of the synchronised record,
either the Fold network is applied and the internal accumula-
tor is updated accordingly, or the current result is emitted via
a record of type {out} and the internal accumulator is reset
to the new value from the input field acc. Note here, that the
overall fold combinator needs to be initialised with a record
of type {acc} provided by the network N. Its value serves as
initial state for the internal accumulator.

A key observation of this network is that for each incoming
record the synchro-cell of the first incarnation of the star op-
erator synchronises which transforms the entire inner network
effectively into an identity function for the subsequent records.
In combination with a multiplicity of 1 for the Fold network,
this guarantees that the fold operator can be implemented in
constant space.

N,
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| []
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[ {out} -> {acc =

)

out} ]

Fig. 3. Network implementing the fold operator

V. EXAMPLE

We evaluate the presented approach by applying it to the
well-known fork-join pattern that many image processing
applications expose. An image is broken down into smaller
chunks and an application specific processing algorithm is
run on each chunk independently in an SIMD-like fashion.
A merging stage collects all processed chunks, i.e. the sub-
results, and reassembles a global result image.

Where previous experiments using S-Net in its standard
form have shown that this class of applications lends itself
nicely to the advocated programming model we are now in a
position to reformulate existing code to guarantee resource-
bounded execution in PS-Net. As a representative problem
of this class we implemented a ray-tracing image processing
application for which we have developed an implementation
in standard S-Net with performance results that compete with
hand-tuned C code [13].

The implementation of the original application is intended
to run on general-purpose hardware and is specified as follows:

net raytracing {

box splitter( (scene, <rr_upper>, <tasks>)
-> (scene, chunk, <rr>, <tasks>, <fst>)
| (scene, chunk, <rr>, <tasks> ));
box solver ( (scene, chunk) -> (sub_res));
net merger ( (sub_res, <fst>) -> (pic),
(sub_res) -> (pic));
box genImg ( (pic) -> ()
} connect splitter .. solver!<rr> .. merger

. genlmg;

The splitter divides the scene into smaller sub-scenes
(chunks) and tags all chunks with the number of overall
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produced sub-scenes. Each data element also carries an <rr>
tag. This implements a round-robin scheduling using the
! combinator on the solver by tagging data elements with
increasing integer values from O,....<rr_upper>—1 for
<rr>. The first output is tagged with <fst> to initiate the
merging process after the sub-scenes have been computed
by the solver. The merging process is implemented as a
sub-network of the following form:

net merger {

box init ( (sub_res, <fst>) -> (pic));
box merge ( (sub_res, pic) -> (pic));
} connect ( ( init .. [ {} -> {<cnt=1>} 1 ) | [1])
( [l {pic}, {sub_res} |]
.. ( ( merge

.. [ {<cent>} -> {<cnt+=1>}])
| [1))={<tasks> == <cnt>};

The init box is followed by a filter which adds a flag <cnt>
initialised by the value 1. This flag is used to count the number
of sub-scenes that have been incorporated into the result image
already. Since only the first sub-scene needs to be processed
by the init box, we also provide a bypass to the initialisation
path for all the other records containing further sub-scenes.

After the initialisation, a star implements the merging with
the remaining sub-scenes. In each unfolding (iteration) of
the star the synchro-cell synchronises the accumulator held
in {pic} with yet another sub-scene. The resulting joint
record, containing the accumulated picture and a sub-scene
to be inserted, is presented to the merge box which outputs
the combined picture. The insertion of a new sub-scene is
reflected in an increment of the flag <cnt> as defined by
the subsequent filter. Once the counter equals the overall
number of tasks, which is kept in another, flow-inherited flag
<tasks>, the accumulated picture is output from the merger
network.

In order to guarantee resource-boundedness of this imple-
mentation, we replace the parts of the application that make
use of the general + and ! combinators by legal PS-Net
constructs.

The splitting stage of the application is almost straight-
forwardly transformed. As we are not targeting general-
purpose hardware, we use the ! <rr><|n|> combinator and
annotate the maximum number n of computing resources the
combinator is allowed to bind for solver instances. Because of
the way we are implementing the merging process, which is
detailed below, the splitter is not required to output the number
of produces sub-scenes. Additionally, it also does not tag the
first element. Instead, the splitter outputs the accumulator as
first record for each decomposed scene.

