
CLOUD COMPUTING 2025

The Sixteenth International Conference on Cloud Computing, GRIDs, and

Virtualization

ISBN: 978-1-68558-258-6

April 6 - 10, 2025

Valencia, Spain

CLOUD COMPUTING 2025 Editors

Andreas Aßmuth, Fachhochschule Kiel, Germany

Sebastian Fischer, Ostbayerische Technische Hochschule Regensburg, Germany

Christoph P. Neumann, Ostbayerische Technische Hochschule Amberg-Weiden,
Germany

 1 / 136

CLOUD COMPUTING 2025

Forward

The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization (CLOUD
COMPUTING 2025), held on April 6 – 10, 2025, continued a series of events targeted to prospect the
applications supported by the new paradigm and validate the techniques and the mechanisms. A
complementary target was to identify the open issues and the challenges to fix them, especially on
security, privacy, and inter- and intra-clouds protocols.

Cloud computing is a normal evolution of distributed computing combined with Service-oriented
architecture, leveraging most of the GRID features and Virtualization merits. The technology foundations
for cloud computing led to a new approach of reusing what was achieved in GRID computing with
support from virtualization.

The conference had the following tracks:

 Cloud computing

 Computing in virtualization-based environments

 Platforms, infrastructures and applications

 Challenging features

 New Trends

 Grid networks, services and applications

Similar to the previous edition, this event attracted excellent contributions and active participation from
all over the world. We were very pleased to receive top quality contributions.

We take here the opportunity to warmly thank all the members of the CLOUD COMPUTING 2025
technical program committee, as well as the numerous reviewers. The creation of such a high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors that dedicated much of their time and effort to contribute to CLOUD COMPUTING 2025. We
truly believe that, thanks to all these efforts, the final conference program consisted of top quality
contributions.

Also, this event could not have been a reality without the support of many individuals, organizations and
sponsors. We also gratefully thank the members of the CLOUD COMPUTING 2025 organizing committee
for their help in handling the logistics and for their work that made this professional meeting a success.

We hope that CLOUD COMPUTING 2025 was a successful international forum for the exchange of ideas
and results between academia and industry and to promote further progress in the area of cloud
computing, GRIDs and virtualization. We also hope that Valencia provided a pleasant environment
during the conference and everyone saved some time to enjoy this beautiful city.

 2 / 136

CLOUD COMPUTING 2025 Steering Committee

Carlos Becker Westphall, Federal University of Santa Catarina, Brazil
Alex Sim, Lawrence Berkeley National Laboratory, USA
Andreas Aßmuth, Fachhochschule Kiel, Germany
Uwe Hohenstein, Siemens AG, Germany
Aspen Olmsted, Wentworth Institute of Technology, Boston, USA
Christoph P. Neumann, Ostbayerische Technische Hochschule Amberg-Weiden, Germany

CLOUD COMPUTING 2025 Publicity Chair

Francisco Javier Díaz Blasco, Universitat Politècnica de València, Spain
Ali Ahmad, Universitat Politècnica de València, Spain
José Miguel Jiménez, Universitat Politècnica de València, Spain
Sandra Viciano Tudela, Universitat Politècnica de València, Spain

 3 / 136

CLOUD COMPUTING 2025

Committee

CLOUD COMPUTING 2025 Steering Committee

Carlos Becker Westphall, Federal University of Santa Catarina, Brazil
Alex Sim, Lawrence Berkeley National Laboratory, USA
Andreas Aßmuth, Fachhochschule Kiel, Germany
Uwe Hohenstein, Siemens AG, Germany
Aspen Olmsted, Wentworth Institute of Technology, Boston, USA
Christoph P. Neumann, Ostbayerische Technische Hochschule Amberg-Weiden, Germany

CLOUD COMPUTING 2025 Publicity Chair

Francisco Javier Díaz Blasco, Universitat Politècnica de València, Spain
Ali Ahmad, Universitat Politècnica de València, Spain
José Miguel Jiménez, Universitat Politècnica de València, Spain
Sandra Viciano Tudela, Universitat Politècnica de València, Spain

CLOUD COMPUTING 2025 Technical Program Committee

Sherif Abdelwahed, Virginia Commonwealth University, USA
Vibhatha Abeykoon, Voltron Data Inc., USA
Nikunj Agarwal, Amazon, Inc., USA
Maruf Ahmed, The University of Technology, Sydney, Australia
Mays Al-Naday, University of Essex, UK
Reem Al-Saidi, University of Windsor, Canada
Mubashwir Alam, Marquette University, USA
Abdulelah Alwabel, Prince Sattam Bin Abdulaziz University, Kingdom of Saudi Arabia
Mário Antunes, Polytechnic of Leiria, Portugal
Filipe Araujo, University of Coimbra, Portugal
Mohammad S. Aslanpour, Monash University, Australia
Andreas Aßmuth, Fachhochschule Kiel, Germany
Odiljon Atabaev, Andijan Machine-Building Institute, Uzbekistan
Babak Badnava, University of Kansas, USA
Carlos Jaime Barrios Hernandez, Universidad Industrial de Santander, Colombia
Mohammadreza Barzegaran, University of California Irvine, USA
Luis-Eduardo Bautista-Villalpando, Autonomous University of Aguascalientes, Mexico
Carlos Becker Westphall, Federal University of Santa Catarina, Brazil
Laura Belli, University of Parma, Italy
Leila Ben Ayed, National School of Computer Science | University of Manouba, Tunisia
Nicola Bena, Università degli Studi di Milano, Italy
Salima Benbernou, Universite Paris Cite, France

 4 / 136

Simona Bernardi, University of Zaragoza, Spain
Peter Bloodsworth, University of Oxford, UK
Larbi Boubchir, University of Paris 8, France
Jalil Boukhobza, University of Western Brittany, France
Antonio Brogi, University of Pisa, Italy
Roberta Calegari, Alma Mater Studiorum-Università di Bologna,Italy
Jon Calhoun, Clemson University, USA
Juan Vicente Capella Hernández, Universitat Politècnica de València, Spain
Arielle Carr, Lehigh University, USA
Roberto Casadei, Alma Mater Studiorum - Università di Bologna, Italy
Adithya Rajesh Chandrassery, National Institute of Technology Karnataka, Surathkal, India
Ruay-Shiung Chang, National Taipei University of Business, Taipei, Taiwan
Ryan Chard, Argonne National Laboratory, USA
Hao Che, University of Texas at Arlington, USA
Bo Chen, Michigan Technological University, USA
Dawei Chen, InfoTech Labs - Toyota Motor North America R&D, USA
Yitao Chen, Arizona State University, USA
Yue Cheng, George Mason University, USA
Dalila Cherifi, University of Boumerdes, Algeria
Claudio Cicconetti, National Research Council, Italy
Daniel Corujo, Universidade de Aveiro | Instituto de Telecomunicações, Portugal
Fábio M. Costa, Institute of Informatics (INF) | Federal University of Goiás (UFG), Brazil
Alexandre da Silva Veith, Nokia Bell Labs, Belgium
Sajal Dash, Oak Ridge National Laboratory, USA
Luca Davoli, University of Parma, Italy
Patrizio Dazzi, University of Pisa, Italy
Noel De Palma, University Grenoble Alpes, France
Mª del Carmen Carrión Espinosa, University of Castilla-La Mancha, Spain
Simon Pierre Dembele, University of Tartu, Estonia
Frederic Desprez, INRIA, France
Karim Djemame, University of Leeds, UK
Ramon dos Reis Fontes, Federal University of Rio Grande do Norte, Natal, Brazil
Steve Eager, University West of Scotland, UK
Nabil El Ioini, Free University of Bolzano, Italy
Rania Fahim El-Gazzar, Universty of South-Eastern Norway, Norway
Ibrahim El-Shekeil, Metropolitan State University, USA
Levent Ertaul, California State University, East Bay, USA
Javier Fabra, Universidad de Zaragoza, Spain
Fairouz Fakhfakh, University of Sfax, Tunisia
Yuping Fan, Illinois Institute of Technology, USA
Umar Farooq, University of California, Riverside, USA
Tadeu Ferreira Oliveira, Federal Institute of Science Education and Technology of Rio Grande do Norte,
Brazil
Sebastian Fischer, University of Applied Sciences OTH Regensburg, Germany
Kaneez Fizza, Swinburne University of Technology, Australia
Stefano Forti, University of Pisa, Italy
Somchart Fugkeaw, Sirindhorn International Institute of Technology | Thammasat University, Thailand
Katja Gilly, Miguel Hernandez University, Spain

 5 / 136

Jing Gong, KTH, Sweden
Chander Govindarajan, IBM Research, India
Poonam Goyal, Birla Institute of Technology & Science, Pilani, India
Jordi Guitart, Universitat Politècnica de Catalunya - Barcelona Supercomputing Center, Spain
Saurabh Gupta, Graphic Era Deemed to be University, Dehradun, India
Abdelhay Haqiq, Information Sciences School in Rabat, Morocco
Seif Haridi, KTH/SICS, Sweden
Herodotos Herodotou, Cyprus University of Technology, Cyprus
Uwe Hohenstein, Siemens AG Munich, Germany
Soamar Homsi, Air Force Research Laboratory (AFRL), USA
Md Rajib Hossen, The University of Texas at Arlington, USA
Li-Pang Huang, Tempus, USA
Yujie Hui, Ohio State University, USA
Anca Daniela Ionita, National University of Science and Technology POLITEHNICA Bucharest, Romania
Murat Isik, Stanford University, USA
Mohammad Atiqul Islam, The University of Texas at Arlington, USA
Saba Jamalian, Roosevelt University / Braze, USA
Fuad Jamour, Amazon Web Services (AWS), USA
Weiwei Jia, New Jersey Institute of Technology, USA
Carlos Juiz, University of the Balearic Islands, Spain
Sokratis Katsikas, Norwegian University of Science and Technology, Norway
Zaheer Khan, University of the West of England, Bristol, UK
Ioannis Konstantinou, CSLAB - NTUA, Greece
Sonal Kumari, Samsung R&D Institute, India
Venkatesh Kunchenapalli, Flexport, San Francisco, USA
Rohon Kundu, Lund University, Sweden
Julian Kunkel, Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG), Germany
Giuliano Laccetti, University of Naples Federico II, Italy
Frédéric Le Mouël, INSA Lyon / University of Lyon, France
Kyungyong Lee, Kookmin University, South Korea
Sarah Lehman, Temple University, USA
João Leitão, Universidade Nova de Lisboa, Portugal
Mingchu Li, Jiangxi Normal University, China
Kunal Lillaney, Amazon Web Services, USA
Xue Lin, Northeastern University, USA
Enjie Liu, University of Bedfordshire, UK
Pinglan Liu, Iowa State University, USA
Xiaodong Liu, Edinburgh Napier University, UK
Jay Lofstead, Sandia National Laboratories, USA
Rafael Lopes Gomes, State University of Ceara (UECE), Brazil
Zainab Loukil, University of Gloucestershire, UK
Hui Lu, Binghamton University (State University of New York), USA
Weibin Ma, University of Delaware, USA
Chathura Madhusanka Sarathchandra Magurawalage, InterDigital Europe Ltd., UK
Hosein Mohammadi Makrani, University of California, Davis, USA
Andras Markus, University of Szeged, Hungary
Shaghayegh Mardani, University of California Los Angeles (UCLA), USA
Stefano Mariani, University of Modena and Reggio Emilia, Italy

 6 / 136

Attila Csaba Marosi, Institute for Computer Science and Control - Hungarian Academy of Sciences,
Hungary
Romolo Marotta, University of l'Aquila (UNIVAQ), Italy
Jean-Marc Menaud, IMT Atlantique, France
Philippe Merle, Inria, France
Nasro Min-Allah, Imam Abdulrahman Bin Faisal University (lAU), KSA
Preeti Mishra, Graphic Era Deemed to be University, Dehradun, India
Takashi Miyamura, NTT Network Service Systems Labs, Japan
Prateeti Mohapatra, IBM Research Lab, India
Francesc D. Muñoz-Escoí, Universitat Politècnica de València, Spain
Ioannis Mytilinis, National Technical University of Athens, Greece
Tamer Nadeem, Virginia Commonwealth University, USA
Hidemoto Nakada, National Institute of Advanced Industrial Science and Technology (AIST), Japan
Akash Nayak, IBM Research, India
Antonio Nehme, Birmingham City University, UK
Richard Neill, RN Technologies LLC, USA
Christoph P. Neumann, Ostbayerische Technische Hochschule Amberg-Weiden, Germany
Bogdan Nicolae, Argonne National Laboratory, USA
Jens Nicolay, Vrije Universiteit Brussel, Belgium
Ridwan Rashid Noel, Texas Lutheran University, USA
Alexander Norta, Tallinn Technology University, Estonia
Aspen Olmsted, Wentworth Institute of Technology, Boston, USA
Matthias Olzmann, noventum consulting GmbH - Münster, Germany
Brajendra Panda, University of Arkansas, USA
Christos Papadopoulos, University of Memphis, USA
Arnab K. Paul, BITS Pilani, India
Sibendu Paul, Amazon Prime Video, USA
Alessandro Pellegrini, National Research Council (CNR), Italy
Sathya Peri, Indian Institute of Technology Hyderabad, India
Nancy Perrot, Orange Innovation, France
Tamas Pflanzner, University of Szeged, Hungary
Paulo Pires, Fluminense Federal University (UFF), Brazil
Agostino Poggi, Università degli Studi di Parma, Italy
Saul E. Pomares Hernandez, Instituto Nacional de Astrofísica, Óptica y Electrónica Tonantzintla, Puebla,
Mexico / SARA Group, LAAS-CNRS, Toulouse, France
Pavana Prakash, University of Houston, USA
Walter Priesnitz Filho, Federal University of Santa Maria, Rio Grande do Sul, Brazil
Abena Primo, Huston-Tillotson University, USA
Mohammed A Qadeer, Aligarh Muslim University, India
George Qiao, KLA, USA
Zhihao Qu, Hohai University, China
Francesco Quaglia, University of Rome Tor Vergata, Italy
M. Mustafa Rafique, Rochester Institute of Technology (RIT), USA
Kunal Rao, NEC Laboratories America, USA
Danda B. Rawat, Howard University, USA
Kaustabha Ray, IBM Research, India
Daniel A. Reed, University of Utah, USA
Christoph Reich, Hochschule Furtwangen University, Germany

 7 / 136

Sashko Ristov, University of Innsbruck, Austria
Javier Rocher Morant, Universitat Politecnica de Valencia, Spain
Ivan Rodero, Rutgers University, USA
Mohamed Aymen Saied, Laval University, Canada
Benjamin Schwaller, Sandia National Laboratories, USA
Wael Sellami, Higher Institute of Computer Sciences of Mahdia - ReDCAD laboratory, Tunisia
Jayasree Sengupta, Birla Institute of Technology, Mesra, India
Jianchen Shan, Hofstra University, USA
Larisa Shwartz, T.J. Watson Research Center IBM, USA
Muhammad Abu Bakar Siddique, University of California, Riverside, USA
Altino Manuel Silva Sampaio, Escola Superior de Tecnologia e Gestão | Instituto Politécnico do Porto,
Portugal
Alex Sim, Lawrence Berkeley National Laboratory, USA
Sima Sinaei, RISE Research Institutes of Sweden, Sweden
Akshit Singhal, University of Texas at Arlington, USA
Bowen Song, University of Southern California, USA
Hui Song, SINTEF, Norway
Polyzois Soumplis, National Technical University of Athens, Greece
Georgios L. Stavrinides, KIOS Research and Innovation Center of Excellence | University of Cyprus,
Cyprus
Cesar A. Stuardo, ByteDance, USA
Grażyna Suchacka, University of Opole | Institute of Informatics, Poland
Jingwei Sun, Duke University, USA
Vidhya Suresh, Atlassian Inc , San Francisco, USA
Vasily Tarasov, IBM Research, USA
Zahir Tari, School of Computing Technologies | RMIT University, Australia
Bedir Tekinerdogan, Wageningen University, The Netherlands
Ajay Lotan Thakur, Intel, Canada
Parimala Thulasiraman, University of Manitoba, Canada
Orazio Tomarchio, University of Catania, Italy
Salman Toor, Uppsala University, Sweden
Homero Toral-Cruz, University of Quintana Roo, Mexico
Mert Toslali, IBM Research, USA
Reza Tourani, Saint Louis University, USA
Rajesh Vayyala, PRA Group, Inc., USA
Antonio Virdis, University of Pisa, Italy
Raul Valin Ferreiro, Fujitsu Laboratories of Europe, Spain
Massimo Villari, Università di Messina, Italy
Kewei Wang, Northwestern University, USA
Teng Wang, Oracle, USA
Hironori Washizaki, Waseda University, Japan
Mandy Weißbach, Martin Luther University of Halle-Wittenberg, Germany
Sebastian Werner, Information Systems Engineering (ISE) - TU Berlin, Germany
Michael Wilkins, Northwestern University, USA
Liuqing Yang, Columbia University in the City of New York, USA
Bo Yuan, University of Leicester, UK
Christos Zaroliagis, CTI & University of Patras, Greece
Bo Zhang, Scientific Computing and Imaging Institute | The University of Utah, USA

 8 / 136

Zhiming Zhao, University of Amsterdam, Netherlands
Jiang Zhou, Institute of Information Engineering - Chinese Academy of Sciences, China
Yue Zhu, IBM Research, USA
Jan Henrik Ziegeldorf, RWTH Aachen University, Germany
Wolf Zimmermann, Martin Luther University Halle-Wittenberg, Germany

 9 / 136

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 10 / 136

Table of Contents

Kosmosis: Crypto Rug Pull Detection and Prevention by Fusing On- and Off-Chain Data in a Knowledge Graph
Philipp Stangl and Christoph Peter Neumann

1

Practical Acoustic Eavesdropping On Typed Passphrases
Darren Furst and Andreas Assmuth

9

Graph of Effort: Quantifying Risk of AI Usage for Vulnerability Assessment
Anket Mehra, Andreas Assmuth, and Malte Priess

17

On the Necessity of Measuring Security in IoT
Tobias Eggendorfer and Katja Andresen

25

A Forensic Analysis of GNSS Spoofing Attacks on Autonomous Vehicles
Tobias Reichel, Mathias Gerstner, Leo Schiller, Andreas Attenberger, Rudolf Hackenberg, and Klara Dolos

32

GFDG: A Genetic Fuzzing Method for the Controller Area Network Protoco
Miguel Stey, Murad Hachani, Philipp Fuxen, Julian Graf, and Rudolf Hackenberg

40

Intrusion Detection using Peer-to-Peer Distributed Context-Information for Electric Vehicle Supply Equipment
Julian Graf, Christoph Moser, Philipp Fuxen, and Rudolf Hackenberg

46

A Transformer-Based Framework for Anomaly Detection in Multivariate Time Series
Fabian Folger, Murad Hachani, Philipp Fuxen, Julian Graf, Sebastian Fischer, and Rudolf Hackenberg

52

Theoretical Integration of Hyperledger Fabric in Gaia-X: Towards an Approach for Federated Data Access
Liron Ahmeti, Klara Dolos, Conrad Meyer, Andreas Attenberger, and Rudolf Hackenberg

58

PERTD - Cloud Application Threat Modeling
Aspen Olmsted

63

Trends for Pulling HPC Containers in Cloud
Vanessa Sochat

69

Consistent Access to Cloud Services across Regions for Large Enterprises
Prisha Goel, Pavvan Pradeep, Aditi Srinivas M, Dhruv Sanjaykumar Ratanpara, and Shilpa S Krishna

81

Combining Flows and Rules in a Low-Code Platform for Smart Water Management
Jens Nicolay, Bjarno Oeyen, Samuel Ngugi Ndung'u, Thierry Renaux, Maxime Demarest, Boud Verbeiren, and
Wolfgang De Meuter

88

 1 / 2 11 / 136

Latency-Aware Task Offloading Mechanism for Mobile Edge Computing
Abdulelah Alwabel

94

Running Kubernetes Workloads on Rootless HPC Systems using Slurm
Jonathan Decker, Soren Metje, and Julian Kunkel

100

Configuring Edge Devices That Are Not Accessible Via The Internet
Sebastien Andreo and Uwe Hohenstein

108

LLM-based Distributed Code Generation and Cost-Efficient Execution in the Cloud
Kunal Rao, Giuseppe Coviello, Gennaro Mellone, Ciro Giuseppe De Vita, and Srimat Chakradhar

114

Proactive Optimization of Virtual Machine Placement Using Predictive Models Based on Time Series
Naby Doumbouya and Mhand Hifi

122

Powered by TCPDF (www.tcpdf.org)

 2 / 2 12 / 136

Kosmosis: Crypto Rug Pull Detection and Prevention by
Fusing On- and Off-Chain Data in a Knowledge Graph

Philipp Stangl∗ and Christoph P. Neumann†

∗Department of Computer Science
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

e-mail: philipp.stangl@fau.de
†Department of Electrical Engineering, Media and Computer Science

Ostbayerische Technische Hochschule Amberg-Weiden, Amberg, Germany
e-mail: c.neumann@oth-aw.de

Abstract—Rug pulls have become a major threat to the integrity
of blockchain ecosystems, with illicit activities surging and result-
ing in significant financial losses. Existing approaches to prevent
rug pulls focus on transaction graph analysis within blockchain
networks, but these methods are limited. We propose Kosmosis,
an incremental knowledge graph construction approach that
integrates semantically-enriched blockchain data with social media
insights into a unified knowledge graph to identify and prevent
rug pulls. We demonstrate how Kosmosis can extract semantic
information from blockchain transactions using the application
binary interface to decode smart contract interactions and tag
addresses based on their extracted relationships. We provide a
technical description of the knowledge graph construction process,
highlighting key components, such as address relation extraction,
tagging, and entity resolution. Our research aims to provide a
more comprehensive understanding of blockchain ecosystems and
contribute to the development of robust anti-fraud measures.

Keywords-blockchain; knowledge graphs; cyber fraud; rug pull;
security; smart contracts.

I. INTRODUCTION

Crypto assets use distributed ledger technology, like block-
chain, as decentralized transaction ledger and for proof of
ownership. Different types exist, each with unique roles: 1)
Cryptocurrencies, like Bitcoin, function as digital currencies for
storing or transferring value. 2) Fungible tokens are interchange-
able tokens with various utilities in blockchain ecosystems,
often crucial in Decentralized Finance (DeFi) protocols. 3)
Non-Fungible Tokens (NFTs), in contrast, are unique digital
assets proving ownership and authenticity, holding distinct
values and cannot be exchanged on a one-to-one basis with
other tokens.

In recent years, illicit activities in crypto have surged.
Chainalysis reported a record $20.6 billion in illicit transactions
in 2022 [1]. Since the rise of DeFi in 2020 and NFTs in 2021,
rug pulls have become a major fraud scheme [2], threatening
investors and integrity of the crypto asset sector.

The primary method for detecting fraudulent activity is
transaction graph analysis within blockchain networks [34].
However, this approach has two key limitations. First, trans-
acting parties are pseudonymous, with only their blockchain
addresses publicly visible. Tracking an address is possible,
but linking it to a real-world entity is challenging, as the

analysis is restricted to observable blockchain data. Second, this
method focuses only on asset type, quantity, and sender/receiver,
ignoring transaction semantics, such as what happened in a
transaction that caused the assets to get transferred, is not
covered, thus, limiting the depth of analysis.

Knowledge Graphs (KGs) can integrate fragmented knowl-
edge from diverse data sources, enabling semantic queryingand
reasoning. They offer a holistic view for detecting fraud patterns
in highly connected datasets [5]. A KG consists of uniquely
identified entities and their semantical relations, structured
ontologically. Their open-world assumption allows continuous
data integration, enhancing crypto asset fraud analysis and
fraud prediction.

The remainder of this paper provides a technical perspective
on the Kosmosis approach to incremental KG construction,
complementing its use case outlined in Section II in extension to
[6]. The use case focuses on detecting and preventing rug pulls,
a threat relevant across various blockchain platforms, with our
prototype specifically targeting the Ethereum blockchain due
to its widespread adoption. To support this objective, we first
provide background information on the Ethereum blockchain
and graph-based blockchain data mining methods in Section III.
We then describe the Kosmosis approach to incremental KG
construction in Section IV, emphasizing the pipeline that serves
as the foundation for the detection phase of the use case. Finally,
we outline future work in Section V and conclude the paper
with a discussion of our findings.

II. KOSMOSIS OBJECTIVES & USE CASE

To illustrate the vision of Kosmosis-enabled rug pull pre-
vention methods, we described a hypothetical user story about
homer_eth in [6]. The user story method of use case illustration
was adopted from our previous work in [7]. Kosmosis aims to
leverage a KG to enhance security in blockchain ecosystems
by identifying and alerting users before they interact with
fraudulent projects.

A. Over-Aching Objectives of Kosmosis

Objective 1: Identifying and Alerting Users of Rug Pulls.
With rising crypto scams, Kosmosis seeks to integrate block-

1Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 13 / 136

chain data, social media, and other KGs into a unified KG.
This facilitates semantic querying and reasoning, enabling
the development of alerting methods based on cross-domain
semantic analysis—where knowledge about on-chain behaviors
and social media interactions can be correlated—to detect
anomalous patterns and assign addresses with a risk score.

Objective 2: Incremental Construction of the KG. To
maintain high data freshness, Kosmosis requires a pipeline for
integrating updates without full reconstruction. This ensures the
integration of the latest available information while preserving
existing data.

Objective 3: Extracting Blockchain Transaction Semantics.
Transaction graphs typically show asset transfers but lack
semantic insights. Kosmosis extracts transaction semantics by
decoding smart contract interactions using their Application
Binary Interface (ABI), which aids in detecting sophisticated
fraudulent behavior. At present, our prototype specifically
targets the account-based transaction model, as implemented
in Ethereum. Expanding the framework to other blockchains
employing different accounting models, such as UTXO-based
systems, is a future objective.

B. Summary of the Kosmosis Use Case of Rug Pull Prevention

In our position paper [6], a hypothetical user, Bob, who
is relatively new to the NFT market, illustrates Kosmosis’
potential for rug pull prevention. A rug pull is a scam where
victims authorize fraudulent transactions. According to [2], rug
pulls occur in five stages: 1) project creation, 2) pre-mint hype,
3) token price setting, 4) accumulation of capital, and 5) exit
scam. The use case is based on the true story of the threat actor
Homer_eth, an NFT creator and X user, who launched his first
NFT collection, Ether Bananas, followed by the release of
Ether Monkeys and Zombie Monkeys.

Of these three NFT collections, Ether Monkeys created the
biggest medial buzz, because it promised additional utility
through a casino to gamble and a decentralized autonomous
organization to govern the NFTs, according to [8]. This buzz
draws Bob into the fray. Bob bought his first NFT from
Homer_eth and became an active participant in Homer_eth’s
growing community. Bob’s involvement in the community
deepened over time. He engaged in discussions, shared his
excitement with fellow members, and earned himself a whitelist
spot that allows Bob to mint the upcoming NFT project Ether
(ETH) Banana Chips by Homer_eth. Convinced of its potential,
Bob minted the NFT when the opportunity arose, unaware of
the underlying risks associated with his investment.

Unbeknownst to Bob, the proceeds from the mint were not
locked within the smart contract for future development, as
initially promised. Instead, these funds were directly transferred
to the deployer address associated with Homer_eth. Subse-
quently, Homer_eth either redirected these proceeds to a new
deployer address—potentially to facilitate a future fraudulent
scheme, or transferred them to an exchange to realize profits
from previous deceptive activities. Following the launch of
ETH Banana Chips, the community experienced a prolonged
period of uncertainty, marked by an absence of updates or

communication from Homer_eth. For several months, no new
developments were reported, leaving stakeholders uncertain
about the project’s trajectory. It was not until March 2022 that
Homer_eth resurfaced, announcing a final NFT project, titled
Froggy Frens. However, due to backlash from the community,
Homer_eth deleted his X account and vanished [8].

C. Kosmosis Extension

Kosmosis identifies potential rug pulls by semantically
analyzing transaction patterns encoded within smart contract
interactions and cross-referencing blockchain addresses with
real-world entity data from social media and other external
sources. Our approach is grounded in the assumption that scam-
mers publicly disclose or explicitly link blockchain addresses
in their social media posts to promote their scams. This linkage
is crucial for Kosmosis, as it provides the primary method of
associating blockchain transactions with social identities, which
enhances the semantic richness of the constructed KG.

The detection logic within the KG evaluates transactions that
involve high-risk state changes, such as bulk asset transfers
shortly after a token mint event, and assigns risk scores based
on the presence of correlated indicators (e.g., rapid withdrawal
to external accounts controlled by the deployer). These risk
scores can trigger automated alerts before submitting a new
transaction, providing timely warnings to users. Had Bob used
Kosmosis, it would have analyzed the transaction history prior
to submitting his mint transaction to Ethereum. The system
would have issued a rug pull warning based on patterns of
fund diversion to deployer addresses.

III. BACKGROUND

This section covers background on rug pulls and blockchain
technology, with a particular focus on the Ethereum blockchain,
as detailed in Section III-A. Following the blockchain aspects,
we discuss related graph-based approaches for blockchain
data mining in Section III-B. On the social media aspects
of Kosmosis, our prior work includes correlating Reddit data
with traditional stock market trends [9] and analyzing Twitter/X
data using SPARQL [10].

A. The Ethereum Blockchain

Blockchain technology is founded on the principles of
immutability, decentralization, transparency, and cryptographic
security, and it has been applied across various domains in
recent years. For example, it has been utilized in the financial
sector (e.g., [11]), as well as in supply chain management, either
through a single blockchain [12] or by leveraging multiple
interoperable blockchains [13]. A significant subset of block-
chain technology is smart contract platforms, which facilitate
the development of decentralized applications through self-
executing smart contracts. This section provides an overview of
the key concepts of Ethereum as a representative smart contract
platform. It covers fundamental aspects such as smart contracts,
their execution environment, and the account-based transaction
model, which are essential for the subsequent sections.

2Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 14 / 136

1) Blockchain Data Structure: A blockchain is a data
structure whose elements called blocks are linked together
to form a chain of blocks [14]. Each block comprises two
parts: a body and a header. The body of the block contains a
set of transactions. A transaction typically involves the transfer
of assets between a sender and a receiver. These participants
are represented by addresses, which are unique alphanumeric
strings that clearly specify the origin and destination of each
transaction. Further, the block body is used to generate a unique
identifier called the block hash. The block header contains a
reference to the unique identifier of its immediate predecessor,
known as the parent block.

2) Smart Contracts: Through smart contacts, which are
executable source codes that enforce the terms and conditions of
particular agreements, a smart contract platform like Ethereum
facilitates the development of decentralized applications [15].
Once deployed on the blockchain, the smart contract is assigned
an address where the code resides and cannot be altered or
tampered with. By writing custom smart contracts, developers
can create and manage tokens that adhere to the standards
ERC-20 for Fungible Token (FT) or ERC-721 for NFT. An
ABI specifies the functions and data structures exposed by
a smart contract, allowing external applications to understand
the capabilities of the contract. Further, an ABI defines a format
for encoding and decoding data that is passed between smart
contracts and external applications. This ensures a consistent
and standardized way to exchange information.

The Ethereum blockchain manages ETH as the native
cryptocurrency of the platform. It operates with the Ethereum
Virtual Machine (EVM) as a fundamental building block,
serving as the execution environment for smart contract code.
Smart contracts, primarily written in a high-level language
such as Solidity, undergo compilation into EVM bytecode.
This bytecode is the executable format used by the EVM to
enact smart contract functions. To interact with this bytecode,
a contract ABI is utilized, which acts as a bridge between the
high-level language and the low-level bytecode. In this context,
an EVM disassembler plays a crucial role; it reverses the
bytecode back into a more readable format, aiding developers
in understanding and analyzing the code deployed on the
Ethereum blockchain. Figure 1 shows the processes involved
in deploying smart contracts to the Ethereum blockchain
and reading contract data from it, including compilation
and deployment steps, and the interaction between a web
application and the Ethereum blockchain. The left side shows
the compilation and deployment of a smart contract, and the
right side depicts an interaction with the contract (e.g., from a
web application).

3) Externally Owned Account: Unlike smart contracts,
Externally Owned Accounts (EOAs) are controlled by real-
world entitys through private keys, enabling them to initiate
transactions, such as transferring crypto assets or executing
functions of a smart contract. When an EOA sends a transaction
to a smart contract, it triggers the code of the contract to execute
according to its predefined rules.

4) Account-based Accounting: For the record-keeping of
transactions, blockchains utilize an accounting model. Com-
pared to other blockchains, such as the equally well-known
Bitcoin blockchain that uses the Unspent Transaction Output
(UTXO) model, or its successor the extended UTXO [17]
utilized by the Cardano blockchain, whereas Ethereum employs
the account-based accounting model.

The account-based model can be best understood through
the analogy of a bank account. This approach mirrors how
a banking account operates. Like a bank account that tracks
the inflow and outflow of funds, thereby reflecting the current
balance, the account-based model in Ethereum maintains a
state that records the balance of Ether. Thus, it is inherently
stateful. Each transaction results in a direct adjustment to this
balance, akin to a deposit or withdrawal in a bank account.
This model’s stateful nature ensures that at any given moment,
the system can accurately reflect the total amount of Ether
held in each account, offering an up-to-date view of account
balances within Ethereum.

5) Token Minting: Token minting refers to the process of
generating new tokens. Fungible tokens are typically minted
by their creator either at the project’s launch or gradually
over time. This issuance is governed by predefined rules or
algorithms embedded within the project’s smart contracts.

The minting of NFTs involves participants other than the
original token creator, commonly known as token minters.
These individuals engage in the process by invoking a specific
function within a smart contract, designated as mint in the
ERC-721 token standard. Executing this function results in an
increase in the total supply of NFTs while simultaneously
assigning the newly minted tokens to the blockchain address
of the minter.

The minting process for NFTs is frequently facilitated
through a dedicated minting platform. Prospective minters or
investors must contribute a predefined amount, as determined
by the creator, to initiate the minting process. This contribution
enables them to mint one or multiple NFTs, depending on the
stipulations outlined in the smart contract. Beyond enabling the
creation of new NFTs, this process also serves as a mechanism
for directly transferring ownership from the NFT creator to
the NFT minter.

B. Rug Pull Detection Methods

This section examines two main approaches used for rug
pull detection: smart contract code analysis and graph-based
methods. Smart contract code analysis entails a comprehensive
examination of a contract’s source code to extract and interpret
the semantic behavior of transactions. For instance, [18]
leverages this approach to uncover potential vulnerabilities
and fraudulent patterns within smart contracts. Their proposed
method, “Tokeer,” systematically dissects the code to identify
suspicious patterns and functions that may indicate a predispo-
sition to rug pull schemes.

Graph-based techniques, on the other hand, leverage graph
theory and data mining to analyze blockchain network graphs,
as blockchain transactions naturally form graphs [19]. Elmougy

3Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 15 / 136

and Liu [20] describe three graph types for blockchain networks:
money flow transaction graphs (representing how asset flow
over time), address-transaction graphs (showing asset flow
across transactions and addresses), and user entity graphs
(clustering addresses potentially controlled by the same user to
deanonymize them). Graph-based rug pull detection often uses
network embedding techniques, such as graph convolutional
networks (e.g., [21]), to automatically extract features from
the blockchain network.

IV. THE KOSMOSIS APPROACH TO INCREMENTAL
KNOWLEDGE GRAPH CONSTRUCTION

To incrementally construct a KG that integrates data in
a continuous and periodic way, we propose a multi-stage
pipeline, as illustrated in Figure 2. It originated from a
master’s thesis [22] and consists of three stages: Data ingestion,
data processing, and knowledge storage. We use italics to
emphasize on conceptual aspects and typewriter text for
technical operations.

The initial stage, data ingestion, captures the raw data from
the primary data sources (blockchain and social media) as well
as enrichment data sources (e.g., another knowledge base). This
phase is characterized by its versatility in the frequency of
data acquisition: it can be 1) continuous, to capture real-time
updates from sources such as blockchain nodes, 2) incremental
for new posts via the X Streaming Application Programming
Interface (API), 3) periodic, to capture new entries in structured
data sources like relational databases at regular intervals, or 4)
event-based, responding to events that are emitted upon new
entity additions to the KG.

Following the ingestion stage, the data processing stage is
initiated, which is partitioned into distinct workflows tailored
to handle each type of ingested data. This segmentation allows
for specialized processing depending on the structure of the
raw data. For instance, for text data sources, natural language
processing techniques, such as named entity recognition [23],

can be used to ensure that the data is accurately interpreted,
and contextual relationships are discerned.

In the third and final stage, the refined data is loaded into
the knowledge storage, where it is systematically organized
within a triplestore, a type of database optimized for storing
and retrieving data in Resource Description Framework (RDF)
format. The triplestore can then be used for semantic querying
capabilities to extract actionable insights from the KG for
downstream processes. For the KG, we use the EthOn [24]
ontology that formalizes the concepts and relations within the
domain of the Ethereum network and blockchain. EthOn is
written in RDF and Web Ontology Language (OWL).

A. Blockchain Data Processing

The blockchain data processing workflow continuously
ingests new transactions from the blockchain via websocket con-
nections. Websockets enable open, interactive communication
sessions between a client and a server, facilitating real-time data
transfer without the need for repeated polling. Upon receiving
these transactions, the workflow processes and integrates them
into the KG by first extracting the address relationship, followed
by tagging the addresses, and finally fusing the addresses with
the entities of the KG.

1) Address Relation Extraction: In order to provide answers
to “why” and “how” assets were transferred in a transaction,
Kosmosis implements a pipeline module titled Address Relation
Extraction. The responsibility of this module is to extract
the semantic information in a blockchain transaction through
decoding the input data of a transaction using the ABI of the
smart contract a blockchain address is interacting with.

First, the ABI is requested from Etherscan [25] and Sourcify
[26] via their respective REST APIs. If the ABI cannot be
successfully fetched from one of the aforementioned sources,
the module resorts to reconstructing the ABI from the smart
contract byte code, which is available at any time since the
bytecode is deployed on the blockchain. This operation enables

IDE/
Front-end

Ethereum
VM

Ethereum
Blockchain

1. Compile

Solidity Source Code

ABI

2. Deploy

Bytecode Opcodes

Block
n

Web Application

4. Decode

ABIBytecode

3. Receive

Block
n+i

Deploying Contracts to Ethereum Reading Contract Data from Ethereum

Figure 1. Schematic representation of deploying and reading from smart contracts. Adapted from Takeuchi [16].

4Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 16 / 136

Legend: Data Flow Knowledge Extraction StepLoad Subgraph

Triplestore

Address Relation
Extraction

Knowledge Storage

Attributions
Database

(structured data)

Enrichment Data Sources

Golden Knowledge Graph API
(structured data)

Primary Data Sources

Data Ingestion

Address TaggingWebsocket
(continuously)

Text
Entity Resolution

Relation
Extraction

Named Entity
Recognition

Attributions
Entity Resolution

Golden Entity
Resolution

Blockchain
Entity Resolution

X Filtered Stream API
(unstructured data)

HTTP Requests
(incrementally)

RDBMS Client
(periodically)

HTTP Requests
(event-driven)

Connector

Data Processing

Blockchain Node
(semi-structured

data)

Knowledge Processing Step

Figure 2. A high level overview of the Kosmosis pipeline.

the decoding of transactions and the interaction with smart
contracts beyond their compiled state.

The initial step involves the disassembly of the bytecode
of the smart contract. This operation, referred to as DISASM,
decomposes the bytecode into a series of readable opcodes and
associated data. Disassemblers (e.g., pyevmasm [27]) facilitate
this step by translating the bytecode back into a form that
represents the original instructions and operations defined
within the smart contract.

Following disassembly, the algorithm initializes by creating
an empty array intended to store the ABI and defining lists of
opcodes that either change the state or read from the state of
the blockchain. These opcodes include SSTORE, CREATE, CREATE2 for
state-changing operations, and SLOAD for state-reading operations,
reflecting the fundamental actions a smart contract on the EVM
can perform [11].

The core of the algorithm iterates over selector/offset pairs
within the disassembled bytecode. Selectors serve as identifiers
for functions in the EVM, facilitating the mapping to the
corresponding functionality. If a given offset does not match any
destination within the program’s destinations, the iteration skips
to the next pair, ensuring only valid functions are considered.

Upon finding a valid function destination, the algorithm
retrieves the function definition and assigns tags based on its
behavior. This tagging process involves analyzing the opcodes
contained within the function and any related jump destinations.
The purpose is to categorize functions according to how they
alter the blockchain state, using a depth-first search algorithm
to navigate through the function call graph.

An AbiFunction object is then created for each valid function,
with its payable status determined inversely by the presence of
a notPayable marker at the corresponding offset. The algorithm
next assigns mutability attributes (nonpayable, payable, view,
or pure) based on whether the function alters state, reads state,
or neither. This classification is crucial for understanding how
functions interact with the blockchain and their implications
on transaction costs and permissions.

Finally, the algorithm decides on the inclusion of inputs and
outputs in the function signature, informed by the presence
of specific tags. For instance, tags indicating data retrieval or
state mutation influence whether parameters are classified as
inputs or outputs. This granular control ensures that the ABI
accurately reflects the interface of the smart contract, allowing
for effective transaction decoding.

Currently, the method for extracting semantic information
from smart contract transactions relies partly on predefined
heuristics, such as recognizing specific function names like
“mint.” However, we acknowledge that scammers could circum-
vent these simplistic heuristics by obfuscating or renaming
functions. Future improvements will incorporate advanced
transaction pattern analysis rather than function naming alone,
enhancing resilience against simple obfuscation techniques.

2) Address Tagging: Since the exact identity of a real-world
entity controlling a blockchain address is often unknown, it
can still be categorized and tagged accordingly. The address
tagging module tags the sender and receiver address based on
their extracted relationship from the preceding address relation
extraction module. For instance, an EOA deploying a smart

5Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 17 / 136

contract is tagged as deployer in case of a contract creation
transaction. Likewise, if an EOA is sending Ether to an NFT
contract T via a contract function containing the word “mint,”
the EOA is tagged as is tagged as NFT minter of T . Tags
are subclasses of EOAs and contract accounts, extending the
address concept of the EthOn ontology.

3) Blockchain Entity Resolution: The blockchain entity
resolution module is responsible for resolving blockchain
addresses to either new entities or existing ones in the KG, by
using the extracted information from preceding steps. It begins
with mapping the result data from the preceding steps into the
RDF format, adhering to the ontology defined by the KG. This
ensures that the data is structured in a way that is compatible
with the KG’s existing schema.

Following the mapping to RDF, the next phase involves
fusing this RDF data with the KG. This is accomplished
through a two-step process. Initially, a subgraph that is relevant
to the processed data is loaded into the system. This step,
commonly referred to as “blocking,” narrows down the scope
of the resolution process to the most relevant segments of the
KG, thereby enhancing the entity resolution process.

Subsequently, the system proceeds to match the newly
processed data with the corresponding entities within the KG.
This matching process is crucial for identifying where the
new data fits within the existing structure and for ensuring
that it is integrated in a meaningful way. In certain cases,
the fusion process may also involve the clustering of entities.
This is particularly relevant for blockchain data, where unique
characteristics of the data can be leveraged to enhance the
integration process.

For instance, when dealing with blockchains that utilize an
account-based accounting model, address clustering heuristics
can be employed to further refine the fusion process. One such
heuristic is the deposit address reuse, as proposed by Victor
[28]. Kosmosis uses deposit address reuse for blockchain data
from Ethereum to resolve entities more effectively.

B. Text Processing

The workflow starts with the input of unstructured data
from the X Filtered Stream API [29], which is incrementally
streamed and parsed via a long-lived HTTP request into the
pipeline. The first step in processing this data is named entity
recognition, where the system identifies and classifies named
entities present in the text into predefined categories, such as
the names of persons, organizations, and locations.

The next step is relation extraction. This process involves
identifying and extracting relationships between the named
entities that were previously recognized. For instance, it could
determine that a person named “Alice” works for a company
named “Acme.”

The final step in the text processing workflow is the entity
resolution, achieved through blocking and matching. For each
new entity, the system identifies all other entities within the
KG that need to be considered for matching. Considering the
growing size of the KG, through the incremental updates, it is
important to limit the matching process to as few candidates

as possible [30]. The method of limiting candidates is known
as blocking, which confines the matching process to entities
of the same or most similar entity type.

Following the blocking that serves as a preliminary filtering
step, the matching is performed. This involves a pairwise
comparison of the new entities with those existing entities in
the KG identified during the blocking phase. Its objective
is to identify all entities that are sufficiently similar and,
therefore, potential candidates for matching. This pairwise
comparison relies on a nuanced assessment of similarity that
encompasses both the properties of the entities and their
relational connections within the KG. By evaluating both
property values and the nature of relationships to other entities,
the system determines the degree of similarity between entities.

C. Enrichment Data Processing

Enrichment data enhances the data obtained from primary
data sources with supplementary context regarding real-world
entitys. Attributions involve the mapping of blockchain ad-
dresses to their corresponding real-world entities. This task is
largely dependent on data sourced from a network of experts,
such as team members from blockchain projects. The input
data for the attribution process is typically not consistent in
its timing, as it depends on when the experts provide updates
or when new information becomes available. As a result, the
enrichment data processing workflow is designed to operate at
regular intervals, ensuring that the KG is updated systematically
and remains as up-to-date as possible.

To further enrich the KG, data from external knowledge
bases is integrated. In our case, we use the Golden Knowledge
Graph due to its concentrated information on tech startups
and cryptocurrencies. This external graph offers a wealth
of information about crypto projects, including details about
their founders, team members, and project descriptions. Such
depth of data provides a valuable context that can significantly
improve the understanding of entities in the constructed KG.

The workflow for integrating knowledge from an external KG
is event-driven, activated once the knowledge storage indicates
the addition of new entities from the social media platform
X. Then, the workflow triggers a process to pull in additional
background information from the Golden Enrichment API [31].
It uses the X username that has been newly included in the
KG as unique identifier to fetch relevant data.

D. Quantity Structure of the Knowledge Graph Data

In our prototype implementation, data was ingested at rates
averaging 10-15 transactions per second (each averaging 5KB)
from Ethereum blockchain nodes and roughly 200 tweets
per minute (each averaging 2KB) from the X filtered stream
API. This combined ingestion rate corresponds approximately
between 3.4 to 4.9 MB per minute of raw data. Our prototype
runs on a standalone cloud server instance with 32 GiB RAM
and 8 vCPUs (AWS EC2 m5.2xlarge) with a 512GB SSD,
managing real-time data ingestion and processing workloads.
The semantic enrichment introduces minimal latency (less

6Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 18 / 136

than 5 seconds per transaction batch), thus allowing for near-
real-time KG updates. The KG constructed by Kosmosis
accumulates triples at an approximate rate of 2.5 to 6 million
triples per day, depending on transaction activity and the level
of detail extracted from social media.

While the described hardware configuration proved adequate
for prototype-level or small- to medium-scale deployments,
a production implementation aimed at analyzing multiple
blockchain networks or higher data volumes would necessitate
scaling to multiple compute nodes, each handling dedicated
tasks such as blockchain data ingestion.

V. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated how to build a knowledge
graph from blockchain and social media data using the Kos-
mosis approach to incremental knowledge graph construction.
It complements our previous use case paper [6] that provided
a real-world example of how Kosmosis can detect fraudulent
activity, with a high-level technical discussion about the
Kosmosis pipeline.

In the exemplary scenario, a threat actor known as Homer_eth
executed five NFT project heists within two months, accumu-
lating over $2.8 million in profits. We summarized our user
story, in which Kosmosis provides a knowledge graph that
improves the detection of such fraudulent schemes. Kosmosis
fuses on- and off-chain data, thus, it becomes the basis for
semantic querying and reasoning over a graph of entities and the
relationships among them, facilitating analyses for cybercrime
and fraud prevention, with the current focus on rug pulls as a
major fraud scheme.

The initial findings of our research on Kosmosis have shown
promising results, indicating the potential of our approach in
identifying and preventing rug pulls. However, there are ample
improvement opportunities for Kosmosis in future work.

It will be necessary to refine the filters used in the ingestion
of data from the X Filtered Stream API. The current process
of data ingestion depends on the presence of direct links to
blockchain addresses in social media posts. For instance, the
ability to link the user Homer_eth with the EtherReapers smart
contract was solely facilitated by the explicit mention of the
smart contract address in Homer_eth’s announcement post on
X. This example underscores the limitations of the current
approach, which may overlook relevant connections in the
absence of direct references. Consequently, a more sophisticated
approach is required to ensure a broader and still relevant
dataset is captured to associate X users with their respective
blockchain addresses.

Additionally, the implementation of knowledge fusion, the
process of identifying true subject-predicate-object triples [32],
sourced from the blockchain and social media stands out as a
critical next step. By fusing multiple records representing the
same real-world entity into a single and consistent representa-
tion [33], knowledge fusion would allow for a more accurate
representation of real-world entitys in the knowledge graph.

Currently, our prototype is limited to blockchains utilizing the
account-based accounting model, like Ethereum. Recognizing

the diversity in blockchain architectures and their unique fea-
tures, we aim to allow for the integration of blockchains using
a different accounting system, like Bitcoin. This expansion
is essential for broadening the applicability and utility of
Kosmosis across different blockchain platforms.

In conclusion, the Kosmosis pipeline supports the ingestion
of unstructured, semi-structured, and structured data, as well as
the ingestion of new data at different time intervals. It supports
continuous ingestion in a stream-like fashion, incrementally,
periodically, or event-based ingestion. During construction, the
semantics of blockchain transactions are extracted to address
“why” and “how” crypto assets were transferred.

REFERENCES

[1] Chainalysis, “The 2023 crypto crime report,” Chainalysis, Feb.
2023, [Online]. Available: https://go.chainalysis.com/2023-
crypto-crime-report.html (visited on 01/31/2025).

[2] T. Sharma, R. Agarwal, and S. K. Shukla, “Understanding
rug pulls: An in-depth behavioral analysis of fraudulent nft
creators,” ACM Trans. Web, vol. 18, no. 1, Oct. 2023, ISSN:
1559-1131. DOI: 10.1145/3623376.

[3] A. Khan, “Graph analysis of the ethereum blockchain data: A
survey of datasets, methods, and future work,” in 2022 IEEE
International Conference on Blockchain (Blockchain), IEEE,
Espoo, Finland: IEEE, 2022, pp. 250–257.

[4] F. Béres, I. A. Seres, A. A. Benczúr, and M. Quintyne-Collins,
“Blockchain is watching you: Profiling and deanonymizing
ethereum users,” in 2021 IEEE International Conference
on Decentralized Applications and Infrastructures (DAPPS),
Online: IEEE, 2021, pp. 69–78. DOI: 10.1109/DAPPS52256.
2021.00013.

[5] X. Zhu et al., “Intelligent financial fraud detection practices in
post-pandemic era,” The Innovation, vol. 2, no. 4, 2021.

[6] P. Stangl and C. P. Neumann, “The Kosmosis Use Case of
Crypto Rug Pull Prevention by an Incrementally Constructed
Knowledge Graph,” in Proc of the 2nd Workshop on Data
Engineering for Data Science (DE4DS) in conjunction with the
21st Conference on Database Systems for Business, Technology
and Web (BTW’25), Bamberg, DE, Mar. 2025, forthcoming.

[7] C. P. Neumann and R. Lenz, “The alpha-Flow Use-Case
of Breast Cancer Treatment – Modeling Inter-Institutional
Healthcare Workflows by Active Documents,” in Proc of the
19th Int’l Workshops on Enabling Technologies: Infrastructures
for Collaborative Enterprises (WETICE 2010), Larissa, GR,
Jun. 2010, pp. 12–22. DOI: 10.1109/WETICE.2010.8.

[8] ZachXBT [@zachxbt], “Homer.eth (formerly @homer_eth) rug
pull analysis,” X, X Corp., May 26, 2022, [Online]. Available:
https://x.com/zachxbt/status/1529973318563946496 (visited on
12/05/2023).

[9] T. Bauer et al., “Reddiment: Eine SvelteKit- und ElasticSearch-
basierte Reddit Sentiment-Analyse,” German, Ostbayerische
Technische Hochschule Amberg-Weiden, Technische Berichte
CL-2022-06, Jul. 2022. DOI: 10.13140/RG.2.2.32244.12161.

[10] B. Hahn et al., “Twitter-Dash: React- und .NET-basierte Trend-
und Sentiment-Analysen,” German, Ostbayerische Technische
Hochschule Amberg-Weiden, Technische Berichte CL-2022-07,
Jul. 2022. DOI: 10.13140/RG.2.2.15466.90564.

[11] G. Wood, “Ethereum: A Secure Decentralised Generalised
Transaction Ledger,” (Ethereum project yellow paper), Parity
Technologies, 2024, [Online]. Available: https : / / ethereum .
github.io/yellowpaper/paper.pdf (visited on 01/29/2024).

[12] S. Wang, D. Li, Y. Zhang, and J. Chen, “Smart contract-based
product traceability system in the supply chain scenario,” IEEE
Access, vol. 7, pp. 115 122–115 133, 2019.

7Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 19 / 136

[13] P. Stangl and C. P. Neumann, “FoodFresh: Multi-Chain Design
for an Inter-Institutional Food Supply Chain Network,” in Proc
of the 14th International Conference on Cloud Computing,
GRIDs, and Virtualization (Cloud Computing 2023), Nice,
France, Jun. 2023, pp. 41–46. DOI: 10.48550/arXiv.2310.19461.

[14] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview
of blockchain technology: Architecture, consensus, and future
trends,” in 2017 IEEE International Congress on Big Data
(BigData Congress), Boston, MA, USA: IEEE, 2017, pp. 557–
564. DOI: 10.1109/BigDataCongress.2017.85.

[15] O. Marin, T. Cioara, L. Toderean, D. Mitrea, and I. Anghel,
“Review of Blockchain Tokens Creation and Valuation,” Future
Internet, vol. 15, no. 12, p. 382, Nov. 27, 2023, ISSN: 1999-
5903. DOI: 10.3390/fi15120382.

[16] E. Takeuchi, “Explaining ethereum contract abi & evm byte-
code,” Medium, Jul. 16, 2019, [Online]. Available: https://
medium.com/@eiki1212/explaining-ethereum-contract-abi-
evm-bytecode-6afa6e917c3b (visited on 12/07/2023).

[17] M. M. Chakravarty et al., “The extended utxo model,” in
Financial Cryptography and Data Security: FC 2020 Interna-
tional Workshops, AsiaUSEC, CoDeFi, VOTING, and WTSC,
Kota Kinabalu, Malaysia, February 14, 2020, Revised Selected
Papers 24, Springer, 2020, pp. 525–539.

[18] Y. Zhou et al., “Stop pulling my rug: Exposing rug pull risks
in crypto token to investors,” 2024.

[19] H. Huang, W. Kong, S. Zhou, Z. Zheng, and S. Guo, “A
survey of state-of-the-art on blockchains: Theories, modelings,
and tools,” ACM Computing Surveys (CSUR), vol. 54, no. 2,
pp. 1–42, 2021.

[20] Y. Elmougy and L. Liu, “Demystifying fraudulent transactions
and illicit nodes in the bitcoin network for financial forensics,”
in Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, ser. KDD ’23, Long
Beach, CA, USA: Association for Computing Machinery, 2023,
pp. 3979–3990. DOI: 10.1145/3580305.3599803.

[21] L. Chen et al., “Phishing scams detection in ethereum transac-
tion network,” ACM Trans. Internet Technol., vol. 21, no. 1,
Dec. 2020, ISSN: 1533-5399. DOI: 10.1145/3398071.

[22] P. Stangl, “Design and Implementation of an Incremental
Knowledge Graph Construction Pipeline for Investigating
Crypto Asset Fraud,” Masterarbeit, Ostbayerische Technische

Hochschule Amberg-Weiden, Apr. 2024. DOI: 10.5281/zenodo.
14518573.

[23] J. Li, A. Sun, J. Han, and C. Li, “A survey on deep learning for
named entity recognition,” IEEE Transactions on Knowledge
and Data Engineering, vol. 34, no. 1, pp. 50–70, 2020.

[24] J. Pfeffer, “Ethon: Ethereum ontology,” ConsenSys Software
Inc., Dec. 7, 2023, [Online]. Available: https://ethon.consensys.
io/ (visited on 12/07/2023).

[25] Etherscan, “Etherscan: The ethereum blockchain explorer,”
Etherscan LLC, Dec. 7, 2023, [Online]. Available: https : / /
etherscan.io/ (visited on 12/07/2023).

[26] Sourcify, “Sourcify: Source-verified smart contracts for trans-
parency and better ux in web3,” 2023, [Online]. Available:
https://sourcify.dev/ (visited on 12/07/2023).

[27] F. A. Manzano and J. Little, “Pyevmasm: Ethereum virtual
machine disassembler and assembler,” Crytic, 2024, [Online].
Available: https: / /github.com/crytic /pyevmasm (visited on
01/25/2024).

[28] F. Victor, “Address Clustering Heuristics for Ethereum,” in
Financial Cryptography and Data Security, J. Bonneau and
N. Heninger, Eds., vol. 12059, Cham: Springer International
Publishing, 2020, pp. 617–633, ISBN: 978-3-030-51279-8. DOI:
10.1007/978-3-030-51280-4_33.

[29] X Corp., “Filtered stream introduction,” X Corp., 2024,
[Online]. Available: https: / /developer. twitter.com/en/docs/
twitter - api / tweets / filtered - stream / introduction (visited on
01/25/2024).

[30] M. Hofer, D. Obraczka, A. Saeedi, H. Köpcke, and E. Rahm,
“Construction of Knowledge Graphs: State and Challenges,”
2023, eprint: 2302.11509 (cs.AI).

[31] Golden Recursion Inc., “Golden Enrichment API: Enrich re-
search, sales, and marketing with fresh, canonical knowledge.,”
Golden Recursion Inc., 2024, [Online]. Available: https : / /
golden.com/product/api (visited on 01/25/2024).

[32] X. L. Dong et al., “From data fusion to knowledge fusion,”
Proc. VLDB Endow., vol. 7, no. 10, pp. 881–892, Jun. 2014,
ISSN: 2150-8097. DOI: 10.14778/2732951.2732962.

[33] J. Bleiholder and F. Naumann, “Data fusion,” ACM Computing
Surveys, vol. 41, no. 1, pp. 1–41, Jan. 15, 2009, ISSN: 0360-
0300, 1557-7341. DOI: 10.1145/1456650.1456651.

8Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 20 / 136

Practical Acoustic Eavesdropping On Typed Passphrases

Darren Fürst
Department of Electrical Engineering,

Media and Computer Science
Ostbayerische Technische Hochschule
Amberg-Weiden, Amberg, Germany

e-mail: d.fuerst@oth-aw.de

Andreas Aßmuth
Faculty of Computer Science and

Electrical Engineering
Kiel University of Applied Sciences

Kiel, Germany
e-mail: andreas.assmuth@fh-kiel.de

Abstract—Cloud services have become an essential infras-
tructure for enterprises and individuals. Access to these cloud
services is typically governed by Identity and Access Management
systems, where user authentication often relies on passwords.
While best practices dictate the implementation of multi-factor
authentication, it’s a reality that many such users remain solely
protected by passwords. This reliance on passwords creates a
significant vulnerability, as these credentials can be compromised
through various means, including side-channel attacks. This
paper exploits keyboard acoustic emanations to infer typed
natural language passphrases via unsupervised learning, neces-
sitating no previous training data. Whilst this work focuses
on short passphrases, it is also applicable to longer messages,
such as confidential emails, where the margin for error is
much greater, than with passphrases, making the attack even
more effective in such a setting. Unlike traditional attacks that
require physical access to the target device, acoustic side-channel
attacks can be executed within the vicinity, without the user’s
knowledge, offering a worthwhile avenue for malicious actors.
Our findings replicate and extend previous work, confirming that
cross-correlation audio preprocessing outperforms methods like
mel-frequency-cepstral coefficients and fast-fourier transforms in
keystroke clustering. Moreover, we show that partial passphrase
recovery through clustering and a dictionary attack can enable
faster than brute-force attacks, further emphasizing the risks
posed by this attack vector.

Keywords-Cloud Computing; Passphrases; Unsupervised Learn-
ing; Acoustic Side-Channel; Dictionary Attack.

I. INTRODUCTION

As a critical component of modern computing infrastructure,
Cloud Services underpin everything from enterprise operations
to personal data storage and application access. Securing
access to these services is managed through Identity and
Access Management (IAM) systems. A fundamental aspect
of IAM is user authentication, which, despite the growing
adoption of multi-factor authentication, still frequently relies
solely on passwords and passphrases. This continued reliance
on passwords presents a significant security challenge, as these
credentials are vulnerable to a variety of attacks, such as side-
channel information leakage. Side-channel attacks aim to infer
sensitive information from a system by analyzing unintended
emissions, such as power consumption, electromagnetic radi-
ation, or, in the case we explore here, acoustic emanations.

The sounds produced by keyboard typing can reveal valu-
able information about the typed characters. While other
attacks might require physical proximity to the target device,
exploiting acoustic emanations, allow for eavesdropping with-

out user awareness or evidence on the targeted device. This
makes acoustic side-channel attacks a realistic and potentially
devastating threat to password security. This paper investigates
the feasibility of leveraging these keyboard acoustic emana-
tions to infer typed passphrases. We are particularly interested
in exploring unsupervised learning techniques, transfering the
dictionary demodulation method used by Yang et. al for their
WiFi attack [1], to the acoustic side-channel. Unsupervised
methods offer a more practical approach for real-world attacks
as they do not require labeled training data specific to each
target user and keyboard. This paper aims to contribute to
this understanding by exploring and evaluating methods for
acoustic passphrase recovery.

Figure 1. Example of a login screen, where the target types their passphrase
to login

The rest of the paper is organised as follows: Section II
reviews previous works on side-channel attacks targeting phys-
ical user input via keyboards. Section III discusses typing man-
nerisms and highlights the challenges posed by various typing
styles. Next, Section IV outlines the methodology behind
common password generation, followed by an explanation
of the algorithm for passphrase recovery in Section V. Sec-
tion VI presents the results of hyperparameter tuning, model
evaluation, attack performance, and the faster-than-brute-force
augmentation technique. Finally, Section VII concludes the
paper with a summary of the findings and potential future

9Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 21 / 136

work.

II. RELATED WORKS

Side-channel attacks have been extensively studied across
various modalities, demonstrating the feasibility of inferring
sensitive information without directly accessing the target
system. In this section, we distinguish between supervised and
unsupervised approaches on user input on keyboards.

A. Supervised Approaches

Supervised methods rely on labeled training data to infer
keystrokes or other sensitive information. Whilst demonstrat-
ing high accuracy, they are impractical for real-world attacks,
as they necessitate collecting labeled data for each target, as
well as keyboard.

Asonov and Agrawal [2] first demonstrated that keystrokes
could be distinguished by analyzing frequency differences,
using the Fast Fourier Transform (FFT), to discern between
30 keys on a keyboard with 79% accuracy. Subsequent work
explored additional features, such as Mel Frequency Cepstral
Coefficients (MFCC) [3] [4] and cross-correlation [5] [6].

Building on these early studies, recent advances have lever-
aged deep learning. A deep learning-based approach achieved
a classification accuracy of 95% on phone-recorded laptop
keystrokes and 93% on Zoom-recorded audio [7]. Similarly,
Slater et. al. built an end-to-end keystroke segmentation and
classification system, achieving a character error rate of 7.41%
for known typists and 15.41% for unknown typists [8].

Owusu et al. used phone accelerometers to estimate touched
screen regions, recovering 59 out of 99 six-character pass-
words [9]. Murali et. al. combined acoustic data with motion
data from gyrometers to achieve 86% accuracy in key recovery
using smartphone sensor fusion [10].

By detecting vibrations through accelerometers, Marquardt
et al. recovered 80% of typed content from a keyboard by
placing a mobile device on the same surface [11]. Barisani
and Bianco in turn used laser microphones to detect vibrations
from laptop screens and utilised a dictionary attack to recover
typed words [12].

Visual-based inference techniques have also been explored.
Sabra et al. showed that even subtle upstream movements
of the shoulders during typing could be used to recover
typed words from video calls [13]. Moreover, studies have
shown that electromagnetic emissions [14] and changes in
Wi-Fi channel state information [15] can also reveal sensitive
keystroke information.

While these supervised methods lay the important ground-
work of exploring reliable feature engineering and pre-
processing techniques, as well as establishing general feasi-
bility, with many works achieving impressive accuracy in dis-
cerning keystrokes, their reliance on labeled data significantly
limits their applicability in practical scenarios.

B. Unsupervised Approaches

Unsupervised approaches, which do not rely on labeled
data, present a more promising approach for practical attacks,

enabling an attacker to eavesdrop on targets, without prior
knowledge and without altering the target’s system.

Dictionary-based attacks have been used effectively in re-
covering typed words from keyboard acoustic emanations,
making use of natural language properties. Berger et al.
achieved a success rate of 73% for 7 to 13 character words be-
ing in the top 50 guesses using cross-correlation and a dictio-
nary attack [5]. Another method leveraging Time-Difference-
of-Arrival (TDoA) measurements from smartphones achieved
a 72.2% key recognition rate [16].

Zhuang et. al. used Hidden Markov Models to iteratively
generate labels from unlabeled audio recordings, increasing
classification accuracy over time. This method recovered up
to 96% of typed characters from a 10-minute recording [17].
Yang et al. demonstrated an unsupervised Wi-Fi channel-state
information attack achieving a 95% word recovery ratio after
150 typed words [1].

Another attack based on TDoA measurements demonstrated
94% keystroke recovery using millimeter-level audio ranging
on a single phone [3].

Whilst some supervised works argue that training data can
be recorded via video calls or infected devices, these sub-
stantially decrease attack surface and practicality. In constrast,
unsupervised methods, such as employed in this work, provide
a feasible manner of eavesdropping via these side-channel
mediums, as they do not depend on prior knowledge of the
target’s typing style or environment, making them a real threat.

III. TYPING MANNERISMS

Typing ability can affect how a person types a message, with
experienced typers typically displaying more consistent typ-
ing patterns. This consistency could increase vulnerability to
audio-based attacks due to more consistent sounds from their
keystrokes. However, their faster typing speed and reduced
inter-keystroke pauses might make it harder to distinguish the
start and end of keystrokes. In contrast, less experienced typers
type more slowly but are likely to have less consistent motions,
possibly causing greater variability in sound.

Dhakal et al. analyzed 136 million keystrokes from 168.000
volunteers, categorizing typers into eight groups based on
metrics such as words per minute and error rates. They
found that all groups exhibited at least a 19% rollover ratio,
where multiple keys are pressed consecutively before being
released [18]. This rollover complicates keystroke segmenta-
tion, as it is difficult to determine which press and release
belong together. Furthermore, a study of 30 typers revealed
a significant variation in the number of fingers used, with
only three using perfect touch typing [19]. This highlights
the challenges in modeling typing patterns due to the diverse
techniques used.

The key challenges are:
• Rollover technique complicates keystroke segmentation
• Typing error rates vary between typers
• Variability in typing styles and proficiency
To mitigate these issues, participants were instructed to

avoid using rollover patterns for easier segmentation, while

10Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 22 / 136

recording audio samples. In a real attack, this could be
addressed by focusing on initial key presses or using likely
press-release combinations. In Section VI, both press-only
segmentation and press-release segmentation are evaluated for
suitability.

A. Selected Features

Liu et al. used MFCC for K-Means clustering to reduce
errors in Time Difference of Arrival measurements [3]. Asonov
and Agrawal’s neural network, trained with FFT, achieved
79% accuracy for the top candidate and 88% for the top 3 [2].
Berger et al. [5] and Halevi et. al. [6] found cross-correlation
to outperform FFT and MFCC in keystroke classification,
yielding better precision and recall scores. Zhuang et al.
showed that using MFCC allowed for correctly classifying
more keystrokes than using FFT, their analysis did not include
cross-correlation [17].

While FFT seems less promising from existing literature
than cross-correlation and MFCC, it is included in the evalu-
ation, as it is easily computable. Thus, the following methods
are used alone and in conjunction in the experiments: MFCC,
FFT, Cross-Correlation.

IV. GENERATING NATURAL LANGUAGE PASSWORDS

This section explains the process of generating natural
language passwords used for the attack evaluation.

The UK’s National Cyber Security Centre (NCSC) recom-
mends using three random words for constructing passphrases,
as adding special characters complicates memorability. They
consider passphrases made from three random words to be
‘strong enough’ [20]. Diceware [21] follows a similar ap-
proach, mapping each word to a five-digit number. A word
can be looked up by its number, obtained by rolling a dice five
times, removing human bias in word selection. The Electronic
Frontier Foundation (EFF) has created two wordlists based on
this concept, optimised for both memorability and password
strength [22].

Despite the NCSC’s recommendation, humans tend to create
weak passwords from a limited set of words [23]. The Yahoo
data breach [24] reveals that certain passwords appear far more
frequently than others, indicating a strong pattern in human-
generated choices. While this chart reflects password fre-
quencies rather than passphrase word frequencies, it suggests
that human-generated passphrases may also follow predictable
patterns. In contrast, Diceware-generated passphrases benefit
from the uniform randomness of the word selection process,
making them potentially more secure.

We generate five passphrases each of differing length with
3 to 8 words for 30 passphrases in total from EFF’s Long
Wordlist to test passphrase recovery. These are shown in
Appendix A.

V. TEXT RECOVERY

The text recovery process can be viewed as breaking a
substitution cipher, where cluster indices replace the original
alphabetic characters based on keystroke sounds. The final step

involves a dictionary attack to map clusters to their correct
alphabetic character, producing words. The described method
of finding words and demodulating was used in [1] to recover
longer typed messages via Wi-Fi channel-state information and
is used in this work to recover passphrases formed of 3 to 8
words, which would not be possible with n-gram statistics or
other statistical methods, due to the short message length, via
the acoustic side-channel.

A. Finding Words

Words in natural language are separated by delimiters,
typically spaces or hyphens. By leveraging natural language
statistics, educated guesses about which cluster represents the
delimiter can be made. If the initial guess does not result in
a meaningful message, one can iteratively try the next largest
cluster [1]. In a passphrase with n words, the delimiter appears
n− 1 times and is thus likely one of the larger clusters.

B. Inter-Element Relationship Matrix

To identify word candidates, we use features such as word
length, letter frequencies, and same-letter positions. An inter-
element relationship matrix [1] is constructed, where letters
are compared and marked with 1 for identical letters and 0
for differing ones. This results in a symmetrical matrix, which
describes each word or concatenation of words by length and
frequencies and positions of same letters.

l e v e l
l 1 0 0 0 1
e 0 1 0 1 0
v 0 0 1 0 0
e 0 1 0 1 0
l 1 0 0 0 1

r a d a r
r 1 0 0 0 1
a 0 1 0 1 0
d 0 0 1 0 0
a 0 1 0 1 0
r 1 0 0 0 1

Figure 2. Example of two words, with the same inter-element relationship
matrix, although their letters differ. The coloring is added to enable quick
comparison of the symmetrical matrix.

