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The Ninth International Conference on Neuroscience and Cognitive Brain Information (BRAININFO

2024), held between March 10th and March 14th, 2024, continued a series of international events

dedicated to evaluating current achievements and identifying potential ways of making use of the

acquired knowledge, covering the neuroscience, brain connectivity, brain intelligence paradigms,

cognitive information, and specific applications.

The complexity of the human brain and its cognitive actions stimulated many researches for decades.

Most of the findings were adapted in virtual/artificial systems with the idea of brain-like modeling them

and using them in human-centered medical cures, especially for neurotechnology. Information

representation, retrieval, and internal data connections still constitute a domain where solutions are

either missing or in a very early stage.

We take here the opportunity to warmly thank all the members of the BRAININFO 2024 technical

program committee, as well as all the reviewers. The creation of such a high-quality conference program

would not have been possible without their involvement. We also kindly thank all the authors who

dedicated much of their time and effort to contribute to BRAININFO 2024. We truly believe that, thanks

to all these efforts, the final conference program consisted of top-quality contributions. We also thank

the members of the BRAININFO 2024 organizing committee for their help in handling the logistics of this

event.

We hope that BRAININFO 2024 was a successful international forum for the exchange of ideas and
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and cognitive brain information.
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Abstract— Emerging evidence suggests behavioral alterations in 
inhibitory control in older adults with mild Age-Related 
Hearing Loss (ARHL). Whether there are underlying 
alterations in the neurophysiological mechanisms linked to these 
behavioral changes remains unexplored. The current study 
examined Event-Related Potentials (ERPs) and Event-Related 
Spectral Perturbations (ERSPs) linked to two Go/NoGo tasks 
(Single-Car/Object-Animal) in 17 older adults with unaided 
mild ARHL and 25 normal hearing controls. Group differences 
in N2 and P3 (ERPs) latency and amplitude and theta and alpha 
(ERSPs) power were examined in addition to their association 
with speech-in-noise recognition. Findings revealed differences 
in ERPs and ERSPs for the NoGo versus Go trials in the two 
groups. The mild ARHL group showed longer NoGo N2 latency 
relative to Go N2 latency on the Single-Car task, but similar 
findings were not observed within the control group. The 
control group showed higher P3 amplitude and greater alpha 
desynchronization for NoGo versus Go trials on the Object-
Animal task, but this differentiation was lacking in the hearing 
loss group. These findings suggest alterations in 
neurophysiological mechanisms underlying inhibitory control 
in unaided mild ARHL. Additionally, poorer recognition of 
speech-in-noise in the hearing loss group was related to higher 
P3 amplitude for Go trials on the Object-Animal task, with a 
similar trend observed for NoGo trials, suggesting that those with 
worse central hearing exert greater neural effort on inhibitory 
control tasks. The study findings add to the literature on the 
impact of ARHL on cognition and its association to changes in 
complex listening functions. 

Keywords-age-related hearing loss; inhibitory control; event- 
related potentials; event-related spectral perturbations; Go/NoGo 
tasks. 

I. INTRODUCTION 

Inhibitory control is a cognitive control process, which 
allows us to suppress irrelevant information/responses in 
order to attend to relevant information [1]. It is often used in 
common listening situations, such as understanding Speech in 
Noise (SiN). For instance, in busy restaurants, inhibitory 
control allows one to suppress background noise and focus on 
their relevant conversation. Age-Related Hearing Loss 
(ARHL), a globally prevalent condition, affects various 
listening functions, including understanding SiN [2][3]. 

Growing evidence shows behavioral alterations in 
inhibitory control in older adults with ARHL relative to age- 
and education-matched Normal Hearing (NH) controls [4][5], 

even in those with mild severity of hearing loss on common 
inhibitory control tasks such as Stroop and Go/NoGo [4]. 
Theoretical postulations linking hearing loss and cognition 
have long suggested underlying neural changes in individuals 
with ARHL [6]. It is plausible that neurophysiological 
changes underlie the overt inhibitory control changes in older 
adults with mild ARHL; however, this has not been examined. 
Event-Related Electroencephalography (EEG), which taps 
into real-time neural processing linked to cognitive processes, 
would be useful in this context. Both Event-Related Potentials 
(ERPs) and Event-Related Spectral Perturbations 
(ERSPs)/event-related oscillations measures, which are 
derived from EEG, might offer valuable insights. ERPs 
capture temporal aspects of the EEG signal, whereas ERSPs 
delineate the spectral and temporal aspects. On inhibitory 
control tasks, ERP studies have typically examined N2 
(negative deflection at ~ 200 ms) and P3 (positive deflection 
at ~300 ms) components, while ERSP studies have examined 
theta (4-7 Hz) and alpha (8-12 Hz) power [7][8]. 

This study primarily examined differences in N2 and P3 
amplitude and latency and alpha and theta power 
corresponding to two Go/NoGo tasks between older adults 
with unaided mild ARHL relative to NH controls. Our 
secondary aim was to examine associations between SiN 
recognition and ERPs/ERSPs corresponding to Go/NoGo 
tasks. Findings from this study will establish whether 
neurocognitive alterations in inhibitory control occur in mild 
ARHL. This is critical given that ARHL has been considered 
one of only 12 modifiable risk factors for dementia [9]. 
Markers that can assist in the identification of neurocognitive 
alterations will be instrumental in early detection and timely 
intervention for these individuals. 

The rest of this paper is described as follows. Section II 
describes the methods. Section III describes the main results 
and discussion. Section IV concludes the article. The 
acknowledgment closes the article. 

II. METHODS 

A. Participants 
Participants included 17 older adults with unaided mild 

ARHL and 25 NH controls with comparable age and 
education. Those with a history of neurological and 
psychological disorders, and other known etiologies of 
hearing loss were excluded. 
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B. Tasks and Procedure 
All participants completed a comprehensive audiological 

examination, including the Quick Speech-in-Noise 
(QuickSIN) test to examine SiN recognition. Inhibitory 
control was examined using two in-house developed 
Go/NoGo tasks, Single-Car, and Object-Animal tasks [10]. 
The simpler Single-Car task was a basic categorization task, 
where participants were shown line drawings of a car (160 
trials) and a dog (40 trials) and were required to push a button 
to the stimuli of cars (Go trials) but withhold button push to 
stimuli of dogs (NoGo trials). For the more complex Object- 
Animal task, a superordinate categorization task, participants 
saw multiple exemplars of objects (160 trials) and animals (40 
trials) and were required to push a button to stimuli of objects 
but withhold to stimuli of animals. Reaction time and accuracy 
were obtained. 

C. EEG Data Collection and Processing 
EEG was collected while participants performed the two 

Go/NoGo tasks using a 64-electrode Neuroscan QuikCap. 
Collected data were pre-processed offline with noisy data and 
poorly functioning electrodes removed. Subsequently data 
were epoched from -500 to 0 ms. For ERP analyses, baseline 
correction was done from -500 to 0 ms, and ERP averages 
were created separately for trial type (Go/NoGo) and task 
(Single-Car/Object-Animal). Guided by previous research 
and visual inspection, N2 component between 150-300 ms 
was extracted across an average of frontal (F1, Fz, F2) and 
frontocentral (FC1, FCz, FC2) electrodes [7]. P3 was 
extracted between 250-600 ms at an average of frontocentral 
(Fc1, FCz, FC2), central (C1, Cz, C2), and centroparietal 
(CP1, CPz, CP2) [7]. Latency and mean amplitudes were 
used as measures. For ERSP analyses, EEGLAB toolbox with 
newtimef.m function [11] was used and baseline correction 
was conducted using a gain model [12]. Theta and alpha 
power were obtained across five electrode clusters: frontal 
(F1, Fz, F2), frontocentral (FC1, FCz, FC2), central (C1, Cz, 
C2), centroparietal (CP1, CPz, CP2), and parietal (P1, Pz, 
P2). 

 
D. Statistical Analyses 

All data were analyzed using IBM SPSS Statistics 
(Version 26). General Linear Models (GLMs) for analyses, 
with group (ARHL/NH) as a between-subject factor and trial 
type (Go/NoGo) as a within-subject factor. Alpha was fixed 
at 0.05, and in the case of significant group-by-trial 
interactions, post hoc comparisons were carried out. 
Bonferroni corrections were used to correct for multiple 
comparisons. Given the small sample size, separate analyses 
were conducted for the simpler Single-Car task and the 
complex Object-Animal task. 

III. MAIN RESULTS AND DISCUSSION 
Behavioral data showed evidence of changes in inhibitory 

control in individuals with mild ARHL. This was observed on 
post-hoc comparisons, with lower accuracy on NoGo versus 

Go trials within the ARHL group on the Single-Car task (p < 
0.001), although similar differences were not observed within 
the NH group (p > 0.05). These findings suggest that the mild 
ARHL group experienced challenges in withholding a 
prepotent response. Furthermore, this was noted during 
perceptual processing, since the findings were observed on the 
basic categorization task, Single-Car, which mainly consisted 
of perceptual stimuli. 

EEG findings also revealed differential processing of 
NoGo versus Go trials between the two groups. These 
findings were observed on post-hoc comparisons. 
Particularly, longer N2 latency was noted on the NoGo versus 
Go trials within the ARHL group for the Single-Car task (p = 
0.006), but similar patterns were not seen within the NH group 
(p > 0.05). This finding suggests individuals with mild ARHL 
had prolonged neural processing times early on (150-300 ms) 
for the NoGo (inhibition trials) versus Go trials, but this 
differential processing was not seen within NH controls. 
However, the control group showed differential neural 
processing at later time points. Higher P3 amplitude was noted 
for NoGo versus Go trials within the control group for the 
Object-Animal task (p = 0.033) between 250-600 ms. The 
control group also showed more negative alpha power for the 
NoGo versus Go trials on both tasks (p < 0.001) between 300- 
650 ms, but the same pattern was not observed within the 
ARHL group. Given that P3 ERP and alpha band have been 
linked to neural effort [13], and that the reaction time for both 
tasks was within 450 ms, it seems that the NH group devotes 
more neural resources/effort to evaluate the stimuli of the 
inhibition trials at later time points, likely after making a 
response, but this is not done by the ARHL group. On analyses 
for our secondary aim, we found a positive relationship 
between QuickSIN score and P3 amplitude on Go trials on the 
Object-Animal task (p = 0.021) in the mild ARHL group. A 
similar trend was observed with NoGo trials (p = 0.062). 
These findings suggest that individuals with ARHL who had 
poorer SiN recognition scores used greater neural 
effort/resources for performing an inhibitory control task that 
involved superordinate categorization. 

