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Foreword

The Second International Conference on Neuroscience and Cognitive Brain Information
(BRAININFO 2017), held between July 23 - 27, 2017 - Nice, France was dedicated to evaluate
current achievements and identify potential ways of making use of the acquired knowledge,
covering, the neuroscience, brain connectivity, brain intelligence paradigms, cognitive
information, and specific applications.

Complexity of the human brain and its cognitive actions stimulated many researches for
decades. Most of the findings were adapted in virtual/artificial systems in the idea of brain-like
modeling them and used in human-centered medical cures, especially for neurotechnologies.
Information representation, retrieval, and internal data connections still constitutes a domain
where solutions are either missing or in a very early stage.

We take here the opportunity to warmly thank all the members of the BRAININFO 2017
Technical Program Committee, as well as the numerous reviewers. The creation of such a high
quality conference program would not have been possible without their involvement. We also
kindly thank all the authors who dedicated much of their time and efforts to contribute to
BRAININFO 2017. We truly believe that, thanks to all these efforts, the final conference
program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the BRAININFO 2017
organizing committee for their help in handling the logistics and for their work to make this
professional meeting a success.

We hope that BRAININFO 2017 was a successful international forum for the exchange of
ideas and results between academia and industry and for the promotion of progress in the area
of neuroscience and cognitive brain information.

We are convinced that the participants found the event useful and communications very
open. We also hope that Nice provided a pleasant environment during the conference and
everyone saved some time for exploring this beautiful city.
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Abstract- We investigate whether N-Back working memory 

(WM) training improves both trained WM- and untrained 

cognitive function performance (transfer effects). Previous 

studies showed that EEG responses, in particular Event Related 

Potentials (ERPs), can be used as a measure of working memory 

load during cognitive task performance. Here, we used three 

groups of young healthy participants to assess the effect of N-

Back training: cognitive training group (CTG), active control 

group (ACG) and passive control group (PCG). The cognitive 

training group performed an N-Back task with 3 difficulty levels 

(1, 2, 3-Back), the active control group used the same task but 

with lower difficulty levels (0, 1, 2-Back), and the control group 

no N-Back training at all. Pre- and post-tests were administered 

to all three groups to gauge any transfer effects (partial 

memory, attention, reasoning and intelligence). Our results 

showed that training improved N-Back task performance for 

CTG participants compared to ACG and PCG participants. In 

contrast, transfer effects were not so clear across cognitive tasks 

but transfer effects were present and stronger in CTG 

compared to ACG for attention (TOVA test). 

Keywords-EEG; working memory training; transfer effects; P300 

ERP. 

I. INTRODUCTION 

Working memory (WM), as defined by Baddeley [1], 
refers to a brain system that provides temporary storage and 
manipulation of information necessary to execute complex 
cognitive tasks. WM training was originally used to enhance 
WM in neuropsychiatric subjects with a WM deficit, such as 
attention deficit hyperactivity disorder (ADHD) [2] and 
several authors studied the mechanisms behind and the effect 
of WM training [3][4].  

The N-back task is a working memory task introduced by 
Wayne Kirchner in 1958 [24] as a visuo-spatial task with four 
load factors (‘‘0-Back’’ to ‘‘3-Back’’), and by Mackworth 
[23] as a visual letter task with up to six load factors. Gevins 
et al. [5] introduced it to the field of neuroscience by using it 
as a ‘‘visuomotor memory task’’ with one load factor (3-
Back). The task involves multiple processes and is considered 
a dual task: working memory updating, which involves the 

encoding of incoming stimuli, the monitoring, maintenance, 
and updating the sequence, and stimulus matching (matching 
the current stimulus to the one that occurred N positions back 
in the sequence). It reflects a number of core Executive 
Functions (EFs) besides working memory, such as inhibitory 
control and cognitive flexibility, as well as other higher-order 
EFs, such as problem solving, decision making, selective 
attention, among others [6]. The N-Back task requires 
participants to maintain simultaneously stimulus information 
necessary for successful task performance in working 
memory across multiple trials [6]. It has been shown that the 
N-Back task consistently activates dorsolateral prefrontal 
cortex (DLPFC), as well as parietal regions in the adult brain 
[7]. Schneiders et al. [8] have shown that, using a N-Back 
training, it is possible to achieve an improvement in task 
performance and an alteration in brain activity, such as a 
decreased activation in the right superior middle frontal gyrus 
(BA 6) and posterior parietal regions (BA 40).  

Following a series of studies, Jaeggi et al. [9][10] reported 
that by performing an N-Back task, the effects of WM 
training transfer to untrained tasks requiring WM (transfer 
effects) and improve upon a complex human ability known 
as fluid intelligence. Jaeggi et al.’s [9] findings support the 
hypothesis that transfer effects to general cognitive functions 
can be achieved after single and dual N-Back training for 
tasks that conceptually overlap, albeit only slightly, with the 
N-Back. Training of the general fronto-parietal WM network 
should lead to improvements in cognitive functions that rely 
on the same network [2]. This general overlap hypothesis 
predicts that if training considerably engages the fronto-
parietal WM network and the transfer task generates a similar 
activation pattern, an extensive training of this network will 
yield a general boosting of cognitive functions. An alternative 
hypothesis predicts that WM training effects transfer only if 
training improves specific cognitive processes required in 
both training and transfer tasks. Dahlin et al. [11] found 
transfer, after WM updating training, to an N-Back task that 
resembled the original trained task in also relying on updating 
processes, but not to a Stroop task that involved inhibition but 
no updating.  
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The aim of our study was to verify whether N-Back task 
performance improves and whether transfer effects to other 
(untrained) cognitive functions are obtained, such as spatial 
memory, attention and reasoning, in three different groups of 
healthy young subjects: cognitive training group (CTG), 
active control group (ACG) and passive control group (PCG). 

The paper is organized as follows. In Section 2, we 
describe the material and methods (subjects, procedure, EEG 
recording). In Section 3, we focus on the behavioral and 
ERPs results using a WM training and on the transfer effects 
pre and post-training. Finally, in Section 4, we discuss our 
results and propose a number of technical and conceptual 
goals for future studies. 

  

 

II. MATERIALS AND METHODS 

In this section we describe the participants, procedure and 
EEG recording. 