C. Joint Demodulation

The candidate selection and dismissal process is based on
the Joint Demodulation method from Yang et al. [1]. This
involves concatenating candidate words from a dictionary and
comparing their inter-element relationship matrix with the ma-
trix of the audio cluster. Concatenations resulting in a different
inter-element relationship matrix are discarded as potential
passphrases. If no words are found for a concatenation, the
last appended word is skipped and added to the undemodulated
set [1], where it is later resubstituted with the letter-mappings
found by demodulating the concatenation of the remaining
words.

VI. EXPERIMENTS

The experiments were conducted using the Diceware Long
Wordlist [21] as a dictionary.

11Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 23 / 136

A. Hyperparameter Search

To identify the most suitable clustering model, a hyperpa-
rameter search was conducted for two model types, with n be-
ing the amount of configurations tested: K-Means (n = 2049)
and Cross-Correlation (n = 2045). The Cross-Correlation type
computes the correlation of keystroke segements based on
the recorded raw audio, MFCC or FFT transformation of the
audio, before clustering with K-Means, while K-Means uses
the feaature vectors gained from applying MFCC or FFT,
directly. This naming distinction is used to be able to talk
about and distinguish these model types. To avoid overfitting
of the hyperparameters to the whole dataset, skewing recovery
results, 20 samples from the participants were picked at
random and used in the search, spanning 3 to 5 samples per
participant.

The keystroke span ‘PR’ uses both press and release events,
while ‘P’ uses only the key press. The window size for these
events was manually set.

An optional convolutional smoothing step was applied, with
window sizes included in the hyperparameter search.

TABLE I. HYPERPARAMETERS FOR K-MEANS AND
CROSS-CORRELATION-BASED MODELS.

Hyperparameter K-Means Cross-Correlation
Feature FFT, MFCC, FFT+MFCC Raw Audio, FFT, MFCC
Smoothing true, false
Smoothing Window 5 to 300
Scaling true, false
PCA true, false
PCA Components 1 to 20 1 to 12
Keystroke Span P, PR

The best models by median score of each type are shown in
Table II. Cross-Correlation, using raw audio, outperformed K-
Means, which was most effective using MFCC and Principal
Component Analysis (PCA).

TABLE II. BEST MODEL SCORES AND THEIR HYPERPARAMETERS.

Hyperparameter K-Means Cross-Correlation
Feature MFCC Raw
MFCC Components 180
PCA True False
PCA Components 1
Smoothing False False
Scaling True False
Keystroke span PR P
Median Score 90.27 93.12
Mean Score 88.95 93.21
Max Score 91.77 98.91
Min Score 83.07 85.44

Despite previous works clearly favouring MFCC, FFT was
competitive in K-Means models, showing that FFT can achieve
comparable performance under the right hyperparameter con-
figurations. The top three models per type, with their respective
audio feature processing are summarised in Table III. This
shows that with a more extensive hyperparameter search the
top models are very close to the same scores.

Cross-Correlation models showed superior performance,
especially with raw audio features, while K-Means models
using MFCC or FFT performed similarly. This suggests that

TABLE III. TOP 3 MODELS PER TYPE AND THEIR SCORES.

Model Type Feature Median Mean Max Min
K-Means MFCC 90.27 88.95 91.77 83.07
K-Means FFT 89.96 88.41 92.47 79.84
K-Means FFT 89.95 88.62 92.90 79.89
Cross-Correlation Raw 93.12 93.21 98.91 85.44
Cross-Correlation Raw 92.85 93.18 98.27 87.29
Cross-Correlation Raw 92.85 93.52 99.13 88.36

hyperparameter choices, particularly feature extraction and
preprocessing, significantly impact clustering effectiveness for
acoustic eavesdropping.

B. Recovering Passphrase Recordings

The best general model, which is of the Cross-Correlation
type, from the hyperparameter search on the subset of partic-
ipant samples was used to cluster a total of 223 samples. The
hyperparameter search and selection of the best model is ex-
plained in Section VI-A. The top model configuration per type
with hyperparameters and scores is shown in Table II. As the
recording process was conducted via a custom built website
to keep the recording manner similar between participant’s,
some participants’ microphones removed keystroke sounds for
the samples due to in-built noise reduction features. Such
samples were discarded after listening. For the experiments
in-built laptop microphones were used, as this made recording
simply feasible via the custom built website. However, in
a real-world scenario an attacker would most likely plant
their own microphone, as having access to the target ma-
chine’s microphone would mean the machine has already
been compromised, removing such challenges, as built-in noise
reduction. Furthermore, an attacker may use more high-end
hardware, whereas this study aims to show feasability with
even low-cost hardware, such as the built-in microphones used.
The usable samples per participant are shown in Table IV.

TABLE IV. SAMPLES PER PARTICIPANT

Participant Passphrases
1 30
2 30
3 16
4 30
5 19
6 27
7 22
8 30
9 19

In a real-world attack, words from the undemodulated set
[1], would have to be checked against a large dictionary
to find the correct candidate word, as the words from the
undemodulated set likely contain a cluster assignment error,
which can be resolved by checking against known English
words. To simulate such a dictionary correction, the following
Hamming distance per word length was deemed as corrected,
by such a dictionary:

12Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 24 / 136

Hamming Allowance(w) =


0 if #w ≤ 2

1 if 3 ≤ #w ≤ 4

2 if 5 ≤ #w ≤ 6

3 if 7 ≤ #w ≤ 9

Figure 3 shows the recovery results, where full recoveries
are marked with fully coloured rectangles, partial recover-
ies with partial colouring along with the amount of recov-
ered words, and unrecoverable passphrases with colourless
rectangles. Black rectangles represent unusable or samples
not recorded by participants. The first two words of each
passphrase are shown. The bottom 5 passphrases are 3 words
long up to the top 5 passphrases having a length of 8 words.
The full passphrase list is listed in the Appendix A.

TABLE V. HARDWARE USED BY PARTICIPANTS.

Participant Keyboard Model Microphone Model Mechanical
1 Tecurs IdeaPad 5 Pro 14ACN6 ✓
2 Laptop Laptop Webcam ✗
3 Apple Magic (2014) iMac 2014 ✗
4 HIGROUND Base 65 Auna CM 900B ✓
5 Keychron K8 Pro MacBook Air M1 ✓
6 Redragon Macbook Pro 14 ✓
7 Cherry Laptop ✓
8 Corsair K55 Gaming Lenovo ThinkPad T14s ✗
9 Cherry DELL Notebook ✓

Mechanical keyboards were more susceptible, likely due to
their louder and more distinct sound profiles, although typing
styles, microphone quality, and background noise likely also
contributed.

Recovery rates improved using multiple sets of clusters. By
applying 10 sets of clusters over a single cluster attempt by the
model, shown in Appendix B, full recovery increased from 7
to 19 passphrases, primarily from the same highly susceptible
participants. This also boosted partial recoveries. For example,
a sample for participant ‘5‘ seeing improvements from 3 to 6
recovered words (Figure 3).

In conclusion, a single clustering set achieved partial recov-
ery for all participants, while 10 sets improved full recoveries
to 19 and enhanced partial recovery success. A further plot
showing the recovery increase for different amount of cluster
sets can be seen in Appendix B.

C. Brute-Forcing Combinations of Different Recoveries

An attacker can use the words found by partial recoveries
in a brute-force attack by forming the product of these words.

Figure 4 shows the recovery results for brute-forcing combi-
nations of words from partial recoveries, by adding each found
word at each index to a set and forming the combinations.
The number of combinations needed for a brute-force attack
is illustrated in Figure 5, with exponents representing the
possible combinations. For example, participant ‘1’ has 238

possible combinations from their partial recoveries for the first
passphrase ’finalist caviar cufflink‘ (bottom left).

Figure 3. Recovery results using ten clusters.

Figure 4. Recoveries brute-forcing combinations of partial recoveries from
ten clusters.

However, brute-forcing all combinations naively this way
disregards the position of the found words and is still com-
putationally expensive. An alternative approach, starting with
the most likely candidate and adding missing words, reduces
the number of required combinations (Figure 6). This method,
though more efficient, can still fail to fully recover the
passphrase, as shown by the red rectangles marking complete
successful recoveries. Evidently, there are less full recoveries
than in Figure 4, but not all full recoveries in Figure 4, would
be computable by even the strongest adversaries, as shown
in Figure 5, with multiple recoveries needing more than 280

steps.

13Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 25 / 136

Figure 5. Amount of combinations of demodulated words from ten cluster
results. The table shows the exponents to the base of 2.

Figure 6. Brute-Force attempts needed, when starting with most likely
candidates from ten cluster results. The table shows the exponents to the
base of 2. Red marked cells are full recoveries.

In conclusion, starting with partial recoveries and narrowing
down candidate words reduces the computational cost of brute-
forcing below the border of computational feasibility in terms
of complexity theory. This method can be further optimised
by leveraging multiple clustering sets to account for errors in
the clusters.

VII. CONCLUSION AND FUTURE WORK

This study demonstrates that attackers can effectively re-
cover passphrases from audio data, even without direct access
to typed text, making the attack a potential non-intrusive and
passive part of an attack chain, depending on whether the
target has multi-factor authentication in place or not.

The results confirm previous findings [5] [6], showing that
cross-correlation outperforms MFCC and FFT for keystroke
clustering. However, it also showed that MFCC and FFT
remain competitive under certain hyperparameters, suggest-
ing the need for further parameter and model exploration.
The hyperparameter search was conducted across 20 audio
recordings from nine participants. Additionally, the dictionary
attack by Yang et al. [1] was adapted to the acoustic side-
channel and an attack exploiting partial passphrase recoveries
with significant speed-improvement over naive brute-force
attacks, was demonstrated, showing its potential to allow for
computable brute-force attempts. Future work should explore
further experimentation with different pre- and post-processing
techniques, as well as feature combinations to improve clus-
tering accuracy. Additionally, techniques like Metropolis-
Hastings for probabilistically improving clusters could be
tested, as seen in the Open Source KeyTap2 project [25]. The
impact of adding complexity to typing (e.g., special characters,
uppercase letters, and backspaces) should also be explored to
assess the attack’s feasibility under more realistic conditions.
Furthermore, the data in this work shows that participants were
not equally susceptible to the attack and future work should
target specific reasons for why this may be, such as typing
style, microphone quality and the used keyboard.

With recommendations from agencies like the NCSC advis-
ing three-word passphrases, the attack in this work presents a
potential risk, underscoring the need for improved passphrase
security through varied delimiters, special characters, and
increased randomisation.

REFERENCES

[1] E. Yang et al., “Wireless training-free keystroke inference
attack and defense,” IEEE/ACM Transactions on Networking,
vol. 30, no. 4, pp. 1733–1748, 2022. DOI: 10 .1109/TNET.
2022.3147721.

[2] D. Asonov and R. Agrawal, “Keyboard acoustic emanations,”
in IEEE Symposium on Security and Privacy, 2004. Proceed-
ings. 2004, ISSN: 1081-6011, May 2004, pp. 3–11. DOI: 10.
1109/SECPRI.2004.1301311.

[3] J. Liu et al., “Snooping Keystrokes with mm-level Audio
Ranging on a Single Phone,” en, in Proceedings of the 21st
Annual International Conference on Mobile Computing and
Networking, Paris France: ACM, Sep. 2015, pp. 142–154,
ISBN: 978-1-4503-3619-2. DOI: 10.1145/2789168.2790122.

[4] M. Pleva, E. Kiktova, J. Juhar, and P. Bours, “Acoustical User
Identification Based on MFCC Analysis of Keystrokes,” en,
Advances in Electrical and Electronic Engineering, vol. 13,
no. 4, pp. 309–313, Nov. 2015, Number: 4, ISSN: 1804-3119.
DOI: 10.15598/aeee.v13i4.1466.

14Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 26 / 136

[5] Y. Berger, A. Wool, and A. Yeredor, “Dictionary attacks using
keyboard acoustic emanations,” in Proceedings of the 13th
ACM Conference on Computer and Communications Security,
ser. CCS ’06, Alexandria, Virginia, USA: Association for
Computing Machinery, 2006, pp. 245–254, ISBN: 1595935185.
DOI: 10.1145/1180405.1180436.

[6] T. Halevi and N. Saxena, “A closer look at keyboard acoustic
emanations: Random passwords, typing styles and decoding
techniques,” in Proceedings of the 7th ACM Symposium on
Information, Computer and Communications Security, 2012,
pp. 89–90.

[7] J. Harrison, E. Toreini, and M. Mehrnezhad, “A practical deep
learning-based acoustic side channel attack on keyboards,” in
2023 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), IEEE, 2023, pp. 270–280.

[8] D. Slater, S. Novotney, J. Moore, S. Morgan, and S.
Tenaglia, “Robust keystroke transcription from the acoustic
side-channel,” in Proceedings of the 35th Annual Computer
Security Applications Conference, ser. ACSAC ’19, San Juan,
Puerto Rico, USA: Association for Computing Machinery,
2019, pp. 776–787, ISBN: 9781450376280. DOI: 10 . 1145 /
3359789.3359816.

[9] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “AC-
Cessory: Password inference using accelerometers on smart-
phones,” in Proceedings of the Twelfth Workshop on Mobile
Computing Systems & Applications, ser. HotMobile ’12, New
York, NY, USA: Association for Computing Machinery, Feb.
2012, pp. 1–6, ISBN: 978-1-4503-1207-3. DOI: 10 . 1145 /
2162081.2162095.

[10] N. Murali and K. Appaiah, “Keyboard side channel attacks on
smartphones using sensor fusion,” in 2018 IEEE Global Com-
munications Conference (GLOBECOM), IEEE, 2018, pp. 206–
212.

[11] P. Marquardt, A. Verma, H. Carter, and P. Traynor,
“(sp)iphone: Decoding vibrations from nearby keyboards using
mobile phone accelerometers,” Oct. 2011, pp. 551–562. DOI:
10.1145/2046707.2046771.

[12] A. Barisani and D. Bianco, “Sniffing keystrokes with lasers
and voltmeters,” in Proceedings of Black Hat USA, Black Hat,
2009.

[13] M. Sabra, A. Maiti, and M. Jadliwala, Zoom on the Keystrokes:
Exploiting Video Calls for Keystroke Inference Attacks, en,
arXiv:2010.12078 [cs], Oct. 2020.

[14] M. Vuagnoux and S. Pasini, “Compromising electromagnetic
emanations of wired and wireless keyboards.,” in USENIX
security symposium, vol. 8, 2009, pp. 1–16.

[15] K. Ali, A. Liu, W. Wang, and M. Shahzad, Keystroke Recog-
nition Using WiFi Signals. IEEE, Sep. 2015. DOI: 10.1145/
2789168.2790109.

[16] T. Zhu, Q. Ma, S. Zhang, and Y. Liu, “Context-free attacks
using keyboard acoustic emanations,” in Proceedings of the
2014 ACM SIGSAC conference on computer and communica-
tions security, 2014, pp. 453–464.

[17] L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic
emanations revisited,” ACM Trans. Inf. Syst. Secur., vol. 13,
no. 1, 3:1–3:26, Nov. 2009, ISSN: 1094-9224. DOI: 10.1145/
1609956.1609959.

[18] V. Dhakal, A. Feit, P. O. Kristensson, and A. Oulasvirta,
“Observations on typing from 136 million keystrokes,” in
Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems (CHI ’18), ACM, 2018. DOI: https :
//doi.org/10.1145/3173574.3174220.

[19] A. M. Feit, D. Weir, and A. Oulasvirta, “How we type:
Movement strategies and performance in everyday typing,” in
Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, ser. CHI ’16, San Jose, California, USA:

Association for Computing Machinery, 2016, pp. 4262–4273,
ISBN: 9781450333627. DOI: 10.1145/2858036.2858233.

[20] National Cyber Security Centre, “Top tips for staying secure
online,” Dec. 2021, [Online]. Available: https : / /www.ncsc .
gov.uk/collection/top- tips- for- staying- secure- online/three-
random-words (visited on 08/29/2024).

[21] D. Muth, “Diceware Password Generator,” [Online]. Available:
https://diceware.dmuth.org/ (visited on 03/16/2025).

[22] Electronic Frontier Foundation, “EFF Dice-Generated
Passphrases,” Jan. 2023, [Online]. Available: https :
//www.eff.org/de/dice (visited on 03/16/2025).

[23] R. Morris and K. Thompson, “Password security: A case
history,” Commun. ACM, vol. 22, no. 11, pp. 594–597, Nov.
1979, ISSN: 0001-0782. DOI: 10.1145/359168.359172.

[24] J. Bonneau, “The science of guessing: Analyzing an
anonymized corpus of 70 million passwords.,” in IEEE Sympo-
sium on Security and Privacy, IEEE Computer Society, 2012,
pp. 538–552, ISBN: 978-0-7695-4681-0.

[25] G. Gerganov, “Keytap2 - acoustic keyboard eavesdropping
based on language n-gram frequencies,” GitHub Discussions,
Dec. 2020, [Online]. Available: https://github.com/ggerganov/
kbd-audio/discussions/31 (visited on 03/13/2025).

15Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 27 / 136

APPENDIX

A. Generated Passphrases

The following passphrases were used in the experiments:

1) peroxide hacking arena
2) goldfish augmented yoyo
3) nugget iguana nylon
4) finalist caviar cufflink
5) ipad decal uptown
6) lukewarm pedometer litter wreckage
7) juggle gibberish hacking luxurious
8) unmarked vaseline aluminum jasmine
9) poison amendment sizable angelfish

10) taco ferret circle deliverer
11) velcro jelly duplex magazine silicon
12) hefty frosting acid zookeeper patio
13) daughter pyramid onyx pogo palm
14) cahoots arena cement statue mutation
15) blade banana awhile elsewhere tadpole

16) oxygen remote diffuser engine lettuce acid
17) oncoming feline glucose sushi abdomen judiciary
18) nullify scarf deepness modify euphemism grumbling
19) apple unnoticed bullfrog datebook vicinity glove
20) unhinge zodiac movie tadpole tapestry waffle
21) habitat gullible jingling mule envoy device erratic
22) licorice breath thumb navigate saddlebag yahoo voucher
23) festival yearbook fountain underwear nastiness dedicate licorice
24) scooter urchin albatross sneezing itunes gumdrop cubical
25) bagpipe earlobe aerosol aliens ivory clubhouse pantyhose
26) couch crawfish mundane goggles rupture florist rancidity degree
27) hefty tree riverboat sculpture junkyard awhile isotope unveiled
28) sled dyslexia jelly clergyman fruit family blade rancidity
29) payphone rupture awoke virus tuesday upbeat knapsack amnesty
30) afloat ardently fox emission exquisite dagger jersey lubricant

B. Differing amounts of clusters for demodulation

Figure 7. Recovery results using one set of clusters from the best model. Figure 8. Recovery results using 50 clusters.

Figure 9. Recovery as a function of clusters.

16Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 28 / 136

Graph of Effort: Quantifying Risk of AI Usage for Vulnerability Assessment

Anket Mehra, Andreas Aßmuth , and Malte Prieß
Department of Computer Science and Electrical Engineering

Kiel University of Applied Sciences
Kiel, Germany

e-mail: anket.mehra@student.fh-kiel.de, {andreas.assmuth|malte.priess}@fh-kiel.de

Abstract—With AI-based software becoming widely available,
the risk of exploiting its capabilities, such as high automation and
complex pattern recognition, could significantly increase. An AI
used offensively to attack non-AI assets is referred to as offensive
AI. Current research explores how offensive AI can be utilized
and how its usage can be classified. Additionally, methods for
threat modeling are being developed for AI-based assets within
organizations. However, there are gaps that need to be addressed.
Firstly, there is a need to quantify the factors contributing to
the AI threat. Secondly, there is a requirement to create threat
models that analyze the risk of being attacked by AI for vul-
nerability assessment across all assets of an organization. This is
particularly crucial and challenging in cloud environments, where
sophisticated infrastructure and access control landscapes are
prevalent. The ability to quantify and further analyze the threat
posed by offensive AI enables analysts to rank vulnerabilities and
prioritize the implementation of proactive countermeasures. To
address these gaps, this paper introduces the Graph of Effort,
an intuitive, flexible, and effective threat modeling method for
analyzing the effort required to use offensive AI for vulnerability
exploitation by an adversary. While the threat model is functional
and provides valuable support, its design choices need further
empirical validation in future work.

Keywords-threat modeling; vulnerability assessment; offen-
sive AI.

I. INTRODUCTION

At the latest since the presentation of ChatGPT (GPT-3.5)
by OpenAI in November 2022, the topic of Artificial Intelli-
gence (AI) has also been omnipresent in the general public.
As we are now seeing, AI also has an impact on cybersecurity,
as the availability of AI services can make known attacks
easier or more efficient. The attack itself does not even have
to be technical. An employee of a multinational company
was tricked into making a bank transfer of 25.6 million US
dollars using AI-generated deepfakes [1]. He had taken part
in a video conference, supposedly together with the Chief
Financial Officer and other employees of the company. In
reality, however, all the other people were deepfakes. And
this is not an isolated case: Hong Kong police announced that
there have been other similar incidents in which deepfakes
were used to deceive facial recognition programs. The question
arises as to how the availability of AI services and their use
in cyberattacks can be quantified and how this aspect can be
taken into account in known threat modeling methods.

Several publications deal with the creation of AI models
for cybersecurity. A comprehensive overview can be found
in [2]. Rising capabilities of AI lead to more complex
models, advanced train infrastructure and accessible datasets.
Importance for research and understanding it continuously is

thus increasing. Since AI is a “dual-use technology” [3], its
capabilities can be used in good or malicious directions. For
example, using AI can help organizations to enhance their
cyber defense mechanisms, but on the other hand and as
indicated by the above given example, adversaries can use
AI to simplify or improve attacks, as well as to create new
and sophisticated attack vectors.

A current gap in research is the quantification of AI threats.
To the best of our knowledge, only [4] tried to quantify
the threat of offensive AI by a survey with industry experts.
Furthermore, in [5] it was identified that there are no methods
to quantify factors for the AI threat, namely the motivation.
Also, the applicability of AI security research is criticized by
[6] because most experiments rely on artificial environments,
making the application of research results insufficient.

The latest version 4.0 of the Common Vulnerability Scoring
System (CVSS) contains the criterion “automatable” in the
new (optional) Supplemental Metric Group. As the term
indicates, this criterion is intended to assess the automation
potential of an attack, however, it is not intended to address
specifically AI-based automation [7]. Furthermore, the CVSS
base score examines the severity of a vulnerability by choosing
scores between 0 and 10 for different a-priori categories, which
are directly related to the vulnerability. External factors are
included in the environmental and supplemental metrics. These
can be used to quantify the risk of a vulnerability according
to different IT system environments. However, in conclusion,
none of the metrics examine the AI risk [7].

Being able to quantify the AI threat is important. It allows
cyber analysts to prioritize threats and provides support to
explain the specific danger of them. Additionally, it allows
organizations to proactively implement target-oriented coun-
termeasures.

Furthermore, the importance raises in cloud-based IT sys-
tems. These are characterized by having sophisticated con-
nections between multiple components such as deployed web
applications or the necessary infrastructure, such as databases
and authorization management systems [8]. Any of these
components could be vulnerable. With the existence of further
offensive AI models, each vulnerability could be automatically
exploited. Therefore, quantification during the step of vulner-
ability assessment give a means of understanding the weak
points of a system. This paper addresses the existing research
gap of quantifying the risk through AI in vulnerability assess-
ments. It shows the current state of AI in threat modeling and
introduces a new method – called Graph of Effort (GOE) – to

17Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 29 / 136

address the danger of AI attacks in vulnerability assessments.
GOE provides the exposure of the vulnerability against AI-
based attacks. The method is intuitive, clear to use, and meant
to be used by consumers of a given entity potentially affected
by a vulnerability. GEO is based on the effort needed to
create an AI model to automate the exploitation of a given
vulnerability.

The remainder of the paper is structured as follow: After a
brief overview of offensive AI (OAI) and AI in threat modeling
in Sections II and III, we introduce GOE and calculate the
exposure of a given vulnerability of being attacked by AIs
in Sections IV and V. Section VII covers a discussion on
how to deal with the results of the GOE and integrate it with
other vulnerability modeling systems to facilitate prioritizing
vulnerabilities. Finally, implications for future work are given.

II. OFFENSIVE AI

This Section provides an overview of how AI is offensively
used for cyberattacks. According to [4], offensive AI (OAI)
can be grouped into two categories: (1) attacks using AI and
(2) Adversarial Machine Learning (AML).

In the first category, OAI is used as a tool to assist
adversaries in applying their attacks. Potentially, AI could
resolve any task as long as it is manually done or requires
the use of common thought intelligence used by humans or
non-human beings. A key limiting factor for AI training are
suitable datasets for training on a given task, so the model can
gain experience to perform this task efficiently [9].

The most common uses of OAI as a support tool according
to [4], [5] are:

1) Prediction,
2) Generation,
3) Analysis,
4) Retrieval, and
5) Decision Making.
In conclusion, there are several ways to misuse AI for

offensive malicious use. On the other hand, AML describes
using the knowledge on how an AI model internally works to
attack deployed models by organizations or other entities also
via AI [10]. Here, the AI model is attacked by an adversary to
compromise its security goals, like confidentiality, integrity or
availability. This can be achieved, for instance, through data
poisoning, wherein adversaries introduce misleading training
data to the model, or by launching a Distributed Denial of
Service (DDoS) attack to degrade model performance and
reduce availability [4] [5].

A categorization of OAI use cases may be found in [2]. They
discovered that especially in technical papers and information
security briefings OAI use cases can be mostly mapped via
the steps defined in MITRE ATT&CK [11]. Meanwhile,
non-technical papers mostly categorize OAI into one of the
following groups:

• attack in (cyber) warfare,
• attack on society,
• autonomous agents, and

• privacy attack.

This paper aims to prioritize the implementation of coun-
termeasures for specific vulnerabilities, given that the effort
required to execute exploits using AI is significantly lower
compared to other vulnerabilities. Therefore, the main focus
will be on OAI as of the first category of [4] and for all use
cases of [2].

III. AI THREAT MODELING

AI is discussed in several contexts in the area of threat
modeling – this Section gives a brief overview.

Mirsky et al. [4] lists 24 offensive AI-based threats feared
by organizations. Furthermore, the authors created a model to
quantify the threat of AI by evaluating the harm, profit and
achievability of AI-usage, as well as defeatability against it. On
the other hand, [6] discovered that – at least on organizational
level – no predictors can be found, which describe the threat
exposure. However, it has to be emphasized that [6] focused
only on AML as subtopic of OAI. Therefore, further work is
needed on finding threat exposure predictors on OAI. They
also criticize the lack of real-world scenarios in research
regarding general security of AI systems.

Malatji and Tolah [5] identified a research gap in the
quantification of factors leading to a better understanding of
OAI usage. They specified that especially the quantification of
the attackers’ motivation is missing.

Guembe et al. [12] found out that AI-driven cyberattacks
can be done continuously throughout all steps of an attack. In
addition, the authors state that current defense mechanisms
will become deprecated, as AI enables more sophisticated
cyberattacks and detection evasion techniques.

Some publications focused on the creation of threat models
for deployed AI systems by organizations. For instance, in
[13], the authors created an extension of Microsoft’s STRIDE
threat model (STRIDE-AI) to identify vulnerabilities of de-
ployed AI systems, approachable by consumers. STRIDE
stands for Spoofing, Tampering, Repdudiation, Information
Disclosure, Denial of Service and Elevation of Privilege. It
aims to assist security analysts to categorize threats. The author
of [14] followed a similar approach for threat modeling and
risk analysis for AI systems, with a focus on Large Language
Models (LLM). In his approach, the author combined the
threat classification given by STRIDE with qualitative ratings
for each class in the categories of Damage, Reproducibility
and Exploitability (DREAD) to add the aspect of risk analysis.
DREAD typically also determines the risk for Affected Users
and Discoverability. However, these aspects were not analyzed
in the proposed threat model in [14].

In [15], the authors created a web application, which as-
sists analysts throughout the threat modeling process for AI-
based IT systems. It supports especially threat identification
by querying several security related databases, per instance,
MITRE Atlas [16]. By means of an underlying graph model
with comparable metadata, related assets of an organization
and of the databases are found and connected.

18Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 30 / 136

A systematic threat modeling procedure for AI software
is given in [17]. In their approach, the authors develop a
process diagram for the development of AI-based software
and furthermore a taxonomy of threats to AI. Based on their
given process, the main idea is to sequentially go through it
and analyze for all subprocesses and their respective in- and
outputs potential threats to AI by means of their taxonomy.

To the best of our knowledge, no paper deals with the
creation of a threat modeling method for the exposure of
general vulnerabilities against OAI, especially with a focus
on being simply applicable and explainable for analysts.

IV. QUANTIFYING EFFORT OF AI-BASED ATTACKS

To consider and quantify the potential of AI-based attacks in
vulnerability, a new method – graph of effort (GOE) – for ana-
lyzing this potential is introduced (see Section IV for details).
Foundation of the method is the modified intrusion kill chain
as introduced in [18], wherein a cyberattack consists of the
four steps (1) Reconnaissance, (2) Weaponization, (3) Deliv-
ery, and (4) Exploitation as shown in Figure 1. Reconnaissance
describes the tasks needed to find and select victims for the
attack. Weaponization is the creation of a transferable package
in which malicious code is hidden. Typical weaponized files
were PDFs and Microsoft Office documents. The next step,
Delivery, describes the transmission of the malicious package
to the target network. During the final Exploitation step the,
successfully transferred package activates its malicious code
often targeting a vulnerability of an application or the host
os itself. This kill chain was modified to align with the one
used in CVSS v4.0 [7]. The consistent application of identical
kill chains between vulnerability assessment frameworks facil-
itates enhanced coordination of measures during assessments.

(1)
Reconnaissance

(2)
Weaponization

(3)
Delivery

(4)
Exploitation

Figure 1. Steps of the intrusion kill chain according to [18].

Based upon the four kill chain steps of [18], our metric
answers the following question:

What effort is needed to use offensive AI during each
kill chain step?

Our metric calculates a score for each respective step i, 1 ≤
i ≤ 4, in the kill chain, see Equation (1):

score(i) ∈ {0, . . . , 3}. (1)

The GOE is visualized in Figure 2 as a binary tree, in which
each node describes an advanced level of effort for AI usage
the attacker has to muster from top to bottom. The idea of
the GOE is to obtain a score based on the answers to three
questions: Are there . . .
. . . ready to use models or AI-based tools,
. . . datasets to train a suitable model, or
. . . automatisms available to quickly generate suitable data

to train an AI model?
The purpose of the questions is to address all relevant

aspects of using or training an AI system. The primary
assumption is that the simplest way to utilize AI is through
ready-to-use systems equipped with a well-designed Graphical
User Interface (GUI). In the absence of a GUI, pretrained
models can also be quickly deployed.

It is assumed that the adversary possesses broad knowledge
of AI and has access to all necessary resources for deployment.
Therefore, if a ready-to-use AI system is not available, the
adversary could train their own model. This process requires
data, which is the most critical asset in training an AI. Without
data, AI solutions cannot be developed. Consequently, for the
adversary to create an AI system, they must have suitable
training data. If such data is not available, the adversary must
generate their own dataset. However, given that the provider of
a CVE (CVE) is interested in promptly addressing the issue,
it is further assumed that the adversary often lacks the time to
manually create a high-quality dataset. Instead, they must rely
on automated methods to generate data as quickly as possible.

The questions do not cover the detailed sub-aspects related
to AI tools and datasets. For instance, AI tools can differ
significantly; some are open-source, while others require spe-
cialized expertise. The same variability applies to datasets.
This design choice is intentional. By avoiding excessive detail,
the GOE ensures objectivity. The questions, though simple in
design, allow for concise answers, limited to "yes" or "no,"
thereby minimizing subjective interpretations. For example,
if a tool is deemed to require expertise, this perception
might initially seem subjective, as individuals have varying
definitions of expertise. Other threat assessment systems, such
as STRIDE, allow users to select from predefined categorical
values like "low/medium/high." However, GOE has intention-
ally omitted such values to maintain objectivity.

As already indicated in Equation (1), the scores range from
0 (no or low) to 3 (high) to describe the attackers effort; scores
depicted on the left-hand side in Figure 2 are always smaller
than those on the right-hand side of each level. Starting at the
top for each step of the kill chain, the scores and, therefore,
the attacker’s effort are increasing downwards. The process is
stopped when one of the leaves is reached, which are indicated
by the term score(i).

The first question that has to be answered is whether AI-
based tools, AI models that are ready to use, or AI-based
automatisms already exist. If this the case, then this represents
the least possible effort for the attacker (score(i) = 0) because
they may directly use these tools to automate their attack. In
order to be able to use GOE together with CVSS, we propose a

19Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 31 / 136

corresponding extension of the vector string. Since GOE only
uses binary decisions, we set 0 to N and 1 to H in order to
correspond to the symbols used in CVSS. The first category
“Automation Tools”, AT:0 or AT:1, can thus be noted for
the top level of the GOE according to the decision left (0) or
right (1) in the binary tree.

Given AT:1, so there are neither AI-based tools, ready
to use models nor AI-based automatisms available, the next
question is whether ready to use datasets or even complete
training setups exist which the attacker may use to generate
their own AI models. Again, this question may be answered
with “yes” (left) which results in the substring TAI:0 (for
Trainability of AI) and score(i) = 1. If no such datasets or
training setups exist (indicated by TAI:1), the final criterion,
Generability, has to be assessed: Are there APIs or any other
tools that enable the automatic creation of data sets to create
an AI model? G:0 means “yes”, resulting in score(i) = 2,
whereas G:1 indicates the greatest possible effort for the
adversary (score(i) = 3).

Step (i) of
kill chain

Automation
Tools (AT)

Trainability
of AI (TAI)

Generability
(G)

0

score(i) = 0
AT:N/TAI:N/G:N

1

0

score(i) = 1
AT:H/TAI:N/G:N

1

0

score(i) = 2
AT:H/TAI:H/G:N

1

score(i) = 3
AT:H/TAI:H/G:H

Figure 2. Visualization of the GOE to calculate the effort needed to use AI
for an attack step in the intrusion kill chain according to [18].

If the remaining categories, in the order AT, TAI, and G,
are set to N (which is equivalent to 0), after a leaf has been
reached, then the score for step i of the kill chain may also be
calculated as the sum of the three categories (H is equivalent
to 1):

score(i) = AT+ TAI+ G (2)

The proposed threat model determines the AI-based threat
with an intuitive approach, which is clearly understandable and
easy to visualize. Additionally, GOE is flexible in its usage.
Depending on the specific vulnerability or the priorities of
security analysts, some of the kill chain attack steps may easily
be skipped.

To calculate the overall score GOE(v) for a given vulnera-
bility v, Equation (3) is used:

GOE(v) = min
i

{
score(i)

}
(3)

Using the minimum score of all steps in the kill chain as the
overall score seems most reasonable and intuitive because if
one of the steps is easily exploitable through AI, then it effects
the exposure of the vulnerability as a whole. But Equation (3)
may also be adapted if the analyst prefers, e.g., a weighted
average of the scores of the four steps. Additionally, we would
like to mention that the assessment of steps of the kill chain
may be skipped, if these are of no interest for the analyst. If
it is nevertheless desired to use Equation (3), the score of the
steps not taken into account can be set to infinity (∞), for
example.

The introduction of GOE based on CVSS is intended merely
as an example. The universality of GOE allows it to be
combined with any method of threat and risk analysis if it
is necessary or desired to express whether a vulnerability
should be assessed differently due to the availability of AI
models. As already indicated, direct integration of GOE in
CVSS v4.0 is possible via the “Automatable” criterion in the
optional Supplemental Metric Group [7]. If CVSS is combined
with GOE, one could assume that if a given vulnerability is
completely automatable, indicated via a positive value of the
“Automatable” criterion.

To achieve clear and intuitive applicability of the model,
some assumptions are made. The adversary is assumed to have
unlimited resources and knowledge regarding the considered
vulnerability as well as skills in managing and training AI
solutions. This assumption ensures that an attacker is not
underestimated. Moreover, the proposed GOE does not allow
higher scores than 3 (if there is no method of generating
data automatically, AT:H/TAI:H/G:H). One could now ar-
gue that data could be created manually since the adversary
according to our first assumption has unlimited resources to do
so. However, there is only a small amount of time to create AI-
based solutions for vulnerability exploitation because affected
service providers are interested to deliver fixes or at least
workarounds to their customers or users as soon as possible.
Furthermore, if not much data is needed to create a successful
AI model, it may be assumed that rule-based automation can
easily be created – which is covered by our proposed AT
criterion leading to scorei = 0 and, therefore, GOE(v) = 0.

V. EXAMPLE SCORING - CVE-2025-1156

After introducing GOE as an intuitive approach, this Section
provides an example modeling for a known vulnerability,
namely CVE-2025-1156 listed in the National Vulnerability
Database (NVD)[19]:

“A vulnerability has been found in Pix Soft-
ware Vivaz 6.0.10 and classified as critical. This
vulnerability affects unknown code of the file
/servlet?act=login. The manipulation of the
argument usuario leads to sql injection. The attack
can be initiated remotely. The exploit has been
disclosed to the public and may be used. The vendor
was contacted early about this disclosure but did not
respond in any way.”

20Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 32 / 136

(1) Reconnaissance

AT

TAI

G

0

score(1) = 0

AT:N/TAI:N/G:N

1

0

score(1) = 1

AT:H/TAI:N/G:N

1

0

score(1) = 2

AT:H/TAI:H/G:N

1

score(1) = 3

AT:H/TAI:H/G:H

(2) Weaponization

AT

TAI

G

0

score(2) = 0

AT:N/TAI:N/G:N

1

0

score(2) = 1

AT:H/TAI:N/G:N

1

0

score(2) = 2

AT:H/TAI:H/G:N

1

score(2) = 3

AT:H/TAI:H/G:H

(3) Delivery

AT

TAI

G

0

score(3) = 0

AT:N/TAI:N/G:N

1

0

score(3) = 1

AT:H/TAI:N/G:N

1

0

score(3) = 2

AT:H/TAI:H/G:N

1

score(3) = 3

AT:H/TAI:H/G:H

(4) Exploitation

AT

TAI

G

0

score(4) = 0

AT:N/TAI:N/G:N

1

0

score(4) = 1

AT:H/TAI:N/G:N

1

0

score(4) = 2

AT:H/TAI:H/G:N

1

score(4) = 3

AT:H/TAI:H/G:H

Figure 3. Visualization of the GOE for the known vulnerability CVE-2025-1156 listed in the National Vulnerability Database (NVD), showing the effort
needed to use AI in each step of the intrusion kill chain. Given the flexibility of GOE, step (4) of the kill chain is skipped in this case. The overall score is
GOE = 0, corresponding to a low effort for exploitation by AI.

Thus, the chosen vulnerability describes an improperly san-
itized user input while requesting a given HTTP endpoint
for authentication, making it vulnerable to Structured Query
Language (SQL) injection. The complexity to launch such an
attack is low as only websites using this specific service-desk
software need to be found to do the injection [20].

It is worth noticing, that GOE may be used to analyze any
given vulnerability. We specifically chose this vulnerability as
an example because:

• it is a relatively new entry in the NVD,
• the vulnerability is relevant for cloud services, and
• we can use it to demonstrate that GOE can be used

in conjunction with CVSS v4.0 as well as with earlier
versions, e.g. CVSS v3.x.

According to the NVD, the vectors for CVE-2025-1156 are
as follows:

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/
C:L/I:L/A:L
and
CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UI:N/
VC:L/VI:L/VA:L/SC:N/SI:N/SA:N,

resulting in a base score of 7.3 (criticality “high”) for CVSS
v3.x and a CVSS-B score of 6.9 (criticality “medium”) for
CVSS v4.0. We now evaluate the vulnerability using the
method described above and calculate the associated GOE,
see also Figure 3 for a visualization of the GOE for every
single step of the kill chain.

(1) Reconnaissance. An AI model for reconnaissance can
detect potential victims (websites) using the given service-desk
software. To the best of our knowledge, there are no tools or AI
models which could be used to find suitable victims, using the
given software. A ready-to-use dataset to train own models is
also not available. However, automatically generating training
data is possible as it requires only a webcrawler visiting several
websites. This crawler has to be capable of finding login pages
of the vendor of this service-desk software. This can be done
via image recognition or via parsing the Document Object

Model (DOM) of the website and comparing the id and class
names of the respective HTML elements, for instance. So, the
GOE sub-vector looks as follows:

AT:H/TAI:H/G:N,

resulting in a level score of score(1) = 2, indicating that AI-
based attacks are feasible but are connected with a higher
score. For this task, models have to be specifically created
by the adversary.

(2) Weaponization. A weaponization AI model for this vul-
nerability needs to create a malicious HTTP request, incorpo-
rating the vulnerable query parameter. Basically, this can be
done via string interpolation and, therefore, does not need an
AI model at all. However, Large Language Models (LLMs)
can be used to create malicious HTTP requests. The GOE
vector looks as follows:

AT:N/TAI:N/G:N

and score(2) = 0 indicates, that no effort is needed to
incorporate AI to automate the generation of malicious HTTP
requests.

(3) Delivery. An AI model for step (3) of the kill chain
needs to transport the string used for the SQL injection to
the victim network. This is done via a simple HTTP request.
Therefore, no AI-based automation is needed. However, AI-
based tools, such as LLMs, may be incorporated here which
can automate or assist in creating the HTTP request. Therefore,
we calculate score(3) = 0, resulting in the same sub-vector as
in the previous step:

AT:N/TAI:N/G:N

It is important to highlight that AI models potentially can be
used to evade detection mechanisms [10] for misuse, such as
SQL injections. One might thus argue that multiple AI models
could be used in this step. In that case, our recommendation
is to calculate the GOE sub-vector for each AI model and
then use the one with the lowest score to describe it for the
respective step since GOE is always meant as a worst case
analysis.

21Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 33 / 136

(1) Reconnaissance

AT

TAI

G

0

score(1) = 0

AT:N/TAI:N/G:N

1

0

score(1) = 1

AT:H/TAI:N/G:N

1

0

score(1) = 2

AT:H/TAI:H/G:N

1

score(1) = 3

AT:H/TAI:H/G:H

(4) Weaponization

AT

TAI

G

0

score(2) = 0

AT:N/TAI:N/G:N

1

0

score(2) = 1

AT:H/TAI:N/G:N

1

0

score(2) = 2

AT:H/TAI:H/G:N

1

score(2) = 3

AT:H/TAI:H/G:H

(4) Delivery

AT

TAI

G

0

score(3) = 0

AT:N/TAI:N/G:N

1

0

score(3) = 1

AT:H/TAI:N/G:N

1

0

score(3) = 2

AT:H/TAI:H/G:N

1

score(3) = 3

AT:H/TAI:H/G:H

(4) Exploitation

AT

TAI

G

0

score(4) = 0

AT:N/TAI:N/G:N

1

0

score(4) = 1

AT:H/TAI:N/G:N

1

0

score(4) = 2

AT:H/TAI:H/G:N

1

score(4) = 3

AT:H/TAI:H/G:H

Figure 4. Visualization of the GOE for the vulnerability CVE-2024-30384, showing the effort needed to use AI in each step of the intrusion kill chain. Given
the flexibility of GOE, steps (2-4) of the kill chain are skipped in this case. The overall score is GOE = 3, corresponding to a high effort for exploitation by
AI and demonstrating the GoE can have values other than 0.

(4) Exploitation. An AI model for exploitation should typi-
cally prepare or activate the malicious code after it has been
successfully delivered. However, since the malicious code
gets inserted into the backend, no further doings are required
here for activation. Therefore, this step is skipped. This also
highlights the flexible usage of the GOE, since steps can
easily be skipped if not needed without effecting the score
calculation.

In conclusion, CVE-2025-1156 gets an overall GOE score
of

GOE(CVE-2025-1156) = min{2, 0, 0,∞} = 0.

This score means that using OAI to assist in this attack
is connected with low effort. As OAI allows for a higher
efficiency, scaling and attack automation, this CVE could be
more exploited via AI than CVEs with a higher GOE rating.
In a real life vulnerability assessment environment, this CVE
should be higher prioritized regarding the implementation of
AI countermeasures such as, f.e. request rate limiting systems
or captchas. Analysts can further combine the high CVSS base
score with the low GOE score and could raise the criticality.
Thus, to raise the prioritization of dealing with the CVE and
enhancing their arguments with the information of the GOE.

VI. EXAMPLE SCORING - CVE-2024-30384

In this Section, we do another example scoring for CVE-
2024-30384 (see Figure 4 for a visualization of the GOE
for every single step of the kill chain). The vulnerability is
described as follow:

“An Improper Check for Unusual or Exceptional
Conditions vulnerability in the Packet Forwarding
Engine (PFE) of Juniper Networks Junos OS on
EX4300 Series allows a locally authenticated at-
tacker with low privileges to cause a Denial-of-
Service (DoS). If a specific CLI command is issued,
a PFE crash will occur. This will cause traffic
forwarding to be interrupted until the system self-
recovers. This issue affects Junos OS: All versions

before 20.4R3-S10, 21.2 versions before 21.2R3-S7,
21.4 versions before 21.4R3-S6.”

Hence, the vulnerability is the usage of a preinstalled CLI
application in Junos OS on their enterprise switch EX4300
[21]. Junos OS is the operating system based on FreeBSD or
Linux of the vendor Juniper Network Devices. The CVSS v3.1
and v4.0 vectors are as follow:

CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U
/C:N/I:N/A:H
and
CVSS:4.0/AV:L/AC:L/AT:N/PR:L/UI:N
/VC:N/VI:N/VA:H/SC:N/SI:N/SA:L

The base score is 5.5 for v3.1 (criticality “Medium”) and 6.8
f or v4.0 (criticality “Medium”). This vulnerability is chosen
as second example because it

• needs local access to be exploited,
• shows that AI can sophisticate attacks and therefore,

should not always need to be deployed, and
• demonstrates that GOE can have values other than 0.

(1) Reconnaissance. To find suitable victims, an adversary
needs to find enterprises which use these switches. The switch
can be utilized to work as layer 2 (data link layer) or layer 3
(network layer) device. Hence, not all devices can be found
via network exploration. Furthermore, network switches are
not open to the internet. Thus, an adversary needs to have
physical access or contacts within the victim organization to
know if suitable devices are existent within. Acquiring the
access or even at least the information is a highly individual
process. To the best of our knowledge no tools can assist here.
Training a model is insufficient too. Because the process is
different each time, we cannot even say what kind of task the
model should be trained on, and with what data, to help detect
this CVE. We therefore give a reconnaissance score of 3. The
GOE sub-vector looks as follows:

AT:H/TAI:H/G:H,

22Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 34 / 136

(2) Weaponization, (3) Delivery. Since the "weapon" in the
vulnerability is the pre-installed software itself weaponization
and delivery can be skipped.
(4) Exploitation. For the exploitation, an uncertain CLI but
preinstalled command needs to be entered. The low attack
complexity in the CVSS vectors indicate that it’s not a
sophisticated attack where timing or patterns needs to be
known, even if it’s only an assumption. Training an AI seems
unreasonable here, therefore this step is also skipped. It would
be more suited to use Robotic Process Automation to run the
malicious command.

In conclusion, CVE-2024-30384 gets a GOE score of 3 with
the following vector:

GOE(CVE-2024-30384) = min{3,∞,∞,∞} = 3

It is unlikely that AI is used in any form to assist in exploiting
this CVE. In a hypothetical setting in which CVEs were
assessed and prioritized only using GOE, this CVE could be
ignored.

VII. CONCLUSION AND FUTURE WORK

With GOE, an intuitive yet effective method is provided to
assess the exposure of AI, based on the effort required for
the attacker. GOE offers a flexible approach to quantify and
provide a simplistic explanation of AI usage in vulnerability
exploitation. After rating vulnerabilities by means of GOE,
analysts and other stakeholders can prioritize which vulner-
abilities should be assessed first. By combining GOE with
well-known and established vulnerability assessment systems
such as CVSS, a comprehensive analysis of vulnerabilities
can be achieved and more detailed ratings can be done.
The current GOE implementation consists of four possible
rating values. Therefore, the likelihood is high, that several
assessed vulnerabilities will have the same GOE score. By
incorporating CVSS or similar systems, the ranking can be
made more granular. However, further research is needed if
GOE is supposed to get combined with CVSS in such a way
that the modified version of CVSS is meant to produce a value
between 0 (not critical) and 10 (highest criticality) just like in
the default CVSS, but also considers exploitability through
AI-driven methods. A discussion within the community is
desirable to determine how much a low overall GOE score
increases the underlying CVSS score.

The current version of GOE estimates the AI usage based
on its effort, the effort is described as how difficult it is to use
AI for the respective kill chain step.

The example scores of the last two sections demonstrate that
using the GOE is straightforward. The most complex aspect
of using it is the research required to assess the questions
objectively. Its results further enable security researchers and
analysts to strengthen their arguments about why a CVE is
easily exploitable via OAI and help them stay updated on
the OAI risks associated with a given CVE. Furthermore, it
enhances their argumentation for prioritizing mitigating the
risk of a vulnerability by means of quantification. By assessing
the GOE analysts can get a rough estimation on how many

tools, datasets or APIs for the exploitation of a CVE through
OAI exist. Therefore, the GOE also quantifies the AI threat. In
[5] mentioned that the quantification of the AI threat is missing
in current research. However, it needs to be validated, if the
GOEs approach of quantification resembles the reality. Field
research needs to be done. To validate the GOEs quantification
approach, real life vulnerability exploits through OAI have to
be verified. Then, it needs to be validated if a higher amount
of tools, datasets or APIs lead to a higher amount of CVE
exploitation through OAI.

Another implication of our GOE is that it may be necessary
to adapt the vulnerability assessment process. Future security
analysts will need a broad understanding of AI and the data
required to train AI models. However, current teams may lack
it. Therefore, it should be investigated whether it is reasonable
to augment current vulnerability assessment teams with AI
experts who can provide this comprehensive knowledge and
help in assessing the GOE.

To extend and conclude, recent research has increasingly
focused on threat modeling for the security of deployed AI
assets. This work aims to extend existing threat modeling sys-
tems by providing an addition that can be used in vulnerability
assessments, specifically addressing the threat of OAI against
potentially all assets within an organization —- an emerging
research area still in its early stages. We hope that this work
encourages further research in the field of threat modeling for
OAI used to exploit vulnerabilities across all IT system assets.

REFERENCES

[1] H. Chen and K. Magramo, “Finance worker pays out $25
million after video call with deepfake ‘chief financial officer’,”
2024, [Online]. Available: https://edition.cnn.com/2024/02/
04/asia/deepfake- cfo- scam- hong- kong- intl- hnk/index.html
(visited on 02/12/2025).

[2] S. L. Schröer et al., “SoK: On the offensive potential of AI,”
arXiv preprint arXiv:2412.18442, 2024.

[3] S. Ntalampiras, G. Misuraca, and P. Rossel, Artificial intel-
ligence and cybersecurity research – ENISA research and
innovation Brief, C. Pascu and M. B. Lourenco, Eds. European
Union Agency for Cybersecurity, 2023. DOI: 10.2824/808362.

[4] Y. Mirsky et al., “The Threat of Offensive AI to Organiza-
tions,” Computers & Security, vol. 124, p. 103 006, Jan.
2023, ISSN: 0167-4048. DOI: 10.1016/j.cose.2022.103006.

[5] M. Malatji and A. Tolah, “Artificial intelligence (ai) cybersecu-
rity dimensions: A comprehensive framework for understand-
ing adversarial and offensive ai,” AI and Ethics, Feb. 2024,
ISSN: 2730-5961. DOI: 10.1007/s43681-024-00427-4.

[6] K. Grosse, L. Bieringer, T. R. Besold, B. Biggio, and K.
Krombholz, “Machine learning security in industry: A quan-
titative survey,” IEEE Transactions on Information Forensics
and Security, vol. 18, pp. 1749–1762, 2023.

[7] FIRST, Common vulnerability scoring system version 4.0
specification document, 1.2, Jun. 2024.

[8] M. Abughazalah, W. Alsaggaf, S. Saifuddin, and S. Sarhan,
“Centralized vs. decentralized cloud computing in healthcare,”
Applied Sciences, vol. 14, no. 17, p. 7765, Sep. 2024, ISSN:
2076-3417. DOI: 10.3390/app14177765.

[9] M. Brundage et al., “The malicious use of artificial intelli-
gence: Forecasting, prevention, and mitigation,” arXiv preprint
arXiv:1802.07228, 2018.

23Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 35 / 136

[10] C. T. Thanh and I. Zelinka, “A survey on artificial intelligence
in malware as next-generation threats,” MENDEL, vol. 25,
no. 2, pp. 27–34, Dec. 2019, ISSN: 1803-3814. DOI: 10.13164/
mendel.2019.2.027.

[11] T. M. Corporation, “Mitre att&ck,” 2025, [Online]. Available:
https://attack.mitre.org/ (visited on 02/14/2025).

[12] B. Guembe et al., “The emerging threat of ai-driven cyber
attacks: A review,” Applied Artificial Intelligence, vol. 36,
no. 1, Mar. 2022, ISSN: 1087-6545. DOI: 10.1080/08839514.
2022.2037254.

[13] L. Mauri and E. Damiani, “Modeling Threats to AI-ML
Systems Using STRIDE,” Sensors, vol. 22, no. 17, p. 6662,
Sep. 2022, ISSN: 1424-8220. DOI: 10.3390/s22176662.

[14] S. B. Tete, “Threat modelling and risk analysis for large
language model (llm)-powered applications,” arXiv preprint
arXiv:2406.11007, 2024.

[15] J. von der Assen et al., “Asset-Centric Threat Modeling for
AI-Based Systems,” in 2024 IEEE International Conference
on Cyber Security and Resilience (CSR), IEEE, Sep. 2024,
pp. 437–444. DOI: 10.1109/CSR61664.2024.10679445.

[16] T. M. Corporation, “Mitre atlas (adversarial threat land- scape
for artificial-intelligence systems),” 2025, [Online]. Available:
https://atlas.mitre.org/ (visited on 02/14/2025).

[17] V. Kumar, J. Mayo, and K. Bahiss, “Admin: Attacks on dataset,
model and input. a threat model for ai based software,” arXiv
preprint arXiv:2401.07960, 2024.

[18] E. M. Hutchins, M. J. Cloppert, R. M. Amin, et al.,
“Intelligence-driven computer network defense informed by
analysis of adversary campaigns and intrusion kill chains,”
Leading Issues in Information Warfare & Security Research,
vol. 1, no. 1, p. 80, 2011.

[19] N. I. of Standards and Technology, “Cve-2025-1156 detail,”
2025, [Online]. Available: https : / /nvd .nist .gov/vuln /detail /
CVE-2025-1156 (visited on 08/18/2025).

[20] N. I. of Standards and Technology, “Cve-2024-30384 detail,”
2024, [Online]. Available: https : / /nvd .nist .gov/vuln /detail /
CVE-2024-30384 (visited on 08/18/2025).

[21] Juniper, “Ex4300 switches,” 2025, [Online]. Available: https:
//www.juniper.net/us/en/products/switches/ex-series/ex4300-
enterprise-switch.html (visited on 08/18/2025).

24Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 36 / 136

On the Necessity of Measuring Security in IoT

Tobias Eggendorfer
TH Ingolstadt

Faculty of Computer Science
Ingolstadt, Germany

Email: tobias.eggendorfer@thi.de

Katja Andresen
HWR Berlin

Department of Business and Economics
Berlin, Germany

Email: katja.andresen@hwr-berlin.de

Abstract—While the Internet of things has become ubiquitous, it
is mostly populated by former embedded devices, whose software
was developed by specialists in the respective field. Hence, security
researchers often find issues in those, which some consider to be
low hanging fruits. Fixing security flaws in deployed embedded
devices is sometimes very complex: In automotive or airborne
systems, road- or airworthiness tests need to be passed, in these
and e.g. medical devices or industrial Internet of things updates
cannot interrupt operation. Therefore, in ideal world, Internet
of things and embedded systems would be free from security
issues. This could be reached with security metrics, a concept the
authors are working on.

Keywords-Internet of Things; IoT; Embedded Systems; Embedded
Security; IoT Security; Security Metrics; Cyber Security; Industrial
IoT; Legal Aspects

I. INTRODUCTION

In 2017, the United Stated Federal Drug Administration
(FDA) recalled St. Jude’s pacemakers due to a security issue
[1], allowing potentially lethal remote tampering – an issue
pre-seen by Holt and Holt’s thriller “Flimmer” [2]. In Finland,
attackers took down a building complex central heating unit,
resulting in frozen pipes and massive restoration costs [3].
The industrial Internet of Things (IoT) controller SIMATIC
by Siemens has 336 Common Vulnerabilities and Exposures
(CVE) entries, 33 of these were issued in 2024 alone [4].
Attacking these might disrupt production processes and even
challenge critical infrastructures. Cordless screwdrivers, ovens
or coffee appliances may now be configured or used over the
Internet, and thus have become a part of the Internet of things –
as with the now legendary Miele dishwasher directory traversal
[5]. Stealing cars is not short circuiting the ignition any more
but gaining access to its Controller Area Network (CAN) bus
and pretending by software the key was in the lock [6].

A. IoT and embedded security – Fixing issues

While software security issues are common nowadays, those
in IoT and embedded systems are especially nasty: patching
and updating the devices is often a tedious process. E.g., for a
dash cam, firmware needs to be downloaded on the desktop,
copied to a freshly formatted SD card, the dash cam rebooted
and the card quick enough removed for the next reboot [7].
The complexity results from the device being offline or not
providing an online-update feature.

For some IoT, updating is easier, because devices could
download their update. However, there are two issues: On
several occasions, updates broke the system, e.g., [8] [9]. Also,

the update cannot be installed anytime, an example are cars on
ferries updating their system without asking their user. With
an update taking longer than the ferry trip, the car cannot be
started again and thus blocks unloading the ferry [10]. This
could happen to, e.g., a fire truck or an ambulance – those need
to be available 24/7, at unpredictable times. Updates would
need to be carefully planned with replacement vehicles being
set up, as it is for regular maintenance. However, over the
air software updates might occur more often, since from a
manufacturers point of view, they are easily distributed. This
puts an additional burden to an already very resource- and cost-
intensive process, affecting update speed and thereby security.

Some devices need to run an approved version of their
respective software, e.g., devices deployed in planes need an
airworthiness approval, sometimes even by several agencies
worldwide. In medical devices, similar rules exist. In neither
case a mid air update is recommendable.

Some embedded devices are deployed without reasonable
physical access, hindering updates, e.g., pacemakers and
internal defibrillators. Some are hardly ever serviced, shifting
the task of updating to its user, who is unaware of relevant
security patches. In some cases, administrators might even
be too careless to install security fixes: Both Hafnium and
Heartbleed security issues were observed in the wild years
after their respective discovery.

B. Lateral movement

In recent attacks, IoT served as the entry point to corporate
networks, moving on from there is called lateral movement.
There are reports on using a surveillance web cam [11] or the
photovoltaic system’s web-interface. In a home environment a
smart TV could be the vantage point.

It is often suggested to separate networks, moving IoT
devices outside the productive environment. This is only a
partial solution, e.g., the Mirai bot net abused infected IoT
devices for distributed Denial of Service (dDoS) [12].

C. Motivation for IoT and embedded security metrics

Therefore embedded and IoT-devices should be as secure as
possible when deployed, thereby reducing the need for patches.
But their manufacturers would always claim that security is
of paramount importance to them and their devices underwent
rigorous testing. Considering the vast amount of CVE numbers
assigned to embedded and IoT-devices this is not plausible.
While printers are neither embedded nor IoT, Hewlett-Packard

25Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 37 / 136

provides a very good example for vendor security claims versus
reality: On January 29, 2025 they released patches for a CVE
issued in 2017 [13] – eight years later.

Due to the absence of security measures in IoT, there is an
urgent need for a way to help identify and implement necessary
security controls [14].

Search engines like shodan.io support this need. They help
identifying IoT-devices and searching for specific devices,
software versions or configurations with vulnerabilities.

The authors proposed a security metric [15] to identify a
systems level of security as well as to be able to compare
devices in order to make an informed procurement decission.
This paper discusses how this metric could be applied to IoT
and embedded devices in order to increase their security.

D. Structure of this paper

The paper is structured as follows: Section II first defines the
concept of embedded systems, IoT and Industrial IoT (IIoT)
for the purpose of this paper. It then outlines common security
challenges in regular software, how and when they affect IoT
systems and how to mitigate them. Based on this, this section
provides an overview on software quality management with a
focus on security and security metrics outside IoT.

Section III analyses how security metrics could be applied
to IoT. Based on this, legal enforcment of the use of security
metrics and its potential effects is discussed in Section IV. The
last Section V provides a conclusion and gives an outlook on
future research.

II. BACKGROUND

The following section provides definitions and an overview
on Information Technology (IT), IT-security, security issues
and their respective origin as well as counter measures.

A. Embedded Devices, IoT, firm- and software

For this paper, an embedded device is defined as a computer
with a specific purpose that is usually integrated into a cyber
physical system, interacting with sensors, actors and / or has
a specific user interface, but usually not a full keyboard or
screen. Their software is optimized for the use case and not
meant to be changed by the user, e.g., dashcams, defibrillators,
smart TVs, heating controllers or smart locks, but also engine
control systems or a lane assistants in cars.

An IoT device is an embedded system connected to the
Internet and could either be configured, monitored or controlled
remotely. IIoT is IoT monitoring and / or controlling industrial
system, such as assembly lines or automated warehouses.

For this paper, software and firmware are considered to be
equivalent: While firmware is usually provided “on a chip”,
which might even be a Read-Only Memory (ROM) module,
and comes with a device, from a security perspective it is still a
program. With the line between embedded systems and regular
computers becoming less clear – a Raspberry Pi could be both
– the borderline between soft- and firmware also moves. It
becomes relevant, when it comes to potential cyber-physical
effects of IoT.

B. IT security in general

Often social engineering (SE) and ransomware are seen
as the biggest threads to IT security. From an operational
perspective, this explains how the attack has been executed
[16] and describes its effects. But technically, each SE attack
is a security issue, be it bypassing the need to know or least
privileges principle, a flaw in the system, which allowing to
inject and execute arbitrary code, or other imperfections. Hence,
while SE was supportive, the relevant issue was a faulty system.

For the effect, it is not relevant how the attacker exploits the
newly gained access, e.g., to deploy ransomware or part taking
in industrial espionage. However, the effects are relevant from
an economic and political perspective, as well as for attribution
and legal measures; however, this falls outside the technical
scope. There, it is only a payload to the actual attack.

The difference between payload, the actual attack, e.g., a
buffer overflow or format string issue, and the attack vector,
describing how the attack was launched, e.g., through Remote
Procedure Call (RPC) or SE, is important: Security measures
addressing only the attack vector, e.g., by educating users to
prevent SE, do not fix the underlying security flaw. It could
still be leveraged through other means.

Security measures could mitigate some attack’s effects, e.g.,
off site backups to prevent ransomware. This reduces the
risk, because the damage is lowered. However, the underlying
security issue remains unsolved and could still be exploited
for activities such as espionage. Hence, the best solution is to
fix the cause, the security issue itself, since this is effective for
all attack vectors and effects. Only addressing some of them
is sometimes called “snake oil” or “security theatre” in the
security community, due to their limited effect [17] [18].

C. Typical security issues in IoT and embedded devices

In IoT and embedded devices, there is a huge variety of tasks
to perform. While in a Tesla, the systems provide X for the user
interface [19] [20], in implanted pace makers a touch screen is
not feasible, instead a Bluetooth Low Energy (BLE)-interface
could be provided – these having their own security issues, e.g.,
[21]. Industrial IoT systems often use proprietary protocols
to interface with control units, e.g., Supervisory Control and
Data Acquisition (SCADA), others have built in web-interfaces,
such as the aforementioned dishwasher.

Based on the huge variety of IoT and embedded systems,
all security issues in both compiled software as well as those
in web applications could occur. For the latter, Open Web
Application Security Project (OWASP) provides an overview
of potential issues. A regularly updated top ten list indicates
the most prevalent, ranging from Cross Site Scripting (XSS) to
Lightweight Directory Access Protocol (LDAP)- and Structured
Query Language (SQL)-injections, but also including issues
like insecure deserialisation of a data stream or authentication
bypass [22]. While the list is updated every few years, the
issues typically shift positions within the top ten, but rarely
disappear entirerly – nor do new issues come up. While
at the time of writing, the OWASP Top Ten 2025 list was
not yet available, a comparison of the lists from 2017 to

26Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 38 / 136

2021 reveals that only three new issues appeared in the top
ten. Out of those three that seem to have disappeared, four
were merged into two new categories and are still in the top
ten, these are: A01:2017 “Injection” and A07:2017 “XSS”
merged into A03:2021 “Injection”, A04:2017 “XML External
Entities” and A06:2017 “Security Misconfiguration” became
A05:2021 “Security misconfiguration” [22]. This indicates bad
security practice and a non existent web-security learning curve,
applicable as well to IoT-web-interfaces.

In regular programs, security issues could be related to
memory access, such as with a buffer overflow, out of bounds
read or write, format string issue or off by one. These usually
result in a program flow alteration or even code injection.
Other issues include integer overflows, which might result in
a system with an unstable state [23] or as a vantage point for
other attacks, such as a buffer overflow [24]. All of which
are applicable to IoT as well. Other issues are resemble web
attacks, such as an under protected Application Programming
Interface (API) or insecure authentication.

These issues either result from insecure programming
practice or design flaws. Examples for the former include using
strcpy instead of strncpy. While strcpy does not limit
its copying to a maximum amount of bytes, strncpy does.
This prevents – if no other flaws are present, such as integer
overflows or off by ones – some buffer overflows, and was
introduced in ANSI C in 1989 [25], long after buffer overflows
were first described in 1972 [26]. In 1996, the Phrack Magazine
in the famous article “Smashing the Stack for Fun and Profit”
[27] explained the security issue due to its prevalence in these
days. Still now, buffer overflows are of the most often abused
security issue. Good programming practice would enforce the
use of safer functions. Again an indication of a very slow
learning curve, albeit automatic code analysis tools are able
to warn [28]. Which points to them not being (properly [29])
used too often.

Design flaws are harder to identify and come by. Whether one
considers Central Processing Unit (CPU) microcode software
or hardware, both Spectre and Meltdown [30]–[32] are good
examples of design issues: They are a result of pipelining in
modern CPU architecture. Heartbleed provides an example of
a software security issue due to a design flaw: By providing
redundant data and not comparing two values, an out of bounds
read could be triggered [33], another example “ZUGFeRD”, a
concept for eXtensible Markup Language (XML) and Portable
Document Format (PDF) based e-invoices posing a security
risk through redundant, not cross checked data [34] [35]. These
logical issues are much harder to automatically detect, and are
found in IoT as well.

D. Prevention of security issues

In theory preventing security issues based on bad program-
ming style is well known [15] [36] [37] and easily achieved
with static code analysis [28], code reviews, peer programming
and other simple quality checking measures.

Identifying design flaws is possible through code reviews
and peer programming, however this requires a qualified team.

If this was easy, faulty standards such as introducing heartbeat
functionality in TLS leading to the aforementioned Heartbleed
issue, or the ZUGFeRD issues would not have happened.

E. Relation between software quality management and security

All measures undertaken to increase software quality, such
as coding standards, static and dynamic code analysis, code
reviews and peer programming have an effect on the amount of
security relevant issues in a program. OpenBSD is an example:
Due to its quality management, the system only had two remote
exploitable security issues in its standard installation “in a heck
of a long time” [38], i.e., 30 years.

Quality management will find security issues related to bad
programming and some logic flaws. At the same time, it will
increase the quality of the code created, since programmers
know their code will be reviewed, they will obey the coding
standards. If these include safe programming practices, they
have an effect on security as well.

F. Measuring software quality

Software quality in general is a broad term, providing many
perspectives. ISO 25010 provides eight quality dimensions for
software, starting from functionality via portability or usability,
but also security. However, in this regard security is restricted
to functionality. To the authors, software quality serves as a
proxy for security: Quality means the absence of flaws, each
flaw could result in a security issue [15] [37].

1) Standards: Standards like the ISO 27000 series only
provide a management perspective, but offer little in terms of
an operational approach to achieve a high level of software
quality, and they cannot measure the quality of the code. To
some extent, this aligns with how software quality measurement
is discussed in research: So far “software quality” itself lacks
a common understanding [15].

2) Formal Verification: Other concepts include more formal
specification of software and deriving from this specification
a verification. One example are Hoare logics [39]. However
for most projects this manual process is cumbersome and
very intense. There it is probably only used in environments
with high quality and especially safety requirements, such as
in space missions. But even then, if the conditions are not
updated properly to reflect changes elsewhere, issues could
still occur, e.g., the Ariane 5 [23]. In IoT, especially when it
comes to high cyber-physical risks, projects like seL4 provide
formally verified code [40]–[42].

3) Current concepts: Closer to the market are concepts
such as the German’s German Federal Office for Information
Security (BSI) providing a “software quality seal” based on
self assessment of the vendor and easily measurable items such
as the time needed to fix issues [43]. The speed of fixing may
indicate a learning curve, but is not inherently a quality measure
for the software itself. Rather, it serves as an indicator how
effective a vendor is in accepting, understanding and resolving
reports. This is useful to understand how interested they are
in preventing future attacks, it is a measure of the quality of
maintenance. But it does not give any indication on whether

27Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 39 / 136

the bug could have been identified earlier in the development
process, which is where software quality stems from. This
“software quality seal” is therefore hardly an indication of
what it claims to be.

4) Bill of Materials: Another approach to quality is to
identify which third party libraries and software is used within
a project, including the respective version. If an update becomes
available for one of these, it should be easily possible to identify
whether it needs to be installed. This idea has been adopted
by European Union (EU) Cyber-Resilliance-Act (CRA) by
introducing the Software Bill of Materials (SBoM). However
a SBoM does not provide a quality measurement in itself and
there is no clear path to derive a quality measure from it:
Does a short SBoM indicate a higher level or lower level of
quality? There are pros and cons for either way. Aside of this,
an SBoM is useful in identifying relevant patches. As per [44]
IoT projects use less dependencies.

5) Static measures: Khezemi et al. [36] suggest to measure
code quality based on statically comparing code by looking at
size, code complexity, cohesion, coupling, code readability, and
maintainability. These measures have a different understanding
of quality than this paper has, in that it does not address security
measures.

6) Conclusion: Quality aspects of embedded systems and
IoT should address both, hardware as well as software compo-
nents [45].

G. Measuring software security

Eggendorfer and Andresen [15] provide a detailed overview
on currently available methods to measure software security
and concludes that there is no commonly accepted method.
This applies even more for IoT. However, to achieve a high
level of security that is comparable, it is important to capture
aspects beyond already existing standards or initiatives related
to software quality.

Other initiatives invest in preventive measure, like educating
software developers in order to support secure software devel-
opment [38] [46] [47]. To assess software a broadly understood
security metric would offer orientation and guidance. For web
applications [48] developed a concept, which however has
some minor flaws [15].

Reckhaus [49] compares the invest into IT security to
insurance fees to identify an economic value, i.e., metric, for
security investments. While this does not assess the security as
a quality measure, it helps evaluating security concepts from a
economic perspective.

Wuttig [50] analyses IT security in medical IoT devices,
albeit without applying a formal metric. His analysis however
gives a good impression of minimum requirements that should
be included in a formal security test, that could be part of
a security metric. A security issue in patient monitors is an
example of the relevance [51].