IV. CONCLUSION AND FUTURE WORK 
Our study shows that neural processing related to 

inhibitory control in those with mild ARHL is different from 
normal hearing controls. This differentiation was evident in 
visual tasks, suggesting modality-independent changes in 
inhibitory control in those with untreated and mildest degree 
of ARHL, which constitutes the largest percentage of older 
adults with this condition [13]. Furthermore, these inhibitory 
control changes are related to complex listening functions 
such as SiN recognition. In summary, our work significantly 
advances the knowledge of neural changes underlying 
cognitive alterations in older adults with ARHL. However, the 
current work has some limitations. While our groups were not 
significantly different in age, they were unequal in number. 
Larger sample sizes with equal groups are needed to validate 
the findings. Additionally, future work examining visual 
inhibitory control is needed to examine the replicability of the 
current findings. 
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Abstract—Many tasks, particularly safety-critical ones, require
the associated human performers to be in the right emotional
states. Correct emotion state recognition frequently becomes
an important concern and mainstream methods often use Pre-
trained Language Models (PLMs) as the backbone to incorpo-
rate emotional information. The latest Large Language Models
(LLMs), such as ChatGPT have demonstrated strong capabilities
in various natural language processing tasks. However, exist-
ing research on ChatGPT zero-shot has received insufficient
evaluation of the performance of image emotion recognition
and analysis. In this paper, we study emotion classification
and prediction based on positive and negative emotional states
and evaluate the emotion recognition capabilities of ChatGPT4
focusing primarily on images. We empirically analyze the impact
of labeled emotion recognition and interpretability of different
datasets. Experimental results show that, while ChatGPT4 can
make some useful predictions of emotions based on images, there
is still a substantial gap in prediction results and accuracy.
Qualitative analysis shows its potential compared to state-of-the-
art methods, but it also suffers from limitations in robustness
and accurate inferences.

Index Terms—image emotion recognition, large language model,
zero-shot, ChatGPT4.

I. Introduction

Emotion recognition and prediction have been recognized
to be a significant factor affecting human safety and have
been widely studied [1][2][3][4][5][6]. There exist in general
multiple ways for people to express their emotions or feelings
naturally, such as voice, text, video, facial expressions, and
physical behaviors. Moreover, since the ChatGPT [7] and
Instruct-GPT [8] are currently believed to be a powerful and
usable tool in different applications, we wish to investigate how
they can be leveraged to assist in performing effective emo-
tion recognition. Since emotional support is currently a key
capability for many people in a wide variety of conversational
scenarios, such as inter-social actions, mental health support,
and customer chat services, we investigate the usefulness and
competence of ChatGPT4 [9] to classify emotions based on
facial expressions.

In fact, in today’s society, people are under more and
more pressure, such as being criticized by leaders, unfair

experiences, relationship break-ups, and so on. Once in a
stressful situation, people may lose control of their emotions
[10][11]. In this case, they may act irrationally to hurt them-
selves or others. Examples of incidents linked to emotional
problems are rife: suicidal thoughts under the stress of school
or work; frequent school shootings in the United States; and
fatal crashes of vehicles involving angry drivers. In some
special jobs, the emotion of the employee plays a particularly
important role, such as a surgeon, pilot, truck driver, and so on
(e.g., a recent incident of a pilot who attempted to cut off plane
engines in mid-air was found to suffer from depression [12]).
These highlight why emotion recognition is so important in
our everyday life. So, what precisely is emotion recognition?
Emotion recognition is a subfield of artificial intelligence that
focuses on identifying and analyzing human emotions based
on various inputs. The main goal of emotion recognition is
to discern the emotional state of an individual or a group of
individuals.

In recent years, since emerging large language model tech-
nologies and their rapid iterative development have produced
many human-computer interaction robots, which have brought
a new technological revolution to the field of dialogue, rep-
resented by ChatGPT4. At the same time, they demonstrate
strong general language processing capabilities and also bring
unprecedented semantic understanding and response genera-
tion capabilities to humans. Since their emergence has greatly
improved the interactive experience with human users, the
question of whether it shows emotion in the conversation has
not yet been explored, and we are interested in the development
of emotional dialogue technology in ChatGPT4. At the same
time, we hope to explore the multi-modal tasks of ChatGPT4
in the field of emotion recognition and analyze its advantages
and disadvantages [13][14][15].

In the next section, we discuss what others have done and
why existing solutions are not enough. In the third section,
we describe how to recognize and predict emotions. In the
fourth section, experimental analysis is carried out for different
categories of emotion. Finally, the conclusion of our study is
drawn and summarized.
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II. Related Work
Two main models have emerged to represent and explain

emotion recognition: categorical and continuous. Categorical
models, also known as discrete emotion models, assume the
existence of a certain number of primary or basic emotions
that are universally recognized and experienced by humans,
regardless of cultural or individual differences. The main
approach of categories in emotion recognition which is one
of the most well-known categorical models was proposed
by Ekman, who identified six basic emotions: happiness,
sadness, fear, anger, surprise, and disgust. These emotions
are considered fundamental and universally recognizable. The
other is Plutchik’s extension [16] of Ekman’s model [17] by
including eight primary emotions arranged in a wheel. These
include joy, trust, fear, surprise, sadness, disgust, anger, and
anticipation. On the other hand, continuous models represent
emotions in a multidimensional space, usually visualized as a
spectrum or continuum [18] [19]. These dimensions are used
to represent a person’s emotional state in a more granular
manner than discrete categories. Valence refers to the positivity
or negativity of an emotion. Arousal refers to the degree of
excitement or calm. Dominance refers to the degree of control
or influence a person feels in a situation.

Emotion recognition has been studied primarily in terms
of single modes. However, people express emotions through
voice, text, video, facial expressions, and physical behavior;
therefore, it is difficult to accurately judge emotions through
a single mode alone. Since multimodal emotion classification
involves the integration of multiple information sources, such
as facial expressions, intonation, and physiological signals, we
shall make use of images of facial expressions and texts using
multimodal data sets, and Convolutional Neural Networks
(CNN) [20] or transform classification models to identify and
classify emotions. In many application scenarios, in addition
to the current classification, it is necessary to also predict the
evolution of emotion states.

III. Emotion Transition and Classification
In the real world, people’s emotions are usually continu-

ous, transitioning from one emotional state to another [21].
In practical situations, it is often necessary to predict the
emotional state of the relevant personnel, e.g., allocating work
rosters and scheduling hospital operations. As indicated earlier,
people may act out emotionally when they are unfair or tired.
In safety-critical jobs, we want the person doing the work to
be in a sound emotional state[12]. In other words, people who
work in high-risk industries can endanger the safety of others
if they have emotional problems.

We shall focus on the categorical models and make use
of both Pluchik’s model, as well as Ekman’s model. For
Plutchik’s categories using the eight primary emotions of joy,
trust, fear, surprise, sadness, disgust, anger, and anticipation,
we group these into positive and negative emotions, so that
an individual is regarded as emotionally competent if s/he is a
positive emotion state, and incompetent otherwise. We group

the states of joy, trust, surprise, and anticipation as positive
(+1) emotions and group fear, surprise, sadness, disgust, and
anger as negative (−1) emotions. We consider an individual
to be emotionally competent if s/he is in a positive emotional
state.

For Ekman’s categories using the six primary emotions of
happiness, sadness, fear, anger, surprise, and disgust, we also
group these into positive and negative emotions. We group
the states happiness and surprise as positive (+1) emotions
and group sadness, fear, anger, and disgust as negative (−1)
emotions. As a variation, for safety-critical jobs, we may wish
to be extra safe and more strict concerning positive emotion,
and we may take surprise out from the positive emotion
category, and place it in the negative emotion category. Here,
though, we place surprise in the positive emotion category.

We represent the emotional state at time t by S(t); t is
time, and S(t) is the person’s emotional change with time.
As indicated, S(t) can be take on the values S(t) = 1 or
S(t) = −1, which corresponds, respectively, to positive (+1)
and negative (−1) emotions. Since humans are continually
bombarded by various external happenings, mood changes are
often caused by events outside their control, which may be due
to a variety of factors. Such factors may be related to changing
conditions of financial situation, relationships, health, work,
stock market, and family, and the combination of these may
cause a transition from a positive emotion state to a negative
emotion state and vice versa.

First, let S(0) = 1 then, we represent the transition time
points (from +1 to −1, or from −1 to +1) by a Poisson
Process. Now, S(t) = 1 if the number of transitions in the
time interval (0, t) is even, and S(t) = −1 if this number is
odd. Therefore,

P [S(t) = 1|S(t) = 1] = p0 + p2 + p4 + ...+ ..., (1)

where pk is the number of Poisson points in (0, t) with
parameter λ. That is,

P [S(t) = 1|S(0) = 1] = e−λt[1 +
(λt)2

2!
+

(λt)4

4!
...+ ...]

= e−λt coshλt
(2)

Now, S(t) = −1 if the number of points in the time interval
(0, t) is odd; that is,

P [S(t) = −1|S(0) = 1]] = e−λt[1 +
(λt)3

3!
+

(λt)5

5!
...+ ...]

= e−λt sinhλt
(3)

Equation (2) represents the probability that the emotion is
still positive at time t given that it was positive at time 0.
Equation (3) gives the probability that the emotion is positive
at time t given that it was negative at time 0. The parameter λ
in both expressions represents a rate at which emotions change
or decay over time. A larger value of λ would mean emotions
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change more rapidly, while a smaller value would mean they
change more slowly. Thus

E[S(t)|S(0) = 1] = e−λt[coshλt− sinhλt] = e−2λt (4)

IV. Experimentation
A. Single Emotion Recognition

Emotion Recognition in Conversations [22][23] (ERC) is
widely used in various conversation environments, including
emotional analysis of comment areas on social media and
supervision of various high-pressure industry personnel. At
the same time, conversational emotion recognition can be
implemented in chatbots to assess the user’s emotional state
and promote emotion-driven responses. As mentioned earlier,
ChatGPT4 is a form of conversational bot, and we are in-
terested in analyzing whether it can recognize emotions and
sentiments.

1) Dataset and Evaluation Graph: We using three
different datasets from Kaggle, Facial Expressions Training
Data, Emotion Detection, and Natural Human Face Images
for Emotion Recognition.
Emotion Detection This dataset consists of 35,685
examples of 48x48 pixel grayscale images, which contain two
folders, one is trained, and the other one is tested. The folders
contain different categories of emotional images. In addition,
the images have been labeled by the authors for different
types of emotions, including anger, disgust, fear, happiness,
neutral, sad, and surprise.
Facial Expressions Training Data AffectNet [24] is a large
database of faces marked with ”impact” (the psychological
term for facial expressions). In order to accommodate common
memory limitations in this dataset, the authors reduce the
resolution to 96x96 for the neural network processing, which
indicates that all images are 96x96 pixels. Meanwhile,
using Singular Value Decomposition, each image’s Principal
Component Analysis is calculated. The threshold for the
Percentage of the First Component (index 0) in the principal
components (in short the PFC%) was set to lower than
90%. This means that most if not all of the monochromatic
images were filtered out. Finally, the dataset is based on
Affectnet-HQ, using a state-of-the-art Facial Expression
Recognition (FER) model that refines the AffectNet original
label to re-label its dataset, which contains eight emotional
categories - anger, contempt, disgust, fear, happiness, neutral,
sadness, and surprise.
Natural Human Face Images for Emotion Recognition
Since facial expression recognition is usually performed
using standard datasets, such as the Facial Expression
Recognition dataset (FER), Extended Cohn-Kanade dataset
(CK+) and Karolinska Directed Emotional Faces dataset
(KDEF) for machine learning, however, this dataset was
collected from the internet and manually annotated to provide
additional data on real faces, with over 5,500 + images
with 8 emotions categories: anger, contempt, disgust, fear,
happiness, neutrality, sadness and surprise. All images contain
grayscale human faces (or sketches). Each image is 224 x 224

pixel grayscale in Portable Network Graphics (PNG) format.
Images are sourced from the internet where they are freely
available for download e.g., Google, Unsplash, Flickr, etc.