A. Subjects 

We recruited 16 healthy young subjects (6 females, mean 
age 29 years, range 24-34 years), undergraduate or graduate 
students from KU Leuven and non- students. Participants 
were healthy, reported normal or corrected vision, no history 
of psychiatric or neurological diseases, they were not taking 
any medications and never participated in working memory 
training.  Participants were assigned to three sub-groups, 
cognitive training (N=6), active control (N=5) and passive 
control group (N=5), to evaluate improvements in task 
performance after the WM training and to record any transfer 
effects to other cognitive tasks (see further for their 
definition). During all training sessions, EEG was recorded 
(see also further). In the cognitive training group, 3 subjects 
performed WM training with visual feedback on the 
correctness of their behavioral response and other 3 subjects 
with monetary reward (with a maximum of 10 € if all 
responses are correct), however, the sample turned out to be 
too small to reveal any significant differences. The active 
control group performed the same training task, but the 
difficulty level was lower (0, 1, 2-Back task) and with 
monetary reward (max. 10 €/session). The control group did 
not undergo any training. A battery of cognitive tests were 
administered before and after training (pre and post-tests, 
note that for the control group there was no training between 
these tests) to see if there were transfer effects in attention, 
spatial memory, reasoning and intelligence. The study was 
approved by our university’s ethical committee and informed 
consent was obtained from our subjects prior to their 
participation in the experiment. 

 
 
 

 

 

 

 

B. Procedure  

Subjects participated in an N-back task in which, see 
Figure 2, a sequence of stimuli were shown and the task was 
to decide whether the current stimulus matched the one 
presented N items earlier.  

The stimuli were presented for 1000ms followed by a 
2000ms Inter-stimulus interval (ISI), adding jitter of ± 100 
ms, during which the picture is replaced by a fixation cross. 
This is the moment where the participants needed to press the 
button if the stimulus was a target; 33% of our pictures were 
targets.  

Sequences with identical difficulty levels (all 0-back, 1-
back, 2-back, 3-back) were grouped into 2 min. blocks across 
four sessions. Each session included two repetitions of 3 
sequences. In total there were 8 blocks. For each sequence, 
there were 60 stimuli presented in pseudorandom order. 
Before starting with the first three sequences, a training 
session consisting of ten stimuli for each difficulty level was 
administered to explain the N-Back task. 

 

 
 

Subjects performed an N-Back training during 10 sessions, 3 

times per week (30 minutes each time), as shown in Figure 1. 

This is in line with literature reports on significant training 

and transfer effects obtained after 3 weeks of training [9][12]-

[15].  

 
 
 
 
 

Task Training group Active control group Passive control group 
Pretest Posttest Pretest Posttest Pretest Posttest 

N-Back task 21* 5* 19*  6.3* 16* 13* 

TOVA task 7.8* 3.3* 9.3*  3*  7.4* 5* 

Corsi task 8.8** 10.4** 8.7** 9.7**  9.2** 9.4** 

Raven task 3.5* 1.8* 6*  3.3* 4.6* 4.2* 

Figure 1. Study design 

Figure 2. Graphical rendition of 3(N)-back task 

 

TABLE 1. COMPARISON (MEAN) OF PRETEST AND POSTTEST PERFORMANCE (ACCURACY) BETWEEN TRAINING GROUP (N=6), 

ACTIVE (N=3) AND PASSIVE CONTROL GROUPS (N=5) IN THE TRAINED (N-BACK) AND IN UNTRAINED TASKS. 

*Incorrect responses **Correct responses 
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All participants were administered a battery of pre- and post-
tests to evaluate whether there were transfer effects to other 
cognitive functions (attention, spatial memory, reasoning and 
intelligence). We used Test of Variables of Attention 
(TOVA) [16], Spatial Working Memory Test (CORSI) [17] 
and Raven test [19]. The behavioral pre- and post-tests were 
administered to compare task performance between groups 
(cognitive training, active control and passive control groups) 
in the trained (N-Back task) and untrained tasks (TOVA, 
CORSI and Raven test). 

N-back task and transfer tasks had similarities and 
differences [9][19][20]. The spatial memory task (Corsi test) 
engaged WM updating processes just as the N-Back task, but 
differed in stimuli (squares in Corsi task vs pictures in the N-
Back task) and task rules (recognition of previously presented 
items in the N-Back tasks vs. recollection of items in the 
updating transfer tasks). Given these similarities and 
differences, we are using near transfer tasks according to 
Karbach and Kray [21]. 

In the first experimental session (pre-test), each 
participant was informed about the experimental procedure 
and invited to sign the informed consent form. The day after 
the first meeting, the participants performed the behavioral 
pre-test session, and from the third meeting, the two training 
groups (CTG, ACG) started their training procedure of CTG 
and ATG participants were not informed about the group to 
which they were assigned or its purpose. At the beginning of 
each training session, an EOG calibration session was 
performed to capture eye movements and blinks using the 
method described in Croft & Barry [22]. 

 

C. EEG recording  

EEG was recorded continuously from 32 Ag/AgCl 
electrodes at a sampling rate of 2 kHz using a SynampsRT 
device (Neuroscan, Australia). The electrodes were placed at 
O1,Oz, O2, PO3, PO4, P8, P4, Pz, P3, P7, TP9, CP5, CP1, 
CP2, CP6, TP10, T7, C3, Cz, C4, T8, FC6, FC2, FC1, FC5, 
F3, Fz, F4, AF3, AF4, Fp1, Fp2. The reference was placed at 
AFz and the ground at CPz. Additionally, four electrodes 
were placed around the eyes, on the upper and lower side of 
the left eye (vertical) and near the external canthus of each 
eye (horizontal), for electro-oculogram recording (EOG, bi-
polar recording). 
The recorded EEG signal was re-referenced offline from the 
original reference to the average of two mastoid electrodes 
(TP9 & TP10), corrected for eye movement and blinking 
artifacts [22], band-pass filtered in the range of 0.1–315Hz, 
and cut into epochs starting 200 ms pre- till 1000 ms post-
stimulus onset. Baseline correction is performed by 
subtracting the average of the 200 ms pre-stimulus onset 
activity from the 1000 ms post-stimulus onset activity. 
Finally, the epochs are down sampled to 64 Hz and stored for 
ERP detection.  

Recorded epochs with incorrect responses were excluded 
from further analysis.  In addition, epochs with EEG signals 
greater than 100mV were excluded from analysis. A two-way  
ANOVA (factors: n-back X target) was performed on all 
sampled EEG time points between -300 ms to 700 ms.  
 

Bonferroni correction for multiple comparisons was used 
across all samples within this time window.    

 

III. RESULTS 

In this section we describe working memory training 
(behavioral and ERPs results) and transfer effects pre and 
post-tests. 

