
CENICS 2025

The Eighteenth International Conference on Advances in Circuits, Electronics and

Micro-electronics

ISBN: 978-1-68558-308-8

October 26th - 30th, 2025

Barcelona, Spain

CENICS 2025 Editors

Timm Bostelmann, FH Wedel (University of Applied Sciences), Germany

 1 / 20

CENICS 2025

Forward

The Eighteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

(CENICS 2025), held between October 26th, 2025, and October 30th, 2025, in Barcelona, Spain, continued

a series of events capturing advances in special circuits, electronics, and micro-electronics in both theory

and practice, from fabrication to applications using these special circuits and systems. The topics

covered

fundamentals of design and implementation, techniques for deployment in various applications, and

advances in signal processing.

Innovations in circuits, electronics, and microelectronics enable a wide range of applications. The

conference focused on advances in high-speed signal processing, micro/nano-electronics, low-power

sensor systems, and specialized electronics for wearable, implantable, and e-health devices. These

technologies drive new design methods, reconfigurable systems, and integration with Internet-based

platforms, with special attention to devices operating close to or within the human body.

We take the opportunity to warmly thank all the members of the CENICS 2025 technical program

committee, as well as all the reviewers. The creation of such a high-quality conference program would

not have been possible without their involvement. We also kindly thank all the authors who dedicated

much of their time and effort to contribute to CENICS 2025. We truly believe that, thanks to all these

efforts, the final conference program consisted of top-quality contributions. We also thank the members

of the CENICS 2025 organizing committee for their help in handling the logistics of this event.

We hope that CENICS 2025 was a successful international forum for the exchange of ideas and

results between academia and industry for the promotion of progress in the field of circuits, electronics,

and micro-electronics.

CENICS 2025 Chairs

CENICS 2025 Steering Committee
Junghee Lee, Korea University, Korea
David Cordeau, XLIM | University of Poitiers, France
Timm Bostelmann, FH Wedel (University of Applied Sciences), Germany
Kenneth Skovhede, Duplicati, Inc., Denmark

CENICS 2025 Publicity Chairs
Lorena Parra Boronat, Universidad Politécnica de Madrid, Spain
Laura Garcia, Universidad Politécnica de Cartagena, Spain

 2 / 20

CENICS 2025
Committee

CENICS 2025 Steering Committee

Junghee Lee, Korea University, Korea
David Cordeau, XLIM | University of Poitiers, France
Timm Bostelmann, FH Wedel (University of Applied Sciences), Germany
Kenneth Skovhede, Duplicati, Inc., Denmark

CENICS 2025 Publicity Chairs

Lorena Parra Boronat, Universidad Politécnica de Madrid, Spain
Laura Garcia, Universidad Politécnica de Cartagena, Spain

CENICS 2025 Technical Program Committee

Naeem Abbasi, Qualcomm Technologies Inc., San Diego, USA
Francesco Aggogeri, University of Brescia, Italy
Ahmed Ammar, Ohio Northern University, USA
Amjad Anvari-Moghaddam, Aalborg University, Denmark
Mohammed A. Aseeri, King Abdulaziz City of Science and Technology (KACST), Kingdom of Saudi Arabia
M. Ali Aydin, Istanbul University, Turkey
Vincent Beroulle, Grenoble INP-UGA, France
Mahajan Sagar Bhaskar, Prince Sultan University (PSU), Saudi Arabia
Timm Bostelmann, FH Wedel (University of Applied Sciences), Germany
Manuel José Cabral dos Santos Reis, IEETA / University of Trás-os-Montes e Alto Douro, Portugal
Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain
Spandonidis Christos, Prisma Electronics SA, Greece
Tales Cleber Pimenta, Universidade Federal de Itajuba, Brazil
David Cordeau, XLIM | University of Poitiers, France
Bappaditya Dey, imec, Leuven, Belgium
Said Drid, University of Batna 2, Algeria
Francisco Falcone, UPNA-ISC, Spain
Laurent Fesquet, TIMA Laboratory | Grenoble Institute of Technology, France
Nazila Fough, Robert Gordon University, UK
Kamoun Fourati Fourati, University of Sfax, Tunisia
Patrick Girard, LIRMM - University of Montpellier 2 / CNRS, France
Victor Grimblatt, Synopsys Chile R&D Center, Chile
Wenkai Guan, Marquette University, USA
Mohammad Haider, The University of Alabama at Birmingham, USA
Amir M. Hajisadeghi, Amirkabir University of Technology (Tehran Polytechnic), Iran
Petr Hanáček, Brno University of Technology, Czech Republic
Abdus Sami Hassan, Chosun University, Korea
Wen-Jyi Hwang, National Taiwan Normal University, Taipei, Taiwan
Malinka Ivanova, Technical University of Sofia, Bulgaria

 3 / 20

Zhenge Jia, University of Pittsburgh, USA
Mouna Baklouti Kammoun, University of Sfax, Tunisia
Andrei Karatkevich, AGH University of Science and Technology, Krakow, Poland
Faiq Khalid, Technische Universität Wien, Austria
Kasem Khalil, Western Kentucky University, USA
Ioannis Kouretas, University of Patras, Greece
Junghee Lee, Korea University, South Korea
Kevin Lee, School of InformationTechnology | Deakin University, Melbourne, Australia
Samira Legrini, Badji Mokhtar University, Algeria
Shuai (Steven) Li, Swansea University,UK
Diego Liberati, National Research Council of Italy, Italy
Yo-Sheng Lin, National Chi Nan University, Taiwan
David Lizcano, Madrid Open University (UDIMA), Spain
Jose Manuel Molina Lopez, Universidad Carlos III de Madrid, Spain
Xuyang Lu, Shanghai Jiao Tong University, China
Weizhi Meng, Lancaster University, UK
Amalia Miliou, Aristotle University of Thessaloniki, Greece
Bartolomeo Montrucchio, Politecnico di Torino, Italy
Rafael Morales Herrera, University of Castilla-La Mancha, Spain
Ioannis Moscholios, University of Peloponnese, Greece
Umair Mujtaba Qureshi, City University of Hong Kong, Hong Kong
Arnaldo Oliveira, UA-DETI/IT-Aveiro, Portugal
Youssef Ounejjar, ETS, Montreal, Canada
Maria S. Papadopoulou, Aristotle University of Thessaloniki, Greece
Michalis Pavlidis, University of Brighton, UK
Ladislav Polak, Brno University of Technology, Czech Republic
Jorge Portilla, Universidad Politécnica de Madrid, Spain
Enrique Romero-Cadaval, University of Extremadura, Spain
Pedro Santana, ISCTE - University Institute of Lisbon, Portugal
Sergei Sawitzki, FH Wedel (University of Applied Sciences), Germany
Emilio Serrano Fernández, Technical University of Madrid, Spain
Mustafa M. Shihab, The University of Texas at Dallas, USA
Kenneth Skovhede, Duplicati, Inc. Denmark
Ivo Stachiv, Harbin Institute of Technology, Shenzhen China & Institute of Physics - Czech Academy of
Sciences, Prague, Czech Republic
Kenneth Stewart, University of California, Irvine
Viera Stopjakova, Slovak University of Technology, Bratislava, Slovakia
Carlos Travieso González, University of Las Palmas de Gran Canaria, Spain
Muhammad S. Ullah, Florida Polytechnic University, USA
Prajoona Valsala, Dhofar University, Salalah, Oman
John S. Vardakas, Iquadrat, Barcelona, Spain
Miroslav Velev, Aries Design Automation, USA
Gregg Vesonder, Stevens Institute of Technology, USA
Manuela Vieira, CTS/ISEL/IPL, Portugal
Aili Wang, ZJU-UIUC Institute | Zhejiang University, China
Hao Wang, MediaTek USA Inc., USA
Pengcheng Xu, UCLouvain, Belgium
Xiangxing Yang, pSemi Corporation, USA

 4 / 20

Yintang Yang, Xidian University, China
Fei Yuan, Ryerson University, Canada
Piotr Zwierzykowski, Poznan Univeristy of Technology, Poland

 5 / 20

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 6 / 20

Table of Contents

Adaptive Architectures for Forward Error Correction
Sergei Sawitzki

1

Optical-System-Aware Feature Extraction for Lithography Hotspot Detection
Masahiro Yamamoto, Masato Inagi, and Shinobu Nagayama

8

Powered by TCPDF (www.tcpdf.org)

 1 / 1 7 / 20

Adaptive Architectures for Forward Error Correction

Sergei Sawitzki
FH Wedel (University of Applied Sciences)

Wedel, Germany
e-mail: Sergei.Sawitzki@fh-wedel.de

Abstract—This work discusses adaptive designs of decoders
for several forward error correction codes. In the first scenario,
decoders capable of decoding the codes with different parameters
belonging to the same family are introduced. The results suggest,
that the hardware overhead caused by the additional flexibility
in most cases is as low as 5 – 10% additional silicon footprint
compared to the implementation based on the fixed code
parameters. In the second scenario, reconfigurable designs of
multi-family decoders are discussed. Since some parts of the
data-path and internal memory can be reused for different
decoders, silicon area savings of more than 40 % are achievable
compared to the overall chip area costs of the individual decoder
implementation per code family. The overall usefulness of such
reconfigurable decoder designs depends on the application case,
for instance, the throughput requirements or the necessity to
process data streams encoded with different codes in parallel.
The figures reported herein summarize and extend some previous
work known from literature, as well as the research carried out
by the author.

