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Dynamic Emotion Analysis in Piano Music Based on Performance Techniques
Recognition

Yueyan Wu
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Abstract—The relationship between music and emotion has
always been essential in musicology and psychology. This study
aims to automatically identify the playing technique in piano
performance through deep learning technology and analyze its
influence on the dynamic change of emotion. We propose a
technique recognition method based on a deep Convolutional
Neural Network (CNN), which can accurately identify different
techniques (such as octave, vibrato, glissando, etc.). In addition,
we design a simple temporal analysis model to analyze the
evolution of emotion over time based on the dynamic change
of playing technique. The experimental results show that the
identification of playing techniques achieves nearly 86% accuracy,
outperforming traditional methods, and specific playing techniques
are significantly related to certain emotions. There are also results
on the dynamic emotion analysis task. This study not only provides
a new perspective and method for the field of music emotion
recognition but also provides a new tool and method for music
analysis and music education.

Keywords-Performance Techniques Recognition; Convolutional
Neural Network (CNN); Music Emotion Recognition (MER).

I. INTRODUCTION

Music, as a vital part of human culture, has long been
regarded as a ’language of emotions’ [1]. Therefore, it is natural
to associate music with emotions and classify it based on
emotional content. Music Emotion Recognition (MER) refers
to the use of computers to extract and analyze music features,
establish mapping relationships between these features and
emotion spaces, and recognize the emotions expressed in music
[2]. In recent years, significant progress has been made in MER,
especially with the development of deep learning techniques.
For instance, a bimodal Deep Belief Network (DBN) model
that combines audio and lyrics has shown improved accuracy
in emotion recognition [3].

Additionally, Convolutional Neural Networks (CNNs) have
become widely used in Music Emotion Recognition (MER)
due to their ability to automatically extract music features,
reducing the need for manual feature extraction [4]. Liu et al.
transformed the audio signal into a spectrogram using Short-
Time Fourier Transform (STFT), which was then processed
through convolution, pooling, and hidden layers, followed
by Softmax for emotion prediction. The innovation of the
method is that the use of CNN reduces the burden of artificial
feature extraction and uses convolution to capture local time
and frequency patterns in the spectrogram. However, a major

drawback is that it is difficult to interpret which features are
most relevant to identifying the emotions in the music [5].

Despite the growing body of research on music and emo-
tion, much of the existing work primarily focuses on lyrics,
volume, and dynamics, with little attention given to how
performance techniques affect the emotional expression of
music. Performance techniques, such as vibrato, glissando,
and arpeggio, play a crucial role in shaping the emotional
content of a musical piece. For example, vibrato is often
associated with expressiveness and tension, while glissando
can evoke a sense of excitement or anticipation [6]. However,
the relationship between specific performance techniques and
emotional expression remains underexplored, particularly in
the context of dynamic emotion analysis. Most studies rely
on holistic emotion assessments, overlooking the temporal
evolution of emotions within individual audio segments. This
gap in the literature limits our understanding of how emotions
fluctuate over time in response to different performance
techniques.

Furthermore, existing methods for performance technique
recognition face significant challenges. Traditional approaches,
such as spectral analysis and cepstral analysis, can detect
fundamental frequencies and harmonics but are limited by
trade-offs between time and frequency resolution [7]. Moreover,
harmonic relationships in Western music can cause spectral
overlap, reducing the accuracy and reliability of recognition.
Recent advances in deep learning, such as CNNs and Long
Short-Term Memory Networks (LSTMs), have shown promise
in capturing complex performance gestures by integrating
performance gestures and timbral information [8]. However,
these methods still face two major challenges: (1) the lack
of datasets with annotated performance technique labels, and
(2) the complexity and time-consuming nature of integrating
non-audio factors, such as performer gestures and contextual
information.

This study aims to address these gaps by proposing a deep
learning model that not only automatically identifies various
performance techniques in piano music but also analyzes how
these techniques influence dynamic emotional changes over
time. Our approach leverages a CNN to recognize performance
techniques and a temporal analysis model to track the evolution
of emotions within segmented audio clips. By combining
these two components, we provide a novel framework for

1Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-239-5

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

BRAININFO 2025 : The Tenth International Conference on Neuroscience and Cognitive Brain Information

                             7 / 38



understanding the dynamic interplay between performance
techniques and emotional expression in piano music.

The remainder of this paper is organized as follows: Section 2
outlines the proposed method and model architecture. Section 3
presents the experimental results and data analysis, and Sections
4 and 5 conclude the paper with a summary of findings and
future directions for research.

II. RELATED WORK | METHODS

A. Data Preprocessing

Data preprocessing steps have been applied to ensure the
consistency, quality, and efficiency of the audio data used in
our analysis.

1) Data Format Conversion
To ensure consistency and quality, all audio files were

converted to WAV format, a widely supported, uncompressed
format that guarantees high-quality, lossless audio representa-
tion. The following standardization steps were applied:
• Sampling Rate: All audio files were resampled to 44.1 kHz

to balance quality and computational efficiency.
• Bit Depth: Audio files were stored with a 16-bit depth to

preserve quality while maintaining manageable file sizes.
• Mono Channel: Audio was converted to mono format to

eliminate potential issues from stereo channels.
This standardization ensured compatibility with the feature

extraction and neural network training pipelines.
2) Audio Segmentation
To improve recognition accuracy, the audio files were divided

into segments of 1.5 seconds and 3 seconds, chosen based on
the characteristics of the relevant performance techniques:
• 1.5-second segments: Used for techniques like glissando

and octave, which typically occur rapidly within a short time
frame.

• 3-second segments: Used for techniques like arpeggios and
vibrato, which generally involve longer durations and require
more time to capture fully.
This dual-segmentation strategy accommodates the unique

temporal characteristics of different performance techniques,
enhancing the model’s recognition capabilities.

3) Data Augmentation
To enhance the model’s generalization and robustness, two

data augmentation techniques were applied:
• Time Shifting: Each audio sample had a 50% chance of

being shifted randomly along the time axis by -500 to +500
samples, simulating different starting points.

• Adding Gaussian Noise: Each audio sample had a 50%
probability of having Gaussian noise added, with a stan-
dard deviation of 0.5% of the original signal’s amplitude,
simulating real-world noisy conditions.

B. Performance Techniques Recognition Model

The model aims to accurately identify piano performance
techniques, such as glissando, vibrato, octave, and arpeggio,
using state-of-the-art machine learning and deep learning
techniques. The recognition process involves data collection,
feature extraction, model training, and evaluation.

1) Data Collection
We built the dataset by collecting additional audio samples

using the following methods:
• Online Audio Collection: We gathered audio recordings

from online platforms such as YouTube and audio libraries.
These recordings specifically highlight piano performance
techniques, including glissando, octave, arpeggio and vibrato.

• Self-recorded Data: We also recorded our own piano
performances, specifically designed to feature the techniques
listed above.
2) Feature Extraction
Feature extraction is a critical step in our audio classification

pipeline, where both static and dynamic features are extracted
from raw audio signals to capture spectral and temporal
information. Specific methods are applied for each playing
technique—glissando, vibrato, octave, and arpeggio—based on
their unique characteristics.

a) Mel-Spectrogram
To obtain a time-frequency audio signal representation, we

utilize the Mel-spectrogram, computed with a sampling rate of
22,050 Hz and 128 Mel bands. The Mel-spectrogram transforms
the audio signal into the Mel scale, which aligns more closely
with human auditory perception.

Mel-spectrogram(y, sr = 22050, n_mels = 128) (1)

b) Decibel Conversion
We convert the power spectrogram to decibel (dB) units to

enhance the dynamic range of the Mel-spectrogram, using the
following transformation:

Mel-spectrogramdB = 10 · log10(Mel-spectrogram + ϵ) (2)

where ϵ is a small constant (e.g., 10−6) to avoid taking the
logarithm of zero. This conversion normalizes the amplitude
variations, making the spectrogram more suitable for neural
network training.

c) Glissando Feature Extraction
Glissando is a playing technique characterized by rapid

and continuous pitch changes within a short time frame. To
capture these dynamic changes, we extract Delta and Delta-
Delta features from the Mel-spectrogram:
• Delta Features: Calculated as the first-order temporal

derivative of the Mel-spectrogram to capture the rate of
change in spectral features.

∆X(t) = X(t+ 1)−X(t) (3)

• Delta-Delta Features: Calculated as the second-order tem-
poral derivative of the Mel-spectrogram to capture the
acceleration of changes in spectral features.

∆2X(t) = ∆X(t+ 1)−∆X(t) (4)

d) Vibrato Feature Extraction
Vibrato is a technique involving slight and continuous pitch

fluctuations over a longer duration. To effectively recognize
vibrato, we extract frequency modulation features based on the
Mel-spectrogram:
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• Modulation Frequency Features: The modulation frequency
refers to the rate at which pitch fluctuates over time, while
the modulation amplitude describes the extent of these
fluctuations, helping to capture the distinctive characteristics
of vibrato in musical performance.

Modulation Frequency =
df

dt
(5)

e) Octave Feature Extraction
Octave playing involves the simultaneous occurrence of two

notes separated by an octave. To capture the frequency rela-
tionships between these notes, we employ harmonic spectrum
features:
• Harmonic Analysis: We apply harmonic decomposition

methods to extract the harmonic components of the audio
signal, analyzing the relationships between harmonic fre-
quencies.

Harmonic Components(t) =
N∑

k=1

Ak · sin(2πkf0t) (6)

f) Arpeggio Feature Extraction
Arpeggio involves playing the notes of a chord in sequence

rather than simultaneously. The main features we extract for
arpeggio detection include Delta, Delta-Delta Features and
Time Interval Features.
• Time Interval Features: The time interval features are

calculated by detecting the onset of each note in the arpeggio
and computing the time intervals between successive onsets.

g) Feature Stacking and Normalization
For each playing technique, we stack the extracted features

to form a multi-channel input tensor. For example, glissando
features include the Mel-spectrogram, Delta, and Delta-Delta
features. Figure 1 shows an example of glissando features.
Similarly, for vibrato, octave, and arpeggio, we stack the
respective features accordingly. All features are standardized
before stacking to ensure zero mean and unit variance, which
stabilizes the training process and accelerates convergence.

Feature Stacking: For example, glissando features are
stacked as follows:

Mel combined = Stack(Mel-spectrogramdB,∆,∆2) (7)

This results in a tensor of shape [3, 128, 65], where 3 channels
correspond to the Mel-spectrogram, Delta, and Delta-Delta.128
Mel bands represent the frequency dimension. 65 frames
represent the temporal dimension.

For other techniques, the stacking procedure is similar, with
the number of channels adjusted based on the features extracted.
For instance, vibrato features may include Mel spectrograms
and frequency modulation features, resulting in a 2-channel
input tensor, while octave and arpeggio may use 4 channels,
incorporating Mel spectrograms, harmonic features, and time-
related features.

Normalization: After stacking the features, we normalize
them to ensure all input features are on a similar scale:

Mel combined =
Mel combined − µ

σ + ϵ
(8)

Figure 1. Example of glissando features.

where µ is the mean and σ is the standard deviation of the
combined features across the dataset, and ϵ is a small constant
(e.g., 10−6) to avoid division by zero.

3) Model Architecture and Loss Function
We designed four Convolutional Neural Networks (CNN) to

recognize different piano performance techniques, including
glissando, vibrato, arpeggio, and octave. The architecture of
the model consists of several sequential layers. For specific
details of Vibrato detection, refer to Table I.

TABLE I
CNN ARCHITECTURE FOR BINARY CLASSIFICATION (GLISSANDO

DETECTION)

Layers Operator Input Size Output Size
Conv1 Conv2D 3× 3 3× 128× 65 32× 128× 65
MaxPool MaxPool 2× 2 32× 128× 65 32× 64× 32
Conv2 Conv2D 3× 3 32× 64× 32 64× 64× 32
MaxPool MaxPool 2× 2 64× 64× 32 64× 32× 16
Conv3 Conv2D 3× 3 64× 32× 16 128× 32× 16
MaxPool MaxPool 2× 2 128× 32× 16 128× 16× 8
Conv4 Conv2D 3× 3 128× 16× 8 256× 16× 8
MaxPool MaxPool 2× 2 256× 16× 8 256× 8× 4
AAP AdaptiveAvgPool 256× 8× 4 256× 1× 1
Flatten Flatten 256× 1× 1 256
FCL1 Fully Connected 256 128
ReLU, Dropout Dropout 128 128
FC1 Fully Connected 128 1

a) Convolutional Layers
The model utilizes a series of convolutional layers that

applies filters to the input feature maps. Each convolutional
layer is followed by a Batch Normalization layer and a Rectified
Linear Unit (ReLU) activation function to improve convergence
and introduce non-linearity. The operation for a convolutional
layer can be described as:

Hi = ReLU (BatchNorm(Conv2D(Xi−1,Wi, bi))) (9)

where Xi−1 is the output of the previous layer, Wi and bi are
the weights and bias of the i-th convolutional layer, and Hi is
the output of the convolutional layer.

b) Pooling Layers
After each convolutional block, max pooling is applied to

reduce the spatial dimensions of the feature maps while pre-
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serving the most relevant features. The max pooling operation
can be described as:

Hpool
i = MaxPooling(Hi) (10)

where Hi is the feature map after convolution, and Hpool
i is

the output of the pooling layer.
c) Adaptive Pooling

An adaptive average pooling layer is applied at the end of
the convolutional layers to reduce the feature map to a fixed
size, regardless of the input dimensions. The adaptive pooling
operation is:

Hfinal = AdaptiveAvgPool2d(Hpool) (11)

where Hpool is the pooled feature map, and Hfinal is the fixed-
size output feature map.

d) Fully Connected Layers
After the feature maps are extracted, they are flattened into

a one-dimensional vector and passed through fully connected
layers. The output of the fully connected layer can be written
as:

z1 = ReLU(W1 ·Hfinal + b1) (12)

where W1 and b1 are the weights and bias of the first fully
connected layer, and z1 is the output of this layer. The second
fully connected layer produces the final output:

z2 = W2 · z1 + b2 (13)

and the final classification output is obtained using a sigmoid
activation:

ypred = Sigmoid(z2) (14)

e) Output Layer
The final output of the model is a probability value between

0 and 1, indicating whether a specific performance technique
(such as vibrato, glissando, etc.) is present in the audio segment.

f) Loss Function
The model is trained using the binary cross-entropy loss,

which is appropriate for the binary classification task of
detecting the presence or absence of a musical technique. The
binary cross-entropy loss can be defined as:

L = − (y log(ŷ) + (1− y) log(1− ŷ)) (15)

where y is the ground truth label (0 or 1), and ŷ is the predicted
probability of the model. This loss function is minimized during
training using optimization algorithms like Adam [9].

C. Correlation Analysis between Performance Techniques and
Emotions

In this section, we describe the methodology used to analyze
the relationship between various piano performance techniques
and the emotional expressions conveyed through the audio
data. The goal of this analysis is to understand how different
performance techniques, such as glissando, tremolo, arpeggio,
and octave, influence emotional expression, based on musical
features such as pitch, rhythm, and dynamics.