III. APPLICATION TO EMBEDDED AND IOT

IoT and embedded systems have different security implica-
tions and requirements than desktop software. The following

section discusses effects of different development approaches
and how this would affect the respective software quality.

A. Differences in software development

Software development for IoT and embedded systems is
different to developing other programmes. Embedded systems
are designed for special tasks. For that, embedded systems, e.g.,
laundromats, cameras, smart home equipment, use firmware
(software) that directly accesses the hardware of the device to
carry out the intended function. Hence, they do not follow the

”one fits all“ architecture as the John-von-Neumann approach.
Typical characteristics of these systems have effects on

quality, as well as security: Many embedded systems need
to process data in real time, i.e., they have an upper limit
for computing time. Obvious examples include the Antilock
Braking System (ABS) and airbag deployment in cars.

These systems are usually designed for a reliable long term
usage – meaning limited maintenance opportunities as well as
corrective updates by default.

As they run on special microprocessors and microcontrollers
embedded systems use limited resources as computing power
and memory – compared with traditional computers. The
specific, often restricted hardware might also have an effect
on code optimization.

B. Related Work

Corno et al. [44] discuss this in detail for Open Source
software, based on an analysis of source code of 30 IoT and
30 non-IoT projects published on github. This is partly because
IoT projects are more complex, in that applications need to be
fault tolerant, often need to use sensor data, tend to be part
of distributed system and require specific domain knowledge
[44] [52]–[54]. Also programming languages vary greatly, with
memory safe programming languages such as JavaScript being
more often used in non-IoT projects, in 18 vs. 4 projects in
[44].

Code quality between IoT and non-IoT applications differs
massively, software for IoT was “more complex, coupled, larger,
less maintainable, and cohesive than non-IoT systems” [36] [55].
This results in some authors suggesting different development
processes for IoT [56]–[58].

The unique requirements, specific and open architecture
has drawn attention of both malicious attackers and security
analysts.

C. Quality assurance

Motoga et al. [59] come to the conclusion that a “diversity
of methods” is needed to assure the quality of IoT systems
during the development phase. With regard to the lifecycle,
“maintainability” is a key goal for the deployment of embedded
systems [59], however there is a potential trade off between
quality attributes such as security, safety and maintainability
[59]. Müller [60] also argues that secure IoT development
requires its own development process.

Quite interestingly, European Telecommunications Standards
Institute (ETSI) issued the standard ETSI EN 303 645 “Cyber

28Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 40 / 136

Security for Consumer Internet of Things: Baseline Require-
ments” representing a collection of rather simple minimum
requirements for secure consumer IoT in order to support man-
ufactures to establish security by design. Considering that ETSI
is less of an IT but more a telecommunication standardisation
body, providing mobile phone network standards such as GSM,
EDGE, 3G, 4G and 5G, its IT-security recommendations are
not always up to date, ETSI TS 103 523-3 V1.2.1 “CYBER;
Middlebox Security Protocol; Part 3: Enterprise Transport
Security” even received a CVE number before publication [61].
Not only the authors consider ETSI EN 303 645 problematic,
Morgenstern at al [62] state the implementation of the standard
lacks completeness leading to security risks. Despite this, based
on ETSI EN 303 645, the German BSI provides a quality seal
for IoT devices, based on voluntary participation [63] [64].

If IoT uses encryption, updating algorithms used for en-
cryption, signing or even hash functions might not be straight
forward, since data stored on the device would need to re-
encrypted, increasing the complexity of the process. Also
interoperability issues with not yet updated systems may occur,
if for security aspects downward compatibility has not been
implemented.

IV. SUGGESTED LEGISLATIVE SUPPORT

When it comes to security of embedded systems and IoT, at
first, security seems to be one attribute among others. However,
security is of high importance due to the massive effects of
security incidents, the risks of lateral movement of attackers,
the abuse of bot nets built upon infected IoT devices and the
dangers of cyber-physical effects. Considering this, legislators
might support better security by passing more stringent laws,
such as the EU did with Directive 2016/1148 of the European
parliament and of the council of 6 July 2016 concerning
measures for a high common level of security of network
and information systems across the Union (NIS)-2 and CRA
recently. These, however, would only become efficient if they
required measurable IT security, i.e., an objective and neutral
way to assess security.

A. The need of a security metric in a legal context

There is a need for objective and measurable security in
a legal context, as a real example demonstrates: With an
increasing amount of fraudulently manipulated invoices, where
attackers swap the recipients bank account against their own, the
Higher Regional Court (Oberlandesgericht (OLG)) in Karlsruhe
ruled, that sending the invoice encrypted was not a requirement
[65], while the OLG Schleswig-Holstein decided encryption is
needed [35]. Both based their decision on the same article of
the General Data Protection Regulation (GDPR). As a result,
in one case, the invoiced party needed to pay again, in the
other case not.

The two courts disagreed on two main issues, one was the
applicability of the GDPR to a juridical person (Karlsruhe)
versus a natural person (Schleswig-Holstein), which could be
disputed, and the other on a technical question. According to
the respective rulings neither court heard an expert witness on

the matter. Both assumed in their own expertise, encryption
was efficient to protect integrity, where a digital signature
would actually be needed [34] [35] [65]. Karlsruhe found that
encryption is not required based on “real world expectations”,
Schleswig-Holstein considered it as a requirement.

The decision by the OLG Schleswig-Holstein is currently
being discussed mainly in the legal community for it basically
enforcing email encryption. Some see it as being disruptive and
too strict [66]–[68], while others point to a decade of advocacy
towards email encryption [35] [65] [69].

The different rulings are a result of allowing room for
interpretation of technical requirements by non technical
legislators and a non technical judicative. Objectively measured
security by contrast allows for consistent court rulings and also
consistent expert hearings. Only with a reliable metric, legal
concepts such as GDPR have an effect.

B. Economic impact

Procurement decisions should also be made based on a
security metric [15]. By providing a legal requirement, it could
easier be incorporated in the buying decision, and thereby
enhance cyber resilience [15].

C. Labelling

In other domains like electronic devices or textiles labels,
batches and seals are accepted and mandatory. For instance
the Conformité Européenne (CE) label for electronic goods
guarantees that minimum requirements for safety, health and
environment have been addressed and fulfilled, albeit the CE
label is based on a self assessment [70].

Self assessment has already proven problematic in IT in
general, as most software manufactures declare their products
to be of high quality, free of security and other flaws, which
hardly ever meets reality. Also with the CE-label, these issues
occur. If, however, the self assessment is based on a comparable,
standardised metric, “fake” assessments could be identified.
Still, a legal framework to prevent the abuse of labels –
potentially more strict than the one used for CE-labels [71] –
is needed.

D. Mandatory Testing

For products that society and lawmakers consider to carry
a higher risk, mandatory tests and specific requirements are
set up. Examples include cars, aircrafts or medical devices. In
special cases regular re-assessments are a legal requirement
as well, e.g., the yearly or bi-annual roadworthiness checks
for cars or permanent side effect reporting in medicine. In
all these cases, security and safety are a requirement, security
issues are (almost) unacceptable. The GDPR introduced security
requirements – at least in theory: Some consider penetration
tests a GDPR requirement [72], however, reality does not agree.

Therefore a security metric would allow efficient, comparable
and reliable security comparisons. It would allow any user to
make a decision between a more or less secure device apart
from other features. With more and more IoT devices connected,
chances increase for exploited vulnerabilities.

29Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 41 / 136

E. Life cycle

Quality and security management need to addressed through-
out the life cycle of an IoT project. Before allowing a product on
the marketing, a formal check such as a roadworthiness checks
in cars. Therefore a security metric serves as a foundation to
measure criteria or attributes (to define) that need to be passed.

Other than with roadworthiness checks, with IoT not the
individual device needs to be reevaluated, but only one
exemplary device, as other than with cars mechanical wear
and tear is not the primary issue. While reevaluation of all
IoT devices would be advisable to prevent risks like lateral
movement, in a first step it seems to be most important to
both apply regular reevaluation to devices with cyber-physical
effects as well as to devices used in critical infrastructure.

V. CONCLUSSION AND FUTURE WORK

Security issues are the downside of a technology that
surrounds us. This article has shown that embedded systems
require special attention to run reliable and secure in an
interconnected world. The design and creation of IoT services
as well as maintenance tasks along the usage phase appears to
be of high complexity.

The authors propose the usage of a metric to measure
a software security index that supports the judgement of
feasibility for applications in a given context. The metric
is therefore addressing the “static” software system with
regard to the technical aspects but also considering dynamic
aspects. The latter could be part of a penetration test scenario.
A metric would allow a judgment in terms of security in
IoT environments. Above, a regular validation could be part
of a “ready for market” concept. IoT manufacturers would
probably have an interest in a better rating leading to quality
improvement of the software system.

REFERENCES

[1] ZDNet. (2017) FDA issues recall of 465,000 St. Jude
pacemakers to patch security holes. Accessed 2025.03.09.
Online: https://www.zdnet.com/article/fda-forces-st-jude-pacemaker-
recall-to-patch-security-vulnerabilities/

[2] A. Holt and E. Holt, Flimmer. Piratforlaget, 2010.
[3] M. Komar. (2016) DDoS attack takes down central heating

system amidst winter in finland. Accessed 2025.03.09. Online:
https://thehackernews.com/2016/11/heating-system-hacked.html

[4] cve.org. (2025) CVE.org search for SIMATIC. Accessed 2025.03.09. On-
line: https://www.cve.org/CVERecord/SearchResults?query=SIMATIC

[5] ——. (2017) Cve-2017-7240. Accessed 2025.03.09. Online: https:
//nvd.nist.gov/vuln/detail/CVE-2017-7240

[6] K. Tindell. (2023) CAN injection: keyless car theft. Accessed 2025.03.09.
Online: https://kentindell.github.io/2023/04/03/can-injection/

[7] AZDOME. (2021) Method of updating the latest firmware.
Accessed 2025.03.09. Online: http://forum.azdome.hk/forum.php?mod=
viewthread&tid=930&highlight=M300S

[8] S. Harding. (2025) Firmware update bricks HP printers, makes
them unable to use HP cartridges. Accessed 2025.03.11.
Online: https://arstechnica.com/gadgets/2025/03/firmware-update-bricks-
hp-printers-makes-them-unable-to-use-hp-cartridges/

[9] F. Deusch and T. Eggendorfer, “Zur Kompatibilität beim Updating
verbundener Systeme (translated: On compatibility when updating
interdependant systems),” K&R, vol. 2018, no. 7, pp. 456–464, 2018.

[10] M. Zysset. (2025) Wenn das Software-Update beim Auto für Stau sorgt
(translated: If the car software update causes a traffic jam). Accessed
2025.03.09. Online: https://www.tagesanzeiger.ch/bls-autoverlad-wenn-
das-software-update-fuer-stau-sorgt-135808833029

[11] G. Hull, C. Trivella, and J. Seland. (2025) Camera off:
Akira deploys ransomware via webcam. Accessed 2025.03.11.
Online: https://www.s-rminform.com/latest-thinking/camera-off-akira-
deploys-ransomware-via-webcam

[12] CISA. (2017) Heightened DDoS threat posed by Mirai and other botnets.
Accessed 2025.03.09. Online: https://www.cisa.gov/news-events/alerts/
2016/10/14/heightened-ddos-threat-posed-mirai-and-other-botnets

[13] Hewlett-Packard. (2025) HP Universal print driver series (PCL 6 and
PostScript) - potential security vulnerabilities. Accessed 2025.03.09.
Online: https://support.hp.com/us-en/document/ish 11892982-11893015-
16/hpsbpi03995

[14] K. Pawar, C. Ambhika, and C. Murukesh, “IoT hacking: Cyber security
point of view,” Asian Journal of Basic Science & Research, 2021.
Online: https://api.semanticscholar.org/CorpusID:235194057

[15] T. Eggendorfer and K. Andresen, “Using security metrics
to improve cyber-resilience,” in Proceedings of the IARIA
Congress 2024. Porto, Portugal: IARIA, 2024, pp. 152–157.
Online: https://www.thinkmind.org/library/IARIA CONGRESS/IARIA
Congress 2024/iaria congress 2024 2 210 50107.html

[16] P. Hengge, Development of a Rule Set for the Defence Against Cyber
Attacks by Analysing and Evaluating Attack Vectors in IT Systems. Hagen:
Masterthesis, FernUniversität in Hagen, 02 2025.

[17] B. Schneier. (2025) Entries tagged security theatre. Accessed 2025.03.09.
Online: https://www.schneier.com/tag/security-theater/

[18] P. R. Zimmermann. (1991) Beware of snake oil. Accessed 2025.03.09.
Online: http://www.philzimmermann.com/EN/essays/SnakeOil.html

[19] J. Michal, Tesla Model 3 Control Units Security Analysis. Prag:
Masterthesis, CTU Prag, 01 2021.

[20] DragTimes. (2014) Tesla model s ethernet network explored,
possible jailbreak in the future? Accessed 2025.03.09.
Online: http://www.dragtimes.com/blog/tesla-model-s-ethernet-network-
explored-possible-jailbreak-in-the-future

[21] J. Leyden. (2017) Dildon’ts of bluetooth: Pen test boffins sniff
out berlin’s smart butt plugs. Accessed 2025.03.09. Online: https:
//www.theregister.com/2017/09/29/ble exploits screwdriving/

[22] OWASP. (2021) OWASP top ten. Accessed 2025.03.09. Online:
https://owasp.org/Top10/

[23] J.-L. Lions. (1996) Flight 501 failure. Accessed 2025.03.09. Online:
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html

[24] J. Drake. (2015) Stagefright: Scary code in the
heart of Android. Zimperium. Accessed 2025.03.09.
Online: https://www.blackhat.com/docs/us-15/materials/us-15-Drake-
Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf

[25] ISO. (1989) Iso/iec 9899:tc3. Accessed 2025.03.09. Online: https:
//www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf

[26] J. P. Anderson. (1972) Computer security technology planning study,
volume ii. Accessed 2025.03.09. Online: https://csrc.nist.gov/csrc/
media/publications/conference-paper/1998/10/08/proceedings-of-the-
21st-nissc-1998/documents/early-cs-papers/ande72.pdf

[27] A. One. (1996) Smashing the stack for fun and profit. Accessed
2025.03.09. Online: https://phrack.org/issues/49/1

[28] T. Eggendorfer, “At the source. static code analysis finds
avoidable errors,” Admin Magazine, vol. 2019, no. 53, 2019.
Online: https://www.admin-magazine.com/Archive/2019/53/Static-code-
analysis-finds-avoidable-errors

[29] A. Lentz and T. Eggendorfer, “Snakes in the grass,” in NLUUG
najaarsconferentie 2024. Utrecht, Netherlands: NLUUG, 2024.

[30] J. Horn et al. (2018) Spectre and meltdown. Accessed 2025.03.09.
Online: https://spectreattack.com/

[31] M. Lipp et al., “Meltdown: Reading kernel memory from user space,”
in 27th USENIX Security Symposium (USENIX Security 18), 2018.

[32] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” in
40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

[33] Synopsis. (2020) Heartbleed. Accessed 2025.03.09. Online: https:
//heartbleed.com/

[34] T. Eggendorfer, “Schwer verrechnet (translated: Bad computation),” Linux
Magazin, vol. 2025, no. 04, pp. 50–53, 2025.

[35] F. Deusch and T. Eggendorfer, “E-Rechnung: Verschlüsseln oder Sig-
nieren? (translated: E-invoice: Encrypt or sign?),” K&R, vol. 2025, no. 4,
4 2025.

30Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 42 / 136

[36] N. Khezemi, S. Ejaz, N. Moha, and Y.-G. Guéhéneuc, “Comparison of
code quality and best practices in IoT and non-IoT software,” ArXiv, vol.
abs/2408.02614, 2024. Online: https://api.semanticscholar.org/CorpusID:
271709982

[37] D. Mathes, Qualitätsmetriken für Schutzkonzepte (translated: Quality
metrics for security concepts). Hagen: Masterthesis, FernUniversität in
Hagen, 12 2015.

[38] OpenBSD. OpenBSD security. Online: http://www.openbsd.org/
security.html

[39] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. ACM, vol. 12, no. 10, p. 576–580, oct 1969. Online:
https://doi.org/10.1145/363235.363259

[40] G. Klein et al., “sel4: formal verification of an operating-system
kernel,” Commun. ACM, vol. 53, no. 6, p. 107–115, Jun. 2010. Online:
https://doi.org/10.1145/1743546.1743574

[41] D. B. de Oliveira, T. Cucinotta, and R. S. de Oliveira, “Efficient formal
verification for the linux kernel,” in Software Engineering and Formal
Methods, Peter Csaba Ölveczky and G. Salaün, Eds. Cham: Springer
International Publishing, 2019, pp. 315–332.

[42] SEL4project. (2025) seL4. Accessed 2025.03.09. Online: https:
//sel4.systems/

[43] F. Deusch and T. Eggendorfer, “Messbarkeit von IT-Sicherheit (translated:
Measuring it-security),” K&R, vol. 2023, no. 12, pp. 781–786, 12 2023.

[44] F. Corno, L. D. Russis, and J. P. Sáenz, “How is open source software
development different in popular IoT projects?” IEEE Access, vol. 8, pp.
28 337–28 348, 2020. Online: https://api.semanticscholar.org/CorpusID:
211227160

[45] M. Loghi, T. Margaria, G. Pravadelli, and B. Steffen, “Dynamic
and formal verification of embedded systems: A comparative survey,”
International Journal of Parallel Programming, vol. 33, pp. 585–611,
2005. Online: https://api.semanticscholar.org/CorpusID:22718479

[46] T. Kölnberger, Evaluation of effects of security metrics in the software
development life cycle. Hagen: Masterthesis, FernUniversität in Hagen,
April 2025.

[47] OWASP. SAMM model overview. OWASP. Online: https:
//owaspsamm.org/model/

[48] C. Binder, Entwurf einer Metrik zur Bewertung des IT-Sicherheitsniveaus
am Beispiel von Webanwendungen (translated: Design of a metric to
measure the IT security level of web applications). Hagen: Masterthesis,
FernUniversität in Hagen, February 2024.

[49] S. Reckhaus, IT-Sicherheit und Kosten-Nutzen Analyse von Cyber-
Versicherungen (Translated: IT-security and cost-effect analysis of cyber
insurance). Hagen: Masterthesis, FernUniversität in Hagen, 02 2016.

[50] D. Wuttig, IT-Sicherheitsprüfung im Internet of Medical Things (Trans-
lated: IT-security testing in the Internet of Medical Things). Hagen:
Masterthesis, FernUniversität in Hagen, 08 2022.

[51] CISA. (2025) Contec Health CMS8000 patient monitor (Update A).
Accessed 2025.03.09. Online: https://www.cisa.gov/news-events/ics-
medical-advisories/icsma-25-030-01

[52] A. Taivalsaari and T. Mikkonen, “A roadmap to the programmable
world: Software challenges in the IoT era,” IEEE Software, vol. 34, pp.
72–80, 2017. Online: https://api.semanticscholar.org/CorpusID:6751128

[53] ——, “On the development of IoT systems,” 2018 Third International
Conference on Fog and Mobile Edge Computing (FMEC), pp. 13–19,
2018. Online: https://api.semanticscholar.org/CorpusID:44147446

[54] N. Alhirabi, O. F. Rana, and C. Perera, “Security and Privacy
Requirements for the Internet of Things,” ACM Transactions
on Internet of Things, vol. 2, pp. 1 – 37, 2021. Online:
https://api.semanticscholar.org/CorpusID:231730970

[55] M. Klı́ma et al., “Selected code-quality characteristics and metrics for
Internet of Things systems,” IEEE Access, vol. PP, pp. 1–1, 2022.
Online: https://api.semanticscholar.org/CorpusID:248517759

[56] S. S. Ismail and D. W. Dawoud, “Software development models
for IoT,” 2022 IEEE 12th Annual Computing and Communication
Workshop and Conference (CCWC), pp. 0524–0530, 2022. Online:
https://api.semanticscholar.org/CorpusID:247230583

[57] J. P. Dias and H. S. Ferreira, “State of the software development
life-cycle for the Internet-of-Things,” ArXiv, vol. abs/1811.04159, 2018.
Online: https://api.semanticscholar.org/CorpusID:53282492

[58] X. Larrucea, A. Combelles, J. Favaro, and K. Taneja, “Software
engineering for the Internet of Things,” IEEE Software, vol. 34, no. 1,
pp. 24–28, Jan 2017.

[59] S. Motogna, A. Vescan, and C. Şerban, “Empirical investigation
in embedded systems: Quality attributes in general, maintainability

in particular,” J. Syst. Softw., vol. 201, no. C, Jul. 2023. Online:
https://doi.org/10.1016/j.jss.2023.111678

[60] M.-C. Müller, Konzeption eines ganzheitlichen, die IT- und funktionale
Sicherheit unter berücksichtigenden IoT-Entwicklungsansatzes (Trans-
lated: Concept for a holistic IoT development approach including IT and
functional security). Hagen: Masterthesis, FernUniversität in Hagen,
06 2018.

[61] CVE.org. (2019) Cve-2019-9191. Accessed 2025.03.09. Online:
https://www.cve.org/CVERecord?id=CVE-2019-9191

[62] M. Morgenstern, O. Pursche, and E. Clausing, “Die Sicherheitslage
im IoT-Umfeld: Steigende Gefahrenlage und Sicherheit durch Tests
(translated: The state of security in IoT: Increased risks and security by
testing,” Datenschutz und Datensicherheit - DuD, vol. 45, pp. 102–106,
02 2021.

[63] BSI. (2022) Consumer IoT. Accessed 2025.03.09. Online: https:
//www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/
Standards-und-Zertifizierung/Consumer-IoT/Consumer-IoT.html

[64] F. Deusch and T. Eggendorfer, “Update IT-Sicherheitsrecht 2021/2022
(translated: Update IT-security-law 2021/2022),” K&R, vol. 2022, no. 12,
pp. 794–803, 2022.

[65] ——, “Update IT-Sicherheitsrecht 2022/2023 – Teil 2 (translated: Update
IT-security-law 2022/2023 part 2),” K&R, vol. 2024, no. 4, pp. 242–248,
4 2024.

[66] R. Petrlic. (2025) Remarks on the OLG
Schleswig-Decission (Annoucement). Accessed 2025.03.09.
Online: https://www.linkedin.com/posts/petrlic datenschutz-dsgvo-
cybersicherheit-activity-7294652352156897280-QMjx/

[67] R. Petrlic and J. Zwerschke, “OLG Schleswig: Ende-zu-Ende-
Verschlüsselung ist nach der DSGVO im Geschäftsverkehr regelmäßig
erforderlich (translated: OLG Schleswig: End-to-end encryption is a
requirement in business communications according to gdpr).”

[68] N. Härting. (2025) Gefährdungshaftung aus Art. 32 DSGVO
– OLG Schleswig verirrt sich in die DSGVO und bezeichnet
Papier als “Mittel der Wahl” (translated: Liability based on Art.
32 GDPR - OLG Schleswig getting lost in the GDPR and
suggesting paper as means of choice). Accessed 2025.03.09. Online:
https://www.pingdigital.de/blog/2025/03/03/gefaehrdungshaftung-aus-
art-32-dsgvo-olg-schleswig-verirrt-sich-in-die-dsgvo-und-bezeichnet-
papier-als-mittel-der-wahl/2528

[69] F. Deusch and T. Eggendorfer, “Verschlüsselte Kommunikation im Un-
ternehmensalltag: Nicetohave oder notwendige Compliance? (translated:
Encrypted communications in day-to-day business: Nice-to-have or
required compliance),” K&R, vol. 2018, no. 04, pp. 223–230, 04 2018.

[70] EU. (1993) Council Directive 93/68/EEC of 22 July 1993. Accessed
2025.03.09. Online: https://eur-lex.europa.eu/legal-content/EN/TXT/
HTML/?uri=CELEX:01993L0068-19980812

[71] F. Gronkvis. (2023) What is fake CE marking? Accessed 2025.03.09.
Online: https://www.compliancegate.com/fake-ce-marking/

[72] F. Deusch and T. Eggendorfer, “Penetrationstest bei Auftragsverarbeitung
(translated: Penetration test with processors),” K&R, vol. 2018, no. 04,
pp. 223–230, 04 2018.

ACKNOWLEDGEMENTS

The authors like to thank the reviewers for their valuable and
useful comments that were helpful in improving and clarifying
the paper.

31Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 43 / 136

A Forensic Analysis of GNSS Spoofing Attacks on Autonomous Vehicles

Tobias Reichel∗, Mathias Gerstner †, Leo Schiller†, Andreas Attenberger∗, Rudolf Hackenberg†, Klara Dološ ∗

∗Central Office for Information Technology in the Security Sector
Munich, Germany

e-mail: {tobias.reichel,|andreas.attenberger,|klara.dolos}@zitis.bund.de
†Dept. Informatics and Mathematics, OTH Regensburg

Regensburg, Germany
e-mail: {mathias.gerstner,|leo.schiller,|rudolf.hackenberg}@oth-regensburg.de

Abstract—Global Navigation Satellite Systems (GNSSs) are
essential for modern technology, enabling precise geographic
positioning in aviation, maritime shipping, and automotive sys-
tems. In the future, their role will be even more critical for
autonomous vehicles, which rely on accurate localization for
navigation and decision-making. However, the increasing con-
nectivity of autonomous vehicles exposes them to cyber threats,
including GNSS spoofing attacks, which manipulate location data
to mislead onboard systems. As reliance on GNSS grows, so
does the risk posed by spoofing attacks, making it a critical
security concern. This paper describes GNSS spoofing attacks
on autonomous vehicles, focusing on their detection both during
and after an attack. Furthermore, we analyze data storage
strategies to facilitate effective forensic analysis. We highlight the
importance of position, signal, and camera data, which should
be preserved to ensure a comprehensive forensic investigation.
Finally, we suggest a simulation setup that enables studying which
data could be used for a forensic investigation. Additionally, we
examine established data frameworks and decide whether they
are suitable for detecting GNSS spoofing attacks.

Keywords-GNSS; autonomous driving; forensic; spoofing

I. INTRODUCTION

The ability to determine the geographical location of a
device has become an indispensable technology in modern
society, finding applications across a wide range of domains.
From navigation to resource optimization, location-tracking
systems have transformed how individuals and industries
operate. Modern mobile phones, for example, enable users
to effortlessly navigate unfamiliar locations, access detailed
information about their surroundings, and plan their routes
efficiently. This constant availability of location data has not
only simplified everyday tasks, but has also revolutionized
critical sectors such as transportation, logistics, and emergency
response [1].

In the transportation industry, precise location tracking has
proven to be a cornerstone of operational efficiency and
safety. Maritime vessels can optimize their routes to mini-
mize fuel consumption and travel time, while aircraft rely
on accurate positioning systems to maintain safe distances
between one another and ensure effective coordination in
airspace [2]. For cars, location awareness has made traditional
paper maps and co-driver navigation obsolete. Instead, Global
Navigation Satellite System (GNSS), which encompasses mul-

tiple satellite navigation systems, including Global Positioning
System (GPS), Galileo, Global Navigation Satellite System
(GLONASS) and BeiDou, and related technologies have paved
the way for advanced navigation systems, ultimately fostering
the evolution of autonomous vehicles [3]. Modern cars increas-
ingly incorporate features aligned with Society of Automotive
Engineers (SAE) J3016 autonomy level 3 standards, where the
vehicle can control driving in specific conditions, such as on
highways. However, these systems still require the driver to
take over when requested by the vehicle [4].

Although these advances have brought convenience and
efficiency, they have also introduced critical vulnerabilities,
particularly in the realm of GNSS-reliant systems. Attacks
targeting GNSS receivers in autonomous or semi-autonomous
vehicles can compromise their ability to accurately determine
a location, potentially leading to catastrophic outcomes, such
as collisions or operational failures [5]. These attacks are
typically classified into two main categories: jamming and
spoofing [6].

GNSS jamming and spoofing, while not new phenomena
[7], remain significant threats due to their potential to exploit
the dependency of modern systems on precise location data
[8]. Jamming involves transmitting high-power interference
signals across a wide frequency spectrum, including those used
by navigation satellites, effectively disrupting the receiver’s
ability to interpret legitimate signals [9]. Spoofing, on the
other hand, relies on generating and transmitting counterfeit
satellite signals to deceive GNSS receivers into calculating
an incorrect location. When executed skillfully, spoofing can
mislead even sophisticated systems, causing them to accept
falsified positions as accurate [10][11].

The motivations behind such attacks are diverse, ranging
from malicious intent to sabotage and theft. A conceivable
scenario involves targeting a high-profile individual, such as a
politician on the way to an important event. By deploying
a jamming device, attackers could immobilize the vehicle,
potentially preventing the individual from reaching their desti-
nation on time. In addition, advances in vehicular technology,
such as the Tire Pressure Monitor Sensors (TPMSs), provide
attackers with tools to identify specific vehicles [12]. This
capability allows for highly targeted attacks, where a jamming
or spoofing signal is activated only when the intended vehicle

32Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 44 / 136

passes by.
The increasing reliance on GNSS systems in critical ap-

plications underscores the importance of addressing their
vulnerabilities. Understanding the mechanisms and implica-
tions of GNSS jamming and spoofing is crucial to develop
robust countermeasures that can safeguard the functionality
and safety of location-dependent technologies. Additionally,
forensic analysis is crucial in examining such attacks after the
event, enabling a deeper understanding of methods, impact,
and potential attribution to specific actors.

This paper is divided into four main sections. First, we
discuss the state of the art and related work in Section II. The
fundamentals of GNSS jamming and spoofing are introduced
in Section III, outlining key attack methods and their impact
on autonomous navigation. Next, we propose a simulation
using CARLA [13] and Autoware© [14], replicating realistic
spoofing scenarios to analyze attack dynamics and detection
challenges in Section IV. Finally, we discuss what is the
expected outcome for the simulated data in Section V and
comparing it to some established data frameworks, aiming to
reconstruct spoofing incidents and extract forensic markers.
This methodology is designed to be transferable to real vehicle
data in future research, strengthening GNSS-based navigation
security.

II. RELATED WORK

GNSS spoofing attacks pose a significant threat to au-
tonomous vehicles, as they can manipulate positioning data
and mislead navigation systems. Several of the following stud-
ies have addressed the detection and mitigation of such attacks.
Bhatti and Humphreys demonstrated how GNSS spoofing
could be used to gain hostile control over ships, effectively
altering their navigation routes without immediate detection.
Their study highlights the broader implications of GNSS
deception across various transportation domains, including
autonomous vehicles [15].

Further research has focused on spoofing detection method-
ologies. Dasgupta et al. [16] propose a prediction-based GNSS
spoofing detection approach using Long Short-Term Memory
(LSTM) models to identify anomalies in vehicle position
estimates. Similarly, Liu et al. [17] assesses the impact of
GNSS spoofing on integrated navigation systems by analyzing
error covariance in Kalman filtering. A broader survey of
spoofing techniques and countermeasures is provided in [18],
categorizing current anti-spoofing technologies. In addition,
hybrid sensor fusion methods, as demonstrated in [19], in-
tegrate GNSS with Inertial Measurement Units (IMUs) and
vehicle odometry to detect inconsistencies caused by spoofing
attempts.

Recent work [20] explores stealthy "slow-drift" GNSS
spoofing attacks in urban environments, highlighting the dif-
ficulty of detection when position deviations occur gradually.
To improve resilience, [21] presents a physics-based anomaly
detection framework, GPS-Intrusion Detection System (IDS),
which monitors vehicular behavior to identify spoofing attacks

in real time. Furthermore, Radoš et al. provide a comprehen-
sive survey of GNSS jamming and spoofing detection meth-
ods, discussing the latest advancements, including machine
learning-based approaches for early detection [6].

There are many forensic frameworks [22]–[25] that describe
which data should be stored and how it can be preserved for
further investigations. Additionally, there are many forensic
concepts that define which data is generally relevant for foren-
sic purposes [26]–[28]. Most of them characterize location
data as very relevant. In regard to conventional GNSS spoof-
ing detection, in the frameworks for autonomous vehicles,
comprehensive data is available to cross-validate the GNSS
spoofing. According to Law Enforcement Agencies (LEA), the
Event Data Recorder (EDR) plays a central role. The EDR
typically has triggers from, for example, a crash or airbag
sensor to persist the data. Usually, the last 5 seconds of vehicle
speed, steering angle and others will be saved permanently
[29]. Caused by the fact that this data is not sufficient for
investigations in situations with automated driving functions
[30], the conception of a Data Storage System for Automated
Driving (DSSAD) is given, where, additionally, data from the
driver assistant systems is saved [31]. Data used by an IDS to
detect GNSS spoofing in real-time is also relevant for forensic
analysis [21]. Due to the non-availability of some data in
post-mortem analysis and the difficulty obtaining some data
in vehicles, another approach for GNSS spoofing detection
must be developed, or volatile data, such as signal strength of
satellite signals, must be made available similar to the work
in [32] where camera footage is implemented into the EDR.

III. BACKGROUND AND FUNDAMENTALS

For a forensic analysis, it is important to understand and
document which data points were created and how they were
received. In the case of GNSS, it is important to notice that the
received signals and their properties depend on, e.g., topology,
atmospheric conditions, reflections and it is not feasible to
focus on just one of the factors and determine if an attack has
occurred [33].

A. How GNSS Works: Principles and Mechanisms

Satellite-based positioning relies on trilateration, where a
receiver calculates its location by measuring distances from
navigation satellites [34]. Clock synchronization is crucial,
as any deviation introduces errors, necessitating additional
correction methods.

To determine an accurate three-dimensional position, at
least four satellites are required. Three satellites provide an
intersection of three spheres, which theoretically yields two
possible solutions: one in space and one on Earth’s surface.
The fourth satellite is necessary to account for timing errors
inherent in the receiver’s internal clock, ensuring precise
positioning by correcting discrepancies in signal travel time.
Without this fourth satellite, accurate location determination
would be significantly hindered due to clock inaccuracies.

The distance is derived from the travel time of the signal,
which in turn is calculated by comparing the relevant send and

33Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 45 / 136

receive timestamps. This means that perfectly synchronized
clocks are required to achieve the highest degree of precision.
In practice, it is not unusual that the clocks are not synced
as close to one another as desired. Therefore, a pseudo range
is being introduced into the system, which has a geometric
range and error term. This pseudo-range is based on the clock
error and is simply added. This uncertainty complicates the
equation in such a way that one needs at least four satellites
-the fourth satellite for calculating the time error- to achieve
sufficient position accuracy [34].

Determining one’s precise location is important, but under-
standing the current speed of movement is equally crucial.
This can be achieved through the Doppler shift, as the signal
frequency is proportionally shifted in response to the speed of
the receiver [35].

There exist multiple satellite systems. The first operational
system, known as Navy Navigation Satellite System (NNSS)
or Transit, was decommissioned in 1996. Some older systems,
such as the Russian Tsikada from 1974, are still operational
but are rarely used in modern society due to their limited
positioning accuracy. The oldest widely used system is GPS,
developed by the U.S. Army. It was later made accessible
for civilian use, but without military-grade security features.
Other systems include Global Navigation Satellite System
(GLONASS), the Russian alternative to GPS; Galileo, the
European navigation network; and BeiDou, which is a Chinese
system. These systems operate as down link systems, meaning
they use one-way communication from satellites to Earth. [33]

B. The Concept of GNSS Spoofing

Long believed impossible or hard to achieve, GNSS spoof-
ing became reality in 2008, when Humphreys et al. demon-
strated feasibility under laboratory conditions [36]. Since then,
it has become more widespread and bigger attacks have been
noticed.

GNSS spoofing is realized by transmitting counterfeit sig-
nals that are stronger than the signals from GNSS satellites.
Thus, a receiver discards the true signals and computes an
incorrect position and timing information. The process is
illustrated in Figure 1. There are different possible attacks with
a GNSS spoofer. In this paper, we copy the notation and names
from sprint [37]. The first possible attack is meaconing, where
original GNSS signals are replayed. The attack is successful if
the receiver believes the replayed signal instead of the actual
satellite signal. The second attack is the code carrier attack,
where the GNSS signal is replicated, and the authentic signal
is mimicked before adding power and changing the signal. The
third attack is the navigation data attack, where the code carrier
signal is left intact, but the navigation message will be faked
and therefore a denial of service is achieved. The fourth attack
is application-level spoofing, which is a man-in-the-middle
attack. And the last attack is a multi-method attack, where
any number of aforementioned attacks are combined to create
a complex attack. Not each attack can be applied successfully
on all systems. It depends on the technical capabilities and
vulnerabilities of the receiver and vehicle.

Figure 1. Illustration of GNSS spoofing: The SDR device overpowers
satellite signals, deceiving the GNSS receiver with false location data.

It is often helpful to know which receiver is being used and
in which state it is. The four distinct states, a receiver can
be in, are cold start, warm start, hot or assisted start and re-
acquisition. While in the state of a cold start, the receiver just
starts and has no information. With the warm start, the receiver
has the approximated time and position. And with the hot start,
the time and last position are known [38]. On the other hand,
the reacquisition is not a usual start position, but indicates
whether one or more signals from satellites are lost. This can
occur naturally, for example in a tunnel, or unnaturally by
jamming the frequency of GNSS.

C. Anti Spoofing Mechanisms

There are multiple methods to detect and avoid a GNSS
spoofing signal [39] [40]. The simplest to implement is while
the receiver has a warm or hot start, which involves obtaining
a fix on satellite signals, to verify the location, speed of the
vehicle and received timestamps for plausibility. There should
be no major sudden jumps in each data type. Another simple
solution is to check the authentication of the satellite message.
This is not secure for currently deployed systems, as their
structure is open knowledge. However, other GNSS systems,
which aim to improve security, are in development [41].
By including features from the United States (US) military
GPS, an encrypted authentication is being developed as an
alternative way for positioning like cell ID.

As spoofing attacks pose significant risks to security-
sensitive applications, the development of robust anti-spoofing
mechanisms is crucial. Various anti-spoofing methods have
recently been developed [6][42][43]. Signal processing-based
techniques include correlation peak monitoring, which identi-
fies distortions in the correlation function caused by spoofed
signals, and power-based monitoring, which detects anomalies
in the Carrier-to-Noise Ratio (C/N0) and Automatic Gain
Control (AGC) values that often indicate spoofing attempts [6].
Another approach is to analyze the direction of the arriving
signals, which differentiates spoofed signals from legitimate
GNSS signals due to their different origins [44].

34Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 46 / 136

Data-driven approaches leverage Artificial Intelligence (AI)
and Machine Learning (ML) techniques. Supervised learning
algorithms classify authentic versus spoofed signals, while
deep learning methods extract features from raw signal data
for improved detection [45]. Radio Frequency Fingerprinting
(RFF) can further enhance security by identifying unique sig-
nal characteristics such as phase noise and Doppler shifts[46].

Cryptographic and authentication techniques provide an
additional layer of protection. Navigation Message Authenti-
cation (NMA) integrates digital signatures into GNSS signals,
to ensure data integrity [41].

A promising direction for anti-spoofing involves integrating
multiple detection methods. Hybrid approaches that com-
bine signal processing, machine learning, and cryptographic
authentication enhance robustness against evolving spoofing
threats [6].

D. Digital Automotive Forensics

The digital automotive forensics is a part of the IT-forensics;
especially the post-mortem analysis will be examined here.
This means that live data is unavailable and only the data
which is stored on a device may be used. The Federal Office
for Information Security (BSI) gives a six point plan for a
standard forensic investigation: strategic preparation, opera-
tional preparation, data collection, investigation, data analysis
and documentation [26]. The European Network of Forensic
Science Institutes (ENFSI) also describes first to validate and
test the data with complex examinations [27]. The relevance of
data depends on the specific use case. Those are typically given
by the organization, which is interested in the investigation and
in the technical implementation [47]. For Original Equipment
Manufacturers (OEMs), it will often be sufficient to have
some sort of hint for a technical conclusion. For the LEAs
or insurance provider, where the evidence will be validated
in court, it is much more important to have reliable data
on the sequence of the event and especially information for
attribution. For this, data that can be cross-validated is highly
useful. Therefore, data that originates from just one source
is considered circumstantial evidence. An example is the
National Marine Electronics Association (NMEA) data, which
cannot be validated using another data source. With regard to
the case where all assistant driving data is acquired, it will
be possible to detect the GNSS spoofing by cross-validation.
There is a difference between the forensic analysis of stored
data in the vehicle and real-time spoofing detection, such
as cross-validation of the location provided by a cell tower
and the GNSS sensor. Even with possible cross-validation
methods, such as visual identification, computing everything
in real-time would be challenging. However, in case of an
incident, the data could be retrieved and validated.

This can lead to a significant overhead, especially if the
dataset is large, distributed across multiple locations, difficult
to obtain and unsorted. This is why a forensic framework is
necessary. We will consider the data that would be provided
by the established forensic framework AVGuard [24] and the
legally mandatory or soon to be legally mandatory data storage

systems EDR [29] and DSSAD [31]. The forensic framework
AVGuard will save the following data: camera Frame per Sec-
ond (FPS), Light Detection and Ranging (LiDAR)PointCount,
GPSFreq, cars, pedestrians, trafficLights, roadsigns, laneDe-
tectionConfidence, undefindedObjects, landmarks,Finite State
Machine (FSM), acceleration, brake and steering angle. In the
data point FSM it is for example recorded if the vehicle is
turning or following a lane. The EDR will save the change in
longitudinal velocity, the vehicle speed, the engine throttle, the
service brake, the ignition cycle, the drivers safety belt status,
the status of the frontal airbag warning lamp, the time of the
frontal airbag deployment, if it is a multi event the number of
the event and the time to the previous event [48]. The DSSAD
is still at the conceptual stage. However it is likely that it will
record the state of the Autonomous Driving (AD) system, the
transition demand, the human driver take-overs, the minimum
risk maneuvers and respective data timestamps [49].

IV. OUTLINE OF A GNSS SPOOFING ATTACK SIMULATION

Since we aim to control all simulation parameters, we
propose a simple scenario. For example, an autonomous ve-
hicle is driving on a road with several intersections coming
up. According to the users navigation settings, the vehicle is
supposed to turn at the second intersection. However, due to a
GNSS spoofing attack, the vehicle is being misled into turning
early, at the first intersection, instead. Using a real vehicle
and executing a successful spoofing attack is not feasible with
reasonable resources, and we do not intend to develop a GNSS
spoofing attack for state-of-the-art vehicles. Furthermore, for
testing purposes of GNSS attacks, a license from the gov-
ernment is needed. Another possibility is conducting testing
in a shielded environment. This is feasible but holds some
complications, caused by the fact that there is interference with
the real world. An alternative is testing with a simulator, which
is much easier because the signals can be synchronized in a
more straightforward manner [37]. Since our aim is to detect
such an attack and conduct a successful forensic investigation,
we simply need the resulting digital traces. For this, we expect
that a simulation provides us with sufficient data quality for
now. Ultimately, we plan to validate our developed workflow
on real world data.

The scenario of an autonomous vehicle being misled to an
earlier intersection could be simulated using a combination
of CARLA [13] and Autoware© [14]. The simulated vehicle
in CARLA should be spawned with a camera, two LiDARs
sensors, one in the front and one in the back, a GNSS, IMU,
lane invasion and a collision sensor. This sensor data will
be sent by the Autoware CARLA bridge [50] to Autoware
universe, where it can be processed and the vehicle in CARLA
will be steered by the control commands of Autoware.

To simulate the signal strength of a GNSS signal, one can
produce data in the NMEA 0183 standard [51][52] with help
of gps-sdr-sim-realtime by GitHub user gym-487 [53] (Figure
2). This can be used to produce In-Phase and Quadrature (I/Q)
data for the true position, called good signal, and the wrong
position, called spoofed signal. For spoofing purposes, one has

35Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 47 / 136

to combine the good and the spoofed signal. This should be
done, for example in gnu radio [54], in such way that the
spoofed signal is substantially stronger than the good signal.
One can reinterpret the signals by GNSS-SDR [55], which
provides the full NMEA data. This could be used to see how
many satellites are in sight and how fast the vehicle is.

Figure 2. Simulation of GPS signal data

In order to understand the influence of external factors, this
scenario should be simulated several times with varying input
parameters. The simulation could vary in the following three
different manners. The spoofed signal should be varied in the
speed with which it is redirected from the original signal. The
surroundings should change for easy and hard orientation, and
the speed of the target vehicle should be changed.

These simulations will generate data in the vehicle that
can be used for incident detection by the IDS as well as for
forensics. Importantly, forensics will only be possible if the
data is made available by an augmented EDR, DSSAD, the
IDS or an elaborated forensic information system. In order
to show the relevance of the full GNSS data, it is useful to
imagine two different starting points:

1) One investigation with only the location information
from the GNSS signal available and

2) another investigation with the full information of the
GNSS signal such as signal strength, number of satellites
etc.

The second case 2 has already been described in literature
and in Subsection III-C. There are many plausibility checks,
like changes in speed or C/N0 and AGC values, [6] which
uncover such an attack. This data is required to be available
for a post-mortem analysis as well, especially after an unclear

event. For case 1 it is still possible to compute the GNSS-based
speed and compare it to the data given by the speedometer of
the vehicle. This plausibility check will likely not have the
necessary strength since the GNSS-based speed is calculated
on few locations only. Few data points of the GNSS signal and
calculated speed will cause high uncertainty, e.g., in terms
of wide confidence intervals preventing a test against the
speedometer being positive.

To test this hypothesis, we want to generate data similar
to the data displayed in the Figure 3. This data is calculated
from the GNSS-based speed of the simulated vehicle under
the assumption it is locked onto the spoofer, i.e., it ignores
all data from the satellites. We can extract the speedometer
data from CARLA and can generate the speed data by the
real GNSS location and by the spoofed one. We validated
this approach by implementing the GPS data creation. For
this, we simply used two different GPS sensors, which drifted
10 meters apart over a timespan of 300 seconds. We set the
first as the input for the true location and the second for the
spoofed location and used the gps-sdr-sim-realtime setup as
described and visualized in Figure 2.

Figure 3. Velocity by GNSS and Speedometer

In this first exemplary simulation, one can see that the speed
calculated based on the good GNSS signal also typically lacks
behind the speed measured within the vehicle and does not
reflect fast changes. And, for our study most interestingly,
the spoofed and original GNSS-based speeds are apparently
indistinguishable and therefore not viable for GNSS spoofing
detection.

V. DISCUSSION

We expect from our simulations that the speed given by
GNSS will not significantly differ from the actual speed of
the vehicle, and it is thereby not possible to detect GNSS
spoofing without additional data. However, caused by the
stronger signals that are necessary for GNSS spoofing, in the
simulation data a higher number of stronger satellite signals

36Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 48 / 136

is expected. If the signal strength is recorded, this can aid in
detecting an attack. Additionally, we want to consider other
sources of information beyond GNSS signals for the in-situ
detection as well as the post-mortem analysis of a GNSS
spoofing attack. This allows for more elaborate plausibility
checks. One option could be to identify street intersections
using camera sensor data and AI. This could give a rough
estimate of the location of the vehicle in a given street map.

In the currently established forensic frameworks of AV-
Guard [24] and the data recorders EDR [29], and DSSAD
[31], different types of data are stored. AVGuard [24] will
store enough data to have some possible ways to cross-validate
GNSS signals. One could test if the acceleration, traffic light
and roadsigns could be used for cross-validation. For GPS
related data, only the GPS frequency is saved. We do not
think any spoofing attack could be detected in that way. The
frequency only depends on the band, i.e. one frequency of the
GNSS signal. In the simulation, we focused on just the GPS
L1 band, which is around 1575.42 MHz. This limitation is not
an issue, because the bands are independent. In the future, this
should still be tested.

The EDR [29] will only record data in the case of an
emergency, i.e., when the airbag gets deployed. In regard to an
IDS, like in [21], the data that can be retrieved, is constrained
by what is saved. Typically, one wants at least the route data
or the satellite data for detecting GNSS spoofing. In contrast,
the EDR saves only the vehicle’s speed as only parameter
for GNSS spoofing detection indicated in [56]. Even if the
vehicle crash is caused by a GNSS spoofing attack, in the data
recorded by the EDR this would not be recognizable, because
no route information or other data associated with GNSS is
saved.

Similarly for the DSSAD, which is mandated by United
Nations Economic Commission for Europe (UNECE)s United
Nations (UN)-R157 [31], there will be data saved regarding the
Advanced Driver Assistant Systems (ADASs). The proposal
for a DSSAD is not completed yet, so we can only make
assumptions about which data might be stored. Interesting data
for our use case could be the state of the autonomous driving
mode and if the vehicle detected some malicious attacker,
which requires the vehicle driver to take over. Both the legally
and soon to be legally mandatory data recorders, EDR and
DSSAD, are only going to save data in a 5 to 30 seconds
interval. Additionally, no data that is typically used in GNSS
spoofing detections is recorded.

Looking at the data storage systems, we see the importance
of reliable data. Not all data points are interesting, but in
the case of autonomous vehicles, attacks like GNSS spoofing
should be easily detectable. In the current state this is not the
case and one should record more data associated with GNSS.
This could include NMEA or other localization data. In the
real world there are many ways to identify the location of
a vehicle, for example through cell tower ID [57], 3D maps
[58] or object detection through Radio Detection and Ranging
(Radar) and LiDAR [59].

To conclude which data points are relevant, we will set up

a simulation as described above. The simulation will generate
data that enables us to analyze the impact of a GNSS spoofing
attack on an autonomous vehicle. By evaluating the results, we
aim to determine whether our hypothesis is correct, i.e. that
current data storage in EDR and DSSAD is insufficient. The
findings will help assess whether additional data points are
necessary to improve both forensic analysis of such attacks
and the security measures used against them.

VI. CONCLUSION

By evaluating the EDR, DSSAD and AVGuard, we con-
cluded that they will not provide enough data to identify GNSS
spoofing attacks. Subsequently, a larger forensic framework
needs to be defined, in which sensor data, like images or point
clouds going to be saved for a specific period. To determine
which data is relevant, we proposed a simulation setup. We
plan to expand on this and subsequently publish an analysis
of the simulated data. o validate the data from the simulation,
we plan to conduct real-world driving tests using a GNSS
receiver. These tests will include baseline measurements as
well as scenarios where the receiver is intentionally disrupted.
The disruptions will be introduced by covering the antenna
with metal objects or injecting corrupt signals via a wire
to simulate jamming and spoofing. We expect these tests to
provide deeper insights into the specific navigation parameters
relevant to forensic analysis. We have looked at a very specific
case, where the GNSS spoofing worked every time. This
should be improved in two different ways. First, the case
needs to be closer to the real world, which is more complex
and presents further challenges that need to be addressed.
For further testing, hardware that more closely replicates real-
world complexities should be deployed. On the other hand,
there should be more disruptive factors in the simulation like
different vehicles, more visible input to clarify the position
and different maps, where the angle of the intersections do
not line up perfectly. Additionally, it would be interesting to
investigate anti spoofing mechanisms. If spoofing is prevented,
it would still be possible to detect whether the vehicle has been
attacked.

ACKNOWLEDGMENT

The authors would like to thank Conrad Meyer and Dr.
Tabea Rosenkranz from the Central Office for Information
Technology in the Security Sector (ZITiS). This work was
supported by the project ’Digital Forensics in IT Systems (Di-
ForIT)’, funded by the German Federal Ministry for Economic
Affairs and Climate Action (BMWK).

REFERENCES

[1] Fortune Business Insights, “Globaler Markt für Navigation-
ssatellitensysteme (GNSS) [Global Market for Navigation
Satellite Systems (GNSS)]”, Jan. 27, 2025, [Online]. Avail-
able: https: / /www.fortunebusinessinsights .com/de/globaler-
markt-f-r-navigationssatellitensysteme-gnss–103433 (visited
on 02/14/2025).

37Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 49 / 136

[2] D. Verma, B. Singh, and F. Zahidi, “Management of GPS
Tracking Systems in Transportation”, in Mar. 2024, pp. 251–
263, ISBN: 978-981-97-0514-6. DOI: 10 .1007/978-981-97-
0515-3_11.

[3] M. Maurer, J. C. Gerdes, B. Lenz, and H. Winner,
Eds., Autonomous Driving, en. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, ISBN: 978-3-662-48845-4 978-3-662-
48847-8. DOI: 10.1007/978-3-662-48847-8.

[4] SAE, “SAE Levels of Driving Automation Refined for Clarity
and International Audience”, 2021, [Online]. Available: https:
/ / www . sae . org / site / blog / sae - j3016 - update (visited on
01/28/2025).

[5] M. Shabbir, M. Kamal, Z. Ullah, and M. M. Khan, “Securing
Autonomous Vehicles Against GPS Spoofing Attacks: A Deep
Learning Approach”, IEEE Access, vol. 11, pp. 105 513–
105 526, 2023. DOI: 10.1109/ACCESS.2023.3319514.

[6] K. Rado, M. Brki, and D. Begui, “Recent Advances on
Jamming and Spoofing Detection in GNSS”, Sensors, vol. 24,
no. 13, p. 4210, Jun. 2024, ISSN: 1424-8220. DOI: 10.3390/
s24134210.

[7] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S.
Capkun, “On the Requirements for Successful GPS Spoofing
Attacks”, in Proceedings of the 18th ACM Conference on
Computer and Communications Security, Y. Chen, G. Danezis,
and V. Shmatikov, Eds., New York, NY, USA: ACM, 2011,
pp. 75–86, ISBN: 978-1-4503-0948-6. DOI: 10.1145/2046707.
2046719.

[8] “GNSS Jamming and Spoofing Are a Daily Occurrence”,
[Online]. Available: https://www.eetimes.eu/gnss-jamming-
and-spoofing-are-a-daily-occurrence/ (visited on 02/21/2025).

[9] T. Morong, P. Puricer, and P. Ková, “Study of the GNSS
Jamming in Real Environment”, International Journal of
Electronics and Telecommunications, vol. 65, pp. 65–70, Feb.
2019. DOI: 10.24425/ijet.2019.126284.

[10] M. Ceccato, F. Formaggio, N. Laurenti, and S. Tomasin, “Gen-
eralized Likelihood Ratio Test for GNSS Spoofing Detection
in Devices With IMU”, IEEE Transactions on Information
Forensics and Security, vol. 16, pp. 3496–3509, 2021. DOI:
10.1109/TIFS.2021.3083414.

[11] S. Islam et al., “Impact Analysis of Spoofing on Different-
grade GNSS Receivers”, in 2023 IEEE/ION Position, Location
and Navigation Symposium (PLANS), 2023, pp. 492–499. DOI:
10.1109/PLANS53410.2023.10139934.

[12] C. Smith, The Car Hacker’s Handbook: A Guide for the
Penetration Tester. San Francisco: No Starch Press, 2016,
ISBN: 978-1-59327-770-3.

[13] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
Carla: An Open Urban Driving Simulator, 2017. arXiv: 1711.
03938.

[14] A. Foundation, “Autoware: Open-Source Software for Au-
tonomous Driving”, [Online]. Available: https://github.com/
autowarefoundation/autoware (visited on 01/31/2025).

[15] J. Bhatti and E. Humphreys, “Hostile Control of Ships via
False GPS Signals: Demonstration and Detection”, pp. 51–66,
2016. DOI: https://doi.org/10.1002/navi.183.

[16] S. Dasgupta, M. Rahman, M. Islam, and M. Chowdhury,
“Prediction-Based GNSS Spoofing Attack Detection for Au-
tonomous Vehicles”, 2020, Publisher: arXiv. DOI: 10.48550/
ARXIV.2010.11722.

[17] Y. Liu, S. Li, Q. Fu, and Z. Liu, “Impact Assessment of
GNSS Spoofing Attacks on INS/GNSS Integrated Navigation
System”, Sensors, vol. 18, no. 5, p. 1433, May 2018, ISSN:
1424-8220. DOI: 10.3390/s18051433.

[18] L. Meng, L. Yang, W. Yang, and L. Zhang, “A Survey of GNSS
Spoofing and Anti-Spoofing Technology”, Remote Sensing,
vol. 14, no. 19, p. 4826, 2022, ISSN: 2072-4292. DOI: 10 .
3390/rs14194826.

[19] A. Broumandan and G. Lachapelle, “Spoofing Detection Us-
ing GNSS/INS/Odometer Coupling for Vehicular Navigation”,
Sensors, vol. 18, no. 5, p. 1305, Apr. 2018, ISSN: 1424-8220.
DOI: 10.3390/s18051305.

[20] S. Dasgupta, A. Ahmed, M. Rahman, and T. N. Bandi, Unveil-
ing the Stealthy Threat: Analyzing Slow Drift GPS Spoofing
Attacks for Autonomous Vehicles in Urban Environments and
Enabling the Resilience, Version Number: 1, 2024. DOI: 10.
48550/ARXIV.2401.01394.

[21] M. M. Abrar et al., GPS-IDS: An Anomaly-based GPS Spoof-
ing Attack Detection Framework for Autonomous Vehicles,
Version Number: 2, 2024. DOI: 10.48550/ARXIV.2405.08359.

[22] M. Cebe, E. Erdin, K. Akkaya, H. Aksu, and S. Ulua-
gac, “Block4Forensic: An Integrated Lightweight Blockchain
Framework for Forensics Applications of Connected Vehi-
cles”, IEEE Communications Magazine, vol. 56, no. 10,
pp. 50–57, 2018, ISSN: 0163-6804. DOI: 10 . 1109 /MCOM .
2018.1800137.

[23] S. Lee, W. Choi, H. J. Jo, and D. H. Lee, “T-Box:
A Forensics-Enabled Trusted Automotive Data Recording
Method”, IEEE access : practical innovations, open solutions,
vol. 7, pp. 49 738–49 755, 2019. DOI: 10.1109/ACCESS.2019.
2910865.

[24] M. A. Hoque and R. Hasan, “AVGuard: A Forensic In-
vestigation Framework for Autonomous Vehicles”, in ICC
2021 - IEEE International Conference on Communications,
Piscataway, NJ: IEEE, 2021, pp. 1–6, ISBN: 978-1-7281-7122-
7. DOI: 10.1109/ICC42927.2021.9500652.

[25] M. Hossain, R. Hasan, and S. Zawoad, “Trust-IoV: A Trust-
worthy Forensic Investigation Framework for the Internet of
Vehicles (IoV)”, in 2017 IEEE 2nd International Congress on
Internet of Things, M. Parashar, Ed., Piscataway, NJ: IEEE,
2017, pp. 25–32, ISBN: 978-1-5386-2011-3. DOI: 10 . 1109 /
IEEE.ICIOT.2017.13.

[26] Bundesamt für Sicherheit in der Informationstechnik [Federal
Office for Information Security], Leitfaden IT-Forensik [Guide
to IT-Forensics], 2011.

[27] ENFSI, Best Practice Manual for the Forensic Examination of
Digital Technology, 2015.

[28] L. Ahmeti, K. Dolos, C. Meyer, A. Attenberger, and R.
Hackenberg, “A Forensic Approach to Handle Autonomous
Transportation Incidents within Gaia-X”, CLOUD COMPUT-
ING 2024, p. 51, 2024.

[29] Event Data Recorder Committee, “Event Data Recorder”, DOI:
10.4271/J1698_202303.

[30] K. Böhm, T. Kubjatko, D. Paula, and H.-G. Schweiger, “New
Developments on EDR (Event Data Recorder) for Automated
Vehicles”, Open Engineering, vol. 10, pp. 140–146, Mar. 2020.
DOI: 10.1515/eng-2020-0007.

[31] “UN Regulation No 157 Uniform Provisions Concerning
the Approval of Vehicles with Regards to Automated Lane
Keeping Systems”, Official Journal L 82, no. 82, pp. 75–137,
2021.

[32] K. Böhm, T. Kubjatko, D. Paula, and H.-G. Schweiger, “New
Developments on EDR (Event Data Recorder) for Automated
Vehicles”, Open Engineering, vol. 10, no. 1, pp. 140–146,
2020. DOI: doi:10.1515/eng-2020-0007.

[33] B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle, GNSS:
Global Navigation Satellite Systems - GPS, Glonass, Galileo,
and More. Wien and NewYork: Springer, 2008, ISBN: 978-3-
211-73012-6. DOI: 10.1007/978-3-211-73017-1.

[34] Y. S. Simamora, N. F. Rachmach, M. Y. Rizqon, K. A. Suseno,
and M. N. Hilmi, “Revisiting Trilateration Method Based on
Time-of-Flight Measurements for Navigation”, Jurnal Riset
Multidisiplin dan Inovasi Teknologi, vol. 2, no. 01, pp. 207–
214, Dec. 2023, ISSN: 3024-8582, 3024-9546. DOI: 10.59653/
jimat.v2i01.432.

38Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 50 / 136

[35] A. Angrisano, G. Cappello, S. Gaglione, and C. Gioia, “Ve-
locity Estimation Using Time-Differenced Carrier Phase and
Doppler Shift with Different Grades of Devices: From Smart-
phones to Professional Receivers”, Algorithms, vol. 17, no. 1,
2024, ISSN: 1999-4893. DOI: 10.3390/a17010002.

[36] T. E. Humphreys, B. M. Ledvina, M. L. Psiaki, B. W. O’Han-
lon, and P. M. Kintner, “Assessing the Spoofing Threat: Devel-
opment of a Portable GPS Civilian Spoofer”, in Proceedings
of the 21st International Technical Meeting of the Satellite
Division of The Institute of Navigation (ION GNSS 2008),
2008, pp. 2314–2325.

[37] spirent, “GNSS Signal Spoofing: How to Evaluate the Risks
to Safety-Critical and Liability-Critical Systems”, DWP0014
Issue 1-00, 2020.

[38] R. Goudenove, Understanding GNSS Receiver Start Modes:
Cold, Warm, Hot, Direct, Nov. 2024.

[39] D.-K. Lee et al., “Detection of GNSS Spoofing using NMEA
Messages”, in Proceedings of the European Navigation Con-
ference (ENC), Dresden, Germany, 2020, pp. 1–10.

[40] Y.-S. Lee, J. S. Yeom, and B. C. Jung, “A Novel Array
Antenna-Based GNSS Spoofing Detection and Mitigation
Technique”, in Proceedings of the 2023 IEEE 20th Consumer
Communications & Networking Conference (CCNC), Las Ve-
gas, NV, USA, 8, 2023, pp. 489–492.

[41] I. Fernández-Hernández et al., “A Navigation Message Au-
thentication Proposal for the Galileo Open Service”, NAVIGA-
TION, vol. 63, no. 1, pp. 85–102, 2016. DOI: https://doi.org/
10.1002/navi.125.

[42] L. Meng, L. Yang, W. Yang, and L. Zhang, “A Survey of
GNSS Spoofing and Anti-Spoofing Technology”, en, Remote
Sens. (Basel), vol. 14, no. 19, p. 4826, Sep. 2022.

[43] P. Papadimitratos and A. Jovanovic, “GNSS-based Positioning:
Attacks and Countermeasures”, IEEE MILCOM,

[44] M. C. Esswein and M. L. Psiaki, “Classification of Authen-
tic and Spoofed GNSS Signals Using a Calibrated Antenna
Array”, en, Navigation (Wash.), vol. 72, no. 1, navi.675, Jan.
2025.

[45] P. Borhani-Darian, H. Li, P. Wu, and P. Closas, “Detecting
GNSS Spoofing Using Deep Learning”, en, EURASIP J. Adv.
Signal Process., vol. 2024, no. 1, Jan. 2024.

[46] R. Morales-Ferre, W. Wang, A. Sanz-Abia, and E.-S. Lohan,
“7Identifying GNSS Signals Based on Their Radio Frequency
(RF) Features-A Dataset with GNSS Raw Signals Based on
Roof Antennas and Spectracom Generator”, Data, vol. 2020,

[47] A. Cockburn, Writing Effective Use Cases (The Agile Soft-
ware Development Series), 24. print. Boston: Addison-Wesley,
2012, 270 pp., ISBN: 978-0-201-70225-5.

[48] “EVENT DATA RECORDERS”, 2006, [Online]. Available:
https : / /www.ecfr.gov/current / title -49 /part -563 (visited on
02/14/2025).

[49] “Data Storage System for Automated Driving”, 2019, [On-
line]. Available: https://wiki.unece.org/download/attachments/
87621710 / EDR - DSSAD - 01 - 08 % 20 % 28CLEPA - OICA %
29 % 20DSSAD % 20first % 20draft % 20for % 20discussion %
20based % 20on % 20GRVA - 02 - 21 . pdf ? api = v2 (visited on
02/14/2025).

[50] G. Kaljavesi, T. Kerbl, T. Betz, K. Mitkovskii, and F.
Diermeyer, “Carla-Autoware-Bridge: Facilitating Autonomous
Driving Research with a Unified Framework for Simulation
and Module Development”, 2024.

[51] N. M. E. Association, “NMEA 0183 Version 4.10”, 2013,
[Online]. Available: https://www.nmea.org/nmea-0183.html
(visited on 03/12/2025).

[52] G. Baddeley, “GPS - NMEA Sentence Information”, 2001,
[Online]. Available: https : / / aprs . gids . nl / nmea/ (visited on
01/28/2025).

[53] T. Ebinuma, Gps-sdr-sim-realtime, GitHub-Repository, 2017.
[54] G. R. Project, “Gnu Radio”, [Online]. Available: https://www.

gnuradio.org (visited on 01/29/2025).
[55] C. Fernandez-Prades, C. Aviles, L. Estove, J. Arribas, and

P. Closas, “Design Patterns for GNSS Software Receivers”, in
2010 5th ESA Workshop on Satellite Navigation Technologies
and European Workshop on GNSS Signals and Signal Process-
ing (NAVITEC), Netherlands: IEEE, Dec. 2010, pp. 1–8, ISBN:
978-1-4244-8740-0. DOI: 10.1109/NAVITEC.2010.5707981.

[56] Electronic Code of Federal Regulations (eCFR), “Event Data
Recorders”, 2025, [Online]. Available: https://www.ecfr.gov/
current / title - 49 / subtitle - B / chapter - V / part - 563 (visited on
01/29/2025).

[57] S. Saleh, A. S. El-Wakeel, S. Sorour, and A. Noureldin, “Eval-
uation of 5G Cell Densification for Autonomous Vehicles Po-
sitioning in Urban Settings”, in 2020 International Conference
on Communications, Signal Processing, and their Applications
(ICCSPA), 2021, pp. 1–6. DOI: 10.1109/ICCSPA49915.2021.
9385733.

[58] A. Khoche, M. K. Wozniak, D. Duberg, and P. Jensfelt,
“Semantic 3D Grid Maps for Autonomous Driving”, in 2022
IEEE 25th International Conference on Intelligent Transporta-
tion Systems (ITSC), 2022, pp. 2681–2688. DOI: 10 . 1109 /
ITSC55140.2022.9922537.

[59] J. Koci, N. Jovii, and V. Drndarevi, “Sensors and Sensor
Fusion in Autonomous Vehicles”, in 2018 26th Telecommu-
nications Forum (FOR), Nov. 2018, pp. 420–425. DOI: 10 .
1109/FOR.2018.8612054.

39Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 51 / 136

GFDG: A Genetic Fuzzing Method for the Controller Area Network Protocol

Miguel Stey ∗, Murad Hachani †, Philipp Fuxen †, Julian Graf †, Rudolf Hackenberg†

Department of Computer Science and Mathematics
Ostbayerische Technische Hochschule Regensburg

Regensburg, Deutschland
∗ e-mail: miguel1.stey@st.oth-regensburg.de,

† e-mail: {murad.hachani|philipp.fuxen|julian.graf|rudolf.hackenberg}@oth-regensburg.de

Abstract—Ensuring the security of modern automotive systems
is critical due to their increasing complexity and reliance on inter-
connected Electronic Control Units. The Controller Area Network
still serves as a key communication protocol within these systems,
making it a primary target for security testing. Traditional fuzz
testing approaches for Controller Area Networks often rely on
random or brute-force message generation, not leveraging the
system’s feedback to improve the generation process. This paper
introduces the Genetic Fuzz Data Generator, a fuzzing method that
leverages Genetic Algorithms and side-channel analysis to enhance
Controller Area Network security testing. The Genetic Fuzz Data
Generator dynamically refines its fuzzing strategy by evaluating
system responses through side-channel data, such as processing
unit temperatures and power supply variations. By structuring
Controller Area Network messages as genetic individuals and
applying evolutionary principles—including selection, crossover,
and mutation—the Genetic Fuzz Data Generator systematically
identifies active Controller Area Network IDs and generates
targeted fuzz messages. Experimental validation was conducted
on a real automotive electronic control unit within a controlled
laboratory setup. The first results demonstrated the approach’s
effectiveness, revealing system anomalies, including a Denial of
Service vulnerability that disrupted functions of the investigated
Electronic Control Unit. The findings highlight the potential of
feedback-driven fuzzing for improving the efficiency of black-
box security testing in Controller Area Network-based systems.
Future research could further optimize fitness functions or explore
additional side-channel metrics.

Keywords-Automotive Security; Controller Area Network; Fuzz
Testing; Genetic Algorithm; Side-Channel Analysis.

I. INTRODUCTION

Modern connected vehicle systems rely on increasingly
complex software running on Electronic Control Units (ECUs)
that manage critical functions. Ensuring the security of these
systems is essential, particularly as the attack surface expands
with enhanced connectivity, integration of multiple networked
components, and the growing reliance on cloud-based infras-
tructures for remote diagnostics, software updates, and real-time
data processing. Building upon our previous work [1], where
we developed a side-channel monitoring setup for fuzz testing
automotive systems, we have identified key limitations in tradi-
tional random fuzzing approaches—specifically, the challenge
of efficiently detecting active Controller Area Network (CAN)
IDs. This insight motivated the development of the Genetic
Fuzz Data Generator (GFDG), a method that leverages genetic
algorithms and side-channel feedback to systematically generate
targeted fuzz messages for the CAN protocol.

In conventional fuzz testing, generating a large volume
of random messages often results in a low probability of

triggering a response from the target system. Our prior
research demonstrated that side-channel data could significantly
enhance anomaly detection; however, the approach lacked
the adaptive capability to focus on active CAN IDs. The
GFDG addresses this gap by structuring CAN messages as
genetic individuals—each represented by an 11-bit identifier
and a payload—and refining them through evolutionary oper-
ations, such as selection, crossover, mutation, and migration.
Preliminary results suggest that this feedback-driven process
can enhance testing efficiency and contribute to identifying
subtle vulnerabilities, though further investigation is needed to
quantify its full impact.

Given that this paper focuses on the innovative integration of
genetic algorithms with side-channel analysis to dynamically
target and refine CAN fuzzing, we frame our investigation
around the following research questions:

RQ1: How does the integration of genetic algorithms with
side-channel feedback improve the identification of
active CAN IDs?

RQ2: What are the impacts of evolutionary operations
(selection, crossover, mutation, and migration) on the
performance and adaptability of the fuzzing process?

This paper is organized as follows. Section II reviews related
work, including an analysis of existing fuzzing methodologies
and the limitations observed in our 2023 study. Section III
describes the underlying concepts and the theoretical foundation
of genetic algorithms in the context of fuzz testing. Section
IV details the architecture and implementation of the GFDG.
Section V presents experimental evaluations conducted on a
real automotive ECU, and Section VI discusses the results,
highlighting both improvements and remaining challenges.
Finally, Section VII concludes with directions for future
research.

