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Abstract— Post-lunch drowsiness, also known as Post-Lunch 

Dip (PLD), is a symptom of impaired brain function. Currently, 

the hypothesis that PLD is caused by an increase in 

postprandial blood glucose level is supported as a possible 

explanation for the mechanism of PLD. However, few studies 

have examined the relationship between postprandial brain 

dysfunction and blood glucose levels by measuring both 

simultaneously. In this study, we measured blood glucose levels 

and Event-Related Potential (ERP) before and after 

consumption of two foods with different carbohydrate contents, 

and examined the relationship between postprandial blood 

glucose fluctuations and PLD. In the high-sugar food ingestion 

group, two slices of bread and water were given, and the low-

sugar ingestion group received low-carbohydrate bread and 

water. The results showed that the high-sugar food ingestion 

group had increased sleepiness, prolonged P300 latency, and 

increased early and late contingent negative variation 

amplitudes at 40 minutes postprandial ingestion. There were 

no significant differences in sleepiness, brain function, or blood 

glucose levels in the low-sugar ingestion group. In contrast, 

there was a significant increase in blood glucose levels 

immediately and 40 minutes after eating in the high-sugar food 

ingestion group resulting in brain function impairment. 

Therefore, it is suggested the postprandial increase in blood 

glucose level is related to the development of PLD. In addition, 

the blood glucose levels at 40 minutes after eating in the high-

sugar food ingestion group were significantly lower after ERP 

measurement than before ERP measurement. This suggests 

PLD occurs during hyperglycemia and when blood glucose 

levels fall.  

Keywords-Post-Lunch Dip (PLD); Event-Related Potential 

(ERP); P300; Contingent Negative Variation (CNV); Blood 

Glucose Level. 

I.  INTRODUCTION 

The transient decline in brain function caused by Post 
Lunch Dip (PLD) [1] has been highlighted as a possible 
cause of human error [2][3], and it is important to establish 
optimal intervention methods and prevention techniques 
against PLD. In recent years, research hypotheses that link 
postprandial brain dysfunction and blood glucose 
fluctuations have attracted attention as a possible explanation 
for the pathogenesis of PLD. Although the explanation of 

blood glucose spikes [4] and neuropeptide inhibition [5] are 
representative examples, neither hypothesis has been widely 
recognized as a research hypothesis explaining the 
mechanism of PLD yet, because the evidence for each 
hypothesis is insufficient. One of the reasons for this is that 
there have been few cases in which the decline in brain 
function due to postprandial sleepiness has been evaluated 
using quantitative indices. Therefore, our research group 
focused on electrophysiological responses using event-
related potentials, a type of electroencephalogram (EEG), as 
a quantitative evaluation index for PLD and conducted 
empirical experiments [6]. In addition to the basic rhythmic 
components of the EEG, such as alpha and beta waves, there 
is Event-Related Potential (ERP), which is induced by 
specific stimuli. Among ERPs, P300 and Contingent 
Negative Variation (CNV) are used to evaluate cognitive 
function and attention [7]. Our empirical experiments 
confirmed that simultaneous measurement of P300 and CNV 
is an effective objective measure of transient deterioration of 
brain function, fatigue, and sleep in PLD. Recently, however, 
Continuous Glucose Monitoring (CGM) devices have 
emerged that can measure blood glucose levels over time 
with a single puncture. CGM devices can continuously 
record the concentration of glucose in the interstitial fluid, 
which is highly correlated with blood glucose levels, using a 
sensor implanted in the subcutaneous tissue [8]. The CGM 
measures the glucose concentration in the interstitial fluid by 
changing the current in the enzymatic method. It has been 
highlighted that glucose in the interstitial fluid is slow to 
follow rapid fluctuations in blood glucose levels [9]. 
However, CGM has attracted attention as a simple and 
powerful tool for preventing blood glucose-related diseases 
because it enables monitoring of blood glucose levels over 
time. 

Therefore, in this study, we investigated the relationship 
between postprandial blood glucose changes and PLD by 
recording blood glucose levels, P300, and CNV before and 
after consumption of high and low carbohydrate foods over 
time. 

The rest of this paper is organized as follows. Section II 
describes the experimental protocol and the issues arising 
from the ERP. Section III describes the P300 and CNV 
analysis methods. Section IV describes the experimental 
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results. Section V goes into more detail regarding the 
relationship between postprandial brain dysfunction and 
blood glucose fluctuations. Section VI provides a summary 
of this paper. 

II. EXPERIMENTAL PROCEDURE 

In this study, experiments were conducted on three 
groups: 1) A high-sugar food ingestion group, 2) A water-
only control group, and 3) A low-sugar food ingestion group. 
All participants were young and healthy with no history of 
neurological disease. The high-sugar food ingestion group 
comprised 20 participants (Mean ± SD, 21.50 ± 0.86 years), 
the control group comprised 10 participants (Mean ± SD, 
22.5 ± 0.85 years), and the low-sugar food ingestion group 
comprised 10 participants (Mean ± SD, 21.80 ± 1.16 years). 
The participants were thoroughly informed about the 
experiment, and their consent was obtained. This experiment 
was approved by the Ethics Committee of Toyama 
Prefectural University [R3-6]. 

The measurement items used in this experiment were 
P300, CNV, electro-oculography, the Stanford Sleepiness 
Scale (SSS), and reaction time from stimulus presentation to 
pressing the button switch. Subjects were instructed to press 
the button switch with their dominant hand. Blood glucose 
levels were measured in subjects who belonged to the high-
sugar food ingestion group and the low-sugar food ingestion 
group. Blood glucose levels were measured in 10 subjects 
(Mean ± SD, 21.80 ± 1.16 years) in the high-sugar food 
ingestion group and in all subjects in the low-sugar food 
ingestion group. A FreeStyle Libre (Abbott Japan LLC), a 
CGM device, was used to reduce the measurement burden on 
subjects and to minimize measurement error due to needle 
puncture position. CGM records the glucose concentration in 
the interstitial fluid, not the blood glucose concentration. 
However, since the glucose concentration in the interstitial 
fluid has been reported to have a high correlation with the 
blood glucose concentration, the glucose concentration in the 
interstitial fluid is hereafter referred to as the blood glucose 
level. The sensor for measuring blood glucose was attached 
to the side of the upper arm opposite the dominant hand of 
each subject. 