1) Emotion Labeling using GEMS (Geneva Emotional Music
Scales)

For emotion labeling, we employed the Geneva Emotional
Music Scales (GEMS), a comprehensive model specifically
designed for music-induced emotion. GEMS includes 45
emotional tags, which are divided into nine distinct categories
[8]:
• Amazement, Solemnity, Tenderness, Nostalgia, Calmness,

Power, Joyful Activation, Tension, and Sadness.
Emotion labels for the performance techniques were man-

ually annotated by professional musicians with expertise in
emotional interpretation in music. These musicians listened to
the performances techniques and assigned appropriate emotion
labels based on their auditory perception of the emotional
content.

2) Pearson Correlation Analysis
To explore the relationship between performance techniques

and emotional expression, we performed a Pearson correlation
analysis. Pearson’s correlation coefficient (r) quantifies the
linear relationship between two variables, ranging from −1
to +1, where +1 indicates a perfect positive correlation, −1
indicates a perfect negative correlation, and 0 indicates no
linear relationship.

We calculated the Pearson correlation coefficient between
the following variables:
• Performance Techniques: Glissando, tremolo, arpeggio, and

octave.
• Emotions: Amazement, Solemnity, Tenderness, Nostalgia,

Calmness, Power, Joyful Activation, Tension, and Sadness.
The Pearson correlation coefficient for each pair indicates

the strength and direction of the relationship between each
performance technique and the corresponding emotional ex-
pression. A positive correlation suggests that the performance
technique is associated with the emotion, while a negative
correlation suggests the opposite.

D. Dynamic Emotion Analysis

Dynamic emotion analysis aims to capture the temporal
evolution of emotional expression in piano performances.
Given the segmented audio clips, each representing a 3-second
segment, we analyze the emotional changes as a function of
the performance techniques detected in the audio.

To quantify emotional progression, each audio clip was
assigned an emotion vector based on a specific performance
technique, and the emotion vector of each clip was tracked
throughout the performance. Finally we visualized the temporal
progression of emotions to show how emotional intensity
evolves throughout the performance. This analysis helps to
identify the emotional peaks and transitions generated by
specific techniques and how they relate to the performance
dynamics.

1) Emotion Weighting Based on Performance Techniques
To enhance the precision of emotion analysis, the emotional

contribution of each performance technique is weighted accord-
ing to its decibel level. The decibel level of each technique
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reflects its relative prominence in the audio, thus affecting the
emotional expression of the segment. The weight wi for each
technique is computed using the following formula:

wi =
di∑n
i=1 di

, di = 20 log10

(
Pi

Pref

)
(16)

where di is the decibel value associated with the technique i,
and

∑n
i=1 di is the total sum of decibel values for all techniques

in the segment. The weighted emotional vector Efinal for each
segment is then computed by:

Efinal =

n∑
i=1

wi ·Ei (17)

where Ei is the emotional vector associated with technique
i, and wi is the weight determined by its decibel level. This
ensures that techniques with higher decibel values contribute
more to the final emotional expression of the segment.

III. RESULTS

A. Performance Metrics

Table II summarizes the classification performance of our
AudioClassifier model.

TABLE II
PERFORMANCE METRICS FOR PIANO PERFORMANCE TECHNIQUES

Technique Accuracy Precision Recall F1-score
Glissando 89.5% 88.3% 87.6% 89.9%
Octave 86.2% 88.1% 84.7% 86.4%
Arpeggio 83.0% 82.9% 84.3% 83.1%
Vibrato 85.8% 83.7% 88.2% 85.9%

Glissando performed best in accuracy, accuracy, recall and
F1 score, especially in the F1 score of 89.9%. Octave accuracy
is the highest at 88.1%, but the overall F1 score is slightly
lower than that of the glissando. Arpeggios performed the worst
among the indicators, with the lowest accuracy of 83.0%. The
vibrato performed better in recall and F1 scores, but still fell
short of the glissando and octaves.

B. Pearson Correlation Analysis Results

The Pearson correlation coefficients between the perfor-
mance techniques and emotions are summarized in Table
III. Glissando has a strong positive correlation with pleasure
activation, surprise and power. Vibrato are highly associated
with nostalgia and tenderness, and are positively associated with
sadness. Arpeggios were positively correlated with nostalgia
and tenderness, but negatively correlated with tension and
sadness. The octave shows a strong sense of power and pleasure
activation, and is negatively associated with tenderness and
sadness.

C. Dynamic Emotion Analysis Results

In this section, we present the results of the dynamic emotion
analysis applied to the performance of Czerny Op. 365 No.
33, a Polish dance. For the purpose of this analysis, the 1-
minute audio was segmented into 20 equal parts, each lasting
3 seconds. These segments were analyzed for the presence
of specific performance techniques and their corresponding
emotional expressions. The emotional vectors for each segment
were determined based on the techniques detected. Specifically:
• The octave technique, present in the majority of the segments,

was predominantly associated with the emotion of joyful.
• The vibrato technique, observed in segments 4, 5, 13, 15, 16,

17, 19, and 20, was associated with emotional expressions
such as amazement, tension, and sadness.

• The glissando technique, detected in segments 7 and 10,
elicited emotions like joyful and activation.
The results shows in Figure 2.

Figure 2. Dynamic emotion Cchange in 1-minute piano performance.

Peaks in emotional intensity were found to correlate with
specific techniques, highlighting how the performer’s use of
these techniques influenced the emotional flow of the piece. The
emotional transitions between segments revealed that the piece,
while maintaining an overall joyful tone due to the dominance
of octave, also incorporated dramatic shifts, reflecting the
emotional depth of the work.

IV. DISCUSSION | EVALUATION

The CNN-based model achieves high accuracy in classifying
piano performance techniques, with training accuracy reaching
96% and validation accuracy stabilizing at 86% (Figure 3),
indicating robust generalization without overfitting. However,
two limitations persist:
• Overlapping Spectral Features: Techniques with similar

harmonic patterns, such as arpeggios and trills, are occa-
sionally misclassified. For instance, trills involve rapid note
alternations that may overlap with arpeggio harmonics in
the Mel-spectrogram.

• Independent Technique Detection: The current framework
processes each technique independently, leading to redundant
computations. A unified multi-label classification approach
could better capture inter-technique dependencies (e.g.,
vibrato often co-occurs with legato phrasing).
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TABLE III
PEARSON CORRELATION COEFFICIENTS BETWEEN PERFORMANCE TECHNIQUES AND EMOTIONS.

Performance Technique Joyful Activation Calmness Tension Amazement Sadness Solemnity Power Tenderness Nostalgia
Glissando 0.65 0.21 0.71 0.55 -0.31 -0.47 0.62 -0.20 -0.60
Vibrato 0.30 -0.25 0.65 0.53 0.65 -0.40 -0.35 0.78 0.80
Arpeggio 0.62 -0.10 -0.26 -0.55 -0.32 -0.30 0.13 0.73 0.82
Octave 0.75 -0.45 0.60 0.60 -0.50 0.54 0.90 -0.80 -0.56

Figure 3. Training and validation accuracy over epochs.

Our analysis of the association between playing skills
and emotion reveals some interesting findings, suggesting
that different playing skills are significantly associated with
specific emotions. This analysis provides a valuable perspective
for further understanding of emotional expression in piano
performance. However, the perception of musical emotion
is highly subjective. Even though we invited professional
musicians to conduct data annotation, there is still some
disagreement. Different listeners or players may have different
emotional responses to the same playing technique. It is
worth noting that while there is a correlation between playing
technique and emotion, the same technique may trigger different
emotions in different musical contexts. For example, a glissando
technique may elicit anger in a fast-paced part, while a slow-
paced part may convey anticipation. Identifying emotions
accurately is still tricky.

Dynamic emotion analysis, which combines technical recog-
nition with emotion time series tracking, provides a valuable
perspective on the evolution of emotion over time in piano
performance. By tracking emotional changes in the temporal
dimension, we could observe fluctuations in emotional intensity
and identify the impact of playing techniques on emotional
dynamics. However, when performing sentiment analysis, we
combined the decibel level of each technique for weighted anal-
ysis. While this provides some basis for quantifying emotional
intensity, there are still some problems. First of all, simply
weighting by decibel intensity may oversimplify the expression
of emotion because changes in emotion are not only affected
by volume but also related to pitch, rhythm, performance
expression, and other factors. Second, decibel levels can have
different effects on players and sound equipment, leading to
sentiment analysis bias. Therefore, future research needs to
explore a more integrated approach to sentiment analysis that

may include more audio features.

V. CONCLUSION AND FUTURE WORK

In this study, we propose a deep learning approach for
dynamic emotion analysis of piano music by combining
piano performance technique recognition with emotion time-
series tracking. Our CNN-based model effectively identifies
various performance techniques and achieves high classification
accuracy. We found that different techniques are strongly
associated with specific emotional expressions, though emo-
tional perception remains subjective and context-dependent.
Despite the model’s strong performance, challenges remain,
such as distinguishing overlapping techniques and simplifying
sentiment analysis based on decibel levels. These results
demonstrate the potential of this approach but also highlight
areas for further improvement.

Future research could focus on integrating multiple per-
formance techniques into a single model and expanding the
range of performance techniques recognized. Additionally,
incorporating more audio features, such as tone, timbre, and
rhythm, could provide a more comprehensive understanding
of emotional expression. Real-time emotion tracking during
performance could also open up new applications in music
education and interactive environments. Lastly, developing
larger and more diverse annotated datasets would enhance
model generalization and improve recognition accuracy.
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Abstract—In a wide range of tasks, especially those involving
critical safety considerations, it is crucial that human participants
maintain appropriate emotional conditions. As a result, accurate
recognition of these emotional states has become a central
research challenge, with mainstream methods frequently utilizing
Pre-trained Language Models (PLMs) to incorporate emotional
understanding. With the emergence of Large Language Models
(LLMs) like ChatGPT, we have seen remarkable advancements
in various natural language processing applications. However,
the potential of ChatGPT’s zero-shot capabilities for image-
based emotion recognition and analysis has not been thoroughly
explored. In this study, we focus on classifying and predicting
emotional states, specifically distinguishing between positive and
negative emotions, and we examine ChatGPT4’s ability to interpret
emotions directly from images. Our experiments show that
ChatGPT4 can effectively predict changes in emotional states
over time, surpassing expectations in identifying the progression
of positive and negative emotions. Nonetheless, we identified
shortcomings in its capacity to accurately recognize specific
negative emotions, indicating room for further improvement.

Keywords-Image Emotion Prediction; Large Language Model;
ChatGPT4; zero-shot; Markov Chain; Emotion Stability Parameter.

I. INTRODUCTION

In human communication, accurately representing and in-
terpreting emotions is crucial. Emotions foster meaningful
connections and reveal an individual’s mental state and inten-
tions. Over the past decade, extensive research has focused on
integrating emotional insight into human-computer dialogue
systems [1]. Concurrently, the advent of ChatGPT [2] and
Instruct-GPT [3] has sparked interest in their capacity for
precise emotion recognition. Emotional support is increasingly
essential in scenarios like personal conversations, mental health
assistance, and customer interactions. Accordingly, our study
investigates how effectively ChatGPT4 [4] can discern emotions
from facial expressions.

Emotion recognition and prediction have gained prominence
for promoting safety, supporting mental well-being, and en-
hancing user experiences. Recognized as a key factor in human
safety, emotion recognition has been extensively researched [5]
[6]. People naturally communicate emotions through words,
text, images, facial cues, and physical gestures.

In a tech-driven world, Artificial Intelligence’s (AI) ability
to understand and respond to human emotions is indispensable

[7]. The significance of emotionally sensitive AI is magnified
by societal pressures such as occupational stress, perceived
injustices, and the strain of personal breakups [8] [9], which
can push individuals to harmful extremes. Evidence of such
distress includes suicidal ideation linked to professional de-
mands [8], school shootings, and road rage incidents. High-
stakes roles—like surgeons, pilots, and truck drivers—require
emotional stability, as demonstrated by a pilot with depression
who attempted to shut down an airplane’s engines mid-flight [9].
These scenarios underscore the urgent need for advancements
in emotion recognition and prediction to bolster safety and
mental health [10]. In recent years, generating emotionally
responsive outputs through neural networks has become a
prominent research focus [11], driven by advancements in
online social networks and deep learning technologies. More-
over, the continuous evolution of large language models has
triggered a revolution in conversational AI, as exemplified
by ChatGPT4. These models exhibit robust, general-purpose
linguistic capabilities, offering unprecedented levels of semantic
comprehension and nuanced response generation. Consequently,
the quality of human-computer interaction has significantly
improved. Yet, the extent to which these systems exhibit
emotions within their dialogues remains largely unexplored.
Our goal involves developing effective conversational strategies
in ChatGPT4 and assessing recent progress, strengths, and
limitations [12] [13] [14] in the realm of multi-modal emotion
recognition and prediction tasks. Employing ChatGPT4 for
emotion detection is also considered beneficial for maintaining
fairness in experimental settings, as it can interpret data without
the biases often seen in human evaluators. Emphasizing this
approach not only fosters fairness but also prioritizes safety
and well-being. By pinpointing emotional states accurately,
interventions can be better tailored and more ethically executed,
thereby safeguarding participants.

Furthermore, foundational research on emotion recognition
and prediction dates back to Ekman’s widely recognized clas-
sification model [15], which identified six universal emotions:
joy, sadness, fear, anger, surprise, and disgust. Building upon
Ekman’s work, Plutchik proposed an arrangement of eight
primary emotions—joy, trust, fear, surprise, sadness, disgust,
anger, and anticipation—in a wheel-shaped model [16]. These
approaches represent categorical or discrete models, positing a
fixed set of universally understood basic emotions. In contrast,
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continuum models treat emotions as existing along dynamic
dimensions [17] [18], factoring in valence (ranging from
positive to negative), arousal (level of excitement or calmness),
and dominance (sense of influence or control).

Traditionally, emotion recognition and prediction research
focused on a single channel of expression. However, people
naturally communicate emotions through multiple modalities:
voice, text, images, facial expressions, and body movements,
making it challenging to accurately interpret emotions from just
one source. To address this complexity, multimodal sentiment
analysis integrates various data inputs, such as audio signals,
shape changes, and overall appearance [19], often combined
with text and images. Employing advanced techniques such
as Convolutional Neural Networks (CNNs) [20] [21] or
transformers enables more accurate and comprehensive emotion
recognition and classification. Since emotions frequently evolve
over time, predicting their progression is equally important in
understanding real-world emotional dynamics.

Section III shows the results and analysis of the experi-
ment, and Section IV discusses the experimental results. The
conclusion and future work are presented in Section V.

II. MATERIALS AND METHODS

In this paper, we propose an emotion prediction model
grounded in Markov chains and emotion stability parameters.
By constructing an emotion state transition matrix and incor-
porating stability parameters, the model integrates eight basic
emotional states and forecasts how emotions evolve. To verify
its effectiveness, we conducted long-term emotion predictions
and thoroughly traced how these emotional states change as
time passes. Our experimental results show that this model can
effectively capture dynamic emotional fluctuations, providing
a novel approach to emotion analysis and prediction.

Emotions play a pivotal role in everyday life and human-
computer interactions. Accurately predicting and analyzing
shifting emotional states is of great importance in fields
like psychology, artificial intelligence, and human-computer
interaction [15] [16]. However, many existing methods lack a
dynamic perspective and struggle to anticipate how emotions
might evolve as time moves forward. To address this gap, we
present an emotion prediction model based on Markov chains
and emotion stability parameters, aiming to precisely predict
long-term changes in emotional states.

