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Abstract—Xylella fastidiosa (Xf ) is one of the most aggressive
vascular pathogens threatening woody crops, particularly almond
trees, in the Mediterranean region. This paper presents a statistical
framework for the early detection of Xf infection prior to the onset
of visible symptoms, leveraging multitemporal physiological and
spectral data collected at the leaf level. The approach integrates
measurements from porometry, fluorometry, and spectrometry
with a non-parametric bootstrap resampling method to identify
traits that differentiate health states and reveal physiological
responses linked to disease progression. Results reveal that Xf -
infected trees, which later develop visible symptoms, exhibit
significant differences in median values of both spectral indices
and physiological variables compared to healthy and intermediate
health groups. Grounded in real field data, this work contributes
to data-driven plant health monitoring and precision agriculture,
demonstrating the potential of combining physiological and
spectral indicators for early, non-invasive diagnosis of vascular
diseases in perennial crops. The findings support the development
of predictive tools for timely disease detection and management
in almond and olive orchards.

Keywords-bootstrap-based non-parametric test; leaf scorch; phys-
iological indices; hyperspectral indices; precision agriculture.

I. Introduction

Almond (Prunus dulcis) is a crop of major economic and
cultural importance in Mediterranean regions [1]. However,
its cultivation is increasingly threatened by pathogens such
as the vascular bacterium Xylella fastidiosa (Xf ) [2][3] which
has emerged as one of the most devastating pathogens in
Europe. The bacterium colonizes and obstruct the xylem vessels,
disrupting water transport and leading to symptoms (e.g., leaf
scorching, branch dieback or canopy desiccation) and eventually
plant death [4][5]. Early detection of the diseases caused by
Xf is challenging due to the asymptomatic infections and
latency of visual symptoms and the systemic nature of the
infection, highlighting the need for more sensitive and non-
invasive diagnostic approaches.

The need for improved in early detection strategies extend to
other vascular pathogens affecting woody crops. For example,
the highly virulent defoliating pathotype D of Verticillium
dahliae (Vd) [6] showed early physiological stress signals in
infected olive trees, such as changes in canopy temperature,
chlorophyll fluorescence, and spectral indices, well before
visual symptoms appeared, using airborne hyperspectral and
thermal imaging [7]. Subsequent studies [8][9] refined this
approach, proving that foliar temperature, chlorophyll content,
and pigment-based indices could serve as early indicators of
plant disease, with Machine Learning (ML) models to classify
disease severity across multiple levels.

Based on prior findings, recent studies have extended the
use of remote sensing and ML techniques to differentiate
between Xf and Vd infection in tree host. Although both
pathogens share aspects of their pathogenesis that lead to
similar visual symptoms, such as canopy desiccation and
leaf scorching, they induce distinct physiological responses
in host plants. A study in 2021 [10] proposed a three-
stage classification approach that combined hyperspectral and
thermal traits with ML algorithms to discriminate between
Xf and Vd infections in olive trees, achieving over 90%
accuracy for both pathogens. Their findings showed that each
pathogen follows divergent physiological pathways: Xf is more
associated with chlorophyll degradation (mainly captured by
the Normalized Phaeophytinization Index, NPQI), anthocyanin
accumulation, and changes in photochemical reflectance indices
(e.g., normalized Photochemical Reflectance Index, PRIn),
while Vd is characterized by alterations in carotenoid content
and water stress indicators (e.g., Crop Water Stress Index,
CWSI). Building on this work, [2][11] demonstrated that
these pathogen-specific spectral signatures remain consistent
across both olive and almond trees. In particular, NPQI and
Solar-Induced Chlorophyll Fluorescence at 760 nm (SIF@760),
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indicator of photosynthetic efficiency and physiological stress,
were identified as key traits for detecting Xf in olives. In
contrast, other indices such as PRIn and Modified Carotenoid
Reflectance Index centered at 700nm (CRI700M) were found
to be more relevant in almonds, underscoring the importance
of host-specific physiological responses in disease detection
models. Finally, [12] focused specifically on Xf in almond trees,
proposing the integration of hyperspectral and thermal imagery
with an epidemic spread model. Their method enhanced
early detection of asymptomatic Xf -infected almond trees,
achieving up to 59% accuracy. These results highlight the
value of integrating plant physiological traits with spatial
epidemiological models for large-scale monitoring.

In this study, we aim to identify early physiological indicators
of Xf infection in almond trees, prior to the onset of visible
symptoms. To this end, we analyse multi-temporal leaf-level
data acquired through spectrometry, porometry and fluorometry.
Using bootstrap-based statistical testing, we identify the most
informative traits for discriminating health states over time.
Our goal is to establish a foundation for predictive models that
support early and non-invasive diagnosis of Xf in almond trees,
with potential transferability to other woody crops affected by
vascular pathogens.

The paper is organized as follows: Section II introduces the
database, detailing the preprocessing steps and the instance
labelling procedure. It also presents the statistical test employed
to identify relevant variables Section III reports and discusses
the results, while Section IV concludes the study and outlines
directions for future research.

II. Materials and Methods
In this section, we describe the dataset used in the study and

also detail the preprocessing procedure. We present the criteria
for instance labelling based on visual symptoms and molecular
diagnostics, along with the strategy adopted to ensure temporal
consistency in label assignment. Finally, we introduce the
statistical framework employed to identify the most informative
variables for early infection detection.

A. Dataset. Labelling and Preprocessing
The dataset provided by IAS-CSIC includes data from 96

almond trees located in several commercial almond orchards on
Mallorca Island (Balearic Islands, Spain). Each tree, identified
by a unique ID, has four records corresponding to different
measurement dates in 2024: May 15th, June 5th, June 25th,
and July 15th. Measurements were taken from one or two
branches per tree, depending on whether the tree showed
visual symptoms of the disease in the previous crop season. If
symptoms were present in 2023, two branches were measured in
2024; otherwise, only one branch was measured. All measured
branches were tested for the presence of Xf using a molecular
diagnosis based on the quantitative Polymerase Chain Reaction
(qPCR) analyses [13].

Leaf-level spectral reflectance data were collected using
the PolyPen RP410-UVIS (Photon Systems Instruments, Brno,
Czech Republic), a portable spectroradiometer that captures

reflectance across 246 discrete wavelengths ranging from
326.2 nm to 791.8 nm. These data were used to calculate
several vegetation indices, including physiological traits such
as pigment concentration, leaf structure, and photosynthetic
activity, serving as potential indicators of plant stress related
to vascular diseases. This approach follows established method-
ologies developed by the IAS-CSIC team [3][14][15], where
spectral traits have proven useful for detecting early plant
responses to vascular pathogens.