2) Task Definition of Single Emotion: We are given the
three data sets and select six types of emotions in the data set:
anger, disgust, happiness, neutral, sadness, and surprise. Table
I shows some examples of comparison between annotation and
ChatGPT4’s prediction, where red highlights the discrepancy.
In each data set, 50 images of 6 types of emotions are
randomly selected and put into ChatGPT4 for judgment. At
the same time, since ChatGPT4 was released in 2023, the
above experiments are all conducted using ChatGPT4. We
use supervised learning and evaluate ChatGPT4’s performance
in zero-shot prompting settings for the above task. After the
judgment of ChatGPT4, if the result is the same as our
cognitive result, it will be recorded as 1, if the result is
different, it will be recorded as 0, and the emotion will be
recorded as positive, negative or neutral according to the
description of ChatGPT4. Additionally, a Receiver Operating
Characteristic (ROC) [25] curve is generated based on our
recorded results. In the ROC curve, if it is a positive emotion,
such as happiness, neutral, or surprise; we mark the fact result
as 1. On the contrary, if it is a negative emotion, such as anger,
disgust, or sadness; we mark the fact result as 0. The prediction
result of ChatGPT4, in the positive emotion, is recorded as 1 if
it is consistent with the actual result, otherwise, it is recorded
as 0. In the same way, if it is a negative emotion if it is
consistent with the fact, it will be recorded as 0, and if it
is opposite, it will be recorded as 1. The evaluation index
is divided into 1-3 points, 1 point means low confidence, 2
points means moderate confidence, and 3 points means high
confidence.

3) Result of Single emotion: For tabulated data, TPR is
True Positive Rate also known as Sensitivity, which measures
the proportion of actual positives that are correctly identified
by the model. FPR is False Positive Rate also known as
1-Specificity, it is the ratio of negative instances that are
incorrectly classified as positive. Observed Operating Points
are points on the ROC curve that correspond to specific
thresholds used in the classifier. Each point represents the
balance between TPR and FPR for a specific threshold. For
example, a high threshold may result in low FPR but also
low TPR, while a low threshold may increase both TPR and
FPR. These points help evaluate the performance of the model
and select the best threshold for the classification task. They
demonstrate the trade-off between capturing as many positive
results as possible (higher TPR) and avoiding false positives
(lower FPR).

Table II shows the results of ChatGPT4’s prediction based
on a single emotion. For the surprise positive emotion, we
see that the accuracy of ChatGPT4’s prediction results is
around 70%; for the happiness positive emotion, we see that
the corresponding accuracy is around 78%, indicating highly
discriminative discerning of positive emotions. Grouping the
two positive emotions, a good degree of accuracy is obtained.
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TABLE I. EXAMPLE OF CHATGPT4’S PREDICTION ON ERC TASK WITH IMAGES.

Image Content Question Annotation Prediction

What is the emotion of this person? anger surprise/shock/fear

What is the emotion of this person? happiness happiness

What is the emotion of this person? happiness happiness/joy

What is the emotion of this person? anger frustration/concern/disapproval

What is the emotion of this person? sadness sadness/crying

What is the emotion of this person? surprise surprise
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For negative emotions, the accuracy of ChatGPT4’s pre-
dictions from low to high is disgust, anger, and sadness. In
the actual test, we find that zero-shot ChatGPT4 can predict
negative emotions, but it cannot accurately determine whether
it is disgust or anger. At the same time, because the individual
expressions of disgust emotions are inconsistent, the prediction
results are the lowest. We can find that GPT4 has six types
of emotion recognition accuracy from high to low: happiness,
surprise, neutral, fear, anger, and disgust. For surprise images,
although GPT4 can identify most of the images as surprise or
astonishment, it cannot accurately judge whether surprise is a
positive emotion or a negative emotion, so it thinks that the
emotion of surprise is mainly neutral. This is why the result
is very similar to the neutral result.

As mentioned above, in order to avoid the harm caused by
negative emotions to people in high-risk industries or high-risk
groups, we mainly look at the three categories of emotions:
anger, disgust, and sadness. We observe that the FPR of
sadness is 0.3267, the FPR of anger is 0.4800, and the FPR of
disgust is 0.6467. According to the above explanation of the
FPR index, it means that the emotion of disgust is the least
accurate to identify, and the emotion of the disgust category is
the most difficult to judge among the six categories of emotion.
In addition, the accuracy of negative emotion recognition is
too low, and more prompt words may be needed to help GPT4
make judgments because according to the current zero-shot,
GPT4 can determine that people have negative emotions, but
cannot accurately identify disgust. contempt, or anger.

TABLE II. RESULT OF CHATGPT4’S PREDICTION ON SINGLE
EMOTION RECOGNITION TASK WITH IMAGES

Emotion Accuracy
anger 30%

disgust 19.30%
happiness 78%

neutral 69.34%
sadness 44.30%
surprise 70%

4) Analysis and Discussion: During the training process, it
is inevitable that the images in some data sets are inconsistent
with our cognition in real life. Since people have different
feelings about images, there may be biases in partial image
emotion recognition. For this part of the image, we use our
cognition as the final judgment and compare it with the results
of GPT4.

Additionally, we discover another issue: an inconsistency
between ChatGPT4 and the dataset guide. Examining these
actual prediction samples shows that the main challenge of
ChatGPT4 is the bias between its norm and the norm of the
dataset. Although dataset annotations may follow specific
guidelines for determining corresponding sentiments, for
specific cases, ChatGPT4 has its own interpretations and
standards. For example, the dataset annotation classifies
emotions when the person in the image is described as angry,
while ChatGPT4 considers it as sad or lost. The difference

cannot be attributed to one being right and the other wrong,
but rather emphasizes the use of different criteria, both of
which are negative emotions. Upon further discussion, this
misaligned criterion may not be due to the functionality
of ChatGPT4 but may be attributed to under-posting tips.
As prompt word guides become more complex, it becomes
unreasonable to cover them with only a small amount
of content. This insight can speculate on possible future
directions: if the goal is not to strictly adhere to a specific
guideline, then enhancements based on a few prompt settings
(e.g., describing people in images) are feasible. However,
evaluation using dataset labels may not be appropriate
and may require extensive manual evaluation. Conversely,
if the goal is to strictly adhere to specific guidelines,
then several prompt settings may not be the best option,
and supervised fine-tuning of the model is still a better option.

B. Different Categories Emotion Recognition in Different
Dataset

1) Task Definition of Emotion Dataset: First, we use three
data sets: emotion detection, facial expressions training data,
and natural human faces. Since each dataset has different label
classifications, each dataset randomly selects 50 images from
6 images of the same category (anger, disgust, happiness,
neutral, sadness, surprise), for a total of 300 images. Next,
we put them into GPT4 for inspection and record the results,
which are shown in Table III.

2) Result of Emotion Dataset: Since the concept of the
partial definition has already been explained previously, here
we only discuss the Fitted ROC Area and Empiric ROC Area.
Fitted ROC Area refers to the area under the ROC curve that
uses some form of parametric or semi-parametric model to fit
the data. Here we use the maximum likelihood fit of a binormal
model to calculate and draw the ROC curve. Empirical ROC
Area, often referred to simply as Area Under the Curve (AUC),
is a measure based on an empirical ROC curve constructed
directly from data. The curve is created by plotting the True
Positive Rate (TPR), versus the False Positive Rate (FPR), at
different threshold settings. The AUC of an empirical ROC
curve provides a measure of a model’s ability to differentiate
between two classes (positive and negative) at all possible
thresholds. The larger the AUC, the better the model perfor-
mance. An AUC of 0.5 indicates no discrimination (equivalent
to a random guess), whereas an AUC of 1.0 indicates perfect
discrimination.

In the Emotion Detection data set, because the two Observed
Operating Points of TPR are both 0.8133, the Fitted ROC Area
is Degenerate. In addition, we can find that the prediction
results of Emotion Detection are the best regardless of the
accuracy or empirical ROC Area, which shows that using the
Emotion Detection data set for ChatGPT has the highest zero-
shot prediction. Next is Natural Human, Facial Expression.
Facial Expression is an RGB image data set, and the other
two are black-and-white image data sets. Therefore, we find
that the accuracy of RGB images is not necessarily higher
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TABLE III. COMPARISON DIFFERENT DATASET OF CHATGPT4’S PREDICTION FOR EMOTION RECOGNITION TASK WITH IMAGES

Dataset Accuracy Sensitivity Specificity Fitted ROC Area Empiric ROC Area
Emotion Detection 75.30% 81.30% 69.30% Degenerate 0.74
Facial Expression 66.00% 61.30% 70.70% 0.665 0.634
Natural Human 70.30% 74.70% 66.00% 0.752 0.681

than that of black and white images, which means that color
has little impact on the prediction process in emotional image
recognition.

The ordinate of the ROC curve represents sensitivity. The
higher the index, the higher the diagnostic accuracy. The
abscissa represents 1-specificity. The lower the index, the lower
the false positive rate. So in general, the closer the point is
to the upper left corner of the ROC space, the better the
diagnostic effect is. This means that the closer the sensitivity
is to 1, the higher the prediction accuracy of the model. We
can find that the sensitivities of the three data sets are 81.3%
(emotion detection), 61.3% (facial expression), and 74.7%
(natural human), respectively. From the specificity, it would
appear that GPT4’s emotion detection may be considered to
be acceptable, especially for the first and last datasets. From the
Accuracy and Specificity columns of Table III, the figures are
somewhat comparable to the sensitivity, although marginally
less acceptable.

V. Conclusion and Future Work
In this paper, we study the zero-shot ability of ChatGPT4

in emotional reasoning and judgment based on images. The
experimental results show that ChatGPT’s predictive ability is
limited, but it has the potential to improve via mental health
analysis and some humanistic inputs. We target the analysis
for limitations, such as unstable predictions and inaccurate
inferences. Overall, our study shows that subjective tasks, such
as mental health analysis and image conversational emotion
reasoning remain challenging for ChatGPT. With more re-
fined prompt engineering and contextual example selection,
we believe greater future efforts are needed to improve the
performance of ChatGPT and address its limitations in order
to enable it to be practically applied to real-world mental health
and related situations.
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R. S. Calabrò, ”Emotional Artificial Intelligence Enabled Facial
Expression Recognition for Tele-Rehabilitation: A Preliminary
Study,” 2023 IEEE Symposium on Computers and Communi-
cations (ISCC), pp. 1–6, 2023.