In reality, human emotions are continuous and frequently
shift from one state to another [22] [23]. Depending on the
context, it may be necessary to foresee the emotional states
of specific individuals, such as when scheduling surgeries in
hospitals, managing pilots during flights, or assigning tasks in
high-risk industries. As noted earlier, emotional responses can
surface when individuals are fatigued or treated unfairly. In
safety-critical jobs, we want the people involved to maintain
stable emotional states [9], since those experiencing emotional
difficulties can compromise the safety of others.

Within this study, we focus on a classification model guided
by Ekman’s framework, using six primary emotions: happiness,
sadness, fear, anger, surprise, and disgust. These emotions are

categorized into positive and negative groups. Happiness and
surprise are considered positive (+1), while sadness, fear, anger,
and disgust are treated as negative (-1). Although certain high-
risk scenarios might warrant a stricter classification—possibly
moving surprise into the negative category—this paper retains
surprise as a positive emotion.

Our model, denoted as S(t), represents how an individual’s
emotional state changes over time, with t indicating the
temporal dimension. We assign S(t) = 1 for positive emotions
and S(t) = −1 for negative emotions. Human emotional
complexity arises from external factors beyond personal control,
such as financial stability, relationships, health, workplace
conditions, market fluctuations, and family issues. These
elements can trigger transitions from positive to negative
emotional states or vice versa.

We begin by setting S(0) = 1. We then model the moments
of emotional shifts (from +1 to -1 or the reverse) using a
Poisson Process. Accordingly, S(t) = 1 if the number of
transitions in the interval (0, t) is even, and S(t) = −1 if
it is odd. This approach captures the stochastic nature of
emotional shifts and lays the groundwork for predicting long-
term emotional evolution.

P [S(t) = 1|S(t) = 1] = p0 + p2 + p4 + ...+ ..., (1)

where pk is the number of Poisson points in (0, t) with
parameter λ. That is,

P [S(t) = 1|S(0) = 1] = e−λt[1 +
(λt)2

2!
+

(λt)4

4!
...+ ...]

= e−λt coshλt
(2)

Now, S(t) = −1 if the number of points in the time interval
(0, t) is odd; that is,

P [S(t) = −1|S(0) = 1]] = e−λt[1 +
(λt)3

3!
+

(λt)5

5!
...+ ...]

= e−λt sinhλt
(3)

Equation (2) represents the probability that the emotion is
still positive at time t given that it was positive at time 0.
Equation (3) gives the probability that the emotion is negative
at time t given that it was positive at time 0. The parameter λ
in both expressions represents a rate at which emotions change
or decay over time. A larger value of λ would mean emotions
change more rapidly, while a smaller value would mean they
change more slowly. This is where we mathematically analyze
possible emotional changes and predict them. Also, to verify
the idea, we use ChatGPT. As for the experimental evaluation
part, the Receiver Operating Characteristic (ROC) method was
adopted to analyze the experimental results, and a specific
explanation was placed in the experimental part.

Here, we briefly explain equation (3). First, we assume
that lambda is 0.3, 0.6, 0.9. Meanwhile, Figure 1 shows the
function e−λt sinh(λt) with λ values of 0.3, 0.6 and 0.9.
Displaying the function e−λt sinh(λt) with λ values of 0.3, 0.6
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Figure 1. Different λ of the equation 3.

and 0.9, provides insightful observations about the temporal
changes in probabilities, especially relevant to emotional states
or comparable processes that can either diminish or progress
over time. It is evident from the visualization that varying the
decay constants (λ) significantly affects how long and intensely
certain states persist across several days.

With a decay constant of λ = 0.3, the probability initially
is high but diminishes gradually, indicating a persistent or
slowly fading condition. For example, maintaining a negative
emotional state translates to a higher likelihood of remaining
in this state longer. Within the initial day, the probability stays
well above 60%, denoting a strong endurance of the state.
By day three, it hovers around 50%, showing a steady, yet
noticeable decline. This gradual reduction might symbolize
scenarios where the causes behind the emotional state are slow
to be addressed or alleviated.

Increasing the decay constant to λ = 0.6 accelerates the
probability’s decline. This faster fall suggests a quicker fading
of the emotional intensity or the likelihood of sustaining the
same state. On the first day, the probability remains elevated
but swiftly falls below 60%, nearing 50% by the close of the
second day. This quicker reduction may be associated with
effective interventions or environmental changes, or possibly
better coping strategies that shorten the duration of the negative
condition.

At λ = 0.9, the probability decreases even more swiftly. The
graph shows a sharp descent, indicative of scenarios where
negative emotional states or similar conditions dissipate very
quickly. The probability does not stay above 50% beyond two
days, dropping near this mark by the end of the first day. This
rapid decline could point to highly effective external support
or events that inherently do not have prolonged effects.

By analyzing these curves, one can determine how various

strategies or intrinsic elements affect the control or maintenance
of specific states—be they emotional, physical, or of another
nature. The differing λ values symbolically illustrate the varied
speeds at which environments, individuals, or systems either
normalize or transition from one state to another. This knowl-
edge is essential in areas such as psychology, where predicting
the duration of an individual’s negative emotional state is
key to developing timely and effective interventions. Insights
into these temporal patterns are invaluable for customizing
interventions or supports that are sensitive to timing and more
closely correspond to the observed rates of change.

This section elaborates on the construction of the emotion
prediction model, including the definition of emotion states,
the construction of the state transition matrix, the introduction
of emotion stability parameters, the calculation of emotion
distributions over time steps, and the computation and ranking
of emotion change probabilities. We will demonstrate the
detailed derivation process of emotion changes over longer
time steps t = 0 to t = 5. The emotion state vector S(t)
represents the probability distribution of emotions at time t:

S(t) = [PE1
(t), PE2

(t), . . . , PE8
(t)]T (4)

where PEi
(t) denotes the probability of emotion Ei at time t.

The transition of emotion states is modeled using a Markov
chain. The state transition matrix P represents the probability
of transitioning from one emotional state to another. The matrix
P is an 8× 8 probability matrix, where each row sums to 1.

We assume the state transition matrix P to be:

P =


p11 p12 p13 p14 p15 p16 p17 p18
p21 p22 p23 p24 p25 p26 p27 p28

...
...

...
...

...
...

...
...

p81 p82 p83 p84 p85 p86 p87 p88


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where pij represents the probability of transitioning from
emotion Ei to emotion Ej , satisfying:

8∑
j=1

pij = 1, ∀i ∈ {1, 2, . . . , 8} (5)

In other words, we set the following transition probabilities
(the values are illustrative and can be adjusted based on actual
conditions):
• Higher probabilities of transition among positive emotions

and lower probabilities of transitioning to negative emotions.
• Higher probabilities of transition among negative emotions

and lower probabilities of transitioning to positive emotions.
For example, when the emotion is Joy (E1), the transition

probabilities are:

p1j =



0.5, if j = 1 (remain in Joy)
0.15, if j = 2 (transition to Trust)
0.15, if j = 3 (transition to Surprise)
0.1, if j = 4 (transition to Anticipation)
0.05, if j = 5 (transition to Sadness)
0.02, if j = 6 (transition to Disgust)
0.02, if j = 7 (transition to Anger)
0.01, if j = 8 (transition to Fear)

Transition probabilities for other emotions can be similarly
defined, ensuring each row sums to 1. The emotion stability
parameter λi is used to simulate the volatility of emotions in
reality:
• Positive emotions have smaller λi, indicating they are more

stable.
• Negative emotions have larger λi, indicating they are less

stable.
We set:

λi =

{
0.2, if Ei is a positive emotion
0.5, if Ei is a negative emotion

Calculation of Emotion Distributions over Time Steps. We
consider the Initial Emotion State to be S(0) and we set the
initial emotion as Joy (E1):

S(0) = [1, 0, 0, 0, 0, 0, 0, 0]T (6)

State Transition Computation
At each time step t, the emotion state is updated using the

state transition matrix P :

S(t) = PTS(t− 1) (7)

where PT is the transpose of P .
To consider the stability of emotions, we adjust the proba-

bility of each emotion at each time step. The probability of
emotion Ei remaining the same at time t is:

Pstay,Ei(t) = PEi(t) · e−λit cosh(λit) (8)

The probability of emotion Ei transitioning is:

Ptrans,Ei(t) = PEi(t) · [1− e−λit cosh(λit)] (9)

The adjusted emotion probability is:

P̃Ei
(t) = Pstay,Ei

(t) +
∑
j ̸=i

Ptrans,Ej
(t) · pji (10)

where pji is the probability of transitioning from emotion Ej

to emotion Ei.
Recursive Calculation for Future Time Steps. We repeat the

above steps to calculate the emotion distributions from time
t = 1 to t = 5.

1) Computation and Ranking of Emotion Change Probabili-
ties: First, we define the probability of emotion change.

The change probability of emotion Ei at time t is defined
as:

∆Pi(t) = |P̃Ei
(t)− PEi

(0)| (11)

Based on ∆Pi(t), emotions are ranked to obtain the priority
of emotion changes at time t. Below, we detail the calculation
process of emotion distributions from time t = 0 to t = 5.

2) At time Step t = 1:
a) State Transition Calculation:

S(1) = PTS(0)

Since S(0) has only the first element as 1 and others as 0:

S(1) = PT


1
0
...
0

 =


p11
p12

...
p18


Substituting specific values:

S(1) =



0.5
0.15
0.15
0.1
0.05
0.02
0.02
0.01


b) Adjustment with Stability Parameters: We compute

the stay and transition probabilities for each emotion. For Joy
(E1):

Pstay,E1(1) = PE1(1)·e−λ1×1 cosh(λ1×1) = 0.5·e−0.2 cosh(0.2)

Calculating e−0.2 ≈ 0.8187, cosh(0.2) ≈ 1.0201, so:

Pstay,E1(1) ≈ 0.5× 0.8187× 1.0201 ≈ 0.4182

We make similar computations for the other emotions.
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c) Adjusted Emotion Probabilities: Due to space con-
straints, only the adjusted emotion probabilities are provided:

S̃(1) =



0.4182
0.1228
0.1228
0.0819
0.0328
0.0123
0.0123
0.0061


We continue the iteration five times.
3) Time Step t = 5 :

a) Adjusted Emotion Probabilities:

S̃(5) =



0.2071
0.1764
0.1764
0.1131
0.1259
0.0652
0.0652
0.0287


Probabilities of Emotional Change and Ranking
We calculate the probability of emotion change ∆Pi(t) at

each time step and perform the ranking.
At time Step t = 1

• The change Probabilities:

∆Pi(1) = |P̃Ei
(1)− PEi

(0)|

Are calculated as:

∆Pi(1) =



0.5818
0.1228
0.1228
0.0819
0.0328
0.0123
0.0123
0.0061


• Ranking (from largest to smallest):

1) Joy (∆PE1 = 0.5818)
2) Trust (∆PE2 = 0.1228)
3) Surprise (∆PE3

= 0.1228)
4) Anticipation (∆PE4

= 0.0819)
5) Sadness (∆PE5

= 0.0328)
6) Disgust (∆PE6 = 0.0123)
7) Anger (∆PE7 = 0.0123)
8) Fear (∆PE8

= 0.0061)
Similarly, we perform calculations and rankings for t = 2

to t = 5.
Through long-time-step emotion prediction and detailed

derivation, we validated the effectiveness of the model. The
introduction of the emotion state transition matrix and emotion
stability parameters allows the model to capture the dynamic

changes of emotions over time and simulate the transition
patterns among different emotions.

The model’s prediction results align with real-world emotion
evolution. For example, the higher transition probabilities
among positive emotions and the longer time steps required
for negative emotions to appear provide new perspectives
for emotion analysis and prediction. This can be applied in
fields such as mental health monitoring and human-computer
interaction systems.

This paper proposes an emotion prediction model combining
Markov chains and emotion stability parameters. Through
detailed derivation and long-time-step emotion change calcula-
tions, we demonstrated the model’s effectiveness in predicting
dynamic changes of emotions. Future work can further opti-
mize the settings of the state transition matrix and stability
parameters and apply the model to actual datasets for validation.

Specific Values of State Transition Matrix P . Due to space
limitations, the complete numerical values of the state transition
matrix P are not listed here. Readers can set and adjust the
matrix according to the methods described above.

III. RESULTS

Emotion prediction in conversation stands at the intersection
of artificial intelligence and natural language processing. It
involves using textual, visual, and even auditory information
to identify and forecast the emotional states of participants
within a dialogue. Such predictions have practical signifi-
cance across various domains, including enhancing customer
service interactions, assisting in mental health evaluations,
and improving human-computer communication. Moreover,
emotion predictions derived from conversational content can
be evaluated by chatbots to determine a user’s current emotional
state and their reaction to emotional triggers. Given that
ChatGPT4 functions as a conversational agent, an important
question arises: can it effectively predict how emotions evolve
over time?

A. Emotion Prediction with different situations

For the experimental part, we chose three Data sets from
Kaggle which are Emotion Detection, Facial Expressions
Training Data, and Natural Human Face Images for Emotion
Recognition.

1) Datasets: Emotion Dection This dataset is the same as
the FER-2013 [24] dataset. The collection features 35,685
grayscale images, each 48x48 pixels, organized into two
sections: training and testing. Each section hosts a variety
of images representing different emotional states. The images
have been categorized by the creators into several emotions,
namely anger, disgust, fear, happiness, neutrality, sadness, and
surprise, providing a comprehensive basis for emotion detection
tasks.

Facial Expression Training Data The AffectNet [25]
database, a substantial compilation of facial images annotated
with expressions, serves as the foundation for this dataset.
To adapt to typical memory constraints, image resolution is
scaled down to 96x96 pixels. The dataset employs Principal
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TABLE I
SAMPLE OF FOUR DIFFERENT SITUATIONS

Dataset Question 1 Question 2 Question 3 Question 4

What is the emotion of
this person? If they are
about to be praised by

their boss or their
parents respectively,

what do you think their
emotions become?

If they were to be
criticized, what do you

think their emotions
would be?

If they were to receive
a $1,000 reward, what

do you think their
emotions would be?

If they were to break
up, what do you think
their emotions would

be?

Component Analysis, specifically focusing on the Singular
Value Decomposition method, to enhance image processing
efficiency. A threshold is applied to ensure the Principal Com-
ponent’s percentage remains below 90%, primarily excluding
monochrome images. The dataset, derived from the high-
quality AffectNet repository and refined using advanced Facial
Expression Recognition technology, spans eight emotional
categories: anger, contempt, disgust, fear, happiness, neutrality,
sadness, and surprise.

Natural Human Face Images for Emotion Recognition
Unlike traditional datasets used in facial expression recognition
such as the Facial Expression Recognition (FER) dataset, the
Extended Cohn-Kanade dataset (CK +) and the Karolinska
Directed Emotional Faces dataset (KDEF), this unique dataset
is curated from the Internet, encompassing more than 5,500
images manually labeled for eight emotional expressions: anger,
contempt, disgust, fear, happiness, neutrality, sadness and
surprise. Each image, which captures real human expressions
in grayscale format of 224x224 pixels, is meticulously selected
from various online sources, including Google, Unsplash, and
Flickr, ensuring a wide array of natural facial expressions for
improved learning and recognition tasks.