In addition to spectral data, we incorporated physiological pa-
rameters measured with the portable instrument LI-600 porom-
eter/fluorometer (LI-COR Biosciences, Lincoln, NE, USA).
This device measures stomatal conductance, leaf temperature,
ambient humidity, and steady-state chlorophyll fluorescence
(Fs), providing information on plant water status and dynamic
photochemical activity. Together, these physiological traits
complement spectral data. As a result, 43 variables, hereafter
referred to as physiological traits, were preserved from the
LI-600 for further analysis.

For the exploratory analysis, missing values were removed
on a per-variable basis. Outliers in physiological traits, defined
as values exceeding the mean ± 20 times the interquartile
range (IQR), were imputed using the mean of the correspond-
ing branch. Additionally, some hyperspectral measurements
exhibited anomalous values across the entire spectral range for
specific leaves; these were considered unreliable and similarly
imputed using the branch-level mean.

All leaf-level observations were labelled according to the
health status of their corresponding branch. Four mutually
exclusive groups were defined based on a combination of three
criteria: (i) visual symptoms observed at the measured branch,
(ii) molecular diagnosis via qPCR [13] conducted during the
final measurement in July, and (iii) overall health status assessed
by using a severity score.

Initially, each branch was assigned a single label per time
point, which was then applied to all leaf samples collected
from that branch. Importantly, branches from the same tree
could receive different labels depending on their individual
condition. Thus, the four categories were defined based on
expert knowledge and measurements taken in July, as follows:
Label 0: Negative qPCR result, no visual symptoms, and no
suspicion of disease (severity score = 0); Label 1: Branches
with negative qPCR result, no visual symptoms, but suspected
disease (severity score > 0); Label 2: Branches with positive
qPCR result, but no visual symptoms, regardless of the
severity score; Label 3: Branches presenting visual symptoms,
regardless of the qPCR result.

Figure 1 (a) provides a schematic overview of the labelling
procedure described above. Each row represents one of the four
measurement dates, while each column corresponds to a single
tree identified by its ID. In cases where two branches from
the same tree were measured, both labels are displayed within
the same cell, separated by a diagonal line. The figure uses a
colour coding: green for Label 0; yellow for Label 1; orange
for Label 2; red for Label 3. Cells without colour indicate
not available data. This visual format illustrates the temporal
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(a)

(b)

Figure 1. Label assignment scheme: (a) initial labelling based on visual symptoms, qPCR results in July, and overall health status based on a severity score; (b)
retrospective labelling after backward propagation from the final measurement date (July 15th).

progression of the assigned labels and highlights variability
within individual trees.

For subsequent analyses, a retrospective labelling approach
was adopted: the label assigned at the final measurement (July
15th) was propagated backward to all earlier observations of the
same branch. This approach aligns with the goal of identifying
physiological and spectral markers linked to the final health
status, ultimately aiming to develop predictive models for early-
season detection of Xf infection. Figure 1 (b) displays this
backward label propagation using the same structure and colour
coding as in panel (a), where labels are redefined as follows:
• Label 0: Branches with neither visual symptoms nor sus-

pected disease throughout the monitoring period (severity
score = 0) and negative qPCR result in July.

• Label 1: Branches with no visual symptoms over time and
negative qPCR result in July, but with suspected disease
(severity score > 0).

• Label 2: Branches with no visual symptoms over time but a
positive qPCR result in July, indicating Xf -infection.

• Label 3: Branches that eventually develop visual symptoms
during the monitoring period.
To better illustrate the backpropagation labelling process, let

us take tree ID 209 as an example. Neither of its branches
showed visible symptoms on May 15𝑡ℎ or June 5𝑡ℎ, and were
therefore initially assigned to Label 2 (Figure 1(a)). However,
symptoms became evident on 25𝑡ℎ and July 15𝑡ℎ, leading to
the retrospective assignment of Label 3 to the earlier dates,
May 15𝑡ℎ and June 5𝑡ℎ (Figure 1(b)). This situation is not
uncommon: branches ultimately assigned to Label 3 may not
exhibit visible symptoms until the third or fourth measurement.
Therefore, although they are retrospectively assigned to the
most severe health status group from the first measurement,
their actual condition may be milder in the early stages.

B. Statistical Analysis. Non-Parametric Difference Test
To identify which of the 𝐷 variables are most discriminative

in differentiating between the defined groups, a non-parametric

test for statistical differences was employed. This approach
requires the definition of a test statistic, denoted as 𝑇 (·), which
depends on the variable 𝜃𝑑 , where 𝑑 = {1, . . . , 𝐷}.

In our context, two test statistics 𝑇 (·) were used: (i) the
difference in medians between two groups, denoted as 𝑢 and 𝑣

(Eq. 1), and (ii) the difference in standard deviations between
the same groups (Eq. 2).

𝑇1 (𝜃𝑑) = median(𝜃𝑑)𝑢 − median(𝜃𝑑)𝑣 (1)

𝑇2 (𝜃𝑑) = std(𝜃𝑑)𝑢 − std(𝜃𝑑)𝑣 (2)

A statistical comparison between groups was carried out by
performing a hypothesis test for each variable. The aim was to
determine whether the observed differences between groups for
a given variable were statistically significant. The hypotheses
for each test were defined as follows:

𝐻0 : There is no significant difference between groups
with respect to 𝜃𝑑

𝐻1 : There is a significant difference between groups
with respect to 𝜃𝑑

where 𝐻0 and 𝐻1 denote the null and alternative hypotheses,
respectively.

To robustly estimate the value of the test statistic 𝑇 (𝜃𝑑),
particularly in scenarios with limited sample sizes and unknown
population distributions, we employed a non-parametric Boot-
strap resampling approach [16][17]. This approach involves
repeatedly resampling the observed data with replacement to
generate an empirical distribution of the statistic. The resulting
estimate, 𝑇 (𝜃𝑑), closely approximates the true value, i.e.,
𝑇 (𝜃𝑑) ≈ 𝑇 (𝜃𝑑).