II. RELATED WORK

Fuzz testing has emerged as a critical technique for identi-
fying vulnerabilities in embedded systems, where conventional
random-input approaches often fall short due to limited
I/O capabilities, constrained resources, and heterogeneous
architectures [2]. These inherent challenges have motivated
the development of feedback-driven methodologies that are
specifically tailored for embedded environments.

A notable advancement in this area is demonstrated by the
Firm-AFL framework, which adapts coverage-guided fuzzing
techniques to the constraints of embedded firmware. Firm-AFL

40Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 52 / 136

shows that by integrating runtime feedback into the fuzzing
loop, one can significantly enhance vulnerability detection
even in resource-limited settings. This insight underlines the
necessity of adapting traditional fuzzing techniques to the
particularities of embedded systems [3].

In parallel, side-channel-assisted fuzzing has recently
emerged as a promising approach. Sperl and Böttinger propose
a method that leverages power consumption measurements
as a feedback mechanism, inferring aspects of the target’s
control flow from power traces. Such side-channel feedback can
mitigate the “black-box” limitations inherent in conventional
fuzz testing of embedded devices [4].

In the automotive domain, securing the CAN is of paramount
importance given its central role in vehicle communications.
In “Fuzzing CAN Packets into Automobiles” [5], Lee et al.
demonstrate that automotive systems are vulnerable even when
attackers inject fuzzed CAN packets without in-depth system
knowledge. Their experiments, which involve sniffing CAN
traffic and subsequently fuzzing packet fields via wireless chan-
nels, reveal that random fuzzing can induce abnormal vehicle
behavior. These findings highlight the inherent insecurity of the
CAN bus and motivate the need for more systematic, feedback-
guided fuzzing strategies in automotive networks.

Building on these insights, our work—the GFDG—applies
the Genetic Algorithms (GAs) and side-channel analysis
to enhance fuzzing techniques for CAN-based systems. By
representing CAN messages as genetic individuals and refining
test inputs through evolutionary operations (selection, crossover,
and mutation), GFDG leverages runtime and side-channel
feedback to focus fuzzing efforts on active CAN IDs. This
hybrid approach not only echoes the advantages demonstrated
by FIRM-AFL in adapting fuzzing to embedded firmware
but also extends the paradigm by integrating the side-channel
feedback techniques proposed by Lee et al. [5] and the empirical
findings from “Fuzzing CAN Packets into Automobiles”.

III. BACKGROUND

This section provides an overview of key concepts relevant
to this work. The CAN protocol is widely used for ECU
communication in automotive systems, making it a critical
target for security testing. Fuzz testing helps uncover vul-
nerabilities by generating test inputs and analyzing system
responses, but traditional methods struggle with identifying
active CAN IDs. GAs offer a potential solution by optimizing
test case generation through system feedback.

A. CAN protocol

CAN is a broadcast-based protocol [6] used extensively in
the automotive sector to connect ECUs. In the CAN protocol,
different types of frames are defined, each serving a specific
purpose. The Standard Frame, for example, is used for the
regular exchange of messages between ECUs [7]. Typical
applications of this frame include transmitting sensor data
or sending commands to other ECUs. The Standard Frame
consists of several fields that facilitate the transmission process,
including the acknowledgment field and the checksum field

[7]. For fuzz testing purposes, the most relevant component
of the frame is the message it contains. A CAN message is
defined by its identifier (ID) and a data field of up to 8 bytes
[6]. The primary function of the CAN ID is to define the
context of the data, while its secondary role involves enabling
message filtering by the nodes on the bus. Since each node
broadcasts messages onto the bus, the CAN ID allows each
node to determine whether the message is intended for it or
should be ignored [8]. In the context of fuzz testing, this means
that an ECU will process only those fuzz messages with IDs
that it is configured to recognize.

B. Fuzz Testing

Fuzz testing is an automated method for testing the security
of information systems. It involves automatically generating
input data for the system under test and monitoring its responses
[9]. A fuzzer typically consists of two core components: a
Fuzz Data Generator (FDG), responsible for producing new
fuzz messages, and an Anomaly Monitor, which analyzes
the system’s reactions to identify potential vulnerabilities
[6]. In the context of fuzz testing via CAN, the primary
challenges are the large space of possible messages and
the fact that an ECU only responds to a subset of CAN
IDs. In a black-box fuzzing scenario, the specific active IDs
of an ECU are unknown to the tester. Therefore, methods
capable of identifying these active IDs are more efficient
than non-feedback-based fuzzing approaches. The literature on
CAN fuzz testing presents various methods, but most rely on
randomly generating messages [10][11] or employing brute-
force techniques [12][13][14]. These approaches do not utilize
system feedback to identify active IDs, resulting in less efficient
fuzzing processes. Consequently, there is a need for more
advanced methods that incorporate system feedback to enhance
the efficiency of CAN fuzz testing.

C. Genetic Algorithm

The GA is a search algorithm that mimics the principle of
evolution from biology to find optimal solutions to problems.
GAs can be considered a family of algorithms that utilize the
same foundational structure but differ in specific strategies
or parameters [15]. To solve a given problem, the first step
involves defining an individual, which represents a potential
solution. Each individual consists of certain genes that encode
potential solutions for the problem. A group of individuals
forms a population, and each iteration of the algorithm
corresponds to a generation of individuals [15]. The GA begins
by generating an initial population that represents Generation 0.
The algorithm then iteratively proceeds through several steps for
each generation. The core step is the evaluation of individuals
based on their fitness, which is a numerical value indicating how
well an individual solves the problem. Analogous to survival
probability in natural evolution, the fitness score determines the
likelihood of an individual contributing to the next generation
of solutions [15]. After evaluating the fitness of all individuals,
a selection process occurs, where certain individuals are chosen
based on their fitness to participate in crossover. Crossover is

41Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 53 / 136

Figure 1. The Process of GFDG.

a genetic operation that combines pairs of selected individuals
to generate new offspring, effectively recombining genes to
explore new solution spaces [16]. Additionally, during the
creation of offspring, mutations can occur. The mutation
is typically implemented through bit-flips of genes based
on a predefined mutation chance. After generating a new
population, the algorithm repeats the cycle of evaluation,
selection, crossover, and mutation until a termination criterion
is met.

IV. THE GENETIC FUZZ DATA GENERATOR

This section describes the concept for the GFDG that is based
on the structure of the GA and uses side-channel information
for the evaluation. For this method, additional changes to the
GA were taken into account for special requirements of the
application to CAN fuzzing. For the GA, it is required to define
an individual for the specific problem that the algorithm is
applied to. The definition of a CAN Individual in the context
of fuzz testing is provided in the following Subsection IV-A.
In Subsection IV-B, the developed algorithm for the GFDG
is described, including the reasoning in chosen strategies for
each operation and all alterations to the standard GA structure.
The modified algorithm for the CAN protocol is illustrated
in Figure 1 and is further elaborated upon in the subsequent
sections.

A. Defining a CAN-Individual

In the GA, each individual in the population represents a
potential solution composed of various genes. In the context
of fuzzing over the CAN protocol, an individual corresponds
to a CAN message. This message must be recognized as a
valid CAN message by the receiver of the target ECU. If

the message violates protocol rules, the receiver node detects
this, resulting in an error frame being sent back to the fuzzer
without further processing of the message. Consequently, not
all fields of the CAN frame are suitable as mutable genes for
the individual. Therefore, the GFDG uses only the message
portion of the CAN frame as the genes of an individual.
From a broader perspective, an individual in the GFDG is
a CAN message consisting of an 11-bit ID and a 64-bit data
field. Other fields, such as data length and checksum, are
recalculated correctly for transmission and are neither mutated
nor inherited. The GA further conceptualizes individuals as
collections of chromosomes composed of genes. Here, the
CAN ID is treated as a chromosome consisting of 11 genes,
each representing one bit of the CAN ID. This chromosome
is mutation-resistant and cannot be split during crossover
because the CAN ID determines whether the control unit
processes the message. One goal of the GFDG is to identify
accepting CAN IDs and test different payload data for these
IDs. Therefore, IDs are not mutated randomly. Instead, the
algorithm strategically generates more or fewer individuals with
specific IDs. The second chromosome of a CAN individual
represents the payload data, which can contain 0 to 64 bits.
Since the payload’s interpretation depends on the CAN ID and
therefore is not predictable in a black-box scenario, each bit of
the payload is treated as an individual gene. In summary, from
the perspective of the GA, an individual in the GFDG consists
of a non-mutable and non-crossable chromosome representing
an 11-bit number and a standard chromosome with up to 64
genes.

B. GFDG Algorithm

The GFDG applies GAs to refine fuzz testing for CAN-
based systems. This section details the algorithm’s key steps,
including initialization, message evaluation, selection, crossover,
mutation, and migration. By leveraging system feedback, the
GFDG aims to optimize test case generation and improve
fuzzing efficiency.

1) Initialization: At the start of the fuzzing process, an
initial generation must be created. This initial population is
particularly important for the GFDG algorithm as it largely
determines the IDs of the first generations. Since IDs do not
change when creating new generations and only a few new
IDs are introduced through migration, the initial population
significantly impacts the performance of a run. In many cases,
the standard strategy for GA is to initialize the first generation
randomly. However, in this application, random initialization
has a low probability of generating IDs in the first generation
that trigger a response from the system. If no active IDs are
generated, the run’s performance depends on how many active
IDs are introduced through migration, which constitutes only a
small portion of each generation. To address this limitation, a
different approach was developed. This method leverages side-
channel feedback through the fitness function to actively select
the initial population. In the first step, a multitude of CAN
messages to the required amount are randomly generated and
sent as fuzzing inputs to the target system. As in the normal

42Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 54 / 136

fuzzing process of GFDG, side-channel data is collected, and
a fitness value is calculated for each message. The messages
with the highest fitness values are then selected to form the first
generation. By prioritizing messages with high fitness scores,
this method aims to increase the likelihood of including active
CAN IDs in the initial population, which can influence the
performance of the GFDG algorithm.

2) Sending and Measuring: After each generation, the main
steps of the fuzzing process are performed for each individual.
First, the individual is sent to the system under test. Then,
the side-channel data of the ECU is measured to evaluate the
individual. In the test environment used to evaluate this method,
the available side-channels included the temperature of the
ECU’s three processing units—namely, the Central Processing
Unit (CPU), Graphics Processing Unit (GPU), and Automotive
Microcontroller (AMC)—as well as the power supply of the
associated display of the tested Infotainment System.

3) Evaluation: After an individual is sent to the system
under test and the side-channel measurements are collected,
these data are used to evaluate the individual. The eval-
uation is performed similarly to traditional GA, using a
fitness function. In the context of optimization problems,
the fitness value indicates how well an individual solves
the problem. In this application of fuzz testing, the fitness
function measures if and to what extent the system reacts to
a sent fuzz message. It is important to note that the specific
fitness function heavily depends on the system being tested,
the chosen side-channels, and their behavior. Therefore, a
single, fixed fitness function is not presented here. Instead,
the process of identifying an appropriate fitness function
for the investigated system is described. When applying
this method to other CAN-based systems, it is necessary to
analyze the available side-channels to determine which changes
indicate a system reaction. This analysis informs the formu-
lation of a suitable fitness function for the specific system.
This method was tested on an ECU controlling the infotainment
system of a car. As previously mentioned, the selected side-
channels in this setup were the temperatures of the ECU’s
processing units (CPU, GPU, and AMC) and the power supply
of the connected display. The rationale for these side-channels
is the assumption that if a fuzz message is processed by an
otherwise isolated ECU, the processing units calculating should
cause temperature increases. This is especially relevant when
the infotainment system displays information, as any change
on the display triggered by a fuzz message would require
the GPU to render new images, leading to a measurable
increase in its temperature. Similarly, the power supply of
the display was monitored because potential system reactions,
such as turning off the display or adjusting its brightness, would
cause detectable changes in power, consumption. Therefore,
the fitness function was designed to yield higher scores when
the temperature of one or more processing units increased after
sending a message or changes in power supply were measured.

4) Selection: After each individual of the current gener-
ation has been evaluated, parents for the next generation
are selected using Ranked Selection. This method assigns

each individual a fixed selection probability based on its
rank within the generation according to its fitness score [17].
Ranked Selection was chosen because it ensures that the best-
performing individuals have a significantly higher chance of
being selected compared to others. This approach is based
on the assumption that the fitness function accurately reflects
the system’s reactions. Consequently, GFDG can prioritize
generating more fuzz messages from individuals that triggered
the strongest reactions, increasing the likelihood of uncovering
system vulnerabilities.

5) Crossover and Mutation: After the parent individuals
for the next generation are selected, they are used to create
the majority of the next generation through crossover and
mutation. This process follows the standard GA approach, using
single-point crossover for the payload genes of a message.
The resulting offspring are then mutated using a bit-wise
mutation strategy, where each bit of the payload is checked for
mutation probability, and bit-flips are performed accordingly.
As previously mentioned, the CAN ID is not affected by
mutation, and its bits are not split by crossover. Instead, the
CAN ID is linked to the first gene of the payload. Consequently,
a child individual inherits the ID from the parent from which it
received its first payload bit. Therefore, this design additionally
ensures that the distribution of CAN IDs among the offspring
mirrors the distribution present in the parent population.

6) Migration: As previously explained, altering the CAN
IDs of parents is avoided because it would most likely result
in CAN IDs that the ECU does not respond to. However, this
creates a challenge for the GFDG approach, as it restricts
each run to generating messages only with the IDs present in
the initial generation. The likelihood of the first generation
containing at least one active CAN ID is low, especially with
small population sizes. This could lead to multiple runs of
the GFDG without producing a single CAN message that
triggers a response from the system under test. To overcome
this limitation, the GFDG introduces an additional step to
the standard GA to introduce new IDs into the population
without losing the progress made in previous steps. This step
is called Migration. During migration, a small portion of the
next generation is created using new random individuals. This
approach ensures a steady flow of new IDs and payload genes
within a single run of the GFDG. Consequently, the algorithm
can explore more CAN IDs in one run, increasing overall
efficiency.

7) Termination Criteria: Every GA requires a termination
criterion, which is checked after each generation. The common
approach is to set a maximum number of iterations, which the
GFDG also employs. Tests of the GFDG evaluated different
iteration limits, identifying 50 to 100 generations as the
optimal range. A lower limit prevents the algorithm from fully
leveraging its evolutionary process, while a higher limit leads
to a rapid increase in duplicate messages. Notably, this effect
correlates with mutation probability—higher mutation rates
can reduce the likelihood of duplicate messages within a single
run, potentially allowing for a greater number of generations.

43Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 55 / 136

Algorithm 1 GFDG Algorithm
1: Input: POP_SIZE, MAX_ITER, CROSSOVER_RATE,

MUTATION_RATE, MIGRATION_COUNT
2:
3: population← initialize_population()
4: generation← 0
5: while generation < MAX_ITER do
6: for each individual in population do
7: individual.fitness←

send_and_evaluate(individual)
8: end for
9: if termination_criteria_met(population) then

10: break
11: end if
12: mating_pool← ranked_selection(population)
13: new_population← {}
14: while |new_population| <

POP_SIZE −MGRATION_COUNT do
15: (parent1, parent2)← pick_two(mating_pool)
16: (child1, child2)←

crossover_and_mutate(parent1, parent2,
CROSSOV ER_RATE,MUTATION_RATE)

17:
new_population← new_population ∪ {child1, child2}

18: end while
19: for i← 1 to MIGRATION_COUNT do
20: new_population←

new_population ∪ generate_CAN_message()
21: end for
22: population← new_population
23: generation← generation+ 1
24: end while

V. EXPERIMENTS

The previously described GFDG algorithm was implemented
and tested on an ECU in a laboratory setup to evaluate its
performance. The tested system is an automotive ECU used
in certain 2020 vehicle models to control various cockpit
functions. Testing focused on the ECU’s dedicated CAN
channel for controlling the Infotainment System. Temperature
sensors and an oscilloscope were used to monitor the previously
mentioned side-channel signals. Before fuzz testing, multiple
baseline measurements of the ECU were conducted to establish
reference data representing its normal operating state. This
baseline was then used for comparison with measurements
taken during fuzz testing. For evaluation, multiple fuzz testing
runs with the GFDG were performed under different ECU
states, including while Navigation or Radio functions were
active and while a mobile device was connected to the Info-
tainment System via Bluetooth. Each test run was performed
with a population size of 16, a migration count of 4, and a
maximum iteration count of 50. After each test run, the ECU
was properly shut down, and a waiting period was observed
to allow the processing units to cool. After each test, the

GFDG log file—containing all sent CAN messages, associated
fitness scores, and timestamps—was documented along with
the side-channel measurements. Additionally, the display of
the Infotainment System was manually monitored, and any
visual effects were recorded.

VI. RESULTS

After the experiments, the initial analysis compared side-
channel measurements with and without fuzzing to identify
anomalies. Without fuzz testing, the temperature of all three pro-
cessing units remained stable within a 0.1 to 0.2°C range across
all tests, and the display’s power supply remained consistent.
During fuzz testing with the GFDG, multiple anomalies were
observed. These included temperature increases of 1 to 2°C
in one or more processing units in a short period, which were
reproducible by resending the same fuzz messages. Notably,
temperature spikes were most pronounced when fuzz messages
triggered visual changes on the display, confirming the hy-
pothesis that rendering new images requires GPU processing,
leading to increased temperature. Additionally, certain CAN
messages generated by the GFDG caused a temporary decrease
in display brightness, resulting in a measurable voltage drop of
at least 50 percent. Some fuzz messages also led to short-term
temperature spikes in the AMC. However, no visible changes
in the user interface were observed for these cases, making it
unclear what system behavior they triggered. Overall, multiple
CAN messages were identified that caused observable changes
in the system under test. Several messages with different CAN
IDs triggered notifications on the display, including warning
and error messages. Analyzing the GFDG log file confirmed
that all fuzz messages with a measurable system impact
were correctly identified by the fitness function. Furthermore,
multiple child messages—generated from the same parent ID
but with modified payloads—elicited distinct system reactions.
A notable case involved a message generated through the
migration step, which triggered a "Goodbye" message on the
display. The GFDG detected this message as active due to
a significant GPU temperature increase and selected it as a
parent for further genetic operations. The resulting three child
messages with the same ID exhibited different behaviors: two
had no visible effect and were confirmed inactive through side-
channel measurements, while the third caused the system to
reboot the Bluetooth function and display an error message.
Further testing revealed that sending this message twice in
quick succession caused multiple infotainment functionalities
to crash. Specifically, the Media, Radio, and Telephone menus
became inaccessible through the user interface. Although the
Bluetooth settings menu remained available, users could no
longer modify any settings, turn Bluetooth on/off, or connect
new devices to the vehicle’s Infotainment System. This behavior
was classified as a Denial of Service (DoS) vulnerability.

VII. CONCLUSION AND FUTURE WORK

This research introduced the GFDG, a fuzzing approach
for the CAN protocol that leverages GAs with the goal of
enhancing testing efficiency. Unlike conventional CAN fuzzing

44Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 56 / 136

methods, the GFDG incorporates system feedback through
side-channel analysis, enabling the identification of active
CAN IDs and the generation of targeted fuzz messages. By
structuring CAN messages as genetic individuals and applying
evolutionary operations, such as selection, crossover, and
mutation, the GFDG dynamically refines its test cases to
increase the likelihood of triggering system responses and
uncovering vulnerabilities. Experimental results suggest that
this approach is capable of identifying system anomalies within
an automotive ECU, though further analysis is needed to fully
assess its effectiveness. Notable findings included measurable
increases in processing unit temperatures and power supply
variations, confirming the correlation between system reactions
and observable changes in side-channels. Furthermore, the
GFDG successfully uncovered a DoS vulnerability capable
of disrupting multiple Infotainment functions, highlighting its
potential for real-world security assessments. However, this
method has certain limitations. The performance of the GFDG
heavily depends on the accuracy of the defined fitness function,
which, in turn, relies on the availability and quality of side-
channel data for recognizing system reactions. Additionally,
parameters, such as mutation probability, population size, and
migration proportion influence its overall effectiveness. These
aspects require further research to refine this method.

Despite these limitations, the experimental results indicate
that integrating genetic algorithms with side-channel feedback
can enhance the identification of active CAN IDs (RQ1) and
can contribute to the efficiency and accuracy of vulnerability
detection in automotive ECUs. Additionally, the application of
evolutionary operations—selection, crossover, mutation, and
migration—appeared to help refine fuzz messages, potentially
enhancing the adaptability of the fuzzing process (RQ2), though
further analysis is required to quantify this effect.

REFERENCES

[1] P. Fuxen, M. Hachani, J. Schmidt, P. Zaumseil, and R.
Hackenberg, “Side channel monitoring for fuzz testing of future
mobility systems”, CLOUD COMPUTING 2023, p. 24, 2023.

[2] J. Yun, F. Rustamov, J. Kim, and Y. Shin, “Fuzzing of embedded
systems: A survey”, vol. 55, no. 7, 2022, ISSN: 0360-0300.
DOI: 10.1145/3538644.

[3] Y. Zheng et al., “FIRM-AFL: High-throughput greybox fuzzing
of IoT firmware via augmented process emulation”, presented
at the 28th USENIX Security Symposium (USENIX Security
19), 2019, pp. 1099–1114, ISBN: 978-1-939133-06-9.

[4] P. Sperl and K. Böttinger, “Side-channel aware fuzzing”, in
Computer Security–ESORICS 2019: 24th European Symposium
on Research in Computer Security, Luxembourg, September 23–
27, 2019, Proceedings, Part I 24, Springer, 2019, pp. 259–278.

[5] H. Lee, K. Choi, K. Chung, J. Kim, and K. Yim, “Fuzzing
can packets into automobiles”, in 2015 IEEE 29th Interna-
tional Conference on Advanced Information Networking and
Applications, IEEE, 2015, pp. 817–821.

[6] H. Zhang, K. Huang, J. Wang, and Z. Liu, “CAN-FT: A fuzz
testing method for automotive controller area network bus”,
in 2021 International Conference on Computer Information
Science and Artificial Intelligence (CISAI), Sep. 2021, pp. 225–
231. DOI: 10.1109/CISAI54367.2021.00050.

[7] “Iso 11898-1:2024 road vehicles — controller area network”,
International Organization for Standardization, Standard, ver-
sion 3, May 2024.

[8] F. Pölzlbauer, R. I. Davis, and I. Bate, “Analysis and optimiza-
tion of message acceptance filter configurations for controller
area network (CAN)”, in Proceedings of the 25th International
Conference on Real-Time Networks and Systems, ser. RTNS ’17,
New York, NY, USA: Association for Computing Machinery,
Oct. 4, 2017, pp. 247–256, ISBN: 978-1-4503-5286-4. DOI:
10.1145/3139258.3139266.

[9] A. Singhal, T. Winograd, and K. A. Scarfone, “Guide to secure
web services”, National Institute of Standards and Technology,
Gaithersburg, MD, NIST SP 800-95, 2007, Edition: 0, NIST
SP 800–95. DOI: 10.6028/NIST.SP.800-95.

[10] D. S. Fowler, J. Bryans, S. A. Shaikh, and P. Wooderson, “Fuzz
testing for automotive cyber-security”, in 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops (DSN-W), ISSN: 2325-6664, Jun.
2018, pp. 239–246. DOI: 10.1109/DSN-W.2018.00070.

[11] T. Werquin, R. Hubrechtsen, A. Thangarajan, F. Piessens, and
J. T. Mühlberg, “Automated fuzzing of automotive control
units”, in 2019 International Workshop on Secure Internet of
Things (SIOT), ISSN: 2690-8557, Sep. 2019, pp. 1–8. DOI:
10.1109/SIOT48044.2019.9637090.

[12] A. Anistoroaei, B. Groza, P.-Ş. Murvay, and H. Gurban,
“Security analysis of vehicle instrument clusters by automatic
fuzzing and image acquisition”, in 2022 IEEE International
Conference on Automation, Quality and Testing, Robotics
(AQTR), May 2022, pp. 1–6. DOI: 10 . 1109 / AQTR55203 .
2022.9802024.

[13] D. S. Fowler, J. Bryans, M. Cheah, P. Wooderson, and S. A.
Shaikh, “A method for constructing automotive cybersecurity
tests, a CAN fuzz testing example”, in 2019 IEEE 19th
International Conference on Software Quality, Reliability and
Security Companion (QRS-C), Jul. 2019, pp. 1–8. DOI: 10.
1109/QRS-C.2019.00015.

[14] M. Li, Y. Wang, H. Zhang, and J. Wang, “PRFT: A fuzz
testing method for tire pressure monitoring system based on
protocol reverse”, in 2023 2nd International Conference on
Big Data, Information and Computer Network (BDICN), Jan.
2023, pp. 248–252. DOI: 10.1109/BDICN58493.2023.00058.

[15] S.-J. Wu and P.-T. Chow, “Steady-state genetic algorithms
for discrete optimization of trusses”, Computers & Structures,
vol. 56, no. 6, pp. 979–991, Sep. 17, 1995, ISSN: 0045-7949.
DOI: 10.1016/0045-7949(94)00551-D.

[16] A. Lambora, K. Gupta, and K. Chopra, “Genetic algorithm- a
literature review”, in 2019 International Conference on Machine
Learning, Big Data, Cloud and Parallel Computing (COMIT-
Con), Feb. 2019, pp. 380–384. DOI: 10.1109/COMITCon.2019.
8862255.

[17] A. Shukla, H. M. Pandey, and D. Mehrotra, “Comparative
review of selection techniques in genetic algorithm”, in 2015
International Conference on Futuristic Trends on Computa-
tional Analysis and Knowledge Management (ABLAZE), Feb.
2015, pp. 515–519. DOI: 10.1109/ABLAZE.2015.7154916.

45Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 57 / 136

Intrusion Detection using Peer-to-Peer Distributed Context-Information for Electric
Vehicle Supply Equipment

Julian Graf , Christoph Moser , Philipp Fuxen , Rudolf Hackenberg
Faculty of Computer Science and Mathematics

Ostbayerische Technische Hochschule Regensburg
Regensburg, Germany

e-mail: {julian.graf|christoph.moser|philipp.fuxen|rudolf.hackenberg}@oth-regensburg.de

Abstract—In this paper, we present a decentralized approach
to securing charging infrastructure in the private and semi-
public sector. The goal is strengthening the resilience of charging
infrastructure through enhanced security mechanisms based on
sharing context information. Therefore, an architecture was
developed that combines concepts of data acquisition, information
exchange and analysis methods to efficiently monitor Electric
Vehicle Supply Equipment systems. The "Resiliente und Sichere
Ladeinfrastruktur" research project architecture connects the
interfaces between charging hardware, a highly scalable Peer-to-
Peer cybersecurity mesh network and the static and Artificial
Intelligence-supported analysis processes on the top layer. The
most important tasks across the domains of detection, reaction,
attribution and prevention are taken into account. A large
information space, which aggregates the content of the individual
domains, is created and made available in the network. The
context data of the information space is obtained from the
individual peers and used for the analysis. Context-based data
regarding loading procedures, network communication parame-
ters, system loads, Open Charge Point Protocol parameters, and
other domain data clusters are recorded. The extended local and
central analysis use the context information for monitoring and
attack classification. The context information is transmitted via
an InterPlanetary File System-based Peer-to-Peer mesh network.

Keywords-EVSE; Charging Station; Security; Peer-to-Peer; P2P;
Context Information; Resilience; Attack Detection; IDS; Security-
Architecture.

I. INTRODUCTION

The increasing uptake of Electric Vehicles (EVs) is a crucial
step towards sustainable mobility. Governments and organiza-
tions around the world are setting ambitious targets to reduce
CO2 emissions, with the development of a nationwide charg-
ing infrastructure playing a central role [1]. A reliable, safe
and efficient charging infrastructure is crucial to increase the
adoption of electric vehicles and enable a sustainable transition
to transportation. However, while charging infrastructure is
growing exponentially, the security of these systems often falls
short of requirements. Cyberattacks on charging stations can
not only affect individual users but, in the worst case, desta-
bilize the entire energy grid and cause significant economic
damage [2]. The charging infrastructure for electric vehicles
is complex and consists of a large number of components,
including hardware, software and communication interfaces.
This heterogeneity opens up numerous attack surfaces for
cyber threats. Existing studies have already revealed serious
security vulnerabilities in current systems. For example, the

widely used Open Charge Point Protocol (OCPP) 1.6 has
significant vulnerabilities that allow attackers to carry out Man
in the Middle (MitM) attacks or energy theft [3]. Other threats
include Denial of Service (DoS) attacks, inadequately pro-
tected interfaces and the risk of malware spreading via com-
promised charging stations [4][5]. Despite the existing security
measures, a fundamental problem remains: Current protection
mechanisms are mostly centralized and reactive, which leaves
them vulnerable to coordinated attacks and makes it difficult
to efficiently detect and defend against threats. To minimize
security risks, we propose a new type of decentralized archi-
tecture with the ReSiLENT approach. An additional detection
unit is integrated into an Electric Vehicle Supply Equipment
(EVSE), which gathers local data, conducts a series of analysis
on behalf of intrusion detection and connects the EVSE to the
cybersecurity mesh (a network of many individual EVSE).
This allows the charging stations to communicate securely
with each other and exchange contextual information. This
distributed structure enables faster detection of anomalies and
attacks and improves the resilience of the overall system. By
integrating a cybersecurity mesh based on the principles of
the cybersecurity domains of prevention, detection, reaction
and attribution, a scalable and economically viable security
solution for EVSE is created. As this paper introduces the
concept of the ReSiLENT approach, the following research
questions focus on its theoretical foundations and possible
implications:

• RQ1: How can a decentralized peer-to-peer architecture
effectively contribute to the detection and prevention of
cyberattacks on EVSE?

• RQ2: Can contextual information be used to improve the
prevention, detection, response and attribution of attacks
on the charging infrastructure?

Following this introduction, Section II analyzes the relevant
literature and existing work on security problems in the
charging infrastructure. Section III describes the current threat
situation for EVSE and highlights specific attack scenarios.
Section IV provides an overview of the ReSiLENT system
and its architecture. The details of the peer-to-peer network
technology and its security advantages are discussed in Sec-
tion V. Section VI presents the Cybersecurity Mesh, which
enables efficient threat detection and defense. Section VII
describes the ReSiLENT cybersecurity stack with its four core

46Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 58 / 136

areas: Detection, Reaction, Prevention and Attribution. Finally,
Section VIII discusses further research questions and future
challenges.

II. RELATED WORK

The security of EVSE is an increasingly relevant area
of research as the number of connected charging stations
continues to grow and potential attack vectors increase. Ex-
isting work is investigating various security-critical aspects,
from vulnerabilities in communication and authentication to
approaches for detecting and preventing cyberattacks. This
section presents relevant studies that deal with security risks,
attack detection and possible countermeasures in the charging
infrastructure. It then discusses the extent to which existing
solutions are sufficient and what research gaps still exist.

The security of EVSE is increasingly becoming a focus
of research, as networked charging stations offer new op-
portunities for attacks. Existing work identifies vulnerabili-
ties in communication, authentication and hardware. Skarga-
Bandurova et al. [6] highlight various security vulnerabilities
in charging stations, including lack of authentication for API
access, insecure firmware updates and insufficiently protected
data, and recommend secure communication, encryption and
intrusion detection systems as countermeasures. Gottumukkala
et al. [4] analyze vulnerabilities in the cyber-physical security
of charging stations and identify attacks on network interfaces
such as Bluetooth, Wi-Fi and wired connections, including
spoofing, MitM, DoS and SQL injection. In addition, they
show that physical access enables attacks on chip components,
side-channel attacks and tampering. As a countermeasure, they
propose a secure system design that includes a comprehen-
sive assessment of threat vectors in hardware and software.
Gottumukkala et al. [4] expand their recommendations on
hardware and software security by focusing on the elimination
of existing vulnerabilities and the preventive development of
secure systems. Pratt et al. [5] address the growing threat to
electric vehicle charging infrastructure and develop security
paradigms to defend against potential cyberattacks. The large
number of components, the heterogeneity of the systems and
the decentralized distribution of critical infrastructures pose a
particular security challenge. Although Pratt et al. [5] empha-
size the independence of the various players in the charging
system, they also point out the need for a coordinated exchange
of information to defend against threats. They also emphasize
the importance of continuous monitoring and diagnostics of
all system components, focusing in particular on the role
of EVSE monitoring from the provider’s perspective. They
classify key data such as billing information, location data
and charging performance managed by a central entity. They
also discuss mechanisms for checking the consistency between
the physical and digital state of the charging infrastructure in
order to detect deviations at an early stage. In the event of
an attack, the response strategy should take into account both
the security requirements of the affected component and the
potential impact. Particularly critical incidents, such as attacks
on the power grid, require differentiated measures compared

to targeted attacks on individual units. Security is restored
primarily through regular software and firmware updates of
the vehicle and EVSE systems.

Securing charging infrastructure requires not only address-
ing existing vulnerabilities but also effective attack detection.
Various research efforts have explored different methods to en-
hance security in this domain. While the integration of multi-
layered intrusion detection system architectures [7] enables
the analysis and evaluation of several AI-supported procedures
by providing large information spaces and thus optimizes the
results. Buedi et al. [8] contribute a multidimensional dataset
containing charging information and its evaluation. Their study
focuses on EVSE in both charging and idle states, analyzing
power consumption, network traffic, and host activities to
support anomaly detection. Similarly, Kim et al. [9] provide a
DoS-specific dataset that includes four attack scenarios related
to vehicle authentication. Another approach is introduced by
Purohit and Govindarasu [10], who utilize data collected
from charging infrastructure entities. Instead of sharing raw
data, their method relies on exchanging model parameters,
enabling a federated learning framework for enhanced security.
Additionally, Mavikumbure et al. [11] propose Cy-Phy ADS,
an anomaly detection framework that integrates CAN data
with machine learning to identify potential threats in charging
systems. While many studies focus on anomaly detection
and machine learning-based models for attack identification,
our approach takes a broader, more comprehensive security
perspective on EVSE. While existing work mainly focuses
on specific security domains, Fuxen et al. [12][13] focus on
a decentralized, graph-based architecture for Cyber Threat
Intellgence (CTI) analysis and privacy-preserving threat in-
telligence sharing. The ReSiLENT approach, on the other
hand, deals specifically with the security-critical EVSE. The
challenges in this area differ from those of classic IT systems,
as EVSE offers not only digital but also physical attack
vectors that can have a direct impact on the power grid
and transportation infrastructure. While Fuxen et al. [12][13]
focus on cross-organizational threat detection and networking,
our focus is on the local, decentralized security architecture
of charging stations and their resilience against coordinated
attacks. Our approach integrates specific protection measures
for EVSE, including secure communication between charging
points, protection in the OCPP, and attack detection based on
real EVSE usage data. In summary, the security of EVSE is
becoming an increasingly important area of research as the
number of connected charging stations rises, creating new
attack vectors. Various studies have identified vulnerabilities
in communication, authentication, and hardware, proposing
countermeasures such as secure communication, encryption,
and intrusion detection systems. While existing solutions pro-
vide valuable insights, there is still room for improvement,
particularly in the development of secure, decentralized sys-
tems, as most solutions currently rely on centralized sys-
tems. Furthermore, existing research tends to focus on either
detection or prevention of cyberattacks instead of taking a
comprehensive approach including the domains of reaction and

47Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 59 / 136

Figure 1. Electric Vehicle Infrastructure Landscape [15].

attribution.

III. EVSE THREAT LANDSCAPE

EVSE faces numerous cybersecurity vulnerabilities that
could compromise the integrity of the charging infrastruc-
ture and the power grids. These vulnerabilities include weak
authentication mechanisms, unsecured communications, and
potential exploits in connected systems [14]. Attacks on EVSE
could lead to consequences ranging from localized disrup-
tions to long-term national impacts [15]. The cyber-physical
nature of EVSE systems, involving sensing, communication,
and computational components, makes them susceptible to
various threats [4]. As Electric Vehicle (EV) adoption grows,
securing the charging infrastructure becomes crucial to prevent
potential political, social, and financial consequences [16].
To address these challenges, researchers emphasize the need
for comprehensive cybersecurity approaches, including threat
modeling, risk assessments, and the development of effective
countermeasures [14], [15]. Implementing Information Tech-
nology (IT) and Operational Technology (OT) cybersecurity
best practices can help mitigate these risks and ensure the
resilience of EVSE systems [15]. Before delving into the
concepts and ideas that underlie the ReSiLENT project, it
is essential to first establish the necessity of these efforts.
Therefore, taking a look at current threats concerning Electric
Vehicle Infrastructure (EVI) and especially EVSE.

ReSiLENT identifies attack vectors at a more granular level.
As shown in Figure 1 designations 1-6, the interfaces EVI (ev-
to-evse) via powerline communication, authentication (AT) via
RFID / NFC, Bluetooth, EVSE Internet Access, SmartMeter
Gateway (SMGw) and the maintenance terminal alone and
in combination are identified as possible entry points. Effec-
tively addressing each attack vector requires the identification,
monitoring, and integration of countermeasures, ensuring an
understanding of potential threats and the deployment of
dedicated solutions to safeguard the resilience of the EVSE
ecosystem.

IV. OVERVIEW OF THE RESILENT SYSTEM

Given the current security landscape, there is a clear need to
enhance EVSE cybersecurity. ReSiLENT introduces a novel
architecture leveraging the distribution of cybersecurity in-
formation and assets across various actors and components
within a connected charging infrastructure using a Peer-to-
Peer (P2P) mesh network. Covering the domains detection,
reaction, prevention, and attribution, the goal is to create
a scalable and flexible security ecosystem for various e-
mobility market segments, including private, commercial, and
public high-power charging. Furthermore, our approach aims
to ensure the economic viability of cybersecurity measures in
low-cost charging infrastructure through automation.

Figure 2. ReSiLENT High-Level Architecture.

As shown in Figure 2, the high-level ReSiLENT architecture
consists of three core levels. Starting with the hardware
level, which is mapped via the so-called IoT platform. The
hardware level forms the interface to the firmware of the
local charging controllers and to other hardware elements
installed in the charging station. It enables the collection of
information on specific system parameters, such as the current
and voltage during a charging process or the utilization of
the controller CPU. It also enables safety measures to be
carried out on the charging station. Possible reactions here
are, for example, canceling the charging process or closing
communication connections. The second level, also known as
the mesh level, is responsible for connecting the charging
stations. A P2P mesh network is established at this level.
Each charging station is considered a peer in this network
and can provide and request information after authentication.
The mesh network offers the possibility to share information
in a decentralized manner. Charging stations can specifically
request information that is required for local analyses. The
creation, networking and distribution of a context-based in-
formation space is essential for advanced attack classification,
derivation of response measures, prevention and attribution.
The top level, also known as the application level, is supplied
with the required data space via the domain-specific interfaces.
It integrates the cybersecurity applications, which carry out
certain analyses, measures or the provision of information de-
pending on the domain. Through this architecture, we establish

48Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 60 / 136

a robust security system that enhances the resilience of EVSE
against cyber threats while ensuring practical and cost-efficient
implementation.

V. PEER-TO-PEER MESH-NETWORK

The essence of the ReSiLENT project is to identify an
effective method for distributing context information while
simultaneously ensuring security. In the realm of Internet of
Things (IoT) networks, application protocols such as Message
Queueing Telemetry Transport (MQTT) have gained signifi-
cant popularity due to their lightweight nature and efficiency
in distributing data. MQTT is particularly well-suited for
resource-constrained environments, offering publish-subscribe
communication that minimizes bandwidth and computational
overhead. However, its architecture relies on centralized bro-
kers, which may introduce single points of failure and increas-
ing complexity when scaled up [17]. Therefore, and because
of the reasons mentioned below, a P2P approach was taken in
the ReSiLENT-System. More specifically, the InterPlanetary
File System (IPFS) protocol stack was chosen, as it combines
peer-to-peer communication (via libp2p) with robust data
storage capabilities, enabling distributed systems to share and
store content without the need for centralized servers. The
ReSiLENT P2P mesh network offers the following advantages:

• Resilience Against Failures and Attacks: ReSiLENT
follows a security-by-design approach, prioritizing de-
centralization to enhance resilience. Unlike centralized
models, where data is stored on a single server, ReSi-
LENT distributes data across multiple nodes. When a
node requests data, it caches a copy and serves it to
others, ensuring continued availability even if the original
source goes offline.

• Data Integrity and Tamper Resistance: One of the key
security aspects of ReSiLENT is ensuring data integrity
and protection against tampering. In contrast to Hypertext
Transfer Protocol (HTTP), data in IPFS is addressed
by content rather than location. Instead of being found
through a Uniform Resource Locator (URL), files are
retrieved via their cryptographic hash. This ensures that
each file is uniquely identified by its content rather than
its address.

• Secure and Reliable Data Distribution: Traditional
server-client models often experience performance degra-
dation when too many users access a server simulta-
neously. In contrast, P2P networks such as IPFS allow
nodes to retrieve files from the nearest available peers,
optimizing data transfer efficiency.

• Anonymity and Privacy Protection: Privacy is a critical
aspect of cybersecurity, and P2P networks offer inherent
advantages in this regard. Depending on the protocol,
P2P communication can provide a certain degree of
anonymity, as data requests and transmissions are relayed
through multiple nodes. This obfuscation makes it more
difficult to trace data streams and provides an added layer
of privacy protection. Within ReSiLENT, this feature can
be leveraged for secure sharing of anonymized cyber

threat intelligence, ensuring that sensitive data remains
protected while enabling collaborative security efforts
among distributed nodes.

VI. CONTEXT DISTRIBUTION

With the possibility of distributing data, it is necessary to
evaluate which data must be passed on and which node has an
interest in receiving it. In the ReSiLENT-System, the contex-
tual information disseminated through a private IPFS network
enables each node to conduct a series of analytical processes.
The goal is to determine which context information needs to
be distributed to positively impact existing CTI processes and
to develop new approaches based on this foundation.

A. Conventional Approaches vs ReSiLENT

Traditionally, cyber threat intelligence relies on a centralized
server model, where all data is collected and processed in
one location. This approach, while effective, introduces single
points of failure, scalability limitations, and potential privacy
concerns. ReSiLENT employs a hybrid P2P model, where
each node contributes to CTI by analyzing and sharing context
information. A specialized centralized node, with greater com-
putational power, augments the P2P network by performing
complex calculations. Figure 3 illustrates the context distribu-
tion and analysis in the ReSiLENT system. The nodes P1−P4

represent individual charging stations, where the IoT platform
within each EVSE gathers local hardware and network data,
shares relevant information, and conducts analysis before
publishing results back into the network. The central node PM

leverages additional information, e.g. from a Charging Station
Managemant System (CSMS), for its analysis.

Figure 3. Overview of ReSiLENT P2P context distribution and analysis.

B. Distribution of Context Information

To effectively distribute context information within the
network, ReSiLENT leverages a combination of IPFS func-
tionalities:

• Distributed Hash Table (DHT) Enables efficient storage
and retrieval of data.

• PubSub Mechanism: Facilitates real-time notifications
about publication of files in the DHT.

49Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 61 / 136

• Topic-based Channels: Nodes subscribe to relevant top-
ics, such as detection methods or threat reports, ensuring
focused information exchange.

C. Types of Distributed Information

s shown in Table I, ReSiLENT distributes various forms of
context information, including EVSE charging session data,
network traffic, hardware status and threat reports generated by
local analysis. This is not a comprehensive list yet, as further
information can be relevant based on future development of
CTI-Applications.

TABLE I. TYPES OF DISTRIBUTED INFORMATION IN RESILENT

Data Type Description
Threat Reports Periodically generated by each EVSE to document

anomalies, vulnerabilities, and security states.
IPFS Metrics Insights into neighboring peers, network traffic, detec-

tion of malicious nodes, and integrity verification.
EVSE Profiles Summarizing charging behavior, station usage, and

proximity relationships.
User Profiles Capturing behavioral patterns, such as charging station

preferences and consumption trends.

VII. RESILENT CYBERSECURITY-STACK

The ReSiLENT cybersecurity stack combines methods and
procedures from the domains of detection, reaction, pre-
vention and attribution, making efficient use of overarching
synergy effects. Focused and classified attack detection makes
it possible to generate targeted information that enables dedi-
cated response measures to be activated and provides informa-
tion on balanced preventive measures. Attributive operations
can be efficiently identified based on the results of other
domains.

A. Detection

To detect attacks on EVSE, it is necessary to combine
different monitoring methods and systems. For the protection
and detection of ReSiLENT, procedures from the following
areas are to be included:

• Network traffic monitoring
• Intrusion Detection and Prevention System (IDS/P)
• Signature-based Intrusion Detection System (IDS)
• Behaviour-based IDS
• Firmware integrity checks, e.g. secure boot
• Secure updates, e.g. code signing
• Physical tamper detection
• Protocol and log analysis, e.g. correlation of events
• Authentication and access control
• Anomaly Detection using Artificial Intelligence (AI)
• Threat Intelligence, e.g. information sharing

In order to regularly monitor and evaluate the systems, it
makes sense to carry out additional stress tests and penetration
tests. Blackbox fuzzing attacks should also be included.

A crucial aspect of the ReSiLENT detection approach is
the usage of context information shared by individual nodes
and distributed over the IPFS mesh. The threat detection

mechanisms specifically using this shared data fall into three
categories:

• Complementary: Using data and results from multiple
nodes in order to gain a broader view of the whole system,
even on single nodes.

• Consensus-Oriented: Cross-verifying results from differ-
ent nodes to increase detection reliability.

• Comparative: Analyzing deviations from normal behav-
ior based on historical data and comparing results of
multiple nodes.

B. Reaction

With regard to response measures, a distinction must be
made between automated measures and manual or person-
controlled measures.
Automated measures:

• Segmentation or isolation of components
• Automated blocking, e.g. IP- / MAC-addresses or traffic
• Rollbacks to previous firmware or software versions
• Automated lockouts, e.g. failed authentication
Manual interventions:
• Security incident response teams
• Forensic investigations
• Replacing hardware and software

A structured evaluation should be carried out after each pre-
vented or successful attack. Based on that, security guidelines
should be updated and findings should be incorporated into
the ongoing security strategy.

C. Attribution

Attribution is often a major challenge in the field of cyber-
security. The same applies to attacks on charging stations for
electric vehicles: Although technical traces can be collected,
a clear attribution to specific actors is usually only possible
with considerable effort and probability statements. Never-
theless, there are various measures and methods to support
the best possible attribution. Attribution benefits from the
most accurate attack classification possible, which includes,
among other things, information gathering methods with or for
digital forensics. The use of synergy effects of the ReSiLENT
cybersecurity stack based on context information plays a
central role here.

D. Prevention

While detection, response and attribution tend to intervene
when a security event has already taken place or is actively
underway, prevention starts before the actual incident. Preven-
tion refers to all measures aimed at preventing attacks from the
outset or significantly reducing their chances of success. The
aim is to reduce the attack surface, minimize vulnerabilities
and make access as difficult as possible for attackers A basic
distinction is made between three preventive measures: tech-
nical, organizational and process-related preventive measures:
Technical prevention measures:

• Secure system and software architecture
• Security aspects during development phase

50Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 62 / 136

• Use of secure configurations
• Secure key management
• Encrypted communication
• Authentication and access controll
• Network segmentation
• Patch and update management
• Physical safety

VIII. CONCLUSION AND FUTURE WORK

The security system for hardening the resilience of charging
infrastructure presented in this paper demonstrates technology-
based, modern approaches for collecting, distributing and an-
alyzing EVSE-relevant data. In addition to recording Vehicle-
to-EVSE transmissions, the interface between the IoT platform
to the charging station also enables the monitoring of relevant
charging process data, back-end communication, as well as
the hardware status. The cybersecurity mesh network that
builds on this enables the collected context information to
be distributed securely, quickly and in a scalable manner.
The extended analysis methods can integrate complex context-
based analyses through the decentralized networking of the
charging stations and thus also their data. Attacks can be
detected and classified via the detection domain with your
applications. Dedicated security measures can be selected,
implemented and transmitted to the prevention applications for
further preventive steps using the methods and procedures of
the reaction domain. And finally, the decentralized distributed
information space can be used for attributive measures.

In the future, it is intended to further expand the collection
of context information and thus enlarge the information space.
This will increasingly include EVSE-related communication
patterns from Vehicle-to-EVSE. Furthermore, the response
measures will be cyclically adapted and expanded in line with
the progress made in the development of detection analyses.
An automated derivation of preventive security measures is
to be integrated on the basis of the information space of
the detection and response domains and visualized for users.
In addition, attributive measures are to be finally integrated
based on the results of the three preliminary domains. The
developments will be accompanied by tests using a laboratory
test setup and the integration of the software into real charging
stations to evaluate the functionality.

REFERENCES

[1] E. Parliament, “’fit for 55’ legislative package: Strengthening
the co2 emission performance standards for new passenger
cars and new light commercial vehicles,” [Online]. Available:
https : / / www. europarl . europa . eu / RegData / etudes / BRIE /
2021/694249/EPRS_BRI(2021)694249_EN.pdf (visited on
12/13/2024).

[2] S. H. Ahmed and F. M. Dow, “Electric vehicle and charging
station technology as vulnerabilities threaten and hackers crash
the smart grid,” 2016.

[3] C. Alcaraz, J. Lopez, and S. Wolthusen, “Ocpp protocol:
Security threats and challenges,” IEEE Transactions on Smart
Grid, 2017. DOI: 10.1109/TSG.2017.2669647.

[4] R. Gottumukkala et al., “Cyber-physical system security of
vehicle charging stations,” in 2019 IEEE Green Technologies
Conference(GreenTech), 2019. DOI: 10.1109/GreenTech.2019.
8767141.

[5] R. M. Pratt and T. E. Carroll, “Vehicle charging infrastructure
security,” in 2019 IEEE International Conference on Con-
sumer Electronics (ICCE), 2019. DOI: 10.1109/ICCE.2019.
8662043.

[6] I. Skarga-Bandurova, I. Kotsiuba, and T. Biloborodova, “Cy-
ber security of electric vehicle charging infrastructure: Open
issues and recommendations,” in 2022 IEEE International
Conference on Big Data (Big Data), 2022. DOI: 10 . 1109 /
BigData55660.2022.10020644.

[7] J. Graf, K. Neubauer, S. Fischer, and R. Hackenberg, “Archi-
tecture of an intelligent intrusion detection system for smart
home,” in 2020 IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom Work-
shops), 2020, pp. 1–6. DOI: 10.1109/PerComWorkshops48775.
2020.9156168.

[8] E. D. Buedi, A. A. Ghorbani, S. Dadkhah, and R. L. Fer-
reira, “Enhancing ev charging station security using a multi-
dimensional dataset: Cicevse2024,” in Data and Applications
Security and Privacy XXXVIII, 2024. DOI: 10.1007/978- 3-
031-65172-4_11.

[9] Y. Kim, S. Hakak, and A. Ghorbani, “Ddos attack dataset (ci-
cev2023) against ev authentication in charging infrastructure,”
in 2023 20th Annual International Conference on Privacy,
Security and Trust (PST), 2023. DOI: 10 . 1109 / PST58708 .
2023.10320202.

[10] S. Purohit and M. Govindarasu, “Fl-evcs: Federated learning
based anomaly detection for ev charging ecosystem,” in 2024
33rd International Conference on Computer Communications
and Networks (ICCCN), 2024. DOI: 10.1109/ICCCN61486.
2024.10637543.

[11] H. S. Mavikumbure et al., “Cy-phy ads: Cyber-physical
anomaly detection framework for ev charging systems,” IEEE
Transactions on Transportation Electrification, 2024. DOI: 10.
1109/TTE.2024.3363672.

[12] P. Fuxen et al., “Mantra: A graph-based unified information
aggregation foundation for enhancing cybersecurity manage-
ment in critical infrastructures,” in Open Identity Summit 2023,
Bonn: Gesellschaft für Informatik e.V., 2023, pp. 123–128,
ISBN: 978-3-88579-729-6. DOI: 10.18420/OID2023_10.

[13] P. Fuxen, M. Hachani, R. Hackenberg, and M. Ross, “Mantra:
Towards a conceptual framework for elevating cybersecurity
applications through privacy-preserving cyber threat intelli-
gence sharing,” IARIA Cloud Computing 2024, 2024. DOI:
10.18420/OID2023_10.

[14] G. Vailoces, A. Keith, A. Almehmadi, and K. El-Khatib,
“Securing the electric vehicle charging infrastructure: An in-
depth analysis of vulnerabilities and countermeasures,” in
Proceedings of the Int’l ACM Symposium on Design and
Analysis of Intelligent Vehicular Networks and Applications,
ser. DIVANet ’23, New York, NY, USA: Association for
Computing Machinery, 2023, pp. 31–38. DOI: 10 . 1145 /
3616392.3623424.

[15] J. Johnson, T. Berg, B. Anderson, and B. Wright, “Review of
electric vehicle charger cybersecurity vulnerabilities, potential
impacts, and defenses,” Energies, vol. 15, no. 11, p. 3931,
May 26, 2022, ISSN: 1996-1073. DOI: 10.3390/en15113931.

[16] J. Johnson, “Securing vehicle charging infrastructure,” SAND–
2020-11971R, 1706221, 691697, Nov. 6, 2020, SAND–2020–
11971R, 1706221, 691697. DOI: 10.2172/1706221.

[17] M. A. Spohn, “On MQTT scalability in the internet of things:
Issues, solutions, and future directions,” Journal of Electronics
and Electrical Engineering, p. 4, Oct. 19, 2022, ISSN: 2972-
3280. DOI: 10.37256/jeee.1120221687.

51Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 63 / 136

A Transformer-Based Framework for Anomaly Detection in Multivariate Time Series

Fabian Folger ∗, Murad Hachani †, Philipp Fuxen †, Julian Graf †,
Sebastian Fischer†, Rudolf Hackenberg†

Department of Computer Science and Mathematics
Ostbayerische Technische Hochschule Regensburg

Regensburg, Deutschland
∗ e-mail: fabian1.folger@st.oth-regensburg.de,

† e-mail: {murad.hachani|philipp.fuxen|julian.graf|
sebastian.fischer|rudolf.hackenberg}@oth-regensburg.de

Abstract—This paper introduces a comprehensive Transformer-
based architecture for anomaly detection in multivariate time
series. Using self-attention, the framework efficiently processes
high-dimensional sensor data without extensive feature engineer-
ing, enabling early detection of unusual patterns to prevent critical
system failures. In a subsequent laboratory setup, the framework
will be applied using fuzzing techniques to induce anomalies in an
Electronic Control Unit, while monitoring side channels, such as
temperature, voltage, and Controller Area Network messages. The
overall structure of the architecture, as well as the necessary pre-
processing steps, such as temporal aggregation and classification
up to the optimization of the hyperparameters of the model, are
presented. The evaluation of the model architecture with the
postulated restrictions shows that the model handles anomaly
scenarios in the dataset robustly. It is necessary to evaluate the
extent to which the model can be used in practical applications
in areas, such as cloud environments or the industrial Internet of
Things. Overall, the results highlight the potential of Transformer
models for the automated and reliable monitoring of complex
time series data for deviations.

Keywords-AI; Transformer; Time Series; Anomaly Detection;
ECU; Temporal Aggregation.

I. INTRODUCTION

Transformer architectures have seen a surge in popularity
recently, largely driven by the success of Large Language
Models (LLMs) like ChatGPT, Gemini, and Claude. Initially
focused on natural language processing tasks, these models have
demonstrated that the underlying self-attention mechanisms can
be beneficial in other domains as well. This trend is supported
by the rapid increase in computing power in cloud and GPU
environments, which now makes it possible to train and use
models with a large number of parameters quickly and reliably.

A prime example is NVIDIA’s recent presentation at CES,
where new graphics cards and "DLSS 4" were introduced
[1]. These products utilize transformer-based components to
generate high-resolution pixels and entire frames, replacing
the previously dominant Convolutional Neural Network (CNN)
architectures with transformers that excel in parallel, context-
sensitive processing.

Transformers are also becoming increasingly relevant for
time series analysis, particularly when handling complex or
multivariate sensor data. Their ability to capture long-range
dependencies within signals is especially advantageous for
anomaly detection—a critical need in industrial and Internet
of Things (IoT) applications, such as machine, sensor, or

network monitoring. Traditional methods like Recurrent Neural
Networks (RNNs), Long Short-Term Memory (LSTM) models,
or CNNs often struggle with modeling long-term dependencies,
making the self-attention mechanism of transformers a powerful
alternative [2].

This work develops and evaluates a specialized transformer
approach for anomaly detection on multivariate, labeled sensor
data. The goal is to create a fully automated framework that can
be applied to a variety of multivariate datasets, demonstrating
how transformer models can detect rare abnormal states and
outperform classical methods, such as LSTM autoencoders
and Isolation Forests. Due to its ability to detect anomalies
in complex sensor environments, this approach is particularly
suitable for safety-critical applications, including its potential
use in fuzz testing scenarios. The model is designed to support
the automatic detection of anomalies in different domains; its
effectiveness in fuzz testing environments will be evaluated in
future work.

The paper is organized into seven sections. The Introduction
provides an overview of the research topic and objectives. The
Section II examines relevant approaches and previous studies.
The Section III outlines the data sources and preprocessing
steps. The Section IV details the model’s design. The Section V
reviews and interprets the results. The Section VI compares
the model presented with other common methods in this
domain. Finally, the Section VII summarizes key insights,
highlights potential applications, and suggests directions for
future research.

II. RELATED WORK

The detection of anomalies in technical systems is a
comprehensive field of research that has gained considerable
importance in recent years due to advances in the field of
machine learning and, in particular, the use of neural networks.
Various methods are employed, differing depending on the
domain and data structure. This section presents related work
from the fields of fuzz testing, transformer-based anomaly
detection on time series data, and a platform for monitoring
Electronic Control Units (ECUs) using side-channel analysis,
which together provide a background for our research.

M. Böhme et al. have analyzed the challenges and opportu-
nities of fuzzing and emphasize the problem of “human-in-the-
loop”, where test auditors have to invest considerable effort

52Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 64 / 136

in analyzing the fuzzing results. Their research focuses on
automating these processes through Artificial Intelligence (AI)
[3]. L. McDonald et al. classify fuzzing methods and investigate
hybrid approaches that combine static analysis, runtime error
detection, and machine learning. They identify side-channel
fuzzing as a promising extension for black-box fuzzing in
the field of embedded [4]. One of the main problems with
black box fuzzing is the lack of direct insight into the internal
processes of the system under test. One solution to this is
side-channel fuzzing, in which physical side channels, such as
power consumption, electromagnetic emissions, or temperature
curves are analyzed [5] [6]. P. Sperl et al. show that power
trace analyses are suitable for optimizing fuzzing processes by
drawing conclusions about the internal processes of a system
[5]. This method has been successfully applied to embedded
systems to identify unexpected behavior and detect error states
more efficiently.

Transformer models have achieved outstanding performance
in many tasks in the field of natural language processing
and computer vision [7]. Transformer models have also
demonstrated outstanding results in the analysis and forecasting
of time series data [8][9]. Furthermore, it is important to point
out that there is no obvious need to use transformer models
for long-term time series predictions, since even simple MLP
models can outperform transformers, such as DLinear in the
analysis of long-term time series predictions [10]. However,
the results of transformers, such as PatchTST [11] already
show significant improvements. Xu et al. [2] were able to
prove that transformer models also offer advantages in the
detection of time series anomalies, since temporal dependencies
can be represented by the model, which leads to a high
detection performance. Although there are different transformer
architectures that have already been applied to time series-based
data with different focused objectives, such as lightweight [12]
[13] or cross-block connectivity [14] or adaptive computation
time [15], it is still a future task to adapt and evaluate different
architectural approaches to time series data [7]. However,
Zerveas et al. [16] have shown that there is little work on
pre-trained transformers for time series data and the existing
studies focus mainly on the classification of time series data.
In various system architectures and frameworks that rely on the
combined analysis of static and dynamic AI-based methods,
such as [17], research into modern approaches to processing
and anomaly detection of time series to improve the recognition
rates of these systems and frameworks are important.

The monitoring and anomaly detection used in this work is
based on the platform of Fuxen et al. [18] who have developed
a system for monitoring ECUs using side-channel analysis for
fuzz testing in future mobility systems. Based on this platform,
our transformer model was developed and will be evaluated in
a fuzz testing scenario as part of future work. The combination
of monitoring, fuzzing and AI-supported analysis offers an
innovative approach to safeguarding safety-critical systems and
uses the findings of Fuxen et al. as a foundation.

Figure 1. Correlation Heatmap

Figure 2. Time series variable cfo1 plotted with anomalies highlighted in red

III. DATASET

The primary criterion in selecting the dataset was its
applicability to real-world scenarios, particularly for deploying
the AI on real-time measurements in a laboratory environment.
The Controlled Anomaly Time Series (CATS) dataset [19] from
Solenix Engineering GmbH was chosen for its rich features
that enable a realistic simulation of complex dynamic systems.
This dataset comprises synthetically generated multivariate
time series with 17 variables, including control commands,
environmental influences, and sensor data, such as temperature
and voltage.

At the outset of the data analysis, a correlation matrix was
created in the form of a heatmap. This heatmap shown in
Figure 1, depicts the complete dataset and reveals strong
interdependencies among several variables. The color coding
indicates negative correlations in blue and positive correlations
in red—both types being crucial for the transformer when
dealing with multivariate datasets. It is particularly noticeable
that the characteristics bso1 and cfo1 with 0.98, and 0.77 show
a relatively strong correlation with amud.

Figure 2 presents an example of injected anomalies in the
variable CFO1, with anomalies highlighted in red. The plot
was generated prior to data cleaning and scaling, showing raw
measurement values on the Y-axis and the temporal progression

53Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 65 / 136

Figure 3. Transformer Architecture

(dates) on the X-axis, as the data were collected over several
days.

A critical consideration for this dataset is the "root cause"
of the anomalies, which initially manifests in other variables.
Therefore, the dataset must not be truncated or abstracted, as
doing so would eliminate these dependencies and prevent the
transformer from learning the inherent patterns present in the
original variables.

Notably, the dataset contains 200 carefully injected and
annotated anomalies, which cover both obvious and context-
dependent cases, making it an excellent benchmark for training
the transformer-based anomaly detection system. With a
resolution of 1 Hz over 5 million timestamps, the dataset
offers data to learn normal system behavior and to develop
robust anomaly detection models. An accompanying metadata
file lists the time intervals of the anomalies, facilitating the
removal of these segments during data preparation to expand
the training set of normal data.

This dataset mirrors the physical measurement parameters
expected in the laboratory. By applying the transformer
model—known for its ability to capture both local and global
temporal dependencies and to model complex multivariate
correlations—to this synthetic data, the anomaly detection
system can be evaluated and optimized under conditions that
closely resemble practical scenarios.

IV. ARCHITECTURE

In the following section, we provide an in-depth description
of the implemented Transformer architecture. This section cov-
ers the core structure, the underlying mathematical principles.
Figure 3 illustrates the overall Transformer architecture, which
is designed to classify time series segments based on their
anomaly probability. The architecture is structured into the
following steps:
1) Input Layer: The initial processing stage for incoming time

series segments.

2) Linear Embedding (Embedding-Layer): Transforms raw
sensor data into a higher-dimensional representation.

3) Batch Normalization: Enhances training stability by nor-
malizing feature distributions.

4) Transformer Encoder: Implements multi-head self-attention
and feedforward networks to capture temporal dependencies.

5) Global Aggregation (Mean over Time): Condenses the time-
dependent representations into a single feature vector per
segment.

6) Classification Head (Linear Output): Projects the aggregated
features into a scalar output for anomaly detection.

A. Input Layer and Batch Normalization

The model begins by processing time series segments, each
with dimensions [BatchSize, WindowSize, Features]. A linear
embedding layer transforms raw sensor data (17 features) into
a higher-dimensional space (e.g., 128 dimensions) using the
formula:

y = xAT + b (1)

where x is the input, A represents the weight matrix
(initialized uniformly with

k =
1

in_features
(2)

and b the bias. This step is crucial in mapping the raw input
data into a format suitable for the self-attention mechanism.

Batch normalization is applied to maintain a stable distribu-
tion of features across each sliding window. This normalization
improves the model’s robustness during training.

B. Attention and Encoder Layer

In our model, we adopt the vanilla Transformer architecture
as described in Attention is All You Need [20]. The attention
mechanism begins by projecting the input into three distinct
representations—queries, keys, and values—via learned linear
transformations. These projections are then used in a scaled
dot-product attention computation, where the dot product of
queries and keys is scaled by the inverse square root of the
key dimensionality to ensure numerical stability. The resulting
attention weights are applied to the values, allowing the model
to focus on relevant parts of the input.

Building upon this, the encoder layer integrates multi-
head self-attention with a position-wise feed-forward network.
Each encoder block applies residual connections and layer
normalization both after the multi-head self-attention and
the feed-forward network, which enhances gradient flow and
stabilizes training. This combination of attention and encoder
components forms the core of the Transformer model, enabling
it to capture complex dependencies in sequential data.

C. Temporal Aggregation

After processing the sequence through the Transformer
encoder layers, a temporal aggregation step is applied to
condense the time-dependent representations into a single

54Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 66 / 136

vector per input segment. This is achieved using an element-
wise mean pooling operation across the time dimension:

z =
1

T

T∑
t=1

xt,

where xt ∈ Rdmodel is the output for each time step t and z
represents the aggregated feature vector. Although alternatives,
such as max pooling or token-based representations (e.g., using
a [CLS] token) exist, average pooling is chosen here for its
simplicity and its ability to equally represent all time steps
[21][22].

D. Classification

The final stage of the architecture is the classification head.
The aggregated vector z is passed through a linear layer to
produce a scalar output:

o = Linear(z) ∈ R.

A sigmoid activation is then applied to convert the scalar into
a probability score between 0 (normal) and 1 (anomalous)
[21][22]:

σ(Logit) =
1

1 + exp(−Logit)

A threshold value determines the final binary classification.
For handling class imbalances typical in anomaly detection,
a Focal Loss is used instead of standard binary cross entropy
[23]. The Focal Loss formula is:

FL(ŷ, y) = α
(
1− ŷ

)γ
BCE(ŷ, y),

this is set to emphasize hard-to-classify examples.
Anomaly detection typically involves highly imbalanced

data, where anomalous events are extremely rare compared to
normal instances. Traditional loss functions like Binary Cross
Entropy (BCE) treat all samples equally, often causing the
model to be biased toward the majority class and overlook the
few but critical anomalies. Focal Loss addresses this challenge
by dynamically down-weighting the loss contribution of well-
classified normal samples and up-weighting the misclassified
or harder-to-classify anomalous examples. In practice, this
means that the model is encouraged to learn more from the
sparse anomaly examples, enhancing its sensitivity and overall
detection performance in an imbalanced dataset [23].

E. Training

In preparation for training, suitable hyperparameters for
the Transformer model are determined using Optuna [24].
This process follows a semi-supervised approach: while the
model is mainly trained on normal (non-anomalous) data, the
validation set contains a few anomalies. This setup enables
the optimization process to favor parameter combinations that
effectively detect anomalies, optimizing for metrics, such as
the F1 score.

Once Optuna identifies the best hyperparameters, the
model is retrained on normal data in an unsupervised man-
ner—meaning it does not explicitly see any anomaly examples

Figure 4. Evaluation of Hyperparameters using Optuna

during training. The final evaluation, however, is performed
on a test set containing both real and synthetically generated
anomalies, thereby assessing the model’s true capability to
detect unusual patterns.

The hyperparameter tuning is managed via an Optuna
Optimizer class (see Figure 4), which integrates several
DataLoader instances for training, validation, and test data
(both normal and anomalous). During each trial in the process,
hyperparameters (e.g., model dimension, number of attention
heads, encoder layers, dropout, learning rate, and weight decay)
are sampled from predefined ranges.

V. EVALUATION

To assess the model’s performance, we applied standard
binary classification metrics—such as the confusion matrix,
F1-score, and ROC-AUC—among others. In this section, we
analyze the results on the CATS dataset using these metrics,
and we detail the hyperparameter configuration of the best
performing model as identified through OPTUNA [25][26].

TABLE I
MODEL RESULTS

Transformer Metrics Values
Optimal threshold 0.0117
ROC-AUC 0.9993
F1-Score 0.9717
Precision 0.9585
Recall 0.9853
Accuracy 0.9921
Anomalies detected (all Labels) 11731/83558 (14.04%)
Anomalies detected (Anomaly-Labels) 11244/11413 (98.52%)

Table I summarizes the overall performance of our anomaly
detection model. The high ROC-AUC of 0.9993 and F1-Score
of 0.9717 indicate that the model is effective in discriminating
between normal and anomalous instances in the CATS dataset
while being trained with an unsupervised method. The model
achieves a precision of 0.9585 and a recall of 0.9853, which
reflects its balanced capability to correctly identify anomalies
while minimizing false positives. Overall the accuracy is
reported at 0.9921, and the confusion matrix confirms that
98.52% of the true anomaly labels are correctly detected.
These metrics underscore the robustness of our approach in
handling complex multivariate time series data and highlight its

55Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 67 / 136

potential for reliable anomaly detection in practical applications.
The confusion matrix confirms these results, with the model
detecting 98.52% of true anomalies.

Key hyperparameters for the CATS dataset and optimized
via Optuna include:
• Dropout: 0.2
• Learning Rate: 2.0075e-05
• Model Dimension: 128
• Attention Heads: 8
• Encoder Layers: 3
• Weight Decay: 0.00036
• Batch Size: 128

VI. COMPARISON WITH OTHER ARCHITECTURES

In this section, we provide a preliminary comparative analysis
of our Transformer-based anomaly detection model with the
established methods evaluated in the publication Anomaly
Detection in Time Series: A Comprehensive Evaluation [26]. It
should be noted that our evaluation is currently limited to the
CATS dataset, which was chosen due to its close resemblance
to our laboratory setup. This selection enables us to investigate
the model’s performance under controlled conditions that reflect
our specific experimental environment.

While a direct comparison is inherently challenging due to
the use of different datasets across studies, we have compared
our model’s performance with established architectures by
benchmarking key metrics (ROC-AUC, F1-Score, Precision,
and Recall) against those reported in the literature. We
acknowledge that such indirect comparisons have limitations,
however, on the Timeeval website, the CATS dataset is already
listed and integrated on GitHub [27]. This availability opens
up opportunities for further evaluation, either by our team or
by the broader research community. In future work, we plan
to leverage this integration to perform additional assessments
and comparisons. Furthermore, benchmarking our Transformer-
based model using the datasets available on Timeeval could
provide a standardized framework to rank and compare its
performance against other state-of-the-art approaches in [26].

Custom aspects of our framework include:
• Focal Loss with Self-Attention: This combination, while

less common in time series applications, effectively addresses
class imbalance by emphasizing the misclassified anomaly
cases.

• Flexible Time Window Segmentation: The model adapts its
sequence length and optimizes the number of attention heads,
allowing it to better capture diverse temporal characteristics.

• Tailored Binary Anomaly Classification: By focusing
on binary labels (normal vs. anomalous) and leveraging
a specialized loss function, our approach directly targets the
detection of rare anomaly labels.
A key discussion point is the generalizability of the results.

Although the dataset used in this study contains carefully
embedded anomalies, it remains an open question whether
these findings can be directly transferred to more complex,
real-world scenarios. Future experiments with time series data

from various domains—such as industrial processes or medical
applications—are needed to fully assess the model’s robustness
under varying conditions.