2) Task Definition of Emotion Prediction with Four Situa-
tions: According to the above description, we use three datasets
and select 6 types anger, disgust, happiness, neutral, sadness,
and surprise in the dataset. In each dataset, 10 images of 6
emotions are randomly selected and put into ChatGPT4 for
judgment. As for the prompt words in Table 1, we want to
preliminarily explore and predict the changes of emotion, so we
choose four scenarios that are most likely to produce emotional
changes in real life. At the same time, we artificially provide
4 situation simulations for each image, two positive situations,
and two negative situations. (For details of specific questions,
see Table I).

We predict the emotional changes of the image based on
the simulated situation. Since ChatGPT4 was released in 2023,
the above experiments were all conducted using ChatGPT4.
We use supervised learning and evaluate the performance
of ChatGPT4 in a zero-shot prompt setting for the above
tasks. After the evaluation of ChatGPT4, if the result is
the same as our cognitive result, it is recorded as 1, if the

result is different, it is recorded as 0, in other words, the
predicted results must be consistent with the logical results
of most cognitive and emotional changes in real society and
be consistent with common sense and recorded as positive or
negative according to the emotion according to the description
of ChatGPT4. Moreover, we construct a ROC [26] curve
utilizing the outcomes we have documented. Within this curve,
positive emotions such as happiness, neutrality, or surprise
are assigned a value of 1, while negative emotions like anger,
disgust, or sadness are designated with a value of 0. ChatGPT4’s
predictions for positive emotions are marked as 1 when they
align with the actual outcomes, and as 0 when they do not.
Similarly, for negative emotions, a matching prediction is
indicated by a 0, and a mismatching one by a 1. The confidence
level of these predictions is categorized on a scale from 1 to
3, where 1 indicates low confidence, 2 signifies moderate
confidence, and 3 represents high confidence.

TABLE II
RESULT OF FOUR DIFFERENT SITUATIONS

Emotion Parameter Positive Situation Negative Situation

Anger
accuracy 68.30% 73.30%

sensitivity NaN NaN
specificity 68.30% 73.30%

Disgust
accuracy 78.30% 85.00%

sensitivity NaN NaN
specificity 78.30% 85.00%

Happiness
accuracy 91.70% 83.30%

sensitivity 91.70% 83.30%
specificity NaN NaN

Neutral
accuracy 86.70% 83.30%

sensitivity 86.70% 83.30%
specificity NaN NaN

Sad
accuracy 71.70% 80.00%

sensitivity NaN NaN
specificity 71.70% 80.00%

Surprise
accuracy 85.00% 90.00%

sensitivity 85.00% 90.00%
specificity NaN NaN

Negative
accuracy 72.80% 79.40%

sensitivity NaN NaN
specificity 72.80% 79.40%

Positive
accuracy 87.80% 85.60%

sensitivity 87.80% 85.60%
specificity NaN NaN
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3) Preliminary Results: In the context of data presented
in Table II, the True Positive Rate (TPR), also referred to
as Sensitivity, is a metric that quantifies the fraction of true
positive instances accurately identified by the predictive model.
Conversely, the False Positive Rate (FPR), also known as
the complement of Specificity (1-Specificity), represents the
proportion of negative cases that are mistakenly identified as
positive by the model. The Observed Operating Points on
the ROC curve signify the various thresholds applied within
the classifier. Each of these points illustrates the equilibrium
achieved between TPR and FPR at a given threshold setting. To
elucidate, setting a higher threshold might lead to a reduction
in FPR but at the cost of diminishing TPR, whereas a lower
threshold setting is likely to elevate both TPR and FPR. These
critical points are instrumental in assessing the model’s efficacy
and in determining the optimal threshold for the task at hand,
highlighting the inherent compromise between maximizing the
detection of positive instances (achieving a higher TPR) and
minimizing the occurrence of false positives (achieving a lower
FPR).

Table II shows the prediction results of ChatGPT4 for the
evolution of emotions after initially identifying negative and
positive emotions and describing them through two positive
situations and two negative situations respectively. For images
initially identified as negative emotions, we found that their
ChatGPT4 prediction accuracy in negative contexts was 79.4%.
However, if the situation was positive, the predicted evolution of
emotion was 72.8%. In contrast, for images initially identified
as having positive emotions, their response accuracy was higher
in positive contexts than in negative contexts. We think that it
may be due to ChatGPT4, the possibility of negative emotions
turning into positive emotions when encountering a positive
environment is lower than the possibility of remaining negative
in a negative environment. Positive emotions have the same
result. This result shows that the prediction results of ChatGPT4
are consistent with the changes in our cognitive emotions.
Since we want to preliminary explore and predict the changes
in emotion, we choose four scenarios that are most likely to
produce emotional changes in real life. For details in Table
II. The explanation is that the six categories of emotions were
initially explored and analyzed separately, so when calculating
the ROC, we also calculated the six categories of emotions
separately to obtain the experimental results. According to the
above description, positive emotions are recorded as 1 and
negative emotions are recorded as 0. This means that, when
the six types of emotions are analyzed separately, they will
lack the other half of the records. NaN occurs in specificity
because specificity needs negative samples to be calculated.
If the dataset only contains positive emotions (no negatives),
specificity cannot be computed, leading to NaN. Vice versa is
also true.

Table IV corresponds to the prediction results of emotional
changes corresponding to different events that will occur under
each different emotion. First, we preliminary observe that
in the case of images depicting surprise or astonishment,
ChatGPT4 demonstrates a notable capability in recognizing

these emotions as such. However, it encounters difficulty in
discerning whether the surprise conveys a positive or negative
sentiment, leading to a tendency to classify the emotion of
surprise as predominantly neutral. Consequently, this is the
reason why the outcomes for surprise closely mirror those
associated with neutral expressions.

In order to avoid the harm caused by negative emotions to
high-risk industries or high-risk groups, we mainly look at three
types of emotions: anger, disgust, and sadness. We observe
that in negative emotions, if the upcoming event is positive,
then the accuracy of ChatGPT4 in predicting the emotion
evolution from high to low in zero-shot is disgust, sad, and
anger; FPR is 78.3%, 71.7%, and 68.3%, respectively. Anger is
the strongest of negative emotions and the lowest in response to
positive events. At the same time, because disgust is the most
complex of negative emotions, including disgust, unhappiness,
contempt, etc., it ranks the highest. Furthermore, the precision
in identifying negative emotions falls short of expectations,
suggesting that ChatGPT4 could benefit from the inclusion
of additional descriptive cues to enhance its decision-making
process. Presently, in a zero-shot scenario, ChatGPT4 is adept
at recognizing the presence of negative emotions in individuals;
however, it struggles with the accurate classification of specific
emotions such as disgust, contempt, or anger. This is why
negative predictions are less accurate than positive ones.

4) Analysis and Discussion: Throughout the training phase,
it is common to encounter discrepancies between the emotions
depicted in certain dataset images and our real-world percep-
tions. Due to the subjective nature of emotional interpretation,
there is a possibility of encountering biases in recognizing the
emotions conveyed by some images. In such instances, we rely
on our judgment as the ultimate criterion and compare it to
the interpretations provided by ChatGPT4.

Moreover, we have identified an additional complication:
a misalignment between ChatGPT4’s interpretations and the
dataset’s guidelines. A closer look at the specific examples of
ChatGPT4’s predictions highlights a fundamental issue—the
disparity between the model’s understanding and the dataset’s
standard. While the dataset might categorize an image as
portraying anger based on its guidelines, ChatGPT4 might
interpret the same expression as sadness or confusion. This
discrepancy is not a matter of accuracy but rather an indication
of differing standards used to classify negative emotions. Upon
analysis, this divergence seems not solely a limitation of
ChatGPT4 but could also stem from inadequate prompting.
As the complexity of prompt instructions increases, expecting
comprehensive coverage with minimal input becomes impracti-
cal. This realization opens up avenues for future improvements:
if adhering strictly to the dataset’s criteria is not mandatory,
then refining the model based on broad prompt adjustments
(like specifying the depicted emotions) might be viable. Yet,
evaluating based on the dataset’s labels could prove unsuitable,
necessitating a more thorough manual review. On the contrary,
if strict conformity to the dataset’s guidelines is essential,
relying on a multitude of prompt adjustments may fall short,
making the supervised model fine-tuning a more effective
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strategy.

B. Emotion Prediction with Different Categories of Emotional
Sentences

1) Dataset: First, we continue to use the same images as
the previous task. They are still from emotion detection, facial
expressions training data, and natural human faces. Each dataset
is still the same 10 images. But in the second task, we added
a dataset called MELD [27].

MELD The Multimodal EmotionLines Dataset (MELD)
builds upon and enriches the original EmotionLines dataset
by incorporating additional modalities such as audio and
visual elements alongside text. MELD features over 1,400
dialogue sequences and 13,000 spoken exchanges drawn from
the "Friends" TV series, with various characters contributing
to the conversations. Every piece of dialogue within MELD
is categorized under one of seven possible emotions: Anger,
Disgust, Sadness, Joy, Neutral, Surprise, and Fear. Additionally,
MELD assigns a sentiment classification—positive, negative,
or neutral—to each utterance, further enhancing its utility for
emotion and sentiment analysis research.

2) Task Definition: The tasks in Part Two are partially
similar to those in Part One. They all use the same images
from the same dataset. However, each picture uses 6 categories
of sentences full of different emotions 1. Anger, 2. Disgust,
3. Happiness, 4. Neutral, 5. Sad, 6. Surprise; think of these
statements as what the character in the image is going to
say. The input images and sentences are then analyzed using
ChatGPT4 and the emotional evolution of any image is
predicted and judged (For details of specific questions see
Table III). At the same time, for the diversity of results, we
also put the same pictures into the large language model for
comparison test, in which tik tok’s Doubao large language
model [28] is used to compare the output content.

3) Preliminary Results: The abscissa of Table VI represents
the image of the dataset, and the ordinate represents the
evolution of ChatGPT4’s prediction of emotions after inputting
6 different emotional sentences.

We can observe that the prediction accuracy of ChatGPT4
from high to low is: happiness, surprise, neutral, anger, sad,
disgust. Among the three positive emotions, according to
ChatGPT4 prediction, except for the happiness emotion that is
directly converted into anger, which has the lowest accuracy,
happiness is the highest for the others. At the same time, we
observe that according to the description of ChatGPT4, when
defining surprise and neutral, because they can be regarded as
positive or negative, the results of the two are very similar. In
the prediction of negative emotions, according to the above
explanation of the FPR index, it shows that the disgust emotion
is the least accurate to identify, and the emotion of the disgust
category is the most difficult to judge among the six types of
emotions. At the same time, still the same as the previous task,
ChatGPT4 requires more prompts to achieve the accuracy of
negative emotions. In the case of zero-shot, ChatGPT4 is not
as good at predicting the evolution of emotions as in the case
of positive emotions.

Similarly, the tested Doubao LLM is less accurate at
recognizing negative emotions compared to positive ones. Table
V show that the result accuracies of ChatGPT and Doubao.
In many instances, it even misclassifies negative emotions as
neutral. However, when comparing the results of the two large
language models, ChatGPT’s output accuracy is significantly
higher than that of the Doubao model. In zero-shot situations,
the Doubao model tends to misidentify negative emotions as
positive, a problem that ChatGPT does not exhibit. Although
ChatGPT may not always precisely identify the specific type
of negative emotion, it can determine that the person in the
image is experiencing some form of negative emotion. This
explains why the Doubao model is less accurate in predicting
mood changes.

The vertical axis of the ROC curve represents sensitivity,
which is directly proportional to the model’s diagnostic
accuracy. Conversely, the horizontal axis denotes 1-specificity,
where a lower value indicates a reduced rate of false positives.
Generally, a point closer to the upper-left corner of the ROC
space signifies superior diagnostic performance, implying that
a sensitivity approaching 1 correlates with enhanced predictive
accuracy.

Before proceeding, it is important to build upon the par-
tial definitions provided earlier; this section focuses on the
concept of the Empirical ROC Area. The Empirical ROC
Area, commonly known as the Area Under the Curve (AUC),
quantifies a model’s discriminative power directly from raw
data by constructing an empirical ROC curve. This curve
plots the True Positive Rate (TPR) against the False Positive
Rate (FPR) across a range of decision thresholds. The AUC
metric evaluates the model’s efficacy in distinguishing between
positive and negative classes over all threshold values, with a
larger AUC indicating superior performance. An AUC value
of 0.5 suggests no better than random classification, while a
value of 1.0 represents perfect discrimination.

According to the data presented, we believe that the
sensitivities of the three datasets are very similar, except in the
case of the disgust statements. When the initial emotional state
varies, it becomes challenging for ChatGPT-4 to accurately
identify expressions of disgust. For example, in a positive
context, it might interpret a disgust statement as a joke or prank,
resulting in lower accuracy. In terms of specificity, however,
the prediction results of ChatGPT-4 exceed expectations,
especially under an initially positive sentiment where the
prediction accuracy is very high—almost entirely correct. Based
on the accuracy and ROC curve, ChatGPT-4’s performance
in predicting sentences across different emotions surpasses
expectations.

IV. DISCUSSION

In this paper, our sentiment evaluation is mainly derived
from static inputs (images or single pieces of text). However,
in real-world situations, emotions are dynamic and can shift
rapidly depending on ongoing interactions—an aspect not fully
reflected in our current experimental setup. As a result, the
absence of real-time feedback mechanisms to update model
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TABLE III
EXAMPLE OF SIX DIFFERENT CATEGORIES EMOTIONAL SENTENCES.

Dataset Question 1 Question 2 Question 3 Question 4 Question 5 Question 6

What is the
emotion of this
person? If the
next thing they
say is, "Well,

why don’t you
tell her to stop

being silly!"
What do you

think their
emotions will

become?

If the next
sentence they say
is, "Say it louder,
I don’t think the
guy in the back

heard you!" What
do you think

their emotions
will become?

If the next
sentence they say
is, "Guess what,

I got an
audition!" What

do you think
their emotions
will become?

If the next
sentence they say
is, "Great. He’s

doing great.
Don’t you worry

about him?"
What do you

think their
emotions will

become?

If the next
sentence they say
is, "Yeah but we
won’t be able to
like to get up in
the middle of the

night and have
those long talks

about our
feelings and the
future." What do
you think their
emotions will

become?

If the next
sentence they say
is, "Look what I
got! Look what I

got! Can you
believe they

make these for
little people?"
What do you

think their
emotions will

become?

TABLE IV
RESULT OF SIX DIFFERENT CATEGORIES EMOTIONAL SENTENCES.

Emotion Anger
sentence

disgust
Sentence

Happiness
sentence

Neutral
Sentence

Sad
sentence

Surprise
sentence

Anger 70.00% 86.70% 86.70% 86.70% 86.70% 83.30%
Disgust 60.00% 70.00% 60.00% 56.70% 83.30% 56.70%
Happiness 70.00% 96.70% 1 96.70% 96.70% 96.70%
Neutral 76.70% 86.70% 96.70% 96.70% 90.00% 90.00%

Sad 63.30% 76.70% 76.70% 76.70% 86.70% 86.70%
Surprise 73.30% 86.70% 96.70% 96.70% 93.30% 96.70%

TABLE V
ACCURACY OF DIFFERENT LARGE LANGUAGE MODELS.