With the PS-Net fold combinator we are able to re-
implement the merging stage of the original application.
The combinator’s behaviour resembles the functionality of
the merging stage when supplied with the merger box of
the original application as fold-net argument. An initialiser
network is not required, as we chose to have the splitter output
all pic accumulators including the first one.

Putting it all together, the resource-bound version of the
application is defined as follows (we chose 7 as an arbitrary
resource limit for the ! combinator for illustration purposes):

net raytracing {

box splitter( (scene, <rr_upper)) ->
(scene, chunk, <rr>) | (pic));
box solver( (scene, chunk) -> (sub_res));
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box merger( (sub_res, pic) -> (pic));
box genImg( (pic) -> ());
} connect splitter
(solver!<rr><|7|> | [(pic) -> (pic)])
fold[ | {sub_res}, {pic},_,merger|]

. genlmg;

This network behaviour resembles that of the original im-
plementation. The splitter outputs a variable number of sub-
scenes and the solver is applied to these in parallel. The
merging stage is wholly implemented by the fold combinator.
But this implementation is guaranteed to be resource bound:
The parallel replication is limited by an annotated upper
bound. As the fold combinator is statically resource bound,
we do not require multiplicity annotations on the splitter box.

This example has shown how the proposed coordination lan-
guages for stream processing can be used to model resource-
constrained embedded applications. The stream-processing
model itself has the benefit that it naturally combines the
flexibility of asynchronous computation with a separation of
concern between coordination and algorithmic programming.

VI. CONCLUSION AND FUTURE WORK

In this paper we have shown the development of the
resource-boundable coordination language PS-Net for stream
processing, starting from the S-Net language, which has been
designed for the high-performance computing domain. On
the one side we had to add annotations to certain language
constructs, to make them resource-boundable. Such annota-
tions might be written directly by the developer or may be
derived automatically by program analysis. Further, we have
introduced the synchro-queue and the folding combinator as
resource-boundable synchronisation constructs. The resulting
language allows to program dynamic stream-processing ap-
plications in a resource-bound way. As a future work we
will implement PS-Net within the S-Net compiler, which is
quite suitable for this implementation, since the new resource-
boundable constructs introduced for PS-Net can be imple-
mented with S-Net constructs. These S-Net constructs would
be non-resource-boundable in the general case, but become
resource-boundable for the specific patterns derived from PS-
Net constructs. Further, evaluations of resource consumption
are planned to demonstrate the suitability of the PS-Net
programming paradigm for embedded computing.
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Abstract—Crime investigation requires controlled sharing,  best practices. Technologically, the Odyssey pta@ns
secure access and formalised reporting on heterogesus  at prototyping a scalable platform, which is infegable
datasets. This paper will focus on encapsulating t&  with legacy systems, processes and expertise.
structures and services, whilst exposing abstractip relevant In this paper, we will focus on the process of diiniy a
only to the End-User through the application of a dmain-  common interface for the system, encapsulating data
specific language. The language is used for all im&etions structures and exposing only those abstractions ate
with the platform, enabling non-technical users tobuild relevant to each user. We will further explore an
complex queries. The language also increases the flam's =4y ative application of a domain-specific langeag
security, by hiding the internal architecture of sevices and (DSL) in an area in which one has not been usedréef
data structures. This solution has been demonstrateth law . : - o
enforcement communities across Europe as a prototgp Thet DSfL IS us<tat(_j to de?presds de\?er_y mtEra_ctlon W'u.m
crime and ballistic data sharing platform. system Irom getling data and defining sharing pesrns,

to integrating security by hiding internal struetsirof the

Keywords-standar disation; data sructures, domain-specific  Platform.

language; law enforcement; public services Il.  DESIGNINGA DOMAIN-SPECIFIC
LANGUAGE