A g.USBamp (g.tec medical engineering GmbH, Austria) 
was used to measure biological signals. The sampling 
frequency of the measurement device was 512 Hz, and a 
low-pass filter of 0.01 Hz, a high-pass filter of 30 Hz, and a 
notch filter of 60 Hz were applied for noise reduction. Based 
on the extended 10–20 method, the electrode positions for 
the EEG were Cz, which are the predominant areas of CNV, 
and Pz, which is the predominant area of P300, with AFz as 
the ground electrode and the left earlobe as the reference 
electrode. To exclude electrical noise associated with 
blinking, electrodes were affixed above and below the left 
eye, and the electro-oculogram was measured. To eliminate 
artifacts based on spatial independence, EEG measurements 
were also taken for Fz, F1, F2, C1, C2, P1, and P2. 

The experimental protocol is shown in Figure 1. Four 
ERP measurements were taken before (pre-consumption), 
immediately after (Post 1), 40 min after (Post 2), and 80 min 
after (Post 3) the meal, and the SSS was administered before 

each measurement. Blood glucose levels were measured 
once before and after each ERP measurement, and the mean 
value was used as the representative value at each 
measurement time. A previous study reported that intense 
sleepiness occurs after ingestion of high-sugar foods [10]. 
Therefore, the dietary load used in the high-sugar food 
ingestion group was white bread (two x 20 mm thick slices) 
and water (285 ml), which has a high glycemic index (GI) 
value indicating the increase in blood glucose levels due to 

 different foods [11]. The control group received only 
water (285 ml). The low-sugar food ingestion group was 
given low-sugar bread (approximately 120 g) and water (285 
ml) to control for food ingestion and dietary content, and to 
manipulate the carbohydrate content of the food. The total 
carbohydrate content of the bread in the high-sugar food 
ingestion group was approximately 63 g and the low-sugar 
food ingestion group was approximately 22 g. Eating and 
drinking were prohibited two hours prior to the start of the 
experiment, as well as the use of electronic devices, 
excessive exercise, eating, drinking, and sleeping outside of 
the measurement time. 

The oddball paradigm and the CNV paradigm are widely 
used for P300-evoked and CNV-evoked tasks, respectively. 
In the oddball paradigm, subjects were randomly presented 
with two types of stimuli with different presentation 
frequencies and were asked to respond only to the stimulus 
presented at a lower frequency [6]. The CNVs were elicited 
by presenting the second stimulus (S2) 3–7 seconds after the 
first stimulus (S1) and requesting a possible behavioral 
response to S2. In this study, to measure P300 and CNV 
simultaneously, we employed two types of stimuli for S2 in 
the CNV paradigm: low-frequency and high-frequency 
stimuli (see Figure 2). S1 was a pure tone at 1,000 Hz, 
presented as an auditory stimulus through an earphone 
attached to the subject's ear; S2 was a visual stimulus 
presented through an LCD placed 60 cm in front of the 
subject. The visual stimuli were "A" and "B" images in the 
center of the LCD screen as the low-frequency and high-
frequency stimuli, respectively. Participants were instructed 
to quickly press a button switch for the low-frequency 
stimulus. 

 

 

 

 

 
Figure 1. Experiment protocol 

 

 

 

 

 

 

 

 
Figure 2. Experimental paradigm 
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III. ANALYSIS METHOD 

A. P300 Analysis 

A 0.5–7 Hz bandpass filter was applied to the EEG data 
at Pz. EEG and electro-oculogram data were then extracted 
for five seconds before and after the stimulus presentation 
(10 seconds in total) during each target stimulus. The 
InfoMax ICA algorithm [12] was applied to the EEG data to 
remove artifacts associated with blinking, and components 
with correlation coefficients greater than ± 0.6 with the 
electro-oculogram during the same time period were 
excluded. Finally, the baseline was corrected by subtracting 
the average voltage value during the 0.25 s before the 
presentation of the target stimulus. In the data of each EEG 
during target stimulation, we performed additive averaging, 
excluding trials in which the button switch was pressed 
incorrectly and where the voltage value exceeded ± 75 µV in 
the interval from 0.2 s before to 0.8 s after the presentation of 
the target stimulus. In this study, we identified the positive 
peak above 2.5 µV that appeared 0.2–0.6 s after presentation 
of the target stimulus as P300, and derived the P300 latency. 
The calculated P300 latencies were compared using the 
Wilcoxon signed-rank test for each value before and after 
feeding. The significance level was set at p < 0.05. A typical 
waveform of P300 measured in the same subject is shown in 
Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 3. Typical waveform of P300 for one participant: 
(a) high-sugar food ingestion group, (b) control group, 

(c) low-sugar food ingestion group 

 

B. CNV Analysis 

For CNV derivation, EEG and EOG data at Cz from four 
seconds before S1 presentation to four seconds after S2 
presentation (total 10 seconds) were extracted. To remove 
artifacts caused by blinking, the extracted EEG data were 
component decomposed with InfoMax ICA, and independent 
components with an absolute correlation coefficient of 0.7 or 
higher with the electro-oculogram at the same time were 
removed and reconstructed. The EEG data, excluding the 
effect of blinking, were baseline corrected by subtracting the 
average amplitude of 0.25 seconds before S1 presentation. 
For each of the above processed EEG data, an additive 
average was performed by excluding trials in which no 
button presses were observed within 0.5 seconds and trials in 
which the amplitude exceeded ±75 μV. In this study, the 
interval from 0.4 to 0.8 seconds after S1 presentation was 
defined as early CNV, and the interval from one second 
before S2 presentation to one second after S2 presentation as 
late CNV, and the mean amplitudes of these intervals were 
derived for each subject [13]. The mean amplitudes of the 
calculated CNVs were compared before and after feeding 
using the Wilcoxon signed-rank test for each value. The 
significance level was set at p < 0.05. A typical waveform of 
CNV measured in the same subject is shown in Figure 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. Typical waveform of P300 for one participant: 
(a) high-sugar food ingestion group, (b) control group, 

(c) low-sugar food ingestion group 
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IV. RESULTS 

Figure 5 shows the change over time of the mean value 
of each analytical index for all subjects. 