Keywords-forward error correction; FEC decoders; adaptive
decoder architectures.

I. INTRODUCTION AND RELATED WORK

Most of the modern digital communication and data storage
standards enforce the use of different error correcting codes.
Since in most cases the error correction process is carried out
by the receiver – without resending or rereading the data packet
– these codes are usually referred to as Forward Error Correcting
(FEC) codes and the respective hard- or software units are
called FEC encoders and decoders. The FEC codes most widely
used nowadays are belonging to one of the following code
families: convolutional codes, Reed-Solomon (RS) codes, Low-
Density Parity-Check (LDPC) codes, and turbo codes. Some
standards specify varying codes for different data rates or
combine codes from different families within one run to address
specific channel properties like cross-talk and fading improving
the overall bit error rate.

Over the last few years, mobile devices got significantly more
flexible. Modern mobile phones and other wearable devices
support numerous communication interfaces providing the user
with almost unlimited connectivity. Even the low-price devices
nowadays support wireless LAN, different mobile internet
standards, and Bluetooth, just to name a few. At least some of
them rely on the same kind of FEC algorithms, although the
specific parameters like code generator polynomials, coding
rates, constraint length, block sizes, and so on may vary even
within the same communication standard. To address this issue,
adaptive Viterbi and RS decoders will be discussed below and
compared to the straight-forward implementation for the single

code instance. Such comparison will provide a glimpse of the
overhead introduced by the additional flexibility.

On the other side, some computations carried out during the
decoding process of different code families are quite similar.
In addition, some data need to be temporarily stored either
throughout the complete decoding procedure or, in case of
LDPC and turbo codes, between adjacent decoding iterations
resulting in specific memory requirements. This poses the
question, if at least some parts of the silicon dedicated to
the data-path and memory can be reused among different
standards reducing the silicon footprint and improving the
power balance compared to the straight-forward implementation
of every single decoder. This question will be addressed in the
discussion of combined Viterbi/turbo and LDPC/turbo decoders.

The general applicability and advantages of the adaptive
FEC decoder implementation depend on the use case, e.g., the
necessity to process several data streams encoded with the
same code or with different codes in parallel or the option to
switch between different data rates. This should be kept in
mind during the discussion of the different design options.

In principle, FEC decoding algorithms can be implemented
both in software and hardware. However, given the fact, that
most of them are quite computationally intensive, software-
based solutions are usually lagging behind the high throughput
requirements imposed by the majority of contemporary com-
munication and data storage standards. For instance, iterative
decoding involved in the decoding process of turbo and LDPC
codes may require as many as 1 500 machine instructions per bit
(or even more depending on the number of decoding iterations)
[1]. Running such decoders at the data rates of several hundreds
of megabits per second requires computational power which is
beyond the capabilities of even most powerful microprocessors.
For this reason, the scope of this paper is limited to the
dedicated hardware architectures, i.e., direct mapping of the
FEC decoders to silicon. Alternative approaches which are less
flexible than the software solution but still offer at least some
properties of the architectures built around the instruction set
paradigm are Application-Specific Instruction-set Processors
(ASIP) [2][3] and Networks-on-Chip (NoC) [4]. These are
beyond the scope of this contribution. A comprehensive
overview concerning the scalability issues and multi-standard
capabilities of different FEC decoders is provided in [1][5].
Based upon these studies, some of the results are re-evaluated,
supported by new findings and extended herein.

The rest of this paper is organized as follows. Section II
introduces an adaptive implementation of the Viterbi decoder
and compares several designs known from literature. In Sec-

1Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CENICS 2025 : The Eighteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 8 / 20

1D

C1>
1D

C1>

m 1 x x2

Clk R1 R0

g1(x) = x + x2 = 0112 = 38
g2(x) = 1 + x + x2 = 1112 = 78

c1

c2

Figure 1. Simple convolutional encoder.

tion III, the additional costs of a reconfigurable architecture for
a Reed-Solomon decoder are discussed. Section IV summarizes
the general options of combining decoders for different code
families within one design and analyzes the architectures of
reconfigurable Viterbi-turbo and LDPC-turbo decoders in more
detail. Finally, Section V provides a summary of this work
and draws some conclusions concerning adaptive and multi-
family FEC decoder implementation showing some directions
for future research.

Due to the limited space, the detailed description of the cod-
ing schemes and decoder architectures is omitted. Instead, the
key ideas are summarized and some references for the readers
unfamiliar with the matter are provided where appropriate.

II. VITERBI DECODERS

Convolutional codes were introduced in 1955 [6] and became
one the most widely applied FEC code family. The incoming
data stream is stored in a shift register, from which several
bits are combined using an XOR operator. The number of
delay stages in the shift register including the input of the
first delay stage is referred to as constraint length K. Larger
K values provide better error correction capabilities (at the
cost of the increasing decoder complexity). Constraint lengths
between 5 and 11 are common. Particular XOR operators are
selected to produce the output data streams. The result is the
discrete convolution of the input data with encoder’s impulse
responses in the time domain, hence the name of the code [7,
pp. 455–456]. The number n of the output data streams defines
the code rate 1/n. For the codes used in most communication
standards 2 to 4 output bits are produced for every input bit,
so the code rate R lies between 1/2 and 1/4.

The particular codes differ depending on which bits from
the sequence stored in the shift register are involved in the
XOR calculation. This information is provided in the form of
the so-called generator polynomials g, one for every output.
Figure 1 shows an example of a simple convolutional encoder
with K = 3, R = 1/2, g1 = 011 and g2 = 111. As can
be seen, the generator polynomials are often specified by the
binary or octal representation of their coefficients. The encoder
is a Finite-State Machine (FSM) whose output depends on g.

The decoding process is based on the maximum-likelihood
principle. Decoder’s task is to find the state transition sequence,
which encoder FSM most likely underwent based on its output
sequence, which in most cases is corrupted by noise during the
transmission. Afterwards, the state transitions can be mapped to

the corresponding input data sequence. The most widely used
decoding algorithm for convolutional codes is based on dynamic
programming and was introduces in 1967 by Andrew Viterbi [8].
In the first stage of the decoding process, every received symbol
is compared to all legal output symbols of the encoder. The
result is called Branch Metric (BM). In the simplest case of the
so-called hard-input decoding, BM is the Hamming distance.
Due to modulation and analog-digital conversion the input
symbols are usually integer numbers represented by several
bits. This case is referred to as soft-input decoding, where
BM is represented by other measures like squared euclidean
distance. The number of BM values to be calculated depends
on the code rate since every additional output bit increases the
number of the legal output symbols by the factor of two and
every received symbol needs to be compared with all of them.

In the second stage, branch metrics are used to calculate
the Path Metrics (PM). One PM needs to be calculated for
every state of the encoder. All path metrics are set to zero
in the beginning and updated with every processed symbol.
The corresponding operation is called Add-Compare-Select
(ACS) and is the computational core of the decoding process.
Every ACS unit consists of two adders, one comparator and
one multiplexer. In addition, one register is required per unit to
store the actual PM value. The number of ACS units is equal
to 2K−1, i.e., it increases exponentially with the constraint
length of the code. The result of the ACS calculation is the
new path metric and the binary decision, which state transition
the encoder underwent while the corresponding output symbol
was generated. This decision is stored for every processed
symbol and every ACS unit in form of a single bit called
decision bit. The decision bits represent several paths through
the possible state transition sequences of the encoder with every
path corresponding to the certain input sequence. It can be
shown, that under normal conditions all paths merge to a single
one after a certain number of steps, which ist called Trace-
Back Depth (TBD). This path represents the most probable
sequence of the encoder’s state transitions. As a consequence,
decoder needs to store the decision bits for at least the number
of symbols equal to TBD. Given the fact, that one decision
bit is produced by every ACS unit, the memory capacity for a
single trace-back run equals to TBD×2K−1. As the decision
bits cannot be overwritten during the trace-back, this amount
needs to be at least doubled. The exact value of the TBD
depends on the channel conditions. For AGWN channels TBD
values of 5 ×K are sufficient, but they may be higher than
20×K for channels with fading and multi-path propagation.

Trace-back is the final stage of the decoding process, in
which the decision bits corresponding to the most probable
path are traversed and the corresponding input bits are stored in
a Last-In First-Out (LIFO) buffer. Finally, the LIFO memory is
read to produce the decoded input sequence (which in optimal
case will be the same as the original input to the encoder).

