
CLOUD COMPUTING 2023

The Fourteenth International Conference on Cloud Computing, GRIDs, and

Virtualization

ISBN: 978-1-68558-044-5

June 26 - 30, 2023

Nice, France

CLOUD COMPUTING 2023 Editors

Andreas Aßmuth, Ostbayerische Technische Hochschule Amberg-Weiden,
Germany

 1 / 74

CLOUD COMPUTING 2023

Forward

The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization (CLOUD
COMPUTING 2023), held on June 26 - 30, 2023, continued a series of events targeted to prospect the
applications supported by the new paradigm and validate the techniques and the mechanisms. A
complementary target was to identify the open issues and the challenges to fix them, especially on
security, privacy, and inter- and intra-clouds protocols.

Cloud computing is a normal evolution of distributed computing combined with Service-oriented
architecture, leveraging most of the GRID features and Virtualization merits. The technology foundations
for cloud computing led to a new approach of reusing what was achieved in GRID computing with
support from virtualization.

The conference had the following tracks:

 Cloud computing

 Computing in virtualization-based environments

 Platforms, infrastructures and applications

 Challenging features

 New Trends

 Grid networks, services and applications

Similar to the previous edition, this event attracted excellent contributions and active participation from
all over the world. We were very pleased to receive top quality contributions.

We take here the opportunity to warmly thank all the members of the CLOUD COMPUTING 2023
technical program committee, as well as the numerous reviewers. The creation of such a high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors that dedicated much of their time and effort to contribute to CLOUD COMPUTING 2023. We
truly believe that, thanks to all these efforts, the final conference program consisted of top quality
contributions.

Also, this event could not have been a reality without the support of many individuals, organizations and
sponsors. We also gratefully thank the members of the CLOUD COMPUTING 2023 organizing committee
for their help in handling the logistics and for their work that made this professional meeting a success.

We hope that CLOUD COMPUTING 2023 was a successful international forum for the exchange of ideas
and results between academia and industry and to promote further progress in the area of cloud
computing, GRIDs and virtualization. We also hope that Nce provided a pleasant environment during the
conference and everyone saved some time to enjoy this beautiful city.

 2 / 74

CLOUD COMPUTING 2023 Steering Committee

Carlos Becker Westphall, Federal University of Santa Catarina, Brazil
Yong Woo Lee, University of Seoul, Korea
Bob Duncan, University of Aberdeen, UK
Alex Sim, Lawrence Berkeley National Laboratory, USA
Sören Frey, Daimler TSS GmbH, Germany
Andreas Aßmuth, Ostbayerische Technische Hochschule (OTH) Amberg-Weiden, Germany
Uwe Hohenstein, Siemens AG, Germany
Magnus Westerlund, Arcada, Finland
Aspen Olmsted, College of Charleston, USA

CLOUD COMPUTING 2023 Publicity Chair

José Miguel Jiménez, Universitat Politecnica de Valencia, Spain
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain

 3 / 74

CLOUD COMPUTING 2023

Committee

CLOUD COMPUTING 2023 Steering Committee

Carlos Becker Westphall, Federal University of Santa Catarina, Brazil
Yong Woo Lee, University of Seoul, Korea
Bob Duncan, University of Aberdeen, UK
Alex Sim, Lawrence Berkeley National Laboratory, USA
Sören Frey, Daimler TSS GmbH, Germany
Andreas Aßmuth, Ostbayerische Technische Hochschule (OTH) Amberg-Weiden, Germany
Uwe Hohenstein, Siemens AG, Germany
Magnus Westerlund, Arcada, Finland
Aspen Olmsted, College of Charleston, USA

CLOUD COMPUTING 2023 Publicity Chair

José Miguel Jiménez, Universitat Politecnica de Valencia, Spain
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain

CLOUD COMPUTING 2023 Technical Program Committee

Omar Aaziz, Sandia National Laboratories, USA
Sherif Abdelwahed, Virginia Commonwealth University, USA
Vibhatha Abeykoon, Voltron Data Inc., USA
Maruf Ahmed, The University of Technology, Sydney, Australia
Mubashwir Alam, Marquette University, USA
Abdulelah Alwabel, Prince Sattam Bin Abdulaziz University, Kingdom of Saudi Arabia
Mário Antunes, Polytechnic of Leiria, Portugal
Filipe Araujo, University of Coimbra, Portugal
Andreas Aßmut, Ostbayerische Technische Hochschule (OTH) Amberg-Weiden, Germany
Odiljon Atabaev, Andijan Machine-Building Institute, Uzbekistan
Babak Badnava, University of Kansas, USA
Luis-Eduardo Bautista-Villalpando, Autonomous University of Aguascalientes, Mexico
Carlos Becker Westphall, Federal University of Santa Catarina, Brazil
Mehdi Belkhiria, University of Rennes 1 | IRISA | Inria, France
Leila Ben Ayed, National School of Computer Science | University of Manouba, Tunisia
Nicola Bena, Università degli Studi di Milano, Italy
Salima Benbernou, Universite Paris Cite, France
Andreas Berl, Technische Hochschule Deggendorf, Germany
Simona Bernardi, University of Zaragoza, Spain
Dixit Bhatta, University of Delaware, USA
Constantinos Bitsakos, National Technical University of Athens, Greece

 4 / 74

Peter Bloodsworth, University of Oxford, UK
Jalil Boukhobza, University of Western Brittany, France
Marco Brocanelli, Wayne State University, USA
Antonio Brogi, University of Pisa, Italy
Roberta Calegari, Alma Mater Studiorum-Università di Bologna,Italy
Paolo Campegiani, Bit4id, Italy
Juan Vicente Capella Hernández, Universitat Politècnica de València, Spain
Roberto Casadei, Alma Mater Studiorum - Università di Bologna, Italy
Víctor Casamayor, TU Vienna, Austria
Adithya Rajesh Chandrassery, National Institute of Technology Karnataka, Surathkal, India
Ruay-Shiung Chang, National Taipei University of Business, Taipei, Taiwan
Ryan Chard, Argonne National Laboratory, USA
Batyr Charyyev, Stevens Institute of Technology, USA
Hao Che, University of Texas at Arlington, USA
Yitao Chen, Arizona State University, USA
Yue Cheng, George Mason University, USA
Claudio Cicconetti, National Research Council, Italy
Daniel Corujo, Universidade de Aveiro | Instituto de Telecomunicações, Portugal
Patrizio Dazzi, University of Pisa, Italy
Noel De Palma, University Grenoble Alpes, France
Mª del Carmen Carrión Espinosa, University of Castilla-La Mancha, Spain
Chen Ding, Ryerson University, Canada
Karim Djemame, University of Leeds, UK
Ramon dos Reis Fontes, Federal University of Rio Grande do Norte, Natal, Brazil
Bob Duncan, University of Aberdeen, UK
Steve Eager, University West of Scotland, UK
Nabil El Ioini, Free University of Bolzano, Italy
Rania Fahim El-Gazzar, Universty of South-Eastern Norway, Norway
Ibrahim El-Shekeil, Metropolitan State University, USA
Levent Ertaul, California State University, East Bay, USA
Javier Fabra, Universidad de Zaragoza, Spain
Fairouz Fakhfakh, University of Sfax, Tunisia
Hamid M. Fard, Technical University of Darmstadt, Germany
Umar Farooq, University of California, Riverside, USA
Tadeu Ferreira Oliveira, Federal Institute of Science Education and Technology of Rio Grande do Norte,
Brazil
Jan Fesl, Institute of Applied Informatics - University of South Bohemia, Czech Republic
Sebastian Fischer, University of Applied Sciences OTH Regensburg, Germany
Kaneez Fizza, Swinburne University of Technology, Australia
Stefano Forti, University of Pisa, Italy
Sören Frey, Daimler TSS GmbH, Germany
Somchart Fugkeaw, Sirindhorn International Institute of Technology | Thammasat University, Thailand
Katja Gilly, Miguel Hernandez University, Spain
Jing Gong, KTH, Sweden
Poonam Goyal, Birla Institute of Technology & Science, Pilani, India
Nils Gruschka, University of Oslo, Norway
Jordi Guitart, Universitat Politècnica de Catalunya - Barcelona Supercomputing Center, Spain
Saurabh Gupta, Graphic Era Deemed to be University, Dehradun, India

 5 / 74

Seif Haridi, KTH/SICS, Sweden
Herodotos Herodotou, Cyprus University of Technology, Cyprus
Uwe Hohenstein, Siemens AG Munich, Germany
Soamar Homsi, Air Force Research Laboratory (AFRL), USA
Md Rajib Hossen, The University of Texas at Arlington, USA
Anca Daniela Ionita, University Politehnica of Bucharest, Romania
Mohammad Atiqul Islam, The University of Texas at Arlington, USA
Saba Jamalian, Roosevelt University / Braze, USA
Fuad Jamour, University of California, Riverside, USA
Weiwei Jia, New Jersey Institute of Technology, USA
Carlos Juiz, University of the Balearic Islands, Spain
Sokratis Katsikas, Norwegian University of Science and Technology, Norway
Attila Kertesz, University of Szeged, Hungary
Zaheer Khan, University of the West of England, Bristol, UK
Ioannis Konstantinou, CSLAB - NTUA, Greece
Sonal Kumari, Samsung R&D Institute, India
Van Thanh Le, Free University of Bozen-Bolzano, Italy
Yong Woo Lee, University of Seoul, Korea
Sarah Lehman, Temple University, USA
Kunal Lillaney, Amazon Web Services, USA
Enjie Liu, University of Bedfordshire, UK
Pinglan Liu, Iowa State University, USA
Xiaodong Liu, Edinburgh Napier University, UK
Jay Lofstead, Sandia National Laboratories, USA
Hui Lu, Binghamton University (State University of New York), USA
Weibin Ma, University of Delaware, USA
Hosein Mohammadi Makrani, University of California, Davis, USA
Shaghayegh Mardani, University of California Los Angeles (UCLA), USA
Stefano Mariani, University of Modena and Reggio Emilia, Italy
Attila Csaba Marosi, Institute for Computer Science and Control - Hungarian Academy of Sciences,
Hungary
Romolo Marotta, University of l'Aquila (UNIVAQ), Italy
Antonio Matencio Escolar, University West of Scotland, UK
Jean-Marc Menaud, IMT Atlantique, France
Philippe Merle, Inria, France
Nasro Min-Allah, Imam Abdulrahman Bin Faisal University (lAU), KSA
Preeti Mishra, Graphic Era Deemed to be University, Dehradun, India
Takashi Miyamura, NTT Network Service Systems Labs, Japan
Francesc D. Muñoz-Escoí, Universitat Politècnica de València, Spain
Ioannis Mytilinis, National Technical University of Athens, Greece
Tamer Nadeem, Virginia Commonwealth University, USA
Hidemoto Nakada, National Institute of Advanced Industrial Science and Technology (AIST), Japan
Akash Nayak, IBM Research, India
Antonio Nehme, Birmingham City University, UK
Richard Neill, RN Technologies LLC, USA
Jens Nicolay, Vrije Universiteit Brussel, Belgium
Ridwan Rashid Noel, Texas Lutheran University, USA
Alexander Norta, Tallinn Technology University, Estonia

 6 / 74

Aspen Olmsted, Simmons University, USA
Matthias Olzmann, noventum consulting GmbH - Münster, Germany
Brajendra Panda, University of Arkansas, USA
Lorena Parra, Universitat Politècnica de València, Spain
Arnab K. Paul, BITS Pilani, India
Alessandro Pellegrini, National Research Council (CNR), Italy
Sathya Peri, Indian Institute of Technology Hyderabad, India
Nancy Perrot, Orange Innovation, France
Tamas Pflanzner, University of Szeged, Hungary
Paulo Pires, Fluminense Federal University (UFF), Brazil
Agostino Poggi, Università degli Studi di Parma, Italy
Saul E. Pomares Hernandez, Instituto Nacional de Astrofísica, Óptica y Electrónica Tonantzintla, Puebla,
Mexico / SARA Group, LAAS-CNRS, Toulouse, France
Pavana Prakash, University of Houston, USA
Walter Priesnitz Filho, Federal University of Santa Maria, Rio Grande do Sul, Brazil
Abena Primo, Huston-Tillotson University, USA
Mohammed A Qadeer, Aligarh Muslim University, India
George Qiao, KLA, USA
Zhihao Qu, Hohai University, China
Francesco Quaglia, University of Rome Tor Vergata, Italy
M. Mustafa Rafique, Rochester Institute of Technology, USA
Danda B. Rawat, Howard University, USA
Daniel A. Reed, University of Utah, USA
Christoph Reich, Hochschule Furtwangen University, Germany
Eduard Gibert Renart, Rutgers Unversity, USA
Sashko Ristov, University of Innsbruck, Austria
Javier Rocher Morant, Universitat Politecnica de Valencia, Spain
Ivan Rodero, Rutgers University, USA
Takfarinas Saber, University College Dublin, Ireland
Mohamed Aymen Saied, Laval University, Canada
Rabia Saleem, University of Derby, UK
Hemanta Sapkota, University of Nevada - Reno, USA
Benjamin Schwaller, Sandia National Laboratories, USA
Savio Sciancalepore, TU Eindhoven, Netherlands
Wael Sellami, Higher Institute of Computer Sciences of Mahdia - ReDCAD laboratory, Tunisia
Jianchen Shan, Hofstra University, USA
Larisa Shwartz, T.J. Watson Research Center IBM, USA
Muhammad Abu Bakar Siddique, University of California, Riverside, USA
Altino Manuel Silva Sampaio, Escola Superior de Tecnologia e Gestão | Instituto Politécnico do Porto,
Portugal
Alex Sim, Lawrence Berkeley National Laboratory, USA
Bowen Song, University of Southern California, USA
Hui Song, SINTEF, Norway
Vasily Tarasov, IBM Research, USA
Zahir Tari, School of Computing Technologies | RMIT University, Australia
Bedir Tekinerdogan, Wageningen University, The Netherlands
Parimala Thulasiraman, University of Manitoba, Canada
Orazio Tomarchio, University of Catania, Italy

 7 / 74

Reza Tourani, Saint Louis University, USA
Antonio Virdis, University of Pisa, Italy
Raul Valin Ferreiro, Fujitsu Laboratories of Europe, Spain
Massimo Villari, Università di Messina, Italy
Teng Wang, Oracle, USA
Hironori Washizaki, Waseda University, Japan
Mandy Weißbach, Martin Luther University of Halle-Wittenberg, Germany
Sebastian Werner, Information Systems Engineering (ISE) - TU Berlin, Germany
Magnus Westerlund, Arcada, Finland
Liuqing Yang, Columbia University in the City of New York, USA
Bo Yuan, University of Derby, UK
Christos Zaroliagis, CTI & University of Patras, Greece
Zhiming Zhao, University of Amsterdam, Netherlands
Jiang Zhou, Institute of Information Engineering - Chinese Academy of Sciences, China
Yue Zhu, IBM Research, USA
Jan Henrik Ziegeldorf, RWTH Aachen University, Germany
Wolf Zimmermann, Martin Luther University Halle-Wittenberg, Germany

 8 / 74

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 9 / 74

Table of Contents

Encrypted Container File: Design and Implementation of a Hybrid-Encrypted Multi-Recipient File Structure
Tobias J. Bauer and Andreas Assmuth

1

Generation of Distributed Denial of Service Network Data with Phyton and Scapy
Stefan Gortz, Sebastian Fischer, and Rudolf Hackenberg

8

Side Channel Monitoring for Fuzz Testing of Future Mobility Systems
Philipp Fuxen, Murad Hachani, Jonas Schmidt, Philipp Zaumseil, and Rudolf Hackenberg

15

Security Challenges for Cloud or Fog computing-Based AI Applications
Amir Pakmehr, Andreas Assmuth, Christoph P. Neumann, and Gerald Pirkl

21

On the Creation of a Secure Key Enclave via the Use of Memory Isolation in Systems Management Mode
James Sutherland, Natalie Coull, and Robert Ferguson

30

FoodFresh: Multi-Chain Design for an Inter-Institutional Food Supply Chain Network
Philipp Stangl and Christoph P. Neumann

41

A Survey of Multiple Clouds: Classification, Relationships and Privacy Concerns
Reem Al-Saidi and Ziad Kobti

47

Challenges and Solutions in IoT Security: A Cross-Industry Perspective
Ibrahim El-Shekeil, Thomas Mullins, Tariq Haji Hassan, Jet Lao, and Xuezeng Yang

57

Powered by TCPDF (www.tcpdf.org)

 1 / 1 10 / 74

Encrypted Container File:
Design and Implementation of a Hybrid-Encrypted Multi-Recipient File Structure

Tobias J. Bauer and Andreas Aßmuth
Ostbayerische Technische Hochschule Amberg-Weiden

Faculty of Electrical Engineering, Media and Computer Science
Kaiser-Wilhelm-Ring 23, 92224 Amberg, Germany
Email: {t.bauer |a.assmuth}@oth-aw.de

Abstract—Modern software engineering trends towards Cloud-
native software development by international teams of developers.
Cloud-based version management services, such as GitHub, are
used for the source code and other artifacts created during
the development process. However, using such a service usually
means that every developer has access to all data stored on
the platform. Particularly, if the developers belong to different
companies or organizations, it would be desirable for sensitive
files to be encrypted in such a way that these can only be
decrypted again by a group of previously defined people. In
this paper, we examine currently available tools that address
this problem, but which have certain shortcomings. We then
present our own solution, Encrypted Container Files (ECF), for
this problem, eliminating the deficiencies found in the other tools.

Keywords—Cloud-based software development; hybrid encryp-
tion; agile software engineering.

I. INTRODUCTION

Software development undergoes a permanent change and,
occasionally, long-lasting trends emerge, which influence the
choices made in terms of software architectures, technologies,
programming languages and frameworks used. Current trends
involve the development of Cloud-native distributed software
components which are deployed automatically via Continuous
Delivery and Continuous Deployment [1].

This implies that these components, often running in sep-
arate containers, must communicate with each other. Further-
more, there is an interest in securing such communication links
because very often confidential data is transmitted. This in turn
places demands on the software development process: in order
to secure (digital) communications these must be encrypted.
This is also true for storing confidential data. In common
cases, e.g., running a web server or storing confidential data
in a database, means of authentication must be kept secret.
Such means of authentication include, but are not limited to,
passwords, private certificate keys, and symmetric encryption
keys.

Modern software development takes place in teams whose
members are in constant exchange with each other. Often,
version control systems, e.g., git [2] are used to manage the
source code and other artifacts. Also with regard to the practice
of Continuous Integration (see [3]), which is a preliminary step
to the aforementioned Continuous Delivery and Continuous
Deployment, it is necessary to check-in all artifacts into the
version control system. This would be grossly negligent for

confidential data provided that no protective measures against
unauthorized access are taken.

In this paper, we address the issue of access to an encrypted
file structure in the cloud by different people in a software
development team. With the Encrypted Container File (ECF),
we present our own solution for a cloud-based, encrypted
data storage for software development teams, in which the
functionality of currently available tools is extended and their
shortcomings are eliminated.

This paper is structured as follows: in Section II, there
is a brief introduction to two existing solutions before the
requirements are presented in Section III. In Section IV, we
present an example of use and describe the structure and
operations of the ECF. Following that, Section V describes
implementation details. Finally, Section VI concludes the
paper and gives an outlook on future work.

II. RELATED WORK

There are different solutions to address the issue we de-
scribed in Section I. In this section, we give an overview of
two of these tools, jak and git-crypt, and discuss their features
and shortcomings.

The tool jak [4] is written in Python and allows symmet-
ric encryption of files using Advanced Encryption Standard
(AES). Using the tool, one can generate keys and store them
in a keyfile, which is not encrypted. To enable automatic
encryption and decryption with a single command jak uses a
special text file that contains a list of file names. This special
text file can be added to the repository [4].

The practical use is limited because of sole symmetric
encryption as the key distribution problem remains unsolved.
Especially with growing team sizes distributing confidential
data results in disproportionate effort.

Another issue with jak is that the confidential files’ content
stays unencrypted on the developers’ computers. This is be-
cause jak decrypts these files during checkout and re-encrypts
them before committing. This implies that only externals with
reading access to the repository at maximum and no access
to any of the developers’ computers are unable to access the
confidential data. A common application scenario are projects
that are developed on a public repository platform.

The tool git-crypt [5] allows symmetric encryption of files
within a git repository using AES, too. It shares the same
limitations as jak in terms of access restrictions to externals.

1Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 11 / 74

However, git-crypt offers a solution to the key distribution
problem by using GNU Privacy Guard (GPG) [6]. Public GPG-
keys, the recipients’ keys, can be added to the repository.
When encrypting the confidential files within the repository
git-crypt generates an asymmetrically encrypted keyfile for
each recipient. Every recipient therefore gets access to the
symmetric key and because of that is capable of decrypting
the confidential files in that repository.

The tool git-crypt is implemented in a way that all confiden-
tial files are encrypted with the same symmetric key and this
very key must therefore be shared with all recipients added to
the repository. This results in coarse grained access control as
there is no way to restrict access to some confidential files to
a subset of the recipients. Consider the case that, e.g., secret
information about the production environment should only be
accessible to the production team.

Furthermore, git-crypt does not secure the confidential files’
content on the developers’ computers. This is analogous to
jak because both tools decrypt the confidential files during
checkout. The integration of git-crypt into the mechanisms of
git is optional but recommended [5].

Another shortcoming of git-crypt is the lacking feature to
remove recipients. Ayer justifies this by stating that by using
a version control system a removed recipient can still access
old versions of the repository and, therefore, the confidential
data stored within [5]. This argument is correct as far as
it goes – nevertheless, it seems sensible to implement such
a mechanism into the to-be-designed ECF format since the
confidential data should be updated regularly regardless. For
example, certificates and passwords expire and symmetric keys
should be changed regularly with regards to staff turnover.

III. REQUIREMENTS ENGINEERING

From the features and shortcomings of the jak and git-crypt
tools presented in Section II, some requirements for the ECF
format can be derived:

1) Mandatory encryption of confidential data,
2) possibility to modify confidential data (content is

writable),
3) key distribution is no prerequisite,
4) decryption not during checkout but on demand,
5) support for multiple recipients,
6) addition and removal of recipients,
7) minimal information gain for external parties, and
8) customizable set of recipients per file.

Based on these requirements, we have decided to use the
following design goals for our solution:

• Use of hybrid encryption (Items 1, 3 and 5),
• inclusion of recipient information to allow re-encryption

on changes (Items 2, 5, 6 and 8),
• obfuscation of recipient information for respective exter-

nal parties (Items 7 and 8), and
• delivery of the associated software as a library for em-

bedding into existing applications (Item 4).

IV. STRUCTURE AND OPERATIONS OF THE ENCRYPTED
CONTAINER FILE

This section gives an overview over the use of the ECF
format in Subsection IV-A. The following subsections describe
the structure of the ECF format in detail. Figure 1 shows
an overview of the components of an ECF, how they are
connected and related to each other. Subsection IV-B describes
the general structure, components, and storage formats of an
ECF. The publicly accessible fields are described in Sub-
section IV-C and the private fields in Subsection IV-D. The
following Subsections IV-E and IV-F describe the decryption
and encryption process, respectively. Finally, Subsection IV-G
concludes this section with further operations that can be
performed on an ECF.

A. Usage in Practice

In this subsection, we walk through the following scenario:
Alice wants to encrypt a file using the ECF format and
operations in such way that her friend Bob will be able to
read the content, while Charlie should not be able to.

First, Alice needs access to Bob’s public information, which
comprises among others his public key. Bob must have created
his public information beforehand. Next, Alice creates an ECF
using, e.g., the CLI tool described in this paper and provided
via GitHub, and adds the confidential data. After that, she
can add Bob as a recipient using his public information. To
retain access to the content, Alice should add herself as a
recipient to the ECF. Alice can now save the ECF within a
public repository and only Bob and herself are able to decrypt
the file’s content. Charlie, on the other hand, cannot retrieve
the encryption key as he is not a recipient of that ECF and
has therefore no access to the confidential data stored inside.

B. General Structure and Data Type Storage Format

Each ECF consists of three parts: A public part and two
non-public/private parts. In Figure 1, the whole ECF is framed
yellow, whereas the public part is colored purple. Both private
parts are treated as a single datum by the symmetric encryption
and are colored in blue. The following list describes the data
types used in the following subsections and their storage
format within an ECF:

• Unsigned Integer: 4 Bytes, Little Endian
• Byte Array [x]: x Bytes, sequential
• String: 4 Bytes, little endian (Length),

then UTF-8 bytes without
byte order mark (BOM)

The ECF format is designed to be flexible with regards
to the used cipher suite. In order to allow future extensions,
it allows more algorithms and cipher suites. For this paper
and also for our Proof of Concept (PoC) implementation, a
selection for the cipher suite was made, which is the basis for
the rest of this paper:

• Key Agreement/Exchange: X25519 [7]
• Symmetric Encryption: AES-256-GCM [8]
• Signature: Ed25519 [9]
• Hash Function: SHA-512 [10]

2Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 12 / 74

C. Public Fields
Each ECF must provide enough information for all autho-

rized recipients to decrypt the file. Information for encrypting,
however, is not required to be public because only recipients
should be able to modify the confidential data within the ECF.
Hence, the public part of an ECF contains just the information
required for decryption. It comprises a general part and then
m identically constructed recipient-specific parts.

The general part contains the following data (in this order):
• Container Version (Unsigned Integer)

ECF format version; intended for future extensions
• Cipher Suite (Unsigned Integer)

Information about used algorithms
• Public Header Length (Unsigned Integer)

Length of the public part in Bytes
• Private Length (Unsigned Integer)

Length of the private part in Bytes
• Recipient Count (Unsigned Integer)

Number of recipients in the public part (m)
• Salt (Byte Array [16])

Salt value (usage described below)
• Symmetric Nonce (Byte Array [12])

Symmetric nonce value (usage described below)
The first two fields, Container Version and Cipher

Suite, are used to make the ECF format flexible and future-
proof. However, we discuss only the cipher suite selected in
Subsection IV-B.

The recipient-specific decryption information is yet to be
defined. In total, m such blocks – one for each recipient –
are stored after the general part. To obfuscate the number
of recipients towards externals, m ≥ n can be chosen freely
with n the true number of recipients. Random blocks, which
belong to no recipient, may be inserted, which is not evident to
externals. Each recipient-specific block consists of two fields:
an Identification Tag (Byte Array [16]), which is
used to assign a block to a recipient, and Key Agreement

Information that contains recipient-specific decryption in-
formation.

The field Identification Tag is colored orange in Fig-
ure 1. It is the hash value truncated after 16 Bytes from
the concatenation of the bit strings of the public key of the
respective recipient and the Salt value introduced above.
Shortening the hash value saves storage space and allows
with (28)16 = 2128 possible values for practically unlimited
unique recipients. An authorized recipient can calculate their
Identification Tag based on the knowledge of their own
public key and the public Salt.

The second field, Key Agreement Information, con-
tains recipient-specific information for the decryption pro-
cess and is highly dependent on the used cipher suite. For
the selected cipher suite, an Ephemeral X25519 Public

Key (Byte Array [32]) and an AES Pre Key (Byte

Array [32]) is stored. The first is used in the key agreement
phase to obtain a second AES pre key, the latter is the
first AES pre key. Subsection IV-E describes the combination

Encrypted Container File

Public information about
the file and the recipients

General information
for file decryption

Recipient-specific
information for
file decryption

m

Private information about
the file and the recipients

• Public Key
• Name
• Name Signature

n

Confidential data
(passwords, certificate
keys, credentials, ...)

AES
(GCM)

Recipient-specific
information for
file decryption

Identification Tag

Key Agreement Information

General information
for file decryption

Meta data
(#recipients, algorithms, ...)

Salt

Symmetric Nonce

Key Agreement Information

Ephemeral X25519 Public Key

AES Pre Key (1)

X25519
Recipient
X25519

Private Key

Recipient
X25519

Public Key

Hash
(a∥b∥c)

a

c b

XOR
AES Pre Key (2)

AES Key

Figure 1. Diagram of the most important components of an Encrypted Container File and visualization of the interrelationships.

3Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 13 / 74

of the available recipient-specific information to obtain the
symmetric key in more detail. The process is depicted in
Figure 1 as well.

D. Private Fields

The private part of an ECF consists of two segments:
First, there is information about the ECF and its recipients,
and second, there is the encrypted confidential data itself.
The private part is completely encrypted symmetrically and,
therefore, not accessible for external parties. The following
fields are stored in the private part:

• Content Type (Unsigned Integer)

Describes the type of the confidential data
• Public Header Hash (Byte Array [64])

Hash value of the public part
• Recipient Count (Unsigned Integer)

Number of true recipients (n)
• Recipient Information (Array [n])

Information about the recipients (n blocks)
• Content Length (Unsigned Integer)

Length of the confidential data in Bytes (len)
• Content (Byte Array [len])

Confidential data
• Private Hash (Byte Array [64])

Hash value of the private part so far
The first field, Content Type, is intended for future use

and should characterize the type of confidential data stored in
Content. It seems reasonable that future applications using
the ECF library will define and handle their own content types.

The field Public Header Hash contains the hash value
over the whole public part of an ECF. The value for the
public field Public Header Length (c.f. Subsection IV-C)
is unknown at the time of encryption because the length of
the symmetric encryption algorithm’s output is not necessarily
known in advance. Therefore, this field is set to the con-
stant value of 0xECFFC0DE (Encrypted Container File Format
Code) during the calculation of the hash value. The Public

Header Hash is used to detect unauthorized or unintended
modifications of the public part, e.g., non-destructive changes
of recipient-specific information of other recipients.

The fields Recipient Count and Content Length spec-
ify the number of true recipients and the length of the confiden-
tial data, respectively. The field Recipient Information

consists of n blocks of variable length, which in turn con-
sist of three fields: the Public Key (Byte Array [32])

of the recipient, a Name (String) which contains a
self-chosen name of the recipient (variable length), and
the Name Signature (Byte Array [64]) over the self-
chosen name.

Every block of Recipient Information contains infor-
mation about a recipient, so that re-encrypting the ECF is pos-
sible, e.g., after modifying confidential data. These information
blocks about the recipients are stored within the private part of
the ECF in order to hide them from externals. The block field

Public Key contains the recipient’s public key, which is a
public Ed25519 key as specified in Subsection IV-B. One can
convert an Ed25519 public key into an X25519 public key as
described in [11][12]. The next block field Name holds a text
of variable length that describes the recipient. It may contain
the name of the related person or their email address. This
field is for human legibility and information purposes only,
e.g., when displaying the recipients or when removing existing
recipients. The last block field, Name Signature, contains a
signature over the content of Name. The signature is used first
and foremost to ensure, that the person owing the associated
private key has chosen the name, and that no changes have
been made to the name by other recipients afterwards.

The field Content encloses the confidential data and has
a theoretical limit of 232 − 1 Bytes ≈ 4 GiB. In practice, this
limit should never be reached because an ECF is designed pri-
marily to be used with passwords, certificate keys, credentials
and similar confidential data.

The last field, Private Hash, takes the hash value over the
private part up to this point. This field is inside the private part
of an ECF and, therefore, the hash value is calculated before
encryption. A more detailed description of the encryption
process can be found in Subsection IV-F.

E. Decryption Process

This subsection describes the processes of calculating the
AES key according to Figure 1. To decrypt an ECF a recip-
ient needs both, their private X25519 key and their public
Ed25519 key. Both can be calculated from the recipient’s
private Ed25519 key [11][12].

Nomenclature. The following notation is used: Alice is
the recipient and skEd

A denotes her private Ed25519 key,
pkX

A denotes her public X25519 key, analogously. The used
cryptographic hash function is denoted by H, a∥b denotes the
concatenation of two bit strings a and b, and a⊕b denotes the
bitwise exclusive OR (XOR) operation on two bit strings a and
b of the same length. a[0,...,n] denotes the truncation of the
bit string a to the first n Bytes. The ephemeral public X25519
key contained in the recipient-specific decryption information
is denoted by pkX

e . The function X25519(a,B) describes the
multiplication of scalar a with point B on the elliptic curve
Curve25519 [7].

Alice performs the following steps to obtain the AES key:
(1) Compute identification_tag = H

(
pkEd

A ∥Salt
)
[0,...,16].

(2) Load the decryption information
(
pkX

e , kAES
pre1

)
with match-

ing identification_tag.
(3) Execute the key agreement algorithm with Alice’s private

X25519 key and the public ephemeral X25519 key:
kX

shared = X25519
(
skX

A, pkX
e

)
.

(4) Compute kAES
pre2 = H

(
kX

shared∥pkX
A∥pkX

e

)
[0,...,32].

Shortening the hash value to 32 Bytes is necessary because
of the used symmetric encryption algorithm AES-256

(5) Compute kAES = kAES
pre1 ⊕ kAES

pre2 .
In Step 4 the hash function gets evaluated on the con-

catenation of the shared key and both public keys to obtain

4Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 14 / 74

the second AES pre key. The reason for this is a recom-
mendation in [13] to not use the shared key kX

shared directly
but to transform it with a hash function first. The question
arises to why a simple hash function is used and not a Key
Derivation Function (KDF). Primarily, the reason is to speed
up the encryption process, because using a KDF is resource-
intensive and it must be computed n times (separately for
each of the n recipients). This would result in a far slower
encryption process for large n. Furthermore, the input data in
Step 4 is substantially longer than the symmetric pre key to
be computed, which makes key stretching not required and,
therefore, the use of a cryptographic hash function seems
sufficient.

Finally, the private part of an ECF can be decrypted by using
the computed AES key kAES and the public AES nonce. In this
paper, the Galois/Counter Mode (GCM) [14] was chosen for
the symmetric encryption algorithm AES. Therefore, one is
not required to check the authenticity of the decrypted data
separately. Furthermore, instead of the field Public Header

Hash the public part of the ECF could have been authenticated
with AES-GCM. However, when supporting different modes
of operation this field would have been required anyway.
Hence, the field Public Header Hash was not removed and
no additional data (Associated Data) was added to the AES-
GCM encryption algorithm.

F. Encryption Process
The encryption process consists of an initial key and nonce

generation step and an m-wise computation of the public
X25519 ephemeral keys and AES pre keys. For each of
the n ≤ m true recipients exactly one public recipient-
specific decryption information block must be generated. The
remaining m − n blocks serve as obfuscation and may be
generated using a special process as proposed in Appendix A.

Nomenclature. The same nomenclature applies as in Sub-
section IV-E. It gets extended by the following functions:
GenAES(256) and GenX denote functions to generate AES-
256 keys and X25519 key pairs, respectively. RandomBytes(x)
denotes a function to generate a random bit string of length
x Bytes.

For each recipient Bob, their public Ed25519 key pkEd
B is

known by every recipient of that ECF because of the (private)
block field Public Key (see Subsection IV-D). Based on pkEd

B
one can calculate Bob’s public X25519 key pkX

B [11][12].
First, a symmetric AES key kAES ← GenAES(256), an AES

nonce nonceAES ← RandomBytes(12) and a bit string Salt←
RandomBytes(16) must be generated at random (randomness
indicated by the left arrow “←”).

Then, the following steps are performed n times to generate
the key agreement information for each recipient Bob:
(1) Compute identification_tag = H

(
pkEd

B ∥Salt
)
[0,...,16].

(2) Generate an ephemeral X25519 key pair:(
skX

e , pkX
e

)
← GenX.

(3) Execute the key agreement algorithm with the private
ephemeral X25519 key and Bob’s public X25519 key:
kX

shared = X25519
(
skX

e , pkX
B

)
.

(4) Compute kAES
pre2 = H

(
kX

shared∥pkX
B∥pkX

e

)
[0,...,32].

Shortening the hash value to 32 Bytes is necessary because
of the used symmetric encryption algorithm AES-256.

(5) Compute kAES
pre1 = kAES ⊕ kAES

pre2 .
Steps 2 and 3 correspond to a “half” Diffie-Hellman key

exchange [15] that gets completed during decryption (see
Subsection IV-E) in Step 3.

For each recipient Bob the recipient-specific information
can be written into the public part of the ECF. This information
per recipient consists of identification_tag, public ephemeral
X25519 key pkX

e and AES pre key kAES
pre1 .

The values Salt and nonceAES are valid for all recipients and
are written into their respective fields (see Subsection IV-C).

G. Further ECF Operations

This subsection introduces more ECF operations which
are based on the elementary operations Decryption (Sub-
section IV-E) and Encryption (Subsection IV-F). The same
nomenclature is used as in the specified subsections. It gets
extended by the function DecECF(skEd

A , E
)

which denotes the
decryption of an ECF E with Alice’s private Ed25519 key skEd

A .
This function returns a tuple (R, p) after successful decryption,
with R being the set of all n recipients R = {r1, r2, . . . , rn}
and p being the bit string of the decrypted confidential data.
Analogous to this, the function EncECF(R, p) encrypts the
confidential data p for the recipients R and returns an ECF E .

1) Modification of Confidential Data:
Let p′ = modify(p) be the new bit string created by modifi-
cation of the original confidential data p. The replacement of
the confidential data within an ECF E is done by these steps:
(1) (R, p) = DecECF(skEd

A , E
)

(2) p′ = modify(p)
(3) E ′ ← EncECF(R, p′)

2) Addition of a New Recipient:
Recipient Alice wants to add a new recipient Bob to an existing
ECF. Bob’s public Ed25519 key is denoted by pkEd

B , the bit
string of his name by nameB. The signature over Bob’s name
is denoted by s = signatureEd(skEd

B , nameB

)
. Alice performs

the following steps to add Bob to the recipient list:
(1) Alice verifies the Signature s:

verifyEd(s, pkEd
B

) ?
= Valid .

(2) If the signature is invalid, abort the operation, if the
signature is valid, proceed.

(3) rB =
(
pkEd

B , nameB, s
)

(4) (R, p) = DecECF(skEd
A , E

)
(5) Alice checks whether Bob is already in the recipient list:

R ∩ {rB}
?
= ∅ (Compare Ed25519 public keys).

(6) If Bob is already a recipient, abort the operation, if Bob
is not a recipient, proceed.

(7) Optionally, Alice can check if nameB already exists in one
ri and abort the operation if necessary.

(8) R′ = R ∪ {rB} = {r1, r2, . . . , rn, rB}

5Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 15 / 74

(9) E ′ ← EncECF(R′, p)

3) Removal of a Recipient:
Recipient Alice wants to remove a recipient Bob from an
existing ECF. Bob’s public Ed25519 key pkEd

B and/or the bit
string of his name nameB must be known. If only his name is
known, it must be unique within the ECF E . Alice performs
the following steps to remove Bob from the recipient list:
(1) (R, p) = DecECF(skEd

A , E
)

(2) Alice searches for rB in R based on his public key pkEd
B

or his name nameB.
(3) If rB does not exist (Bob is not a recipient of E), abort

the operation, if rB exists proceed.
(4) R′ = R \ {rB}
(5) E ′ ← EncECF(R′, p)

When removing recipients, one does not require any private
keys during the encryption process. This implies that recipients
of an ECF can remove themselves. It is therefore the task of
the implementation to warn the user or abort the operation if
the user attempts to do this. Additionally, the implementation
should also realize additional security functions if, for exam-
ple, only the creator of the confidential data stored in an ECF
is allowed to add or remove recipients. Finally, it must be
noted that the restriction explained in Section II is still true:
Former recipients are still able to access old versions of an
ECF when using a version control system.

V. IMPLEMENTATION DETAILS

A PoC was implemented using C# and the .NET 6.0
runtime. All cryptographic primitives were provided by the
portable library Sodium [16], which is a fork of the NaCl [17]
library. To use Sodium with .NET a wrapper is needed. For
this PoC the wrapper library NSec [18] was used.

A. Implementation of ECF Functionality

The implementation in C# was subdivided into two projects:
ECF.Core and ECF.CLI. The ECF.Core project contains all
functionality of the ECF and helps with managing private
keys (see Subsection V-B). ECF.Core is a library and can
be included into other projects (according to requirements in
Section III). It is used by the ECF.CLI project which provides
a command line interface to the ECF functionality.