The mean value of the SSS in the high-sugar food 
ingestion group was 2.5 for pre-intake, and significantly 
increased to 3.2 in Post 2 (p < 0.05). In the mean values of 
the SSS in the low-sugar food ingestion and control groups, 
there was no significant difference between the pre- and 
post-intake values when compared using Wilcoxon's signed 
rank test for the pre- and post-intake values, respectively. 

Next, the mean reaction time from visual stimulus 
presentation to button press in the high-sugar food ingestion 
group was approximately 0.3 seconds at all measurement 
times, and the Wilcoxon signed-rank test showed no 
significant difference between the pre- and postprandial 
values. In the mean reaction time from visual stimulus 
presentation to button press in the low-sugar food ingestion 
group and the control group, a comparison using Wilcoxon's 
signed-rank test between the pre- and postprandial values 
showed no significant difference between them. Two out of 
10 subjects in the low-sugar food ingestion group were 
excluded from the analysis because the button switch did not 
work properly. 

Next, the mean value of P300 latency in the high-sugar 
food ingestion group was approximately 0.33 seconds for 
pre-intake, but was significantly longer in Post 2, 
approximately 0.36 seconds (p < 0.05). In the mean value of 
P300 latency in the low-sugar food ingestion and control 
groups, there was no significant difference between pre and 
post-intake when compared using Wilcoxon's signed rank 
test for each value in the pre- and post-intake groups. 

Next, the mean amplitude of the preprimary CNV in the 
high-sugar food ingestion group was approximately -2.5 μV 
for the pre-intake, but significantly increased to about -1.1 
μV in Post 2 (p < 0.05). In the mean amplitude of the early 
CNV in the low-sugar food ingestion and control groups, 
there was no significant difference between the pre- and 
post-intake values when compared using Wilcoxon's signed 
rank test for each value in the pre- and post-intake groups. 

Next, the mean amplitude of late CNV in the high-sugar 
food ingestion group was approximately -5.2 μV for pre-
intake, but significantly increased to about -2.9 μV in Post 2 
(p < 0.05). In the mean amplitude of late CNV in the low-
sugar food ingestion and control groups, there was no 
significant difference between pre- and post-intake values 
when compared using Wilcoxon's signed rank test for each 
value in the pre- and post-intake groups. 

The mean blood glucose level in the high-sugar food 
ingestion group was 97 mg/dL for pre-intake, but 
significantly increased to 114 mg/dL in Post 1 and 145 
mg/dL in Post 2 (p < 0.05). Blood glucose levels in Post 2 
were significantly higher than those in Post 1 and Post 3 (p < 
0.05) (see Figure 6). The mean values of blood glucose in the 
low-sugar food ingestion group showed no significant 
difference between the pre- and postprandial values using 
Wilcoxon's signed rank test. 

In Post 1, blood glucose significantly increased from 99.7 
mg/dL before ERP measurement to 128.8 mg/dL after ERP 

measurement (p < 0.05). The blood glucose level decreased 
significantly from 152.7 mg/dL before ERP measurement (p 
< 0.05) (see Figure 7).  

The mean blood glucose level of all subjects in the low-
sugar food ingestion group was 92.5 mg/dL after ERP 
measurement compared to 99.1 mg/dL before ERP 
measurement in Post 2, showing a significant decrease in 
blood glucose level (p < 0.05) (see Figure 7).  
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Figure 5. Change over time in each analytical index (Mean ± SE), 
(a) stanford sleepiness scale, (b) reaction time, (c) P300 latency, 

(d) amplitude of early CNV; (e) amplitude of late CNV 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Change over time in blood glucose level (Mean ± SE) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Blood glucose level before and after ERP measurement (Mean ± 

SE);(a) High-sugar food ingestion group, (b) Low-sugar food 
ingestion group 

 

V. DISCUSSION 

Recent research hypotheses that link postprandial brain 
dysfunction to fluctuations in blood glucose levels have been 
proposed to explain the pathogenesis of PLD, and have 
attracted much attention. Although blood glucose spikes and 
neuropeptide inhibition are representative examples of such 
hypotheses, the mechanism of PLD remains to be elucidated. 
This is due to the fact that there have been few cases in 
which the decline in brain function caused by postprandial 
sleepiness has been evaluated using quantitative indices, and 
where brain function and blood glucose levels before and 
after eating have been recorded simultaneously. In this study, 
we investigated the relationship between postprandial brain 
function decline and blood glucose level fluctuations by 
measuring ERP and blood glucose levels before and after 
consumption of two foods with different carbohydrate 
contents. 