The bootstrap procedure involves generating multiple re-
samples 𝐵∗ of size 𝑚 by randomly drawing observations
from the original sample 𝐵 of size 𝑛, with 𝑚 ≤ 𝑛. In
this study, when comparing two groups, 𝑚 was set to the
size of the minority group to ensure balanced resampling.
Importantly, resampling was performed with replacement,
allowing individual observations to appear more than once
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within a given 𝐵∗. This process was repeated 𝑁 times, yielding
a collection of 𝑁 bootstrap estimates for the test statistic 𝑇 (𝜃𝑑),
denoted as {𝑇∗

1 (𝜃𝑑), . . . , 𝑇
∗
𝑁
(𝜃𝑑)}. These estimates form an

empirical approximation of the sampling distribution of the
statistic. Choosing a sufficiently large number of resamples 𝑁

is essential to reduce variability in the bootstrap estimates and
to obtain stable and reliable statistical inference.

Finally, to evaluate the statistical significance of the estimated
test statistic 𝑇 (𝜃𝑑), we computed its empirical Confidence
Interval (CI) based on the bootstrap distribution. The CI defines
a range within which the true value of 𝑇 (𝜃𝑑) is expected
to lie with a specified probability, serving as a criterion for
accepting or rejecting the null hypothesis. To construct the CI,
a significance level 𝛼 is defined, typically set to 0.05, which
corresponds to a 100(1 − 𝛼)% confidence level. This implies
that the true value of 𝑇 (𝜃𝑑) is expected to fall within the
interval with probability approximately 1 − 𝛼. Accordingly,
the hypothesis test can be reformulated in terms of the CI as
follows: {

𝐻0 : 0 ∈ 𝐶𝐼 (𝑇 (𝜃𝑑)𝑢𝑣)
𝐻1 : 0 ∉ 𝐶𝐼 (𝑇 (𝜃𝑑)𝑢𝑣)

In this framework, if the CI does not include zero, there is
sufficient evidence to reject 𝐻0 in favour of 𝐻1, indicating a
statistically significant difference between the groups.

Based on this framework, the statistical test was applied at the
leaf level. Each bootstrap instance corresponded to data from an
individual leaf, allowing the analysis to capture within-branch
variability in physiological and spectral traits. This procedure
was performed independently for each of the 𝐷 variables and
across all four measurement time points. By treating each leaf
as a distinct observation, the analysis achieves the highest
granularity, enabling the detection of subtle group differences
at the most localized scale.

III. Results and Discussion
The non-parametric bootstrap test was applied across all

variables, including vegetation indices from the literature [3]
and a broad set of physiological traits, to assess group-level
differences. For each variable and time point, we evaluated
differences in median values between health groups and also ex-
amined differences in variability (standard deviation) to capture
physiological heterogeneity linked to disease progression.

To streamline the presentation, Figure 2 highlights hyperspec-
tral and physiological traits that at least in two measurement
dates showed significant differences between the two most
contrasting health states, Label 0 (asymptomatic and qPCR-
negative) and Label 3 (symptomatic). These comparisons
are shown as the first CI for each variable. Additional CIs
represent comparisons involving intermediate labels, which
were also examined to evaluate their potential for early detection.
Green CI indicate statistically significant differences, while red
intervals indicate non-significant ones. The black dot indicates
the median of each bootstrap distribution. While the Label 0 vs.
Label 3 comparison was expected to yield the most pronounced
differences, when comparing groups with intermediate labels

(1 and 2), relevant differences also emerged. This reinforces
the potential utility of these variables for early detection
of physiological and spectral changes prior to symptom
onset. Table I lists the variables whose CIs are displayed in
Figure 2, along with their corresponding descriptions. Spectral
indices (MCARI2 to RGI) were computed from leaf-level
hyperspectral reflectance data, while physiological traits (GSW
to Tleaf) were obtained from direct measurements with the
porometer/fluorometer.

A. Hyperspectral Indices
The results in Figure 2 (a) indicate that several spectral

indices consistently differ in median values between the
healthiest leaves (Labels 0 and 1) and those showing advanced
symptoms (Label 3), particularly during the early measurements
in May 15th and June 5th. This suggests that certain spectral
indices may serve as early indicators of physiological disruption
before visible symptoms appear. In contrast, differences in
standard deviation were generally less conclusive (data not
shown due to space constraints). The most notable variability
differences were observed at the second time point (June 5th),
particularly between the most severely affected groups (Labels
2 and 3). In some cases these differences persisted into later
stages of the season, including late June and July, suggesting
progressive physiological divergence as the infection advanced.

The indices DCabxc and TCARI, both associated with
chlorophyll content, showed consistent differences between
leaves labelled as 0 and those leaves labelled as 3 across all mea-
surement dates. Additionally, both indices occasionally showed
significant differences when comparing leaves labelled as 1 or
2 to those labelled as 3. Notably, TCARI has previously been
identified as one of the most discriminative indices for detecting
Vd symptoms in olive trees at both early and advanced stages,
due to its sensitivity to chlorophyll degradation [9]. Similarly, in

Table I. Summary of variables.

Variable Description
MCARI2 Modified Chlorophyll Absorption Index
MSAVI Modified Soil-Adjusted Vegetation Index
TVI Triangular Vegetation Index
MTVI1 Modified Triangular Vegetation IndicesMTVI2
CTR1 Carter Index
DCabxc Reflectance Band Ratio Index
TCARI Transformed Chlorophyll Absorption in Reflectance Index
TO TCARI / Optimized Soil-Adjusted Vegetation Index
VOG1 Vogelmann IndicesVOG2
PRIM3 Photochemical Reflectance Index
G Greenness Index
RGI Red-Green Index
GSW Stomatal conductance
GTW Total conductance
Eapparent Transpiration
VPleaf Leaf vapor pressure
H2Oleaf Leaf H2O mole fraction
Fs Minimum fluorescence in light
Fm’ Maximum fluorescence in light
PhiPS2 Quantum efficiency in light
ETR Electron transport rate
Tleaf Calculated leaf temperature
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(a)

(b)

Figure 2. CI of bootstrap distributions for median differences between labelled groups pairs across time points: (a) spectral indices; (b) physiological traits.
Each variable includes three CI, corresponding to comparisons between Label 0 vs. 3, Label 1 vs. 3, and Label 2 vs. 3, shown from top to bottom.