[12] R. Lewis, and J. Rose, ’I’m not okay,’ off-duty Alaska
pilot allegedly said before trying to cut the engines,
’https://www.npr.org/2023/10/24/1208244311/alaska-airlines-
off-duty-pilot-switch-off-engines’, Oct. 2023.

[13] K. Yang, S. Ji, T. Zhang, Q. Xie, and S. Ananiadou, ”On
the evaluations of chatgpt and emotion-enhanced prompting
for mental health analysis,” arXiv preprint arXiv:2304.03347,
2023.

[14] W. Zhao, Y. Zhao, X. Lu, S. Wang, Y. Tong, and B. Qin,
”Is ChatGPT Equipped with Emotional Dialogue Capabilities?”
arXiv preprint arXiv:2304.09582, 2023.

[15] H. D. Le, G. S. Lee, S. H. Kim, S. Kim, and H. J. Yang, ”Multi-
Label Multimodal Emotion Recognition With Transformer-
Based Fusion and Emotion-Level Representation Learning,”
IEEE Access, vol. 11, pp. 14742–14751, 2023.

[16] P. Robert, ”Emotion: Theory, research, and experience. vol. 1:

9Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-127-5

BRAININFO 2024 : The Ninth International Conference on Neuroscience and Cognitive Brain Information

                            15 / 32



Theories of emotion,” 1980, Academic Press: Cambridge, MA,
USA.

[17] P. Ekman, ”Facial expressions of emotion: New findings, new
questions,” 1992, SAGE Publications Sage CA: Los Angeles,
CA.

[18] R. Kosti, J. M. Alvarez, A. Recasens, and A. Lapedriza,
”Emotion recognition in context,” Proceedings of the IEEE
conference on computer vision and pattern recognition, pp.
1667–1675, 2017.

[19] R. Kosti, J. M. Alvarez, A. Recasens, and A. Lapedriza,
”Context based emotion recognition using emotic dataset,”
IEEE transactions on pattern analysis and machine intelligence,
vol. 42, no. 11, pp. 2755–2766, 2019.

[20] W. Zhang, X. He, and W. Lu, ”Exploring discriminative rep-
resentations for image emotion recognition with CNNs,” IEEE
Transactions on Multimedia, vol. 22, no. 2, pp. 515–523, 2019.

[21] A. Metallinou, and S. Narayanan, ”Annotation and processing
of continuous emotional attributes: Challenges and opportuni-
ties,” 2013 10th IEEE international conference and workshops
on automatic face and gesture recognition (FG), pp. 1–8, 2013.

[22] S. Poria, N. Majumder, R. Mihalcea, and E. Hovy, ”Emotion
recognition in conversation: Research challenges, datasets, and
recent advances,” IEEE Access, vol. 7, pp. 100943–100953,
2019.

[23] S. Poria et al., ”Recognizing emotion cause in conversa-
tions,” Cognitive Computation, vol. 13, pp. 1317–1332, 2021,
Springer.

[24] A. Mollahosseini, B. Hasani, and M. H. Mahoor, ”Affectnet: A
database for facial expression, valence, and arousal computing
in the wild,” IEEE Transactions on Affective Computing, vol.
10, no. 1, pp. 18–31, 2017.

[25] T. Fawcett, ”An introduction to ROC analysis,” Pattern recog-
nition letters, vol. 27, no. 8, pp. 861–874, 2006, Elsevier.

10Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-127-5

BRAININFO 2024 : The Ninth International Conference on Neuroscience and Cognitive Brain Information

                            16 / 32



A Self-Learning Neuromorphic System
Rory Lewis∗, Michael Bihn†, Zhenqi Liu‡, Daniel S. Barbotko§

Department of Computer Science. University of Colorado at Colorado Springs
Colorado Springs, Colorado, USA

∗rlewis5@uccs.edu, †mbihn@uccs.edu, ‡zliu3@uccs.edu
§dbarbotk@uccs.edu

Abstract—In the continuing research to implement a plurality
of self-wiring synapses comprised of Field Programmable Gate
Arrays (FPGAs) on a Complementary Metal Oxide Semiconduc-
tor (CMOS) system to accommodate Artificial Intelligence (AI)
on a microprocessor, we delve into how a system can emulate
not just a self-wiring CMOS system, but also how it can
emulate brain growth at the connectome level. The enigma
of contemporary advancements in AI and chip manufacturing
diverging from bio-inspired systems is fascinating, especially
given that AI and microprocessor engineers readily acknowl-
edge the superior capabilities of biological brains. This paper
introduces a bio-inspired device made of steel, plastic, and
silica, which autonomously rewires itself, evolving and enhancing
its intelligence without human intervention. The research will
delve into the intricacies of the FPGA prototype’s functionality,
shedding light on both its technical aspects and the broader social
and technological implications associated with the development
of this neuromorphic chip. Next, we introduce the theoretical
ability for the CMOS to grow its connectivity to FPGAs as
does a human baby. Herein, we introduce the uniqueness of
applying the logistical growth function to the curve fitting of
the multidimensional measures of brain growth, on a CMOS
system.

Index Terms—Bio-Inspired; Neuromorphic; AI.

I. INTRODUCTION

The motivation for this research effort is that, despite signifi-
cant advances in neuromorphic systems, the AI systems based
on them are still far from their biological counterparts [1].
Such gaps exist because, while the world lauds the progress
of ChatGPT and other high-end AI systems, the engineers are
reticent to reveal that these systems consume approximately
200 terawatt hours of energy per year [2], shown in Fig. 1a.
The issue is that there is no financial impetus for chipmakers to
stop reaping the financial benefits of this explosion in proces-
sor requirements and take on high-risk bio-inspired chips. We
will illustrate how state-of-the-art systems such as TrueNorth,
Loihi, SpiNNaker, BrainScaleS, and NeuronFlow [3] have
been unable to synthesize biological neurons onto a solid-
state-device because: i) their neuromorphic hardware systems
are based on existing CMOS technology, and CMOS devices
can only numerically simulate biological neural networks [1],
and ii) neuroscientists do not understand exactly how neurons
function. Specifically, we do not understand how neurogenesis,
differentiation, and synaptogenesis work [4]. Yes, we know
that: i) neurons send and receive neurotransmitters, chemicals
that carry information between brain cells [5], and ii) depend-
ing on where a neuron is located, it can perform the job of
a sensory neuron, a motor neuron, or an interneuron, so there

is no single process that explicitly synchronizes the work of
all neurons [4]. We can show this flaw by considering the
following abridged neurological developmental scenario.
EXAMPLE 1 First Event: In Fig. 1b, the child is playing with
his red ball. He releases it and notices that the ball dropped
downwards onto the floor. We represent this by simplifying the
synaptic-dendrite connections and its neuron with a green dot.
We note that, for argument’s sake, he also receives 100,000
sensory items with the first six being: i) he is on a soft carpet,
ii) in the living room, iii) Mom is happy, vi) outside the sky is
bright blue, v) birds are singing, and vi) it is nice and warm.
Similarly, the last three of the 100,000 sensory item neurons
are labeled 99,998 99,999 and 100,000. Second Event: Two
weeks pass. In Fig. 1c, Mom and Dad visit a friend while the
child sleeps. At the end of the evening, while Dad carries him
outside and fastens him into the car seat, the child awakens
and again drops his red ball. He notices that, just like two
weeks ago, it dropped downwards again onto the floor of the
car. It did not go up. Again, his brain receives 100,000 sensory
pulses - the first six being: i) he’s in a car, ii) Dad is talking
on the phone, iii) Mom is not happy. iv) it is dark outside,
v) it is raining and vi) it is cold. As before, we label the
last three of the 100,000 sensory item neurons, 99,998 99,999
and 100,000. Note that the orange arrow in Fig. 2b represents
synaptic connectivity between the First Event and the Second
Event. This illustrates synaptogenesis, which is the formation
of synapses between neurons in the nervous system.

A. Synaptogenesis

The phenomena of synaptogenesis have been difficult for
neuroscientists to study. Consider what happens when synap-
togenesis fails: Fig. 3a represents that moment of time right be-
fore the orange arrow correctly connects synapses together. We
represent this moment and illustrate failed synaptogenesis by
randomly connecting First Event neurons with Second Event

(a) (b) (c)

Fig. 1. (a) Increase in computing power demands petaFLOPS [6].
(b) Baby lets go of his red ball. (c) Baby lets go of his red ball again.
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synapses. Here, the blue synaptic connection has incorrectly
connected the Living Room to the Car. If one believed this was
correct and asked the child; "Since your ball dropped when you
were in the Living Room it obviously will not drop when you’re
in the Car, it may go to the ceiling, right?" The child would
think that was absurd. Similarly, this paper shows why present-
day AI systems on both von Neuman and Neuromorphic chips
are NOT autonomous. In other words, both systems still need
humans to train the AI to learn. For example, Living Rooms
and Cars have nothing to do with the ball dropping. It is
important to remember that humans, coding the AI, would
have to train the AI to learn that the purple line in Fig. 2a
connecting Carpet with Mom Not Happy is wrong. Meaning,
we would have to train our AI that Birds Singing with Sound
of Rain and 100,000 with 99,998 have nothing to do with the
ball dropping.
EXAMPLE 2. Consider a video on YouTube called "Donkeys
laughing at a Dog that Electrocutes Himself ". Fig. 4b shows
that when the dog goes up to the donkeys, his nose touches
an electric fence, and he is shocked. Intuitively, we know that
the next time the dog passes the fence, he will not think: "It’s
dark now, or there’s no donkeys now, or it’s raining, so now
I can touch the fence!" As absurd as this sounds, we humans
have to code even the best AI systems to ignore millions of
these unrelated states and synapses.

B. IBM’s bump

When TrueNorth engineers and neuroscientists from Inter-
national Business Machines Corporation (IBM) studied how
to emulate synaptogenesis, as illustrated in Fig. 2b, they
assumed that the voltage inside the orange arrow was that
of a typical sine wave, the fundamental waveform they’d
seen many times in electroencephalograms (EEGs) and elec-
trocardiograms (EKGs), from which other waveforms such
as Gaussian curves may be generated. Here, they developed
a modular approach to map bio-inspired excitatory and in-
hibitory conductance-based neural elements onto hardware [7]
as illustrated in Fig. 3 where we see how our orange arrow
connects two neurons. Here, an incoming spike signal arrives
from the red horizontal axons, and is collected at the end of
the orange arrow by the red vertical dendrites.

However, while Defense Advanced Research Projects
Agency (DARPA) and IBM celebrated TrueNorth’s ability to
run at a very low rate of power, these Axon-Hillock neurons
inside the orange arrow were not connecting correctly [8].
Schmidt & Avitabile found that TrueNorth’s sinusoidal wave’s
orange arrow was randomly connecting, as illustrated in Fig.

