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Abstract— This work-in-progress paper presents an 

implementation of a Brain-Computer Interface (BCI) system 

focused on the control of the most common messaging 

applications of a smartphone: WhatsApp, Telegram, e-mail 

and Short Message Service (SMS). The control of these 

applications is achieved through the use of a virtual assistant 

running in the smartphone. The BCI system is based on the 

visual Row-Column Paradigm (RCP), which allows users to 

select several control commands and to spell messages that are 

converted to synthesized voice and received by the mentioned 

virtual assistant in the smartphone.  

Keywords- Brain-Computer Interface (BCI); P300; assistive 

technology; virtual assistant; messaging applications. 

I.  INTRODUCTION 

Brain-Computer Interfaces (BCI) are a type of Assistive 
Technology (AT) that uses the brain signals of users to 
establish a communication and control channel between 
them and an external device (usually a computer) [1]. BCI 
systems may be a suitable tool to restore communication 
skills in severely motor-disabled patients, as BCI do not rely 
on muscular control. There are several diseases that cause 
severe impairment of motor skills in affected patients, such 
as Amyotrophic Lateral Sclerosis (ALS). AT can be used to 
control multiple devices, such as a wheelchair, a home 
automation system, or a verbal communication system [2]. 
AT should be able to be controlled through those output 
channels that the patient still has preserved, such as the 
voice, the eye gaze, movements of a finger, the head, the 
cheek or the tongue. However, in severe and progressive 
motor limitations (as is the case in ALS), most of these 
examples of AT may no longer be useful because they 
depend on some type of muscular channel that may be 
affected in the patient. In these cases, BCI may be a suitable 
option for those people who have completely lost the ability 
to move their muscles. The neuroimaging technique most 
used by BCIs is electroencephalography (EEG), possibly due 
to its relatively low cost and high temporal resolution [3]. 
One of the most extended EEG signal used in BCI system is 
the P300 evoked potential. P300 is a positive potential 
generally located in the parieto-occipital areas that appears 
about 250-500 ms (although the range can vary depending on 
numerous factors) after the presence of both an expected 
stimulus and a rare one [4]. Usually, the P300 is evoked 
through an oddball paradigm, in which the available items 
are highlighted pseudo-randomly while the user pays 
attention only to the desired item, thus resulting in a P300 

potential after the stimulation of this desired item. After a 
predetermined number of iterations, the system averages the 
resulting EEG and determines which item the user wanted to 
select. This concept was adopted by [5] to propose a 
paradigm to control a text speller. 

The loss of communication (mainly with family and 
caregivers) is considered by ALS patients as even more 
negative than the loss of physical aspects [6][7]. Therefore, 
this work will focus on the use of a BCI that could allow 
patient communication through some of the most common 
messaging applications on a smartphone: WhatsApp, 
Telegram, e-mail and Short Message Service (SMS). Other 
researchers have focused on the BCI control of daily use and 
domotic applications, for example the work in [8] uses visual 
event-related potentials to control a TV, an air conditioner 
and to make an emergency call. The authors in [9] propose a 
BCI control of Telegram and Twitter in a smartphone. A 
hybrid BCI (that uses as well electrooculography as input) 
presented in [10] allowed to control a web browser and an e-
mail client. To our knowledge, the present work in progress 
is the first BCI proposal that allows to control some of the 
previously used applications by other BCI works (Telegram, 
e-mail) and WhatsApp and SMS as well. 

There are some works that have already explored the idea 
of using voice commands sent to virtual assistants to 
facilitate integration between applications. Outside the field 
of BCI, the work in [11] can be highlighted. The authors 
used a proximity sensor on the fingers, feet or head 
(depending on the patient) to select commands in an 
application with a graphical interface which later allowed 
text to be converted to speech to verbalise the users' 
selections. The voice assistant used for this work was Google 
Assistant. This system allowed to control WhatsApp and 
YouTube. This work was based on a reduced set of possible 
actions: for WhatsApp, three contacts to choose from and 
three predetermined possible messages to send; for 
YouTube, three possible music/videos alternatives and four 
alternative-related events. In relation to the works that have 
used a BCI, the work in [12] has been the only one, to our 
knowledge, that has used a voice assistant (Amazon’s Alexa) 
to control two devices (a light bulb and a fan). 

The objective of this work is to present a communication 
bridge between the UMA-BCI Speller platform [13] (a BCI 
software developed by UMA-BCI group of the University of 
Malaga, UMA) and the messaging services of WhatsApp, 
Telegram, e-mail and SMS, through the use of Google 
Assistant on a smartphone. This paper presents a short 

1Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-885-3

BRAININFO 2021 : The Sixth International Conference on Neuroscience and Cognitive Brain Information

                             7 / 31



version of a full-length work that is currently under review 
[14]. 

This paper is organized as follows: section 2 and section 
3 describe the system implementation and the control 
paradigm, respectively. The preliminary results are presented 
in section 3, followed by the conclusion and future works in 
section 4. 

 

II. SYSTEM IMPLEMENTATION 

The aim of the BCI system was to generate voice 
commands that could be interpreted by a virtual assistant 
running in a smartphone. These voice commands were 
intended to read and send messages through various 
messaging services. In order to achieve that, a BCI system 
was implemented that could generate these commands in text 
form and convert them into voice. On the one hand, a laptop 
ran the software that presented the stimuli and registered and 
analysed the EEG. This software was the UMA-BCI Speller 
[13], a free tool that wraps BCI2000 [15] and simplifies its 
configuration and use. This software was used to spell and 
convert the control commands to voice. On the other hand, a 
virtual assistant was running on a smartphone. This virtual 
assistant was Google Assistant and it received and 
interpreted the voice commands, performing the 
corresponding action. The system implementation is shown 
in Figure 1. Through the EEG, the user can select commands 
from a computer control (in the example, “Read SMS”) and 
spell messages to be sent. These commands and messages 
are converted to voice and received by the virtual assistant 
running in the smartphone. The assistant interprets them and 
performs the corresponding action (in the example, it 
informs the user that there is a SMS and it reads it). 
 

 

Figure 1.  System implementation.  

The UMA-BCI Speller includes a text prediction function 
that may help users when spelling words. As users choose 
the characters of a word (starting with the first character), the 
system proposes several predicted words based on the 
characters already written and the probability of occurrence 
based on a Spanish language specific corpus. 

Once users had completed the spelling of the text 
command to send, they had to select a confirmation item in 
the interface so that the system could convert this command 
into speech. The Windows 10 Narrator (a text-to-speech 
feature) was used, particularly the voice named “Microsoft 
Helena” from the Spanish voice catalogue. 

To avoid the influence of ambient noise on the 
understanding of the command by the virtual assistant, the 
voice commands were sent to the smartphone via a cable 
connection (using a mini-jack audio cable) connecting the 
laptop audio output with the smartphone microphone input. 
The output volume of the laptop was fixed throughout the 
whole experiment, so the assistant always received the same 
level of audio. 

As the virtual assistant used in the experiment was 
Google Assistant, each command started with the words “Ok 
Google…”, which is one of the wake-up keywords of the 
assistant. Two main types of voice commands were used: i) 
commands asking the assistant to read the received 
messages, e.g., “Ok Google, read my WhatsApp messages”, 
and ii) commands asking the assistant to send a message 
using one of the messaging services installed in the 
smartphone, e.g., “Ok Google, send a Telegram to [contact], 
[message]”. In addition to these, other voice commands were 
used that were needed to confirm or cancel actions, as we 
will explain below. 

III. CONTROL PARADIGM 

In order to send a command to the virtual assistant, users 
had to select items from different menus. The selection of an 
item followed the usual procedure in a P300 Row-Column 
Paradigm (RCP): users had to pay attention to the desired 
item (within a matrix of possible items) and mentally count 
the number of times it was highlighted. The timing of each 
selection for all the menus was the same, as all the interfaces 
consisted of a 7×7 matrix, even though in three of them there 
were dummy items (items that had no effect when selected). 
An item was selected after all the seven rows and columns 
were highlighted a certain number of times. 

Four menus were implemented that allowed subjects to 
gradually form a sentence that would finally be converted to 
speech by the Windows 10 Narrator voice synthesiser (from 
now on, this conversion will be denoted as “speak”). The 
sentence to be spoken was present in the interface so that 
subjects decided when to indicate to the system to speak it. 
Some items added several predetermined words to this 
sentence, while other items were present to add individual 
letters to spell a message. The four menus are described next: 

A. No Control (NC) menu. 

This was a 7×7 matrix in which only one item was a 
valid command, and the other 48 items (“X”) were dummy 
commands. The objective of this menu was to allow subjects 
to remain in a state where they could rest without generating 
control commands; the term “no control” is generally used in 
asynchronous systems to refer to such a state. The only valid 
command was a control command named “IC” whose 
selection changed the menu to an Intentional Control (IC) 
menu. 

2Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-885-3
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B. Intentional Control (IC) menu. 

This was the main menu of the system, where subjects 
could choose what action they wanted to select. In a 7×7 
matrix, ten valid options were available (the remaining 39 
options were dummy non-visible items). This menu is shown 
in Figure 2. This menu presented ten options that can be 
grouped into three categories: 

 

 

Figure 2.  Intentinal Control (IC) menu. 

• Send messages. This group consisted of four 
commands: “Send WA”, “Send TG”, “Send 
SMS” and “Send Mail”, that enabled users to 
send a message using WhatsApp, Telegram, 
SMS or e-mail, respectively. Once one of these 
commands was selected, the system wrote part 
of the sentence to be spoken, “Ok Google, send 
a WhatsApp to”, “Ok Google, send a Telegram 
to”, “Ok Google, send a SMS to” or “Ok 
Google, send an e-mail to” and then changed to 
a Spelling menu (Figure 3), so that the user 
could next spell out the receiver of the message 
and the message itself. 

• Read messages. Three commands formed this 
group: “Read WA”, “Read TG” and “Read 
SMS” used to read the messages received 
through WhatsApp, Telegram and SMS, 
respectively. The selection of one of these 
commands made the system speak the 
corresponding sentence: “Ok Google, read my 
WhatsApp messages”, “Ok Google, read my 
Telegram messages” or “Ok Google, read my 
SMS messages”. After the sentence was spoken, 
the system deleted it and automatically changed 
to the NC menu so that subjects could listen to 
the received messages, if any. After the virtual 
assistant read each received message, it asked 
the users if they wanted to reply to it or not. To 
do this, subjects first had to change to the IC 
menu where two commands were available 
related to replying to messages. These 
commands will be explained in the third group. 
After cancelling or replying to each message, 
the system continued to read the remaining 
messages, if any. 