 

A. Working memory training (behavioral)  

In Figures 3 and 4, we analyzed changes due to cognitive 
training by examining behavioral data (accuracy, reaction 
time (RT)) of CTG and ACG during N-Back training (10 
sessions). The purpose is to test our second hypothesis: 
training can improve related cognitive function performance, 
and also transfer to other cognitive functions, in terms of RT 
and response accuracy revealed significant effects.  

For the CTG, we observed a reduction in RT with an 
increased number of training sessions. To test this, we 
performed a three-way ANOVA across factors (N-back level, 
subject and session). We found a significant effect of session 
(F(9)=4.9, p<0.001) confirming that RT indeed decreases with 
more training. Importantly, the N-Back x session interaction 
was significant (F(18)=3.01, p<0.001), which indicates that the 
N-back levels  are differentially affected by training. In 
contrast, when we looked at accuracy, the  main effect of 
session was not significant (p=0.56) indicating that accuracy 
did not substantially increase as a result of training although 
there was a main effect of N-back level confirming that task 
difficulty affected performance (F(2)=7.97, p<0.05). 

For the active control group (ACG), RT decreases. It is 
significant for N-Back x session (F(18)=1.95, p<0.05), and for 
subject x session interactions (F(18)=4.84, p<0.001). This 
indicates that the number of training sessions is subject and 
task-specific. Accuracy differences were significant for N-
Back x subject interaction (F(4)=6.8, p<0.001), N-Back x 
session interaction (F(18)=2.31, p<0.05), and for subject x 
session interaction (F(18)=2.54, p<0.05), which means that N-
Back and training session are subject-specific, and N-Back is 
affected by the number of training sessions.      

                                                              

 
 

 

 

 

Figure 3. Left, RT during 10 sessions of cognitive training in CTG; right, 
RT during 10 sessions of cognitive training in ACG. Error bars indicate 

SEM. 
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We observed significant effects between the two groups 

(CTG, ACG): the accuracy between CTG and ACG was 
significant for N-Back (F(1)=8.26, p<0.05), and group 
(F(1)=18.39, p<0.001). The RT in the two groups was 
significant for session (F(9)=3.44, p<0.001) and group 
(F(1)=7.02, p<0.05). 
 

B. Working memory training (ERPs results) 

 

As neuroimaging studies have shown that during N-Back task 
performance the most activated brain regions are the lateral 
premotor cortex, dorsal cingulate and medial premotor 
cortex, dorsolateral and ventrolateral prefrontal cortex, 
frontal poles, and medial and lateral posterior parietal cortex 
[5], and several studies showed that the midline electrodes are 
the most significant [25][26], we decided to analyze ERPs 
using electrodes located over these areas: Fz, Pz, and Cz. 
Figure 5 has shown a peak in P300 amplitude in three 
different moments (3 sessions/each moment) during training 
(first-, middle- and last sessions). 
 
 
 
 

 
 
 
 
 

 
Data from mean P300 peak amplitude is presented in Figures 
5 and 6. P300 peak amplitude data from midline electrodes 
(Fz, Cz, Pz) were analyzed with a three-way ANOVA (N-
Back, target, and N-Back x target). P300 peak amplitude 
(target minus no-target) was higher for the N-Back difficulty 
levels that were easier (1 and 2-Back), and was lower for the 
more difficult one (3-Back). P300 peak amplitude (difference 
between target and no-target) was largest for the frontal 
electrode (Fz) and decreased for the central (Cz) and posterior 
electrodes (Pz). Furthermore, the P300 peak amplitude 
decreased progressively from the easiest task (0 or 1-Back) 
to the most difficult one (3-Back). 

As a result of working memory training, the P300 peak 
became higher also for the most difficult task (3-Back). All 
together, these data support the observation that the P300 
peak amplitude decreases with increased task load/difficulty, 
and with WM training it is possible to increase it also for the 
more difficult task. 
 

C. Transfer effects (Pre- and Post-tests) 

Means for each task are presented in Table 1 for the pre- 
and post-tests. In Figures 7 and 8, a multivariate ANOVA 
(MANOVA) was conducted between groups (CTG, ACG 
and PCG) and between sessions (pre- and post-tests). 
Significant effects for accuracy in N-Back task between CTG 
and PCG (F(1)=6.21, p<0.05), and between CTG and ACG 
(F(1)=14.21, p<0.05) for pre- and post-testing, were observed 
as well as significant effects in pre- and post-testing for 
accuracy in TOVA between CTG and ACG (F(1)=8.18, 
p<0.05) and between ACG and PCG (F(1)=5.24, p<0.05). No 
significant differences in CORSI and RAVEN test accuracies 
between groups were found. 

For the N-Back task, significant effects were found for 
RT between CTG and PCG, for pre- and post-tests (F(1)=40.9, 
p<0.001), for task difficulty level (F(2)=4.92, p<0.05),  for 
group x pre- and post-test interaction (F(1)=9.14, p<0.05), and 
for pre- and post-test x N-Back level interaction (F(2)=3.54,  

 

 

 

 

 

 

 

 

 

 
 

 

   

Figure 4. Left, accuracy during 10 sessions of cognitive training in CTG; 

right, accuracy during 10 sessions of cognitive training IN ACG. Error 
bars indicate SEM. 
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Figure 6. Peak of P300-ERPs (Fz and Cz target minus non-target) in 6 subjects (ACG) in the first sessions of training (left), the middle 

(center) and the last ones (right). Significance measured using two-way ANOVA (p < 0.01, Bonferroni corrected for multiple comparisons. 
Error bars indicate SEM. 

 

 

Figure 7. % incorrect performance of 3 groups for pre- to post-test in N-back task (1st figure, left), TOVA test (2nd figure), RAVEN test (3rd figure) 

and % correct performance in CORSI test (4th figure, right). Error bars indicate SEM. An asterisk indicates a significant difference between pre and 

post-tests 

 

 

  

 

 

 

 
  

   

5Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-579-1

BRAININFO 2017 : The Second International Conference on Neuroscience and Cognitive Brain Information

                            12 / 28



 

 

 
 

 

 

 

p<0.05); between CTG and ACG for pre- and post-test 

(F(1)=25.6, p<0.001), and for task difficulty level (F(2)=7.45, 

p<0.001), and between ACG and PCG for pre- and post-test 

(F(1)=10.48, p<0.05). 
In summary, with our pre- and post-training tests, we 

wanted to verify whether any transfer effects could be 
obtained after N-Back training. Our results show clear 
improvements in attention.    
 