I.  INTRODUCTION . - .

i i i o Domain-specific languages (DSL) express complexity
_ Odyssey is a research project looking at the difiles 5t 5 particular abstraction tailored to both currend
in sharing information about gun-crime be_tweer_1 ®)|I future needs [6]. A DSL lets non-technical people
forces across Europe [1][2]. The project is buidia | ngerstand the overall design of a platform anéréut
technology demonstrator to prove the benefits ofyit, it using an understandable notation thaex their
integrating and sharing ballistic information frostates particular perspective [7].
across the European Union. Such sharing will stuppm A well-designed DSL complies with certain objective
crime investigations and prevention activities veheross- qualities. A language perceived as simple, easy an
border trafficking of weapons or ammunition is iwet.  gffective is more likely to be widely accepted, méough
The prototype will enable interoperability betwaeasting  {hege qualities can be subjective. However, thesitsrare
systems and ensure compatibility with emerging fe@d 6t enough for a good, stable language. The diefinénd
standards. The Odyssey Consortium consists of |a¥heasyrement of these qualities will vary in timel from
enforcement agencies such as Europol and NABIS, thghe person to another. Everyone in a team devejopin
Naponal _Balhstlc Intelligence Service (United kjidom) language can agree on where the language meets thei
which brings standards, broad knowledge and hands-Quypectations, but only when exposed to a wider
experience to the project. The Consortium is comno community for a longer period can the quality of a
informing the _Iaw enforcement community with the language be measured. In the world of engineetiagrs
outcomes of its research, standardising data fematpaye varied skills, preferences and needs, whilallysthe
integrating processes and finally prototyping aneriand primary goal of designing a system is to identifys®
ballistic data sharing platform. , requirements and build a platform that works.

Curren_tly, Iavv_ enforcement agencies across Europe |y the Odyssey project, a DSL was introduced to
rely heavily on in-house systems, which often cannog,press the user requirements and solutions intaylar
interoperate on e_lther national, r_eglonal or depantal domain. A DSL promotes decoupling between
Ie_vels [3].'Integrat|on, secure sharlng and thgdszlata IS components, modules and software stack layers, ngaki
highly Ilm!ted due to technological boundaries; tethe {0 platform easily extendable and its componeighhyn
process is f_requgsntly manual and costly [3][5]. _Thereusable. In the Odyssey project, a DSL languagesésl
Odyssey project is seen not only as an opportullity .t only to convey the complexity of the domaint Blso
facilitate communication between different agend®& to 4 facilitate and unify the entire communicationcss the
also build a common European understanding oveeur platforms’ components and users (Figure 1).
and future needs. The number and diversity of iexjst
technologies, the lack of European ballistic statislaand
the high reliance on ballistic experts puts Odysséy a
very interesting perspective, whereby new standards
technologies and processes are expected to suppoenht

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-112-0 29



COMPUTATION TOOLS 2010 : The First International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

complex search to be undertaken. The user is atked
define the information of interest and the constsaiby
which the data will be filtered and sorted. In gahethe
user queries the system by defining the outcomebk an
under what conditions. One of the key requiremértshe
language is to facilitate access to factual infaroma but
without taking the risk of misleading an investigaby
presenting non-related data. The system reveals
opportunities to the end user by facilitating disey of
new facts and collaboration on possible scenarios.
Ultimately, we have identified three main qualities
integrated to our solution. They are shown in Fégir

=

Local Components ~ Central
Figure 1. Role of DSL in platform’s architecture

A DSL is used to express queries further translated
for example SQL. In the Figure 1, a DSL query is
presented to query data from distributed databdses
executing the exact statement on separate refesitdihe Comprehensibility
Odysseys DSL enforces unification of queries, which
enables standardisation of the results formatstzamfore
further reasoning. The DSL engine has the capglmlit
retrieving and merging information from diverse alat
sources by transforming the query into SQL-like ‘
languages, but also integrating with for exampleéada
mining result sets or applying reasoning using #t-bu Consistency Discoverability
ontology.