• Other commands. In this group, three 
commands were included: “Reply”, “Cancel” 
and “No Control”. The “Reply” command 
allowed users to reply to a WhatsApp, Telegram 

or SMS received message after the system read 
them. Once this command was selected, the 
system wrote the sentence “Ok Google, reply” 
and changed to the Spelling menu so that users 
could complete the sentence with the desired 
response (in a similar way to what was done 
with the “Send” commands); please note that in 
this case it is not necessary to specify the 
receiver of the message to be sent. The “Cancel” 
command was used to indicate to the system 
that the user did not want to reply to a received 
message. Once it was selected, the system wrote 
and spoke the sentence “Ok Google, cancel” 
and then deleted it and changed to the NC menu. 
Finally, the “No Control” command was 
presented in order to allow subjects to 
voluntarily change to the NC menu, in case they 
wanted to take a rest. 

C. Spelling menu. 

When users selected one of the “Send” or “Reply” 
options from the IC menu, the system changed to the 
Spelling menu (after adding some predetermined text). This 
menu  is shown in Figure 3. Here, the  users  could spell  out  

 

 

Figure 3.  Spelling menu with 38 characters to spell, four control 

commands and seven available predicted words (last column, in Spanish) 

the receiver and the message to send (or just the message in 
the case of the option “Reply”). It is worth mentioning that 
the message had to be spelled right after the receiver, only 
separated by a space. This menu consisted of a 7×7 matrix 
with spelling and control commands. The first six columns 
and rows corresponded to specific characters to be added 
(English alphabet letters and numbers). The last column was 
used to provide subjects with seven predicted words. The last 
row contained two characters (“SPC” (space) and “,”), two 
delete commands (“Del.” to delete a single character and 
“Del. W” to delete a complete word) and two control 
commands (“OK” and “IC”). The command “OK” was used 
to indicate to the system that the receiver (if needed) and the 
message to send were complete so that the written sentence 
could be spoken and interpreted by the virtual assistant. The 
“IC” command was used to return to the IC menu without 
generating any voice command (this was useful if a subject 
entered this menu unintentionally). The selection of “OK” or 
“IC” caused the current written sentence to be deleted (after 
speaking it in the case of “OK”), so a confirmation menu 
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was offered to subjects in order to avoid undesired selections 
of these two commands. 

D. Confirmation menu. 

Two valid commands were available (among other 47 
non-visible dummy options) in a 7×7 matrix, “Confirm” and 
“Back”. On the one hand, the “Confirm” command was used 
to corroborate the previous selection in the Spelling menu 
(that is, “OK” or “IC”). In the case of confirming an “OK” 
command, the system spoke (and deleted) the complete 
sentence so it could be interpreted by the virtual assistant, 
and it changed to the NC menu. In the case of confirming an 
“IC” command, the system deleted the written sentence and 
changed to the IC menu. On the other hand, the “Back” 
command was used to return to the Spelling menu in order to 
continue writing the sentence to be sent to the virtual 
assistant. 

IV. RESULTS 

Some preliminary tests have been carried out. In these, 
some healthy volunteers were asked to perform four tasks 
related to the four messaging applications: i) send a 
WhatsApp message with a predetermined message; ii) read 
the incoming SMS; iii) read an incoming Telegram message 
and reply to it with a free answer; and iv) send a free text e-
mail to a contact chosen by them. The preliminary online 
results obtained, as well as the results of some questionnaires 
related to the subjective experience controlling the interface, 
support the viability of the proposed system. 

V. CONCLUSION AND FUTURE WORK 

The use of a virtual assistant to control the smartphone 
makes it possible to easily extend the functionality to other 
applications beyond messaging services, for example to 
control domotic devices through the smartphone. However, 
the use of a virtual assistant also presented some 
misinterpretation problems when the synthesized voice was 
not correctly understood by the assistant. Other issue related 
to the use of the virtual assistant arose when the assistant 
responded to a command in an unexpected way, as the 
system was based in a one-way communication (from the 
laptop to the smartphone), taking for granted that the virtual 
assistant would interpret this command correctly. 

The future work based on this study is related to the 
extension of the functionality to domotic features, the 
improvement of the one-way communication from the BCI 
application to the virtual assistant, and the possibility of 
testing the system with motor-disabled patients. 
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Abstract—Attention-Deficit/Hyperactivity Disorder (ADHD)
presents in children and adolescents as a persistent pattern
of inattention, hyperactivity, and impulsivity that interferes
with their development. Computational studies on ADHD focus
on measures of brain activity of the participants and a few
use standardized cognitive tests or behavioral inventories to
assess objective indicators for diagnosis. The paper presents
a computational proposal in which the combination of two
artificial intelligence methods is used to aid the identification
of diagnostic indicators for ADHD. The proposal is to combine
a neural network of self-organizing maps to group factors from
standardized tests and inventories, and a decision tree to classify
the most relevant factors. The study included 127 children and
adolescents from 6 to 16 years old, 48 with ADHD diagnosis and
79 without ADHD (control group). The most relevant result of the
study was the strong contribution of the scores of the Inventory
of Behaviors for Children and Adolescents in the diagnosis of
the disorder.

Keywords—Self-Organizing Maps (SOM); Decision Tree; Atten-
tion Deficit/Hyperactivity Disorder (ADHD).

I. INTRODUCTION

According to the Diagnostic and Statistical Manual of
Mental Disorders, 5th edition - DSM-5 [1] Attention-
Deficit/Hyperactivity Disorder (ADHD) is a persistent pattern
of inattention and/or hyperactivity-impulsivity that interferes
with functioning or development. The disorder is characterized
by inattention involving, for example, difficulty sustaining
attention in tasks or play activities, a state in which the
mind seems elsewhere, even in the absence of any obvious
distraction, difficulty to follow through with instructions and
failing to finish schoolwork, often forgetful in daily activities,
chores, or duties in the workplace, losing things, expressing
excessive activity or restlessness, and inability to wait one’s
turn, always in ways that are excessive for one’s age or

developmental level. ADHD has its initial expressions in
childhood and usually persists into adulthood, resulting in
impairments in social, academic, and occupational functioning.

The diagnosis of ADHD is clinical, based on the individual’s
history and expression of symptoms. Because this diagnosis
is often based on reports of symptom severity and because
these symptoms are also part of other clinical conditions,
the diagnostic difficulty is present in the daily lives of the
interdisciplinary teams responsible for the evaluation process
[2] [3]. Because of the complexity of the diagnostic eval-
uation, the American Association of Pediatrics recommends
the use of an algorithm, both for evaluation and treatment of
children and adolescents with ADHD [4]. To support clinical
decision making, neuropsychological, behavioral, and adaptive
functioning assessment procedures have often been used in
conjunction with neurological assessments [5]. Considering
the social importance involved in properly issuing a correct
diagnosis of ADHD in both children and adolescents, studies
must be proposed that discuss which are the best indicators
of clinical-neurological, neuropsychological, and behavioral-
adaptive diagnostic evaluation when children and adolescents
present with complaints of inattention and hyperactivity. Fur-
thermore, for appropriate assessments and interventions to
be implemented, differential criteria are needed to correctly
characterize and identify attention-deficit/hyperactivity among
children and adolescents. Comprehensive assessments in this
regard allow a better understanding of the complexity of
each case for appropriate guidance, design of the therapeutic
intervention, and evaluation of the need for educational and
emotional support for patients and families [5].

Computational studies can help professionals in diagnostic
assessments, especially using machine learning algorithms.
Kam et al. [7] used an artificial intelligence algorithm called
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decision tree for screening ADHD by monitoring the school
activities of 153 children using 3-axial actigraph and obtained
results consistent with previous studies. In turn, Lee et al.
[8] analyzed the classification of ADHD in children through
brain activity measurements. In their work, they used a neural
network algorithm called self-organizing maps allowing cate-
gorizing characteristics of children with and without clinical
indicators of ADHD.

Unlike previous proposals presented in the literature, this
work aims to combine two artificial intelligence techniques. In
the first step, standardized test results are grouped by means
of Self-Organizing Maps (SOM) and, in a second step, the
groups with a high level of overlap are analyzed using a
decision tree algorithm, which helps discover which attribute
is discriminative in the diagnosis of children and adolescents
with suspected ADHD.

Besides Section I, that aims to contextualize the work and
present the objective, the work is organized into six parts.
Section II presents the theoretical framework and justifica-
tion of the study. Section III presents the proposed use of
two artificial intelligence algorithms to aid in the diagnosis.
In Section IV, the procedures for developing the study are
described, including the computational development with the
application of two artificial intelligence techniques. In Section
V, the contribution of standardized cognitive tests or behavioral
inventories is described, as well as the proposal to solve the
diagnostic doubt within the self-organizing maps and then
the classification by the decision tree for understanding the
characteristics of the diagnosis of the disorder. Finally, in
Section VI, we present the conclusion and recommendations
for further studies.

II. RELATED WORK

A. Elements of Attention Deficit/Hyperactivity Disorder
(ADHD)

ADHD is part of the group of neurodevelopmental disorders
beginning in childhood, but a substantial proportion of children
with ADHD remain relatively impaired into adulthood [9].
From a cognitive-behavioral point of view, it is characterized
by deficits in several cognitive functions, such as attention,
especially selective, sustained, alternating, and divided at-
tention, deficits in inhibitory control, processing speed, or-
ganization, ability to inhibit distracting information, deficits
in cognitive flexibility, hyperactivity behaviors, restlessness,
and impulsivity. ADHD affects 5.29% of the world’s child
population. Of this population, 30% up to 70% maintain
symptoms into adulthood [11] [12]. According to DSM-5 [1],
ADHD can be classified according to the predominance of
symptomatic axes as predominantly inattentive presentation,
predominantly hyperactive-impulsive presentation, or com-
bined presentation. Behavioral patterns are important in the
diagnosis of ADHD. Here are some descriptions from parents
regarding the children: difficulty listening, obeying, following
routine rules, often postponing and forgetting daily activities,
difficulty following direct instructions, difficulty regulating

feelings of frustration, exacerbation of motor activity, maybe
impulsive in changing activities before they are completed,
having difficulty waiting their turn, may have impairments
in social relationships. These behaviors may contribute to
high-stress [13] family or school environments. Given the
importance of collecting various pieces of information in
cognitive neuropsychology and behavior analysis, the treat-
ment and multivariate analysis of the data can help us obtain
relevant information in understanding ADHD complaints, and
the artificial intelligence techniques used become key elements
in diagnostic discrimination.

B. Self-Organizing Maps (SOM)

According to Merényi et al. [14], a SOM network provides
clustering and visual representation of data in low dimension.
This technique preserves the topological structure of the data
in a lattice of neurons. The grid can be defined as a rectangular
or hexagonal grid, as in Figure 1, usually two-dimensional,
in an ordered manner such that the most similar neurons
are grouped with neurons that are close in the grid, and the
opposite is true for less similar neurons that are far apart in
the grid, providing a topological view of the data. All neurons
in the grid must undergo exposure to different realizations of
the input dataset to ensure that the self-organization process
matures. The algorithm then proceeds to initially randomly
choose synaptic weights with small values. Once the grid
has been initialized, we have the presence of three essential
processes used to construct the self-organizing map. They were
summarized by Kohonen [15] and Kubat [16] as follows:

Figure 1. Topological Map - Rectangular and Hexagonal Grid

( [17, p.451] )

1) Competition: The synaptic weight vector is calculated
for each j neuron of the grid with the same dimension
as the input dataset through the inner product between
the synaptic weight vector and the input data vector, this
function being the basis for choosing the winning neu-
ron. The maximization of this function has mathematical
equivalence with the minimization of the Euclidean
distance between the synaptic weight and input data
vectors.
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X = [x1, x2, ..., xm]T (1)

X is the input vector of the space m transposed.