IV. DISCUSSION 

We investigated whether cognitive training using an N-
Back task improves only N-Back task performance or does it 
transfer to other tasks. To assess this, we performed 10 N-
Back training sessions in one group of participants (CTG) and 
assessed their cognitive performance for a battery of 
cognitive tasks (N-Back, TOVA, CORSI and Raven test) 
before and after training. During training, CTG participants 
performed the 1-,2-3-Back version of the N-Back task. To 
assess whether the level of difficulty affected training 
outcome, a second group of participants (ACG) performed 
the same experiment but with the 0-,1-2-Back versions of the 
N-Back task. Finally, a third group of participants (PCG) 
performed no training but was subjected to the same battery 
of cognitive tests. We found that training indeed improves 
performance for the CTG group compared to both the ACG 
and the PCG groups. Therefore, there is a clear improvement 
for the trained group on the task they were trained on. In 
contrast, the transfer of training effects into other tasks is 
more nuanced and although there was a trend for training 
effects in CTG to be stronger than for ACG this was only 
significant for the TOVA tests. These results are in contrast 
with the conclusions of Jaeggi at al. (2008) [9] who showed 
that a working memory task improves working memory and 
also fluid intelligence, and the study of Dahlin et al. [11] 
found that working memory training improves another 
working memory task but not other cognitive functions. 

An issue that deserves consideration is why N-Back 
training in our study did not produce transfer effects in 
CORSI test (spatial memory) while in Dahlin et al. [11] they 
observed transfer effects to another memory task.  In our 
view, this difference could be related to the size of the 
sample. Furthermore, as the EEG results from our study 
suggest a change in the P300 during the cognitive training, 
future study will consider not only the behavioral data 

(accuracy and RT), but also P300 component to change in 
real time the difficulty level of the task, avoiding too much 
fatigue or boredom for the subject. 

In conclusion, we showed that N-Back training not only 
improves WM but also transfers improvement to another 
cognitive function (attention). The results provide evidence 
that it is possible to improve not only performance of tasks 
that include the same cognitive function (working memory), 
but also other cognitive tasks, as attention in our case.  

ACKNOWLEDGMENTS 

VP is supported by research grant G088314N, MMVH by 
research grants PFV/10/008, IDO/12/007, IOF/HB/12/021, 
G088314N, G0A0914N, IUAP P7/11, GOA 10/019, and the 
Hercules Foundation (AKUL 043). BW is supported by a 
Strategic Basic Research (SBO) grant, funded by VLAIO 
(Flemish Agency for Innovation and Entrepreneurship). 

 

REFERENCES 

 
[1] A. Baddeley, “Working Memory and Conscious Awareness”, 

Theories of memory, pp.11-20, 1992. 

[2] T. Klingberg, “Training and plasticity of working memory”, 
Trends Cogn Sci 14, pp.317–324, 2010. 

[3] C. C. von Bastian, and K. Oberauer, “Effects and mechanisms 
of working memory training: a review”, Psychol Res 78, 
pp.803–820, 2014. 

[4] J. Au, et al., “Improving fluid intelligence with training on 
working memory: a metaanalysis”, Psychon Bull Rev 22, 
pp.366 –377, 2015. 

[5] A. S. Gevins, et al., “Effects of prolonged mental work on 
functional brain topography”, Electroencephalography and 
clinical neurophysiology, 76(4), pp.339-350, 1990. 

[6] M. J. Kane, and R. W. Engle, “The role of prefrontal cortex in 
working-memory capacity, executive attention, and general 
fluid intelligence: An individual-differences perspective”, 
Psychonomic bulletin and review, 9(4), pp.637-671, 2002. 

[7] A. M. Owen, K. M. McMillan, A. R. Laird, and E. Bullmore, 
“N‐back working memory paradigm: A meta‐analysis of 
normative functional neuroimaging studies”, Human brain 
mapping, 25(1), pp.46-59, 2005. 

[8] J. A. Schneiders, B. Opitz, C. M. Krick, and A. Mecklinger, 
“Separating intra-modal and across-modal training effects in 
visual working memory: an fMRI investigation”, Cerebral 
Cortex, 21(11), pp.2555-64, 2011. 

[9] S. M. Jaeggi, “Improving fluid intelligence with training on 
working memory”, Proc. Natl. Acad. Sci. 105, pp.6829– 6834, 
2008. 

[10] S. M. Jaeggi, “The relationship between n-back performance 
and matrix reasoning implications for training and transfer”, 
Intelligence 38, pp.625–635, 2010. 

[11] E. Dahlin, A. S. Neely, A. Larsson, L. Backman, and L. 
Nyberg, “Transfer of learning after updating training mediated 
by the striatum”, Science 320, pp.1510–1512, 2008. 

[12] J. Chein, and A. Morrison, “Expanding the mind's workspace: 
Training and transfer effects with a complex working memory 
span task”, Psychonomic Bulletin and Review, 17 (2), pp.93–
199, 2010. 

[13] E. Dahlin, L. Backman, A. S. Neely, and L. Nyberg, “Training 
of the executive component of working memory: Subcortical 

Figure 8. RT for correct responses for pre- and post-testing in the N-Back 
task of CTG (left), ACG (right), and PCG (bottom). Error bars indicate 

SEM. An asterisk indicates a significant difference between pre and post-

tests. 

* 

* 

* 

* 
* * 

6Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-579-1

BRAININFO 2017 : The Second International Conference on Neuroscience and Cognitive Brain Information

                            13 / 28



 

 

areas mediate transfer effects”, Restorative Neurology and 
Neuroscience, 27 (5), pp.405–419, 2009. 

[14] Y. Brehmer, H. Westerberg, and L. Bäckman, “Working-
memory training in younger and older adults: training gains, 
transfer, and maintenance”, Training-induced cognitive and 
neural plasticity, p.72, 2012. 

[15] L. L. Richmond, A. B. Morrison, J. M. Chein, and I. R. Olson, 
“Working memory training and transfer in older adults. 
Psychology and aging”, 26(4), p.813, 2011. 

[16] L. M. Greenberg, and I. D. Waldmant. "Developmental 
normative data on the test of variables of attention (TOVA™)." 
Journal of Child Psychology and Psychiatry 34 (6), pp.1019-
1030, 1993. 

[17] R. P. Kessels, M. J. Van Zandvoort, A. Postma, L. J. Kappelle, 
and E. H. De Haan, “The Corsi block-tapping task: 
standardization and normative data”, Applied 
neuropsychology, 7(4), pp.252-258, 2000. 

[18] J. C. Raven, and J. H. Court, “Raven's progressive matrices and 
vocabulary scales”, Oxford, UK: Oxford Psych Press, 1998. 