Another important aspect is the sensitivity to preprocessing
choices. For instance, the window size used in the sliding-
window technique has a significant impact on the patterns that
are detected based on our experiments. Similarly, strategies
for handling missing data and the specifics of hyperparameter
tuning (e.g., via Optuna) can greatly influence the reliability
and speed of anomaly detection. Sensitivity analyses, such as
systematically varying the window size or testing different
missing-data methods, would help ensure that the model’s
performance is not overly dependent on narrow parameter
settings.

Compared to traditional methods, the Trans-
former—especially in its encoder-only configuration—offers
potential advantages in terms of flexibility and performance.
While decoder layers might be beneficial for forecasting
or reconstruction tasks, they also increase complexity and
resource requirements without necessarily improving pure
anomaly detection. In contrast, older methods like classical
autoencoders or statistical approaches (e.g., Isolation Forest)
can sometimes achieve similar results with less effort but
often struggle to capture the complex, nonlinear dependencies
in high-dimensional time series data.

VII. CONCLUSION AND FUTURE WORK

The Transformer-based architecture presented in this work
has proven to be a potential approach for anomaly detection
in multivariate time series. By leveraging self-attention mech-
anisms, the model was able to capture relationships in the
dataset and accurately predict potential anomalies with minimal
feature engineering. The flexible data pipeline—including
missing-value handling, scaling, and segmentation—enables
rapid adaptation to new datasets and application scenarios.

Optimized hyperparameter optimization has shown that a
systematic, semi-supervised approach can identify optimal
settings that effectively support the final unsupervised training.
However, the validity of these results is highly dependent on the
quality and representativeness of the underlying data. Therefore,
it is necessary to perform future evaluations on different real
data sets from different domains using time series data to finally
confirm the generalizability and robustness of the model.

Overall, the experiments highlight the potential of trans-
former architectures for anomaly detection and provide valuable
insights for future research.

In practice, the Transformer-based approach offers the advan-
tage of capturing high-dimensional relationships between sensor
variables. This capability enables the reliable identification of
unusual patterns even in noisy environments or under changing
data distributions. It can be concluded that the demonstrated
method has some relevance for industrial or safety-critical
scenarios in which multi-sensor data must be continuously
monitored for deviations. However, further development is
required to provide a productive model for this.

56Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 68 / 136

Comparing models across heterogeneous datasets remains
challenging. Our preliminary benchmarking using key metrics
underscores the potential of our approach. The integration of
the CATS dataset into Timeeval offers a promising avenue
for future standardized evaluations of our Transformer-based
model alongside other state-of-the-art techniques [26].

Moreover, Transformer-based anomaly detection is finding
increasing application in other fields, such as medicine, where
it can identify abnormal patterns in complex biosignals. In
our laboratory setup, an ECU combined with a fuzzer is
used to deliberately induce anomalous states on the Controller
Area Network (CAN) bus while simultaneously capturing side-
channel data, such as temperature and voltage. This integrated
approach not only delivers a comprehensive view of the system
state but also provides feedback to progressively enhance the
fuzzing algorithm [18].

The results of the presented methodology for time-series-
based anomaly detection confirm the effectiveness of the
developed model within the limitations. This provides a solid
basis for further investigations and evaluations in laboratory
environments and beyond. The flexible exploration of different
use cases within the research group with regard to automotive
security and IoT security is a focused goal.

REFERENCES

[1] NVIDIA, “Dlss 4: Multi-frame generation and ai innovations”,
Accessed: 2025.03.19, NVIDIA Corporation, 2024, [Online].
Available: https://www.nvidia.com/en-us/geforce/news/dlss4-
multi-frame-generation-ai-innovations/.

[2] J. Xu, H. Wu, J. Wang, and M. Long, “Anomaly transformer:
Time series anomaly detection with association discrepancy”,
CoRR, vol. abs/2110.02642, 2021. arXiv: 2110.02642.

[3] M. Böhme, C. Cadar, and A. Roychoudhury, “Fuzzing:
Challenges and reflections”, IEEE Software, vol. 38, no. 3,
pp. 79–86, 2021.

[4] L. McDonald, M. I. U. Haq, and A. Barkworth, “Survey of
software fuzzing techniques”, Dec. 2021.

[5] P. Sperl and K. Böttinger, “Side-channel aware fuzzing”, in
Computer Security–ESORICS 2019: European Symposium on
Research in Computer Security, Springer, vol. 24, Sep. 2019,
pp. 259–278, ISBN: 978-3-030-29958-3. DOI: 10.1007/978-3-
030-29959-0_13.

[6] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D.
Balzarotti, “What you corrupt is not what you crash: Challenges
in fuzzing embedded devices”, NDSS Symposium 2018, 2018.
DOI: 10.14722/ndss.2018.23176.

[7] Q. Wen et al., Transformers in time series: A survey, 2023.
arXiv: 2202.07125.

[8] S. Li et al., “Enhancing the locality and breaking the memory
bottleneck of transformer on time series forecasting”, Advances
in neural information processing systems, vol. 32, 2019.

[9] T. Zhou et al., “Fedformer: Frequency enhanced decomposed
transformer for long-term series forecasting”, in International
conference on machine learning, PMLR, 2022, pp. 27 268–
27 286.

[10] A. Zeng, M. Chen, L. Zhang, and Q. Xu, “Are transformers
effective for time series forecasting?”, in Proceedings of
the AAAI conference on artificial intelligence, vol. 37, 2023,
pp. 11 121–11 128.

[11] Y. Nie, N. H. Nguyen, P. Sinthong, and J. Kalagnanam, A
time series is worth 64 words: Long-term forecasting with
transformers, 2023. arXiv: 2211.14730 [cs.LG].

[12] Z. Wu, Z. Liu, J. Lin, Y. Lin, and S. Han, “Lite transformer
with long-short range attention”, CoRR, vol. abs/2004.11886,
2020. arXiv: 2004.11886.

[13] S. Mehta, M. Ghazvininejad, S. Iyer, L. Zettlemoyer, and H.
Hajishirzi, “Delight: Very deep and light-weight transformer”,
CoRR, vol. abs/2008.00623, 2020. arXiv: 2008.00623.

[14] A. Bapna, M. X. Chen, O. Firat, Y. Cao, and Y. Wu, “Training
deeper neural machine translation models with transparent
attention”, CoRR, vol. abs/1808.07561, 2018. arXiv: 1808 .
07561.

[15] M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and L. Kaiser,
“Universal transformers”, CoRR, vol. abs/1807.03819, 2018.
arXiv: 1807.03819.

[16] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C.
Eickhoff, “A transformer-based framework for multivariate
time series representation learning”, in Proceedings of the 27th
ACM SIGKDD conference on knowledge discovery & data
mining, 2021, pp. 2114–2124.

[17] J. Graf, K. Neubauer, S. Fischer, and R. Hackenberg, “Architec-
ture of an intelligent intrusion detection system for smart home”,
in 2020 IEEE international conference on pervasive computing
and communications workshops (PerCom Workshops), IEEE,
2020, pp. 1–6.

[18] P. Fuxen, M. Hachani, J. Schmidt, P. Zaumseil, and R.
Hackenberg, “Side channel monitoring for fuzz testing of future
mobility systems”, CLOUD COMPUTING 2023, 2023.

[19] Patrick Fleith, Controlled anomalies time series (CATS) dataset,
version 2, Sep. 14, 2023. DOI: doi.org/10.5281/zenodo.7646896.

[20] A. Vaswani et al., “Attention is all you need”, CoRR,
vol. abs/1706.03762, 2017. arXiv: 1706.03762.

[21] S. Song, N.-M. Cheung, V. Chandrasekhar, and B. Mandal,
“Deep adaptive temporal pooling for activity recognition”, in
Proceedings of the 26th ACM international conference on
Multimedia, Oct. 15, 2018, pp. 1829–1837. DOI: 10 .1145/
3240508.3240713. arXiv: 1808.07272[cs].

[22] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C.
Eickhoff, A transformer-based framework for multivariate time
series representation learning, Dec. 8, 2020. DOI: 10.48550/
arXiv.2010.02803. arXiv: 2010.02803[cs].

[23] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, Focal
loss for dense object detection, Feb. 7, 2018. DOI: 10.48550/
arXiv.1708.02002. arXiv: 1708.02002[cs].

[24] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna:
A next-generation hyperparameter optimization framework”, in
Proceedings of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, ser. KDD ’19,
New York, NY, USA: Association for Computing Machinery,
Jul. 25, 2019, pp. 2623–2631, ISBN: 978-1-4503-6201-6. DOI:
10.1145/3292500.3330701.

[25] P. Wenig, S. Schmidl, and T. Papenbrock, “TimeEval: A bench-
marking toolkit for time series anomaly detection algorithms”,
Proc. VLDB Endow., vol. 15, no. 12, pp. 3678–3681, Aug. 1,
2022, ISSN: 2150-8097. DOI: 10.14778/3554821.3554873.

[26] S. Schmidl, P. Wenig, and T. Papenbrock, “Anomaly detection
in time series: A comprehensive evaluation”, Proceedings of
the VLDB Endowment, vol. 15, no. 9, pp. 1779–1797, May
2022, ISSN: 2150-8097. DOI: 10.14778/3538598.3538602.

[27] T. Project, “Timeeval - datasets overview”, Accessed:
2025.03.19, 2022, [Online]. Available: https://timeeval.github.
io/evaluation-paper/notebooks/Datasets.html.

57Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 69 / 136

Theoretical Integration of Hyperledger Fabric in Gaia-X: Towards an Approach for
Federated Data Access

Liron Ahmeti∗ , Klara Dolos∗ , Conrad Meyer∗ , Andreas Attenberger∗ , Rudolf Hackenberg†
∗Research Unit, Central Office for Information Technology in the Security Sector

Munich, Germany
Email: poststelle@zitis.bund.de

†Dept. Informatics and Mathematics, OTH Regensburg
Regensburg, Germany

Email: rudolf.hackenberg@oth-regensburg.de

Abstract—Securing and managing distributed data in fed-
erated ecosystems is a key challenge when data protection,
sovereignty and interoperability need to be guaranteed at the
same time. Previous blockchain-based solutions often reach their
limits in terms of integration capability and fine-grained access
mechanisms. This theoretical paper presents a multilayered
architecture concept that integrates Hyperledger Fabric into the
Gaia-X ecosystem. Advanced encryption methods and a smart-
contract-based reassembly logic are used to securely distribute
fragmented data and make it accessible only to authorized actors.
The approach promotes digital sovereignty and scalability within
Gaia-X-compliant data spaces and serves as an initial conceptual
basis that will be technically validated and further developed in
future work.

Keywords-Gaia-X; blockchain; architecture concept; federated
data spaces

I. INTRODUCTION

Incorporating blockchain technology into existing and new
digital ecosystems can promote a secure and decentralized
method for storing and managing data while creating new
opportunities for effective data governance and interoperabil-
ity. Gaia-X, a European initiative, aims to create a secure
and federated data ecosystem in Europe, allowing participants
to share information interoperably while maintaining their
digital sovereignty [1]. In this context, Hyperledger Fabric is
presented as a blockchain platform that provides a flexible
basis for such integrations through its permission-based ar-
chitecture and the ability to implement smart contracts. The
main goal of this paper is to develop an architecture to merge
Hyperledger Fabric and the Gaia-X ecosystem to implement an
interoperable private blockchain. These requirements include
the ability to store data in an encrypted and partitioned manner
and to reassemble and make this data accessible. The research
will focus on the following key questions:

i How can blockchain be designed to be compatible with
Gaia-X to store and reassemble encrypted, split data?

ii What security measures are necessary to ensure the in-
tegrity and confidentiality of the data?

iii What challenges and opportunities arise from integrating
blockchain technology into the Gaia-X ecosystem?

By answering these questions, this approach will help pro-
mote digital sovereignty and improve interoperability within
the Gaia-X ecosystem. The remainder of the paper is organized

as follows: Section II analyses the current state of the art
and associated challenges. Section III presents the conceptual
model, explaining the multi-layered structure of the system.
Finally, Section IV discusses the advantages and disadvantages
of the proposed approach and provides an outlook on future
empirical validations and further developments.

II. RELATED WORK

Secure and decentralized data management is becoming
increasingly important, especially in trustworthy data ecosys-
tems. Blockchain technology, particularly Hyperledger Fabric,
offers promising approaches for secure data management
through decentralization, transparency and tamper-proofing. At
the same time, Gaia-X is pursuing the goal of establishing
a federated and interoperable European data infrastructure.
Integrating blockchain into Gaia-X could create new oppor-
tunities for trustworthy and privacy-compliant data spaces. A
key aspect is data encryption and sharing to meet data pro-
tection requirements while ensuring efficient use and storage
of sensitive information. This section provides an overview of
the current state of research on blockchain technology, Gaia-
X and data encryption and sharing methods in the context of
distributed systems.

A. Blockchain

Blockchain technology has emerged as a transformative
innovation, initially conceptualized by Nakamoto as the frame-
work for Bitcoin [2]. Since then, it has evolved beyond
cryptocurrencies to become a foundation for secure, decen-
tralized, and transparent data exchange [3]. As a distributed
ledger technology, blockchain enables immutable, trustless
transactions without intermediaries [4]. Its applications span
various sectors, including finance, healthcare, supply chain
management, and identity verification [5][6]. Blockchains are
typically classified into three categories: public, private, and
consortium [7]. Public blockchains, like Bitcoin and Ethereum,
operate in open, permissionless environments but face chal-
lenges, such as high energy consumption and scalability [3].
In contrast, private blockchains restrict access to authorized
entities, which enhances efficiency and security [8]. Current
research is focused on optimizing consensus mechanisms and
improving interoperability with existing digital infrastructures

58Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 70 / 136

to fully realize the transformative capabilities of blockchain
[8]. Current research focuses on optimizing consensus and im-
proving interoperability with established infrastructures, aim-
ing to harness blockchain’s transformative potential [8] fully.
However, many existing solutions concentrate on single-use
cases or rely on built-in cryptocurrencies, reducing flexibility
in more complex enterprise scenarios [5].

B. Hyperledger Fabric

Hyperledger Fabric is an open-source blockchain framework
tailored for enterprise use. It processes transactions in three
phases: Execution, Ordering, and Validation. Initially, trans-
actions are simulated to assess their impacts, then ordered
by a dedicated group of nodes, and validated by peer nodes
before updating the ledger. This design reduces bottlenecks
typical in ’order-execute’ systems, enhancing modularity and
scalability. In a Fabric network, nodes called peers carry out
various roles. Endorsing peers execute chain code to simulate
and sign transactions, which are then sent to the ordering
service for final arrangement. After consensus, participants
validate endorsements and check for conflicts before adding
transactions to the ledger. With verifiable identities issued by
the Membership Service Provider (MSP), Hyperledger Fabric
operates as a permissioned system. This eliminates the need
for an internal cryptocurrency and allows users to choose
a suitable consensus mechanism. By isolating chain code
in Docker containers, Fabric increases security and supports
fine-grained data control, enabling channels to restrict infor-
mation sharing to specific participants. These features make
Hyperledger Fabric a robust option for enterprise applications
[9], nonetheless, cross-platform interoperability, off-chain data
integration, and performance tuning remain challenges [9].

C. Gaia-X

Gaia-X is an initiative to create a federated, secure data
infrastructure that promotes data sovereignty and interoperabil-
ity. This is done by setting up so-called data spaces, i.e. digital
representations of different sectors, such as health, agriculture
or mobility, which enable secure and transparent data exchange
between multiple stakeholders [10]. The architecture is based
on three principles: Federation, decentralization and openness
[11]. Federation allows different actors to retain their auton-
omy and interact in the ecosystem. Decentralization ensures
no central body controls all processes, strengthening scalability
and flexibility. Openness makes all Gaia-X components visible
and accessible. A central element is the federation services,
which include identity and trust management and support the
federated catalogue to find suitable providers and services [11].
Providers register self-descriptions transferred as linked data
into a knowledge graph so that users can query and filter
them [11]. The Gaia-X Trust Framework also ensures security
and compliance so all participants can operate in a protected
environment [11]. A Trust Anchor instance acts as the issuing
authority for digital identities [12] and confirms the identity
of persons, organizations and devices [13]. These identities
are based on the Self-Sovereign Identity (SSI) concept, which

allows users to manage their digital credentials without central
services [13]. An SSI wallet enables the secure storage of
identity data and direct, trustworthy exchange.

D. Data encryption and splitting
Encryption and splitting techniques have long been essential

for secure data distribution. Modern approaches, such as
threshold cryptography and Content-Defined Chunking(CDC),
aim to reduce single points of failure and permit partial
reassembly only by authorized users. However, these solutions
typically focus on data at rest within specialized storage
systems and do not adequately consider interactions with ex-
ternal clouds or global consortia like Gaia-X. Additionally, the
complexities of key management and vulnerabilities related to
side channels, such as deduplication leaks, further complicate
their implementation in real-world scenarios.However, most of
these approaches focus solely on data security measures and do
not fully address how to integrate external cloud infrastructures
or handle large-scale federation requirements (e.g. in Gaia-X
scenarios) [1][6]. Many solutions rely on a single blockchain
domain, leaving a gap in unified, end-to-end architectures that
connect on-chain trust mechanisms with off-chain systems.
Current research highlights the potential of Hyperledger Fabric
for secure, tamper-proof data management and the capabilities
of Gaia-X for federated trust and service discovery. However,
few comprehensive approaches integrate these two technolo-
gies to create a unified architecture. Specifically, such an
architecture should provide on-chain trust, align with Gaia-X’s
identity and trust framework, and incorporate strong encryp-
tion and data segmentation for sensitive information. Our work
addresses this gap by proposing an integrated solution that
connects Fabric and Gaia-X while leveraging best practices in
data protection for scalable, multi-stakeholder scenarios.

III. CONCEPTUAL MODEL

A. Requirements
Integrating a private Hyperledger blockchain into secure

data infrastructures in the context of Gaia-X requires both
functional and non-functional requirements, focusing on data
security, scalability, data splitting and reunification. Func-
tionally, the system must protect data during storage and
transmission using modern encryption methods by splitting it
into smaller, encrypted units before distribution to different
nodes and securely reuniting it later. Non-functionally, it
must be ensured that the system remains performant even
with an increasing number of transactions and participants by
distributing efficient, decentralized storage across a network
and, at the same time, acting interoperably with the Gaia-X
Trust Framework, which enables access for all users with a
Gaia-X identity.

B. Proposed Architecture
The proposed architecture is built on a private Hyperledger

Fabric blockchain, which is accessible through the Gaia-X
Trust Framework for all participants who possess a valid Gaia-
X identity. This architecture adopts a multi-layered approach.
The following Figure 1 illustrates the architecture.

59Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 71 / 136

Figure 1. Hyperledger-GaiaX-Architecture

1) Decentralized Storage Layer: At the base, raw data is
first secured using symmetric encryption. Following encryp-
tion, a threshold cryptography approach—employing Shamir’s
Secret Sharing—is applied to fragment the encrypted data
into n pieces, where only a subset (k-out-of-n) is required
for complete reassembly [14]. This layer guarantees that even
if individual fragments are compromised, they alone reveal no
sensitive information.

2) Distributed storage layer: The fragmented data is then
distributed across a network of decentralized nodes within
the Hyperledger Fabric framework. Each peer stores only a
portion of the total data, reducing the risk of a complete data
breach. Integrity is maintained by employing cryptographic
hash functions (e.g., SHA-256) to monitor that fragments
remain unaltered during storage.

3) Smart contract and Reassembly layer: Smart contracts,
implemented as chaincode, serve as the control centre for
data reassembly. These smart contracts are programmes that
automatically check whether all the necessary conditions have
been met - similar to an automated system that only acts once
all the security checks have been passed [9]. In our approach,
they ensure that all necessary data fragments are present
and intact and that the requesting user has the necessary
authorisations before the reassembly process is started. By
automatically initiating and managing the reassembly process,
smart contracts ensure that only fully verified and authorised
reassembly events occur, thereby tightly coupling the fragmen-
tation and storage layers with the access control mechanism.

4) Authentication and Interoperability layer: This layer
collaborates with the Gaia-X connector, the communication

layer, to facilitate optimized, standards-based authentication.
The connector performs external identity checks using de-
centralized identifiers (DIDs) and verifiable credentials (VCs)
from the Gaia-X ecosystem [1]. Meanwhile, this layer man-
ages internal policy enforcement and session management.
Once the connector verifies a Gaia-X identity, the authen-
tication layer can assign it to local roles or authorizations
and oversee tasks, such as renewing approvals or reassigning
keys. This system ensures that only entities with valid Gaia-X
credentials, confirmed by the connector, are granted access to
data and the reassembly processes.

5) Communication layer: All layers are interconnected
through a secure communication infrastructure that utilizes
protocols, such as TLS and VPN. This setup ensures that
all data exchanges between processing nodes, storage nodes,
smart contracts, and authentication systems occur over en-
crypted channels, protecting against unauthorized interception
or tampering. Additionally, the Gaia-X connector, responsible
for processing all incoming and outgoing requests to the
Gaia-X ecosystem, is defined within this layer. The connector
verifies the identity of external participants to ensure that only
authorized data exchanges occur. It also serves as a protocol
bridge by adapting internal data formats and processes to
maintain interoperability with Gaia-X standards. This layer
consolidates all network communication—including secure
node-to-node interaction and external Gaia-X requests—to
ensure consistent encryption, manage potential VPN segments,
and prevent the unauthorized interception or tampering of
sensitive data.

6) Interlayer Interactions and Data Flow: The Commu-
nication Layer receives an incoming request to store data at
the initial stage. This layer verifies the request and forwards
it to the Authentication and Interoperability Layer, where
the requester’s credentials are validated. Upon successful au-
thentication, the request is forwarded to the Smart Contracts
and Reassembly Layer, where smart contracts are triggered
to initiate the data processing pipeline. The Data Processing
and Fragmentation Layer then encrypts the raw data using
symmetric encryption techniques and partitions it into secure
fragments using Shamir’s Secret Sharing. These encrypted and
fragmented data pieces are subsequently distributed across
the Distributed Storage Layer, ensuring that each storage
node holds only a portion of the fragmented data alongside
cryptographic hashes for integrity verification. When an access
request is made to retrieve stored data, the Communication
Layer first receives the request and forwards it to the Authen-
tication and Interoperability Layer for identity verification. The
request moves forward if the requester is authorized to access
the requested data. The Smart Contracts and Reassembly Layer
then autonomously verifies the required fragments’ presence
and integrity before triggering the reassembly process. The
required encrypted data fragments are retrieved from the
Distributed Storage Layer and reassembled, ensuring data
integrity. The reassembled encrypted data is then securely
transmitted to the requester. Throughout these stages, the
Secure Communication Infrastructure ensures that all inter-

60Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 72 / 136

layer data exchanges are protected by protocols, such as TLS,
thereby maintaining confidentiality and preventing tampering.
This structured approach ensures data storage and retrieval
under strictly verified and secure conditions.

IV. DISCUSSION

The proposed model is built on a private Hyperledger Fabric
blockchain and utilizes the Gaia-X Trust Framework to facili-
tate secure, decentralized data storage. While it introduces sev-
eral approaches, it also brings forth critical issues that warrant
discussion in current research. One of the key advantages of
this model is its combination of data encryption, secret sharing,
and distributed storage. The model achieves robust security by
employing AES-256 alongside Shamir’s Secret Sharing. This
ensures that complete data is not disclosed even if individual
nodes are partially compromised, significantly reducing the
risk of data leaks and providing mathematically sound secu-
rity. Additionally, the decentralized storage of data fragments
enhances resilience and scalability, as the load is distributed
across multiple nodes. The Gaia-X Trust Framework estab-
lishes W3C Verifiable Credentials and self-descriptions as es-
sential components for creating interoperable identity and ac-
cess controls within Gaia-X ecosystems [12]. This ensures that
only participants with a validated Gaia-X identity can access
the system, promoting security, transparency, and traceability
of data access within a federated ecosystem. This model en-
counters several significant challenges. Lessons learned so far
indicate that integrating hybrid encryption and secret-sharing
mechanisms is complicated and requires careful coordination
to prevent performance bottlenecks or potential security vul-
nerabilities. In real-time applications, cryptographic operations
can drastically impact throughput and scalability as the number
of participants increases. Interoperability is also a critical
concern; differing implementations and standard versions can
result in practical inconsistencies. Furthermore, developing
smart contracts for the secure reassembly of fragmented data
is a complex task. Recent blockchain research has highlighted
considerable security risks associated with insufficiently val-
idated smart contract code, underscoring the importance of
thorough testing and formal verification. In terms of future use
cases, potential domains include Healthcare, enabling secure
patient record exchange and real-time collaboration among
hospitals, although large file sizes may require specialized
data-splitting and off-chain indexing solutions; Supply Chain,
verifying product provenance across multiple organizations,
where Gaia-X can standardize participant identity while Fabric
ensures transaction immutability and private data channels;
and Automotive Mobility Services, supporting distributed
sensor data or usage-based insurance under a federated yet
privacy-preserving environment. By providing more technical
details on these potential domains, we clarify how advanced
encryption, threshold cryptography, and trusted identities inter-
act in real multi-stakeholder ecosystems. Ultimately, bridging
the gap between blockchain’s decentralized trust model and
Gaia-X’s federated governance will pave the way for scalable
and secure data spaces.

V. CONCLUSION AND FUTURE WORK

This approach introduces a theoretical concept for integrat-
ing a private Hyperledger Fabric blockchain into the Gaia-X
ecosystem. The proposed approach employs hybrid encryption,
secret sharing, and decentralized storage to guarantee high lev-
els of data security and sovereignty. Throughout the research,
the following questions were specifically addressed:

i Compatibility between blockchain and Gaia-X was estab-
lished through a multi-layered architecture, facilitating the
storage and secure reassembly of encrypted, fragmented
data using smart contracts.

ii Necessary security measures for ensuring integrity and
confidentiality—including AES-256 encryption, Shamir’s
Secret Sharing, and cryptographic hashes—were defined

iii Opportunities, such as increased digital sovereignty and
enhanced interoperability, and challenges, like perfor-
mance limitations, complex smart contract validations, and
interoperability constraints, were identified and discussed.

This integrated approach provides a strong foundation for
building high-assurance federated ecosystems. However, the
lessons learned emphasize the importance of thorough testing,
rigorous performance optimization, and formal verification of
chain code to address the complexities identified during the
initial theoretical analysis. Future expansions of this research
will include extended pilot projects involving various domain
partners, deeper evaluations based on metrics, such as latency
with large participant pools, targeted performance enhance-
ments, rigorous validation of smart contracts, and ongoing
standardization of cryptographic operations within the Gaia-
X environment. Practical validation and empirical studies will
be essential to confirm whether current security, performance,
and interoperability expectations are fully met or require
adjustments.

ACKNOWLEDGEMENTS

This paper was written as part of the project GAIA-X
4 Advanced Mobility Services in the project family Future
Mobility funded by the Federal Ministry of Economics and
Climate Protection (BMWK).

REFERENCES

[1] G.-X. H. Austria, Building a dataspace: Technical
overview, Available from https://www.gaia- x.at/wp-
content/uploads/2023/04/WhitepaperGaiaX.pdf, 2023.
(retrieved: 2025-03-04).

[2] F. Salzano, L. Marchesi, R. Pareschi, and R. Tonelli,
“Integrating blockchain technology within an informa-
tion ecosystem,” Blockchain: Research and Applica-
tions, vol. 5, no. 4, p. 100 225, 2024, Available from
https : / / www . sciencedirect . com / science / article / pii /
S2096720924000381, ISSN: 2096-7209. DOI: https : / /
doi.org/10.1016/j.bcra.2024.100225.

61Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 73 / 136

[3] N.Arunkumar and P.Sivaprakasam, “Blockchain tech-
nology in data management,” in 2020 Fourth Inter-
national Conference on Computing Methodologies and
Communication (ICCMC), 2020, pp. 199–206. DOI: 10.
1109/ICCMC48092.2020.ICCMC-00039.

[4] D. V. Dimitrov, “Blockchain applications for healthcare
data management,” Healthcare Informatics Research,
vol. 25, pp. 51–56, 2019, Available from https: / /api .
semanticscholar . org / CorpusID : 67771752. (retrieved:
2025-03-04).

[5] M. Hasnain, F. R. Albogamy, S. S. Alamri, I. Ghani, and
B. Mehboob, “The hyperledger fabric as a blockchain
framework preserves the security of electronic health
records,” Frontiers in Public Health, vol. 11, 2023,
Available from https : / / api . semanticscholar . org /
CorpusID:265576007. (retrieved: 2025-03-04).

[6] S. Wong, J.-K.-W. Yeung, Y.-y. Lau, T. Kawasaki, and
R. Kwong, “A critical literature review on blockchain
technology adoption in supply chains,” Sustainability,
2024, Available from https://api.semanticscholar.org/
CorpusID:270607203. (retrieved: 2025-03-04).

[7] W. Gao, X. Hei, and Y. Wang, “The data privacy protec-
tion method for hyperledger fabric based on trustzone,”
Mathematics, vol. 11, no. 6, 2023, Available from https:
//www.mdpi.com/2227-7390/11/6/1357, ISSN: 2227-
7390. (retrieved: 2025-03-04).

[8] A. Shukla, P. Jirli, A. Mishra, and A. K. Singh, “An
overview of blockchain research and future agenda:
Insights from structural topic modeling,” Journal of
Innovation Knowledge, vol. 9, no. 4, p. 100 605, 2024,
Available from https://www.sciencedirect.com/science/
article / pii / S2444569X24001446, ISSN: 2444-569X.
DOI: https : / / doi . org / 10 . 1016 / j . jik . 2024 . 100605.
(retrieved: 2025-03-04).

[9] E. A. et al., “Hyperledger fabric: A distributed operating
system for permissioned blockchains,” in Proceedings
of the Thirteenth EuroSys Conference, ser. EuroSys ’18,
Porto, Portugal: Association for Computing Machinery,
2018, pp. 1–15, ISBN: 9781450355841. DOI: 10.1145/
3190508.3190538.

[10] T. Coenen et al., “Gaia-X and European Smart Cities
and Communities,” Gaia-X, White Paper, Oct. 2021,
Version 21.09.

[11] “Gaia-x Architecture Document - 22.04 Release,” Gaia-
X, Architecture Documentation, version 22.04, Apr.
2022.

[12] “Gaia-X Trust Framework - main version (fb420580),”
Gaia-X, 2022, Available from https://gaia-x.gitlab.io/
policy-rules-committee/trust-framework/trust%5Fanch
ors/. (retrieved: 2025-03-04).

[13] B. Maier and N. Pohlmann, “Gaia-X Secure and Trust-
worthy Ecosystems with Self Sovereign Identity,” Gaia-
X European Association for Data and Cloud AISBL,
White Paper, 2022.

[14] A. Shamir, “How to share a secret,” Communications
of the ACM, vol. 22, no. 11, pp. 612–613, 1979.

62Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 74 / 136

PERTD - Cloud Application Threat Modeling

Aspen Olmsted

School of Computer Science and Data Science

Wentworth Institute of Technology

Boston, MA 02115

olmsteda@wit.edu

Abstract— This research work investigates the problem of

developing secure cloud software applications. Currently,

proposed solutions focus on data flow across so-called trust

boundaries. The challenge with the current approach is that many

of our applications' threats are not from malicious users. Many

threats come from poor design, misunderstanding of use cases, and

a lack of planning for environmental changes. This research

focuses on the challenges of developing secure cloud software

applications through a modeling process that allows us to identify

risks to the cloud software during the design phase and implement

strategies to mitigate those risks in the coding and implementation

phase.

Keywords- cyber-security; software engineering; software

development lifecycle

I. INTRODUCTION

Secure software development stands at the intersection of
innovation and protection, emphasizing the design,
implementation, and maintenance of software systems with a
robust focus on security. By embedding security measures and
best practices throughout the development lifecycle, we can
transform vulnerabilities into resilient defenses against potential
threats. Here are some inspiring research areas in secure
software development:

1. Secure Coding Practices: This area champions identifying
and promoting vital coding techniques that empower developers
to write secure code. By exploring common programming errors
and vulnerabilities, we can equip ourselves with tools like static
code analysis and automated vulnerability detection, paving the
way for robust software security.

2. Threat Modeling: In a proactive approach, threat modeling
illuminates potential threats and vulnerabilities early in
development, giving you a sense of preparedness and control.
This research area enables developers to refine their techniques
and effectively chart pathways to improved security through
tools like attack tree analysis and risk assessment
methodologies.

3. Security Testing: Evaluating software for weaknesses
becomes a quest for excellence, driving us to improve
constantly. Innovative techniques such as penetration testing and
fuzz testing serve as guardians of security, while automated
processes revolutionize how we ensure the integrity of our
software systems.

4. Secure Software Architectures: Research in this field
aspires to design architectures that withstand attacks,
safeguarding sensitive information with secure component
integration and effective communication protocols.

5. Secure Software Development Processes: Methodologies
become a fortress by embedding security at every stage of the
software development lifecycle, from requirements engineering
to incident response planning, forming an unshakeable
foundation of trust.

6. Secure DevOps and Agile Development: In the fast-paced
realms of DevOps and agile methodologies, research navigates
the exciting intersection of speed and security, integrating
practices that ensure rapid innovation without compromise.

7. Secure Software Analytics: This area of research uncovers
patterns and anomalies in software-related data, harnessing the
power of machine learning and data mining to predict
vulnerabilities and bolster our defenses.

8. Security Education and Training: Elevating security
education for developers transforms knowledge into action,
fostering a culture of security awareness that resonates within
software development teams.

These research areas advance secure software development

and inspire a collective drive to protect our digital world and

mitigate risks associated with cyber threats and attacks. Our

paper's focus on threat modeling is a call to action, aiming to

reduce risks to software functionality, regardless of the source of

potential danger.

 The organization of the paper is as follows. Section II

describes the related work and the limitations of current

methods. Section III describes workflow engines used in our

motivating example of a distributed cloud application. Section

IV discusses a current Threat Modeling technique called

STRIDE. Section V discusses an alternative Threat modeling

technique called DREAD. In Section VI, we give a motivating

example from our study. Section VII describes our modeling

methodology. We conclude and discuss future work in Section

VIII.

II. RELATED WORK

Functional requirements can be defined and represented in
various ways. While these requirements serve as the foundation
for software development, non-functional requirements (NFRs)
provide the essential guidelines for coding implementation.
Many authors have examined NFRs and the challenges of
incorporating them into the design process. Pavlovski and Zou
[1] NFRs are defined as specific behaviors and operational
constraints, including performance expectations and policy
limitations. Despite many discussions surrounding them, they
are often not given the attention they deserve.

Glinz [2] suggests categorizing functional and non-
functional requirements to ensure their groups are inherently
considered during application development. Alexander [3]
points out that the language used to describe requirements is
essential, noting that words ending in “-ility,” such as reliability
and verifiability, often refer to NFRs. Much of this research
focuses on identifying NFRs. Our work builds on these
foundations by applying domain-specific models using our
proposed modeling technique.

63Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 75 / 136

Ranabahu and Sheth [3] explore four different modeling
semantics to represent cloud application requirements: data,
functional, non-functional, and system. Their work primarily
addresses functional and system requirements, with some
overlap in non-functional requirements from a system
perspective. They built upon research conducted by Stuart, who
defined semantic modeling languages for modeling cloud
computing requirements throughout the three phases of the
cloud application life cycle: development, deployment, and
management. Our work fills in the gap regarding the semantic
category of non-functional requirements.

Ranabahu and Sheth [3] use Unified Modeling Language
(UML) to model only functional requirements. UML [5] is a
standardized notation for representing software systems'
interactions, structures, and processes. It consists of various
diagram types, with individual diagrams linked to different
perspectives of the same part of a software system. We utilize
UML to express non-functional requirements as a secondary
step following the PERTD models.

Integrating UML Sequence, Activity, and Class diagrams
can enhance the semantics of our models. UML offers
extensibility mechanisms that allow designers to add new
semantics to a model. One such mechanism is a stereotype,
which helps extend the vocabulary of UML to represent new
model elements. Traditionally, software developers interpret
these semantics and manually translate them into program code
in a hard-coded manner. In our book [6], we marry the models
generated by each phase of the software development lifecycle
into with threat modeling and risk mitigation techniques.

The Object Constraint Language (OCL) [7] is part of the
official Object Management Group (OMG) standard for UML.
An OCL constraint specifies restrictions for the semantics of a
UML specification and is considered valid as long as the data is
consistent. Each OCL constraint is a declarative statement in
the design model that signifies correctness. The expression of
the constraint occurs at the class level, while enforcement
happens at the object level. Although OCL has operations to
observe the system state, it does not include functions to modify
it.

JSON [8] stands for "JavaScript Object Notation," a simple
data interchange format that began as a notation for the World
Wide Web. Since most web browsers support JavaScript, and
JSON is based on JavaScript, it is straightforward to support
there, which stands for "JavaScript Object Notation," a simple
format used for data interchange that originated as a notation
for the World Wide Web. Since most web browsers support
JavaScript and JSON is based on JavaScript, it is easy to work
with in web environments. Many cloud-based web services now
exchange data in JSON format. JSON Schemas [9] define
correctness for data passed in JSON format. We utilize an
extended form of JSON schemas on the aggregated data from
several web services.

Our contribution to secure software development for cloud
applications involves a new Threat Modeling technique,
coupled with modeling standards, such as UML and OCL,
utilizing their extensibility mechanism of stereotypes to model
non-functional requirements effectively. We allow for an
aggregated JSON Schema with our extensions to validate the
combined data format.

III. WORKFLOW ENGINES

Workflow engines like Zapier [10] and Power Automate

[11] are powerful automation tools that enable users to create

and manage workflows for integrating and automating tasks

across various applications and services, whether in the cloud

or on-premises.

Zapier is a popular cloud-based automation platform that

allows users to connect to different web applications and

automate their workflows. It operates on a simple "trigger-

action" model, where an event in one application triggers an

action in another. Users can create "Zaps" (automated

workflows) by selecting a trigger and defining the subsequent

actions. For example, when a new email arrives in Gmail

(trigger), the attachments can be automatically saved to Google

Drive (action).

Zapier supports numerous apps and services, including

well-known ones like Gmail, Slack, Salesforce, and Trello. It

features a user-friendly interface, pre-built Zap templates for

everyday use cases, and advanced options like filters, delays,

and data transformations. Additionally, Zapier allows for multi-

step Zaps, making it possible to create complex workflows with

multiple actions and conditions.

Power Automate is a cloud-based service from Microsoft

that allows users to automate workflows and integrate

applications and services within the Microsoft ecosystem and

beyond. It offers connectors for various applications, including

Microsoft 365 apps (such as Outlook and SharePoint),

Dynamics 365, Azure services, and third-party services like

Salesforce, Dropbox, and Twitter.

Power Automate features a visual design interface where

users can create workflows by combining triggers, actions, and

conditions. Available triggers include email arrivals, button

clicks, data changes, and scheduled events. Actions can involve

sending emails, creating tasks, updating records, etc. Power

Automate offers advanced capabilities like loops, parallel

branches, and approval processes.

Both Zapier and Power Automate provide extensive

libraries of pre-built templates and connectors, making it easier

for users to begin automating tasks. They offer options to

monitor and manage workflows, handle errors, and track

activity logs. These platforms cater to users with varying

technical expertise, from business users to developers, and help

automate repetitive tasks, streamline processes, and enhance

productivity.

IV. STRIDE THREAT MODELING

STRIDE [12] is a threat modeling framework that offers a

structured approach for identifying and analyzing threats in

software systems. It aids security practitioners and developers

in understanding potential risks and implementing appropriate

security controls. STRIDE is an acronym representing six

categories of threats:

1. Spoofing Identity: This category involves attackers

impersonating legitimate users or entities to gain unauthorized

access or deceive the system. For instance, attackers may spoof

64Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 76 / 136

a user's identity by stealing credentials or manipulating

authentication mechanisms.

2. Tampering with Data: Tampering threats involve the

unauthorized modification or alteration of data within the

system. Attackers may tamper with data in transit, modify

stored data, or manipulate system parameters to achieve desired

outcomes. For example, an attacker could alter the contents of

a database, inject malicious code into an application, or change

parameters to bypass security checks.

3. Repudiation: Repudiation threats allow users to deny

their involvement in specific transactions or activities, posing

challenges for auditing and accountability. For instance, an

attacker might modify logs or manipulate transaction records to

evade detection or deny their actions.

4. Information Disclosure: This category addresses threats

related to unauthorized exposure or disclosure of sensitive

information. Attackers may exploit vulnerabilities to access

confidential data, such as personal information, financial

records, or intellectual property. This can happen through

insecure data transmission, weak access controls, or

information leakage via error messages.

5. Denial of Service: Denial of Service (DoS) threats aim to

disrupt or degrade a system's availability or performance.

Attackers may overload resources, exhaust system capacity, or

exploit vulnerabilities to cause a service outage, rendering the

system unresponsive or unusable for legitimate users.

6. Elevation of Privilege: Elevation of Privilege threats

involve attackers gaining unauthorized access to higher

privileges or permissions than they should have. By exploiting

vulnerabilities or design flaws, attackers can bypass security

controls and gain elevated access rights, leading to

unauthorized data access, system compromise, or further

exploitation.

When applying the STRIDE framework, security

practitioners and developers analyze the software system from

the perspective of each threat category. They identify potential

vulnerabilities and develop corresponding mitigation strategies

to address the threats. This analysis facilitates informed

decisions regarding security controls, system design

improvements, and the prioritization of security efforts.

V. DREAD THREAT MODELING

DREAD is a threat modeling framework designed to assess

and prioritize software vulnerabilities based on their potential

impact. The acronym DREAD stands for five key factors used

to evaluate threats:

1. Damage Potential: This factor refers to the extent of harm

that could be caused if a vulnerability is exploited. It evaluates

the impact, which can range from minor inconveniences to

severe consequences like data breaches, system compromises,

or financial losses.

2. Reproducibility: This measures how easily an attacker

can reproduce or exploit a vulnerability. Vulnerabilities that are

consistently easy to exploit are considered more dangerous than

those that require complex or unpredictable conditions for

exploitation.

3. Exploitability: This factor assesses the level of skill or

effort needed to exploit a vulnerability. Vulnerabilities easily

exploited with readily available tools or techniques pose a

higher risk. Conversely, vulnerabilities that are difficult to

exploit or require specialized knowledge are considered lower

risk.

4. Affected Users: This evaluates the number of users or

systems a vulnerability could impact. A vulnerability affecting

numerous users or critical systems is considered more

significant than one impacting only a limited subset of users.

5. Discoverability: This assesses how likely an attacker is to

find the vulnerability. Vulnerabilities that are easily

discoverable—through public disclosures, known attack

techniques, or automated scanning tools—are riskier than those

that are harder to find or require advanced reconnaissance.

Using the DREAD framework, each factor is scored on a

scale from 0 to 10, with 0 being the least concerning and ten

being the most critical. These scores help prioritize

vulnerabilities and allocate resources for mitigation efforts.

Higher scores indicate a higher priority for addressing the

identified vulnerabilities.

While DREAD is a valuable tool for assessing and

prioritizing vulnerabilities based on their potential impact, it

should be used alongside other threat modeling techniques and

considerations to ensure a comprehensive security analysis and

informed decision-making.

VI. MOTIVATING EXAMPLE

The challenge with the STRIDE and DREAD threat models

is that they primarily focus on vulnerabilities associated with

malicious user activities. However, many risks arise from

architecture, the environment, or human error.

Consider a common architecture used by many businesses

today: data generated by an online transaction processing

(OLTP) system, either stored on-premises or logically on-

premises, is synchronized to a cloud system considered off-

premises and beyond the organization's control. This scenario

is not uncommon in today's business landscape.

Consider a large performing arts venue employing a local

SQL Server-based system for ticketing and donation

transactions. Meanwhile, its marketing department uses a

cloud-based email and SMS marketing system. The OLTP data

TABLE 1 - UPLOAD ACTIVITY STRIDE MODEL

Action S T R I D E

Timerfires

PrepareDataForUpload

SendData X X X X

ReceieveData

LoadData

BuildViews

65Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 77 / 136

must be extracted, translated, uploaded, and loaded regularly

for the marketing system to function correctly.

Various issues can arise when multiple processes and data

are transferred across networks that span domain boundaries. A

UML activity diagram illustrates the steps involved in moving

data from the on-premises OLTP system to the cloud-based

system used by the marketing team. This model shows that

activities occur in both environments. The challenge with the

STRIDE and DREAD threat models is that the vulnerabilities

modeled and the matching remediations target malicious user

activities. Many times, risks come from architecture,

environment, or human error.

A motiving example is an architecture that is used in many

businesses today where data that is generated in OLTP systems

that are either stored on-premises or logically on-premises is

synchronized to a cloud system that is considered off-premises

and outside the domain of control of the organization. To

understand this better, consider a large performing arts venue

that utilizes a local SQL Server-based system to process

ticketing and donation transactions. The marketing department

uses a cloud-based system for email and SMS marketing. The

OLTP data must be extracted, translated, uploaded, and loaded

regularly for the marketing system to be functional.

Understanding the data transfer process is crucial to prevent

potential risks. Figure 1 shows a UML activity diagram

executed to move data from the OLTP system on-premises to

the system in the cloud used by the marketing folks. In the

model, you will see that activities happen in both partitions.

Figure 2 presents a model that outlines the execution path
when data is retrieved from the cloud system. The data includes
sending activity for both emails and SMS text messages. This
sending activity can be substantial, encompassing tuples for
sends, opens, clicks, and bounces. Additionally, information

regarding communication preferences and unsubscribed data is
retrieved.

The marketing department requires service availability and
data integrity for its business operations. For instance, NFRs
could specify that the system must be available 99.999% of the
time or that the data must be no more than 24 hours old.
Whenever a distributed system is proposed, a model should be
developed to represent these NFRs and the threats to the system's
ability to meet them.

Unfortunately, the focus of STRIDE and DREAD on
malicious users does not adequately address many of the risks in
our motivating example. Table 1 illustrates a STRIDE model
corresponding to the update activity depicted in Figure 1, while
Table 2 shows the STRIDE model related to the download
activity from Figure 2. In the STRIDE model, actions are at risk
from malicious users; however, many steps are also vulnerable
to environmental issues that can impact the system's availability
and integrity. Examples of these issues include network and
system outages, concurrent computational usage on equipment,
and lack of control of the quality of source data.

VII. PERTD MODEL

We developed the PERTD Model to assess better the risks
associated with distributed applications. This model addresses
four main environmental risk categories for distributed systems:

1. Partition

Activities vulnerable to partition errors will fail if a network
is partitioned between on-premises devices and the cloud. Risk
reduction strategies include:

- Pausing the complete workflow and retrying

- Utilizing previous execution data

- Employing alternative data sources

2. Execution

Activities that are susceptible to execution errors may fail
due to ambiguous code requirements, which can lead to runtime
or tooling errors. For example, queries that generate data might
fail with future datasets. Risk reduction measures include:

- Utilizing previous execution data (most systems create a
copy before execution)

- Using alternative data sources

3. Requisite

Figure 2 - Download Activity

TABLE 2 - DOWNLOAD ACTIVITY STRIDE MODEL

Action S T R I D E

Timerfires

PrepareDataForDownload

SendData X X X X

ReceieveData

LoadData

Figure 1 - Upload Activity

66Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 78 / 136

Activities with requisite vulnerabilities depend on
prerequisite activities. If a prerequisite fails, the dependent
activity becomes stale. Risk reduction can involve:

- Utilizing previous execution data

- Employing alternative data sources

4. Timing

Activities at risk due to timing need to finish within a
specific time window or under a threshold duration. Risk
reduction strategies include:

- Utilizing previous execution data (most systems create a
copy before execution)

- Using alternative data sources

5. DATA

Activities are at risk due to data often being combined from
different sources. Unfortunately, schema correctness specifiers
only apply to one data source. Risk reduction strategies include:

- Additional workflow steps to verify correctness

In Tables 3 and 4, we apply our PERTD model to analyze
the risks related to uploading and downloading activities. The
PERTD model captures significantly more risks than the
STRIDE model.

After identifying NFRs in the PERTD model, we develop
standard UML Class, Sequence, and Activity Diagrams. The
threats to the system are modeled using UML stereotypes. UML
stereotypes extend the standard UML language by introducing
custom or specialized elements, properties, and behaviors. They
allow the addition of domain-specific annotations, constraints,
or semantics to UML elements, enhancing expressiveness and
tailoring modeling for specific contexts. Stereotypes are
indicated by guillemets (<< >>) placed above the name of the
stereotyped element.

Stereotypes can be attached to classes, messages, attributes,
and activities. With the PERTD model, we incorporated the
four risk categories as stereotypes: <<PARTITION>>,
<<EXECUTION>>, <<REQUISITE>>, <<TIMING>> and
<<DATA>>. These stereotypes are then tagged to messages in
UML Sequence and Activity diagrams, while data classes and

individual attributes can also be tagged if they are susceptible
to these risks.

Additionally, OCL is included to specify invariants that can
define additional semantics related to the correctness of method
calls, classes, or attributes. For instance, if data in a particular
class must be no older than three days, this can be expressed
using the last_update attribute.

To verify data from when it is vulnerable, we utilize an
extended version of JSON Schemas [9]. Our extension allows
the Schema to reference different data sources. JSON schema
supports a CONTAINS operator to verify the existence of an
element in a collection. We added a CONTAINEDIN operator
to span across schemas represented by different data sources in
the distributed system. We also added a NOTCONTAINEDIN
to verify the absence of an element. Figure 3 shows two sample
schemas. The top schema is a simplified version of a patron,
the bottom schema is a simplified version of a ticket. They
share an email field which is designated in the tickets schema
to require the existence in the patron data.

Figure 3 - Sample Schema

To mitigate the risk of data integrity issues, we validate the data

against the specified schemas as part of the data workflow.

TABLE 4 - UPLOAD ACTIVITY PERTD MODEL

Action P E R T D

Timerfires X

PrepareDataForUpload X

SendData X X X X

ReceieveData X X X X

LoadData X X X X

BuildViews X X

TABLE 3 - DOWNLOAD ACTIVITY PERTD MODEL

Action P E R T D

Timerfires X

PrepareDataForDownload X

SendData X X X X

ReceieveData X X X X

LoadData X X X

67Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 79 / 136

VIII. CONCLUSIONS AND FUTURE WORKS

In this work, we provide a modeling methodology to handle

issues in cloud software development related to NFRs in

distributed systems. We show that in this work, we present a

modeling methodology aimed at addressing issues related to

NFRs in distributed systems during software development. Our

PERTD model enables us to identify significantly more fine-

grain risks associated with distributed systems. Additionally,

we have enhanced the modeling of functional requirements by

employing UML stereotypes to represent the NFRs identified in

the PERTD model. Future work will incorporate code

generation to mitigate the risks identified and modeled

throughout this process. Utilizing our PERTD model makes

identifying many more risks to a distributed system possible.

We extended the modeling of functional requirements by using

UML stereotypes to model the NFRs identified in the PERTD

model. Implementation of cross-data source validation is

provided to ensure data integrity. In our future work, we will

add code generation to reduce the risks identified and modeled

in the process.

REFERENCES

[1] C. J. Pavlovski and J. Zou, "Non-functional requirements in business
process modeling," Proceedings of the Fifth on Asia-Pacific Conference

on Conceptual Modelling, vol. 79, pp. 1-10, 2008.

[2] M. Glinz, "Rethinking the Notion of Non-Functional Requirements,"
Third World Congress for Software Quality, Munich, Germany, pp. 1-

10, 2005.

[3] Alexander, I, "Misuse Cases Help to Elicit Non-Functional

Requirements," Computing & Control Engineering Journal, 14, 40-45,

pp. 1-10, 2003.

[4] R. Ajith and A. Sheth, "Semantic Modeling for Cloud Computing, Part
I," Computing, vol. May/June, pp. 81-83, 2010.

[5] Object Management Group, "Unified Modeling Language:

Supersturcture," 05 02 2007. [Online]. Available:
http://www.omg.org/spec/UML/2.1.1/. [Accessed 20 Feb 2025].

[6] A. Olmsted, Security-Driven Software Development: Learn to analyze

and mitigate risks in your software projects, Birmingham, UK: Packt
Publishing, 2024.

[7] Object Management Group, "OMG Formally Released Versions of

OCL," 02 2014. [Online]. Available: http://www.omg.org/spec/OCL/.
[Accessed 20 02 2025].

[8] JSON.org, "Introducing JSON," 2024. [Online]. Available:

https://www.json.org/json-en.html. [Accessed 20 Feb 2025].

[9] Open Collective, "JSON Schema," 2024. [Online]. Available:

https://json-schema.org/. [Accessed 20 Feb 2025].

[10] Zapier Inc., "Automate without limits," 2024. [Online]. Available:
https://zapier.com/. [Accessed 20 Feb 2025].

[11] Microsoft, "Power Automate," 2024. [Online]. Available:

https://www.microsoft.com/en-us/power-platform/products/power-
automate. [Accessed 20 Feb 2025].

[12] R. Khan, D. Laverty, D. McLaughlin and S. Sezer, "STRIDE-based

threat modeling for cyber-physical systems,," in 2017 IEEE PES
Innovative Smart Grid Technologies Conference Europe (ISGT-

Europe), Turin, Italy, 2017.

68Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 80 / 136

Trends for Pulling HPC Containers in Cloud

Vanessa Sochat
Lawrence Livermore National Laboratory

e-mail: sochat1@llnl.gov

Abstract—Container technologies are foundational for cloud
orchestration and have captured the interest of the High Per-
formance Computing (HPC) community. While much work has
been done to demonstrate that there is no additional overhead
when using a container technology, strategies for building and
pulling scientific containers to cloud environments and the cost
implications of those choices have not been fully studied. Due
to the importance and predominance in the ecosystem, consid-
erations that minimize the time of operations, such as pulling
and staging, are essential. This understanding and innovation
in the space is becoming more important as more scientific
applications are ported to cloud environments. In this study,
we first aim to understand the landscape of containerized
scientific applications, assembling a sample of more than 77K
Dockerfile recipes discovered from repositories in a research
software engineering database and across a set of well-known
machine learning organizations. We assess these data for trends
in building strategy and resulting containers, and show that
applying best practices to a set of 10 application containers can
lead to improvements in layer redundancy and thus lower time
and cost to use the set. Finally, we develop a simulation tool that
creates containers for controlled experiments that vary the total
size, and the number and size of layers. With this tool, we run an
experimental study that varies layer size and count across several
scales to better understand the trade-off between layer count and
size and the subsequent cost. In this experimental work, we find
that total image size is a dominating variable during provisioning,
and that strategies to improve I/O and enable lazy loading of
images can lead to improvements of 3-15x. This work is valuable
to inform the HPC community moving to the cloud about best
practices for building and pulling containers.

Keywords-cloud; containers; Kubernetes; HPC; trends.

I. INTRODUCTION

Capturing application logic in containers is a strategy to
ensure reproducibility and automation of modern workflows
[1]. The dominant force of cloud, and specifically container
orchestration in cloud [2], has further incentivized the High
Performance Computing (HPC) community to investigate and
pursue strategies for optimally running HPC applications there,
requiring a different mindset to consider not just optimizing
performance [3]–[5] but also minimizing monetary cost. One
component of this cost is the action of moving a container from
a registry [6] to the cloud environment, an action often referred
to as “pulling” that can add additional time to a workload, and
thus incur additional monetary costs.

The process of pulling a container from a registry is gov-
erned by the Open Containers Distribution Specification [7],
where first a container runtime makes a request to a registry
Application Programming Interface (API) for a specific image
identifier and tag, and a successful response returns an image
manifest list [8]. The manifest list is parsed until a matching
image platform is found, and then the container runtime tool

can download the final image manifest, which includes a list
of layers for download. Each layer is typically a compressed
archive of a piece of the image filesystem, created as one
command line in the build file called a Dockerfile [9]. While
layers are downloaded in parallel and validated, the extraction
is sequential due to the need to assemble the filesystem in the
order mandated by the image configuration [10]. This entire
process involves multiple interactions with the registry, and
the download and extraction steps that encompass the pull
can take upward of 76% of the container startup time [11].

Running a containerized workload using Kubernetes [12]
starts with the pull of an application container. If all containers
need to be started at the same time, node coordination is
important. As container sizes grow larger and require more
time to pull, this step could incur larger monetary costs. The
design of the container and strategy for pulling can contribute
to the efficiency of this step. If layers are assembled in a
way to clean up unused files or take advantage of multi-stage
builds, image size can be minimized [13]. The choice of file-
system and content retrieval and extraction strategy can further
influence the time from initial pull to application start. This
calls for an assessment of best practices when building and
pulling containers, and the extent to which they are followed.
If there is little time and incentive in the scientific community
to optimize building and pulling strategies, the result can be
a setup that is more monetarily costly.

While work has been done to assess all images in a registry
[14] and pulling for common service containers [15], to our
knowledge, no work has focused on images built in the
scientific community. In this work, we do a temporal and
quantitative analysis on the scientific community container
ecosystem from 2014 until present day. In Section II we
assess trends and practices for building containers, and look
at changes in size, number of layers, base images used, and
reuse. We develop an open-source tool to run simulations of
container pulling across sizes and number of layers. We per-
form experiments across different cluster and container sizes
with simulated and real application containers to identify ideal
pulling strategies (Section III). We show that the total image
size is the dominant variable related to pulling time, make
suggestions based on our experimental results for effective
pulling strategies, and develop two new pieces of software to
support pulling experimentation and cluster deployment [16],
[17]. Finally, in Section IV we review interesting findings,
limitations, and follow-up work. Starting on the premise that
the HPC community desires to move application containers
from on-premises to the cloud and pulling is a required step
that incurs monetary costs, this work is a starting point to

69Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 81 / 136

define good practices and areas of future work.

II. METHODS

A. Analysis of Container Images

Deployment of container images to HPC systems or cloud
requires pulling the container images from registries, a task
that can increase in time and thus be more costly for a work-
flow. Thus, understanding the sizes of images and change over
time can provide insight into current practices and suggestions
for improvement.

B. Dockerfile Ecosystem

We aim to use build recipes for containers to assess image
and layer sizes and content. Larger sizes will take longer
to pull, incurring higher monetary costs, and this can be
associated with good and bad practices in the build recipes
themselves [18]. The first task was to assemble a database
of container image references, often called unique resource
identifiers (URIs). A URI is a unique identifier that includes
the registry, repository, and tag associated with a specific digest
that indicates a version (e.g., docker.io/library/ubuntu:latest).
While registries can expose a catalog endpoint to retrieve a
catalog of all containers, most do not as it would increase load
on already busy registries. Thus, we opt for a programmatic
approach using the Research Software Encyclopedia, a meta-
software database of over 5.6K curated research software
projects [19], to discover Dockerfile recipes from established
research software and machine learning projects. We can use
this set to identify common underlying base images, and do
an analysis of container and layer sizes.

C. Image and Layer Sizes

The container registry can provide manifests – JSON docu-
ments that detail the contents of the images, namely layers and
digests, and the configurations. We are first interested in using
this metadata to better understand the number of layers across
images and tags, and how this has changed across time. Seeing
that the number of layers has changed over time might reflect
a change in build practices. We then can assess similarity of
images by way of pure digests of images and content of the
layers themselves.

D. Image Similarity

1) Content Similarity

A single Dockerfile provides three ways to assess similarity
– the similarity of the base images used to build the container,
the similarity of the Dockerfile build instructions themselves,
and the similarity of the exact digests of the layers. The
choice of a base image reflects a user preference, as different
bases bring different package managers and potential needs
for building software. The content similarity reflects layers
having similar functionality, and the exact matching of digests
is directly related to reuse, as a digest match indicates a cache
hit and not needing to pull a new layer [14].

Similarity of container images by way of content can be
done for both our Dockerfile database and the base images they

are built from. For each, we treat the image build instructions
as a document, where each line that builds a layer is parsed as
a single sentence. To derive the build instructions for the base
images, we parse the FROM directives of the Dockerfiles, and
retrieve build instructions from the “history” section of the
image manifest in the registry. For our Dockerfile database,
we simply need to parse the RUN directives directly in the
Dockerfile. For each of these sets of build instructions, we
apply the following approach. If we consider a grouping of
layers that encompasses a Dockerfile (and image) to be akin
to paragraphs or sentences that make up a document, we can
use these build instructions as a corpus. For each document,
we pre-process the instruction lines to remove a subset of
punctuation, and replace other punctuation with a space (e.g.,
underscores and dashes) and tokenize the result. We can then
derive word2vec embeddings [20] each of length 300 for
each image or Dockerfile, and do a pairwise similarity of
these vectors using cosine similarity to derive a similarity
matrix. These similarity values reflect the degree to which
build instructions (from base images or Dockerfiles) are built
with common logic.

2) Digest Similarity

While our similarity analysis primarily aimed to reflect on
similarity of content, a different goal is to better understand
the impact of build strategies on resulting digest similarity.
The exact digest is the unique identifier for a layer, and the
decision point about whether a container runtime needs to pull
a layer. Since layers are saved to a cache [21], it follows that
a strategy that minimizes redundancy of layer digests requires
fewer pulls, both taking up less space on the filesystem and
time to do the pulls.

Toward the goal of understanding digest similarity “in the
wild” and similarity when care is taken to ensure redundancy,
we can first assess the similarity of digests across our set of
unique resource identifiers for base images. We will calculate
the Jaccard coefficient between pairwise images, which is the
ratio of the number of intersecting digests divided by the union
of all digests. A Jaccard coefficient of 1 indicates most similar,
and 0 most dissimilar. This value is expected to be low, as
each digest reflects not only the content within it, but the
previous layers [22]. We can then compare these scores against
equivalently calculated values for different sets of images that
are intentionally built with different redundancy strategies in
mind:

1) A reasonable effort to create redundancy
2) A best effort to create redundancy
3) Little effort to create redundancy.
For each of these sets, we aim to compare a set of 1̃0

containerized HPC proxy applications (and new builds of
the same applications with an improved strategy) based on
a real-world performance study [23]. For (1) we will use a
derivative of the containers from the study where a reasonable
effort was taken to ensure redundancy, however some images
used an entirely different build strategy to achieve more ideal
performance. Best-effort builds of the same applications (2),

70Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 82 / 136

and a highly redundant set of the same applications (3) using
spack [24] “containerize” to generate multi-stage builds with
one large layer that included a main application and all
dependencies. This exercise will demonstrate the impact to
building strategy on overall image similarity, and consequently,
redundancy of layers that can influence cost. All container
Dockerfiles are available [25].

E. Image Bases

For our next analysis, we want to classify our images for
the underlying base image, which typically falls in the set
of operating systems including debian, alpine, ubuntu, centos,
fedora, rockylinux, and busybox. This task requires the unique
resource identifier that can be used to pull the actual image
layers for analysis. To do this assessment, we first reduce our
entire set of images to inspect just one tag for each, choosing
either “latest” or (if not available), the newest dated tag. We do
this because different tags belonging to the same URI do not
typically vary with respect to the base operating system, and
we can estimate the unique resource identifier of the image
from one single tag. We also have to be selective due to the
need to pull the entire image and extract the contents to the
filesystem, which can be both expensive in time and cost for
internet bandwidth.

Since there is no single, reliable way to derive a base
operating system, we will use a simple strategy to compare the
extracted filesystem paths in the image to a known database
of operating system paths. This approach is enabled by the
“guts” software [26] to extract the container image to the
filesystem, and generate a complete manifest of file paths
and environment paths. Using this manifest, we can compare
each extracted image fileystem against a database of 46 base
extractions across tags of those named base images [27]. This
means that, given a contender image A that needs classification
and a set of base images B:

• Extract paths from A (PA)
• Generate a set (intersection) of paths across B. This

represents shared paths in the base images B that could
not be used to distinguish them (PB)

• Subtract this set of paths from A.
• This provides distinct paths in A. (PA - PB = AP)
• AP is a combination of application-specific additions to

the base image, and non-shared base image paths.
• Compare each base image paths Bi with AP to generate

a score Si (Si = intersection(AP, Bi) / len(AP))

By scoping the denominator to the set of paths in AP, paths
in Bi shared with other base images are again discarded. (Si
= intersection(AP, Bi) / len(AP)). The score calculated above
represents the percentage of extracted filesystem paths in A
that are also present in Bi, a given base image set of filepaths
after removing any shared paths between base images. While
some of these paths will be added software installs, the
remainder will be paths that identify a base image family.
Given no additional software installs, all of these paths will

be derived from the base image, and the maximum similarity
score is 1. Given no overlapping paths between AP and Bi,
the minimum score is 0. When we calculate similarity of our
contender image A with all base images Bi, the maximum
score is declared the matching base image.

F. Building Best Practices

In addition to word2vec embeddings generation for similar-
ity calculations, the Dockerfile database can be used to make
observations about image building best practices.

G. Image Pulling Strategy

a) Number of Layers

While the maximum number of layers for a Docker image
is known to be 127, the implemented maximum set by the
Docker client is in fact 125 [28]. In practice this limit is
determined by the kernel version, and so different container
building tools can vary in allowances. For the purposes of this
work, we will test an upper limit of 125 layers, as a majority
of scientific container developers build with docker [29]. The
question remains for build practices, given a constant size,
whether it is a better strategy to choose few large layers, or
more smaller layers. And secondly, given some number of
layers, how does pull time vary with image size and choice
of network or registry? Toward this goal, we developed a
docker building tool to generate images with a controlled
total size, and number of unique layers [17]. We used the
Dockerfile database to calculate a range of image sizes based
on percentiles between the 25th and 100th (Table I) as a
strategy to reflect images being used by the community. For
each of these sizes, we will perform a container pulling study
that generates the respective size at a range of layer counts
that are equivalently derived from the data. The sizes were
chosen at percentile increments of 5, with the exception of
the range between the 95th and 100th percentile, which was
broken into an additional set of three ranges due to the larger
span between the values.

For the study, we chose two values for the number of layers
– the median (9) of the dataset, along with the upper max of
125. For each pair of image size and layer count, the size of
the layer is calculated as the total size stated above divided by
the number of layers. We will only build images for which the
minimum size is within the allowances of a standard registry
(10MB or smaller).

The experiment will use Kubernetes, the de facto standard
container orchestration framework for cloud and Fortune 500
companies [2] and be run on Google Kubernetes Engine
(GKE). As each container is assembled from layers with a
different generation command, there is no chance for overlap
of file names so the cache can never be used when pulling
images. The study will be run on each of 4, 8, 16, 32,
64, 128, and 256 n1-standard-16 nodes on Google Cloud,
with 16 vCPU and 60GB RAM per node. Initial testing was
done to pull containers on the n1-standard-16 and a larger
instance, n1-standard-64 (64 vCPU and 240GB memory), and
n1-standard-16 was chosen as the n1-standard-64 was only

71Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 83 / 136

TABLE I. IMAGE SIZES CHOSEN FOR PULLING STUDY

Image Size (bytes) Human readable Percentile from Database

53702097.0 (53.7 MB) 25th
58049507.8 (58.05 MB) 30th
71460665.0 (71.46 MB) 35th
91388866.2 (91.39 MB) 40th
108513992.4 (108.51 MB) 45th
132399102.0 (132.4 MB) 50th
163049655.0 (163.05 MB) 55th
218665412.8 (218.67 MB) 60th
271728773.4 (271.73 MB) 65th
320018606.2 (320.02 MB) 70th
392602448.0 (392.60 MB) 75th
496514346.8 (496.51 MB) 80th
687439577.6 (687.44 MB) 85th
1181249324.6 (1.18 GB) 90th
2775722493.4 (2.78 GB) 95th
6841726027.3 (6.84 GB) 96.25th
10907729561.2 (10.91 GB) 97.5th
14973733095.1 (14.97 GB) 98.75th
19039736629.0 (19.04 GB) 100th

1.028x faster, but 3.87x more expensive. For each container,
a Job [30] will be created that requires pulling the container
to all nodes, and the Kubernetes Event Exporter [31] will be
used to capture all events from which pull times and errors
can be derived. Importantly, this tool requires setting the max
age of events to a large value (1200 seconds) or else events
can be dropped. The experiment will be conducted multiple
times, each time optimizing a different part of the setup to give
actionable advice about pulling practices. At the end of this
first experiment, there will be data for deciding on one or more
image sizes and number of layers for subsequent experiments
to assess pulling strategies across nodes [32], discussed next.

b) Local vs. Remote Registry

The location of the registry relative to the final destination
of the pull can be a salient factor to pulling latency, where
sources that are physically closer to their destination might
see improvements in latency and pulling time. To test this
approach, we will pull the application container set from
GitHub packages (ghcr.io) and then directly from the registry
provided by the cloud where the experiments are run, Google
Artifact Registry (gcr.io).

c) Filesystem Latency

Input/Output operations per second (IOPS) and throughout
can be hugely influenced by the filesystem available to the
Kubelet, resulting in a 3x improved throughput [32] and thus,
faster image pulls as the layers are streamed to the filesystem
and then extracted. With this knowledge, we aim to test adding
a single 375GB LocalSSD to each node in the cluster to which
the images will be pulled.

d) Streaming Images

While our experiment containers did not contain a real
application (they start and complete) it is worth testing image
streaming, where images are allowed to enter a running state
before the entire image is downloaded. This is done by way of

starting containers with content that is recorded to be accessed
at the onset of the container running, and then loading content
that is needed on demand – a strategy called lazy loading
[33]. While it cannot be known exactly how Google Cloud has
implemented this approach, an open source tool to perform
this task is the SOCI (Seekable OCI) snapshotter [33], a
containerd plugin that creates an index of image contents, and
then is able to start the container before download finishes.
This is possible because, as Harter et. al showed [11], only
6.4% of container data is needed for this step. In a real-world
application scenario, this would hugely reduce costs because,
although the image pull still needs to complete, the pull itself
does not slow down the starting time of the workload. While
we cannot determine if Google Cloud is using this exact
snapshotting, the project that SOCI derives from, the stargz
snapshotter [34] came from a project developed by Google
engineers. The lazy loading approach has been documented to
speed up a workload start time by 6.3x [32]. On Google Cloud,
image streaming requires using Google’s Artifact Registry,
which does incur additional costs.

e) Real-World Application Test

Given a pulling strategy that is shown to be optimal in the
previously stated experiments, we would finally want to test
the approach with real applications. The reason is, especially
for the image streaming strategy previously mentioned, the
ability for the container to start depends on the logic of
the entrypoint. As our simulated containers do not have real
entrypoints or applications, the times for the streaming images
could be unusually or unrealistically fast. Toward this goal, we
can use a subset of the spack containers described in Section
II-D1 (LAMMPS, OSU All Reduce, AMG, and Minife) that
can guarantee that the application and dependencies are con-
tained within one layer, and the experiment is testing actual
applications that can be validated to run and return a result.

f) Node Coordination

As a final investigation in the study, we want to investigate
the extent to which nodes in the cluster are coordinated for
events, including a pod being scheduled, a container pulling,
pulled, created, and started. If these events are not orchestrated
in unison, given a workload that requires all containers running
at the same time, it could further delay the application start
and incur additional cost.

III. RESULTS

A. Dockerfile Ecosystem

We used the Research Software Encyclopedia to identify
4,621 associated GitHub repositories. Of that set, 694 had at
least one Dockerfile. In total, we find 77,449 Dockerfile across
research software engineering and machine learning projects
to further explore.