The particular application of a DSL enhances sgcuri
by providing information relevant only to the endeu
encapsulating data structures, abstracting serviaed
facilitating data manipulation. The Odyssey system
enables sharing information without exposure of its Comprehensibility: Communication is pivotal to
structures, providing the requested up-to-dateurate, design domain-specific languages. In the domairaaf
relevant and easy to understand information. enforcement agencies, a comprehensive, self-expligna

Additionally, users are supported with tools toldéhui language acts as a bridge between a platform amsha
and visualise DSL statements and their executimhich ~ technical end user. A consistent and well-estaddish

Figure 2. Principles of a scalable DSL design

are also represented in the DSL. syntax builds trust and guarantees time invested in
mastering functionality will be applicable acrosthey
.  THERESEARCHCONTEXT aspect of the platform in the present and fututeases.

The Odyssey project delivers both a user interfawe ~ Furthermore, we identified discoverability as thextmost

a domain specific language to users who have diyéngt  IMmportant characteristic of a well — designed lagg
highly specialised expertise. Their high-level dtige which in this case means the ease of dlscoverlamrm
abilites often relate to discovering facts in ceim based onwhatwe already know and the tools prdvide
investigations, whilst dealing with uncertainty and  Consistency The language and its controlled syntax
different types of abstraction. A mixture of expeiie encaps_ulate funct|o.nallty, architecture and may neve
from former investigations, combined with an determine the entire system's performance, by for
understanding of human nature and circumstancedlen €xample, optimising queries and merging resultseeséh
investigators to reason, make decisions and achem. algorithms are developed for abstracted use castelsio
Dealing with this type of situation requires an imhy anq a user is not allowed to make any mod|f|cat|ons
different set of skills and builds an impressiomttthe ~ OPtimise queries per case. The great advantagisaitage
situational information with knowledge and expeceris Was the active involvement of the user community
enough to solve any problem. The Odyssey project iéespecially West Midlands Police, United Kingdomjjo
committed to fulfiling the end user's functional carefully gathered both user requirements and dpeel
requirements and expectations, whilst proposing nev@n iterative process of language evaluation. Eactmer in
functionalities, which are not available in curreystems the Odyssey project has a different perception hef t

due to a lack of data sharing and information emgea Problems we are addressing and has contributedeto t
abilities. design of the platform in different ways. Sheffi¢ldllam

Odyssey’s DSL compromises between theUniversity represe_ntative_s visited Northe_rn Irgl&_i?nﬂice
expressiveness of both a formal and flexible seicaify-  and West Yorkshire Police in England identifyingeds
enhanced language. Complexity of syntax was greatl@nd getting a hands-on experience of the currene sif
reduced by identification and categorisation of gase the artcrime and ballistic ICT systems. _
scenarios, grouping of functionaliies and absivacof 'DISCQVEI’abI!ItyZ In_chdmon, these visits provided an
data sources. Moreover, in contrast to, for exangg, |nS|_ght into d_ally activities and processes, they@ey
the user does not need to be aware of underlying daProjectis dedicated to improve. Satisfied at gieme, the

structures, nor the platform’s architecture, to dmaa ©Odyssey Consortium proposed a language that would
enable the modelling of crime investigations andypa
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key role in creating data access rules and theneenaent location ballstc_tem_has_recovered firearm

of security to the entire platform. The user reguients oid Pk |ptistie tem old

stated explicitly that we should develop a languabéch location_type,

provides a simplified method to retrieve data aod t adoross_bno2 I

operate on datasets, but to also facilitate adoessrvices, 5‘32?22{1; remre*d —

enable management of users’ roles and maintain data longitude o =

sharing rules. We require a language that woulditite .

every interaction, W_lth the entire system, in atoafed, T bams:i: — model

structured and concise way. TR en [ pr— ounry._of_manfacurer
PK,FK1 | incident oid sub_type

IV. ODYSSEYSEMANTIC LANGUAGE PK.FK2 | location oid e oo e
calibre
We propose the development of a syntax and a | — % atered_calibre

semantic language which supports modelling of activ Y converied

crime investigations by operational detectives thi#itlink __ ncident fiing_type

general crime to ballistic data. Its innovativetéeas are - oun Jongh

associating data retrieval techniques with datangin facton. bellstictem has incident | | | @ g,

results and encapsulating multiple services. Mogeothe inodent_dale g |EKEK | g g | | |{ound-ith_ammo

language facilitates modelling of investigation gesses e et e atd

and is an integral part in the platform’s security. police_case_number additonal_remarks

