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Abstract—When forecasting fixed-location observation nodes
with statistical surrogate models, combining datasets during
training loss calculation has been shown to improve model accu-
racy. However, traditional methods for tuning the data ratio, such
as grid search or random search, are computationally prohibitive.
An alternative online methodology for optimizing the data during
training has been previously investigated. While both approaches
have been independently validated, they have never been directly
compared to each other or to other search techniques. This paper
presents a direct comparison to evaluate whether the online
approach can serve as a viable replacement for conventional
search methods. The Cahn-Hilliard physical equation provides
a controlled testing environment for this analysis. The results
show that the optimization algorithm may require additional
improvements before an out-of-the-box approach is appropriate.
However, using the derived optimal hyperparameter in an offline
setup provides an improvement in accuracy, which implies the
methodology is worthwhile when under time constraints.

Keywords-Ratio-Coupled Loss; Surrogate Model; Hyperparame-
ter Tuning; Cahn-Hilliard.

I. INTRODUCTION

Fixed-location forecasting helps fill data gaps in ocean
buoys, improve weather station predictions, and reduce uncer-
tainty in tsunami detection [1][2][3]. Expanding the capability
of machine learning models to forecast fixed-location time
series is therefore an interesting and challenging problem. In
the case of Partial Differential Equations (PDEs) and numer-
ical models, machine learning surrogates provide an efficient
alternative to direct numerical simulations, particularly for
complex oceanographic tasks, such as fluid flow modeling
[4]. Surrogate models serve as computationally efficient ap-
proximators, allowing for rapid inference without the high
cost of solving PDEs from first principles. This is especially
valuable in scenarios where real-time forecasting is required
or when computational resources are constrained. The Cahn-
Hilliard equation is investigated in this study as a controlled
test case for evaluating surrogate modeling approaches. This
equation describes phase separation processes and serves as a
benchmark for studying non-linear PDE behavior, making it

a suitable candidate for testing the efficacy of the proposed
methodologies. Improvements to surrogate modeling of the
Cahn-Hilliard system have potential implications for broader
applications in oceanographic and geophysical flow models
[5].

Combining data sources in machine learning often improves
model performance across various contexts. From a data
perspective, representations of physical phenomena are inher-
ently flawed as they are only approximations of underlying
behaviors. Sensors are known to be noisy and have measurable
errors [6]. Similarly, numerically modeled data can include
discretization errors or miscalculations from nonlinear interac-
tions [7]. Therefore, finding ways to combine multiple sources
of training data improves model stability and robustness to out-
lier data. Combining data within the loss function of a model
through a ratio of error is shown to be particularly effective
[8]. An importance-weighting hyperparameter controls error
flow, allowing models to adapt to either data source. Selecting
the best hyperparameter has been repeatedly shown to be a
principal challenge with this methodology [8][9][10]. There-
fore, the main novelty in this work comes from the comparison
of multiple hyperparameter techniques to the convex ratio-loss
function identified in [11]. In that work, an online algorithm
to select the best value of a ratio-inducing hyperparameter
was proposed. The paper focused on optimization mathematics
and the impact of noise levels on model convergence. To
establish its usefulness in modeling PDEs and real-world data,
a benchmarking study must be conducted to compare against
similar ratio-coupled loss. Accordingly, this work makes the
following contributions.

• Hyperparameter search techniques are evaluated to iden-
tify the most effective method for error reduction and
computational efficiency.

• The convex ratio-coupled loss function is compared to
its non-convex counterpart to assess its impact on model
accuracy.
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• A surrogate model for the Cahn-Hilliard equation is
developed to demonstrate the feasibility of surrogate
modeling for nonlinear PDEs.

The paper is organized as follows: Section II reviews related
work, highlighting comparable research and contrasting it with
this study’s objectives. Section III details the methodology.
Section IV presents experimental results and their implica-
tions. Finally, Section V summarizes key contributions and
outlines future directions.

II. RELATED WORK

The Cahn-Hilliard equation originally modeled the phase
separation process of binary alloys [12]. In modern research,
Cahn-Hilliard equations have uses spanning from problems
in material sciences to fluid dynamics [13]. In the context
of oceanographic modeling, Cahn-Hilliard formulations have
been coupled with the Navier-Stokes equations [5]. In those
cases, Navier-Stokes governs fluid velocities while Cahn-
Hilliard handles the relative density of fluid atoms. The
work conducted in this paper proposes a methodology for
forecasting fixed-location Cahn-Hilliard observations points.
Future extensions of the work can eventually lead to a coupled
environment to better model fluid mixtures.

The combination of varying data sources when modeling is
seen in various contexts. Data assimilation improves analysis
of physical systems and is recently combined with deep learn-
ing models [14][15][16]. Physics-Informed Neural Networks
(PINNs) integrate training data with governing equations to
enhance convergence and model robustness [17]. They have
also been applied to solving Cahn-Hilliard equations with
backward-compatible PINNs and adaptive-sampling PINNs
[18][19]. Data can also be directly combined as input data
from multiple observed and numerical sources [20][21]. The
ratio-coupled loss function in this work combines data in the
loss function during the training phase, like PINN models.
However, the data is collected ahead of time and a ratio of loss
from each source is used to regularize the training process [8].
This method is simpler than implementing PINN models as it
does not require direct physical knowledge. It is also more
flexible than using multiple input variables since additional
data is only needed at training time.

Statistical models are frequently used as surrogate models
for numerically derived and observed data. For example,
Transformers are used to model significant wave heights
observed by free floating buoys [22]. Recurrent neural net-
works are also a valid choice as they can manage long-term
dependencies. The Long-Short Term Memory (LSTM) unit is
the recurrent unit type featured in this work. LSTM units are
used when forecasting many observed ocean parameters, such
as sea surface temperature, salinity, significant wave heights,
and others [8][10][23]. LSTMs are used in numerical surrogate
contexts for modeling epidemic spread, turbulent flows derived
from Navier-Stokes, and fluid-particle systems [24][25][26].
The LSTM unit is also used to model PDEs directly [11].
For example, mixed LSTM and convolution layers were used

for pattern discovery to model the Cahn-Hilliard equation,
achieving good agreement [27].

The investigation of hyperparameter search methodologies
is inspired by common problems identified in other ratio-
coupled loss research. Similar research uses a single λ param-
eter with grid search to find the most performant hyperparam-
eter [8][10]. However, both works mention that long training
times make the λ selection process difficult. This problem
is exacerbated when using the multiple-λ ratio-coupled loss
function [9]. As the number of hyperparameters combinations
intractably increased, a bounded random search was used
to explore the search space. A method for selecting the
optimal hyperparameter with an online algorithm was finally
proposed in a setting like the one investigated in this work
[11]. However, this method was never validated against other
search methodologies, focusing instead on the optimization
problem itself. This paper extends the ideas in those works by
comparing the optimized method with other search techniques.

III. METHODOLOGY

The following section describes all major techniques used to
support the major claims. Within the section, the Cahn-Hilliard
dataset details are outlined, the ratio-coupled loss function is
detailed, the hyperparameter search techniques are compared,
and the deep learning architecture used is described. The
validation parameters and all experimental details are provided
for reproduction.

A. Cahn-Hilliard Equation

In this work, the Cahn-Hilliard equation is used to model the
concentration of binary fluids as they separate over time. The
spontaneous phase separation of each fluid is demonstrated
over 100 evolution steps and used to train surrogate models.
The mathematical definition of the simple Cahn-Hilliard equa-
tion used to generate the training and testing data follows as,

∂tc = ∇2
(
c3 − c− γ∇2c

)
, (1)

where c is a scalar field taking values on the interval [−1, 1]
and γ sets the squared interfacial width. In the simulations
used for this work, γ = 1.0. The implementation of this
equation is given by the Python package py-pde [28]. The
equation is evolved on a 20 × 20 sized grid with a random
initialization of values on the interval [−1, 1] for 100 time
steps. The separation of fluid concentrations over the entire
evolution period is seen in Figure 1. The figure displays how
the random initialization dynamically splits into pure domains
over the 100 epochs.

Along the evolution of the grid, Figure 1 also displays the
target testing nodes. These nodes indicate the 80 fixed-location
observation nodes reserved for final testing. The entire 20 ×
20 grid yields 400 available observation points. Then, 350 of
these points are randomly reserved yielding an 87.5% data
coverage. Subsequently, 100 of those points are reserved as
observation nodes for testing and validation data, at an 80/20
split. When modeling with machine learning algorithms, the
amount of data is responsible for how well the surrogate model
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Figure 1. Evolution of the Cahn-Hilliard equation over 100 evolutions. Displays the locations of the 80 reserved observation testing nodes.

can generalize learned behaviors. A lower percentage of data
coverage would negatively affect overall model accuracy.

To represent multiple sources of imperfect data, one final
processing step is applied to the time series. First, the data
is split into three separate instances. One instance represents
noisy observations of local conditions and Gaussian noise is
applied to the data at a fixed standard deviation rate of 0.01.
This subset of data is used as the input to the model and
when calculating error in the training loop. A second instance
of the data represents larger inaccuracies from an additional,
secondary source of data and has an applied Gaussian standard
deviation of 0.1. This second source of data is used as a
source of regularization when using the ratio-coupled loss
function described in the upcoming section. The final instance
of the data has no Gaussian noise applied to it and is used to
calculate the final metrics of each model. This methodology
follows the experimental setup in [11], which first introduced
the optimized hyperparameter search explored in this work.

B. Ratio-Coupled Loss Function

A ratio-coupled loss function allows for two sources of
data to be used for each feature when training a model. The
hyperparameter λ controls the ratio of error generated when
compared to either data source. The set of coupled features is
defined as S ⊆ {1, . . . , d} where d ∈ N. The cost function is
formally introduced in (2)-(4) as,

∆1 = g(ŷ, yo), (2)

∆2 = g(ŷ, ym), (3)

Ωratio-coupled loss = λ ∗∆1 + (1− λ) ∗∆2. (4)

In (2), the predicted value and the reserved values yo are
used to generate the first error term. Similarly, the same score
is calculated for (3) by comparing the prediction and the
secondary data source ym. In the context of this work, yo
represents the reserved data with Gaussian noise of 0.01, ym
represents the reserved data with Gaussian noise of 0.1, and
ŷ represents the predicted output from the surrogate model.
Therefore, the two ∆ terms defined in (2) and (3) represent
the error between the prediction and each of the dual sources
as calculated with g. In this case, the error formulation g is
Huber loss,

gδ(a) =

{
1
2a

2 if |a| ≤ δ,

δ(|a| − 1
2δ) if |a| > δ,

,

where a is the residual between predicted values and δ = 1.35.
Huber loss is used in this context to prevent model underfitting
by penalizing inferences close to zero, which is the mean
value across the Cahn-Hilliard formulation. The error terms
are finally weighted by the hyperparameter λ as outlined in (4).
The coupled feature loss is characterized by the ratio of the two
∆ values that measure predicted error across multiple sources
of truth. So, the selected λ value represents a ratio to determine
the importance provided by either source. The hyperparameter
is constrained to a ratio such that λ ∈ [0.0, 1.0]. The ratio of
data that produces the most performant model is unknown and
must be tuned by finding an optimal value of λ.

C. Hyperparameter Search Techniques

Four hyperparameter search techniques are compared in
this work to validate whether the optimized λ technique is
viable for improving the modeling of nonlinear fluid dynamic
equations. To this end, a simple grid search, a random search,
a Bayesian search, and the highlighted online optimized search
are implemented for validation.

1) Grid Search: The grid search technique uses a range of λ
hyperparameter values at fixed intervals. Each of these values
is statically used to train a model. After each selection of λ is
used, the results are compared and the best λ value is deter-
mined. When using a ratio-coupled loss function, λ ∈ [0, 1],
so the grid search is constrained to this interval. Given a fixed
step size of 0.1, the grid search evaluates the hyperparameter
values λ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.
A smaller step size can be selected, although this may be
computationally expensive in cases where the amount of data
or model size is large.

2) Random Search: A random search explores the hyper-
parameter space by randomly selecting hyperparameters at a
desired resolution for a fixed number of values. This technique
is not guaranteed to select an optimal hyperparameter but can
give good coverage on a variety of λ values, given enough
iterations. In the case of this experiment, 20 random λ values
are selected from a uniform distribution with a precision of
0.01.

3) Bayesian Search: Bayesian optimization is a popular
hyperparameter search technique in deep learning. The op-
timization is used to select the minimizing hyperparameter

3Copyright (c) IARIA, 2025.     ISBN:  ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

COCE 2025 : The Second International Conference on Technologies for Marine and Coastal Ecosystems

                             9 / 56



based on a specified criterion [29]. Therefore, the formulation
is set up as,

λ = arg min
λ∈[0,1]

f(λ). (5)

The search space is defined such that λ ∈ [0.0, 1.0]. The
criterion function f(λ) is defined as the evaluation of a
partially trained surrogate when making predictions on the
validation dataset. That is, the error value on the validation
data should be minimized by the selected λ. Continuing,
Bayesian optimization is derived from Bayes’ theorem. Given
evidence data E, the posterior probability P (M |E) of a model
M is proportional to the likelihood P (E|M) of observing E
given model M , multiplied by the prior probability P (M).
This is expressed as,

P (M |E) ∝ P (E|M)P (M). (6)

The evidence and models terms expressed in (6) are the
loss calculation and surrogate trained using a specific λ,
respectively. Using this formulation, Bayes optimization itera-
tively searches the λ space for an optimal value. The specific
implementation of the Bayesian optimization used in this work
comes from the Python library GPyOpt [30]. The optimization
algorithm selects the most performant λ over multiple trial
iterations. Each candidate model is trained for 50 epochs, to
save computational resources. There is an initial selection of
eight random λ values and subsequent values are selected
based on the expected improvement that a new λ value will
provide. The optimization algorithm is run for a total of 30
iterations before selecting the λ that minimizes the objective
function, f(λ). Upon the selection of a minimizing λ value,
a final model is trained using the full number of epochs for
final evaluation.

4) Optimized Search: The final technique compared in this
case study is the online optimized λ search that was first
explored in [11]. The essential idea is that while the model
weights are being trained, the λ hyperparameter is slowly
optimized to the value that minimizes the loss function. To
allow for direct optimization of the λ value, a modification
must be made to the loss formulation described in (4). To make
the function differentiable with respect to λ, square terms are
added around each ratio term. Therefore, the convex ratio-
coupled loss is defined as,

Ωconvex ratio-coupled loss = (λ ∗∆1)
2 + ((1− λ) ∗∆2)

2. (7)

The optimized value of the convex loss function is constrained
such that the minimal value is guaranteed to exist when
λ ∈ [0.0, 1.0], which is one benefit of this method. Also,
optimizing the λ simultaneously with model weights means
that lengthy tuning times are reduced to the training of a
single model. Any optimization scheme may be used, but the
Adam optimizer and TensorFlow’s gradient tape implementa-
tion allows λ to be easily optimized as the model is trained.
However, it should be noted that by changing the loss function
formulation, the model weights may not converge as they
would with the basic coupled loss function. This crucial point

is the motivation to compare the optimized search technique
with other methodologies.

D. Machine Learning Model Architecture

Machine learning architecture is static among all experi-
mental hyperparameter search types. The full architecture is
displayed in Table I and is made up of five main layers and an
input layer. The input to the model is a vector of four features,
which include the current fluid concentration, the X and Y
coordinates, and the timestep being modeled. Following, the
LSTM unit is used in the next four layers. LSTM units are
recurrent layers that contain input, forget, and update gates,
which aid in learning time series dependencies [23]. Although
the time horizon for a single forecast step will be one, the
LSTM layers use additional parameters, making them a viable
choice for surrogate modeling. Each of the LSTM layers
uses the hyperbolic tangent activation function, allowing layer
outputs in the range [−1, 1]. The final layer is a simple densely
connected layer with a linear activation, to output the predicted
fluid concentration in the next timestep. Dropout layers are
placed between each LSTM layer with a dropout value of 0.2.
These layers randomly drop weights during the training phase
to help prevent overfitting of the model. Finally, the Adam
optimization function is used to optimize the model weights.

TABLE I. LSTM MODEL ARCHITECTURE BY LAYER. THE TOTAL NUMBER
OF TRAINABLE PARAMETERS IS 526,241. N REPRESENTS THE BATCH SIZE.

Layer Type Shape Parameters Activation
Input Layer (N, 4, 1) 0 None

Reshape (N, 1, 4) 0 None
LSTM (N, 1, 256) 267,264 Tanh

Dropout (N, 1, 256) 0 None
LSTM (N, 1, 128) 197,120 Tanh

Dropout (N, 1, 128) 0 None
LSTM (N, 1, 64) 49,408 Tanh

Dropout (N, 1, 64) 0 None
LSTM (N, 1, 32) 12,416 Tanh
Dense (N, 1) 33 Linear

Before training, all input data is normalized with respect
to the training data, including the testing data. To analyze
the results, all data is transformed back to the original scale.
When using the model to make predictions over multiple time
horizons, a rolling forecast methodology is used. That is, only
the first forecast uses fresh sensor values. The consecutive
forecasts use the predicted fluid concentration as an input to
the next prediction. This continues until the entire horizon has
been predicted. Only then are fresh observation node values
provided again. To improve model stability over multiple
horizons, the same methodology is used when training the
model. The loss function is summed over multiple predictions
in a rolling-style forecast and the accumulated error is used
to back propagate the model weights. To improve the model
stability for rolling forecasts, the model accumulates training
loss in the same way. That is, given a horizon size of eight,
the training loop accumulates loss over eight steps while using
the model’s prediction as input values. This method of training
supports long term predictions in the model by improving
forecast stability.
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E. Validation Metrics

There are two main metrics considered in this work.
The first is the average Root Mean Square Error (RMSE)
across all observational nodes reserved for testing. RMSE
is preferred over other error scores because it highly penal-
izes large deviations. The RMSE formulation is defined as√

1
N

∑N
i=1(yi − ŷi)2. The parameter N is the number of test

samples, y is the ground truth, and ŷ is the prediction vector.
Another method for analyzing the results is the time taken
in seconds for each hyperparameter search to produce its
most optimal result. Therefore, the best method should balance
between minimizing the RMSE as well as requiring the least
amount of time to produce those results.

IV. RESULTS

After running each of the hyperparameter searches, 34 test
cases were considered. By training each model with the same
initial seed, only differences caused by varying λ values affect
model convergence. Therefore, the effectiveness of each search
methodology is considered by ranking the RMSE values
over the full 12-step prediction horizon. The top ten results
discovered are compared in Table II. In the table, it is noted
that the top result uses the optimized λ search, with one major
caveat. The online algorithm did not produce an optimal model
by itself. Using the λ value derived from the online algorithm
as a static λ value worked very well. In that case, the top result
highlights an optimized λ in a static training environment. This
is significant as it shows the optimized algorithm may not be
suitable for directly training a model. However, this suggests it
may be suitable for estimating the most performant λ overall.
The grid and random searches both found values of λ that
would be considered suitable. That is, they reduced the error
beyond that found when no ratio-coupled regularization is used
(λ = 1.0). Finally, the Bayesian search yielded interesting
results by estimating a λ value that produced the lowest single
horizon step RMSE overall. It seems reasonable to suggest that
a longer training time per iteration of the Bayes search would
result in an optimal λ value, like those found in the top four
results.

TABLE II. TOP 10 RESULTS SORTED BY THE CALCULATED RMSE OVER
THE FULL FORECAST HORIZON.

Rank λ Search λ Value Full Horizon
RMSE

Single Step
RMSE

1 Optimized* 0.95961833 0.045182 0.013879
2 Grid 0.9 0.045754 0.014290
3 Random 0.89 0.045981 0.014298
4 Random 0.95 0.046696 0.014519
5 Grid 1.0 0.047465 0.014367
6 Bayes 0.7319939 0.047566 0.013782
7 Random 0.79 0.048094 0.014380
8 Grid 0.7 0.048827 0.014427
9 Random 0.68 0.048832 0.014167

10 Grid 0.8 0.048988 0.014345

Following, consider the top performing result for each of the
λ search techniques in Table III. In this table, the total time
taken for each search algorithm to provide the most performant
result is given. It is notable that grid search and random

search both linearly increase with each test case considered.
Given a high number of tested λ values, increasingly better
results can be found. However, this becomes prohibitively
expensive as the resolution of the hyperparameter increases.
Comparatively, the Bayesian search takes little time to explore
the hyperparameter space. This is because only 50 epochs
are used when searching for candidate values, which would
require approximately 5% of the training time. Since the
results are worse, it is likely that a higher number of epochs
could balance time taken and the RMSE score. In the case
of the optimized search, it takes exactly one training cycle of
about 1,500 seconds to train the model and λ value. Given
the inferior performance, the trade-off of time taken to RMSE
is not very impressive. Encouragingly, using the optimized
λ with the traditional ratio-coupled loss and a static training
setup gives the best overall results, and it only requires enough
time to train two models.