Wj = [wj1, wj2, ..., wjm]T, j = 1, 2, ..., l (2)

Wj is the synaptic weight vector of each neuron in the
grid.

i(X) = arg minj
∥∥∥X −Wj

∥∥∥, j = 1, 2, ..., l (3)

i(X) is the index that summarizes the competitive
process between neurons.

2) Cooperation: The basis for cooperation between neigh-
boring neurons is provided by the winner neuron that
shows the spatial location of the topological neighbor-
hood of neurons neighboring the winner hj ,i(X);

hj ,i(X) = exp
(
−d

2
j,i

2σ2

)
(4)

where dj,i is side distance and σ is the effective width
of the topological neighborhood.

3) Adaptation: Neighboring neurons to the winner increase
their discriminant function values based on the input
dataset and as appropriate adjustments applied to their
synaptic weights improve a subsequent input dataset.

Wj(n+1) = Wj(n)+η(n)hj,i(X)(n)(X−Wj(n)) (5)

where n equals epoch, η(n) is the learning rate, and
hi,j(x)(n) is the neighborhood function.

C. Decision Tree

A decision Trees is an Artificial Intelligence algorithm
capable of organizing attributes from a dataset in priority,
so that it can generate a path that leads to a decision for a
classificatory attribute [18] [19].

The entropy (Shannon’s) [20] measures the impurity of the
dataset, being a measure of the heterogeneity of the input
dataset (S) relative to its classification (c). The Gain(S,A) is
given by the equation 6 and the entropy of S is given by the
equation 7. Thus, the key factor is the use of a gain function
that allows the attributes (A) to be compared to select the most
relevant one. The attribute chosen is the one that maximizes
the information gain which is calculated as being [20]:

Gain(S,A) = Entropy(S) + Θ (6)

S is the input dataset, A are the attributes Θ represents the
probability of A multiplied by its entropy.

Entropy(S) =

c∑
k=1

−pilog2pi (7)

Θ = −
∑

v∈V alues(A)

p(Av)Entropy(Av) (8)

The information gain is given by the equation 6 and
represents the expected reduction in entropy when the value
of the attribute A is known, since the process calculates the
gain for each attribute, choosing the attribute with the highest
gain to be tested in the set S. This process creates the division
of objects to form the decision tree, giving rise to the node,
labeling the attribute, and creating branches for each attribute
value.

III. PROPOSED METHOD

The work presents a proposal for an unsupervised learning
model as a method used in the identification of the neurons
of the grid with greater diagnostic doubt of ADHD, that is,
the diagnostic doubt in the neuron shows that it is difficult
for both a machine learning algorithm and an expert to make
a diagnosis. Thus, the paper brings a proposal to apply a
decision tree on the neurons that show overlap to suggest
which attributes are more discriminative. To understand this
overlapping, the entropy (of Shannon) was calculated with
the purpose of measuring the impurity of the neuron with its
dataset, that is, the closer the entropy is to one, the greater the
impurity of the neuron’s dataset. Given this fact, a combination
of SOM with the decision tree algorithm, which is a supervised
model used in data classification to help identify one or
more attributes from standardized assessment tools, such as
cognitive tests and behavioral assessment inventories were
sought. These tools were used to test the learning of ADHD
characteristics. The objective of this decision tree algorithm
was to verify the accuracy of the model for the confirmation of
cases with ADHD diagnosis by identifying which assessment
tools best contributed to this ADHD confirmation.

IV. MATERIALS AND METHODS

The study sample consisted of 127 children and adolescents
between 6 and 16 years old, 48 with a clinical diagnosis of
ADHD and 79 from the control group, with no diagnosis of
ADHD. The attributes that make up the neuropsychological
tests and behavioral inventories applied in this study are
Attention Cancellation Test (TAC), Trails (TT), Wechsler Intel-
ligence Scale for Children (WISC-III), Wechsler Intelligence
Scale for Children (WISC-IV), Wechsler Abbreviated Scale
of Intelligence (WASI), Child Behavior Checklist for ages 6-
18 (CBCL/6-18) and Teacher’s Report Form for ages 6-18
(TRF/6-18). These attributes were normalized by the z-score
method [21] to standardize the different scales of the attributes.
The normalized data property is used to train the network SOM
using the package available in R language [22]. In this library,
the functions somgrid and som are used to parameterize and
train the map, respectively. For the size of the map topology,
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the dimension 4x4 was chosen. With this, the hypothesis of
the study was to find neurons with a representative density of
objects and with a significant class distribution.

With the trained map, the analyses made were the density
of objects in each neuron, the distance between neurons, the
quality of adjustment of the neurons, the contribution of the
attributes in the formation of neurons, and the distribution
of the label of each object in each neuron. In addition to
the outputs analyzed, the representativeness of the number
of objects contained in each neuron with the label attribute
was sought in the table generated by the SOM. In this way,
the neurons of greater relevance were identified, that is, with
larger numbers of objects generated by the SOM algorithm.

From this point on, the entropy algorithm (Shannon’s) was
used on each neuron in the network to select the neuron with
the highest class overlap along with the representativeness of
objects that are difficult cases to diagnose.

By identifying neurons with overlapping classes, their ob-
jects are selected from the database generated by the SOM net-
work for training and validation of the decision tree algorithm.
The result of the decision tree brought a hierarchy of attributes
in order of discrimination for cases of diagnostic doubt, and
the validation of the algorithm shows the performance of the
classification.

A. Rating Performance Evaluation

Table I shows the confusion matrix that was used to analyze
the classification performance of the decision tree. The table
indicates the prediction of the positive and negative scenarios,
as well as current true and false scenarios [23]:
• TN is the correct number of negative predictions;
• FP is the number of false positive predictions;
• FN is the number of false negative predictions;
• TP is the correct number of positive predictions.

Table I. CONFUSION MATRIX

Predicted Negative Predicted Positive
Current False TN FP
Current True FN TP

From the confusion matrix, it is possible to measure the
performance of the algorithm by calculating the accuracy, as
follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (9)

Error = (FP + FN)/(TP + TN + FP + FN) (10)

After this stage, it is possible to better understand the
model’s contribution to the understanding of Attention Deficit
Hyperactivity Disorder, as well as to the diagnostic evaluation
of patients. The next section presents the results obtained in
this work.

V. RESULTS

The training result of the SOM network can be seen in two
different visualizations, depicted in figure 2 and 3. figure 2
presents the attributes, common to the trials, graphically dis-
tributed in each neuron. The sizes indicate the contribution that
each attribute has to the formation of the neuron. Note that
neighboring neurons have similarities among the attributes. In
figure 3, the diagnosis, an attribute that is not used in training
the SOM, is projected on the map, allowing visualization of
which neurons have the overlap of class 1 (group diagnosed
with ADHD) and 2 (control group without ADHD). The
network could not separate the diagnosed cases in neuron 4.

Table II presents for each neuron the percentage of objects
of each class. Neuron 4 is the one with the highest concen-
tration of objects (40%) and overlapping classes in the whole
dataset.

Figure 2. Contribution of the attributes in the formation of the neuron

Figure 3. Scattering of objects diagnostic within neurons

The result of the decision tree with the data mapped onto
neuron 4 can be seen in Figure 4. The result shows that the
Child Behavior Checklist for ages 6-18 attribute, specifically
the probability of attention problems scale (T-score) [24] [25]
neurons had the highest discrimination.
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Table II. COMPARATIVE DIAGNOSIS BY THE NEURON DIMEN-
SION 4X4

Diagnostic 1 2 Total

neuron

1 3 (6.2%) 1 (1.3%) 4 (3.1%)
2 1 (2.1%) 0 (0.0%) 1 (0.8%)
3 1 (2.1%) 16 (20.3%) 17 (13.4%)
4 16 (33.3%) 35 (44.3%) 51 (40.2%)
6 0 (0.0%) 20 (25.3%) 20 (15.7%)
9 0 (0.0%) 1 (1.3%) 1 (0.8%)
11 2 (4.2%) 1 (1.3%) 3 (2.4%)
12 11 (22.9%) 1 (1.3%) 12 (9.4%)
13 6 (12.5%) 3 (3.8%) 9 (7.1%)
14 2 (4.2%) 1 (1.3%) 3 (2.4%)
15 6 (12.5%) 0 (0.0%) 6 (4.7%)

Total 48 (100.0%) 79 (100.0%) 127 (100.0%)

Figure 4. Decision Tree of Neuron 4

Figure 5. Importance of the attributes in neuron 4 by decision tree

Finally, Figure 5 allows you to visualize all six attributes
with greater discrimination for cases with greater complexity
relative to the integration of clinical evaluation and evaluation
using tests for a confirmation of the diagnosis.

VI. CONCLUSION AND FUTURE WORK

Data from the behavioral assessment inventory presented in
[5] can generally be more susceptible to respondent bias be-
cause it is based on the answers of the subject. This bias is less
so when using cognitive tests which are assessment measures
applied directly to the person. Mathematical understanding and
model generation is likely to become more difficult using only
behavioral inventories. Since ADHD demands the use of both
types of measures, in this study both tools were used to apply
the decision tree. In the study, it was possible to group the
children with and without ADHD by SOM, which made it

possible to understand from the perspective of each grouping
what was most important in their formation.

The self-organizing map contributed especially to the for-
mation of groups and the understanding of clusters with class
overlapping, which is the proposal of this work. In this case of
overlapping to diagnose a disorder, the decision tree was used
to classify the attributes that contributed to the formation of the
ADHD group. With this, the predominance of characteristics
that helped in the understanding of ADHD in children and
adolescents in the study was observed.

The application of the decision tree identified six attributes,
namely two of cognitive assessment and four of behavioral
assessment, that showed relevant discrimination to make the
diagnosis. The Child Behavior Checklist for ages 6-18 attribute
the one that showed the highest discriminative power. How-
ever, the incidence of low T-scores on the attention problems
scale and attention deficit scale does not necessarily imply
that the child has ADHD. The results presented showed the
difficulty and complexity of finding indicators that define
ADHD, as already signaled by some authors [5] [6] [8]
[26] [27]. Importantly, the diagnosis of ADHD is a clinical
diagnosis that considers the measurement of behavioral cor-
relates of attentional deficits and indicators of hyperactivity
and impulsivity in more than one environment. With the
Child Behavior Checklist for ages 6-18 attribute being a
parent-reported measure, the validity of these two scales for
identifying ADHD will likely be confirmed. However, when
disregarding the scales, one should consider the evaluations
made with the cognitive tests that directly make cognitive
measurements and are essential to decide the diagnosis of
ADHD. In this study, the tests that contributed the most to
this decision tree were the Attention Cancellation Test (ACT)
and the Trail Test (TT).