In the high-sugar food ingestion group that consumed 
white bread, a high GI food, there was an increase in the 
subjective sleepiness score, prolonged P300 latency, and 
increased early and late CNV amplitude in Post 2 compared 
to pre-intake. In addition, blood glucose levels measured at 
the same time were significantly increased in the high-sugar 
food ingestion group in Post 1 and Post 2 compared to pre-
intake. In contrast, there were no significant changes in any 
of the parameters in the low-sugar food ingestion group 
before and after the meal. In 1990, Pivonka et al. evaluated 
postprandial sleepiness after consumption of high-sugar 
beverages and water using the SSS [14]. The results showed 
that the group that consumed high-sugar beverages had 
significantly increased values on the SSS compared to the 
group that consumed only water. This is consistent with the 
results of this study, in which PLD was observed only in the 
high-sugar food ingestion group with significantly increased 
blood glucose levels. In 2019, Ogata et al. also fed 20 
university students with high- or low-GI foods and compared 
the number of students who fell asleep during lectures after 
lunch [15]. Ogata et al. also recorded blood glucose levels 
after lunch using a CGM, similar to this study. The results 
showed that blood glucose levels increased significantly 
when students consumed low-GI foods compared to when 
they consumed high-GI foods. In contrast, the number of 
students who dozed off during the lecture after lunch did not 
change even when the GI values of the foods were varied. 
However, Ogata et al. used the presence or absence of 
nodding off during lectures as an evaluation index for post-
lunch sleepiness, and did not use a quantitative index to 
evaluate the post-lunch decline in brain function. In this 
study, in addition to the subjective questionnaire and blood 
glucose level, we measured ERPs, which were suggested to 
be useful as quantitative evaluation indices for postprandial 
brain function decline. As a result, ERP fluctuated 
significantly with a significant increase in blood glucose 
level only when high GI foods were consumed, confirming 
the decline in brain function. Therefore, this study’s use of a 
quantitative evaluation index for postprandial decline in 
brain function provides new results that support the research 
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hypothesis that postprandial blood glucose fluctuations affect 
brain function. 

In the high-sugar food ingestion group, there was a 
significant increase in blood glucose levels in Post 1 and Post 
2 compared to pre-intake. However, increased subjective 
sleepiness and decreased brain function were not observed in 
Post 1, but only in Post 2. One of the major research 
hypotheses explaining the mechanism of PLD is the 
explanation by neuropeptide inhibition, which is a 
neuropeptide that regulates arousal level. One of the major 
research hypotheses to explain the mechanism of PLD, the 
explanation by suppression of neuropeptides, proposes that 
PLD is caused by the suppressed secretion of orexin, a 
neuropeptide that controls arousal level [5]. It is known that 
orexin secretion is inhibited in response to the degree of 
blood glucose elevation [16]. Therefore, the inhibitory effect 
of orexin is small at the degree of elevation of blood glucose 
level that occurred in Post 1 of this study, and it is 
considered that brain function did not decrease. 

In addition, to investigate the tendency of blood glucose 
fluctuation during ERP measurement, blood glucose levels 
before and after ERP measurement were compared in this 
study. The results showed a significant increase in blood 
glucose levels before and after ERP measurement in Post 1, 
and a significant decrease in blood glucose levels before and 
after ERP measurement in Post 2 in the high-sugar food 
ingestion group. Therefore, PLD is thought to occur when 
blood glucose levels fall, not when they rise. The blood 
glucose spike explanation is a research hypothesis which 
posits that PLD is caused by the secretion of melatonin, 
which has hypnotic effects, in association with the additional 
secretion of insulin in response to the postprandial rise in 
blood glucose [4]. In other words, in the blood glucose spike 
explanation, PLD is thought to occur from the peak to the 
fall of blood glucose levels, when insulin secretion is 
prominent. In this study, PLD was also observed in Post 2, 
when blood glucose levels tended to decrease, and these 
experimental results support the blood glucose spike 
explanation. However, even in the low-sugar food ingestion 
group, where brain function did not decline after 
consumption, a significant decrease in blood glucose levels 
was observed before and after ERP measurement in Post 2. 
Therefore, it is possible that the postprandial decline in brain 
function does not necessarily occur when blood glucose 
levels fall, but rather when blood glucose levels fall after a 
postprandial increase to a high level. 

 

VI. CONCLUSION 

To elucidate the pathogenesis of PLD, it is important to 
establish a quantitative evaluation index to assess brain 
dysfunction caused by eating. Currently, the hypothesis that 
PLD is caused by an increase in postprandial blood glucose 
level is sup-ported as a possible explanation for the 
pathogenesis of PLD. However, few studies have 
simultaneously measured postprandial brain dysfunction 
and blood glucose levels, and examined the relationship 
between the two. In this study, we measured blood glucose 
levels and ERP before and after consumption of two types 

of foods with different carbohydrate contents, and examined 
the relationship between postprandial blood glucose 
fluctuations and PLD. 

The results showed that the SSS values increased 
significantly in the high-sugar food ingestion group in Post 
2 compared to pre-intake. The SSS significantly in-creased 
in Post 2. The P300 latency was significantly prolonged in 
Post 2, and the early and late CNV amplitudes were 
significantly increased in Post 2. However, in the control 
group without food, there were no significant changes in 
any of the parameters before or after drinking. Therefore, 
P300 and CNV are highly useful as quantitative indices to 
evaluate the transient decline in brain function caused by 
PLD. There were no significant differences in subjective 
sleepiness, brain function, or blood glucose levels before 
and after eating in the low-sugar food ingestion group. In 
contrast, there was a significant increase in blood glucose 
levels in the high-sugar food ingestion group with impaired 
brain function in Post 1 and Post 2 compared to pre-, and a 
peak increase in blood glucose levels was observed in Post 2. 
Therefore, it was suggested that the postprandial rise in 
blood glucose was related to the expression of PLD. In the 
Post 2 blood glucose levels in the high-sugar food ingestion 
group, there was a significant decrease after ERP 
measurement compared to before ERP measurement. This 
suggests that PLD occurs during hyperglycemia and when 
blood glucose levels fall. 