Furthermore, it was developed in an open-sourcenigi Figure 5. A partial E-R diagram presenting how a firearm and

development environment, ANTLR. A structural location can be linked together

Piggyback [8] design pattern was introduced tolifate . how h iahtf o
transparency between languages and services being_ a N Figure 6, we show how easy and straightforwais i
hosting base to which the DSL is translated. The bas 0 build a complex SQL-like JOIN across multipléles
designed on the top of a SQL bearing in mind abtma, from the above using the OSL. In fact, the tasklisost
data mining and process modelling capabilities. effortless and does not require any understandintheo
The ANTLR output is further integrated with the structure. The user does not need to be awarenofrder
NetBeans Rich Client Platform (RCP) and the contiona  ©F €ven classes of the tables that require joining.
produces a fully-featured editor that seamlesdigdrates : :
with the graphical representation of search andltesThe | QUERY firearm locatioWHERE
features correspond syntax colouring, error hidttiigy, | calibreHAS VALUE 0.22AND
code completion, etc. countryHAS VALUE Un.lted ngdom .
The example below (Figure 3) presents a query espce Figure 6. Selecting a firearm linked to a location
in Odyssey Semantic Language (OSL) that retrieves What the user is asked to specify are concepts

firearms with a twenty-two calibre (0.22 inch): representing types of data and the constraints swemt

apply onto the dataset. Hence, joining tables aadymg

QUERY firearmWHERE calibreHAS VALUE 0.22 | resources is performed without the user’'s attention
Figure 3. Selecting a firearm of a specific calibre addition, what the OSL implementation enables is th

. . . integration of results from various data sourcesl an
With a very similar query structure we can applaréiig  services. This means a user can perform even more

rules on a set of data (See Figure 4 below). complex tasks with very similar effort; for example
overlaying data with data-mining results. This leeé
ALLOW firearmWHERE calibreHAS VALUE 0.22 | abstraction creates a very powerful environmentnion-
Figure 4. Applying sharing rules on a dataset technical users interacting with the system.

In the diagram below, we introduce a few entitiesrf In contrast to Figure 6, the example below is efsmilar

the Odyssey database structure that will be uséitbinext ~ €Xpressiveness, but represented in a pure PL-SQL.
example to present how OSL abstracts and simplifiefccording to the E-R diagram from Figure 5 the guer
access to relational datasets. The database dsetains Would look like this:

over 50 tables to model crime and ballistic evideoc

retains user accounts and their roles. The diagdaows | SELECT rfa.oid, rfa.*, loc.oid, loc.*

how a location, a central concept of the databasetare, | FROM recovered_firearm rfa

can be linked to a firearm. A location is only oolean | LEFT JOIN ballistic_item_has_recovered_firearms bit @R
incident’s  characteristics; other descriptors idelu | (bit_rfa.recovered_firearms_oid = rfa.oid)

documents or other related incidents. An incide| LEFT JOIN ballistic_item b2ON

effectively links locations with ballistic items ah are a | (ba.oid = bit_rfa.ballistic_items_oid) .
generalisation of firearms, cartridge cases, hajlle] LEFT JOIN ballistic_item_has_incidents bit_i@N

i At ; : bit_inc.incident_oid = ba.oid)
ammunition, projectiles, and other categories dfidtia (bit_ N
and crime evidence. LEFT JOIN incident incON

(inc.oid = bit_inc.incident_oid)

LEFT JOIN incident_has_locations inc_l&aN
(inc_loc.incident_oid = inc.oid)

LEFT JOIN location locON

(loc.oid = inc_loc.location_oid)
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WHERE rfa.calibre = 0.22ND loc.country = "United community and approved by the Odyssey Standardisati
Kingdom"; Committee.