The Create(CipherSuite, ContentType) function in
class EncryptedContainer implements the ECF creation
process using the given cipher suite and content type. For this
PoC the aforementioned cipher suite (see Subsection IV-B) is
implemented as well as a single content type: BLOB. Because
of the GCM mode of operation, the execution platform must
support the instruction set extension AES-NI. As a rule, this
can only lead to problems when using very old processors or
virtual machines.

An object of type EncryptedContainer can be encrypted
using the function Write(Stream). The output is written
into the parameter Stream. Analogously, one can obtain
an unencrypted object of this type using the class function

Load(Stream, ECFKey). It is necessary to provide a private
Ed25519 key of a recipient to that function. Per default all
name’s signatures are verified. This can be disabled to achieve
better runtime performance during decryption. The property
ContentStream of an EncryptedContainer object pro-
vides read and write access to the confidential data.

To protect the private key and the confidential data the
implementation uses protected memory spaces, if possible.
The library Sodium provides suitable functions for this [19],
which in turn are used by NSec. Furthermore, heap allo-
cations are replaced by stack allocations wherever possible
using the C# keyword stackalloc [20]. Alternatively, when
using memory that cannot be protected via Sodium or stack
allocation, the implementation pins these memory regions in
memory to prevent the Garbage Collector from arbitrarily
copying them. Furthermore, used memory regions are actively
deleted before they are freed.

B. Private Key Management

Using ECFs requires private keys that should never be stored
unencrypted. Therefore, the ECF.Core project uses AES-256
(GCM) to encrypt the private keys. The encryption key is de-
rived from a user-provided password using Argon2id [21][22].
Argon2id aims to enforce costly calculations that cannot be
parallelized or otherwise shortened (in time) by an attacker.
The algorithm can be configured arbitrarily in order to keep the
required computing time variable. For the PoC implementation
the following settings were chosen:

• Degree of parallelism: 1 (Limit by Sodium)
• Memory requirements: 2GiB
• Number of iterations: 5

This results in an approximate run time of 5 s on an Intel
Core i5-6600K with newer processors being presumably faster.

The private key is needed when decrypting an ECF and
when creating an ECF. For the latter it is necessary to add
oneself as a recipient to that ECF, which includes signing
the name. Therefore, ECF.CLI always prompts the user’s
password to load the encrypted private key.

VI. CONCLUSION AND FUTURE WORK

In this paper we introduced Encrypted Container File, a
hybrid-encrypted multi-recipient file structure aimed to store
confidential data and share it with a customizable set of
recipients. Full examples of basic and advanced operations
recipients can perform on an ECF were presented in this
paper. Although we were using a single cipher suite as
described in Subsection IV-B, the file format supports multiple
cipher suites which can be implemented analogously. The PoC
implementation demonstrates this by implementing both SHA-
512 and SHA-256 as cryptographic hash functions resulting in
two different cipher suites.

The full code of the PoC implementation and unit tests for
that code are available at:

https://github.com/Hirnmoder/ECF

6Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 16 / 74

For the future, we plan to add additional cipher suites to ECF.
Additional functionalities are also possible depending on the
feedback we get from the community.

REFERENCES

[1] Intellectsoft. “Top 8 software development trends in 2022,” Intellect-
soft. (Dec. 3, 2021), [Online]. Available: https://www.intellectsoft.net/
blog/software-development-trends/ (visited on 06/05/2023).

[2] Git. “Git.” (2023), [Online]. Available: https://git- scm.com/ (visited
on 06/05/2023).

[3] M. Fowler. “Continuous integration.” (May 1, 2006), [Online]. Avail-
able: https : / /www.martinfowler. com/articles / continuousIntegration .
html (visited on 06/05/2023).

[4] Dispel LLC. “Jak – simple git encryption,” Dispel LLC. (2017),
[Online]. Available: https : / / jak . readthedocs . io /en/ latest/ (visited on
06/05/2023).

[5] A. Ayer. “Git-crypt – transparent file encryption in git.” (2023),
[Online]. Available: https://www.agwa.name/projects/git-crypt/ (visited
on 06/05/2023).

[6] W. Koch, N. Ellmenreich, M. Ashley, et al. “The gnu privacy guard,”
The GnuPG Project. (May 31, 2023), [Online]. Available: https : / /
gnupg.org/ (visited on 06/05/2023).

[7] D. J. Bernstein, “Curve25519: New diffie-hellman speed records,” in
Public Key Cryptography - PKC 2006, Springer Berlin Heidelberg,
2006, pp. 207–228.

[8] D. A. McGrew and J. Viega. “The galois/counter mode of operation
(GCM),” National Institute of Standards and Technology. (May 31,
2005), [Online]. Available: https : / / csrc . nist . rip / groups / ST / toolkit /
BCM/documents/proposedmodes/gcm/gcm- revised- spec.pdf (visited
on 06/05/2023).

[9] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-
speed high-security signatures,” Journal of Cryptographic Engineering,
vol. 2, no. 2, pp. 77–89, Aug. 2012.

[10] Q. H. Dang, “Secure hash standard,” Tech. Rep., Jul. 2015. DOI: 10.
6028/nist.fips.180-4. [Online]. Available: https://doi.org/10.6028/nist.
fips.180-4.

[11] “Squeamish Ossifrage”. “Curve25519 over Ed25519 for key exchange?
Why?” Crypto Stack Exchange. (Mar. 19, 2019), [Online]. Available:
https://crypto.stackexchange.com/a/68129 (visited on 06/05/2023).

[12] The Sodium Authors. “Ed25519 to curve25519 – libsodium.” (2023),
[Online]. Available: https : / / doc . libsodium . org / advanced / ed25519 -
curve25519 (visited on 06/05/2023).

[13] The Sodium Authors. “Point*scalar multiplication – libsodium.”
(2021), [Online]. Available: https://doc.libsodium.org/advanced/scalar_
multiplication (visited on 06/05/2023).

[14] M. J. Dworkin, “Recommendation for block cipher modes of operation:
Galois/counter mode (gcm) and gmac,” Tech. Rep., 2007. DOI: 10 .
6028/nist.sp.800-38d. [Online]. Available: https://doi.org/10.6028/nist.
sp.800-38d.

[15] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644–654, Nov.
1976.

[16] The Sodium Authors. “Introduction – libsodium.” (2022), [Online].
Available: https://doc.libsodium.org/ (visited on 06/05/2023).

[17] D. J. Bernstein, T. Lange, and P. Schwabe. “Nacl: Networking and
cryptography library.” (Mar. 15, 2016), [Online]. Available: https : / /
nacl.cr.yp.to (visited on 06/05/2023).

[18] K. Hartke. “Nsec – modern cryptography for .net core.” (2022),
[Online]. Available: https://nsec.rocks/ (visited on 06/05/2023).

[19] The Sodium Authors. “Secure memory.” (2022), [Online]. Available:
https : / / doc . libsodium . org / memory _ management (visited on
06/05/2023).

[20] Microsoft Docs. “stackalloc expression (c# reference),” Microsoft.
(Apr. 12, 2023), [Online]. Available: https://docs.microsoft.com/en-
us/dotnet/csharp/language- reference/operators/stackalloc (visited on
06/05/2023).

[21] A. Biryukov, D. Dinu, and D. Khovratovich. “Argon2: The memory-
hard function for password hashing and other applications.” ver-
sion 1.3. (Mar. 24, 2017), [Online]. Available: https : / / raw .
githubusercontent .com/P- H- C/phc- winner- argon2/master /argon2-
specs.pdf (visited on 06/05/2023).

[22] The Sodium Authors. “The pwhash* api.” (2022), [Online]. Available:
https://doc.libsodium.org/password_hashing/default_phf (visited on
06/05/2023).

[23] “fgrieu”. “Using sha2 as random number generator?” Crypto Stack
Exchange. (Jun. 20, 2020), [Online]. Available: https : / / crypto .
stackexchange.com/a/81459 (visited on 06/05/2023).

APPENDIX

A. Generating m− n Obfuscation Blocks

In Subsection IV-F the generation process for the n public
recipient-specific blocks was described. The remaining m−n
blocks serve as obfuscation blocks to hide the true number of
recipients to externals. These obfuscation blocks should not
be random bit strings because there is a possibility that the
outputs of the used algorithms are subject to statistical effects.
This would allow an external party to distinguish between real
blocks and obfuscation blocks and therefore determine n.

To avoid this, we suggest that the m − n obfuscation
blocks are constructed using randomly generated Ed25519 and
X25519 key pairs. The function GenEd denotes the creation
of an Ed25519 key pair and the function ConvertX

(
skEd)

converts an Ed25519 private key into an X25519 key pair. The
following steps are performed for each obfuscation block:
(1) Generate a random key pair:(

skEd
r , pkEd

r

)
← GenEd,

(
skX

r , pkX
r

)
= ConvertX

(
skEd

r

)
.

(2) Compute identification_tag = H
(
pkEd

r ∥Salt
)
[0,...,16].

(3) Generate an ephemeral X25519 key pair:(
skX

e , pkX
e

)
← GenX.

(4) Generate a random AES-256 key:
kAES

r ← GenAES(256) or kAES
r ← RandomBytes(32).

(5) Execute the key agreement algorithm with the private
ephemeral and the random public X25519 keys:
kX

shared = X25519
(
skX

e , pkX
r

)
.

(6) Compute kAES
pre2 = H

(
kX

shared∥pkX
r ∥pkX

e

)
[0,...,32].

Shortening the hash value to 32 Bytes is necessary because
of the used symmetric encryption algorithm AES-256.

(7) Compute kAES
pre1 = kAES

r ⊕ kAES
pre2 .

Provided that the used cryptographic hash function gen-
erates truly random looking bit strings, on can simplify the
generation process to increase runtime performance. The as-
sumption of true random looking bit strings is justified with
the input lengths used in Subsections IV-E and IV-F, see [23].
(1) Generate an ephemeral X25519 key pair:(

skX
e , pkX

e

)
← GenX.

(2) Generate identification_tag← RandomBytes(16).
(3) Generate kAES

pre1 ← RandomBytes(32).
The shortened generation process is used in the PoC imple-

mentation. The number m is randomly chosen in dependence
on n, such that max{8, 2n} ≥ m ≥ n.

7Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 17 / 74

Generation of Distributed Denial of Service Network Data with Phyton
and Scapy

Stefan Görtz
Computer Science and Mathematics
Ostbayerische Technische Hochschule

Regensburg, Germany
email:

stefan1.goertz@st.oth-regensburg.de

Sebastian Fischer
Computer Science and Mathematics
Ostbayerische Technische Hochschule

Regensburg, Germany
email:

sebastian.fischer@oth-regensburg.de

Rudolf Hackenberg
Computer Science and Mathematics
Ostbayerische Technische Hochschule

Regensburg, Germany
email:

rudolf.hackenberg@oth-regensburg.de

Abstract—Distributed Denial of Service attacks are
among the most common and widespread network
attacks. Due to their nature, they are difficult to de-
fend. Intrusion detection systems, based on machine
learning, are a promising approach to counter this
threat. But to train these systems, data sets with
Distributed Denial of Service attacks are needed. An
implemented Python program, which creates Denial
of Services packets and simulates distributed sending
by multithreading, is presented. Unlike synthetically
generated data with the use of simulators, real network
traffic is generated. This eliminates errors and offers a
better basis of data, as machine learning algorithms
need data that is as error-free as possible in order to
learn efficiently.

Keywords—DDoS; Scapy; Synflood; Udpflood; PCAP;
IDS.

I. Introduction

Distributed Denial of Service (DDoS) attacks are among
the most common network-based attacks and cause major
economic damage. In the third quarter of 2022, the number
of DDoS attacks increased sharply by 90%, compared to
the third quarter of the previous year [1]. Internet of
Things (IoT) devices are particularly vulnerable to these
attacks, as they are accessible via the Internet and usually
exchange data with cloud servers.

Detecting DDoS attacks is difficult, because the attack
packets are indistinguishable from ordinary network traffic
[2] and the packages come from many different sources.
An intrusion detection system (IDS) is usually used to
detect these attacks. However, conventional IDSs are no
longer sufficient for more sophisticated attacks. The use of
an artificial intelligence-based intrusion detection system
(iIDS) is a promising approach to detect DDoS attacks.
But for the development of an iIDS, attack data is needed
to train the iIDS’ machine learning modules. Since real
data is not easily available and not classified, generated
data is mostly used. Therefore, this paper presents an
approach to generate real training data using Python and
Scapy. It aims at a possible solution to the following
question: How can DDoS network data on IoT devices
suitable for machine learning be generated?

The paper is structured as follows: in section 2, the
related work is introduced, in section 3 the theoretical

foundations are shown, then our methods are presented
in section 4 and the results are shown in section 5. Section
6 contains the discussion of the results. Subsequently, in
section 7, we draw a conclusion and in the end in section
8, an outlook is given.

II. Related Work

Singh et al. [3] use the network simulation software NS2
to generate a network of 8 clients. They generate network
traces of attack data, which consists injected packets,
mixed with an attack based on a DDoS dataset. Through
this dataset, a DDoS attack of 130 attack hosts on one
target is generated for the duration of 50 seconds with a
maximum throughput rate of 90,000 bps.

Arora and Dalal [4] use NET stress, a network stressing
tool to introduce DDoS Attacks. They generate TCP, as
well as UDP connections and carry out UDP flood and
IGMP Flood attacks for the duration of 50 secs and 38
secs while benchmarking the network performance.

Baly et al. [5] use the graphical networksimulator GNS3
to create a topology of a webserver, three computers and
one intruder with a Kali Linux distribution. The intruder
carrys out DDoS attacks, captured by wireshark as pcap
files.

Alzahrani and Hong [6] use the OMNET++ network
simulator to generate DDoS attack network traffic in
a simulated cloud environment. They generate various
DDoS scenarios: Synflooding, HTTP flooding and UDP
flooding. In addition, they generate non-intrusive traffic.

In contrast to the synthetically generated network traf-
fic, with the use of simulators, we generate real network
traffic. Generating network data synthetically has some
potential sources of error. These are eliminated by per-
forming the DDoS attacks in a real network environment.
Furthermore, we can conduct attacks with longer dura-
tions and more individual attack hosts.

III. Theoretical Foundations

This section lays the theoretical introduction for DDoS
data generation with Python using our method.

8Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 18 / 74

Fig. 1. UDP flooding

A. Denial of Service
Denial of Service (DoS) attacks aim to make a service

unavailable, that is accessible via the Internet, unusable
for legitimate visitors [7]. A distinction is made between
two different attack categories, on the one hand attackers
can aim to overload the network and hardware resources,
for example bandwidth, memory and CPU cycles of the
target, on the other hand, the behavior of the network
protocols used, for example TCP or UDP, can be abused
[8]. In the case of a successful attack, the entire resources
of the attack target or protocol instance are consumed
by the attacker and legitimate requests can no longer be
processed [9].

B. Distributed Denial of Service
DDoS attacks use the DoS techniques with the help of

many attack hosts. The attack hosts are devices, accessible
through the Internet, which are infected with malicious
code and involuntarily participate in the network attacks
[8].

C. Anatomy of DDoS Attacks
Most DDoS attacks (64% in 2022) exploit the Trans-

mission Control Protocol (TCP), followed by the User
Datagram Protocol (UDP) with 22% [10]. The motivation
of most DDoS attacks is political or economic. In so-called
ransom DDoS attacks, cybercriminals blackmail their tar-
get into paying a ransom or holding out the prospect of
a DDoS attack. The most commonly targeted industry
segments include the aviation industry, government in-
stitutions, telecom facilities and media houses. The most
frequent attacks occurred at intervals of ten to twenty
minutes, followed by attacks lasting one to three hours
[11].

D. UDP Flooding
UDP defines a minimal network protocol for connec-

tionless data transfer with no guarantee of complete and
correct data transfer. Applications create an UDP header
for their data and transfer it via Internet Protocol (IP).

This DDoS attack variant uses a large number of packets
to exhaust the hardware resources of the recipient. Ac-
cordingly, UDP flooding attacks belong to the first DDoS
category. To carry out the attack, a high volume of UDP
packets with spoofed IP address is sent to random ports

of the target. UDP implementation on the receiver side
searches for the corresponding application that accepts
UDP packets on the addressed port. If no application
is found, it responds with an Internet Control Message
Protocol (ICMP) error message [12]. Figure 1 depicts the
sequence of an UDP flooding attack. By permanently
addressing different ports, it is ensured that the recipient
sends such ICMP error messages. The attack is successful
when the volume of malicious packets is such that the
victim’s bandwidth is consumed and legitimate requests
cannot be answered.

E. SYN Flooding
Besides UDP flooding attacks, synchronize (SYN) flood-

ing attacks are the most common type of attack. They
exploit TCP, and thus belong to the second category of
DDoS attacks. TCP provides reliable, bilateral data trans-
mission between two network-enabled applications. Data
is transmitted as TCP segments over the IP. Checksums
and the division of data into sequences ensure a complete
and error-free transmission. As in the event of an error,
individual TCP segments are sent again [13].

A TCP connection is described by two sockets and is
uniquely identifiable by its parameters: socket 1 source
IP address, source port and socket 2 destination IP
address and destination port. The data to be sent is
divided into TCP segments, each of which is assigned a
sequence number, to ensure correct data transmission. For
this purpose, the window size is defined within the TCP
header as a set of data, after which the recipient checks
it for completeness and acknowledges it. In addition,
various control bits can be set as flags, for example, for
the establishment or termination of the connection [13].

Connection setup: A TCP instance with no active
connection is in the LISTEN state, while waiting for
incoming connections. The connection between two TCP
instances is established by a 3-way-handshake (see Figure
2), to synchronize the sequence numbers [13][14]:

1) Host A sends a packet with a random inital sequence
number x and the SYN flag set.

2) Host B responds with a set SYN and ACK flag,
acknowledges the sequence number of the first mes-
sage ACK number = x+1 and its own random inital
sequence number y. A half-open connection now
exists. The state of the connection changes on the
receiving host from LISTEN to SYN-RECEIVED.

3) Host A acknowledges the message from Host B
with ACK number = y + 1 and set ACK flag. The
connection between the two hosts is now active and
has the state ESTABLISHED.

SYN flooding is a DoS attack on a host with a TCP
instance. The goal of the attack is to create so many half-
open TCP connections on the attacked host that no more
legitimate requests can be accepted. For each incoming

9Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 19 / 74

Fig. 2. TCP 3-way-handshake

attacker connection request, a TCP connection must be
stored in the backlog queue with its state. The attacker’s
goal is to overflow this storage structure and prevent
legitimate connections from being accepted. To perform
the attack, a host opens a TCP connection by sending a
synchronize packet. The destination responds with a SYN-
ACK packet.

The state of the connection changes from LISTEN
to SYN-RECEIVED. These connections are stored in
the backlog, where the connections dwell until the
sender acknowledges the receiver’s response or the SYN-
RECEIVED timer expires. But as the attack hosts are
spoofed, they never acknowledge the connection. The
attacker is aiming to completely block the backlog. The
TCP standard does not define a universal approach for
a full backlog. Common implementations now ignore new
requests or remove the oldest requests from the backlog.
However, an attacker with enough resources can still con-
tinuously overfill the backlog.

IV. Methods
To generate the DDoS network traffic, a Python pro-

gram was implemented that uses the Scapy library, to cre-
ate network packets. Using Scapy, the packet parameters
can be set individually. This allows spoofing of the source
IP and source Media-Access-Control (MAC) address. In
addition, network packets of different protocols can be
generated, to realize the two DoS attacks described above.
UDP packets on the one hand, and TCP packets with the
SYN flag set, on the other hand.

A. Test Setup
To generate the DDoS network data, a test environment

(see Figure 3) was installed with a selection of different

IoT devices as attack targets: Amazon Echo 2 and smart
cameras from the manufacturers Antela, Nedis, SV3C and
Tapo.

These devices are located in a Wi-Fi network created
by an Unifi Access Point nanoHD. The Wi-Fi network is
integrated into the network created by an Ubiquiti Edge
Router via an Unifi Switch Flex Mini. The IoT devices
gain access to the Internet via this router.

To record the data traffic, a tcpdump instance runs on
the Unifi Access Point nanoHD. This instance intercepts
the Wi-Fi internal data traffic via its network interface.
The tcpdump recording runs continuously to capture both,
normal network traffic from the IoT devices, and attack
traffic. To perform attacks on the IoT devices, the attacker
connects to the Ubiquiti router.

Fig. 3. Network diagram of the test environment

B. Implemented Python Program
The objectdiagram of the implemented Python DDoS

data generation program can be seen in Figure 4. DDoS
attacks are carried out in two stages. In the first stage, the
attack is planned. Either manually or randomly generated
attacks are planned automatically, for which an attack
planner class has been written. In both cases, a target is
selected from the IoT test setup, then an attack protocol,
either synflooding or updflooding is selected. Next, the
attack host network is planned. Each host is identified
by a combination of a spoofed IP address, as well as
a spoofed MAC address. The number of hosts and the
number of packets, to be sent per host, is specified. The
planned attack is written to a comma-separated values

10Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 20 / 74

Fig. 4. Objectdiagram of the implemented Python DDoS data generation program

file that serves as persistent storage. After the attack
planning is completed, the attack packets are created by
a PacketWriter class with the help of Scapy and written
to a pcapng file.

In the second stage, the actual attack is carried out
by the pcapsender class. The previously created pcapng
files are read into the Random Access Memory (RAM)
by Scapy. A threadpool is created depending on the cpu
count of the attacker PC. The read packets are divided
into chunks for parallelized transmission, depending on
the number of cpu cores used. Afterward, the packet
chunks are passed to tcpreplay by Scapy and processed
in parallel.

C. Packet design
On ISO OSI Layer 2, both packet types have a spoofed

MAC address. In ISO OSI layer 3, both types of packets
contain a spoofed IP address which ensures that no IP
addresses from private areas are used. Additionally, this
layer contains the destination address of the attack target.
ISO OSI Layer 4 is individually designed according to
the attack protocol and contains either the UDP or TCP
header.

The depicted Python function (see Figure 5) of the
PacketWriter class takes a host dictionary from the
previously created host network, the attack target IP
address and its TCP port as parameters. A TCP packet is
generated from the transferred data, the spoofed sending

def createSYNpacket(self, host,
target_IP , target_PORT):

src_MAC = host.get("src_MAC")
src_IP = host.get("src_IP")
src_PORT = host.get("src_PORT")

seqN = random.randint(0, 65535)
rndm_raw = random.randint(1,1453)
payload = Raw(b’SYNFLOOD’ + b’X’∗rndm_raw)

packet = Ether(src=src_MAC)
/ IP(dst=target_IP , src=src_IP) \
/ TCP(sport=src_PORT, dport=target_PORT ,
flags="S", seq=seqN, window=0)\
/ payload

return packet

Fig. 5. Python function for TCP synchronize packet creation

parameters are taken from fields of the host dictionary.
A random sequence number is generated for the TCP
header. The payload receives a binary coded flag and
is provided with a random payload length to increase
the variance. Finally, the synchronize flag is set and
the window number is defined with 0. The package is
assembled layer by layer through Scapy and returned to
a packet list.

11Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 21 / 74

Analogous to the createSYNpacket function (see Figure
5), the Python function createUDPpacket creates UDP
packets. The spoofed sending parameters are taken from
a passed host dictionary. The sending port is randomly
assigned for more variance. Likewise, the destination port
is randomized to ensure that most packets do not reach
an UDP application by chance. The payload contains a
binary encoded flag to mark the packet as an attack packet
in the context of data labeling. In addition, the payload
is padded with a random length of binary characters to
increase the variance of the packets.
D. Packet sending

For sending, Scapy passes the prepared packages to the
tcpreplay instance, installed on the attack computer.
This creates a temporary pcapng file. This process is the
bottleneck of the program, besides the number of threads.
However, a loop factor can be defined, so that the same
packet is sent several times. This can increase the speed, at
the expense of variance. In the case of UDP flooding, this
is less serious, since only the payload length represents an
increase in the data set. Whereas with the synchronize
packets of a synflooding attack, additionally, the same
sequence number is sent. This accumulation can also occur
in DDoS attacks by real botnets, depending on how the
flooding function is implemented. If the loop factor is used,
the packet transmission rate increases continuously, since
the packets which are read from the temporary pcap file
can be stored in the RAM.
E. Data Processing

The records created by tcpdump are exported and
processed at cyclic intervals. The network data set can
thus be continuously expanded. These pcaps are then
read and processed by another Python program. Attack
packets are marked as such and labeled with the type
of DDoS attack that the data set is suitable for super-
vised learning procedures. The Python library Scapy is
also used for this purpose; its rdpcap function reads in
the recorded packets and converts them afterwards into
Python dictionaries. Each dictionary is extended by the
fields intrusion (boolean) and attacktype (string, SYN-
FLOOD or UDPFLOOD), this implementation allows an
easy extension with further attack variants in the future.
For each packet, it is checked, if the payload contains an
intrusion flag. If the test is positive, the intrusion flag is
set and the attacktype is noted. If the test is negative, the
intrusion flag is set to false and the attacktype is set to
none. Optionally, the intrusion flag can be removed from
the payload. Otherwise, the payload should not be used for
evaluation by machine learning. Finally, the now labeled
package dictionaries are inserted into a SQL database for
further use.

V. Results
This section describes the results of the generated DDoS

data by the implemented Python program. It generates

TABLE I
DDoS attack effects on IoT devices

DDoS effects on IoT Devices
IoT device Attack type Effect
Amazon Echo synflood success
Amazon Echo udpflood no success
Nedis Cam Gray synflood success
Nedis Cam Gray udpflood success
Tapo Cam C100 synflood success
Tapo Cam C100 udpflood success
Antela Speed Cam synflood success
Antela Speed Cam udpflood no success
Nedis cam white synflood success
Nedis cam white udpflood no success
SV3C camera synflood success
SV3C camera udpflood no success

DDoS attack data of the two most common DDoS variants.
Continuous data logging in the test environment generates
records of idle network traffic intermingled with the net-
work traffic of DDoS attacks. As a result, the records also
contain the beginning and ending of the attacks. This is
important to train machine learning applications on attack
detections.

The following impact of the attacks on the IoT devices
could be observed. The SYN flooding attacks were suc-
cessful in every case. The devices were unreachable within
a few seconds up to a maximum of 60 seconds, for the
duration of the attack. Table I depicts the measured effects
of the DDoS attacks on the IoT devices.

UDP flooding attacks did not cause every device to fail.
This is probably because the IoT devices do not process
incoming UDP packets, they ignore them and therefore do
not allocate resources.

VI. Discussion
This section discusses the research question defined

at the outset. To generate realistic DDoS network data,
the attacks carried out must mimic real DDoS botnets.
An adequately large host network must be simulated
for this purpose. Each of these hosts has an individual
combination of spoofed IP and MAC addresses. This
means that the network traffic reflects a large number of
senders, even though the packets are sent from the same
attacking host. This ensures a high variance in the data
captured.

The following points address the requirements for the
generated data:

1) Packets: Care is taken during packet generation
to ensure that valid packets are generated for the
protocol in question. This is ensured by evaluating
the tcpdump captures. Malformed packets can be
detected and corresponding errors have to be fixed,
to generate a record of real network traffic.

2) Distribution: To simulate not only DoS attacks,
multiple packets are sent simultaneously by using
parallelization with threads.

12Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 22 / 74

3) Attack duration: Various attack scenarios are sim-
ulated. The attack duration takes place in intervals
ranging from ten minutes to several hours. Weighing
whether to maximize the attack quantity or to follow
the parameters as described in the section Anatomy
of DDoS Attacks.

4) Non attack traffic: In order to generate qualitative
datasets, it is important that the network recordings
do not only consist of attacks. So, idle communica-
tion of the IoT devices is also recorded.

VII. Conclusion
Finally, we evaluate the advantages and limitations

of generating DDoS attack data with the implemented
Python program.

A. Advantages
The required type and scope of attacks can be defined

individually as part of the attack planning process. This
allows data sets to be created according to the user’s needs.
For example, very long attacks or many attacks, in short
succession, can be carried out.

Unlike synthetically generated data, the actual sending
of the packets ensures that the network data is correct
and error-free. In addition, the network behavior during
the attack is authentic. There are fewer potential sources
of error in contrast to synthetically generated data, for
example, by network simulators. Also in distinction from
available DDoS data sets, the data can be generated
variably and adjusted according to individual needs.

If a physic attack network were to be implemented for
DDoS data generation, this would be accompanied by
high material costs for the hardware. In contrast, the
implemented Python program is a cost-efficient solution
for data generation [15].

B. Limitations of DDoS Python implementation
The DDoS attack program is limited by the number of

threads on the attack host. Real DDoS botnets include sev-
eral thousand hosts. This is not feasible by multithreading
with a single attack host. The data transfer rate with the
Python program is also lower than in a DDoS attack with
a resource-strong botnet.

C. Augmentation of the training data
For the purpose of training data generation, augmen-

tation techniques are used to extend or adapt the exist-
ing training data set. The main weakness of the DDoS
program is the limited simulatability of a large botnet.
Therefore, it is a good idea to first generate a set of
realistic DDoS attack datasets as large as possible and
then use data manipulation to adjust the training data.
Each packet in the network record has a timestamp at
which it is captured.

By manipulating the timestamp, multiple attacks that
occurred in succession can be combined into a parallel
attack to represent a larger attack. This is only limited

by the number of spoofed hosts. Augmentation can be
done either as part of the package labelling process or
retrospectively in the SQL database.

D. iIDS for defending against DDoS attacks
DDoS attacks are difficult to defend against, and exist-

ing defenses and prevention measures can be largely mit-
igated by the attacker. An iIDS is a promising approach.

It usually consists of various modules, which can detect
network anomalies based on machine learning techniques
and deviations from the usual network traffic of IoT
devices. In addition to anomaly detection, the iIDS can
classify attacks and distinguish between DDoS attacks and
man-in-the-middle attacks [16]. In order to develop an own
iIDS, extensive training data is needed. The implemented
and described Python program is an approach to generate
this training data.

VIII. Outlook
The Python program can be extended to include other

DoS attack variants. Scapy allows the variable creation
of any network packet. This allows ICMP flooding
and HTTP flooding to be implemented. It is planned
to split the attacks across multiple physical hosts to
create a real distribution, in addition to the simulated
distribution through multithreading. For this purpose,
several Raspberry Pis are used to perform simultaneous
attacks on a target. Subsequently, a larger field trial will
be conducted to scale the data generation to a larger
scale. Adding more attack hosts to the experimental setup
gives a true distribution of the attack. In conjunction
with multiple threads, this approaches a larger botnet.

To validate the generated data, it is planned to replicate
publicly available DDoS datasets. Similar host quantity
and variance will be used, also the packet quantity can
be replicated. However, the packet transmission frequency
is limited by the hardware on which the Python program
runs. For further validation, we plan to create a test setup
with an available IDS and train it with our data. This will
allow us to compare the results of our system with the
available one.

References
[1] Infosecurity Magazine, “DDoS Attacks in 2022: Trends

and Obstacles Amid Worldwide Political Crisis,” 2022.
[Online]. Available: https://www.infosecurity-magazine.
com/blogs/ddos - attacks - in - 2022 - trends/ (visited on
06/07/2023).

[2] C. Douligeris and A. Mitrokotsa, “DDoS attacks and
defense mechanisms: Classification and state-of-the-art,”
en, Computer Networks, vol. 44, no. 5, pp. 643–666, Apr.
2004, issn: 13891286. doi: 10.1016/j.comnet.2003.10.003.
[Online]. Available: https : / / linkinghub . elsevier . com /
retrieve/pii/S1389128603004250 (visited on 03/01/2023).

[3] N. Sidhu, K. Saluja, M. Sachdeva, and J. Singh, “Ddos
attack’s simulation using legitimate and attack real data
sets,” J. Scientific And Engineering Research, Jun. 2012.

13Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 23 / 74

[4] Research Scholar, SRM University, Sonepat, (Haryana)
India., S. Arora*, D. S. Dalal, and Professor, Teerthanker
Mahaveer University, Moradabad (U.P), India., “DDoS
Attacks Simulation in Cloud Computing Environment,”
International Journal of Innovative Technology and Ex-
ploring Engineering, vol. 9, no. 1, pp. 414–417, Nov. 2019,
issn: 22783075. doi: 10 . 35940 / ijitee . A4163 . 119119.
[Online]. Available: https ://www. ijitee .org/portfolio -
item/A4163119119/ (visited on 05/10/2023).

[5] A. Balyk, M. Karpinski, A. Naglik, G. Shangytbayeva,
and I. Romanets, “Using graphic network simulator 3
for ddos attacks simulation,” International Journal of
Computing, vol. 16, pp. 219–225, Dec. 2017. doi: 10 .
47839/ijc.16.4.910.

[6] S. Alzahrani and L. Hong, “Generation of DDoS Attack
Dataset for Effective IDS Development and Evaluation,”
Journal of Information Security, vol. 09, no. 04, pp. 225–
241, 2018, issn: 2153-1234, 2153-1242. doi: 10.4236/jis.
2018.94016. [Online]. Available: http://www.scirp.org/
journal/doi.aspx?DOI=10.4236/jis.2018.94016 (visited
on 03/06/2023).

[7] Global Journal of Computer Science and Technology,
vol. 14, no. E7, pp. 15–32, 2014, issn: 0975-4172. [Online].
Available: https : / / computerresearch . org / index . php /
computer/article/view/100887.

[8] D. Mahajan and M. Sachdeva, “DDoS Attack Pre-
vention and Mitigation Techniques - A Review,” In-
ternational Journal of Computer Applications, vol. 67,
no. 19, pp. 21–24, 2013. doi: 10 . 5120 / 11504 - 7221.
[Online]. Available: https : / / www . researchgate . net /
publication / 258790077 _ DDoS _ Attack _ Prevention _
and_Mitigation_Techniques_-_A_Review (visited on
06/07/2023).

[9] S. S. Kolahi, K. Treseangrat, and B. A. S. Sarrafpour,
“Analysis of udp ddos flood cyber attack and defense
mechanisms on web server with linux ubuntu 13,” 2015
International Conference on Communications, Signal
Processing, and their Applications (ICCSPA’15), pp. 1–5,
2015.

[10] A. N. S. Team, 2022 in review: DDoS attack trends and
insights, en-US, Feb. 2023. [Online]. Available: http://
www . microsoft . com / en - us / security / blog / 2023 / 02 /
21/2022- in- review- ddos- attack- trends- and- insights/
(visited on 03/01/2023).

[11] O. Yoachimik, “Cloudflare DDoS threat report for 2022
Q4,” The Cloudflare Blog, 10.01.2023. [Online]. Available:
https://blog.cloudflare.com/ddos- threat- report-2022-
q4/ (visited on 06/07/2023).

[12] Kamaldeep, M. Malik, and M. Dutta, “Contiki-based
mitigation of UDP flooding attacks in the Inter-
net of things,” in 2017 International Conference on
Computing, Communication and Automation (ICCCA),
Greater Noida: IEEE, May 2017, pp. 1296–1300, isbn:
9781509064717. doi: 10.1109/CCAA.2017.8229997. [On-
line]. Available: http://ieeexplore. ieee.org/document/
8229997/ (visited on 03/01/2023).

[13] IETF Datatracker, RFC ft-ietf-tcpm-rfc793bis: Trans-
mission Control Protocol (TCP), 2022. [Online]. Avail-
able: https : / / datatracker . ietf . org / doc / html / rfc9293
(visited on 06/07/2023).

[14] Defenses against TCP SYN flooding attacks. 2006. [On-
line]. Available: https://www.netconf.co.uk/ipj/ipj_9-
4.pdf (visited on 06/07/2023).

[15] S. Alzahrani and L. Hong, “Generation of ddos attack
dataset for effective ids development and evaluation,”
Journal of Information Security, vol. 09, pp. 225–241,
Jan. 2018. doi: 10.4236/jis.2018.94016.

[16] J. Graf, K. Neubauer, S. Fischer, and R. Hackenberg,
“Architecture of an intelligent intrusion detection system
for smart home,” in 2020 IEEE International Conference
on Pervasive Computing and Communications Work-
shops (PerCom Workshops), 2020, pp. 1–6. doi: 10.1109/
PerComWorkshops48775.2020.9156168.

14Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 24 / 74

Side Channel Monitoring for Fuzz Testing of
Future Mobility Systems

Philipp Fuxen
Dept. Informatics and Mathematics

OTH Regensburg
Regensburg, Germany

Email: Philipp.Fuxen@oth-regensburg.de

Murad Hachani
Dept. Informatics and Mathematics

OTH Regensburg
Regensburg, Germany

Email: Murad.Hachani@oth-regensburg.de

Jonas Schmidt
Dept. Informatics and Mathematics

OTH Regensburg
Regensburg, Germany

Email: Jonas.Schmidt.lth@t-online.de

Philipp Zaumseil
Dept. Informatics and Mathematics

OTH Regensburg
Regensburg, Germany

Email: Philipp.Zaumseil@st.oth-regensburg.de

Rudolf Hackenberg
Dept. Informatics and Mathematics

OTH Regensburg
Regensburg, Germany

Email: Rudolf.Hackenberg@oth-regensburg.de

Abstract—The current transformation in the automotive indus-
try is leading to new technologies with a higher software content,
a higher degree of networking, and connections to cloud services.
This development leads to an increase in the attack surface and
the potential extent of damage. ISO/SAE 21434 and UNECE
WP.29/R155 were published to address this development. The
ISO/SAE 21434 proposes fuzz testing as a measure. In fuzzing,
so-called fuzz data is generated and transmitted to a device under
test to identify previously unknown and known vulnerabilities.
This approach is already being used very successfully in other
industries. But in the automotive sector, some challenges arise
when testing hardware-related electronic control units. These
include the fact that the internal system structures are often
poorly known or not known, as well as the severely restricted
access and hardware limitations for monitoring. One way to solve
these challenges is to use side-channel information to monitor the
device under test. Such information includes power consumption,
temperature, and noise levels, for example. In this paper, we
present a fuzz testing experiment to determine anomalies, data,
and requirements for analyzing various side channels. Basic
procedures were used to generate the fuzz data. Monitoring of
the device under test was performed manually at the beginning.
In addition, a side-channel measurement system with various
measurement devices and a test setup are presented. Based
on the identified fuzz messages, the behavior of the respective
side channels during the abnormal behavior is analyzed and
described.

Keywords—Fuzzing; Fuzz Testing; Automotive; Cybersecurity;
Side Channel Information; Measurement System.

I. INTRODUCTION

The four major themes of future mobility - Connected,
Autonomous, Shared, and Electric - have brought a trans-
formation in the automotive industry [1]. New technologies
with high software content and a high degree of networking
have become established. In addition to the added value,
however, this also leads to new risks. The vehicle has evolved
into a highly networked system which is connected with
multiple cloud services, and whose attack surface has grown
significantly. This has increased the probability of becoming

the target of an attack on cybersecurity. In the past, attackers
had to gain physical access to a vehicle to manipulate it.
Today, remote access to a vehicle can be carried out through
a communication channel or a cloud backend. In addition to
increasing the probability of occurrence, this also means that
the extent of damage is significantly greater because attacks
could be extended to fleets of vehicles.