A Viterbi decoder for a specific convolutional code has
fixed design parameters like the number of the BM and the
ACS units, TBD, and so on. It is quite different in the case
of the adaptive decoder. Figure 2 shows the ACS calculation

2Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CENICS 2025 : The Eighteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 9 / 20

1
0

1
0

1
0

1
0

ACS

State 11

ACS

State 01

ACS

State 10

ACS

State 00

PM11(t)

PM01(t)

PM10(t)

PM00(t)

Butterfly 0

Butterfly 1

D11

D01

D10

D00

PM00(t + 1)

PM10(t + 1)

PM01(t + 1)

PM11(t + 1)

BM(c(x),00)

BM(c(x),01)

BM(c(x),11)

BM(c(x),10)

Clk

g1 = 1012

Figure 2. Path metric calculation for a reconfigurable Viterbi decoder.

unit for a decoder which can decode the code produced by
the encoder in Figure 1, as well as the code generated by
g1 = 101 and g2 = 111. While for each particular code
the interconnect between the BM calculation outputs and PM
calculation inputs is fixed, the adaptive decoder needs to switch
between two different patterns depending on the code to be
decoded. This functionality is realized by the multiplexers
placed at the inputs of the particular ACS units. If the decoder
has to process codes with different constraint lengths, additional
flexibility is required in the interconnect pattern between the
registers storing the actual PM values and the inputs of the
ACS units as well. This means more and larger multiplexers
at the inputs reducing the clock frequency and the throughput.
A detailed design of the interconnect network for an adaptable
Viterbi Decoder including the particular interconnect patterns
for different settings is described in [9].

In general, varying the constraint length and/or the generator
polynomials has the strongest impact on the additional chip area
and the critical path of the decoder. For the trace-back stage,
the memory architecture has to be calculated for the worst case,
i.e., the largest K and TBD values. In addition, the addressing
scheme has to be adapted to every single case, which imposes
the need for programmable address counters. Compared to other
modifications this overhead is almost neglectable. Figure 3
shows the trace-back unit of the reconfigurable Viterbi decoder
for variable values of the constraint length. The building blocks
affected by the reconfigurable nature of the design are shaded.
In principle, the address generators could be dimensioned
for the worst case, just like the memories. However, larger
TBD increases the latency of the decoder, which would be
an unnecessary overhead for smaller K values. At the same
time, making the address generators pre-loadable and scalable
adds almost nothing to the overall silicon footprint of the
decoder. The trace forward block depicted in Figure 3 is used
to calculate the initial state of the new trace-back cycle and is

2K−1

enable
sync

TBD

D
ec
is
io
n
b
it
s

K

TBD

Controller

Address
Generators

Memory 2

TBD × 2K−1

bits wide

Memory 1

TBD × 2K−1

bits wide

Trace forward

D
ec
o
d
er

L
IF
O

Address
generator

D
ec
o
d
ed

ou
tp
u
t

R/W

Figure 3. Trace back unit for a reconfigurable Viterbi decoder with clock and
reset signals not shown for the sake of clarity.

TABLE I. COMPARISON OF ADAPTABLE AND SINGLE-CODE VITERBI
DECODERS (b REFERS TO THE INPUT BIT-WIDTH).

Architecture Metric Reference Result
silicon[11] K = 3 . . . 7,
area

K = 7, g fixed +2, 9%
g variable, b fixed

throughput K = 7, g fixed −1, 5%
silicon K = 9,VITURBO [12]
area g variable

+9%
K = 3 . . . 9,

max. clock K = 9,g variable, b fixed
frequency g variable

−30%

[13] K ∈ {7, 9}, silicon K = 9, g fixed overhead is
g according to area (CDMA2000) neglectable
EDGE, CMDA2000 critical K = 9, g fixed
and WCDMA, b fixed path (CDMA2000)

+4%

[14] K = 3 . . . 11, silicon K = 11, n = 4,
g variable, area b = 5, g fixed

+50, 1%

n = 2 . . . 4, K = 11, n = 4,
b = 1 . . . 5

throughput
b = 5, g fixed

−26, 1%

described in detail in [10]. One memory block is used to store
the actual decision bits (write access) while the other is used
to trace back the decision bits from the previous cycle (read
access). The memories switch their roles after every cycle,
which explains the need for the multiplexer at their read ports.

Table I summarizes the figures of different adaptable Viterbi
decoder designs. The major findings can be generalized as
follows:

• The overhead increases with the degree of flexibility.
The Viterbi decoders designed to support a (small) fixed
amount of codes introduce the least – in some cases even
neglectable – overhead. In contrast, the full flexibility
regarding the constraint length, the code rate as well as
the generator polynomials requires up to 50 % more silicon
area and reduces the throughput by about 26 %. Although
looking diminishing at the first glance, it may still be
quite a good price to pay considering the alternative to
implement a dedicated decoder for every single code.

3Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CENICS 2025 : The Eighteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 10 / 20

• Varying the constraint length K has the highest impact
on the area overhead of the adaptive Viterbi decoder
implementation. Two factors can be identified as being
responsible for this matter. On one hand, the number of
ACS units increases exponentially with K, which means,
the number and the size of the multiplexers required
to implement different interconnect patterns increases
accordingly. On the other hand, the TBD value grows
linearly with K, so the memory depth of the trace-back
grows accordingly. At the same time, the memory width
grows exponentially with K. These consequences become
crucial for higher values of K: the area overhead for
K = 9 is about 9 %, while for K = 11 it is more than
50%. For Viterbi decoders with smaller constraint lengths
the area overhead is almost neglectable.

III. REED-SOLOMON DECODERS

The basic idea of the error correcting linear cyclic codes
nowadays knows as Reed-Solomon codes can be traced back
to 1952 [15][16]. In its current form the codes were introduced
in the seminal paper by Irving S. Reed and Gustave Solomon,
hence the name [17]. RS codes are defined over a finite field
GF(qm), which is an extension field of GF(q), where q is a
prime number and m is a natural number different from zero.
For all practically applied codes q = 2 is chosen, which means,
that the number of the elements in the field is a power of two.
Binary representation of the elements of GF(2m) requires m
bits per element. This is the reason, why almost all RS codes
used in communication and storage systems are defined over
GF(28): each symbol can be encoded by exactly one byte. In
contrast to the most other code families, the error correcting
properties of the RS codes are defined symbol-wise, i.e., it does
not matter, if a single bit or any other number of bits within
one symbol are corrupted – the decoder treats it as a single
symbol error. This explains, why RS codes are very powerful
at correcting burst errors. A (255,239) RS code has the block
size of 255 bytes, with 239 bytes of original message data and
2t = 255 − 239 = 16 bytes of the checksum added during
encoding. t = 16/2 = 8 is the number of corrupted symbols
which can be corrected by the code. If 8 adjacent symbols (64
adjacent bits in the worst case) would be corrupted during the
transmission, the decoder would still be able to correct all of
them. The general notation used to specify RS codes is (n, k),
where n is the block size and k is the original message size
before encoding (both specified in symbols of m bits width).
As stated in the example above n − k = 2t, where t is the
number of correctable symbol errors and R = k/n is the code
rate.

The t parameter can be chosen depending on the required
error correction capacity of the code. Once fixed, it defines the
generator polynomial for the code, which has the degree 2t:

g(x) = g0 + g1x+ g2x
2 + . . .+ g2t−1x

2t−1 + x2t. (1)

The coefficients g0, . . . , g2t−1 are all elements of GF(2m) and
the polynomial itself is defined in such a way, that its 2t roots
correspond to the 2t consecutive powers of the single element

3

3

3

3
Clk

m(x)
u(x)

0
1

α3 α1 α0 α3

x0 x1 x2 x3

x4

0

0
1

C
on

tr
ol
le
r

Figure 4. Reed-Solomon encoder for a (7,3) code over GF(23).

of GF(2m). For practical reasons, usually the primitive element
of the extension field GF(qm) is chosen as the first root (being
the generator of the multiplicative group of this field).

The encoding procedure appends the rest p(x) of the division
of the polynomial representing the original message m(x)
shifted to the left by n−k symbols by the generator polynomial:

xn−km(x) = q(x)g(x) + p(x), (2)

which is equivalent to

p(x) = xn−km(x) mod g(x). (3)

This operation can be easily carried out using feedback shift-
register as illustrated in Figure 4 for a very simple (7,3) RS
code. Note, that addition and multiplication operations are
defined on the elements of the corresponding finite field (i.e.,
not in terms of common arithmetic).

Given the fact, that the encoding process can be represented
by means of polynomial multiplication over GF(qm), it
becomes clear, how the transmission errors can be recognized
(and corrected). Since multiplication operation preserves the
roots of the generator polynomial, the resulting encoded
message can be inspected by the decoder by checking if 2t
consecutive powers of the primitive element of GF(qm) are the
roots of the polynomial corresponding to the received message.
This is the first step of the decoding process which is called
syndrome calculation. If at least one of the syndromes is not
equal to zero, then the message was corrupted.

The syndrome values are used in the next step of the
decoding process to calculate the number of the corrupted
symbols. The most intuitive way to accomplish this is – in
the first step – to assume the number of errors to be one and
try to solve the corresponding system of equations based on
the co-called error location polynomial. The solution indicates
the position of the corrupted symbol. In case the system of
equations for a single error is not solvable, the assumption
of two corrupted symbols has to be made resulting in a
different system of equations. The process is repeated until
a solvable system of equations is found. This procedure is
called Peterson-Zierler-Gorenstein algorithm [18][19]. For the
hardware implementation the Berlekamp-Massey algorithm [20]
is better suited, since it can be better parallelized and modified
to reuse the same hardware to calculate both error location and
error value polynomials [21]. Its detailed description, however,
would go far beyond the scope of this paper. Independent of
the choice of the algorithm, finite field arithmetic is heavily
involved in the search for the error positions and values.

4Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CENICS 2025 : The Eighteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 11 / 20

a2

a1

a0

b2

b1

b0

w0

w1

w2

A = (a2a1a0) and B = (b2b1b0) are variable

b0
b2

b1

w1

w0

w2

B is variable, A = α

b0

b2
b1

w1

w0

w2

B is variable, A = α2

Figure 5. Variable-variable versus constant-variable multiplier for GF(23).

As just stated, since RS codes work on symbols of m bits
width, knowing the symbol error position is not enough. An
additional step is required to determine the error values. This
can be done by using the syndromes computed in the first
step, since every set of syndromes can be mapped to certain
errors. Alternatively, the so-called error value polynomial can
be calculated [22]. In the final decoding step, the error values
are added to the received symbols at the calculated error
positions restoring the original message. To accomplish this,
the received (corrupted) data is stored in the First-In First-Out
(FIFO) memory making sure the right values appear at the
output of the decoder at the right time. The finite filed addition
corresponds to a bitwise XOR operation, which scales well
and is trivial from the implementation point of view.

As mentioned above, decoding the RS codes requires
numerous calculations based on the finite field arithmetic.
In an RS decoder designed for a specific code, many of
the GF-multipliers have one constant input (variable-constant
multipliers). For adaptive decoding of different codes, a
variable-variable multiplier is required. The corresponding
overhead is quite high as Figure 5 illustrates. However, since
only multipliers involved in the syndrome and error location
computation are affected, the impact on the area of the whole
RS decoder is limited.

Table II summarizes the area and throughput figures of
different RS decoder designs. For the adaptive decoding, n,
t, and m parameters can be changed, although changing m
does not make a lot of sense, since almost all real-world RS
codes are based on m = 8 (ITU-T J.83, IEEE802.3bp, and
IEEE802.3bj standards being an exception by specifying codes
based on GF(27), GF(29), and GF(210) correspondingly). In
addition, different polynomials can be chosen as the finite field
generators. Varying the GF generator polynomial f(x) results
in a different encoding of the particular elements of the finite
field. However, it has been shown, that all finite fields for the
fixed values of q and m are isomorphic.

TABLE II. COMPARISON OF ADAPTABLE AND SINGLE-CODE
REED-SOLOMON DECODERS.

Decoder architectureComparison
[23] [23]metric [24] [25] [26]

1st variant 2nd variant
Code n and t Universal decoder:

parameter
fixed

variable n, t, m and f(x) variable
m 8 8 1 . . . 8 1 . . . 10 1 . . . 8
t 8 1 . . . 8 1 . . . 8 1 . . . 8 1 . . . 16

Erasure
correction

no no no ≤ 16 ≤ 16

Throughput
in Gb/s

1,6 0,8 0,048 2,2 2,4

75 000 + 39 000 +Gate
21 000 34 000 44 000 35 Kbit 15 Kbitequivalents

RAM RAM

The conclusions from the study of the different RS decoder
designs are as follows:

• The area overhead of the adaptive RS decoder implemen-
tation can be quite significant. Compared to the fixed-code
decoder with m = t = 8, a fully reconfigurable design can
consume about 85 % more silicon area in terms of gate
equivalents in addition to 15 KBit more SRAM. Just like
in the case of adaptive Viterbi decoder this is still quite a
low price to pay, since the error correction capabilities are
much better and the additional erasure correcting feature
is useful in many application scenarios (erasures are errors
whose position is known in advance).

• Throughput is usually not an issue with RS decoding,
since the symbol-per-second decoding rate is multiplied
by m to obtain the bit-per-second values. For adaptive
decoding it means, that the reduced clock rates caused by
the additional overhead of the adaptive implementation
are not significant in most cases.

IV. MULTI-FAMILY DECODERS

As can be seen from previous sections, the arithmetic
involved in decoding of convolutional and RS codes is quite
different which limits the possibilities of senseful hardware
reuse. However, it may be an option to combine decoders for
the other code families within one design with Viterbi decoder
or with each other.

Turbo codes were introduced in 1993 [27]. The basic idea is
to use several (usually two) recursive convolutional encoders
to process the same input data. First encoder receives the
data directly, the second one gets an interleaved data stream.
The size of the interleaver is usually in the order of several
kilobits. This approach makes the same data appearing as two
statistically independent messages. The decoding is done in an
iterative manner with two decoders which process the received
data and pass the output to each other (with interleaving and
deinterleaving steps inbetween). The decoders are based on the
Soft-Input Soft-Output (SISO) principle, i.e., their output is a
metric providing the likelihood for a bit to be 0 or 1 instead of
the final bit decision (soft-input was already discussed in the
Section II). The idea is, that a SISO decoder uses the output
of its predecessor as a-priori information to improve its own

5Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CENICS 2025 : The Eighteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 12 / 20

LDPC Turbo Viterbi

0

0.5

1

1.5

2

2.5

3

3.5

4
S
ili
co
n
ar
ea
/
m
m

2

LDPC λ-memory
LDPC Λ-memory
LDPC data-path

LDPC barrelshifter
Turbo α-memory

Turbo extrinsic memory
Turbo interleaver LUT

Turbo input buffer
Turbo stake memory

Turbo others
Viterbi traceback (incl. memory)

Viterbi data-path
Viterbi input buffer

Figure 6. Chip area distribution for different FEC decoder designs (adapted
from [1]).

decisions, which are then passed back to the first decoder and
so on. The certainty of the calculated metrics improves over
time, so that the decoding process usually can be stopped after
several iterations.

LDPC codes were described in detail in the dissertation of
Robert Gallager in 1963 [28]. Due to the high computational
requirements of the decoding process, first practical applications
came more that 30 years later as LDPC were proposed as
channel codes for several communication standards. In a
nutshell, LDPC codes are linear block codes with very large,
very sparsely filled generator matrix. As in the case of turbo
codes, the decoding process is iterative. In one iteration, parities
are checked to determine, which bits of the information block
are responsible for most unsatisfied parity equations. These
bits are inverted and the next iteration starts. The decoding
ends, as soon as all equations are satisfied or a certain number
of iterations is reached. As in the case of turbo codes, most
applications use soft metrics during the decoding process, which
are converted to the hard bit decisions at the end.

According to this brief description of the iterative decoding,
it should be clear that a lot of local memory is required to
store the information bits and intermediate results. Figure 6
shows the silicon area distribution between different parts of
the design for LDPC, turbo, and Viterbi decoders. The extreme
disproportion in the required silicon area between LDPC and
Viterbi decoders suggests, that a combination of both within
the same design with the goal to reuse some of the resources
does not make sense. Even if the complete Viterbi decoder
area could be reused for LDPC (which is virtually impossible),
the overall gain would sum up to less than 10 % of the silicon
footprint.

At the same time, the SISO module required for turbo
decoding can be implemented based on the Soft-Output Viterbi-
Algorithm (SOVA), which can also be used to decode the
convolutional codes. This increases the potential for hardware
reuse at the cost of slightly reduced bit error ratio for turbo
decoder compared to the SISO module based on the Max-log-
MAP algorithm [29].

A closer look at the internal data-path of the turbo and LDPC

Turbo data-path:

LUT-S

α0

γ0

α1

γ1
MSB

α′
0 = max(a,b) + log(1 + e−|a−b|)

a = α0 + γ0
b = α1 + γ1

0
1

α′
0

LDPC data-path:

LUT-S

LUT-S

MSB

| a |
| b |

| a |
− | b |

0
1

| f (a,b) |= min(| a | , | b |)
+ log

(
1 + e−(|a|+|b|))

− log
(
1 + e−||a|−|b||)

| f (a,b) |

Combined data-path:

LUT-S

LUT-S

LUT-S

MSB

X

Y

V

W
MSB

0
1

0
1 0

1

Z

bypass1

bypass1

bypass2

select

Figure 7. Combining Turbo and LDPC data-paths within a single FFU (adapted
from [30], LUT-S are Look-Up-Tables storing the approximated logarithmic
values).

TABLE III. COMPARISON OF MULTI-FAMILY FEC DECODERS.

Architecture Metric Reference Results
Viterbi-Turbo Decoders

VITURBO silicon Viterbi decoder +5 % logic
[12] area (K = 3 . . . 9) +25 % memory

silicon separate turbo and
[29] area Viterbi decoder

−14, 5%

(fully parallel) separate turbo andthroughput
Viterbi decoder

no change

silicon separate turbo and[29]
area Viterbi decoder

−28, 1%
(time-

separate turbo and same for Viterbimultiplex) throughput
Viterbi decoder 1/2 for turbo

[31] silicon area Turbo decoder +20%
Turbo-LDPC Decoders

silicon separate turbo and[1]
area LDPC decoder

−10%

turbo decoder +10 . . .+ 20%
silicon LDPC decoder +15 . . .+ 20%[30]
area reused vs. separate

data-paths
−39 . . .− 42%

decoders reveals some similarities as well. Figure 7 shows,
how the calculations involved in both decoding algorithms
can be combined within the same Flexible Functional Unit
(FFU) [30]. As in the case of multi-standard Viterbi decoder,
some additional multiplexers are required to switch between
the codes, which slightly increases the critical path.