In the future, we will investigate the relationship between 
blood glucose and brain function decline in detail, such as 
when moderate GI foods are consumed and when multiple 
foods are consumed. If we can clarify the conditions under 
which PLD is induced by blood glucose levels, it will be 
possible to estimate the amount of food consumed and the 
way of eating that reduces the decline in performance after a 
meal. These research results can be applied to various fields, 
such as sports science and nutritional science. Furthermore, 
we aim to establish systematic evaluation criteria for PLD 
and transient decline in brain function by conducting 
continuous experiments using the number of chews and the 
amount of food consumed as factors. 
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Abstract—Brain-computer interfaces accuracy is often limited 

due to a lack of diverse training data. In this study, we face this 

problem by using a computational model of neural dynamics, 

specifically Neural Field Theory, to generate artificial 

electroencephalogram time series as additional training data. 

We fitted this model to common spatial patterns of each motor 

imagery class, jittered the fitted parameters, and augmented 

the training data by generating time series from the model. We 

then applied a linear discriminant analysis to classify motor 

imagery states based on total-power features and tested the 

accuracy improvement on the ‘2a’ data set from brain-

computer interfaces competition IV. Our findings show that 

data augmentation using Neural Field Theory can significantly 

improve the accuracy of brain-computer interface classifiers 

when the number of training samples is limited, providing a 

biophysically meaningful signal. 

Keywords: brain-computer interface, neural field theory, data 

augmentation, motor imagery, EEG. 

I. INTRODUCTION 

Brain-Computer Interfaces (BCIs) allow for controlling 
computer and robotic applications directly with brain 
activity. A common problem in BCI systems is poor 
classification accuracy due to a lack of diverse training data, 
which is typically collected during tedious calibration 
sessions. Training data augmentation is a possible solution to 
this problem. Previous studies have explored various 
techniques, such as Ensemble Empirical Mode 
Decomposition (EEMD) [1] and spectral noising [2], to 
augment Motor Imagery (MI) electroencephalogram (EEG) 
signals. 

Here we harness Neural Field Theory (NFT), a 
computational model of neural dynamics, to augment MI 
training data. NFT is a powerful method for constructing 
models of large-scale brain activity based on physiological 
principles. These models can be fitted to experimental EEG 
spectra and generate artificial time series accordingly [3], 
[4].  

The rest of the paper is structured as follows. Section II 
presents the materials and methods used in this study. In 
Section III, we present the results obtained from our 
research. Section IV analyzes these results and compares 
them to other works in the field. Finally, in Section V, we 
draw conclusions based on our findings and provide 
directions for future research. 

II. MATERIALS AND METHODS 

We applied Common Spatial Patterns (CSP) to the MI 
EEG epochs and computed the Total Power (TP) and 
Higuchi Fractal Dimension (HFD) of the CSPs. NFT models 
were fitted to each CSP time series of each MI class. The 
fitted parameters were jittered and artificial CSP signals were 
generated from the models. Linear Discriminant Analysis 
(LDA) was used to classify MI states based on TP and HFD 
features. To compare the effectiveness of our augmentation 
method, we also performed a naive augmentation by adding 
Gaussian noise to feature values. 

We evaluated the accuracy improvement of our 
augmentation method on the ‘2a’ data set from BCI 
competition IV, which consisted of 18 subjects performing 
right and left hand MI [5]. To imitate a small training set, we 
randomly divided each subject’s data into three equal folds 
and used the first fold for training and NFT augmentation, 
and the other two folds for validation (as shown in Fig. 1). 

III. RESULTS 

Our goal was to reach the classification accuracy of the 
full training set, by augmenting the small training set. In the 
case of TP-based classification, our data augmentation 
method increased the accuracy of the small training set from 

=0.79 (Cohen’s Kappa [6]) to =0.83, surpassing the 

accuracy of the full training set (=0.82). In comparison, an 
augmentation that was done by noising the features 

decreased the accuracy to =0.76. For HFD-based 
classification, our augmentation method did not result in any 
improvement in accuracy. Please refer to TABLE I for 
complete results.  

TABLE I.  VALIDATION CLASSIFICATION ACCURACY  a 

 Full 

training 

set 

Small 

training 

set 

Small training 

set + NFT 

augmentation 

Small training 

set + noise 

augmentation 

TP feature 0.82 0.79 0.83 0.76 

HFD feature 0.89 0.86 0.84 0.84 

a. Inter-subject average 

IV. DISCUSSION 

Our results demonstrate that the NFT-based data 
augmentation technique effectively improved the 
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classification accuracy to the level of a full training set, 
enabling the use of shorter MI training sessions. The 
improvement was evident for TP-based classification but not 
for HFD-based, suggesting that NFT generates EEG signals 
that better preserve spectrum-based features compared to 
time-domain-based features. 

This augmentation technique outperformed the noise-
based augmentation method. This may be attributed to the 
physiological realism of the NFT-generated signals, which 
resemble real EEG signals and are distributed in a 
biophysical manner in a physiologically valid range. 

Its performance was at similar levels to the state-of-the-
art augmentation methods mentioned before. EEMD-based 

augmentation increased the accuracy from  =0.66 to 

=0.82, while spectral noising increased in from  =0.65 to 

=0.68, both on the ‘2a’ data set [1], [2]. A direct 
comparison is not feasible due to varying initial accuracy 
levels and evaluation methods in the studies. 

V. CONCLUSION AND FUTURE WORK

In this study, we addressed the challenge of limited 
training data in BCIs by proposing a novel augmentation 
approach. We used NFT to fit a physiological model to MI 
EEG signals and generated diverse artificial data for training. 
Our approach improved the accuracy of MI-based BCI 
classifiers and provided biophysical meaning to the 
generated signals. Overall, our findings suggest that data 
augmentation using NFT can be an effective solution for 
improving BCI performance when the number of training 
samples is limited. To assess the generalizability of our 
method, the next step would be to evaluate its performance 
on other BCI paradigms, such as Steady State Visual Evoked 
Potentials (SSVEP) and P300. This would help determine if 
our results can be extended to other BCI applications. 