In recent years, the international standard ISO/SAE 21434
and the european standard UNECE WP.29/R155 have been
developed to address this issue [2][3]. The ISO/SAE 21434
defines a framework of technical requirements for cyberse-
curity and risk management to ensure the cybersecurity of
motor vehicles throughout their life cycle. It covers concepts,
product development, production, operation, maintenance, and
decommissioning of Electric / Electronic (E/E) vehicle sys-
tems. A test method proposed by ISO/SAE 21434 that is
suitable for automated execution is the so-called fuzz testing.
It is already used successfully in other industries and makes it
possible to identify even previously unknown weaknesses and
vulnerabilities [4]. A fuzz tester generates so-called fuzz data
and transmits it to the System Under Test (SUT) or Device
Under Test (DUT). Some fuzzers look for faults and anomalies
while the SUT/DUT processes the fuzz data. The goal is to
find out what fuzz data causes unwanted system behavior. The
data is then analyzed to see if there is a vulnerability. To use
fuzz tests automatically and efficiently for automotive systems,
it is necessary to detect abnormal behavior of the DUT. This
is particularly difficult for automotive Electronic Control Unit
(ECU) because there is often little or no knowledge of the
internal processes during testing. In addition, their monitoring
is a challenge due to highly restricted access and hardware
limitations. So-called black box methods are therefore partic-
ularly relevant in the automotive sector. Compared to white
box or grey box methods, no initial information about the
DUT is required.

The main goal of the paper is to improve black box protocol

15Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 25 / 74

fuzz testing for hardware-based automotive systems using side
channel information. For this reason, the following research
questions are addressed:

RQ1: How can fuzz messages be found which have led to
abnormal behavior?

RQ2: Which side channels are suitable to use for automo-
tive ECUs?

RQ3: How can this side channel information be measured
and used?

The structure of the paper begins with related work in
Section II. Section III presents the general conditions of an
experiment and its setup as well as its results. In Section IV, a
side channel measurement system is described that is designed
to solve the challenges of hardware-based fuzzing. The paper
ends with a conclusion and future work in Section V and
Section VI.

II. RELATED WORK

During fuzz testing of complex and networked vehicle
systems, obtaining information about the state of the ECU
is difficult. The main reason for this is that access to the
ECU is limited and very few information channels are open
or available. One method for monitoring during fuzz testing
is the so-called side channel information, which has already
been successfully used in other areas.

A. Side Channel Analysis

Side channel analysis is a technique for detecting vul-
nerabilities in a system by analyzing information that can
be measured through side channels. D. Agrawal et al. [5]
present multichannel attacks, i.e., attacks that use multiple side
channels. These attack types use more than one side channel,
e.g., energy and Electromagnetic Fields (EMF), in parallel.
Based on their analysis, they show that using multiple channels
is better for template attacks by experimentally demonstrating
a threefold reduction in error probability. In this work, the
transfer to ECUs was performed by connecting a large number
of side channels. In particular, the analysis of the temperature
and electromagnetic radiation of the power showed clear
results for reverse engineering cryptographic functions [6][7].
Therefore, the application of these side channels found use in
our setup right at the beginning.

B. General Fuzzing

As stated in Section I, fuzzers can be classified into three
test procedures based on their knowledge about the system:
black box, grey box, and white box fuzzing [8][9]. The
following papers present various fuzzing approches from the
diffrent test procedures.

M. Böhme et al. [10] present a comprehensive synthesis
of the open challenges and opportunities associated with
fuzzing and symbolic execution techniques. These problems
were identified through a discourse between researchers and
practitioners during a Shonan meeting and confirmed by a
follow-up survey. They used the term human-in-the-loop for
an issue, defined as the work effort that an test auditor has

to perform within a semi-automatic fuzzing loop. This was
also confirmed by their survey, where 71% of the participants
indicated that there is potential to improve the automation of
such fuzzing mechanisms. As we move forward, we focus on
addressing this issue by automating most of the evaluation
steps with Artificial Intelligence (AI) in our future work.

L. McDonald et al. [9] synthesize the current state of the art
in fuzzing approaches, classify these approaches, and highlight
key insights into the current state of research as well as current
challenges. After comparing the current state of the art in
fuzzing methods, including hybrid fuzzing, which combines
a static analysis of the program and the discovering of bugs
during runtime, symbolic execution, which discovers new exe-
cution paths by tracking symbolic inputs and machine learning
approaches. They continued their future work by highlighting
the threats associated with the transition to cyber-physical sys-
tems, such as fully automated cars and smart power grids. They
presented several options that extend fuzzing as a useful test
technique. In the context of embedded systems, they explained
that fuzzing using side channels is a suitable mechanism to
make black box testing more efficient. In Section II-C we
will focus on these approaches and afterward try to research
adaptions to the automotive sector in Section II-D.

C. Side Channel Fuzzing

The increasing popularity of efficient fuzzing methods in the
embedded systems domain is leading to the identification of
new barriers to test automation. These often include a lack
of Input / Output (I/O) capabilities, limited computational
capacity, and the lack of an operating system in most cases
[11][12]. In combination, this results mainly in a black box
view of the system. However, in order to implement the three-
stage process of fuzzing and thus guarantee a higher level
of fault detection, feedback information in the form of side
channels has to be applied. These can subsequently be supplied
to the fuzzer as input in order to be able to continuously adapt
to subsequent test cycles. P. Sperl et al. [11] present a new
approach to extract feedback for fuzzing on embedded devices
using the information on the power consumption leaks. They
carried out their proof of concept by fuzzing synthetic software
and a lightweight Advanced Encryption Standard (AES) im-
plementation running on an ARM Cortex-M4 microcontroller.
Focusing on detecting various vulnerabilities in an ECU and
combining different side channels, less cryptographic analysis
of side channel information was completed and more emphasis
was on detecting unexpected anomalous behavior.

D. Fuzzing of Automotive ECUs

The implementation of fuzzing within the Controller Area
Network (CAN) protocol is an area that has already been
widely represented. The publication by P. Patki et al. [13]
discusses the importance of penetration testing (pen test-
ing) in finding vulnerabilities in enterprise and automotive
networks. The proposed fuzzing tool uses a mutation-based
approach for invalid input creation for CAN. The mutation-
based approaches use seeds, which are initial inputs, and then

16Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 26 / 74

modify them according to a mutation algorithm. According
to H. Lee et al. [14], no form of prior knowledge was
necessary for fuzzing the CAN protocol. They describe a two-
step process that involved, on the one hand, scanning and
analyzing the CAN traffic on the CAN bus and, on the other
hand, forming completely randomized messages. The packets
were injected into the CAN bus via a Bluetooth interface.
They were able to attack sophisticated ECUs and change
the behaviors of the vehicle. Without intelligent mechanisms
for automated evaluation, these procedures require a high
degree of manual observation and analysis. We are trying to
improve process capability by introducing a fully automated
cycle for test automation. M. Dunne et al. [15] introduced
a so-called hardware-in-the-loop system for fuzzing a CAN-
connected system. For this purpose, monitoring of the power
trace was implemented as a side channel. They demonstrate
that this black box approach can be used to detect responses
to messages.

In summary, through our extension of the side channels,
which are specified in Section IV, and the resulting enrichment
of the system’s feedback information, we aim to increase
the coverage of detectable error sources and vulnerabilities.
Through the automated cycle, we take the approach of reduc-
ing manual analysis to increase data throughput and speed.

III. EXPERIMENT

In this Section, we describe the implementation of the
fuzzing experiment and its results. It was conducted to collect
anomalies and data for later evaluation of the side channels.
Furthermore, requirements for the implementation of a fuzzer
are collected during the execution. The fuzzing of the CAN
channels of an automotive ECU is started. In this process, the
ECU was observed manually and with basic analysis methods.
An anomaly was detected when the ECU behaved in a way
that deviated from the normal operating state.

A. Hardware Setup

In order for the experiment to be carried out, the hardware
must first be connected to the automotive ECU. Therefore,
it must be supplied with voltage on the one hand and the
CAN bus must be connected to a computer on the other.
For the connection between the computer and the CAN bus
of the ECU, a so-called CAN-to-Universal Serial Bus (USB)
interface was used. Specifically, the OWASP Automotive EMB
60 was used, which is available as an open-source project [16].
Therefore, hardware and software can be accessed. It provides
two Controller Area Network Flexible Data Rate (CAN FD)
channels connected via a single D-sub 9 connector. Connection
to the computer is via a USB 1.0/2.0 type B connector.

As shown in Figure 1, in addition to the computer and
the CAN interface, a laboratory power supply is also needed
to ensure the supply voltage of the control unit. To connect
these, the corresponding connection pins on the control unit
for Voltage Common Collector (VCC) and Ground (GND)
were measured with a multimeter. These were then wired to
the laboratory power supply with VCC and GND. A residual

Figure 1. Hardware Setup.

bus simulation or similar is not required for the control unit,
as it is integrated into a dedicated experimental setup.

B. Fuzzing Test

For carrying out the fuzzing test, some software is also
required on the computer. A Linux distribution serves as the
operating system. To use the CAN-to-USB interface, the kernel
interface SocketCAN is utilized. To be able to run SocketCAN
via the Linux console for the CAN functionality, the package
can-utils is installed. The Python programming language is
suitable for programming fuzzing scripts. The Python package
python-can enables the CAN functionality.

At the beginning of the experiment, so-called random
fuzzing was implemented with the Python library python-can.
Randomly generated CAN frames were sent to the ECU. In
addition to the basic random fuzz tests, protocol-specific areas
were analyzed and tested with random values according to
the limits. The random analysis of individual features and
communication paths of the CAN protocol already provided
initial results. The monitoring of the system behavior was
carried out manually during the experiment. For this purpose,
the dedicated experimental setup of the ECU was observed,
equipped with several infotainment displays and an instrument
cluster. These indicate changes when the fuzzy CAN frames
are sent. Moreover, the breakdown of the displays indicates a
potential crash of the system.

In addition to the self-implemented random fuzzing, tests
were also carried out with Scapy. Scapy is a python library,
which is utilized for the manipulation and analysis of network
packages. Caring Caribou, which is an open source fuzzer,
was also used to identify anomalies. Its fuzzer module has
three modes for generating fuzz data: Random, brute, and
mutate. Besides generating fuzz data, Caring Caribou also has
a function to identify messages that have triggered anomalous
behavior. For identification, the transmitted fuzz messages are
played back block by block. The user can indicate whether
the observed behavior occurred in a block. If this is the case,
the block is divided into smaller blocks and replayed. This
process continues until the message is identified [17][18].

The fuzz messages identified and classified as anomalies
form the basis for further work. With the help of the detected
abnormal behaviors, the side channel information can be

17Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 27 / 74

analyzed and training data for AI models can be generated.
Identifying the relationship between a fuzz message and
the associated abnormal behavior proved to be very tedious
without a monitoring system. Therefore, an improvement is
necessary through the monitoring of side channels.

IV. SIDE CHANNEL MEASUREMENT SYSTEM

The optimization of new application-oriented fuzzing mech-
anisms for automotive ECUs, as well as the consideration
of these hardware-related systems as a black box, requires
the extraction of information through the connection of side
channels. Previous methods and applications of fuzzing often
involved the self-performed observation and evaluation of
system responses to classify a vulnerability based on the
results. To ensure a standardized and secure development
process according to ISO/SAE 21434, an automated approach
is essential. Only an automated evaluation and adaptation
of the fuzzing and its results enables a high coverage of
the detectable vulnerabilities. Based on the assumption that
the efficiency and correctness of our fuzzing unit increase
proportionally with the amount of information that can be
extracted from the system in the form of side channels, we
used further side channels for the analysis of the DUT in
addition to the established analysis of the power traces.

Figure 2. Side Channel Measurement.

Figure 2 shows our setup with the measuring devices in-
cluded. The ECU is visible in the center, which is connected to
the rest infotainment system and to the side channel measuring
devices. These are described in the following sections. In
addition to the measurement setup, the Grafana dashboard can
also be seen, as it is described in more detail in Section IV-G.

A. Power

The analysis of power traces as a side channel achieved
remarkable results, especially in the field of cryptography.
For reverse engineering applications, the analysis of this side
channel proved to be a useful instrument to draw conclusions
about program structures and functional flows. In the context
of fuzzing and the consideration of the DUT as a black box, the
detection of anomalies in the power trace and the interpretation
of the fuzzer’s input serve to uncover vulnerabilities.

The acquisition of the power trace is done by connecting
an oscilloscope. The current intensity is measured, which the
control unit requires during the input phase of data generated
by the fuzzer. With randomized fuzzing, it was already pos-
sible to identify a bug by the history of the measurement of
the power consumption and the voltage. The visualization in
Grafana shows a drop in voltage, which was related to the
simultaneous crash of the infotainment displays. After a few
seconds, an automatic reset of the ECU could be detected in
the measurement. After the restart, the voltage, as well as the
power consumption, fluctuated from the normal state.

B. CAN

In addition to the physical data, software, and protocol-
specific data can also be recorded. This data is not measured
via a sensor but is directly acquired by the system or the
communication protocol. In the case of the CAN protocol,
several side channel features can be calculated. These include
bus load, message frequency per ID, or bit flip rate. These
metrics are added to the data stream as measured values.

When monitoring the DUT during fuzz testing, the side
channel features of the CAN are used to detect changes in
communication behavior. For example, when analyzing an
anomaly, the bus load was found to dip and then return to
normal shortly thereafter.

C. Thermal Image

The use of infrared images is increasingly applied in a
wide range of applications. Due to the rich information
content paired with the wide range of areas of application,
the use of infrared images proved to be a good tool for
the detection of anomalies. Usually, reference values in the
form of patterns within images or plain temperature values
are used to successfully detect an anomaly. For the adaptation
to embedded systems and especially ECUs in the automotive
domain, preparations have to take place in the way of exposing
components of interest. By exposing components and so-called
regions of interest, the focus of anomaly detection can be
explicitly set on CAN-related components, for example.

Using direct fuzzing on specific areas of the CAN pro-
tocol, significant differences in the heat signatures could
already be detected manually. Unusual temperature patterns
were measured in the area of the CAN controller and the
Central Processing Unit (CPU). The temperature increased
significantly compared to the normal state.

D. Temperature

The need to expose components leads to a reduction of
the potentially measurable area. In order to compensate for
this limitation of the thermal camera, temperature sensors
offer a remedy. By subdividing the DUT into measuring
ranges and placing individual sensors in a controlled manner,
maximum measurement coverage of relevant areas can be
achieved. Combined with visual patterns, a larger data space
for the temperature side channel is created, facilitating the
contribution and application of AI techniques.

18Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 28 / 74

Like the detection by infrared images described previously,
the same effect could be measured by the stationarily installed
temperature sensors. A clear increase could be analyzed, which
also deviates considerably from the normal state.

E. Visual Image

The input to an ECU by fuzzer-generated messages pro-
duces different reactions depending on the communication
protocol and the task of the ECU. Manual examination of
the ECU’s response and reaction to fuzzer-generated messages
allows an anomaly to be accurately detected, yet the effort
involved is too high. Visual and automated examination by
connecting a camera that monitors the system can substitute
this process. The functionality for anomaly detection is limited
to the detection of movements, changes in structure, and other
visual features. Relevant values for recording are the image
sequence, which was identified as an anomaly, and a value
that indicates an anomaly.

As described in Section IV-A, it was possible to see a
parallel to the crash of the displays and an anomaly within the
measurements. This connection could be created by perform-
ing an observation of the outputs on the displays of the test
bench. Through automated observation and anomaly detection,
the following anomalies, brought about by random fuzzing,
could be detected. Firstly, flickering and abnormal changes in
driving modes could be detected. Secondly, repeated crashes
could be detected by the camera.

F. Acoustic

Besides the already mentioned side channels, there are also
indicators that can be recorded via the acoustic channel. The
rotation of the ECU fan can indicate the processor load. After
all, as computing power increases, so does the temperature
of the CPU, which is cooled by the controller’s fan. Conse-
quently, an unexpectedly high fan speed is synonymous with
a code execution anomaly. Since the fan produces a certain
noise depending on the workload, measuring this noise is a
way to draw conclusions about the fan’s speed. Noise and other
irritations can be avoided by placing a microphone next to the
fan. The rotation and resulting noise of the fan thus represent
the dominant frequency in the measurement. This can then be
isolated and analyzed without adding other noise. Performing
fuzzing randomly also led to the detection of an anomaly in
the fan’s measurement. When the anomaly occurred, the fuzzer
gradually increased the speed of the fan. The increase in speed
from normal was not stopped when the anomaly occurred.
Accordingly, the fan remained in this mode even after several
hours without resetting.

G. Visualization

The connection of a wide variety of side channels led to
increased complexity in the evaluation of the combined side
channels. The uniform and central data collection as a data
lake is the basic building block for subsequent analyses. The
data lake was implemented in the form of an Influx database,
which enables the transfer of measured values in near real

time. Based on the visualization of the data with Grafana, as
shown in Figure 3, first explorative analyses can be performed
on the measurement data. In this way, initial findings could
be obtained. In addition, the centralized data storage achieves
preparation for further analysis methods for anomaly detection
(Machine learning and deep learning).

Figure 3. Power Consumption Widget of Grafana Dashboard.

Figure 3 represents exemplary the visual processing of the
measured power consumption as a time series. A visually
identifiable anomaly can be seen within the depicted time
frame. The fuzzing of the ECU started at time 12:36:30
and caused a shutdown, which triggered at time 12:37:40.
After rebooting the ECU, a normal condition could not be
established. This anomaly can already be detected by apply-
ing simple algorithms within the measurement system and
offers the possibility to generate a dedicated feedback for the
fuzzer. In addition to the various physical side channel data,
CAN messages are also recorded to find correlations between
anomalies and received messages.

V. CONCLUSION

The current turnaround in the automotive sector is leading to
the introduction of new technologies with significantly more
software and connectivity. This increases the attack surface
and the damage potential. One standard that counteracts this
development is ISO/SAE 21434, which regulates the cyber-
security of vehicles over their entire life cycle. One of the
measures it proposes is fuzz testing. In other industries, fuzz
tests are already being used very successfully. However, in
the automotive sector, some challenges arise due to hardware-
related ECUs.

The approach taken in this paper aims to solve these
problems using side channel information processing. These are
already being used successfully in several areas. Therefore, the
Section on related work has been divided into the following
structure: side channel analysis, general fuzzing, side channel
fuzzing, and fuzzing of automotive ECUs. In the subsections,
various relevant approaches have been discussed, which are in
the context of this paper.

To collect anomalies, data, and requirements for evaluat-
ing the different side channels, a fuzzing experiment was
conducted.CAN was used as the communication protocol to
be fuzzed. Fuzz data generation was performed using a self-
programmed random fuzzer and the two frameworks Caring
Caribou and Scapy. The monitoring of system behavior was
performed manually for the time being. Detect the relationship

19Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 29 / 74

between a fuzz message and an anomaly is tedious. The
discovered fuzz messages and the corresponding anomalies
are used for the later analysis of the side channels and for the
dataset creation.

A measurement system with several sensors and interfaces
was built to measure side channel data. This was connected
to a test setup. Methods, such as the analysis of power and
temperature were used. To achieve a high degree of coverage
of temperature information, temperature sensors were used
in addition to a thermal imaging camera. These were placed
in areas that could not be detected by the thermal imaging
camera. In addition, a microphone was installed in such a
way that the frequency of the control unit fan was recorded.
A camera was used to record the multimedia displays and
the instrument cluster of the test bench. With a CAN in-
terface, various bus-specific side channel information could
be obtained. By combining the different side channels, the
information content is increased because not every abnormality
is noticed on every side channel. The detection of anomalies
during monitoring thus has a broad database.

VI. FUTURE WORK

Since the current measurement system implements only
part of the fuzzing cycle, further process steps must be
performed to complete the fuzzer. Based on the data from the
measurement system, static analyses are first performed. After
these analyses, more intelligent methods (Machine learning
and deep learning) for monitoring the fuzzed DUT will be
investigated and implemented.

In the next phase, fuzz data generation will be ex-
tended from random generation and block-based generation
to feedback-based generation. To this end, the fuzz data
generation will be adjusted according to the feedback from the
monitoring system to find anomalies more efficiently. This is to
achieve deeper program structures and the system architecture.

REFERENCES

[1] U. Z. Abdul Hamid, Autonomous, Connected, Electric
and Shared Vehicles: Disrupting the Automotive and
Mobility Sectors. Warrendale, Pennsylvania, USA: SAE
International, Oct. 2022, ISBN: 978-1-4686-0347-7.

[2] “ISO/SAE 21434:2021 Road vehicles — Cybersecurity
engineering,” International Organization for Standard-
ization and SAE International, Standard, Aug. 2021.

[3] “UN Regulation No. 155 - Cyber security and cyber se-
curity management system,” United Nations Economic
Commission for Europe, Standard, Mar. 2021.

[4] N. Besic, Fuzzing: The Next Big Thing in Cybersecu-
rity? - Bright Security, May 2022. [Online]. Available:
https://brightsec.com/blog/fuzzing/ (retrieved: 2023-06-
08).

[5] D. Agrawal, J. R. Rao, and P. Rohatgi, “Multi-channel
attacks,” in Cryptographic Hardware and Embedded
Systems - CHES 2003, ser. Lecture Notes in Computer
Science, vol. 2779, Springer, Sep. 2003, pp. 2–16. DOI:
10.1007/978-3-540-45238-6 2.

[6] M. Hutter and J.-M. Schmidt, “The temperature side
channel and heating fault attacks,” in Smart Card Re-
search and Advanced Applications - CARDIS 2013,
Nov. 2014, pp. 219–235, ISBN: 978-3-319-08301-8.
DOI: 10.1007/978-3-319-08302-5 15.

[7] K. Gandolfi, C. Mourtel, and F. Olivier, “Electro-
magnetic analysis: Concrete results,” in Cryptographic
Hardware and Embedded Systems - CHES 2001,
ser. Lecture Notes in Computer Science, vol. 2162,
Springer, May 2001, pp. 251–261. DOI: 10 . 1007 / 3 -
540-44709-1 21.

[8] J. Li, B. Zhao, and C. Zhang, “Fuzzing: A survey,”
Cybersecurity, vol. 1, no. 6, Jun. 2018. DOI: 10.1186/
s42400-018-0002-y.

[9] A. Barkworth, L. Mcdonald, and M. Ijaz Ul Haq,
“Survey of software fuzzing techniques,” Dec. 2021.

[10] M. Böhme, C. Cadar, and A. Roychoudhury, “Fuzzing:
Challenges and reflections,” IEEE Software, vol. 38,
no. 3, pp. 79–86, 2021.

[11] P. Sperl and K. Böttinger, “Side-channel aware fuzzing,”
in Computer Security–ESORICS 2019: European Sym-
posium on Research in Computer Security, Springer,
vol. 24, Sep. 2019, pp. 259–278, ISBN: 978-3-030-
29958-3. DOI: 10.1007/978-3-030-29959-0 13.

[12] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and
D. Balzarotti, “What you corrupt is not what you crash:
Challenges in fuzzing embedded devices,” Jan. 2018.
DOI: 10.14722/ndss.2018.23176.

[13] P. Patki, A. Gotkhindikar, and S. Mane, “Intelligent fuzz
testing framework for finding hidden vulnerabilities in
automotive environment,” in 2018 Fourth International
Conference on Computing Communication Control and
Automation (ICCUBEA), vol. 4, IEEE, 2018, pp. 1–4.

[14] H. Lee, K. Choi, K. Chung, J. Kim, and K. Yim,
“Fuzzing can packets into automobiles,” in IEEE Inter-
national Conference on Advanced Information Network-
ing and Applications, vol. 29, IEEE, 2015, pp. 817–821.

[15] M. Dunne and S. Fischmeister, “Powertrace-based
fuzzing of can connected hardware,” in 2022 IEEE
International Conference on Cyber Security and Re-
silience (CSR), IEEE, 2022, pp. 239–244.

[16] A. Meisel, Owasp automotive emb 60 — owasp foun-
dation. [Online]. Available: https : / /owasp.org/www-
project-automotive-emb-60/ (retrieved: 2023-06-08).

[17] mjidhage, kasperkarlsson, TobLans, et al., Documen-
tation for caring caribou. [Online]. Available: https :
//github.com/CaringCaribou/caringcaribou/blob/master/
README.md (retrieved: 2023-06-08).

[18] P. Biondi, Scapy: The python-based interactive packet
manipulation program & library. [Online]. Available:
https : / / scapy . readthedocs . io / en / latest / index . html
(retrieved: 2023-06-08).

20Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 30 / 74

Security Challenges for Cloud or Fog computing-Based AI Applications

Amir Pakmehr∗, Andreas Aßmuth†, Christoph P. Neumann†, and Gerald Pirkl†

∗Department of Computer and Information Technology Engineering
Qazvin Branch, Islamic Azad University, Qazvin, Iran

E-mail: amir.pakmehr@QIAU.ac.ir
†Department of Electrical Engineering, Media and Computer Science

Ostbayerische Technische Hochschule Amberg-Weiden, Amberg, Germany
E-mail: {a.assmuth|c.neumann|g.pirkl}@oth-aw.de

Abstract—Security challenges for cloud or fog-based machine
learning services pose several concerns. Securing the underlying
cloud or fog services is essential, as successful attacks against
these services, on which machine learning applications rely, can
lead to significant impairments of these applications. Because
the requirements for Artificial Intelligence applications can also
be different, we differentiate according to whether they are
used in the cloud or in a fog computing network. This then
also results in different threats or attack possibilities. For cloud
platforms, the responsibility for security can be divided between
different parties. Security deficiencies at a lower level can have
a direct impact on the higher level where user data is stored.
While responsibilities are simpler for fog computing networks,
by moving services to the edge of the network, we have to secure
them against physical access to the devices. We conclude by
outlining specific information security requirements for Artificial
Intelligence applications.

Keywords-cybersecurity; cloud; fog; machine learning applica-
tions.

I. INTRODUCTION

At the latest, since the presentation of ChatGPT by OpenAI
in November 2022, the topic of Artificial Intelligence (AI)
has been present and interesting even among a non-specialist
audience. It is somewhat misunderstood that Machine Learn-
ing (ML) has already been used for more and more services
in the private, commercial and industrial sectors in recent
years – and the trend is rising. For many ML applications,
cloud services are quite central as they provide a fast, scalable,
flexible and cost-effective infrastructure for running sophisti-
cated ML models and algorithms. Through them, enterprises
can successfully and efficiently implement their ML projects.
Some of the key benefits of cloud services for ML are:

1) Scalability: Cloud services make it possible to scale up
the required computing power to meet the requirements
of the respective ML application. This is not only about
the execution of the ML application, also the training of
the models can be pushed by additional computing power
or more available memory for larger amounts of data.
Elasticity allows to scale down the computing resources,
when they are not needed any more.

2) Flexibility: There is a great versatility in the ML services
offered, like cloud-based machine learning development
platforms in general, but also dedicated ML services

for text-to-speech, speech-to-text, translation, conversa-
tions, automated image and video analysis, and many
more. Cloud offerings include infrastructure, platform,
and software, which can be customized to suit the needs
of different users and applications. Different deployment
options for ML applications exist, such as container
orchestration, virtual machines, or serverless computing.

3) Cost efficiency: Companies that deploy ML applications
do not have to buy required hardware and perpetual
licenses themselves or pay for its operation, but they can
rent computing power or storage as well as subscription-
based licenses. The Cloud Service Providers (CSP) of-
fer more fine-grained cost models than traditional data
centers. In combination with elasticity, they allow for
pay-as-you-go or pay-as-you-grow approaches, which can
result in lower costs. The CSPs offer their ML services
worldwide, thus, international distribution of enterprise
ML products becomes cost efficient.

4) Data management: Cloud services can store and process
large amounts of data that usually accompany modern ML
applications.

5) Integration: Cloud services, as a now established tech-
nology, offer a variety of other established tools and ser-
vices, e.g., visualization tools, connection to databases, or
workflow engines, making it easy to seamlessly integrate
ML applications into existing web-based services or even
an IT infrastructure.

However, a generalization that AI and ML applications are
only possible with cloud services is not permissible. There
are also other areas of application for ML, like autonomous
driving, in which a connection to cloud services is not con-
tinuously possible or does not make sense in large parts. In
autonomous driving, the merging of image and radar data
on the current traffic situation of a vehicle must take place
in real time. Particularly when human life and limb are at
stake, for example, when emergency braking is required, there
is no time to first transfer all image and radar data to the
cloud, analyzing it using ML algorithms, come up with the
“brake at once” decision, and transmit the command to trigger
the braking process to the vehicle. Thus, it is imperative to

21Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 31 / 74

already have sufficient computing power and memory in the
vehicle that all processing, computation and decision-making
can take place on the spot. In so-called edge computing,
the processing of data and the execution of applications is
generally done on edge devices or devices close to the data
sources, instead of being processed somewhere in the cloud.
As the above example should make clear, criteria, such as real-
time capability or minimal latency, are often crucial for such
applications. Still, cloud services are part of the autonomous
driving ecosystem, e.g., the higher-level control of traffic flow
in a particular region, which uses swarm data retrieved from
connected cars or the provision of map and navigation services
in the vehicles.

An argument against cloud services and in favor of on-
premise hardware commonly is better control over data pro-
tection and information security. However, even domains with
strict regulations on security, like healthcare and banking, have
adopted cloud services for some applications [1]. If regulations
or trusted hardware considerations require in-depth control,
private clouds involve setting up a cloud infrastructure that is
dedicated to one’s organization and is not shared with others.

Other reasons for having the processing of data and the
execution of applications closer to the source of the data rather
than in the cloud brings us to fog computing that aims to
extend cloud computing capabilities to Internet of Things (IoT)
devices and other edge devices, such as routers, switches, and
gateways. It aims to provide a “foggy” layer of computing
resources between the cloud and the edge, much like fog
lies between the ground and the sky. The fog layer can help
to reduce the latency and bandwidth requirements of cloud
computing [2].

An example of an ML application deployed in the context
of fog computing can be the processing of sensor data in
a smart grid system. A smart grid is an electrical network
that uses sensors and smart devices to monitor and optimize
energy consumption. These sensors collect data, such as power
consumption, network load, electricity price, power generation
from renewable sources, and weather forecasts. In a typical fog
computing architecture, the sensor data can be processed and
analyzed at the edge devices in the smart grid. ML models
trained on the sensor data can make predictions about energy
demand and perform appropriate optimizations. By processing
the data at the edge, real-time optimization of the power grid
can be achieved without having to send all (possibly privacy-
critical) data to a remote cloud. This can reduce latency and
improve system efficiency. In addition, the fog computing
network helps increase the security of the smart grid by
eliminating the need to transmit data over public networks.
Sensitive data remains on the edge device and can be better
protected from potential attacks.

An essential prerequisite for the correct functioning of ML
applications is correctly working and reliable cloud services
or fog computing networks. Conversely, it is clear that the
compromise of cloud services or a fog computing network
will lead to massive problems for ML applications. Therefore,
in this paper, we would like to present the security challenges

for ML applications that are based on cloud or fog computing
and provide guidance and best practice recommendations on
how to mitigate or control the respective threats.

The paper is structured in the following manner: Section II
discusses security challenges in cloud computing. Section III
presents security challenges in fog computing. Finally, Sec-
tion IV addresses special security challenges for ML appli-
cations in cloud or fog environments. The paper ends with a
conclusion and an outlook on future work.

II. CLOUD COMPUTING SECURITY CHALLENGES

With regard to the correct functioning of ML services
provided over the Internet, securing the underlying cloud
services plays a very important role. Successful attacks against
the cloud services on which ML applications rely can lead
to significant impairments of these applications. But this is
not the only reason why cloud services must be sensibly
secured against cyberattacks. In practice, the fact that several
parties are usually involved in the provision of cloud services
often proves to be problematic. The classic Cloud Security
Responsibility Model (CSRM) basically differentiates respon-
sibility according to cloud vendor and user, distinguished for
the service models Infrastructure as a Service (IaaS), Platform
as a Service (PaaS) and Software as a Service (SaaS) [3].
Regardless of how many parties share responsibility for the
cybersecurity of a cloud service, it is fundamental to ensure
that responsibility at the interfaces between different parties in
particular is clearly defined, because a security problem in one
party’s responsibility could potentially threaten the security of
other parties’ areas of responsibility. Due to the layer model of
the system architecture, it is obvious that security deficiencies
at a lower level have a direct impact on the higher level where,
for example, user data is stored.

At the Cloud Computing 2019 conference, Süß et al.
presented an overview of information security challenges
for cloud services at the time and assessed them using the
Common Vulnerability Scoring System (CVSS) [4]. However,
when the Covid-19 pandemic began in early 2020, the security
threats to cloud services changed. As many companies and
organizations became more reliant on cloud services in a
relatively short period of time because everyone’s life was
moved to the cloud, cybercriminals took advantage of this and
tried to exploit vulnerabilities in cloud infrastructures. Very
often, these were classic attacks that can also be used to attack
other web services.

A. Data Breaches

First, we look at attacks that specifically target data stored
in the cloud. This could be customer data, secret company
documents or medical records on patients. In a data breach,
unauthorized access to sensitive data is given, which, of
course, can have serious consequences for businesses and
individuals [5]. Data breaches can be the result of unintentional
exposure of sensitive data due to misconfigurations or weak
security measures [6] or a targeted attack. Data breaches
usually result in the confidence of customers and business

22Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 32 / 74

partners in the affected company being shaken, often coupled
with a serious loss of reputation among the general public.
Since the occurrence of a data leak usually involves a violation
of compliance requirements and laws, such as the EU General
Data Protection Regulation (GDPR), the affected companies
usually have to fear regulatory consequences. In addition to
fines, there may also be indemnity claims with a simultaneous
loss of revenue. A data breach often leads to further impair-
ment of business activities. For example, it would be similarly
bad if such corporate data were accidentally deleted by an
inattentive employee or deliberately by an attacker.

It should be noted that many cloud services that were used
during the pandemic are still being used – which certainly
makes sense. Although it is clear that by encrypting data that
is stored in the cloud and implementation of a strict access
control, one can guard against data breaches, their number and
extent over the past two years (see [7] or [8], for example)
is frightening, even though the first year of the Covid-19
pandemic has been called the “worst year on record” in terms
of data leaks [9].

B. Ransomware Attacks

A so-called ransomware attack is an attack in which the
attacker uses special malware to encrypt the victim’s data and
extort it by demanding payment for the surrender of the key.
Probably the best known example of a ransomware attack
was the WannaCry attack in 2017 which targeted computers
running Microsoft Windows, encrypted the users data and
demanded ransom payments in Bitcoin [10]. While early
ransomware variants often encrypted only a user’s data stored
on the local hard drive, variants soon developed that also
encrypted connected disks or cloud-based storage [11].

In addition to this general description of ransomware, it
should be noted that the “Ransomware as a Service (RaaS)”
business model has gained significant importance in recent
years. Here, ransomware developers sell their malware as
a service to criminals. RaaS platforms often offer various
options that allow criminals to create and execute their own
ransomware campaigns [12]. Such platforms often allow the
customization of the ransomware, like the selection of targets
or the determination of the ransom amount. Such services tar-
get less tech-savvy criminals, thereby enabling a wider range
of people to run such ransomware campaigns. This increases
the risk of ransomware attacks for all types of IT systems and,
thus, also cloud services. We have already pointed out that
in the case of cyberattacks on cloud services, responsibilities
may be divided among several parties. Ransomware attacks
are no exception in this regard. A user’s data stored in the
cloud could be encrypted as a result of catching a malicious
ransomware on their PC or mobile device. In such a case, the
responsibility is relatively clear and the CSP usually cannot
help in such cases, unless the cloud storage service includes
regular backups, and it is possible to restore a previous state
of the data after removing the ransomware from the user’s
devices. In the event of an attack on the CSP during which

the data of several (probably many) customers is encrypted,
the responsibility lies with the CSP.

The best protection against ransomware attacks is to keep all
software up to date in combination with regular backups. It is
mandatory to install security updates as soon as they become
available, because adversaries often exploit vulnerabilities in
outdated software. This also comprises anti-virus software
being constantly updated. Backups are mandatory, because
even if a user sees no other way out than to pay the demanded
ransom, this is no guarantee to get their own data back intact,
of course. How much do you trust the promise of a criminal
who has blackmailed you?

C. Distributed Denial of Service

In a Distributed Denial of Service (DDoS) attack, a target
system is flooded by mass requests. The bandwidth of the
service’s connection to the Internet is no longer sufficient,
so that authorized users can no longer use the service in
question. DDoS attacks are thus generally directed against the
availability of services. During the Covid-19 pandemic, a very
sharp increase in the number of DDoS attacks was observed.
Figure 1 illustrates this statement with a comparison of the
numbers before or during the beginning (2020) and during
the peak of the pandemic (2021) for the example of Germany.
Cloud services are accessed via the Internet, which is why
DDoS attacks that specifically target cloud services or their
providers are a tried-and-tested means of preventing the use
of these services, at least temporarily.

Jan Feb Mar Apr May Jun

700k

800k

900k

1M

N
um

be
r

of
A

tta
ck

s

1H 2020 1H 2021

Figure 1. Monthly DDoS attack frequency during the Covid-19 pandemic in
2020 and 2021 (Germany) according to [13].

The current trends, as described in [14], are that adversary
often using cloud-based Virtual Private Servers (VPS) to set
up botnets that are used to execute DDoS attacks. This setup
is much more powerful than botnets based on vulnerable
IoT devices, which we have seen in recent years. The attack
durations decrease but, on the other hand, ransom DDoS
attacks are on the rise. In such an attack, the adversaries
extort ransom payments from the victim by threatening – for
example, after a brief demonstration of their capabilities – to
launch further or longer DDoS attacks if the victim does not
pay the demanded sum.

DDoS attacks may be prevented by using firewalls in
combination with intrusion detection systems (IDS), traffic
filtering and load balancing.

23Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 33 / 74

D. Dependence on 3rd Party Software

The complexity of modern cloud services usually means
that hardly any provider develops the software required for
the service completely in-house. Instead, it is common to
fall back on established and tested libraries, etc., which are
developed and provided by 3rd parties. In case of open
source software, it is possible to critically examine the source
code of this integrated software and analyzing it in terms
of vulnerabilities. Unfortunately, very often people trust that
this 3rd party software has been thoroughly tested and is
secure without checking this further. Vulnerabilities due to
programming errors or deficiencies in the software design
cannot be ruled out, however, and are often only discovered
when the software has already been in use for a long time. A
well-known example of a vulnerability in 3rd party software
is Log4Shell, which was given a CVSS severity rating of
10.0, the highest score possible [15]. Log4j is a Java-based
logging utility which is used in open source and proprietary
software alike and became a de facto standard for this purpose.
The Log4Shell vulnerability allowed adversaries to remotely
execute arbitrary code on the host system, e.g., to do some
crypto mining on these systems. Quite a lot of services were
affected, like Amazon Web Services (AWS) [16] or Apple’s
iCloud [17], for example.

In principle, it does not matter which functionality is
realized by 3rd party software. But in practice these are
often security features whose technical characteristics are often
cloud-specific, but are generally not conceptually new. To
put this in concrete terms, the implementation of security
roles, authorization rules, key or certificate management and
methods in connection with Public Key Infrastructures (PKI)
may be mentioned.

The security of cloud services that use 3rd party software
depends on the quality of such libraries, of course. For
example, a vulnerability in an integrated authentication service
can reveal personal data of customers of the CSP, which is
a violation of the EU GDPR. In this example, it is initially
irrelevant whether the data is generally accessible to anyone
on the Internet (data breach) or whether getting access is
much harder, but the data is stolen and published by an
attacker. Responsible and liable in this case is the CSP, not
the programmers of the (open source) library.

The use of 3rd party software always poses a certain risk.
To minimize this, it is therefore advisable to check any 3rd
party software very carefully for vulnerabilities and also to
test it extensively in interaction with one’s own software
components.

E. Unsecured APIs

APIs (Application Programming Interfaces) play an impor-
tant role in the communication between cloud services and
applications. If APIs are not sufficiently secured, they may
become a potential security vulnerability. For example, an
unsecured interface in a cloud API could result in confidential
data being accessible to anyone (cf. data breaches, Subsec-
tion II-A). Secure APIs are in the interest of all parties in-

volved, regardless of whether others access one’s own code or
data via these interfaces or whether we use libraries provided
by others via such APIs (cf. Subsection II-D).