[19] J. Persson, and P. A. Reuter-Lorenz, “Gaining Control: 
Training Executive Function and Far Transfer of the Ability to 
Resolve Interference [retracted]”, Psychological Science, 
19(9), pp.881-888, 2008. 

[20] X. Zhao, Y. Wang,  D. Liu, and R. Zhou, “Effect of updating 
training on fluid intelligence in children”, Chinese Science 
Bulletin, 56(21), pp.2202-2205, 2011. 

[21] J. Karbach, and J. Kray, “How useful is executive control 
training? Age differences in near and far transfer of task-
switching training’, Dev Sci 12, pp.978–990, 2009. 

[22] R. J. Croft, and R. J. Barry, “Removal of ocular artifact from 
the EEG: a review”, Neurophysiologie Clinique/Clinical 
Neurophysiology, 30(1), pp.5-19, 2000. 

[23] J. F. Mackworth, “Paced memorizing in a continuous task”, 
Journal of Experimental Psychology, 58(3), p.206, 1959. 

[24] W. K. Kirchner, “Age differences in short-term retention of 
rapidly changing information”, J Exp Psych, pp.1-17, 1958. 

[25] S. Watter, G. M Geffen, and L. B. Geffen, “The n-back as a 
dual-task: P300 morphology under divided attention”, 
Psychophysiology, 38(06), pp.998-1003, 2001. 

[26] A. M. Brouwer,, et al., “Estimating workload using EEG 
spectral power and ERPs in the n-back task”, Journal of neural 
engineering, 9(4), p.045008, 2012. 

 

7Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-579-1

BRAININFO 2017 : The Second International Conference on Neuroscience and Cognitive Brain Information

                            14 / 28



BRA ININFO 2017 : The Second International Conference on Neuroscience and Cognitive Brain Information

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-579-1 8

A GPU-accelerated Framework for Fast Mapping of Dense Functional Connectomes

Kang Zhao, Haixiao Du and Yu Wang
Department of Electronic Engineering, Tsinghua University

Beijing, China
Email: {zhaok14,duhx11}@mails.tsinghua.edu.cn,yu-wang@tsinghua.edu.cn

Abstract—In the context of voxel-based modalities like functional
magnetic resonance imaging (fMRI), a dense connectome can be
treated as a large-scale network where single voxels are directly
used to define brain network nodes. Contrary to parcellated con-
nectomes, dense connectomes have higher spatial resolution and
are immune from the parcellation quality. However, the analysis
of dense connectomes basically requires more powerful computing
and storage capacities. Here, we proposed a graphics processing
unit(GPU)-accelerated framework to perform fast mapping of
dense functional connectomes. Specifically, the framework is
scalable to high voxel-resolution imaging data(<2mm) and can
construct large-scale functional brain networks with lower time
and memory overheads. Based on the proposed framework,
three functional connectivity measures (Pearson’s, Spearman’s
and Kendall’s) were accelerated on the GPU for fast detection
of possible functional links in dense connectomes. Experimental
results demonstrated that our GPU acceleration for the Kendall’s
measure delivered a >50x speedup against both multi-core CPUs
implementations and GPU-based related works.

Keywords–neuroinformatics; dense connectomes; functional
connectivity measures; GPU; voxel resolution.

I. INTRODUCTION

Recent advances in resting-state functional magnetic res-
onance imaging (rs-fMRI) technologies have provided a non-
invasive way to depict spontaneous fluctuations in brain activ-
ity and thus facilitates the mapping of functional connectomes
[1]. Thanks to the constant increase of imaging resolution, re-
searchers nowadays are able to analyze functional connectivity
patterns of human brain at a finer spatial resolution, which
triggers the rise of ’dense connectome’ study[2][3].

A dense functional connectome is generally modeled as a
large-scale network whose nodes can be defined directly by
voxels in fMRI imaging data [4]. The investigation of voxel-
wise functional networks allows to uncover more detailed
connectivity information but is typically coupled with con-
siderable computation and storage demands [5]. Specifically,
the total amount of voxels grows cubically as a function of
voxel-resolution, leading to a sharp increase in computations
when measuring the functional connectivity between all pairs
of voxels. Moreover, formally represented by a connectivity
matrix, a voxel-wise network requires quadratic complexity of
storage with the growth of voxel amounts, which implies a
considerable memory footprint for the construction of large-
scale functional networks. As shown in Figure 1, at the 1mm
resolution of approximate 1,600,000 voxels, more than 8 TB
memory is required for the storage of the voxel-wise whole-
brain connectivity matrix. Taken together, the computation and
storage requirements are the most pressing problems in the
study of dense functional connetomes.

Given the limited computational power, extensive research
has attempted to scale down brain networks by either down-

sampling the imaging data towards a coarser level, or aggre-
gating network nodes to several large parcels in the light of
anatomically or functionally-defined brain atlases, i.e., par-
cellated connectomes [6]. However, it is quite obvious that
these solutions may lead to the loss of potentially significant
connectivity information, not to mention that the analysis of
parcellated connectomes are highly sensitive to the parcellation
selection [7].

In recent years, the advent of general-purpose graphics
processing units (GPGPUs) opens a new door to gigantic
data processing [8]. Benefiting from many-core architectures,
GPUs exhibit a high bandwidth and tremendous computational
horsepower, and the collaboration of CPU-GPU can achieve
remarkable performance boosts for many applications [9].
In the field of imaging connectomics, several attempts have
been made to accelerate the mapping of dense connectomes
using GPUs [10][11]. Nonetheless, these studies either are
powerless in the treatment of high resolution data (e.g., 2mm
or higher resolutions), or present a rapid deterioration of
performance as the growth of voxel aggregates. Scalable GPU-
based algorithms used to map dense functional connectomes
are currently lacking.

In this paper, we proposed a GPU-accelerated framework
aimed for fast mapping of dense functional connectomes.
Specifically, the proposed framework enables fast construc-
tion of large-scale functional network based on three distinct
functional connectivity (FC) measures: Pearson’s, Spearman’s
and Kendall’s measures [12]. Moreover, attributed to a novel
memory optimization strategy, our framework is scalable to the
high-resolution imaging data (<2mm). Experimental results
showed that running on a single-GPU system, our framework
can extract large-scale functional networks (106 nodes, 1%
edge sparsity) within 1000 seconds.

The remaining part of this paper proceeds as follows. In
section II, we begin with an overview on the general flow
of functional network construction, focusing on the possible
challenges for mapping dense connectomes. After that, a
scalable GPU-accelerated framework and the corresponding
accelerated methods of FC measures are described in order to
tackle these challenges. The performances of these algorithms
are analyzed in Section III. Section IV discusses the major
contributions of our study along with some future expectations.