TABLE III. COMPARISON OF THE BEST RESULTS FOR EACH SEARCH
TECHNIQUE.

Rank λ Search λ Value Full Horizon
RMSE

Single Step
RMSE

Total Time
Taken (≈ s)

1 Optimized* 0.95961833 0.045182 0.013879 3,109
2 Grid 0.9 0.045754 0.014290 18,701
3 Random 0.89 0.045981 0.014298 30,644
7 Bayes 0.7319939 0.047566 0.013782 5,344

34 Optimized 0.95961833 0.055039 0.014998 1,582

An example observational node forecast is given in Figure
2. This example displays the inferences generated by the best
performing models outlined in Table III. Every 12 forecast
steps, the model is provided with new observation values, as
denoted by the refresh points in the figure. The model does
well at matching the fluid concentration over time, especially
after the first 20 evolutions. This is in part because of the
high coverage of training data as well as the rolling forecast
implemented in the training algorithm. The best performing
models mostly agree on forecasts. Observed differences are
mainly in how close they fit to the actual curve. It is notable
that there are 80 different observation nodes and each of
them behaves differently, depending on how the Cahn-Hilliard
equation evolves over time, as seen in Figure 1. Observation
nodes that monitor unstable regions are notoriously more
difficult to model in the long term.

Lastly, consider how the average error changes over the
Cahn-Hilliard evolution in Figure 3. Comparing the single
step error (left) and the 12-step error (right) shows two main
behaviors. First, the instability early has the highest rate of
error. It is difficult for the models to generalize how the evo-
lution of a chaotic and randomly initialized system will begin
to separate. Following, Cahn-Hilliard has two main phases,
which are simpler to model. Either the fluid concentration has
already separated into a stable group or is transitioning into a
stable group. Both behaviors are more easily modeled. Finally,
error seemingly rises by the end of the evolution period.
This is attributed to the fact that some locations complete
the phase separation process, resulting in some binary regions
disappearing. Consider evolutions 60 through 100 in Figure
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Figure 2. Example plot of a single observation node with a 12-step forecast
horizon. Fresh initial values are seen every twelfth step.

1 as an example. The most performant λ values consistently
seem to come from the Bayesian search λ and the optimized
static λ. Surprisingly, Bayesian search performed well in
general but suffered the most when initial conditions were
chaotic.
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Figure 3. Evolution of average error over the evolution period. The single
horizon error (left) and the full horizon error (right) highlight when the

forecast problem is most difficult for each selected model.

Overall, each search methodology was compared based on
the RMSE and time taken to produce its most optimal result.
In the case of the optimized search, the resulting model
performed poorly. However, the λ value produced from the
algorithm yielded best results overall. This shows potential
for estimating data-specific hyperparameters in a two-stage
process. Although, if this methodology is to be useful in a
wide range of tasks, formal investigations into methods for
improving the online training approach are necessary. Through
the investigation of a dataset distorted with Gaussian data,
an obvious question arises. It is currently unknown whether
other distributions of noise are optimizable in this way. Further
investigations on real-world data and data distorted with other
noise distributions should be validated against.

When considering the other search methodologies, Bayesian
search also showed promise, given enough training epochs in
the investigative phase. Grid search and random search are
both valid methods for λ discovery, given enough time to
explore enough model iterations. Overall, the best models per-
formed very similarly, with minor variations in performance.
This is to be expected when using the exact same model

architecture. However, the main differences are seen when
comparing the computational and time resources required to
find the best result.

The Cahn-Hilliard equation is a good test bed for under-
standing how non-linear PDEs can be solved using surro-
gate modeling methods. Given the interesting initial results,
a more generalized surrogate that can model Cahn-Hilliard
under varying initial and forcing conditions is an interesting
challenge. Future work that focuses on the coupling of these
forecasts with Navier-Stokes to improve wave modeling, is a
natural goal.

V. CONCLUSION AND FUTURE WORK

In this work, surrogate models were investigated to forecast
observation nodes of a Cahn-Hilliard equation with a random
initialization. The models were trained using the ratio-coupled
loss function and a rolling forecast-style training procedure.
A selection of common hyperparameter search methodologies
were compared to an online hyperparameter tuning algorithm.
This algorithm adds quadratic terms to the ratio-coupled
loss, to make the hyperparameter optimizable. Given varying
amounts of noise added to two datasets, the search algorithms
identified values for λ that were most performant. In all
variations of the experiments, the average RMSE of all test
cases and time taken to find performant hyperparameters
were used to determine the best results. The comparison
of search methodologies revealed that while the optimized
search performed poorly overall, the λ value it produced
led to the best results, highlighting the potential for a two-
stage hyperparameter estimation process. Bayesian search also
showed promise with sufficient training epochs, while grid and
random searches remained valid given enough computational
resources.

Future work will focus on three main identified weak points.
Most importantly, investigations into improving the convex
ratio-coupled loss function should be explored. Early stopping
mechanisms to provide a stable training environment can be
considered. Also, using the ratio-coupled loss function for
model weights while the convex function for online tuning
of the λ values might work in some situations. Next, the
optimization algorithm should be validated on other datasets.
In this case the models were not trained on different initial-
izations of Cahn-Hilliard, which leads to poor generalization.
Noise across varying data sources is not necessarily Gaussian,
so future work would benefit from implementing different
distributions of noise. Similarly, the methodology should be
validating using real world data. Lastly, more advanced model
architecture should be considered to understand how well the
ratio-coupled loss function reacts when using more sophis-
ticated models. Overall, there is a wide range of research
directions to consider in the future.
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Abstract—This study evaluates multi-source fusion techniques
for environmental forecasting, focusing on their effectiveness
in predicting oceanic and atmospheric variables. Three neural
network architectures are examined: a baseline Long Short
Term Memory (LSTM) model, a Softmax Fusion model, and a
Lagrangian Fusion model. A central component of the approach
is the incorporation of physics-based constraints during training
to ensure physically consistent predictions. Results based on
Root Mean Squared Error (RMSE) indicate that fusion-based
models consistently outperform the baseline for wave-related and
thermodynamic variables such as air and water temperature.
RMSE reductions for these variables range from approximately
5% to over 40%, driven by the models’ ability to enforce
spatiotemporal smoothness and reduce spatial variability. In
contrast, wind components show higher RMSE in fusion models,
highlighting a trade-off between global physical consistency and
the accurate representation of localized, high-variance wind
phenomena. These findings demonstrate the advantages of fusion
architectures for improving buoy-based wave and thermody-
namic forecasts, while suggesting that future work on wind
predictions may benefit from adaptive regularization or hybrid
loss functions to capture both global coherence and local detail
better.

Keywords-multi-source fusion, physics-informed neural net-
works, constrained machine learning.

I. INTRODUCTION

Accurate short-term forecasting of oceanic and atmospheric
variables is important for a wide range of applications, includ-
ing maritime navigation, coastal hazard mitigation, and climate
monitoring [1][2]. Traditional Numerical Weather Prediction
(NWP) uses partial differential equations based on physics [3],
which provide physically consistent forecasts. However, these
models require substantial computation and exhibit sensitivity
to initial conditions, restricting their real-time utility. In con-
trast, data-driven methods based on Long Short Term Memory
Networks (LSTMs) have demonstrated strong performance in
forecasting buoy-observed quantities such as gush speed, wave
height, pressure, and sea surface temperature [4]–[8]. These
methods offer faster inference and ease of deployment, but
frequently rely on single-source input, not exploiting auxiliary

information from satellite retrievals or reanalysis datasets that
can offer broader spatial and temporal perspectives.

In practice, buoy measurements are often noisy and sparse,
and simulations may not capture the full dynamics at rele-
vant scales. These limitations motivate the study of fusion
architectures, which aim to produce well-calibrated initial
states that physical laws can later constrain during forecasting.
Multisource fusion combines diverse observations, such as
buoy recordings, ECMWF Reanalysis v5 (ERA5) reanalysis,
and NOAA Global Forecast System (GFS) analysis data to
generate more accurate estimates of surface wind components
(u10, v10). Adaptive fusion models, especially those that use
softmax-based weight mechanisms, dynamically allocate trust
among sources in response to measurement discrepancies.
However, the model outputs are not always physically plau-
sible. The weights can be negative or do not sum up to one,
and the forecasts may violate the principles of energy or mass
conservation [9]. Physics-Informed Neural Networks (PINNs)
address these issues by embedding PDEs into loss functions.
Still, they often require explicit physical equations and incur
heavy training costs, which limit their applicability in noisy
or incomplete data regimes [9].

Schmidt et al. [6][7] and Pokhrel et al. [10][11] studied
fusion models in the context of physics-based forecasting. In
these models, numerical model predictions are integrated with
observations in a weighting scheme to generate fused predic-
tions. Specifically, Pokhrel et al. extended this to multiple data
sources in [12]. In this study, we extend the previous studies by
using differentiable constraints to obtain physically consistent
predictions. This study focuses on architectures that both fuse
multisource data effectively and enforce physical constraints
on learned outputs. This study frames fusion as a method for
generating physically meaningful initial estimates that remain
valid when subjected to downstream constraints. Our primary
contribution is the Lagrangian Fusion Model, which employs
an augmented Lagrangian formulation to constrain fusion
weights (ensuring non-negativity and unit sum) to enforce
consistency between predicted wind vectors and observed Gust
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Speed (GST ≈
√
u2
10 + v210), without requiring explicit PDE

formulas.
To validate our approach, three end-to-end architectures are

compared:
1) Baseline Model: a sequence-to-sequence LSTM that

forecasts Gust Speed (GST), Wave Heights (WVHT),
Pressure (PRES), Water Temperature (WTMP), and
wind components (u10 and v10) using buoy data alone.
This model benchmarks single-source performance un-
der noisy conditions.

2) Softmax Fusion Model: adds softmax-weighted fusion
of multisource inputs for u10 and v10, while maintaining
direct forecasting for other variables. It demonstrates the
benefit of fusing information, along with enforcing the
physical constraints. The weights of different sources
are generated implicitly using the softmax layer in this
approach.

3) Lagrangian Fusion Model: enhances the softmax ap-
proach by incorporating augmented Lagrangian penalties
to enforce physically meaningful fusion weights and
outputs, ensuring meteorological consistency and robust-
ness in the presence of noisy measurements.

All fusion models are trained using buoy-observed targets
and multi-source wind input. Physics-inspired loss terms,
including constraint penalties and temporal smoothing, are
integrated to improve the forecast fidelity. Evaluated on three
years of data (2021–2023) with an 80/20 train/test split
and rolling-horizon validation, the Lagrangian Fusion Model
achieves substantial improvements while maintaining physi-
cally consistent behaviors. Our study advances the state-of-
the-art by presenting a robust and interpretable fusion strategy
that combines data-driven flexibility with physical realism,
generating reliable initial states for downstream constrained
forecasting or data assimilation frameworks.

This paper is organized as follows. Section 2 reviews related
work. Section 3 details the dataset, model architectures, and
training procedures. Section 4 presents the experimental results
and their analysis. Section 5 discusses the limitations of
the study and outlines directions for future research. Finally,
Section 6 concludes the study.

II. RELATED WORK

A. Neural Forecasting for Marine Variables

LSTMs have become important in marine environmental
forecasting because of their ability to model temporal de-
pendencies. For example, Bonino et al. combined buoy and
reanalysis inputs in an LSTM framework and achieved a sig-
nificant error reduction in sea surface temperature prediction
compared to purely physical models [4]. Park et al. and Kim
et al. showed comparable improvements in wave height and
wind speed forecasting using buoy-only LSTM [13]. These
models demonstrate the benefits of data-driven modeling but
remain constrained by single-source inputs and lack of ex-
plicit physical constraints, which our work overcomes through
multi-source fusion and constrained optimization.

B. Multisource Fusion Techniques

Optimal interpolation and classical data assimilation meth-
ods combine multiple sources of observational data by model-
ing error covariances [14]. Recent deep learning-based fusion
approaches learn weighting schemes directly from data. Scher
and Messori fused satellite and reanalysis data using convo-
lutional architectures for global weather forecasts, reporting
improved accuracy in spatial detail [15]. Shaw et al. used Spa-
tiotemporal Dynamic Graph (SDG) networks to fuse multiple
features to improve prediction accuracy for significant wave
heights prediction [16]. However, neither approach enforces
explicit physical constraints on fusion outputs. Our Softmax
Fusion Model extends these works by enabling component-
specific weighting for wind vectors, while our Lagrangian Fu-
sion Model further ensures weight validity and meteorological
consistency.

C. Physics-Informed Learning and Constrained Optimization

PINNs integrate physical laws into deep networks via loss-
term penalties, enabling PDE-informed prediction capabili-
ties [9]. While effective, they require explicit PDE formu-
lations and tend to be computationally expensive, particu-
larly in noisy or incomplete-data regimes [9]. Constrained
optimization frameworks, such as those reviewed by Kotari
et al., embed structural constraints into network parameters
using Lagrange multipliers, without relying on full physical
equations [17]. Gramacy et al. demonstrated this approach
in fluid dynamics by enforcing mass conservation using aug-
mented Lagrangian methods [18]. Our Lagrangian Fusion
Model adopts this strategy, applying constraints to both fusion
weights and output predictions, ensuring that noisy, fused
initial estimates remain physically consistent and usable for
downstream data assimilation or forecasting frameworks.

Furthermore, we frame fusion as a preconditioning step
that enhances subsequent constraint enforcement and data-
assimilation efforts. This is supported by assimilation liter-
ature, which highlights the importance of good-quality initial
states for robust real-time forecasts and correction of model
deficiencies [19]–[21].

III. METHODOLOGY

A. Dataset

Table 1 presents the essential summary statistics (count,
mean, standard deviation, minimum, and maximum) for each
variable. Note that the fusion models are weighted using ERA-
5 and NOAA wind fields in the cost function and not used as
a part of input to the models.

Table 1 displays the count, mean, standard deviation, mini-
mum, and maximum for each feature. In particular, the buoy-
measured wind direction and wind speed, each with 29,778
samples, have means of 223.27◦ (std 96.07◦) and 6.06 m/s
(std 3.01 m/s), respectively. The zonal and meridional wind
components at 10 meters (u10_buoy and v10_buoy) were
derived from the gust speed and wind direction. These wind-
related variables are fused in the loss function using either
fixed Lagrangian weights or learned weights via a Softmax
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TABLE 1. BASIC SUMMARY STATISTICS FOR ALL VARIABLES

Variable Meaning (Units) Mean Std Min Max

WDIR Wind Direction (degrees) 223.27 96.07 2.44 360.00
WSPD Wind Speed (m/s) 6.48 2.94 0.00 21.00
GST Gust Speed (m/s) 8.38 3.61 0.21 26.61
WVHT Wave Height (m) 2.12 1.03 0.35 10.08
DPD Dominant Wave Period (s) 10.42 2.83 3.67 22.29
APD Average Wave Period (s) 6.66 1.27 3.29 14.11
MWD Mean Wave Direction (radians) 3.45 1.61 0.02 6.28
WTMP Water Temperature (◦C) 18.82 7.29 2.90 30.39
DEWP Dew Point Temperature (◦C) 15.08 6.74 -9.40 28.52
ATMP Air Temperature (◦C) 17.99 7.11 -3.26 30.84

layer. The data set comprises a total of 94,442 observations
that span the period from January 1, 2021, to December 31,
2023 and the points are sampled every 3 hours. We utilize
global predictions for ERA-5 and NOAA datasets.

B. Data Preprocessing

The raw time-series data is preprocessed through several
key steps to ensure temporal continuity and improve model
performance. First, the features that are redundant, irrelevant,
or represent metadata not useful for forecasting are removed.
To maintain the integrity of temporal sequences, rows with
missing values are discarded instead of applying imputation,
which can introduce artifacts. All continuous variables are
standardized to have zero mean and unit variance, which fa-
cilitates faster convergence and stabilizes training in recurrent
architectures. We then segment the data using 80/20 time-
based split for training and testing. This setup supports multi-
step forecasting aligned with short-term marine prediction
needs.

Since the buoy observations lack corresponding numerical
simulations, their values are predicted directly. The fusion
targets in this study are the 10-meter wind components, u10

and v10, estimated using multi-source integration of buoy
measurements, ERA5 reanalysis, and NOAA data products.
Although this work focuses on a single variable pair, the
approach is extendable to other features, provided suitable
numerical models are available for integration.

C. Model Architectures

This study evaluates three neural network architectures
built on a sequence-to-sequence (Seq2Seq) LSTM backbone
for multi-step environmental forecasting. All models share a
common structure and incorporate physics-based constraints
during training.

The architecture consists of an LSTM encoder and decoder,
with an optional attention layer to improve temporal represen-
tation. The overall design is:

Encoder: ht, (hT , sT ) = LSTM(xt,ht−1)

Attention: zt = Attention({ht})
Decoder: dt, (d∗, s∗) = LSTM(zt,dt−1)

(1)

Here, xt ∈ RDin is the input at time t, and the encoder
summarizes the input sequence into hidden states, and s

represents the state at the last layer. The attention layer (when
used) reweights the encoder output to form a context vector zt,
which helps the decoder focus on relevant time steps during
prediction. The decoder then produces latent outputs for the
forecast window.

To encourage physically meaningful predictions, a physics-
based loss term is added in the fusion models:

Lphysics =
∑
c∈C

wc · ϕc(Ŷ) (2)

Each constraint c ∈ C has a weight wc and penalty function
ϕc that measures violations based on model outputs Ŷ. Details
are provided in Section III-D.

1) Baseline Model: The Baseline Model employs a
straightforward prediction head applied to the decoder’s latent
representation:

Ŷ = Linear(ReLU(Linear(d))) (3)

In this model, the constraints of physics are strictly enforced
through the Lphysics term, acting as a soft regularization.

2) Softmax Fusion Model: The Softmax Fusion Model ex-
tends the Baseline by incorporating a dynamic, attention-based
fusion mechanism for wind component prediction. This model
learns softmax-normalized weights to combine wind estimates
from multiple input data sources (e.g., buoy, ERA5and NOAA
inputs). The architecture integrates source-aware fusion with
physics-constrained training:

Λu = Softmax(MLPu(d))

Λv = Softmax(MLPv(d))

Ŷdirect = gd(d)

Ŷwind = gw(d)

ûfused =
∑
s

λ(s)
u us

v̂fused =
∑
s

λ(s)
v vs

Ltotal = LMSE + αLphysics

(4)

where Λu and Λv are the learned softmax weights for the
wind components u and v of the sources s, respectively.
us and vs represent the wind components from source s.
gd and gw are multi-layer perceptrons (MLPs) that predict
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direct variables and wind residuals, respectively. The soft-
max mechanism facilitates the differentiable and interpretable
weighting of each modality in each forecast timestep, thereby
improving the robustness to noise and variations in data quality
between different sources. Figure 1 displays the architecture
of the fusion models. Note that the buoy data is used to
make predictions and the other datasets are only used during
training.

3) Lagrangian Fusion Model: While the Softmax Fusion
approach implicitly ensures non-negativity and sum-to-one
constraints for fusion weights, it may limit the model’s ex-
pressiveness by tightly coupling all weights through a sin-
gle normalization. To address this, we adopt an augmented
Lagrangian formulation that allows for explicit control over
constraints, enabling the model to learn fusion weights more
flexibly.

The Lagrangian Fusion Model learns raw (unnormalized)
weights Λu and Λv for wind component fusion. The fusion
loss is then defined as:

Λu = Linearu(d)
Λv = Linearv(d)

Lconstraints =µu

(∑
s

λ(s)
u − 1

)
+

ρ

2

(∑
s

λ(s)
u − 1

)2

+
∑
s

ν(s)u (−λ(s)
u ) +

ρ

2

∑
s

(−λ(s)
u )2

+ µv

(∑
s

λ(s)
v − 1

)
+

ρ

2

(∑
s

λ(s)
v − 1

)2

+
∑
s

ν(s)v (−λ(s)
v ) +

ρ

2

∑
s

(−λ(s)
v )2

Ltotal = LMSE + αLphysics + βLconstraints

(5)

Here, µu, µv are Lagrange multipliers for the sum-to-one
equality constraint, and ν

(s)
u , ν

(s)
v are Lagrange multipliers

for the non-negativity inequality constraints. ρ is the penalty
parameter of the augmented Lagrangian. This formulation
allows for decoupled optimization of weights while explicitly
enforcing physical constraints.