Accordingly, the only options for multi-family decoders are
Viterbi-Turbo or Turbo-LDPC designs. Some case studies of
such designs are known from literature. Table III summarizes
the results. As expected, some portions of the data-path and
memory can be reused resulting in silicon area savings of 10–
42 % while throughput is not affected in most cases of combined
Viterbi-turbo decoder. If adaptable designs are compared with a
single family decoder, the overhead of introducing an additional
code family is very low. For instance, adding the LDPC
functionality to the existing turbo design comes at only 10–20 %
additional silicon area [30].

V. CONCLUSION AND FUTURE WORK

This paper discussed several options of the adaptive FEC
decoder design. The findings based on literature study and
own research suggest that overhead of extending a decoder

6Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CENICS 2025 : The Eighteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 13 / 20

towards other codes of the same family comes at moderate
cost. As expected, this overhead increases with the amount of
flexibility and code complexity. At the same time, decoders
covering several code families can take advantage of the
resource sharing reducing the overall silicon footprint compared
to the dedicated implementation of one particular decoder per
family. One aspect not discussed herein is the impact of the
adaptive decoder implementation on the power consumption.
On one hand, reconfigurability comes at the cost of additional
area and thus should result in increased energy-per-bit figures.
On the other hand, it can be expected that reusing parts of the
data-path and memory for different decoding algorithms leads
to overall power savings. Supporting these assumptions by
concrete numbers is a promising direction for further research.

REFERENCES

[1] J. T. M. H. Dielissen, N. Engin, S. Sawitzki, and C. H. van
Berkel, “FEC Decoders for Future Wireless Devices: Scalabil-
ity Issues and Multi-Standard Capabilities”, in Circuits and
Systems for Future Generations of Wireless Communications,
A. Tasić, W. A. Serdijn, L. E. Larson, and G. Setti, Eds.,
ser. Series on Integrated Circuits and Systems, Berlin: Springer,
2009, pp. 271–297.

[2] T. Vogt and N. Wehn, “A Reconfigurable ASIP for Convolu-
tional and Turbo Decoding in an SDR Environment”, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 16, no. 10, pp. 1309–1320, Oct. 2008.

[3] P. M. Velayuthan, “Towards Optimized Flexible Multi-ASIP Ar-
chitectures for LDPC/Turbo Decoding”, PhD thesis, Université
de Bretagne-Sud, Dec. 2012.

[4] M. Scarpellino, A. Singh, E. Boutillon, and G. Masera,
“Reconfigurable Architecture for LDPC and Turbo Decoding:
A NoC Case Study”, in Proceedings of IEEE 10th International
Symposium on Spread Spectrum Techniques and Applications,
Bologna, Italy: IEEE, Aug. 2008, pp. 671–676.

[5] J. T. M. H. Dielissen, N. Engin, S. Sawitzki, and C. H. van
Berkel, “Multi-Standard FEC Decoders for Wireless Devices”,
IEEE Transactions on Circuits and Systems II, vol. 55, no. 3,
pp. 284–288, May 2008.

[6] P. Elias, “Coding for Noisy Channels”, IRE Convention Record,
vol. 3, no. 4, pp. 37–46, 1955.

[7] T. K. Moon, Error Correction Coding. Mathematical Methods
and Algorithms. John Wiley & Sons, 2005.

[8] A. J. Viterbi, “Error Bounds for Convolutional Codes and
an Asymptotically Optimum Decoding Algorithm”, IEEE
Transactions on Information Theory, vol. 13, no. 2, pp. 260–269,
Apr. 1967.

[9] W. Tang, N. Engin, F. A. Steenhof, M. Klaassen, A. Hekstra,
and S. Sawitzki, Multi-Standard Viterbi Processor, US Patent
8,904,266 B2, NXP B. V., Eindhoven, The Netherlands, Dec.
2014.

[10] P. J. Black and T. H. Meng, “Hybrid Survivor Path Architectures
for Viterbi Decoders”, in Proceedings of International Confer-
ence on Acoustics, Speech, and Signal Processing, Minneapolis,
MN, USA, Apr. 1993, pp. 433–436.

[11] K. Chadha and J. R. Cavallaro, “A Reconfigurable Viterbi
Decoder Architecture”, in Conference Record of the Thirty-
Fifth Asilomar Conference on Signals, Systems & Computers,
M. B. Matthews, Ed., vol. 1, Pacific Grove, CA, USA: IEEE,
Nov. 2001, pp. 66–71.

[12] J. R. Cavallaro and M. Vaya, “VITURBO: A Reconfigurable
Architecture for Viterbi and Turbo Decoding”, in Proceedings
of International Conference on Acoustics, Speech, and Signal
Processing, Hong Kong: IEEE, Apr. 2003, pp. 497–500.

[13] T. Vogt, N. Wehn, and P. Alves, “A Multi-Standard Channel-
Decoder for Base-Station Applications”, in 17th Symposium on
Integrated Circuits and Systems Design (SBCCI 2004), Porto
de Galinhas, Brazil: IEEE, Sep. 2004, pp. 192–197.

[14] S. Sawitzki, “Embedded Reconfigurable Computing: Architek-
turen, Anwendungen und Entwurfswerkzeuge (Architectures,
Applications, Tools)”, Habilitation Thesis, TU Dresden, 2024.

[15] K. A. Bush, “Orthogonal Arrays of Index Unity”, The Annals
of Mathematical Statistics, vol. 23, no. 3, pp. 426–434, Sep.
1952.

[16] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting
Codes. Cambridge University Press, 2003.

[17] I. S. Reed and G. Solomon, “Polynomial Codes over Certain
Finite Fields”, Journal of the Society for Industrial and Applied
Mathematics, vol. 8, no. 2, pp. 300–304, Jun. 1960.

[18] W. Peterson, “Encoding and Error-Correction Procedures for
the Bose-Chaudhuri Codes”, IRE Transactions on Information
Theory, vol. 6, no. 4, pp. 459–470, Sep. 1960.

[19] D. E. Gorenstein and N. Zierler, “A Class of Error Correcting
Codes in pm Symbols”, Journal of the Society of Industrial and
Applied Mathematics, vol. 9, no. 2, pp. 207–214, Jun. 1961.

[20] E. R. Berlekamp, Algebraic Coding Theory, revised. Aegean
Park Press, Jun. 1984.

[21] H.-J. Kang and I.-C. Park, “A High-Speed and Low-Latency
Reed-Solomon Decoder based on a Dual-Line Structure”, in
IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing, Orlando, FL, USA, May 2002, pp. 3180–3183.

[22] G. D. Forney, “On Decoding BCH Codes”, IEEE Transactions
on Information Theory, vol. 11, no. 4, pp. 549–557, Oct. 1965.

[23] F.-K. Chang, C.-C. Lin, H.-C. Chang, and C.-Y. Lee, “Universal
Architectures for Reed-Solomon Error-and-Erasure Decoder”,
in Asian Solid-State Circuits Conference, Hsinchu, Taiwan:
IEEE, Nov. 2005, pp. 229–232.

[24] A. G. M. Strollo, N. Petra, D. De Caro, and E. Napoli, “An
Area-Efficient High-Speed Reed-Solomon Decoder in 0.25µm
CMOS”, in Proceedings of the IEEE 30th European Solid
State Circuits Conference, Leuven, Belgium: IEEE, Sep. 2004,
pp. 479–482.

[25] H.-Y. Hsu and A.-Y. Wu, “VLSI Design of a Reconfigurable
Multi-Mode Reed-Solomon Codec for High-Speed Commu-
nication Systems”, in IEEE Asia-Pacific Conference on ASIC
Proceedings, Taipei, Taiwan: IEEE, Aug. 2002, pp. 359–362.

[26] J.-C. Huang, C.-M. Wu, M.-D. Shieh, and C.-H. Wu, “An
Area-Efficient Versatile Reed-Solomon Decoder for ADSL”,
in Proceedings of the 1999 IEEE International Symposium on
Circuit and Systems (ISCAS’99), vol. 1, Orlando, FL, USA:
IEEE, May 1999, pp. 517–520.

[27] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon
Limit Error-Correcting Coding and Decoding: Turbo Codes”, in
Proceedings of the IEEE International Conference on Communi-
cation, Geneva, Switzerland: IEEE, May 1993, pp. 1064–1070.

[28] R. G. Gallager, “Low-Density Parity-Check Codes”, Sc. D.
thesis, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1963.

[29] G. Krishnaiah, N. Engin, and S. Sawitzki, “Scalable Recon-
figurable Channel Decoder Architecture for Future Wireless
Handsets”, in Design, Automation and Test in Europe Con-
ference and Exhibition, DATE 2007, Nice, France: European
Design and Automation Association, Apr. 2007, pp. 1563–1568.

[30] Y. Sun and J. R. Cavallaro, “A Flexible LDPC/Turbo Decoder
Architecture”, Journal of Signal Processing Systems, vol. 64,
no. 1, pp. 1–16, Jul. 2011.

[31] I. Ahmed and T. Arslan, “A Reconfigurable Viterbi Decoder
for a Communication Platform”, in Proceedings of the 2005
International Conference on Field Programmable Logic and
Applications (FPL), T. Rissa, S. Wilton, and P. Leong, Eds.,
Tampere, Finland: IEEE, Aug. 2005, pp. 435–440.

7Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CENICS 2025 : The Eighteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 14 / 20

Optical-System-Aware Feature Extraction for Lithography Hotspot Detection

Masahiro Yamamoto, Masato Inagi, Shinobu Nagayama
Graduate School of Information Sciences

Hiroshima City University
Hiroshima, Japan

e-mail: m_yamamoto@lcs.info.hiroshima-cu.ac.jp, {inagi|s_naga}@hiroshima-cu.ac.jp

Abstract—This paper proposes a new feature vector for machine
learning-based hotspot detection in lithography for Large-Scale
Integration (LSI) fabrication, which incorporates the optical
characteristics of exposure systems. Unlike existing features that
focus only on local layout sub-patterns, the proposed feature
takes into account optical behavior essential to accurate pattern
transfer. In LSI fabrication, a hotspot is a region in the layout
where an undesired open or short circuit may occur, even if
the design rules are satisfied. Hotspots can significantly reduce
manufacturing yield, and the cost of reworking after fabrication
begins is substantial. Therefore, it is crucial to detect and remove
hotspots at the pre-fabrication stage. Although several feature
vectors have been developed for hotspot detection, most of them
ignore the optical system’s influence, which is critical in the
lithography process. By incorporating optical characteristics, our
proposed feature aims to improve detection accuracy and reduce
the need for time-consuming lithography simulations.

Keywords-lithography; hotspot; feature vector; optical system.

I. INTRODUCTION

In the lithography process, which is one of the key steps in
semiconductor manufacturing, laser light from the exposure
system is projected onto a photomask, which serves as the
master template of circuit patterns, and the pattern is transferred
onto a semiconductor wafer coated with a photosensitive
material. In this process, due to optical diffraction, some areas
may fail to be correctly transferred even if they comply with
the design rules. Such regions are referred to as hotspots. Since
photomask fabrication is highly expensive, it is necessary to
detect these hotspots prior to manufacturing and revise the
layout patterns accordingly.

Lithography simulation, which computes phenomena, such as
light diffraction and the behavior of the photosensitive material
on the wafer, is a common method used to detect hotspots
before mask or product fabrication. However, applying this
simulation across the entire layout is extremely time-consuming.
If hotspots can be rapidly detected through methods other than
simulation, allowing prompt initiation of pattern revision, the
overall cost in terms of simulation coverage, frequency, and
runtime can be significantly reduced.

Therefore, several studies have explored hotspot detection
using machine learning techniques [1]–[5]. These methods train
classifiers using known hotspot and non-hotspot layout patterns
and detect unseen hotspot patterns based on learned features.
However, false detections still occur, and higher detection
accuracy is desired. In machine learning-based approaches,

the design of features that effectively capture characteristics
strongly related to hotspots is crucial. A widely used pixel-
based feature is Density Based Layout Feature (DBLF) [1][2],
which represents the local wiring density in layout patterns.
Other proposed pixel-based features include Histogram of
Oriented Light Propagation (HOLP) [3], which approximates
optical diffraction by smoothing layout images, and Line Width
and Separation (LiWS) [6][7], which considers wire widths
and the spacing between wires in the layout.

While several features have been proposed for machine
learning-based hotspot detection, actual hotspots vary depend-
ing on the behavior of light on the wafer surface, which in
turn is influenced by the optical characteristics of the exposure
system. Since hotspots are caused by light diffraction from
the exposure source to the wafer, it is important to consider
the optical characteristics (i.e., source characteristics) of the
exposure system. These source characteristics are indispensable
in lithography simulation and are already known to those who
perform hotspot detection. Thus, this information is potentially
applicable outside simulation-based approaches.

Some studies do make use of source characteristics for
hotspot determination [4][8], but such approaches remain close
to machine learning-based lithography simulation. For example,
the method from [4] is also regarded as considering optical
characteristics, but it is based on the idea of training a model
using intensity images generated by lithography simulation.
Therefore, it does not directly incorporate the optical parameters
of the exposure system into the learning process.

In this study, we propose a new feature that considers
the optical characteristics of the exposure system, which
have not been taken into account in existing features. This
work is an extended and revised version of our previously
published technical report [9]. Because hotspots are induced
by diffraction of light as it travels from the light source to
the wafer, incorporating source characteristics is essential.
By leveraging information already available from lithography
simulators, our method enables effective hotspot detection in a
machine learning framework. Through comparative experiments
with existing features, we confirmed that our proposed feature
improves detection accuracy. Note that the effectiveness of the
proposed feature may depend on the availability and precision
of source characteristics provided by the exposure system.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of lithography, hotspots, and

8Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CENICS 2025 : The Eighteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 15 / 20

machine learning. Section III defines the hotspot detection
problem and describes machine learning-based hotspot detec-
tion methods and existing features. Section IV explains the
proposed feature incorporating source characteristics. Section V
presents the experimental results, and Section VI concludes
the paper.

II. PRELIMINARIES

In this section, we first explain the mechanism of lithography
and the concept of lithography hotspots. We then describe
the machine learning framework used for hotspot detection,
focusing on supervised learning for classification, and the
process of feature extraction required when applying machine
learning.

A. Mechanism of Lithography

Lithography is the pattern transfer process in semiconductor
fabrication [10]. In lithography, ultraviolet (UV) light is
projected onto a photomask, which serves as the master
template for semiconductor chips, and the circuit pattern
(layout pattern) is transferred onto a silicon wafer through
the photomask, as illustrated in Figure 1.

Figure 1. Lithography

B. Lithography Hotspots

With the continued scaling of semiconductor devices, it has
become increasingly difficult to accurately transfer designed
layout patterns. Examples of degraded pattern fidelity include
corner rounding, necking, and line-end shortening, which are
caused by Optical Proximity Effects (OPE). To improve the
fidelity of pattern transfer, technologies, such as Optical Prox-
imity Correction (OPC) and Sub-Resolution Assist Features
(SRAF), have been developed [11]. However, patterns that
cannot be accurately transferred still emerge, even with these
technologies. Such patterns are referred to as hotspots, and
they are one of the factors that degrade yield and reliability of
semiconductor products. Figure 2 shows an example of short
and open circuits caused by lithography.

Because photomasks, which serve as the masters for layout
patterns, are extremely expensive, it is essential to eliminate
hotspots at the design stage to avoid costly rework.

Figure 2. Short and open circuits caused by lithography

C. Optical Simulation for Hotspot Detection

In lithography, UV light is projected onto a photomask,
which acts as the master template for semiconductor chips, and
the pattern is transferred onto the silicon wafer through the
photomask.

In optical simulation for lithography, the exposure process is
simulated by calculating the light intensity distribution as the
light emitted from the source passes through the photomask
and projection lens system and reaches the photoresist. In this
simulation, the optical characteristics of the exposure system
(i.e., source characteristics) are represented by a matrix called
the Sum of Coherent Systems (SOCS) kernel [12]. The post-
exposure light intensity distribution is computed as the squared
magnitude of the convolution between the SOCS kernel in the
spatial domain and the layout pattern.

Let ϕj be the j-th kernel matrix and M the layout pattern
matrix. The resulting light intensity distribution I is given by:

I(x, y) =

n∑
j=1

σj |(ϕj ∗M)(x, y)|2, (1)

where the symbol ∗ denotes convolution and σj is a constant.

D. Machine Learning and Feature Extraction

It is time-consuming and labor-intensive for humans to
analyze large amounts of data and derive rules or conditions
related to specific phenomena. To address this, machine
learning [13] has attracted attention as a technique that enables
computers to learn from large-scale data and automatically
construct models or algorithms for tasks, such as classification
and prediction.

Machine learning can be categorized into supervised and un-
supervised learning. Supervised learning involves estimating a
mapping function based on given input data and corresponding
labeled outputs. Among supervised learning tasks, classification
aims to predict the class label of a given instance.

In classification problems, raw data alone often fails to
achieve sufficient prediction accuracy. To address this, relevant
elements are extracted from raw data in a process known as
feature extraction. If two such elements are denoted as x and
y, then the vector f = (x, y) is referred to as a feature vector.
In this paper, we refer to both the feature vector itself and its
components as features.

9Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CENICS 2025 : The Eighteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 16 / 20

III. HOTSPOT DETECTION USING MACHINE LEARNING

In this section, we define the hotspot detection problem
and describe a method for detecting hotspots using machine
learning. We also introduce two widely used features: DBLF,
which considers layout density, and HOLP, which approximates
optical diffraction effects.

A. Hotspot Detection Problem
A hotspot refers to a pattern in lithography that poses a risk

of causing an open or short circuit. Whether a given pattern is a
hotspot can only be determined through lithography simulation
or after actual semiconductor fabrication. The hotspot detection
problem is to identify such hotspot patterns from a layout, based
on known hotspot and non-hotspot examples.

B. Detection Method Using Machine Learning
Hotspot detection using machine learning consists of two

main phases: the training phase and the testing phase. In this
study, layout patterns are assumed to be represented as bitmap
images, where wiring areas are white (pixel value: 1) and
empty areas are black (pixel value: 0). The flow of machine
learning-based hotspot detection is illustrated in Figure 3.