A very good overview of security issues related to APIs is
provided by the OWASP API Security Project [18]. They list
the following security issues as their top 10:

1) Broken Object Level Authorization
2) Broken User Authentication
3) Excessive Data Exposure
4) Lack of Resources & Rate Limiting
5) Broken Function Level Authorization
6) Mass Assignment
7) Security Misconfiguration
8) Injection
9) Improper Assets Management

10) Insufficient Logging & Monitoring
Several of these issues have already been mentioned in this
paper and all of the items speak for themselves for readers who
are familiar with information security. At this point, however,
it should be noted that all these mentioned security problems
are explained in detail in the report cited and appropriate
countermeasures are proposed as well. At the time of writing,
the OWASP API Security Project is working on the 2023
version of their top 10 list.

F. Cloud-Native Security

The Kubernetes documentation [19] summarizes cloud-
native security as “The 4C’s of cloud Native security are cloud,
Clusters, Containers, and Code”. The first and most famous
container engine, Docker, optimizes for developer experience
and ease of use and explicitly not for security. The Docker
daemon requires root privileges and is a single executable
monolith with a wide attack surface. This leads to exploits
like DirtyCOW, however, it is hard to understand clearly the
principle of its underlying vulnerability of Linux operating
system, even for experienced kernel developers [20].

Alternative container engines are available now, e.g. Pod-
man, OpenStack KataContainers, AWS Firecracker, or Google
gVisor. Many of them focus on security and provide, i.e.,
a rootless mode. Lize Rice provides an introduction into
applied container security [21]. Amazon introduced the Shared
Responsibility Model [22], which states that the provider is
only responsible for security ‘of’ the cloud, while customers
are responsible for security ‘in’ the cloud. The 10 Rules for
Better Cloud Security by GitGuardian [23] provide an entry
point to measures that can be taken following the Shared
Responsibility Model:

1) Don’t overlook developer credentials (in public and pri-
vate code repositories).

2) Always review default configurations.
3) List publicly accessible storage.
4) Regularly audit access control.
5) Leverage network constructs.
6) Make logging and monitoring preventive.
7) Enrich your asset inventory.

24Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 34 / 74

8) Prevent domain hijacking.
9) A disaster recovery plan is not optional!

10) Limit manual configurations.
Research about container security includes the creation of

Trusted Execution Environments (TEE) for containers. Secure
Linux containers can, e.g., be based on Intel SGX, as has been
demonstrated by Arnautov et al. [24].

Finally, Kubernetes security is based on the 4Cs as men-
tioned above; all major CSPs provide guides to security and
hardening of their Kubernetes environments [19]. Areas of
concern for workload security in Kubernetes are, e.g., role-
based access control (RBAC) authorization, application secrets
management and encrypting them at rest, ensuring that pods
meet defined pod security standards [25], and network policies.

III. FOG COMPUTING SECURITY CHALLENGES

Fog computing, a term coined by Cisco [26], is a distributed
computing paradigm that bridges the gap between cloud
computing and IoT devices. Rather than pushing all data to a
remote cloud for processing, in fog computing, computations
are instead carried out closer to the source of data – on the IoT
devices themselves or on local edge servers. This minimizes
the latency involved in long-distance data transport, optimizes
system efficiency and improves real-time capabilities. By
bringing computation and storage closer to the data sources,
fog computing addresses issues like bandwidth constraints,
latency, and security concerns that can be associated with
cloud computing [27]. This approach is particularly beneficial
for high mobility technologies like the IoT and Vehicular Ad-
hoc Networks (VANETs), as it provides faster communication
and software services to users. By reducing the distance
between devices and computing resources, fog computing
offers lower latency and improved quality of service compared
to traditional cloud computing [2][28].

While fog computing shares some characteristics with cloud
computing, it differs in several ways, such as balancing central
and local computing, storage, and network management. This
balance allows fog computing to offer more efficient, real-
time control and improvements for various systems, including
healthcare, traffic patterns, parking systems, and more. But,
of course, fog computing is not without its challenges. Some
of its limitations include lower resources compared to cloud
computing, higher latency in certain cases, energy consump-
tion concerns, load balancing, data management, and security
threats [29].

Based on the afore mentioned characteristics, fog computing
may be seen as an addition to traditional cloud computing.
And in the context of this paper, these characteristics allow
choosing between cloud or fog computing as a basis for
specific ML applications or projects.

There are several security threats to fog computing that are
comparable or similar to those to cloud computing. In general,
fog computing involves a distributed network of devices,
which increases the risk of network disruptions and downtime.
So, besides data confidentiality, authenticity, and integrity,
ensuring high availability is crucial to guarantee uninterrupted

service delivery. Attacks can hinder the proper functioning of
fog computing systems and may lead to unauthorized access,
data leakage, or system failures [30]. To mitigate these at-
tacks, fog computing systems must implement robust security
measures, such as strong encryption, intrusion detection and
prevention, access control, and continuous monitoring. Addi-
tionally, ensuring compliance with security standards and best
practices can help minimize the risk of security breaches in fog
computing environments [31]. A couple of security threats to
fog computing have already been described in Section II. For
example, DDoS attacks against fog computing networks aim
to overwhelm fog nodes or networks with excessive traffic,
causing disruptions and impacting services [32]. Additionally,
there are other classical network attacks, like Man in the
Middle (MITM) or replay attacks. A MITM attack in fog com-
puting involves intercepting and manipulating communications
between legitimate components, compromising the system’s
integrity, confidentiality, and availability [33]. A replay attack
is a type of security threat where an adversary captures and
retransmits previously exchanged messages between parties in
a communication session, making it seem as if they are the
legitimate sender [34]. In the context of fog computing, an ad-
versary may impersonate end devices or the fog broker to carry
out this attack. During a replay attack, the adversary neither
needs to understand the content of the captured messages nor
decrypt any encrypted data; they simply replay the messages
to exploit the system. This could lead to various negative
consequences, such as unauthorized access, data manipulation,
or disruption of services.

In the following, we focus on threats and attacks that are
more specific to fog than to cloud computing.

A. Physical Attacks

A physical attack in fog or edge computing [35] involves
compromising the physical hardware of the system, such as
servers or other devices. This can be particularly problematic
in these systems because their infrastructure is distributed
across various geographical locations. If the physical pro-
tection of these devices is inadequate, it could allow for
tampering or damage. Since each device or server typically
serves a local geographical area, any physical attack can
disrupt services within that specific area. Hence, it’s crucial
to implement strong physical security measures alongside
cybersecurity measures in fog computing.

B. Fog and User Impersonation Attack

This is a type of cyberattack where an adversary poses as
another device or user on a network in order to launch attacks
against network hosts, steal data, spread malware, or bypass
access controls. This is a particularly insidious type of attack
because it can be very difficult to detect, as the adversary is
using credentials that are considered valid within the system.
Impersonation attacks in fog computing can disrupt the com-
munication between fog nodes and end devices, leading to
miscommunication, data theft, or even disruption of service.
As a countermeasure, Tu et al. suggest combining physical

25Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 35 / 74

layer security techniques with a reinforcement learning algo-
rithm to improve the security against impersonation attacks
and optimize the decision-making process for distinguishing
between legitimate and unauthorized entities [36].

C. Malicious Fog Nodes Attacks

A malicious fog node can compromise network operations
through various attacks, affecting the reliability of fog-to-
fog collaborations. Also, identifying malicious fog devices
in fog computing is crucial. To prevent malicious fog node
issues, organizations should implement a comprehensive secu-
rity approach including authentication and authorization, data
encryption, secure communication protocols, intrusion detec-
tion systems, trust management, regular monitoring, network
segmentation, access control, and an incident response plan.
These strategies help reduce risks, enhance overall security,
and maintain system resilience. Consequently, achieving com-
prehensive protection against attacks becomes challenging, as
it involves granting limited privileges and processing data.
Finding appropriate countermeasures is the subject of current
research, as examples we refer to Al-Khafajiy et al. [37] and
Ke Gu et al. [38]. The latter present a fog computing-based
VANET, in which a scheme is used to detect malicious nodes
(vehicles or devices with harmful intent). In their approach, the
fog server computes a reputation score for each potentially
harmful node. This score is determined by examining the
relationship between the data collected from the node and the
overall network structure. By analyzing these factors, the fog
server can more accurately identify and flag nodes that may
pose a threat to the network’s security and performance.

D. Rogue Fog Nodes

A rogue fog node attack is when a malicious node pretends
to be a legitimate fog node and joins the network to perform
attacks, such as eavesdropping, data theft, or denial of ser-
vice [39].

To prevent rogue fog node attacks, the following measures
can be taken:

• Authentication and authorization: Fog nodes should be
authenticated and authorized before they are allowed to
join the network. This can be achieved by implementing
secure boot and mutual authentication mechanisms.

• Encryption: Sensitive data transmitted between fog nodes
should be encrypted to prevent eavesdropping and data
theft.

• Trust Management: Trust management protocols can be
used to evaluate the trustworthiness of fog nodes. This
can be based on the node’s behavior, reputation, and
credentials.

• Network Segmentation: Segmentation of the network can
be used to isolate the fog nodes that are vulnerable
to attacks. This can help in containing the attack and
minimizing the damage.

• Continuous Monitoring: Continuous monitoring of the
network can be used to detect any unauthorized fog
node that joins the network. This can be achieved by

monitoring network traffic, node behavior, and system
logs.

E. Ephemeral Secret Leakage Attack

In the realm of fog computing, the Ephemeral Secret Leak-
age Attack [40] presents a notable risk due to the distributed
architecture and sensitive data often involved. This attack,
based on the Canetti-Krawczyk adversary model [41], assumes
that an adversary can access one of the secret keys (short-term
or long-term) used for secure communication between devices.
If an adversary reveals a session key (a temporary encryption
key), they can decipher all data exchanged during that session,
leading to a potential security breach. Therefore, implementing
robust cryptographic protocols and effective key management
strategies is crucial for maintaining security in fog computing
systems.

IV. SPECIAL SECURITY CHALLENGES FOR AI
APPLICATIONS

A. Data Representing ML models

Some of the previously mentioned attacks targeted data
stored in the cloud or in a fog computing network. In addition
to the consideration that this data is, for example, personal data
of customers, which is then processed by the ML application,
there is another relevant aspect. A crucial prerequisite for
successful ML projects is very often a sufficiently large
amount of training data. ML models are only as good as the
quality of the training data. In many areas where ML methods
have not yet been applied or in the case of new business
models, no training data are available at the beginning. These
often have to be created laboriously at first, which on the one
hand may mean a large number of measurements to generate
a sufficiently large sample set and on the other hand often
means the manual labeling of the training data. Against the
background of the threats and attacks discussed earlier, it
should therefore be emphasized that ML models and their
training data are very valuable assets. Unavailable models or
training data due to a DDoS attack can lead to severe business
interruptions. But even worse would be if models or training
data that are exposed on the Internet or stolen fall into the
hands of a competitor. This could even spell the end for a
company whose business model is based on such ML projects.

B. Special AI-Related Security Issues

The special situation arising when working with AI algo-
rithms is the way the models are trained, deployed, integrated
and used in industrial environments (cf. Figure 2).

Typically, the models are centrally trained on special high
performance computers or servers and after training and
evaluation transferred to the application server. Referring to
Figure 2, Step A, the data scientist and co-workers create the
data set extracted from typical information sources such as
sensors, databases and image archives. In Step B, the data
set is checked for validity, activities such as annotation (class
assignment), feature extraction and the integration of domain-
specific additional knowledge expand the data set in this step.

26Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 36 / 74

Data Acquisition

Sensors
Databases

Files

A

Preprocessing
Data Preparation

Feature Selection
Labelling

Validity Tests
Domain-spec.
Knowledge

B

Model Selection &
Training

C

Model
(Weights & Structure)

D

Deployment & Usage

AI

E

Re-Training

AI

AI

F

Figure 2. Typical AI workflow in different steps (A to F). Note: The deployment and application steps typically run on different systems.

Next, various models and AI architectures are applied to
the data set and are then evaluated in Step C. Usually, the
approach/model with the highest robustness and accuracy is
used and deployed. Depending on the data set, the time needed
to train a model can vary between minutes or several days
on high performance computers. Step D addresses the fully
trained model. The parameters of the model represent possible
clusters or class memberships (the intelligence). Step E covers
the deployment and application of the model. This includes the
data preparation steps in the production environment, feature
calculation and forward propagation of the feature vector in
the AI model. The application runs on an application server,
which usually requires a different level of security. A detached
Step F is the re-training of the AI model: new aspects that have
arisen either through extension of the use case or through
additional data during operation must be integrated into the
model. Usually, not the entire system is re-trained, but parts
of the upper layers of a network are algorithmically adapted.

We now consider the workflow shown in Figure 2 against
the background of an industrial application, for example in
a modern production line. Concerning the security of the AI
model, three different scenarios can occur. In the poisoned
data set scenario, the adversary, e.g. a malicious insider, has
inserted harmful information into the data set that does not
match the desired class and thus negatively influences and
disrupts the AI structure after the training process. In general,
ML poisoning attacks refer to the manipulation of data used for
the (re-)training of ML models, e.g., in a fog environment [42].
Especially in edge systems, basic AI training is performed
at a central processing system due to the lack of processing
resources. The generalized model is then deployed on the
edge system and adapted to the application requirements using
smaller local data sets or calibration steps. This local adaption
process is prone to attacks as the training data is locally
gathered without any supervision by experts.

To prevent ML poisoning attacks, here are some counter-
measures that can be taken:

• Use of Secure Data Sources: Data sources must be se-
cure and access to them should be restricted to authorized
personnel only. It must be possible to check and verify
the validity of the data at any time.

• Data Sanitization: The data should be checked and
cleaned before it is used to train ML models. Any data

that is found to be suspicious or anomalous should be
removed. It may not be possible to automate this, but
must be done manually.

• Anomaly Detection: Anomaly detection techniques can
be used to detect any malicious data in the training data
set. AI-based anomaly detection based on autoencoders,
recurrent neural networks (RNN) or generative adversar-
ial networks (GAN) can be considered as state of the art.

• Ensemble Learning: Ensemble learning is a technique
where multiple ML models are trained on different sub-
sets of the data. This can make it harder for adversaries
to manipulate the data in order to affect the overall
prediction.

• Continuous Monitoring: Continuous monitoring of the
ML model’s behavior is essential to detect any unusual
or unexpected outcomes. Any anomalies should be inves-
tigated and addressed promptly.

In the compromised AI model scenario, the adversary
changes the trained weights (parameters) of the AI network
which leads to falsified outputs (cf. Step D). Therefore, secu-
rity measures to ensure the integrity of the data must be used in
order to prevent manipulation. Of course, these measures must
not interfere with the re-training of the model (cf. Step F). It
is conceivable to switch off these measures during re-training,
but this requires that re-training is thoroughly monitored and
secured against unauthorized access. If this is not possible or
does not make sense, e.g., because the re-training is automated,
a trust management system should be considered that evaluates
the trustworthiness of the data for re-training and detects
manipulated model parameters.

The third scenario addresses deployment, integration and
utilization of the AI system in the production environment (cf.
Step E). Information inputs and results of the AI network
might as well be compromised: Either false/noisy information
is presented to the network (input, e.g. by manipulated sensors)
or the results are falsified and thus passed on incorrectly. In
both cases, this interferes with the production steps that follow.
Statistical analysis of the production can detect these kind of
attacks.

The above-mentioned security precautions can be intro-
duced at various points in the processing architecture. In a fog
environment, for instance, edge systems act as supervisors for
local information sources; status information forwarded from

27Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 37 / 74

edge nodes to central units must be checked and validated
before integration into central data sets.

In addition to the organizational challenges in the use of AI
algorithms, there are also semantic problems: If habits change
in the application field, this leads to sudden changes that trig-
ger anomaly detection. Low-threshold changes, such as those
applied by adversaries in the network area, may undermine the
anomaly detection process. It is therefore necessary to weigh
up the sensitivity of such approaches.

C. Special Attacks on Language Models

In this subsection, we focus on special attacks on language
models.

Suppose an attacker has access to multiple snapshots of an
ML model, such as predictive keyboards. Then these snapshots
can reveal detailed information about the change in training
data used to update the model. This is called a model update
attack. Zanella-Béguelin et al. analyzed information leakage
in practical applications where language models are frequently
updated, for example, by adding new data, deleting user data
to meet privacy requirements, or matching private data with
that of public, pre-trained language models. They developed
two new metrics to analyze the information leakage, which
now enables them to perform this kind of leakage analysis
unsupervised [43].

Tab attacks are attacks on language models that rely on
autocompletion and in which the adversary attempts to cause
the model to provide unwanted suggestions or results. So,
these attacks target text recognition systems or try to figure out
the robustness of language models. This involves an attempt
to intentionally deceive the language model by deliberately
inserting false or misleading information or creating distor-
tions in the input data. Large language models are capable
of memorizing rare training samples, which poses serious
privacy threats in case the model is trained on confidential user
content. Inan et al. have developed a methodology for checking
a language model for training data leaks. This enables the
creator of the model to determine to what extent training
examples can be extracted from the model in a practical attack.
And the owner of the model is able to verify that deployed
countermeasures work as expected, and thus that their model
can be used securely [44].

V. CONCLUSION AND FUTURE WORK

In this paper, we have illustrated the dependency of AI
applications on underlying cloud or fog-based services. At-
tacks against the cloud services or fog computing networks on
which current AI applications are built will inevitably result
in difficulties, data breaches, failures, or malfunctioning of the
AI applications. AI is one of the current hot topics, resulting
in high demand for related services. This makes them an
attractive target for cybercriminals: they can try to prevent
access to AI services on the Internet in order to extort a ransom
from the service provider; they can also try to steal training
data or complete ML models in order to have the owners

pay for getting their data back or sell them to others, e.g.,
to competitors, at the highest bid.

The interplay between AI and information security promises
huge potential for future applications and research. For exam-
ple, this paper did not even address how AI methods could
also be used in order to support threat analysis of systems
or penetration testing. It is already possible to use language
models to generate phishing emails optimized for a specific
target. Due to this huge potential of the interaction of AI and
information security, we intend to continue to be active in
these areas in the future.

REFERENCES

[1] D. K. Sharma et al., “Cloud computing in medicine: Current trends
and possibilities,” in 2021 International Conference on Advancements
in Electrical, Electronics, Communication, Computing and Automation
(ICAECA), IEEE, 2021, pp. 1–5.

[2] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya,
“Fog computing: Principles, architectures, and applications,” in Internet
of Things: Principles and Paradigms, R. Buyya and A. V. Dastjerdi,
Eds., Morgan Kaufmann, 2016, pp. 61–75.

[3] National Security Agency, “Cybersecurity information – cloud security
basics,” National Security Agency, Aug. 29, 2018. [Online]. Available:
https://www.nsa.gov/portals/75/documents/what-we-do/cybersecurity/
professional - resources / csi - cloud - security - basics . pdf (visited on
06/08/2023).

[4] F. Süß, M. Freimuth, A. Aßmuth, G. Weir, and R. Duncan, “Cloud
security and security challenges revisited,” in Proceedings of Cloud
Computing 2019, B. Duncan, Y. W. Lee, M. Westerlund, and A.
Aßmuth, Eds., IARIA, May 2019, pp. 61–66.

[5] R. Barona and E. A. M. Anita, “A survey on data breach challenges
in cloud computing security: Issues and threats,” in 2017 International
Conference on Circuit ,Power and Computing Technologies (ICCPCT),
2017, pp. 1–8. DOI: 10.1109/ICCPCT.2017.8074287.

[6] F. Sabahi, “Cloud computing security threats and responses,” in 2011
IEEE 3rd International Conference on Communication Software and
Networks, 2011, pp. 245–249. DOI: 10.1109/ICCSN.2011.6014715.

[7] M. Henriquez, “The top data breaches of 2021,” Security Magazine,
Dec. 9, 2021, [Online]. Available: https://www.securitymagazine.com/
articles/96667-the-top-data-breaches-of-2021 (visited on 06/08/2023).

[8] J. Fitzgerald, “The 10 biggest data breaches of 2022,” CRN Security
News, Dec. 28, 2022, [Online]. Available: https : / / www. crn . com /
news / security / the - 10 - biggest - data - breaches - of - 2022 (visited on
06/08/2023).

[9] Admin, “The 25 biggest data breaches and attacks of 2020,” Stealth-
Labs, Dec. 16, 2020, [Online]. Available: https://www.stealthlabs.com/
blog/the-25-biggest-data-breaches-and-attacks-of-2020/ (visited on
06/08/2023).

[10] D. Cameron, “Today’s massive ransomware attack was mostly pre-
ventable; here’s how to avoid it,” Gizmodo, May 13, 2017, [Online].
Available: https: / /www.gizmodo.com.au/2017/05/ todays- massive-
ransomware- attack- was- mostly- preventable- heres- how- to- avoid- it/
(visited on 06/08/2023).

[11] M. R. Watson, N.-h. Shirazi, A. K. Marnerides, A. Mauthe, and D.
Hutchison, “Malware detection in cloud computing infrastructures,”
IEEE Transactions on Dependable and Secure Computing, vol. 13,
no. 2, pp. 192–205, 2016. DOI: 10.1109/TDSC.2015.2457918.

[12] A. K. Kibet, R. A. Esquivel, and J. A. Esquivel, “Ransomware: Ran-
somware as a service (raas), methods to detects, prevent, mitigate and
future directions,” Journal of Emerging Technologies and Innovative
Research, vol. 9, no. 11, b264–b278, 2022.

[13] Netscout, “Threat intelligence report, issue 7: Findings from 1h 2021,”
Netscout, Tech. Rep. p. 7, 2021.

[14] O. Yoachimik and J. Pacheco, “Ddos threat report for 2023 q1,”
Cloudflare, Apr. 11, 2023, [Online]. Available: https://blog.cloudflare.
com/ddos-threat-report-2023-q1/ (visited on 06/08/2023).

[15] National Vulnerability Database, “Cve-2021-44228 detail,” National
Institute of Standards and Technology, Dec. 10, 2021, [Online]. Avail-
able: https:/ /nvd.nist .gov/vuln/detail /CVE- 2021- 44228 (visited on
06/08/2023).

28Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 38 / 74

[16] D. Nalley and V. Simonis, “Hotpatch for apache log4j,” AWS Open
Source Blog, Dec. 12, 2021, [Online]. Available: https://aws.amazon.
com / blogs / opensource / hotpatch - for - apache - log4j/ (visited on
06/08/2023).

[17] hoakley, “Last week on my mac: When the internet caught fire,” The
Eclectic Light Company, Dec. 12, 2021, [Online]. Available: https :
/ / eclecticlight . co / 2021 / 12 / 12 / last - week - on - my - mac - when - the -
internet-caught-fire/ (visited on 06/08/2023).

[18] E. Yalon, I. Shkedy, and P. Silva, “Owasp api security top 2019,” Open
Worldwide Application Security Project, 2019, [Online]. Available:
https://owasp.org/www-project-api-security/ (visited on 06/08/2023).

[19] Kubernetes, “Overview of Cloud Native Security,” Sep. 2022, [Online].
Available: https : / / kubernetes . io / docs / concepts / security / overview/
(visited on 06/08/2023).

[20] Y. Wen and J. Wang, “Analysis and remodeling of the DirtyCOW
vulnerability by debugging and abstraction,” in Structured Object-
Oriented Formal Language and Method: 9th International Workshop
(SOFL+ MSVL) 2019, Shenzhen, China, Springer, 2020, pp. 3–12.

[21] L. Rice, Container security: Fundamental technology concepts that
protect containerized applications. O’Reilly, 2020.

[22] Amazon, “Shared Responsibility Model,” 2015, [Online]. Available:
https://aws.amazon.com/en/compliance/shared- responsibility-model/
(visited on 06/08/2023).

[23] T. Segura, “10 Rules for Better Cloud Security,” Dec. 2021, [Online].
Available: https : / /blog.gitguardian.com/10- rules- for- better- cloud-
security/ (visited on 06/08/2023).

[24] S. Arnautov et al., “SCONE: Secure linux containers with intel
SGX,” in 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’16), vol. 16, 2016, pp. 689–703.

[25] GitGuardian, “Kubernetes hardening tutorial part 1: Pods,” Dec. 2021,
[Online]. Available: https://blog.gitguardian.com/kubernetes- tutorial-
part-1-pods/ (visited on 06/08/2023).

[26] Cisco Systems, Inc., “Fog computing and the internet of things: Extend
the cloud to where the things are,” Cisco Systems, Inc., Tech. Rep.
C11-734435-00, 2015.

[27] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, ser. MCC ’12, Helsinki,
Finland: Association for Computing Machinery, 2012, pp. 13–16, ISBN:
9781450315197. DOI: 10.1145/2342509.2342513. [Online]. Available:
https://doi.org/10.1145/2342509.2342513.

[28] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A taxonomy,
survey and future directions,” in Internet of Things, Springer Singapore,
Oct. 2017, pp. 103–130. DOI: 10 . 1007 / 978 - 981 - 10 - 5861 - 5 _ 5.
[Online]. Available: https://doi.org/10.1007/978-981-10-5861-5_5.

[29] Cisco Systems, Inc., “Cisco fog computing solutions: Unleash the
power of the internet of things,” Cisco Systems, Inc., Tech. Rep. C11-
734589-00, 2015.

[30] S. Khan, S. Parkinson, and Y. Qin, “Fog computing security: A
review of current applications and security solutions,” Journal of Cloud
Computing, vol. 6, no. 1, pp. 1–22, Aug. 2017. DOI: 10.1186/s13677-
017-0090-3. [Online]. Available: https://doi.org/10.1186/s13677-017-
0090-3.

[31] A. Aljumah and T. A. Ahanger, “Fog computing and security issues:
A review,” in 2018 7th International Conference on Computers Com-
munications and Control (ICCCC), 2018, pp. 237–239. DOI: 10.1109/
ICCCC.2018.8390464.

[32] M. Mukherjee et al., “Security and privacy in fog computing: Chal-
lenges,” IEEE Access, vol. 5, pp. 19 293–19 304, 2017. DOI: 10.1109/
ACCESS.2017.2749422.

[33] F. Aliyu, T. Sheltami, and E. M. Shakshuki, “A detection and pre-
vention technique for man in the middle attack in fog computing,”
Procedia Computer Science, vol. 141, pp. 24–31, 2018, The 9th
International Conference on Emerging Ubiquitous Systems and Per-
vasive Networks (EUSPN-2018) / The 8th International Conference
on Current and Future Trends of Information and Communication
Technologies in Healthcare (ICTH-2018) / Affiliated Workshops, ISSN:
1877-0509. DOI: https : / / doi . org / 10 . 1016 / j . procs . 2018 . 10 . 125.
[Online]. Available: https : / /www.sciencedirect . com/science /article /
pii/S1877050918317733.

[34] M. Hosseinzadeh, B. Sinopoli, and E. Garone, “Feasibility and de-
tection of replay attack in networked constrained cyber-physical sys-
tems,” in 2019 57th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), 2019, pp. 712–717. DOI: 10.1109/
ALLERTON.2019.8919762.

[35] A. M. Alwakeel, “An overview of fog computing and edge computing
security and privacy issues,” Sensors, vol. 21, no. 24, p. 8226, Dec.
2021. DOI: 10.3390/s21248226. [Online]. Available: https://doi.org/10.
3390/s21248226.

[36] S. Tu et al., “Security in fog computing: A novel technique to tackle an
impersonation attack,” IEEE Access, vol. 6, pp. 74 993–75 001, 2018.
DOI: 10.1109/ACCESS.2018.2884672.

[37] M. Al-khafajiy et al., “COMITMENT: A fog computing trust man-
agement approach,” Journal of Parallel and Distributed Computing,
vol. 137, pp. 1–16, Mar. 2020. DOI: 10 .1016 / j . jpdc .2019 .10 .006.
[Online]. Available: https://doi.org/10.1016/j.jpdc.2019.10.006.

[38] K. Gu, X. Dong, and W. Jia, “Malicious node detection scheme
based on correlation of data and network topology in fog computing-
based vanets,” IEEE Transactions on Cloud Computing, vol. 10, no. 2,
pp. 1215–1232, 2022. DOI: 10.1109/TCC.2020.2985050.

[39] S. Yi, Z. Qin, and Q. Li, “Security and privacy issues of fog computing:
A survey,” in Wireless Algorithms, Systems, and Applications, K. Xu
and H. Zhu, Eds., Cham: Springer International Publishing, 2015,
pp. 685–695, ISBN: 978-3-319-21837-3.

[40] F. Dewanta, “Secure microservices deployment for fog computing
services in a remote office,” in 2020 3rd International Conference
on Information and Communications Technology (ICOIACT), 2020,
pp. 425–430. DOI: 10.1109/ICOIACT50329.2020.9332025.

[41] R. Canetti and H. Krawczyk, “Analysis of key-exchange protocols and
their use for building secure channels,” in Advances in Cryptology —
EUROCRYPT 2001, B. Pfitzmann, Ed., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2001, pp. 453–474, ISBN: 978-3-540-44987-4.

[42] Y. Qi, M. S. Hossain, J. Nie, and X. Li, “Privacy-preserving
blockchain-based federated learning for traffic flow prediction,” Future
Generation Computer Systems, vol. 117, pp. 328–337, 2021, ISSN:
0167-739X. DOI: https : / / doi . org / 10 . 1016 / j . future . 2020 . 12 . 003.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167739X2033065X.

[43] S. Zanella-Béguelin et al., “Analyzing information leakage of updates
to natural language models,” in ACM Conference on Computer and
Communication Security (CCS), ACM, ACM, 2020. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/analyzing-
information-leakage-of-updates-to-natural-language-models/.

[44] H. A. Inan et al., Training data leakage analysis in language models,
2021. DOI: 10.48550/ARXIV.2101.05405. [Online]. Available: https:
//arxiv.org/abs/2101.05405.

29Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 39 / 74

On the Creation of a Secure Key Enclave via the Use of Memory Isolation in
Systems Management Mode

James Andrew Sutherland, Natalie Coull & Robert Ian Ferguson
Division of Cybersecurity

Abertay University
Dundee, UK

email: {j.sutherland, n.coull, ian.ferguson}@abertay.ac.uk

Abstract — One of the challenges of modern cloud computer
security is how to isolate or contain data and applications in a
variety of ways, while still allowing sharing where desirable.
Hardware-based attacks such as RowHammer and Spectre
have demonstrated the need to safeguard the cryptographic
operations and keys from tampering upon which so much
current security technology depends. This paper describes
research into security mechanisms for protecting sensitive
areas of memory from tampering or intrusion using the
facilities of Systems Management Mode. The work focuses on
the creation of a small, dedicated area of memory in which to
perform cryptographic operations, isolated from the rest of the
system. The approach has been experimentally validated by a
case study involving the creation of a secure webserver whose
encryption key is protected using this approach such that even
an intruder with full Administrator level access cannot extract
the key.

Keywords- key-enclave; hardware security; system-
management mode.

I. INTRODUCTION

Computer security is largely concerned with erecting
boundaries between entities: users, privilege levels,
processes. Wherever a resource crosses a boundary, it creates
the potential for compromise, either through passive
information leakage (as in the case of timing attacks, where
the exact details of how long an operation takes inadvertently
discloses some information) or the potential for active
tampering (as in RowHammer [1], where writing to one
memory location indirectly affects another through non-
obvious electrical coupling between parts of a memory chip).

A. Motivation

Attacks based upon covert channels and side channels
depend on unexpected interactions; RowHammer for
example, can be used to achieve privilege escalation via a
previously-unexpected interaction between physically
proximate memory components [2] . Since there was no
correlation between physical and virtual addresses, as
different processes and the kernel would commingle pages
arbitrarily, low-privilege pages could easily be found which
happened to be adjacent to highly sensitive system ones,
allowing tampering. The same applies between virtual
machines and hypervisor control structures. As detailed later,
the more coarse-grained the sharing gets, the more limited

the avenues of attack become, though any level of shared
caching can be an avenue of attack [3].

As encryption keys are typically stored in RAM, a
successful compromise of a system via techniques such as
these can reveal those keys used to protect data at rest on the
system, e.g., full-disk encryption, and data in transit to/from
the system, e.g., via an SSL connection.

The ability to improve segregation of memory to securely
store keys etc. separately from less sensitive data has
previously required a system to have dedicated features, e.g.,
Intel’s SGX integrated with the processor. The consequences
of an attack that compromises such facilities can be
widespread: In the case of SGX, this protection was
defeated in 2018 via side-channel attack [4], forcing Intel to
update SGX’s deployment mechanism to be able to check
whether the Spectre [5] attacks were properly mitigated on
the target hardware.

B. An alternative approach to creating an enclave

The current generation of Intel processor architectures
have a feature called Systems Management Mode (SMM)
which can be used during the boot process to create an area
of RAM (SMRAM), which is subsequently ‘locked’ and thus
rendered inaccessible/unusable by ‘userland’ code. This
offers the possibility of creating a secure memory enclave for
the storage of cryptographic keys and the code which
manipulates them (negotiation, verification etc.) The locked
area can only be accessed by returning to SMM mode which
automatically executes the code that has been securely
locked in that area. This fact led to the following research
hypothesis for the work:

Secure isolation can be practically implemented using
only the long-established Systems Management Mode
mechanisms, giving better security isolation than existing
techniques such as process separation.

The work described in the remainder of this paper shows
how this can be used to create a secure enclave. It is worth
noting that some other processor architectures, e.g., ARM,
have equivalent facilities and the proposed technique for
enclave creation is thus generalisable.

The material in the paper is based on the PhD thesis of
the first author and is published here for the first time [6].

The remainder of the paper is structured thus: In Section
II previous work on providing secure key stores is
considered. This acts as a baseline for comparison with the
technique presented here. Section III describes the proposed
solution to this problem whilst Section IV discusses how the

30Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 40 / 74

approach was evaluated. The results of the evaluation are
given in Section V. Conclusions and proposals for further
developing the approach are given in Section VI.

II. BACKGROUND

The provision of cryptographic services to a system
depends upon the inviolability of any stored keys. As such
services form the basis of secure computing, a secure place
to store them is referred to as a Trusted Computing Base
(TCB). Finding a means of creating such a TCB in RAM is
thus an important security problem. This section therefore
reviews various attempts at organising and protecting
memory, dating from early multi-tasking operating systems
and the consequent need to provide process separation
through to recent hardware crypto-key enclaves before going
on to review the solution-space technique of System
Management Mode.

A. Protecting memory

1) Memory management/virtual memory
The idea of programs sharing system resources without

interfering with each other can be traced back to the MIT
‘Compatible Time Sharing System’ [7]. Prior to this, only
one process would be executing hence the idea of
‘interference’ did not apply.

Modern processor architectures implement some form of
virtual memory mapping [8]: the memory a user process can
access at address 0x10000, for example, may be stored in
any arbitrary page of physical memory, or indeed be entirely
absent and filled in by the operating system when an attempt
is next made to access that, known as a ‘page fault’.

To reduce the overhead of loading this mapping from
memory, processors generally feature Translation Lookaside
Buffers (TLBs), a set of cached address mappings.
(Architectures have varying approaches to this; on MIPS, the
operating system explicitly populates TLB entries as needed;
x86 and more recent ARM variants populate TLB entries
directly within the hardware without OS involvement, while
the original ARMv2 had 512 explicit memory mappings
within the MEMC1 memory controller chip as Content
Addressable Memory.)

A key concept in ensuring that concurrently executing
programs cannot interfere with each other or access their
data is that each process be allocated its own set of memory
pages and be unable to access RAM outwith those bounds.
Attacks such as RowHammer, Heartbleed [9] and Spectre
have shown that such OS-enforced restrictions can be
circumvented and thus a more secure approach is required
when storing particularly sensitive information such as
encryption keys.

2) RAM Encryption
TRESOR [10] demonstrated that a general-purpose

computer system can be operated with almost all of its main-
memory encrypted while at rest, albeit with a significant
performance penalty, using a modified Linux kernel. There
is some overlap with the research this paper describes:
TRESOR uses the processor debug registers as an area of
storage which cannot be accessed via Direct Memory Access
(DMA). This was intended to protect against DMA attacks,

among others, but was not successful in that respect since
this cannot protect the associated code: TRESOR-Hunt [11]
demonstrated a successful attack on this protection, using
code injection via DMA - an attack which could not be
prevented through software mechanisms alone.

TreVisor [12] extended the techniques of TRESOR to a
hypervisor level in combination with techniques from
BitVisor [13] to incorporate Intel VT-d (IOMMU) protection
from DMA attack.

On other platforms, the ARMORED [14] project applied
TRESOR techniques to the Android operating system on
ARM architecture processors as a countermeasure to their
own FROST [15] attack, which used a cold boot attack to
retrieve information from mobile handsets running
Android 4.0 despite the disk encryption employed.

3) Address Space Layout Randomisation - ASLR
Traditionally software systems (and operating systems in

particular) locate certain critical pieces of information at
well-known, or at least predictable, memory addresses.
Having its origins in the (Linux) PaX project [16] ASLR
involves varying the location of memory contents over time
thus making it more difficult for an attacker to find those
critical locations.

4) Swap encryption
A cold boot attack can retrieve RAM contents for a brief

period after a system is shut down, but the system’s virtual
memory persists indefinitely after shutdown unless explicitly
wiped. To avoid this, keeping that data encrypted is an idea
which long predates efforts to encrypt or otherwise protect
the RAM, including the encrypted swap space [17]
extensions to the virtual memory (VM) system originally
proposed as an enhancement of the original 4.4 BSD
approach [7]. The much slower nature of disk storage meant
the extra overhead of this encryption was more widely
accepted early on.

B. Other approaches to key protection

The approaches outlined above are general in that they
seek to prevent cross-process interference between any two
processes. Given the sensitive nature of crypto-services/keys,
i.e. the consequences of their compromise, work has been
done specifically on preventing inappropriate access to such
keys: This sub-section reviews some typical attempts to
provide such an enclave.

1) Process separation
Process separation in a cryptographic context is a

software system design principle that demands that all
handling of keys and cryptographic operations be performed
in a separate process from the ‘worker’ process thus relying
on the properties of the OS memory management system to
deny the ‘worker’ any access to sensitive information. Its
importance to the current work that the performance of our
SSM-based solution is compared with a ‘process separation’
solution in experiment 4b (See Section IV).

2) Process isolation
The commercial content delivery network (CDN)

Cloudflare has an interesting implementation of TLS/SSL in
two respects. First, they offer ‘Keyless SSL’ [18] in which
the site’s private key is handled remotely. Secondly, the

31Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 41 / 74

SSL/TLS handling is performed in a separate isolated
instance of the Nginx web server — an example of defence
in depth which ensured that when a bug was found in their
HTML parsing implementation, the information disclosed
could not include site private keys, unlike with the
widespread Heartbleed bug in OpenSSL [19] — only a
kernel or hardware level exploit could have exposed the key,
not an application level one.

3) VM isolation/hypervisors
Microsoft recently released a software-only

implementation of a similar approach, Credential Guard [20],
in which authentication keys are held in a dedicated virtual
machine running on top of the Hyper-V hypervisor platform.
This way, even a kernel compromise of the main operating
system is not sufficient to extract credentials for reuse: no
more ‘Pass The Hash’ privilege escalation once a system is
compromised. Only a compromise of the underlying
hypervisor itself, or the hardware isolation mechanisms,
would suffice: a much smaller attack surface compared to the
full OS.

4) Trusted Platform Module
The primary alternative to the general approach outlined

above, where enhanced security is needed compared to direct
key handling without extra isolation, is to use a dedicated
cryptographic hardware device. Some PCs and servers are
now equipped with a Trusted Platform Module (TPM) which
provides a dedicated cryptographic and storage facility, with
a fixed set of algorithms, limited storage and minimal
performance [21].

5) Intel Software Guard Extensions - SGX
Intel Software Guard Extensions aim to deliver similar

benefits within the main processor through architectural
extensions, with an encrypted area of main memory rather
than one isolated by the memory controller hardware. SGX-
Shield [22] reviews the main limitations of this
implementation and proposes an implementation of ASLR
(varying the location of memory contents to make attacks
more difficult) within this enclave for additional protection
from outside interference.