almond trees infected with Xf, TCARI also played a key role in
remote sensing-based classification models, forming part of the
index subset that most effectively distinguished symptomatic
from asymptomatic trees [12]. The same study also highlighted
the relevance of structural indices, such as MCARI, which
are linked to leaf nutritional status. A progressive decline in
MCARI values was reported as symptom severity increased,
consistent with reduced nitrogen content in Xf -infected leaves.
Our analysis aligns with these findings, showing statistically
significant differences in MCARI between leaves from label
group 0 and 3 during the first three measurement dates, and
between Labels 1 and 3 during the first two. In all cases,
the distribution shifted to the right, indicating lower MCARI
values in the most affected group. In contrast, differences in
standard deviation between groups were negligible, suggesting
that overall variability in MCARI remained relatively stable

regardless of Xf infection status.
Other structural indices, including TVI, MTVI1, and MTVI2,

also showed significant median differences between leaves
labelled as 0 and 1 and those labelled as 3, particularly
during the first two measurement dates. In particular, when
comparing label groups 1 and 3 at the second time point,
TVI and MTVI1 exhibited significant differences in dispersion,
indicating increased variability in the physiological response
of Xf -infected trees. Previous studies [9] have incorporated
both TVI and MTVI1 into discriminant analysis frameworks to
classify Vd infection severity in olive trees. These indices
significantly contributed to distinguish symptomatic from
asymptomatic trees and to finer severity stratification. Further
support is provided in [7], which identified these indices as part
of a core set of structural traits frequently used in early disease
detection models, likely due to their sensitivity to subtle canopy
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structure changes associated with early pathogen infection.
Studies by [7] and [9] also identified Optimized Soil-Adjusted

Vegetation Index (OSAVI), part of the soil-adjusted vegetation
index family, as informative for plant health assessment. In
our analysis (see Figure 2), we present results for MSAVI,
which, like OSAVI, is derived from Normalized Difference
Vegetation Index (NDVI) and uses the same spectral bands.
However, MSAVI is often preferred in environments with sparse
or discontinuous canopy cover and strong soil background
influence, conditions typical of almond orchards. In our
work, MSAVI consistently showed differences between the
symptomatic reference group (Label 3) and the other label
groups, particularly during the earlier measurement dates. This
pattern supports the potential of soil-adjusted vegetation indices
as effective early indicators of canopy-level physiological
changes associated with pathogen infection.

Other notable pigment-related indices included TO
(TCARI/OSAVI), which estimates chlorophyll content while
minimizing the soil reflectance effects, and the Vogelmann
indices VOG1 and VOG2, which are sensitive to chlorophyll
content and based on red-edge spectral bands. TO has consis-
tently been identified as one of the most responsive indices for
detecting Xf infection in both olive trees [2][18] and almond
trees [12]. In our analysis, TO showed significant differences
between leaves labeled as 0 and 3 during the June and July
measurements, with higher values in leaves from healthy
branches, indicating greater chlorophyll content. Similarly, the
Vogelmann indices, previously reported for Xf detection in
olive [2][18] and almond trees [12], showed differences
between Labels 0 and 3 across several dates. Differences were
also observed between intermediate groups (Labels 1 or 2)
and group 3, highlighting the sensitivity of these indices to
progressive chlorophyll degradation. Notably, VOG1 showed
significant differences in variability (standard deviation) only
between the most severely affected groups (Labels 2 and 3)
during early time points, with variability remaining relatively
stable later in the season.

Figure 2 also includes the xanthophyll-related index PRIM3,
which, along with the G and RGI indices, demonstrated
significant differences between leaves labelled 0 and those
labelled 3 on June 5th and 25th. Furthermore, G and RGI
also showed significant differences between groups 2 and 3
in the July measurement, highlighting their potential to detect
progressive stages of Xf infection. The PRI and its variants, such
as the normalized PRIm, are well known for their effectiveness
in identifying plant stress symptoms, including those caused
by Xf [2]. These indices are closely linked to the xanthophyll
cycle, which reflects changes in photosynthetic activity and
efficiency under stress conditions [12].

Overall, these results confirm that several spectral indices,
particularly those associated with pigment content and vegeta-
tion structure, can effectively discriminate between healthy and
Xf –infected trees, even in asymptomatic stages. The strongest
differences were observed between fully healthy leaves (Label
0) and infected and symptomatic leaves (Label 3). Significant
differences among intermediate groups (Labels 1 and 2) further

support the potential of these indices for early detection and
large-scale monitoring of Xf infection.

B. Physiological plant traits

Figure 2 (b) shows the CI for physiological plant traits de-
rived from porometer/fluorometer median differences between
the healthiest (Label 0) and most affected (Label 3) trees, as
well as the intermediate labelled groups against Label 3. Similar
to spectral indices, certain physiological traits consistently differ
between these groups, particularly in earlier measurement dates.
This pattern suggests that these variables may be sensitive
to early physiological alterations caused by Xf infection,
even before visible symptoms appear. However, by the final
measurement in July, these differences tend to diminish likely
due to a general increase in thermal and water stress affecting all
trees. This is supported by the relevance of temperature-based
indices like the Crop Water Stress Index (CWSI) in Xf detection
[7][9]–[12]. Under such uniform stress conditions, physiological
responses among trees may converge, making it harder to
distinguish between healthy and infected trees. It is plausible
that trees labelled as 0 could recover post-stress, while those
labelled as 3 may not, due to their compromised physiological
state. Unlike these indices, the dispersion of variables across
groups shows significant differences, particularly between
Labels 0 and 3 in May and June. This highlights the potential
of porometer/fluorometer-derived traits as early and sensitive
indicators of Xf infection, though their discriminatory power
may decrease under widespread environmental stress later in
the season [10][11].

Conductance variables (GSW and GTW) exhibit significant
differences in median values between the healthiest leaves
(Labels 0 or 1) and the most affected ones (Label 3) at early
stages, linking leaf health to conductance [12]. Interestingly,
both conductance and transpiration, estimated by the Eapparent
variable, are higher in Label 3 leaves (potentially infected
but still asymptomatic) than in healthy ones. This contrasts
with reported findings that Xf infection typically reduces
conductance and transpiration due to xylem blockage and
impaired water transport [3]. This discrepancy may reflect
a transitional infection phase, where physiological decline
is not yet fully established or is masked by compensatory
mechanisms [3]. Among the most affected groups (Labels
2 and 3), median values of conductance and transpiration
(i.e., Eapparent) do not differ clearly. While conductance shows
greater dispersion in May and June measurements than in
the last measurement, transpiration variability does not differ
significantly. These patterns suggest that early or asymptomatic
stages of infection can produce variable physiological responses
that may not always align with the typical decline reported in
advanced stages [3][19].