D. Physics-Based Constraints

To promote physically consistent forecasts, the fusion mod-
els incorporate a set of differentiable physics-based constraints
within the loss term Lphysics. These constraints are grounded
in well-established relationships from wave physics and are
summarized in Table 2.

E. Constraint Integration

Each constraint is implemented as a differentiable compo-
nent of the total loss, allowing for gradient-based optimization.
Denote each constraint as ϕc(Ŷ), then the total physics-
informed penalty is:

Lphysics =
∑
c

wc · ϕc(Ŷ) (6)

where wc is a fixed weight determined through empirical
tuning. The wave development constraint and wave steepness
limit are assigned lower weights (e.g., wc = 0.1), reflect-
ing their supportive role in shaping output realism without
overwhelming the primary forecasting loss. The gravitational
constant g = 9.8m/s2 is used in the wave steepness constraint,
derived from classical wave theory.

This constraint formulation ensures that model predictions
remain physically plausible, especially for wave-related pa-
rameters where empirical structure is well understood.

F. Training Framework

All models were trained using a consistent framework to
ensure a fair comparison of their architectural merits. The key
configuration parameters are as follows:

• Optimizer: Adam optimizer with an initial learning rate
(η) of 5 × 10−4. For the Lagrangian model, separate
Adam optimizers were used for main model parameters
and Lagrangian multipliers, both with an initial learning
rate of 5× 10−4.

• Learning Rate Schedule: A step-down learning rate
scheduler was applied, reducing the learning rate by a
factor of 0.5 (for Baseline and Softmax) or 0.05 (for
Lagrangian) every 25 epochs.

• Regularization: Gradient clipping with a maximum L2
norm of 1.0 was applied to prevent exploding gradients
during training.

• Batch Size: Training was performed using a batch size
of 64 sequences.

• Physics Weight: The weighting factor α for the Lphysics
term was set to 10−4 for all models. For the Lagrangian
model, an additional weight β = 0.1 was applied to the
Lconstraints term.

• Epochs: Each model was trained for 50 epochs.

IV. RESULTS AND DISCUSSION

This section presents a comprehensive analysis of the pro-
posed models’ performance, focusing on quantitative evalu-
ation of first-step prediction (3 hours ahead) RMSE and a
discussion of the observed trends and their implications.

Table 3 shows the first-step Root Mean Squared Error
(RMSE) for the Baseline, Softmax, and Lagrangian models
across a suite of oceanic and atmospheric variables. A clear
trend of improvement is observed for the fusion-based models
compared to the Baseline, especially for wave-related and
temperature variables.

The most substantial relative improvements occurred in the
prediction of air temperature (ATMP), sea surface temperature
(WTMP), and average wave period (APD). For example, the
RMSE for WTMP dropped from 0.2286 to 0.1793 with the
Softmax model. These gains can be attributed to:

1) Spatiotemporal Smoothness: Variables like tempera-
ture evolve more smoothly in space and time, aligning
well with the inductive bias of fusion models that
leverage weighted averaging and regularization.
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Figure 1. Model Architecture. Note that the wind inputs from multiple sources and fusion weights training is used only during training in the loss function
calculation. The testing loop proceeds as normal.

2) Low Spatial Variability: ATMP and WTMP are gov-
erned by large-scale synoptic systems, making them
more amenable to fusion from multiple sources. Fusion
reduces noise and integrates consistent large-scale pat-
terns effectively.

These variables also tend to have higher signal-to-noise
ratios, enhancing the ability of models to generalize from
reanalysis and auxiliary data sources.

Moderate improvements are also seen in wave-related vari-
ables (WVHT, DPD, APD) and wind speed (WSPD), suggest-
ing that fusion helps smooth out some of the high-frequency
noise or discrepancies among sources.

Interestingly, wind vector components (u10 and v10) show

degraded performance under fusion. These variables are sub-
ject to rapid and localized changes influenced by turbulence,
topography, and mesoscale systems. Pointwise buoy observa-
tions may not align with gridded inputs (like ERA5), and
fusion could oversmooth sharp transitions or localized bursts,
reducing apparent accuracy.

Fusion models, especially the Lagrangian variant, demon-
strate strong performance for coherent variables like temper-
ature and wave metrics. Their inductive bias toward smooth-
ness and large-scale consistency aligns with the physics and
statistical characteristics of these variables. However, for high-
variance, small-scale phenomena like wind vectors, fusion
may inadvertently degrade performance. This does not imply
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TABLE 2. PHYSICS CONSTRAINTS APPLIED TO FUSION MODELS

Constraint Formula Basis Weight

Wave Development Limit ReLU(WVHT − 1.3× 0.02× GST2) Pierson–Moskowitz spectrum 0.3
Wave Period Alignment ReLU(|DPD − 0.55× GST| − 1.5) JONSWAP spectrum relation 0.4
Wave Steepness Limit ReLU(WVHT − 0.1× g·DPD2

2π
) Non-breaking wave criterion 0.3

TABLE 3. FIRST-STEP PREDICTION (3 HOURS AHEAD) ROOT MEAN SQUARED ERROR (RMSE) COMPARISON (BEST VALUES IN BOLD)

Variable Baseline Softmax Lagrangian

GST 1.1134 1.1217 1.1196
WVHT 0.1988 0.1961 0.1945
DPD 0.9134 0.9038 0.9032
APD 0.3305 0.2996 0.2964
MWD 0.4713 0.4362 0.4353
ATMP 0.3783 0.3767 0.3691
WTMP 0.2286 0.1793 0.1799
WSPD 0.9521 0.9477 0.9510
DEWP 0.5302 0.5268 0.5304
u10 6.5590 9.9120 9.8987
v10 5.8451 14.8446 14.8560

model failure but highlights a resolution mismatch and the
challenges of noisy labels in wind observations. To address
this, future work should explore hybrid or multi-scale loss
structures that balance smoothness with local adaptability.
Adaptive regularization or uncertainty-aware weighting may
help retain fidelity in turbulent regimes while maintaining the
benefits of fusion elsewhere.

A. Additional Physics Constraints
Beyond wind speed consistency and temporal smoothness,

the following physics-based penalties, computed from the GFS
or ERA5 fields, can further improve forecasts. Each constraint
is tagged with the approach it benefits most and a brief
rationale:

• Boundary-Layer Momentum Balance (Turbulence-
driven). In the lowest ∼100 m the Coriolis force is
negligible, so we can enforce a non-rotating, turbulent
momentum balance forced by the wind at the layer top.
Let τ be the turbulent stress tensor and Fturb the wind-
driven forcing. We then penalize deviations from

ρ
∂u

∂t
+ ρ (u · ∇)u = −∇p+∇· τ + ρFturb,

via

LBL = E
[∥∥ρ ∂tû+ρ (û ·∇)û+∇p̂−∇· τ̂ −ρ F̂turb

∥∥2].
(Best addressed via high-frequency observations + tur-
bulence parameterizations.) This leverages detailed mea-
surements to capture rapid, subgrid-scale fluctuations that
a coarse grid would miss.

• Hydrostatic Balance (Grid-resolved). Using pressures
at multiple levels (e.g. 925 hPa, 850 hPa) we can ap-
proximate

∆p̂

∆z
= − ρ̂ g, ρ̂ =

p̂

Rd T̂
.

Anchoring p̂surf with buoy measurements, we can penal-
ize any violation via

Lhydro = E
[(

∆p̂
∆z + ρ̂ g

)2]
.

(Resolved accurately on a typical numerical grid.) Large-
scale pressure gradients vary smoothly over kilometers,
so a grid model naturally enforces hydrostatic balance
without needing high-frequency corrections.

• Moisture Consistency (Hybrid). We can enforce Clau-
sius–Clapeyron and relative-humidity relations from
ERA5 dewpoint and air temperature:

es(T ) = 6.112 exp
(

17.67T
T+243.5

)
, RH ≈ 100

e(DEWP)

es(ATMP)
.

The loss penalizes squared errors between (T̂ , T̂d, R̂H)
and these thermodynamic constraints:

Lmoist = E
[
∥
(
T̂ , T̂d, R̂H

)
− thermo∥2

]
.

(Combines observations for humidity with grid-model
thermodynamics.) Observations provide accurate mois-
ture content but grid models capture large-scale transport,
so a hybrid enforces both.

• Surface Energy Budget (Hybrid). Conservation of heat
at the surface implies

ρ cp
∂T

∂t
≈ Hs +Hl +Rn −Qh,

where Rn is net radiation and Hs, Hl, Qh are turbulent
fluxes. We penalize

Lenergy = E
[(
ρ cp ∂tT̂ − (Hs +Hl +Rn −Qh)

)2]
.

(Requires both grid-scale radiative fields and observa-
tions of fluxes.) Radiative inputs are well resolved on
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the grid, but surface fluxes fluctuate rapidly and need
observational constraints.

• Mass Continuity (Grid-resolved). Assuming incom-
pressible horizontal flow, any nonzero divergence is pe-
nalized:

Lmass = E
[
(∇· û)2

]
.

Horizontal winds can be taken directly from ERA5 or
buoy observations, but this balance is naturally enforced
on a resolved grid. (Grid models handle continuity inher-
ently over large scales.)

B. Limitations and Future Work

The current model enforces only wind speed and smooth-
ness physics, leaving out important couplings such as mois-
ture, energy, and large-scale balance. It is a single-location
model without spatial gradients, which limits its ability to
conserve mass or energy across a region. Moreover, the coarser
resolution of ERA5 and GFS fields compared to buoy data can
introduce alignment errors. In such cases, it is better to handle
numerical data and observations separately, as is common
in data assimilation. Moreover, since buoy data represent
turbulence scale phenomena which is not incorporated in
global/regional models, physics loss can be independently ap-
plied to the fusion of numerical data, apart from observations.

From the experimental setup described in the paper, the
method succeeds when the true physical parameter lies within
the span of the available data sources. A natural concern is
what happens if the optimal value falls outside this range, i.e.,
if all data sources are biased. In such scenarios, incorporating
the governing PDEs as an additional “data source” within
the framework ensures that predictions remain physically
consistent.

Future work includes incorporating spatial embeddings us-
ing convolutional or graph modules to enforce conservation
of mass, momentum, and energy over regions. We also plan
to apply multiscale constraints that address synoptic-scale
pressure and hydrostatic balance as well as subdaily energy
and moisture budgets. Adaptive scheduling of Lagrangian mul-
tipliers will help gradually increase physics penalties during
training to avoid conflicts with data-driven loss. Additional
extensions include modeling ocean-atmosphere coupling with
a mixed-layer sea surface temperature model and improving
uncertainty quantification through ensembles or Bayesian net-
works calibrated with ERA5 error statistics.

V. CONCLUSION

This study developed and evaluated multi-source fusion
architectures for accurate short-term forecasting of oceanic
and atmospheric variables, addressing key limitations of ex-
isting data-driven and traditional numerical weather predic-
tion models. Integrating heterogeneous data sources (buoy,
ERA5, NOAA) through fusion models consistently improved
predictive performance compared to a Baseline LSTM model
relying on single-source observations. Multi-source fusion

architectures offer a compelling improvement over single-
source models for short-term forecasting of oceanic and at-
mospheric variables. Across a diverse set of targets, fusion
consistently improves precision for parameters characterized
by smooth, large-scale dynamics, most notably wave metrics
and temperature fields, by leveraging complementary informa-
tion from reanalysis, and observational products (buoys). This
trend underscores the ability of models to take advantage of
spatio-temporal coherence and reduce noise when integrating
heterogeneous inputs.

Although fusion models showed a trade-off in performance
for wind components (u10, v10), highlighting the challenge of
balancing global physical consistency with capturing localized,
high-variance wind phenomena, the overall benefits for buoy
forecasting systems are clear. These findings emphasize the
value of physics-informed constrained machine learning in
enhancing the reliability and interpretability of environmental
forecasts. Future work will extend the constraint set to include
large-scale balances (boundary layer momentum, hydrostatic)
and energy budgets, and will explore dynamic fusion weights
and spatial embeddings to better reconcile global coherence
with local fidelity. This research lays the groundwork for
robust, physically consistent data-driven forecasting systems
vital to maritime and climate-related applications.
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Abstract— This study presents a numerical investigation into 

the hydrodynamic behavior and control of an Autonomous 

Underwater Vehicle (AUV) operating in current-affected 

marine environments. Initially, a self-propulsion test has been 

conducted to determine the optimal propeller rotational speed 

required to overcome the AUV’s hydrodynamic resistance 

during a steady, straight-line motion. Subsequently, the effect 

of the lateral marine current has been examined, introducing 

additional transverse resistance that require dynamic 

adjustments in both rudder deflection and propeller rotational 

speed to keep a fixed forward speed. Therefore, a parametric 

analysis of the AUV's response to varying control 

configurations is investigated, focusing on the effects of rudder 

deflection angles and propeller rotational speeds on the surge, 

sway, and yaw motion. The overall numerical approach is 

validated using the propeller open water experimental data. 

The results highlight the effectiveness of coupled 

hydrodynamic simulation and control input strategies in 

predicting and managing AUV behavior in complex and 

dynamic marine environments. 

Keywords-Autonomous Underwater Vehicle (AUV); Self 

propulsion; Marine Currents; Hydrodynamic Simulation;  

Propeller Performance. 

I.  INTRODUCTION  

Autonomous Underwater Vehicles (AUVs) have become 
indispensable tools across a broad spectrum of scientific and 
industrial domains. Their deployment enables operations that 
are hazardous, impractical, or impossible for human divers, 
particularly in deep-sea exploration where AUVs facilitate 
the discovery and detailed mapping of previously 
inaccessible marine environments [1]. Beyond exploration, 
AUVs play a crucial role in conducting oceanographic 
experiments, performing seabed surveys for geological and 
geographical research, and acquiring high-resolution data in 
real time [2]. In response to these growing demands, 
considerable research efforts have been directed toward 
enhancing the hydrodynamic efficiency and autonomous 
capabilities of AUVs. A key challenge lies in 
comprehensively understanding the complex fluid dynamics 
around AUVs, which is complicated by the presence of 
multiple interacting components such as propellers, rudders, 
and control fins [3].  

Moreover, the remote and often prolonged nature of 
AUV missions imposes stringent requirements on autonomy 
and control systems. AUVs must operate independently in 
dynamic and often unpredictable underwater environments, 
necessitating sophisticated control algorithms, robust 
navigation systems, and efficient energy management 
strategies to maximize operational range and mission 
duration [4] [5]. 

The AUVs have attracted considerable research interest. 
Honaryar and Ghiasi [6] introduced a bio-inspired hull 
design modeled after the catfish Hypostomus. Based on 
numerical simulations and experimental studies, they 
demonstrated an approximately 99% improvement in the 
hydrodynamic stability. Yu et al. [7] investigated the 
Underwater Radiated Noise (URN) through a coupling of 
Computational Fluid Dynamics (CFD) with Lighthill’s 
acoustic analogy, and these investigations allow 
identification of cavitation and propeller vibrations as 
principal noise sources. Similarly, Wu et al. [8] performed 
physics-based simulations of a free-running propeller-driven 
AUV. The results revealed transient thrust fluctuations and 
wake structures that are critical for understanding propulsion 
efficiency. Environmental interactions, such as wave-current 
coupling, further complicate AUV performance [9]-[14]. 
Ding et al. [9] numerically analyzed the DARPA Suboff 
submarine with a pump-jet propulsor operating near the free 
surface. Min et al. [10] introduced a hybrid CFD and system 
identification approach to model multi-propeller AUV 
maneuvering, enabling accurate extraction of hydrodynamic 
parameters for control system design. Raja et al. [11] 
explored unmanned amphibious systems integrating aerial 
and marine domains via multi-domain simulations, 
highlighting innovative propulsion and control strategies for 
enhanced marine surveillance capabilities. The effects of 
control surface deflections and hydrodynamic interactions 
among multiple AUVs have also been extensively studied. 
Dantas and de Barros [12] employed Reynolds-Averaged 
Navier-Stokes (RANS) CFD to capture nonlinear 
hydrodynamic forces on hulls and control surfaces, whereas 
Rattanasiri et al. [13] and Hong et al. [14] analyzed 
hydrodynamic interactions within tandem AUV formations. 

Further studies have examined propeller-induced 
interactions and wave effects [15]-[21]. Liu et al. [15] 
reported thrust enhancements of up to 7% for two propeller-
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driven Unmanned Underwater Vehicles (UUVs) in 
formation. Tian et al. [16] employed two-phase CFD to 
analyze wave impacts on an axisymmetric AUV near the 
surface, revealing lift and drag sensitivity to wave 
parameters. Liu et al. [17] numerically evaluated the UUV’s 
hydrodynamics and self-propulsion near the seabed. 

Despite the extensive literature concerning the 
hydrodynamics of AUVs, a significant research gap persists 
in thoroughly examining the coupled effects of propulsion 
and stability under time-varying marine currents. Previous 
studies have primarily addressed individual aspects such as 
hull design, propeller performance, or specific environmental 
interactions. However, the combined influence of lateral 
current forces on AUV propulsion and trajectory stability has 
not been systematically investigated using high-fidelity 
numerical simulations. This omission is critical, as lateral 
currents can substantially modify hydrodynamic loads, 
induce yaw or drift, and ultimately degrade navigational 
accuracy. 

The present study attempts to fill this gap by conducting 
a simulation-based investigation of AUV propulsion and 
stability in current-affected environments. Employing RANS 
modeling, the work quantifies hydrodynamic responses and 
assesses how lateral disturbances impact straight-line 
motion. By providing detailed insights into the coupled 
behavior of the AUV and its operational environment, this 
research contributes to an integrated understanding of AUV 
performance under realistic marine conditions. 

The remainder of this paper is organized as follows. 
Section II provides a detailed description of the numerical 
modeling framework, including the AUV geometry, 
computational domain and boundary conditions, mesh 
configuration, and the numerical procedure. Section III 
presents the validation of the simulation methodology 
against experimental propeller data. Section IV discusses the 
results, while Section V concludes the study and outlines 
directions for future work. 

 

II. NUMERICAL MODELLING 
 

The numerical simulations conducted in this study—both 
for the self-propulsion analysis and for the AUV operating 
under current-affected conditions—were performed using the 
commercial CFD software ANSYS CFX [18]. Coupling with 
MATLAB was employed to support parameter control and 
data processing. This section provides a detailed description 
of the AUV's geometric components, including the hull, 
rudders, and propeller, as well as the numerical setup and 
modeling approach 

 

A. AUV Geometry 
 
The full scale self-propelled AUV utilized in this study 

consists of three main components: the hull, the finned 
rudder plates, and the propeller, as illustrated in Figure 1. 
The shapes of the nose and tail sections are determined from 
[19],  𝐿ℎ, 𝐿𝑐 and 𝐿𝑐 are the lengths of nose, body and tail 
sections, respectively. 𝐷𝐴 is the maximum diameter, n is an 
exponential parameter which can be varied to give 

different body shapes (𝑛 = 1.8 in the current study), and θ is 
the included angle at the tip of the tail. The total length of the 
AUV is 2 meters. Detailed dimensional parameters are 
provided in Table 1. 

The rudder blades (Figure 2) employ a flat-plate airfoil 
profile, characterized by a circular leading edge that has a 
radius of 4 mm and a trailing edge with a radius of 1.6 mm. 
The trailing edge of every rudder blade is positioned 1925 
mm from the nose of the AUV. The chord length of the blade 
varies linearly across the span, starting at 82 mm at the hub 
and tapering down to 7 mm at the tip. The DTMB 4119 
model propeller (Figure 3) has been selected to propel the 
vehicle. Its specific geometric details are presented in Table 
2. 

 

Figure 1.  The AUV Geometry. 

TABLE 1. MAIN PARAMETERS OF AUV HULL. 

          Parameters Value 

𝐷𝐴 0.2 m 

𝐿𝐴 2m 

𝐿ℎ 0.3m 

𝐿𝑐  1.2m 

𝐿𝑡  0.5m 

𝜃 20° 

 

Figure 2.  The Rudder Geometry. 

TABLE 2. DETAILED PARAMETERS OF THE DTMB 4119 PROPELLER. 

D(m) 0.1829 
Z 3 

Skew(°) 0 
Rake(°) 0 

Blade section NACA 66 

a=0.8 
Rotation direction Right 

 

Figure 3.  The DTMB 4119 Marine Propeller. 