Figure 3. Flow of hotspot detection using machine learning [7]

In the training phase, as shown in Figure 3(a), a set of
known hotspot and non-hotspot pattern images are provided as
training data. Feature extraction is performed on each image
to obtain features (Figure 3(b)). These features, along with the
corresponding class labels indicating whether the image is a
Hotspot (HS) or Non-Hotspot (N-HS), are input to a machine
learning algorithm. The model is then trained to construct a
hotspot classifier (Figure 3(c)).

In the testing phase, as shown in Figure 3(d), an image of
the entire layout is given as test data. A region of interest
used to determine whether a hotspot is present is referred
to as a detection window. The detection window is scanned
over the layout image (as in Figure 3(c)), and for each region
corresponding to the detection window, feature extraction is
performed and the extracted features are input into the trained
classifier. The classifier outputs predicted labels (Figure 3(f)),
enabling hotspot detection.

C. Existing Feature: DBLF

The feature DBLF considers the density of wiring in
the layout, i.e., the proportion of area occupied by wires.
The procedure to compute DBLF is as follows. The image
corresponding to a detection window of i× i pixels is divided
into N × N subregions, each consisting of k × k pixels
(Figure 4). These subregions are referred to as local regions.

Figure 4. Division of image and local regions

For each local region sl, the wire area ratio dl is calculated.
The DBLF feature is then represented as the vector of these
values, as shown in (2):

FDBLF = (d1, d2, . . . , dN2). (2)

D. Existing Feature: HOLP

The feature HOLP approximates the effect of optical
diffraction in lithography by smoothing layout images.

First, a Gaussian filter is applied to the image M correspond-
ing to a detection window to produce a smoothed image Ms
as shown in Figure 5(a). For each local region of Ms, intensity
gradients are computed, as illustrated in Figure 5(b), and a
histogram is constructed using the intensity gradients. Gradient

Figure 5. Gradient computation from smoothed image [3]

angles are quantized into bins as shown in Figure 6(a). In the
example with 8 bins, the illustrated gradient falls into bin 4,
and weighted voting is applied using gradient magnitude as the
weight, as shown in Figure 6(b). Next, each local histogram is
normalized so that the sum of all bin values equals 1. For a
local region sl, the histogram with B bins is represented as a
vector (gl1, g

l
2, . . . , g

l
B). The overall HOLP feature is obtained

by concatenating the histograms from all local regions, as
shown in (3):

FHOLP = (g11 , g
1
2 , . . . , g

1
B , . . . , g

N2

1 , . . . , gN
2

B). (3)

10Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CENICS 2025 : The Eighteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 17 / 20

Figure 6. Construction of gradient histograms [3]

IV. PROPOSED FEATURE

Since hotspots are caused by optical effects as light travels
from the exposure system’s light source to the wafer, it is
important to consider information about the optical system.
Therefore, we propose a novel feature vector, named Optical
System-Aware Mapping (OSAM), which incorporates the
optical characteristics of the exposure system (hereafter, source
characteristics).

A. Feature Considering Optical System Characteristics

As the source characteristics can be represented using SOCS
kernels, we propose a feature based on these kernels. The
proposed feature vector is derived from a simplified light
intensity distribution calculated using reduced versions of both
the mask pattern and the kernels, as well as by truncating the
number of kernel components. By reducing the mask and kernel
sizes in advance and limiting the kernel order, the computation
time becomes significantly shorter compared to full lithography
simulations.

B. Computation Procedure of the Proposed Feature

The computation procedure of the proposed feature is
described below. We assume that the pattern image and the
kernels have the same size.

First, the mask pattern image M is divided into N × N
regions, where N is a user-defined constant. Next, for each
k× k-pixel local region sl in the pattern image, the proportion
of area occupied by wires is calculated as dl, and a new N×N
matrix M′ is formed using these values in the same way as in
DBLF, as illustrated in Figure 7.

Figure 7. Downsampling of pattern image

Then, the kernels ϕj (j = 1, 2, . . . n′) in the spatial domain
are divided into k × k-pixel local regions such that the center

of the central local region aligns with the center of the kernels,
where n′(< n) is a user-defined integer constant and n is
the original number of SOCS kernels used in the full optical
simulation.

That is, to avoid splitting the central part of the kernels, each
kernel is divided into (N − 1)× (N − 1) local regions when
N is even, and into N ×N regions when N is odd. When N
is even, the peripheral areas of the kernels are ignored.

For each kernel, the average value el of the pixels in each
local region sl is calculated, forming a matrix ϕ′

j of size
(N − 1) × (N − 1) or N × N depending on whether N is
even or odd, as shown in Figure 8.

Figure 8. Downsampling of kernel

The simplified light intensity distribution I′ is calculated
using the following equation:

I ′(x, y) =

n′∑
j=1

σj |(ϕ′
j ∗M′)(x, y)|2. (4)

The central N ×N submatrix C from I′ is then flattened
to form the proposed feature vector FOSAM, as shown in (5):

FOSAM = (C1,1, C1,2, . . . , CN,N−1, CN,N). (5)

Note that C can be obtained without computing the full
convolution results, by restricting the computation to the region
of interest.

The overall flow of computing the proposed feature is
illustrated in Figure 9.

Figure 9. Flow of proposed feature computation

In our experiments, the proposed feature OSAM is used in
combination with DBLF to enhance detection performance.

V. EXPERIMENTAL RESULTS

In this section, we compare the hotspot detection accuracy
between the existing feature DBLF and the proposed feature
that considers optical system characteristics. Experiments

11Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CENICS 2025 : The Eighteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 18 / 20

were conducted on a Linux server equipped with an Intel
Xeon E5-2620 v4 2.2GHz processor and 128GB of memory.
The experimental programs were implemented in Python
3.6.10, using OpenCV, Cython, scikit-learn, and TensorFlow
as libraries.

To evaluate the proposed method, a dataset with specified
optical conditions is required. We used data relabeled using an
optical simulator [14] based on the ICCAD 2012 CAD contest
dataset [10], as shown in Table I.

TABLE I. RELABELED ICCAD 2012 CONTEST DATASET

Circuit #Samples Process #HS #N-HS
data1 545 32nm 246 299
data2 4644 28nm 1417 3227
data3 5349 28nm 2930 2419
data4 3563 28nm 1100 2463
data5 2152 28nm 625 1527

A. Comparison Using AdaBoost

To compare the proposed feature with DBLF, we used
AdaBoost [15], a commonly used machine learning algorithm
in feature-based hotspot detection. The implementation used
scikit-learn, and decision trees were used as weak learners in
the ensemble model.

To focus on the fundamental performance of each feature,
we evaluated hotspot classification (not full detection). In the
experiments, 70% of the HS and N-HS regions in each dataset
were used for training, and the remaining 30% were used for
testing. The classification results were categorized into four
types, as shown in Table II.

TABLE II. CLASSIFICATION ACCURACY CATEGORIES

Hotspot Non-hotspot
Predicted as Hotspot True Positive (TP) False Positive (FP)

Predicted as Non-hotspot False Negative (FN) True Negative (TN)

As an evaluation metric, we used the F1 score, which is the
harmonic mean of Precision and Recall, defined as follows:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1_score = 2× Precision× Recall

Precision + Recall
(8)

For DBLF, the pattern image was divided into N = 10,
resulting in a 100-dimensional feature vector. For the proposed
feature, the pattern was also divided with N = 10, while the
kernel was divided with N − 1 = 9 to align the region center.
To match region sizes, the outer region of the kernel was
excluded. Although the optical simulator’s kernel order n was
24, we set n′ = 1 for the proposed feature. Thus, the proposed
feature had 100 dimensions, and since it was concatenated
with DBLF, the total dimensionality became 100 + 100 = 200.

To ensure a fair comparison, we explored all 225 combi-
nations of the following hyperparameters for each feature,
selecting those that yielded the highest F1 scores:

• Number of weak learners: 2, 4, 6, ..., 1000
• Maximum tree depth: 2, 3, 4
• Learning rate: 0.95, 0.96, 0.97, 0.98, 0.99

These hyperparameters follow prior studies [7]. Each dataset
was tested 5 times, and the average F1 score was computed.
The best and average F1 scores across all combinations are
shown in Table III. In all tables presented in this section, PROP
denotes our proposed feature, OSAM.

TABLE III. F1 SCORES WITH ALL PARAMETER COMBINATIONS (DBLF
10× 10)

Best Average
Dataset DBLF PROP (Ratio) DBLF PROP (Ratio)
data1 0.8640 0.8769 (1.0149) 0.8111 0.8271 (1.0197)
data2 0.6199 0.6090 (0.9824) 0.5332 0.5370 (1.0071)
data3 0.8399 0.8456 (1.0067) 0.7907 0.8171 (1.0334)
data4 0.8281 0.8240 (0.9950) 0.6672 0.7475 (1.1204)
data5 0.7993 0.8260 (1.0334) 0.6544 0.7515 (1.1423)

Average 0.7902 0.7963 (1.0077) 0.6913 0.7360 (1.0647)

To compare under more similar dimensionality, we also
tested DBLF with 14 × 14 = 196 dimensions. Results are
shown in Table IV.