(a) (b)

Fig. 2. (a) FAILED Synaptogenesis. Neurons randomly connect with
Second Event synapses. (b) IBM’s assumed signal over the neuron.

Fig. 3. Assumed signal onto spiking neuromorphic TrueNorth
hardware [11].

2a, to any neuron in the fully connected layer [9]. This explains
why IBM’s engineers were either: i) using a huge number of
cores as splitters to implement this fanout as shown in Fig. 4a
or ii) adding additional hardware resources to rearrange the
3D convolutional layers [10].

C. Houston, IBM Has a Problem

The authors were intrigued, and went back to Fig. 1 and
asked themselves: "How does the neuronal path of the red
ball neuron, illustrated by the orange arrow, know that it is
going to disregard: carpet, living room, Mom’s mood, etc. and
only connect the correct dendrites?" Surely the answer must
lie somewhere in the information on that neuron’s sinusoidal
wave, that guides it to the correct dendrite.

Going back to 1934, the studies of Hodgkin & Huxley
(H&H) seemed like a great place to start reexamining the con-
ceptual framework to understand neuromorphic spike propaga-
tion in axons and presynaptic inhibition on spike propagation.
Right from the beginning, when H&H clamped an oscilloscope
onto a giant squid’s neurons, which are about 100 times larger
than a human’s neuron since they have no skull [13]–[15],
the H&H research proved that dendrites are equipped with
not one, but many voltages from the Ca2+ dendritic and
axosomatic channels [12]. These channels proved to give rise
to local spikes in dendrites and dendritic spines, as illustrated
by Larkum et al, in Fig. 4c [13], where they examined
the timing and cause of a burst from a single Na+ action
potential. Here, H&H observed a biocytin-filled L5 neocortical
pyramidal neuron of a rat brain using four electrodes, visible
as silhouettes in Fig. 4c [16].

In 1940, Curtis & Cole [15] continued H&H’s experiments

(a) (b) (c)

Fig. 4. (a) Splitters on TrueNorth for increasing a neuron’s fan-out
[9]. (b) Shocked. (c) Neocortical pyramidal neuron of rat brain [12].
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(a) (b)

Fig. 5. (a) Membrane potentials of the squid axon from a capillary
electrode. (b) hypopolarization.

Fig. 6. Comparison of the architecture of the prototype and neuroC-
MOS/FPGA.

of measuring the voltage across a neuron by inserting a small
electrode through the membrane of a giant squid’s axon,
and then into the squid’s axoplasm. They found that this
yielded a relatively small amount of injury to the axon. Then,
they measured the potential between the inside and outside
electrode, yielding the result shown in Fig. 5a. It became
clear that during the three phases of the action potential
(depolarization, overshot, repolarization) we do indeed witness
a sinusoidal wave. However, as shown in Fig. 5b, there is a
short ’hidden state’ [17] of hypopolarization, which precedes
the depolarization, that forms a very small bump. This, in
a sense, piggy-backs on the trailing edge of the sinusoidal-
biological wave, as indicated by the red arrows in Fig. 5a &
b. Additionally, we note that in Fig. 7a, this addition of the
same small bump 1 onto the sinusoidal wave on our bio-
inspired chip 2 , corrects the sinusoidal wave in Fig. 2b, and
was most likely overlooked by IBM’s engineers.
PRELIMINARIES Fig. 6 illustrates how our prototype on the
left side, called NSF FuSe Prototype, is being converted into
our neuroCMOS/FPGA architecture on the right. The proto-
type’s Grey State FPGAs, highlighted by the pink box, are
replaced by section A in the neuroCMOS/FPGA architecture
that is comprised of 32-memristors. This means the chip can
autonomously re-wire neurons (FPGAs) between 32 states,
whereas our prototype only had four states. Additionally, the
neuroCMOS/FPGA architecture is comprised of neuromorphic
controllers based off the Linearized Hodgkin-Huxley circuits
designed in 1934 [18]. Note that the FPGAs highlighted by
the blue box, execute the trivial function of only allowing an
input from a sensor to move to the next available memristor,

(a) (b)

Fig. 7. (a) 2nd Order Diff Eq conversion. (b) 3D graphic shows the
path the first vertex takes through the brain from 1 month (pentagon)
to 24 months(hexagon)

and then order it in an n x n sequence in the memristor itself,
located in A . The realization of this small bump, shown as 1
in Fig. 7a, forms the basis for our hypothesis for this research
effort. Taking the 2nd order Differential Equation 3 of both
1 and 2 we split the combined area under the curve into

grey area 4 that constitutes the power necessary to project the
neuron’s signal 6 across the orange arrow to its destination
7 , while the orange area 5 is what we believe, carries the

neuron’s ROAD MAP that guides it to its destination 7 .
THE ISSUE FOR THIS PAPER is that we do not know:
i) how many FPGAs we will need to sort and order the
data in each memristor and ii) how we need to design the
neuroCMOS/FPGA architecture to expand its knowledge and
neuronal connection in a way that will mimic how brains in
nature grow and expand. Additionally, to complicate the issue,
the ’FPGA 8 & 9 ’ in the neuroCMOS/FPGA architecture
is not a square unit but rather a series of FPGA gates. These
gates do both the matrix mathematics and the synaptogenesis
of rewiring the connectors in the neuroCMOS/FPGA chip.

II. EXPERIMENTSA. Hypothesis

Our hypothesis is that the optimal means to design the
autonomous addition of synapses (FPGAs) is to leverage our
research measuring how the human brain expands and grows
connectomes in the infantile brain.

B. Mathematically Defining Connectome Growth

To code how our neuroCMOS/FPGA will autonomously
expand, we first need to mathematically define connectome
growth in the infantile brain. To accomplish this, we continue
our research from our last article in the BrainInfo2023 [19].
We bring in the MatLab poly5 fittings for the X, Y and Z
longitudinal values of the first vertex over 1, 3, 6, 9, 12, 18
and 24 months. Using the fitted curves for the coordinates
over time yields a very nice path as seen in the Fig. 7b.
We use these functions to build the unit tangent vector as
the directional vector for the directional derivative. Usually,
the directional derivative is built with the maximized gradient
on the surface, but we do not have a surface with the data
from the baby connectome data. The best we can build is the
unit tangent vector which we substitute in for the maximized
gradient. The functions for the smoothed curves of X from
"poly5" are fifth degree polynomials with coefficients: p1 =

13Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-127-5

BRAININFO 2024 : The Ninth International Conference on Neuroscience and Cognitive Brain Information

                            19 / 32



1.742e-05, p2 = -0.001163, p3 = 0.02857, p4 = -0.3194, p5 =
1.702, p6 = 141.5. This yields a function for the x variable of
the first vertex position in eq.(1).

X(t) = p1 ∗ t5 + p2 ∗ t4 + p3 ∗ t3 + p4 ∗ t2 + p5 ∗ t+ p6

X(t) = 1.742e− 05 ∗ t5 +−0.001163 ∗ t4 + 0.02857 ∗ t3

+− 0.3194 ∗ t2 + 1.702 ∗ t+ 141.
(1)

The functions for the smoothed curves of Y from "poly5"
are fifth degrees polynomials with the following coefficients:
p1 = -9.346e-07, p2 = 7.466e-05, p3 = -0.0008573, p4 = -
0.05254, p5 = 1.396, p6 = 118.2.

Next, we used the unit tangent to find the directional
derivative over 1 month to 24 months in one tenth of a
month interval. This directional derivative is a better repre-
sentation of the growth rate than the previously presented
derivatives in each of the axis (X, Y, Z). With the first data
collection at one month, the first growth rate we observe is
approximately 3.46 mm. The growth rate then spikes back
up to 0.482478 mm/month at 24 months of age. This same
analysis can be performed on any of the 163,842 vertices
tracked in the diffusion tensor magnetic resonance imaging
(DT/MRI). This directional derivative could then be curve
fitted to provide coefficients of growth to represent a particular
vertex for a particular patient with specific traits. Using the
baby connectome data from the human connectome project
we have devised a method to provide coefficients of growth.
These coefficients could then be used to find correlation
between growth and behavioral traits. There is most likely
some correlation between the coefficients and DNA. Of course,
we will need long term DT/MRI data from thousands of
patients over the first two years of life to obtain the big data
necessary for machine learning.

C. Logistical Growth Function Solved for ρ

From differential equations [20] we have the logistical
growth model. Let us first review exponential growth. The rate
of change of a population’s growth is dependent on the current
population. Here y is the population and dy/dt is the rate of
population change over time as seen in (2). Replacing the f(y)
with r representing the rate of growth that is proportional to
the population, it yields (3).

∂y

∂t
= f(y) (2)

∂y

∂t
= ry (3)

Note that for infantile brain growth we will only examine
positive r, rate of growth. Divide both sides by y and multiple
both sides by ∂t yields (4), then after integrating both sides
we get (5) to which we take the exponential of both sides and
yield (6).

∂y

y
=

r

∂t
(4)

ln(y) = rt+ c
(5)

y = ert+c = ecert

(6)

Going to the logistic growth, we replace the r with a
function of y, h(y) = r. We need to choose h such that when y
is either small or large, h(y) > 0 it reflects the start of growth,

and limits factors of starvation. Here, h(y) = (r−ay) satisfies
these conditions. Applying applicable algebra in (7 & 8).

h(y) = r(1− ay

r
) (7) ∂y

∂t
= r(1− ay

r
)y (8)

We let k = a
r where r is intrinsic growth rate and K

becomes the equilibrium for a sustained population greater
than zero. Note that we will not attain K as we know the
brain continues to grow after two years of age as shown in
(9), and with zero growth in (10).

∂y

∂t
= r(1− y

K
)y (9) 0 = r(1− y

K
)y (10)

This is satisfied when either y = 0 or when (1 − y
K ) is

zero, hence y = K. We know that at birth, the brain has some
volume of neurons, therefore we will not consider y = 0 or
a population of zero. Dividing both side by (1 − y

K )y and
multiplying both sides by ∂t:

∂y

(1− y
K )y

= r∂t (11)

Perform Partial Fractions
1

(1− y
K )y

=
A

y
+

B

(1− y
K )

(12)

1

(1− y
K )y

=
A

y
∗ (

1− y
k

1− y
k

) +
B

(1− y
K )

∗ y

y

A ∗ (1− y

k
) +B ∗ y = 1

letting y
k = 1 or y = k we get B ∗ y = 1, and then

dividing by y and substituting k for y we get B = 1
k and

then substituting back into (13 & 14),

A∗(1− y

k
)+

y

k
= 1 (13) A =

(1− y
k )

(1− y
k )

= 1 (14)

It yields (15) and now we integrate both sides by breaking
the left side apart as seen in (16)

(
1

y
+

1
k

(1− y
k )

)∂y = r∂t (15)

∫
1

y
∂y = ln|y| (16)

for (17), then using a u substitution we get (18).

int
1
k

(1− y
k )

∂y (17) ∂u = −1

k
∂y (18)

by the chain rule, with g(x) = uf(u) = 1
u∫

f(g(x))g′(x) =

∫
f(u)∂u = ln|u| = ln|1− y

K
|

therefore ∫
(
1

y
+

1
k

(1− y
k )

)∂y =

∫
r∂t (19)

becomes
ln|y| − ln|1− y

K
| = rt+ c (20)
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otherwise known as the logistical growth model.
Note that the neuron growth does not depend on the

number of neurons as population growth does. Rather, neuron
growth depends on the number of radial glial cells which are
dependent on the number of neuroepithelial cells [21]. The
number of these different cell types are unavailable at this time.
Thus, our challenge is to build a logistical brain growth model
that shows the dependencies on the different cell populations
and to do this we move from the logistical growth function to
the Reaction Diffusion Equation.