B. Computational domain and Boundary conditions 

The computational domain (Figure 4) consists of a 

cylindrical volume that surrounds the AUV. Its dimensions 

are selected to reduce the influence of boundary effects on 

the flow field solution: the domain extends a distance of LA 

upstream from the inlet, 3LA downstream from the outlet, 

Lh Lt

DA

Lc

θ
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and 10DA in the radial direction outwards the far field, 

where LA is the length of the AUV is and DA is its diameter. 

To accurately capture the complex flow patterns near the 

propeller, the computational domain is segmented into two 

subdomains: One that rotates around the propeller and 

another that remains stationary, representing the outer flow 

domain. The flow around the propeller is modeled using a 

Moving Reference Frame (MRF) approach within the 

rotating region. The interface between the rotating and 

stationary subdomains is handled using a General Grid 

Interface (GGI) with a "frozen rotor" condition, which 

facilitates the transfer of flow variables and guarantees 

precise coupling between the two regions while maintaining 

stable and realistic flow dynamics. 
 

 

Figure 4.  Computational domain with boundary conditions. 

The boundary conditions were defined as presented in 
Figure 4. A no-slip wall condition was applied on the hull, 
rudder, and propeller surfaces. The propeller was modeled as 
a rotating wall. The presence of a lateral marine current 
introduces an additional velocity component, 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 
(Figure 5) which introduces additional hydrodynamic loads 
on the AUV. To maintain the desired forward speed and 
trajectory, it becomes necessary to adjust the rudder blade 
orientation angles and the propeller rotation speed 
accordingly. This control strategy forms the focus of the 
second part of our study. 

 

 

Figure 5.  Modeling of the Effect of Lateral Marine Currents. 

To account for the effect of the lateral marine current, 

the computational domain was modified by rotating the 

AUV about the z-axis by an angle αcurrent, defined as αcurrent 

=tan-1(Vcurrent/Vauv). Additionally, the inlet velocity was 

updated to incorporate both the AUV’s advance speed and 

the current velocity, as illustrated in Figure 5. Figure 6 

presents the modified computational domain used in the 

second part of this study. 

 

Figure 6.  Computational domain considering  the effect of lateral marine 

current.  

C. Mesh Setup 

 

A hybrid mesh was employed for the computational 

domain, consisting of structured elements around the 

propeller and rudder, and unstructured elements for the hull. 

Structured elements were also applied within the boundary 

layer regions surrounding the hull, propeller, and rudder to 

accurately capture near-wall effects. Additionally, local 

mesh refinement was implemented in regions with abrupt 

geometric changes, Such as the leading and trailing edges, 

as shown in figure 7. The computational domain consists of 

approximately 9 million elements, of which about 3 million 

belong to the rotary domain and 6 million to the stationary 

domain. 

 

Figure 7.  Surface Mesh: - (a) Hull - (b) Rudder - (c) Propeller.  

D. Numerical Procedure 

 
The self-propulsion point of the AUV, in straight-line 

mode, is defined as a combination of AUV constant speed 
and propeller Revolutions Per Minute (RPM) rate in which 
the propeller thrust force matches AUV hydrodynamic 
resistance. This resistance arises from various components, 
including the hull, control surfaces, such as rudders, and 
external appendages like sensors. From a mathematical 
standpoint, this condition corresponds to the propeller 
rotational rate at which the net force on the vehicle vanishes, 
consistent with Newton’s second law (1). 

 
𝑇 + 𝑅ℎ𝑢𝑙𝑙 + 𝑅𝑟𝑢𝑑𝑑𝑑𝑒𝑟 = 0                                      (1) 

 
Here, T denotes the thrust generated by the propeller, 

while Rhull  and Rrudder represent the hydrodynamic resistance 
of the hull and rudder, respectively. The procedure to 
determine the self-propulsion condition is based on an 
iterative process in which a numerical simulation is 
performed at each iteration. Once the simulation converges, 
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the relevant hydrodynamic forces are extracted through post-
processing. These values are then used to evaluate (1), which 
serves as the convergence criterion. Based on the obtained 
results, the propeller’s rotational velocity is updated using 
the secant method (2). This process is repeated iteratively 
until the self-propulsion condition is satisfied. 

 

{
𝑁𝑖+1 = 𝑁𝑖 − 𝐹𝑖 ×

𝑁𝑖−𝑁𝑖−1

𝐹𝑖−𝐹𝑖−1

𝐹𝑖 = 𝑇𝑖 + 𝑅ℎ𝑢𝑙𝑙𝑖
+ 𝑅𝑟𝑢𝑑𝑑𝑒𝑟𝑖

                         (2) 

 

When an AUV traveling along a straight path at steady 

speed encounters a current-affected environment with lateral 

flow (Figure 8), it experiences additional hydrodynamic 

forces. These forces induce sway and yaw motions, causing 

the vehicle to deviate from the intended trajectory and 

potentially compromising its directional stability. In the 

absence of corrective control actions, the AUV will drift and 

may gradually veer off from its original heading. 

Consequently, active control systems are essential for 

preserving trajectory and heading stability under such flow-

disturbed conditions. 

 
Figure 8.  Effect of Cross-Current on AUV Stability and Trajectory. 

A series of numerical simulations was conducted to 
assess the AUV's response to lateral current disturbances 
while implementing different corrective control measures. In 
particular, two control parameters were investigated: the 
deflection angle of the upper and lower rudder blades, 
referred to as 𝛼𝑟𝑢𝑑𝑑𝑒𝑟  throughout this study, and the 
rotational propeller rate, denoted as N(rpm).  

 
 

III. VALIDATION 
 

To validate the numerical methodology, the 

hydrodynamic performance of the E779A marine propeller 

is evaluated through numerical simulations. This specific 

propeller has been extensively investigated both numerically 

and experimentally in the literature [20] [21]. Simulations 

were performed to compute the open water characteristics, 

which are then compared with the experimental data 

available in [20]. The open water characteristics illustrate 

the propeller's performance in a uniform flow field, and are 

expressed using several key dimensionless parameters: the 

advance coefficient J, the thrust coefficient 𝐾𝑇, the torque 

coefficient 𝐾𝑄, and the open water efficiency η. During the 

simulations, the rotational speed is maintained at a constant 

value of 11.7881 rps, while the inflow velocity is varied to 

alter the advance coefficient J and three operating 

conditions were tested. The comparison of the numerical 

results to the experimental data for thrust and torque 

coefficients is summarized in Table 3. 

TABLE 3. COMPARISON OF THRUST AND TORQUE COEFFICIENTS UNDER 

NON-CAVITATING OPEN-WATER CONDITIONS. 

𝐽 𝐾𝑇𝑁𝑈𝑀
 10𝐾𝑄𝑁𝑈𝑀

 𝑒𝑟𝐾𝑇
(%) 𝑒𝑟𝐾𝑄

(%) 

0.348 0.409 0.685 0.362 1.587 

0.747 0.217 0.413 -2.118 1.99 

0.946 0.119 0.267 -5.17 4.871 

 The deviations in thrust and torque coefficients range from 

0.36% to 5.17%, indicating a significant level of 

concordance with experimental data and affirming the 

model's validity under open-water conditions. 

IV. RESULTS AND DISCUSSION 

 

A. Self-Propelled AUV 

The initial study aims to determine the self-propulsion 

condition of the Autonomous Underwater Vehicle (AUV) 

described above. This is achieved using a Computational 

Fluid Dynamics (CFD) approach based on RANS equations, 

in conjunction with a MATLAB script, following the 

computational procedure outlined in Figure 9. The AUV is 

assumed to travel in a straight trajectory at a steady speed of 

5 m/s. The self-propulsion condition is obtained using the 

secant method, which requires two initial estimates for the 

propeller rotational speed, denoted as  N0 and N1. These 

initial speeds are established at 1400 rpm and 1500 rpm, 

respectively. The convergence criterion is defined as 𝑒 =

 
|𝐹|

𝑇
< 0.001, where F represents the residual force and T is 

the thrust, ensuring that the solution reaches an acceptable 

level of accuracy. 

Figure 9 illustrates the behavior of the Secant 

method during the numerical assessment of the self-

propulsion condition. In Figure 9(a), the normalized 

residual force, is plotted against the iteration number 

to assess convergence. The method required a total of 

six iterations, including the two initial guesses, to 

reach convergence. Figure 9(b) depicts the residual 

force F(N) as a function of the propeller rotational 

speed N. The red markers trace the sequence of 

estimates generated by the Secant method, clearly 

indicating convergence toward the zero-residual point. 

The dashed horizontal line at F(N)=0 represents the 

condition of exact thrust-resistance equilibrium. The 

intersection confirms that the propeller generates 
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exactly the thrust required to overcome the vehicle’s 

hydrodynamic resistance. 

 

Figure 9.   Convergence and residual force behavior during the 
computation of the self-propulsion condition using the Secant method: (a) 

Residual force convergence over iterations; (b) Residual force F(N) as a 

function of propeller rotational speed. 

      Table 6 displays the propeller thrust alongside the 
corresponding hydrodynamic resistance forces generated by 
the hull and rudder at an AUV velocity of 5 m/s. As 
expected, the hull resistance constitutes the majority of the 
total resistance, primarily due to its extensive wetted surface 
area. Approximately 67.5% of the hull resistance is attributed 
to viscous forces, as demonstrated by the wall shear stress 
distribution illustrated in Figure 10. Elevated shear stress 
values are particularly prominent near the bow and along the 
midsection of the hull. In comparison, the rudder contributes 
around 21.1% to the total resistance, with pressure forces 
being the predominant component. This is supported by 
Figure 11, which shows the static pressure distribution along 
the AUV’s mid-plane and highlights a pronounced pressure 
gradient between the rudder’s leading and trailing edges. 
This behavior is largely influenced by the geometry of the 
rudder, which is characterized by a thin profile featuring 
rounded leading and trailing edges. Figure 12 further 
illustrates this effect, depicting a relatively smooth flow 
along the hull surface, in contrast to the significantly 
disturbed flow observed in the wake region downstream of 
the rudder. 

TABLE 6. PROPELLER THRUST AND THE CORRESPONDING HULL AND 

RUDDER RESISTANCE FORCES AT AN AUV SPEED OF 5 M/S. 

 T R_hull R_rudder 

Value(N) 81.28 -60.18 -21.10 

Pressure Force (%) 104.6% 32.5% 84% 

Viscous Force (%) -4.6% 67.5% 16% 

 

Figure 10.  Wall shear stress distribution over the hull surface. 

 

Figure 11.  Pressure field around the AUV. 

 

Figure 12.  Velocity field around the AUV. 

 

B. AUV in Lateral Current Affected Environment 

The second part of this study investigates the behavior of 
the AUV in an environment influenced by a lateral current, 
with particular focus on the effects of varying rudder 
deflection angles and propeller rotational speeds. To achieve 
this, a series of simulations were conducted using different 
control configurations, combining various rudder deflection 
angles and propeller speeds. The objective was to identify 
the optimal control settings that enable the AUV to sustain a 
straight and steady trajectory, in accordance with Newton’s 
second law of motion. 

Figure 13 presents the net forces acting on the AUV in 
the x-direction (surge) and y-direction (sway), as well as the 
net moment around the z-axis (yaw), for various control 
configurations.  

1) Effect of Propeller Rotational Speed on Surge 

Force 

As the propeller's rotational speed increases, it produces 

increased thrust. This thrust counteracts the hydrodynamic 

resistance imposed by the hull and rudder, leading to a 

reduction in the net surge force as illustrated in Figure 13(a). 
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Thus, an inverse correlation is observed between propeller 

speed and the net force in the x-direction. 

 

Figure 13.  AUV Hydrodynamic Response in (a) Surge, (b) Sway, and (c) 

Yaw under Varying Control Inputs. 

2) Effect of Rudder Deflection on Surge and Sway 

Forces 

     Increasing the rudder deflection angle amplifies the 

pressure gradient acting on the rudder blades. This effect is 

visualized in Figure 14, which shows the pressure field 

around the rudder at N=1800 rpm for two distinct rudder 

deflection angles αrudder=20°and αrudder =30°. A clear increase 

in pressure gradient across the rudder is apparent with 

increased deflection, leading to enhanced pressure forces 

induced by the rudder. As a result, both surge and sway 

forces increase with rudder deflection at a given propeller 

speed as illustrated in Figure 13(a) and 13(b). 

3) Rudder’s Role in Compensating the Yaw Moment 

To counteract the negative yaw moment generated by the 

hull, the rudder produces a moment in the positive z-

direction. This is achieved by deflecting the rudder to 

generate a pressure-induced moment that opposes the hull’s 

contribution. For the configuration with a rudder deflection 

angle of αrudder =20° and rotational speed of N=1800 rpm, the 

rudder contributes up to 99% of the total yaw moment. This 

dominance of the rudder’s pressure force explains the 

observed increase in net yaw moment with increasing rudder 

deflection, as illustrated in Figure 13(c).   

 

Figure 14.  Pressure Field around AUV for N=1800 rpm   in Current-

Affected Environment: a) αrudder=20°and b) αrudder =30°. 

4) Interaction between Propeller Speed and Rudder-

Induced Forces 

For a fixed rudder deflection angle, increasing the 

propeller rotational speed accelerates the flow around the 

rudder, consequently amplifying the pressure differential 

across its surface.  

 

Figure 15.  Pressure Field around AUV with αrudder=20°.  in Current-

Affected Environment: -(a):N=1600 rpm and b) N=1800 rpm 

This phenomenon is also depicted in Figure 15, which 

contrasts the pressure field around the rudder at αrudder=20° 

for N=1600 rpm and N=1800 rpm. The increased flow 

velocity at higher propeller speeds results in a more 

pronounced pressure gradient across the rudder, thereby 

increasing the sway force. 
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V. CONCLUSION AND FUTURE WORK  
 

This study presents a simulation-based analysis of the 

propulsion and stability characteristics of an Autonomous 

Underwater Vehicle (AUV) during both straight, constant-

speed motion and in current-affected environments. The 

AUV model, consisting of the hull, rudder, and propeller, 

was simulated under steady-state conditions using the 

RANS. The CFD methodology was validated against 

experimental data from open-water propeller tests, showing 

good agreement with experimental results, thereby 

confirming the reliability of the adopted numerical approach. 

A self-propulsion condition was established by coupling 

CFD with the secant root-finding method to determine the 

required propeller rotational speed and corresponding thrust 

to balance the hydrodynamic resistance forces. This method 

demonstrated high accuracy and robust convergence. 

Additionally, the behavior of the AUV in a lateral current 

environment was explored through a series of simulations 

that varied control inputs—particularly focusing on rudder 

deflection angles and propeller rotational speeds. The 

outcomes were analyzed with particular attention to the 

resulting surge, sway, and yaw responses. Findings reveal a 

significant interdependence between the control parameters 

and the hydrodynamic forces and moments, highlighting the 

importance of precise actuation for maintaining trajectory 

stability in flow-disturbed environments. As a future 

direction, this research will be extended through the 

integration of optimization tools and Artificial Intelligence 

(AI) algorithms. The goal is to identify optimal control 

configurations that enable the AUV to effectively navigate 

complex and dynamic oceanic environments, which include 

strong marine currents and surface wave disturbances, thus 

enhancing its operational robustness and mission success. 
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Abstract—Acoustic trawl surveys use echosounders to collect 

acoustic backscatter, which is categorized and combined with 

trawl samples to generate abundance indices for fisheries 

assessment models. Machine learning models are being 

developed to automate the acoustic target classification step, 

and it is necessary to evaluate their performance in 

comparison to manual processes and earlier model versions. 

The data processing pipeline consists of several stages, utilizing 

various software, versions, and libraries. Docker containers 

provide flexibility, especially for advanced pipeline steps. Some 

steps use Python virtual environments. Clearly defining data 

models between processing steps is necessary and adopting 

community standards where applicable is recommended. We 

have set up a system to combine and run the pipeline steps, and 

we have used it to compare different ML models. We are 

currently working to further streamline the process. 

Keywords- acoustic trawl surveys; machine learning; micro 

services; containerisation; data linage; MLOps; CI/CD. 

I.  INTRODUCTION 

Data from acoustic trawl surveys are an important source 
of information for fisheries assessments [1]. Data are 
collected with echosounders mounted on research vessels 
and individual fish are sampled, usually from trawls. The 
echosounder data are calibrated and used to enumerate the 
abundance of fish, whereas the physical samples are used for 
ground truthing the acoustic registrations and to obtain age 
and other biological parameters used by the assessment 
models. More recently, autonomous platforms are being used 
to augment the acoustic data collection [2]. 

The process of allocating the acoustic backscatter to 
species, the Acoustic Target Classification (ATC) step, is in 
most cases a manual process. There are methods to automate 
ATC [3], and both the shape of the marks on the echogram 
[4], as well as the response between different echosounder 
frequencies [5][6] are being used. 

Machine learning methods are well suited for this 
process, and convolutional neural networks have been 
developed for ATC [7][8]. Training supervised machine 
learning models requires training data, and the historical 
records of manually annotated acoustic data is a rich source 
of information but requires careful preparations before use. 
The data sets are highly imbalanced since most of the 
echograms contain no fish, and different methods for training 
these methods have been developed [9]. Methods that require 
less labels during training are also being developed, and both 
semi supervised and fully supervised models [10][11] are 
available [12]. 

To estimate the effect of the different models on the 
survey results, the different models are run on the same data 
set and are further processed using the standard data 
processing pipeline for the survey. This way we can evaluate 
the effect of the different models and compare them to the 
official estimates [13]. 

To efficiently run the data processing pipeline with 
various configurations and a range of different software and 
software environments, a digital infrastructure is needed. The 
objective is to have a pipeline that is modular, has sufficient 
data provenance, i.e., track the dataset and model used in the 
different runs, and has the flexibility to be run with different 
settings and input data to evaluate different methods. The 
objective of this paper is to describe the current approach, 
and the plans for extending and operationalizing the pipeline. 
We start by describing the different steps in the data 
processing pipeline, followed by how we operationalize it. 
Finally, we describe the plans and future developments. 

II. THE DATA PROCESSING PIPELINE 

The different steps in the pipeline (Figure 1) have been 
described earlier, c.f. the supplementary material of [13], and 
are briefly summarized here. The different steps have their 
own git repositories and are versioned and maintained 
separately. 
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Figure 1.  The data procesing pipeline for automated acoustic target classificaiton. Figure reprinted from [13] under CC-BY 4.0. (A) The preprosessing step 
converting the the raw data and annotations and creating a mask that removes data below the sea bed. (B) The Machine learning models (C) The survey 

estimation step.  

A. Data preprocessing 

The data are preprocessed (Figure 1A) from the native 
data format from the echosounder manufacturer (Kongsberg 
Discovery, Horten, Norway) to a self-documented gridded 
format (Figure 2). The data is gridded to the same grid as the 
primary 38 kHz frequency. We have used the Zarr store [14], 
which is a chunked cloud friendly format similar to NetCDF. 
The Python Xarray package [15] can work seamlessly 
between NetCDF and Zarr, and offer a convenient method 
for working with the data. The data processing is done using 
Korona (Marec, Bergen Norway) combined with the python 
libraries Zarr and Xarray, and results in a three-dimensional 
gridded data structure with dimensions “range”, “time” and 
“acoustic frequency”. 

The labels are read from the Large Scale Survey System 
(LSSS) [16] “work” files (Figure 3). LSSS is the standard 
tool at the Institute of Marine Research (IMR) for annotating 
the acoustic data. The annotations are converted to the same 
grid as the echosounder files resulting in a gridded data 
structure with dimensions “range”, “time” and “acoustic 
category”, where the “range” and “time” dimensions are 
identical to the preprocessed echosounder data. A bottom 
detection algorithm is used to mask the data below the 
seabed. 

 

Figure 2.  The 200 kHz channel slice in range and time from the regridded 

data structure. 
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Figure 3.  The annotations converted from the LSSS system. 

B. Running ML model predictions 

Several machine learning models are developed, mostly 
using PyTorch [17], and trained on segments of processed 
acoustic data to detect and classify acoustic categories and 
background. To prevent empty water segments from 
dominating the training dataset, an effective sampling 
strategy must be used during training [7][9]. 

The ML models were trained on a NVIDIA GTX 1080 Ti 
GPU using the PyTorch framework. The inference is run on 
a Dell PowerEdge R730 server with 80x Intel(R) Xeon(R) 
CPU E5-2698, 768GB memory, two Tesla P100-PCIE-12GB 
graphical processing units running CUDA version 13.0 and 
rootless docker. 

The models return predictions of size 256 x 256 samples, 
and the data segments are extracted using a sliding window 
with 40 samples overlap to mitigate edge effects. SoftMax is 
applied to the predictions to obtain normalized class scores 
for each sample, and the predictions are subsequently 
stitched together [7] to a data structure that is the same as the 
annotations, except that the values are SoftMax predictions 
instead of binary annotation data. 