The study presented as a relevant factor the case of over-
lapping diagnoses of neurons when using the SOM and,
in conjunction with the decision tree, was able to separate
88% of the cases. This way, future works can collaborate
with the technique addressed in the study through supervised
data procedures. These tools can help in making comparisons
between results of standardized tests aiming to reduce possible
biases of behavioral evaluations based on informants’ reports.
Future studies can test the same decision tree on larger
samples to see if the attributes that showed higher accuracy
are maintained. By doing so, the best indices of cognitive
and behavioral assessment instruments that contribute to the
increased accuracy of ADHD diagnosis may be identified.
Since this study controlled for no comorbidities in the ADHD
group, it is recommended for future studies to use sample
groups with and without ADHD comorbidities from other
psychiatric and neurodevelopmental conditions. This type of
sample may allow the testing of new and more complex
models due to the natural overlap of signs and symptoms
between ADHD and some of these comorbidities.
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Abstract—In the ongoing research effort of synthesizing sen-
tience into artificial intelligence, we propose a modular network
that emulates neurological synaptic evolution in the neonate
brain. Our hypothesis is that if one were to successfully develop
a synthesized emulation of human’s six-month hippocampus as
it initializes adult-like glucose usage and synaptic density which
is generally accepted in the domain of neuroscience as being the
foundation of human sentience, then so can human sentience be
injected into the synthesized replication of said six-month hip-
pocampus. Accordingly, we present a theoretical proposition that
facilitates a significant step towards overcoming the commonsense
challenge that state-of-the-art artificial intelligence systems are
still grappling with today; where even the most powerful artificial
intelligence systems are void of the common sense of a three
year old: That lemons are sour, that things fall towards the
ground and that they, as children, can pretend to be somebody
else. Herein, we present a methodology to efficiently promulgate
the research goal of integrating sentience and common sense
reasoning into artificial intelligence, taking a neurological rather
than a psychological approach.

Keywords—Sentience, Common Sense, AI.

I. INTRODUCTION

In 1766, Immanuel Kant theorized that human knowledge
is a combination of priori knowledge where knowledge is
acquired independently of any particular experience, and
posteriori knowledge, which is derived from experience that
we reason from our senses being affected by our surrounds
[1]. Nowadays, it is accepted that to achieve common sense
processing, an entirely new method will need to be invented [2]
[3] and, that this new method will require priori and posteriori
knowledge [4]- [5]. The design of a posteriori knowledge
component shall seamlessly communicate with the artificial
intelligence system. In 2020, Shanahan et al. [6] examined
the common sense of animals and concluded that there must
exist, in each animal, some innate knowledge that allows them
to learn without words.

We postulate that, because common sense in humans and
animals require priori and posteriori knowledge, so should
we design sentient machines. Our premise is that, to emulate
human and animal common sense, one needs to mathemati-
cally emulate developments in neuroscience which will include
discovering that the directionality of brain waves in the cortical
regions of the brain form different frequency bands [7], that
functions emerge from the flow of information linking distant

(a) (b)

Fig. 1. Connectivity Matrice: Mapping connectome evolution in 78
cortical regions, excluding subcortical and cerebellar regions, in the
brains of a) two-week, and (b) one-year old infant humans [13].
The white squares represent connectivity between the lobes of the
horizontal and vertical axis.

cortical regions [8] that a modular network topology is present
in the brain from the first days of life. [9] [10] and that the
complexity of our multi-connected connectome network [11]
has been decoded [12].

A. Neuronal Pathway

We focus on the neuronal network between regions of the
brain, as defined by Automated Anatomical Labeling (AAL)
for length and local efficiency [13] where Yap et al. used
a connectivity matrix to group neuronal regions into three
distinct communities, as shown in Fig. 1. When comparing
the synaptic evolution on the matrices from a cohort of two
week old and one year old children, one observes a complex
neuronal mesh comprised of multiple additions and pruning
of the network. Fig. 2 illustrates how integrating the Kamada-
Kawai layout with the Pajek software package [14] shows
three distinct neuronal communities [13].

Recently, Fornito et al. showed that connectomes have an
inheritable complex topology that suggests a genome-wide
association that can be either excitatory or inhibitive [16].
Rosenburg et al. showed that at ~6 months, the hippocampus
has adult like glucose use and synaptic density [17] and
Szalkai et al. built four consensus brain graphs from a cohort
of 106 individual brain graphs and set directions by popular
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Fig. 2. Spring Embedding Visualization: Where the sizes of the
vertices are weighted by Yap et al. using Freeman’s logarithmically
scaled node betweenness algorithm, [13] [15] .

TABLE I
THE PATTERNS OF CHANGE

Pattern Number Pattern Number
000 2120 100 161
001 64 101 28
010 53 110 39
011 136 111 402

vote and in so doing, proved that i) axons have directionality
from the soma to the end of the axon, and that, ii) 82% of the
directions were the same for all four groups [18].

B. Neuronal Pathway Insights

At the biological level, the authors first accept that neu-
ronal pathways are constantly changing over time with rapid
myelination occurring in the first year of life [13]. Secondly,
the authors acknowledge that brain modules (highly connected
groupings of brain lobes) at two weeks old and one year
old are not the same. Thirdly, the authors accept that using
connectomes is the state-of-the-art for mapping these pathways
yet, unfortunately, it is evident that, in essence, using a two
dimensional array, that has no geometric similarity with the
brain, at all, to track these neurological events is a short-
coming. It is here that the authors found their motivation
to procure what is in this paper; a more robust and precise
means to emulate, represent and measure in a computer the
neuronal pathway evolution that occurs at the biological level.
It should also be noted that Yap et al’s 3-D representations of
the neuronal pathways suggest that i) there are hubs inside the
modules that are most likely connected to many lobes in that
module, that ii) there are bridges with edges which connect
the hubs of different modules, and that iii) a non hub leaf node
in one module may never connect to a non hub leaf node in
another module.

C. Neuronal Instantiation

The authors note that because lobe-to-lobe connections are
initialed as early as two weeks, only to be turned off at one
year, and then turned back on again at two years, while others
are turned off at two weeks, turned on at one year, and then
off again at two years [13], the authors have focused on
studying whether this seemingly random and chaotic process

has patterns that when found will enlighten researchers in
this domain as to how human sentience is formed, and have
said formation replicated synthetically in a machine. The
numbers inherent in each of these patterns are represented
in Table I. The first bit of the pattern is dependent on the
two week connectome, the second bit represents the one year
connectome and the third represents the two year connectome.
We note that there are 2120 possible connections that never
occur and 402 connections that never break. Additionally, it
is of interest that the connectomes have 630 connections and
that the number of connections added from two weeks to one
year is 189, which is also the number disconnections from
two weeks to one year. The number of connections added
from one year to two years is 92, which is also the number of
disconnections from one year to two years. This reflects the
slowdown of myelination over time. Yap et al. have found the
growing efficiency of the brain in [13].

The rest of the paper is structured as follows. In Section 2,
we present our research objectives. In Section 3, we present
our experiments. In Section 4, we present how we plan to move
from a prototype to the real model. We make our conclusion
in Section 5.

II. RESEARCH OBJECTIVES

The aforementioned research has lead the authors to answer
four questions. 1) What is the purpose of the changing lobe
to lobe connections? 2) Is there a development phase to the
neuronal pathways? 3) Is there an initialization phase? 4) At
which connectome do humans start independent thinking and
if so, what pathways are crucial to this independent thinking?

A. Transversal Definition

We start by defining the Transversal propagation of connec-
tivity and pruning by focusing on forming a means to measure
the path distance from one lobe to the next and present (1)
and (2):

SSP = SingleShortestPath(lobei, lobej) (1)

Ti =
78∑

j=1,j 6=i

SSP (i, j) (2)

where lobe(i) and lobe(j) are the brain lobes as indexed
by i and j from the automatic anatomical labels provided
by Montreal Neurological Institute [13]. The Single Shortest
Path is the length of the single shortest path defined in the
connectome graph preliminaries. Additionally, we define Ti,
transversal of the ith node, as the sum of all the shortest paths
from the ith lobe to the jth lobe excluding the path to from
the ith lobe to itself. 78 is the number of brain lobes in our
connectome. Each of the 78 brain lobes is fully connected to
all the other 77 lobes in the brain. Accordingly, we reference
Fig.3 (b) and determine the single shortest path from the right
Anterior Cingulate Gyrus lobe (ACG-R) to the right Median
Cingulate Gyrus lobe (MCG-R) is one.

The single shortest path from ACG-R to the right Posterior
Cingulate gyrus lobe (PCG-R) is two. For ACG-R to the right
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(a) (b)

Fig. 3. Connectivity: This shows a snippet of the connectome and the
graph produced. (a) connectome, and (b) graph

Parahippocampal gyrus lobe (PHG-R) it is also two. However,
for the ACG-R to the right Calcarine cortex (CAL-R) there are
multiple paths, the shortest being a length of three. T ACG-R
is the transversal of node ACG-R and is defined by 2 as the
sum of all the SSP of A, therefore T ACG-R=1+2+2+3=8.

MaxTransversal = max(Ti, i = 1..78) (3)

MinTransversal = min(Ti, i = 1..78) (4)

where the MaxTransversal is defined as the maximum
of traversals, see (2), of all the nodes transversal, i step-
ping through the lobes from 1 to 78 lobes, as shown in(3).
MinTransversal is defined as the minimum of all the nodes
transversals, defined in (2), as shown in (4). Once again this
calculation looks at the lobes i from lobe 1 through lobe 78,
similarly to the MaxTransversal.

B. Defining Maximum Traversal Length

We have determined that a common denominator to cor-
rectly replicating human sentient neurological evolution in
a machine, lasers in on how accurately one can define and
measure the maximum traversal length. The maximum traver-
sal length on the two week connectome is 257; see 3. The
maximum traversal for the one year connectome is 219, and
212 for the two year connectome. We examine the maximal
transversal of 257 at two weeks, 219 at one year and 212 at two
years. Preliminary findings show that, while the connectome
is reducing the maximum length path over time, at the same
time, the minimal transversal path is increasing from 107, at
two weeks, to 127 at one year, and 128 at two years. It is also
interesting and not understood why the number of connections
remains stable at 630 during this period.

C. Optimizing Maximum Traversal Length

The optimization of maximum transition length with the
constraints of pairs of connections (connection, disconnection)
over time and stable 630 connections over time could lead
to a model that predicts the connectome development. Of
course, more data and analysis is necessary to order the
transitions of the connectome. This gives us an optimization
problem, namely, minimize the maximum transition length,
with the constraint of stable number of 630 connections. This
optimization is how we propose to predict which transitions
will occur. Left unbounded, the model would keep pruning

Fig. 4. The red lines emphasize a few lobes moving out of Module one

and connecting, thus we shall just look at the best 189 from
two weeks old to one year old and compare our predictions
to the actual changes that occur. We will then start with the
one year old and execute the same optimization, this time only
taking the best 92 pairs of disconnect and connect.