II. METHODS AND MATERIALS

This section details three aspects: the basic steps and issues
of voxel-wise brain network construction, our solutions under
different thresholding and FC measuring approaches as well
as the design of experiments including data generation and
the selection of benchmarks.
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Figure 1. For different imaging resolutions, the corresponding number of
voxels, and memory requirements for generating connectivity matrices.

Source of statistical data:
http://fcon 1000.projects.nitrc.org/indi/CoRR/html/bnu 1.html.

A. An Overview on Functional Network Construction
In fMRI-based functional connectomics, the imaging data

of a certain subject is acquired by successively recording blood
oxygenation level-dependent signals at each imaging voxel
site [4]. Then, the imaging data is preprocessed by some
conventional means (e.g., slice timing correction, spatial and
temporal filtering) before it is finally represented by a data
matrix DN×L, where N is the number of voxels and L is the
length of time series [13]. After that, the construction flow
of a functional network can be typically summarized into two
main steps: generating connectivity matrix and thresholding.
Firstly, the functional connectivity strength between any two
voxels is calculated via diverse FC measures to describe how
N distinct voxels functionally interact with each other, which
generates an N ×N connectivity matrix. Once a connectivity
matrix is generated, given the consensus that human brain
functional networks organize as an economical small-world
topology tending to minimize wiring costs [14], a subsequent
thresholding procedure should be applied to remove spurious
connections to ensure the sparsity nature of the brain networks
[15]. At present, there is no gold standard for the set of
threhold values. Generally a sensitive analysis across diverse
thresholds is recommendatory for researchers to seek appropri-
ate thresholding parameters[16]. Finally, the sparse networks
established though thresholding procedures can be compressed
into a sparse format with lower memory footprints, e.g., the
compressed sparse row (CSR) format [17].

For the construction of voxel-level networks, it is note-
worthy that despite underlying huge memory demands of
intermediate connectivity matrix (Figure 1), the established
networks after thresholding are normally less memory-hungry.
For example, under 1mm isotropic resolution, the established
sparse network with 0.1% edge density requires only ∼16
GB memory, much lower than that of the entire connectivity
matrix. Hence, the basic idea of our proposed framework is to
avoid maintaining the entire connectivity matrix by employing
a GPU-based block-wise thresholding strategy.

B. Scalable Solutions for Voxelwise Network Construction
As the network size grows dramatically with the increasing

voxel aggregates, a scalable method is required for the voxel-

Algorithm 1 Constructing networks given the connectivity
strength (CS) threshold
Input:data matrix D, the CS threshold CSthreshold;
Output:the resultant network ResultNet host;
Variables defined on CPU main memory: D host,

ResultNet host;
Variables defined on GPU memory: D dev, Batch dev;

1: Transfer D host to D dev;
2: Partition D dev into m blocks, numbered from D1 to Dm;
3: for row← 1 to m do
4: for column←row to m do
5: Batch device← GPU f (Drow , Dcolumn );
6: GPU thresholding(Batch dev, CSthreshold);
7: GPU compressing(Batch dev);
8: Transfer Batch dev to Batch host;
9: CPU assemble(Batch host,ResultNet host);

10: Batch dev.clear();

wise network construction. Here, we proposed a GPU-based
block-wise thresholding strategy under two different thresh-
olding modes: given the connectivity strength threshold or the
sparsity threshold [18].

1) Specify Connectivity Strength Thresholds: Assigning the
connectivity strength threshold means that a fixed threshold
value is set as the baseline when thresholding the connectivity
matrix so that matrix elements greater than the given threshold
are reserved while others are set to 0s.

In this case, the steps of generating connectivity matrix
and thresholding can be easily merged. Specifically, the afore-
mentioned data matrix DN×L can be divided into multiple
(m) blocks, i.e., D = {D1,D2, . . . ,Dm} , where the block
size is adjustable. Then, the corresponding connectivity matrix
RN×N = f

(
DT ,D

)
can be derived by:

R =


f
(
DT

1 ,D1

)
f
(
DT

1 ,D2

)
. . . f

(
DT

1 ,Dm

)
f
(
DT

2 ,D1

)
f
(
DT

2 ,D2

)
. . . f

(
DT

2 ,Dm

)
...

...
. . .

...
f
(
DT

m,D1

)
f
(
DT

m,D2

)
. . . f

(
DT

m,Dm

)
 ,

(1)
where f represents distinct FC measures, e.g., the Pearson’s
measure. In this way, RN×N is generated block by block.
Once a block is obtained, a subsequent thresholding and
compressing procedure is performed immediately instead of
doing this after the generation of the entire RN×N . All the
computation, thresholding and compression procedures can be
efficiently completed by a GPU device, while the CPU only
serves as an assembly line for receiving compressed data from
the GPU in series and continuously jointing them together into
a complete network that stays in main memory with a sparse
format. The execution procedure is shown in Algorithm 1.

It should be noted that during the process, only a sparsely
stored matrix is maintained in CPU main memory. Thus,
the algorithm has a linear spatial complexity O (N + E) for
storing voxel-level functional networks, where E is the number
of valid edges after thresholding. As the network can be quite
sparse, the CPU memory usage is largely decreased in this
way.

2) Specify Sparsity Thresholds: Another commonly used
thresholding strategy is to fix the network sparsity. The sparsity
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is defined as the proportion of the quantity of existing edges to
the maximum possible number of edges in a network. Com-
paratively, the sparsity-based thresholding approach is more
suitable for group-level comparisons on network topology [19]
but is more complex to be applied in the construction of large-
scale networks because the sparsity threshold should be firstly
transferred to a corresponding connectivity strength threshold,
which is in need of a time-consuming statistic for all entries
in the connectivity matrix RN×N .

In response, a GPU-accelerated algorithm characteristic
of calculating the connectivity matrix RN×N for two times
was designed. During the first generation, the GPU analyzes
the distribution of element values in RN×N to derive the
connectivity strength threshold corresponding to the given
sparsity. Considering that a sparsity threshold restricts the
number of actual connections k in a network, our basic idea
is to find the k-th maximal element rk in RN×N via GPU
statistics, to serve as the connectivity strength threshold. Once
rk is obtained, the algorithm described above (Algorithm 1)
can be reused to establish networks, which will also satisfy the
constraint of the specified sparsity threshold. Then, the running
of Algorithm 1 actually requires computing RN×N one more
time.