C. Model thresholding and abundance estimates 

To convert the SoftMax predictions to binary masks 
identical to the annotations, a thresholding approach is 
applied, c.f. [13] for details. The predictions can then be used 
interchangeably with the annotations to calculate the 
integrated backscatter (nautical area scattering coefficient, 
NASC) in a 0.1 nautical mile by 10 m depth channels. 

The survey estimates are calculated using the StoX 
software [18], where the NASC values from the manual 
annotation process are replaced with the ML generated 
reports to evaluate the effect on the survey estimate. This has 
allowed us to compare the performance of different ML 
models in relation to the survey estimate. The general 
impression is that which training years are used are more 
important than the various model and training approaches, 
c.f. [13] for more details. 

III. OPERATIONALIZING THE PIPELINE 

Each step in the pipeline is an individual step connected 
by data structures shared by the connected components. The 
individual steps use various software and tools with different 
programming languages and versions of libraries. 
Maintaining computational environments for all the 
individual steps can be challenging to set up in a 
conventional compute environment, especially when the 
pipelines are composed of components across different 
disciplines or organizational units. 

In our case, each individual step in the pipeline is 
currently handled somewhat different depending on its 
maturity. The preprocessing steps (Figure 1A) are embedded 
in individual Docker containers, and the Docker image is 
defined in a versioned Dockerfile that describes the 
environment. The machine learning models (Figure 1B) and 
the thresholding and report generation steps (Figure 1C) are 
run in Python using virtual environments (venv), and the 
environments are specified in a requirements file in 
individual git repositories. A working python environment is 
needed to run these. The survey estimate is packaged in a 
Docker container running R and StoX [18] and are specified 
in a Dockerfile. 

In cases where a step is fully coded in python and uses a 

set of python libraries, the use of Python virtual 

environments works well. However, different environments 

are used for different steps, and the approach is restricted to 

python only. Container technologies, e.g., Docker, to 

package the individual steps are a powerful technology that 

allows us to set up the compute environment with a range of 

different software and programming languages. It also 

allows the different steps in the pipeline to be upgraded and 

rolled out independently of each other. This is highly 

flexible and allows a pipeline to be coded up using any 

programming language or software as long as it can be run 

in a container, i.e., headless and scripted.  

After the individual steps are coded and set up in separate 

containers or environments, they need to be orchestrated. 

This must also include documentation of the data 

provenance, i.e., which versions of the various data and 

algorithms were used to generate the result. Except for the 

preprocessing step, we are currently manually running the 

steps using shell scripts and ad hoc provenance. 
We have deployed an automated continuous integration 

and continuous delivery (CI/CD) pipeline using a GitLab 
instance running on IMRs servers. This approach improves 
efficiency and reproducibility and keep track of version 
control throughout the preprocessing stages. When a new 
version of the preprocessor is made, the data set is updated. 
We do not keep earlier versions of the data sets, but we keep 
track of which version of the preprocessor that was used. The 
pipeline facilitates the orchestration of the three 
preprocessing tasks (Figure 1A), where each step is 
maintained in separate Git repositories and connected to a 
continuous integration and continuous delivery (CI/CD) 
pipeline. Each time modifications are made to the 
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repositories, it triggers a job within the pipeline, and this is 
manually initiated to execute the preprocessing workflow. 

The current CI/CD pipeline is effective in converting raw 
data to preprocessed data. However, it remains static in 
configuring experiments and managing different 
combinations of data and processing steps. It lacks flexibility 
for efficiently modifying or replacing components within the 
processing chain and for handling data provenance. 

IV. CONCLUSION AND FUTURE WORK  

Setting up the pipelines is a work in progress, and the 
maturity of the different steps varies. The preprocessing 
pipeline is at a more advanced stage, and we use that to test 
various approaches for orchestration.  

Regardless of technology, the data model that sits 
between the steps must be agreed upon and specified. This 
can be a challenging task unless the pipeline is well 
established. Community data conventions and open data 
formats should be used where possible. Since the pipeline is 
scripted, reprocessing the data is straight forward, but 
downstream code must be adjusted to accommodate changes 
in data formats.  

The containerization of the processing steps is 
particularly useful since it allows separation of concerns. 
Different groups and have full flexibility to use and maintain 
their part of the pipeline as they prefer, but it is important to 
define the steps to reflect the organizational units. 

The CI/CD is still in the works. Currently we have a 
system for the preprocessing step where the data is updated 
when a new version of the preprocessor is available. We are 
currently working on methods to more flexibly set up data 
processing pipelines where we can use different models or 
preprocessed data to generate the results.  

In conclusion, we have a clearly defined data lineage for 
the problem. The containerization approach is particularly 
useful and helps separation of concerns. The data models 
need to be upgraded to community standards where 
applicable, and we need a better orchestration of the pipeline 
to set up and track experiments and test the effects on new 
algorithms for the data processing. 
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Abstract—Accurate and sustainable monitoring of marine
biodiversity is crucial for effective fisheries management and
conservation. Traditional fish population assessments, relying on
manual annotation and invasive techniques, are labor-intensive
and potentially harmful to marine ecosystems. This work presents
a Semi-Supervised Learning (SSL) approach that leverages ex-
tensive unlabeled underwater video data to significantly enhance
object detection performance for fish species. By integrating the
YOLOv8 object detector with Multi-Object Tracking (MOT) al-
gorithms, specifically ByteTrack, a novel methodology is proposed
to generate high-quality pseudolabels from temporal sequences.
Iterative training incorporating these pseudolabels consistently
improved model precision and recall, with the best-performing
approach (ByteTrack with an extrapolated heuristic) demonstrat-
ing average precision of 90%, recall of 70%, mAP50 of 74%,
and mAP50-95 of 59%. Notably, scores improved substantially
over the baseline supervised model on all metrics. These results
underscore the potential of temporally informed pseudolabeling
in enhancing fish detection accuracy and robustness, reducing
reliance on manual annotations and supporting sustainable
marine monitoring practices.

Keywords-Image classifcation; machine learning; species recog-
nition; semi-supervised learning

I. INTRODUCTION

Traditionally, methods for monitoring marine ecosystems
include trawling, netting, and manual visual surveys by divers,
which are labor intensive, costly, and often disruptive to
habitats or producing bycatch. Less invasive methods using
underwater cameras, such as Baited Remote Underwater Video
(BRUV) and Remote Underwater Video (RUV), are often an
attractive alternative [1][2]. To process the large volumes of
collected video data, it is necessary to use automated analy-
sis tools, typically object detection models [3][4]. However,
training such models requires large amounts of high-quality,
labeled data, which is costly to produce.

To address this limitation, we here investigate semi-
supervised learning [5], an automated method to iteratively
generate training data sets using predictions from preliminary
models (pseudolabels) that are considered sufficiently reliable.
In contrast to earlier work, we selected the pseudolabeled data
to use based on temporal information (i.e., tracking) rather than
more commonly used confidence scores. This is particularly
advantageous in this setting, since an abundance of temporally
contiguous video or image data can be produced, but expert
annotation is time consuming and requires skilled curators.

The rest of the paper is structured as follows. In Section
II, we describe the data set and the method for generating
pseudolabels, as well as the training regime. In Section III,
we present the results, and select the best performing method

Figure 1. An example from the data set showing several annotated fish of
various species (Photo by Erling Svendsen, used with permission).

to investigate further. In Section IV, we discuss the results
and their implications, and propose an explanation for the
observations, before we conclude in Section V.

II. METHODS

For this study, we used a data set consisting of 1248 images
from a combination of sources (RUVs, photos by divers)
under different conditions and with variable resolutions (see
Figure 1 for an example). The annotation by experts from the
Institute of Marine Research include 10 categories (Figure 2):
corkwing wrasse (Symphodus melops; male and female), two-
spotted goby (Pomatoschistus flavescens), goldsinny (Cteno-
labrus rupestris, rock cook (Centrolabrus exoletus, cuckoo
wrasse (Labrus mixtus male and female), pollack (Pollachius
pollachius), ballan wrasse (Labrus bergylta), and unknown fish
that could not be labeled to the species level due to low
visibility or by being too distant from the camera. In addi-
tion, six unannotated videos from similar habitats were used
as sources of pseudolabeled frames for the semi-supervised
training. As some species were not present or very scarce in
the unlabeled data, the semi-supervised method is only trained
on five of the classes: male and female corkwing, two-spotted
goby, goldsinny, and ballan.

The object detection model used was YOLOv8 (Ultralytics,
2023), a state-of-the-art single pass object detector [6], com-
bined with two advanced tracking algorithms ByteTrack [7]
and DeepSort [8] to construct an iterative pipeline:

1. Base Model Training: An initial YOLOv8 model
(YOLOv8x, the largest variant) was trained using a smaller,
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Figure 2. The distribution of the classes of annotated objects in the data set.

manually annotated dataset. This provides the baseline for
performance evaluation.

2. Pseudolabel Generation using Temporal Information:
The trained model is then used to process unlabeled un-
derwater video recordings and extract pseudolabeled data as
illustrated in Figure 3. By integrating Multi-Object Tracking
(MOT) algorithms (ByteTrack and DeepSORT), frames with
objects that are missed or given low score by the detector can
still be identified with high confidence. Two heuristics were
investigated for selecting frames to generate pseudolabels:

A. Interpolated Intermediate Labels: This heuristic infers
an object’s presence in intermediate frames if it is detected by
the model in preceding and subsequent frames, and the MOT
algorithm assigns the same track ID. This method yields fewer
but potentially highly accurate pseudolabels.

B. Extrapolated Labels: This more inclusive approach re-
quires an object to be natively detected at least three times
consecutively. All subsequent detections of that object by the
MOT algorithm are included, forming an unbroken chain, even
if the native model fails to detect it in every frame. This
significantly increases the volume of pseudolabeled data.

3. Iterative Retraining: The pseudolabels generated are
combined with the original labeled dataset, and the model is
retrained. It is crucial to retain the original data to prevent
catastrophic forgetting of classes not present in the video
recordings. The learning rate of the AdamW optimizer is
reset at the start of each new training phase to facilitate rapid
adjustment and prevent trapping in suboptimal local minima.
This iterative process (pseudolabel generation followed by
retraining) is repeated for multiple cycles to progressively
improve the model.

Figure 3. The process for generating the base model and the four
pseudolabeled data sets (step 1 and step 2), using automated labeling of

video data, tracking, and label interpolation and extrapolation.

TABLE I. PERFORMANCE METRICS AFTER 100 EPOCHS OF TRAINING.

Model Prec Recall mAP50 mAP50-95
DS, inp 0.74988 0.56890 0.61023 0.47017
DS, exp 0.66251 0.56209 0.57969 0.45028
BT, inp 0.70776 0.53875 0.58142 0.44878
BT, exp 0.88792 0.62665 0.69120 0.52972

III. RESULTS

The study rigorously evaluated four configurations: Byte-
Track with interpolated intermediate labels, DeepSORT with
interpolated intermediate labels, ByteTrack with extrapolated
labels, and DeepSORT with extrapolated labels. Each configu-
ration was run for 100 epochs (50 supervised, followed by 50
semi-supervised with pseudolabels) which yielded the results
in Table I. We see that all models perform adequately, but
ByteTrack with extrapolated labels consistently outperformed
the other models.

In order to explore the limits of semi-supervised training, the
baseline and ByteTrack with extrapolation models were trained
for 250 epochs. In Figure 4, we can see how the different
components of the loss rapidly decrease both for training
(top row) and validation (bottom row) data, while the four
different performance measures increase correspondingly. We
also observe five distinct jumps in the graphs, these are caused
by introduction of new data and resetting of the learning rate
for each iteration, which cause an initial worsening of scores
before the model gradually converges again.

The performance statistics on the test set after 250 epochs is
shown in Table II. We see that using semi-supervised training
with ByteTrack and the extrapolated pseudolabeling scheme
results in substantial improvements for all metrics.

Per class improvements are shown in Figure 5. As expected,
classes present in the semi-supervised training data (shown
in solid colors) see substantial improvements on all metrics.
Classes not present (shown with faded colors) see slight
degradation in precision, and mAP, but surprisingly recall
improves also for these classes.
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Figure 4. Training from ByteTrack tracks with extrapolated labels for 250 epochs (one iterations of supervised followed by four iterations of
semi-supervised training).

TABLE II. PERFORMANCE OF BASELINE AND BYTETRACK WITH
EXTRAPOLATION MODELS AFTER EXTENSIVE (250 EPOCHS) TRAINING.

Model Prec Recall mAP50 mAP50-95
Base 0.75652 0.52468 0.57954 0.48811
BT, exp 0.90011 0.69644 0.73863 0.59468

IV. DISCUSSION

The most effective approach was ByteTrack combined with
the extrapolated heuristic. This configuration consistently out-
performed all other tested methods, as well as the baseline
supervised model. The results demonstrate that leveraging
temporal information through pseudolabeling significantly en-
hances fish detection accuracy and consistency. The substantial
improvements in precision, recall, and mAP for the pseu-
dolabeled classes, coupled with minimal negative impact on
other classes, validate the effectiveness of this approach in
mitigating annotation scarcity.

A crucial insight from this study is the progressive mitiga-
tion of initial model biases through iterative pseudolabeling.
For instance, a systematic error where parts of the monitoring
equipment were misclassified as "corkwing male" in early
iterations (Figure 6) was effectively corrected and eliminated
in later iterations using ByteTrack with extrapolated labels.
This highlights the self-correcting nature of the temporal
semi-supervised framework, guiding the model towards more
accurate predictions over time.

The choice of MOT algorithm also proved critical. Byte-
Track consistently outperformed DeepSORT in this semi-
supervised setup. We suspect the discrepancy is caused by the
use of Kalman filters in DeepSORT, which can interpolate

predictions even when the object is lost by the detection
model. While beneficial in predictable scenarios, this can
lead to inaccurate pseudolabels for fish due to their often
erratic movements, possibly creating an "off-policy" learn-
ing situation akin to the "Deadly Triad" in Reinforcement
Learning, which can impede stable convergence. ByteTrack,
by contrast, relies solely on the detector’s predictions, ensuring
a stronger alignment between pseudolabels and the model’s
current capabilities, thus avoiding such instability.

Semi-supervised learning has been used effectively in many
different settings, but selecting pseudolabeled data to train on
can be difficult. Using classifier confidence is an option [9],
but tends in our experience to improve the classifier where
it is already strong. Using augmentation [10] or taking class
balance into account [11] may help to mitigate this, but by
extracting presudolabels from temporal information removes
(or at least reduces) the dependence on the classifier itself
from the selection process. Although temporal pseudolabeling
methods have been attempted before (e.g., [12]), our approach
distinguishes itself by targeting the model’s weaknesses rather
than reinforcing its strengths. By relying on MOT algorithms
to generate labels specifically where the base model fails to
detect objects, it directly addresses gaps in detection capability.

V. CONCLUSION AND FUTURE WORK

We have successfully demonstrated the significant potential
of semi-supervised learning leveraging temporal information
for enhancing object detection in marine life monitoring. By
integrating YOLOv8 with ByteTrack, a robust methodology
was developed to generate high-quality pseudolabels from un-
labeled video data, substantially improving model performance
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Figure 5. Precision (top left), recall (top right), mAP50 (bottom left) and mAP50-95 (bottom right) for baseline (red) and semi-supervised (blue) models.
Classes not present in the pseudolabeled data shown with faded color.

for fish species. This approach reduces the reliance on costly
and labor-intensive manual annotations, paving the way for
more sustainable and scalable marine life assessment practices.
The insights gained regarding iterative bias mitigation and
the critical role of MOT algorithm selection provide valuable
directions for future research and practical deployment in real-
world marine conservation efforts.
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Abstract— Target Strength (TS) is the logarithmic measure of 

the backscattered acoustic energy reflected toward a sound 

source when an acoustic wave encounters an organism. It 

depends on the organism’s size, shape, material properties, 

orientation, and the frequency of the wave, and thus carries 

information useful for identifying and characterizing marine 

organisms. Advanced broadband echosounders now allow 

detailed TS measurements of marine organisms over nearly 

continuous frequency ranges, which provide valuable 

information for biomass estimation and ecosystem monitoring. 

However, interpreting these TS measurements has 

traditionally relied on manual classification, which makes it 

difficult to extract biological characteristics for target 

classification or ecological analysis, especially given the 

complexity of broadband data. Physics-based backscattering 

models are versatile tools for modeling the TS frequency 

response given the shape and material properties of the 

scatterers. In this study, we employ an exact prolate spheroid 

model, representative of many marine organisms, to simulate 

broadband TS spectra for training machine learning models. 

These models aim to classify and characterize targets based on 

their TS frequency signatures. A hybrid one-Dimensional 

Convolutional Neural Network (1D-CNN) is proposed for the 

simultaneous classification (gas- vs. liquid-filled) and 

regression of geometric properties and compared against K-

Nearest Neighbors (KNN), Support Vector Machine (SVM), 

and Random Forrest (RF). Results show that while all models 

achieved perfect classification accuracy, the hybrid 1D-CNN 

clearly outperformed the others in parameter estimation. This 

demonstrates that simulation-driven machine learning can 

help overcome data scarcity and enable automated acoustic 

identification of mesopelagic organisms. 

Keywords-Acoustic target classification; machine learning; 

Convolutional neural network; prolate spheroid backscattering 

modeling. 

I.  INTRODUCTION 

Active acoustics is a versatile tool for monitoring marine 
life, offering unrivaled spatial and temporal resolution 
compared to other methods, such as net-based biological 
sampling, optical systems, or video recording. However, 
interpreting the collected echoes to classify organism size 
and species remains challenging. Converting acoustic data to 
biomass is especially difficult when the insonified volume 
contains mixed species and/or a diverse size distribution 

within the same species [1][2][3]. Broadband echosounders 
provide detailed spectra, but these are difficult to interpret 
manually, making large-scale analysis time-consuming and 
thereby motivating automated approaches. 

When an acoustic wave encounters organisms along its 
propagation path, the acoustic energy scatters in different 
patterns depending on the organism's size, shape, material 
properties, orientation, and the frequency of the wave [4][5]. 
A portion of this energy is reflected back toward the source, 
referred to as backscattering. Therefore, the backscattered 
signal—or its logarithmic measure, known as Target 
Strength (TS)—carries information that can be used to 
identify the object from which it originated. Since the TS of 
an organism varies with frequency, measuring TS over a 
broad, continuous frequency band provides more detailed 
information about the scatterers, thereby enhancing the 
ability to characterize organisms [6]. Broadband fisheries 
echosounders transmit frequency-modulated pulses, offering 
two main advantages [7][8]: (1) measurement across a nearly 
continuous frequency range, and (2) enhanced range 
resolution through pulse compression, which improves 
single-target detection. Therefore, the use of broadband 
echosounders improves the ability to identify organisms and 
to resolve their spatial distribution within aggregations, both 
of which are crucial for interpreting and converting acoustic 
echoes into meaningful biological information. 

Backscattering models are an essential tool for 
interpreting measured backscattered data from marine 
organisms [9]. Techniques to model acoustic backscattering 
range from analytical to numerical models. Numerical 
models can accommodate arbitrary geometries and 
inhomogeneous material properties, allowing detailed and 
realistic simulations [10]. However, their high computational 
cost can limit their practical use. Although most marine 
organisms have complex geometries and consist of 
inhomogeneous materials, backscattering models from 
canonical geometries with homogeneous material properties 
are often sufficient to acoustically represent key 
characteristics such as size, elongation, and orientation. For 
example, spherical models have long been used in fisheries 
acoustics due to their simplicity [11][12]. However, spherical 
models cannot capture elongation, which is a critical 
parameter for accurately representing many marine 
organisms or their main acoustic reflecting organ, e.g. gas-
bladder. 
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Figure 1.  Examples of TS(f) for prolate spheroids with parameters within the ranges in Table I. An illustration of a prolate spheroid with semi-major and 

semi-minor axes, a and b respectively, along with the incident angle , is shown in the upper left corner. 

 

Machine Learning (ML) techniques can be used to 
classify targets based on trained models that learn to find 
patterns within the broadband TS spectra. However, large, 
accurately labeled datasets are needed to develop robust 
machine learning models [13]. Acquiring such datasets is 
challenging and expensive in real-world marine 
environments [14]. 

While real acoustic datasets exist, they rarely provide 
reliable ground truth. To overcome this limitation, we use a 
physics-based simulation model to generate large synthetic 
datasets for training. On this basis, a novel hybrid one-
Dimensional Convolutional Neural Network (1D-CNN) is 
proposed for simultaneous classification (gas-filled vs liquid) 
and regression of geometric properties such as size, 
elongation and orientation. The performance of the 1D-CNN 
is then compared against traditional ML models. 