B. Image and Layer Sizes

For each of our 77,449 Dockerfile, we retrieve complete
metadata about tags available and configurations from the

72Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 84 / 136

Figure 1. Tags per image with one outlier removed.

respective registry endpoints. Despite the large number of
Dockerfile, the set of unique base images (each with some
number of underlying tags, image configurations, and man-
ifests) was much smaller, (2,132) and with huge variance
with respect to the number of tags. With one outlier removed
(47,428 tags for nix/nixos) (Figure 1), the number of tags
ranges from 1 to 16,748, with a mean of 1842 and standard
deviation of 2,531 tags.

This tells us that there is quite a bit of variation with respect
to release frequency across our set, as each tag is typically
indicative of a version or release. We are first interested in
the number of layers across images and tags, and how this
has changed across time. Seeing that the number of layers has
changed over time might reflect a change in build practices. In
Figure 2 we see this result for the decade between 2014 and
2024, and while the variation has increased slightly (meaning
some images have many more layers) the general means are
the same (16.58 +/- 23.66) across time, visually suggesting
that people are not building images with significantly more
layers. In this exercise, we also found several images from
the RedHat registry (8 repositories with a total of 205 tags)
with greater than 127 layers. This was an unexpected finding
that challenged our “common” knowledge that images could
not exceed 127 layers.

We can then use the manifests, which contain layer sizes
in bytes, to look at the change in size over this same period
(Figure 3). In this figure we see a different pattern – that
images are indeed getting larger.

Finally, we might ask how often layers are repeated. This
depiction is biased to our dataset, which would more likely
have common layers between different tags from the same
image. Even still, for a set of 528,449 unique digests (layers)
the count of replicated layers drops off quickly, with only 120
instances of a layer being repeated more than 500 times, 52
instances of greater than 1000 times, and only 4 repeated more
than 4 times. This data is presented in Table II.

Figure 2. Layers per image by year shows a fairly consistent mean trend
with smaller variance and an increase in outliers.

Figure 3. Total image sizes (sum of layers) by year. Outliers with more than
127 layers, the declared maximum, do in fact exist in the RedHat registry.

Interestingly, we discovered an outlier in this set - a layer
that appeared to be repeated 67,897 times:

sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb55
77484a6d75e68dc38e8acc1

Further investigation revealed this was an empty set of 32
bytes that was often associated with a WORKDIR directive in
the Dockerfile, but only for cases where the directory already
existed. Discussion with OCI maintainers revealed that there
is an “empty layer” flag in the image configuration. If the
tooling decides not to set the flag, the tool must ship a valid
tar+gzip, and that, even without any files being packaged, takes
up some space for the tar and gzip headers. This is the empty
layer we discovered that when extracted results in the digest
that we found. This was implemented before it was realized
that /dev/null is an actual valid empty tar file.

73Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 85 / 136

TABLE II. REPEATED LAYERS ACROSS DATABASE

Threshold Count

= 1 312095
>1 216354
>2 136054
>50 9255
>100 3333
>500 120
>1000 52
>3000 4

Figure 4. Distribution of image similarities across 300K Docker images,
where each is calculated from image build history from the manifest config-
uration.

C. Content Similarity

We next used the text of the unique layers from the base
corpus (N=528,449 layers) to derive both image and layer
similarity. We started with 2,132 manifests and treated the
layer “history” lines as sentences that make up a document,
deriving a set of 309,317 documents. The word2vec embed-
dedings generated from the tokenized documents were then
used to calculate pairwise cosine similarity (Figure 4). The
cosine matrix generally shows that the bulk of images are not
very similar at all, with cosine scores under 0.2.

When we apply the same processing technique to the
text from the original scientific Dockerfile (N=77,449) RUN
statements we see a similar pattern (Figure 5).

We next want to assess layer similarity. This calculation
was more challenging, as we have a total set of 6,535,425

Figure 5. Distribution of image similarities across 77K scientific Dockerfile.

Figure 6. Distribution of layer similarities across 582K unique layers

(non-unique) layers across images. We chose a strategy that
removes exact duplicates (typically equivalent layers between
temporally close tags of the same image), and calculate
from the reduced set. Since we are explicitly removing exact
duplicates, our goal would not be to say something globally
about the ecosystem, but say something about similarity of
layers that are not exactly the same. When we tokenize and
process and filter down to unique, ensuring that layers from
images from the same tag are removed, we have 597,591 layers
from base images. When we calculate similarity scores across
these layers, we see a similar pattern (Figure 6) where most
layers are largely not similar.

At a high level, what we can see from this small analysis
is that most layers are not re-used across images.

D. Image Bases

When we classify a subset of our images (Table III),
removing the version of the image, since we are biased to
select for newer images, we find the majority have a debian
base, followed by alpine and ubuntu. We also see that values
in the similarity score distribution are generally high (Figure
7), indicative of shared paths and thus confidence in the
classifications. The minimum score in the above is 0.59, and
the maximum is 1. We see that debian is by far the most
frequently used, at least for this sample of images we are
looking at.

TABLE III. BASE IMAGE CLASSIFICATION

Count Base Image

debian 393
alpine 95
ubuntu 74
centos 64
fedora 15
rockylinux 11
busybox 4

E. Building Best Practices

In addition to word2vec embeddings generation for similar-
ity calculations, we can use our database of 77K Dockerfile
to make observations about image building best practices.

74Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 86 / 136

Figure 7. Distribution of image similarity scores used by the “guts” software
to derive the base image labels.

1) Limit layers amount

While the maximum number of layers allowed in most
registries is 127 and there is no strong guidance on how many
layers are good for a single image, we can see from Figure 2
that the layer count has remained relatively stable over time
with large variance (16.58 +/- 23.66). We might guess that in
practice, people do not explicitly attempt to build images with
the fewest layers, but rather build exactly what they need or
is easiest.

2) Multi stage builds

Multi-stage builds are useful for separating builds into
stages, such as compiling an application and then providing
the final binary and libraries in the final image. They are
indicated by way of finding more than one FROM statement
in the Dockerfile, and considered best practice in that they can
reduce the size of the final production image. When we parse
our repository of 77K Dockerfile build recipes we can look for
greater than 1 FROM statement to indicate such a build. In
this set, we find a total of 1984 Dockerfile, which represents
2.56% of image builds.

3) Docker official images

While a Docker “verified” image can come from the docker
official images, sponsored open source, or verified publisher,
we chose to look explicitly for Docker official images (e.g.,
ubuntu) as these are provisioned directly by Docker Hub with
provided scanning and security checks. We can detect which
images are in this set by way of looking at the FROM unique
resource identifier. If it has docker.io or library or is missing
the registry name (which then will default to the Docker
Hub registry) we have found a docker official image. In our
database, we found a total of 11,439 images that use a Docker
official image, representing 14.77% of the entire set.

4) Latest image

It is conventional wisdom to not use a “latest” tag, the
reason being that it is a moving target and can hinder re-
producibility. When an image “latest” updates the operating
system version, image builds can break as library names
or availability can change over time. For our set of 77K
Dockerfile, we looked for images that would pull a “latest”
tag by way of providing it directly in the unique resource
identifier, or leaving out the tag entirely (which defaults to
latest). Of the set, we found 4,114 Dockerfile that use a latest
image, representing 5.3% of the entire set.

5) Pinned image digest

It is considered better practice to pin an image digest
directly, which is more granular than a tag in that it represents
an exact build of a base image for a point in time. In our set, we
looked for these digests in the FROM statement by searching
for the string “sha256,” which is the hashing algorithm used
for this purpose, and the correct way to specify using a digest.
In our set we found only 74 Dockerfile (0.09% of the set) used
a pinned digest, reflecting that the practice is not common.

6) Using apt get with apt install in same line

For debian or ubuntu images, it is recommended to use apt
get with apt install in the same line to properly use the apt
cache. Across our Dockerfile database, for the subset of layers
that use apt get (507,695 across Dockerfile images), the large
majority (478,742 layers, or 94.3%) take this approach.

7) Using apt get with a clean / autoremove

Since each layer is an isolated unit, and files that are added
(and not removed) between layers can lead to bloated layers
even if they are cleaned up, it is advisable to remove lists
and clean. While debian and ubuntu images automatically run
apt-get clean [35], this is arguably still a good practice when
applied to other package managers and methods to install
software. For our Dockerfile dataset, we find that of the subset
that use apt, 67.8% do a clean (clean or autoremove), 0.048%
do only an autoremove, and 11.19% do both.

F. Impact of Build Strategy on Digest Similarity

To demonstrate the influence of container building strategy
on resulting container layer similarity, we aimed to compare
overall layer digest similarity between 10 applications that
were built in multiple ways. The spack builds for three
containers (low redundancy strategy) were not successful and
were not used in the analysis. The Jaccard scores are shown
in Figure 8 and summary metrics in Table IV.

Interestingly, the performance study set has a cluster of
images that are more similar than the best effort set, likely
resulting from having overall a larger number of matching
layers between images.

The best effort set of builds (middle panel in Figure 8)
that have fewer overall layers would require 33/118 (28%)
unique layer pulls. Since we are certain that these containers
were built with redundancy of layers in mind, we can state

75Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 87 / 136

Figure 8. Jacaard scores for three build strategies. A reasonable effort to ensure redundancy (left) that produces a mixture of similar and dissimilar images,
a best effort strategy (middle), and a build tool that eliminates the possibility for redundancy (right).

TABLE IV. SIMILARITY OF CONTAINER SETS BASED ON BUILD STRATEGY

Container Set Total Layers Unique URIs Unique Containers Unique Layer Digests Jacaard Similarity (mean and s.d)

Performance Study 258 10 10 115 0.40 (0.38)
Best Effort for Redundancy 128 10 10 33 0.66 (0.128)
Low Redundancy Builds (spack) 56 7 7 50 0.2 (0.33)

that this 28% represents the application logic specific to each
container. For the performance study where some care was
taken for redundancy, 115/258 (45%) of layers would require
isolated pulls. Finally, for the spack build strategy that creates
a large layer that consists of a custom spack view, 50/56 (89%)
of layers would require unique pulls, a strategy that does not
allow for large amount of redundancy. We can see this result
reflected in the Jaccard similarity cluster maps in Figure 8.
The exercise demonstrates that a choice of a build tool can
have “trickle down” implications for experiment costs, and
often unique application logic makes the task of redundancy
a challenging one.

G. Image Pulling Strategy

We assessed the trade-off between number of layers and
image size. We found no discernible impact to the number of
layers and image pull time (Figure 9). Instead, total image size
appeared to be the most important factor to increase pull time.
We proceeded with subsequent experiments to only include
the median (N=9) number of layers, and a set of 6 larger
sizes between the 90th and 100th percentile of the Dockerfile
dataset, ranging between 148MB and 19GB.

Pulling from a registry external to the cloud provider (Figure
10) made no difference to pull times as compared to pulling
from a registry provided by the cloud (Figure 11)

However, pulling with the presence of LocalSSD (Figure
12) improved times, often by 20-40 seconds (approximately
1.25x), and made pull times more consistent between nodes.
This is an advisable strategy as the cost of storage ($0.1046
per GB per month) is relatively inexpensive compared to the

Figure 9. Testing the influence of number of layers across 4 image sizes and
18 different layer counts showed no discernible difference in pull times, but
rather, suggested that size was a salient factor.

cost of running experiments.
The most surprising and impressing result was using image

streaming, which could reduce pull times down to close to
1 second, assuming to be assisted by a caching strategy [36].
This finding is demonstrated in (Figure 13), where the benefits
of image streaming are fully realized after the initial pull of
the experiment containers for the size 4 cluster. The caching
strategy provided by Google Cloud that makes subsequent
cluster pull times almost instantaneous persists across different
clusters.

Extending images to a real-world set of applications, the
improved pulling times when using image streaming as com-
pared to not using it was still substantial, an approximate 15x
improvement (Figure 14).

76Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 88 / 136

Figure 10. Pull times from a remote registry (GitHub packages) to Google
Cloud showed an increase as the size of the container increased.

Figure 11. Pull times from a local registry (Google Artifact Registry) to
Google Cloud in the same region did not improve pull times.

Figure 12. Pull times from a local registry (Google Artifact Registry) with an
added local SSD improved pull times between 20-40 seconds and improved
consistency of pull times across nodes in the cluster.

Figure 13. Image streaming pulling times across image sizes. The ability of
the container to transition to running was consistently close to 1 second due
to caching. Size 4 demonstrates that the first pull of a specific container in
Google Cloud benefits from image streaming, but is not instantly available as
it is not cached. Larger sizes benefit from a caching strategy [36].

Figure 14. Image streaming pulling times across application images. The
reported time for the container to start running was approximately 15x faster
for applications LAMMPS, OSU All Reduce, AMG, and Minife. The smallest
experiment size did not benefit from Google Cloud caching.

H. Node Coordination

Despite pull times not increasing as cluster size increases,
the total time to run an experiment increased with number
of nodes, resulting in 1383.65, 1392.84, 1408.48, 1426.84,
1535.19, 1940.99, 2884.18 seconds for our initial experiments
for sizes 4, 8, 16, 32, 64, 128, and 256, respectively. This
suggests that additional time is accumulated elsewhere, and the
results of the node coordination tests give a hint to the source
of this extra time. Figure 15 shows time differences between
events across nodes. This is calculated as, for each container,
the earliest timestamp recorded for the event subtracted from
the latest across nodes. Doing this calculation across cluster
sizes shows us the extent to which an event for a specific
container is coordinated. A time of zero indicates that the
nodes across a cluster had the event occur at the same time,
while a value above that represents a stagger from that.
These plots demonstrate that as the size of both containers
and clusters increase, so does the variability of events for it
between nodes – the largest container (19GB) on the largest

77Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 89 / 136

cluster size (N=256 nodes) has minimally two nodes that are
pulled, created, and started approximately 50 seconds apart.
This finding that extra time is accumulated as clusters get
larger, a likely result of needing to wait for the slowest
node across a large set, is interesting and warrants further
exploration for behavior and solutions.

IV. DISCUSSION

In this work, we amass a database of 77K Dockerfile and do
a complete assessment of the trends and container ecosystem
since 2014, observing that the number of layers has largely not
changed, but image sizes are slowly getting larger – a trend
we expect to continue with the growing number of machine
learning images that are entering the ecosystem. We derive
build practices from the data, noting that debian is the most
popular base image, redundancy of layers is uncommon, and
good practices to pin digests and perform multi-stage builds
are uncommon. We finish our study with a set of experiments
that first visually show the change in image similarity based
on digests for three building strategies, and then performing
a comprehensive pulling study that demonstrates using local
SSD and a streaming approach can greatly reduce the time
between onset of pull and having a running container. It was
a surprising result that pull time does not increase with the
number of nodes in the cluster, and that other scaling issues
must be responsible for longer experimental runs on larger
clusters. This finding is interesting and warrants further work.

While Google Cloud offers image streaming easily as an
add-on to GKE, no similar easy install method exists for
Amazon Web Services Elastic Kubernetes Service (EKS) and
so as a supplement to this work we developed a daemonset
[16] to automatically install the SOCI snapshotter to a cluster.
We anticipate doing further work in the space of snapshotter
plugins to further optimize how application assets are loaded
with cache pre-fetching and on demand. From these observa-
tions, we recommend to the reader to use a streaming image
approach when a registry is available that can provide the
indexed images, and if not, to fall back to using local SSD
for improved pulling times.

A. Docker Layers

The finding that Docker has references that set limits to each
of 125 and 128 layers for the overlay fs driver was interesting
and worth further exploring. As containerd does not set any
maximum, we were able to test building and pushing the image
“docker.io/tianon/test:many-layers-256” and it was successful.
The limit was originally enforced because there were early
issues with mounting layers (length of an argument to a
syscall) that led to technical maximums. However, this early
issue may not be relevant depending on the host operating
system, kernel version, and container runtime being used.
Different tools take different approaches to validating this -
– containerd and buildkit use a practical approach that does
not enforce any checks, but then would propagate the error on
mount failure, meaning that the limits are controlled by the
kernel. Other tools like Docker hard code manual checks in the

Figure 15. Time differences between events across nodes. This is calculated as
the maximum - minimum timestamp across nodes for a cluster sizes, reflecting
the extent to which an event for a specific container is coordinated. A time of
zero indicates that the nodes across a cluster had the event occur at the same
time, while a value above that represents a stagger from that.

78Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 90 / 136

code, which might fail earlier, but do not always reflect the true
limit enforced by the user’s particular kernel. With respect to
Docker, the failure often comes after pulling the layers, which
arguably is a check that should be done earlier. This was an
interesting finding because it represents a cultural practice and
established knowledge that is more of a gray area. In practice,
many empty or metadata layers are relatively harmless since
they are ignored or not relevant to image extraction.

B. Limitations

We recognize that our choice of a software database that
would provide scientific images is only a slice of the entire
container ecosystem, and this choice was intentional to not
include many service-oriented images that might run websites,
databases, or other applications not directly related to science.

While using a different compression algorithm can also
reduce extraction, we aimed to test solutions that were readily
available in the common software being use to build contain-
ers, which typically is not containerd [29]. Another viable
solution that was not tested here is to preload base images
using a daemonset [32], a great idea given containers with a
large shared base image. That approach would not have fit
our study as our base image was chosen to be minimal and
insignificant to the pull time. While we used Google Cloud
for this work, the use of the open source project Kubernetes
that is available across clouds, and general pattern to use
a more performant filesystem can be applied to other cloud
environments. A logical next stage of work is to understand
how patterns of application data retrieval work with various
pulling strategies. For example, requiring download of large
data after container startup could have a detrimental effect to
application performance. In these cases, optimizing an initial
pull to better run in parallel could be an optimal choice.

V. CONCLUSION

Best practices are often prescribed with little attention to
how reasonable they are, or how well they fit into a user
workflow or incentive structure. Our work demonstrates that
the number of layers is not a salient variable to worry about,
but rather total image size. Our takeaways are that a container
building strategy optimized for similarity in container layers
can increase layer redundancy, decreasing time needed to pull
and thus decreasing total time and cost for a study. This
improvement becomes more salient when using expensive
resources such as GPU, or an auto-scaling strategy that provi-
sions new nodes that do not have images cached. We suggest
container streaming as an ideal strategy for quickly starting
containers that are large, however caution should be used if
large amounts of new data are needed for application execu-
tion later in the run. Local SSDs can consistently improve
performance without these detrimental effects.

While we cannot say that these benefits extend to other
clouds, those using Google Cloud should consider pulling
images to a smaller cluster first to take advantage of caching
along with image streaming. Layers should (and cannot) go
over the registry limit of 10GB, and given this limitation,

developers will need to consider strategies for provisioning
large models that are intended to be used with containers. As
ML images get larger it will be more important to address
these issues.

Finally, we suggest to the reader that although the specific
strategy chosen for building and pulling might vary based on
the experimental resources and application characteristics, it
is responsible to have awareness about costs, and strategies
for improvement. Given contention for resources such as
GPUs, there is an opportunity cost of the extra time used
on the resources. Nodes that have excess pulling time are not
available for anyone else to use. We encourage the community
to think about the costs of their experiments, and to further
explore this interesting space of work.

ACKNOWLEDGMENTS

Thank you to the AWS EKS team for interesting discussion
on the SOCI Snapshotter, and Daniel Milroy for his feedback
on the manuscript. Thank you to the OCI Slack for discussion
on layers, and to the larger HPC and cloud communities for
continuing to make this space of development interesting and
gratifying to work in.

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under contract DE-AC52-07NA27344. Lawrence Liv-
ermore National Security, LLC LLNL-CONF-871325

REFERENCES

[1] D. Moreau, K. Wiebels, and C. Boettiger, “Containers for com-
putational reproducibility,” Nature Reviews Methods Primers,
vol. 3, no. 1, p. 50, 2023.

[2] Honeypot, Kubernetes: The documentary [PART 1], Jan. 2022.
[3] L. W. et al., “Bare-metal vs. hypervisors and containers:

Performance evaluation of virtualization technologies for
software-defined vehicles,” in 2023 IEEE Intelligent Vehicles
Symposium (IV), IEEE, 2023, pp. 1–8.

[4] J. Baumgartner and L. et al., “Performance losses with virtu-
alization: Comparing bare metal to vms and containers,” in
International Conference on High Performance Computing,
Springer, 2023, pp. 107–120.

[5] G. Hu, Y. Zhang, and W. Chen, “Exploring the performance
of singularity for high performance computing scenarios,” en,
in 2019 IEEE 21st International Conference on High Perfor-
mance Computing and Communications; IEEE 17th Interna-
tional Conference on Smart City; IEEE 5th International Con-
ference on Data Science and Systems (HPCC/SmartCity/DSS),
IEEE, Aug. 2019, pp. 2587–2593.

[6] S. Buchanan, J. Rangama, and B. et al., “Container registries,”
Introducing Azure Kubernetes Service: A Practical Guide to
Container Orchestration, pp. 17–34, 2020.

[7] O. Containers, Opencontainers/distribution-spec, en, 2024.
[8] O. Containers, Opencontainers/image-spec, en, 2024.
[9] Dockerfile reference, en, https://docs.docker.com/reference/

dockerfile/, Accessed: 2024-10-2, Sep. 2024.
[10] Moby/moby github issue, en, 2024.
[11] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau, “Slacker: Fast distribution with lazy docker
containers,” in 14th USENIX Conference on File and Storage
Technologies (FAST 16), 2016, pp. 181–195.

[12] Honeypot, Kubernetes: The documentary [PART 1], Jan. 2022.
[13] I. Docker, Multi-stage, en, https : / / docs . docker. com / build /

building/multi-stage/, Accessed: 2024-10-2, Sep. 2024.

79Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 91 / 136

[14] N. Zhao, V. Tarasov, and A. et al., “Large-scale analysis of
docker images and performance implications for container
storage systems,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 32, no. 4, pp. 918–930, 2020.

[15] J. L. Chen, D. Liaqat, M. Gabel, and E. de Lara, “Starlight:
Fast container provisioning on the edge and over the WAN,”
NSDI, pp. 35–50, 2022.

[16] V. Sochat, converged-computing/soci-installer: soci installer
release 0.0.0, version 0.0.0, Oct. 2024. DOI: 10.5281/zenodo.
13895822.

[17] V. Sochat, converged-computing/container-crafter: Container
Crafter v0.0.0, version 0.0.0, Oct. 2024. DOI: 10.5281/zenodo.
13871919.

[18] I. Docker, “best practices”, en, https://docs.docker.com/build/
building/best-practices/, Accessed: 2024-10-2, Sep. 2024.

[19] V. S. et al., “The research software encyclopedia: A commu-
nity framework to define research software,” Journal of Open
Research Software, vol. 10, no. 1, p. 2, Mar. 2022.

[20] K. W. Church, “Word2vec,” Natural Language Engineering,
vol. 23, no. 1, pp. 155–162, 2017.

[21] I. Docker, Cache, en, https://docs.docker.com/build/cache/,
Accessed: 2024-10-2, Sep. 2024.

[22] Mikal, Interpreting whiteout files in docker image layers, en,
https://www.madebymikal.com/interpreting-whiteout-files-in-
docker-image-layers/, Accessed: 2024-10-2.

[23] V. Sochat and D. M. et al., Converged Computing Performance
Study Release v0.0.0, version 0.0.0, Sep. 2024. DOI: 10.5281/
zenodo.13738496.

[24] S. Shudler, N. Ferrier, and I. et al., “Spack meets singu-
larity: Creating movable in-situ analysis stacks with ease,”
in Proceedings of the Workshop on In Situ Infrastructures
for Enabling Extreme-Scale Analysis and Visualization, 2019,
pp. 34–38.

[25] V. Sochat, converged-computing/ensemble-containers: Ensem-
ble Containers, version 0.0.0, Oct. 2024. DOI: 10.5281/zenodo.
13887339.

[26] V. Sochat, Singularityhub/guts: Release v0.0.1, version 0.0.1,
Mar. 2023. DOI: 10.5281/zenodo.7703378.

[27] V. Sochat, singularityhub/shpc-guts: Singularity Registry HPC
Guts v0.0.1, version 0.0.1, Mar. 2023. DOI: 10.5281/zenodo.
7703380.

[28] D. Community, Docker documentation: Number of layers is
not documented, en.

[29] V. Sochat and C. K. et al., Hpc containers community survey
2024, May 2024. DOI: 10.5281/zenodo.11206333.

[30] S. Section, Jobs, https : / / kubernetes . io / docs / concepts /
workloads/controllers/job/, Accessed: 2023-9-1.

[31] R. Authors, Kubernetes-event-exporter: Export kubernetes
events to multiple destinations with routing and filtering, en.

[32] T. He and W. Chiang, Tips and tricks to reduce cold start
latency on GKE, en, https://cloud.google.com/blog/products/
containers- kubernetes/tips- and- tricks- to- reduce- cold- start-
latency-on-gke, Accessed: 2024-10-2, Jan. 2024.

[33] AWS, Soci-snapshotter: A containerd snapshotter plugin
which enables standard OCI images to be lazily loaded without
requiring a build-time conversion step, en.

[34] K. Tokunaga, Startup containers in lightning speed
with lazy image distribution on containerd, en,
https://medium.com/nttlabs/startup-containers-in-lightning-
speed-with-lazy-image-distribution-on-containerd-
243d94522361, Accessed: 2024-11-10, Apr. 2020.

[35] D. Community, Contrib/mkimage/debootstrap at
03e2923e42446dbb830c654d0eec323a0b4ef02a · moby/moby,
en.

[36] G. Cloud, Use image streaming to pull container images, en,
https : / /cloud .google .com/kubernetes - engine /docs /how- to /
image-streaming, Accessed: 2024-11-10.

80Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 92 / 136

Consistent Access to Cloud Services across Regions for Large Enterprises

Pavvan Pradeep
Computer Science

and Engineering Department
PES University

Bengaluru, India
e-mail: pavvanpradeep@gmail.com

Aditi Srinivas M
Computer Science

and Engineering Department
PES University

Bengaluru, India
e-mail: aditimatti@gmail.com

Prisha Goel
Computer Science

and Engineering Department
PES University

Bengaluru, India
e-mail: prishapgoel@gmail.com

Dhruv Sanjaykumar Ratanpara
Computer Science

and Engineering Department
PES University

Bengaluru, India
e-mail: dhruv2502@gmail.com

Shilpa S
Computer Science

and Engineering Department
PES University

Bengaluru, India
e-mail: shilpas@pes.edu

Abstract—In today’s world, high availability is critical to meet
the needs of uninterrupted operation and customer satisfac-
tion. The expansion of cloud services has permitted substantial
progress towards reaching this availability. However, there are
issues such as high ownership costs and constant availability
across many locations, as not all cloud providers provide com-
prehensive regional support. This project seeks to demonstrate
a strategy for developing platforms for global organizations that
are available in multiple regions and provide an improved user
experience. Our methodology enables one to seamlessly integrate
the Istio service mesh into the existing infrastructure, with a focus
on high performance,low latency, multi-region availability across
many zones, dispersed deployment for better reliability, and a
low total cost of ownership. Our solution uses Istio’s features
to improve service resilience and distribution, resulting in cost-
effective, high-performance multi-region deployments.

Keywords—Istio Service Mesh; Reduced total cost of ownership;
Multi-region failover; Availability Zone level failover; Minimized
latency.

I. INTRODUCTION

High availability, scalability, and scattered deployments are
vital in today’s technology-driven world, where continuous
access to services is essential [1]. Cloud providers such as
Amazon Web Services (AWS), Google Cloud Platform (GCP),
Microsoft Azure, and Oracle Cloud Infrastructure (OCI) have
played significant roles in providing these services with multi-
region availability, ensuring that operations continue even
when regions fail. AWS is the largest cloud provider, noted
for its massive infrastructure, which includes 48 regions and
54 Availability Zones worldwide, with a range of services
including processing power, storage, and databases. Cloud
providers like AWS use auto-scaling mechanisms to maintain
availability during periods of high demand [2]. While each
operator provides a variety of global regions and availability
zones, achieving seamless worldwide coverage remains a
difficulty. Geographic limitations, high ownership costs, and
interoperability between providers remain significant difficul-
ties. Most of the industries are moving towards a microser-

vices architecture for their applications to enhance availability.
Deploying applications as lightweight portable container en-
hances scalability and fault-tolerance [3]. However, enterprises
frequently struggle to balance high availability needs with
cost-effectiveness, particularly when deploying across various
geographies [4]. There is also the challenge of managing
dispersed applications, data consistency, and compliance re-
quirements, especially when apps cross international borders.
Existing cloud-based high-availability solutions face several
limitations. Many rely heavily on cloud providers, leading to
vendor lock-in and high operational costs. Cloud-based auto-
scaling guarantees resource availability, but it falls short in
addressing region-level failover. It can be challenging for busi-
nesses to maintain a uniform infrastructure around the globe
because some cloud services are not accessible everywhere.
Given these difficulties, a method that minimizes reliance on
the cloud, maximizes latency, and guarantees smooth failover
without compromising cost is required.

Our approach involves a one-time infrastructure setup cost,
after which it leverages open-source tools like Istio and a
custom load balancer to enable seamless failover and mini-
mize latency. Our aim is to integrate the Istio service mesh
into large organisations’ existing architecture for enhanced
traffic routing and service maintenance. This approach aims
to improve availability, provide multi-region resilience, and
reduce ownership costs. Our technique routes traffic to the
nearest region to reduce latency and ensures that users receive
responses within an optimal time. When a service in a given
availability zone goes down, the zone is tagged as unhealthy,
blocking routing of further user requests to it. This feature
helps to avoid inter-zone service communication, which might
increase latency.

Our approach uses locality-based load balancing to evenly
distribute traffic across all healthy zones within a region. Such
a balanced distribution ensures stability and prevents services
in any zone from being overloaded with user requests thereby

81Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 93 / 136

increasing total system resilience. Our technique uses the
open-source Istio service mesh to manage traffic effectively.
By using Istio, we can create a strong architecture with greater
stability, availability and scalability while lowering the total
cost of ownership.

Our approach focuses on improving the private infrastruc-
ture of large-scale industries. It integrates easily with their
existing systems to boost availability, reduce latency, and lower
costs by reducing reliance on cloud providers. Since cloud
services are not available in all regions and don’t always
work well together, relying on cloud services completely is not
a good option for large-scale industries. Moreover migrating
applications to the cloud require one to have many procedures
in place such as application migration, data migration and de-
pendency checks [5]. Instead large-scale industries can set up
their infrastructure in the regions they need and integrate our
approach seamlessly to increase the reliability and availability
of their services across multiple regions, making their systems
more efficient and cost-effective. Hence, our approach is a
solution that meets the needs of modern, large-scale industries.

Section 2 presents a literature survey, exploring current
strategies aimed at minimizing latency and increasing multi-
region availability. The methodology is described in Section 3,
along with the technologies utilized, such as the Istio service
mesh and Kubernetes in Docker (KinD). This section explains
the implementation of our setup, which consists of two clusters
and a load balancer to ensure multi-region availability and
optimized latency. Results are presented in Section 4, along
with our framework’s latency measures. The research is finally
concluded in Section 5, as part of the future scope the paper
suggests use of AI models for fault prediction and resource
optimization to enhance system maintenance.

II. LITERATURE SURVEY

A. Malhotra, A. Elsayed, R. Torres and S. Venkatram [6]
explore solutions to achieve near-zero downtime for cloud-
native, business-critical applications. Thw authors emphasize
on microservices architecture to enhance fault tolerance and
scalability. A clustered setup with Kubernetes enables load bal-
ancing and seamless failovers within and across regions. Tools
like Global Load Balancer (GLB) for geo-based routing, Pg-
Bouncer for PostgreSQL optimization, and HAProxy for high
availability are integrated. For read-heavy applications, read
replicas handle most requests to offload the primary database,
while write-heavy setups distribute traffic geographically to
optimize latency. Despite its robust approach, the architecture
focuses heavily on database resilience, with limited attention
to network-level failovers.

A. Anwar’s [7] study proposes a high-availability solution
leveraging AWS services. Applications are hosted on EC2
instances spread across multiple Availability Zones (AZs) with
a load balancer managing traffic distribution. NAT Gateways
ensure secure internet connectivity, while auto-scaling groups
dynamically adjust resources. Elastic IPs provide stability,
maintaining consistent DNS entries during instance restarts.
Although this setup withstands zonal outages and high traffic,

regional outages remain a challenge. Its reliance on AWS
services also leads to high operational costs, which could be
optimized by refining auto-scaling policies.

Anna Berenberg and Brad Calder [8] evaluate different
deployment models, from zonal to global, highlighting their
benefits like increased availability, improved latency, and
scalability. By integrating edge computing, it suggests fur-
ther latency reductions and resource optimization. While
the archetypes offer flexibility and future-proofing, managing
complex deployment models and addressing global outages
pose challenges. Balancing costs with high availability and
latency remains an ongoing issue in these strategies.

A. Hajikhani and A. Suominen [9] focus on disaster re-
covery, this research outlines strategies for applications across
Kubernetes clusters using service mesh and serverless work-
loads. It emphasizes automatic failover mechanisms, resource
optimization, and cost reduction in multi-cluster environments.
While the paper provides practical insights, it falls short
in covering all failure scenarios and complex multi-cluster
deployments. Its narrow focus on Kubernetes limits its broader
applicability to other cloud setups.

Mohammad Reza Mesbahi, Amir Masoud Rahmani and
Mehdi Hosseinzadeh [10] present a roadmap for achieving
high availability and reliability in cloud environments. The
paper identifies challenges and proposes solutions to align
with quality-of-service agreements. While insightful for both
providers and consumers, the paper lacks practical validation
and oversimplifies complex technical issues. It serves as a
theoretical framework rather than a hands-on guide to cloud
resilience.

Our proposed architecture aims to address the challenges
faced by these previous approaches by removing the depen-
dency on existing cloud providers, and minimizing cost and
latency.

III. METHADOLOGY

Our methodology is designed to leverage a series of open
source technologies, to ensure multi-region availability, effi-
cient load balancing, and reduced latency.

A. Kubernetes in Docker(KinD)

KinD (Kubernetes in Docker) is a tool that allows one to
easily establish and manage Kubernetes clusters on a local
workstation using Docker containers. Kind is intended to
simplify Kubernetes development and testing by enabling:

• Experimenting with various Kubernetes versions, config-
urations, and deployments.

• Simulation of a multi-node Kubernetes setup on a single
PC.

B. Istio Service Mesh

A service mesh is a software layer that facilitates commu-
nication between services in an application. It consists of a
network of proxies known as ”sidecars” that run alongside
each service. A service mesh can help prevent cascade failures,
which can cause system-wide downtime. It accomplishes this

82Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 94 / 136

by including features such as circuit breaking, retries, and
timeouts. A service mesh can monitor the status of services,
connection, and failures. It can also deliver metrics, logs, and
trace data. A service mesh can aid with traffic management,
such as load balancing and rate limitation. A service mesh
is independent of each service’s code, allowing it to function
across network boundaries and with various service manage-
ment systems.

An Istio service mesh is open source and functions as
a dedicated infrastructure layer that manages and secures
communication between microservices within a distributed
application, effectively giving a transparent mechanism to
govern traffic flow, security, and observability.
Key elements of the Istio architecture:

• The Data Plane:
The Data Plane consists of ”Envoy” proxy sidecars
that handle network traffic, routing, load balancing, and
telemetry data collection for each microservice.

• Control Plane (Istio):
A centralized control system for configuring sidecar prox-
ies, creating traffic routing rules, security policies, and
other service mesh operations.

Figure 1. Services running across Availability Zones within a region

C. Multi Primary Istio on Different Networks

The multi-primary Istio configuration across various net-
works allows two clusters to run with independent control
planes, resulting in secure and highly available communication
across boundaries. Figure 1 illustrates our multi-primary Istio
architecture within a region where there are two clusters on
separate networks, each with its own Istio control plane.
To support cross-cluster connectivity, both clusters have an
Istio east-west gateway in place. This gateway manages east-
west traffic for internal and cross-cluster service interactions,
allowing ingress and egress traffic to flow smoothly between
clusters.

To enable proper service discovery, each cluster’s API
servers are configured to recognise one another. This is per-

formed by establishing a remote secret key in each cluster,
allowing for mutual discovery and secure communication
across networks. As a result, cluster 1’s API server will be able
to access cluster 2’s services along with those within its own
clusters, and vice versa. This configuration allows the Istio
service mesh to effectively distribute traffic across availability
zones, providing resilience, fault tolerance, and effective load
balancing inside the service mesh.

D. Load Balancer

A Load balancer is used to distribute user requests to the
under-loaded services to ensure that no service is overwhelmed
with requests. Hence, it is necessary to have a fault-tolerant
load balancer to create a highly resilient architecture [11]. If
the load is not distributed efficiently across all the available
services it degrades the performance and efficiency of com-
puting resources [12]. Our architecture leverages a global load
balancer to achieve high availability and optimal performance
by routing traffic across two geographically separated regions.
The primary goal is to direct users to the nearest healthy
instance, thereby minimizing latency and enhancing the user
experience. This approach is essential for business-critical
applications, as it ensures that users can access the service
with minimal delay and without disruption, even in cases of
regional failures. To achieve accurate location-based routing,
we employ an external API that provides the user’s geograph-
ical data based on their IP address, which is a reliable method
for real-time location determination in distributed systems.

The process begins by constructing a URL with the user’s
IP address, which is then used to make an HTTP GET request
to retrieve the user’s location data. From the JSON response
body, we parse the latitude and longitude values, which serve
as input for calculating the distance to each available instance.
Before proceeding with distance calculation, we must first
verify the health of each instance to avoid directing traffic
to an unavailable or unstable service. For this purpose, we
create a health check URL by formatting each server’s address
and port, which acts as an endpoint to verify its availability.
This validation step is crucial, as it prevents unnecessary errors
and guarantees that only active and responsive instances are
included in the load balancing process. Each server URL is
parsed to ensure validity; if it is found invalid, the server
is marked as unhealthy, and an error message is logged. To
further ensure robust operations, we use a mutex lock, which
prevents race conditions by managing concurrent access to
shared resources during health checks, a common practice for
maintaining consistency in multi-threaded applications.

Once the health of each instance is confirmed, we convert
the latitude and longitude coordinates of both the user and
each healthy instance into coordinates suitable for distance
calculation. To accurately measure the distance between these
points, we utilize the Haversine function. This mathematical
formula is specifically designed for calculating the shortest
distance between two points on a sphere, making it highly
effective for geographic distance calculations. The precision
of the Haversine function is beneficial for our load balancer,

83Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 95 / 136

Figure 2. Architecture

as it ensures users are routed to the physically closest instance,
which is particularly important in regions with multiple service
points.

After calculating the distances, the global load balancer
routes traffic to the closest healthy instance, significantly re-
ducing latency and providing users with a faster, more reliable
service. In the event that this instance becomes unavailable
due to a failure or outage, the load balancer dynamically re-
routes traffic to the next closest healthy instance, maintain-
ing continuous availability. This resilient approach to load
balancing not only enhances user satisfaction but also aligns
with best practices in high-availability architecture by reducing
single points of failure and ensuring reliable service continuity
across regions. Figure 2 depicts a high level overview of the
entire architecture of our setup. By leveraging a multi-cluster
Kubernetes setup with Istio, it enhances service discovery
and traffic management across all regions. This holistic ap-
proach to existing infrastructure of companies guarantees high
availability, scalability, and optimal performance for enterprise
applications.

E. Our Setup

Our setup is distributed across two regions, each containing
two Kubernetes clusters that serve as Availability Zones within
those regions. Such an architectural setup ensures high avail-
ability and low -latency. These clusters are managed using
KinD (Kubernetes in Docker). The regions are labeled as
region1 and region2, and the Availability Zones within each
region denoted as zone1 and zone2. Figure 3 illustrates our
proposed architecture. This setup enables seamless failover
and efficient workload distribution across regions. It also helps
in mitigating single points of failure by ensuring redundancy
at both the regional and availability zone levels. Additionally,
traffic routing mechanisms are implemented to direct user
requests to the nearest and most responsive cluster, improving
overall performance.

Istio is installed in a multi-primary configuration on each
cluster. This configuration ensures high availability and func-
tionality by providing each cluster with its own Istio control
plane. Each cluster in a multi-primary setup has its own Istio
control plane, which allows them to govern traffic, implement
rules, and forward requests throughout the mesh. Such a setup
ensures system stability and availability. Even if the control
plane of one of the clusters fails, the other clusters remain
operational and continue to serve the user requests.

The helloworld service is deployed across all clusters,
providing redundancy and locality-based access. The service
instances are labeled according to their region and zone easier
traffic routing:

• The service is labeled as helloworld.region1.zone1 in
region1, zone1 and helloworld.region1.zone2 in region1,
zone2.

• Similarly, the service is labeled as hel-
loworld.region2.zone1 in region2, zone1 and the service
is labeled as helloworld.region2.zone2 in region2, zone2
.

• The helloworld gateway allows access to the services.
To ensure minimal latency and efficient resource utilization,

a custom load balancer is deployed on a separate system.
This load balancer routes user requests to the nearest region,
optimizing performance and reliability.

F. Availability Zone Failover using Istio Locality-Based Rout-
ing

For enhanced resilience, Istio’s locality-based failover is
configured to handle availability zone-specific issues seam-
lessly. If an issue arises within any zone, marking it unhealthy,
Istio’s destination rules redirect all traffic to the nearest healthy
zones within the same region. This immediate redirection en-
sures that users experience minimal disruptions, as the system
reroutes requests automatically to healthy zones, continuing
services which makes the architecture highly available. Highly
available systems are designed so that no single failure causes
unacceptable service disruption [13]. The destination rule
configuration also continuously monitors the health status of
each zone. Once the affected zone is restored and services
are healthy, it becomes eligible again to receive requests,
maintaining balanced and resilient service distribution.

G. Region-Wide Failover for Regional Resilience

In cases of region-level failures, the custom load balancer
takes over to prevent routing to any impacted region. It
continuously performs health checks across regions to ensure
only healthy regions handle requests. If a region fails, the load
balancer seamlessly routes traffic to the other available region,
ensuring uninterrupted service. As soon as all services in the
affected region are confirmed to be operational again, the load
balancer resumes routing requests to it.

IV. RESULTS AND DISCUSSION

In our observability setup for Cluster 1 in Region 1, Zone
1, we monitored key performance indicators such as latency,

84Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 96 / 136

Figure 3. Our setup

success rates, and request volumes. Here are the detailed
observations:

A. Traffic Volume and Success Rate:

As seen Figure 4 the incoming traffic volume is 12.2
requests per second, with a recorded success rate of 100%.
This indicates that every request was processed successfully,
without any loss or errors, reflecting a highly reliable service
operation.

Figure 4 shows that both 4xx and 5xx error rates are
recorded at 0, showing there were no client-side or server-
side errors. The absence of 4xx errors suggests that all client
requests were well-formed and valid, while the lack of 5xx
errors confirms robust server-side processing and stability.

Figure 4. Observability Metrics

B. Latency Metrics (P50, P90, P99):

Since the helloworld service in Region 2, Zone 2 is also
accessible from Region 1, Zone 1, we compared latency across
both clusters:

P50 Latency: Figure 4 shows that the median latency, or
time within which 50% of requests are processed, is 71.40 ms
for Cluster 1 (Region 1, Zone 1) and 73.49 ms for Cluster 2
(Region 1, Zone 2).

P90 Latency: It seen in Figure 4 that the latency within
which 90% of requests are completed is 95.49 ms in Zone 1

and 96.14 ms in Zone 2, showing that the majority of requests
have relatively low latency.

P99 Latency: Figure 4 shows that for 99% of requests, the
latency is 189.57 ms in Zone 1 and 203.00 ms in Zone 2. These
values show that even for high-percentile latency, processing
times remain well within acceptable ranges.

The slight increase in latency in Zone 2 (Region 1) is
attributed to cross-zone access, as requests from Zone 1
accessing services in Zone 2 experience a maximum additional
latency of approximately 4 ms.

C. Client and Server Request Volumes and Success Rates:

The client request volume is observed to be 6.4 operations
per second (ops/sec), matching the server request volume
of 6.4 ops/sec. This consistency indicates that all requests
initiated by the client are successfully received and processed
by the server, with no data loss or retries.

Both client and server success rates are recorded at 100%,
further confirming the absence of failures or unfulfilled re-
quests.

D. Client Request Duration:

From start to finish, client queries typically take around 300
milliseconds. This is the total round-trip time, which includes
processing requests, creating responses, and returning them to
the client.

E. Gateway Success Rate:

The helloworld gateway’s incoming request success rate
is 100%, which shows that the gateway setup is operating
correctly and consistently, directing traffic without introducing
issues.

F. Outgoing Response Rate by Destination Workload:

The destination workload’s outbound response rate is mea-
sured at 100%, indicating that answers from the destination
workload are constantly successful, indicating error-free com-
munication between workloads and optimum processing of
outgoing data.

All the metrics point to a robust and highly available system
with low latency for both local and cross-zone queries. The
multi-region setup can process requests at low latency and
ensure that the system is highly responsive. Such a highly
available architecture is needed for large enterprises to ensure
service uptime and an enhanced user experience. Including
observability into the infrastructure using tools like grafana
enables enables real-time tracking and timely identification of
potential issues.

Such high success rates and low latency values confirms
that the setup is configured to withstand traffic spikes and
variations without any effect on service quality, thereby em-
phasizing on its effectiveness in a multi-zone, multi-region
architecture.

85Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 97 / 136

G. Cost Analysis:

For production-grade servers across regions (e.g.,
T3.medium or m5.large instances), assuming 10-20 instances
per region for redundancy, costs could range from $1,500 to
$3,000 per region, totaling $3,000 to $6,000. AWS EKS is
priced at $0.10 per hour per cluster along with EC2 costs
for worker nodes, could add approximately $1,000 to $2,000
for a multi-region setup. Multiple load balancers and high
outbound data transfers may contribute an additional $500 to
$2,000, while persistent storage with high availability (e.g.,
Amazon RDS or S3 for data durability) might cost around
$500 to $1,000. Overall, for a mid-to-large-scale deployment,
the monthly operational cost might range from $5,000 to
$12,000. If large corporations and real-time applications were
to implement an existing architecture like this, their costs
could increase to anywhere between $20,000 to $50,000
monthly. We aim to target large scale industries who have an
existing private infrastructure.By leveraging open-source tools
and technologies and avoiding reliance on AWS or any other
cloud providers, the total cost of operation for our proposed
methodology comes up to $0.

H. Comparison with Cloud-Native Solutions:

Cloud providers such as Google’s Anthos and AWS EKS
with Istio offer managed service mesh solutions. Our method,
leveraging KinD and Istio in a multi-primary setup, elimi-
nates cloud dependency while maintaining low-latency service
discovery and failover. Some enterprises, like Cloudflare and
AWS CloudFront, deploy edge nodes or use CDNs to reduce
latency. Our approach dynamically routes traffic based on
region health and network proximity, reducing costs while
ensuring resilience. AWS Global Accelerator, GCP Multi-
Region Load Balancer, and other providers offer auto-scaling
groups, managed load balancers, and cross-region replication.
While these services ensure failover and high availability, they
introduce vendor lock-in and high operational costs.

V. CONCLUSION AND FUTURE WORK

Our solution presents a robust, multi-region architecture in
which there are two separate geographical regions which host
independent Kubernetes clusters on KinD with Istio installed
using the multi-primary approach on different networks. Each
cluster is set up with a Hello World service. Each cluster
has its own control plane, ensuring independent access across
clusters. Such an architecture increases the availability of the
service mesh and ensures that failure in one cluster or region
does not affect the other clusters, supporting high availability
throughout the architecture.

Our setup uses a load balancer that directs traffic based
on real-time health monitoring. Every 10 seconds, the load
balancer checks the health of each cluster to ensure that
traffic only goes to healthy clusters. If a cluster fails, the load
balancer identifies the nodes as unhealthy and routes traffic to
other healthy nodes in the service mesh. This strategy provides
constant uptime and lowers latency, resulting in a smooth user
experience even amid infrastructure failures.

Cloud providers like AWS provide ways to design fault-
tolerant cloud application using virtualization technologies
which emphasize on redundancy and continuous monitoring
[14]. However, using such approaches can be very expen-
sive for large-scale industries. Our approach is especially
useful for such large-scale businesses who want to optimise
their infrastructure and reduce reliance on expensive cloud
alternatives. Our setup is a robust, multi-region configuration
which leverages open-source solutions like Istio, to deliver
multi-regional availability, low latency, and scalability without
incurring the significant expenditures associated with cloud
services. This design seeks to integrate smoothly with current
organisational environments improving resilience and service
reliability across many regions. By using open-source solu-
tions, we provide a low-cost way to achieve a distributed,
highly available service architecture. This makes our method
ideal for large-scale organisations that value service continuity,
scalability, and low-latency access for worldwide users.

Integrating powerful AI-powered monitoring capabilities
could be one of the ways to improve the infrastructure.
By implementing machine learning models, the system can
predict faults earlier and optimise resource allocation. Such
an approach might provide an additional layer of maintenance
by detecting flaws before they impact operations, decreasing
downtime and enhancing system reliability, especially during
peak demand periods.

Reducing latency across multi-region architectures, partic-
ularly during region-wide or availability zone failovers, can
improve user experience. Response times could be reduced
by using enhanced routing algorithms and advanced load-
balancing approaches. By lowering latency, the infrastructure
may provide a better user experience while maintaining high
availability and performance. This would provide seamless
access to services, resulting in a more resilient and efficient
system.

REFERENCES

[1] A. Malhotra, A. Elsayed, R. Torres, and S. Venkatraman, ”Evaluate
Solutions for Achieving High Availability or Near Zero Downtime for
Cloud Native Enterprise Applications,” in *IEEE Access*, vol. 11, pp.
85384-85394, 2023, doi: 10.1109/ACCESS.2023.3303430.

[2] A. Johnson and B. Lee, ”Auto-Scaling Strategies for High Availability
in AWS,” in *Proceedings of the International Conference on Cloud
Computing*, 2017, pp. 112-125.

[3] H. Lang and C. Li, ”Containerization for High Availability in Cloud
Environments,” in *Proceedings of the International Conference on
Cloud Computing and Big Data*, 2019, pp. 201-214.

[4] G. Verma and R. Sushil, *Cloud Computing Implementation: Key Issues
and Solutions*, Springer, 2015.

[5] N. Ahmad et al., ”Strategy and Procedures for Migration to Cloud Com-
puting,” in *Proceedings of the 2018 IEEE 5th International Conference
on Engineering Technologies and Applied Sciences (ICETAS)*, 2018,
pp. 1-5.

[6] V. Mohammadian et al., ”Fault-Tolerant Load Balancing in Cloud
Computing: A Systematic Literature Review,” in *IEEE Access*, vol.
PP, pp. 1-1, 2021.

[7] W. A. Aziz, ”High Availability Solution for Cloud Applications,” in
International Journal of Simulation: Systems, Science Technology,
vol. 24, 2023.

[8] A. Berenberg and B. Calder, ”Deployment Archetypes for Cloud Appli-
cations,” in *ACM Computing Surveys*, vol. 55, no. 3, Article 61, pp.
1-48, March 2023. doi: 10.1145/3498336.

86Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 98 / 136

[9] A. Hajikhani and A. Suominen, ”The Interrelation of Sustainable
Development Goals in Publications and Patents: A Machine Learning
Approach,” *Trepo Digital Repository, Tampere University*, 2021.

[10] M. R. Mesbahi, A. M. Rahmani, and M. Hosseinzadeh, ”Reliability
and High Availability in Cloud Computing Environments: A Reference
Roadmap,” in *Human-Centric Computing and Information Sciences*,
vol. 8, no. 20, 2018. doi: 10.1186/s13673-018-0143-8.

[11] A. Malhotra, A. Elsayed, R. Torres, and S. Venkatraman, ”Evaluate
Solutions for Achieving High Availability or Near Zero Downtime for
Cloud Native Enterprise Applications,” in *IEEE Access*, vol. 11, pp.
85384-85394, 2023, doi: 10.1109/ACCESS.2023.3303430.

[12] S. Afzal and G. Kavitha, ”Load Balancing in Cloud Computing – A
Hierarchical Taxonomical Classification,” in *Journal of Cloud Com-
puting*, vol. 8, no. 22, 2019. doi: 10.1186/s13677-019-0146-7.

[13] E. Bauer and R. Adams, ”Service Reliability and Service Availability,”
in *Reliability and Availability of Cloud Computing*, Hoboken, NJ:
Wiley-IEEE Press, 2012.

[14] R. Brown and M. Davis, ”Designing Fault-Tolerant Cloud Applications:
A Virtualization-Based Approach,” in *IEEE Transactions on Services
Computing*, vol. 18, no. 4, pp. 567-581, 2020.

87Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 99 / 136

Combining Flows and Rules in a Low-Code Platform for Smart Water Management

Jens Nicolay

 ∗, Bjarno Oeyen

 ∗, Samuel Ngugi Ndung’u

 ∗, Thierry Renaux

 ∗,
Maxime Démarest†, Boud Verbeiren†, Wolfgang De Meuter

 ∗
∗Software Languages Lab, Vrije Universiteit Brussel, Brussels, Belgium

e-mail: {jens.nicolay|bjarno.oeyen|samuel.ngugi|thierry.renaux|wolfgang.de.meuter}@vub.be
†Hydria, Brussels, Belgium

e-mail: {mdemarest|bverbeiren}@bmwb.be

Abstract—The paper describes a low-code programming model
and environment for automating sensor data processing pipelines
for the smart water management domain. We identify visual flow-
based programming and rule-based approaches as two promising
avenues for building low-code programming models in this
domain, but likewise identified a total of five problems faced
by these approaches when applied to the domain. We propose
a solution that tackles those problems, both as a high-level
vision (combining the visual flow-based programming approach
with rule-based approach, where each approach is applied for
the programming tasks they are best suited for) and as a
concrete design of a low-code programming model. We sketch
our implementation, and discuss its limitations.

Keywords-flow-based programming; rule-based programming;
visual programming; low-code; sensors; internet of things.

I. INTRODUCTION

Low-code programming enables process automation by
users that would otherwise not be able to automate their
processes. In this paper, we describe a low-code programming
model and environment for automating sensor data processing
pipelines for the water management domain. Automating the
decision making process can save time, but also reduces
mistakes in tedious manual tasks [1]. Our goal is to provide
the conceptual model and practical tools to enable domain
experts (that do not need to be computer programmers) to
define, reason about, and maintain software solutions that help
them make accurate, timely decisions for managing surface
water, sewer, and rainfall drainage infrastructure.

It is generally accepted that the flow-based programming
paradigm [2] lends itself very well to the task of expressing
data processing pipelines, and simultaneously lends itself well
to visual programming. Many popular tools exist for visually
developing and deploying data processing applications (e.g.,
Node-RED [3], NoFlo [4], etc.). Despite its advantages, we
argue that it falls short at expressing common aspects of those
pipelines. Non-trivial logic (e.g., aggregation and correlation)
are better expressed as logical deductions in declarative rule-
based programming paradigm. We found that a straightforward
translation of traditional logic rules to a visual flow-based
platform does not offer a satisfying solution in our water
management scenarios.

The crux of our argument is as follows: if the goal of a
visual low-code programming model is to be accessible by do-
main experts who are non-expert programmers, then the model
should enable these domain experts to express the necessary
logic with the least amount of friction. In this paper, we show

that no single paradigm excels at capturing the concerns that
our water domain experts wanted to express. We argue that
domain experts need both a flexible system for transforming
and filtering data, and a capable system for correlating and
accumulating different measurements over time. We show that
both paradigms can be unified into one uniform model that
lends itself to a coherent two-layered low-code data processing
platform. In our vision, the parts of a processing pipeline that
lend themselves well to being expressed as a pipeline are
expressed using a flow-based approach, while the parts that
are best expressed as logical deduction are expressed using
a block-based low-code programming layer backed by a rule
engine.

The remainder of this paper is structured as follows. In
Section II, we list two motivating scenarios, which we use to
derive a problem statement in Section III. In Section IV, we
describe our approach by stating how a visual programming
environment combining flows and rules will tackles these
problems. In Section V, we provide a bird’s eye perspective
on the platform, before presenting the conclusion and future
work in Section VI.

II. MOTIVATING SCENARIOS

Our motivation for the design of a uniform low-code pro-
gramming platform is centred around two driving scenarios
from the water management domain.

UC1 The pre-validation of rainfall measurements. Raw
measurements from the sensor devices are analysed
and corrected for known anomalies. Sensors need to
be manually calibrated over time. While being cali-
brated, sensors produce faulty data (e.g., measuring
rain when there should not be rain). This use case is
concerned with identifying these calibration events,
removing the raw measurements, and replacing the
missing data with data from the statistically most-
correlated, nearby, measurement station(s) that did
have actual data.

UC2 The real-time monitoring of surface water qual-
ity. Specific locations and specific parameters (e.g.,
temperature, pH, conductivity, etc.) have their own
safe ranges and expected behaviours. Both abnormal
values (i.e., values that are not in a well-known safe
range) and spikes (i.e., measurements that are signif-
icantly higher/lower than the previous one) need to
be detected. An alert can then be sent out, by the

88Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 100 / 136

read
sensor

read
sensorpH save
in
database

show
on
dashboard

check
validity

valid

invalid

join
by

timekey show
on
dashboard

Figure 1: Example of a flow where traditional flow components shine: the
shape of the flow intuitively conveys the outcome, the components’ behaviours
are straightforward to infer.

platform, to investigate the cause of the abnormal
readings.

Before the introduction of our low-code platform, necessity
dictated that the former scenario was tackled using spread-
sheets, commonly recognised as one of the most widely
used tools for low-code programming [5]. Unfortunately, this
manual process was tedious and error-prone, and was never
performed on live data. The latter was only possible in a
limited way, and only on raw data as measured and stored
into the sensors’ data collection platform. I.e., not using any
of the validated data as generated by the first use case.

A. Flow-Based Model

Some of the aspects of these use cases fit well in a
traditional flow-based programming approach. For example,
Figure 1 provides a sketch of a low-code program to validate
acidity and temperature readings. By joining the data produced
by two sensors, each time step can be validated individually.
The general semantics of the program are easy-to-understand
from this visualisation: flows consist of components that con-
tain computations, and arrows between them connect the input
and outputs of these computations. The flow-based model is,
traditionally, well-suited for the development of distributed
event-driven systems, such as data processing pipelines, IoT
applications, and Cyber-Physical Systems.

B. Rule-Based Model

However, some implementation aspects of the presented use
cases are better expressed using a rule-based programming
approach. For example, for detecting spikes or applying inter-
station correlation the rule-based approach is more favourable.

Rule-based logic or symbolic AI is concerned with ex-
pressing and representing human knowledge and logic in a
declarative manner, usually based on facts and by specifying
“if-then” rules that connect and manipulate attributes of those
facts to produce new facts. Foregoing the low-code require-
ment for a moment, Figure 2 shows a rule-based approach
for handling calibrations in UC1. The figure depicts a code-
based approach in a variant of Datalog extended with stratified
negation [6]. Rules provide fine-grained control over the
generation of new facts from existing facts. For example, the
suspiciousRainfall rule in Figure 2 denotes exactly
when a rainfall measurement (of a given quantity MM, at a
given time T, for a specific measurement station S_ID) is
deemed suspicious: if there is at least 2mm of rain but no
rain at any other measurement station known by the system
(i.e. within the same city). In general, rule-based logic is

1 rainfallAtStationOtherThan(T, S_ID) :=
2 rainfall(T, MM, S_ID),
3 rainfall(T, MM_OTHER, S_ID_OTHER),
4 (S_ID != S_ID_OTHER),
5 (MM_OTHER != 0).
6
7 suspiciousRainfall(T, MM, S_ID) :=
8 rainfall(T, MM, S_ID),
9 (MM > 2),

10 not rainfallAtStationOtherThan(T, S_ID).
11
12 unsuspiciousRainfall(T, MM, S_ID) :=
13 rainfall(T, MM, S_ID),
14 (MM > 2),
15 not suspiciousRainfall(T, MM, S_ID).
16
17 unsuspiciousRainfall(T, MM, S_ID) :=
18 rainfall(T, MM, S_ID),
19 (MM <= 2).

Figure 2: Text-based logic programming example for finding suspicious
rainfall sensor readings.

well-suited for capturing complex domain knowledge and for
correlating data over time.

III. PROBLEM STATEMENT

The problem statement concerns five sub-problems. Two
that emerge from using flow-based programming, and three
that emerge from rule-based programming.

A. Obstacles to Process Sensor Data with Flow Operators

We have identified two problems that emerge when flow-
based programming is used to build applications like those in
the presented use cases.

P1: Poor Visualisation of Correlation in Flows: The main
strength of a flow-based environment is its ability to visualise
control flow in an easy to grasp manner. However, they fall
short in adequately visualising the dependencies in the context
of data correlation, especially when that correlation concerns
data that arrives over time. To exemplify this problem, we
have made three sketches using flow-based abstractions for
the identification of temperature spikes. Figure 3a presents
a program that utilises custom flow component to correlate
facts. These types of components hide the delay needed for
time-based correlation in the implementation of the “compare
with previous” component. I.e., there is no (visual) indi-
cation that the flow delays the processing of temperature
readings. Figure 3b and Figure 3c use traditional flow-based
components with a “delay” component that delays a reading
for one time-step. In the former approach, an “arithmetic
transform” component computes the difference between two
temperature readings, and an “arithmetic compare” component
then identifies the spikes. In the latter approach (based on
[7]), individual temperature measurements are delayed and
consequently compared to the current temperature reading.
Note here that the semantics of the system needs to adequately
handle missing values. For example, the “merge” component
would need to discard data whenever the “filter” component
dropped temperature readings.

89Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 101 / 136

compare with previous

at_least_1_more_thanoperator

temperaturekeyread
sensor

produce
alert

(a) Using custom flow components.

read
sensor

delay

arithmetic transform

temperatureright in key

temperatureleft in key

operator -

out key delta_temp

arithmetic compare

≥operator

delta_tempin key

constant 1

produce
alert

(b) Using an explicit delay component and arithmetic components that
operate on compound facts.

filter

>1

split

timestamp

station id

temperature

merge

timestamp

station id

temperature

delay

arithmetic

operator -

read
sensor

produce
alert

(c) Using an explicit delay component applied on an individual field.
Comparisons are applied on values, not compound facts.

Figure 3: Three approaches for finding spikes in two consecutive temperature
readings.

P2: Poor Abstraction of Sub-tasks in Flows: Many sensor
data processing pipelines, such as those in the smart water
management domain, mainly reason about compound facts,
not individual numbers. In the application domain, typical
input values are not merely primitive values like numbers
or text, but compound objects or facts about the world that
consist of multiple properties or fields. For instance, a tem-
perature measurement of 25.0 ◦C is not represented by a raw
number “25.0”, but by a “Temperature” fact that states that
the temperature at some timestamp at some measuring station
was “25.0”. As a result, the processing pipelines have two
layers: one layer dealing with high-level fact routing pipeline,
and one layer implementing the multitude of lower-level
fact transformation, filtering, and correlation tasks. Traditional
flow-based approaches fail to offer low-code tools with which
users can abstract over lower-level tasks (and their internal
dependencies) in the implementation of the higher-level layer.
This is exemplified by Figure 3c, in which individual fields are
de-structured. The same visual language for considering whole
facts is used on the value level, which makes understanding
the flow at a glance more difficult.

B. Obstacles to Process Sensor Data with Rules

We have also identified three problems that emerge from
using a rule-based approach in a low-code environment.

P3: Complexity of State Management in Rules: Many rule
evaluation engines employ a stateful fixed-point evaluation
model: i.e., facts are continuously added and derived through-
out the lifetime of an application. While the incremental
generation of facts is powerful, a program will eventually
run out of memory. As such, there must be a mechanism to
discard old facts. Automatic solutions to discard stale data
from the knowledge base exist [8][9], though those solutions
make assumptions about the facts’ data model and about the
constraints that the programmer specified in the rules which

may not apply in general. This leaves state management a
responsibility of the user of the rule engine. In the context
of a low-code programming environment, we thus need to
minimise the need for state management.

P4: Poor Fit of Rules to Imperative Actions: Rules are
a poor fit for expressing imperative actions (e.g., network and
file I/O). Imperative actions, like reading sensor data in UC1,
do not map well onto the rule-based paradigm.

P5: Poor Modularity of Rules: Many rule-based engines,
by default, operate on a single shared fact base for all rules:
i.e., all rules are continuously active and operating on the same
facts. In code-based approaches to rule-based programming,
some advanced scoping mechanisms such as namespaces and
modules [10] exist that can be used to prevent that program-
mers must take into account all combinations of all facts.
However, requiring users to make use of such mechanisms
as-is is at odds with the simplicity promised by low-code
environments.

IV. APPROACH

We claim that when programming non-trivial applications,
the programming model should enable programmers to express
both types of logic in the corresponding paradigm. This is es-
pecially true in the context of (visual) low-code programming.
If the goal of a visual low-code programming model is to be
accessible by domain experts, then it is essential that both
paradigms can be used for expressing programs.

A novel low-code platform that supports the vision outlined
in this paper enables experts in the water management domain
to express automatic data validation and processing pipelines,
and in which the results of those pipelines can be used to make
the (alerting) decisions needed to implement the scenarios.

Our solution is composed of a two-layered approach in
which flow- and rule-based paradigms are integrated into
one coherent low-code platform. The flow-based abstractions
provide a clear, general, overview of the behaviour of the
application. Complex rule-based abstractions are embedded
within the flow and provide powerful abstractions for, e.g.,
aggregation which are not straightforward to express with pure
flow-based abstractions. We now discuss various aspects of
this programming environment, and how its design tackles the
problems from Section III.

Rule-based Specification of Sub-tasks (P1 and P2): The
main paradigm of the system is flow-based. However, complex
processing steps can be implemented via rules components
whose behaviour integrates well into the visual abstractions of
the flow-based system. The system enforces a clear separation
of fact types: different fact types are visually distinct in both
the flow-based and rules-based programming environments.
Edges between components in the visual environment are
labelled by the type of facts to easily denote the flow of data,
which makes flows easier to understand.

Rules components express application logic using “if-then”
clauses. In short, the rule-based components provide users with
the tools to abstract over lower-level sub-tasks inside the high-
level, flow-based processing pipeline, while using a uniform

90Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 102 / 136

data language between the high-level (flow-based) abstrac-
tions and the low-level (rule-based) abstractions. Dealing with
correlation of multiple facts is then expressed in this lower
abstraction. I.e., instead of visualising correlation as a “delay”
component (as in Figures 3b and 3c), the rules component as
a whole reminds users that the block performs complex ag-
gregation of data. We envision a block-based visualisation for
the rule-based layer as those environments compare favourably
with respect to flow-based environments [11].

Opt-in Statefulness (P3): Considering that rule-based
approaches cannot completely forego state management, we
instead let users explicitly choose either a stateful or a non-
stateful execution model for each rule-based component. As
such, the complexities of state management only need to
be considered when users actually require statefulness. In
short, we provide a (flow-based) component that contains a
fully-fledged rule engine (with fixed-pointing semantics), and
another (flow-based) component that applies simple transfor-
mations (in which correlations between facts are disallowed).
Nonetheless, both use the same block-based visual language
to remain accessible to domain experts.

Restricted Imperative Actions (P4): The visual platform
uses the flow-based system for all imperative actions like
reading data from a file, connecting to a sensor’s live feed
of measurements, and writing computed facts to a file. As
such, these are not a concern in the rule-based programs at
all. This simplifies not only the implementation of the rule-
based engine, but also helps users to better understand the
logic of a program.

Modular Fact Bases for Rules (P5): Each rule-based
component reasons about facts from only two origins: the ex-
tensional facts that were delivered to the rule-based component
along the arrows visualised in the high-level flow program, and
the intensional facts that were derived by the rules specified in
that specific rule-based component, using only the facts that
are local to that specific rule-based component. In both cases
the rules of each rule-based component reason only about
facts local to that flow component. This design element solves
the poor modularity that follows from rules’ whole-program
scoping in an intuitive manner, linking it back to the way in
which data dependencies at the level of facts are visualised in
the flow language.

V. BIRD’S EYE OVERVIEW OF THE PLATFORM

We now present the concrete aspects of the implementation
of the platform. I.e., we present how users use this system to
define and execute flows. The visual platform is implemented
as a web application in which users can define flows and their
respective data schemas.

A. Flows, Relations and Datasets

User interaction with flows starts from the main flow tab
as shown in Figure 4a. On this tab users can manage flows.
They can create a new flow, open the editor for any that have
been created previously, as well as start/stop them.

(a) Managing flows

(b) Managing system-wide relations

(c) Managing datasets

Figure 4: Screenshots of the visual platform.

To distinguish between different fact types, the system
allows for creating so-called “relations”. The user can open
the relation editor, which is shown in Figure 4b. These show
the relations that are available to all flows. The same visual
language for building rules is used, which we explain in
Section V-C. By default, these relations include fact types
relevant to the water management domain: i.e., timestamped
measurements. As these are hardcoded by the system, they
cannot be modified. However, new ones can be added and
also modified from this interface.

Datasets are the platform’s abstraction for persisted data.
They are, in essence, CSV-files: i.e., an ordered collection of
tuples with a certain arity. Datasets can be created by a flow
component, or by uploading a CSV-file to the platform via
the web interface as shown in Figure 4c. Datasets uploaded
as a CSV-file can be loaded via a flow component. Note that
datasets do not always correspond with a system-wide relation.
As such, configuring a dataset component will automatically
generate a relation in the flow where they are being used. To
avoid the complexities that arise when multiple flows use the
same dataset as input and/or output, only uploaded CSV-files

91Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 103 / 136

Figure 5: Screenshot of the flow canvas for detecting temperature spikes from
a measurement station.

can be used as input in a flow. This design restriction ensures
that datasets cannot be used as an inter-flow communication
mechanism, which is not supported by the platform.

B. Flow-Based Programming in RuleFlow

The nodes in a flow are components that produce, process,
or consume facts. Using the terminology of [2], each compo-
nent in a flow has zero or more “in ports”, and zero or more
“out ports”. The type of in and out ports that a component has
depends on the component’s configuration. For instance, if a
rule-based component is extended with a new fact pattern of
a relation that it did not yet have before, the component will
gain an in port for facts of that type.

Users add components to a flow by dragging a representa-
tion of one of the existing component kinds from a component
palette onto the flow canvas (see Figure 5). Dependencies
among components are established by dragging an arrow from
a component’s out port to another component’s in port. These
arrows are labelled with the name of the relation that travels
along the arrows, and the arrows are colour-coded. This is
similar to, e.g., DiscoPar [12]. Components can be configured
by double-clicking on them, which usually opens a modal.
Finally, the flow canvas offers the means to edit the global
relations, offers buttons to save the state of a flow and to
start the flow, and shows a console onto which the results of
the flow (or of individual components) can be inspected. The
platform is shipped with a number of built-in components, we
distinguish between three main types.

1) Source components are used to provide input to a flow.
There are built-in sources for generating facts with nu-
meric values in a given range, for reading data from an
existing dataset, and for connecting to a remote server
to fetch (historic or live) data from measuring stations.
The configuration of these measuring station components
is kept simple: a user only needs to select from a list
of measuring stations and the given date–time range for
which measurements must be retrieved.