From the Mathematical Biology text [22] and Konukoglu et
al. [23] we have:

∂u

∂t
= ∇ · (D∇u) + ρu(1− u) (21)

with D∇u · n⃗ρΩ = 0 Where u being density, D is the
Diffusion tensor, ρ is the proliferation rate, Ω the brain domain,
and ρΩ the brain boundaries [23] "The traveling wave solution
of Equation 21 has the form

u(x, t) = u(x− vt) = u(E) (22)

where E is the moving frame and v is the asymptotic speed
of this frame, the wavefront. When this solution is plugged
into the reaction-diffusion equation 21 we obtain the ordinary
differential equation" known as the Eikonal Equation.

n′Dn
∂2u

∂E2
+ v

∂u

∂E
+ ρu(1− u) = 0 (23)

The Eikonal equation has been used to describe brain tumor
growth [23]. Konukglu et al. discerned the growth rate differ-
ence of brain tumors in white matter vs. grey matter. Since
DT-MRI do not provide density Konukglu et al. switched
their parameter to the moving front of the tumor cell. With
the data from the Baby Connectome Project (BCP), we have
polygons (triangles) of area. We also have no diffusion data.
And we see that the area of the triangles are increasing. We
make the presumption that there is no diffusion. Eliminating
the diffusion term from the reaction diffusion equation yields
the logistical growth function (24).

∂A

∂t
= −ρA(1− A

K
) (24)

The same result can be obtained by using the Fisher-
Kolmogoroff equation from [24] [22] and setting the diffusion
term to zero. With K(capacity) being the max surface area
attained. For this work, we are only looking at the growth
from 1 month to two years. The max surface area will be the
surface area at two years of age. We attain ∂A

∂t by curve fitting
the surface area over time and taking the derivative. Then we
can attain ρ, the growth function for the area of the entity
being investigated. Dividing both sides by A (1− A

K )

∂A
∂t

A(1− A
K )

= −ρ (25) ρ = −
∂A
∂t

A(1− A
K )

(26)

Thus, we have produced a differential equation ρ(t) equal
to the first derivative of brain surface area over time divided

by a function of surface area over time. Several neuroscientists
have noted that different lobes and white matter pathways
develop at different times and rates. With this methodology
we can construct the logistical growth functions, ρi(t), to
reflect those differences by constructing a sum of ρi(t) where
t is all the triangles of a given lobe. Brain growth is re-
flected by several measures, those being increasing surface
area, increasing volume and vertex movement through the
skull which is also growing. The grey matter has 14 layers
which comprise the grey matter lobes. The 42 white matter
pathways grow underneath the gray matter layers. For each
of these measures, we define the characteristic to describe
the individual lobe/pathway to be time dependent, hence the
characteristics to be solved for are:

Ci(t) = ρi(t),∀i = lobes, pathways (27)

where i represents the brain lobe/pathway under consideration.

D. Logistical Growth Function Applied to Brain Surface Area
Growth

The polygons are actually triangles. We found the polygons
are stable over time, and they have the same vertices at the
seven times utilized in this work. The numbered polygons,
327,680 of them, have the same vertices, in the same order,
for all seven times, 1, 3, 6, 9, 12, 18 and 24 months of age.
Since the brain is growing, we expect the area of the polygons
will grow over time. We use the three-dimensional distance
formula to obtain the length of each of the three sides of the
triangle in (28). We then use Heron’s Formula [25] (28).

l =
√
(X1−X2)2 + (Y 1− Y 2)2 + (Z1− Z2)2 (28)

Rather than calculating the base and the height of the
triangle, Heron’s formula is simplistic in its three subtractions,
three multiplications and one square root in (29).

area =
√
s ∗ (s− a) ∗ (s− b) ∗ (s− c) (29)

We examined the first polygon in the Visualization Toolkit
(VTK) files. It consists of vertices 1, 40965, and 40963. Over
time we found the areas were 0.0312, 0.0426, 0.0555, 0.0606,
0.0648, 0.0665, 0.0730. And yes, the area of the polygon
is increasing over time. We apply curve fitting methodology
for polygon 1 area. Polygon 1 consists of vertices 1, 40965,
and 40963. These positions are subsequently used for the
monthly area calculations. The curve fitting of the Area over
time produced a piecewise solution of six equations. The
first equation is used from one month to three months. The
second equation is used from three months to six months
and so forth. Third equation, six to nine months, forth, nine
to twelve months, fifth, twelve to eighteen months, sixth,
eighteen to twenty-four months. These equations were used
to plot the line in Fig. 8 where each equation is of the form
a ∗ t3 + b ∗ t2 + c ∗ t + d yielding the coefficients for the
six equations for the resulting coefficients for the piece-wise
solution to the curve fitting of actual polygon 1 area at 1, 3,
6, 9, 12, 18, and 24 months, as seen in Table I.
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TABLE I
COEFFICIENTS FOR THE SIX EQUATIONS

eq # a b c d months
1 -3.2754e-05 0 0.0052 0.0321 1-3
2 -1.9036e-05 -1.9653e-04 0.0048 0.0422 3-6
3 2.3455e-05 -3.6785e-04 0.0031 0.0544 6-9
4 3.3306e-06 -1.5676e-04 0.0016 0.0612 9-12
5 1.2741e-05 -1.2678e-04 7.0962e-04 0.0645 12-18
6 -5.6974e-06 1.0255e-04 5.6424e-04 0.0670 18-24

To build the six equations for area growth we start with the
first derivative yielding growth rate. Each equation is of the
form: a∗t2+b∗t+c yielding coefficients for the six equations
as shown in Table II.

TABLE II
FIRST DERIVATIVE YIELDING GROWTH RATE

eq # a b c months
1 3*-3.2754e-05 0 0.0052 1-3
2 3*-1.9036e-05 2*-1.9653e-04 0.0048 3-6
3 3*2.3455e-05 2*-3.6785e-04 0.0031 6-9
4 3*3.3306e-06 2*-1.5676e-04 0.0016 9-12
5 3*1.2741e-05 2*-1.2678e-04 7.0962e-04 12-18
6 3*-5.6974e-06 2*1.0255e-04 5.6424e-04 18=24

With the function for Area over time and the first derivative
for Area over time, we can now solve for ρ, the logistical
growth function of Area over time. Using the definition of ρ
from the previous section we have:

ρ = −
∂A
∂t

A(1− A
K )

(30)

where K is the area of the polygon at max growth in Fig.
8a.

(a) (b)

Fig. 8. (a) The difference between the actual areas (points) and fitted curve
for area and the calculated area from the fitted vertices over time. (b) The
Logistical growth function for the polygon 1 area of the brain from one month
to twenty-four months of age.

III. CONCLUSION & FUTURE WORK

Because our neuroCMOS/FPGA is in an "infantile" state,
we barely have to go beyond the infantile state for a human.
Here we have concluded that, with this statement in mind,
we can set K to a number greater than the area obtained at
two years of age, avoiding the divide by zero anomaly. We
currently set K to twice the polygon 1 area at two years of
age and plot this logistical growth function from one month
to twenty-four months as shown in Fig. 8b. Next, we model
the aforementioned onto a simulated software version of our
neuroCMOS/FPGA, that will show we can procure a chip that
rewires itself and grows like an infantile’s brain grows.
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Abstract—This study delves into a comparative analysis of
episodic memory, examining both human cognition and Artificial
Intelligence (AI) agents. Through an in-depth exploration, the
research focuses on the nuanced aspects of episodic memory
encoding, retrieval, and associative capabilities in humans and AI
systems. The investigation incorporates Electroencephalography
(EEG) as a fundamental tool to comprehend and compare the
underlying neural mechanisms associated with episodic memory
in humans while drawing parallels to memory processes in
AI agents. The findings illuminate similarities and disparities,
shedding light on the cognitive frameworks and technological
advancements shaping episodic memory across biological and
artificial entities. This exploration provides valuable insights into
the convergence and divergence of memory mechanisms, po-
tentially influencing future AI developments and understanding
human cognition.

Index Terms—EEG-Electroencephalography, Episodic Mem-
ory, Human Cognition, Artificial Intelligence (AI) Agents, Com-
parative Analysis, Memory Retrieval, Context.

I. INTRODUCTION

Episodic memory stands as a pivotal facet of human cog-
nition, representing the ability to recall specific past events,
experiences, and their contextual details within a personal
timeline. It encompasses the richness of autobiographical
memory, allowing individuals to mentally travel back in time
and relive moments while integrating sensory perceptions,
emotions, and spatial-temporal context. This unique cognitive
ability enables humans to navigate daily life, learn from past
experiences, and project themselves into the future, forming
the cornerstone of our identity and decision-making processes.

Concomitant with advancements in AI, the emergence of
AI agents equipped with memory systems presents a paradigm
shift in technological capabilities. These agents, ranging from
sophisticated chatbots to complex neural networks, are de-
signed to mimic cognitive processes, including memory encod-
ing, retrieval, and learning. AI memory frameworks, though
algorithmically driven and fundamentally distinct from human
cognition, are pivotal in enabling these agents to retain and
utilize information, make decisions, and perform tasks across
various domains.

This paper aims to undertake a comparative analysis of
episodic memory, focusing on the influence of contextual fac-

tors on memory encoding, retrieval, and associative processes
in both humans and AI agents. It delineates the impact of
context on memory mechanisms, leveraging EEG as a tool to
probe neural correlates associated with episodic memory in
humans and explore parallels or distinctions in AI memory
frameworks. The paper is structured to first delve into the
nuances of episodic memory in humans, subsequently tran-
sitioning to the emerging landscape of AI memory systems.
Through a comparative lens, it examines context-mediated
memory effects and EEG correlations, ultimately aiming to
elucidate the convergence and divergence between human
cognition and AI memory mechanisms.

II. EPISODIC MEMORY IN HUMANS

A. Memory Encoding and Context Effects

Memory encoding in humans involves the initial processing
of sensory information into a form that can be stored and later
retrieved. This process occurs through various stages, includ-
ing attention, perception, and consolidation, where information
is integrated into existing memory networks.

Contextual cues, encompassing environmental, emotional,
and situational factors, play a pivotal role in memory forma-
tion. The encoding specificity principle posits that retrieval
of information is most effective when the context at encoding
matches the context at retrieval. This principle underscores the
significance of contextual congruence in memory formation
and recall.