The remainder of the paper is organized as follows. 
Section II describes the methods for data generation and 
machine learning model training. Section III reports the 
results, and Section IV provides a discussion of the findings. 
Section V concludes the paper and outlines directions for 
future work. 

II. METHOD 

A. Physics-based acoustic backscattering modeling for 

synthetic data generation  

To generate synthetic broadband backscattering data 
from objects representing mesopelagic marine organisms, 
with and without gas bladders, we employed an optimized 
version of the fluid-filled prolate spheroid backscattering 
model [15]. This physics-based model provides accurate 
backscattering for liquid—and gas—filled targets over a 

wide frequency range and for all incident angles, i.e. relative 
orientation of the prolate spheroid axis to the direction of 
wave propagation. 

The prolate spheroids are represented by their volume 
(quantified by the equivalent spherical radius Req) and 
elongation (or aspect ratio α) instead of directly using semi 
major and minor axes, a and b, respectively. They are related 
by the following equations: 

b  = Req()  () 

a  =  × b  () 

This parameterization facilitates direct control over the size 
and shape of the modeled organisms, making it easier to 
explore a wide range of biologically relevant geometries. 
The range of parameters used to model different organisms 
are given in Table I. 

TABLE I.  PARAMETER RANGES USED FOR GENERATING SYNTHETIC 

ACOUSTIC DATA 

Parameter 
Targets 

Gas-filled Liquid-filled 

Equivalent radius (Req)  0.1–5 mm  5–20 mm 

Aspect ratio (α)  1.05–8.0  1.05–8.0 

Spheroid Density (ρs)  2–80 kg/m3  1.01–1.07 × (ρw) kg/m3 

Water Density (ρw)  1027 kg/m3  1027 kg/m3 

Spheroid Sound Speed (cs)  343 m/s  1.01-1.07 × (cw) m/s 

Water Sound Speed (cw)  1500 m/s  1500 m/s 

Incident angle (θ)  0.01–90°  0.01–90° 

Frequency range 10–260 kHz (0.5 kHz steps) 
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Figure 2.  Hybrid one-dimensional convolutional neural network architecture for acoustic target classification. 

 

 

B. Data Preprocessing and Machine Learning Setup 

The synthetic acoustic data generated by the prolate 

spheroid backscattering model underwent several 

preprocessing steps to prepare it for machine learning. The 

dataset consists of 30,000 simulated TS spectra, 15,000 

liquid-filled and 15,000 gas-filled targets. 
Each target is represented by a feature vector with 

corresponding labels. The input features consist of the 
broadband TS spectra. Each spectrum is represented as a 
vector of TS values, sampled at 0.5 kHz steps across the 
frequency range of 10 to 260 kHz. The models were trained 
to predict a classification label (liquid-filled or gas-filled) 
and three regression labels corresponding to the geometric 
properties of the prolate spheroid: the incident angle (θ), the 
semi-major axis (a), and the semi-minor axis (b). 

Normalization procedures are applied separately to the 
feature and label columns to ensure consistent scaling and 
improve model stability [16]. Each frequency TS value is 
standardized independently using training set statistics, 
transforming the data to have zero mean and unit variance. 
The continuous regression labels (θ, a and b) are also 
normalized to ensure that each parameter contributes equally 
to model training regardless of original scale. 

The complete dataset of 30,000 target instances is then 
partitioned into training, validation, and test subsets using an 
80/10/10 split. The training set (80%) is used for training the 
ML models and deriving normalization statistics. The 
validation set (10%) is used for hyperparameter tuning and 
model selection during training, as well as for monitoring 
overfitting. Finally, the test set (10%) is reserved for the 
final, unbiased evaluation of the trained models' 
performance. 

C. Machine learning models 

To classify the type and estimate geometric parameters 
from the TS spectra, a hybrid 1D-CNN was developed. The 
architecture was chosen for its effectiveness in automatically 
extracting hierarchical features from sequential data, like 
acoustic frequency spectra [17]. 

The network architecture, illustrated in Figure 2, was 
designed to process sequential TS data. The architecture 
incorporates advanced deep learning components, 
specifically residual blocks [18] and Squeeze-and-Excitation 
(SE) attention mechanisms [20], to improve feature 
extraction and training stability. The TS spectra is first 
processed through an initial 1D convolution layer, followed 
by a series of residual blocks. The residual blocks contain 
two 1D convolutional layers, batch normalization [19] and 
ReLU activations. Also integrated in these residual blocks 
are Squeeze and Excitation (SE) attention mechanisms that 
perform channel-wise feature weighting by compressing 
information through global average pooling and then 
learning channel relationships via two fully connected layers. 
The network ends in fully connected layers that lead to a 
multi-head output structure with dedicated heads for 
classification and regression. One head for classification of 
target type, one for regression of the incident angle (θ) and 
one for regression of the size parameters (a and b).   

For comparative analysis of the performance of the 1D-
CNN, three additional traditional machine learning models 
previously used in acoustic target classification research 
were tested. 

• K-Nearest Neighbors (KNN) [21]: An instance-
based learner classifying targets based on the 
majority class of their k nearest neighbors in the 
feature space, as applied by Cotter et al. [22]. 

• Support Vector Machine (SVM) [23]: Seeking an 
optimal hyperplane to separate classes or predict 
continuous values, utilized by Yang et al. [24] for 
underwater target recognition. 

• Random Forest (RF) [25]: An ensemble method 
constructing multiple decision trees on random 
subsets of data and features, aggregating their 
predictions, as employed by Gugele et al. [26]. 

These traditional models were not hyperparameter tuned 
and served as a baseline to evaluate the 1D-CNN. 
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Figure 3.  Regression performance of the hybrid 1D-CNN model on test data showing true values against predicted values for (top-left) angle (θ), (top-
right) semi-major axis (a), (bottom-left) semi-minor axis (b), and (bottom-right) dervided aspect ratio (α = a/b). Blue points represent gas-filled targets, and 

orange points represent liquid targets. 

 
 

D. Training and evaluation 

The 1D-CNN was trained using a custom multi-
component loss function designed to address both the 

classification and regression tasks. The total loss () is a 
weighted sum of four components as shown in (3): 

  = c  c + r  ( + ab) + cons  cons () 

where c is cross-entropy loss for the binary classification 
task. For regression, Huber loss [27] was used for the angle 

(θ) and Mean Squared Error (MSE) for the size parameters 

(ab). To enforce the geometric relationship between the 

semi-major and minor axes, a consistency loss (cons.), also 
based on Huber loss, was applied by comparing the predicted 
aspect ratio (αpred = apred / bpred) to its ground truth value. The 
weights were determined through hyperparameter tuning and 

set to c = 0.1, r = 2.0, and cons = 0.5 to prioritize the more 
challenging regression task. 

Model performance was evaluated on the unseen test set. 
Classification performance was measured by accuracy, while 
regression performance was assessed using the coefficient of 
determination (R²) and Root Mean Squared Error (RMSE) 
for θ, a, b, and the derived α. A composite score, averaging 
the classification accuracy and the R² scores of the three 
primary regression targets, was used for overall model 
comparison. 

III. RESULTS 

A. Performance Comparison Across Models 

 Using the simulated backscattering frequency responses, 
we first classified the targets (i.e., liquid- or gas-filled), then 
estimated the geometrical properties (semi-major and semi-
minor axes) and the incident angle of the prolate spheroids 
based on their wideband target strength frequency responses, 
using different ML models. Since the data are simulated, the 
true model parameters are known, allowing us to 
quantitatively evaluate the estimates produced by the various 
ML models. The performance of the models in both 
classification and morphological parameter estimation is 
summarized in Table II.  

TABLE II.  COMPARATIVE REGRESSION PERFORMANCE  (R² SCORES), 
CLASSIFICATION ACCURACY  AND COMPOSITE SCORE  ON  SYNTHETIC  TEST 

DATA 

Parameter SVM KNN RF 1D-CNN 

R2 for θ 0.742  0.751 0.853 0.974 

R2 for a 0.795 0.898 0.902 0.997 

R2 for b 0.911 0.931 0.942 0.996 

Clas. Acc 1.000 1.000 1.000 1.000 

Composite 
score 

0.719 0.804 0.867 0.992 
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B. Detailed performance of Hybrid 1d-CNN 

All tested models achieved a perfect classification 

accuracy of 1.00, correctly identifying every target as either 

gas-filled or liquid-filled. The primary differences between 

the models emerged in the regression tasks. Given its 

superior regression performance, the results of the hybrid 

1D-CNN were analyzed in further detail. Figure 3 presents 

scatter plots of the model's predicted values against the true 

values for each regression target. 

The model demonstrated high precision in predicting the 

semi-major axis a and semi-minor axis b; data points were 

tightly clustered along the identity line for both gas-filled 

and liquid-filled targets, indicating the model's robustness 

across target types and size ranges. Predictions for the 

incident angle θ were also strong, though with more visible 

scatter compared to the size parameters a and b, with 

notable gas-filled outliers. The derived aspect ratio (α=a/b) 

also showed good performance, but with some increased 

scatter for targets with higher aspect ratios (α > 4). 

C. Analysis of prediction outliers 

Outlier analysis revealed consistent patterns for both 

incident angle (θ) and aspect ratio (α).  

For incident angle (θ) estimation, the largest errors 

occurred with small, gas-filled targets with simple TS 

spectra containing few distinct resonance peaks. The model 

therefore defaulted toward predicting the training mean 

(45°), creating the horizontal band of outliers seen in Figure 

3. In contrast, liquid-filled outliers showed smaller angle 

errors and were typically targets with low aspect ratio (α ≈ 

1.05), where the orientation is less defined physically as the 

target approaches a perfect sphere. 

A similar pattern emerged for aspect ratio (α) prediction, 

where most outliers were again small, gas-filled targets with 

spectrally simple signatures. This result aligns with the 

physical principle that accurate estimation of elongation 

requires at least two distinct resonance peaks [28], a feature 

these outlier spectra lacked. 

IV. DISCUSSION 

The tested machine learning models, including shallow 
learners (KNN, SVM, and RF) and a deep learner (1D-
CNN), successfully classified gas- versus liquid-filled 
targets. This is primarily due to the distinct differences in the 
TS(f) responses between gas- and liquid-filled targets, as 
observed in Figure 1. In contrast, the models showed varying 
levels of performance in the regression task. Among them, 
the 1D-CNN demonstrated the highest accuracy in 
estimating the model parameters, evidenced by high R2 

scores for a, b, and  (see Table II). However, some outliers 
were observed in the predictions, where the parameters were 
not correctly estimated. This was especially the case for gas-

filled targets in the prediction of angle  and the computed 
aspect ratio α. Further investigation of the outliers revealed 
that they mostly corresponded to small targets (i.e. small Req) 

(see [29] for more details). The TS frequency response of 
small gas-filled targets is known to be insensitive to shape 
and incident angle near the resonance frequency [30], 
explaining the model's difficulty in the 10–260 kHz 
frequency band. An example TS(f) response of such small 
targets is shown in the lower right panel of Figure 1. For 
deep learning approaches such as neural networks, large 
amounts of data are typically required; therefore, the use of 
optimized code for computing TS(f) was critical. Although 
the shallow learners achieved lower R2 scores, it is important 
to note that less effort was devoted to tuning these models 
compared to the 1D-CNN. It is possible that more extensive 
hyperparameter optimization and validation could lead to 
improved performance for the shallow models.   

V. CONCLUSION AND FUTURE WORK  

 This study demonstrates that using machine learning, 
more particularly a 1D-CNN trained exclusively on physics-
based simulated data, can accurately classify and estimate 
geometric properties of acoustic targets. We demonstrated 
that the hybrid 1D-CNN outperforms traditional machine 
learning methods such as KNN, SVM, and RF. While all 
models achieved perfect classification of gas- and liquid-
filled targets, the 1D-CNN was notably more accurate in the 
regression task of estimating the targets' geometric 
properties, including semi-major/minor axes (a, b) and 
incident angle (θ). 

Outlier analysis revealed specific challenges, particularly 
in estimating geometric parameters of small, gas-filled 
targets, with simpler spectral features lacking distinct 
resonance peaks. Addressing these limitations by expanding 
frequency ranges or incorporating additional acoustic 
parameters in future research could enhance performance 
further. Although this study focused on simulated data, 
preliminary tests on a small real dataset [29] showed 
encouraging results, indicating potential for application to in 
situ measurements. 

We conclude that this simulation-driven approach is a 
powerful and viable strategy for overcoming data-scarcity in 
marine acoustics. It represents a promising step toward the 
automated, non-invasive classification of marine organisms, 
with potential application in real-time classification of 
mesopelagic organisms during acoustic surveys, supporting 
biomass estimation and reducing the need for manual 
analysis. 
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Abstract—Physics-based solvers such as the Hydrologic En-
gineering Center’s River Analysis System (HEC-RAS) provide
high-fidelity river forecasts but are too slow for on-the-fly decision-
making during floods. We present a machine learning (ML)
surrogate that treats HEC-RAS as a data generator and couples
a Gated Recurrent Unit (GRU) for short-term memory with a
geometry-aware Fourier Neural Operator (Geo-FNO) for long-
range spatial coupling. Trained on 71 reaches of the Mississippi
River Basin and evaluated on a year-long hold-out, the surrogate
achieves a median absolute stage error of 0.28 ft. For a full
71-reach ensemble forecast, it reduces wall-clock time from 139
to 40 minutes (3.5×). By reading native HEC-RAS files and
operating on a compact eight-channel feature interface, the model
delivers operational speed while preserving fidelity, enabling rapid
“what-if” ensemble guidance.

Index Terms—Fourier Neural Operator; Surrogate Modeling;
HEC-RAS; Gated Recurrent Units.

I. INTRODUCTION

During a flood, the U.S. Army Corps of Engineers (USACE)
must make critical, time-sensitive decisions—from issuing evac-
uation orders to scheduling gate operations—within minutes.
This operational tempo is fundamentally at odds with the hours-
long wall-clock times required by physics-based solvers such
as the Hydrologic Engineering Center’s River Analysis System
(HEC-RAS) to simulate unsteady flow [7], [8]. While pre-

computed scenario libraries or reduced-order models offer one
workaround, they are often too coarse to capture the specific
hydrograph that unfolds in real time [9], [11]. The central
challenge, therefore, is to deliver the fidelity of an HEC-RAS
simulation at a speed that enables rapid, on-the-fly ensemble
forecasting.

We address this challenge by reframing the HEC-RAS
workflow itself. Instead of relying on its iterative solver, we
treat its native project files as a direct source of training data
for a deep-learning surrogate. We propose an autoregressive
model that couples a Gated Recurrent Unit (GRU) for short-
term temporal memory with a geometry-aware Fourier Neural
Operator (Geo-FNO) for long-range spatial dependencies. This
hybrid architecture learns the coupled spatio-temporal dynamics
of river flow by ingesting a minimal eight-channel vector
representing dynamic state, static geometry, and boundary
forcings, and then advances the system state hour by hour.

Our primary contribution is a true plug-in surrogate that
requires no re-meshing or data conversion, reading native HEC-
RAS files directly. This is enabled by a minimalist, reusable
interface—a compact feature set sufficient for stable, multi-
day forecasts. Evaluated across 71 reaches of the Mississippi
River Basin, the model achieves a 3.45× end-to-end speedup
while maintaining a median absolute stage error of 0.28 ft on
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a year-long, unseen hold-out, elevating autoregressive neural
operators from academic prototypes to operationally promising
engines for rapid ensemble flood guidance.

The rest of the paper is structured as follows. Section II
details the HEC-RAS data pipeline. Section III reviews related
work. Section IV presents the model architecture. Section V
outlines the experimental setup, followed by results in Sec-
tion VI. Section VII discusses findings and limitations, and
Section VIII concludes.

II. BACKGROUND: HEC-RAS AS A DATA PREPROCESSOR

A. HEC-RAS: The Industry-Standard Solver

HEC-RAS, the U.S. Army Corps of Engineers’ River
Analysis System, is widely regarded as the industry-standard
platform for river hydraulics [8]. Under the hood, it solves the
one-dimensional Saint-Venant equations[7] using an implicit
Newton–Raphson finite-difference scheme, with several inner
iterations per global time step to balance continuity and
momentum [8]. This strategy delivers high numerical accuracy
but at a steep computational cost: full-reach unsteady-flow
simulations typically require hours to days of wall-clock time
[8], [11].

INPUTS (native HEC-RAS)
geometry *.g## (XS, station–elevation, banks, roughness)
structures/mesh *.b##/*.c##, plan *.p## (∆t, tolerances)
unsteady/time series *.u##, *.dss (Qup(t), Hdn(t), lateral inflows,
gates)

⇓

PREPROCESS / ASSEMBLY
mesh/XS indexing, boundary setup, initial conditions

⇓

IMPLICIT SAINT–VENANT SOLVER
for t = t0 : ∆t : tend do
assemble R(H,Q); Newton update J δ = −R;
(H,Q)←(H,Q) + δ; check tol/iters; repeat

⇓

OUTPUTS
HDF5/DSS: stage H(x, t), discharge Q(x, t); profiles/ratings

Figure 1. HEC–RAS numerical pipeline (robust non-TikZ rendering).

B. Novel Use Case: From Solver to Pre-Processor

This work treats HEC-RAS not as an end-to-end simulation
tool, but as a powerful data-generation engine. By leveraging
its mature GIS and project-management capabilities [8], we
can assemble consistent geometries, meshes, and boundary
hydrographs directly from the native project bundle [8], [12],
[25], [26]. We then export this curated file set into a machine-
learning pipeline. The surrogate ingests these inputs, learns
the hydraulic relationships and returns reach-scale forecasts
in seconds rather than hours [11]. In this workflow HEC-RAS
becomes a build tool for high-quality training data, while the
surrogate supplies the speed needed for rapid what-if analyses.

C. The HEC-RAS File Ecosystem

The key to this approach is the structured, information-rich
file bundle that constitutes a standard HEC-RAS project. These
files contain all the static, quasi-static, and dynamic information
required to train a robust surrogate model, as summarized in
Table I.

TABLE I. HEC-RAS FILE BUNDLE ORGANISED BY INFORMATION
TYPE. ‘##’ DENOTES VERSION INDICES.

Files Class Key contents

Static geometry

*.g## XS/1-D Station–elevation pairs, banks, centre-line
*.c## 2-D mesh Cell polygons, bed elevation, roughness zones
*.b## 1-D structs Bridge and culvert shapes, pier spacing

Quasi-static metadata

*.p## Plan Geometry/flow linkage, solver tolerances

Dynamic time-series

*.u## Unsteady flow Hydrograph pointers, gate schedules, run
window

*.dss DSS Upstream Q(t), downstream H(t), lateral
inflows

D. Key Hydraulic Terminology

To interpret the model inputs and outputs, we define the
following core terms:

Reach
A contiguous channel segment between two network
break-points (e.g. a confluence or control structure)[8].
Our model operates on a single reach at a time,
advancing from an upstream node (boundary inflow
Qup) to a downstream node (boundary stage Hdn).

Stage (H)
The water-surface elevation at a cross-section, refer-
enced to a project datum such as NAVD 88[7]. Units:
metres.

Discharge (Q)
The volumetric flow rate through a cross-section,
defined as positive in the downstream direction[7].
Units: m3 s−1.

III. RELATED WORK

Our work builds on advances in three key areas: data-driven
hydraulic modeling, autoregressive sequence prediction, and
neural operators for scientific computing.

A. Data-Driven Surrogates for River Hydraulics

Early data-driven surrogates for river hydraulics often relied
on feed-forward neural networks or polynomial meta-models to
emulate one or two cross-sections at a time [11]. More recent
studies have scaled to full reaches by coupling convolutional
encoders with graph neural networks [10], and physics-informed
neural networks have now been demonstrated for single-reach
stage prediction [24]; yet many approaches remain restricted to
steady-flow conditions or simplified rectangular channels [9],
[11]. In contrast, our study targets the entire unsteady-flow
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regime of the Mississippi River model, encompassing 71
distinct reaches and thousands of irregularly spaced, natural-
geometry cross-sections.

B. Autoregressive Models for Temporal Dynamics
Autoregressive (AR) models, which forecast the next state

by feeding back their own previous outputs, form the backbone
of classical time-series analysis [20]. The closed-loop structure
is computationally efficient for long-horizon roll-outs, but a
known weakness is error accumulation: small mistakes are
recycled and amplified, ultimately drifting the forecast away
from reality [21].