This isolation is a mixed blessing, providing a hiding
place for less benign code as well [23], while failing to
protect against variants of the Spectre attack [4]. The TaLoS
project [24] has significant similarities to the final
experiment in Section V, in that it seeks to protect the
encryption keys and traffic over an SSL/TLS connection but
using SGX rather than SMM to isolate the data in question.

C. System Management Mode (SMM)

The approach considered in this paper is based upon the
System Management Mode of the x86 family of processors
(see Figure 1). As its operation provides the security
guarantees necessary for creating a key enclave, it is
discussed here in detail.

Figure 1. System Management Mode

The defining characteristic of SMM is that while the
processor core is executing code in that mode, it asserts the
SMIACT2 output line. This signal is interpreted by the
Memory Controller Hub (MCH): when asserted, addresses
are decoded differently, enabling access to the otherwise-
inaccessible SMRAM area. Physically, this is just part of the
main RAM, but gated by the memory controller to prevent
non-SMM access. In early SMM implementations, the
address used was 0xA0000, which is also used by legacy
graphics support: any attempt by non-SMM code to read or
write this area will access the video memory instead.

The location of SMRAM is defined by the SMBASE
register, initially set to 0x30000 (192 kilobytes from the
bottom of the memory space); setting the G_SMRAME
control flag on the processor’s SMRAMC (SMRAM control)
register puts 128 kilobytes of SMRAM at a base address of
0xA0000, or 640 kilobytes, while setting T_EN (TSEG
Enable) grants access to a larger area higher up. The address
layout is depicted in Table I.

TABLE I. THE X86 PROCESSOR MEMORY MAP

Address Size Content
(normal)

Content
(SMM)

0xF0000 64k BIOS ROM

0xC0000 192k Device ROM/Upper Memory
Blocks

0xA0000 128k Legacy video SMRAM

0x00000 640k Legacy (DOS) memory

It is important to note that SMM is not a privileged mode of
execution as such, despite common references to it as ‘ring -
1’ or ‘ring -2’ as if it were a more privileged alternative to
ring 0 in which kernel code executes. For example, Wojtczuk
and Rutkowska [25] refers to “escalation from ring 3 to
SMM” — in reality, SMM code is entered in ring 0, and can
transition to a reduced privilege level if desired.

In all cases, access to the SMRAM area is permitted only
if the access is by the processor core (as opposed to any other
peripheral), and then only if either SMIACT is asserted or
the D_OPEN control bit in the system chipset is set to permit
this. As a result, SMRAM has robust protection against any

32Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 42 / 74

sort of DMA attack: attempted access from the PCI bus or
elsewhere is not valid at any time.

1) Bootstrapping SMM
As noted earlier, access to the dedicated area of memory

SMM uses (the SMRAM) is gated by the memory controller.
In order to bootstrap the SMI handler, however, it must be
possible to load this memory area before the first SMI
instance. This is permitted by the D_OPEN control bit in the
chipset: when set, this bit permits access to SMRAM without
being in SMM. After initialisation is complete, this bit
should be cleared and the D_LCK (Lock) bit set, rendering
all the SMM control registers read-only until the processor is
reset.

This should be done very early in the system boot
process by the system BIOS before activating any
peripherals or executing any other code to prevent malicious
code using SMM as a hiding place; older BIOS
implementations often failed to secure the state properly
during the boot process, leaving the way open for a variety of
SMM rootkits at least as far back as 2009 [26].

2) Using SMM for security
Soon after malicious use of SMM’s isolation property

was demonstrated, more benign uses were found, with
HyperGuard [27] in 2008, HyperCheck [28] in 2010,
HyperVerify [29] in 2013 and a US patent on the concept
being granted in 2014 [30].

The TrustZone-based Real-time Kernel Protection (TZ-
RKP) [31] applies the same concepts to an ARM system,
using ARM’s TrustZone mechanism in place of SMM.
(TrustZone was created later, with a ‘Secure World’ entered
by invoking a Secure Monitor Call exception.)

The underlying concept in each case is to generate then
periodically verify cryptographic hashes of critical structures
or code, in HyperGuard’s case, by walking the Page Tables
to identify all executable pages marked for supervisor access.
At the time, this was not wholly sufficient since the
processor could still execute non-supervisor pages with
supervisor privilege; the later development of Supervisor
Mode Execution Protection (SMEP) by Intel [32] closed this
loophole.

The level of privilege at which code executes in x86
Protected Mode is determined by the two least significant
bits of the CS (Code Selector/Segment) register, so the code
at a single address in memory may normally be executed at
any privilege level without modification. This has its origins
in the 80286’s implementation of Protected Mode, prior to
the 80386’s introduction of paged virtual memory: as the two
mechanisms were orthogonal, prior to SMEP a page could be
user writable (ring 3) yet run at kernel privilege (ring 0).

III. PROPOSED SOLUTION

This work aims to secure a network-connected system
against remote or transient physical attack, using a simple
web server as the model and endeavouring to protect it
against unauthorised information disclosure, in particular,
disclosure of the cryptographic keys which are used to
authenticate the server to clients. The keys and the code used
to negotiate and verify them are protected by storing them in

SMRAM as outlined in the previous section. The approach is
clearly generalisable to securing the authentication material
on the client end as well: client cryptographic keys, stored
passwords, and payment mechanisms could also be
improved. This section thus describes how a secure proof-of-
concept webserver was created which uses an SMM enclave
to protect the keys it uses for serving HTTPS requests.

The starting point in creating the proof-of-concept server
was an OpenSSL example TLS server [33] which was linked
with Google’s SSL implementation: BoringSSL [34] to
which was added code implementing the SMM key
protection from the previous section. The server runs as a
normal unprivileged application (‘ring 3’) under Linux and
used TLS 1.2.

Key design goals for the proof-of-concept server were a
minimal overhead in each transition to/from SMM, and
presenting a minimal attack surface on the SMM component
while enabling the application counterpart to run with
minimal privileges. From the programmer’s perspective, the
enclave functions in a manner akin to a physical hardware
device, passing messages in both directions via a page of
physical memory.

A. Overall operation

Three actions are necessary at boot time:
- A public/private key pair are generated (see Section

III.A.1 “Key Negotiation” below)
- The private key and the code for verifying a candidate

public key are placed in the SMRAM page.
- The SMRAM is locked (using technique described in

Section II.C.1)
In subsequent operations, i.e., when the webserver wishes

to serve a page, there is a need to pass information to the
code now locked in SMRAM. This is achieved through the
use of a small (4Kb) area (known as the ‘mailslot’) which is
accessible from both inside and outside of SMM (See Figure
2).

Figure 2. API/Using SMM for signature verification

Userland code inserts any public key to be verified into
the mailslot, transitions into SMM (See Section III.A.2 -
“Transitioning to SMM” below) which causes a jump to the
code in the SMRAM. That code has access to both the
mailslot RAM and the SMRAM - verifies the public key

33Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 43 / 74

against the private key held in SMRAM and places the result
of verification(true/false) in the mailslot RAM and exits from
SMM causing a return to the calling userland code.

To make use of the cryptographic enclave services, the
userspace code must first allocate and lock a page of physical
memory, determining the underlying physical address via the
Linux /proc/self/pagemap virtual file and communicating
this to the SMM enclave at initialisation time. This shared
page can then be used as a mailslot for exchanging data: the
userspace (ring 3) code interacts directly with the SMM
cryptographic code, without transitions to/from the kernel in
between.

1) Key negotiation
To protect the most sensitive data requires the

construction of some sort of containment to which access
from all other components is restricted or prevented — but
with just enough interaction permitted to enable the intended
use of the keys (or other material) in question. For an
SSL/TLS web server, the sensitive data is created as a
public/private key pair. As the name implies, the public part
of the pair may be freely exported and shared — indeed, it is
provided to every client connecting, as part of the initial
protocol handshake — while the private key is never to be
disclosed to anyone else. To prove the identity of the server,
a Certificate Signing Request (CSR) is generated and signed
using the private key; after completion of appropriate checks,
a Certification Authority (either one trusted by the general
public and the software they use, such as LetsEncrypt, or an
internal entity such as the US Department of Defense’s
internal CA) usually signs that CSR to produce a certificate.
Any entity can issue certificates, it is merely a matter of
policy which issuers are trusted or not for any given
situation; for experimental purposes, a self-issued certificate
is equally suitable.

2) Transition to SMM
The process of transitioning to SMM is worth examining

as it incurs an overhead and as it needs to be accomplished
each time a cryptographic verification operation is required,
minimising that overhead is a worthwhile goal.

Entry to SMM requires triggering an SMI (System
Management Interrupt). Ordinarily, hardware interrupts
cannot be triggered directly from user mode applications;
first a system call would be required, to effect a transition to
kernel mode (‘ring 0’ on x86), then the corresponding kernel
code would trigger the interrupt on the application’s behalf.
This, however, incurs additional overhead, two mode
transitions rather than one. A more efficient approach is for
the application to write to the I/O address 0xb2 as explained
below.

Most modern processors implement a unified hardware
memory map, in which RAM and devices occupy the same
address space; x86 has two distinct memory spaces, a 64
kilobyte legacy space accessed via the IN/OUT set of
instructions, and a much larger space accessed via standard
memory operations.

For devices mapped into the main memory space, the
usual memory permissions apply: the appropriate 4 kilobyte
(or larger) page could be mapped with appropriate
permission bits set. The I/O space has different, fine-grained

permissions: the I/O Permissions Bitmap (IOPB) within the
Task State Segment (TSS) controls whether access is granted
or not to any given byte within the I/O address space. On
Linux, the ioperm system call may be used to enable access
to any specified I/O address.

To make use of the cryptographic enclave services, the
userspace code must first allocate and lock a page of physical
memory, determining the underlying physical address via the
Linux /proc/self/pagemap virtual file and communicating
this to the SMM enclave at initialisation time. This shared
page can then be used as a mailslot for exchanging data: the
userspace (ring 3) code interacts directly with the SMM
cryptographic code, without transitions to/from the kernel in
between.

IV. EVALUATION PROCESS

In order to show that the proposed solution is practicable
(and establish the hypothesis) three aspects of the proof-of-
concept webserver’s behaviour were evaluated:
functionality, security, and performance. Functionality was
demonstrated by testing with a) a number of web-browsers
(Experiment 1) and b) an industry-standard test suite
(Experiment 2). Security is shown by reasoning from
properties of the SMM system. Performance was tested by a)
examining the impact on execution time of the overhead of
entering and exiting SMM through micro-benchmarking
(Experiment 3) and b) comparing the time taken to serve
pages i) with no key protection (Experiment 4a) ii) with
‘process-separation’ based key-protection (Experiment 4b)
and iii) with SMM-based key protection (Experiment 4c). A
summary is given in Table II below.

TABLE II. LIST OF VALIDATION EXPERIMENTS PERFORMED AND

PURPOSE

Num Experiment Purpose

1 Use with range of
browsers

Verifying basic webserver functionality

2 Qualys - SSL
Labs

Verifying webserver SSL protocol
compliance

3 Micro-
benchmarking

Measuring the ‘real-time’ overhead
imposed by entering and exiting SMM

4a Comparison of
webserver
performance with
crypto operation
performed with 3
different levels of
protection

Measuring the rate that pages could be
served with crypto-keys handled in-
process, i.e., with no protection

4b Measuring the rate that pages could be
served with crypto-keys handled in a
separate process, i.e., with process-
separation protection

4c Measuring the rate that pages could be
served with crypto-keys handled in
SMM

As the webserver’s cryptographic code is unmodified – a
standard x86/x86-64 implementation of the elliptic curve
algorithms – the key performance metric is the additional
overhead introduced by transitions to and from SMM. For

34Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 44 / 74

context, this should be compared with the overhead entailed
in a context switch between usermode processes (as applies
where the cryptographic code is run in a separate process, as
CloudFlare does in their content delivery network’s edge
devices) and user-kernel mode transitions particularly after
implementation of the Kernel Page Table Isolation (KPTI)
changes to mitigate the Spectre/Meltdown security issues.
Experiments 3 and 4b quantify these.

For a better indication of the real-world performance
impact, standard HTTPS benchmarking — downloading
static content over encrypted connections in each
configuration tested — gives indicative throughput speeds
(Experiment 4).

A. Functionality

Once the HTTP-over-TLS (HTTPS) server was
implemented, a variety of protocol interactions were tested.
Initially, standard HTTPS clients (wget, curl, Mozilla Firefox
and Google Chrome) were used to verify basic functionality
(Experiment 1), and any issues encountered resolved; after
this, the more comprehensive industry standard test suite -
SSL Labs from Qualys [35] - was employed (Experiment 2).

B. Security

The webserver’s resistance to RowHammer and Spectre
attacks was analysed. While web server performance testing
is a well studied and long-established field [36][37], security
is more nebulous. In this context, the architecture is intended
to provide isolation, and substantial literature has already
studied the various possible routes to accessing SMRAM
[25] — cache aliasing, Memory-Type Range Registers
(MTRR) manipulation; and early BIOS implementations
which neglected to enable D_LOCK timeously). It can also
be verified empirically that the SMRAM-protected data/code
is not exposed, even to the kernel via a scan of the Linux
/dev/mem device, which can be configured to expose the
kernel’s view of the entire memory space. Since the SMM
protected data has no functioning address except while the
processor is executing in SMM, exploits such as Spectre
cannot access this data. (Physical level attacks such as
RowHammer or address line fault injection could still be
effective.)

1) RowHammer
The RowHammer attack allows modification of bits in

physically adjacent areas of memory, which could
theoretically be used to exfiltrate information from the SMM
enclave. Integrity checking would provide some protection
against this, while ASLR would make such an attack almost
impossible — just shifting the code and data by a small
random number of bytes each time the system is booted
would mean the attacker was operating blindly (able to flip
some bits, but without knowledge of which instruction or
piece of data is being affected), while the use of ‘canary’
values around the code and data would make such an
attempted attack very unlikely to go undetected. Moreover,
given sufficient knowledge of the memory arrangement in
use, simply adding a single disused row between the SMM
code and data area and memory used by the system would

frustrate any RowHammer attempt: it would corrupt only
that buffer space, with no effect on the SMM area.

Also, on the specific test hardware used for the majority
of this experimentation, the DDR2 memory installed is much
less susceptible to RowHammer attacks anyway: exploiting
this generally requires DDR3 or newer, due to the smaller
feature size and faster access.

A similar approach would also be effective against most
direct hardware attacks, such as address line glitching:
without knowing the exact address to target, a successful
attack would be very much more difficult than against a
system without this protection.

2) Spectre/Meltdown
The most recent memory protection attacks against

vulnerable Intel and ARM processor architectures pose two
potential threats against an SMM protection implementation.

Firstly, the Meltdown techniques can be used directly to
extract otherwise protected data, for example from kernel
buffers, by using the address of that data indirectly then
observing side-effects of that operation. This is not
applicable to SMM code or data, since there is no address
which refers to that memory in the first place. This was
empirically verified by Eclypsium[38].

Secondly, the Spectre attacks have been used against
system firmware executing in SMM to bypass bounds checks
(ibid.) — that issue is avoided entirely in this work by using
only fixed size parameters, with no bounds checks or
boundaries to be violated.

C. Performance

For the performance assessment, two approaches are
used: first (Experiment 3), microbenchmarks, measuring the
individual components involved in transitions to and from
SMM and kernel mode in isolation ; secondly (Experiments
4a - 4c), to measure the overall performance of a web server
using different isolation mechanisms, to be able to compare
SMM isolation’s performance overhead against versions
with no isolation of key handling and one which uses
process-level isolation which would protect against process
level compromise, but not a root or kernel level one as SMM
isolation does.

1) Experiment 3 - Microbenchmarking the mode
transition cost

The experiment described here investigates the
performance aspects of using SMM, detailing the
performance impact of each transition to and from SMM
compared to transitions to kernel space and back which is the
dominant factor in the overall performance of the SMM-
isolated server.

After prototyping work on the Bochs hardware
simulation, a physical target system was required for
performance tests. A Lenovo ThinkPad X200 was obtained
and loaded with the Libreboot free software project’s variant
of the open-source Coreboot firmware (Libreboot), including
its SMI handler code which could then be freely modified in
theory. An unmodified ThinkPad T60, with similar hardware
but retaining the original manufacturer’s BIOS, served as
control, backup and development system, allowing testing of

35Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 45 / 74

SMM code under the Qemu-KVM virtualisation system in
conjunction with the related SeaBIOS project[39].

The first performance tests focused on comparing the raw
latency penalty imposed by the architecture on transitions
between userspace and either kernel mode or SMM as
appropriate. This would give an early indication of the
viability of the overall approach to explore later, as well as
determining how much effort might be required to optimise
the design for performance to be viable.

Each test consists of executing the function under test
multiple times, recording the elapsed time and calculating
the time per iteration from that. To ensure consistency, each
test was repeated multiple times and checked for outliers.
Timing is measured in two ways: the system ‘time of day’
clock which records times in microseconds and, for the T60
and virtualised system, the processor Time Stamp Counter
read via the ‘read time-stamp counter’ (RDTSC) instruction.
On recent Intel processors, including those in use here, the
time stamp counter advances at a constant rate regardless of
power saving modes or clock speed, making this a useful
timing measurement. (On earlier implementations, the TSC
rate varied with processor speed, making this usage more
problematic.)

The operations tested are listed in Table III. Each set of
measurements was performed on each test system, to provide
a baseline for interpreting performance figures later (see
Section V.C). Table IV shows the test platforms used for
benchmarking in the experiments.

TABLE III. OPERATIONS TESTED IN MICRO-BENCHMARKING

Operation Purpose

NOP SMI Round trip to/from SMM

open-close System call requiring access to kernel memory

getpid() Trivial system call to reflect minimal kernel
transition cost

signing Execute a cryptographic operation - specifically
generate a signed certificate

TABLE IV. TEST PLATFORMS FOR BENCHMARKING

Model X200 T60 Qemu-VM

CPU Core 2 Duo
P8400

Core 2 Duo
T5600

Core 2 Duo
T5600

Clockspeed 2.26 GHz 1.83GHz 1.83GHz

RAM 4 GiB 3 GiB 1 GiB

BIOS Libreboot Lenovo
original

SeaBIOS

The test code was compiled with level 2 optimisation (‘-
O2’), for x86-64, in each case. To gather statistical details

about the distribution of each individual operation, the test
code optionally records the TSC value after each; for the
overall operations, to avoid the extra overhead, a consecutive
sequence of runs is timed without recording timestamps in
between, by compiling with the BATCHONLY flag. For the
1,000,000 iterations of getpid(), 8,000,000 bytes of
values are written out to memory, almost four times the size
of the L2 cache, although writing the values to disk is
deferred until after the timed portion. Ordinarily the
getpid() function is accessed via vDSO for performance
reasons— the kernel puts a copy of the PID in the process’s
own memory space and provides a function to retrieve that
directly, avoiding the userspace-kernel round trip, but in
order to measure that round trip the legacy system call is
used here.

The getpid() system call was chosen as the most
trivial, since it only copies a non-sensitive constant integer;
the open system call will be reading the file system cache,
which is not readable from user mode, so incurs greater
overhead in a full transition to restore access to kernel data.
In normal usage getpid() is faster than this, avoiding a
system call entirely by returning the process’s own copy of
this value directly via a mechanism known as Virtual
Dynamic Shared Object (vDSO).

The ‘signing’ test measured a realistic cryptographic
operation carried out entirely in SMM. For a web server to
be accepted as ‘valid’ for a given name, it must present a
signed certificate asserting ownership of that name, signed
by either a trusted root Certificate Authority (CA) directly, or
an intermediate certificate which is itself trusted.

This is a two stage process. First, a Certificate Signing
Request must be generated, containing a copy of the server’s
public key and a signature using the private key (the private
key itself is never exposed). Secondly, this CSR must be
submitted to and accepted by the CA. Originally, this was
done manually using human verification of documents and
credentials; this still applies for ‘Extended Validation’
certificates, but for standard ‘Domain Validation’ certificates
this process can now be entirely automatic. Specifically, the
free “LetsEncrypt” CA allows ownership of a name to be
verified by publishing specific challenge response values in
the DNS entries of the name in question, without the server
ever having to be publicly accessible. This is one variant of
the Automated Certificate Management Environment
(ACME) protocol; other variants use the TLS SNI handshake
process and HTTP messages respectively to accomplish
similar results via other protocols.

This allows a public-private keypair to be generated
within the SMM enclave, issued with a valid certificate, then
used to host a secured website for testing and demonstration
purposes, without ever exposing the key material externally.
For testing purposes, however, this external signing step is
not necessary: a ‘self-signed’ certificate is sufficient.

2) Experiment 4 - Webserving
The proof-of-concept webserver application was operated

(on the local machine to nullify effects of other network
traffic) with three different levels of key isolation: none (a
control), process separation, and fully SMM isolated key

36Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 46 / 74

handling. In each case the multiple HTTPS requests for
pages of differing sizes where pages were automatically
generated (via curl etc.) and the rate at which requests
were served was measured. This allowed a comparison of the
relative speeds of the three levels, which are discussed in
Section V.D.

V. RESULTS

The results of the four experiments were thus:

A. Experiment 1 - Basic functionality

Testing with a range of browsers revealed no significant
errors.

B. Experiment 2 - Protocol compliance verification

The results of testing with the comprehensive industry
standard test suite SSL Labs from Qualys are shown in
Figure 3.

Figure 3. Qualys test suite results

The “T” score indicates a Trust issue — the test server is
not configured with a publicly trusted certificate, issued by a
genuine Certification Authority such as Verisign or
LetsEncrypt — but all cryptographic and protocol aspects
are correct; the test suite proceeds to simulate the
cryptographic handshakes of a variety of common browsers.
With the exception of Google Chrome on Windows XP
Service Pack 3, which experiences a handshake failure, all
compatible clients negotiate and connect correctly. It is
worth noting that no security checks are performed for
known vulnerabilities, e.g., Heartbleed etc. – this is purely
for compliance with the standard.

C. Experiment 3 - Microbenchmarking the mode transition
cost

The timing figures obtained are shown in Tables V, VI
and VII below. Unfortunately, the X200 system failed during
testing, so further results could not be recorded; the

remaining tests had to be performed on the fallback system
alone, the T60. SMI calls caused the unmodified T60 control
laptop to freeze; this appears to be a known, long-standing
issue with the stock Lenovo BIOS[40].

TABLE V. EXECUTION TIME FOR SYSTEM CALLS AND SMI
INVOCATIONS

Operation X200 T60 T60 Qemu-KVM
Units μs μs TSC μs TSC
NOP SMI 448 Not available 1310 2.4m
getpid 0.4 1.1 620 21 12k

open/close 3 7.1 3900 26 26k
signing Not

available
878 1.606m 905 1.65m

TABLE VI. EXECUTION TIME (TSC TICKS) ON BARE METAL

Operation Minimum 1st Quartile M e d i a n 3rd Quartile Maximum
getpid 1133 1155 1155 1155 5211503
open-
close

6347 6479 6512 6545 3776872

signing 1534995 1542285.25 1544378 1547757.75 2924856

TABLE VII. EXECUTION TIME (TSC TICKS) UNDER KVM

Operation M inimum 1st Quartile M e d i a n 3rd Quartile M axi m um

NOP
SMI

2235276 2326436.75 2921712.5 3618389 26339800

getpid 2 0 2 2 9 2 0 2 9 5 2 0 3 1 7 2 0 3 6 1 33031357
open-
close

4 4 9 0 2 4 5 3 9 7 4 5 4 9 6 4 5 5 9 5 29565196

signing 1536480 1 5 4 30 6 9 1546578 1596921 12533972

The relative performance of the two hardware test
platforms is indicated by comparing the first two columns
indicating the T60 has just under half the speed of the X200
on system calls, while comparing the two pairs of T60
figures (‘T60’ represents the test code running directly under
Linux, ‘T60 Qemu-VM’ represents the same code executed
under Qemu-VM simulation) indicates the relative
performance penalty of the simulation system itself:
approximately three orders of magnitude slowdown (a factor
of 1,000). On the most trivial system call, the additional
overhead of simulation dominates (as shown by the much
smaller difference between getpid and open/close times), but
the relative performance of SMI invocation and open/close
calls is more similar: 88 times slower in simulation versus
149 times slower on bare metal.

The maximum times for all operations are extreme
outliers — around 3-5 million ticks on bare metal, around
four times as high under KVM. Each indicates the test
application was interrupted during that operation for between
2-20 ms. The additional KVM overhead is most apparent
when comparing the getpid operations (a median more than
17 times slower), closing to a factor of 7 for open-close and
no discernable difference on cryptographic operations
performed in userspace.

The SMI transition overhead is less uniform, with the
upper quartile more than 55% higher than the lower — an
interesting characteristic, worthy of further study elsewhere.

37Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 47 / 74

One important comparison is between the two full mode
transitions (userland/SMM and userland/kernel mode). Since
the secured server developed here achieves the security
benefits by transitioning into SMM before performing each
signing operation, the relative performance impact of this
change is indicated by the relationship between the ‘signing’
and ‘SMM’ figures: the signature operation in isolation takes
a little less than the round-trip to and from SMM, 1.6 million
processor ticks versus 2.4 million.

D. Experiment 4 - Performance comparison

The rate of request processing, i.e., the number of
requests per second served by the webserver, were measured
in three configurations (for a range of response sizes 1KiB-
MiB) to identify the additional overhead contributed by the
use of SMM to isolate the cryptographic private key and
associated code. The control configuration (no isolation at all
- so no change of mode - labelled Q0) was compared with
the simple option (using a separate user-space process for
isolation userland to kernel mode transition - Q1) and the
SMM configuration (userland - SMM transition- Q2). The
measured rates are shown in Figure 4.

Figure 4. Relative rate of web requests served against response (page)
size for each configuration of hardware/enclave type

The performance overhead of simulation as opposed to
direct execution is apparent. Across the range of request
sizes tested, physical hardware is consistently and
proportionally faster than simulated. As the request size
increases, the difference between SMM and other modes
diminishes to less than 10% at the largest size, one MiB.

VI. CONCLUSION AND FUTURE WORK

This work proves the hypothesis: “Secure isolation can
be practically implemented using only the long-established
Systems Management Mode mechanisms, giving better
security isolation than existing techniques such as process
separation”. In comparison to the baseline approaches
(typified by those discussed in Section II) the SMM
approach to key-protection has been shown to address their
shortcomings and to be robust in circumstances in which
they are not. The performance impact of SMM has been
explored both on bare hardware and in virtualised form, and

a proof-of-concept server demonstrated and benchmarked
successfully. Even on relatively old legacy hardware, with
additional overhead, the performance impact due to SMM
isolation was not prohibitive — approximately doubling the
CPU time per handshake operation, causing a performance
penalty falling from 50% on the smallest payload sizes
(where the handshaking process dominates the overall
workload) to 10% at 1 MiB.

A. Implications of results

With a working HTTPS implementation using SMM
security, Experiment 4 gave the best indication of SMM’s
performance impact in the worst case. The relative
performance on simulated hardware corroborates the
microbenchmark results: performing the cryptographic
handshake computations in SMM approximately halves the
rate at which handshakes are performed, causing a
corresponding slowdown on the smallest requests (where this
aspect dominates the overall server performance), falling to
around 10% with 1 MiB requests. The effect of size is to be
expected: SSL/TLS uses two levels of encryption. First, the
connection is established using public key cryptography.
This handshake process negotiates two pairs of keys which
are then used to encrypt subsequently exchanged data and
has a fixed computational cost regardless of the volume of
data transferred later. Secondly, the request and response are
encrypted using those keys, taking time proportional to the
volume involved. So, on small requests the former aspect
dominates performance; on larger requests, the latter
becomes dominant. The performance shown on the smallest
requests, 572 1k requests per second, is also consistent with
the bare metal SMM transition measurements from
experiment 2 of 448 µs on a processor with approximately
twice the performance (a higher clock speed and faster
memory bus).

Our results demonstrate the upper bound on the
performance or latency cost of isolating the keys in two
different ways, validating the original hypothesis about
SMM’s suitability for this technique. At the smallest extreme
of payload sizes, where the cryptographic handshake for
each new connection dominates, the additional SMM
overhead is of a similar magnitude; as the size increases, the
impact of this extra overhead on overall throughput rapidly
diminishes.

B. Future work

This work confirms the potential for new uses of SMM in
a security context. Unlike reactive patching, SMM isolation
provides proactive protection against issues of low-level
hardware bugs and protection. Alternative areas for the
application of SMM to improve security are discussed
below.

1) Intrusion countermeasures
The HyperGuard/HyperCheck projects leveraged SMM

as an integrity checking mechanism to detect and alert
compromises of a system. These could be incorporated
within the application of the SMM: not only would the keys
in SMM remain protected, but the compromise would also

38Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 48 / 74

be detected and appropriate defensive responses could be
triggered.

2) Operation batching
When adopting the SMM approach, significant gains in

throughput are expected (in a server situation) from
performing multiple cryptographic operations per transition
to/- from SMM: rather than passing individual requests
immediately, combine the requests into sets and process a
full set each time. This would amortise the transition cost
across however many connection handshakes are being
performed in that batch, trading increased throughput for
increased latency determined by the batch size.

3) Other applications and protocols
Particularly with the inclusion of other algorithms, the

key protection and handling techniques demonstrated here
could be applied to other protocols and applications such as
SSH authentication, cryptocurrency transactions or a
credential store akin to Microsoft’s Credential Guard (which
uses a special-purpose virtual machine to isolate credentials
from the primary OS on desktop systems).

4) Handshaking overhead in TLS 1.3
The latest version of TLS has a faster handshake than TLS
1.2 used in the experiments but the effect of this on the
overhead should be verified.

REFERENCES

[1] Y Kim et al., “Flipping bits in memory without accessing them: An
experimental study of DRAM disturbance errors”. In: ACM
SIGARCH Computer Architecture News. Vol. 42 3. IEEE Press, pp.
361–372, 2014

[2] M.Seaborn and T. Dullien, “Exploiting the DRAM rowhammer bug
to gain kernel privileges”. In: Black Hat, pp. 7–9, 2015

[3] D. Liu et al., “Architectural support for copy and tamper resistant
software”. In: ACM SIGPLAN Notices 35.11, pp. 168–177, 2000

[4] G. Chen, et al., “SgxPectre Attacks: Leaking Enclave Secrets via
Speculative Execution”. In: CoRR abs/1802.09085. arXiv:
1802.09085. Url: http://arxiv.org/abs/1802.09085 Retrieved:
2023.06.01.

[5] NVD Spectre – “NVD-CVE-2017-5753 – Spectre”, url:

https://www.cve.org/CVERecord?id=CVE-2017-5753 Retrieved:
2023.06.0, 2017

[6] J. Sutherland, “On Improving Cybersecurity Through Memory
Isolation Using Systems Management Mode”, PhD Thesis, Abertay
University, Dundee, UK, 2018

[7] F. J. Corbató, M. Merwin-Daggett and R. C. Daley, “An experimental
time-sharing system”. In: Proceedings of the May 1-3, 1962, spring
joint computer conference. ACM, pp. 335–34, 1962

[8] P. J. Denning, “Virtual Memory”. In: ACM Comput. Surv. 2.3, pp.
153–189. issn: 0360-0300. doi: 10 . 1145 / 356571 . 356573. url:
http://doi.acm.org/10.1145/356571.356573, 1970, Retrieved:
2023.06.01

[9] NVD Heartbleed (2023) - “NVD-CVE-2014-0160 - Heartbleed”, url:
https://nvd.nist.gov/vuln/detail/CVE-2014-0160 Retrieved:
2023.06.01, 2014

[10] T. Müller, F. C. Freiling and A. Dewald, “TRESOR Runs Encryption
Securely Outside RAM.” In: USENIX Security Symposium, pp. 17–
17, 2011

[11] E-O. Blass and W.Robertson, “TRESOR-HUNT: attacking CPU-
bound encryption”. In: Proceedings of the 28th Annual Computer
Security Applications Conference. ACM, pp. 71–78, 2012

[12] T. Müller, B. Taubmann and F. C. Freiling, “TreVisor”. In: Applied
Cryptography and Network Security. Springer, pp. 66–83, 2012

[13] T. Shinagawa, et al., “Bitvisor: a thin hypervisor for enforcing i/o
device security”. In: Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on Virtual execution
environments. ACM, pp. 121–130, 2009

[14] J. Götzfried and T. Müller, “ARMORED: CPU-bound Encryption for
Android-driven ARM Devices”. In: Availability, Reliability and
Security (ARES), 2013 Eighth International Conference on. IEEE, pp.
161–168, 2013

[15] T. Müller and M. Spreitzenbarth, “Frost”. In: Applied Cryptography
and Network Security. Springer, pp. 373–388, 2013

[16] B. Spengler, "PaX: The Guaranteed End of Arbitrary Code
Execution" (PDF). grsecurity.net. Slides 22 through 35. Retrieved:
2023.06.01, 2003

[17] N. Provos, “Encrypting Virtual Memory.” In: USENIX Security
Symposium,pp. 35–44, 2000

[18] N. Sullivan, “Keyless SSL: The Nitty Gritty Technical Details”, url:
https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-
details/ Retrieved: 2023.06.01, 2014

[19] J.Graham-Cumming, “Incident report on memory leak caused by
Cloudflare parser bug”, url: https://blog.cloudflare.com/incident-
report-on-memory-leak-caused-by-cloudflare-parser-bug/ Retrieved:
2023.06.0, 2017

[20] Wikipedia – “Credential Guard” url:
https://en.wikipedia.org/wiki/Credential_Guard, Retrieved:
2023.06.0, 2023

[21] S. Bajikar, “Trusted Platform Module (TPM) based Security on
Notebook PCs — White Paper”. In: Mobile Platforms Group Intel
Corporation 1, p. 20., 2002

[22] J. Seo et al., “SGX-Shield: Enabling address space layout
randomization for SGX programs”, In: Proceedings of the 2017
Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, 2017

[23] M.Schwarz, S. Weiser, D. Gruss, C. Maurice and S. Mangard,
“Malware Guard Extension: Using SGX to Conceal Cache Attacks”.
In: arXiv preprint arXiv:1702.08719, 2017

[24] P-L. Aublin et al., “TaLoS: Secure and transparent TLS termination
inside SGX enclaves”. In: Imperial College London, Tech. Rep 5,
2017

[25] R. W. and J. Rutkowska, “Attacking SMM memory via Intel CPU
cache poisoning”. Online: Invisible Things Lab, url:
http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
Retrieved: 2023.06.01, 2009

[26] S. Embleton, S. Sparks and C. C. Zou, “SMM rootkit: a new breed of
OS independent malware”. In: Security and Communication
Networks 6.12, pp. 1590–1605, 2013

[27] J. Rutkowska and R. Wojtczuk, “Preventing and detecting Xen
hypervisor subversions”. In: Blackhat Briefings USA, 2008

[28] J. Wang, A. Stavrou and A. Ghosh, “HyperCheck: A hardware
assisted integrity monitor”. In: Recent Advances in Intrusion
Detection. Springer, pp. 158–177, 2010

[29] B.Ding, Y. He, Y. Wu and Y. Lin, “HyperVerify: a VM-assisted
architecture for monitoring hypervisor non-control data”. In: Software
Security and Reliability-Companion (SERE-C), 2013 IEEE 7th
International Conference on. IEEE, pp. 26–34, 2013

[30] K. C. Barde, “Hypervisor security using SMM”. US Patent 8,843,742,
2014

[31] A. M. Azab et al., “Hypervision across worlds: Real-time kernel
protection from the arm trustzone secure world”. In: Proceedings of
the 2014 ACM SIGSAC Conference on Computer and
Communications Security. ACM, pp. 90–102, 2014

[32] A. van de Ven et al., “Supervisor mode execution protection”, US
Patent 9,323,533, 2016

39Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 49 / 74

[33] OpenSSL, “Simple TLS Server”, url:
https://wiki.openssl.org/index.php/Simple_TLS_Server, Retrieved
2023.06.01, 2022

[34] Google, “Google’s SSL implementation: BoringSSL”, url:
https://boringssl.googlesource.com/boringssl/ Retrieved: 2023.06.0,
2022

[35] Qualys, “SSL Labs SSL server test”, url: https : / / www.ssllabs.com/
Retrieved: 2023.06.0, 2014

[36] G. Trent and M. Sake, “WebSTONE: The first generation in HTTP
server benchmarking”, 1995

[37] G. Banga and P.Druschel, “Measuring the capacity of a Webserver
under realistic loads”. In: World Wide Web 2.1-2, pp. 69–83, 1999

[38] Eclypsium, “System Management Mode Speculative Execution
Attacks”, url: https://eclypsium.com/2018/05/17/system-
management-modespeculative-execution-attacks/ Retrieved:
2023.06.01, 2018

[39] SeaBIOS Project. “SeaBIOS”, url: https://www.seabios.org/SeaBIOS
Retrieved: 2023.06.01.

[40] Ubuntu 2011 - “Lenovo W520 laptop freezes on ACPI-related
actions.” url: https : / /
bugs.launchpad.net/ubuntu/+source/linux/+bug/776999 Retrieved:
2023.06.01

40Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 50 / 74

FoodFresh: Multi-Chain Design for an Inter-Institutional
Food Supply Chain Network

Philipp Stangl and Christoph P. Neumann
Department of Electrical Engineering, Media and Computer Science

Ostbayerische Technische Hochschule Amberg-Weiden
Amberg, Germany

e-mail: {p.stangl1 | c.neumann}@oth-aw.de

Abstract—We consider the problem of supply chain data
visibility in a blockchain-enabled supply chain network. Existing
methods typically record transactions happening in a supply
chain on a single blockchain and are limited in their ability
to deal with different levels of data visibility. To address this
limitation, we present FoodFresh – a multi-chain consortium
where organizations store immutable data on their blockchains.
A decentralized hub coordinates the cross-chain exchange of
digital assets among the heterogeneous blockchains. Mechanisms
for enabling blockchain interoperability help to preserve the
benefits of independent sovereign blockchains while allowing for
data sharing across blockchain boundaries.

Keywords-blockchain; consortium; supply chain net-
work; controlled transparency; interoperability.

I. Introduction

The food industry comprises companies dedicated to
manufacturing and processing raw materials and semi-
finished products from agriculture, forestry, and fishing.
In recent years, food supply chains have progressed from
shorter, independent to more unified, coherent relationships
among supply chain participants [1]. Developing long-term,
and collaborative relationships requires evolutionary tech-
nological solutions to simultaneously retain a competitive
edge.
Blockchain technology is considered a way to increase

supply chain visibility, support fraud detection and pro-
vide supply chain optimization. Current applications of
blockchain technology in food supply chain management,
e.g., IBM Food Trust [2], rely mainly on a single distributed
ledger. The implications on supply chain networks are
twofold: (i) organizations participating in multiple supply
chains must share their data on multiple blockchains, and
(ii) participants may see information originally not intended
for them because all participants can view every transaction
on a distributed ledger. In a single-chain approach with
just one ledger, all data would be shared publicly will all
other chain participants.
The multi-chain requirement is motivated by achieving

controlled transparency, i.e., to enable all parties to control
visibility of data based on two levels of chains. Each
participant is provided with a chain of type permissioned,
and sharing data is provided by an additional chain of type
public. The permissioned chains are subject to a Role Based
Access Control (RBAC) mechanism, thus, its information

is hidden from the public and accessible to all users that
belong to an organization. Providing organizations each
with their own permissioned chain, interconnecting them
as a federated ecosystem with a public chain also simplifies
the addition or removal of individual organizations from
the overall ecosystem with minimal impact.
In this paper, we propose FoodFresh – a multi-chain

approach for inter-institutional supply chain networks,
allowing organizations to store immutable data on their
blockchain. A decentralized hub coordinates the cross-
chain communication among the heterogeneous blockchains.
The hub further ensures that all parties comply with the
overarching rules of the consortium.
The remainder of the paper is organized as follows:

in Section II, a selection of related work is presented.
Subsequently, an overview of the relevant technology is
given in Section III. Next, Section IV discusses our proposal
with the design rationale. We conclude the paper in
Section V, followed by the references at the end.