LLM Negative Emotion Accuracy Positive Emotion Accuracy
ChatGPT 68.89% 80.56%
Doubao 26.11% 40%

predictions based on user responses limits the immediate
practical value of adaptive systems, such as interactive chatbots
or mental health monitoring tools.

Our study primarily focuses on ChatGPT4’s capabilities
in image-based emotion recognition. In the future, our work
could be extended to other large language models, such as
Claude3, to compare their respective advantages and drawbacks.
Additionally, there has yet to be a comprehensive evaluation
under real-world conditions, leaving questions about these
models’ robustness and generalizability beyond controlled
experiments.

Looking ahead, further investigations into how ChatGPT4
generates predictions could involve refining prompts or fine-
tuning the model, potentially increasing both the transparency
and interpretability of its decision-making process. Another
consideration is that basing judgments solely on perceived
emotional changes may introduce bias. Since ChatGPT is a
probabilistic model, its responses may vary even when given the
same input multiple times. To address this, future studies might
involve running the same input multiple times and averaging

the results, mitigating the limitations of relying on a single
experiment for input correlation.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we examine ChatGPT4’s zero-shot abilities in
interpreting sentiment from image-text inputs and compare its
performance to the Doubao model. ChatGPT4 demonstrates
high accuracy but sometimes mislabels disgust as depression.
Targeted prompts and mental health considerations can improve
its inference quality.

ChatGPT4 outperforms Doubao in prediction accuracy,
although it may struggle to identify specific negative emotions.
Doubao often misinterprets negative emotions as neutral or
positive in zero-shot scenarios. We recommend refining prompts
and using relevant examples to boost ChatGPT4’s performance
in subjective tasks, including mental health applications.

Dataset images can conflict with real-life perceptions, intro-
ducing biases in emotion recognition. We compare our human
assessments with ChatGPT4’s outputs to pinpoint discrepancies
and address potential biases. ChatGPT4 predictions sometimes
clash with the dataset guidelines, highlighting their deviation
from standard annotations. For example, it may interpret
anger as sadness or confusion. This discrepancy reflects varied
emotional criteria rather than outright errors.

Differences in interpretation may stem from prompt design
limitations rather than ChatGPT4’s flaws. If strict dataset
adherence isn’t crucial, broader prompts can enrich the model’s
performance, though manual reviews may be needed. If exact
compliance is required, more supervised fine-tuning is essential
to align with dataset-specific emotional classifications.
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Abstract—Emotion recognition from artworks has the potential
to enhance the experience of art exhibitions, where emotions
conveyed by artworks can enhance the viewer’s experience
with synchronised lighting, music, and multimedia elements.
Integrating emotion detection technology and applications to the
art experience enlarges the way of perceiving and embracing art,
leading to personalized therapy applications (e.g., art therapy).
We used Convolutional Neural Networks and Transfer Learning
to detect emotions in paintings, comparing three state-of-the-art
models with different characteristics. A prototype application
has been developed to show the classification capability of the
best-performing model. The results highlight the effectiveness of
our approach, particularly for binary classification, in real-world
applications, such as adaptive art exhibitions and real-time art
therapy tools. Challenges, such as dataset limitations and the
subjective nature of emotions in art, were addressed through
careful dataset integration and preprocessing, as well as the use of
transfer learning to optimize performance. This work introduces
applications of CNN in art therapy, immersive art experiences,
and beyond, by demonstrating the potential of combining datasets
and applying advanced deep learning techniques to emotion
recognition in art, from enhancing art experiences to supporting
emotional analysis in other creative industries.

Keywords-Emotion detection; CNN; Transfer learning; Art emo-
tion recognition; Multimodal art augmentation; WikiArt; ArtEmis;
art emotion dataset; supervised classification; cognitive behavioral
analysis.

I. INTRODUCTION

Integrating emotion detection technology into the art expe-
rience offers an innovative way to transform how viewers en-
gage with art. By detecting the emotions evoked by paintings,
art exhibitions can be enhanced with synchronized multimedia
elements, such as lighting, music, and digital media [1][2],
creating immersive and dynamic environments that respond
to the emotional content of the artwork. This approach goes
beyond traditional static displays to offer viewers an emotion-
ally tailored experience that has the potential to redefine the
relationship between art and technology.

Emotion recognition in visual art could also offer significant
value in art therapy [3]. In therapeutic settings, art is often
used as a medium for individuals to express emotions that may
be difficult to verbalize. Detecting and analyzing emotions in
artwork can provide therapists with deeper insights into their
clients’ emotional states, allowing for more personalized ther-
apeutic interventions. On the other hand, artworks conveying
specific emotions can be used by the therapist to elicit an

emotion in the client, as a starting point for narrative medicine,
which, for the time needed to identify proper art pieces or
produce them, usually can be applied only after a session,
or using expensive tools, such in the case of Virtual Reality
[4]. The integration of automated emotion recognition with
art therapy could enhance the therapeutic process, supporting
both therapists and clients in exploring complex emotional
landscapes through visual art, with real-time support, offering
valuable tools providing objective insights to complement
subjective interpretations [5].

Emotion detection technology applied to artworks has broad
societal impacts, such as helping stakeholders (e.g., in market-
ing and politics) to understand how visual stimuli elicit emo-
tional responses from viewers. As cognitive-behavioral theory
suggests, emotions and cognitive processes are closely linked
[6][7], and analyzing how visual art impacts emotions can
provide important insights into human behavior and decision-
making. To avoid misuse that could lead to manipulation or
bias [8][9], this application should be strictly linked with an
ethical evaluation.

Despite such promising applications, the field of emotion
detection in art is underdeveloped. Most previous works on
image emotion analysis mainly used landmark-based element
recognition; however, these features are vulnerable and not
invariant to the different arrangements of elements [10]. This
issue can be solved using techniques based on principle-of-art
features including balance, emphasis, harmony, variety, gra-
dation, and movement, which experiments are based on peer-
rated abstract paintings. While Convolutional Neural Networks
(CNNs) and transfer learning have been successfully applied
to emotion classification in other domains, their application
to artistic works remained underexplored, and challenged by
the lack of sufficiently large labeled datasets [11]. In this
work, by merging the WikiArt Emotion [12] and ArtEmis
[13] datasets, we have addressed this limitation and created
a more comprehensive and balanced dataset, improving the
data quality, and allowing for more effective fine-tuning of
deep learning models. Recent research is exploring the use of
Large Language Models (LLMs) and Generative Neural Net-
works to enhance this process, requiring large computational
capabilities or costly schedules for training a new neural model
[14].

Most of the papers in the state of the art, which are based
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on artistic datasets, present social and artistic photographs,
instead of paintings. There are some papers where WikiArt
Emotion dataset is used, but only to evaluate models trained
on datasets that present realistic images of faces (e.g., the
FER-2013 dataset) [15] or realistic, non-artistic images [16]. In
such works, researchers often rely on two prominent emotion
models, the Ekman model [17] and the Mikels model [18]
or a simplified binary classification into positive and negative
emotions (i.e., sentiment analysis) [19].

Among previous works, we can highlight some technical
reports applying CNNs to artworks for sentiment analysis. In
[20], where researchers used also only artworks the best accu-
racy they achieved with CNNs pre-trained on ImageNet was
56%, but they didn’t publish the dataset they used (thus, avoid-
ing applicability and direct comparison), and considered only
three sentiment classes (i.e., positive, negative, neutral). The
main limitations highlighted by the authors relate to labels’
noise which highly depends on the labeler, and interpretation
difficulties by humans since people can respond differently
to stroke edges, color tones, and objects of paintings. In
[21], the best-achieved accuracy was 73%, and emotions have
been again limited to a binary process of positive-negative
sentiment analysis. Researchers used there the QuickShift
algorithm in data preparation to simplify the image dataset,
improving accuracy only for some art styles. When handling
highly schematic work, such as minimalist paintings, the
proposed methodology was highly unsatisfactory given the
over-simplification of the images after processing with the
QuickShift algorithm. As emphasized by the authors, another
limitation is the number of existing datasets that contain a
significant number of images for automation processes with
emotions associated with humans.

In addition, there is an ongoing debate about the ability
of machine learning models to accurately classify emotions
in art, given its subjective nature [22][23]. Some researchers
argue that deep learning models, which are often trained
on structured data, such as photographs, may struggle to
interpret the abstract and interpretive qualities of art [24][25].
Others, however, suggest that with the right data and methods,
including Convolutional Neural Networks (CNNs), emotion
detection in the art scenario can be meaningful and effective
[26][27]. This study contributes to this debate by exploring
both binary (pleasant/unpleasant) and multi-class classification
and assessing their feasibility and limitations in the context of
visual art. Our results demonstrate the effectiveness of binary
classification in detecting emotional content, with multiclass
classification offering additional insights despite being more
challenging.

The limitations of our current approach mainly involve the
quality of available datasets.

The rest of the paper is structured as follows. In section II,
materials and methods are detailed, in particular the dataset
collection and preprocessing, the architecture of the model,
the operations implemented for training and optimization, and
the metrics used for evaluation. In section III, results are
shown and discussed, comparing the performance of the neural

(a) (b)
FIGURE 1. EXAMPLE OF EMOTIONAL ANNOTATIONS OF PAINTINGS IN THE

ORIGINAL DATASETS: (A) WIKIART EMOTION; (B) ARTEMIS.

networks in the study. Finally, in section IV, conclusions are
drawn, and future work is proposed to enhance the application
and overcome current limitations.

II. MATERIALS AND METHODS

All experiments were performed on a workstation equipped
with an NVIDIA Tesla V100 GPU with 32 GB of VRAM. The
models were implemented in PyTorch, and additional libraries,
such as Scikit-learn, were used for performance evaluation.
Code and scripts to replicate the experiments will be made
available upon reasonable request: all our scripts are fully
documented to facilitate replication of the experiments. In
the following paragraphs, we are going to detail the dataset
merging and preprocessing, the architecture of the model, the
training and optimization phases, and the evaluation metrics
used for the two aims of binary and multiclass classification.

A. Dataset Collection and Preprocessing

For this study, two publicly available datasets were used:
the WikiArt Emotion Dataset [12] and the ArtEmis Dataset
[13]. The WikiArt Emotion Dataset incudes 2,129 annotated
paintings selected from the WikiArt collection, with emotions
labeled using Paul Ekman’s six basic emotions: anger, disgust,
fear, happiness, sadness, and surprise. The ArtEmis dataset
was introduced as a large-scale dataset of emotional reactions
to images along with language explanations of these chosen
emotions. It contains emotional annotations of 80,000 artworks
from the WikiArt platform, automatically categorized by Ek-
man’s six basic emotions, together with an explanatory phrase.
Figure 1 shows an example of emotional annotation for each
original dataset.

The datasets were merged to create a more comprehensive
and balanced set of images, normalizing labels to the six
emotional states from the Ekman model. Our merged labeled
dataset includes 4,120 images for emotion classification. The
final distribution of the dataset across the six emotion classes
is shown in Table I. The merging of these datasets resulted in
an improved balance across all six classes, with no significant
overrepresentation of any single emotion. This balanced distri-
bution ensures that the model receives sufficient training data
for each emotion, improving the model’s ability to classify
emotions more accurately.
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All images were preprocessed by resizing them to a uniform
size of 224x224 pixels to meet the input requirements for the
CNN models. Additionally, standard normalization techniques
were applied to ensure that the pixel value distributions were
consistent with the expectations of deep learning models.

TABLE I. DISTRIBUTION OF EMOTION CLASSES AFTER MERGING
WIKIART EMOTION AND ARTEMIS DATASETS

Emotion Number of Samples Percentage (%)
Anger 438 10.63%

Disgust 700 16.99%
Fear 567 13.76%

Happiness 1044 25.34%
Sadness 637 15.46%
Surprise 734 17.82%

Total 4120 100%

B. Model Architecture

We applied convolutional neural networks to the task of
emotion recognition in visual art. Three pre-trained models
were used: Visual Geometry Group (VGG16), MobileNet
V2, and Inception V3. These models were fine-tuned using
transfer learning, where the final fully connected layers were
retrained on the merged dataset to classify images into pleas-
ant/unpleasant emotions (binary classification) and six basic
emotions (multi-class classification). The choice of models
is based on their proven effectiveness in image classification
tasks, especially in domains with limited data [26], [28].

C. Training and Optimization

The learning rate and the optimizer play critical roles in the
training and convergence of deep learning models. For this
study, the training was performed using the Adam optimizer
[21] with a learning rate of 0.0001 and a batch size of 32.

The Adam optimizer was selected as the primary opti-
mization algorithm due to its proven effectiveness in han-
dling sparse gradients and dynamically adapting learning rates
during training. This adaptability is particularly useful for
complex tasks, such as emotion recognition in visual art, where
the gradient landscape can be highly non-linear and difficult
to navigate. Adam was complemented by Stocastic Gradient
Descent (SGD) – particularly effective in cases where the
model is simple and the dataset is large – a robust choice for
problems where generalization is important, and by RMSprop
to address the issue of SGD’s sensitivity to the choice of
learning rate by introducing a moving average of the squared
gradients, which allows the learning rate to remain effective
throughout training.

The learning rate was set at 0.0001 for most experiments,
based on empirical testing and its suitability for fine-tuning
pre-trained CNN models. A smaller learning rate ensures that
the fine-tuning process does not disrupt the pre-trained weights
excessively while allowing gradual adjustment to the new
dataset. This choice is critical for transfer learning tasks where
the models are already trained on large-scale datasets and only
require refinement for domain-specific tasks.

The choice of a lower learning rate combined with the Adam
optimizer thus reflects careful experimental design, balancing
the need for precise model adjustments with the computational
efficiency required for training deep networks on moderately
sized datasets.

The models were trained for 50 epochs, and early stopping
was implemented to avoid overfitting. Cross-entropy loss was
used as the loss function for both binary and multiclass
classifications. An 80/20 train-test split was applied to the
dataset. Function parameters in Python has been adapted to
classify on unbalanced classes.

Performance metrics, such as accuracy, precision, recall, and
F1 score were tracked during training. Such settings have been
tested and chosen experimentally.

D. Evaluation Metrics

For the binary classification task (pleasant/unpleasant emo-
tion), Accuracy, Precision, Recall, and F1-score are used to
evaluate model performance. For multiclass classification, Ac-
curacy is used as a performance metric, and a confusion matrix
is generated to analyze the model’s ability to discriminate
between Ekman’s six basic emotions (i.e., anger, disgust, fear,
happiness, sadness, surprise).

III. RESULTS AND DISCUSSION

The binary classification task focused on predicting whether
a painting evokes a pleasant (i.e., happiness, surprise) or
unpleasant (i.e., anger, disgust, fear, sadness) emotion. The
model, fine-tuned on the merged WikiArt Emotion and
ArtEmis datasets, showed promising results, especially with
the InceptionV3 model, which outperformed the other classi-
fiers.

A. Comparison of Neural Network Performance

To evaluate the performance of the three deep learning
models (VGG16, MobileNetV2, and InceptionV3) on the task
of emotion detection in paintings, we evaluated their accuracy,
precision, recall, and F1-score using different optimizers and
learning rates, as visible in Table II, where results show
InceptionV3 achieving the highest accuracy (in bold, the best
result for each Classifier).