    Figure 1.  MI data augmentation performance evaluation procedure flow. 
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Abstract—Perception of biological movements is integral to 

one’s ability to interpret actions of others. In the present study, 

we conducted a comparative analysis of neural responses in a 

functional Magnetic Resonance Imaging (fMRI) setting during 

visual perception of biological movement within a social 

context (which has not been studied yet) as opposed to a non-

biological baseline stimulus. Our results demonstrate right 

lateralization of superior temporal Region Of Interest (ROI), 

likely reflecting the underlying differences in social 

characteristics of each given stimulus.  

Keywords - functional magnetic resonance imaging; 

movement perception; biological movement; social movement. 

I.  INTRODUCTION  

The movements of living beings provide rich and 
meaningful information that facilitates social interaction. 
Despite improved understanding of the brain regions 
involved in social behavior and its perception, the details of 
neural representations require further experimental and 
theoretical work. The neurofunctional differences between 
different types of biological movement may serve for 
interpretation of one’s immediate intentions. This study 
comprised a comparative analysis of neural responses in an 
fMRI setting during visual perception of different types of 
biological movement with and without social context. 

The rest of the paper is structured as follows. In Section 
II, we present the methods. In Section III, we show the 
results. In Section IV, we discuss the outcomes. Finally, 
Section V concludes the work. 

II. METHODS 

20 healthy subjects aged 21 to 31, IQ > 85, were scanned 
on a 3-T Prisma scanner at the National Institute of Mental 
Health in Klecany, Czech Republic. The study was 
approved by the local ethical committee. The fMRI block 

design paradigm included two sessions with all stimuli 
presented twice; the order of stimuli was counterbalanced 
across subjects. All participants observed three types of 
biological movement within different social contexts (single 
hand, fist, and a handshake) and a control stimulus (a 
stationary cross).  

Data analysis was executed in the Statistical Parametric 
Mapping (SPM) software [1]. Whole brain analysis as well 
as ROI analysis were applied to address brain activations 
under each condition. The areas selected for the ROI analysis 
(precentral, superior, and inferior temporal and parietal gyrus 
bilaterally) were based on predefined brain structures that are 
involved in movement processing as well as social 
perception [2][3]. 

III. RESULTS 

A. Whole Brain Analysis 

The observation of all stimuli elicited activation in the 
frontal, parietal, and occipital-temporal regions involved in 
visual movement perception (see Table 1). Bigger cluster 
size and a higher Z-score correspond to increased activity in 
the peak area. 

B. ROI analysis 

ROI-based analysis highlighted cluster differences. 
Figures 1-3 depict the activation pattern overlap upon 
presenting the biological stimuli. The inferior parietal (Fig.2) 
and the precentral gyrus (Fig.1) were more active in the left 
hemisphere, while the superior temporal gyrus (Fig.3) 
showed right lateralization. 

IV. DISCUSSION 

The current study compared neural responses of three 
types of biological movement. Right hemisphere 
lateralization was previously documented [4], and the brain 
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areas that elicited higher activity go in line with several 
studies [4][5]. However, Sokolov et al. [6] did not find 
substantial activation in the inferior parietal gyrus, contrary 
to our findings, likely due to the difference between 
presented stimuli. 

V. CONCLUSION 

Our results showed that the right-lateralized superior 
temporal ROIs were more selective in response to the 
presented visual cues, likely reflecting the underlying 
differences in social characteristics of each given stimulus. 
This provides further insight into the neurobiology of social 
movement perception and may serve as a baseline for future 
studies. 
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Figure 1. Precentral gyrus activation. 

 
Figure 2. Inferior parietal gyrus activation. 

 
Figure 3. Superior temporal area activation. 

 
Legend: Green – hand vs cross, Red – fist vs cross, Blue – handshake vs 

cross 

TABLE I.           WHOLE BRAIN ANALYSIS 

Stimulus Cluster 

size 

(voxels) 

Z 

score 

Peak p(FWE) Peak area 

x y z 

Hand vs. 

cross 

5074 6.23 -48 -76 -5 < 0.001 Middle Occipital L 

400 4.74 -36 -4 50 < 0.001 Precentral L 

296 4.36 42 5 47 < 0.001 Precentral R 

266 4.21 27 -67 38 < 0.001 Superior Occipital R 

Fist vs. cross 6696 6.32 39 -67 -16 < 0.001 Fusiform R 

764 05.09 51 5 47 < 0.001 Precentral R 

444 05.01 -51 8 41 < 0.001 Precentral L 

Handshake 

vs. cross 

5418 06.04 39 -61 -7 < 0.001 Inferior Temporal R 

489 05.01 42 5 50 < 0.001 Precentral R 

415 4.71 -42 5 41 < 0.001 Precentral L 

201 4.24 30 -46 50 0.001 Inferior Parietal R 
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Abstract—We postulate that the consensus architecture inher-
ent in the Common Model of Cognition (CMC) not only captures
decades of progress in cognitive science and modeling human
and human-like intelligence, but that the CMC also connects
and strengthens the idea that brain growth is directly correlated
to connectome development. In this paper, we show how these
relationships are driven by the development of the communica-
tion links, the synapses, between the axon and the dendrite, hence
providing interneuronal communication, in essence, we show how
these are driven by the connectome development. We provide a
mathematical means for defining brain growth of the grey matter
layers, lobes and the white matter pathways.

Keywords—connectomes; fetal brain development; artificial
intelligence.

I. INTRODUCTION

We postulate that, because it is commonly accepted that
common sense in humans and animals requires priori and pos-
terior knowledge [1], if one were to synthesize a mechanism
to store priori and posterior knowledge, one would need to
mathematically emulate steps in neuroscience that map the
development of the fetal brain from conception to two years
of age. This mapping will include, but is not limited to i)
emulating how the directionality of brain signals in the white
matter of the brain form a plurality of synaptic pathways [2],
that enable a flow of information between distant gray matter
regions [3], ii) presenting a modular network topology in the
brain from the first days of life [4] [5], and iii) adhering to
the recent mapping of the human connectome [6] [7].