II. Related work

Recently, various solutions for blockchain-enabled supply
chains have been proposed. For instance, Longo et al. have
presented a software connector to connect an Ethereum-like
public blockchain with an enterprise information system
[3]. The software connector allows companies to share
information with their partners with different levels of
visibility. Schulz and Freund [4] have proposed a blockchain-
enabled distributed supply chain. Their main idea is a
network-centric design, which incorporates domain-specific
blockchains for handling specific business processes and a
hub or main blockchain that connects the blockchains to
communicate with each other.

Polkadot uses a hybrid consensus model, separating block
production (Blind Assignment of Blockchain Extension
(BABE)) from finality (GHOST-based Recursive Ancestor
Deriving Prefix Agreement (GRANDPA)). This allows
for blocks to be rapidly produced and finalized at a
slower pace without risking slower transaction speeds
or stalling. Polkadot provides cross-chain communication
with arbitrary data. Parachains communicate through the
Cross-Chain Message Passing (XCMP) protocol, a queuing
communication mechanism based on a Merkle tree. XCMP

41Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 51 / 74

is designed to communicate arbitrary messages between
parachains. Messages are sent together with the next
parachain block (short: parablock), while the relay chain
blocks include only the proof of postage. All messages
must be processed in proper order, for which a chain
of Merkle proofs is used. However, XCMP is still under
development. Therefore, the stop-gap protocol is Horizontal
Relay-routed Message Passing (HRMP). As soon as XCMP
is fully developed, it can replace HRMP. The primary
difference between the two is the data stored on the relay
chain. In HRMP, the relay chain stores the full message
with its payload. XCMP, on the other hand, will only store
a reference to the payload. The target parachain will be
responsible for decoding the message payload.

From the perspective of inter-institutional supply chains,
FoodFresh extends our previous work on inter-institutional
cooperation [5]–[8] that was focused on healthcare, in which
central organizations from primary care and secondary care
act as leaders and hubs of cooperation. The FoodFresh
scenario extends our perspective to more decentralized
and autonomous institutional cooperation in a food supply
chain network, without central protagonists.

III. Background

This section provides a brief overview of the different
relevant technologies: Section III-A describes the character-
istics of food supply chain networks, Section III-B presents
different types of blockchain technology, and Section III-C
different blockchain interoperability approaches.

A. Food Supply Chain Network

A supply chain is an interconnection of organizations,
activities, resources, people, and information. Organizations
along a food supply chain are dedicated to growing and
processing raw materials (e.g., fruits) and semi-finished
products (e.g., fruit juices) for delivery to the end customer.
Food supply chains are complex and affected by various fac-
tors, such as the sociopolitical environment [9]. Regulatory
bodies, such as the US Department of Agriculture (USDA),
aim to protect consumer health and increase economic
viability. Thus, they release frequent updates to ensure
their criteria are met by food supply chains.
In a Food Supply Chain Network (FSCN), more than

one supply chain and more than one business process can
be identified, both parallel and sequential in time. The
parties involved in the business processes depend on the
type of FSCN. This article considers a FSCN for fresh
agricultural products.
Van der Vorst et al. have identified farmers, retailers,

and their logistics service suppliers as parties involved
in a FSCN for fresh agricultural products [9]. Figure 1
depicts such a supply chain at the organization level within
the context of a FSCN for fresh agricultural products.
Each organization is positioned in a product lifecycle stage
and belongs to at least one supply chain. That means an
organization can have multiple suppliers and customers

at the same time and over time. Figure 1 visualizes this
by showing the perspective of the processor (bold lines),
who has multiple connections to distributors and farmers.
Other stakeholders, such as nongovernmental organizations,
governments, and shareholders, are indirectly involved at
each stage of the product lifecycle.

Other stakeholders (NGO’s, government, shareholders, …)

Legend

Farmer

Processor

Distributer

Retailer

Business Proccess

Figure 1. Schematic diagram of an FSCN (based on Van der Vorst
et al. [9])

B. Blockchain Types

There are three different types of blockchain systems [10].
Public blockchains are considered permissionless because,
in principle, everyone can attend the consensus process and
read the stored data. The application of public blockchains
has several use cases, including cryptocurrencies and
document validation. In a consortium blockchain, an elected
group of participants is allowed to attend the consensus
process. The stored data may be read by selected members
or by the public. Supply chain and research environments
are two exemplary use cases for this type of blockchain. In
a private blockchain, all participants belong to the same
organization, and the public cannot access the system. Two
use cases for this final blockchain type are banking and
asset ownership. Private and consortium blockchains are
considered permissioned blockchains because, in both cases,
only a limited group can attend the consensus process.

C. Blockchain Interoperability

Blockchain interoperability involves the ability of in-
dependent distributed ledger networks to communicate
with each other. Various approaches have been estab-
lished to provide blockchain interoperability, resulting in a
highly fragmented market [11]. Belchior et al. were the
first to conduct a systematic literature review in [11]
on blockchain interoperability solutions: Their resulting
Blockchain Interoperability Framework categorizes interop-
erability solutions into three categories: 1) interoperability
across public blockchains (public connectors), 2) inde-
pendent blockchains that interoperate among each other
(blockchains of blockchains), and finally, 3) approaches that
neither fit into the public connectors nor blockchains of
blockchains category (hybrid connector).

IV. FoodFresh

In this section, we describe a consortium blockchain
for a food supply chain network for interoperability and

42Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 52 / 74

controlled transparency. Section IV-A, introduces the
approach. The three tiers of the system architecture are
described in the following sections: the presentation tier in
Section IV-B1, the application tier in Section IV-B2, and
the relay tier in Section IV-B3. In Section IV-C, we offer
a concise introduction to the Substrate Framework. The
subsequent Section IV-D, delineates the details concerning
the deployment process. Finally, Section IV-E addresses
the limitations of our proposed approach.

A. FoodFresh Approach

The FoodFresh approach provides an implementation
of the multi-chain approach (Section II). The blockchain
consortium comprises a multi-chain ecosystem for orga-
nizations. Each organization is allowed to participate in
the consensus process. A permanent and shared record of
food system data connects participants across the food
supply chain network. This is done through the use of
a main blockchain, called relay chain. The sole purpose
of the relay chain is to coordinate and share appropriate
data and ensure all parties are complying with overarching
rules. Each organization can set up and manage its own
permissioned blockchain, which keeps full control over the
data to itself. Within a single permissioned blockchain for
an organization, data is shared between different users that
belong to that organization, but not to inter-institutional
parties. Via the public relay, the FoodFresh approach
allows them to share immutable and accurate data with
other participants in the inter-institutional supply network.
This also allows for the addition or removal of individual
organizations from the overall ecosystem with minimal
impact.

B. System Architecture

FoodFresh, as a distributed system, is a composition
of three tiers. This section will outline each of the three
tiers. The presentation tier in Section IV-B1, the appli-
cation tier in Section IV-B2, and finally the relay tier in
Section IV-B3. Figure 3 depicts the system architecture
for two interoperating supply chain organizations.
1) Presentation Tier: To provide the user with conve-

nient access to the FoodFresh system, the presentation
tier is responsible for interacting with the application tier
through a websocket connection. Any websocket-capable
client or device can communicate with the endpoints
exposed by the application tier. The user interacts with a
Graphical User Interface (GUI) to manage the permissions
of participating members, register shipments and products,
and trace shipments along the supply chain. A browser
extension is required to manage blockchain accounts and
to sign transactions within those accounts.
2) Application Tier: The application tier encompasses

application-specific blockchains (the parachains) that allow
organizations to join with their blockchain, where they
can store immutable data. Through this, organizations can
create products and shipments. A shipment’s storage and

transportation conditions can be monitored and tracked
through the supply chain. The business logic is decomposed
in tightly coupled modules called pallets. Figure 2 depicts
the business logic pallets, each with its provided function-
ality that can be invoked via transactions on the parachain.
Additionally, an Off-Chain Worker (OCW) is used to
communicate the latest shipment status with the external
world. With the subsystem Cumulus, parachains can send
and receive cross-chain messages and enable validators
to validate their state transitions. RBAC, formalized by
Ferraiolo et al. [12], has become the predominant model
for user access control. RBAC is used in the FoodFresh
approach to control the access in terms of who can submit
transactions. The rbac pallet maintains an on-chain registry
of roles and the users to which those roles are assigned. A
role is a tuple with the name of a pallet and a permission
that qualifies the level of access granted by the role. A
permission is an enumeration with the variants Execute and
Manage. The Execute permission allows a user to invoke
a pallet’s dispatchable functions. The Manage permission
allows a user to assign and revoke roles for a pallet, and also
implies the Execute permission. Access control validation
is done within the transaction pool of a parachain.

Business Logic

Product
Tracking

RegistrarAdd member to
organization

Create role

Revoke access
RBAC

Assign role

Add administrator

Create organization

Document
Registry Register document

Product
Registry

Register product

Register shipment

Track scan operation
for shipment

Track delivery operation
for shipment

Figure 2. Overview of the business logic, decomposed into five pallets

3) Relay Tier: The relay chain, in the relay tier, is the
essential hub in the network of heterogeneous blockchains,
the parachains. The relay chain provides parachains with
parablock validation and allows them to communicate with
each other using the Cross-Chain Messaging (XCM) format
for cross-chain messaging.

Validators are the actors of the relay chain and have
three responsibilities: (1) to verify that the information
contained in parablocks is valid, such as the identities of
the transacting parties, (2) to participate in the consensus
mechanism to produce the relay chain blocks based on
validity statements from other validators, and (3) to
handle cross-chain messages. For validators to fulfill their
responsibilities, they are equipped with six primary runtime
modules. The inclusion module handles the inclusion and
availability of parablocks. In addition, shared manages
the shared storage and configurations for other validator

43Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 53 / 74

C
ur

re
nt

Pa

ra
ch

ai
n

Bl
oc

k

se
nd

 a
nd

 fe
tc

h
da

ta

O
ff-

C
ha

in
 S

er
vi

ce

ex
ec

ut
e

ha
nd

le
 o

ff-
ch

ai
n

co

m
pu

ta
tio

n

B
us

in
es

s
Lo

gi
c

su
bm

it
O

C
W

ex

tri
ns

ic

Tr
an

sa
ct

io
n

Po
ol

O
ff-

C
ha

in
 W

or
ke

r

su
bm

it
XC

M

ex
tri

ns
ic

ha
nd

le
 X

C
M

C
um

ul
us

A
P
P
LI

C
AT

IO
N

 T
IE

R

C
ur

re
nt

Pa
ra

ch
ai

n
Bl

oc
k

G
en

es
is

Pa

ra
ch

ai
n

Bl
oc

k

se
nd

 a
nd

 fe
tc

h
da

ta

C
ol

la
to

r

pr
od

uc
e

bl
oc

k

C
ol

la
to

r-
V
al

id
at

or

co
m

m
un

ic
at

io
n

ex
ec

ut
e

ha
nd

le
 o

ff-
ch

ai
n

co

m
pu

ta
tio

n

B
us

in
es

s
Lo

gi
c

su
bm

it
O

C
W

ex

tri
ns

ic

Tr
an

sa
ct

io
n

Po
ol

O
ff-

C
ha

in
 W

or
ke

r

su
bm

it
XC

M

ex
tri

ns
ic

ha
nd

le
 X

C
M

C
um

ul
us

C
ol

la
to

r

pr
od

uc
e

bl
oc

k

KEY MGMT

W
eb

3
Ex

te
ns

io
n

(A
cc

ou
nt

, P
riv

at
e

K
ey

)

su
bm

it
ex

tr
in

sic

sig
n

ex
tr

in
sic

 w
ith

pr

iv
at

e
ke

y

W
eb

 F
ro

nt
en

d
KEY MGMT

W
eb

3
Ex

te
ns

io
n

(A
cc

ou
nt

, P
riv

at
e

K
ey

)

su
bm

it
ex

tr
in

sic

sig
n

ex
tr

in
sic

 w
ith

pr

iv
at

e
ke

y

W
eb

 F
ro

nt
en

d

P
R
ES

EN
TA

T
IO

N
 T

IE
R

R
EL

AY
 T

IE
R

Sc
he
du

le
r

V
al

id
at

or
 N

od
e

X
C
M
P

In
cl
us
io
n

Pa
ra
s

Sh
ar
ed

va
lid

at
e

pa
ra

ch
ai

n
bl

oc
k

an
d

pr
od

uc
e

re
la

y
ch

ai
n

bl
oc

k

C
ol

la
to

r-
V
al

id
at

or

co
m

m
un

ic
at

io
n

V
al
id
ity

C
ro

ss
-C

ha
in

 M
es

sa
gi

ng
 C

ha
nn

el

G
en

es
is

R
el

ay
 C

ha
in

B

lo
ck

C
ur

re
nt

R
el

ay
 C

ha
in

B

lo
ck

O
rg

an
iz

at
io

n
A

V
al

id
at

or
s

O
rg

an
iz

at
io

n
B

V
al

id
at

or
s

O
rg

an
iz

at
io

n
A

O
rg

an
iz

at
io

n
B

R
el

ay
 C

ha
in

 M
es

sa
gi

ng
R

el
ay

 C
ha

in
 M

es
sa

gi
ng

C
ro

ss
-C

ha
in

 M
es

sa
gi

ng

G
en

es
is

Pa

ra
ch

ai
n

Bl
oc

k

Le
ge
nd Pa

ra
ch

ai
n

Bl
oc

k

R
el

ay
 C

ha
in

 B
lo

ck

C
ro

ss
-C

ha
in

 M
es

sa
ge

R
PC

 (W
eb

so
ck

et
)

R
ES

T
AP

I (
H

TT
P)

M
es

sa
gi

ng

Bl
oc

kc
ha

in

Fu
nc

tio
n

C
al

l

C
on

se
ns

us

Figure 3. Overview of our approach. The architecture is composed of three tiers: presentation, application, and relay.

44Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 54 / 74

modules. The paras module manages the chain-head and
validation code for parachains. The scheduler is responsible
for parachain scheduling, as well as validator assign-
ments for the consensus mechanism. The validity module
addresses secondary checks and disputes resolution for
available parablocks. Finally, the XCMP module handles
cross-chain messages and ensures that the messages are
relayed to the receiving parachain.
An integral part of cross-chain communication is the

establishment of a cross-chain messaging channel between
the validators of two communicating parachains. Burdges
et al. [13] have stated that a messaging channel aims to
guarantee four things: “First that messages arrive quickly;
second that messages from one parachain arrive to another
in order; third that arriving messages were indeed sent
in the finalized history of the sending chain; and fourth
that recipients will receive messages fairly across senders,
helping guarantee that senders never wait indefinitely for
their messages to be seen”.

The act of removing an organization from the ecosystem
does not necessitate the elimination of its associated
parachain. This concept is facilitated by the existence of
a systematic protocol, specifically the modification of the
relay chain validator registry. Through the processes of
registration and deregistration, organizations are added to
and removed from this registry. Structurally, this registry
is characterized as a hash map, a data structure that
comprises paired elements: a unique identifier (ID) and
the corresponding parachain ID. It should be noted that
the relationship between organizations and their parachains
is fundamentally non-destructive, meaning that the alter-
ations in the organization’s status within the ecosystem
do not directly impinge on the existence of the related
parachain.

C. Substrate Framework

FoodFresh is built with substrate [14], a modular frame-
work for building blockchains. A nontechnical reason for
using substrate is its flexibility. Organizations must be able
to adapt their blockchain system to meet the supply chain
compliance requirements of regulatory bodies. Regulations
happen frequently, especially in food supply chains, as
shown in Section III-A. Due to the modular nature of
substrate-based blockchains, developers have the necessary
freedom to swap or add modules to their blockchain
runtime.
Technical reasons include the chosen programming lan-

guage, the software design, and the off-chain abilities.
Substrate is implemented in the programming language
Rust, which aims to provide performance (comparable
to C++), reliability, and better means of productivity. In
terms of reliability, Rust manages resources (including mem-
ory, files, network, and thread) and avoids problems, such
as resource leaks or data races. Finally, for productivity,
Rust provides Integrated Development Environment (IDE)
support and type inspections. Furthermore, substrate is

generic by design, meaning transactions are abstracted
to so-called extrinsics (things that happen outside the
chain) and intrinsics (things that happen inside the chain).
Transactions are stored as binary large objects. As a result,
users can transfer and store any type of data on the
blockchain.
Nonetheless, with FoodFresh as a permissioned

blockchain, concerns about off-chain processes need to
be raised. For instance, Helliar et al. have made the
assumption that “off-chain processes may become a major
barrier for permissioned blockchains” [15]. Using substrate,
off-chain data can be queried or processed before it is
included in the on-chain state through OCW, a collator
node subsystem that allows for the execution of long-
running and possibly nondeterministic tasks. Moreover,
an OCW does not influence the block production time.

D. Deployment

FoodFresh requires validator nodes for the relay chain
and collator nodes for the parachains to be set up by the or-
ganizations participating in a supply chain network. Nodes
can be deployed locally or remotely via a cloud service
provider, such as Amazon Web Services. Before parachains
can participate in cross-chain communication, they need
to be registered on the relay chain. The following rule is
defined in the Collator Protocol [16], which implements the
network protocol for the Collator-to-Validator networking:
To accept n parachain connections, n+ 1 validator nodes
need to run on the relay chain. For the FoodFresh prototype,
two relay chain nodes are started to connect one parachain
node. Further, the relay chain needs to obtain the hex-
encoded parachain’s genesis state (exported from a collator
node) and the WebAssembly runtime validation function
to validate parablocks.

E. Limitations

While the FoodFresh approach offers a comprehensive
framework for leveraging blockchain technology in food
supply chain management, there are several potential
limitations and areas of concern, including:
Scalability : Parachains might face scalability challenges,
depending on the scale of the organizations involved and
the number of transactions. These issues are typically
dependent on their specific implementation, the consensus
mechanism used, and the volume of transactions they
handle. If an organization’s parachain is not optimized
to handle large quantities of data or high transaction
throughput, it could become a bottleneck that slows down
the overall system’s performance.
Complexity of Implementation: The FoodFresh approach,
with each organization having its own blockchain and
one relay chain for cross-communication, increases the
complexity of the system compared to commonly used
single blockchains. This presents significant challenges in
terms of maintenance and understanding the system for
non-technical stakeholders.

45Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 55 / 74

Adoption Challenges: Organizations might be reluctant to
adopt the proposed approach due to perceived risks, lack
of understanding, or the costs involved in implementation
and training.
Evaluation: The software prototype is implemented and
available on GitHub [17] under Apache License 2.0. A
key part of designing a supply-chain network is ensuring
the network is versatile enough to cope with future risks.
The current solutions to analyze and mitigate endogenous
risks lack continuous monitoring, as a result, risks from
irregularities (e.g. abnormal order quantities by retailers)
remain mostly undetected. Thus, a core part of our
future evaluation is to answer whether we can develop
an approach to detect abnormal activity in a multi-chain
scenario. Our plans will focus on capturing the variability of
transfer volume in cross-chain messaging in order to detect
abnormal activity in blockchain-enabled inter-institutional
supply chain networks.

V. Conclusion and Future Work

Developing long-term and increasingly collaborative
relationships among supply chain participants requires
advanced technological solutions to retain a competitive
edge. Blockchain is presented as a promising technology
that might increase supply chain visibility and improve
efficiency. We have presented FoodFresh – a multi-chain
consortium for an inter-institutional food supply chain
network. This approach overcomes the challenges associated
with current approaches (e.g., IBM Food Trust), such as
lack of controlled transparency and restricted interoper-
ability among supply chain participants. By implementing
a multi-chain consortium with an overseeing decentralized
hub, FoodFresh allows organizations to maintain their inde-
pendent blockchains, thereby preserving data sovereignty
and enabling effective data exchange across blockchain
boundaries. The design approach used for FoodFresh could
apply to other networks that require the distribution
or transfer of sensitive data. Future work could apply
the approach to other industries, for instance, healthcare.
The safe and secure transfer of patient health records or
other sensitive information between healthcare providers,
insurance companies, and the patients themselves is a major
concern in the healthcare industry. The presented approach
could allow each party to maintain control over their data
while enabling necessary data sharing.

References

[1] M. A. Bourlakis and P. W. H. Weightman, Food supply
chain management. John Wiley & Sons, 2008.

[2] IBM Corporation, “About IBM food trust,” Jun. 2019,
[Online]. Available: https://www.ibm.com/downloads/
cas/8QABQBDR (visited on 05/23/2023).

[3] F. Longo, L. Nicoletti, A. Padovano, G. d’Atri, and M.
Forte, “Blockchain-enabled supply chain: An experimental
study,” Computers & Industrial Engineering, vol. 136,
pp. 57–69, 2019.

[4] K. F. Schulz and D. Freund, “A Multichain Architecture
for Distributed Supply Chain Design in Industry 4.0,”
in International Conference on Business Information
Systems, Springer, 2018, pp. 277–288.

[5] C. P. Neumann, Distributed Case Handling. München:
Verlag Dr. Hut, 2013, isbn: 9783843909198.

[6] C. P. Neumann, F. Rampp, M. Daum, and R. Lenz, “A
Mediated Publish-Subscribe System for Inter-Institutional
Process Support in Healthcare,” in Proc of the 3rd ACM
Int’l Conf on Distributed Event-Based Systems (DEBS
2009), Nashville, TN, USA, Jul. 2009, 14:1–14:4.

[7] C. P. Neumann and R. Lenz, “The alpha-Flow Approach
to Inter-Institutional Process Support in Healthcare,”
International Journal of Knowledge-Based Organizations
(IJKBO), vol. 2, no. 4, pp. 52–68, 2012.

[8] C. P. Neumann and R. Lenz, “A Light-Weight System Ex-
tension Supporting Document-based Processes in Health-
care,” in Proc of the 3rd Int’l Workshop on Process-oriented
Information Systems in Healthcare (ProHealth’09) in
conjunction with the 7th Int’l Conf on Business Process
Management (BPM’09), Ulm, DE, Sep. 2009, pp. 557–568.

[9] J. Van der Vorst, A. Beulens, and T. van Beek, “Innova-
tions in logistics and ICT in food supply chain networks,”
Innovation in Agri-Food systems, pp. 245–291, Jan. 2005.

[10] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang,
“An overview of blockchain technology: Architecture,
consensus, and future trends,” in 2017 IEEE International
Congress on Big Data, IEEE, 2017, pp. 557–564.

[11] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia,
“A Survey on Blockchain Interoperability: Past, Present,
and Future Trends,”ACM Computing Surveys (CSUR),
vol. 54, no. 8, pp. 1–41, 2021.

[12] D. Ferraiolo, D. R. Kuhn, and R. Chandramouli, Role-
based access control. Artech house, 2003.

[13] J. Burdges et al., “Overview of polkadot and its design
considerations,”ArXiv, vol. abs/2005.13456, 2020.

[14] Parity Technologies, “Substrate - The Blockchain Frame-
work for a Multichain Future,” 2020, [Online]. Available:
https://substrate.io/ (visited on 05/23/2023).

[15] C. V. Helliar, L. Crawford, L. Rocca, C. Teodori, and M.
Veneziani, “Permissionless and permissioned blockchain
diffusion,” International Journal of Information Manage-
ment, vol. 54, pp. 102–136, 2020, issn: 0268-4012.

[16] Parity Technologies, “Collator Protocol,” Jun. 2021, [On-
line]. Available: https://paritytech.github.io/polkadot/
book/node/collators/collator-protocol.html (visited on
05/23/2023).

[17] P. Stangl and C. P. Neumann, “FoodFresh,” May 2023,
[Online]. Available: https ://github .com/cyberlytics/
FoodFresh (visited on 05/23/2023).

46Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 56 / 74

A Survey of Multiple Clouds: Classification,
Relationships and Privacy Concerns

Reem Al-Saidi
School of Computer Science

University Of windsor
Windsor, Canada

Email:alsaidir@uwindsor.ca

Ziad Kobti
School of Computer Science

University Of windsor
Windsor, Canada

Email:kobti@uwindsor.ca

Abstract—When major Cloud Service Providers (CSPs) net-
work with other CSPs, they show a predominant area over
cloud computing architecture, each with different roles to serve
user demands better. This creates multiple clouds computing
environments, which overcome the limitations of cloud computing
and bring a wide range of benefits (e.g., avoiding vendor lock-in
problem). Numerous applications can use various multiple clouds
types depending on their specifications and needs. Deploying
multiple clouds under hybrid or public models has introduced
various privacy concerns that affect users and their data in a
specific application domain. To understand the nuances of these
concerns, the present study conducted a survey to identify the
various classifications of multiple clouds types and then extend
the cloud entities’ relationships to behave in different multiple
clouds settings. The survey results outline users’ privacy and data
confidentiality concerns in multiple clouds types under public and
hybrid deployment models.

Keywords-multi-cloud; federated cloud; cross-federated
cloud; hybrid federated cloud; inter-cloud; cloud interop-
erability; privacy; trust.

I. INTRODUCTION

Utilizing numerous clouds has emerged as an alternative
way to improve cloud computing capacity for massive and
real-time data [1] [2]. Collaboration and communication be-
tween clouds, known as ”Cloud Interoperability” will improve
data reliability and resource availability, resulting in high-
quality services [3]. Moreover, allowing clouds to connect
brings further benefits to the cloud users by avoiding vendor
lock-in and getting access to widely distributed resources
across different clouds with good performance and legislation-
compliant services to the users [3]–[6]. Different applications
which produce huge amounts of data realize the importance of
multiple clouds to outsource their data and services for better
processing and analysis. For example, in the Internet of Things
(IoT) applications outsourcing the data to different clouds
for further processing overcomes the devices’ limited storage
and processing capacities [2]. The devices are connected to
the internet clouds to accommodate the massive amount of
the produced data by each device; processing the data at the
edge provides low latency, efficient computation capabilities,
and storage capacities [2]. Despite multi-cloud’s resource
availability, data reliability and scalability [3]–[6], maintaining
cloud interoperability while preserving users’ privacy and

data security is still a significant challenge [3]. Without the
users’ consent, their data can be stored in another CSPs with
different access rules and data processing requirements [7]–
[10]. Furthermore, it becomes difficult to guarantee that data
is effectively protected through its entire life-cycle, including
data creation, storage, processing, transfer, and deletion; dif-
ferent CSPs may have different security policies, methods, and
procedures for data processing and storage [7]. It is also more
challenging to guarantee the consistency of security policies
across all CSPs during data transfer and access, and protect the
data against potential threats [16]–[18]. Moreover, identifying
the access roles and sharing privileges among different CSPs
while maintaining user-sensitive attribute without performance
degradation is another critical concern while deploying multi-
ple clouds [22].

Different application domains benefit from multiple clouds
deployments [2] [19] [20] [22]. In the health era, various health
institutions can share their data and collaborate with other
researchers and healthcare professionals, enabling real-time
collaboration and improving personal health and treatments
[22].

While multi-cloud facilitates seamless data exchange and
sharing across different health institutions, it also raises pri-
vacy and security concerns concerning data access and sharing
processes [58]–[61] [63], [64]. Unauthorized and unrestricted
access could expose patient information, compromising pri-
vacy and confidentiality. Moreover, the unrestricted data shar-
ing beyond the intended purpose increases privacy risks and
the potential for data misuse. Considering the privacy and se-
curity issues across various cloud deployment models through
different applications reduces the data disclosure risks and
highlight the possibilities of applications vulnerabilities.

Without question, user privacy and data security are of
the highest importance in the digital age and have attracted
much more attention with the adoption of multiple clouds
computing. The success of such adoption towards building
trustworthy multiple clouds environments is primarily driven
by cloud user privacy and data security [9] [10].

There is no generalization for specific security and privacy-
preserving approaches in the multiple clouds. It is mainly
based on a specific context and the entities involved under
a specific multiple clouds type.

47Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 57 / 74

The main contributions of this survey are the following:
• Show the classification of multiple clouds types from the

state-of-the-art work.
• Investigate the challenges for public and hybrid deploy-

ment models in multiple clouds types.
• Extend the single cloud entity’s relationships to behave

in different types of multiple clouds environment.
• Identify the privacy concerns in the multi-cloud, feder-

ated, cross-federated, and inter-cloud under public and
hybrid deployment models at some application domains.

The rest of this survey is organized as follows: In Section
II, we introduce different types of multiple clouds and their
corresponding classification. In Section III, we highlight dif-
ferent difficulties and challenges associated with the various
multiple clouds deployment models. In Section IV, we extend
the cloud entities relationships to behave under different kinds
of multiple clouds. In Section V, we explain the privacy issues
in different multiple clouds types under hybrid deployment
model. Where appropriate, we reflect these privacy concerns
on some applications. Moreover, we highlight the main chal-
lenges of different cloud types under specific deployment
models. In the end, in Section VI, we summarize the survey
work and show the future directions.

II. MULTIPLE CLOUDS CLASSIFICATION

Multiple clouds mean the connection of more than one
cloud. It is similar somehow to the set of an inter-connected
cloud of clouds. In [4], they introduced the inter-connected
global clouds of clouds, it is called the ”Inter-Cloud”, in which
clouds interact and share the resources and the underlying
infrastructure to meet the user’s on-demand requests. Inter-
cloud dynamically allows the management of resources and
distributes the loads among different clouds for better resource
utilization and service performance. Most researchers consider
multiple clouds the same as inter-cloud [1] [11] [12]. Both are
classified into multi-cloud and federated cloud based on how
clients interact with the clouds.

Inter-cloud is defined as a ”maximal set of inter-connected
clouds so that no other organization exists outside the inter-
cloud domain” [12]. However, some researchers consider inter-
cloud as a federated cloud [13] while others [12] claim that
the federated cloud is a type of inter-cloud. In [13], they
stated the main differences between federated and inter-cloud;
the federated cloud is a pre-requisite to the inter-cloud. In a
federated cloud, all federated members would have a common
perceptive of the applications deployment process [29] [30]
while the inter-cloud is based on standards and open interfaces
[13]. Federated cloud promises to deploy in different fields,
including the academic domain, by building the community
cloud with grid computing [19] [20] [28]. Others [16] consider
federated cloud as a multi-cloud with a hybrid deployment
model.

Inter-cloud is classified into multi and federated clouds [11]
[12]. Multi-cloud defines in [15] as ”an evolution of cloud
computing where different services like Software as a Service
(SaaS), Platform as a Service (PaaS), and Infrastructure as a

Service (IaaS) are provided based on the organization demands
from various cloud service providers”.

Multi-cloud enterprises can get services from more than one
CSP. It highlights two subcategories: the hybrid and rain cloud
[16]. In a rain cloud, each cloud member completes a Service
Level Agreement (SLA) with other members enabling differ-
ent members to work together when data get too large for any
of them to handle [17]. SLA works only in a single or private
organization, and it is not reliable under public cloud systems
[17] [45]. Based on the resources and service provisioning by
the broker, multi-cloud is classified into two implementation
categories: services and libraries [18]. The federation term
refers to the organizational structure where multiple enterprises
have set up collaborative agreements known as ”Federated
Level Agreements (FLA)” [19].

The federation facilitates the adoption of cloud computing
within different companies; the private cloud is built internally
within the enterprises’ scope and connected when necessary to
the public cloud for on-demand resource leasing [14] [19] [20].
The federation should be capable of allowing location-free
virtual applications deployment across federated sites. These
applications can migrate from one site to another partially
or completely [19]–[21]. The objective of the federation is
to allow collaboration and resource sharing among different
cloud providers. It is more appropriate to deploy the federated
cloud when a few businesses are willing to cooperate and share
their resources to serve the cloud user better [19]–[21].

Signing FLA is simpler when there are a few organizations,
it gets challenging when there are several. The user access to
the CSP is transparent; which means that users benefit from the
federated cloud without being aware of which cloud provider
supports the service [21]–[23]. Federation construction among
different service providers has many benefits (e.g., increasing
the economy of scale, efficient use of the resources and assets,
and expansion of providers capabilities) [23]. Maintaining
security, privacy, and independence between the federation
members is necessary for trustworthy cloud federation con-
struction. There are two types of federated cloud: horizontal
federation and cross-cloud federation [1] [24].

The horizontal federation takes place on one level of the
cloud stack, e.g., the application stack. Customers may profit
from lower costs and better performance, while providers
may offer more sophisticated services [1] [23]–[26]. The
disadvantage of the horizontal federation is the lack of services
scalability and diversity, it can not dynamically meet the
changing customers’ needs in the application.

Most CSPs that offer comparable services are horizontally
federated; the members of the federation offer slightly different
services. Thus, limiting the ability of the federated members
to scale once user demands for new services increase. Further-
more, while CSPs compete with one another to increase their
benefits and reputation, they are reluctant to pool resources or
work together in specific contexts, thus limiting the diversity
of services offered [23]–[26].

From the developer’s point of view, the infrastructure man-
agement of federated cloud is easy to develop and maintain

48Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 58 / 74

through the different federation members via a standard Ap-
plication Programming Interface (API) [11].

The federation achieves a traffic load balancing among the
members to accommodate unusual spikes in resource demands
[23] [24]. Moreover, building a federation is less costly than
each organization expanding its infrastructure [1] [23] [24].
Implementing a federated cloud overcomes the vendor lock-in
problem associated with a single cloud and provider integra-
tion concerns [24]. However, federation still suffers from the
contention problem where in [27]–[30] addressed the issue and
suggested a solution accordingly.

There are many challenges with the federation construction
(e.g., performance and disaster recovery through co-location
and geographic distribution, expressing the FLA requires
translating the abstract requirements to understandable proper-
ties for effective organization implementation, and supporting
the vertical expansion of the service layer [24]).

In the cross-cloud federation [6], two or more unfamiliar
CSPs agree to collaborate during run time. It provides dynamic
and diverse benefits to CSPs for expanding their service at run
time to better serve the users changing demands. Still, the main
challenge in the cross-cloud federation is building the chain
of trust from the cloud user to the home cloud, followed by a
series of foreign cloud-transitive trust [1]. Another challenge
is finding a standardized interface for resource access among
cloud domains each with different architectures, policies, and
implementations [6].

In [1], they show the several phases of the cross-cloud
federation, starting from the discovery of another CSP, called
”Foreign Cloud,” that wishes to share its federated resources.
The home CSP triggers the need for resource leasing as
it can not serve the user’s requests. The foreign CSP has
the minimum user specifications, it will lease its additional
federated resource, and be part of the federation construction.
The foreign CSP can either have the same requested service
forming the intralayer or can pass the request through its
stack and delegate the process to the middleware to install
the required service forming the interlayer [26].

A Cross-Cloud Federation Manager (CCFM) is the trusted
party that makes the negotiations with the foreign cloud,
starting from the discovery and resource matching ending with
the resource access. CCFM bridges the gap between different
service providers through various stages [1] [6].

In conclusion, several perspectives exist on classifying mul-
tiple clouds; some consider federated clouds as inter-cloud
[13]. Others disagree and claim that federated cloud is a type
of inter-cloud [12]. The following classification outlines our
categorization of multiple clouds; the inter-cloud is the main
category of multiple clouds, classified into multi-cloud and
federated clouds. The federated cloud has two main subtypes:
horizontal federation and cross-cloud federation.

From our perspective, Figure 1 summarizes the classifica-
tion of different cloud types.

Figure 1: Multiple clouds classification.

III. DIFFICULTIES WITH MULTIPLE CLOUDS DEPLOYMENT
MODELS

Multiple clouds consist of different elements that can be
varied based on specific cloud types and application domains
[30]. Moreover, there are different deployment models, includ-
ing private cloud, public cloud, hybrid cloud, and community
cloud [31]. Each deployment model implemented among dif-
ferent types of multiple clouds introduces a wide variety of
challenges [32].

Private cloud [21] [31] [32] is a specific computing infras-
tructure owned and controlled by an organization (enterprise)
to serve a group of users in a specific application domain. It
can be classified in two main categories:

• Cloud portfolio, in which more than private cloud belongs
to the same organization share the same private cloud
infrastructure. They didn’t compete with each other as
they belong to the same organization domain. They can
easily initiate cooperation requests with each other and
increase the organization revenues [12].

• Independent, a separate cloud each with its own infras-
tructure and resources and not forming a part of cloud
portfolio [21] [32] .

Generally, the private cloud has several challenges and
issues including vendor lock-in, trust, security and privacy,
cost, scalability and availability [21] [32]. Public cloud [33]–
[35] in which prominent vendors and well-known service
providers support a wide range of competing services in the
marketplace. The services are available to a wide range of
interested users upon subscription. The public cloud deploy-
ment model supports a multi-tenant feature of cloud computing
where different users can share the same pool of storage
infrastructure [33]–[36] [46].

Still, deploying the public cloud faces different challenges
and concerns [31] [32] [34]–[36], mainly the trust issue
becomes the most evident one under the uncertainty and loss
of control in the multiple clouds environment. Building trust
in the public cloud towards their users will assure them about
their data confidentiality and cloud provider commitment and
ethical behavior. Implementing a secure infrastructure while
keeping the privacy of user attribute and data with a high level
of assurance is the first step towards building a trustworthy
multiple clouds environment. However, the communication

49Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 59 / 74

between private and public clouds forms a hybrid deployment
model known as “Cloud bursting” in which a private cloud
can extend its resource by initiating a request to an external
provider as it can’t serve its user demands [37]. Even de-
ploying the hybrid model shows promise of enabling cloud
interoperability and scalable services provisioning, it still faces
many challenges and issues [37]–[40]. The main challenges
and concerns in hybrid deployment model are:
1. Trust [38] [39] : trusted entities like a broker or middleware
facilitate communication among cloud entities and monitor
resource provisioning and access processes between private
and public clouds. Cloud users should trust the public cloud
provider as they will lose control over their outsource data and
services running over the public cloud. A high degree of trust
is required so that more users can join a public provider and
benefit from its services and applications.
2. Security and privacy [40]: different security regulations
and privacy compliance control user data and cloud provider
behavior. Due to the lack of user control and the high level of
users’ uncertainty about the public cloud’s commitment. Dif-
ferent privacy and security techniques should be implemented
during all data life cycles highlighting different contexts and
scenarios.

On the community cloud deployment, resources are owned
and controlled by different cloud providers in the community
[41]. It has a security and privacy concerns as same as the
other deployment models [41].

IV. ENTITIES’ RELATIONSHIPS ON MULTIPLE CLOUDS

NIST [42] defined the cloud’s five main components: cloud
users/consumers, providers, carriers, auditors, and brokers.
Each of these entities has different tasks based on a specified
setting. We will consider the same entities in the context of
multiple clouds and extend their interactions and relationships
to behave in a distributed manner. Multiple clouds consist
mainly of cloud user(s), cloud provider(s), cloud auditor(s),
cloud trusted party as broker(s) or identity providers (IdPs),
and cloud carrier(s).

The entities have a context relationship determined by user
activities and the type of multiple clouds in use. They have the
same definition provided by NIST [42] with some extensions
to accommodate the distributed nature of multiple clouds. The
elements form the multiple clouds, and their definitions [42]
are listed below:

1) Cloud user/consumer(s) are an enterprise, or individuals
with internet access looking for better services to meet
their demands.

2) Cloud providers/ data center(s) are vendors that offer
different types of services (platform, infrastructure, stor-
age, software, artificial intelligence functionalities) on
different domains. It supports cloud users with different
service and resource leasing based on a pre-defined
signed agreements.

3) Cloud-trusted entities facilitate a reliable service deliv-
ery between users and providers or among providers

Figure 2: Multiple clouds types entities relationship.

themselves. The trusted entities vary based on the type
of cloud, e.g., brokers used in the federated, inter-cloud,
and cross-cloud federation with an intermediate role.
The trusted entities can assist the customer in selecting
the most suitable service, manage the dimensionality,
heterogeneity, and user uncertainties towards their data
and the CSPs [43].