To mitigate this, modern hydrology has shifted from classical
ARMA models to Recurrent Neural Networks (RNNs) such
as Long Short-Term Memory (LSTM) and Gated Recurrent
Units (GRUs) [17], [22]. GRUs use update and reset gates to
regulate information flow, capturing temporal dependencies
while remaining parameter-efficient. When applied to river
networks these RNNs typically predict each gage independently,
failing to capture the spatial physics that connect them [22].
Our work addresses this by embedding a GRU within a spatial
operator, allowing the recurrence to span both time and space.
Furthermore, we anchor the AR loop at every step with the true
boundary hydrographs (Qup, Hdn), providing a strong physical
constraint that drastically reduces long-term drift.

C. Neural Operators for Spatial Dependencies
To model the spatial physics, we turn to the Fourier Neural

Operator (FNO), which learns mappings between function
spaces via global convolutions in the spectral domain [2]. By
modulating Fourier modes directly, FNOs capture long-range
spatial dependencies with high efficiency and are essentially
discretisation invariant [2], [4]. The Geo-FNO variant extends
this concept to irregular meshes by injecting coordinate
information into the spectral block, making it well suited to the
non-uniform cross-section spacing found in river models [3].
Previous studies have already employed two-dimensional FNOs
for rapid flood-inundation mapping [23]; here we adopt a one-
dimensional Geo-FNO specifically tailored to the chain-like
topology of a river reach.

D. Positioning This Work
Combining recurrent networks with neural operators is an

emerging and powerful tool for modeling complex spatio-
temporal systems [18].

A key aspect of our work is its training methodology.
We show that the network learns the underlying hydraulic
behavior implicitly from the data itself. This is achieved
through a carefully engineered eight-channel feature vector that
encodes the system’s essential physical drivers: the channel
geometry (zbed, zbank), frictional properties (nman), and the mass
and energy constraints imposed by boundary hydrographs
(Qup, Hdn).

The success of this approach, using a standard mean-squared
error objective with a smoothness regularizer, demonstrates that
meticulous feature engineering is a powerful and efficient tool
for instilling physical consistency in a data-driven surrogate.

IV. METHODOLOGY

We build a one–hour-ahead, autoregressive surrogate that
advances using the last L=12 hours of state. At each step,
the network consumes this history and outputs the next-hour
stage and discharge (Ĥt+1, Q̂t+1); the prediction is appended
to the history and the loop repeats over the forecast horizon
(Figure 2).

A. Input Feature Vector

At hour t and cross-section i, we form a per-section feature
vector xt(i) composed of three groups:

xt(i) = [Ht(i), Qt(i)︸ ︷︷ ︸
dynamic (2)

| zbed(i), zbank(i), nman(i), xcoord(i)︸ ︷︷ ︸
static (4)

| Qup(t), Hdn(t)︸ ︷︷ ︸
boundary (2, broadcast over N )

]. (1)

This base interface has Cin=8 channels. In our implemen-
tation, we also include two lightweight auxiliaries: depth
Dt(i) = max{Ht(i) − zbed(i), 0} and a seasonal phase,
yielding Cin=10 total channels. We assemble training tensors
of shape [B,L,N,Cin] with L=12 hours. The 1-D coordinate
is also passed as a positional input to the encoder, so its first
layer receives (Cin+1) inputs.

B. Network Architecture: A Recurrent Neural Operator

The surrogate employs a hybrid architecture that couples a
GRU for temporal feature extraction with a Geometry-Aware
1-D Fourier Neural Operator (FNO) for spatial dependencies.

1) Encoder: A linear layer lifts the 10-channel input vector
and its spatial coordinate xcoord (11 total inputs) to a
96-dimensional latent space.

2) Temporal Block: A single-layer GRU (hidden size 96)
processes the 12-hour encoded sequence at each cross-
section, capturing temporal dynamics and outputting its
final hidden state.

3) Spatial Block: The resulting tensor of final hidden states
(shape [B,N, 96]) is processed by a 1-D FNO. The FNO
applies a global convolution in the frequency domain
across the spatial dimension (N ), efficiently modeling
long-range dependencies. We use up to 48 Fourier modes,
proportional to N .

4) Decoder: A final linear layer maps the 96-dimensional
FNO output to the two target variables: the predicted
stage (Ĥt+1) and discharge (Q̂t+1) for the next hour.

C. Rationale for the GRU–Geo-FNO Architecture

Figure 3 highlights that river hydraulics can be viewed as
two coupled 1-D signals: (i) a spatial profile along chainage at
a fixed time (bed and stage across all cross-sections), and (ii)
a temporal trace at a fixed cross-section (stage/flow through
time). We therefore split modeling duties accordingly.

Spatial coupling (Geo-FNO). At each step, we form an
ordered vector over the N cross-sections and apply a 1-D
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INPUT SEQUENCE X — 12 h history per XS

dynamic : H, Q (2 channels)
static : zbed, zbank, manning_n, x_coord (4 channels)
forcings : Qup, Hdn (2 channels)

Total: 8
Tensor shape: [B, L = 12, N, 8]

Linear Encoder
(in_channels = 8 + 1 −→ hidden = 96)

concatenate 1-D XS coords (broadcast over time)

GRU (single layer)
• operates along 12-step sequence
• hidden size = 96

keep time dimension

1-D Geo-FNO over the reach
• Fourier modes: 48
• input 96→ output 96

last hidden state → drop time

Linear Decoder
96→ 2 dynamic heads
• Ĥ : next-hour Stage (m)
• Q̂ : next-hour Flow (m3 s−1)

latent → heads

PREDICTION ŷt+1 (shape [B, N, 2])
concatenate with static + forcings for t+1

output

Figure 2. Autoregressive GRU-GeoFNO surrogate architecture. Vertical arrows share a
common inset; the dashed loop feeds predictions back as inputs for the next step.

Fourier neural operator across this spatial axis. Because the
FNO performs a global spectral convolution, every output
depends on all cross-sections simultaneously, enabling up-
stream–downstream interactions (e.g., backwater/attenuation)
to be learned in a single pass. Injecting the 1-D coordinate
(xcoord) makes the operator geometry-aware, accommodating
irregular cross-section spacing without re-meshing.

Temporal memory (GRU). For each cross-section,
short-term dynamics are encoded by a single-layer GRU that
processes a 12-hour window and returns a compact latent state.
This summarizes the recent hydrograph (rising/falling limbs,
lags) and supplies the per-section features that the FNO then
exchanges across space.

Result. The GRU provides local temporal context; the
Geo-FNO propagates that context globally along the reach.
This division cleanly matches the physics of 1-D hydraulics
while remaining efficient and discretization-robust.

D. Training Objective and Inference

Training Objective. The network minimizes a composite
loss that combines a data-fidelity term with physics-informed
regularizers to promote stable, realistic predictions. The total

(a) Spatial signal at selected times: bed and stage snapshots vs. distance along the reach.

(b) Temporal signal at one cross-section: daily stage (fill shows depth) and discharge.

Figure 3. River hydraulics as 1-D signals in space and time: space is modeled
by a Geo-FNO, time by a GRU.

loss L is

L = WH LHuber(Ĥn, Hn) +WQ MSE(Q̂n, Qn)

+ λn ∥∆2Ĥn∥22 + λt ∥∆2
t Ĥ∥22

+ λ∆ ∥∆tĤ −∆tH∥22 + λbias ∥Ĥ −H∥22. (2)

Here, (·)n denotes normalization by training-set statistics. The
stage (H) term uses a Huber loss (with β=0.02); discharge
(Q) uses the mean squared error (MSE). The regularizers act
on stage in physical units: spatial smoothness (∆2), temporal
smoothness (∆2

t ), change-in-stage matching (∆t), and mean-
bias control (·).

Here, (·)n denotes variables normalized by training-set
statistics. The primary data-fidelity loss is computed in this
normalized space, using a Huber loss (β=0.02) for stage (H)
and MSE for discharge (Q). The four regularizers, which act
only on stage, are computed in real physical units to enforce
consistent behavior:
• Spatial Smoothness: Penalizes the second spatial differ-

ence (∆2) of the normalized stage prediction to discourage
noisy outputs.

• Temporal Smoothness: Penalizes the second temporal
difference (∆2

t Ĥ = Ĥt − 2Ht−1 +Ht−2) to reduce high-
frequency oscillations over time.

• Change in Stage: Encourages the predicted one-hour
change in stage (∆tĤ = Ĥt −Ht−1) to match the true
change.

• Mean Bias: Penalizes deviations in the spatial mean of
the predicted stage (Ĥ) from the true mean (H).

We use weights WH=1, WQ=0.3, and regularization coeffi-
cients λn=3e − 5, λt=3e − 5, λ∆=0.35, and λbias=8e − 4.
An Exponential Moving Average (EMA) of the model weights
(decay 0.995) is maintained and used for all evaluations.
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Inference. For multi-step forecasting, we use a 12-
hour-seeded autoregressive loop. The model’s prediction
(Ĥt+1, Q̂t+1) is used to construct the input for the next step
by combining it with the derived depth D̂t+1 = max(Ĥt+1 −
zbed, 0), the static geometric features, the seasonal phase, and
the true boundary forcings for hour t+1. This complete feature
vector is then re-normalized before being passed to the model.

V. EXPERIMENTAL SETUP

A. Study Area and Data Sources

We use the U.S. Army Corps of Engineers (USACE) HEC-
RAS model of the Mississippi River Basin, which contains
71 distinct one-dimensional river reaches. Data is extracted
from the project’s HDF5 files, which provide static geometry
(cross-section shape, roughness) and hourly simulation results
(Stage H , Flow Q) for three major flood years. All data were
converted from imperial to SI units (metres, m³/s).

Year Primary Flood Event # Hourly Snapshots

2002 June–Sept. Moderate Flood 8,737
2008 May 50-Year Flood 8,783
2011 April Historic Flood 8,737

B. Training and Evaluation Protocol

A separate surrogate model is trained for each of the 71
river reaches using a strict temporal data split.

a) Data Splits: The 2002 and 2008 simulations ( 17.5k
hours) form the training set. The first quarter of 2011 ( 2.2k
hours) serves as the validation set for early stopping. The
entire 2011 year is the final test set.

b) Implementation Details: Each model is trained for up
to 120 epochs using the AdamW optimizer (lr = 2 × 10−4)
and a batch size of 64.

c) Evaluation via Autoregressive Rollout.: Final perfor-
mance is measured via an autoregressive rollout on the year-
long 2011 test set, mimicking a real-world forecast. After
seeding the model with an initial 12-hour history of true data,
it iteratively predicts the next 8,725 hourly steps. At each step,
the model’s prediction is combined with the true boundary
forcings (Qup, Hdn) to form the input for the subsequent step.

d) Evaluation Protocol.: The primary evaluation metric
is the Mean Absolute Error (MAE) in predicted stage, as it
provides a direct, interpretable measure of the average error in
feet, which is most relevant for operational flood guidance.

MAE =
1

T

T∑
t=1

|ypred
t − ytrue

t | (3)

Reporting convention. Unless noted otherwise, we report
per-reach MAE in feet (Table III).

VI. RESULTS

We evaluate each of the 71 per-reach surrogates via a
full-length autoregressive rollout on the unseen 2011 hold-out
year. Results are reported in wall-clock time for the full
ensemble and in Mean Absolute Error (MAE, feet) for stage.

A. Computational Speedup

A primary goal of this work is to accelerate forecasting.
Table II summarizes the end-to-end wall-clock time required
for a 1-year (8,737-hour) ensemble forecast across all reaches.
The surrogate completes this task in 40 minutes compared to
139 minutes for the HEC-RAS solver, a 3.45× speedup. This
acceleration is operationally significant, enabling minute-scale
“what-if" analysis.

It is important to note that this benchmark represents a
conservative estimate of potential gains. While the neural
network itself is highly parallelizable, our current rollout
implementation is a single-threaded Python loop running on
a CPU. Porting this autoregressive data-handling pipeline
to a GPU would unlock substantial further acceleration,
representing a key avenue for future optimization.

TABLE II. INFERENCE TIME FOR 1-YEAR, 71-REACH FORECAST.

Model Wall-Clock Time

HEC-RAS 5.0.1 139 minutes
Recurrent FNO Surrogate 40 minutes

Speedup Factor 3.45×

B. Predictive Accuracy

We report accuracy using Mean Absolute Error (MAE) in
feet, as this metric directly answers the operational question:
“Is the predicted stage within a tolerable deviation of the HEC-
RAS result?”

a) Per-Reach Performance: Table III details the MAE for
each of the 71 reaches. The performance is strong across the
majority of the basin, with a median MAE of 0.28 ft and an
InterQuartile Range (IQR) of 0.06–1.04 ft. Overall, 91.5% of
reaches (65 of 71) achieve a MAE of 2.0 ft or less, meeting
a key fidelity target for stage guidance.

b) Error Analysis: While most reaches perform well, a
smaller subset of primarily smaller tributaries drives a long tail
in the error distribution. Only 6 of 71 reaches (8.4%) exceed a
MAE of 2.0 ft. These challenging cases, such as the ‘Hatchie
River‘ and ‘St. Francis‘, are known to exhibit more complex
hydraulics or have sparser data representation, and they are
the focus of ongoing improvements.
TABLE III. PER-REACH MEAN ABSOLUTE STAGE ERROR (MAE)
FOR THE 2011 HOLD-OUT YEAR, WITH THE NUMBER OF CROSS-
SECTIONS (N) AND REACH LENGTH (MILES). SORTED ASCENDING
BY MAE

Reach ID (River—Reach) XS Len [mi] MAE [ft]
CouleeDesGrues—1 56 5.47 0.0066
Black River—R1 3 0.24 0.0131
OldRiver6—1 2 0.12 0.0131
BayouBourdeaux—1 71 6.23 0.0164
OldRiver2—1 14 6.95 0.0164
Ouachita River—R2 79 24.16 0.0164
OldRiver4—1 78 6.06 0.0230
Ouachita River—R1 237 50.89 0.0295
BayouJeansonne—1 42 3.27 0.0328

Continues on next column/page
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Table III continued from previous column/page

Reach ID (River—Reach) XS Len [mi] MAE [ft]
BigCanal—1 40 3.07 0.0361
OldRiverOutflow—SidneyMurray 8 19.39 0.0427
Mississippi—Below Loosahatch 2 0.60 0.0459
OldRiverOutflow—OverBank-Aux 6 1.51 0.0459
OldRiverOutflow—RedRiv-SidMur 10 3.91 0.0492
YazooRiver—Reach1 202 59.60 0.0525
OldRiver3—1 43 3.28 0.0558
DUMMY—1 3 0.04 0.0558
outlet—1 2 100.00 0.0591
OldRiver1—1 24 3.22 0.0623
Mississippi—Below Wolf 13 18.90 0.0722
Mississippi—Below Hatchie 14 7.67 0.0755
RedRiver—BelowBlack 9 8.24 0.0755
Mississippi—Below Nonconnah 11 6.88 0.0820
OldRiverOutflow—LowSill 4 0.45 0.0984
Boeuf River—R1 78 24.17 0.0984
Mississippi—Upper Miss 63 29.63 0.0984
OldRiverOutflow—Auxiliary 5 10.10 0.1017
Ohio River—Lower SOHS 2 0.20 0.1083
Ohio River—LD 52-53 10 10.23 0.1115
BayouJoson—1 70 25.79 0.1411
Mississippi—Below Obion 30 24.48 0.1509
Mississippi—Below St. Fran 31 39.52 0.1509
Tensas River—R1 16 7.89 0.2395
Cumberland River—Cumberland River 56 10.17 0.2461
Forked Deer—Forked Deer 42 4.62 0.2493
Tennessee River—Tennessee River 138 28.06 0.3117
Forked Deer—North Fork 58 6.10 0.3150
RedRiver—AboveBlackRiver 7 7.19 0.3314
Mississippi—Below Big Muddy 51 76.37 0.4197
RedRiver—BelowNatch 9 24.66 0.4364
Straight Slough—Straight Slough 5 1.22 0.4495
Mississippi—Below Cairo 72 112.65 0.4495
Obion River—Below Forked 83 12.34 0.4724
White River—White River 90 24.36 0.5229
Mississippi—Below Arkansas 81 100.58 0.5528
Atchafalaya—BelowOldRiver 172 30.99 0.6201
St. Francis—Above SS 16 3.54 0.6412
OldRiver5—1 7 0.20 0.6537
Little River—R1 11 9.86 0.7874
Big Muddy—Reach-1 29 25.65 0.8333
Black River—R3 35 23.70 0.8825
Nonconnah Cr—Nonconnah Cr 57 14.62 1.0335
Cat Oua R—R1 41 8.21 1.0542
YazooRiver—Reach2 53 12.65 1.2172
Mississippi—Below Vicksburg 42 137.20 1.2412
Arkansas River—Arkansas River 31 28.06 1.2967
YazooRiver—Reach1.5 43 10.63 1.3419
Wolf River—Wolf River 140 15.40 1.3484
BayNatch—1 160 12.32 1.4633
White River—Below Cache 77 15.34 1.4699
W-Wit—1 7 0.07 1.8209
Morganza Outlet—To Atchafalaya 26 25.08 1.9127
Forked Deer—South Fork 56 5.18 2.0046
Black River—R2 70 26.39 2.0965
Cache River—Cache River 72 49.58 2.1428
Loosahatchie—Loosahatchie 146 35.33 2.1555
Ohio River—OHS 3 0.13 2.2605
Obion River—Reach_1 198 33.77 3.6059
St. Francis—Below SS 21 5.61 3.9633
Hatchie River—Hatchie River 161 41.16 5.7316

C. Ablation Studies: Validating Architectural Choices

To validate our design, we conducted ablation studies on
the ‘Cache River—Cache River‘ reach, a case spanning 49.6
miles and discretized into 71 cross-sections. We systematically
removed key architectural blocks and feature groups from our
full proposed model to quantify their contribution. The results,
summarized in Table IV, demonstrate that each component is
critical for achieving high fidelity.

TABLE IV. ABLATION RESULTS ON THE CACHE RIVER.

Model Configuration Component Removed Stage MAE (ft)

Full Proposed Model (All components included) 2.14

Architecture Ablations
No FNO Block (Replaced with pointwise MLP) 9.12
No GRU Block (Replaced with last-frame encoding) 11.49

Feature Ablations
No Boundary Forcings Qup, Hdn channels 10.45
No Static Geometry zbed, zbank, nman, xcoord 12.62
No Derived Depth D = max(H − zbed, 0) 17.82
No Seasonal Phase st feature 16.04

a) Impact of Architecture: Both the temporal and spatial
blocks of the network are essential. Removing the FNO and
using a simple multilayer perceptron (MLP) head (‘noFNO‘)
degrades performance by over 4x (MAE 9.12 ft vs. 2.14 ft),
confirming that a global spatial operator is necessary to capture
long-range hydraulic dependencies. Similarly, removing the
GRU’s temporal memory (‘noGRU‘) and encoding only the
last known time step increases error by over 5x (MAE 11.49
ft), validating the need to process a sequence history.

b) Impact of Features: The ablation results confirm that
physically-informed feature engineering is vital. Removing
the derived auxiliary channels had the most severe impact:
omitting the derived depth channel increased MAE by over
8x to 17.82 ft, while removing the seasonal phase increased
it by over 7x to 16.04 ft. This highlights that providing the
model with features that encapsulate non-obvious physical
context is critical. Removing the core boundary conditions or
static geometry also caused a catastrophic drop in performance,
confirming that every channel in our proposed feature vector
contributes meaningfully to the final accuracy.

D. Qualitative Case Study: Error Propagation

To understand the nature of the errors in challenging cases,
we examine the full-year autoregressive rollout for the ‘Hatchie
River—Hatchie River‘ reach, which had the highest MAE.
Figure 4 shows the forecast hydrographs at twelve evenly
spaced cross-sections (XS) along the reach.

A clear spatial pattern emerges. At the upstream end (e.g., XS
0, XS 7), the surrogate tracks the HEC-RAS ground truth with
high fidelity, capturing the primary flood waves accurately.
However, performance degrades progressively downstream.
At the midpoint (e.g., XS 42), minor deviations appear. By
the downstream end (e.g., XS 63, XS 70, XS 77), the
model becomes unstable, introducing large, high-frequency
oscillations and diverging significantly from the ground truth.
This suggests a pattern of spatial error propagation, where
small inaccuracies from upstream are amplified as they are
passed downstream by the model.