Herein, we postulate the ability of tracking infantile brain
development over time. Using data collected from the baby
connectome project [8], we will derive the growth rates and
accelerations of the brain regions of grey matter and the
pathways of the white matter. The resulting growth rates and
accelerations along with their time of occurrence provide us
with a sequence of events in the infantile brain development.
The resulting sequences are then utilized as a script for the
brain model development, defining which Regions of Interest
(ROI), layers and pathways are deployed, when and where.
Accordingly, we present the first step towards building a
developing model reflecting the infant human brain develop-
ment. This model provides the physical structure of the brain’s
development, laying out which structures are available to learn
functionality over time. Thus, the functionality can only be

learned if the physical structure exists and the actual neurons
are trained with posterior experience leading to knowledge.
Because we are limited by the data available, the specific
experiences over time from conception to two years of age are
not available. Hence, our model is limited to physical growth
until experiential data is tracked for subjects.

The rest of this paper is structured as follows. In section II,
we discuss brain development. In section III, we explain our
dynamic modeling of brain growth. In section IV, we discretize
growth into solvable problems. In section V, we present our
conclusion and future work.

II. BRAIN DEVELOPMENT

Recent research in brain development centers on how a first
set of neurons that become grey matter grow radially outward
before a second set of neurons that will form white matter
pathways, grow tangentially underneath the first set of neurons
and consequently pushes it outward [9] [10] [11] [12]. In the
first six months of fetal growth the brain is driven by genetic
influences [11] including developments in the womb that are
more priori than posteriori. Zollei et al. [13] found myelin
accumulation was critical in the development in the fetus brain,
that included 14 white matter pathways, increased fractional
anisotropy (FA), and decreased mean diffusivity (MD). After
the first six months, the brain continues to develop its white
matter pathways up the 42 known bundles [14] in the adult.

A. Recent Brain Atlas Research

In order to appreciate our contribution to optimizing brain
atlas research we review the state-of-the-art in this field. In
building a more efficient and accurate pediatric brain atlas we
model the lobe and pathway development from instantiation
through 2 years of age by leveraging 4D surfaces introduced by
Li et al. [15] where separate surfaces were created for various
intervals of time from birth to 24 months of age. Our model
is unique from Li et al.’s 4D surfaces because we include
pathways and their connections in our model. We note that
Maffei et al. [14] developed a pathway atlas they integrated
it into their TRACULA; however, our model is unique from
Maffei et al.’s work as we are particularly interested in the
neurological growth from conception to two years of age.
Our age range inherent in the mapping of our model also
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differentiates us from work performed by Maier et al. [16]
who refined pathway definitions from several researchers to
produce ground truth for the fiber bundles. To effectively
model the brain’s growth, as alluded to above, we have
differentiated space and time in order to observe the rate and
acceleration of growth. Here, our model focused on keeping
track of how the fetal brain grows. Fetal neuronal growth is
complex and in order to effectively track said growth, the
resulting system needs to track how the fetal brain produces
250,000 nerve cells every minute from conception to birth [11]
that form pathways and six distinct compartments that become
lobes. Our system tracks the brain lobes as they move through
the brain. More so it will also track the new lobes appearance
and their subsequent motion to their destination and track the
pathways appearance and growth as they connect the lobes.

B. Recent Common Model of Cognition Research

The Common Model of Cognition (CMC) not only captures
decades of progress in cognitive science and modeling human
and human-like intelligence as proposed by Stocco et al. , [17],
but, as described in their paper, the CMC also connects and
strengthens the idea that brain growth is directly correlated
to connectome development. This view that the fetal brain’s
network develops in conjunction with the connectomes is well-
supported by large-scale analysis of the human functional
connectome. This paper adds to this concept because we
show that it is commonly accepted that common sense in
humans and animals requires priori and posterior knowledge
which means that if one were to synthesize a mechanism
to store priori and posterior knowledge, one would need to
mathematically emulate steps in neuroscience that map the
development of the fetal brain from conception to two years
of age.

The CMC proposed by Laird et al., [18] is comprised of
a set of principles that summarize the similarities of multiple
cognitive architectures that were developed over the course of
five decades in the fields of cognitive psychology, artificial
intelligence, and robotics [17]. The CMC has been used to
design cognitive agents because agents exhibiting human-
like intelligence share five functional components: a feature-
based declarative long-term memory, a buffer-based working
memory, a system for the pattern-directed invocation of actions
represented in procedural memory, and dedicated perception
and action systems. Importantly, the CMC has been used as a
basis in computational neuroscience in robotics’ AI system
and artificial neural networks including but not limited to
DeepMind’s AlphaGo [17], look-ahead search, working mem-
ory and procedural memory, in addition to dedicated systems
for perception and action [19] and the Differentiable Neural
Computer [20]. Therefore, the cross-correlation between the
CMC connecting robotics and the fetal brain deems it as a
critical resource in validating connectomic perturbations and
fetal brain growth,

III. DYNAMIC MODELING OF BRAIN GROWTH

As mentioned above, we model the brain’s growth by dif-
ferentiating by space and time. Here, the space differentiation
shall consider three differing structures, called ’spaces’ of the
brain, i) the grey matter, ii) the white matter and the iii)
intersecting matter. In each space separate entities will be
called out. For the grey matter space the entity distinction shall
be the name of the brain lobe or layer. For the white matter
space the entity distinction shall be the white matter pathway.
For the intersecting matter the entity distinction shall be the
combined pathway-lobe pair. Additionally, the intersecting
matter represents the neuronal pathways terminating into grey
matter lobes, a definite intermingling of volumes that shall
be better defined by future research. We provide a location
and volume description for each lobe in the grey space, each
pathway in the white space, and each pathway-lobe pair in
the intersecting matter, for each time instance, if the entity
exist at that time. Additionally the pathway entities include
the set of streamline definitions that comprise that particular
pathway. The streamline definition includes the coordinates
of each axonal segment found by MRI. With the longitudinal
data of position and volume over time, Curve fittings shall
provide the functions for individual entity volume growth and
positional movement. These functions shall be integrated into
a differential equation representing the position movement and
a differential equation representing the volume growth for
each of the lobes, pathways, and pathway-lobe pair. Further
refinement of these spaces may be possible in the future.