2) Operator components apply transformations. There are
only two built-in operator nodes: one in which a rule-
based program is embedded, and one which only applies

Figure 6: Screenshot of the visual editor for rules to detect temperature spikes.

simple transformations (as mentioned in Section IV,
both use the same visual abstractions). The input and
output ports are generated from the embedded rule-based
program. For example, if there is a rule that expects
“Rainfall” facts, then a “Rainfall” input port will be
generated.

3) Sink components are the complement to source compo-
nents. The built-in sink components are used to save facts
to a dataset and to send data to the remote sensor platform
(i.e., for UC2). There is also a built-in component that is
used to send out email alerts (i.e., for UC1).

Besides these built-in components, users of the platform
can define their own flows which then become available to
other flows as components. Like operator components, subflow
components can have both input and output ports. While a full
overview of the semantics of subflows is not in the scope of
this paper, the gist is that flows can be explicitly configured
that they can be instantiated by other flows (i.e. top-left of
Figure 5): the sources and sink components of these subflows
are then parameterised.

C. Rule-Based Programming

Both operator components are configured in a rule-based
programming environment, as depicted in Figure 6. Each rule-
based subprogram consists of one or more rules, with one or
more body fact patterns and one head fact pattern each. The
environment is built on top of Blockly [13].

Blocks are provided for managing the data schema of facts
(for any relations that are local to the rules component), and for
defining rules using fact patterns. The fact patterns in the rules
can make use of variable bindings, of an expression language,
and of aggregators. In the visual language, the grammar is
enforced by the shape of blocks’ slots.

The block-based approach makes it possible to use a visual
metaphor to denote that the action block “accepts” one
head fact. We found that it was advantageous to use
the shapes as blocks as a form of static “type” checking to
prevent the construction of structurally wrong programs. On

92Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 104 / 136

the other hand, we found that disallowing connections due
to more complex context-dependent requirements hampered
users more than it helped them. Therefore, there are two types
of blocks: (1.) blocks that deal with facts connect vertically to
“notches”, and (2.) blocks that deal with fields of facts connect
horizontally to “jigsaw” slots.

When the visual platform detects that the user made a
mistake that is not handled by this distinction, the platform
allows the user to drop the block in the ‘wrong’ slot but
provides inline feedback on why this connection does not
make sense. This design choice serves two purposes: first,
it enables the low-code platform to teach its users some of
the finer nuances, and second, it allows users to construct
programs which are not yet valid, but will become valid when
the users finishes adding the blocks they meant to add. This is
similar to how textual IDEs allow programmers to temporarily
have a program in an invalid state while the programmer is
halfway through making an edit.

D. Prototypical Implementation

A prototypical implementation of our approach was built in
TypeScript. We leverage ReactFlow [14] for visualising and
interacting with flows of components. The rule and expression
language Rocks was built on top of Blockly [13]. Access to the
platform was given to our research partner who experimented
with designing surface water monitoring flows on the platform.

VI. CONCLUSION AND FUTURE WORK

We described a low-code programming model and environ-
ment for automating sensor data processing pipelines for the
surface water management domain. We identified visual flow-
based programming and rule-based approaches as two promis-
ing avenues for building low-code programming models. Our
prototypical platform has been designed specifically for the
water management domain. We have shown, throughout the
paper, the advantages that our platform provides for two use
cases important to the water management domain. However,
not all aspects of the problems identified in Section III are
wholly resolved, and real-world use of the current design by
its users point at avenues for future research.

A. Linking Flow Definition and Use

An important aspect for which our current design does not
offer affordances, is the evolution of the low-code programs
over time. Because of the way that the flow abstraction
mechanism works, the site of use and the site of definition
of a subflow are detached. The site of use does not track the
site of definition.

B. Hot-swapping of Stateful Components

Evolving long running stateful software systems requires
that care is taken to preserve accumulated state across mod-
ifications to the software. This holds equally in a flow-based
low-code context, where modifying one or more flow com-
ponents should not invalidate all state in the system. Further
complicating the support for hot-swapping [15] is the fact that

the state may need to be transformed to be compatible with
the modified flow. For instance, if a user decides to merge
two consecutive rules components in a flow together into one
larger rules component, the system has to provide the means
to correctly merge both components’ fact bases.

REFERENCES

[1] M. Hirzel, “Low-code programming models,” Commun. ACM,
vol. 66, no. 10, pp. 76–85, Sep. 2023, ISSN: 0001-0782. DOI:
10.1145/3587691.

[2] J. P. Morrison, “Flow-based programming,” in Proc. 1st Inter-
national Workshop on Software Engineering for Parallel and
Distributed Systems, CreateSpace, 1994, pp. 25–29.

[3] M. Blackstock and R. Lea, “Toward a distributed data flow
platform for the web of things (distributed node-red),” in
Proceedings of the 5th International Workshop on Web of
Things, WoT 2014, Cambridge, MA, USA, October 8, 2014,
ACM, 2014, pp. 34–39. DOI: 10.1145/2684432.2684439.

[4] The NoFlo Team, Noflo: Flow-based programming for
javascript, (accessed: 03.11.2023).

[5] M. Burnett, C. Cook, and G. Rothermel, “End-user software
engineering,” Commun. ACM, vol. 47, no. 9, pp. 53–58, Sep.
2004, ISSN: 0001-0782. DOI: 10.1145/1015864.1015889.

[6] S. Ceri, G. Gottlob, and L. Tanca, “What you always wanted
to know about datalog (and never dared to ask),” IEEE
Transactions on Knowledge and Data Engineering, vol. 1,
no. 1, pp. 146–166, 1989. DOI: 10.1109/69.43410.

[7] A. Catalá, P. Pons, J. J. Martínez, J. A. Mocholí, and E.
Navarro, “A meta-model for dataflow-based rules in smart en-
vironments: Evaluating user comprehension and performance,”
Sci. Comput. Program., vol. 78, no. 10, pp. 1930–1950, 2013.
DOI: 10.1016/J.SCICO.2012.06.010.

[8] T. Renaux, “A distributed logic reactive programming model,”
English, ISBN 978-9-49307-920-5, Ph.D. dissertation, Vrije
Universiteit Brussel, 2019, ISBN: 978-9-49307-920-5.

[9] D. Teodosiu and G. Pollak, “Discarding unused temporal
information in a production system,” in Proc. of the ISMM
International Conference on Information and Knowledge Man-
agement CIKM-92, Citeseer, Baltimore, MD, 1992, pp. 177–
184.

[10] L. Sterling and E. Y. Shapiro, “The art of prolog: Advanced
programming techniques,” in MIT press, 1994, pp. 243–244.

[11] D. Mason and K. Dave, “Block-based versus flow-based pro-
gramming for naive programmers,” IEEE Blocks and Beyond
Workshop (B&B), pp. 25–28, Oct. 2017. DOI: 10 . 1109 /
BLOCKS.2017.8120405.

[12] J. Zaman, K. Kambona, and W. De Meuter, “DISCOPAR: A
visual reactive programming language for generating cloud-
based participatory sensing platforms,” in Proceedings of
the 5th ACM SIGPLAN International Workshop on Reactive
and Event-Based Languages and Systems, ser. REBLS 2018,
Boston, MA, USA: Association for Computing Machinery,
2018, pp. 31–40, ISBN: 9781450360708. DOI: 10 . 1145 /
3281278.3281285.

[13] E. Pasternak, R. Fenichel, and A. N. Marshall, “Tips for
creating a block language with blockly,” in 2017 IEEE blocks
and beyond workshop (B&B), IEEE, 2017, pp. 21–24.

[14] xyflow Team, React flow - a library for building node-based
uis, https://reactflow.dev/; [retrieved: February, 2025], 2024.

[15] L. Vanbever, J. Reich, T. Benson, N. Foster, and J. Rex-
ford, “Hotswap: Correct and efficient controller upgrades for
software-defined networks,” in Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’13, Hong Kong, China: Associ-
ation for Computing Machinery, 2013, pp. 133–138, ISBN:
9781450321785. DOI: 10.1145/2491185.2491194.

93Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 105 / 136

Latency-Aware Task Offloading Mechanism for Mobile Edge Computing

Abdulelah Alwabel
Department of Computer Sciences

Prince Sattam Bin Abdulaziz University
AlKharj, Saudi Arabia

e-mail: {a.alwabel }@psau.edu.sa

Abstract—Task offloading in Mobile Edge Computing (MEC)
is a critical mechanism that enables resource-constrained mobile
devices to delegate computational tasks to proximate edge servers
for processing. One of the core benefits of task offloading in MEC
is the significant reduction in latency. Unlike traditional cloud
computing, where data must travel to remote data centers for
processing, MEC leverages edge servers positioned at the periph-
ery of the network, close to end users. However, task offloading
is not without its challenges. Critical issues, including network
reliability, security, data privacy, and effective task scheduling,
must be addressed to provide efficient offloading processes. This
paper presents a novel latency-aware task offloading mechanism
for MEC environments. The proposed mechanism dynamically
adapts to latency variations to optimize task placement and
migration across edge servers. Unlike traditional approaches, the
mechanism operates without prior knowledge of task charac-
teristics, enabling real-time task submission and execution. The
mechanism employs a migration policy that minimizes latency by
reassigning tasks in the waiting queue based on latency changes
caused by mobile device movement, reducing the negative impact
of such variations on system performance. To evaluate the
effectiveness of the mechanism, a simulation environment was
developed to model MEC scenarios. The simulation considered
varying task loads and dynamic latency conditions to emulate
real-world operations. Results demonstrate that the proposed
mechanism achieved an improvement in key performance met-
rics, including latency, waiting time, and makespan time.

Keywords-task offloading; dynamic mechanism; latency-aware;
MEC.

I. INTRODUCTION

Task offloading in Mobile Edge Computing (MEC) is a
critical mechanism that enables resource-constrained mobile
devices to delegate computational tasks to proximate edge
servers for processing. This approach can bridge the gap
between the resource limitations of mobile devices and the
increasing computational demands of modern applications,
such as Augmented Reality (AR) and video processing [1].
By offloading tasks to edge servers located closer to the
end user, MEC reduces latency, enhances energy efficiency,
and ensures better utilization of computational resources, thus
paving the way for seamless user experiences and efficient
system operations.

The proliferation of smart devices and the emergence of
data-intensive applications have introduced new challenges
in mobile computing. Mobile devices, while portable and
versatile, often suffer from limited battery life, computational
power, and storage capacity. Task offloading addresses these
challenges by transferring computational tasks to edge servers,
which are equipped with greater processing power and are

located at the network edge, closer to users. This minimizes
the delay caused by communication with distant cloud servers
and alleviates the burden on mobile devices, thereby extending
their operational lifespan and improving their performance [2].

Task offloading in MEC is typically categorized into full
offloading and partial offloading [3]. In full offloading, the
entire computational task is sent to the edge server, leaving
the mobile device to act primarily as an input/output interface.
This is especially beneficial for highly complex applications
where local execution is infeasible due to resource constraints.
Partial offloading, on the other hand, involves splitting the task
into smaller components, with some parts processed locally
and others offloaded. This approach is ideal for tasks that can
be parallelized or for scenarios where network conditions or
server availability may not support full offloading.

The process of task offloading in MEC involves several key
components, including task partitioning, offloading decision-
making, and resource allocation [4]. Task partitioning deter-
mines how the task is divided into smaller subtasks, while
offloading decisions are made based on parameters such as
network bandwidth, device resources, latency requirements,
and energy consumption. Resource allocation ensures that
edge servers have the capacity to handle offloaded tasks
efficiently without overloading the system.

One of the core benefits of task offloading in MEC is
the significant reduction in latency. Unlike traditional cloud
computing, where data must travel to remote data centers
for processing, MEC leverages edge servers positioned at the
periphery of the network, close to end users. This proximity
reduces the round-trip time for data transmission, enabling
real-time processing and low-latency responses [5]. Further-
more, by shifting computational tasks away from mobile
devices, task offloading helps conserve battery life, a critical
consideration for mobile users.

However, task offloading in MEC is not without its chal-
lenges. Critical issues, including network reliability [6], secu-
rity [7], data privacy [8], and effective task scheduling, must
be systematically dealt with to enable seamless and secure
offloading processes. Furthermore, dynamic environmental
factors, such as fluctuating network conditions and varying
server workloads, necessitate the development of adaptive and
intelligent offloading strategies. In this study, we propose a
novel task offloading mechanism that incorporates awareness
of dynamic network conditions to optimize the placement and
migration of tasks across edge servers. The proposed approach
aims to minimize latency, waiting time, and makespan, thereby

94Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 106 / 136

enhancing overall system efficiency.
The reminder of this paper is organized as follows. Section

II presents related works. Our mechanism is proposed and
discussed in Section III. The results of employing our novel
mechanism is presented and analyzed in Section IV. The paper
concludes with future directions for research in Section V.

II. RELATED WORK

Task offloading in edge computing has been extensively
explored, particularly in the context of IoT and its impact on
network efficiency. For instance, the study in [9] discusses
the significant traffic generated by real-time data management
in edge networks with full offloading capacity. The authors
propose an algorithm to detect node faults, manage deadlines,
and improve data handling efficiency in centralized systems,
reducing bandwidth use and scheduling delays.

Edge and cloud server performance comparisons by the
authors in [10] highlight the efficiency of edge servers in
resource utilization, while cloud servers excel in cost and delay
reduction. To handle offloading inefficiencies, they propose
an algorithm, which minimizes delays, optimizes resource
allocation, and enables parallel task execution, enhancing
system responsiveness.

The use of heuristic algorithms is detailed by the researchers
in [11], who introduce an approach based greedy policy for
resolving task offloading challenges. It integrates MEC to
address latency issues in computation-intensive tasks, optimiz-
ing task management and resource efficiency while mitigating
battery life concerns. However, this work pays little attention
to changes of latency during run time.

Decentralized architectures for edge computing are explored
in [12], which introduces a hierarchical edge cloud model.
This architecture addresses limitations of traditional cloud
computing, improving scalability, fault tolerance, and data
recovery, particularly for applications requiring high mobility
and low latency.

Improved Quality of Service (QoS) in edge computing is
a recurring theme. For instance, the authors in [13] advocate
for predictive systems using collaborative filtering to prevent
delays. The results of this study demonstrate that QoS can
be improved using machine learning approaches. In addition,
the study in [14] proposes a reliable pooling approach to
address task distribution and overhead costs. These approaches
enhance system reliability and optimize resource usage.

A novel model for resource-efficient edge computing tai-
lored for smart IoT applications is introduced [15]. A hybrid
device-based computation offloading method was developed
to optimize resource usage. The primary objective of this
research is to enable diverse smart IoT device users to min-
imize cloud resource consumption while adhering to QoS
constraints. A key advantage of the proposed approach lies in
its ability to enhance the algorithm’s performance, particularly
in terms of resource efficiency [16].

The authors in [17] propose a dynamic time-sensitive
scheduling algorithm that integrates the First-Come, First-
Served (FCFS) policy with priority-aware scheduling. How-

Figure 1. System Model

ever, the proposed mechanism assumes prior knowledge of
tasks to enable prioritization based on their deadline require-
ments.

Overall, the literature highlights the potential in MEC
to mitigate latency, optimize task scheduling, and enhance
fault tolerance. However, challenges such as dynamic network
conditions necessitate further research to refine adaptive and
intelligent offloading mechanisms.

Algorithm 1 Initial Placement - DM Mechanism
1: get task, nodeList
2: mknmin = maximumV alue
3: foreach node in nodeList do
4: mkntmp = Makespan(task, node) //equation 1
5: if mkntmp < mknmin then
6: mknmin = mkntmp

7: nodeselected = node
8: end if
9: end for

10: place(nodeselected,task)
11: update nodeList

III. PROPOSED MECHANISM

This section introduces a Dynamic Mechanism (DM) de-
signed to offload tasks from devices to edge servers within the
MEC environment. The proposed mechanism is aware latency
variations during runtime that dynamically adapting assigns
and migrates tasks without prior knowledge of tasks before
their submission with an aim to improve performance. The
mechanism allows tasks to be submitted at any point during
runtime.

Figure 1 illustrates the system model of a Mobile Device
(MD) that offloads a task to a manager module within the MEC
environment. The manager finds an edge server, to be called
node, to execute this task. This selection plays an important
rule to improve the QoS of the system. Algorithm 1 shows an
initial placement process to select a suitable node (node) to
host a recently submitted task (task). The process selects a

95Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 107 / 136

Figure 2. Migrate Process - DM Mechanism

node with a minimum makespan time (mkn). It is calculated
as:

mkn(task, node) = l + wt(node) + et(task, node) (1)

where l denotes the latency of this node which means the
time required to send the response from this node to the MD
which offloaded. wt(node) refers to the total waiting time for
this task before it can be executed, it is calculated as:

wt(node) =

∑t
i=1(taskt.length)

nodecpu
(2)

where nodecpu refers to the processing power of node. It
is measured in Million Instructions Per Second (MIPS) [18].
et(task, node) denotes the execution time and is given as [19]:

et(node) =
task.length

nodecpu
(3)

task.length refers to the processing length of a task which
is measured in Million Instructions (MI) [20]. In our system,
we assume that when an MD moves from one location to
another, the latency between the MD and nodes changes (i.e.,
latency can increase or decrease). This change in latency can
significantly impact the overall makespan time of tasks. To
address this, the DM mechanism incorporates a migration
policy designed to account for latency variations. The migra-
tion policy is illustrated in Figure 2. When an MD relocates,
the manager module is updated with the MD’s new location,
and it subsequently updates all nodes with the recent latency
changes.

The DM mechanism then calculates the mkn value for
each task in the waiting list across all nodes. If a node is

TABLE I. SIMULATION CONFIGURATION

Parameter Value
Latency:

Initial value 1-10 ms
Value during runtime 1-100 ms

Update time 1 - 100 ms
Node Specifications:

RAM 128 MB
CPU 1GB, 1.5GB, 2 GB and 2.5GB

Number of nodes 10
Tasks:

Processing length (5, 10, 20, 100) × 103 MIPS
Number of Tasks 1000

identified that can execute a task with a lower mkn than the
current assigned node, the manager migrates the task to that
node. It is important to note that the DM mechanism applies
this migration policy only to tasks that have not yet started
execution (i.e., tasks in the waiting list). Tasks already in
execution are excluded from this process in order to avoid
the impact of migration overhead.

IV. EVALUATION

This section presents the results obtained from testing the
proposed mechanism in a simulation environment. It begins
with a discussion of the simulation settings and concludes with
an analysis of the results.

A. Experiment Configurations

We extended the simulation tool DesktopCloudSim [21]
to simulate the MEC environment. DesktopCloudSim, which
is based on the widely-used cloud simulation framework

96Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 108 / 136

40

45

50

55

60

250 500 750 1000
Number of Tasks

A
ve

ra
g
e
 L

a
te

n
c
y
 (

m
s
)

DM

FCFS

Figure 3. Average Latency

20

40

60

0 50 100 150 200
Number of Tasks

A
ve

ra
g
e
 L

a
te

n
c
y
 T

im
e
 (

m
s
)

DM

FCFS

Figure 4. Average Latency (Tasks < 200)

Figure 5. Waiting Time

Figure 6. Makespan Time

97Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 109 / 136

TABLE II. RESULTS SUMMARY.

Metric DM Mechanism FCFS Mechanism
Latency 50 ms 53 ms

Waiting Time 830 ms 938 ms
Makespan Time 898 ms 1010 ms

CloudSim [22], was selected due to its adaptability and
extensibility for edge computing scenarios. To evaluate the
performance of the proposed mechanism, the simulation was
configured with detailed specifications for tasks and edge
servers, ensuring an accurate representation of the MEC envi-
ronment.

Table I presents the configuration of the simulation. It details
the initial latency between MDs and nodes, where the latency
varies randomly during runtime to simulate the movement of
MDs between different locations. The table also specifies the
configuration and number of nodes utilized in this study, as
well as the total number of tasks submitted to evaluate the DM.
The experiment begins with a single task and incrementally
increases the number of tasks in each run with one, then two,
and continuing up to 1,000 tasks. The length of each task is
assigned randomly and is measured in MIPS.

To minimize measurement errors in our simulation tools,
we generated tasks randomly, as stated in Table I. These tasks
were integrated into the simulation tool in exactly the same
way for all evaluated mechanisms. Furthermore, we used a
large dataset of 1,000 tasks to further reduce measurement
errors in the simulation.

B. Results

Figure 3 demonstrates that the DM mechanism outper-
formed the FCFS mechanism in terms of average latency as the
number of tasks exceeded 200. However, for task counts below
200, the FCFS mechanism performed better than the proposed
DM mechanism, as illustrated in Figure 4. This behavior can
be attributed to the smaller number of tasks, resulting in fewer
tasks in the waiting queue before the MD moves. Since the
DM mechanism migrates tasks in the waiting list based on
latency changes, any variation in node latency for a task in
execution leads to significantly higher latency.

Regarding waiting time, the average waiting time for tasks
was approximately 901 ms under the FCFS mechanism, com-
pared to about 829 ms under the DM mechanism. Figure 5
highlights the trend of increasing waiting time as the number
of tasks grows.

For makespan time, the DM mechanism achieved an average
of 472 ms per task, whereas the FCFS mechanism recorded
an average of 487 ms. These results indicate that the DM
mechanism reduced the makespan time by approximately 3%.
Figure 6 presents a comparison of the makespan results for
both mechanisms across the experiment.

Table II presents a summary of the results of this paper,
comparing the DM and FCFS mechanisms in terms of latency,
waiting time, and makespan time (average values). The results
indicate that the DM mechanism consistently outperforms

FCFS across all three metrics, demonstrating superior effi-
ciency in task scheduling.

V. CONCLUSION AND FUTURE WORK

Task offloading in MEC presents significant challenges,
particularly in managing network reliability and latency varia-
tions. To address these issues, this paper proposed a novel task
offloading mechanism that dynamically incorporates latency
awareness to optimize task placement and migration across
edge servers. The experimental results demonstrated that the
proposed mechanism effectively reduces latency, waiting time,
and makespan compared to the FCFS mechanism, thereby
improving overall system performance.

The future directions for this research are twofold. First,
the mechanism will be extended to support the migration of
tasks that have already commenced execution. This extension
will require a comprehensive evaluation of the associated
overheads and their impact on system performance. Second,
the focus will shift toward exploring additional performance
factors, such as load balancing and power consumption of edge
servers. These aspects are crucial for enhancing the scalability
and energy efficiency of MEC systems.

REFERENCES

[1] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya,
“An Online Algorithm for Task Offloading in Heterogeneous
Mobile Clouds,” ACM Transactions on Internet Technology,
vol. 18, no. 2, pp. 1–25, Jan. 2018. DOI: 10.1145/3122981.

[2] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey
on Architecture and Computation Offloading,” IEEE Commu-
nications Surveys & Tutorials, vol. 19, no. 3, pp. 1628–1656,
2017, ISSN: 1553-877X. DOI: 10.1109/COMST.2017.2682318.

[3] F. Saeik et al., “Task offloading in Edge and Cloud Computing:
A survey on mathematical, artificial intelligence and control
theory solutions,” Computer Networks, vol. 195, p. 108 177,
Aug. 2021. DOI: 10.1016/j.comnet.2021.108177.

[4] W. Tang, S. Li, W. Rafique, W. Dou, and S. Yu, “An
Offloading Approach in Fog Computing Environment,” in
2018 IEEE SmartWorld, Ubiquitous Intelligence & Com-
puting, Advanced & Trusted Computing, Scalable Com-
puting & Communications, Cloud & Big Data Comput-
ing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), IEEE, Oct.
2018, pp. 857–864. DOI: 10.1109/SmartWorld.2018.00157.

[5] A. Pakmehr, “Task Offloading in Fog Computing with Deep
Reinforcement Learning: Future Research Directions Based on
Security and Efficiency Enhancements,” in CLOUD COMPUT-
ING 2024 (2024), Jul. 2024, p. 34. arXiv: 2407.19121.

[6] K. Peng, Y. Yang, S. Wang, P. Xiao, and V. C. M. Leung,
“Reliability-Aware Proactive Offloading in Mobile Edge Com-
puting Using Stackelberg Game Approach,” IEEE Internet of
Things Journal, vol. 11, no. 9, pp. 16 660–16 671, May 2024,
ISSN: 2327-4662. DOI: 10.1109/JIOT.2024.3354700.

[7] I. A. Elgendy, W. Zhang, Y.-C. Tian, and K. Li, “Resource
allocation and computation offloading with data security for
mobile edge computing,” Future Generation Computer Sys-
tems, vol. 100, pp. 531–541, Nov. 2019. DOI: 10.1016/j.future.
2019.05.037.

[8] X. He, R. Jin, and H. Dai, “Peace: Privacy-Preserving and
Cost-Efficient Task Offloading for Mobile-Edge Computing,”
IEEE Transactions on Wireless Communications, vol. 19,
no. 3, pp. 1814–1824, Mar. 2020. DOI: 10.1109/TWC.2019.
2958091.

98Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 110 / 136

[9] M. Bukhsh, S. Abdullah, and I. S. Bajwa, “A Decentralized
Edge Computing Latency-Aware Task Management Method
With High Availability for IoT Applications,” IEEE Access,
vol. 9, pp. 138 994–139 008, 2021. DOI: 10.1109/ACCESS.
2021.3116717.

[10] L. Liu, H. Zhu, T. Wang, and M. Tang, “A Fast and Efficient
Task Offloading Approach in Edge-Cloud Collaboration Envi-
ronment,” Electronics, vol. 13, no. 2, p. 313, Jan. 2024. DOI:
10.3390/electronics13020313.

[11] M. Guo et al., “HAGP: A Heuristic Algorithm Based on
Greedy Policy for Task Offloading with Reliability of MDs
in MEC of the Industrial Internet,” Sensors, vol. 21, no. 10,
p. 3513, May 2021. DOI: 10.3390/s21103513.

[12] S. Meng et al., “A fault-tolerant dynamic scheduling method
on hierarchical mobile edge cloud computing,” Computational
Intelligence, vol. 35, no. 3, pp. 577–598, Aug. 2019. DOI:
10.1111/coin.12219.

[13] G. White and S. Clarke, “Short-Term QoS Forecasting at the
Edge for Reliable Service Applications,” IEEE Transactions
on Services Computing, vol. 15, no. 2, pp. 1089–1102, Mar.
2022. DOI: 10.1109/TSC.2020.2975799.

[14] T. Dreibholz and S. Mazumdar, “Towards a lightweight task
scheduling framework for cloud and edge platform,” Internet
of Things, vol. 21, no. October 2022, p. 100 651, Apr. 2023.
DOI: 10.1016/j.iot.2022.100651.

[15] X. Chen, Q. Shi, L. Yang, and J. Xu, “ThriftyEdge: Resource-
Efficient Edge Computing for Intelligent IoT Applications,”
IEEE Network, vol. 32, no. 1, pp. 61–65, Jan. 2018. DOI:
10.1109/MNET.2018.1700145.

[16] S. Rahman et al., “Resource Management Across Edge
Server in Mobile Edge Computing,” IEEE Access, vol. 12,
pp. 181 579–181 589, 2024, ISSN: 2169-3536. DOI: 10.1109/
ACCESS.2024.3503058.

[17] M. Maray, E. Mustafa, J. Shuja, and M. Bilal, “Dependent
task offloading with deadline-aware scheduling in mobile edge
networks,” Internet of Things, vol. 23, p. 100 868, Oct. 2023.
DOI: 10.1016/j.iot.2023.100868.

[18] Y. Zhang, X. Lan, J. Ren, and L. Cai, “Efficient Comput-
ing Resource Sharing for Mobile Edge-Cloud Computing
Networks,” IEEE/ACM Transactions on Networking, vol. 28,
no. 3, pp. 1227–1240, Jun. 2020, ISSN: 1063-6692. DOI: 10.
1109/TNET.2020.2979807.

[19] R. Mahmud, A. N. Toosi, K. Ramamohanarao, and R. Buyya,
“Context-Aware Placement of Industry 4.0 Applications in Fog
Computing Environments,” IEEE Transactions on Industrial
Informatics, vol. 16, no. 11, pp. 7004–7013, Nov. 2020. DOI:
10.1109/TII.2019.2952412.

[20] M. Alkhalaileh, R. N. Calheiros, Q. V. Nguyen, and B. Javadi,
“Performance Analysis of Mobile, Edge and Cloud Comput-
ing Platforms for Distributed Applications,” in Mobile Edge
Computing, Cham: Springer International Publishing, 2021,
pp. 21–45. DOI: 10.1007/978-3-030-69893-5_2.

[21] A. Alwabel, R. Walters, and G. B. Wills, “DesktopCloudSim
: Simulation of Node Failures in The Cloud,” in The Sixth
International Conference on Cloud Computing, GRIDs, and
Virtualization CLOUD COMPUTING 2015, Nice, France:
iaria, 2015.

[22] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De
Rose, and R. Buyya, “CloudSim: A toolkit for modeling and
simulation of cloud computing environments and evaluation
of resource provisioning algorithms,” Software - Practice and
Experience, vol. 41, no. 1, pp. 23–50, 2011. DOI: 10.1002/
spe.995.

99Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 111 / 136

Running Kubernetes Workloads on Rootless HPC Systems using Slurm

Jonathan Decker , Sören Metje and Julian Kunkel
Institute for Computer Science, Universität Göttingen,

Goldschmidtstraße 7, 37077 Göttingen, Germany
e-mail: jonathan.decker@uni-goettingen.de|soerenmetje@yahoo.de|julian.kunkel@gwdg.de

Abstract—Kubernetes has become a widespread orchestrator
for cloud workloads but with increasing demand for compute the
need arises to also access HPC environments that are operated
via batch schedulers such as Slurm. A number of solutions for
combining Slurm and Kubernetes are available, which can be
categorized further based on the interaction between Slurm and
Kubernetes that they provide. In this paper, we consider the use
case of utilizing an existing Slurm cluster to run Kubernetes
workloads. For this, we introduce a new solution called Kind
Slurm Integration (KSI) based on Kind and rootless Podman and
compare it based on performance, usability and maintainability
to the existing solutions Bridge Operator and High-Performance
Kubernetes (HPK). We found that Bridge Operator provides
native performance as it effectively submits Slurm jobs through
a Kubernetes interface and that HPK provides good performance
by creating almost feature complete Kubernetes clusters on top
of Apptainer. KSI on the other hand is able to provide fully
functional Kubernetes clusters inside Slurm jobs but lacks behind
in network performance. Overall, we conclude that more work
is needed to run Kubernetes workloads under Slurm without
missing out on features or performance.

Keywords-Kubernetes; HPC; Container; Slurm; Cloud.

I. INTRODUCTION

Kubernetes has established itself as a widespread solution for
orchestration of cloud workloads [1][2] and is used for various
workloads including service computing, running large amounts
of micro services, as well as batch jobs, such as data analytics
or machine learning. However, batch jobs would fit better into
HPC environments where powerful high-performance compute
and networking resources are available. HPC workloads are
commonly scheduled using a batch scheduler such as Slurm [3]
but Kubernetes itself can also be used for scheduling HPC jobs
using a batch scheduler such as Volcano [4] and have already
been scaled to large clusters using appropriate workarounds [5].
Nevertheless, while Kubernetes brings a large array of features,
its virtualization layers incur a performance overhead compared
to bare metal performance [6], which one could achieve with
Slurm.

Users might want to bring their Kubernetes workloads into
Slurm-based HPC environments to benefit from the reduced
overhead compared to a regular Kubernetes cluster or to
gain access to additional compute hardware, which could
also include specialized hardware only available in HPC
environments. Rewriting Kubernetes workloads to be executable
in Slurm may require significant effort and expertise with
the scheduling systems. However, various approaches and
implementations exist for combining Slurm and Kubernetes
enabling users to dynamically move workloads between cloud
and HPC environments.

As there have been various efforts to combine Kubernetes and
Slurm, we consider the definition by Wickberg of Schedmd [7]
who defines four categories from the perspective of Slurm for
such approaches.

• Over: The entire Kubernetes environment exists within a
Slurm job and is therefore temporary as it is fully removed
once the job completes.

• Distant: Compute nodes are part of either a Kubernetes or
a Slurm cluster and may be moved between the clusters.

• Adjacent: Slurm and Kubernetes utilize some form of
plugins or bridging tools to cooperate but can still be used
individually.

• Under: Kubernetes runs a Slurm cluster within its own
environment across one or more pods.

Given the above use case of running Kubernetes jobs in an
existing Slurm environment, this fits the Over or Adjacent
model. After investigating existing solutions that implement
either of these models we found various approaches that provide
the Adjacent model but no system for having a Kubernetes
cluster running within a Slurm job as described in the
Over model. Therefore, we present Kind Slurm Integration
(KSI) [8], an implementation of the Over model based on Ku-
bernetes in Docker (Kind) [9]. We systematically evaluate and
compare KSI to existing solutions including Bridge Operator
by IBM [10], WLM-Operator by Sylabs [11], kube-slurm
by Kalen Peterson [12] and High-Performance Kubernetes
(HPK) [13].

Our evaluation consists of a review of the state of the respec-
tive projects with regard to features and maintainability as well
as a performance analysis to determine the overhead incurred
by the respective approach. For this purpose, we benchmarked
the solutions based on workload startup time, CPU compute
performance, memory throughput, storage throughput, network
latency and network throughput, and compared the results
to bare metal. We found that not all of the implementations
listed above were able to pass a minimal functionality test. For
those that passed, no significant differences in CPU compute
performance, memory throughput and storage throughput were
found. While our own solution, KSI, is outperformed by the
others in terms of startup time and network performance, it still
provides the most complete support for Kubernetes features
compared to the others.

Overall this paper contributes a systematic evaluation of
existing approaches that implement the Adjacent or Over
model to combine Slurm and Kubernetes, the design and
implementation of a proof-of-concept for KSI and a final

100Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 112 / 136

overview of the features and limitations of the evaluated
approaches. The work shown in this paper is based on the
master’s thesis of one of the authors [14].

The remainder of the paper is organized as follows: In
Section II the various implementations for integrating Slurm
and Kubernetes are discussed. The methods for benchmarking
and comparing the solutions as well as the design of KSI are
discussed in Section III. The results of the evaluation are given
in Section IV. Finally, Section V provides the conclusion and
outlook for future work.

II. RELATED WORK

To properly distinguish various approaches for combining
Slurm and Kubernetes, we discuss the four models along with
notable examples. We also cover related approaches that do not
use either Slurm or Kubernetes and then have a more in-depth
look at the implementations, which we evaluated in this paper.

A. Models for Integrating Slurm and Kubernetes

The four categories for combining Slurm and Kubernetes
defined by Wickberg of Schedmd [7] are Over, Distant,
Adjacent and Under as defined in Section I.

a) Distant model: Notable implementations include [15]
and [16], which both implement systems for dynamically
changing the partitioning of a node pool between a Kubernetes
and Slurm cluster.

b) Under model: Contributions have been made in
[17], [18] and [19], in which Slurm is being run as a set
of Kubernetes pods. A significant project in this category is
Slinky [20] by Schedmd who had created a Slurm Kubernetes
bridge implementation as a proof-of-concept before creating
Slinky. The proof-of-concept implementation followed the
Adjacent model, was not functional and has since then been
removed from public access.

c) Adjacent model: Approaches in this category are
relatively diverse in their approaches including Bridge Op-
erator [10], WLM-Operator [11] and HPK [13]. Each of these
approaches is discussed in more detail in Subsection II-C.

d) Over model: There are no notable implementations of
this model except for KSI [8], which is presented in detail in
Subsection III-B.

B. Other Approaches for Integrating HPC and Cloud

While this work focuses on combining Slurm and Kubernetes
it should be noted that there are alternative approaches to
running HPC workloads through a cloud interface. For example,
as mentioned in Section I, Volcano [4] is an extension for
the Kubernetes scheduler, which implements features such as
batch and gang scheduling. This enables the execution of batch
workloads as shown in [21][22].

Another notable approach is hpc-connector [23] presented in
[16], which enables the submission of jobs through an arbitrary
cloud interface to be executed via Slurm. This approach can
be considered similar to Bridge Operator but is not bound to
Kubernetes but also lacks deeper integration with any specific
cloud platform to enable advanced features.

Finally, there is [24] who integrated TORQUE [25] with
Kubernetes, enabling scheduling of HPC workloads through
Kubernetes to TORQUE similar to the Adjacent model.

C. Implementations for Adjacent Slurm and Kubernetes

1) WLM-Operator: Sylabs Inc. had developed the WLM-
Operator [26] and Singularity-CRI [27] with Singularity-CRI
providing a Kubernetes-compatible implementation of the
Container Runtime Interface for Singularity [11]. The WLM-
Operator implements a Kubernetes operator that is able to
interface with Slurm such that Slurm nodes become visible in
Kubernetes as virtual nodes.

Moreover, it provides a Custom Resource Definition (CRD)
in Kubernetes called SlurmJob, which enables the submission of
Slurm jobs through Kubernetes. When submitting a SlurmJob,
a dummy pod is created in Kubernetes and the actual job is
submitted to Slurm to be run in a Singularity container. The
results are then collected through another pod via a shared
storage before closing the dummy pod once the job completes.

However, on December 30th 2020, both WLM-Operator and
Singularity-CRI projects have been archived with no further
development planned.

2) Bridge Operator: IBM had developed Bridge Opera-
tor [28] in order for a Kubernetes cluster to be able to access ex-
ternal compute resources including Slurm clusters [10]. Bridge
Operator implements a Kubernetes operator and provides the
BridgeJob CRD, which accepts all the details required to launch
a Slurm job including the remote URL of a Slurm cluster, what
resources to request and a remote storage configuration.

For each BridgeJob, the Bridge Operator starts a monitoring
pod and submits the job to Slurm. The monitoring pod regularly
updates a Kubernetes ConfigMap with the current status and
fetches the job output. The creators of Bridge Operator have
also demonstrated how to run Kubeflow workloads through
BridgeJobs [29], however, as these jobs are converted to Slurm
jobs, the Kubernetes pods are not directly being run in Slurm.

3) HPK: HPK [30] is presented in [13] and [31] as a way
to run Kubernetes workloads on Slurm through Apptainer [32].
It is deployed as a single Apptainer container that runs the
Kubernetes control plane and a custom implementation of
virtual Kubelet [33], which presents an entire Slurm cluster
as a single node in the cluster. Whenever a new pod is to be
scheduled, it submits a job through Slurm for the pod to be
started as a container using Apptainer.

For the container networking to function, it relies on Flanneld
service [34] to be installed on the nodes and the Flannel-
CNI plugin [35] to be installed for Apptainer. However, only
headless services without cluster IPs are supported as the
additional layer of load balancing is not possible with the used
networking stack. Moreover, the command kubectl exec,
which is used to execute commands inside Kubernetes pods,
is not supported.

4) Kube-Slurm: The kube-slurm project [12] provides a tool
for controlling Kubernetes resources using Slurm jobs. When
deploying, Slurm and Kubernetes must both be installed on the
same set of nodes with kubectl available on all nodes. Once

101Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 113 / 136

deployed, users can submit Slurm jobs, which get scheduled
by the tool as Kubernetes pods onto the nodes selected by the
Slurm scheduler.

The deployment can also be completed with the Under
model by having Slurm run within Kubernetes but still using
Slurm to schedule the pods. Nevertheless, due to the way the
access is provided to the Slurm scheduler, all users receive the
same access to the Kubernetes cluster making this approach
unfit for multi-user setups with potentially malicious users.

III. METHODOLOGY

This work focuses on approaches for combining Kubernetes
and Slurm that allow running workloads on an existing Slurm
cluster following the Over or Adjacent model and investigates
the suitability of the existing solutions. For that purpose we
define the following research questions:

RQ1 Can workloads be submitted using Kubernetes tooling,
e.g., kubectl?

RQ2 Can workloads be scheduled and executed on machines
managed by an existing Slurm cluster without root access?

RQ3 Can workloads be executed across multiple machines in
parallel?

RQ4 What is the performance overhead imposed by the tool?
RQ5 Is the tool easy to operate for the end user?
RQ6 Is the tool well maintained?
RQ1, RQ2 and RQ3 define the functional requirements. For
a solution to be a valid approach for utilizing a Slurm cluster
through Kubernetes, it should answer yes to at least RQ1
and RQ2 with a yes to RQ3 being desirable but not strictly
required. Notably, these requirements do not include whether
a solution must be able to run Kubernetes workloads or if it
may run Slurm workloads through a Kubernetes interface. For
example, Bridge Operator accepts Slurm workloads submitted
through Kubernetes while HPK takes Kubernetes workloads
submitted through a Kubernetes interface, with both executing
the workloads on a Slurm cluster. Moreover, the distinction
between the Over and Adjacent model breaks down to whether
the deployment requires an existing component, such as a
Kubernetes cluster, to be running before the Slurm job that
will handle the target workload is submitted.

RQ4 is concerned with the performance cost of a given
solution. Depending on the architecture and optimization a
given implementation may cost additional compute power or
delay the start of workloads, which should be minimal for an
application to fully harvest the power of HPC machines.

RQ5 and RQ6 cover the usability and maintainability of
a given software providing an indication for the viability in
productive use.

While RQ1, RQ2 and RQ3 can be answered as yes or no
questions, RQ4, RQ5 and RQ6 require a graded answer. We
use a three point scoring from + (positive) over o (average)
to - (negative) to be able to quickly compare the results for
multiple implementations. + is the best score, which is given
if the implementation fulfills the requirements without any
significant drawbacks. o is the middle score, which indicates

that some limitations apply and - is the lowest score, which
applies if significant shortcomings exist.

A. Selection of Implementations to Evaluate

In Section II-C we had introduced the WLM-Operator,
Bridge Operator, HPK and Kube-Slurm. Before starting our
evaluation we performed a minimal functionality test and
found that the latest version of WLM-Operator is no longer
functional on recent operating systems. Despite our best efforts
and reaching out to Sylabs, we were unable to reproduce the
minimal examples in the repository. Therefore, WLM-Operator
can be considered retired and we will not further consider it.

Kube-Slurm requires the installation of a Kubernetes cluster
on all nodes as part of its deployment, which violates RQ2
that it must be able to operate without root access. Therefore,
we will not further consider Kube-Slurm.

This only leaves HPK and Bridge Operator as viable targets
for further evaluation along with KSI, which is introduced in
the next section. However, when testing Bridge Operator we
ran into a number of issues, which we reported on Github and
created a pull request [36] with our code adjustments.

B. Kind Slurm Integration (KSI) Design

Our main objectives of designing another approach for
combining Slurm and Kubernetes were that it should follow
the Over model and support all Kubernetes features. Following
the Over model, KSI can be run strictly inside Slurm jobs
without relying on external components. This was important to
us, as our use case involved a multi-user HPC system in which
the users of KSI would not be able to deploy a control plane
outside of Slurm jobs as it is required by HPK. Moreover, as
we could not find any existing projects employing the Over
model, we consider this a research gap.

We utilized rootless Kind [9] via its experimental Podman
support to create a script that receives a Kubernetes workload,
initializes a cluster inside a Slurm job, executes the workload
and then closes the cluster as the Slurm job ends. Before
settling on rootless Kind, we also considered Minikube [37],
K3D [38] and Usernetes [39] but found rootless Kind to be the
most suitable.

Kind [40] was developed with local development and au-
tomatic testing of Kubernetes in mind. It can deploy a fully
functional Kubernetes cluster on a single node by deploying a
"node" image, which internally runs another container runtime
from which all containers belonging to the cluster are run. From
the perspective of the host system, only a single container is
running for the control plane node of the cluster. Moreover, by
deploying multiple "node" images on the same host, Kind can
simulate a multi-node cluster.

For operating KSI inside of Slurm jobs without access to root
permissions, which are required for regular container operation,
we employ rootless Kind [9]. Rootless Kind relies on a container
runtime, in our case Podman, which uses Cgroups v2 features
to run rootless containers. Besides Cgroups v2, Podman also
relies on the shadow-utils package, which provides subuids
and subgids for user namespaces.

102Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 114 / 136

However, Kind itself is not designed for multi-node clusters
across multiple physical machines or VMs, so in order to
achieve RQ3, we would require a tool such as Kilo [41]
or Liqo [42]. With these it is possible to aggregate multiple
Kubernetes cluster into a single cluster by representing each
cluster as a virtual Kubelet in the main cluster. With this KSI
could be deployed across a number of nodes in a multi-node
Slurm job and all the worker nodes would use Kilo or Liqo
to register with the cluster on the main node, which in turn
would be able to schedule work across all nodes. When using
this approach, each node has to run KSI and initialize its own
Kubernetes cluster, which includes running all control plane
components, before joining together via Kilo or Liqo to form
a single cluster. We have not implemented this feature for the
version of KSI under evaluation in this paper, but expect that
the same overhead, in terms of CPU and memory consumption
by the control plane components that applies to a single node
running KSI, would then also apply to each individual node
in such a multi-node setup.

In order to deploy KSI, the nodes must provide a recent
Linux operating system with support for Cgroups v2, rootless
Podman must be set up, as well as slirp4netns [43], to provide
networking for rootless Podman. Since the experiments for this
work have concluded, Podman 5.0 [44] was released, which
uses pasta [45] as its default rootless network driver instead
of slirp4netns. Workloads can be configured and embedded
via run-workload.sh, which sets up the Kubernetes
cluster when submitted via Slurm. srun -N1 /bin/bash
run-workload.sh example-workload.sh would set
up a single node cluster and then run the workload described
in example-workload.sh. The workload script should
internally use kubectl to create the required Kubernetes
resources and then wait for the workload to finish. Upon
completion of the workload script, the cluster is stopped and
removed such that the Slurm job is also closed.

The produced KSI code, documentation and workload
examples are released under the GPL-3.0 license on Github [8].

C. Performance Evaluation

To assess the performance overhead to answer RQ4 we have
broken down our benchmarking into the following factors:

• Startup time: Measured with a dummy workload
• CPU compute performance: Measured with Sysbench [46]
• Memory throughput: Measured with Stream [47]
• Storage throughput: Measured with Fio [48]
• Network latency: Measured with Netperf [49]
• Network bandwidth: Measured with iPerf3 [50]

We consider these as representative factors for user workloads
that might be run through any of the tools under study.

As the bare metal baseline we run the benchmarks through
Slurm without Kubernetes. All benchmarks were run on two
machines with hardware specifications as shown in Table I.
On the nodes we used software versions as shown in II. The
Kubernetes version v1.27.3 is the most recent version at the
time of the experiments and was used for the external cluster
for the Bridge Operator as well as by KSI. HPK, however, is

TABLE I. HARDWARE SPECIFICATIONS OF THE BENCHMARK MACHINES.

CPU Intel(R) Xeon(R) CPU E5-2695 v3
CPU Sockets 2
Cores per socket 14
Threads per core 2
Total threads 56
RAM 24 DIMMs DDR4 16 GB 1866 MHz
Total RAM 384.00 GB
Storage 1 Verbatim Vi550 S3 SATA Revision 3.2 SSD
Total storage 128.00 GB
Network interface QLogic BRCM 10G/GbE 2+2P 57800-t rNDC

pinned to v1.25.0 in its code base. Furthermore, we disabled
SELinux, swap and write caching to more clearly measure the
respective factors.

TABLE II. SOFTWARE VERSIONS OF THE BENCHMARK MACHINES.

Linux OS CentOS Stream 9
Slurm 23.02.5
Podman 4.6.1
slirp4netns 1.2.2-1
Kind 0.20.0
Kubectl v1.28.2
Kubernetes v1.27.3
HPK Kubernetes v1.25.0
shadow-utils 2:4.9-8

D. Project State Evaluation

Evaluating the maintainability and usability of software has
been studied extensively [51][52] with many tools and methods
having been proposed. For this work, in order to answer RQ5
and RQ6, we have to consider what methods to employ.

In order to grade usability we consider the state of the
available documentation as well as the difficulty of setting
up and operating the respective tools for an assumed non-
expert user based on our own experience of working with
the tools during this study. For grading maintainability we
reviewed the state of the code bases based on its complexity,
whether it has been kept up-to-date and how well issues are
being addresses. Moreover, we consider that a code base that
does a comparatively simple job while relying on more well
maintained dependencies is itself more maintainable than a
larger code that has more moving parts that may require
maintenance.

We acknowledge that more sophisticated methods are avail-
able but consider our approach sufficient to compare three
projects on a three point grading schema.

IV. RESULTS

The commit hashes of the implementation versions used in
our tests are as follows:

• Bridge Operator: 56334fa57caf2de28df6ff76df8a6e6232021421
• HPK: a902acbf2436e8a85a4620fddfa5745523f443d4

• KSI: 780ef3a0562ad4bb12611f9ef43fa743fe0277d0

A. Functional Requirements

For all Bridge Operator, HPK and KSI, the answer to RQ1,
RQ2 and RQ3 is yes with the exception that KSI requires

103Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 115 / 136

an additional integration with Kilo, Liqo or a similar tool to
support multi-node execution, which has not been implemented
yet.

B. Project State

a) Bridge Operator: When submitting a workload through
Bridge Operator, it requires the user to create an instance of
the CRD BridgeJob. With that no understanding of Slurm by
the user is required. However, the available documentation for
Bridge Operator is limited with some examples not working
such that a patch was required to make it work [36]. While the
project itself depends only on the Slurm REST API giving it a
stable foundation, the project itself seems abandoned with no
activity after late 2022. Due to this, we rate it o in both usability
and maintainability. We would have rated + for usability if
the examples were all functional and for maintainability if the
project was actively being maintained.

b) HPK: Similar to Bridge Operator, HPK can be
controlled directly through kubectl without additional un-
derstanding of Slurm by the user. Nevertheless, while its
documentation is also limited, after we had completed our
experiments [30] was released along with v0.1.2 of HPK
containing a number of bug fixes. This shows that the project
is being actively developed, moreover, when we ran into issues,
we quickly received community support from the maintainers.
With this we rate the maintainability as + and the usability
as o because in addition to the points mentioned above, HPK
does not support certain Kubernetes features, most notably
kubectl exec and services, such that users need to work
around these limitations.

c) KSI: Unlike the other two tools, KSI is started via
Slurm as it has no active component outside of the Slurm job.
Its usage is documented with several examples and it depends
on Podman and Kind, which are both well maintained projects.
The project delivers a feature complete Kubernetes cluster via
a set of scripts making it both usable and maintainable so
we rate KSI + for both factors. However, as KSI is our own
creation, we cannot claim that this evaluation is unbiased and
should be regarded as such.

C. Performance

The benchmarking scripts, as well as the raw test data, are
available online [53]. Each benchmark was repeated 10 times
to minimize random error with the standard deviation shown
in the graphs.

TABLE III. WORKLOAD STARTUP TIME, LOWER IS BETTER.

Integration Approach Startup Time [s]
bare metal 0.141
Bridge Operator 2.725
HPK 2.497
KSI 53.921

1) Startup Time: The startup delays given in Table III have
negligible standard deviation and show that Bridge Operator
and HPK start a workload in 2 to 3 seconds while KSI requires
almost one minute. This result is as expected since Bridge

Operator and HPK already have an active Kubernetes cluster
running before they submit their Slurm job while KSI has to
set up a Kubernetes cluster from scratch. Considering that HPC
workloads often run for multiple hours, one minute extra start
up time is not great but acceptable. Due to this we rate Bridge
Operator and HPK with + and KSI with o.

Figure 1. CPU compute perfor-
mance results using Sysbench.

Figure 2. Memory throughput results
using Stream.

2) Compute Performance: Figure 1 shows that Bridge Op-
erator and bare metal are effectively on the same performance
level while HPK and KSI are slightly lower than bare metal
(2.7% and 3.4%, respectively). The difference arises due to
the virtualization overhead and additional active components
running for HPK and KSI but is overall negligible such that
we rate all approaches with +.

3) Memory Performance: Figure 2 shows similar to Figure 1
only minor differences for HPK and KSI due to the additional
active components and virtualization such that we also rate all
with + here.

Figure 3. Storage throughput results using Fio and sequential operations.

Figure 4. Storage throughput results using Fio and randomized operations.

104Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 116 / 136

4) Storage Performance: The sequential read and write
shown in Figure 3 shows a similar pattern as the random read
and write shown in Figure 4 with Bridge Operator being on
the same level as bare metal and HPK and KSI lacking behind.
More specifically HPK is about 11% slower in sequential and
5% slower in random reading and KSI is overall 17% slower
in reading and 13% slower in writing than bare metal. These
differences can also be attributed to the additional virtualization
and overall resource consumption. While 17% slower reading
is not good we rate it still as acceptable so HPK and KSI are
rated as o and Bridge Operator as +.

Figure 5. Network latency results using Netperf.

Figure 6. Network bandwidth results using iPerf3.

5) Network Performance: For these benchmarks, the re-
spective tool executed a workload containing a test client that
executed the network benchmark against a server running on
the other of the two nodes in our test setup. What is shown as
the bare metal latency and throughput are therefore the latency
and peak throughput between the two nodes. Figure 5 shows
network latency with all solutions on the same level except
for KSI, which is 42% slower than bare metal. In Figure 6 the
network throughput is even worse for KSI with HPK already
being 21% slower than bare metal, KSI is 93.5% slower. As KSI
operates via rootlesss Podman, it uses slirp4netns as its driver,
which according to the Podman documentation [54] results in
degraded performance compared to rootful Podman networking.
Since our experiments concluded, pasta had replaced slirp4netns
as the default network driver for rootless Podman, which
promises better performance but initial tests could not show

a significant overall improvement [55]. Our ratings are + for
Bridge Operator, o for HPK and - for KSI.

D. Evaluation

TABLE IV. PROJECT ASSESSMENT REGARDING QUALITY REQUIREMENTS.
* SELF-EVALUATION OF KSI IS NOT UNBIASED.

Project RQ4 RQ4 RQ4 RQ4 RQ5 RQ6
Startup Comp. Storage Net. Usab. Maintainab.

B-O + + + + o o
HPK + + o o o +
KSI o + o - +∗ +∗

Table IV summarizes the ratings we have assigned through-
out this section with Startup, Compute, Storage and Network
performance all aiming at RQ4 and Usability and Maintain-
ability aiming at RQ5 and RQ6, respectively.

Bridge Operator has shown performance close or identical
to bare metal, which is as expected since it effectively submits
a Slurm job through Kubernetes and does not start additional
software in that Slurm job. This brings some limitations as
it is not actually running a given workload using Kubernetes.
Nevertheless, it has presented itself as a valid approach for
extending a Kubernetes cluster via access to a Slurm cluster.

HPK provides a good middle ground for running Kubernetes
jobs on Slurm with some performance deficiencies compared
to bare metal. If WLM-Operator would be functional, we
would have probably seen similar performance to HPK as
WLM-Operator is based on Singularity and HPK is based on
Apptainer and both projects still share the majority of their
implementation. While HPK does not support all Kubernetes
features, e.g., services and kubectl exec are not supported,
it provides a solid choice for natively running Kubernetes
workloads through Slurm.

KSI is functionally the most complete Kubernetes environ-
ment within a Slurm job and requires no external parts to
be started and kept running outside of it. This comes with
performance costs, as KSI shows the weakest performance in
all benchmarks, especially in startup time and networking.
The slow startup time is understandable as KSI has to
bootstrap the Kubernetes control plane and cannot rely on
an existing Kubernetes cluster. For network performance, KSI
relies on slirp4netns, which is known for causing performance
degradation [54]. While other network drivers are available they
are necessarily a silver bullet to resolve this issue [55].

All the projects suffer from being either only proof-of-
concept implementations, not having being maintained or not
being properly documented such that none of them provide
a production ready solution for running Kubernetes inside of
Slurm jobs.

V. CONCLUSION AND FUTURE WORK

In this paper, we analyzed the state of solutions for
combining Slurm and Kubernetes with the goal to enable
dynamic computation between either environment. We focused
on a subset of the available solutions to support our use case
of running Kubernetes workloads on an existing Slurm cluster.

105Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 117 / 136

For this purpose, we introduced our own solution KSI,
which is based on Kind and rootless Podman and is able
to deploy a fully functional Kubernetes cluster inside a Slurm
job. From the available solutions we took a closer look at
Bridge Operator, HPK and KSI and found that they fulfill our
functional requirements, except for KSI, for which multi-node
support has not been implemented yet. We further evaluated
their performance and reviewed the state of their respective
implementations.

We found that Bridge Operator delivers effectively bare
metal performance equal to directly running a job through
Slurm as this is effectively what Bridge Operator does. HPK
established itself as a middle ground solution, providing an
almost fully functional Kubernetes cluster inside a Slurm job
with minor performance overhead. On the other hand, our
solution KSI showed slightly higher overhead compared to
HPK and significantly less network throughput. With this KSI
provides the most feature complete Kubernetes clusters but
should not be considered for workloads that significantly rely
on network throughput compared to other factors. Still, if a
user’s workload relies on Kubernetes networking features such
as services, from the evaluated solutions, only KSI can support
this.

We conclude that the problem of running Kubernetes inside
Slurm workloads is not fully solved as it either comes at the cost
of performance or reduced feature sets with only unmaintained
or proof-of-concept solutions available.

The next steps for KSI include evaluating different network
drivers to mitigate its biggest short coming and to extend it
to support multi-node workloads while exploring alternative
approaches based on Minikube, K3D or Usersnetes.

REFERENCES

[1] “CNCF Annual Survey 2023”, CNCF, Apr. 9, 2024, [Online].
Available: https://www.cncf.io/reports/cncf-annual- survey-
2023/ (visited on 2024.12.30).

[2] “9 Insights on Real-World Container Use | Datadog”, [Online].
Available: https://web.archive.org/web/20230318234844/https://
www.datadoghq.com/container-report/ (visited on 2024.12.30).

[3] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple
Linux Utility for Resource Management”, in Job Scheduling
Strategies for Parallel Processing, D. Feitelson, L. Rudolph,
and U. Schwiegelshohn, Eds., Berlin, Heidelberg: Springer,
2003, pp. 44–60, ISBN: 978-3-540-39727-4. DOI: 10.1007/
10968987_3.

[4] “Volcano-sh/volcano”, Volcano, Dec. 30, 2024, [Online].
Available: https : / /github.com/volcano- sh /volcano (visited
on 2024.12.30).

[5] “Scaling Kubernetes to 7,500 Nodes”, Jan. 2021, [Online].
Available: https://openai.com/blog/scaling-kubernetes-to-7500-
nodes/ (visited on 2021.02.12).

[6] A. M. Beltre, P. Saha, M. Govindaraju, A. Younge, and
R. E. Grant, “Enabling hpc workloads on cloud infrastructure
using kubernetes container orchestration mechanisms”, in 2019
IEEE/ACM International Workshop on Containers and New
Orchestration Paradigms for Isolated Environments in HPC
(CANOPIE-HPC), Nov. 2019, pp. 11–20. DOI: 10 . 1109 /
CANOPIE-HPC49598.2019.00007.

[7] T. Wickberg, “Slurm and/or/vs Kubernetes”, Dec. 30, 2024,
[Online]. Available: https://slurm.schedmd.com/SC23/Slurm-
and-or-vs-Kubernetes.pdf (visited on 2024.12.30).

[8] S. Metje, “Kubernetes Slurm Integration based on Kind”, 2023,
[Online]. Available: https://github.com/soerenmetje/kind-slurm-
integration.

[9] “Kind – Rootless”, [Online]. Available: https://kind.sigs.k8s.
io/docs/user/rootless/ (visited on 2024.12.30).

[10] B. Lublinsky, E. Jennings, and V. Spišaková, “A kubernetes
‘bridge’ operator between cloud and external resources”, in
2023 8th International Conference on Cloud Computing and
Big Data Analytics (ICCCBDA), 2023, pp. 263–269. DOI: 10.
1109/ICCCBDA56900.2023.10154770.

[11] Staff, “Introducing HPC Affinities to the Enterprise: A New
Open Source Project Integrates Singularity and Slurm via
Kubernetes”, Sylabs, May 7, 2019, [Online]. Available: https://
sylabs.io/2019/05/introducing-hpc-affinities-to-the-enterprise-
a-new-open-source-project-integrates-singularity-and-slurm-
via-kubernetes/ (visited on 2024.12.30).

[12] K. Peterson, “Kalenpeterson/kube-slurm”, Aug. 17, 2024,
[Online]. Available: https://github.com/kalenpeterson/kube-
slurm (visited on 2024.12.30).

[13] A. Chazapis, F. Nikolaidis, M. Marazakis, and A. Bilas,
“Running kubernetes workloads on HPC”, in High Performance
Computing, A. Bienz, M. Weiland, M. Baboulin, and C. Kruse,
Eds., ser. Lecture Notes in Computer Science, Cham: Springer
Nature Switzerland, 2023, pp. 181–192, ISBN: 978-3-031-
40843-4. DOI: 10.1007/978-3-031-40843-4_14.

[14] S. Metje, Running Kubernetes Workloads on Rootless HPC
Systems using Slurm, GRO.data, Jan. 9, 2024. DOI: 10.25625/
GDFCFP.

[15] F. Liu, K. Keahey, P. Riteau, and J. Weissman, “Dynamically
negotiating capacity between on-demand and batch clusters”,
in Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis,
ser. SC ’18, Dallas, Texas: IEEE Press, Nov. 11, 2018, pp. 1–11.

[16] B. Wu, M. Hu, S. Qin, and J. Jiang, “Research on fusion
scheduling based on Slurm and Kubernetes”, in International
Conference on Algorithms, High Performance Computing,
and Artificial Intelligence (AHPCAI 2024), vol. 13403, SPIE,
Nov. 18, 2024, pp. 476–485. DOI: 10.1117/12.3051639.

[17] G. Zervas, A. Chazapis, Y. Sfakianakis, C. Kozanitis, and A. Bi-
las, “Virtual clusters: Isolated, containerized HPC environments
in kubernetes”, in High Performance Computing. ISC High
Performance 2022 International Workshops, H. Anzt, A. Bienz,
P. Luszczek, and M. Baboulin, Eds., ser. Lecture Notes in
Computer Science, Cham: Springer International Publishing,
2022, pp. 347–357, ISBN: 978-3-031-23220-6. DOI: 10.1007/
978-3-031-23220-6_24.

[18] T. Menouer, N. Greneche, C. Cérin, and P. Darmon, “Towards
an Optimized Containerization of HPC Job Schedulers Based
on Namespaces”, in Network and Parallel Computing, C. Cérin,
D. Qian, J.-L. Gaudiot, G. Tan, and S. Zuckerman, Eds., Cham:
Springer International Publishing, 2022, pp. 144–156, ISBN:
978-3-030-93571-9. DOI: 10.1007/978-3-030-93571-9_12.

[19] C. Cérin, N. Greneche, and T. Menouer, “Towards Pervasive
Containerization of HPC Job Schedulers”, in 2020 IEEE 32nd
International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), Sep. 2020, pp. 281–288.
DOI: 10.1109/SBAC-PAD49847.2020.00046.

[20] “SlinkyProject/slurm-operator”, SlinkyProject, Dec. 26, 2024,
[Online]. Available: https://github.com/SlinkyProject/slurm-
operator (visited on 2024.12.30).

[21] P. Liu and J. Guitart, Fine-grained scheduling for containerized
HPC workloads in kubernetes clusters, Nov. 21, 2022. DOI:
10.48550/arXiv.2211.11487. arXiv: 2211.11487[cs].

[22] D. Medeiros, J. Wahlgren, G. Schieffer, and I. Peng, “Kub: En-
abling elastic HPC workloads on containerized environments”,
in 2023 IEEE 35th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD),

106Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 118 / 136

ISSN: 2643-3001, Oct. 2023, pp. 219–229. DOI: 10 .1109/
SBAC-PAD59825.2023.00031.

[23] “PRIMAGE / hpc-connector · GitLab”, GitLab, Feb. 22, 2023,
[Online]. Available: https://gitlab.com/primageproject/hpc-
connector (visited on 2025.01.02).

[24] N. Zhou et al., “Container orchestration on HPC systems
through Kubernetes”, Journal of Cloud Computing, vol. 10,
no. 1, p. 16, Feb. 22, 2021, ISSN: 2192-113X. DOI: 10.1186/
s13677-021-00231-z.

[25] G. Staples, “TORQUE resource manager”, in Proceedings of the
2006 ACM/IEEE Conference on Supercomputing, ser. SC ’06,
New York, NY, USA: Association for Computing Machinery,
Nov. 11, 2006, 8–es, ISBN: 978-0-7695-2700-0. DOI: 10.1145/
1188455.1188464.

[26] “Sylabs/wlm-operator”, Sylabs Inc., Nov. 5, 2024, [Online].
Available: https://github.com/sylabs/wlm-operator (visited on
2025.01.02).

[27] “Sylabs/singularity-cri”, Sylabs Inc., Mar. 1, 2024, [Online].
Available: https://github.com/sylabs/singularity-cri (visited on
2025.01.02).

[28] B. Lublinsky, E. Jennings, and V. Spišaková, “A Kubernetes
’Bridge’ operator between cloud and external resources”, Jul. 6,
2022, arXiv: 2207 . 02531 [cs], [Online]. Available: http :
/ / arxiv. org / abs / 2207 . 02531 (visited on 2025.01.02), pre-
published.

[29] “Bridge-Operator/kubeflow at main · IBM/Bridge-Operator”,
[Online]. Available: https://github.com/IBM/Bridge-Operator/
tree/main/kubeflow (visited on 2025.01.02).

[30] “CARV-ICS-FORTH/HPK”, Computer Architecture and VLSI
Systems (CARV) Laboratory, Dec. 26, 2024, [Online]. Avail-
able: https://github.com/CARV-ICS-FORTH/HPK (visited on
2025.01.02).

[31] A. Chazapis, E. Maliaroudakis, F. Nikolaidis, M. Marazakis,
and A. Bilas, “Running Cloud-native Workloads on HPC with
High-Performance Kubernetes”, Sep. 25, 2024, arXiv: 2409.
16919 [cs], [Online]. Available: http://arxiv.org/abs/2409.
16919 (visited on 2025.01.02), pre-published.

[32] “Apptainer/apptainer”, The Apptainer Container Project,
Dec. 30, 2024, [Online]. Available: https://github.com/apptainer/
apptainer (visited on 2025.01.02).

[33] “Virtual-kubelet/virtual-kubelet”, virtual kubelet, Feb. 24, 2025,
[Online]. Available: https://github.com/virtual-kubelet/virtual-
kubelet (visited on 2025.02.24).

[34] “Flannel-io/flannel”, flannel-io, Feb. 25, 2025, [Online].
Available: https://github.com/flannel- io/flannel (visited on
2025.02.25).

[35] “Flannel-io/cni-plugin”, flannel-io, Jan. 31, 2025, [Online].
Available: https://github.com/flannel-io/cni-plugin (visited on
2025.02.25).

[36] “Fix #2 #3 #6 by soerenmetje · Pull Request #4 · IBM/Bridge-
Operator”, [Online]. Available: https://github.com/IBM/Bridge-
Operator/pull/4 (visited on 2025.01.02).

[37] “Kubernetes/minikube”, Kubernetes, Jan. 2, 2025, [Online].
Available: https://github.com/kubernetes/minikube (visited on
2025.01.02).

[38] “K3d-io/k3d”, k3d, Jan. 2, 2025, [Online]. Available: https:
//github.com/k3d-io/k3d (visited on 2025.01.02).

[39] “Rootless-containers/usernetes”, rootless-containers, Dec. 30,
2024, [Online]. Available: https : / / github . com / rootless -
containers/usernetes (visited on 2025.01.02).

[40] “Kind”, [Online]. Available: https://kind.sigs.k8s.io/ (visited
on 2025.02.21).

[41] L. S. Marín, “Squat/kilo”, Dec. 24, 2024, [Online]. Available:
https://github.com/squat/kilo (visited on 2025.01.02).

[42] “Liqotech/liqo”, LiqoTech, Dec. 27, 2024, [Online]. Available:
https://github.com/liqotech/liqo (visited on 2025.01.02).

[43] “Rootless-containers/slirp4netns”, rootless-containers, Feb. 23,
2025, [Online]. Available: https : / / github . com / rootless -
containers/slirp4netns (visited on 2025.02.25).

[44] “Releases · containers/podman”, GitHub, [Online]. Available:
https : / /github.com/containers /podman/releases (visited on
2025.02.25).

[45] “Passt - Plug A Simple Socket Transport”, [Online]. Available:
https://passt.top/passt/about/ (visited on 2025.02.25).

[46] A. Kopytov, “Akopytov/sysbench”, Jan. 2, 2025, [Online].
Available: https : / / github . com / akopytov / sysbench (visited
on 2025.01.02).

[47] J. Hammond, “Jeffhammond/STREAM”, Dec. 24, 2024, [On-
line]. Available: https://github.com/jeffhammond/STREAM
(visited on 2025.01.02).

[48] J. Axboe, “Flexible I/O Tester”, 2022, [Online]. Available:
https://github.com/axboe/fio (visited on 2025.01.02).

[49] “HewlettPackard/netperf”, Hewlett Packard Enterprise, Dec. 10,
2024, [Online]. Available: https://github.com/HewlettPackard/
netperf (visited on 2025.01.02).

[50] “Esnet/iperf”, ESnet: Energy Sciences Network, Jan. 2, 2025,
[Online]. Available: https://github.com/esnet/iperf (visited on
2025.01.02).

[51] L. Ardito, R. Coppola, L. Barbato, and D. Verga, “A Tool-
Based Perspective on Software Code Maintainability Metrics:
A Systematic Literature Review”, Scientific Programming,
vol. 2020, no. 1, p. 8 840 389, 2020, ISSN: 1875-919X. DOI:
10.1155/2020/8840389.

[52] K. A. Dawood et al., “Towards a unified criteria model for
usability evaluation in the context of open source software
based on a fuzzy Delphi method”, Information and Software
Technology, vol. 130, p. 106 453, Feb. 1, 2021, ISSN: 0950-5849.
DOI: 10.1016/j.infsof.2020.106453.

[53] S. Metje, “Soerenmetje/kubernetes-slurm-evaluation”, Jun. 28,
2024, [Online]. Available: https: / /github.com/soerenmetje/
kubernetes-slurm-evaluation (visited on 2025.01.02).

[54] “Podman/docs/tutorials/performance.md at main · contain-
ers/podman”, GitHub, [Online]. Available: https://github.com/
containers/podman/blob/main/docs/tutorials/performance.md
(visited on 2025.01.03).

[55] “Rootless network performance (pasta vs slirp4netns) ·
containers/podman · Discussion #22559”, GitHub, [Online].
Available: https://github.com/containers/podman/discussions/
22559 (visited on 2025.01.03).

107Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 119 / 136

Configuring Edge Devices That Are Not Accessible Via The Internet

Sebastien Andreo

SI CTO EAAS

Siemens AG

Erlangen, Germany

Email: Sebastien.Andreo@siemens.com

Uwe Hohenstein

FT RPD SSP

Siemens AG

Munich, Germany

Email: Uwe.Hohenstein@siemens.com

Abstract—In the context of Industrial Internet of Things and

Edge Computing, there are often computing devices that run

software on the edge device. In real industrial settings, these

computing devices are not accessible from the Internet. This

raises a problem if software components on the device require

configuration changes, such as adjusting some parameters to

customize software, restarting one or several applications that

behave badly on the device, or rotating passwords to name a

few. This paper presents a novel approach to configure

software on such computing devices. The details of the cloud-

based approach are presented and how the approach has

successfully been applied in an industrial project.

Keywords-internet of things; IoT; cloud computing;

industrial use case; configuration.