The VPleaf variable shows significant differences between
leaves labelled 0 and 3, as well as between groups 2 and 3 in
early stages. In May, the most affected leaves (Label 3) have
higher CI values for vapour pressure, but this trend reverses in
June. Vapour pressure deficit is recognized as an early indicator
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of water stress caused by Xf infection [7][12][18]. Similarly,
H2Oleaf exhibit similar group differences as VPleaf.

For fluorescence parameters, the healthiest leaves showed
significantly higher median values of minimum (Fs) and
maximum (Fm’) fluorescence early in the season, with all
group comparisons becoming significant by June. This aligns
with previous findings that fluorescence is a sensitive indicator
of Xf infection, typically decreasing as photosynthetic activity
declines [12]. However, these differences fade as visual symp-
toms appear later in the season, and variability in fluorescence
remains inconclusive. Another fluorescence-related variable,
PhiPS2 , only showed significant differences between groups
1 and 3 during the first two measurement dates. In contrast,
ETR values were higher in Label 3 leaves compared to Label
0 during the second and third time points.

Finally, leaf temperature Tleaf was significantly higher in
group 3 compared to groups 0 and 2 in June, consistent with
previous findings [2]. However, this trend reverses in the second
measurement date, with Tleaf being higher in groups 0 and 2
than in group 3. At more advanced infection stages, significant
differences in Tleaf are no longer observed between groups.

IV. Conclusion and Future Work
The results directly support the main objective of the study

of identifying early physiological indicators of Xf infection in
almond trees, prior to the onset of visible symptoms. Multi-
temporal leaf-level data, analyzed through non-parametric
bootstrap testing, consistently revealed that both spectral
and physiological traits can detect infection at early stages.
Specifically, hyperspectral indices linked to pigment content
(e.g., TCARI, DCabxc, MCARI) and structural traits (e.g.,
TVI, MTVI1, MSAVI), along with physiological variables
such as stomatal conductance, transpiration, vapour pressure,
fluorescence, and leaf temperature, consistently distinguished
healthy from infected trees in early stages.

These findings may suggest that physiological stress re-
sponses precede visible symptom development and can be
captured through targeted measurements. Moreover, they align
with recent evidence indicating that remote sensing traits,
particularly fluorescence and thermal signals, enable accurate,
large-scale, and early detection of Xf, supporting their use
in disease monitoring and management. Interestingly, though
differences were most pronounced in May and June, they tended
to diminish by July. This likely reflects a general increase in
thermal and water stress affecting all trees, which may mask
infection-specific responses. It is plausible that healthy trees
(Label 0) may recover after the stress period, whereas infected
trees (Label 3) likely remain physiologically compromised.
Although our analysis focused on variables showing statistically
significant differences between the two most contrasting health
states (Labels 0 and 3) across at least two time points, relevant
differences also emerged among intermediate groups. This
reinforces the diagnostic potential of the selected indicators
and their applicability to early-stage detection.

This study represents an initial step toward developing a
comprehensive framework for early Xf detection using spectral

data acquired via proximal sensors. A limitation of this study
is the small size in intermediate health groups (Labels 1 and
2), which may reduce the statistical power in comparisons
involving these categories. To address this, future work will
aim to improve dataset balance by increasing representation in
these groups.

Given the complexity of Xf infections, further validation is
essential. This includes defining threshold values for vegetation
indices that reliably capture early physiological alterations.
Additional research should refine trait selection, account for
environmental variability, and validate findings across different
crops and landscapes. Future efforts should also focus on
integrating the identified physiological and spectral indicators
into operational remote sensing workflows, as well as ML
and spatial epidemiological models, to improve diagnostic
accuracy and scalability. Expanding the use of multispectral
and thermal sensors, along with optimized band selection, will
be essential for developing cost-effective, real-time tools for
disease surveillance and management.
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Abstract—In breeding test fields, where tens or even hundreds
of thousands of corns are planted, measurements of numerous phe-
notypic traits—such as plant height, tassel height, stem thickness,
fruiting characteristics (e.g., tassel length, tassel width, awnless
tip, row number), disease resistance, and lodging resistance—are
typically required. Traditional methods rely on pen-and-paper
recordings or basic spreadsheets, which are highly inefficient and
prone to human errors, including serial mistakes and incorrect
data entries. This makes it difficult to ensure data accuracy and
quality. To address these challenges, this paper explores the use of
Unmanned Aerial Vehicles (UAVs) and deep learning technologies
to monitor the entire growth process of corn plants throughout
their life cycle and select high-quality seedlings. Using experiments
conducted in corn fields in Henan Province as a case study, the
research focuses on identifying the growth and development
stages of corn plants, as well as monitoring the timing of tassel
emergence. A high-quality dataset covering the entire growth
and development process is constructed. Based on UAV remote
sensing images with Real-Time Kinematic (RTK) coodinates and
timestamps, and 3D point cloud coordinates, we employ You Only
Look Once (YOLO)v8 to conduct object detection to accurately
identify tassel emergence times during growth. We also collect
images of mature corn plants and their point clouds to calculate
the height of each mature corn. These approachs aim to achieve
precise monitoring of corn growth conditions and facilitate the
digital and precise management of the corn cultivation process.

Keywords-Unmanned Aerial Vehicles (UAVs), Real-Time Kine-
matic (RTK), Deep Learning (DL), You Only Look Once (YOLO).

I. INTRODUCTION

The growth and development of corn are critical factors
influencing both yield and quality. Currently, crop growth mon-
itoring primarily relies on manual sampling, which struggles
to meet the demands of modern agriculture for precision and
automation. In recent years, the rapid advancements in UAV
remote sensing technology and deep learning have opened new
possibilities for breakthroughs in crop growth monitoring [1].

UAVs have a wide range of potential applications in agriculture,
including reducing manual labor and enhancing productivity.
Drones are extensively used for monitoring crop growth and
managing fields. They may also provide early detection of
plant diseases, enabling farmers to take preventive measures
against costly crop failures [2]. In particular, in scenarios such
as seedling cultivation and breeding, it is essential to conduct
highly detailed monitoring of each seedling’s growth conditions,
nutritional status, and pest and disease occurrences.