Specifically in the first round, the range of the connectivity
strength from 0 to 1 is segmented into multiple bins, with
the bin quantity Nbin, and the bin width ε = 1/Nbin. Each
time a block of RN×N is generated, a statistical histogram is
maintained and updated by counting the quantity of elements
in the block falling into different bins. A GPU-based sort-
search histogram algorithm is applied to attain a fast and stable
performance for large number of bins [20]. After finishing
statistics of all blocks, the very bin where rk is located can be
find from the statistical histogram and the eventual outcome
r̂ is set as the median of this bin. The process is summarized
in Algorithm 2. Notably, the error between r̂ and rk can be
estimated by :

|r̂ − rk| ≤ ε/2 = 1/(2Nbin), (2)

where the precision can be simply improved by increasing the
number of bins, i.e., Nbin. In practice, we set Nbin = 106,
rendering r̂ an extreme approximation to rk. Taken together,
by adopting the block-wise statistical and approximate strategy
we avoid maintaining the entire connectivity matrix as a
whole, thereby reducing the algorithmic demand for CPU/GPU
memory.

C. GPU implementation of three FC Measures
FC measures are used to quantify the strength of functional

connections between network nodes. In this section, we will
detail our GPU-accelerated algorithms for three commonly
used FC measures: Pearson’s, Spearman’s and Kendall’s mea-
sures, of which the latter two are considered more robust to
outlying observations [21]. To accelerate the calculation of
FC measures on a GPU, the basic principle of our proposed
algorithms is to transform the computation of these measures
into normative operations that GPUs excel in, e.g., vectors
or matrices multiplications, both of which that possess high
parallelism can be executed very quickly on GPUs.

As mentioned above, an fMRI data set of a single subject
can be represented by a data matrix DN×L = (di), where
1 ≤ i ≤ N , and di = (di1, di2 . . . , diL), i.e., the i-th row of

Algorithm 2 Derive the corresponding connectivity strength
threshold from the given sparsity threshold
Input:data matrix D, the sparsity threshold Sparsity;
Output:the connectivity strength threshold CSthreshold;
Variables defined on CPU main memory: D host;
Variables defined on GPU memory: D dev, Batch dev,

histogram dev;
1: Define k ← N ×N × Sparsity;
2: Transfer D host to D dev;
3: Partition D dev into m blocks, from D1 to Dm;
4: for row← 1 to m do
5: for column←row to m do
6: Batch dev← GPU f (Drow , Dcolumn );
7: GPU histogram(Batch dev, histogram dev);
8: Batch dev.clear();
9: Define Position ← GPU upperBound(histogram dev, k);

10: CSthreshold ← binWidth × Position + binWidth/2.0;

DN×L, denoting the time series of the i-th voxel, with the
sequence length L. Thus ri,j , the FC measurements between
voxel i and voxel j, can be described as follows:

ri,j = f(di,dj), (3)

where f ∈ {fp, fs, fk}, representing Pearson’s, Spearman’s
and Kendall’s measures, respectively, whose definitions will
be specified below.

1) Vectorization for Pearson’s and Kendall’s Measures:
The Pearson measure of temporal correlation between two
time-series di, dj is defined by:

fp =

∑L
k=1

(
dik − d̄i

) (
djk − d̄j

)
Sdi
· Sdj

, (4)

where d̄i =
(∑L

k=1 dik

)/
L and Sdi

=

√∑L
k=1

(
dik − d̄i

)2
are the mean and standard deviation of the time series of the
i-th voxel respectively. Several studies have suggested that fp
be derived as the product of two normalized vectors [22]:

fp =
∑L

k=1

(
dik − d̄i
Sdi

)(
djk − d̄j

Sdj

)
= ~pi · ~pj , (5)

where ~pi, ~pj are vectors with the length L and ~pik =(
dik − ~di

)/
Sdi . Likewise, the formula of the Kendall’s mea-

sure can be vectorized to:

fk =

L−1∑
k=1

L∑
q=k+1

(
sign (dik − diq)√

m−mi

)(
sign (djk − djq)
√
m−mj

)
= ~zi · ~zj (6)

where ~zik = sign (dik − diq)/
√
m−mi and m, mi are

scalars [23]. Note that vectors ~zi and ~zj have the length
L (L− 1)/2.

To obtain all-pairs FC measurements, i.e., the connectivity
matrix RN×N = (ri,j), the ~pi (~zi) of every voxel should be
firstly derived. Then, the subsequent operations of all-pairs
ri,j = ~pi · ~pj (Pearson’s measure), or ri,j = ~zi · ~zj (Kendall’s
measure), can be unified as the matrix-matrix multiplication,
which is efficient on GPUs.
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2) Accelerating Rank Assignments for Spearman’s Mea-
sure: The Spearman correlation between two time-series can
be calculated by measuring the Pearson correlation of their
ranked values of each samples [24], i.e.,

fs (di, dj) = fp (ni, nj) , (7)

where ni, nj are the ranked sequences of di, dj , respectively.
That is, by replacing every element in a time-series with
its rank, our proposed GPU-based procedure of Pearson’s
measures described above can be applied directly to accelerate
the computation of the Spearman’s measure. Hence, the key
issue is how to calculate element ranks efficiently on a GPU.

A GPU-based sort-detection algorithm was introduced by
Kim et al. (2012) [25] for assigning ranks, yet this approach is
powerless in process of tied elements, i.e., multiple identical
values in one time-series. Here, we propose a new rank
assigning strategy calculating the rank of dik in the i-th time
series as follows:

rank (dik) = LessNumber + (1 + EqualNumber)/2, (8)

where LessNumber is the amount of elements less than dik
and EqualNumber is the amount of tied elements equal
to dik (including itself). To obtain the rank of an element
dik, a GPU only needs to traverse all elements of a time-
series and count the number of elements less than or equal
to itself, instead of sorting all temporal samples. This strategy
avoids possible branch operations and irregular memory access
among multiple threads, thereby easily parallelized by a GPU
with single instruction, multiple threads (SIMT) model [26].
Performances of the sort-detection algorithm and our own
implementation of the Spearman’s measure will be compared
later.

D. Application and Example Datasets
Several experiments were conducted to illuminate the ad-

vantages of our proposed framework in two aspects: the run
time efficiency and the scalability. To comprehensively assess
the run time efficiency, two sets of data with respective number
of nodes N=25218 (approximate to the voxel aggregates of a
4mm isotropic resolution imaging data) and N=58523 (approx-
imate to the voxel aggregates of a 3mm isotropic resolution
imaging data) were randomly generated and stored using a
floating point format of 4 bytes per element. In addition, each
data set has four variants with varied number of temporal
samples (L=128, 256, 512, 1024), to evaluate the performance
of our GPU-accelerated algorithms under different length of
time series. In contrast, to investigate the scalability of the
proposed framework, another input data set was produced with
constant length of time series (L=128) but spanning a broad
range of voxel quantities (N= 200,000, 400,000, 600,000,
800,000, 1000,000, respectively).