A further challenge is matching the modules at different
ages. Fig. 4 shows how certain brain lobes will move from one
module of the brain to another. This occurs due to the changing
connections those lobes have with other brain lobes. This
figure provides the reader with insight to view the changes
in the figures of the next section. In the next section, we
examine the development of the connectome from conception
to one year old. Noting the changes that occur just inside the
first lobe for simplicity of explanation. The changes that occur
across all 78 lobes, modifying from 3 brain modules to four
brain modules at two years old are too complex to put on one
sheet of paper. The actual lobes involved in particular changes
are details to be reconciled by our predictions.

III. EXPERIMENTS

The authors hypothesize that it is possible to measure the
path from any node to another node in terms of the number
of edges traversed through the connectome. Our justification
for this proposition is that because we know that as the brain
develops from three to four modules, it is logical to expect that
the total number of edges traversed is decreasing. To formulate
our methodology we base our experiments off of the following
determinate. Fig. 4 shows the detail that should be noted as
stepping through the determinate.

1) At conception no brain lobes exist.
2) Over time, the brain lobes form and connections are

established.
3) Fig. 5(a) shows the first brain lobes appearing in module

one of the brain.
4) Fig. 5(b) shows the neuronal pathways being formed be-

tween some of the existing lobes in module one of the
brain. The same growth is occurring in the second and
third modules of the brain.
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(a) (b)

(c) (d)

Fig. 5. Connectome Proliferation: Isolating the first highly connected
lobes of the module 1 of the brain, we see the following stages (a)
Module one shows initial lobes appearing. (b) all lobes in module
one appear with first synapses, (c) first brain module complete at
two weeks, and (d) after two weeks, initial edge pruning occurs.

5) Fig. 5(c) shows the the connectome lobe 1 completed at
two weeks of age.

6) Once the two week connectome is formed, we know that
connections will be broken and others formed leading to the
one year connectome. Fig. 5(d) shows synaptic connections
being broken. While the prototype shows multiple edges
dropping, we note i) that this is only module one of the
brain and ii) it is highly likely, that while a synapse/edge
is disconnected, another synapse is formed, maintaining
the full connectedness of the connectome and the 630
connections.

7) Fig. 6(a) shows all the edges dropped that are not in
the one year connectome. While this gives the reader an
overview of how the connectomes are changing over time.
One should note that even though it may appear that all
the lost edges are dropped before adding nodes and edges
to achieve the one year connectome, evidence shows that
this is not what happens in the human brain. The lobes do
not go away but rather connect to another module of the
brain. The edge modifications are most likely intermingled.
We need to know if a neuronal pathway is dropped if the
myeline becomes available to form another synapse/edge.

8) Fig. 6(b) shows nodes moving out of module 1 between
two weeks and one year. A node switches modules when
it becomes more connected to the nodes/lobes of the new
module then its current module.

9) Fig. 6(c) shows the rest of the nodes moved out of module
1 and into another module. This is the final node/lobe state
that is expressed in the one year connectome.

10) Fig. 6(d) shows a node from another module moving into
module 1.

(a) (b)

(c) (d)

Fig. 6. Connectome Pruning (a) After two weeks, edge pruning
completed. (b) After two weeks, some nodes break away from module
1. (c) After two weeks, all nodes to break away from module 1, have
done so., and (d) At one year, the first new node moves into module
1.

11) Fig. 7 shows how at one year lobes from other modules
have become more connected to the module 1.

Fig. 7. Nodes and edges are added to complete module 1 for the one year
connectome

The ordering of these modifications is most definitely not
occurring en masse, not all edge deletions, then all node
deletions, then all node additions, then all edge additions. As
already stated the lobes do not go away, but rather become
connected to one of the other modules. Therefore, the nodes
should not go away, but rather be connected to lobes in another
module of the brain. Noting that from one year old to two years
old a forth module appears. The graph with all 78 lobes/nodes
and 630 synapsis/edges is incomprehensible. The connections
are created when the synapse strength had crossed a certain
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threshold. The connection is broken when the synapse strength
drops below that threshold.

The rapid myelination in the first year eventually slows
down. We need some measure of this myelination availability
and usage in forming a synapse to be able to predict when
the next neuronal pathway can be formed. If the myeline is
not available, the synapse and neuronal pathway will not be
formed. We know what connections exist at two weeks old.
With enough data we should be able to measure the total length
of these pathways and determine the myeline needed to form
them. This could lead to a side study on what mechanism
provides the myeline and what factors such as nutrition, O2,
and time influence said mechanism. Simultaneous growth in
the three lobes could provide competition for resources. We
need to measure the myeline production and usage over time.
Only then can we use regression analysis (Time Series) to
plot the brains resources availability and use over time. Once
these curves can be predicted, then they can be used to spot
deviation in individuals brain growth. These deviations can
then be catalogued, accumulated and used for finding disease
or giftedness.

Another possibility is to find an arbitrary variable for
the synaptic length growth potential over time. Rather then
measure the myeline availability measure the total synapse
length over time. [13] provides average synapsis length over
time, an average implies a sum divided by a count. If this data
is available, we should be able to regress the growth in number
and growth of length of the synapsis over time. These growth
rates along with a scripted ordering of synapsis connectivity
will then predict when connections are built.

Fornito et al. [16] suggest that the DNA explicitly controls
the brains growth. This infers that if there was a resource
problem the brain may not have formed properly, potentially
altering the expectations of a DNA study. In which case, it may
be better to compare the connectome development to disease
expression, rather than the DNA to disease expressions. This
leads the authors to conclude that it raises the importance of
researching how the brain is formed rather than studying the
DNA process at the neurological level.

IV. FROM PROTOTYPE TO THE REAL MODEL

o model the real connectome development we dynamically
mimic four constraints, 1) the maximal traversal minimization
over time, 3) that there are always 630 connections, 3) that
the average synapse length is always increasing, and 4) that
the connectome remains fully connected.

In order to accomplish this, we shall implement connectome
changes in pairs, one disconnect paired with a connect. These
pairs shall be created by ordering all the connects in increasing
synapse length and the disconnects in increasing synapse
length. Then, pairing the smallest connect with the smallest
disconnect, to give the list of pairs to be implemented over
time. We then shall ensure that the connectome remains fully
connected over time. The pairs of actions(connect/disconnect)
will need to be examined for orphan creation, where a
node/lobe has a degree of 1 and that link is being deleted.

TABLE II
THE ACTION TABLE

Action the action to be taken connect or disconnect
LobeFrom and To the lobes being connected or disconnected
Day and Time the projected day and time the action will occur
Length the length of the connection
TimeToComplete the time necessary to complete the action

Since we know that the connectome stays fully connected,
we know there is another connect in the list that reconnects
that node/lobe. The two actions shall then swap partners,
such that the disconnect and connect will maintain that par-
ticular node/lobe inclusion in the connectome, and maintain
the fully connectedness of the connectome. To maintain the
full connectedness, the connection will be created before the
disconnect.

Once the actions list is refined, the actions can then be
implemented over time. The rate of increase of myelin avail-
ability applied to project when the next action will occur. That
is, when there exist enough myeline available to satisfy the
net gain of pathway creation. We shall build the action table,
see Table II, to provide the time ordered list of connectivity
growth.

The length of synapsis should be known. [13] shows the
average synapse length is increasing over time. The average is
the sum of all the lengths divided by the number of synapsis.
In future experiments we may find the synapse growth rate
could replace the myelin availability function, or provide the
myeline available function with another variable. Considering
a biological process is not instantaneous, we shall set a length
of time to complete the action.

The rate of myeline availability or rate of synapsis length
growth shall be determined by regression analysis. We have the
data points that from two weeks to one year there are 189 pairs
of actions taken. While we do not know what the pairs are, we
do know what the 189 disconnects are, and we do know what
the 189 connects are. From one year to two years there are 92
pairs of action, likewise we know the 92 connects, and the 92
disconnects. With only two points we can only have a linear
function. Research into the ConnectomeDB will provide more
defined pairs of actions over time, thus more data points for
the regression. Several regression attempts (linear, quadratic,
polynomial, exponential, logarithmic) shall be executed to find
the best correlation coefficient, r.

Assessment of the Accuracy of the algorithms developed
will be possible when more connectome data becomes avail-
able. The National Institute of Health (NIH) is sponsoring a
Baby Connectome Project that began in 2016 where the data
will be available to NIH sponsored researchers [19].

V. CONCLUSION AND FUTURE WORK

In considering where neuroscience research has lead we
reiterate our original concept which was to produce a minimal
ontology, recognizing that a toddler has minimal common
sense and must learn it from experiences. In pursuing the
neuroscience, we find the connectome, a representation of the
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brains fully connected network between 78 cortical regions.
But rather than having a stable connectome as a child, the
connectome is more stable as an adult. What we have run
into is the innate process of building the networked brain.
The neuroscience shows us the result of the innate process of
building the brain, but does not, as of yet, show us how it is
built.

A systematic approach to define the requirements of synthe-
sizing the brain needs to be taken. Mapping known capabilities
to cortical regions and corresponding tool that has been built
or needs to be built. Evaluating all existing tools for input,
processing and output. All inputs shall be received from the
network that simulates the connectome. All outputs shall be
delivered to other cortical consumers through the synthesized
connectome. The collective process shall mimic our notion
of common sense. What started as an attempt to minimize
the scope of the common sense problem has led us to the
extensiveness of the brains innate development in the first
years of life. What we set upon to build is not stable, but rather
time dependent, adding a fourth dimension as we observe the
connectome evolve to its adult stability.

This research has revealed that the max traversal shortens
with time. In essence, the shorter max traversal provides
a shorter path from one brain lobe to all the other brain
lobes. This quicker transmission of brain signals provides
humans with an increasing brain speed as we age. This
in turn provides us a mathematical means to differentiate
between ”quick wittedness” versus ”not the sharpest tool in
the shed”. Both of these phrases are common judgments
of a person’s level of common sense. We have determined
that a common denominator to correctly replicating human
sentient neurological evolution in a machine, lasers in on how
accurately one can define and measure the maximum traversal
length.