TABLE II. COMPARISON OF DEEP LEARNING MODEL PERFORMANCE
(VGG16, MOBILENETV2, AND INCEPTIONV3) ON EMOTION

CLASSIFICATION TASKS USING TRANSFER LEARNING.

Classifier Optimizer 0.001 0.01
3*InceptionV3 adam 41.26% 41.38%

rmsprop 39.56% 36.29%
sgd 40.05% 44.54%

3*MobileNetV2 adam 21.60% 16.75%
rmsprop 28.76% 13.96%

sgd 37.99% 40.78%
3*VGG16 adam 41.88% 41.38%

rmsprop 42.11% 40.53%
sgd 32.77% 33.86%

• VGG16: The best accuracy achieved by VGG16 was
42.11% when trained with the RMSprop optimizer at
a learning rate of 0.001. Although it performed well
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compared to MobileNetV2, its precision, recall, and F1
score were lower than those of InceptionV3, especially
in distinguishing emotions, such as anger and sadness.

• MobileNetV2: MobileNetV2 showed considerable vari-
ability in performance. The highest accuracy recorded
for MobileNetV2 was 43.2% when using the Adam
optimizer with a learning rate of 0.0001. However, its pre-
cision and recall were not as consistent, and it generally
underperformed compared to InceptionV3 in classifying
emotions across the dataset, thus it has not been included
in Table II.

• InceptionV3: Of the three models, InceptionV3 showed
superior performance, with the highest accuracy of ∼
45% achieved with the SGD optimizer and a learning
rate of 0.01. InceptionV3 also showed the best balance
of precision, recall, and F1 score, especially for emotions,
such as happiness, surprise, and fear. While it struggled
slightly with anger and sadness, it still outperformed the
other models in these categories.

InceptionV3 with Adam optimizer and learning rate 0, 01
achieved the best performance. The better performance of
InceptionV3 is evident not only in its overall accuracy but
also in its ability to generalize better across different emotions,
making it the most reliable model for emotion detection in
paintings, in our context.

B. Results Discussion for InceptionV3

In the following paragraphs, we will discuss the results
for the InceptionV3 model, which performed best among the
tested models (VGG16, MobileNetV2, and InceptionV3).

1) Binary classification Results: For the binary task of
classifying emotions as pleasant (e.g., happiness, surprise) or
unpleasant (e.g., anger, disgust, fear, sadness), the InceptionV3
model achieved an accuracy of 71%. Overall, the model
correctly distinguished between pleasant (happiness, surprise)
and unpleasant (anger, disgust, fear, sadness) emotions. Mis-
classifications primarily occurred in borderline cases where
emotions, such as surprise and fear, shared overlapping visual
cues. E.g., artworks depicting surprise often share intensity
and ambiguity, which the model occasionally interprets as
fear, which is acceptable, being surprise a critical emotion
in its compatibility with both pleasant and unpleasant classes.
Subtle emotional cues in serene or reflective artwork may have
led the model to associate sadness with positive emotions,
especially if the color palette or composition evoked calm-
ness. Misclassifications visible in Table III suggest that the
binary classification task, while relatively straightforward, can
be influenced by subjective and ambiguous cues within the
artwork.

The following points summarize the most relevant results
based on each evaluation metric:

• Accuracy: The highest accuracy for binary classification
was achieved using the InceptionV3 model with an
accuracy of 71%. This result was measured consistently
across the test set, demonstrating reliable classification of
positive and negative emotions.

• Precision, Recall, F1-Score: All three metrics
(Precision, Recall, and F1-score) were recorded at
71%, indicating balanced performance across positive
and negative classes.

• Confusion Matrix: The confusion matrix (see Table III)
showed that most misclassifications occurred between
emotions that were borderline or ambiguous.

TABLE III. CONFUSION MATRIX FOR BINARY CLASSIFICATION USING
THE INCEPTIONV3 MODEL.

Predicted Pleasant Predicted Unpleasant
Actual Pleasant 78.98% 21.02%

Actual Unpleasant 27.11% 72.89%

The binary classification task highlights the feasibility of
emotion detection in visual art when the emotional states are
grouped into categories for pleasant and unpleasant emotions.

2) Multiclass Classification Results: The multiclass classi-
fication task was designed to predict one of Ekman’s six basic
emotions (anger, disgust, fear, happiness, sadness, surprise).
Results for this task were more variable due to the increased
complexity of the emotional categories. Table IV shows the
model’s accuracy varies across classes (correct classifications
on the diagonal are highlighted in italics), with challenges
noted for anger and sadness.

• Accuracy: The highest multiclass accuracy achieved was
∼ 45%, with the InceptionV3 model outperforming both
VGG16 and MobileNetV2. The relatively lower accuracy
compared to the binary task reflects the challenge of
emotion detection in visual art, where emotions are often
subjective and nuanced.

• Confusion Matrix: The confusion matrix for the mul-
ticlass classification showed that the model was more
accurate at recognizing some emotions, such as surprise,
happiness, and fear, but struggled with others, such as
anger and sadness. The overlap between these emotions
suggests that they share similar visual cues, making them
harder to distinguish. Although the dataset was more
balanced after merging the WikiArt Emotion and ArtEmis
datasets, there was still a slight skew, with emotions like
happiness and surprise slightly more represented than
others like anger and fear (see Table I). This distribution
allowed for more consistent performance across emotion
classes, but some of the variance in performance can be
attributed to these minor imbalances. In particular, the
confusion matrix from the results (see Table IV) shows
that particular emotions, such as anger and sadness, were
harder for the model to discriminate. While this could be
partly due to similar visual cues, the lower representation
of anger in the dataset may have contributed to this
challenge. Happiness was often correctly classified due
to its distinct bright and vivid visual cues, such as warm
colors and joyful scenes. However, it was occasionally
over-represented, potentially due to its relatively higher
frequency in the dataset. Surprise, while distinguishable
in some cases, was misclassified as fear or happiness
depending on the accompanying visual elements. This
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TABLE IV. CONFUSION MATRIX FOR MULTICLASS CLASSIFICATION OF EKMAN’S SIX BASIC EMOTIONS.

Actual/ Predicted Anger Disgust Fear Happiness Sadness Surprise
Anger 50.23% 4.57% 6.85% 2.28% 22.83% 13.24%
Disgust 2.57% 81.43% 3.57% 3.57% 5.71% 3.14%
Fear 10.58% 7.94% 67.02% 3.00% 7.05% 4.41%
Happiness 1.44% 0.96% 1.92% 84.29% 5.75% 5.65%
Sadness 7.06% 5.49% 3.92% 9.11% 64.36% 10.05%
Surprise 3.41% 2.04% 2.04% 5.72% 3.81% 82.97%

reflects the inherent ambiguity of surprise as an emotion,
which can lean toward positive or negative interpretations.

IV. CONCLUSIONS

This study demonstrates the effectiveness of Convolutional
Neural Networks (CNNs) for emotion recognition in visual
art, specifically applying VGG16, MobileNetV2, and Incep-
tionV3 models fine-tuned using a combination of the WikiArt
Emotion and ArtEmis datasets. Among the models tested,
InceptionV3 proved to be the most reliable, particularly for
binary classification (pleasant/unpleasant), with an accuracy
of 71% and balanced performance across metrics. Although
multiclass classification yielded lower accuracy due to the
nuanced and subjective nature of emotions in art, InceptionV3
still performed reasonably well, especially in recognizing
happiness, surprise, and fear.

The approach presented here highlights the potential of
using deep learning models for applications in art therapy and
immersive art experiences. By integrating these models with
transfer learning, we addressed the challenge of limited labeled
data and improved the system’s ability to effectively classify
emotions. Our results highlight the benefits of combining mul-
tiple datasets to improve emotion detection in art and promote
a more interactive and emotionally engaging experience in
artistic environments.

Future work could explore the inclusion of larger, more
diverse datasets and further refine the classification capabil-
ities, especially for complex emotions. For example, targeted
data augmentation strategies (e.g., brightness adjustments, hue
shifts) could help simulate the variability in emotion expres-
sion and improve model generalization. Also incorporating
additional datasets or generating synthetic data [23] using
generative models could help to balance classes, enhancing
the representation of underrepresented emotions like anger
and fear. Regarding the classification model, combining visual
features with textual descriptions (e.g., artist statements or
viewer annotations) could provide complementary information
to improve emotion classification.
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Abstract— Impaired executive function and self-regulation are 
associated with prefrontal cortex dysfunction, contributing to 
impulsive behaviors, anxiety, and poor long-term planning. 
This study examines the effects of Mindfitness, an eight-week 
intervention combining cognitive training and mindfulness, on 
improving self-regulation and behavioral control. A total of 
100 participants aged between 25 and 55 completed the 
program, with results demonstrating a 35% reduction in 
impulsive spending, a 36% decrease in anxiety, and a 30% 
increase in goal-directed behavior. These findings suggest that 
Mindfitness is an effective, neuroscience-based intervention for 
fostering sustained self-regulation and cognitive resilience. 
Future research should explore neuroimaging validation using 
Electroencephalography (EEG) and Functional Magnetic 
Resonance Imaging (fMRI) to objectively assess the PreFrontal 
Cortex (PFC) structural changes, longitudinal studies to 
determine the persistence of behavioral improvements, and 
adaptations for clinical populations to expand its applicability 
in therapeutic and coaching settings. 

Keywords— mindfitness; cognitive training; executive function; 
neuroplasticity; self-regulation. 

I. INTRODUCTION 
The PreFrontal Cortex (PFC) is the brain’s executive 

center, governing impulse control, emotional regulation, 
decision-making, and goal-directed behavior [1]. However, 
in modern digital environments characterized by chronic 
stress, cognitive overload, and instant gratification cycles, 
PFC dysfunction is increasingly prevalent, leading to 
procrastination, compulsive behaviors, emotional instability, 
and difficulty prioritizing long-term goals [2]. These deficits 
undermine personal and professional productivity and are 
linked to anxiety, depression, and addictive behaviors, 
highlighting the urgent need for interventions that 
effectively enhance self-regulation and cognitive resilience 
[3]. 

A. Limitations of Existing Approaches 
Existing interventions primarily include mindfulness-

based programs and cognitive training, yet both have 
limitations. Mindfulness-Based Stress Reduction (MBSR) 
has been shown to reduce stress and enhance emotional 
regulation by increasing PFC connectivity [4], but it does 

not directly strengthen working memory, impulse control, or 
goal-directed planning. Conversely, cognitive training 
interventions, such as working memory tasks and problem-
solving exercises, improve attention control and decision-
making speed but lack the emotional regulation components 
necessary for sustainable behavioral change [5]. 
Additionally, many interventions fail to incorporate 
neuroplasticity-driven exercises or structured methods for 
habit formation, limiting their long-term efficacy. 

B. The Need for an Integrated Approach 
This study introduces Mindfitness, an eight-week 

neuroscience-based intervention that integrates cognitive 
training with mindfulness techniques to enhance PFC 
functionality. By combining memory training, attentional 
control, cognitive flexibility exercises, and neuroaerobics 
with guided mindfulness practices, Mindfitness aims to 
foster sustained executive function improvements and 
impulse control more effectively than isolated approaches. 

C. Research Objectives and Contributions 
This study evaluates Mindfitness by assessing its impact 

on behavioral, cognitive, and emotional outcomes of 100 
participants aged between 25–55. The research contributes 
to existing knowledge by introducing an integrative model 
that optimizes PFC function, demonstrating significant 
gains in impulse control, emotional regulation, and goal-
directed behavior, and comparing Mindfitness with 
traditional cognitive and mindfulness-based interventions. 
Findings indicate a 35% reduction in impulsive spending, a 
36% decrease in anxiety, and a 30% increase in goal-setting 
behavior. The study also lays the groundwork for future 
neurophysiological validation using Functional Magnetic 
Resonance Imaging (fMRI) and Electroencephalography 
(EEG) and explores its potential applications for people 
with Attention Deficit Hyperactivity Disorder (ADHD), 
anxiety disorders, and cognitive aging populations. 

By addressing the limitations of existing interventions, 
this research advances the field of neuroscience-driven 
cognitive training, offering a comprehensive framework for 
enhancing self-regulation and executive function. 
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The rest of the paper is structured as follows. Section II 
outlines the methodology, detailing the structure of the 
Mindfitness program and its implementation. Section III 
presents the results, focusing on improvements in behavioral 
self-regulation, cognitive flexibility, and emotional 
resilience. Section IV provides a comparative discussion, 
examining how Mindfitness differs from existing 
approaches, its strengths, and areas for refinement. Section 
V concludes with key insights and recommendations for 
future research, including neurophysiological studies and 
longitudinal follow-ups to assess the sustainability of 
Mindfitness outcomes. 

II. METHODOLOGY 

A. Participants 
This study recruited 100 participants (mean age: 37.4 

years, SD: 6.2; 62% female, 38% male) who reported 
experiencing chronic stress, impulsive behaviors, 
procrastination, and difficulty in maintaining long-term goal 
focus. Participants were self-selected and voluntarily 
enrolled in the Mindfitness program after responding to an 
open call for individuals seeking improvements in impulse 
control, emotional regulation, and cognitive resilience. 

To ensure homogeneity within the sample, participants 
were required to be between 25 and 55 years old, report 
difficulties in impulse control, emotional regulation, 
procrastination, or goal-directed behavior, and have no prior 
formal training in mindfulness, cognitive training, or 
behavioral coaching within the past 12 months. 
Additionally, all participants committed to full participation 
in the eight-week intervention program. 

Exclusion criteria included a diagnosed neurological 
disorder, untreated severe psychiatric conditions, or active 
substance dependence to ensure that the study results were 
not confounded by underlying neuropsychological 
impairments. 

B. Mindfitness Intervention Design 
The Mindfitness program was an 8-week structured 

intervention aimed at enhancing PFC function through a 
combination of cognitive training and mindfulness practices. 
Conducted in both individual and group formats, it included 
weekly 180-minute in-person or virtual sessions 
supplemented by daily self-guided exercises to reinforce 
learned skills. 

Cognitive training targeted executive function 
enhancement using validated exercises to stimulate 
neuroplasticity, improve working memory, and increase 
attentional control [6]. Participants engaged in working 
memory tasks such as adaptive recall exercises and dual n-
back training to strengthen PFC activation. Sustained 
attention and focus drills incorporated visual and auditory 
attention tasks to improve cognitive control and response 
inhibition. Cognitive flexibility training included problem-
solving exercises and divergent thinking tasks to enhance 

adaptive reasoning skills. Additionally, neuroaerobics 
introduced novelty-based cognitive challenges to promote 
synaptic plasticity and cognitive resilience. 

The mindfulness component focused on emotional 
regulation, impulse control, and stress reduction. 
Participants practiced guided meditation emphasizing 
breathwork, body awareness, and attentional regulation. 
Body scanning and somatic awareness techniques were 
included to improve interoception and stress resilience, 
while controlled breathing exercises, such as box breathing 
and 4-7-8 breathing, were used to regulate autonomic 
nervous system responses and enhance emotional stability 
[7]. 

All exercises were progressively adjusted in difficulty 
throughout the program to ensure continued cognitive 
stimulation and adaptation. 