VII. DISCUSSION

Our results show that a recurrent neural operator can emulate
year-long HEC-RAS runs with operational fidelity while
accelerating an ensemble forecast by 3.45×. The remaining
failure modes concentrate in a small set of hydraulically
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Figure 4. Year-long autoregressive rollout on the ‘Hatchie River‘ reach at 12
evenly spaced cross-sections. The surrogate (red, dashed) tracks the HEC-RAS
ground truth (black, solid) well at the upstream end (top-left panels) but
accumulates error and develops instabilities downstream (bottom-right panels).

complex reaches, yielding a heavy-tailed error distribution
(Table III). We summarize the key lessons and scope.

a) Exposure bias despite boundary anchoring.: The
Hatchie River case (Fig. 4) illustrates classic autoregressive
drift: small upstream errors accumulate and are propagated
downstream by the FNO’s global spatial coupling. Clamping
the true boundary hydrographs (Qup, Hdn) at every step acts
as a strong physical prior mirroring HEC-RAS inputs and
prevents catastrophic divergence in most reaches. The residual
instabilities on Hatchie indicate that internal dynamics can
overwhelm this anchoring. This suggests two complementary
remedies: (i) training-time strategies that reduce exposure bias
(e.g., scheduled sampling, noise injection on inputs) and (ii)
richer boundary/forcing information or data assimilation for
reaches with complex internal hydraulics.

b) Hydraulic regime, not size, drives difficulty.: Geo-
metric scale (reach length, cross-section count) shows no
reliable relationship with MAE in Table III. Long, well-gauged
main-stem reaches (e.g., Mississippi—Below Vicksburg) are
modeled accurately, whereas shorter tributaries with backwater
effects or prolonged low-flow spells (e.g., Hatchie River,
St. Francis—Below SS) dominate the tail. In practice, the
governing factor is the frequency and persistence of regimes
under-represented in training, not the number of cross-sections.

c) Operational scope and limits.: Today, the surrogate
is best used as a scenario-analysis accelerator for known
hydrologic regimes: (i) models are trained and evaluated per
reach, so network-scale feedbacks across confluences are not
yet represented; (ii) performance depends on the hydrologic
diversity seen in training generalization to far out-of-distribution
events is fragile; and (iii) evaluation assumes true boundary

forcings; operational deployment will inherit uncertainty from
boundary forecasts. Addressing these gaps will likely require
graph neural operators for topology-aware coupling, targeted
data augmentation to balance low-flow/backwater regimes, and
experiments with perturbed or forecast boundary conditions to
quantify skill degradation.

d) Takeaway.: Accuracy at minute-scale cost came from
three ingredients: (1) an architecture that separates temporal
memory (GRU) from global spatial coupling (Geo-FNO), (2)
physics-aware features including derived depth and seasonal
phase and (3) a stabilizing loss. The ablations substantiate each
ingredient’s contribution and explain where the current model
fails, thus charting a concrete path to basin-scale, autonomous
forecasting.

VIII. CONCLUSION

We presented a recurrent neural–operator surrogate for 1-D
HEC-RAS that delivers year-long, reach-wide forecasts at
operational fidelity. On the unseen 2011 hold-out across 71
reaches, the model achieves a 3.45× end-to-end speedup (40
vs. 139 minutes) while maintaining a median stage MAE of
0.28 ft, with 91.5% of reaches ≤ 2 ft.

Accuracy at minute-scale cost follows from three ingredients
validated by ablations: (i) a GRU for short-term memory
coupled to a Geo-FNO for global spatial coupling; (ii)
physics-aware features, especially derived depth and seasonal
phase; and (iii) a stabilizing loss together reducing Cache River
MAE from 12.9 ft (plain MSE) to 2.14 ft and preventing drift.

Current scope is intentionally conservative: models are
trained per reach (no network-scale feedbacks yet), skill
degrades for out-of-distribution regimes, and rollout stability
assumes true boundary forcings. These constraints point to
clear upgrades: topology-aware operators for basin coupling,
data/augmentation to balance challenging hydraulic regimes,
assimilation or forecasted boundaries to quantify resilience,
and a GPU rollout pipeline to unlock further wall-clock gains.

The surrogate is a practical scenario-analysis accelera-
tor today and a potentially viable path toward basin-scale,
near-real-time flood guidance with some further enhancements.
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Abstract—This study details an advanced marine monitoring
system based on smart buoys, designed to detect environmental
conditions in coastal and open-sea areas. To meet the critical need
for secure and accurate on-site data collection, the solution utilizes
embedded hardware, multi-parameter sensors, and redundant
data transmission technologies. This work is perfectly aligned
with the conference topics focusing on intelligent sensing and
autonomous systems for environmental protection. The main
contribution lies in introducing a novel system architecture and
presenting real-world results obtained during field tests. The
conclusions demonstrate that the platform is robust, easily ex-
pandable, and represents an effective approach for optimizing the
quality of information and the reliability of its communicationin
maritime surveillance scenarios.

Keywords-smart buoy; environmental monitoring; LoRaWAN;
LTE; marine data.

I. INTRODUCTION

Marine environmental monitoring represents one of the major
challenges for the sustainable management of natural resources
and for mitigating the risks associated with climate change
and human activities. A significant contribution in this field
is represented by the coastal monitoring framework proposed
in [1], which introduced an IoT-based architecture integrating
smart buoys and onshore stations for real-time environmental
and crowd data collection along the Sardinian coast. Building
upon these concepts, the EcoMonitoring project extends this
approach by combining smart buoys and surface drones,
enabling efficient, scalable, and low-impact data acquisition in
coastal and open-sea areas [2].

A key component of the system is the Monitoring Buoy
(MoBI). Built from High-Density Polyethylene (HDPE) using
3D printing technology, MoBI is designed to operate in a
semi-autonomous mode: it can be towed by an Unmanned
Surface Vehicle (USV) to predefined locations, where it
performs targeted environmental measurements. The buoy is
equipped with sensors for both wave dynamics and water
quality parameters, and it can acquire, process, and transmit
data even under limited connectivity conditions. This approach
is consistent with other recently developed intelligent systems
for marine monitoring [3].

This paper provides a detailed description of the MoBI
system, including its architecture, operational logic, communica-
tion strategies, and the results of field testing. The remainder of

the document is structured as follows: Section II, hardware and
software architecture, communication strategies, and control
logic; Section III, acquisition of environmental data through the
multiparametric probe; Section IV, wave monitoring subsystem
and signal processing approach; Section V, results of field
campaigns and performance analysis; Section VI, conclusions
and future development directions.

II. SYSTEM CONCEPT AND ARCHITECTURE

The MoBI system has been designed to provide a robust,
adaptable, and cost-effective platform for maritime and coastal
environmental monitoring. Its architecture integrates low-power
processing (on internal components), continuous interfacing
with multiple sensors, and a dual transmission mode to
ensure data consistency even in cases of weak or absent
connectivity. At the technological core of the system are
two processing units: a Raspberry Pi 3B+ micro-computer
and an Arduino Mega 2560 R3 microcontroller. These units
are housed inside the buoy’s sealed hull and powered by a
stabilized 5V supply. A voltage booster converts the supply
to 12V, required for the multiparametric probe. The Raspberry
Pi handles higher-level tasks, including probe management,
data standardization, and log creation. The Arduino, on the
other hand, manages the acquisition of fundamental data
from orientation and positioning sensors: GPS, accelerometer,
gyroscope, and magnetometer. It also controls the LoRa
module for emergency communications. Similar modular IoT-
based buoy architectures combining embedded controllers and
multiple communication interfaces have been described in [4].
Communication and synchronization between the Raspberry
Pi and the Arduino Mega are achieved through a USB serial
connection, enabling bidirectional data and command exchange.
This setup also allows the Raspberry Pi to directly power the
Arduino Mega through the same USB cable used for data
transmission, thereby reducing wiring complexity. The protocol
used for communication is Universal Asynchronous Receiver-
Transmitter (UART), a full-duplex asynchronous system that
enables simultaneous transmission and reception of data on
separate channels. In a classic UART configuration, the transmit
(TX) pin is connected to the receive (RX) pin of the counterpart
device. With USB, this bridging is indirectly managed by a
USB-to-Serial converter chip, which translates UART signals
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for USB compatibility. Communication is handled by dedicated
software libraries. Since UART is asynchronous, it does not
require a shared clock. To ensure reliable data exchange, both
devices must be configured with the same baud rate (bits per
second), set during software initialization. On the Arduino
Mega, the Serial library manages communication, leveraging
its four available hardware serial ports. The USB port is mapped
to Serial0 (pins 0 and 1), leaving the remaining ports available
for external modules (e.g., one is reserved for GPS). On the
Raspberry Pi, the Python pySerial library handles access to the
USB serial port and manages asynchronous command exchange
in ASCII format. This lightweight method ensures effective
coordination between the two devices, avoiding overload and
ensuring smooth acquisition, storage, and transmission of data.
To guarantee uninterrupted data flow, MoBI employs a dual
transmission strategy. When 4G/LTE connectivity is available,
the Raspberry Pi transmits environmental data to a remote
server. In cases of weak or absent coverage, data is sent via
LoRa [5] [6]. This strategy leverages the complementary
features of 4G/LTE and LoRa in terms of speed, coverage,
and energy efficiency. 4G/LTE serves as the primary channel,
offering high data transfer rates, low latency, and wide coverage
across coastal and inland areas, thus ensuring reliable and
immediate communication. LoRa acts as a fallback option,
enabling data transmission in areas with limited or no cellular
coverage. Its low power consumption and long range make
it ideal for remote or hard-to-access environments. This dual
system enhances the buoy’s resilience and versatility, ensuring
continuous operation and efficient data delivery under diverse
conditions. In all cases, data are also logged locally on an SD
card, allowing deferred transmission in case both primary and
backup channels fail. At the end of each mission, the system
checks whether the remote platform has received the data and,
if necessary, initiates retransmission via 4G. The electrical
system includes a charge controller and voltage converters
(12V, 5V, 3.3V) that supply all electronic modules. Compa-
rable surface gateway platforms designed for shallow-water
underwater networks, integrating solar power management and
embedded processing, have been presented in [7]. From a
structural perspective, the MoBI buoy (shown in Figure 1)
is built from HDPE using 3D printing. Its modular design
facilitates maintenance and component replacement/upgrades.
The internal arrangement protects the electronics from water
while ensuring optimal exposure of antennas (LTE, GPS, and
LoRa) and correct placement of the probe in the water. Similar
smart buoy solutions have been reported in [8].

The control software (firmware) is written in Python (for
Raspberry Pi) and C++ (for Arduino), following a finite state
machine (FSM) approach to manage the operational protocol.
Each mission is structured into the following phases: sensor
and communication preparation, navigation to target points,
data collection, and transmission. Figure 2 illustrates the
complete operational software flow of MoBI. Upon startup,
serial communication between the Arduino Mega and Raspberry
Pi is established, enabling constant exchange of information
and commands.

Figure 1. MoBI buoy.

The mission begins with a request to the remote platform
to obtain the GPS coordinates of the measurement sites.
Upon receiving the start command (START), the Raspberry Pi
forwards the coordinates to the Arduino. After acknowledgment,
the Arduino initializes the inertial sensors, GPS module,
and LoRa communication. Once a stable GPS signal (fix)
is acquired, the Arduino sends a confirmation (GPSFIX),
indicating operational readiness.

The displacement phase then begins: the buoy, either
manually or USV-towed, moves toward the first measurement
point. During transit, the Arduino Mega continuously updates
the GPS position and computes the distance to the destination.
When this distance falls below the predefined threshold, a
STOP command is issued to signal target arrival and transition
to the next phase. In the measurement phase, the Raspberry
Pi sends a start acquisition command (STARTDATA) to the
Arduino, triggering the wave motion analysis algorithm. During
this interval, inertial parameters such as wave period, direction,
and height are recorded.

Simultaneously, the Raspberry Pi collects data from the
environmental probe, which measures parameters such as
temperature, pH, conductivity, dissolved oxygen, and turbidity.
At the end of acquisition, the Arduino sends the wave data to
the Raspberry Pi, completing the collection process.

The data gathered by both units are then managed in
the transmission phase, which depends on connectivity: if
4G is available, the data are sent immediately (SEND4G);
otherwise, they are transmitted via LoRa to the receiving node
(SENDLORA).

After transmission, the system checks whether additional
points need to be visited. If so, the next destination is set, and
the cycle repeats. If all sites have been covered, the mission is
concluded. The transmission frequency is variable and directly
related to the number of configured measurement points, since
data are sent after each acquisition cycle.

III. INTEGRATED ENVIRONMENTAL DATA ACQUISITION

The MoBI system is engineered to collect both physico-
chemical properties of water and wave dynamics data. Its
acquisition workflow is structured into automated cycles,
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Figure 2. Software design.

guaranteeing measurement accuracy and seamless integration
with data transmission and storage systems.

For monitoring environmental conditions, the buoy is
equipped with a multiparametric probe WMP6, connected to a
Raspberry Pi via a USB serial interface RS485. This sensor
can record in real time several key indicators of water quality,
including temperature, pH, electrical conductivity, dissolved
oxygen, and turbidity. The probe remains submerged throughout
the mission, ensuring continuous exposure to the measured
environmental conditions.

During each cycle, the Raspberry Pi sends interrogation
commands to the probe. The acquired values are processed by
a software module that uses regular expressions to extract and
validate each measurement. For every parameter, the system
performs three consecutive readings a few seconds apart; the
results are then averaged and stored in a structured JSON file,
ready for transmission or local storage. Similar solutions, based

on modular and open-source architectures, have already been
implemented in long-term water monitoring projects.

Special attention has been given to turbidity, a parameter
that often proves critical in saltwater testing. In several cases,
the probe produced irregular or negative values during the
initial immersion phase. To prevent distortions, a preliminary
stabilization period was introduced before the actual sampling
phase, in order to ensure representative measurements.

The collected data are saved on an SD card and simultane-
ously queued for transmission to the remote server via 4G/LTE
network. If the connection is unavailable, the system switches to
the LoRa channel as an alternative. In all cases, local SD storage
guarantees data availability for retransmission in case of transfer
failure. At the end of each measurement cycle, the system
checks that all data packets have been successfully received by
the platform and, if necessary, selectively resends the missing
ones. Each measurement is timestamped and associated with
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GPS coordinates and a unique mission identifier.
The acquisition cycle can be executed for preconfigured

measurement points defined on the web platform or manually
activated in the field. This flexibility allows the system to
adapt to a variety of operational scenarios, ranging from short
missions with a few points to extended campaigns involving
dozens of successive readings.

IV. MONITORING OF WAVE DYNAMICS

Beyond monitoring the physico-chemical properties of water,
the MoBI system also records wave motion dynamics, a
crucial dataset for assessing coastal stability and ensuring
maritime safety. This functionality relies on a suite of inertial
sensors (accelerometer and gyroscope) mounted on an X-
NUCLEO-IKS01A3 board, complemented by a magnetometer
that provides directional orientation.

The wave analysis employs a four-phase algorithm designed
to identify complete wave cycles through the examination of
vertical acceleration. Specifically, fluctuations along the Z-axis
are tracked to discern the acceleration and deceleration phases
during both the cresting and trough movements. Similar low-
cost smart buoy systems for real-time wave height measurement
have been proposed in [9].

When a full cycle is detected, the system determines the
wave period by measuring the interval between two successive
peaks, while the wave height is estimated using double
numerical integration of the accelerometer data. Although this
technique is sensitive to sensor drift and noise, the level of
precision achieved is sufficient for practical field applications.
Comparable strategies have been implemented in professional-
grade coastal wave monitoring systems [2].

Wave measurements are collected over a configurable time
window, defined at the start of each deployment. The acquired
data are then averaged to produce a representative statistical
profile while minimizing transmission overhead. As with other
environmental parameters, wave-related data are georeferenced
and stored in JSON format, enabling subsequent processing.

Field evaluations confirmed the system’s capability to
reliably detect waves taller than 5–10 cm, even under minor
buoy oscillations or environmental noise. These findings are
consistent with results obtained from other low-cost prototypes
tested in lagoon conditions [3].

Nevertheless, during periods of very calm water, small inac-
curacies in wave period estimation were observed, primarily due
to difficulties in distinguishing buoy micro-movements from
actual wave patterns. Future improvements to the algorithm
are planned to address this limitation.

V. TEST CAMPAIGN AND EXPERIMENTAL RESULTS

To assess the performance of the MoBI system in realistic
operational contexts, a series of field trials was conducted
between January and March 2025 in the coastal area of Cagliari,
with particular reference to the Sant’Elmo pier and the Palma
channel. The campaign was aimed at verifying system stability,
evaluating the accuracy and consistency of the acquired data,
and testing the robustness of the communication subsystems

under variable environmental conditions. The following section
outlines the testing objectives and adopted methodology, and
subsequently provides a synthesis of the key experimental
outcomes.

A. Objectives and Methodology

The testing campaign aimed to evaluate several critical
aspects of the system:
• Accuracy of GPS positioning throughout missions;
• Proper acquisition, validation, and structuring of environ-

mental measurements;
• Reliability of 4G/LTE communication and the effectiveness

of LoRa as a backup channel;
• Performance of the multiparameter probe in saline conditions;
• Seamless integration of the platform with backend systems,

including the dashboard and data storage.
During the field operations, the buoy was transported to

designated locations and maintained in a stationary position
to facilitate data collection. Each measurement cycle involved
logging coordinates, stabilizing the probe, and performing
repeated sampling. Data were transmitted in real time whenever
a 4G connection was available, with LoRa serving as an
alternative communication channel when the primary network
was inaccessible.

B. Main Results

Positioning. The GPS module exhibited an average po-
sitional deviation of around 10 meters with respect to the
predefined target points. While this discrepancy falls within
the operational tolerance of the platform, subsequent tests
using a Global Navigation Satellite System (GNSS) module
demonstrated improvements, reducing both the time required
to obtain a satellite fix and the mean positioning error.

Environmental Data Quality. The multiparametric probe
provided stable and reliable measurements for all parameters,
with the exception of turbidity, which intermittently yielded
zero or negative readings. To ensure the integrity of the dataset,
such invalid measurements were systematically excluded from
the analysis.

Communication Reliability. The system effectively trans-
mitted data over LTE in regions with sufficient network
coverage. In areas lacking connectivity, the fallback and
retransmission mechanisms functioned as designed: data were
temporarily stored locally and subsequently transmitted via
LoRa. Comparable LoRa-based communication systems for
marine buoy monitoring achieved stable GPS data transmission
with low packet loss, confirming the suitability of this protocol
for long-range maritime links [10]. Upon mission completion,
the system verified the presence of any missing records by
querying the platform. Any absent data were retrieved from the
SD card and retransmitted over 4G until successful reception
was confirmed.

Integration and Visualization. The acquired data were sub-
sequently uploaded to a cloud-based platform for visualization
and aggregation, where they were transformed into interactive

49Copyright (c) IARIA, 2025.     ISBN:  ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

COCE 2025 : The Second International Conference on Technologies for Marine and Coastal Ecosystems

                            55 / 56



charts and geospatial maps. The dashboards enabled real-
time monitoring of parameters such as temperature, pH, and
dissolved oxygen, providing operators with immediate insight
into water quality. The integration of LoRa communication with
cloud-based dashboards has also been successfully implemented
in professional systems, such as the CB-150 buoy deployed in
Green Bay [5].

Operational Observations. From an operational perspective,
the field deployment of the buoy demonstrated the effectiveness
of its modular design, which simplified post-mission inspections
and battery maintenance. No instances of hardware malfunction
or water penetration were detected, confirming the reliability
and watertight performance of the 3D-printed HDPE hull.

VI. CONCLUSION AND NEXT STEP

The MoBI system has demonstrated itself as a dependable,
versatile, and effective platform for environmental monitoring in
marine and coastal environments. Its dual-processor configura-
tion, comprehensive sensor suite, and redundant communication
architecture allowed the system to successfully address the
operational challenges encountered during field deployments.

Field testing validated the platform’s robustness in terms of
data acquisition, transmission, and integration with backend
systems. Environmental measurements were generally consis-
tent and reliable, while the wave monitoring module performed
adequately for waves exceeding 5 cm in height. The software
infrastructure supported continuous data logging and ensured
recovery even during temporary network outages.

Insights from the field campaigns also identified several areas
for enhancement, which will inform future developments:
• optimization of power management to reduce energy con-

sumption [6];
• additional testing under more demanding wave conditions;
• expanded compatibility with diverse sensor protocols and

automated long-term mission management;
• native integration with cloud platforms to enable historical

data analysis and real-time alerts.
In summary, MoBI constitutes a significant advancement

toward the automation of environmental monitoring, merging
technological reliability with user-friendly operation in a
compact system ready for deployment in real-world coastal
scenarios.
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