Drones have become widely used in precision agriculture
to capture high-resolution images of crops, offering farmers
valuable insights into crop health, growth patterns, nutrient
deficiencies, and pest infestations. While several machine
learning and deep learning models have been proposed for
detecting plant growing status and diseases, their accuracy and
computational efficiency still need improvement, especially
when working with limited data [3]. The integration of
Autonomous Aerial Vehicles (AAVs) has significantly advanced
image processing and remote sensing, particularly in the field
of precision agriculture [4].

This paper explores how drone technology can be utilized
to achieve full-cycle monitoring of corn breeding experimental
fields, including detecting and identifying the emergence time
of corn tassels and the height of mature corn plants. The goal
is to identify corn plants with optimal growth conditions and
cultivate superior seeds. The contributions of our work are
summarized as follows:
i) RTK point positioning technology is used to accurately

analyze and determine the precise location of each corn
plant.

ii) A UAV fitted with an H20 camera captures orthographic
images of the corn test fields throughout the entire growth
period. The pixel coordinates of these images correspond to
RTK coordinates, and each image is also time-stamped. We
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perform segmentation on these images and use YOLOv8 to
detect the tassel (the fluffy structure at the top) status of each
plant, along with their positions and emergence times. In
our experiments, the identification accuracy reaches 82.5%.

iii) A UAV equipped with an L1 laser camera scans the plot to
create a point cloud. The coordinates of the point cloud are
then aligned with RTK coordinates in the same projection
system. This equipment allows us to capture 3D point clouds
and images of mature corn test fields. Based on elevation
data from the top point cloud and the root point cloud of a
mature corn plant, we can calculate the height of each corn
plant.
The remainder of the paper is organized as follows. Section II

provides a review of representative studies on digital crop
management using UAVs and deep learning technologies. In
Section III, we present a set of methods for identifying corn
tassel emergence and measuring plant height using UAVs.
Section IV details the implementation of our experiments.
Finally, we conclude our work in Section V.

II. RELATED WORK

Khan et al. [5] proposed an innovative deep learning
framework that employs an encoder-decoder architecture to
classify each pixel in drone images into categories such as
weed, crop, and others. Effective weed control is crucial for
enhancing crop yields. Traditionally, weed management relied
heavily on herbicide use, but the indiscriminate application
of herbicides poses risks to both crop health and productivity.
Fortunately, the advent of advanced technologies like UAVs
and computer vision has paved the way for automated and
efficient weed control solutions. These technologies leverage
drone images to detect and identify weeds with a high degree
of accuracy.

Gallo et al. [6] created a weed and crop dataset called the
Chicory Plant (CP) dataset and tested state-of-the-art deep
learning algorithms for object detection. A total of 12,113
bounding box annotations were generated to identify weed
targets (Mercurialis annua) from over 3,000 RGB images
of chicory plantations, collected using a UAV system at
various stages of crop and weed growth. Deep weed object
detection was conducted by applying the latest You Only
Look Once version 7 (YOLOv7) on both the CP and publicly
available datasets, such as the Lincoln Beet (LB) dataset, which
previously used an earlier version of YOLO for mapping weeds
and crops.

Wu et al. [7] leveraged drone remote sensing data combined
with deep object detection models, specifically employing
the YOLO-v3 algorithm based on loss function optimization,
for the efficient and accurate detection of tree diseases and
pests. Utilizing drone-mounted cameras, the study captures
insect pest image information in pine forest areas, followed by
segmentation, merging, and feature extraction processing. The
computing system of airborne embedded devices is designed to
ensure detection efficiency and accuracy. The improved YOLO-
v3 algorithm combined with the CIoU (Complete Intersection
over Union) loss function was used to detect forest pests and

diseases. Compared to the traditional IoU loss function, CIoU
takes into account the overlap area, the distance between the
center of the predicted frame and the actual frame, and the
consistency of the aspect ratio.

Deng et al. [8] proposed an end-to-end Global-Local Self-
Adaptive Network (GLSAN), in order to address the Object
detection from a drone’s perspective due to the blurriness
of small-scale objects and inefficient detection in areas with
uneven or dense object distribution. The key components in
their GLSAN include a global-local detection network (GLDN),
a simple yet efficient self-adaptive region selecting algorithm
(SARSA), and a local super-resolution network (LSRN). They
integrate a global-local fusion strategy into a progressive scale-
varying network to perform more precise detection, where the
local fine detector can adaptively refine the target’s bounding
boxes detected by the global coarse detector via cropping the
original images for higher-resolution detection.

Lan et al. [9] proposed a rice spike detection method
that integrates deep learning algorithms with drone-based
perspectives. Building on an enhanced version of YOLOv5,
the method introduces an Efficient Multiscale Attention (EMA)
mechanism, designs a novel neck network structure, and incor-
porates SCYLLA Intersection over Union (SIoU). The results
demonstrate that this approach enables real-time, efficient,
and accurate detection and counting of rice spikes in field
environments.

Hosseiny et al. [10] proposed an automated and fully
unsupervised framework for plant detection in agricultural lands
using very high-resolution drone remote sensing imagery. The
core idea is to automatically generate an unlimited amount of
simulated training data from the input images, which addresses
the common limitation of deep learning methods—requiring
large amounts of training data. This framework is based on a
Faster Regional Convolutional Neural Network (R-CNN) with
a ResNet-101 backbone for object detection. The framework’s
efficiency was evaluated on two different image sets from
cornfields, captured using an RGB camera mounted on a drone.

Mota et al. [11] created a database of aerial RGB images of
corn crops in weedy conditions to implement and evaluate deep
learning algorithms for detecting and counting corn plants.

Kusumo et al. [12] investigated several image-processing-
based features for detecting diseases in corn. They examined
various features, such as RGB color, local image features like
Scale-Invariant Feature Transform (SIFT), Speeded Up Robust
Features (SURF), and Oriented FAST and Rotated BRIEF
(ORB), as well as object detectors like Histogram of Oriented
Gradients (HOG). They evaluated the performance of these
features on several machine learning algorithms, including
Support Vector Machines (SVM), Decision Tree (DT), Random
Forest (RF), and Naive Bayes (NB). Experimental results
indicated that RGB color features were the most informative
for this task.