For our future research we will be studying how Prescott
et al. [20] have built their humanoid robot, named ICub,
based on psychological division. Prescott proposes using the
human cognitive architecture, yet they take a psychological
self approach to their brain inspired control architecture.
However, they make no mention of connectomes, or the latest
neural networks of the brain. Conversely, the authors have full
faith that studying and replicating the neurological approach
is more realistic and shall prove more fruitful in the long term.
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Abstract—Stimulus decoding of functional Magnetic Reso-
nance Imaging (fMRI) data with machine learning models has
provided new insights about neural representational spaces and
task-related dynamics. However, the scarcity of labelled (task-
related) fMRI data is a persistent obstacle, resulting in model-
underfitting and poor generalization. In this work, we mitigated
data poverty by extending a recent pattern-encoding strategy
from the visual memory domain to our own domain of auditory
pitch tasks, which to our knowledge had not been done. Specif-
ically, extracting preliminary information about participants’
neural activation dynamics from the unlabelled fMRI data
resulted in improved downstream classifier performance when
decoding heard and imagined pitch. Our results demonstrate the
benefits of leveraging unlabelled fMRI data against data poverty
for decoding pitch based tasks, and yields novel significant
evidence for both separate and overlapping pathways of heard
and imagined pitch processing, deepening our understanding of
auditory cognitive neuroscience.

Keywords—neuroimaging; neuroscience; auditory cognition;
deep learning.

I. INTRODUCTION

A. Motivation

Brain decoding is the problem of classifying the stimulus that
evoked given brain activity. Music’s well-defined structure and
the wealth of previous results about the neural representation
of that structure are thus an appealing foundation upon which
to approach this problem. Our primary goal was to train a
machine learning classification model to predict the pitch-
class of a note (the relative position of the note within the
key) given an input of brain activity evoked by that note. We
hypothesized that such a classifier would achieve significant
results for three tasks: trained and tested on neural activity when
the note is actually heard (hereafter referred to as the “heard
task”), the same when the note is only imagined (“imagined
task”), and most importantly, trained on neural activity when
the notes are heard but evaluated on data when the notes are
imagined (“cross-decoding task”) to test for overlap between
heard and imagined pathways. To our knowledge, the cross-
decoding task had not been done before. Toward these ends,
we obtained functional Magnetic Resonance Imaging (fMRI)
data from musically trained participants while they both heard

and imagined particular pitches. We further detail our scanning
protocol in the Methods and Materials section.

Training machine learning models on such voxel data is
challenging, though, primarily due to the scarcity of relevant
and labelled data to be used for training, and our experiments
were no exception. However, Firat et al. [5]’s work on visual
memory brain decoding addressed this challenge of fMRI data
poverty in a novel and effective way. More specifically, Firat et
al. hypothesized that unlabelled fMRI data, which are normally
deemed irrelevant and discarded, contain information about
overall patterns of brain activity and can therefore be exploited
in brain decoding classification tasks. Their architecture began
with a sparse autoencoder [10] to perform unsupervised learning
of neural activation patterns latent in unlabelled fMRI data.
These patterns then served as filters in a temporal Convolutional
Neural Network [12] to encode the labelled fMRI data into
a non-linear, more expressive feature space. We refer to the
inputs of this pipeline as “unencoded datasets” and the outputs
as “encoded datasets” throughout this work. Thus, the encoded
dataset is the result of filtering the task-dependent fMRI data
by the patterns latent in task-independent data. Firat et al. then
demonstrated improved performance of Multi-Voxel Pattern
Analysis (MVPA) classifiers trained and tested on encoded
datasets compared to unencoded datasets.

B. Our Approach

In Section 2 of this paper, we expand on the architecture of
Firat et al. by adapting their autoencoder-tCNN pipeline from
the visual domain to our novel auditory domain task of decoding
imagined pitch. Section 3 presents our results, in which our
encoded datasets are essential for successful decoding of the
imagined task, as well as first-of-their-kind significant results
on the cross-decoding task. Section 4 discusses these results in
the greater context of our goals and motivations. In particular,
that this work demonstrates for the first time, to the best of
our knowledge, that temporal filtering of fMRI data for an
auditory task not only improves the performance of MVPA
classifiers, but can also reveal fundamental, learnable attributes
of auditory imagery that would go undetected by machine
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Fig. 1. Hemodynamic Response Function (HRF) plotted as a 6-TR timeseries.
[14].

learning models trained on unencoded datasets. Section 5 details
our methods and materials: participant selection, fMRI scanning
protocol, hardware for training models, and statistical methods
for evaluating our final classifiers. Section 6 concludes this
paper and explores future work.

II. ARCHITECTURE DESIGN

A. Neural Activation Pattern Training Data

Each fMRI scan yielded a timeseries of 3-dimensional voxel
data, where the value of each voxel represented the intensity
of neural activity at that geographic location in the brain. We
used the Python Multi-Variate Pattern Analysis (PyMVPA)
[8] library to store and transform fMRI data throughout the
experiment. When we imported a participant’s fMRI data,
PyMVPA flattened the 3D voxel data into a single spatial
dimension by concatenating along two axes (during which
all voxels are preserved), restricted to one of twenty selected
Regions Of Interest (ROIs) at a time, and provided a mapping
back to 3D space for that ROI. Thus, we began with a matrix
V T of V -many voxels, which depended on each ROI, by T
timesteps, which was 1864 for all participants and ROIs.

The Hemodynamic Response Function (HRF) in Figure 1
depicts the rise and fall of the intensity value of a voxel in
response to a stimulus across 12 seconds. The time between
images in our fMRI scans (TR) was 2 seconds, therefore the
HRF would be observed across 6 timesteps in a given voxel. We
thus expected any other latent activation patterns to occur across
6 timesteps as well. We therefore compiled our training data by
sampling 1x6 windows of data from the matrix V T . Collecting
every possible such window would provide the largest set of
training data, but we believed the extreme overlap in that case
could cause unpredictable bias during training. Spacing the
samples out by exactly 6 timesteps would remove overlap,
but could induce a different bias with every sample beginning
and ending where another sample begins and ends, possibly
limiting the kinds of patterns we expose to the model during
training. Sampling with a stride greater than 6, however, might
unnecessarily reduce the total size of our training set. Therefore

our method considered each possible 6-TR window, then added
it to the training data with probability 1/6. This allowed us to
sample windows of training data that can begin at any timestep
across the entire scan, while balancing our desire to both reduce
overlap and minimize reduction of the training set. We further
discarded any sample overlapping with labelled timesteps to
avoid any possibility of downstream circularity. In summary,
we collected 6-TR windows of unlabelled fMRI data, for each
participant, for each ROI, to learn neural activation patterns
latent in that participant in that ROI.

B. Learning the Patterns

We implemented a sparse autoencoder model to perform
unsupervised learning of the latent temporal neural activation
patterns among each region’s voxels without the need for hand-
crafted features. The sparse autoencoder was implemented
with the Keras [3] library in Python. The model input was
encoded by a dense layer with sparsity enforced by an
“activity regularizer” parameter ρ = .001, hereafter referred
to as the “sparsity constraint,” and then rectified linear unit
(ReLU) activation functions were applied to obtain the encoded
version of the input. We refer to the preceding steps as the
“encoding layer” throughout this paper. Each encoding layer
had fourteen neurons in its dense layer, obtained via grid
search on {8, 10, 12, 14, 16, 18}. Each neuron’s set of trained
weights would then serve as a filter for obtaining the encoded
dataset. The decoding layer was also dense, with six neurons
(recall that this layer attempts to reproduce the six-dimensional
input) and ReLU activations. The model was optimized via
backpropagation to minimize the mean squared error between
the output of the decoding layer and the input using the
“adamax” optimizer [11].

C. Filtering with Temporal Convolution

For each combination of participant and ROI, we extracted
the set of learned neural activation patterns from the correspond-
ing trained encoding layer and used them as filters in a tCNN to
obtain the corresponding encoded dataset. Our tCNN pipeline
is depicted in Figure 2. More specifically, we performed a 1D
full convolution on the V T matrix along its time axis with
each of the fourteen trained neurons as the temporal filter. This
resulted in fourteen response matrices for each combination of
participant and ROI. Note that a full convolution means each
response matrix had the same dimensions as V T .

We expected the voxels to exhibit locally correlated acti-
vations [13], so we employed max pooling to extract spatial
information from the filtered data in our response matrices.
Recall, though, that V T is the result of flattening the 3D voxel
space to 1D, and therefore voxels next to each other in V T are
not necessarily next to each other geographically in the brain.
Firat et al. [5] did not detail their solution to this problem of
3D max-pooling with 1D data, so we devised our own method.
Recall that PyMVPA provided a mapping back to the 3D voxel
space of unencoded voxel values for each ROI, so we directly
we backfilled the original 3D space with the values of each
response matrix.

18Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-885-3

BRAININFO 2021 : The Sixth International Conference on Neuroscience and Cognitive Brain Information

                            24 / 31



Fig. 2. Our tCNN pipeline from voxel space to the encoded dataset. The filters are the neurons extracted from each trained autoencoder and represent neural
activation patterns.

For 3-dimensional spatial max-pooling, we proposed a
pooling cube of tunable dimensions [c1,c2,c3] moving exhaus-
tively throughout each 3D space with no overlap, storing the
maximum value within the cube at each step in a list. The
jagged 3D voxel structure of each ROI was padded on all sides
with zeroes due to the way PyMVPA maps back from 1D to
3D, so these zeroes needed to be accounted for. We certainly
did not want to record a zero as a max-pooled value when
the pooling cube is full of these padding zeroes, and more
subtly we did not want to record voxel values on the jagged
fringes as max-pooled values when they were being compared
almost entirely to padding zeroes. Our solution was a tunable
parameter z0 which we called “zero threshold”. The maximum
value within the cube was only recorded as a max-pooled value
when the proportion of non-zero values within the pooling cube
exceeded z0. Our [2, 2, 2] pooling cube and zero threshold of
0.6 were obtained via grid search.

We performed our method of 3D max-pooling on each
timestep for each of the response matrices, applied hyper-
bolic tangent to each list of max-pooled values, and finally
concatenated the lists for each timestep. The result of the
concatenation was the encoded dataset for that participant and
ROI. A repository of our code is available upon request.

D. Pitch Decoding Classifiers

For each participant and ROI, we partitioned the labelled
fMRI data by whether the corresponding pitch was heard or
imagined. The heard samples were split further in half, with
each half serving in turn as training data and testing data for an
MVPA classifier. We stored the trained classifiers’ predictions
on the respective test sets with their corresponding pitch-class
labels. Our analysis of classifier performance on the heard
task was performed on the union of the two halves of test set
predictions for each participant and ROI. The imagined task
was evaluated similarly. For the cross-decoding task, we trained
the classifier on all heard data, then predicted the labels of all
imagined data. We calculated group level significance for each
task and ROI using a t-test between per-participant prediction

mean accuracies and null decoding model mean accuracies,
detailed further in the Methods and Materials section.

III. RESULTS

A. Temporal Filter Results

Figure 3 shows twenty learned temporal filters (i.e, trained
neurons) uniformly at random across the encoding layers of all
participants and ROIs. Six weights connect each such neuron
to the input layer, one for each timestep in the input, so we
plotted the raw values of each sampled neuron’s weights as
a timeseries. This allows us to visually evaluate the learned
filters as a pattern of neural activity. Observe that several of
these patterns are good approximations of the HRF, which we
expected most of the autoencoders to learn. Note further that
none of the patterns are dominated by a single weight, which
is to say that the models were not biased toward any particular
timestep in the input data. This was the intent of our careful
creation of each autoencoder’s training data.