Several studies employing EEG have revealed insights into
context effects on human episodic memory. For instance,
research [3], showcased increased neural synchrony in specific
brain regions during memory encoding when contextual cues
were present, emphasizing the influence of context on neural
patterns associated with memory formation.

B. Memory Retrieval and Contextual Influences

Memory retrieval involves accessing stored information
from memory networks. Context plays a pivotal role in trigger-
ing recall by acting as retrieval cues [1], [2], facilitating the
retrieval of associated memories when the context at recall
aligns with the context at encoding.
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Studies investigating context-dependent memory retrieval in
humans have consistently demonstrated the impact of context
on recall. EEG studies revealed distinct neural signatures dur-
ing context-induced memory retrieval, highlighting the role of
neural oscillations and synchronization in retrieving context-
linked memories.

C. Associative Memory and Contextual Linkages

Associative memory involves forming connections between
different pieces of information. Contextual information acts
as a binding factor, strengthening associations between items
encoded within a similar context.

EEG studies exploring neural correlates of associative mem-
ory in context-rich environments have unveiled patterns of
neural activation in specific brain regions, elucidating the
neural mechanisms underlying the influence of context on
associative memory processes. For instance, research has re-
vealed increased coherence between brain regions associated
with contextual processing and memory association tasks.

III. EPISODIC MEMORY IN AI AGENTS

A. Memory Encoding Mechanisms

Memory Encoding mechanisms in AI agents primarily rely
on structured databases and algorithms. Databases store infor-
mation in a structured format, enabling efficient retrieval and
manipulation. Algorithms manage the Encoding, organization,
and retrieval of data, utilizing various techniques such as in-
dexing, hashing, and neural network architectures for memory
representation.

Integrating contextual information into AI memory frame-
works poses significant challenges. AI agents traditionally
process information based on predefined patterns and lack
the inherent contextual understanding characteristic of human
cognition. Challenges include contextual ambiguity, dynamic
context changes, and the computational complexity of incor-
porating multifaceted contextual cues. However, integrating
contextual information offers potential benefits, enhancing the
adaptability, relevance, and decision-making capabilities of AI
systems.

B. Memory Retrieval and Contextual Integration

The AI agents retrieve information from stored data using
algorithms tailored for efficient search and retrieval. Context
plays a crucial role in retrieval algorithms, aiding in narrowing
down search results or providing relevant cues for retrieving
associated information. Contextual integration involves algo-
rithms that utilize contextual cues to refine retrieval processes,
akin to humans using context as retrieval cues.

Ongoing research and developments aim to imbue AI mem-
ory systems with contextual awareness. For instance, advance-
ments in Natural Language Processing (NLP) incorporate
contextual embeddings or attention mechanisms, allowing AI
models to consider contextual information in text-based tasks.
Additionally, research in machine vision explores contextual
understanding in image recognition tasks by leveraging spatial

and semantic context to improve object recognition and scene
understanding in AI systems.

For our experimentation, we use a TransformerXL back-
bone by [6] and modify its sequential memory buffer with
Automatic Chunking [7] to enable the transformer to apply
attention to only relevant parts of memory depending on the
current context that might not always be sequential. The model
architecture is described in Section VI.

IV. EEG DATA COLLECTION AND ANALYSIS

EEG data was collected using an Emotiv FLEX EEG cap,
which features 32 channels for recording neural activity during
encoding and retrieval phases in human participants. This cap
was equipped with monopolar gel-based electrodes strategi-
cally positioned across the scalp to capture electrical signals
emanating from various regions of the brain. The electrode
positions were determined according to the 10-20 international
system for EEG electrode placement (Figure 1), ensuring
standardized and precise positioning for data acquisition.

Fig. 1: EEG Electrode Placement.

A. Captured EEG Data

The EEG data was captured using the CyKit software [11]
during the encoding and retrieval phases of the experiment. To
provide a comprehensive understanding of the analyzed brain
activity, this section details crucial information regarding the
data acquisition process. The recording duration for encoding
phase was 60-70 seconds while for decoding phase the subjects
were not bound for time intervals, allowing for analysis of
the temporal dynamics of brain activity. Additionally, a high-
pass filter with a cutoff frequency of around 0.16 Hz and
notch filters at 50 Hz and 60 Hz to remove power line noise
interference was applied to the data using CyKIT, focusing
on the specific frequency band of interest. Moreover, the data
is downsampled to 128 Hz before transmission. Finally, the
analysis incorporates data from a single trial from the encoding
and retrieval phases, enhancing the generalizability of the
findings.
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B. Topographical Brain Mapping

The topographical brain activity maps were generated for
EEG data obtained from the participants using resources from
[10] as a baseline. This code repository offered tools and util-
ities specifically designed for EEG data processing in Python,
facilitating the creation of detailed and informative brain
activity maps. The generated maps serve as valuable tools
for analyzing and interpreting the complex patterns of brain
activity observed during the experiment, enabling us to gain
deeper insights into memory-related cognitive processes. The
graphs were generated such that the top data points correspond
with the front of the scalp. Please refer to Appendix A and
B for the EEG maps plotted during all our experimentation.
The graph was rendered to provide a top-down perspective
of the head, where the upper regions of the graph represent
the front of the head, the left sections correspond to the
left-hand side, and the right sections depict the right-hand
side. This approach ensured that the spatial orientation of the
depicted neural activity aligned appropriately with anatomical
references, facilitating a clear and intuitive interpretation of
the topographical brain mapping results.

C. Encoding Phase Analysis

During the encoding phase, EEG data analysis involved
assessing neural correlates linked to the processing of contex-
tual cues (such as wall colours) and memory encoding. The
topographical brain maps derived from this phase showcased
neural activation patterns specific to encoding information
within distinct contextual contexts.

D. Retrieval Phase Analysis

Similarly, during the retrieval phase, EEG data analysis fo-
cused on discerning neural signatures associated with memory
retrieval and decision-making while navigating the game. The
topographical brain maps generated during retrieval indicated
neural activity patterns corresponding to successful memory
recall and decision-making processes influenced by contextual
cues.

E. Integration of Topographical Maps

The topographical brain maps were generated using the
Akima interpolation method, which was chosen due to its
effectiveness in facilitating a smoother visualization of spatial
distribution. No parameter tuning was performed as default
settings were deemed sufficient for the analysis. The time
window used for calculating brain activity represented in
each topographical map corresponds to the encoding or re-
trieval phase of the memory task. Specifically, the observation
interval spans from the onset of the memory task to the
offset of the task period. The topographical brain maps pro-
vided visual representations of the neural activation patterns
across different scalp regions. Areas exhibiting heightened
or suppressed electrical activity were depicted, aiding in the
identification of brain regions implicated in context-mediated
memory encoding and retrieval [4] [5]. Variations in neural
activity across scalp regions were indicative of the brain’s

response to contextual cues during memory-related tasks. The
transformation from 2D matrices of channels by samples to
2D spatial maps involved several key steps in topographical
brain mapping. Initially, each channel within the EEG data
corresponded to a specific electrode position on the scalp,
known from a standardized electrode montage such as the
10-20 system. Subsequently, contour plotting techniques were
applied to visualize the spatial distribution of this interpolated
activity, creating a 2D map where different colors or shading
indicated varying levels of neural activity across scalp regions.
This process enabled us to gain insights into the spatial dynam-
ics of brain function during cognitive tasks or experimental
conditions.

F. Integration with Behavioral Performance

These EEG-derived topographical brain maps were corre-
lated with participants’ behavioral performance during the
game-based task. The association between neural activation
patterns depicted in the maps and the accuracy/speed of
memory-related decisions offered insights into the neural
mechanisms underlying context-induced effects on episodic
memory.

V. EXPERIMENTS: CONTEXT EFFECTS ON EPISODIC
MEMORY IN HUMANS AND AI AGENTS

A. Experimental Design 1

a) Objective: The objective of this experiment was to
investigate and compare the impact of contextual cues on
episodic memory encoding and retrieval in both human par-
ticipants and an AI agent model. The study aimed to explore
EEG correlations to identify neural signatures associated with
context-mediated memory processes in humans and simulate
analogous processes within an AI system.

Fig. 2: Experiment 1 Game environment.
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b) Methodology: Four individuals (aged 20-30) without
any neurological disorders participated in this experiment.
We utilized a neural network-based AI model that simulates
memory processes akin to episodic memory for comparison
with human subjects.

c) Task design: Participants engaged in a game involving
20 rooms, each containing numbers (1-20) and distinct wall
colours (see Figure 2). In each room, there was a red and
a green door. Participants had to select one door, aiming to
choose the correct door to progress to the next room. Correct
door selection allowed advancement to the next room, while
an incorrect choice led to a shift back to the previous room.

d) Encoding Phase: Participants were explicitly in-
structed to remember the correct door in each room during
the game as part of the encoding phase. They were told the
correct door and played through the environment a few times
till they felt they had memorized all the doors. The EEG plots
of participant A and B were collected to see which regions of
the brain would should high activation during encoding (see
Figure 9).

e) Retrieval Phase: During the retrieval phase, partici-
pants replayed the game without explicit instructions, relying
on their memory for choosing the correct door in each room.
The EEG plots of participant A and B were also collected to
see which regions of the brain would should high activation
during decoding (see Figure 10).

f) Contextual Manipulation: The distinct wall colours in
each room served as contextual cues.

B. Experimental Design 2
a) Objective: The objective of the second experiment

was to explore the influence of diverse contextual cues on
context-dependent memory retrieval and episodic memory as-
sociation. Participants engaged in a game-based task involving
various contextual environments to examine the influence of
these contexts on memory recall and associative processes.

Fig. 3: Game Environment for Experiment 1 containing objects.

b) Methodology: The experiment involved two individu-
als familiar with the game environment from a prior session.

c) Task Design with Diverse Contextual cues: Partici-
pants navigated through 30 rooms similar to Experiment 1,
each designed with specific contextual cues:

• 10 rooms with numbers (1-10).
• 10 rooms with distinct wall colours.
• 10 rooms with attached scenery (no wall colours).

Each room contained 20 random objects and two doors (red
and green), requiring participants to choose one to progress
(see Figure 3).

d) Encoding Phase: During the encoding phase, partic-
ipants played the game twice while being exposed to varied
contextual environments, once with rooms in normal series and
once with all rooms shuffled. The objective was to encourage
the association of contextual cues with the correct door choice
in each room. The EEG plots of both subjects were plotted
during encoding (see Figure 11).

e) Retrieval Phase: In the retrieval phase, participants
were presented with rooms lacking contextual cues (no wall
colours, numbers, or scenery). Participants were tasked with
recalling the context associated with each room and selecting
the correct door choice based solely on their episodic memory.
Recall was tested and EEG data measured right after encoding
(see Figure 12), 6 hours after encoding (see Figure 13) and
24 hours after encoding (see Figure 14).

VI. MODEL ARCHITECTURE

A. TransformerXL

Fig. 4: TransformerXL Architecture [6].