Quan et al. [13] presented an improved Faster R-CNN model
for a field robot platform (FRP) designed to automatically
extract image features and detect maize seedlings quickly and
accurately during different growth stages in complex field
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environments, with the goal of enabling intelligent inter-tillage
in maize fields. The FRP, equipped with five industrial USB
cameras, captured a large number of sample images from
a 0–90° shooting angle range. These images were used to
create a database containing 20,000 images of soil, maize,
and weeds. Ten pretrained networks were used to replace
the network in the CNN feature-computing component of the
classic Faster R-CNN. The proposed method, a Faster R-CNN
with VGG19 processed by pretrained networks, was developed
for this purpose.

Velumani et al. [14] explored the impact of image ground
sampling distance (GSD) on maize plant detection performance
at the three-to-five leaf stage using the Faster-RCNN object
detection algorithm. The Faster-RCNN model achieved excel-
lent plant detection and counting performance (rRMSE = 0.08)
when trained and validated with native high-resolution images.
Similarly, good performance (rRMSE = 0.11) was observed
when the model was trained on synthetic low-resolution images,
obtained by downsampling the native high-resolution images,
and applied to synthetic low-resolution validation images.
However, poor performance was seen when the model was
trained on one spatial resolution and applied to another. Training
on a mix of high- and low-resolution images resulted in
very good performance on both native high-resolution images
(rRMSE = 0.06) and synthetic low-resolution images (rRMSE
= 0.10).

Cho et al. [15] proposed a real-time measurement system for
obtaining precise target-plant growth information in precision
agriculture. They used a smart farm robot that accurately
measures plant growth by utilizing object detection, image
fusion, and data augmentation with fused images. The system
employed image fusion using both RGB and depth images to
distinguish the target plant from surrounding plants.

Ahangir et al. [4] addressed the challenge of accurately quan-
tifying corn production by developing an enhanced YOLOv8-
based deep learning model, which integrates dynamic and fixed
labeling techniques. The model was tested on 810 images and
video data for real-time detection.

Daraghmi et al. [3] conducted a comparative analysis of
three state-of-the-art object detection deep learning mod-
els—YOLOv8, RetinaNet, and Faster R-CNN—and their
variants, to identify the model with the best performance for
high-resolution crop images. Their study highlighted YOLOv8’s
robustness, speed, and suitability for real-time aerial crop
monitoring, especially in data-constrained environments.

In this paper, we focus on using UAVs and deep learning
technology to monitor the entire growth process of each corn
plant in an experimental field throughout its life cycle, with
the goal of selecting high-quality seedlings. We employ RTK
technology to determine the position of each corn plant and
use the YOLOv8 model to detect the tassels. By unifying point
cloud coordinates with RTK coordinates in the same projection
system, we facilitate the calculation of the corn plant’s height.

III. METHODS

In this section, we will demonstrate the workflows of using
drones for corn inspection.
A. Locating the Position of Each Corn Plant with RTK

Coordinates
RTK equipment is used to accurately analyze and determine

the location of each corn plant. RTK (Real-Time Kinematic)
is a global satellite navigation system (GNSS) technology that
provides real-time, high-precision positioning. RTK coordinates
include two-dimensional positioning data, such as latitude and
longitude (e.g., longitude: 113.758619, latitude: 35.445592),
offering centimeter- or even millimeter-level accuracy. This
technology is widely used in fields like surveying and mapping.
In our case, it provides precise coordinate data that serves as
a reference for coordinate transformation.

The UAV then captures aerial images of the corn field, which
are exported as image files for further analysis.
B. Method for Identification of Corn Tassel
1) Capturing Images of Corn Fields at Different Growth Stages

for Tassel Emergence Identification
The DJI M300 drone, equipped with RTK and the H20

camera, regularly captures orthographic images of the corn
fields. By combining these orthographic images with the RTK
coordinates provided by the drone, a direct correspondence
between the pixel positions in the images and the RTK
coordinates is established. A square frame with a side length
of 25 cm is placed at the center of each corn plant, within
which the tasseling status of the plant is detected, along with
its position—specifically, the pixel coordinates of the root and
top of the corn plant. It is important to note that these images
include both a timestamp and the RTK coordinates of the pixel
positions.
2) Identification of Corn Tassels

We construct a high-quality dataset by collecting images
from test fields that cover the entire growth and development
process of corn plants. Image segmentation and object detection
are performed using YOLOv8 to identify the male tassel of
corn. YOLOv8 is a hierarchical, multi-scale feature extraction
and fusion network. It supports not only object detection but
also instance segmentation. Known for its robustness, speed,
and suitability for real-time aerial crop monitoring, YOLOv8
is particularly effective in data-constrained environments [3].

First, we perform image segmentation on the collected test
field images. We extract the pixels of each corn from an image,
which is a square frame with a side length of 25 cm centered
on the corn plant’s center, and serves as the detection frame
of the corn.

Next, YOLOv8 is used to identify the male tassel of the
corn. The human visual system employs a selective attention
mechanism that automatically focuses on key areas of a
scene. Integrating this attention mechanism into a recurrent
neural network can significantly enhance image classification
performance and improve the model’s ability to accurately
identify multiple types of targets. Based on this principle, the
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Convolution Block Attention Module (CBAM) is integrated
into YOLOv8’s feature extraction network.

When detecting the male tassel of corn, it is labeled as
“tassel" along with a timestamp.
C. Calculation of Corn Plant Height
1) Capturing Images of Corn Field During the Mature Period

for Corn Plant Height Calculation
To calculate the height of corn plants, the DJI M300

drone, equipped with a laser radar (L1), captures images of
mature corn plants along with point cloud coordinates in local
coordinates.

The 3D point cloud coordinates are represented as (x, y, z).
Additionally, these images include pixel-to-RTK coordinate
correspondence, which helps in locating the position of each
corn plant and recording the timestamp when the images are
taken.

Two key points need to be marked on each corn plant: the
“root" (the base of the stem close to the ground) and the “tip"
(the top of the male spike or the highest point of the plant). The
pixel coordinates of the tip are crucial for height measurement.

It is particularly important to note that the local point cloud
coordinates (x, y, z) must be aligned with the RTK coordinates
in the same global coordinate system in order to accurately
locate each corn plant and calculate its height. The coordinate
conversion method is detailed in the next subsection.
2) Unifying Point Cloud and RTK Coordinates into a Global

Coordinate System
First, we unify the point cloud coordinates and RTK

coordinates into the same projection coordinate system.
A point cloud is a data set consisting of a large number of

points, each containing information such as three-dimensional
coordinates (x, y, z) in space. Point clouds can be used to
represent the three-dimensional shape and spatial distribution
of objects. In this paper, point clouds are utilized to obtain
the 3D spatial information of target objects, such as corn
plants, for tasks like coordinate transformation and stem height
calculation.