Figure 7. SQL representation of the example Additionally, we will be exploring further possilties

of data mining techniques in order to extract amdiek
information for further processing and analysisisExg
technologies recognise a vast potential in textmgirof
personal statements and other plain-text documents
gathered during an investigation. This would lead t
further modification and new extensions to the lage,
which could not be addressed in this paper. Fompie

In the project, we prototyped a standalone cliexstehl
on NetBeans RCP, enriched with visual featureshef t
embedded Visual Library. This implementation fully
supports the OSL and provides a graph-based \sstialn
facilitating search, browsing and what is more,secof
search results in further investigations. We prevaduser
\é\’::r 06;1 es_ftag(fj fﬁegtﬁ;?snﬁlr'lt'zs stiﬁ g\llésgilrgenmzrt]?gg m e text-mining could result in entities such as perdocation
Besides, there is a text view available to the,ushbich is S&%Ii\;‘eeh'%?sfu??ggcml S?Pit{gﬁpgé%giﬁéiégitresﬂﬁ
a document-based representation of graph contexit thanalysis 9 9

seamlessly integrates with the visualisation. The OSL is currently under development and at this

o i s & SEEh, e " stage does not rirely cover al o the use nams
9 Wously requirements; ideally, the user would be able tadeho

identified person, under conditions such as locatio processes and sequences of events that lead adlaw &

timeframe, or an incident type.

2

N

crime. This is not a usual use of a domain-specific
language and it might even seem to contradict with
common practices. In general, DSLs model per-case

2 ERraReS solutions and do not explore the benefits of sequgn
- I;' actions, events or outcomes. Therefore, usual DSL
implementations are limited to a linear communaati

\ / 3, with a system rather than enabling the user tooreas
\ / coorer data and automate the interaction with a systenreGtly,
O ¢ the platform does not model nor visualises seqakdiita,
V.EH but the need was widely discussed with the end user
. : community. Furthermore, a solution based on mapping
i - IEidEnt - - crime and ballistic incidents on a timeline waspareed.
In summary, the future work will focus on
g formalisation and standardisation of solutions prattices
i described above, such as the DSL and processes the
language is compatible with. Moreover, we will also
investigate the potential of text-mining in the dom of
crime investigations, which could potentially lead
o By HBY changes in the OSL. Finally, we will research orwho
' sequential data can be used of benefit and exprassbe
. v OSL, in order to enable modelling of crime inveatign
processes and modelling of crime cases as such.

HBY SWA

P i VI. CONCLUSIONS

Figure 8. Visual representation of search and results wiieddencies The Odyssey project key result areas are the
set between previous results and search standardisation of data collection, storage andirsjathe
facilitation of interoperability between existingyssems
and the provision of an infrastructure to both selgu
collaborate on cross national investigations ansgo al
extracting information through various data-miniagd
nowledge extraction techniques. These objectiethe
dyssey project lead to cost saving and increased
efficiency, but also promote collaboration betwdaw
enforcement agencies across Europe through theofuse
information and communication technologies (ICTs).

In this paper, we presented how a domain-specific
language can facilitate access to a platform by
encapsulating data structures, enhancing sechritymost
importantly, enabling a non-technical user to iatemwith
the platform through the use of a language suittiyl¢he
field of expertise.

We have designed a language according to the user
requirements and prototyped a platform that makeduill
use of its features. The OSL is used to access and
anipulate data from multiple sources, collected by

There are two types of widgets, with the first aised
to build an OSL search query (labelled “Incidem”the
example above) by setting properties of the cldsdata
and dependencies from previous results (in thisnpka,
representing persons). The second type of widg
represents results, which are data entries inytsiers, for
example persons and incidents in the diagram above.

This graphical information retrieval and visualisat
tool was introduced to guide and assist the end umse
building, editing and executing OSL queries. Thientl
provides a windows-based user interface that tideuser
is familiar with. Moreover, it offers a visualisati which
is used to search, browse, but also receive abverteew
entries or updates in the database.

V. FUTUREWORK

Formalisation and standardisation of the OSL
specification is one of the key areas which will be
addressed after the language is presented to tae ud"
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various techniques and of different investigaticaue.
Additionally, the OSL manages access to the user
permissions and the sharing of data. The presaoiation
enables the end user to interact with the platform
seamlessly switching between the OSL text- and the
graph-based editor.
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