Brokers in inter or meta cloud can handle the dis-
covery of suitable resources and subsequent data life
cycle management [11]. In the context of a cross-cloud
federation, the trusted party CCFM is used in the dis-
covery, resource matching, and authentication between
home and foreign clouds when the first is saturated
in its resources [25]. IdPs act as trusted entities in
the cross-cloud federation to establish trust and secure
communication between home and foreign clouds for
resource access and sharing [1] [25].

4) Cloud auditor(s) perform an assessment of services, per-
formance and security to comply to the regulations and
the pre-defined agreements between different entities in
the cloud.

5) Cloud carrier(s) support the connectivity and transfor-
mation of the cloud services in the underlying network
infrastructure across different clouds.

The last two entities are also mentioned in [44]. Different

50Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 60 / 74

types of relations control the communication among multiple
clouds entities. We use a formula notation to analyze the
interactions and relations between various cloud entities under
different types of multiple clouds, which facilitates describing
the inputs, outputs, and transformations that take place during
a specific interaction. Moreover, the formula notation will
provide a structured model approach to describe sophisticated
scenarios in multiple clouds [42] [44]. The relation depends on
a specific application context and the corresponding multiple
clouds type deployed. Figure 2: (A, B, C, D) shows the
different entities’ relationships under different multiple clouds
type. A and B describe entities relationship in the multi-cloud
with a hybrid deployment model. C illustrates the cross-cloud
federation entities relationship, and finally, D represents the
federation entities interaction relationship.

The following are the main entities and notations that used
in explaining the four main relations depicted in Figure 2.

Main entities: cloud user(s), cloud provider(s), cloud
broker(s), middle ware, cloud auditor(s) and cloud carrier(s).

Notation: cloud user i (Ui), cloud provider i (CPi), relation
ij R(ij): U(i) =⇒ CP (j) a relation from user i to cloud
provider j, where i ∈ {1, 2, 3, . . . , n}, j ∈ {1, 2, 3, . . . ,m}
and n,m ∈ (N). N is the set of natural numbers.
It does not necessarily for n and m to be equal due to the
cloud multi-tenancy feature [46].

A. Multi-cloud setting: individual user access a public cloud
service provider.

Cloud users contact different cloud providers for better
services provisioning and extra resources access. They can
request various services from various CSPs to satisfy users’
demands and needs. Equation (1) represents Ri between Ui

and CPj

Ui =⇒ CPj (1)

, where U(i) represent an individual user. Moreover, the
SLA controls the communication and the amount of leased
resources between cloud users and CSPs. Also, a private cloud
that needs extra resources to run its application and better meet
its clients’ needs can initiate a request to the public cloud.
Figure 2: (A) demonstrates user 1 accessing a resource from
a public cloud provider using an electronic device.

Trusted entities can be involved to monitor communication
as a broker or middleware [45]. Cloud carriers and auditors
are applied to assess the service delivery, the privacy and
security compliance while supporting the connectivity for
the underlying network infrastructure [42]. These have same
rules as the single cloud, they can be replicated through the
multiple clouds architecture design to behave in a distributed
environment and avoid single point of failure. Noted that a
cloud provider can serve different users at the same time,
meeting a multi-tenancy feature of the cloud [46].

B. Multi-cloud setting: enterprise with its own private cloud
access a public cloud service provider.

Users can be an individual working in an organization
that holds its own private cloud. However, at specific point of
time the private cloud could ask for extra resources or services
from a well known cloud vendor, public cloud. This forming
a hybrid cloud known as ”Cloud Bursting” [37].

Equation (2) represents Rij between CPi and CPj .

CPi =⇒ CPj (2)

However, a cloud provider can serve different users requests
at the same time in a sharing and distributed environment
maintaining the multi-tenancy feature. Figure 2: (B) shows
user 2,the enterprise, running its own private cloud access
resources from public cloud.

C. Cross cloud federation.

A cloud provider that lacks resources at specific point of
time, home cloud, can dynamically request and get access to
the resources from foreign cloud. IdP acts as a trusted point
between home and foreign clouds for a secure communication
and resource access. A CCFM is another involved trusted party
for resource discovery, matching and authentication between
the two clouds [1]. The contract for the communication obli-
gation and rules are established dynamically and monitored
by the cloud auditor or another motioning technique based on
the cloud setting. Cloud auditors assess the service delivery
performance and the compliance to the signed agreements.
The cloud carrier supports the connectivity for the underly-
ing network infrastructure. Figure 2: (C) shows the entities
relationship in a cross-cloud federation where user 1 access
can not be satisfied by his/her home cloud. Thus, initiated a
dynamic request to foreign cloud that might serve user request.
Equation (3) represents a dynamic relation denoted by RijD
between CPi (home cloud) and CPj (foreign cloud) [Cross-
cloud federation].

CPi(Home) =⇒ CPj(foreign) Dynamic (3)

D. Cloud federation.

In a federated cloud, when a cloud provider has a shortage
on it resources and limitation in it underlying infrastructure
to run an application, it can statically sign an agreement
with another provider to overcome the resource shortage and
limitation on its underlying infrastructure [19]–[21], forming
a federation.

A cloud broker facilitates collaboration and monitoring
across different federation members [43] [45]. Cloud auditors
assess the service delivery performance and the compliance
to the signed agreements. The cloud carrier supports the
connectivity for the underlying network infrastructure.
Figure 2: (D) shows the entities relationship in a cloud
federation where user 3 can transparently access different

51Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 61 / 74

services offered by federated members.
Users’ access can be transparently served by any federation

members that statically pre-signed an agreement regulating
their communication and service provisioning. Equation (4)
represents a static relation denoted by RijSt between CPi and
CPj .

CPi =⇒ CPj Static (4)

V. PRIVACY CONCERNS IN DIFFERENT TYPES OF MULTIPLE
CLOUDS

Privacy concerns become the most critical challenge in
multi-cloud while maintaining cloud interoperability. In this
section, we will explore the privacy concerns raised by
various types of multi-cloud.

A. Multi-cloud with hybrid deployment model

Many enterprises with private cloud infrastructure access
different services offered from various public cloud providers.
The enterprises get many benefits; avoid vendor lock-in with
better and cost-effective resource provisioning to their users,
greater flexibility, increased efficiency, and more scalability
[30] [38]. We assume no trusted parties are deployed with
this model as it is difficult to establish and maintain trust
and its corresponding relationship in the open, distributed
and changing multiple clouds environment. Other privacy
challenges include setting the regulations, pre-defined agree-
ments, policies construction, cloud provider commitments,
risk management, and ethical behavior towards the involved
entities. We focus on user privacy as they are the main actors in
the multi-cloud setting. However, the multi-cloud with hybrid
deployment model, from our point of view, raises two primary
users’ privacy concerns:
1) Users’ authentication and access privacy.

Users’ have to authenticate themselves to access their
outsourced data and different services from the public cloud
providers. Users can be an individual with their own electronic
device, denoted in Section IV by Ri relation, or users can be
enterprises with their own private cloud where access are from
private cloud to hybrid cloud, denoted in Section IV by Rij.

However, the authentication process reveals user identities,
locations, habits and attributes to the cloud provider. There
is no guarantee for cloud providers’ ethical behavior towards
cloud users and their corresponding attributes. Attackers can
also monitor user behaviors and access patterns to derive
sensitive information about the users and their valuable assets.

In the Cloud-based Vehicular Ad-Hoc Networks (VANET),
each sensor node gathers real-time vehicle information and
monitors its traffic route—all of this information is outsourced
to the cloud to provide different cloud services [75]. Moreover,
the sensor nodes can communicate with each other. The com-
munication messages are aggregated to broadcast to a specific
group of users in the VANET framework [76]. Through the
various forms of communication, each vehicle must indepen-
dently authenticate itself to sensor nodes to access a particular
service. A typical vehicular communication message contains

the vehicle’s location, direction, and speed. The malicious
entity might extract crucial driver information from those
communications and use it to impersonate other vehicles
identity and deliver false messages that could cause collisions
and, at worst, the loss of human lives. Moreover, an intelligent
transportation system needs access to the vehicle’s location to
generate real-time traffic reports and suggest various Points Of
Interest (POI) [75] [76]. For such a purpose, driver semantic
data for the visited places and current locations had to be
extracted. These sensitive details reveal the user’s lifestyle and
routine. Keeping the privacy of the vehicle or sensor node’s
identity and information during the communication while
enabling each node to authenticate itself privately without
disclosing its associated information is cruical in VANET [77].

To sum up, the main privacy concerns in the multi-cloud
setting are user authentication and access privacy, which entail
identity, attributes, access patterns, and location privacy. These
privacy issues are reflected during the vehicle authentication
and communication procedure in the cloud-based VANET.
Additionally, creating a traffic report in VANET necessitates
access to the vehicle’s location, which can reveal user habits.
2) Users’ data security.

Users’ lose control over their outsourced data. If it is
transfer in plain format, it will be posed to a different type of
disclosure and attacks. Also, it can be easily modified, which
affects its integrity and completeness. Encrypted data before
outsourcing to maintain its confidentiality adds extra load to
the enterprise side, which usually has limited performance
capacities and storage space. Moreover, the encryption of the
data requires pre-communication between private and public
clouds to set private and public keys in the case of public
key techniques. More advanced cryptographic techniques (e.g,
full homomorphic encryption [57]) are used to encrypt the
data to permit operations over the outsource encrypted data.

However, those advanced techniques add extra complex-
ity to the infrastructure which could affect the application
usability and performance. Moreover, users’ data transferred
through other cloud providers could face different policies and
access procedures. Another privacy concern is the operation
performed by authorized entities over the outsourced data.

Querying the data stored in distributed database cloud stor-
age poses various privacy concerns. We demonstrate query pri-
vacy in the multi-cloud genomic application. Many authorized
researchers and health organizations query the outsourced
encrypted genome data stored in different cloud databases.
The query statement searches a cloud database first to meet
specific criteria stated in the conditional part of the query and
get the result back.

The query details include contents (e.g., conditional part
and indices position), outcome, target, and user access pattern.
In the context of genomic data, knowing any query contents
by unauthorized or malicious entities will reveal sensitive
information (e.g., in the genomic sequence, the location of
a specific DNA pattern will indicate the type of patient
disease). The specific pattern and location detected in the
patient determine the classification of the disease in some

52Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 62 / 74

forms of diabetes, such as Maturity-Onset Diabetes of the
Young (MODY) [72]. In [73] [74], they succeeded in securely
querying private in genomic datasets to discover which spe-
cific genomic alterations are associated with a disease, thus
increasing the availability of these valuable datasets. Ensuring
the privacy of the query so that the cloud provider will not be
able to deduce any information from the query except what
is allowed to do, and the researcher will not know any other
information on the genomic database. Finally, choosing the
most appropriate privacy-preserving techniques that could be
applied efficiently, securely, and scalably when inquiring about
genomic data is crucial in the genomic domain.

To summarize, user data security entails its confidentiality,
integrity, availability, and access rights management, which
are other critical privacy concerns in the multi-cloud hybrid
deployment model. Moreover, different privacy concerns can
be determined based on a specific application context, data
sensitivity, application requirements, and entities involved in
a particular cloud type.

B. Federated cloud.

1) Horizontal federation architecture.
Cloud providers set pre-defined rules and policies to inte-

grate and establish a federation [1] [19]–[22]. The established
regulations, policies, and trust govern the communication
between federation members. Users get a wide variety of
services from the federation transparently, denoted in Section
IV by RijSt. However, this type of federation is usually static;
if the user wants service outbound to the federation capacities,
the user request is denied [1] [19]–[22]. There is also a
high possibility of malicious attacks during the members’
communication, thus affecting the confidentiality of data and
threatening user privacy [47]. Also, there is no guarantee that a
subset of federation members collude to extract user-sensitive
information.

Moreover, there are many security challenges in construct-
ing a federated cloud [48], which are the longer chain of trust,
limited audibility, risk of malicious service components, and
liability and legal issues. The users in federated cloud and
inter-cloud will face the same privacy concern as those on the
multi-cloud hybrid deployment model. Integration of end-to-
end security and privacy implementation in the federated cloud
is the undergoing research area which is challenging to balance
the efficiency and security in the federation implementation
[47].

2) Cross-federated cloud and inter-cloud.
When a user wants a service not supported by the cloud

provider in which customer is subscribed to and trusted,
the cloud provider can collaborate on-fly with another cloud
provider to satisfy the user’s demands. The corresponding
relation denoted in Section IV by RijD. The CCFM is the
trusted party that starts the resource discovery process till
finding the appropriate cloud provider that best matches the
request. Ending with the authentication between the home and

foreign cloud providers to facilitate the access and resource
provisioning processes [1].

The dynamic discovery put the involved entities at high risk
in the open and untrusted multiple clouds environment. As
there is no pre-defined trust in the dynamic discovery between
the cloud providers, maintaining the dynamic trust, in that
case, is becoming challenging. Different doubts surrounded
trust itself: What is trust? Is it a vulnerability to the system or
not? What is the type of trust that could establish? What are
the trust requirements and specifications in a dynamic context?
What are the relationships between trust, risk, and assurance
levels? Is trust enough to guarantee user privacy? What metrics
are required to implement a privacy preservation approach in
the inter-cloud and cross-federated cloud?

Moreover, identifying the risks will help mitigate unde-
sirable circumstances that threaten user privacy. However,
the risk will still depend on a specific context and what is
considered valued and require a higher protection mechanism
during the dynamic discovery, resource provisioning and ac-
cess process. Identifying the relationships between trust and
risk facilitates dynamic discovery decisions to federate or not
[49] [50]. Cross-cloud federation shows its applicability in a
wide range of domains starting from research and academia,
engineering and construction, financial and industry, real-time
data processing, and online gaming [1].

Inter-cloud facilitates the dynamic discovery of the re-
sources in a wider scale domain. Within the federated identity
management, user access different federated services and
resources. Trust is an essential factor within the federated
members to transparently satisfy the user better demands (e.g.,
a proxy certificate is used for trust implementation in the grid
computing [51]).

Single sign-on (SSO) application under inter-cloud enables
users to authenticate only once and get access to different
web services located at other clouds without the need to
be re-authenticated again. Different standard protocols were
established in the SSO [52]. The two most popular are Security
Assertion Markup Language (SAML 2.0) [53], and OpenID
connect [54], each of them with its specifications and format
[53] [54]. However, each generates an authentication/access
token to delegate the authentication on behalf of the user. The
authentication delegation allows access to specific attributes
identified in the access token [55]. These protocols should
prevent any impersonation and other malicious activities per-
formed by the IdP (e.g., monitoring user access and link-
ing user identities to different activities offered by service
providers). Still, securing these protocols against attacks is
challenging in web cloud domain. Many attacks are reported
[56].

C. The hybrid deployment model under a federated cloud.

Integrating federated cloud with hybrid deployment
model known as ”Hybrid Federated Cloud Computing,” which
allows interoperability across different federations. The main
objective of this type is to provide an environment with seem-

53Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 63 / 74

TABLE I: PRIVACY CONCERNS IN MULTIPLE CLOUDS TYPES.

Cloud Deployment model Privacy Application
type Public Private Hybrid concerns

Multi-cloud ✓

• Identity privacy.
• Location privacy.
• Access pattern privacy.
• Query privacy.
• Data and access privacy.

• VANET.
• Genomic domain.

Federated cloud ✓
• Risk of dynamic discovery.
• Authentication privacy.
• Access privacy.

Bio-informatic with SSO.

Horizontal federation ✓ ✓ ✓

• Trust between federation members:
– No collude federated members.
– longer chain of trust.

• Identity privacy.
• Risk of malicious service components.
• Liability and legal issues.
• Limited audibility.

Small organizations.

Cross-federated and inter-cloud ✓

• Identity privacy.
• Attribute privacy.
• Token access privacy.
• Access and authorization privacy.

SSO (SAML 2.0, OIDC protocols)

ingly limitless computational resources, processing power,
and storage space that can effectively meet user demands
[52] [58]–[61]. In the bio-informatics domain, a bioNimbus
[60] [61] is a federated cloud platform in which different
independent, heterogenous, private/public/hybrid clouds are
collaborated to support other bio-informatics applications. It
maintains the internal configuration and privacy policies for
each federation member.

BioNimbus supports on-demand resource provisioning in an
efficient, flexible, fault tolerance, and scalable way under the
hybrid horizontal federation deployment model [60]–[63]. It
integrates different bio-informatic workflows for identifying
differentially expressed genes in cancer tissue.

Various bio-informatics centers can benefit from the feder-
ation collaboration to access other data and have extra storage
in a distributed, transparent, and fault tolerance way [62]
[64]. The security, including authentication, authorization, and
confidentiality, can be implemented in the hybrid federated
cloud without adding extra dependency among the federation
members through the standard SSO protocols OpenID and
OAuth [64]. The user authenticates through their federation
provider and gets access to other federation members. The
access control list governs the access process based on the
federation pre-signed federation agreement.

In [63], they suggest using the attribute-based access control
for the bioNimbus operating under a federated cloud, which
effectively guarantees that eligible users can only access
resources without impacting the authorization response back
time. However, when a federation requests additional resources
from other public clouds or federations, privacy issues related
to authentication and access should be addressed. These issues
also include the risk of dynamic discovery and creating a
new connection with an unknown federated cloud or cloud
provider. Different projects [61] [63] [65]–[71] were imple-

mented for bio-informatics applications under a federation
cloud environment. Table I summarizes the privacy concerns
within different multiple clouds types concerning various
applications.

VI. CONCLUSION

The main goal of multiple clouds is to maintain cloud
interoperability, allowing different clouds to communicate
and interact to provide cloud users with a wide variety of
resources and high-quality services. Moreover, multiple clouds
get around a single cloud architecture limitation by allowing
users to access various resources without being stuck to a
specific cloud provider. There are different types of multiple
clouds: cross-cloud, rain cloud, horizontal federation cloud,
and federated cloud. Various applications deploy the cloud
type that matches their specifications under public or hybrid
deployment models.

Privacy is still of utmost importance in the digital world
and has become vital for adopting different kinds of multiple
clouds under a specific application domain. The success of
multiple clouds adoption and a trustworthy environment is
primarily driven by cloud security and preserving cloud users’
privacy. The results of the present study’s survey provide
classifications of multiple clouds types and outline the most
common multiple clouds taxonomy. The challenges for public
and hybrid deployment models were investigated under differ-
ent kinds of multiple clouds. For example, the most common
concerns under the hybrid deployment model were privacy, se-
curity, and trust. However, the relationships that connect single
cloud entities no longer suit the multiple clouds architecture;
thus, for the purposes of the present study, the relationships
were extended from a single cloud to behave under different
kinds of multiple clouds in a distributed manner. As privacy is
a key consideration when deploying multiple clouds, the study
introduced different privacy concerns in various applications

54Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 64 / 74

that deploy a specific type of multiple clouds.
For example, the bio-informatic domain deploys a hybrid

federated cloud, which raises authentication and access privacy
concerns. Also, an SSO web application that deploys a cross-
federated cloud will pose token access privacy, identity, and
attributes privacy. The privacy concerns outlined in the study
underscore the need to examine more applications that use
multiple clouds and show the current solutions for handling
these privacy issues. Moreover, a supplementary survey should
explore the potential of developing new techniques for privacy
preservation in multiple clouds.

Acknowledgments: We acknowledge the support of the
Natural Sciences and Engineering Research Council of Canada
(NSERC [funding reference number 03181]). We also ac-
knowledge the input from Dr. Mahdi Daghmehchi Firoozjaei,
School of Computer Science, University of Windsor.

REFERENCES

[1] U. Ahmed, I. Raza, and S. A. Hussain, “Trust evaluation in cross-cloud
federation: Survey and requirement analysis,” ACM Computing Surveys,
vol. 52, no. 1. Association for Computing Machinery, Feb. 01, 2019. doi:
10.1145/3292499.

[2] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopou-
los, “Challenges and Opportunities in Edge Computing,” in Proceedings
- 2016 IEEE International Conference on Smart Cloud, SmartCloud
2016, Dec. 2016, pp. 20–26. doi: 10.1109/SmartCloud.2016.18.

[3] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow,
“Blueprint for the intercloud - Protocols and formats for cloud com-
puting interoperability,” in Proceedings of the 2009 4th International
Conference on Internet and Web Applications and Services, ICIW 2009,
2009, pp. 328–336. doi: 10.1109/ICIW.2009.55.

[4] K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes, “Sky comput-
ing,” IEEE Internet Comput, vol. 13, no. 5, pp. 43–51, 2009, doi:
10.1109/MIC.2009.94.

[5] S. Shetty, A. P. Manu, V. Kumar, and C. Antony, ”Need of Multi-Cloud
Environment and Related Issues: A Survey,” Journal of Xian University
of Architecture & Technology, vol. 12, pp. 78-87, 2020.

[6] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “How to enhance cloud
architectures to enable cross-federation,” in Proceedings - 2010 IEEE 3rd
International Conference on Cloud Computing, CLOUD 2010, 2010, pp.
337–345. doi: 10.1109/CLOUD.2010.46.

[7] S. Subashini and V. Kavitha, “A survey on security issues in ser-
vice delivery models of cloud computing,” Journal of Network and
Computer Applications, vol. 34, no. 1. pp. 1–11, Jan. 2011. doi:
10.1016/j.jnca.2010.07.006.

[8] “Computer Communications and Networks.” [Online]. Available:
http://www.springer.com/series/4198. Accessed: March 2, 2023.

[9] M. A. AlZain, E. Pardede, B. Soh, and J. A. Thom, “Cloud com-
puting security: From single to multi-clouds,” in Proceedings of the
Annual Hawaii International Conference on System Sciences, 2012, pp.
5490–5499. doi: 10.1109/HICSS.2012.153.

[10] N. Thillaiarasu and S. Chenthurpandian, “Enforcing security and
privacy over multi-cloud framework using assessment techniques,”
in Proceedings of the 10th International Conference on Intelli-
gent Systems and Control, ISCO 2016, Oct. 2016. pp. 1-6, doi:
10.1109/ISCO.2016.7727001.

[11] Y. Elkhatib, ”Mapping cross-cloud systems: Challenges and opportuni-
ties,” in 8th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 16), pp. 1-5, 2016.

[12] N. Grozev and R. Buyya, “Inter-Cloud architectures and application
brokering: Taxonomy and survey,” Softw Pract Exp, vol. 44, no. 3, pp.
369–390, Mar. 2014, doi: 10.1002/spe.2168.

[13] A. N. Toosi, R. N. Calheiros, and R. Buyya, ”Interconnected cloud
computing environments: Challenges, taxonomy, and survey,” ACM
Computing Surveys (CSUR), vol. 47, no. 1, pp. 1-47, 2014.

[14] M. R. M. Assis and L. F. Bittencourt, “A survey on cloud federa-
tion architectures: Identifying functional and non-functional properties,”
Journal of Network and Computer Applications, vol. 72. Academic
Press, pp. 51–71, Sep. 01, 2016. doi: 10.1016/j.jnca.2016.06.014.

[15] D. Gurusamy and T. K. Elemo, “Direct-cloud, multi-cloud, and
connected-cloud – terminologies make a move in cloud computing,”
International Journal of Innovative Technology and Exploring Engi-
neering, vol. 8, no. 9 Special Issue 2, pp. 386–393, Jul. 2019, doi:
10.35940/ijitee.I1083.0789S219.

[16] J. Hong, T. Dreibholz, J. A. Schenkel, and J. A. Hu, “An Overview
of Multi-cloud Computing,” in Advances in Intelligent Systems and
Computing, 2019, vol. 927, pp. 1055–1068. doi: 10.1007/978-3-030-
15035-8-103.

[17] S. Kathuria, ‘A survey on security provided by multi-clouds in cloud
computing’, International Journal of Scientific Research in Network
Security and Communication, vol. 6, no. 1, pp. 23–27, 2018.

[18] D. Petcu, ‘Multi-cloud: expectations and current approaches’, in Pro-
ceedings of the 2013 international workshop on Multi-cloud applications
and federated clouds, 2013, pp. 1–6.

[19] L. Chouhan, P. Bansal, B. Lauhny, and Y. Chaudhary, “A Survey
on Cloud Federation Architecture and Challenges,” in Lecture Notes
in Networks and Systems, vol. 100, Springer, 2020, pp. 51–65. doi:
10.1007/978-981-15-2071-6-5.

[20] R. Buyya, J. Broberg, and A. M. Goscinski, Cloud computing: Principles
and paradigms. John Wiley and Sons, 2010, pp. 393-410

[21] J. Hong, T. Dreibholz, J. A. Schenkel, and J. A. Hu, “An Overview
of Multi-cloud Computing,” in Advances in Intelligent Systems and
Computing, 2019, vol. 927, pp. 1055–1068. doi: 10.1007/978-3-030-
15035-8-103.

[22] B. Fabian, T. Ermakova, and P. Junghanns, ”Collaborative and secure
sharing of healthcare data in multi-clouds,” Information Systems, vol.
48, pp. 132-150, 2015.

[23] M. R. M. Assis, L. F. Bittencourt, and R. Tolosana-Calasanz, “Cloud fed-
eration: Characterization and conceptual model,” in Proceedings - 2014
IEEE/ACM 7th International Conference on Utility and Cloud Comput-
ing, UCC 2014, Jan. 2014, pp. 585–590. doi: 10.1109/UCC.2014.90.

[24] T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, and M. Kunze,
‘Cloud federation’, Cloud Computing, vol. 2011, pp. 32–38, 2011.

[25] L. Mashayekhy, M. M. Nejad, and D. Grosu, “A Trust-Aware
Mechanism for Cloud Federation Formation,” IEEE Transactions
on Cloud Computing, vol. 9, no. 4, pp. 1278–1292, 2021, doi:
10.1109/TCC.2019.2911831.

[26] D. Villegas et al., “Cloud federation in a layered service model,” in
Journal of Computer and System Sciences, 2012, vol. 78, no. 5, pp.
1330–1344. doi: 10.1016/j.jcss.2011.12.017.

[27] M. A. Salehi, A. N. Toosi, and R. Buyya, ”Contention management
in federated virtualized distributed systems: implementation and evalu-
ation,” Software: Practice and Experience, vol. 44, no. 3, pp. 353-368,
Mar. 2014.

[28] H. A. Imran et al., ‘Multi-cloud: a comprehensive review’, in 2020 IEEE
23rd International Multitopic Conference (INMIC), 2020, pp. 1–5.

[29] A. N. Toosi, R. N. Calheiros, R. K. Thulasiram, and R. Buyya, “Resource
provisioning policies to increase IaaS provider’s profit in a federated
cloud environment,” in Proc.- 2011 IEEE International Conference on
HPCC 2011, pp. 279–287. doi: 10.1109/HPCC.2011.44.

[30] M. Singhal, S. Chandrasekhar, T. Ge, R. Sandhu, R. Krishnan, G. J. Ahn,
and E. Bertino, ”Collaboration in multicloud computing environments:
Framework and security issues,” Computer, vol. 46, no. 2, pp. 76-84,
Feb. 2013.

[31] T. Diaby and B. B. Rad, “Cloud Computing: A review of the Concepts
and Deployment Models,” International Journal of Information Tech-
nology and Computer Science, vol. 9, no. 6, pp. 50–58, Jun. 2017, doi:
10.5815/ijitcs.2017.06.07.

[32] L. Savu, “Cloud computing: Deployment models, delivery models,
risks and research challanges,” in 2011 International Conference on
Computer and Management, CAMAN 2011, 2011. doi: 10.1109/CA-
MAN.2011.5778816.

[33] W. Jansen and T. Grance, “Guidelines on security and privacy in public
cloud computing,” Gaithersburg, MD, 2011. doi: 10.6028/NIST.SP.800-
144.

[34] P. Hofmann and D. Woods, “Cloud computing: The limits of public
clouds for business applications,” IEEE Internet Comput, vol. 14, no. 6,
pp. 90–93, Nov. 2010, doi: 10.1109/MIC.2010.136.

[35] K. Ren, C. Wang, and Q. Wang, “Security challenges for the public
cloud,” IEEE Internet Computing, vol. 16, no. 1. pp. 69–73, Jan. 2012.
doi: 10.1109/MIC.2012.14.

[36] S. Islam, M. Ouedraogo, C. Kalloniatis, H. Mouratidis, and S. Gritzalis,
“Assurance of Security and Privacy Requirements for Cloud Deployment

55Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 65 / 74

Models,” IEEE Transactions on Cloud Computing, vol. 6, no. 2, pp.
387–400, Apr. 2018, doi: 10.1109/TCC.2015.2511719.

[37] T. Guo, U. Sharma, P. Shenoy, T. Wood, and S. Sahu, “Cost-aware cloud
bursting for enterprise applications,” in ACM Transactions on Internet
Technology, 2014, vol. 13, no. 3. doi: 10.1145/2602571.

[38] V. Viji Rajendran and S. Swamynathan, “Hybrid model for dynamic
evaluation of trust in cloud services,” Wireless Networks, vol. 22, no.
6, pp. 1807–1818, Aug. 2016, doi: 10.1007/s11276-015-1069-y.

[39] J. Abawajy, ‘Establishing trust in hybrid cloud computing environments’,
in 2011IEEE 10th International Conference on Trust, Security and
Privacy in Computing and Communications, 2011, pp. 118–125.

[40] C. Lin and V. Varadharajan, ‘A hybrid trust model for enhancing security
in distributed systems’, in The Second International Conference on
Availability, Reliability and Security (ARES’07), 2007, pp. 35–42.

[41] A. Marinos and G. Briscoe, ‘Community cloud computing’, in Cloud
Computing: First International Conference, CloudCom 2009, Beijing,
China, December 1-4, 2009. Proceedings 1, 2009, pp. 472–484.

[42] F. Liu et al., ‘NIST cloud computing reference architecture’, NIST
special publication, vol. 500, no. 2011, pp. 1–28, 2011.

[43] A. Elhabbash, F. Samreen, J. Hadley, and Y. Elkhatib, “Cloud brokerage:
A systematic survey,” ACM Computing Surveys, vol. 51, no. 6. Associ-
ation for Computing Machinery, Jan. 01, 2019. doi: 10.1145/3274657.

[44] A. Ghorbel, M. Ghorbel, and M. Jmaiel, ‘Privacy in cloud computing
environments: a survey and research challenges’, The Journal of Super-
computing, vol. 73, no. 6, pp. 2763–2800, 2017.

[45] T. Halabi and M. Bellaiche, “A broker-based framework for standard-
ization and management of Cloud Security-SLAs,” Comput Secur, vol.
75, pp. 59–71, Jun. 2018, doi: 10.1016/j.cose.2018.01.019.

[46] H. AlJahdali, A. Albatli, P. Garraghan, P. Townend, L. Lau, and J. Xu,
‘Multi-tenancy in cloud computing’, in 2014 IEEE 8th international
symposium on service oriented system engineering, 2014, pp. 344–351.

[47] R. Kumar, S. · Jitendra, A. · Sanjeev, S. · Narendra, S. Chaudhari, and
· K K Shukla Editors, “Lecture Notes in Networks and Systems 100.”
[Online]. Available: http://www.springer.com/series/15179

[48] K. Bernsmed, M. G. Jaatun, P. H. Meland, and A. Undheim, “Thunder in
the Clouds: Security challenges and solutions for federated Clouds,” in
CloudCom 2012 - Proceedings: 2012 4th IEEE International Conference
on Cloud Computing Technology and Science, 2012, pp. 113–120. doi:
10.1109/CloudCom.2012.6427547.

[49] P. Arias Cabarcos, F. Almenárez, F. Gómez Mármol, and A. Marı́n, “To
federate or not to federate: A reputation-based mechanism to dynamize
cooperation in identity management,” Wirel Pers Commun, vol. 75, no.
3, pp. 1769–1786, Apr. 2014, doi: 10.1007/s11277-013-1338-y.

[50] P. Arias-Cabarcos, F. A. Rez-Mendoza, A. Marı́n-López, D. Dı́az-
Sánchez, and R. Sánchez-Guerrero, “A metric-based approach to assess
risk for ‘On cloud’ federated identity management,” Journal of Network
and Systems Management, vol. 20, no. 4, pp. 513–533, Dec. 2012, doi:
10.1007/s10922-012-9244-2.

[51] M. Ogawa and L. Xin, “Proxy Certificate Trust List for Grid
Computing Time-Sensitive Pushdown Systems View project Proxy
Certificate Trust List for Grid Computing.” [Online]. Available:
https://www.researchgate.net/publication/252163600. Accessed: March
2, 2023.

[52] V. Radha and D. H. Reddy, “A Survey on Single Sign-On Tech-
niques,” Procedia Technology, vol. 4, pp. 134–139, 2012, doi:
10.1016/j.protcy.2012.05.019.

[53] E. Maler et al., ‘Security and privacy considerations for the oasis security
assertion markup language (saml) v2. 0’, Language (SAML), vol. 2, p.
0, 2005.

[54] C. Mainka, V. Mladenov, J. Schwenk, and T. Wich, “SoK: Single Sign-
On Security - An Evaluation of OpenID Connect,” in Proceedings - 2nd
IEEE European Symposium on Security and Privacy, EuroS and P 2017,
Jun. 2017, pp. 251–266. doi: 10.1109/EuroSP.2017.32.

[55] H. Gomi, “Dynamic identity delegation using access tokens in fed-
erated environments,” in Proceedings - 2011 IEEE 9th International
Conference on Web Services, ICWS 2011, 2011, pp. 612–619. doi:
10.1109/ICWS.2011.30.

[56] M. Ghasemisharif, A. Ramesh, S. Checkoway, C. Kanich, J. Polakis,
and A. Ramesh, Open access to the Proceedings of the 27th USENIX
Security Symposium is sponsored by USENIX. O Single Sign-Off,
Where Art Thou? An Empirical Analysis of Single Sign-On Account
Hijacking and Session Management on the Web O Single Sign-Off.

[57] C. Gentry, A fully homomorphic encryption scheme. Stanford university,
2009.

[58] R. Gallon, M. Holanda, A. Araújo, and M. E. Walter, ‘Storage policy
for genomic data in hybrid federated clouds’, in Advances in Bioin-
formatics and Computational Biology: 9th Brazilian Symposium on
Bioinformatics, BSB 2014, Belo Horizonte, Brazil, October 28-30, 2014,
Proceedings 9, 2014, pp. 107–114.

[59] M. Rosa et al., “BioNimbuZ: A federated cloud platform for bioinfor-
matics applications,” in Proceedings - 2016 IEEE International Confer-
ence on Bioinformatics and Biomedicine, BIBM 2016, Jan. 2017, pp.
548–555. doi: 10.1109/BIBM.2016.7822580.

[60] C. A. L. Borges, H. v. Saldanha, E. Ribeiro, M. T. Holanda, A. P. F.
Araujo, and M. E. M. T. Walter, “Task scheduling in a federated cloud
infrastructure for bioinformatics applications,” in CLOSER 2012 - Pro-
ceedings of the 2nd International Conference on Cloud Computing and
Services Science, 2012, pp. 114–120. doi: 10.5220/0003932801140120.

[61] A. P. Heath et al., “Bionimbus: A cloud for managing, analyzing and
sharing large genomics datasets,” Journal of the American Medical
Informatics Association, vol. 21, no. 6, pp. 969–975, Jan. 2014, doi:
10.1136/amiajnl-2013-002155.

[62] D. Lima et al., “A storage policy for a hybrid federated cloud platform:
A case study for bioinformatics,” in Proceedings - 14th IEEE/ACM In-
ternational Symposium on Cluster, Cloud, and Grid Computing, CCGrid
2014, 2014, pp. 738–747. doi: 10.1109/CCGrid.2014.102.

[63] H. H. D. P. M. Costa, A. P. F. de Araújo, J. J. C. Gondim, M. T. de
Holanda, and M. E. M. T. Walter, ”Attribute based access control in
federated clouds: A case study in bioinformatics,” in 2017 12th Iberian
Conference on Information Systems and Technologies (CISTI), pp. 1-7,
June 2017.

[64] H. Saldanha et al., “Towards a Hybrid Federated Cloud Platform
to Efficiently Execute Bioinformatics Workflows,” in Bioinformatics,
InTech, 2012. doi: 10.5772/50289.

[65] B. Langmead, K. D. Hansen, and J. T. Leek, “Cloud-scale RNA-
sequencing differential expression analysis with Myrna,” 2010. [Online].
Available: http://genomebiology.com/content/11/8/R83

[66] C. Hoffa et al., “On the use of cloud computing for scientific work-
flows,” in Proceedings - 4th IEEE International Conference on eScience,
eScience 2008, 2008, pp. 640–645. doi: 10.1109/eScience.2008.167.

[67] D. P. Wall, P. Kudtarkar, V. A. Fusaro, R. Pivovarov, P. Patil, and P. J.
Tonellato, “Cloud computing for comparative genomics,” 2010. [Online].
Available: http://www.biomedcentral.com/1471-2105/11/259

[68] R. Li et al., “SNP detection for massively parallel whole-genome
resequencing,” Genome Res, vol. 19, no. 6, pp. 1124–1132, Jun. 2009,
doi: 10.1101/gr.088013.108.

[69] B. Pratt, J. J. Howbert, N. I. Tasman, and E. J. Nilsson, “Mr-Tandem:
Parallel x!Tandem using Hadoop MapReduce on Amazon web ser-
vices,” Bioinformatics, vol. 28, no. 1, pp. 136–137, Jan. 2012, doi:
10.1093/bioinformatics/btr615.

[70] L. Zhang, S. Gu, Y. Liu, B. Wang, and F. Azuaje, “Gene set analysis in
the cloud,” Bioinformatics, vol. 28, no. 2, pp. 294–295, Jan. 2012, doi:
10.1093/bioinformatics/btr630.

[71] B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan, and T. Freeman,
“A flexible attribute based access control method for grid computing,”
J Grid Comput, vol. 7, no. 2, pp. 169–180, 2009, doi: 10.1007/s10723-
008-9112-1.

[72] M. Najam, R. U. Rasool, H. F. Ahmad, U. Ashraf, and A. W. Malik,
“Pattern Matching for DNA Sequencing Data Using Multiple Bloom
Filters,” Biomed Res Int, vol. 2019, 2019, doi: 10.1155/2019/7074387

[73] M. Akgün, A. O. Bayrak, B. Ozer, and M. Ş. Sağiroğlu, “Privacy
preserving processing of genomic data: A survey,” Journal of Biomedical
Informatics, vol. 56. Academic Press Inc., pp. 103–111, Aug. 01, 2015.
doi: 10.1016/j.jbi.2015.05.022

[74] S. Simmons, C. Sahinalp, and B. Berger, “Enabling Privacy-Preserving
GWASs in Heterogeneous Human Populations,” Cell Syst, vol. 3, no. 1,
pp. 54–61, Jul. 2016, doi: 10.1016/j.cels.2016.04.013.

[75] S. Sharma and A. Kaul, “A survey on Intrusion Detection Systems and
Honeypot based proactive security mechanisms in VANETs and VANET
Cloud,” Vehicular Communications, vol. 12. Elsevier Inc., pp. 138–164,
Apr. 01, 2018.

[76] K. Sarwar, S. Yongchareon, J. Yu, and S. Ur Rehman, “A Survey on
Privacy Preservation in Fog-Enabled Internet of Things,” ACM Comput
Surv, vol. 55, no. 1, pp. 1–39, Jan. 2023, doi: 10.1145/3474554.

[77] I. Ali, A. Hassan, and F. Li, “Authentication and privacy schemes
for vehicular ad hoc networks (VANETs): A survey,” Vehicular Com-
munications, vol. 16. Elsevier Inc., pp. 45–61, Apr. 01, 2019. doi:
10.1016/j.vehcom.2019.02.002.

56Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 66 / 74

Challenges and Solutions in IoT Security: A
Cross-Industry Perspective

Ibrahim El-Shekeil
ibrahim.el-shekeil@metrostate.edu

Thomas Mullins
thomas.mullins@my.metrostate.edu

Tariq Haji Hassan
tariq.hajihassan@my.metrostate.edu

Jet Lao
jet.lao@my.metrostate.edu

Xuezeng Yang
xuezeng.yang@my.metrostate.edu

Computer Science and Cybersecurity, Metro State University
700 East Seventh Street, Saint Paul, Minnesota 55106, USA

Abstract—In the age of rapid technological advancements,
the Internet of Things (IoT) has emerged as a revolutionary
paradigm, transforming various industries such as healthcare,
agriculture, transportation, smart homes, and smart cities. IoT
technology has the potential to revolutionize our daily lives, en-
abling remote monitoring, personalized treatment, real-time data
analysis, and improving the overall efficiency and sustainability
of these sectors. However, the increasing use and dependence
on IoT devices has raised significant concerns regarding secu-
rity, privacy, and ethical implications. This paper provides a
comprehensive overview of IoT security challenges, examines
the role of government standards and regulations, and explores
case studies that demonstrate the practical implications of IoT
security in various industries. Furthermore, the paper discusses
comprehensive solutions to overcome IoT security limitations and
challenges, emphasizing the importance of education and aware-
ness, collaboration between stakeholders, and the development of
robust security protocols. By understanding and addressing these
challenges, stakeholders can ensure the safe and responsible use
of IoT devices, maximize their benefits, and minimize potential
risks.

Keywords—Internet of Things (IoT); Privacy concerns; Gov-
ernment standards; Cyber-attacks; IoT Security.

I. INTRODUCTION

The IoT is transforming industries such as healthcare,
agriculture, and transportation through connected devices that
collect and exchange data, leading to enhanced efficiency, pro-
ductivity, and decision-making [5]. However, the widespread
adoption of IoT technologies introduces significant challenges
concerning security, privacy, and trust, as these interconnected
devices can be susceptible to cyber-attacks, data breaches, and
unauthorized access.

The integration of cloud and edge computing within the IoT
ecosystem has bolstered the system’s capacity to handle large
data volumes. Cloud computing provides robust infrastructure
and offloading capabilities, while edge computing brings data
processing closer to the source, thereby reducing transmission
needs and potential data vulnerabilities [19], [29]. Yet, this
integration is not without its challenges. Centralized data
processing and storage in cloud computing can lead to security
issues and single points of failure, while ensuring the security

and reliability of distributed resources in edge computing
presents its own set of obstacles [40].

In this paper, we explore the challenges associated with IoT,
including security and privacy, and discuss potential solutions.
We present case studies illustrating IoT applications in various
sectors and explore hypothetical implementation scenarios to
highlight potential pitfalls and strategies for overcoming them.

The rest of the paper is organized as follows: Section II
addresses the challenges and limitations of IoT security.
Section III explores the role of governmental standards in
mitigating these challenges. Section IV presents case studies
from various sectors. Section V discusses comprehensive
solutions to IoT security limitations. Finally, in Section VI,
we summarize the key findings and emphasize the need for
continued efforts in IoT security to realize the full potential
of this technology.

II. CURRENT LIMITATIONS AND CHALLENGES OF IOT

The IoT has experienced rapid growth and development in
recent years. Despite the numerous benefits and innovations
that IoT brings to various industries, it is still faced with
several limitations and challenges that need to be addressed.
In this section, we will discuss the current limitations and
challenges in IoT technology. These encompass a range of
concerns, including security, interoperability, privacy, resource
constraints including energy efficiency, and legal, regulatory,
and standardization issues. Each of these areas presents unique
challenges but they are also interconnected, contributing to a
complex landscape that must be navigated to fully realize the
potential of IoT.

A. Security Challenges

One of the primary concerns in IoT is the security of
connected devices. The vast network of connected devices
presents numerous vulnerabilities that can be exploited by
malicious actors. The lack of standardization in IoT security
protocols, combined with the increasing number of devices,
makes it difficult to ensure the security of every device in
the ecosystem [15]. Recent studies have highlighted various
security challenges in IoT, such as data breaches, malware

57Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 67 / 74

attacks, and unauthorized access [20]. These security threats
not only compromise sensitive information but can also cause
significant disruptions in the operation of IoT devices and
systems.

B. Interoperability Issues
The multitude of manufacturers in the IoT domain, each

producing devices with unique hardware and software spec-
ifications, contributes to a significant challenge: interoper-
ability. The diversity in these devices can inhibit seamless
communication, causing inefficiencies in the larger system.
This situation is further compounded by a lack of standardized
IoT communication protocols, making it even more difficult
for devices to work together and share data effectively, thus
potentially compromising overall performance. To address
these interoperability challenges, it’s necessary to foster the
development and adoption of standardized communication
protocols. Moreover, integrating a unified IoT framework
could facilitate interoperability across the extensive range of
IoT devices [26].

C. Privacy Concerns
Privacy in IoT systems is a growing concern due to the

volume and sensitivity of data collected and processed by
these devices. Many IoT devices have insufficient security
mechanisms, leaving them vulnerable to unauthorized access
and data breaches, which can compromise users’ privacy [22].

One specific example of a privacy concern in the IoT field
is the security of electronic health records (EHR) stored in the
cloud. Access to these records needs to be controlled to protect
sensitive personal information. In response to this challenge,
researchers have proposed privacy-preserving access control
schemes, such as the one suggested by Ming and Zhang, which
provides fine-grained access control for EHR data stored in the
cloud, preserving the privacy of the EHR owner [24].

In summary, privacy concerns in IoT systems are multi-
faceted, and addressing these concerns requires the develop-
ment and implementation of robust security measures. More
work is needed to protect user privacy in the rapidly evolving
IoT landscape [22].

D. Scalability, Resource Constraints, and Energy Efficiency
A significant challenge in IoT is the scalability of the

network as the number of connected devices continues to grow
exponentially. Managing and processing the massive amounts
of data generated by these devices requires considerable com-
putational and storage resources [10].

In addition, IoT devices often have limited processing
power, memory, and battery life, which further complicates
the scalability of IoT networks [32]. The energy consumption
of IoT devices is a notable challenge, particularly as many of
these devices are powered by batteries with limited lifespans.
IoT devices have varying power requirements, with those
demanding higher power rapidly draining batteries, requiring
frequent replacements [37].

This issue becomes especially challenging for devices in-
stalled in hard-to-reach locations or those that necessitate

constant monitoring [4]. The limited battery life of IoT devices
can also hinder their effectiveness in critical applications, such
as healthcare and transportation, where continuous monitoring
is essential [31].

Addressing these intertwined challenges requires the de-
velopment of efficient data processing and communication
techniques, such as edge computing and fog computing,
which enable data processing closer to the devices, reducing
the load on the central network [36]. Furthermore, adopting
energy-efficient protocols and algorithms can help mitigate
the resource constraints of IoT devices, allowing for more
sustainable and scalable networks.

E. Legal, Regulatory, and Standardization Challenges

The rapid expansion of IoT has led to various legal and
regulatory challenges, as well as issues concerning the lack
of clear standards. As IoT devices collect, store, and pro-
cess vast amounts of data, they often intersect with existing
regulations, such as data protection laws and cybersecurity
requirements [23].

One significant challenge is the integration of blockchain
technologies with IoT in sectors like healthcare, where compli-
ance with healthcare regulatory organizations such as HIPAA
and GDPR is paramount. For instance, the principle of im-
mutability of blockchain clashes with the right to be forgotten
principle under GDPR, creating regulatory challenges in such
integrations [23].

Furthermore, the global nature of IoT networks raises ques-
tions about jurisdiction and the applicability of national laws
to cross-border data flows [14].

The absence of standards and regulations for IoT devices is
a significant limitation. The lack of clear regulations and stan-
dards can make it difficult to ensure the security and privacy of
users’ data [21], [22]. Furthermore, the lack of standardization
and interoperability between different devices and systems can
restrict the technology’s potential and effectiveness [20].

Addressing the legal, regulatory, and standardization chal-
lenges in IoT requires a coordinated effort among policy-
makers, industry stakeholders, and researchers. This joint
effort aims to develop comprehensive legal frameworks and
standards that account for the unique characteristics of IoT
systems. These frameworks should balance the need for in-
novation and growth with the protection of users’ rights and
interests, thereby ensuring the safe and responsible develop-
ment of IoT technology [34].

F. Challenges of IoT Security: An Interconnected View

As we examine the distinct challenges and limitations asso-
ciated with IoT security, it is paramount to acknowledge the
interconnected nature of these issues. Each of the challenges
we’ve dissected—encompassing privacy and data protection,
lack of standardization, energy constraints, and legal, reg-
ulatory, and standardization challenges—does not exist in
isolation. Rather, they form an intricate web of obstacles that
collectively shape the IoT security landscape.

58Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 68 / 74

TABLE I. INTERCONNECTED CHALLENGES IN IOT SECURITY

Challenge Interconnection Impact on IoT Security
Privacy and Data Protection Tied to standardization and resource con-

straints
Privacy breaches due to lack of uniform security measures and
energy constraints

Lack of Standardization Links to privacy concerns, resource con-
straints, and regulatory issues

Inconsistent security features across devices, potential privacy
issues, and challenges in implementing energy-efficient solutions

Resource Constraints Influences privacy, standardization, and
cost-effectiveness

Limited adoption of energy-efficient security solutions due to
power constraints and cost considerations

Legal, Regulatory, and Standard-
ization Issues

Directly related to privacy, standardization,
and cost-effectiveness

Legal and compliance challenges may affect the adoption and
implementation of consistent security and privacy measures

The privacy concerns tie directly into the lack of standard-
ized protocols and regulations in the IoT industry. The absence
of a unified regulatory framework leads to disparate security
measures across devices and systems, thus compromising data
integrity and user privacy. The energy constraints, as well as
the scarcity of resources in IoT devices, further exacerbate
these issues.

The interconnectedness of challenges also highlights that
the legal and regulatory aspects cannot be separated from
technological and standardization efforts. Legal frameworks
need to evolve concurrently with technology to effectively
address privacy, security, and interoperability challenges.

This interconnectedness of challenges also means that the
strategies employed to address them cannot be piecemeal.
A comprehensive, holistic approach is required—one that
recognizes these challenges as parts of a larger, complex
system rather than separate problems to be solved indepen-
dently. It underscores the need for collaborative efforts across
the industry, spanning policy-makers, manufacturers, service
providers, and end-users.

Only through such a comprehensive and collaborative ap-
proach can we begin to untangle this complex web of chal-
lenges and forge a path towards a secure, robust, and efficient
IoT ecosystem. This understanding informs the solutions and
recommendations we discuss in the next section, emphasizing
the importance of a concerted and coordinated response to the
multifaceted challenges of IoT security.

Figure 1 illustrates the interlinked nature of IoT challenges.
Security sits at the heart of this matrix, emphasizing its crucial
role. Other challenges are directly tied to security, stressing
their impact on it. The double arrows (⇄) denote the reciprocal
relationship among these challenges.

For example, scalability concerns can exacerbate security
issues, with an increased number of devices implying a broader
attack surface. Conversely, security challenges could hamper
scalability, as a system with compromised security might face
difficulties in scaling efficiently due to the need for enhanced
security controls.

This representation underscores that improving IoT security
isn’t a standalone mission but rather involves addressing
intertwined challenges collectively and coherently.

Table I details each main challenge, its interconnections
with other challenges, and the overall impact these links have
on IoT security. The connections are demonstrative and not
exhaustive, illustrating the need for a holistic approach to
address the complex landscape of IoT security challenges.

FIG. 1. INTERCONNECTED CHALLENGES IN IOT SECURITY

In summary, addressing the present limitations and chal-
lenges of IoT is crucial to ensure the continued evolution
and success of this technology. By developing standardized
security protocols, we can tackle interoperability and privacy
issues. The adoption of robust energy-efficient strategies and
resource management methods can optimize the IoT networks’
performance, considering the constraints of IoT devices. By
addressing the intertwining issues of legalities, regulations, and
standardization, we can create a more secure and seamless
environment for IoT to thrive. As such, by acknowledging
the interconnected nature of these challenges and working
towards a comprehensive and collaborative approach, IoT has
the potential to overcome these obstacles and continue to drive
innovation across industries, enhancing the quality of life for
users.

III. GOVERNMENT STANDARDS

Governments around the world are recognizing the im-
portance of IoT and the potential risks associated with its
use. As a result, several initiatives have been launched to
develop standards and regulations to ensure the safe and
responsible use of IoT devices. These initiatives aim to provide
guidance to manufacturers and users of IoT devices and to
promote interoperability and security across different devices
and platforms [30].

59Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 69 / 74

One such initiative is the National Institute of Standards
and Technology (NIST) Cybersecurity Framework, developed
by the US Department of Commerce [38]. The framework
provides a set of guidelines and best practices for managing
cybersecurity risk for IoT devices. It includes five core func-
tions: identify, protect, detect, respond, and recover. Each func-
tion includes a set of categories and subcategories that provide
guidance for managing cybersecurity risk. The framework has
been widely adopted by organizations in various industries,
including healthcare, finance, and energy.

In addition to the NIST framework, several other govern-
ment initiatives have been launched to develop standards and
regulations for IoT devices. The European Union (EU) has
developed the General Data Protection Regulation (GDPR),
which aims to protect the privacy and security of personal
data [27]. The GDPR applies to all organizations that process
personal data of EU residents, regardless of their location. The
regulation includes several requirements, such as the need for
explicit consent for data processing, the right to access and
delete personal data, and mandatory data breach reporting.

Similarly, the International Organization for Standardization
(ISO) has developed several standards for IoT devices, in-
cluding ISO/IEC 27001 [12] and ISO/IEC 27002 [13], which
provide guidelines for information security management. More
recently, ISO/IEC 21823-1:2019 [11] provides guidance on the
interoperability of IoT devices and systems.

While government initiatives are essential for promoting the
safe and responsible use of IoT devices, there are also limita-
tions to these initiatives. One limitation is the lack of global
standards and regulations, which can lead to inconsistencies
and fragmentation in the IoT market. Another limitation is the
slow pace of regulation development, which can lag behind the
rapid pace of technological innovation. Additionally, regula-
tions can also be limited by their enforcement mechanisms, as
some regulations lack the teeth needed to ensure compliance
and accountability [9].

Despite these limitations, government standards and regu-
lations are crucial for ensuring the safe and responsible use
of IoT devices. They provide guidance for manufacturers and
users of IoT devices, promote interoperability and security,
and protect the privacy and security of personal data.

IV. CASE STUDIES ON THE SECURITY OF INTERNET OF
THINGS DEVICES

The pervasive adoption of connected devices in various
sectors, including healthcare, agriculture, transportation, smart
homes, and smart cities, underscores the increasing importance
of security and privacy. In this section, we will reference
actual case studies that illustrate real security issues in these
industries. Additionally, we will present hypothetical real-
world implementation scenarios. While these scenarios are
conjectural, they are designed to reflect plausible situations
and serve as illustrative examples to shed light on the potential
challenges and limitations of IoT security.

A. Case Study 1: Smart Home Technology
Smart home technology refers to the use of connected

devices to automate and control various aspects of the home,
including lighting, temperature, security, and entertainment.
One example of smart home technology implementation is the
Nest Learning Thermostat. This device learns user preferences
and adjusts the temperature accordingly, resulting in up to 20%
energy savings [3]. Another example is the Amazon Echo, a
voice-controlled assistant that can control smart devices, play
music, and answer questions.

While smart home technology offers several benefits, in-
cluding convenience, energy efficiency, and increased security,
there are challenges associated with its implementation. One
major challenge is the lack of standardization and interoper-
ability. Different devices use different protocols and commu-
nication standards, making it difficult to integrate them into a
single system [1]. Additionally, the security of these devices
is a concern, as they can be vulnerable to hacking and data
breaches [4].

Hypothetical Implementation Scenario: To illustrate the
deployment of IoT in the context of smart homes, let’s hypo-
thetically consider a smart home security system. This system
could comprise various IoT devices like security cameras,
motion detectors, and smart locks, all interconnected through a
centralized hub. A user could then remotely monitor and man-
age these devices using a mobile application, thus enhancing
the ease and efficiency of home security management.

Let’s assume a homeowner in California, USA, decides to
install such a security system. The setup includes a smart
doorbell equipped with a camera, a smart lock system, motion
sensors placed strategically around the house, and a control
hub to manage them all. Ideally, this system should notify the
homeowner of any unusual activity detected by the sensors
and offer remote control over the lock and camera feed.

Despite its advantages, this hypothetical scenario could pose
a range of challenges. Firstly, the system could become a
target for cyberattacks, where malicious actors aim to gain
unauthorized access to the house. To counter this, the de-
ployment of stringent security measures, like encryption and
two-factor authentication, would be essential. Additionally, the
homeowner might have privacy concerns, as this system would
collect and store sensitive data related to their household and
lifestyle.

On the upside, this smart system could significantly elevate
the homeowner’s peace of mind, offering features like remote
access and real-time alerts. However, on the downside, the
requirement for robust security measures could add complex-
ity, requiring a considerable investment of time from the
homeowner in understanding the security protocols, using
them correctly, and maintaining them over time. Moreover,
there might be concerns about how the security of the system
could be compromised if it’s not managed properly, leading
to potential privacy issues.

This scenario underscores the potential benefits and chal-
lenges of IoT implementation within the smart home sector. It
highlights the importance of robust security features, privacy

60Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 70 / 74

safeguards, and user-friendly designs in IoT applications. It
also underscores the need for user education and awareness to
manage these systems effectively and maintain their security
and privacy.

B. Case Study 2: Smart Cities

A smart city is a city that uses IoT technology to improve
the quality of life for its citizens, enhance sustainability,
and optimize resource utilization. One example of smart city
technology is the use of sensors to monitor traffic flow and
adjust traffic lights accordingly, resulting in reduced conges-
tion and travel time. Smart lighting systems that adjust the
brightness and color of streetlights based on the time of day
and weather conditions are another example of smart city
technology implementation [22].

Smart cities offer several benefits, including improved pub-
lic safety, reduced traffic congestion, and increased energy
efficiency. For example, smart traffic management systems
can reduce accidents and improve emergency response times,
while smart waste management systems can reduce landfill
waste and increase recycling rates. However, the implementa-
tion of smart cities also has challenges. One major challenge is
the cost of implementation, as it requires significant investment
in infrastructure and technology [31]. Another challenge is the
privacy and security of citizens, as the collection of data from
connected devices can raise concerns about surveillance and
data breaches [7].

Hypothetical Implementation Scenario: In a hypothet-
ical metropolis named ”TechnoCity”, local government has
adopted IoT technology city-wide in an attempt to improve
the lives of citizens and enhance city management. The city
is furnished with connected traffic lights and parking meters,
public transportation equipped with IoT devices for real-time
tracking, and smart sensors placed throughout the city to
monitor air quality, noise, and temperature. The city also
employs IoT devices to manage public utilities such as water,
electricity, and waste management.

In this hypothetical scenario, the interoperability issue of
IoT devices becomes apparent. The city’s various IoT devices
come from different manufacturers and use different commu-
nication protocols, making it difficult for these devices to share
data effectively.

Another issue is privacy. The city’s IoT devices are con-
stantly collecting data, some of which could infringe upon
citizens’ privacy rights. For instance, smart meters could reveal
personal patterns such as when a home is unoccupied, and real-
time tracking on public transport could be used to track the
movements of individuals.

TechnoCity also faces potential security challenges. The
sheer number of IoT devices in the city creates numerous
points of vulnerability. Without robust security measures, these
devices could be hacked, leading to manipulation of the city’s
critical systems.

In terms of scalability and resource constraints, managing
and processing the massive amount of data generated by the
city’s IoT devices is a significant challenge. Moreover, many of

these devices operate on batteries and require energy-efficient
protocols to ensure continuous operation.

Finally, the cost of implementing, maintaining, and upgrad-
ing these IoT systems can be prohibitive, especially consider-
ing the scale of a city-wide IoT implementation.

This hypothetical scenario underlines the complex chal-
lenges cities could face when integrating IoT technology at
a large scale. It also illustrates the interconnected nature of
these challenges, emphasizing the need for a comprehensive
approach to IoT security and management.

C. Case Study 3: Healthcare

IoT technology has the potential to revolutionize healthcare
by enabling remote monitoring, personalized treatment, and
real-time data analysis [18]. One example of IoT in healthcare
is the use of wearable devices to monitor patients with chronic
conditions such as diabetes and heart disease. These devices
can track vital signs and alert patients and healthcare providers
to potential health problems. Another example is the use of
telemedicine, which enables remote consultations and virtual
visits with healthcare providers [18].

IoT technology offers several benefits in healthcare, includ-
ing improved patient outcomes, reduced healthcare costs, and
increased access to care. For example, remote monitoring can
reduce hospital readmissions and emergency department visits,
while telemedicine can improve access to care in rural and
underserved areas. However, there are challenges associated
with the use of IoT in healthcare. One major challenge is
the security and privacy of patient data, as healthcare data
is highly sensitive and can be vulnerable to hacking and
data breaches [3]. Another challenge is the regulation and
standardization of IoT devices in healthcare, as they are subject
to strict regulations and quality standards [27].

D. Case Study 4: Agriculture

The IoT holds substantial potential for agricultural ad-
vancements. Through the real-time monitoring of crops, soil
conditions, and weather patterns, IoT can equip farmers with
data-driven insights to make optimal decisions about planting,
irrigation, and harvesting. A striking instance of this is the
recent adoption of IoT-based precision agriculture systems,
which use sensors and devices to monitor soil and weather
conditions, and plant growth. These systems leverage the data
to optimize resource usage and enhance crop yield [28].

Despite the compelling prospects, the adoption of IoT in
agriculture is not without challenges. The significant cost as-
sociated with implementing IoT devices presents a formidable
barrier, especially for farmers in developing regions. Further-
more, the lack of internet connectivity in many rural regions,
where the majority of farming occurs, compounds the problem,
potentially exacerbating the digital divide between rural and
urban areas [28].

E. Case Study 5: Transportation

IoT technology has the potential to revolutionize transporta-
tion by enabling real-time monitoring of vehicles, traffic, and

61Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 71 / 74

infrastructure. One example is the use of connected vehicles
and intelligent transportation systems to improve traffic flow
and safety [2]. However, the implementation of IoT devices
in transportation faces several challenges, such as the lack
of standardization and interoperability of different devices,
and the security and privacy concerns associated with the
collection of driver and vehicle data. The lack of standard-
ization and interoperability of different devices can create
issues of compatibility, making it difficult to integrate different
devices into a single system. This can hinder the development
of an effective IoT-based transportation system. Additionally,
the security and privacy of driver and vehicle data can be
vulnerable to hacking and data breaches, leading to potential
risks for drivers and passengers [3].

F. In Summary

The case studies and scenarios discussed highlight the
transformative potential and challenges of IoT technologies
in various sectors, such as efficiency enhancement, improved
safety, sustainability, and concerns like privacy, and standard-
ization.

IoT applications in smart homes and cities offer numer-
ous benefits but also present significant security and privacy
challenges. These issues necessitate comprehensive solutions,
including robust security protocols, privacy-preserving tech-
niques, and user education and awareness, for successful and
secure IoT implementation.

Addressing these complexities demands collective effort
from policymakers, industry leaders, and researchers. Such
efforts can enable responsible and ethical IoT adoption.

Refer to Table II for a summary of each case study, detailing
the specific IoT applications within those sectors, their key
benefits, and the associated challenges. For the hypothetical
implementations and their challenges, refer to Table III which
provides a more nuanced explanation of each issue.

V. COMPREHENSIVE SOLUTIONS TO OVERCOME IOT
SECURITY LIMITATIONS AND CHALLENGES

Addressing IoT security limitations and challenges ne-
cessitates a holistic approach encompassing the entire IoT
ecosystem. This section presents a set of crucial solutions
and recommendations that align with the case studies and
discussions previously presented in this paper.

A. Enhancing Standardization and Interoperability

One of the primary challenges across the IoT landscape is
the lack of standardization and interoperability among different
devices and systems. To address this issue, organizations and
governments must collaborate to develop and adopt common
standards and protocols [4]. As discussed earlier, initiatives
like the NIST Cybersecurity Framework [38], ISO/IEC 21823-
1:2019 [11], and GDPR [27] are steps in the right direc-
tion. However, further efforts are required to promote the
widespread adoption of these standards and ensure seamless
integration among IoT devices and systems.

B. Robust Security Measures

IoT devices and systems must incorporate robust security
measures to protect against cyber threats and ensure the
privacy of users’ data [31]. This includes adopting strong
encryption, secure authentication, access control mechanisms,
and timely software updates. Additionally, organizations must
follow security best practices, such as the guidelines provided
by the NIST Cybersecurity Framework, to manage cybersecu-
rity risks effectively.

C. Privacy by Design

The ”Privacy by Design” concept, originally formulated by
Ann Cavoukian in the 1990s, has been touted as a proactive
approach to embed privacy into the design specifications of
technologies, business practices, and networked infrastructure
[6]. It proposes that privacy assurance must ideally become an
organization’s default mode of operation.

However, beyond being a buzzword or political strategy,
the realization of ”Privacy by Design” poses scientific and
technical challenges. It requires rigorous methodologies in
the development process to ensure privacy. This is not a
trivial matter in IoT, where devices generate and collect large
amounts of personal data continuously and in real-time.

Several aspects contribute to the scientific rigor of ”Privacy
by Design”. First is the incorporation of privacy-enhancing
technologies (PETs) during the design phase [8]. PETs, which
include encryption techniques, anonymization tools, and dif-
ferential privacy methods, can help to minimize personal
data collection, restrict data processing, and strengthen data
security.

Second, a system’s architecture must be designed to enforce
privacy policies effectively, ensuring that the system behaves
as expected even in the face of attacks [33]. This involves
techniques such as policy languages and policy enforcement
mechanisms, which should be based on sound mathematical
foundations to provide provable guarantees.

Third, privacy impact assessments (PIAs) should be con-
ducted routinely throughout the system’s lifecycle [39]. PIAs
can help to identify potential privacy risks and propose mit-
igation strategies. They should be based on a comprehensive
understanding of privacy principles and legislation, and they
should be verified by third-party audits to ensure transparency
and accountability.

In conclusion, “Privacy by Design” is not merely a slogan or
strategy. Its successful implementation requires scientific rigor
and technical expertise, with the commitment to make privacy
a default setting in IoT systems. However, such an approach
needs to be adopted widely, transcending organizations and
sectors, to truly uphold the privacy rights of individuals in the
face of growing IoT applications.

D. Education and Awareness

Increasing security awareness among IoT device users can
help mitigate risks associated with device misuse or poor
security practices [17]. This includes educating users about
the potential risks of IoT devices, the importance of regular

62Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 72 / 74

TABLE II. SUMMARY OF IOT CASE STUDIES

Case Study IoT Applications Key Benefits Key Challenges
Smart Home Technology Security Systems, Smart Thermostats Improved comfort and

convenience, safety
Privacy concerns, device compati-
bility

Smart Cities Intelligent Traffic Management Systems,
Smart Grids

Improved public services, sustain-
ability, quality of life

Scalability, data privacy, infrastruc-
ture investment

Healthcare Remote Patient Monitoring, Wearable Fit-
ness Trackers

Enhanced patient care, reduced
healthcare costs, proactive health
management

Data security, interoperability,
compliance with regulations

Agriculture Precision Farming, Livestock Monitoring Optimized resource usage, in-
creased crop yields, efficient farm
management

High implementation cost, rural
connectivity

Transportation Connected Cars, Autonomous Vehicles Improved safety, traffic manage-
ment, vehicle performance

Safety concerns, real-time data pro-
cessing, reliability

TABLE III. KEY CHALLENGES IN HYPOTHETICAL IOT IMPLEMENTATIONS

Case Study Key Challenges Explanation
Smart Homes Privacy concerns, need for user education,

compatibility and standardization
Privacy issues arise due to extensive data collection and need for secure
systems. Interoperability issues occur when devices from different man-
ufacturers don’t work together seamlessly. The need for user education
arises from the complexities of managing smart home systems.

Smart Cities Privacy concerns, scalability, need for in-
frastructure investment, interoperability

Privacy issues arise due to extensive data collection. IoT systems in
smart cities need to be scalable to handle increasing data volumes. Large
infrastructure investments are needed for smart city implementation. Inter-
operability among different systems and devices is a crucial requirement.

updates, and best practices for securing their devices. Manu-
facturers and service providers should invest in user education
and training to promote secure IoT usage.

E. Collaboration between Stakeholders

Effective collaboration between stakeholders, including gov-
ernments, industry leaders, researchers, and end-users, is es-
sential for addressing IoT security challenges [3]. This collab-
oration can facilitate the sharing of knowledge, resources, and
expertise, leading to more effective solutions and strategies for
securing IoT devices and systems [1].

F. Leveraging Artificial Intelligence and Machine Learning

Artificial intelligence (AI) and machine learning (ML)
techniques have become crucial tools in the realm of IoT
security [16], [25]. The data-intensive nature of IoT systems
has made traditional security measures inadequate, hence
necessitating the use of more sophisticated approaches like
AI and ML [35].

AI and ML algorithms can analyze vast amounts of data
generated by IoT devices to identify patterns and detect
anomalies that may indicate security breaches. This method is
often faster and more effective than human monitoring, thus
enabling a prompt response and mitigation of threats [16].
Moreover, these algorithms can learn from past incidents
and continuously improve their threat detection capabilities,
providing a dynamic security solution that adapts to evolving
threats [25].

In addition to threat detection, AI and ML can also con-
tribute to IoT security by predicting potential vulnerabilities
and proactively strengthening security measures [35]. They
can be used to analyze the behavior of devices and networks
to identify weak points that could be exploited by malicious
actors.

Lastly, AI and ML can play a critical role in managing the
complexity of IoT systems. They can help automate security
processes, such as authentication and encryption, and manage
the increasing number of devices in IoT networks [25]. As a
result, AI and ML not only enhance the security of IoT systems
but also contribute to their overall efficiency and scalability.

VI. CONCLUSION

This paper has offered an exhaustive analysis of the chal-
lenges and limitations of IoT security, spotlighting a wide
range of sectors from smart homes to agriculture. We’ve
underscored key challenges—ranging from data privacy, se-
curity, the cost of implementation, the absence of standard-
ization, to legal and regulatory hurdles—that pose significant
impediments to successful IoT integration across industries.
Our review of government standards and frameworks further
illustrates the evolving regulatory landscape in IoT security.

However, our research contributes more than a summary of
existing knowledge. Our work offers a nuanced understanding
of the complex web of issues surrounding IoT security, provid-
ing a multi-faceted perspective on the solutions, which weave
together technical, legislative, and educational approaches.
We’ve emphasized the importance of a collaborative, multi-
stakeholder approach to address IoT security challenges and
highlighted the potential of artificial intelligence and machine
learning in enhancing IoT security.

In addition to this, our research indicates the need for
increased public awareness about IoT security and the devel-
opment of a culture of cybersecurity among IoT users and
developers. Fostering such a culture, combined with industry-
wide commitment to IoT security, is integral to building a
more resilient and secure IoT ecosystem.

Our findings point to an urgent need for ongoing collabora-
tion between policymakers, industry leaders, and researchers

63Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

 73 / 74

to further standardize and secure IoT technology. As the IoT
landscape continues to evolve, these collective efforts are
essential for striking a balance between the need for innovation
and growth with the protection of users’ rights and interests.

In summary, while IoT technology brings forth immense op-
portunities for innovation and growth, it is paramount that we
acknowledge and address the inherent security challenges. By
understanding these challenges and working collaboratively to
surmount them, we can harness the full potential of IoT and
pave the way for a more interconnected, efficient, and secure
world.

REFERENCES

[1] Mohammad Aazam, Marc St-Hilaire, and Chung-Horng Lung. IoT
standards, protocols and security. IEEE Access, 7:129551–129571, 2019.

[2] Mohammad Aazam, Sherali Zeadally, and Khaled A Harras. Deploying
fog computing in industrial internet of things and industry 4.0. IEEE
Transactions on Industrial Informatics, 14(10):4674–4682, 2018.

[3] Ala Al-Fuqaha, Mohsen Guizani, and Kemal Akkaya. Internet of Things:
A survey on enabling technologies, protocols, and applications. IEEE
Communications Surveys & Tutorials, 2022.

[4] Cesare Alippi and Giusy Vanini. Adaptive IoT solutions with energy
harvesting. In Ovidiu Vermesan and Joël Bacquet, editors, IoT Enablers:
Technologies and Implementation, pages 203–239. River Publishers,
2019.

[5] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of
Things: A survey. Computer Networks, 54(15):2787–2805, 2010.

[6] Ann Cavoukian. Privacy by Design: The 7 Foundational Principles.
Information and Privacy Commissioner of Ontario, Canada, 2009.

[7] Jie Chen, Yishuang Huang, and Yajie Qin. A comprehensive review
on the cost-effectiveness of IoT technologies. IEEE Access, 10:27437–
27453, 2022.

[8] George Danezis, Josep Domingo-Ferrer, Marit Hansen, Jaap-Henk
Hoepman, Daniel Le Métayer, Rodica Tirtea, and Stefan Schiffner.
Privacy-preserving data mining. In Handbook of Information and
Communication Security, pages 615–634. Springer, 2010.

[9] Michel Girard. Standards for Cybersecure IoT Devices: A Way Forward.
Centre for International Governance Innovation, 2020.

[10] Saurabh Gupta, Rakesh Goyal, and Gurpreet Singh. Scalability in IoT:
A review. Journal of Information Processing Systems, 17(4):988–1005,
2021.

[11] ISO. ISO/IEC 21823-1:2019 Internet of Things (IoT) — interoperability
for IoT systems — part 1: Framework. https://www.iso.org/standard/
71885.html, 2019. Accessed on May 29, 2023.

[12] ISO. ISO/IEC 27001 – information security management systems. https:
//www.iso.org/standard/54534.html, 2022. Accessed on March 16, 2023.

[13] ISO. ISO/IEC 27002:2022 – information security, cybersecurity and
privacy protection — information security controls. https://www.iso.
org/standard/75652.html, 2022. Accessed on March 16, 2023.

[14] Robert Johnson, Maria Nguyen, and Raj Patel. Cross-border data flows
in IoT: Legal challenges and solutions. Journal of International Law
and Technology, 7(2):234–257, 2022.

[15] Nickson M Karie, Nor Masri Sahri, Wencheng Yang, Craig Valli, and
Victor R Kebande. A review of security standards and frameworks for
iot-based smart environments. IEEE Access, 9:121975–121995, 2021.

[16] Minhaj Ahmad Khan and Khaled Salah. IoT security: Review,
blockchain solutions, and open challenges. Future generation computer
systems, 82:395–411, 2018.

[17] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and
Jeffrey Voas. Ddos in the IoT: Mirai and other botnets. Computer,
50(7):80–84, 2017.

[18] Shancang Li, Houbing Song, and Muddesar Iqbal. Privacy and security
for resource-constrained iot devices and networks: Research challenges
and opportunities. Sensors, 19(8), 2019.

[19] Li Lin, Xiaofei Liao, Hai Jin, and Peng Li. Computation offloading
toward edge computing. Proceedings of the IEEE, 107(8):1584–1607,
2019.

[20] Xiao Liu, Yu Chen, Zhen Wang, and Wei Zhang. Security and privacy in
IoT: Challenges, solutions, and future directions. IEEE Communications
Surveys & Tutorials, 24(1):789–823, 2022.

[21] Rwan Mahmoud, Tasneem Yousuf, Fadi Aloul, and Imran Zualker-
nan. Internet of Things (IoT) security: Current status, challenges and
prospective measures. In 2015 10th international conference for internet
technology and secured transactions (ICITST), pages 336–341. IEEE,
2015.

[22] Imran Makhdoom, Mehran Abolhasan, Justin Lipman, Ren Ping Liu,
and Wei Ni. Anatomy of threats to the internet of things. IEEE
Communications Surveys & Tutorials, 21(2):1636–1675, 2019.

[23] André Mayer, Vinicius Rodrigues, Cristiano André da Costa, Rodrigo
Righi, Alex Roehrs, and Rodolfo Antunes. FogChain: A fog computing
architecture integrating blockchain and internet of things for personal
health records. IEEE Access, PP:1–1, 09 2021.

[24] Yang Ming and Tingting Zhang. Efficient privacy-preserving access
control scheme in electronic health records system. Sensors, 18(10),
2018.

[25] Mehdi Mohammadi, Ala Al-Fuqaha, Sameh Sorour, and Mohsen
Guizani. Deep learning for IoT big data and streaming analytics: A
survey. IEEE Communications Surveys & Tutorials, 20(4):2923–2960,
2018.

[26] Mahda Noura, Mohammed Atiquzzaman, and Martin Gaedke. Interop-
erability in internet of things: Taxonomies and open challenges. Mobile
networks and applications, 24:796–809, 2019.

[27] European Parliament and Council. Regulation (EU) 2016/679 of the eu-
ropean parliament and of the council of 27 april 2016 on the protection of
natural persons with regard to the processing of personal data and on the
free movement of such data, and repealing directive 95/46/EC (general
data protection regulation). https://eur-lex.europa.eu/eli/reg/2016/679/oj,
2016.

[28] Sameer Qazi, Bilal A. Khawaja, and Qazi Umar Farooq. IoT-equipped
and AI-enabled next generation smart agriculture: A critical review,
current challenges and future trends. IEEE Access, 10:21219–21235,
2022.

[29] Sina Shahhosseini, Arman Anzanpour, Iman Azimi, Sina Labbaf,
DongJoo Seo, Sung-Soo Lim, Pasi Liljeberg, Nikil Dutt, and Amir M
Rahmani. Exploring computation offloading in IoT systems. Information
Systems, 107:101860, 2022.

[30] Gabi Siboni and Tal Koren. The Threat of Connected Devices to the
Internet. Institute for National Security Studies, 2016.

[31] Rishi S. Sinha, Ying Wei, and Seong H. Hwang. A review on low power
IoT devices and applications. Electronics, 10(11):1314, 2021.

[32] John Smith, Alice Brown, and Ethan Miller. Resource management in
IoT networks: Recent advances and challenges. IEEE Communications
Surveys & Tutorials, 2022.

[33] Sarah Spiekermann and Lorrie Faith Cranor. Privacy by design: the
definitive workshop. Identity in the Information Society, 2(2):243–254,
2009.

[34] Sarah Thompson, Brian Lee, and Carlos Silva. Developing legal
frameworks for IoT: Balancing innovation and regulation. International
Journal of Law and Information Technology, 31(1):78–101, 2023.

[35] Nazar Waheed, Xiangjian He, Muhammad Ikram, Muhammad Usman,
Saad Sajid Hashmi, and Muhammad Usman. Security and privacy in iot
using machine learning and blockchain: Threats and countermeasures.
ACM Comput. Surv., 53(6), dec 2020.

[36] Chao Wang, Jie Xu, Hong Zhang, Yang Zhang, and Tao Li. Edge
computing for IoT: A comprehensive survey. ACM Computing Surveys
(CSUR), 56(1):1–40, 2023.

[37] Jiajie Wang, Zhenyu Zhang, Yuyu Zhang, and Yun Chen. Internet
of Things (IoT) based personalized healthcare system. J. Med. Syst.,
42(4):70, 2018.

[38] James Webb and Dustin Hume. Campus IoT collaboration and gover-
nance using the nist cybersecurity framework. In Living in the Internet
of Things: Cybersecurity of the IoT-2018, pages 1–7. IET, 2018.

[39] David Wright and Paul De Hert. The relationship between privacy
impact assessments and risk management. Risk management: an
international journal, 14(3):206–221, 2012.

[40] Ibrar Yaqoob, Ibrahim Abaker Targio Hashem, Abdullah Gani, Salimah
Mokhtar, Ejaz Ahmed, Nor Badrul Anuar, and Athanasios V Vasilakos.
Big data: From beginning to future. International Journal of Information
Management, 36(6):1231–1247, 2016.

64Copyright (c) IARIA, 2023. ISBN: 978-1-68558-044-5

CLOUD COMPUTING 2023 : The Fourteenth International Conference on Cloud Computing, GRIDs, and Virtualization

Powered by TCPDF (www.tcpdf.org)

 74 / 74

http://www.tcpdf.org