The conversion formula, using a seven-parameter model, is
employed to convert the local coordinates of the point clouds
(x, y, z) into global coordinates (X, Y, Z), as follows:

XY
Z


global

=

∆X
∆Y
∆Z

+ (1 + k) ·R ·

xy
z


local

, (1)

where
[
X Y Z

]⊤
stands for global coordinates,[

x y z
]⊤

stands for local coordinates of point cloud,[
∆X ∆Y ∆Z

]⊤
is a translation vector, used to represent

the position offset transformation model formula for the origin
of the local coordinate system in the global coordinate system,
k represents the scaling factor, and R represents a rotation
matrix:

R = RZ(ω) ·RY (ϕ) ·RX(κ), (2)

RX(κ) =

1 0 0
0 cosκ − sinκ
0 sinκ cosκ

 , (3)

RY (ϕ) =

 cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ

 , (4)

RZ(ω) =

cosω − sinω 0
sinω cosω 0
0 0 1

 . (5)

3) Method for Calculating Corn Height
Plant height refers to the vertical distance from the root

to the top of a corn plant. At the center of each corn plant,
a square frame with a side length of 25 cm is placed. The
highest point in the point cloud within this frame is detected
as the center elevation of the plant, which corresponds to the
“tip"—the top of the male spike or the highest point of the
plant. The base of the stem, close to the ground, is defined as
the “root." Therefore, the height of the corn plant is calculated
as the difference between the global coordinates of the tip and
the root.

The formula for calculating the actual height of the corn
plant is as follows:

Height = Ztip −Zroot, (6)

where Ztip represents the elevation of the tip’s coordinates of
the corn in the global coordinate system, and Zroot represents
the elevation of the root’s coordinates of the corn in the global
coordinate system.

IV. IMPLEMENTATION AND CASE STUDY

In this section, we describe our experiments conducted in
corn breeding test fields in Xinxiang, Henan Province, using the
DJI M300 drone equipped with various devices and cameras
to capture images for different purposes.
A. Locating Corn Plants with RTK

RTK equipment is used to accurately analyze and determine
the location of each corn plant in the test fields of Xinxiang,
Henan Province.

For example, Figure 1 (a) and (b) show two corn seedlings,
each marked with their respective RTK coordinates.
B. Identification of Corn Tassel

The DJI M300 drone, equipped with the H20 camera,
captures orthographic images of cornfields. By combining these
orthographic images with the RTK coordinates, a correspon-
dence between the pixel positions in the images and the RTK
coordinates is established.

We collected 1,000 images taken in corn test fields in
Xinxiang, Henan Province, at fixed intervals (i.e., every three
days) throughout the entire growth period, using the DJI M300
drone. A correspondence between the pixel positions in the
images and the RTK coordinates is established. These images,
captured by the drone, are marked with both RTK coordinates
and time stamps.

At the center of each corn plant, a square frame with a side
length of 25 cm is placed, and the tasseling status of each
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Figure 1: Corn plants with RTK coordinates.

plant within the frame is detected, along with their positions
and timestamps.

Figure 2 shows a corn plant with its male tassel spike
emerging. The image clearly reveals the main axis of the
male spikelet and several male spikelet branches.

The detection model we used is the deep learning-based
YOLOv8 (medium) network, which is applied to these images
to identify the corn tassels.

First, we perform image segmentation on the collected test
field images. We extract the pixels of each corn from an image,
defining a square frame with a side length of 25 cm centered
on the middle of each corn plant, which serves as the detection
frame for the plant.

We used 810 images for the training set and 190 images
for the test set. The corn tassel at each plant position within
the detection frame is detected. The test results show that
the accuracy rate can reach 82.5%. This demonstrates the

Figure 2: Photo of corn plants.

effectiveness of YOLOv8 in capturing fine plant features
under real field conditions, while also indicating that further
optimization of parameters and training data could yield even
higher detection performance.
C. Calculatiion Corn Height

The DJI M300 drone is equipped with an L1 laser camera
that scans the plot to generate a 3D point cloud. The point
cloud coordinates are then aligned with the RTK coordinates
within the same projection coordinate system. At the center
of each corn plant, a square frame with a side length of 25
cm is placed, within which the highest point cloud elevation
is detected, serving as the plant’s center elevation.

Figure 3 shows three corn plants in a field, with the global
coordinates of their respective 3D point clouds. The points
marked in the figure represent the highest point of each corn
plant’s point cloud, enclosed by the 25 cm frame.

For example, Figure 4 shows an image of a mature corn test
field, highlighting a corn plant with the global coordinates of
its tip and root, represented by three-dimensional point clouds.

As shown in the figure, the tip and root of a mature corn
plant share the same longitude and latitude coordinates, but
their elevation coordinates differ. The elevation coordinates of
the tip and root are 66.911 m and 64.602 m, respectively, with
the unit defaulted to the international standard of meters.

Based on the coordinate values marked in Figure 4, and
using Eq. (6) from Section III-C3, we can calculate the height
of this corn plant as follows: 66.911 - 64.602 = 2.309 m.
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Figure 3: Photo with three global point cloud coordinates.

Figure 4: Photo with tip and root point cloud coordinates of
corn plants.

This straightforward calculation confirms the vertical growth
measurement method and provides a reliable reference for
evaluating plant height across the test field.

V. CONCLUSION AND FUTURE WORK

In this study, we proposed and validated an integrated frame-
work that combines UAV imagery and deep learning techniques
to monitor tassel emergence timing and plant height in corn
breeding fields. By leveraging high-resolution drone images,
precise RTK positioning, YOLOv8-based tassel detection, and
3D point cloud analysis, we achieved accurate and automated
extraction of critical agronomic traits at the single-plant level.
This approach not only reduces the labor intensity and potential
errors associated with manual measurements but also provides
efficient data support for large-scale breeding trials, thereby
improving the efficiency of high-quality germplasm selection.

However, the relatively small dataset may limit generaliz-
ability, and the evaluation relied mainly on accuracy; future
work should include precision, recall, and F1 score for a
more complete assessment. We also plan to expand monitoring

to traits such as tassel height, stem thickness, and fruiting
characteristics, and to integrate multi-source data with advanced
models to enhance robustness. Overall, this work provides a
practical foundation for UAV-based phenotyping and highlights
directions for future improvement.
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