B. Brain Decoding Results

Table I contains the results of our pitch decoding experiments.
We evaluated the group-level statistical significance of the
multivariate classifiers’ ability to outperform chance in each of
our regions of interest. The region of interest is given in the first
column. The second column indicates the task, as explained
above. The next two columns give the accuracy and False
Discovery Rate (FDR)-corrected p-values when the classifiers
were trained and evaluated with their respective encoded dataset,
and the last two columns give the same information on the
unencoded dataset. Observe one of our critical results, that
thirteen of the fifteen successful regions required the encoded
dataset to obtain statistical significance. Eleven of the fifteen
significant results were for the imagined task, and indeed all
of these regions required the encoded dataset for significance.

IV. DISCUSSION

A. Architecture Discussion

Our first goal was to learn auditory neural activation patterns
latent in 6-TR windows of unlabelled fMRI data with sparse

19Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-885-3

BRAININFO 2021 : The Sixth International Conference on Neuroscience and Cognitive Brain Information

                            25 / 31



Fig. 3. Learned temporal filters, sampled uniformly at random across all sparse autoencoders. Each consists of six weight values, one for each timestep. The
HRF appears to have been learned by several of the selected neurons.

TABLE I
WITHIN-SUBJECT CLASSIFIER RESULTS. FDR-CORRECTED P-VALUES FOR ALL ROIS WITH SIGNIFICANT RESULTS. THE ENCODED DATASETS ENABLED THE

CLASSIFIERS TO OBTAIN SIGNIFICANT RESULTS IN THIRTEEN OF THE FIFTEEN SIGNIFICANT REGIONS.

Encoded Dataset Unencoded Dataset

Region of Interest Task
WPC Accuracy
Mean (Min, Max)
baseline = 0.1429

FDR-corrected pvals
(threshold = 0.05)
(20 ROIs)

WPC Accuracy
Mean (Min, Max)
baseline = 0.1429

FDR-corrected pvals
(threshold = 0.05)
(20 ROIs)

Left Heschl’s Gyrus H 0.1642 (0.1250, 0.1964) 0.0039 0.1523 (0.0833, 0.2262) 0.5808
Right Superior Temporal Sulcus H 0.1394 (0.0833, 0.2143) 0.8554 0.1754 (0.1190, 0.2560) 0.0071
Left Inferior Frontal Gyrus (Orbitalis) I 0.1625 (0.0893, 0.2381) 0.0368 0.1485 (0.0952, 0.2024) 0.6475
Left Precentral Gyrus I 0.1607 (0.1190, 0.2262) 0.0368 0.1530 (0.0952, 0.2202) 0.5228
Left Superior Temporal Gyrus I 0.1684 (0.1190, 0.2202) 0.0087 0.1586 (0.1131, 0.2143) 0.2326
Left Supramarginal Gyrus I 0.1642 (0.0952, 0.2440) 0.0355 0.1502 (0.0893, 0.2083) 0.6291
Left Insula I 0.1649 (0.1310, 0.2440) 0.0163 0.1478 (0.0833, 0.2024) 0.6475
Right Superior Temporal Sulcus I 0.1604 (0.1131, 0.2083) 0.0180 0.1499 (0.0893, 0.2083) 0.6291
Right Inferior Frontal Gyrus (Triangularis) I 0.1688 (0.0952, 0.2500) 0.0368 0.1642 (0.1131, 0.2202) 0.0996
Right Precentral Gyrus I 0.1719 (0.1071, 0.2321) 0.0103 0.1569 (0.0952, 0.2560) 0.5228
Right Superior Temporal Gyrus I 0.1726 (0.1190, 0.2560) 0.0124 0.1453 (0.1012, 0.1845) 0.8149
Right Supramarginal Gyrus I 0.1656 (0.1250, 0.2440) 0.0251 0.1586 (0.0774, 0.2440) 0.5228
Right Insula I 0.1649 (0.1190, 0.2381) 0.0124 0.1506 (0.0893, 0.2024) 0.6291
Right Superior Temporal Gyrus X 0.1628 (0.1310, 0.1964) 0.0157 0.1492 (0.1071, 0.2083) 0.6445
Right Rostral-Middle Frontal Gyrus X 0.1509 (0.1250, 0.1905) 0.3619 0.1642 (0.1131, 0.2143) 0.0202

autoencoders. We took care to avoid subtle biases when we
collected our training data for the autoencoders by minimizing
the overlap of the samples while allowing for the possibility of
a sample to begin at any timestep in the scan. We plotted the
weights of twenty uniformly randomly sampled encoder-layer
neurons as timeseries to visualize the neural activation patterns
that those neurons represented. These visualizations reassured
our efforts in two ways. First, several of them are good
approximations of the HRF, which we expected to be learned
by one of the neurons in most of the autoencoders. Second,
none of the patterns are dominated by a single timestep, and the
peaks of activity are fairly well distributed across the timesteps,
which was the intent of our training data collection method.
These considerations, along with the success of our brain
decoding classifiers, provide evidence that each neuron learned
a latent auditory neural activation pattern, accomplishing our

first goal.

Our second goal was to generate a collection of encoded
datasets by transforming the unencoded voxel data V T in terms
of the neural activation patterns learned by each autoencoder’s
encoding layer. Thus, the final step of our architecture was a
modified tCNN. We used each of the learned activation patterns
as temporal filters by convolving them with their respective V T
along the time axis and applying our own method of 3D max
pooling. Concatenating the pooled matrices for each participant
and ROI yielded our encoded datasets, thus achieving our
second goal. Note that the final dimension after concatenating
was dependent on the size of the 3D pooling cube and the
number of filters. In our experiments the encoded datasets’
dimensions ended up being roughly equal to the dimension of
their respective unencoded dataset. However, one could increase
the size of the pooling cube or learn fewer temporal filters if
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the dimensionality were a burden on computing. That would,
of course, be a tradeoff with performance, but it is nevertheless
valuable to have a mechanism for dimension reduction available
in this pipeline.

B. Brain Decoding Discussion

Our third goal was to train a machine learning classifier to
predict the pitch-class labels of heard and imagined pitches,
trained and tested on fMRI data of twenty selected regions of
interest. We hypothesized that such classifiers would outperform
chance with statistical significance, and that the classifiers
would achieve higher accuracy when trained on encoded
datasets versus the unencoded datasets. We used the PyMVPA
library to train multi-class Support Vector Machines (SVMs)
with linear kernels on each of the encoded datasets and each
of the unencoded datasets. Each classifier’s accuracy was
calculated on a held out test set, and the accuracies were
averaged across participants for each ROI. Finally we calculated
the group-level significance of the accuracies and controlled
the FDR by correcting our p-values for multiple comparisons.
Further details are in the Methods and Materials section.

As shown in Table I, the statistical significance of outper-
forming chance relied almost entirely on the encoded datasets.
For the imagined task the classifiers did not obtain significant
results in any ROIs using unencoded data. Indeed, training on
the encoded datasets did not merely nudge almost-significant p-
values past the threshold, but quite the opposite. Our encoded
datasets enabled the classifiers to reduce their p-values by
more than an order of magnitude in most regions in Table I,
and two orders in some, indicating that the encoded dataset
reveals fundamental, learnable attributes of auditory imagery
that would otherwise remain undetected by machine learning
models trained on unencoded data. Thus, we achieved our
third goal and obtained statistically significant evidence of our
hypothesis in the case of the imagined task. Moreover, the
significant results on the cross-decoding task provide a critical
novel result- statistically significant evidence of geographical
overlap between heard and imagined sound.

Eleven of the fifteen significant results were achieved on
the imagined pitch decoding task. This is explained by the
greater cognitive involvement in imagining versus hearing
sound. That is, imagining sound is a more involved activity
than listening, evoking stronger, wider signals that are easier
for the autoencoder to detect and learn.

The heard and cross-decoding tasks both achieved two
significant results, one each on the encoded and unencoded
datasets. In both cases of significant unencoded datasets, the p-
value for the respective encoded dataset was at least an order of
magnitude worse. For the heard task, the two regions are near
each other- Heschl’s Gyrus and the Superior Temporal Sulcus
are both auditory cortex areas in the superior temporal lobe.
Therefore, while the inconsistency of the encoded dataset on the
heard task requires further study, the results on the heard task
are geographically consistent. On the other hand, the significant
regions on the cross-decoding task are in separate lobes and non-
adjacent. The Right Rostral-Middle Frontal Gyrus is interesting

because significant results were achieved on the cross-decoding
task with the unencoded dataset with a p-value at least an
order of magnitude better than any other region for that task
and dataset. Further, for the heard and imagined tasks, the
encoded dataset improved the p-values in this region. Thus, the
significant result in the Right Rostral-Middle Frontal Gyrus is
curious, piquing further study.

V. METHODS AND MATERIALS

A. Participant Selection

Participants possessed at least 8 years of formal music
training or professional performance experience in Western
tonal music, and they completed the Bucknell Auditory
Imagery Scale (BAIS) [7] and the Bregman Musical Ability
Rating Survey [9]. Twenty-three such participants passed
the screening process and provided their written informed
consent in accordance with the Institutional Review Board at
Dartmouth College. Each subject was compensated $20 US
upon completion of the scan.

All scanning used a 3.0 T Siemens MAGNETOM Prisma
MRI scanner with a 32-channel head coil and Lumina button
box with four colored push buttons. Each scan performed a T2*
weighted single shot echoplanar (EPI) scanning sequence with
a repetition time (TR) of 2 sec and 240mm field of view with
3mm voxels, yielding 80 voxel by 80 voxel images with 35 axial
slices for a total of 224,000 voxels per volume. We used the
fMRIPrep software [4] to perform motion correction, field un-
warping, normalization, and bias field correction preprocessing,
as well as brain extraction and ROI parcellation, on the raw
T2* BOLD data.

B. fMRI Protocol

Each participant’s fMRI scan consisted of 8 runs of 21
musical trials. Each scan was randomly assigned either the
key of E Major or F Major, which was not known by the
participant. We designed each run to collect data for either
the heard task or the imagined task, alternating from run to
run. Each trial began with an arpeggio in the assigned key for
the participant to internally establish a tonal context, followed
by a cue-sequence of ascending notes in their assigned major
scale. After a randomized time interval, the participant either
heard the next ascending note in the scale, or was instructed
to imagine the next ascending note, depending on the run. The
following four seconds (2 TRs) of scanning collected from all
trials constituted the labelled data for the heard and imagined
tasks. Next, a probe tone was played, and the participant rated
the probe tone’s goodness of fit in the tonal context from 1
to 4. We excluded the data of any participant with at least
20% of their ratings missing, or whose ratings did not reflect
internalization of the tonal hierarchy. Thus, we excluded the
data of six of the twenty-three participants.