C. Data Collection and Assessment 
To evaluate the effectiveness of the intervention, data 

were collected using a multi-method approach, combining 
self-reported measures, standardized cognitive tasks, and 
behavioral tracking. Impulsivity and self-regulation were 
assessed using the Barratt Impulsiveness Scale (BIS-11) [8] 
to measure pre- and post-intervention changes in impulsivity 
and response inhibition, along with the Delay Discounting 
Task to evaluate participants’ ability to prioritize long-term 
goals over short-term gratification. Emotional regulation 
and stress resilience were examined through the Perceived 
Stress Scale (PSS), which assessed participants’ overall 
coping ability, and the Emotion Regulation Questionnaire 
(ERQ), which measured changes in cognitive reappraisal 
and emotional suppression strategies [9]. 

Cognitive performance was assessed using the Stroop 
Task and Flanker Test to evaluate attention control and 
cognitive flexibility [10], while executive functioning 
improvements were measured with the Wisconsin Card 
Sorting Task (WCST) [11]. In addition to self-reported data, 
objective behavioral tracking was conducted to assess 
reductions in impulsive behaviors such as unplanned 
purchases, binge eating episodes, and compulsive digital 
consumption. Increased goal-directed actions were 
measured through habit tracking and weekly goal-setting 
adherence rates. 

Statistical analysis included paired t-tests and repeated-
measures ANOVA to examine pre- and post-intervention 
differences across all measured variables. Cohen’s d was 
calculated to determine the magnitude of improvements in 
cognitive function, impulse control, and emotional 
regulation [12]. 

D. Limitations and Methodological Considerations 
A key limitation of this study is its reliance on self-

reported measures, which may introduce response bias and 
social desirability effects. Future research should integrate 
objective neurophysiological measures, such as fMRI or 
EEG, to validate observed behavioral changes. 
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This study assesses short-term (8-week) effects but does 
not include long-term tracking of behavioral changes. 
Future studies should implement 6-month and 12-month 
follow-ups to examine the sustainability of Mindfitness 
training outcomes. 

The sample is self-selected, which may introduce 
selection bias. To enhance generalizability, future trials 
should include a randomized controlled design with diverse 
participant demographics, including individuals with 
clinical conditions such as ADHD or anxiety disorders.  

III. RESULTS 
The impact of the Mindfitness program was analyzed 

across behavioral, emotional, and cognitive domains, 
revealing statistically significant improvements in impulse 
control, emotional regulation, and executive function. The 
findings suggest that the 8-week intervention effectively 
enhanced PFC function, resulting in sustained behavioral 
adaptations and cognitive resilience. The magnitude of these 
changes, as assessed through Cohen’s d effect sizes, 
indicates a strong intervention effect, reinforcing the 
efficacy of integrating cognitive training with mindfulness-
based techniques. 

A. Behavioral and Emotional Outcomes 
1) Reduction in Impulsive Spending: Participants 

exhibited a 35% reduction in impulsive spending, with pre-
intervention levels averaging 40%, which improved to 75% 
post-intervention. This improvement was statistically 
significant, with a large effect size (Cohen’s d = 4.66), 
indicating a substantial increase in self-regulation and the 
ability to delay gratification. The pronounced effect size 
suggests that participants developed stronger cognitive 
control mechanisms, allowing them to make more deliberate 
financial decisions and resist impulsive purchasing 
behaviors. 

2) Anxiety Reduction and Emotional Stability: Self-
reported anxiety levels decreased by 36%, with pre-
intervention anxiety averaging 68%, reducing to 32% post-
intervention. This shift was associated with a negative 
Cohen’s d value (-3.78), highlighting a significant decrease 
in stress-related symptoms. The data indicate that 
participants developed improved coping mechanisms, likely 
mediated through mindfulness-based emotional regulation 
practices. These findings are consistent with previous 
research demonstrating that meditative techniques enhance 
amygdala-PFC connectivity, leading to better stress 
regulation and emotional resilience [13]. 

3)  Enhanced Goal-Setting and Long-Term Focus: 
Participants demonstrated a 30% improvement in goal-
directed behavior, with mean scores increasing from 45% to 
75% post-intervention. The effect size was large (Cohen’s d 
= 4.60), emphasizing a substantial behavioral shift from 
impulsivity-driven decision-making to sustained long-term 
planning. This improvement suggests that participants 

developed enhanced metacognitive awareness and future-
oriented thinking, critical for strategic goal-setting and 
disciplined behavior. 

B. Cognitive Performance Outcomes 
1) Working Memory and Attentional Control (Stroop 

Task Performance): Performance on the Stroop Task, which 
assesses cognitive control and selective attention, improved 
significantly, with pre-intervention mean scores at 52%, 
increasing to 72% post-intervention. The computed Cohen’s 
d value (2.35) indicates a large effect size, confirming that 
participants exhibited greater resistance to cognitive 
interference, suggesting strengthened PFC-mediated 
attentional control. This enhancement aligns with findings 
from working memory training studies, demonstrating that 
structured cognitive exercises can promote executive 
function efficiency [14]. 

2) Cognitive Flexibility and Executive Function 
(Wisconsin Card Sorting Test - WCST): Cognitive 
flexibility, measured through the Wisconsin Card Sorting 
Test (WCST), significantly improved from 48% pre-
intervention to 70% post-intervention. A large effect size 
(Cohen’s d = 2.93) was observed, indicating marked 
improvements in adaptive problem-solving and executive 
control. These findings suggest that participants became 
more adept at shifting between cognitive strategies, a crucial 
skill for dynamic decision-making and behavioral 
flexibility. 

C. Visualization of Findings 
To illustrate these findings, Fig. 1 presents a bar chart 

comparing pre- and post-intervention scores for all 
measured variables. The visual representation highlights the 
statistically significant increases in self-regulation, cognitive 
flexibility, and attentional control, reinforcing the 
effectiveness of the Mindfitness program. 

 
 

Figure 1: Pre- and Post-Intervention Results. 
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Additionally, Fig. 2 displays a pie chart of Cohen’s d 
effect sizes, categorizing the magnitude of observed 
improvements. The results indicate that 100% of measured 
outcomes exhibited large effect sizes (d ≥  0.5), 
emphasizing the program’s strong neurocognitive impact. 
 

 
Figure 2: Effect Size Distribution (Cohen’s d). 

 

E. Interpretation of Results 
These findings confirm that Mindfitness fosters 

substantial cognitive and behavioral enhancements, likely 
through increased prefrontal cortical efficiency and 
neuroplasticity. The observed improvements in impulse 
control, emotional regulation, and cognitive flexibility 
suggest that regular cognitive training combined with 
mindfulness exercises significantly strengthens PFC-
mediated executive functions. 

The high effect sizes across all measured variables 
underscore the robust impact of the intervention, 
distinguishing it from traditional cognitive training or 
mindfulness-only approaches. The data suggest that a 
structured, integrative approach to self-regulation training 
yields measurable and meaningful improvements. 

Given these promising results, future research should 
incorporate neuroimaging techniques (fMRI, EEG) to assess 
structural and functional brain changes associated with 
Mindfitness training. Additionally, longitudinal studies will 
be necessary to determine the long-term retention of 
cognitive and emotional benefits. 

IV. DISCUSSION 
The results demonstrate that Mindfitness effectively 

enhances self-regulation, impulse control, emotional 
resilience, and cognitive flexibility. The observed 
improvements suggest that combining cognitive training 
with mindfulness practices fosters sustainable 
neurocognitive benefits, providing a more holistic approach 
to executive function development. 

A. Comparison with Existing Interventions 
Traditional working memory training programs improve 

cognitive control and attentional processes but often fail to 

produce real-world behavioral improvements [15]. Many 
interventions lack an emotional regulation component, 
limiting their effectiveness in addressing impulsivity and 
self-regulation deficits. In contrast, Mindfitness integrates 
cognitive and affective training, leading to both cognitive 
and behavioral gains. The 35% reduction in impulsive 
spending and 30% increase in goal-directed behavior 
indicate stronger executive function transfer into daily 
decision-making. 

While Mindfulness-Based Interventions (MBIs) like 
Mindfulness-Based Stress Reduction (MBSR) are well-
established in reducing stress and improving emotional 
regulation, they do not actively train cognitive flexibility, 
problem-solving, or goal-directed behavior. Neuroimaging 
studies show that MBSR increases PFC-amygdala 
connectivity, supporting better emotional control [16]. 
However, Mindfitness further enhances executive function 
through structured cognitive exercises, including working 
memory drills, neuroaerobic tasks, and strategic problem-
solving exercises. The significant gains in Stroop Task and 
WCST performance suggest that Mindfitness bridges the 
gap between mindfulness and structured cognitive training, 
providing a more integrative approach. 

B. Theoretical Implications 
The findings align with neuroscientific models of 

cognitive control and self-regulation, supporting two 
primary mechanisms. First, enhanced PFC functionality 
explains the large effect sizes (Cohen’s d ≥ 2.0) across 
executive function outcomes, highlighting the role of 
targeted interventions in strengthening impulse inhibition 
and goal-directed behavior. Second, neuroplasticity-driven 
training likely improves PFC-limbic connectivity, 
facilitating better emotional regulation and stress resilience. 
Studies suggest that combined cognitive training and 
mindfulness interventions increase PFC gray matter volume, 
which may underlie the observed cognitive and behavioral 
gains [17]. 

C. Practical Implications 
The broad applicability of Mindfitness suggests its 

potential for use in behavioral coaching, mental health 
interventions, corporate training, education, and cognitive 
rehabilitation. Given its effectiveness in impulse control, 
emotional regulation, and cognitive flexibility, the program 
can be adapted for diverse populations facing executive 
function challenges. 

1) Behavioral Coaching and Therapy:  Mindfitness can 
assist individuals struggling with impulsivity (e.g., 
excessive shopping, binge eating, digital addiction), 
emotional dysregulation (chronic stress, mood instability), 
and procrastination (task avoidance, cognitive rigidity). The 
35% reduction in impulsive spending and 36% decrease in 
anxiety suggest its potential as a complement to Cognitive-
Behavioral Therapy (CBT) and executive function coaching 
for individuals with self-regulation difficulties. 
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The results of this study demonstrate that Mindfitness is 
an effective intervention for enhancing self-regulation, 
impulse control, emotional resilience, and cognitive 
flexibility. The substantial improvements across behavioral, 
emotional, and cognitive domains strongly suggest that a 
combined approach integrating cognitive training with 
mindfulness practices fosters sustainable neurocognitive 
benefits. 

2) Mental Health and Clinical Applications: Mindfitness 
may be beneficial for individuals with Attention Deficit 
Hyperactivity Disorder (ADHD) (enhancing attention and 
impulse control), anxiety disorders (improving cognitive 
reappraisal and stress resilience), and substance use 
disorders (supporting craving regulation through prefrontal 
inhibitory mechanisms). Integrating Mindfitness into 
clinical interventions could provide structured, 
neuroscience-based self-regulation training for individuals 
facing executive dysfunction. 

3) Workplace Performance and Stress Management: 
Given the 30% improvement in goal-directed behavior, 
Mindfitness can enhance focus, strategic planning, and 
cognitive endurance for professionals in high-demand roles. 
Applications include: 
 •Training for executives and managers to improve 
cognitive resilience and emotional intelligence. 
 •Workplace stress management to reduce burnout 
and enhance productivity. 
 •Improved decision-making through cognitive 
flexibility training, essential for leadership roles. 

4) Applications in Education: Students often struggle 
with procrastination, test anxiety, and executive function 
deficits. Mindfitness may enhance study habits, exam 
performance, and metacognitive skills, improving academic 
outcomes. It can also be adapted for special education, 
supporting students with learning disabilities (dyslexia, 
dyscalculia) and Autism Spectrum Disorder (ASD) by 
improving working memory, cognitive flexibility, and 
emotional regulation. 

5) Cognitive Rehabilitation and Aging Populations: 
Aging-related declines in working memory, attention, and 
executive function can be mitigated through structured 
cognitive training. Mindfitness may aid in cognitive 
resilience training, dementia risk reduction, and emotional 
well-being for older adults. It can also support 
neurorehabilitation for individuals recovering from 
Traumatic Brain Injuries (TBI) or stroke, providing 
structured interventions to restore lost cognitive functions. 

The results reinforce Mindfitness as a high-impact 
cognitive enhancement tool, with broad applications across 
clinical, educational, and professional settings. Future 
research should focus on long-term efficacy, 
neurophysiological validation, and adaptability for clinical 
populations. 

D. Study Limitations, Challenges and Lessons Learned 
While this study provides compelling evidence for the 

effectiveness of the Mindfitness program, several 
methodological limitations, implementation challenges, and 
key lessons were identified. Addressing these aspects will 
be essential in future research to further refine and validate 
the intervention. 

This study has several limitations, primarily related to 
self-reported data, short-term follow-ups, and sample 
characteristics. Although validated psychometric tools 
Barratt Impulsiveness Scale (BIS-11), Perceived Stress 
Scale (PSS) and the Emotion Regulation Questionnaire 
(ERQ) were used, reliance on self-reported measures 
introduces potential response bias, as participants may have 
overestimated or underestimated their progress.     

Future studies should incorporate objective 
neurophysiological measures (fMRI, EEG) to confirm the 
neural basis of observed behavioral changes. Additionally, 
the study only assessed outcomes immediately post-
intervention, leaving the long-term sustainability of 
cognitive and behavioral improvements unknown.  

Generalizability is also a concern, as the self-selected 
sample consisted primarily of working-age adults (25–55 
years), limiting applicability to younger or older 
populations. Furthermore, the study did not differentiate 
participants based on baseline executive function, making it 
unclear whether those with lower cognitive performance 
benefited more than those with higher initial capabilities.    

Challenges during implementation included participant 
adherence, with individuals exhibiting higher impulsivity 
struggling to maintain daily mindfulness and cognitive 
training sessions. Personalized interventions using 
gamification, AI-driven feedback, and adaptive difficulty 
models could improve engagement. Cognitive gains varied 
significantly based on initial stress levels, sleep quality, and 
lifestyle factors, suggesting that individualized approaches 
may enhance intervention efficacy.  

Key lessons from this study indicate that integrating 
cognitive trainings with mindfulness produce significantly 
greater effect sizes (Cohen’s d > 2.0) than either approach 
alone. Long-term habit formation is crucial for sustained 
executive function improvements, and incorporating real-
time biofeedback (e.g., EEG-based neurofeedback) may 
further enhance intervention outcomes by providing 
participants with objective performance insights. Future 
research should explore these mechanisms to optimize 
Mindfitness and its applications across diverse populations. 

E. Future Research Directions 
Future research should validate Mindfitness-induced 

cognitive gains using neuroimaging techniques, including 
fMRI to assess PFC connectivity, EEG to track neural 
oscillations, and Diffusion Tensor Magnetic Resonance 
Imaging (DTI) to evaluate white matter integrity. 
Longitudinal studies at 6- and 12-month intervals are 
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needed to examine the sustainability of cognitive 
improvements and the role of Mindfitness sessions.  

AI-driven adaptation could enhance Mindfitness by 
dynamically adjusting difficulty, integrating neuroadaptive 
feedback, and optimizing training schedules based on 
individual progress.  