We use a modified decoder-only TransformerXL architec-
ture for testing the performance of AI agents with episodic
memory. Ego-centric visual observations are used which are
encoded into an embedded representation using a 3-layer
Convolutional encoder. The encoded observation is saved in
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the memory buffer and used as the query in the Transformer
decoder where attention is performed inside the encoder be-
tween the memory buffer and the query. A categorical action
probability is calculated for each action by applying a linear
layer to the output of the decoder. The model weights are
trained using Proximal Policy Optimization 2 (PPO2) based
on [12] and mini-batch training and the model learns to
predict a suitable action given the current observation and the
past context. Adam optimizer from [12] is used to decay the
learning rate and other PPO2 parameters. Multiple instances
of the environments are used to create larger batched data for
training.

The memory buffer used in TransformerXL is a simple
sequential buffer that stores the encoded observations every
timestep. Using all the memories in the buffer during attention
in the layer is computationally intensive and scales with
the buffer length. All past observations might also not be
appropriate in the current context. To combat this, we use
Automatic Chunking before the memory buffer is passed to
the decoder. This is similar to how human episodic memory
is chunked based on certain groups of events that are correlated
as discussed previously.

B. Automatic Chunking Mechanism

Automatic Chunking works on the memory buffer and di-
vides the buffer into chunks of constant size. A summary value
is calculated for each chunk using mean pooling. Top-level
attention is performed between the summary values and the
current observation, and the Top-k chunks are chosen with the
highest correlation values. These chunks are then concatenated
and used as the summarised memory buffer which is used
by the decoder. The summarised memory buffer includes
memories that are most relevant in the current context thus
leading to better action calculation by the transformer decoder.
With Automatic chunking, the TransformerXL memory buffer
is modified to act like an Episodic memory buffer due to the
fact that it includes egocentric sequences of past events and
can recall the most appropriate sequences from it. We can thus
compare the TransformerXL model with Automatic chunking
with the episodic memory of human subjects.

C. Tasks

Fig. 5: Game Environment for Experiment 1.

The game environments used in our experimentation are
created using Unity MLAgents [10]. Our reinforcement learn-
ing models are trained using the Gym API [11] for MLAgents

while the games can be directly played by the human subjects.
The AI models were trained until they achieved the maximum
reward in the task.

We created two variations of the Experiment 1 game envi-
ronment used for human testing and AI testing as described
later. The observation space of the agent includes the agent’s
visual observations of size 40x40x3, the agent’s position and
the current room number of the agent. The rewards were set
such that the agent got a positive reward proportional to the
room number in each room. If it made a mistake in a room,
a negative reward proportional to the room number was given
and the agent was teleported back two rooms.

The two variations of the task were:

• The Unshuffled variant: Here, the rooms were in numeri-
cal order from 1 to 20 and the correct door colours were
fixed (see Figure 5). This variant tested the agent’s and
player’s ability to remember long sequences of informa-
tion.

• The Shuffled variant: Here, the order of rooms was
shuffled during training and testing for every episode. The
correct doors for each individual room were fixed. Thus,
here, the agent and player needed to learn the correlation
between the context i.e., the number of the room and wall
colour and the correct door and recall this information
during testing non-sequentially.

We trained TransformerXL with and without Automatic
Chunking using the same parameters on both variants of the
task. The memory length was set to the length of each episode
at 500 while the Automatic Chunking parameters used were
10 chunks of size 30. We used default PPO2 parameters
except for a changed initial learning rate of 5 e-5. The
parameters for Automatic Chunking were decided based on
the experimentation by [7] where it was found that chunking
the memory and only using around 60% of the memory in
the transformer gave the best results in most tasks. Keeping
a small chunk size helps in this task as well as the model
can access smaller sequences in further apart sections of the
memory which is required in this task due to the amount of
time spent in a single room is short compared to the total
episode length.

The trained models were tested on the same environments
for 50 episodes to test whether the model had learnt the proper
sequences or mapping in the tasks.

D. Training Results

a) Unshuffled Variant: In Figure 6, we plot the average
rewards over the multiple instances of the environments versus
the episode number for both models. Both models achieve the
maximum reward of 100 in the environment in 400 episodes.

b) Shuffled Variant: In Figure 7, we plot the average
rewards over the multiple instances of the environments versus
the episode number for both models. Both models achieve the
maximum reward of 100 in the environment in around 800
episodes.
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Fig. 6: Average Training Rewards v/s Episode Number for Unshuffled
Task.

Fig. 7: Average Training Rewards v/s Episode Number for Shuffled
Task.

E. Testing Results

Both models successfully reached the final room and com-
pleted the task in the Unshuffled variant with a success rate of
98%Ṫhis proved that the model had learnt the long sequence
well and achieved a higher success rate than the human
subjects. Both models successfully completed the shuffled
variant as well with a success rate of 100%Ṫhis proved that
the models learned the correlation between the context and the

TABLE I: TESTING RESULTS OF MODEL.

Task Model Success
rate

Failure
rate

Unshuffled
Portal Task

TransformerXL 49/50
(98%)

1/50
(2%)

TransformerXL
with Automatic
Chunking

49/50
(98%)

1/50
(2%)

Shuffled
Portal Task

TransformerXL 50/50
(100%)

0/50
(0%)

TransformerXL
with Automatic
Chunking

50/50
(100%)

0/50
(0%)

goal correctly. The models also proved their generalizability by
learning the random environment with shuffling which proved
difficult for the human subjects.

VII. RESULTS

A. Experiment 1: Context Effects on Game Performance

The findings from the first experiment revealed variations
in in-game performance and completion among participants:

a) Subject A Performance: They successfully completed
the game with 8 mistakes. They demonstrated efficient mem-
ory recall and decision-making, navigating through the rooms
and completing the task.

b) Subject B Performance: They experienced
difficulty progressing through the game, halting at the
17th room.They made 12 mistakes, indicating challenges
in memory recall or decision-making during the task.

These outcomes suggest individual differences in memory
retrieval and game performance, highlighting varying abilities
to recall contextual cues and make accurate decisions during
the game.

B. Experiment 2: Contextual Recall and Episodic Memory
Association

In the second experiment, participants’ performance in
recalling context and associating it with the correct door choice
was analyzed:

a) Subject C Contextual Recall: They recalled only
6 correct contexts associated with the rooms.They made 3
mistakes, indicating limitations in episodic memory recall and
association with contextual cues.

b) Subject D Contextual Recall: They successfully
recalled 15 correct contexts associated with the rooms.
They made 3 mistakes during the recall phase, showcasing
robust episodic memory association with contextual cues.

These results indicate significant differences in participants’
abilities to recall and associate contextual cues with correct
door choices, highlighting varying levels of episodic memory
recall between individuals.

C. Overall Insights

The results from both experiments underscore the impact
of contextual cues on memory recall and decision-making
during the game-based tasks. Individual variations in memory
retrieval abilities and the influence of contextual cues on
episodic memory association were evident, showcasing the
significance of vivid contextual cues in enhancing memory
recall and performance.

VIII. CONCLUSION

A. Human Memory Limitations and AI Advantages

The limitations of human memory capacity, as observed
in the experiments, underscore the potential advantages of
AI systems in memory-related tasks. While humans exhibited
varying degrees of memory recall and performance limitations,
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Fig. 8: Subject performance in Experiment 2.

AI models showcased consistent memory retrieval capabilities.
This suggests that AI systems, being devoid of cognitive con-
straints, possess the ability to store and retrieve vast amounts
of information more reliably than human memory.

B. Neural Activation Patterns During Encoding and Retrieval

The observed neural activation patterns during the encoding
and retrieval phases provide insights into the underlying neu-
ral mechanisms associated with episodic memory processes.
Activation in the prefrontal lobe during encoding aligns with
previous research highlighting its role in memory encoding
and organization of information. Contrastingly, the predom-
inant activation in the right hemisphere, particularly in the
temporal and prefrontal lobes, during retrieval resonates with
studies emphasizing the involvement of these brain regions in
memory retrieval and associative processes.

C. Time-Dependent Memory Fading and Contextual Complex-
ity

The experiments revealed nuances regarding the influence of
time and contextual complexity on memory retention. Human
memory demonstrated susceptibility to memory fading over
time, impacting the accuracy and completeness of memory
recall. Moreover, the complexity of contextual cues played a
pivotal role in memory association and retrieval. Clear and
distinct contextual cues facilitated better memory recall and
association, while vague or complex contexts led to limitations
in memory retrieval and decision-making, underscoring the im-
portance of context clarity in enhancing memory performance.

D. Implications and Future Directions

Understanding the interplay between human memory limi-
tations, neural activation patterns, temporal effects on memory,
and contextual complexity holds implications for both cogni-
tive research and AI development. Further investigations could

delve into strategies to optimize human memory recall, lever-
aging insights from AI memory frameworks to enhance human
cognitive processes. Additionally, refining AI memory systems
to mimic or adapt to human-like memory constraints in
varied contexts could revolutionize AI applications in memory-
intensive tasks. Adding abilities such as Future imagination
and forgetting could are a step towards emulating human-like
cognition in robots and we are exploring these in our future
work.

AI surpasses human memory in several aspects, primarily
in Encoding capacity, retrieval speed, and consistency. Un-
like human memory prone to forgetting and capacity limita-
tions, AI systems retain vast amounts of information without
degradation or inaccuracies. They retrieve data rapidly and
consistently, handling multiple tasks simultaneously, a feat
challenging for human memory. AI’s adaptability, immunity to
cognitive biases, and continual learning surpass human mem-
ory’s limitations, making it resilient, precise, and constantly
improving. Its applications across diverse domains further
underscore its potential to revolutionize memory-intensive
tasks, offering unparalleled advantages over human memory
capabilities.

Since our current experimentation was a preliminary study,
we plan to increase the number of subjects in future trials.
By expanding our sample size, we aim to enhance the robust-
ness and generalizability of our findings by sampling larger
variations in brain activity patterns and responses.
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APPENDIX

A. Experiment 1 EEG Plots

(a) Subject A.

(b) Subject B.

Fig. 9: Experiment 1: Topographical Map During Encoding for
Subjects A and B.

(a) Subject A.

(b) Subject B.

Fig. 10: Experiment 1: Topographical Map During Retrieval for
Subjects A and B.
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B. Experiment 2 EEG Plots

(a) Subject C.

(b) Subject D.

Fig. 11: Experiment 2: Topographical Map During Encoding for
Subjects C and D.

(a) Subject C.

(b) Subject D.

Fig. 12: Experiment 2: Topographical Map During Retrieval for
Subjects C and D (after encoding).

25Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-127-5

BRAININFO 2024 : The Ninth International Conference on Neuroscience and Cognitive Brain Information

                            31 / 32



(a) Subject C.

(b) Subject D.

Fig. 13: Experiment 2: Topographical Map During Retrieval for
Subjects C and D (after 6 hours).

(a) Subject C.

(b) Subject D.

Fig. 14: Experiment 2: Topographical Map During Retrieval for
Subjects C and D (after 24 hours).
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