Previous literature on imagined and heard tonal pitch-classes
directed us to twenty regions of interest in the frontal, temporal,
and parietal lobes according to the Desikan-Killiany (D-K) atlas
in Freesurfer [6]. The D-K ROIs are large cortical regions,
reducing the burden of correcting for multiple comparisons
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compared to a larger quantity of smaller regions. Further, the
D-K ROIs are consistent with the scales of relevant previous
literature. The full table of the ROI atlas indices, cortical labels,
and corresponding Brodmann areas is available on request.

C. Autoencoder Training

The autoencoders were trained on Intel Xeon E5 processors,
either 2.3, 2.6, or 3.2 GHz for 30 epochs on Dartmouth’s
Discovery High Performance Cluster with an average training
time of approximately 3 hours. 10% of the training data were
held out as a validation set during training to prevent overfitting
via early stopping. For each combination of participant and
ROI, we trained ten autoencoders and kept the model with the
lowest validation accuracy after 30 epochs. This was to avoid
the rare but observed case where an autoencoder failed to find
any minima during training.

D. MVPA Classifiers

For each ROI, we partitioned the labelled fMRI data of each
participant into two halves according to whether the pitches
were heard or imagined. We then split the heard data in half,
with each half serving in turn as training data and testing data
for a multi-class SVM with linear kernels. We implemented
the SVMs with the libSVM support vector machine library
[2]. We then pooled the classifier’s predictions on each of
the two rounds of test data into a single set, along with their
corresponding pitch-class labels. Our analysis of the heard task
was performed on this collection of predictions and labels for
each participant and region of interest. The imagined task was
evaluated similarly. For the cross-decoding task, the classifier
used all heard data for training, then predicted the labels of
all imagined data. We calculated group level significance for
each task using a t-test between per-participant prediction mean
accuracies and null decoding model mean accuracies. We used
Monte Carlo simulation to calculate the null models, repeating
each classifier’s training and testing 10,000 times with randomly
permuted target labels and storing the mean overall accuracy.
We corrected the group-level p-values for multiple comparisons
using the method in Benjamini and Hochberg [1], which strictly
controls the FDR of a family of hypothesis tests.

VI. CONCLUSION AND FUTURE WORK

In this work, we adapted the architecture and pipeline of
Firat et al. [5] from the visual domain to the auditory domain.
Latent neural activation patterns were learned from unlabelled
fMRI data, which are normally discarded, in order to generate
our encoded datasets, which improved the performance of
downstream MVPA classifiers. On the task of decoding the
pitch class of imagined sound from fMRI data, the encoded
datasets enabled the classifiers to outperform chance with group-
level statistical significance in eleven ROIs. This demonstrated
for the first time, to the best of our knowledge, that exploiting
unlabelled fMRI data to perform temporal filtering for an
auditory task not only improves the performance of MVPA
classifiers, but can also reveal fundamental, learnable attributes
of auditory imagery that would go undetected by machine

learning models trained on unencoded datasets. Further, the
group-level classifier performance on the cross-decoding task in
two ROIs provided our novel statistically significant evidence
of geographical overlap between heard and imagined sound.

There are several immediate directions for future work.
First is toward an end-to-end architecture for this task, rather
than a disconnected training session to obtain the encoded
datasets. Second is toward decoding/cross-decoding the other
information in our fMRI protocol, such as the timbre (clarinet
or trumpet) of the heard or imagined sound. Third is toward
the generalization of our pipeline to other fMRI datasets with
auditory tasks. Fourth is a deeper dive on the ROIs with
significant cross-decoding results, as these results did not quite
match our expectations.
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Abstract— More than 80 million adults are affected by 

insufficient sleep in the United States, yet effective, drug-free 

therapies with few or no side effects are lacking. A 30-day 

open-label study was conducted, in which participants 

(n=25) reporting poor sleep (assessed via Pittsburgh Sleep 

Quality Index) were recruited to test a novel wearable 

mechanical neuromodulation device. The device was 

designed to modulate the interoceptive system via the 

affective touch network. 86% of participants showed an 

overall improvement in sleep after 30 days of device use. 

Keywords-sleep; neurostimulation; interoception. 

I.  INTRODUCTION 

There is growing evidence that humans are hard-wired 
for receiving and processing affective (slow, light) touch 
via unmyelinated C-Tactile Afferent neurons (CTAs). 
Neuroimaging studies have found information from CTAs 
is primarily processed in the insula cortex, not the 
somatosensory cortex where myelinated inputs are 
processed [1]. This distinction is important to note when 
considering the growing evidence in support of the 
fundamental role of the insula in interoceptive processing. 
Affective touch, in turn, is associated with feelings of 
calm, relaxation and social connectedness, all related to 
improved interoceptive regulation. 

Interoception is recognized as the processing of 
internal bodily signals such as changes in physiological 
states, via the Central Nervous System (CNS) [2][3]. 
Information is continuously exchanged through ascending 
and descending pathways between the CNS and the 
periphery, allowing for interoceptive information such as a 
change in temperature, to influence various physiological 
systems and processes, including sleep [3][4]. 
Furthermore, research has shown that interoceptive 
sensitivity and awareness may disrupt several processes, 
during sleep initiation and while asleep [2][3][4]. 
Dysregulated interoception, a mismatch between perceived 
and actual bodily states, is a hallmark of affective 
disorders and may be an underlying mechanism for sleep-
related disorders. In a 2016 report, an estimated 83 million 
adults in the United States suffered from insufficient sleep; 
however, few drug-free therapeutic interventions exist that 
have few side effects and are effective in treating sleep-
related disorders [7]. We developed a novel mechanical 
stimulation device, targeting the affective touch pathway, 

and thereby modulating the interoceptive system to 
improve sleep.  

The objective of this research is to develop a device 
designed to stimulate the interoceptive system via the 
affective touch pathway, and then test the technology in 
the real world, targeting symptoms associated with 
dysregulated interoception. Here, we targeted poor sleep, 
measured by the Pittsburgh Sleep Quality Index (PSQI) 
[6]. 

The rest of this paper is organized as follows. Section II 
outlines study methods, including a description of the 
participant sample and the device technology used, an 
ethics statement, participant responsibilities, and measures 
used to assess sleep quality. Section III contains the 
detailed results of the present study and Section IV closes 
out the paper with the conclusion.  

II. METHODS 

A. Participants 

25 adults (14 females, 11 males), out of a total of 245 

screened, were enrolled in the study after meeting the 

criteria for poor sleep, measured by the PSQI (Global 

PSQI > 10). Ages ranged from 24 to 60 years old 

(mean=35).  

B. Mechanical Stimulation Device 

A simple headband with small piezoelectric actuators 
at the distal ends, seen in Figure 1, was developed to 
deliver short bursts of very low intensity, low frequency 
mechanical stimulation, targeting CTAs associated with 
the affective touch pathway. The actuators were positioned 
behind the ears, on the mastoid, for convenience.  

 

 

 

Figure 1. Mechanical Stimulation Device Prototype. 
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The specific wave form was derived from a 
combination of empirical study (changes in alpha power 
pre/post stimulation in in-lab studies over 2 years) and 
known response characteristics of the CTA 
mechanoreceptors (low intensity, low frequency ~10 Hz).  

C. Study Procedure 

All study procedures were reviewed and approved by 
an ethical board (Solutions IRB, #: FWA00021831) [8]. 
The 25 participants who consented to the study were 
familiarized with the device, instructed in its use, and the 
device was donned by participants. A researcher, with 
feedback from the participant, reduced the intensity to the 
lowest perceivable level for that individual. Participants 
could increase/decrease the intensity throughout the 30-
day study. The device logged usage time and intensity. 
The participant then had their first 20-minute session in 
our lab to assess any side effects and ensure competence in 
using the device. They were instructed to use the device 
for 20 minutes every day, within an hour of their normal 
bedtime. In addition, participants wore a wrist device to 
track sleep (Garmin VivoSmart 4).  

D. Measures 

Changes in sleep quality were assessed via PSQI, a 1-
Item Sleep Quality Rating Scale, and the Garmin 
VivoSmart 4 wrist device. The PSQI is a self-report 
measure assessing sleep quality and disturbances over a 1-
month timeframe. The 1-Item Sleep Quality Rating Scale 
is a self-report measure utilizing a scale of 1 to 5, where 1 
represents little to no sleep at all, and 5 represents great 
sleep (no problems falling or staying asleep).  

III. RESULTS 

In the sample of 25 participants, 3 participants were 

excluded from analysis due to lack of compliance with the 

study protocol (i.e., device usage, completing the study). 

The following results will be reported as Mean ± 
standard deviation. 86% of compliant participants 

(n=22) reported an overall improvement in sleep, 

measured by Global PSQI scores shown in Figure 2, 

where lower scores indicate improvement in symptoms. 

Global PSQI scores improved by 43% on average (Pre: 

9.8 ± 3.0, Post: 5.2 ± 2.6).  

 

More specifically, 91% of participants reported 

improvement in sleep quality, 77% reported falling asleep 

faster, and 68% reported a reduction in daytime 

drowsiness, shown in Figure 5, displaying average PSQI 

component scores pre and post 30 days of device use. 

Similarly, sleep hours increased 65 minutes on average 

(Pre: 6.60 ± 0.29, Post: 7.45 ± 0.45), shown in Figure 3, 

and self-reported sleep quality, shown in  

Figure 4, improved significantly (Pre: 3.71 ± 0.31, Post: 

4.25 ± 0.10). Sleep hours were assessed via a commercial 

wrist Photoplethysmography (PPG) device (Garmin 

VivoSmart 4, chosen as it was most reliable for sleep time 

in earlier studies). No devices appeared, in our 

assessment, to accurately measure sleep stages, nor is 

PPG a suitable substitute for a hypnogram.  

Subjects rated the device as simple and easy to use. 

There were no known adverse effects and some minor 

transient side-effects (headache, skin irritation) that 

subsided with use.  

  

 

IV. CONCLUSION AND FUTURE WORK 

This is the first human study to evaluate mechanical 

stimulation of the affective touch pathway in a sleep-

disordered population.  Although the trial is small, open-

label, and used early prototypes, the results were 

significant and participants clearly thought they benefited 

from the use of the device.  A confirmatory Randomized 
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Figure 4.  Sleep Quality Rating increased on average, after 30 

days of device use. 
 

  

 

 

 

 

Figure 3.  Sleep Hours increased on average, after 30 days of 

device use (measured by Garmin VivoSmart 4). 
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Figure 2.  Global PSQI scores decreased on average, after 30 days 

of device use, representing an improvement in sleep. 
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Figure 5.  PSQI Component Scores before and after 30 days of device use, representing an overall improvement across 7 dimensions of sleep on average, most 

notably in Subjective Sleep Quality, Sleep Latency, and Daytime Drowsiness. 

Control Trial (RCT) is underway to address limitations 

such as sample size and inclusion of a control group, 

which will be completed in late 2021. 
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