Further applications should explore its impact on clinical 
populations (e.g., ADHD, anxiety, cognitive aging) and 
high-performance professions (e.g., military, law 
enforcement, corporate leadership) to enhance attention, 
decision-making, and stress resilience. Expanding 
Mindfitness across diverse populations will optimize 
executive function and self-regulation, reinforcing its role as 
a neuroscience-based cognitive enhancement tool. 

V. CONCLUSION 
This study provides strong empirical evidence 

supporting Mindfitness as a neuroscience-based intervention 
for enhancing self-regulation, cognitive flexibility, and 
emotional resilience. The integration of cognitive training 
and mindfulness resulted in significant improvements across 
behavioral, emotional, and cognitive domains, reinforcing 
the effectiveness of a combined approach to executive 
function enhancement. The observed 35% reduction in 
impulsive spending, 36% decrease in anxiety, and 30% 
improvement in goal-directed behavior suggest that 
Mindfitness strengthens prefrontal cortical control 
mechanisms, enhancing long-term decision-making 
capabilities. Gains in cognitive flexibility (22% increase in 
WCST scores) and attentional control (20% improvement in 
Stroop Task performance) further highlight its impact on 
neurocognitive efficiency. 

These findings align with neuroplasticity research, 
demonstrating that targeted cognitive training strengthens 
PFC-limbic connectivity, reducing impulsivity and stress 
reactivity. The study supports the hypothesis that self-
regulation is a trainable cognitive skill, best developed 
through an integrative approach combining executive 
function exercises and mindfulness practices. Given its 
success in improving impulse control and emotional 
regulation, Mindfitness has broad applications in behavioral 
coaching, mental health interventions, corporate leadership 
development, education, and cognitive rehabilitation. 

Despite promising results, limitations include reliance on 
self-reported measures, absence of neurophysiological 
validation, and short-term assessment. Future research 
should incorporate fMRI and EEG to confirm neural 
changes, employ longitudinal tracking (6–12 months post-
intervention) to assess retention effects, and explore AI-
driven adaptive training models to enhance scalability. 

In conclusion, Mindfitness offers a transformative 
approach to cognitive and emotional self-regulation. With 

further validation and refinement, it has the potential to 
become a standardized, neuroscience-driven tool for 
optimizing executive function across clinical, educational, 
and professional domains. 
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Abstract— Effective language processing relies on the brain’s 

capacity to decode rhythmic cues in speech, a function primarily 

supported by activity in the theta frequency band. According to 

the Temporal Sampling Framework, impairments in this 

process may contribute to the phonological deficits observed in 

individuals with Developmental Dyslexia (DD). These challenges 

cascade into higher-frequency bands, affecting the integration 

of phonemes, words, and phrases, ultimately compromising 

reading and writing fluency. Early diagnosis and treatment are 

crucial for ensuring proper personal and academic development 

in children. In this study, we propose a non-invasive 

methodology that combines ElectroEncephaloGraphy (EEG) 

data with a surrogate modelling framework to detect early 

imbalances in Excitation/Inhibition (E/I) mechanisms. We 

applied this methodology to a cohort of children, divided into 

controls and DD groups, and compared the inferred E/I 

mechanisms with patterns predicted by the neural noise 

hypothesis. We found that the results obtained using this 

framework align with both the Temporal Sampling Framework 

and the Neural Noise Hypothesis.  

Keywords-Developmental Dyslexia; EEG; E/I ratio; Neural Noise 

Hypothesis; Temporal Sampling Framework; Machine Learning; 

Mechanistic modelling; Surrogate model; Feature extraction. 

I. INTRODUCTION 

Developmental Dyslexia (DD) is a learning disorder that 

affects an individual’s ability to read and write fluently. 

Contrary to popular belief, this condition is not associated 

with a motor, visual or cognitive disability, nor is it indicative 

of lower intellectual abilities. People with dyslexia encounter 

challenges in correlating words with their corresponding 

auditory representations, thereby impeding their capacity to 

effortlessly decode words with precision, a difficulty 

associated with the phonological processing area [1]. The 

Temporal Sampling Framework (TSF) [2] suggests that DD 

arises from a deficit in the ability to process rhythmic cues in 

speech, specifically within the theta frequency band (4-7 Hz), 

which is critical for syllable segmentation. This deficit 

disrupts the accurate temporal alignment necessary for 

decoding linguistic information, thereby impeding the 

formation of robust phonological representations. 

Consequently, these impairments extend to higher-frequency 

bands associated with the processing of phonemes and the 

integration of words and phrases, further complicating 

language comprehension and fluency. 

Early identification of this disorder is crucial for ensuring 

optimal development and preventing the onset of self-esteem 

issues in early childhood. The diagnosis of DD is based on 

tests that evaluate accuracy and fluency in reading and 

writing [3]. However, this approach is subject to external 

influences, and in the case of children, their results may be 

inadequate to rule out the disorder. Therefore, it would be 

worth exploring the development of an objective, 

neurophysiology-based diagnostic method that can be 

applied universally to all patients, complementing the 

existing neuropsychological tests. ElectroEncephaloGraphy 

(EEG) techniques emerge as a promising candidate for 

addressing this need due to their non-invasive nature, wide 

applicability in conjunction with various diagnostic tests, and 

cost-effectiveness. There are some studies that have 

documented differences in EEG patterns between individuals 

with and without developmental dyslexia, particularly in the 

theta, alpha and beta bands [4]. This underscores the 

importance of exploring potential biomarkers associated with 

specific EEG signal patterns to enhance diagnosis and 

monitoring of DD. 

In recent years, considerable attention has been directed 

toward investigating the relationship between neural noise 
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and DD [5]. Evidence suggests that a flatter aperiodic 

component in neural power (i.e., higher neural noise) can 

serve as an indicator of DD [6]. This flattening is believed to 

be associated with an increase in hyperexcitability in cortical 

circuits, offering deeper insight into the neural mechanisms 

underlying DD. 

In this study, we employ a mechanistic brain model 

combined with machine learning techniques to investigate 

the relationship between excitation-inhibition imbalances 

and DD. Specifically, we developed a surrogate model 

utilizing the catch22 feature subset [7] and employed it as an 

inference tool to estimate cortical circuit parameters from 

EEG data. We applied this methodology to a cohort of 50 

children, divided into control and DD groups, who were 

exposed to auditory stimuli at frequencies associated with 

different stages of language processing. The objective of this 

study is to assess whether our inference framework can 

reliably identify potential biomarkers of dysregulated brain 

activity linked to DD, ultimately contributing to improved 

diagnostic and predictive tools.  

The rest of the paper is structured as follows. In Section II, 

we explain the methodology followed in the study, 

explaining how the proposed framework works, and the 

database used to obtain the results. In Section III, we present 

the results computed following the previous section. In 

Section IV, we discuss the results, comparing them with the 

Temporal Sampling Framework and neural noise hypothesis 

in Dyslexia. Finally, we provide a conclusion and future work 

directives in Section V. 

II. METHODS 

In this section, we present the framework used to infer E/I 

imbalances in DD, detailing the computation of artificial 

EEG signals, the extracted features, and the creation of the 

surrogate model. We also describe the statistical analysis 

after inference and, finally, introduce the empirical dataset 

where our framework is applied. 

A. Simulation of EEG signals 

The EEG signal generation methodology employed in 

this study is based on the approach outlined in [8]. First, to 

generate cortical activity, we used a neural network of 

recurrent Excitatory (E) and Inhibitory (I) populations, 

composed of Leaky Integrate-and-Fire (LIF) neuronal 

models, with external stimuli generated by a fixed-rate 

Poisson process. We employed the best-fit parameters of the 

model given in [9], except for JEE, JEI, JIE, JII, τexc, τinh and Jext. 

These parameters represent, respectively, the weights of the 

synaptic currents between different neuron populations (JYX, 

where X is the presynaptic populations and Y is the 

postsynaptic populations), the time constants of the 

excitatory and inhibitory synaptic currents, and the weight for 

the external synaptic current. By varying these parameters, 

we generated a set of nearly two million simulations. 

To generate the current dipole moment that will 

determine the EEG signal, we convolved the simulated spike 

rates with spatiotemporal kernels that account for the 

biophysics of neurons and synapses, as well as their 

spatiotemporal distributions and the connectivity of an 

equivalent conductance-based multicompartmental neural 

model. We selected a ball-and-stick model for the 

multicompartmental neurons for the sake of simplicity. 

B. Feature extraction 

For the feature extraction process, we used catch22 [7], a 

set of features from the highly comparative time-series 

analysis toolbox [10] (hctsa). This set consists of the 22 best 

features from hctsa tested in different datasets that capture a 

broad and interpretable range of time-series characteristics, 

making it particularly well suited for analyzing the intricate 

temporal dynamics inherent in EEG signals. 

C. Machine learning for the inference of simulation 

parameters 

A multi-layer perceptron from scikit-learn Python library 

was trained considering the totality of the catch22 set as the 

inputs, and the parameters of the cortical circuit model as 

outputs. The model was trained using 20 repeats of 10-fold 

Cross Validation to ensure that it captures the general patterns 

of our problem, avoiding overfitting the simulation data.   

D. Statistical analysis 

To test if the parameters inferred from the database are 

statistically different between groups, we applied Linear 

Mixed-Effects (LME) models that consider variability 

between individuals and sensor location. Package lme4 from 

R was used to apply LME.  We implemented group 

membership and sensor location as fixed effects in the model. 

We implemented individual variability by using patient ID as 

a random effect, adjusting correlation between patients. 

After the model fitting, we computed the marginal means 

of the parameters for each group and electrode using the 

package emmeans. Following this, we conducted pairwise 

comparison between groups for each sensor, adjusting the p-

value using Holm-Bonferroni correction. 

E. Empirical dataset 

The data used in this research were provided by the 

LEEDUCA research group at the University of Malaga 

(Spain) [11]. This data comes from a study involving more 

than 1400 children aged 4 to 8 years. The empirical data used 

consists of a dataset of 50 subjects where 31 were control 

subjects and 19 subjects had developmental dyslexia. Each 

subject was in a resting state while receiving Auditory 

Steady-State Response-like (ASSR) auditory stimuli of three 

different frequencies: 4.8 Hz, 18 Hz and 40 Hz. The 

experiment started with a progressive increase of the 

frequency from 4.8 Hz up to 40 Hz and then returned to 4.8 

Hz. During the process, cortical activity was recorded using 

an EEG cap of 31 electrodes following the 10-20 system, with 

a sampling rate of 500 Hz. The captured signal on each 

electrode was split into 8 seconds epochs and then normalized 

using the z-score metric. 
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III. RESULTS 

The study started by generating a dataset of 2 million 

simulations of cortical activity using a model consisting of a 

recurrent network of excitatory and inhibitory neurons. 

Following this, we created synthetic EEG data by convolving 

biophysical spatiotemporal kernels with simulated spike rates 

and we then extracted the 22 features provided by catch22 

from the artificial EEG signals. We trained a neural network 

using simulated data, generating a surrogate model that allows 

us to infer the parameters of the model that can describe real 

EEG data. Once trained, we used the surrogate model to infer 

cortical parameters on a dataset that included 50 subjects 

divided into two groups: DD and control. We computed the 

metric E/I by using the inferred weights of the synaptic 

currents. We split the results for the three different auditory 

stimuli frequencies: 4.8 Hz, 16 Hz and 40 Hz, and applied 

LME analysis to compute significant differences between the 

two groups for each model parameter separately. 

Analyzing parameter predictions, we observed an increase 

in E/I concentrated in single-electrode positions of parietal 

and frontal regions for stimuli of 4.8 Hz and 16 Hz, 

respectively (Figure 1). We also observed an increase in Jext 

with 4.8 Hz stimuli in occipital regions while there was a 

small decrease in parietal zones for the 40 Hz stimuli. For τexc,  
 there were no significant differences for stimuli of 4.8 Hz and 

16 Hz. In contrast, for 40 Hz, there was a significant increase 

in this parameter on temporo-parietal zone. However, the 

greatest number of significant differences across electrode 

positions were observed for τinh. When subjects were 

stimulated at 4.8 Hz, this parameter increased in the frontal 

and parietal-central regions. As the stimulus frequency 

increases, the significant differences are confined to a smaller 

subset of electrodes. 

 

 
 

Figure 1. Representation of differences of each model parameter between 

control and DD groups for the three stimuli frequencies. It is plotted only 

the z-ratio with p-value ≤ 0.01. 

 

IV. DISCUSSION 

In this study, we propose an inference framework 

combining simulation with machine learning to explore and 

test predictions of imbalances in excitatory and inhibitory 

processes observed in individuals with Developmental 

Dyslexia. Using real EEG data, we extracted time-series 

features using the catch22 library, which provides a 

standardized set of 22 interpretable statistical and nonlinear 

metrics. These features were used to infer model parameters 

via a surrogate model and to identify significant group 

differences within the dataset. 

Our results revealed an increase in the 

Excitatory/Inhibitory (E/I) ratio in the parietal and frontal 

lobes for some of the stimuli frequencies consistent with the 

neural noise hypothesis in Dyslexia [5][6]. Additionally, we 

observed a prominent increment in the inhibitory time 

constant (τinh) at a stimulation frequency of 4.8 Hz, which 

decreases when the stimulus frequencies increased. This 

increase in the inhibitory time constant may imply a delayed 

response of inhibitory currents, which may lead to less 

effective inhibition (i.e., a shift of E/I that favors excitation). 

This phenomenon aligns with the neural noise hypothesis 

prediction of hyperexcitability in Dyslexia. The Temporal 

Sampling Framework hypothesis suggests that DD arises 

from a deficit in syllables processing. This process is 

associated with neural oscillations in the Theta band (4-7 Hz), 

which aligns with the frequency range where our results 

reveal the most significant group differences. Notably, as the 

stimulus frequency increases, these significant differences 

decrease, with almost no significant differences at 40 Hz, 

which is related to phoneme segmentation. 

Our computational model offers a valuable approximation 

of the neural circuit but is not designed to reproduce all its 

characteristics. It does not account for large-scale network 

dynamics, such as long-range corticocortical interactions 

between different brain regions. To mitigate this limitation, 

we introduce an external input that simulates the aggregate 

influence of corticocortical connections from other regions. 

This strategy helps us approximate the impact of macroscopic 

dynamics on our local predictions. In future work, 

incorporating alternative brain models could provide a more 

comprehensive representation of these large-scale 

interactions and improve the accuracy of our predictions. 

This study was conducted using only the features provided 

by catch22. Consequently, the selection of alternative feature 

sets, such as those offered by the highly comparative time-

series analysis (hctsa) toolbox [10], may allow for a more 

precise characterization of E/I imbalances and the behavior 

of other model parameters. This, in turn, could contribute to 

a more comprehensive understanding of the underlying 

neural dynamics in disorders such as DD. 

V. CONCLUSION AND FUTURE WORK 

    The inference framework proposed in this paper reveals 

promising results, suggesting that simple techniques such as 

EEG have potential for the diagnosis and monitoring of 

individuals with DD. However, this framework has some 

limitations, with the brain model being the main one. The use 

of models that account for macroscopic dynamics will be 

essential to improve the understanding of disorders such as 

DD. The search for new biomarkers, either by using 

alternative feature sets or techniques such as autoencoders, 
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could also enhance the comprehension of different neural 

dynamics. 
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