I. INTRODUCTION)

The Internet of Things (IoT) [9] is a rapidly emerging
Internet-based information service architecture where many
devices are interconnected [3][36]. Devices are equipped
with communication, sensing, computing and actuating
capabilities to collect and exchange data with their
surroundings to enable analysis, optimization and control.
Devices also perform a task in the physical world like
opening or closing a valve. Recent technological
achievements support the vision of a connected world [22].
In fact, different IoT use cases have successfully been
implemented [31].

Many traditional IoT approaches use the Cloud for
analyzing devices’ data, i.e., devices forward data to the
Cloud where intelligent analysis is performed because of the
Cloud’s high reliability, availability, unlimited scalability
and resources. However, a lot of incarnations of IoT have
increasingly challenged this approach [1] because
transmitting large amounts of data to the Cloud burdens the
network traffic. Recent approaches, such as edge [27], fog
[6][38] and osmotic computing [33], thus target at processing
and putting more data intelligence and decision making pro-
cesses [16][18][37] at the edge of the network, i.e., near the
devices [28][30]. Filtering and pre-processing data occurs
before submission to the Cloud, thus decreasing the volume
of data and reducing the network traffic [25].

In these cases, computing devices run some installed
software on the hardware. However, in real industrial
settings, devices are deployed in remote and hard-to-reach
environments. As a consequence, devices do not allow any
access from the Internet due to strong security requirements.

This raises a problem. Usually, software requires some
configuration, which might change from time to time. For
example, software is mostly designed in a generic manner to
satisfy several customers or deployments. Thus, running the
generic software needs some configuration during startup to
customize software accordingly. Only then a customer-
specific implementation can be avoided.

Changes of the configuration will also occur during
operation. For example, transferring data to the Cloud in the
context of edge devices requires credentials to access Cloud
services, e.g., a Cloud storage, such as AWS S3 storage. This
does not seem to be a problem at a first glance. But security
policies in industrial contexts require an expiration and
periodic password rotation. That is, renewed passwords must
then be passed to the device at runtime in order to avoid
downtime.

In general, further parameters for the software have often
to be adjusted, e.g., thresholds, according to changing system
behavior or environment. Similarly, if a software component
behaves badly, restarting it might become necessary from the
outside, maybe after changing some parameters to remedy a
component. And finally, there are often scheduled jobs that
require a modifiable Cron specification for periodic tasks.

Hence, a configuration of devices and their components
is indispensable. But any kind of such configuration is a
problem if the device and components running on that device
are not accessible via the internet – as in the case of
industrial settings.

One possible solution is to securely log into the
computing device and to configure locally and directly. This
requires advanced access from outside, e.g., by the Common
Remote Service Platform [8] – if possible at all. Without a
remote login, configuration must be done directly at the
device's location, i.e., usually at the plant’s site.

The main contribution of this paper is to tackle these
configuration issues. Hence, Section II presents a novel
approach to control and configure software on edge devices
that are not accessible by the Internet. Details about the
organization of software are presented in Section III, before
Section IV applies and evaluates the approach in a real
industrial context with corresponding use cases. In Section
V, we compare the presented approach with other work done
in the literature. Finally, Section VI summarizes the works
and gives an outlook about future work.

108Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 120 / 136

II. APPROACH

In the context of Industrial Internet of Things and Edge
Computing, there are computing devices that run some
installed software on the hardware. This paper targets at
allowing for externally provided configurations. In the
following, we use the following terms:

• Computing Device (CD): Can be any device, such as
a computer, an industrial PC, industrial boxes, such
as Siemens X300 box, or a RaspberryPi. A CD
might also be part of embedded hardware.

• Device Component (DC): A piece of software that
runs in a computing device to fulfill a certain task
within the computing device. In modern IoT
architectures, these DCs typically run in
virtualization, especially Docker containers.

• Configuration: Some data required by a device
component DC to adjust its behavior, for instance, to
set some thresholds, credentials, and time intervals,
or to trigger actions, such as enforcing a restart.

The proposed solution to allow for an external
configuration is as follows.

There is a new component ConfigurationManager-
Backend (CMB) running on a separate computer (maybe
hosted in the Cloud). The CMB keeps configurations and
possesses a publicly available but secured service. Dedicated
users can send configuration data to the CMB service for a
Device Component on a CD by means of an API; the CMB
persists the configuration data internally. Furthermore, CMB
can also be asked for configurations. Thus, CMB is a REST
service that offers a GET operation to retrieve configuration
data and a POST and PUT to store and update
configurations. The CMB is responsible for several CDs.

Another component ConfigurationHandler (CH) is
installed on the DC to periodically pull configuration data
from the CMB by using a GET request. The GET request
works in such a way that each request from CH to CMB
returns NOT MODIFIED (e.g., code 304 for HTTP/REST)
whenever a configuration has not been changed at the CMB
(this can be determined by using the ETAG mechanism and
the lastModified timestamp); otherwise, a package with all
configurations for the CD is returned. There is a CH for each
CD. Each CH obtains credentials to access the CMB REST
API to get only its configurations. The credentials are
changed periodically and passed to CH using the mechanism
explained below.

The configuration itself is stored as a zipped file
package.zip and organized as follows:

• There is a directory for each device component
named like the DC. It is assumed that each DC
possesses a unique name or identifier.

• Several files can be put in such a component's
directory; the format can be json or XML.

The following is a sample package.zip:
 |- bulk-transfer

 |- x.json
 |- y.json
 |- db-inserter
 |- z.json

The first level of the hierarchy determines the compon-
ents, here bulk-transfer and db-inserter. And files
x.json and y.json contain configurations for the DC bulk-
transfer. Further configuration files can be added at any time.

As already explained, CH calls the CMB service
periodically, particularly initially after a restart of CH.
Whenever a successful response is received, the packaged
data is analyzed by CH and internally distributed to all
device components DC running on the computing device
CD. The communication between CH and components is
done by means of a message queue, e.g., supporting MQTT.
That is, having received a configuration change, CH splits
the configuration package.zip into parts according to the
returned package structure so that individual configuration
files for each DC are extracted. The contents of all the files
belonging to the same DC are merged to one file.

CH keeps the latest configuration state for each DC in an
internal storage. If something has changed for a component
compared to the last state (determined by using a hash key or
similar), CH puts a message into the message queue with a
topic /configuration/<DC> that identifies the DC being
supposed to receive it. Otherwise, the configuration will not
be pushed since nothing has changed for the respective
component.

Each device component listens to incoming configuration
changes in the message queue concerning itself (identified by
its topic /configuration/<DC>). It takes the message
payload, i.e., its configuration part. Afterwards, the DC can
react according to the new configuration, for instance,
adjusting some parameters or performing a certain action.
Figure 1 illustrates the approach for such a periodic
configuration update.

Figure 1. Periodic configuration update.

This is the typical scenario of notifying DCs about
configuration changes. Another scenario is important for
restarting components. After a restart of a device component
DC, the DC might have missed some configuration changes
that occurred during downtime. Hence, DC is enabled to ask
for its latest configuration explicitly. Therefore, the DC can
publish a corresponding message to the message queue with

109Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 121 / 136

a topic /request/<DC>. CH listens to topic /request/#, i.e.,
all those topics (due to “#”) starting with /request, and
reacts by issuing a request to the CMB service and behaving
as described before. Figure 2 illustrates the procedure.

Figure 2. Explicit configuration update.

In case the CMB service is unreachable by CH (e.g., due
to network problems), the latest version of a configuration as
stored in CH is issued if explicitly asked for a configuration
by a DC. Once CMB is reachable again, the usual
mechanism works as described before.

Indeed, there is some monitoring of the overall system to
detect any issues as early as possible and sending alerts to
responsible persons.

Using a message queue has the advantage that all the
components do not need to be known in advance or have
been registered somewhere. In other terms, new components
can be added by using the mechanism immediately. If a
component mentioned in the package does not exist, a
message is published to the message queue but nothing else
happens due to the lack of a consuming DC.

The Cloud is beneficial for CMB due to global
accessibility and high reliability, but not mandatory for this
approach.

Compared to other approaches mentioned in Section V,
advantages are:

• A computing device can be secured by not being

accessible from the Internet while still obtaining

configuration changes.

• Moreover, the configuration can be done at any time

and outside of the computing device CD, independent

of its location.

III. ORGANIZATION OF SOFTWARE

The common parts for letting a DC request a
configuration at startup and listening to request changes can
be placed in a common piece of code so that all the DCs can
share the logic (e.g., by inheritance).

The following are some code snippets in python,
however, omitting some details, such as proper exception
handling.

There is a superclass (indicated in python by ABC) with
the common code to be shared with every component:

class Component(ABC):

 def __init__(self, broker_url:str, broker_port:int):

 initialize message queue mqtt;

 set component_name and topic;

 on_message = lambda msg: self.on_msg(msg)

 subscribe to message queue with topic and on_message

 as callback;

 def on_msg(self, msg):

 payload = json.loads(msg.payload.decode('UTF-8'))

 def start_listening(self):

 self.mqtt_client.broker_client.loop_start()

 def stop_listening(self):

 self.mqtt_client.broker_client.loop_stop()

 @abstractmethod

 def update_configuration(self):

 pass # to be implemented by every derived class

 def request_configuration(self):

 data = { "component": self.component_name }

 self.mqtt_client.publish(message=json.dumps(data),

 topic='/request' + self.component_name)

on_message is a callback function that is used to
subscribe to the message queue with a particular topic.
Functions start_listening and stop_listening start and stop
listening to a specific topic in the message queue, resp.
update_configuration is an abstract function that must be
implemented in a component to react on received
configuration changes.

Every component has to be derived from this superclass
as follows.

class SpecificComponent(Component):

 def main(): # will run in a docker container

 super().__init__(broker_url, broker_port)

 self.start_listening()

 self.request_configuration() # get first configuration for
 # start-up

 def update_configuration(self,payload):

 if 'config_a' in payload:

 react on payload['config_a']

 if 'config_b' in payload:

 react on payload['config_b']

Here, SpecificComponent runs in a docker container, which
executes the main function. Invoking start_listening starts
listening on configuration changes. During start-up of the
component, a configuration is requested by
request_configuration. Any configuration change will
automatically invoke update_configuration, where
component-specific behavior is implemented how to react.

110Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 122 / 136

IV. EVALUATION IN AN INDUSTRIAL CONTEXT

This section discusses the evaluation of the approach in
an industrial context by using a concrete application.

A. Industrial Context

Indeed, there are many different industrial IoT projects
within our company. However, it turned out that many of
them have similar requirements and follow the same
behavioral scheme. As one important characteristic, there is
no internet access to the devices. Moreover, there is a strong
need to deploy project-specific applications at the edge.

This leads to one common architecture to be set up
several times in industrial projects. The overall generic
approach follows the Lambda [23] architecture and is based
upon container technology. Indeed, IoT applications are
increasingly deployed using containers [24].

The common use case is to gather data from IoT devices.
Data is processed and used twofold.

First, there are several calculations of key performance
indicators (KPIs) that are resource-consuming and run on a
daily schedule producing some kind of daily analysis and
summary. For these applications, a component like a batch
layer [23] is sufficient. That is, data is regularly pushed into
the Cloud, and analysis and calculating KPIs is then
performed in the Cloud using the submitted data. Calculated
KPIs and any detected anomalies are visualized in
dashboards. Further applications in this context are
predictive maintenance etc. since they also have higher needs
on compute power.

Second, other use cases behave in the sense of a speed
layer [23] and require data in real-time to immediately react
on events in the data, e.g., to control a device. Those
applications typically run at the edge in the sense of edge
computing.

The overall common architecture consists of several
components running in Docker containers. Each component
has a dedicated task to fulfil.

At first, a Connector abstracts from various industrial
protocols, such as OPCUA, MODBUS, or BACNET to get
sensor data from devices. Hence, this is a central component
to handle all the various protocols and their heterogeneity for
receiving data from devices. The Web-of-Things [34],
particularly the concept of thing description, is the basis for
this component; it keeps the information about the device
and its protocol and handles data access.

The Connector sends data to a Forwarder component
immediately by means of an efficient protocol like web
sockets. The Forwarder then puts the received data into a
message queue with a particular topic.

Using a message queue has the reason to let other
application-specific components immediately consume
events from the message queue, similar to the speed layer in
the Lambda architecture [23].

An Inserter listens to the message queue by subscribing
to the topics used by the Forwarder. It stores the received
data in a timeseries database, such as InfluxDB. Again, other
application-specific components are enabled to read data
from the database.

The BulkTransfer component transfers a bulk of sensors’
data from the timeseries database to the Cloud regularly in a
configurable interval, e.g., every hour. This means the data
for, e.g., the last hour is then transported. This scheduled job
is reasonable for Cloud-based analysis and algorithms that
do not require streamed data [23].

The rationale behind this architecture, especially using a
message queue and a timeseries database, is to allow for
project-specific components to be plugged in. Depending on
a particular project, further application-specific components
can be deployed to consume and process data directly and
immediately from the message queue or timeseries database.
Those applications can also store data there to be processed
by others or being transferred to the Cloud. Application-
specific components are especially used for controlling
devices.

This is quite a generic and flexible approach. Various
configurations are possible in this architecture for dedicated
scenarios due to keeping components exchangeable.

B. Application

We applied the configuration approach successfully to
achieve several configurations being explained below.

As mentioned previously, the Inserter listens to the
message queue and stores the received data in a timeseries
database. From a performance point of view, it is not
reasonable to store record by record. Hence, a bulk approach
gathers data until a certain number of records have been
received or a certain time threshold has been passed; it then
stores the bulk of records. The time threshold is reasonable
in order to avoid that records are not stored for a longer
period of time because of incomplete bulks. Both the bulk
size and the time threshold are configurable for the Inserter
to adjust to specific loads using our approach.

Next, the BulkTransfer runs periodically as some kind of
Cron job to move bulks of data from the timeseries database
to the Cloud. Here, the schedule is configurable. Intervals
can be configured according to how often data is processed
in the Cloud by means of a Cron schedule. Moreover, the
BulkTransfer requires S3 credentials to access the Cloud
storage. Due to key rotation, the credentials are periodically
changed in the Cloud. New secrets can now be updated so
that BulkTransfer becomes able to submit data to the Cloud
storage.

There are also some more general applications of
configurations. Having several components and containers in
a device, the communication between them, for instance IP
addresses and ports, are timeseries database at startup.
Similarly, several configurations for the timeseries database
and message queue are configurable. Also, the logging level
can be changed at runtime. This turned out to be very
important since the logging level can be increased for
debugging purposes and reset after having detected issues.

In the architecture, a thing description (TD) plays an
important role, particularly to describe the sensors.
Whenever new sensors are delivered by a device, via
OPCUA or MODBUS connectors, the software components
become aware of new sensors by receiving the enhanced TD

111Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 123 / 136

with new sensors by means of configuration. Hence, data
from new sensors can be processed immediately.

It could happen that a container behaves badly. A
configuration parameter is used to enforce a restart, maybe
with changing parameters.

Further configurations are used for bypassing
components. For instance, the Inserter can be configured to
directly forward data to the Cloud, then skipping the
BulkTransfer and allowing for data processing in a streamed
manner in the Cloud. However, due to our experiences, this
is only useful for smaller amounts of data due to higher costs
for the IoT solutions of Cloud vendors.

V. RELATED WORK

There are many reference architectures for IoT, edge, and
fog computing [2][4][5][11][13][14][17][19][25][35] in the
literature. They provide generic taxonomies for the
components of IoT platforms and differentiate several
functional components, such as device, sensor, actuator, and
gateway. Reference architectures then pose components in
three [39] or more layers [12]. They all have in common to
pay no attention on how to configure components properly.

State-of-the-art reviews, such as [32] – despite discussing
so far unsolved challenges in the field of edge applications –
also do not mention configuration problems, especially in
case of unreachable devices as a challenge.

Several approaches could benefit from such an approach
despite not mentioning configuration issues. For example,
Stankovski et al. [26] proposed a distributed self-adaptive
architecture for container-based technologies to ensure the
QoS for time-critical applications. Monitoring data is used to
allocate required resources for each container; end-users,
application developers and/or administrators can define
operational strategies to handle resources in a better manner.
Indeed, these strategies are a form of configuration.

CloudScale is a monitoring system proposed by [21]. The
system analyses the performance of distributed applications
at runtime, thereby adopting user-specified scaling policies
for provisioning and de-provisioning of virtual resources.
Policies are again another type of configuration.

Olorunnife et al [24] evaluate various approaches for
failure recovery for IoT applications. Monitoring the output
of IoT applications. Their approach automatically diagnoses
faults with IoT devices and gateways; and effectively
manages and re-configures container-based IoT software to
achieve a minimal downtime upon the detection of software
failures. This technique can particularly be applied to
scenarios where IoT software is deployed in embedded or
hard to reach scenarios, i.e., with difficult or no physical
access. But this approach merely focuses on automatic
recovery without any interaction from the outside.

VI. CONCLUSIONS

In this paper, we discuss the problem of configuring
devices that are unreachable from the Internet in the context
of Internet-of-Things (IoT).

We motivate the need for configurations by presenting
typical examples such as Cron schedules for running
periodical jobs, parameters or thresholds for components,

changing credentials because of password rotation to name a
few. Especially the latter one is required in industrial settings
due to high security requirements where passwords must be
renewed regularly. These kinds of configurations are usually
indispensable for an effective operation in industrial
contexts. However, if devices are unreachable by the
Internet, operators have to perform configurations at the
device site causing efforts and costs.

The approach that is pursued to solve this issue is
discussed in detail. There is mainly a central service running
in the Cloud to keep configurations. New configurations can
be submitted to that service. Each IoT device is equipped
with a component that polls the central service periodically
about configuration changes and distribute configurations to
the components running in that device

 We evaluate the approach in a real industrial application
where several types of configurations are required.

Our future work will evaluate even more complex
scenarios, such as enabling or disabling components in the
architecture at runtime. We also want to investigate the
impact of the approach on the overall system performance.
Moreover, we want to tackle further industrial issues for IoT
devices, such as enhancing fault tolerance by self-healing
and monitoring.

REFERENCES

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aled-hari, and M.
Ayyash, “Internet of Things: A Survey on Enabling Technologies
Protocols and Applications”, IEEE Communications Surveys
Tutorials, Vol. 17 (4), pp. 2347-2376, June 2015, ISSN 1553-877X.

[2] M. Aazam, I. Khan, A. Alsaffar, and E. Huh, “Cloud of Things:
Integrating Internet of Things and Cloud Computing and the Issues
Involved”, Int. Bhurban Conf on applied sciences and technology.

[3] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A
Survey”, Computer Networks 2010, Vol. 54 (15), pp. 2787–2805.

[4] M. Bauer, M. Boussard, N. Bui, J. C. De Loof, C. Magerkurth, S.
Meissner, A. Nettsträter, J. Stefa, M. Thoma, and J. W. Walewski,
“IoT Reference Architecture. In: Enabling Things to Talk: Designing
IoT solutions with the IoT Architectural Reference Model”, Springer
Berlin Heidelberg 2013.

[5] S. Biswas and S. Misra, “Designing of a Prototype of e-Health
Monitoring System”, IEEE Int. Conf on Research in Computational
Intelligence and Communication Networks (ICRCICN) 2015, pp.
267–272.

[6] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog Computing: A
Platform for Internet of Things and Analytics”, Big Data and Internet
of Things: A roadmap for smart environments, pp. 169–186.
Springer.

[7] B. Costa, J. Bachiega, R. Carvalho, M. Rosa, and A. Araujo,
“Monitoring Fog Computing: A Review, Taxonomy, and Open
Challenges”, Computer Networks Vol. 215, Elsevier 2022, pp. 1–30.

[8] “Remote Services – For the High-Performance Operation of Your
Plant”, https://www.siemens.com/global/en/products/services /digital-
enterprise-services/field-maintenance-services/remote-services.html)
[retrieved: March, 2025].

[9] B. Dorsemaine, J.-P. Gaulier, J.-P. Wary, N. Kheir, and P. Urien,
“Internet of Things: a Definition & Taxonomy”, 9th Int. Conf on
Next Generation Mobile Applications, Services and Technologies,
ISBN 978-1-4799-8660-6/15, 2015.

[10] K. Fatema, V. Emeakaroha, P. Healy, J. Morrison, and T. Lynn, “A
Survey of Cloud Monitoring Tools: Taxonomy, Capabilities and
Objectives”, Journal of Parallel and Distributed Computing
2014, Vol. 74 (10), pp. 2918–2933.

112Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 124 / 136

[11] J. Guth, U. Breitenbucher, M. Falkenthal, F. Leymann, and L.
Reinfurt, “Comparison of IoT Platform Architectures: A Field Study
Based on a Reference Architecture”, Cloudification of the Internet of
Things (CIoT) 2016, pp. 1–6.

[12] J. Guth, U. Breitenbücher, M. Falkenthal , P. Fremantle, O. Kopp, F.
Leymann, and L. Reinfurt , “A Detailed Analysis of IoT Platform
Architectures: Concepts, Similarities, and Differences”, Internet of
Everything: Algorithms, Methodologies, Technologies and
Perspectives, Springer 2018, pp. 81-101.

[13] J. Gubbi, R. Buyya, and S. M. P. Marusic, “Internet of Things (IoT):
A Vision, Architectural Elements, and Future Directions”, Future
Generation Computer Systems 2013, Vol. 29 (7), pp. 1645–1660.

[14] S. A. S. Haller, M. Bauer, and F. Carrez, “A Domain Model for the
Internet of Things”, Proc. of IEEE Int. Conf on Green Computing and
Communications and IEEE Internet of Things and IEEE Cyber
Physical and Social Computing. IEEE (2013).

[15] B. Hazarika and T. J. Singh, “Survey paper on Cloud Computing &
Cloud Monitoring: Basics”, SSRG Int. Journal on Comput. Science
Engineering 2015, Vol. 2 (1), pp. 10-15, ISSN:2348–8387.

[16] J. Kua, G. Armitage, P. Branch, and J. But, “Adaptive Chunklets and
AQM for Higher-Performance Content Streaming”, ACM
Transactions on Multimedia Computing, Communications, and
Applications (TOMM) 2019, Vol. 15, pp. 1–24

[17] J. Kim, J. Lee, J. Kim, and J. Yun, “M2M Service Platforms: Survey,
Issues, and Enabling Technologies”, IEEE Communications Surveys
& Tutorials 2014, Vol. 16 (1), pp. 61–76.

[18] J. Kua, S. H. Nguyen, G. Armitage, and P. Branch, “Using Active
Queue Management to Assist IoT Application Flows in Home
Broadband Networks”, IEEE Internet of Things Journal 2017, Vol 4
(5), pp. 1399–1407.

[19] S. Krco, B. Pokric, and F. Carrez, “Designing IoT and
Architecture(s)”, In: Proc. of the IEEE World Forum on Internet of
Things (WF-IoT). IEEE (2014).

[20] S. Karumuri, F. Solleza, S. Zdonik, and N. Tatbul, “Towards
Observability Data Management at Scale”, ACM SIGMOD Record,
Vol. 49, pp. 18–23.

[21] P. Leitner, C. Inzinger, W. Hummer, B. Satzger, and S. Dustdar,
“Application-level Performance Monitoring of Cloud Services Based
on the Complex Event Processing Paradigm”, Proc. of 5th IEEE Int.
Conf. on Service-Oriented Computing and Applications (SOCA’12).
IEEE, Taipei, Taiwan, pp. 1–8.

[22] I. Lee and K. Lee, “The Internet of Things (IoT): Applications,
Investments, and Challenges for Enterprises”, Business Horizons
2015, Vol. 58 (4), pp. 431–440.

[23] N. Marz: “How to Beat the CAP Theorem”, 13 October 2011.
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
[retrieved: March, 2025].

[24] K. Olorunnife, K. Lee, and J. Kua, “Automatic Failure Recovery for
Container-Based IoT Edge Applications”, Electronics 2021, Vol. 10.

[25] V. Prasad, M. Bhavsar, and S. Tanwar, “Influence of Montoring: Fog
and Edge Computing”, Scalable Computing: Practice and Experience
2019, Vol. 20 (2), pp. 365-376.

[26] V. Stankovski, J. Trnkoczy, S. Taherizadeh, and M. Cigale,
“Implementing Time-Critical Functionalities with a Distributed
Adaptive Container Architecture”, Proc. of 18th Int. Conf. on
Information Integration and Web-based Applications and Services
(iiWAS2016). ACM, Singapore, pp. 455–459.

[27] W. Shi and S. Dustdar, “The promise of Edge Computing”,
Computer, Vol. 49 (5), pp. 78–81, May 2016.

[28] K. Saharan and A. Kumar, “Fog in Comparison to Cloud: A Survey”,
Int. Journal of Computer Applications, Vol. 122 (3), 2015.

[29] E. Solaiman, R. Ranjan, P. P. Jayaraman, and K. Mitra, “Monitoring
Internet of Things Application Ecosystems for Failure”, IT
Professional 2016, Vol. 18 (5), pp. 8–11.

[30] M. Satyanarayanan, P. Simoens, Y. Xiao et al., “Edge Analytics in
the Internet of Things”, IEEE Pervasive Computing 2015, Vol. 14 (2),
pp. 24–31.

[31] A. Srinivasa and D. Siddaraju, “A Comprehensive Study of
Architecture, Protocols and Enabling Applications in Internet of
Things (IoT)”, Int. Journal of Science & Technology Research 2019,
Vol. 8, Issue 11.

[32] S. Taherizadeh, A. Jones, I. Taylor, Z. Zhao, and V. Stankowski,
“Monitoring Self-Adaptive Applications within Edge Computing
Frameworks: A State-of-the-Art Review”, Journal of Systems and
Software 2018, Vol 136, pp. 19-38.

[33] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, “Osmotic
Computing: a New Paradigm for Edge/Cloud Integration”, IEEE
Cloud 2016.

[34] Web of Things in a Nutshell.
https://www.w3.org/WoT/documentation [retrieved: March, 2025]

[35] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A
survey”, IEEE Transactions on Industrial Informatics Vol. 10 (4).

[36] F. Xia, L. T. Yang, L. Wang, and A. Vinel, “Internet of Things”, Int.
Journal of Communication Systems 2012, Vol. 25 (9), pp. 1101–
1102.

[37] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang,
“A Survey on the Edge Computing for the Internet of Things”, IEEE
Access 2018, Vol 6, pp. 6900–6919.

[38] S. Yi, C. Li, and Q. Li, “A Survey of Fog Computing: Concepts,
Applications and Issues”, Proc. of Workshop on Mobile Big Data.
(Mobidata 2015), pp. 37–42.

[39] L. Zheng, H. Zhang, W. Han, X. Zhou, J. He, Z. Zhang, Y. Gu, and J.
Wang, “Technologies, Applications, and Governance in the Internet
of Things”, Internet of Things – Global Technological and Societal
Trends. River Publishers (2009).

113Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 125 / 136

LLM-based Distributed Code Generation and Cost-Efficient Execution in the Cloud

Kunal Rao, Giuseppe Coviello, Gennaro Mellone, Ciro Giuseppe De Vita and Srimat Chakradhar
NEC Laboratories America, Inc., Princeton, NJ

email: {kunal, giuseppe.coviello, gmellone, cdevita, chak}@nec-labs.com

Abstract—The advancement of Generative Artificial Intelli-
gence (AI), particularly Large Language Models (LLMs), is
reshaping the software industry by automating code generation.
Many LLM-driven distributed processing systems rely on serial
code generation constrained by predefined libraries, limiting
flexibility and adaptability. While some approaches enhance
performance through parallel execution or optimize edge-cloud
distributed processing for specific domains, they often overlook
the cost implications of deployment, restricting scalability and
economic feasibility across diverse cloud environments. This
paper presents DiCE-C, a system that eliminates these constraints
by starting directly from a natural language query. DiCE-C dy-
namically identifies available tools at runtime, programmatically
refines LLM prompts, and employs a stepwise approach—first
generating serial code and then transforming it into distributed
code. This adaptive methodology enables efficient distributed
execution without dependence on specific libraries. By leveraging
high-level parallelism at the Application Programming Interface
(API) level and managing API execution as services within a
Kubernetes-based runtime, DiCE-C reduces idle GPU time and
facilitates the use of smaller, cost-effective GPU instances. Ex-
periments with a vision-based insurance application demonstrate
that DiCE-C reduces cloud operational costs by up to 72% when
using smaller GPUs (A6000 and A4000 GPU machines vs. A100
GPU machine) and by 32% when using identical GPUs (A100
GPU machines). This flexible and cost-efficient approach makes
DiCE-C a scalable solution for deploying LLM-generated vision
applications in cloud environments.

Keywords-Cloud Computing; Large Language Models (LLMs);
Distributed systems; Code generation; Cost reduction.

I. INTRODUCTION

Advancements in Generative AI, particularly LLMs, are
reshaping how vision applications are developed and deployed.
Tools like ViperGPT [1] demonstrate how LLMs can gen-
erate application-specific vision code directly from natural
language queries. For instance, users can issue queries, such
as “detect traffic accidents” or “identify unattended objects”,
and ViperGPT automatically generates the required vision
program. Figure 1 illustrates a scenario where an operator
dynamically deploys such vision applications in real-time.
While this represents a significant leap in automation and
flexibility, deploying these applications in cloud environments
often incurs substantial cost inefficiencies.

DiCE [2] and DiCE-M [3] are existing systems that take
ViperGPT-generated serial code as their starting point and
transform it into distributed code for parallel execution. While
DiCE focuses on improving performance by exploiting API-
level parallelism for faster execution of vision applications,
DiCE-M targets marine applications using an edge and cloud
approach to balance processing across distributed resources.
However, neither system addresses the cost implications of

Figure 1: Use case scenario.

deploying these applications, particularly in cloud settings.
Additionally, both systems rely on the use of image_patch
library, which exposes only a handful APIs. This limits the
applicability to a very narrow set of applications. If additional
functions are required for an application, then it cannot be
built since image_patch does not have the necessary APIs.

In this paper, we introduce DiCE-C, a system that removes
the dependency on ViperGPT and the image_patch library.
Unlike DiCE, DiCE-C starts with the original natural language
query and dynamically discovers available tools through run-
time APIs. It programmatically constructs prompts to guide
an LLM to first generate serial code and then transform it
into distributed code, leveraging a step-by-step approach that
improves performance and accuracy. This flexibility enables
DiCE-C to adapt to diverse workflows while focusing specif-
ically on cost optimization in cloud environments.

After generating serial code, similar to DiCE, DiCE-C
identifies high-level parallelism at the API level and transforms
serial code into distributed code for efficient execution. By
leveraging a Kubernetes-based runtime, DiCE-C dynamically
manages API calls as services, allocating GPU resources only
for the duration of individual service calls. This approach
minimizes GPU idle time, allows the use of smaller, cost-
efficient GPUs, and significantly lowers operational costs in
cloud environments.

Our key contributions in this paper are:

• We identify the cost inefficiencies of deploying LLM-
generated monolithic code in cloud environments, in-
cluding GPU over-provisioning and under-utilization, and
propose solutions to optimize resource allocation and
execution to address these challenges.

• We introduce DiCE-C, which programmatically updates
LLM prompts based on runtime API documentation to
generate both serial and distributed code. This approach
enhances flexibility, adaptability, and cost efficiency by
leveraging dynamic tool discovery and resource optimiza-

114Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 126 / 136

tion.
• We demonstrate, using a real-world vision-based insur-

ance application, that DiCE-C lowers cloud operational
costs by up to 72% with smaller GPUs such as A6000
and A4000 GPU machines and by 32% with identical
A100 GPU machines, both evaluated in the Hyperstack
cloud.

The rest of the paper is organized as follows. Section
2 discusses related work. In Section 3, we examine the
cost inefficiencies associated with deploying monolithic/serial
code in cloud environments. Section 4 details the design and
implementation of DiCE-C, focusing on how it generates
serial code, transforms serial code into distributed code and
then manages execution through a Kubernetes-based runtime.
Section 5 reports experimental results highlighting the cost
savings achieved by DiCE-C and showcases a prototype
system. Finally, Section 6 concludes the paper.

II. RELATED WORK

Optimizing cloud computing costs for AI-driven applica-
tions has garnered significant attention due to the increasing
adoption of resource-intensive models in production environ-
ments. Systems like CloudScale [4], SpotDNN [5], SpotLake
[6], Wang et. al [7], DEARS [8], ELASTIC [9], Saxena et.
al [10], Ahmad et. al. [11], Alelyani et. al. [12] explore
different strategies for efficient application execution in cloud
computing environment. These works focus on leveraging spot
instances, predictive scaling, and scheduling optimizations
which can minimize operational expenses. However, they
primarily target general-purpose workloads, whereas DiCE-C
is specifically designed for LLM-generated vision applications,
emphasizing API-level parallelism and distributed execution.

Kubernetes-based systems, such as Knative [13] and Kube-
flow [14], provide platforms for scalable and efficient resource
management. These frameworks offer primitives for deploying
containerized workloads but lack the ability to dynamically
adapt to the inherent parallelism of LLM-generated code.
DiCE-C bridges this gap by integrating a runtime that trans-
forms serial code into distributed code, dynamically managing
API-level services, and optimizing GPU utilization, thereby
reducing costs without requiring changes to the underlying
Kubernetes infrastructure.

Recent advances in LLMs have contributed to code gener-
ation and parallelization. Tools like DSPy [15], AutoParLLM
[16] and HPC-Coder [17] showcase the ability of LLMs to
generate efficient pipelines and parallel programs. Systems like
DiCE [2] leverage LLMs for transformation of serial code to
distributed code for faster execution. DiCE-M [3] leverages
LLMs to generate distributed code which can be executed in
an edge + cloud infrastructure for marine applications. While
these systems focus on improving performance or enabling
edge + cloud execution, DiCE-C extends this paradigm to
address cost optimization by integrating runtime-discovered
tools and adapting workloads to varying cloud configurations.

Traditional compiler-based solutions like TVM [18] and
Polyhedral [19] optimize program execution through low-level

techniques such as memory layout transformations and loop
optimizations. Although highly effective for individual tasks,
these approaches are less applicable to the distributed, API-
driven workloads targeted by DiCE-C. By focusing on high-
level parallelism and runtime adaptability, DiCE-C comple-
ments such optimizations to address the unique challenges of
cloud-based vision applications.

To the best of our knowledge, DiCE-C is the first system to
integrate dynamic LLM-driven code generation with runtime
cost optimization for vision applications, addressing the ineffi-
ciencies of monolithic code deployment and enabling scalable,
cost-efficient execution in distributed cloud environments.

III. MOTIVATION

Recent advancements in visual question answering bench-
marks, such as RefCOCO, RefCOCO+ [20], GQA [21], OK-
VQA [22], and NeXT-QA [23], have enabled tools like
ViperGPT to synthesize visual programs directly from natural
language queries using libraries such as image_patch.
These tools showcase the capability of addressing real-world
queries beyond benchmark datasets. Building on these ad-
vancements, DiCE-C eliminates the dependency on predefined
libraries and dynamically generates serial code from user
queries, enabling a wide range of applications, including the
automation of complex, labor-intensive tasks like traffic acci-
dent reporting for insurance claim processing. For example,
consider the query:

Query: In the accident scene, report the color and model
of all the cars involved in the accident and check if the cars
are damaged or overturned.

Rather than relying on monolithic code generated by
ViperGPT, DiCE-C dynamically constructs prompts based on
documentation retrieved from the runtime API. These prompts
guide an LLM to generate serial code, which is shown in Fig-
ure 2. The code utilizes AI models, such as glip [24], blip
[25], and xvlm [26] to detect cars, extract their attributes,
and evaluate their condition through API calls. Since these AI
models require GPUs for execution, sequentially running the
code on a single large GPU instance leads to inefficiencies,
including extended idle times during CPU-bound operations
and under-utilization of GPU resources for lightweight tasks.

This approach has substantial cost implications in cloud
computing environments. Large GPU instances must often be
provisioned to handle multiple AI models, even if a query only
uses a subset of these models. Such instances are expensive to
rent and may be unavailable during periods of high demand.
Additionally, idle GPU time during CPU processing further
inflates operational costs.

The code inherently offers opportunities for parallelism.
After the initial glip API call to detect cars, subsequent API
calls to query their properties (blip and xvlm) are inde-
pendent and can be executed concurrently. This parallelism
enables the use of smaller, more cost-effective GPU instances
instead of relying on a single large GPU. Refactoring the code
into a distributed format, where API calls are managed as
independent services, allows for dynamic resource allocation,

115Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 127 / 136

1 import asyncio
2 import hermod
3 from PIL import Image
4

5 async def execute_query(image_filename):
6 image = Image.open(image_filename)
7

8 # Detecting cars in the image
9 cars = await hermod.call("glip", image=image,

object_name="car")
10

11 if not cars:
12 print("No cars detected in the image.")
13 return
14

15 for i, car in enumerate(cars):
16 # Crop the image to the bounding box of

each detected car
17 car_patch = image.crop((car["x"], car["y"],
18 car["x"] +

car["width"],
19 car["y"] +

car["height"]))
20

21 # Query for the color of the car
22 car_color = await hermod.call("blip",

image=car_patch, question="What is the color of
the car?")

23 # Query for the model of the car
24 car_model = await hermod.call("blip",

image=car_patch, question="What is the model of
the car?")

25 # Check if the car is damaged
26 car_damaged = await hermod.call("xvlm",

image=car_patch, object_name="car",
property="damaged")

27 # Check if the car is overturned
28 car_overturned = await hermod.call("xvlm",

image=car_patch, object_name="car",
property="overturned")

29

30 # Compile the information
31 car_info = f"Car {i+1}: Color -

{car_color.get(’answer’, ’Unknown’)}, " \
32 f"Model -

{car_model.get(’answer’, ’Unknown’)}, " \
33 f"Damaged -

{car_damaged.get(’result’, False)}, " \
34 f"Overturned -

{car_overturned.get(’result’, False)}"
35

36 print(car_info)
37

38 image_filename = "accident_scene.jpg"
39 asyncio.run(execute_query(image_filename))
40

Figure 2: Serial code generated by DiCE-C for an accident scene
query.

reduces GPU idle time, and significantly lowers operational
costs.

IV. DESIGN AND IMPLEMENTATION

Unlike existing systems such as DiCE [2] and DiCE-M
[3], which rely on ViperGPT-generated monolithic code and
are constrained by libraries like image_patch, DiCE-C
removes these limitations. By leveraging runtime APIs to dy-
namically discover available tools and programmatically con-

Figure 3: DiCE-C overview.

struct LLM prompts, DiCE-C enables flexible, cost-efficient
deployments tailored to diverse workflows.

As shown in Figure 3, DiCE-C consists of two key compo-
nents:

1) Code Generation: This includes the generation of serial
code directly from natural language queries and its sub-
sequent transformation into distributed code for parallel
execution.

2) Runtime: A Kubernetes-based runtime that ensures
cost-optimized deployment of distributed code by dy-
namically managing resources and minimizing GPU idle
time.

A. Serial Code Generation

The first phase of DiCE-C involves generating func-
tional serial code from a user-provided natural language
query. This process begins by querying the runtime API
to retrieve metadata about the available tools. Commands
such as kubectl get functions and kubectl get
functions <function-name> -o yaml provide de-
tailed documentation, including the tool’s functionality, input
parameters, and output schemas. An example runtime API
output for the glip function is shown in Figure 4.

This information is embedded into the LLM prompt along-
side the natural language query. The prompt guides the LLM
to generate serial code (in Python programming language)
tailored to the tools available in the runtime. Figure 2 shows
an example of serial code generated by DiCE-C. While
functional, this sequential code may suffer from inefficiencies
such as GPU idle time during CPU-bound operations and
underutilization when lightweight tasks run on large GPUs,
motivating the need for distributed code generation.

B. Distributed Code Generation

The second phase of DiCE-C transforms the serial code into
distributed code by exploiting API-level parallelism. Figure 5
illustrates this process. Updated prompts are constructed using

116Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 128 / 136

1 $ kubectl get functions glip -o yaml
2 apiVersion: hermod.nec-labs.com/v1
3 kind: Function
4 metadata:
5 ...
6 status:
7 documentation: Finds the locations of object_name in the image. Returns a list of
8 bounding boxes.
9 parametersSchema: ’{"properties": {"image": {"format": "binary", "python_type":

10 "PIL.Image.Image", "title": "Image", "type": "string"}, "object_name": {"title":
11 "Object Name", "type": "string"}}, "required": ["image", "object_name"], "title":
12 "Parameters", "type": "object"}’
13 resultSchema: ’{"$defs": {"BoundingBox": {"properties": {"x": {"title": "X", "type":
14 "integer"}, "y": {"title": "Y", "type": "integer"}, "width": {"title": "Width",
15 "type": "integer"}, "height": {"title": "Height", "type": "integer"}}, "required":
16 ["x", "y", "width", "height"], "title": "BoundingBox", "type": "object"}}, "properties":
17 {"result": {"items": {"$ref": "#/$defs/BoundingBox"}, "title": "Result", "type":
18 "array"}}, "required": ["result"], "title": "Result", "type": "object"}’
19

Figure 4: GLIP function details obtained from runtime API.

Figure 5: Distributed code generation overview.

information from the runtime API, which enables the LLM
to identify independent API calls in the serial code and
refactor them for concurrent execution. Additionally, DiCE-C
incorporates elements from the prompt structure used in DiCE
[2], adapting them to dynamically include runtime-discovered
tools. This ensures that DiCE-C generates distributed code
tailored to the specific environment.

Figure 6 shows the distributed code generated by DiCE-C
using Python’s asyncio library. By enabling concurrent exe-
cution of independent API calls, the distributed code utilizes
multiple smaller GPU instances instead of relying on a single
large GPU. This reduces idle GPU time, improves resource
utilization, and lowers operational costs.

C. Runtime for Distributed Code Execution

The distributed code generated by DiCE-C is executed
within a Kubernetes-based runtime (Figure 7). Each API call is
treated as an independent service, allowing dynamic allocation
of GPU resources. By reserving GPUs only for the duration of
individual service calls, the runtime minimizes idle time and
enables cost-efficient execution.

The runtime architecture, shown in Figure 8, processes
requests through service queues, where each API call is
transparently mapped to a GPU running the associated AI
model. This design facilitates efficient resource sharing across
multiple workloads, further reducing the cost of cloud-based
deployments. By handling workloads dynamically, the runtime
ensures scalable and adaptable execution of vision applica-
tions.

D. Cost-Optimized Execution in DiCE-C

Figure 9 illustrates the contrast between the baseline mono-
lithic execution and DiCE-C’s distributed execution. In the
baseline, all AI models are loaded onto a single large GPU,
which remains reserved for the entire job duration. Conversely,
DiCE-C transforms the code into a distributed version, en-
abling API calls to run as independent services on smaller
GPUs. This minimizes idle GPU time and allows for dynamic
scaling based on workload demands, resulting in substantial
cost savings.

By combining serial and distributed code generation with
a runtime, DiCE-C ensures scalable and cost-efficient deploy-
ment of vision applications in cloud environments.

V. EXPERIMENTAL SETUP AND RESULTS

In this section, we evaluate the cost savings achieved by
DiCE-C compared to the baseline execution of monolithic
code in cloud computing environments. The experiments are
based on the real-world insurance application use case de-
scribed in Section III, where the task is to generate detailed
accident reports from images. We validate the correctness
of the distributed code generated by DiCE-C by manually
comparing its output with that of the serial code generated
by ViperGPT, and both outputs matched.

Figure 6 shows the distributed code generated by DiCE-C
for the insurance application use case. The code introduces
concurrency using Python’s asyncio library, enabling indepen-
dent API calls (e.g., querying color, model, damage status,
and overturned status) to execute in parallel. This distributed
execution reduces GPU idle time and allows dynamic resource
allocation for servicing the API calls, thereby achieving sub-
stantial cost savings.

A. Experimental Setup

To evaluate cost efficiency, we created a batch of 1000
vision programs (tasks) by replicating the distributed code
shown in Figure 6. Thirty different accident scene images were
generated using OpenAI’s “GPT-4o” model, and these images

117Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 129 / 136

1 import asyncio
2 import hermod
3 from PIL import Image
4

5 async def get_car_details(car_patch, index):
6 try:
7 tasks = [
8 hermod.call("blip", image=car_patch, question="What is the color of the car?"),
9 hermod.call("blip", image=car_patch, question="What is the model of the car?"),

10 hermod.call("xvlm", image=car_patch, object_name="car", property="damaged"),
11 hermod.call("xvlm", image=car_patch, object_name="car", property="overturned")
12]
13

14 # Execute all tasks for the car patch in parallel
15 car_color, car_model, car_damaged, car_overturned = await asyncio.gather(*tasks)
16

17 # Compile the information
18 car_info = f"Car {index + 1}: Color - {car_color.get(’answer’, ’Unknown’)}, " \
19 f"Model - {car_model.get(’answer’, ’Unknown’)}, " \
20 f"Damaged - {car_damaged.get(’result’, False)}, " \
21 f"Overturned - {car_overturned.get(’result’, False)}"
22

23 return car_info
24 except Exception as e:
25 return f"Car {index + 1}: Error occurred - {str(e)}"
26

27 async def execute_query(image_filename):
28 try:
29 image = Image.open(image_filename)
30

31 # Detecting cars in the image
32 cars = await hermod.call("glip", image=image, object_name="car")
33

34 if not cars:
35 print("No cars detected in the image.")
36 return
37

38 car_tasks = []
39 for i, car in enumerate(cars):
40 # Crop the image to the bounding box of each detected car
41 car_patch = image.crop((car["x"], car["y"],
42 car["x"] + car["width"],
43 car["y"] + car["height"]))
44

45 # Collect car detail tasks
46 car_tasks.append(get_car_details(car_patch, i))
47

48 # Run all car detail tasks in parallel
49 car_info_list = await asyncio.gather(*car_tasks)
50

51 for car_info in car_info_list:
52 print(car_info)
53 except Exception as e:
54 print(f"Failed to execute query on the image: {str(e)}")
55

56 image_filename = "accident_scene.jpg"
57 asyncio.run(execute_query(image_filename))
58

Figure 6: Distributed code generated by DiCE-C.

118Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 130 / 136

Figure 7: Runtime overview.

Figure 8: Runtime architecture.

were randomly assigned across the 1000 tasks. Figure 12
shows three sample images used in the experiments.

The experiments were conducted using machines in the
Hyperstack [27] cloud under two configurations:

• Identical hardware: Both the baseline and DiCE-C used
A100 GPU nodes ($2.2/hour).

• Different hardware: The baseline used A100 GPUs,
while DiCE-C utilized a combination of A6000 and
A4000 GPUs ($1.3/hour combined).

Figures 10 and 11 illustrate the execution patterns of the

Figure 9: Execution in baseline vs DiCE-C.

Figure 10: Execution of AI models in baseline.

Figure 11: Parallel execution of AI models in DiCE-C.

baseline and DiCE-C, respectively. In the baseline, API calls
are executed sequentially, whereas in DiCE-C, after the initial
API call to detect cars (using glip), the remaining API
calls (blip, xvlm) are executed concurrently. This parallel
execution allows DiCE-C to minimize GPU idle time and
optimize cloud resource usage.

B. Using Identical Hardware

We perform experiments using configurations of 1, 2, 4, 6,
and 8 identical nodes. In the case of baseline, only 1 task
runs on a machine at a time, whereas in the case of DiCE-
C, we allow 16 tasks to run simultaneously. Table I shows
the total execution time in each case and the corresponding

(a) Scene 1. (b) Scene 2. (c) Scene 3.

Figure 12: Sample accident scenes.

Figure 13: Execution pattern of first 50 tasks.

119Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 131 / 136

TABLE I: COST REDUCTION (USING IDENTICAL HARDWARE).

Nodes Cost per Total Execution Total Cost Cost
minute (USD) Time (minutes) (USD) Reduction (%)

Baseline DiCE-C Baseline DiCE-C Baseline DiCE-C
1 $ 0.037 $ 0.037 141 79 $ 5.17 $ 2.90 44.0 %
2 $ 0.073 $ 0.073 75 54 $ 5.50 $ 3.96 28.0 %
4 $ 0.147 $ 0.147 36 25 $ 5.28 $ 3.67 30.6 %
6 $ 0.220 $ 0.220 26 18 $ 5.72 $ 3.96 30.8 %
8 $ 0.293 $ 0.293 17 12 $ 4.99 $ 3.52 29.4 %

TABLE II: COST REDUCTION (USING DIFFERENT HARDWARE).

Nodes Cost per Total Execution Total Cost Cost
minute (USD) Time (minutes) (USD) Reduction (%)

Baseline DiCE-C Baseline DiCE-C Baseline DiCE-C
1 $ 0.037 $ 0.022 141 68 $ 5.17 $ 1.47 71.5 %
2 $ 0.073 $ 0.043 75 35 $ 5.50 $ 1.52 72.4 %
4 $ 0.147 $ 0.087 36 17 $ 5.28 $ 1.47 72.1 %
8 $ 0.293 $ 0.173 17 8 $ 4.99 $ 1.39 72.2 %

Figure 14: CPU Load.

Figure 15: GPU Load.

cost incurred to complete the execution of a batch of 1000
tasks. We observe that on average DiCE-C saves up to 32 %
operating cost.

We further dive deeper to understand how the execution
goes in each case. Figure 13 shows the execution pattern for
the first 50 tasks when running on a single node. We observe
that in the case of baseline, the tasks start one after the other,
as expected, since only 1 job runs at a time and the latency for
execution (shown by horizontal line length) varies depending
on the image that is used. In case of DiCE-C, we clearly see
the overlap in execution across different tasks and note that
there is a slight increase in latency for each task due to the
contention of resources on the same hardware.

Overall, the execution for the batch of tasks goes faster
using DiCE-C compared to the baseline (higher throughput),

Figure 16: Prototype system for DiCE-C.

and this directly results in cost savings, since the machines
in the cloud are used for less time. Figures 14 and 15 show
the CPU and GPU load, respectively, when the batch of 1000
tasks is run on a single node. We observe that due to increased
utilization, the load is higher in the case of DiCE-C, leading
to faster completion of tasks.

C. Using Different Hardware

Table II shows the total execution time and cost reduction
when using cheaper and smaller GPUs in DiCE-C. We observe
that DiCE-C achieves an average 72 % reduction in operating
cost by using smaller and cheaper GPUs. This highlights
DiCE-C’s adaptability and efficiency in cloud computing en-
vironments.

D. Prototype system

Figure 16 shows a prototype system for DiCE-C. In this
system, the user can write a query in natural language and
behind the scenes, DiCE-C initially generates the serial code
and then transforms this code into a distributed code version,
which is then executed on a Kubernetes-based distributed
cluster. In the user interface, we show the different AI models
that are being used and the execution flow in the baseline
vs DiCE-C case. In addition, we also show the cost savings
achieved by using DiCE-C.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced DiCE-C, a cost-efficient system
for deploying vision applications in cloud environments. Un-
like prior approaches that rely on monolithic code generated

120Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 132 / 136

by tools like ViperGPT, DiCE-C programmatically generates
distributed code by leveraging runtime-exposed tool documen-
tation. By dynamically managing API calls as independent
services on Kubernetes, DiCE-C reduces GPU idle time and
supports the use of smaller, cost-efficient GPUs, significantly
lowering operational expenses while preserving the correctness
and functionality of the original application.

Experimental evaluations on a real-world insurance appli-
cation demonstrated that DiCE-C achieves an average cost
reduction of 32% on identical GPU hardware and up to 72%
when using smaller GPUs. Although this work focuses on
vision applications, our future work involves incorporating
additional functions and tools support in the runtime, so that
a wide range of applications and workloads can be supported
and enabled by DiCE-C.

REFERENCES

[1] D. Surís, S. Menon, and C. Vondrick, “ViperGPT: Visual infer-
ence via python execution for reasoning,” in 2023 IEEE/CVF
International Conference on Computer Vision (ICCV), 2023,
pp. 11 854–11 864. DOI: 10.1109/ICCV51070.2023.01092.

[2] K. Rao, G. Coviello, and S. Chakradhar, “DiCE: Distributed
Code Generation and Execution,” in 2024 IEEE Conference on
Pervasive and Intelligent Computing (PICom), 2024, pp. 8–15.
DOI: 10.1109/PICom64201.2024.00008.

[3] G. Coviello, K. Rao, G. Mellone, C. G. De Vita, and S.
Chakradhar, “DiCE-M: Distributed Code Generation and Ex-
ecution for Marine Applications - An Edge-Cloud Approach,”
in 2024 IEEE/ACM Symposium on Edge Computing (SEC),
2024, pp. 468–475. DOI: 10.1109/SEC62691.2024.00054.

[4] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “CloudScale:
Elastic resource scaling for multi-tenant cloud systems,” in
Proceedings of the 2nd ACM Symposium on Cloud Computing,
ser. SOCC ’11, Cascais, Portugal: Association for Computing
Machinery, 2011, ISBN: 9781450309769. DOI: 10 . 1145 /
2038916.2038921.

[5] R. Shang et al., “SpotDNN: Provisioning Spot Instances
for Predictable Distributed DNN Training in the Cloud,” in
2023 IEEE/ACM 31st International Symposium on Quality of
Service (IWQoS), 2023, pp. 1–10. DOI: 10.1109/IWQoS57198.
2023.10188717.

[6] S. Lee, J. Hwang, and K. Lee, SpotLake: Diverse Spot Instance
Dataset Archive Service, 2022. arXiv: 2202.02973 [cs.DC].

[7] C. Wang, B. Urgaonkar, A. Gupta, G. Kesidis, and Q. Liang,
“Exploiting Spot and Burstable Instances for Improving the
Cost-efficacy of In-Memory Caches on the Public Cloud,” in
Proceedings of the Twelfth European Conference on Com-
puter Systems, ser. EuroSys ’17, Belgrade, Serbia: Associ-
ation for Computing Machinery, 2017, pp. 620–634, ISBN:
9781450349383. DOI: 10.1145/3064176.3064220.

[8] M. Hassan, H. Chen, and Y. Liu, “DEARS: A deep learning
based elastic and automatic resource scheduling framework for
cloud applications,” in 2018 IEEE Intl Conf on Parallel and
Distributed Processing with Applications, Ubiquitous Comput-
ing and Communications, Big Data and Cloud Computing,
Social Computing and Networking, Sustainable Computing
and Communications (ISPA/IUCC/BDCloud/SocialCom/Sus-
tainCom), 2018, pp. 541–548. DOI: 10.1109/BDCloud.2018.
00086.

[9] Y. Li et al., “ELASTIC: Edge workload forecasting based on
collaborative cloud-edge deep learning,” in Proceedings of the
ACM Web Conference 2023, ser. WWW ’23, Austin, TX, USA:
Association for Computing Machinery, 2023, pp. 3056–3066,
ISBN: 9781450394161. DOI: 10.1145/3543507.3583436.

[10] D. Saxena and A. K. Singh, Workload forecasting and resource
management models based on machine learning for cloud
computing environments, 2021. arXiv: 2106.15112 [cs.DC].

[11] S. G. Ahmad, T. Iqbal, E. U. Munir, and N. Ramzan, “Cost
optimization in cloud environment based on task deadline,” J.
Cloud Comput., vol. 12, no. 1, Jan. 2023, ISSN: 2192-113X.
DOI: 10.1186/s13677-022-00370-x.

[12] A. Alelyani, A. Datta, and G. M. Hassan, “Optimizing Cloud
Performance: A Microservice Scheduling Strategy for En-
hanced Fault-Tolerance, Reduced Network Traffic, and Lower
Latency,” IEEE Access, vol. 12, pp. 35 135–35 153, 2024. DOI:
10.1109/ACCESS.2024.3373316.

[13] Knative Community, Knative: Kubernetes-based platform to
deploy and manage modern serverless workloads, https : / /
knative.dev/, Accessed 2025-03-04, 2024.

[14] Kubeflow Community, Kubeflow: The machine learning toolkit
for kubernetes, https://www.kubeflow.org/, Accessed 2025-03-
04, 2025.

[15] O. Khattab et al., “DSPy: Compiling declarative language
model calls into self-improving pipelines,” arXiv preprint
arXiv:2310.03714, 2023.

[16] Q. I. Mahmud, A. TehraniJamsaz, H. D. Phan, N. K. Ahmed,
and A. Jannesari, Autoparllm: Gnn-guided automatic code
parallelization using large language models, 2023. arXiv:
2310.04047 [cs.LG].

[17] D. Nichols, A. Marathe, H. Menon, T. Gamblin, and A.
Bhatele, “HPC-Coder: Modeling parallel programs using large
language models,” in ISC High Performance 2024 Research
Paper Proceedings (39th International Conference), 2024,
pp. 1–12. DOI: 10.23919/ISC.2024.10528929.

[18] T. Chen et al., Tvm: An automated end-to-end optimizing com-
piler for deep learning, 2018. arXiv: 1802.04799 [cs.LG].

[19] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayap-
pan, “A practical automatic polyhedral parallelizer and locality
optimizer,” in Proceedings of the 29th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
ser. PLDI ’08, Tucson, AZ, USA: Association for Computing
Machinery, 2008, pp. 101–113, ISBN: 9781595938602. DOI:
10.1145/1375581.1375595.

[20] L. Yu, P. Poirson, S. Yang, A. C. Berg, and T. L. Berg,
Modeling context in referring expressions, 2016. arXiv: 1608.
00272 [cs.CV].

[21] D. A. Hudson and C. D. Manning, Gqa: A new dataset
for real-world visual reasoning and compositional question
answering, 2019. arXiv: 1902.09506 [cs.CL].

[22] K. Marino, M. Rastegari, A. Farhadi, and R. Mottaghi, Ok-vqa:
A visual question answering benchmark requiring external
knowledge, 2019. arXiv: 1906.00067 [cs.CV].

[23] J. Xiao, X. Shang, A. Yao, and T.-S. Chua, Next-qa:next phase
of question-answering to explaining temporal actions, 2021.
arXiv: 2105.08276 [cs.CV].

[24] L. H. Li et al., Grounded language-image pre-training, 2022.
arXiv: 2112.03857 [cs.CV].

[25] J. Li, D. Li, S. Savarese, and S. Hoi, Blip-2: Bootstrapping
language-image pre-training with frozen image encoders and
large language models, 2023. arXiv: 2301.12597 [cs.CV].

[26] Y. Zeng et al., “X22-vlm: All-in-one pre-trained model for
vision-language tasks,” IEEE Transactions on Pattern Analysis
amp; Machine Intelligence, vol. 46, no. 05, pp. 3156–3168,
May 2024, ISSN: 1939-3539. DOI: 10 . 1109 / TPAMI . 2023 .
3339661.

[27] Hyperstack, Hyperstack, https : / / www . hyperstack . cloud/,
Accessed 2025-03-04.

121Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 133 / 136

Proactive Optimization of Virtual Machine Placement Using Predictive Models Based
on Time Series

Naby Doumbouya
EPROAD, UR 4669

Université de Picardie Jules Verne
Amiens, France

e-mail: ndoumbouya@u-picardie.fr

Mhand Hifi
EPROAD,UR 4669

Université de Picardie Jules Verne
Amiens, France

e-mail: mhifi@u-picardie.fr

Abstract—To overcome the limitations of traditional reactive
VM placement strategies, which often struggle with dynamic
workload variations, this paper introduces an innovative proactive
approach based on predictive time series analysis. By evaluating
the ARIMA, LSTM, and Prophet models, we assess their
effectiveness in accurately forecasting VM workload fluctuations,
thereby minimizing unnecessary migrations, reducing energy
consumption, and lowering operational costs. These predictions
are then integrated into an advanced optimization algorithm to
determine optimal VM placement in anticipation of workload
spikes, leading to significant improvements in system performance,
stability, and quality of service across distributed data centers.

Keywords-Cloud computing; virtual machine placement; time
sequences; ARIMA; LSTM; Prophet; cloudsim; Time series fore-
casting; Proactive optimization.

I. INTRODUCTION

The proactive optimization of virtual machine (VM) place-
ment is crucial for enhancing resource efficiency in cloud
environments, where dynamic resource management is essential
to ensure optimal performance. Cloud systems often face
fluctuating demands, making predictive methods imperative for
effective resource allocation.

Time series forecasting models such as ARIMA, Prophet, and
LSTM offer various approaches to anticipate future resource
needs. ARIMA is well suited for stationary datasets, while
Prophet excels in handling seasonal data. LSTM provides
flexibility for modeling complex patterns in dynamic contexts
[1].

Cloud resource management relies on reactive and proactive
approaches. The reactive approach adjusts resources based
on current demand, while the proactive approach leverages
historical data to predict future needs and optimize resource
utilization. Proactive resource allocation has become a major
research topic in cloud computing, aiming to optimize resource
management and utilization [2].

Our approach combines ARIMA, LSTM, and Prophet to
generate accurate workload forecasts. These forecasts are
used in an optimization algorithm that minimizes energy
consumption and reduces VM migrations while respecting
server capacity constraints. By anticipating future workloads,
our method enables more efficient resource allocation and
improves system performance. The remainder of this paper
is organized as follows. Section II reviews the state of the
art in VM placement and predictive optimization. Section

III formulates the problem as a multi-objective optimization
model incorporating energy consumption and migration cost.
Section IV describes the proposed methodology, combining
time series forecasting with hybrid prediction weighting and
linear programming. Section V presents the experimental
setup and results obtained on the CloudSim dataset. Section
VI highlights our main contributions in terms of prediction
accuracy and optimization efficiency. Finally, Section VII
concludes the paper and outlines future research directions.

II. BACKGROUND

Classical approaches to VM placement optimization, such
as First Fit, Best Fit, and genetic algorithms, do not account
for workload forecasting. Time series models (ARIMA, LSTM,
Prophet) enable proactive decision making but struggle with
sudden workload fluctuations [3].

Advanced optimization algorithms like Harris Hawk Opti-
mization (HHO) outperform traditional methods, achieving a
27% reduction in energy consumption and a 17% increase
in resource utilization [4]. Hybrid approaches combining
optimization algorithms and machine learning are essential
for efficient cloud resource allocation.

ARIMA excels with stationary series, and Prophet performs
well with seasonal data, but both are limited in handling
nonlinear variations and unexpected spikes [5]. LSTM captures
long-term dependencies but requires significant computational
resources [5]. Hybrid models like TempoScale enhance forecast
accuracy and system stability [3].

Traditional optimization approaches face challenges related
to resource heterogeneity and workload variability [6]. Hybrid
solutions combining classical methods with artificial intelli-
gence are promising for optimizing VM placement and ensuring
proactive resource management [7].

This evolution highlights the need for integrated strategies
to maximize cloud infrastructure efficiency. Future research
should further explore hybrid approaches and assess their prac-
tical implementation for responsive and sustainable resource
allocation.

III. PROBLEM MODELING

We model the VM placement problem as a multi-objective
optimization problem with the following objectives:

122Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 134 / 136

A. Minimize Energy Consumption

The total energy consumption is calculated as the sum of
the energy consumed by each server, weighted by the CPU
usage of the VMs placed on it [8]:

Etotal =

m∑
i=1

n∑
j=1

xij · E(Mi) (1)

where xij is a binary variable indicating whether VM j is
placed on server i, and E(Mi) is the energy consumption of
server i.

B. Minimize VM Migrations

When VMs change their host between time steps t−1 and t,
it incurs a cost. We define x

(t)
ij and x

(t−1)
ij as binary variables

indicating placement at time t and t− 1, respectively.
The migration cost function is given by:

Cmig =

m∑
i=1

n∑
j=1

∣∣∣x(t)
ij − x

(t−1)
ij

∣∣∣ ·Dmig(Vj) (2)

where Dmig(Vj) denotes the migration cost (e.g., based on
memory size or state size) of VM Vj [9], [10]. This penalty
discourages unnecessary movement and ensures SLA stability.

Constraints The total resource usage of VMs on each server
must not exceed the server’s capacity:

n∑
j=1

xij ·R(Vj) ≤ C(Mi), ∀i (3)

where R(Vj) is the resource requirement of VM j, and
C(Mi) is the capacity of server i. In addition, a VM must be
placed on exactly one server:

m∑
i=1

xij = 1, ∀j (4)

IV. PROPOSED METHODOLOGY

Our methodology involves three steps: data preprocessing,
workload prediction, and VM placement optimization.

A. Data preprocessing and Workload prediction

We use time series data from cloudsim, aggregated at 5
minutes intervals, and train predictive models (ARIMA, LSTM,
Prophet) using a sliding window approach.

B. VM Placement Optimization

The predicted workloads are used as input to a linear
programming (LP) optimization problem. The objectives are
two fold: (1) minimize energy consumption and (2) minimize
the cost of VM migrations, while respecting server capacity
constraints.

Predictive-Aware Placement Strategy: The predicted work-
load for each VM is generated using a weighted combination
of ARIMA, LSTM, and Prophet forecasts:

L̂j =
∑

m∈{ARIMA, LSTM, Prophet}

wm · L̂j,m (5)

with weights wm based on the inverse of each model’s error
(RMSE + MAE), normalized:

wm =
1

RMSEm + MAEm + ϵ

/∑
m′

1

RMSEm′ + MAEm′ + ϵ

(6)

These predicted loads are injected into the optimization model
to guide placement before overloads occur.

Solver: The combined multi-objective function is minimized
using a weighted-sum scalarization:

min (α · Etotal + β · Cmig) (7)

where α and β are tunable coefficients reflecting the trade-
off between energy efficiency and migration stability, as
recommended in [11], [12].

This LP model is implemented with PuLP in Python. The
forecast-driven optimization allows proactive VM placement
while balancing operational cost and performance constraints.

C. General scheme

Historical data

preprocessing
(sliding window)

ARIMA LSTM Prophet

Weighted merger
(RMSE + MAE)

Linear optimization

Proactive VM
placement

Figure 1. Overview of the proposed method

V. EXPERIMENTS AND RESULTS

We evaluate our approach on the CloudSim Dataset. Key
findings include:
• Energy Efficiency: Energy consumption is reduced by 15%,

with an additional 5% improvement from the RMSE + MAE
weighting.

• VM Migrations: Migrations are reduced by 20%, with a
further 10% reduction due to the RMSE + MAE weighting.

• Robustness: The RMSE + MAE weighting improves stability
under workload variations.

123Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 135 / 136

VI. OUR CONTRIBUTION

Our work makes the following key contributions:
• Hybrid Prediction Model: We propose a novel approach

that combines the strengths of three predictive models
ARIMA, LSTM, and Prophet using a weighted average
based on both RMSE and MAE. This hybrid approach
improves prediction accuracy and robustness compared to
using individual models.

• Proactive Optimization Framework: Unlike traditional
reactive methods, our framework uses predicted workloads
to proactively optimize VM placement, reducing energy
consumption and unnecessary migrations.

• RMSE + MAE Weighting Scheme: We introduce a
weighting scheme that balances the impact of large errors
(RMSE) and average errors (MAE), leading to more stable
and reliable predictions. This scheme significantly improves
the robustness of the optimization process.

• Energy and Migration Efficiency: Our approach demon-
strates a 15% reduction in energy consumption and a
20% reduction in VM migrations compared to traditional
methods, with further improvements achieved through the
RMSE + MAE weighting.

VII. CONCLUSION AND PERSPECTIVES

Our proactive VM placement strategy, which integrates
hybrid time series forecasting with a weighted integer linear
optimization model, has proven effective in reducing energy
consumption and eliminating unnecessary migrations. The
weighted combination of ARIMA, LSTM, and Prophet based
on RMSE and MAE metrics significantly enhances forecasting
robustness.

The results obtained demonstrate that our method offers a
reliable and efficient trade-off between resource optimization
and service stability. The approach remains scalable, and
the low computation time allows real-time or near-real-time
decision-making.

As future work, we plan to:
Extend the optimization model to a distributed and federated

cloud environment, where coordination among data centers is
required;

Incorporate network-related constraints such as bandwidth,
latency, and routing cost;

Integrate adaptive dynamic weights based on SLA policies
and QoS priorities;

Experiment on real-world traces such as the Google Cloud
Cluster Trace Dataset to evaluate the model at scale.

REFERENCES

[1] J. Chen, Y. Wang, and T. Liu, “A proactive resource allocation
method based on adaptive prediction of resource requests in
cloud computing”, EURASIP Journal on Wireless Communica-
tions and Networking, vol. 2021, p. 24, 2021. DOI: 10.1186/
s13638-021-01912-8.

[2] T. Kamble, S. Deokar, V. S. Wadne, D. P. Gadekar, and H. B.
Vanjari, “Predictive resource allocation strategies for cloud
computing environments using machine learning”, Journal of
Electrical Systems, vol. 19, no. 2, pp. 68–77, 2023.

[3] L. Wen, M. Xu, A. N. Toosi, and K. Ye, “Temposcale: A
cloud workloads prediction approach integrating short-term
and long-term information”, in 2024 IEEE 17th International
Conference on Cloud Computing (CLOUD), 2024.

[4] H. S. Madhusudhan, T. S. Kumar, P. Gupta, and G. McArdle,
“A harris hawk optimisation system for energy and resource
efficient virtual machine placement in cloud data centers”,
PLOS ONE, vol. 18, no. 8, e0289156, 2023. DOI: 10.1371/
journal.pone.0289156.

[5] S. Yadav, “A comparative study of arima, prophet and lstm
for time series prediction”, Journal of Artificial Intelligence,
Machine Learning and Data Science, vol. 1, no. 1, pp. 1813–
1816, 2022. DOI: 10.51219/JAIMLD/sandeep-yadav/402.

[6] A. Abdelaziz, M. Anastasiadou, and M. Castelli, “A parallel
particle swarm optimisation for selecting optimal virtual
machine on cloud environment”, Applied Sciences, vol. 10,
p. 6538, 2020. DOI: 10.3390/app10186538.

[7] A. Poghosyan et al., “An enterprise time series forecasting
system for cloud applications using transfer learning”, Sensors,
vol. 21, p. 1590, 2021. DOI: 10.3390/s21051590.

[8] X. Li, Z. Qian, S. Lua, and J. Wu, “Energy efficient virtual
machine placement algorithm with balanced and improved
resource utilization in a data center”, Mathematical and
Computer Modelling, vol. 58, pp. 1222–1235, 2013. DOI:
10.1016/j.mcm.2013.02.003.

[9] M. Masdari and H. Khezri, “Efficient vm migrations using
forecasting techniques in cloud computing: A comprehensive
review”, Cluster Computing, vol. 23, pp. 2629–2658, Jan. 2020.
DOI: 10.1007/s10586-019-03032-x.

[10] M. T. et al, “Borg: The next generation”, in Fifteenth European
Conference on Computer Systems (EuroSys ’20), 2020, pp. 1–14.
DOI: 10.1145/3342195.3387517.

[11] C. Vijaya and P. Srinivasan, “Multi-objective meta-heuristic
technique for energy efficient virtual machine placement in
cloud computing data centers”, Informatica, vol. 48, pp. 1–18,
Jun. 2024. DOI: 10.31449/inf.v48i6.5263.

[12] R. Keshri and D. P. Vidyarthi, “Energy-efficient communication-
aware vm placement in cloud datacenter using hybrid aco–gwo”,
Cluster Computing, vol. 27, pp. 13 047–13 074, 2024. DOI:
10.1007/s10586-024-04623-z.

124Copyright (c) IARIA, 2025. ISBN: 978-1-68558-258-6

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CLOUD COMPUTING 2025 : The Sixteenth International Conference on Cloud Computing, GRIDs, and Virtualization

Powered by TCPDF (www.tcpdf.org)

 136 / 136

http://www.tcpdf.org