TABLE IV. F1 SCORES WITH ALL PARAMETER COMBINATIONS (DBLF
14× 14)

Best Average
Dataset DBLF PROP (Ratio) DBLF PROP (Ratio)
data1 0.8711 0.8769 (1.0067) 0.8111 0.8271 (1.0197)
data2 0.6247 0.6090 (0.9749) 0.5332 0.5370 (1.0071)
data3 0.8279 0.8456 (1.0214) 0.7907 0.8171 (1.0334)
data4 0.8306 0.8240 (0.9921) 0.6672 0.7475 (1.1204)
data5 0.8191 0.8260 (1.0084) 0.6543 0.7515 (1.1423)

Average 0.7947 0.7963 (1.0020) 0.6913 0.7360 (1.0647)

As shown in Table III, the proposed feature performed better
than DBLF in both best and average F1 scores. Computation
times were comparable. Table IV further shows that even
with nearly equal dimensionality, the proposed feature still
performed better than DBLF. These results indicate the ef-
fectiveness of incorporating source characteristics in hotspot
detection.

We also investigated whether the proposed feature can be
further improved by maximizing the optical detail, ignoring
computation time. We used simulation images directly as
feature vectors, resizing them to control dimensionality. These
were concatenated with DBLF as in the proposed method.
Results are shown in Table V.

TABLE V. F1 SCORES USING SIMULATION IMAGES AS FEATURES

Dataset 10× 10 15× 15 20× 20 30× 30 50× 50 100× 100
data1 0.8839 0.8885 0.8849 0.8848 0.8772 0.8771
data2 0.7164 0.7284 0.7176 0.7003 0.6797 0.6768
data3 0.8735 0.8823 0.8726 0.8688 0.8665 0.8617
data4 0.8611 0.8987 0.8864 0.8823 0.8811 0.8714
data5 0.8441 0.8613 0.8329 0.8372 0.8267 0.8225

Average 0.8358 0.8518 0.8389 0.8347 0.8263 0.8219

These results suggest that while the proposed feature can
be further improved by adjusting kernel order or partition size,
its performance is already strong at 10 × 10. Unexpectedly,
the best score occurred at 15× 15, not at higher resolutions,

12Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CENICS 2025 : The Eighteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

 19 / 20

indicating that the relabeled dataset is challenging, and that
AdaBoost may perform better with lower-dimensional input.
Similar findings have been reported in [16].

B. Comparison Using CNN

Based on the previous findings, we also performed experi-
ments using Convolutional Neural Networks (CNNs) instead
of AdaBoost. We used TensorFlow for implementation.

We compared DBLF and the proposed feature using the
same parameter (N = 10). The CNN consisted of five layers:
conv1-pool1-conv2-pool2-dense. Each convolutional layer used
ReLU activation, with filters of size 3×3 and stride 1. The
number of filters was 16 in conv1 and 32 in conv2. Each
pooling layer performed max pooling with a 2×2 filter. We
experimented with all combinations of epochs {10, 20, 30, 40,
50} and batch sizes {16, 32, 64, 128, 256}. The best F1 scores
are shown in Table VI.

TABLE VI. BEST F1 SCORES USING CNN (FEATURE SIZE 10× 10)

Dataset DBLF PROP (Ratio)
data1 0.8774 0.8662 (0.9872)
data2 0.6552 0.6714 (1.0247)
data3 0.8531 0.8697 (1.0195)
data4 0.8471 0.8405 (0.9922)
data5 0.7880 0.8126 (1.0312)

Average 0.8042 0.8120 (1.0098)

From Tables III and VI, both features improved in F1 score
using CNN. From Table VI, the proposed feature performed
better than DBLF by approximately 1%, suggesting its potential
effectiveness. We further experimented using simulation images
as features in CNN, comparing 10 × 10 and 20 × 20 sizes.
Results are shown in Table VII.

TABLE VII. BEST F1 SCORES USING CNN WITH DIFFERENT FEATURE
SIZES

Feature Size 10× 10 Feature Size 20× 20
Dataset DBLF Sim. (Ratio) DBLF Sim. (Ratio)
data1 0.8774 0.8774 (1.0000) 0.8533 0.8701 (1.0197)
data2 0.6552 0.6583 (1.0047) 0.6910 0.7477 (1.0821)
data3 0.8531 0.8659 (1.0150) 0.8755 0.8972 (1.0248)
data4 0.8471 0.8513 (1.0050) 0.8649 0.9356 (1.0817)
data5 0.7880 0.8486 (1.0769) 0.8563 0.9065 (1.0586)

Average 0.8042 0.8203 (1.0200) 0.8282 0.8714 (1.0522)

These results indicate that the proposed feature has room for
improvement, but already performs well at 10× 10, supporting
the practicality and effectiveness of our approach.

VI. CONCLUSION AND FUTURE WORK

In this study, we proposed a novel feature for machine
learning-based hotspot detection that incorporates the optical
characteristics of the exposure system, which are typically over-
looked in existing approaches. Experimental comparisons with
existing features showed that the proposed feature consistently
improved detection performance.

As future work, we aim to improve the runtime efficiency
of the proposed approach, for example, by performing convo-
lutions in the frequency domain.

REFERENCES

[1] T. Matsunawa, J.-R. Gao, B. Yu, and D. Z. Pan, “A new
lithography hotspot detection framework based on AdaBoost
classifier and simplified feature extraction,” in Design-Process-
Technology Co-optimization for Manufacturability IX, vol. 9427,
SPIE, Mar. 2015, pp. 94270S1–11.

[2] Y.-T. Yu, G.-H. Lin, I. H.-R. Jiang, and C. Chiang, “Machine-
learning-based hotspot detection using topological classification
and critical feature extraction,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 34, no. 3, pp. 460–470, Jan.
2015.

[3] Y. Tomioka, T. Matsunawa, C. Kodama, and S. Nojima,
“Lithography hotspot detection by two-stage cascade classifier
using histogram of oriented light propagation,” in 2017 22nd
Asia and South Pacific Design Automation Conference (ASP-
DAC), Jan. 2017, pp. 81–86.

[4] J. W. Park, A. Torres, and X. Song, “Litho-aware machine
learning for hotspot detection,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 37, no. 7, pp. 1510–1514,
Jul. 2018.

[5] T. Zhou et al., “Mining lithography hotspots from massive
sem images using machine learning model,” in 2021 China
Semiconductor Technology Int. Conf. (CSTIC), Mar. 2021,
pp. 1–3.

[6] G. Kataoka, M. Inagi, S. Nagayama, and S. Wakabayashi,
“Novel feature vectors considering distances between wires
for lithography hotspot detection,” in 2018 21st Euromicro
Conference on Digital System Design (DSD), Aug. 2018,
pp. 85–90.

[7] G. Kataoka, M. Yamamoto, M. Inagi, S. Nagayama, and
S. Wakabayashi, “Feature vectors based on wire width and
distance for lithography hotspot detection,” IPSJ Trans. System
and LSI Design Methodology, vol. 16, pp. 2–11, Feb. 2023.

[8] T. Matsunawa, T. Kimura, and S. Nojima, “Lithography hotspot
candidate detection using coherence map,” in Design-Process-
Technology Co-optimization for Manufacturability XIII, J. P.
Cain, Ed., vol. 10962, SPIE, Mar. 2019, pp. 109620Q1–8.

[9] M. Yamamoto, M. Inagi, and S. Nagayama, “A feature vector
considering characteristics of optical system for lithography
hotspot detection,” in IEICE Technical Report (VLD2022-81),
in Japanese, vol. 122, Mar. 2023, pp. 49–54.

[10] J. A. Torres, “ICCAD-2012 CAD contest in fuzzy pattern
matching for physical verification and benchmark suite,” in
2012 IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD),
Nov. 2012, pp. 349–350.

[11] T. Matsunawa, B. Yu, and D. Z. Pan, “Optical proximity correc-
tion with hierarchical Bayes model,” J. Micro/Nanolithography,
MEMS, and MOEMS, vol. 15, no. 2, pp. 021009-1–8, Mar.
2016.

[12] N. Cobb, “Sum of coherent systems decomposition by SVD,”
University of California, Berkeley, Technical Report, Sep. 1995,
pp. 1–7.

[13] S. Raschka, Y. H. Liu, and V. Mirjalili, Machine Learning with
PyTorch and Scikit-Learn: Develop machine learning and deep
learning models with Python. Packt Publishing Ltd., Feb. 2022.

[14] S. Banerjee, Z. Li, and S. R. Nassif, “ICCAD-2013 CAD
contest in mask optimization and benchmark suite,” in 2013
IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD), Nov.
2013, pp. 271–274.

[15] D. Solomatine and D. Shrestha, “AdaBoost.RT: A boosting
algorithm for regression problems,” in 2004 IEEE Int. Joint
Conf. Neural Networks, vol. 2, Jul. 2004, pp. 1163–1168.

[16] X. Liu, Y. Dai, Y. Zhang, Q. Yuan, and L. Zhao, “A prepro-
cessing method of adaboost for mislabeled data classification,”
in 2017 29th Chinese Control And Decision Conf. (CCDC),
May 2017, pp. 2738–2742.

13Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

CENICS 2025 : The Eighteenth International Conference on Advances in Circuits, Electronics and Micro-electronics

Powered by TCPDF (www.tcpdf.org)

 20 / 20

http://www.tcpdf.org