IV. DISCRETIZING GROWTH INTO SOLVABLE PROBLEMS

Our goal is to mathematically model the growth of the
brain. There are quite a few facets to consider. The brain
starts by building the layers of the grey matter and then builds
the white matter connections underneath them. The layers
of the grey matter development is different from the white
matter development. Separate models will be developed and
then combined. Both developments contribute to the brain
volume growth. The grey matter development might take into
consideration several factors including the neuronal growth,
the movement towards the skull, the changes in density of
the separate layer and the insertion of white matter pathway
connections. The white matter development starts after the
grey matter development. The white matter development is
different from the grey matter development due the oligo-
dendrocytes, glial cells, that excrete the myelin around the
axons, producing the white. For each layer and for each
pathway, a model will be developed as data becomes available
from the connectome project. Several measures are currently
used to describe the brain such as Fractional Anisotropy
(FA), Mean Diffusivity (MD) [13], Cortical Thickness, surface
area, gyrification, and position [15]. Therefore, longitudinal
parameter and data values representing brain structure with
collected data over time, are candidates for the same analysis
we propose.

For instance, given the volume measurements collected over
time, we can plot the volume over time and curve fit to
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produce a function for volume over time. The challenge is
locating the method for curve fitting is finding the method
that minimizes error. With the function VolumeOverTime, we
then take the first and second derivatives to give the growth
rate and acceleration. This same approach can be applied to
any brain measurements that have been collected. Myelination
over time should be included for the white matter model. The
sum of these functions provide the brain development model.
There will be intersecting variables in these functions that will
need to be resolved. Volume is dependent on density, which
is dependent on the growth rate of the skull and its volume.
First we have the total brain volume over time as the sum of
the volumes of the grey matter layers volume and the sum of
the white matter pathway volumes.

TV (t) =
∑

(GLVt,i, i = 1..14 +
∑

(WPVt,j , j1.. = 42)
(1)

where GLV is the grey matter layer volume for each of the
fourteen grey matter layers and WPV is the white matter
volume for each of the 42 white matter pathways. We take
the derivative of both sides.

TV ′(t) =
∑

(GLV ′
t,i, i = 1..14 +

∑
(WPV ′

t,j , j = 1..42)
(2)

where we now have GLV’ as the growth rate of grey matter
layers over time and WPV’ as growth rate of the white matter
pathways over time. These growth rates give the rates at which
these distinguishable brain regions shall grow in our synthesis
of the infantile brain development. We now take the second
derivative.

TV ′′(t) =
∑

(GLV ′′
t,i, i = 1..14 +

∑
(WPV ′′

t,j , j = 1..42)
(3)

where we now have GLV” as the acceleration of grey matter
layer growth over time and WPV” as acceleration of the white
matter pathway growth over time. These accelerations give
the time at which these distinguishable brain regions grow in
our synthesis of the infantile brain development. From [10]
[11] we know that these individual regions of interest develop
in an almost prescribed order with certain functions taking
precedence, such as vision and auditory. What we have defined
here is a means to quantify the mathematical order of growth
by using the accelerations and growth rates.

A region of interest or pathway starts growth with an
acceleration of growth, from no existence to growth. When the
growth is completed the acceleration and the growth rate falls
back to zero. Therefore, we can determine the ordering over
time of the infantile brain development. We show an example
of the difference in growth between two regions of interest in
Figure 1. In order to test our hypothesis, we generated random
sample data to reflect differing rates of growth; the red region
shows the volume difference of the two regions over time. If
the curve fitting provides a mathematically twice differentiable
function then a differential equation can be developed for the
growth of a specific region over time. This will lead to the
investigation of any patterns of development.

Fig. 1. The difference between two brain regions volume over time.

We show the growth rate and acceleration in Figure 2.
The growth rate and acceleration must be positive going
from no volume to the identified region. Our example used
spline curve fitting which probably produced a piece-wise
function that would not be friendly to differentiation for pattern
investigation. This process could be expanded from conception
to two years of age to death, possibly identifying the negative
growth in dementia.

Fig. 2. The growth rate and acceleration between two brain regions over time.

V. CONCLUSION AND FUTURE WORK

We have described how the brain growth model is inherently
linked to connectome growth. It is generally accepted that
Rapid cortical Gyrification Index (GI) and Local Gyrification
Index (LGI) growth in the early postnatal period is related to
1) an increase of dendritic arborization [21] [10] and 2) growth
of the terminal axon arborization, synaptogenesis [21]. We
can logically determine that because all of the aforementioned
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occurs inside of the fetal brain’s connectome development, that
these connectomes are therefore a major factor in determining
fetal brain development per se. We therefore deduce that it will
be interesting to investigate how the cortical LGI relates to the
underlying WM connectivity. Lastly, while relationships have
been established between several factors, it is our hypothesis
that neuronal proliferation, and the glial proliferation providing
the myelination for the axons, to protect their signals, are a
contributing force in brain growth. The connectome model
will contribute a means to efficiently define and predict brain
growth not seen before. Furthermore, a second subset of our
hypothesis is the aforementioned moves existing structures
away from their origin to their predestined position in the
brain.
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