E. Benchmarks and Programs
All experiments were conducted on a workstation with an

Intel(R) Core(TM) i7-6700K CPU (4G Hz, 8 cores, hyper-
threading disabled), 64GB main memory, and an NVDIA
GeForce GTX TITAN Black GPU with 6 GB device mem-
ory. The workstation supports dual operation systems (Win-
dows 8.1 and Linux Ubuntu 16.10). MATLAB(R2016a) and
CUDA(v8.0) are available on both systems.

So far, several parallel-processing approaches have been
put forward to accelerate the calculation of FC measures. Here
we consider two class of typical related works as comparisons:
multi-core CPUs based implementations, and GPU based im-
plementations by others.

The contrastive programs of Pearson’s and Spearman’s
measures on multi-core CPUs are parallelized by invoking
the Intel Math Kernel library(MKL), a widely used math
library featuring highly optimized and easily parallelizable
functions on multi-core systems [27]. Besides, the parallel
implementation of the Kendall’s measure on multi-core CPUs
is based on a classical algorithm built upon merge sort [28].
On the current workbench, all these CPU-based programs are
parallelized using 8 threads. As for GPU-based related works,
the programs from gputools, a prevalent toolbox enabling
efficient GPU computing in R [29], are picked up for the
performance comparison on Pearson’s and Kendall’s measures,
and the aforementioned sort-detection algorithm proposed by
Kim et al. (2012) [25] is re-implemented and tested against
our own implementation of the Spearman’s measure.

III. RESULTS
We first assessed the performance of our GPU-accelerated

algorithms for three FC measures (Figure 2). In this case, all
programs were required to generate full-stored connectivity
matrices without thresholding and compression operations.
Then, the elapsed time of constructing sparse networks among
different network scales and sparsity thresholds was presented
in Table 1 to highlight the scalability of our framework.

A. Performance
Experimental results in Figure 2 showed that our proposed

GPU-accelerated algorithms for Pearson’s, Spearman’s and
Kendall’s measures were more time-efficient against both
multi-core CPUs and GPU based related works. In particular,
our own implementation of the Kendall’s measure exhibited a
over 50x speedup than the other two ways.

Specifically, our GPU implementation of Pearson’s mea-
sures only cost 1.7 seconds on average for generating the
connectivity matrix at a 4mm isotropic resolution (N=25218)
across different lengths of time series, and 4.3 seconds at
a 3mm isotropic resolution (N=58523). Similarly, for the
Spearman’s measure, the average time costs were 2.0 and
4.4 seconds, respectively, at the two network scales. Actually,
our GPU-accelerated procedure of the Spearman’s measure
performed only slightly slower than that of the Pearson’s mea-
sure. Considering that the execution of Spearman’s measure
internally called the procedure of the Pearson’s measure upon
finishing rank assignments, the minor variance in computing
time between the two measures implied the high efficiency
of our proposed strategy for rank assignments, which led to
the little time occupancy of this step during the calculation of
the Spearman’s measure. As for the Kendall’s measure, our
procedure spent averagely 63.5 and 340.5 seconds generating
the connectivity matrix at the resolution of 4mm and 3mm,
respectively, which was much less than that of the multi-core
CPUs implementation using MKL parallel computing library
[27] or the GPU implementation using gputools [29]. The
latter two ways both consumed >1 hour dealing with 4mm
resolution data and >5 hours with 3mm data. Notably, the
calculation of the Kendall’s measure that has a quadratic time
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Figure 2. Performance comparisons of different implementations of three FC measures (Pearson’s, Spearman’s and Kendall’s).

complexity as the increase of lengths of time series is generally
more time-consuming than that of Pearson’s and Spearman’s
measures with linear span.

Additionally, it was observed that multi-core CPUs im-
plementations of Pearson’s and Spearman’s measures were
adversely sensitive to the length of time series. Moreover,
GPU-based related works regarding three measures, due to
their lack of specialized treatments to efficiently adapt these
measures on the GPU architecture, showed relatively inferior
performance to ours, and even sometimes to multi-core CPUs
implementations. E.g., for the computation of the Spearman’s
measure, it took averagely 64 seconds for GPU-based sort-
detection algorithm [25] to handle 3mm isotropic resolution
(N=58523, L=512) while <40 seconds were needed for the
multi-core CPUs implementation accordingly.

B. Scalability
To assess the scalability of the proposed framework, the

elapsed time for constructing large-scale functional networks
with varied numbers of networks nodes were demonstrated in
Table 1. Sparsity thresholds were specified at 0.1%, 1%, 2%,
respectively. In particular, for Kendall’s network construction
that usually takes longer time than Pearson’s and Spearman’s,
the table only listed the time records within 1000s and cor-
responding track of N while the framework was certainly
applicable to larger scale data sets. The results in Table
1 illustrated that our proposed framework were scalable to
high resolution data and could establish voxel-wise functional
networks with a large amount of nodes in a short period of
time. Specifically, the proposed framework could construct
Pearson’s or Spearman’s networks with 106 nodes and 1%
edge sparsity using less than 1000 seconds. Considering that
only about 200,000 nodes need to be maintained in dense
connectomes at an isometric resolution of the 2mm level (Fig-
ure 1), our framework is capable of handling high resolution
data whose voxel size is far lower than 2mm. Moreover,
in actual measurements, it was tested that the framework
could handle 1mm voxel-resolution data (N=1561152, L=1200,

0.1% sparsity threshold) and finish the Pearson’s network
construction within an hour. To the best of our knowledge, this
is the first work enabling the processing of such magnitude
data in an acceptable amount of time. Notably, the elapsed
time of our network construction algorithms is affected by both
node amounts N and sparsity thresholds of networks. The time
complexity is O(N2) approximately, and the distinct network
sparsity thresholds mainly affect the time expenditure of CPU-
GPU data transfers.

Finally, it was observed that our Pearson’s and Spearman’s
network construction procedures failed when N = 106 given
the 2% sparsity threshold, as a result of inadequate CPU main
memory. Actually, the relation between the sparsity threshold
and the corresponding quantity of network nodes that our
framework could handle is constrained by:

N2 · Sparsity ≤MainMemory/B, (9)

where B represented the number of bytes used to store an
element (node or edge) in established networks, and 0 <
Sparsity ≤ 1. For example, given B = 4 bytes and Sparsity
= 2%, our framework supports up to 92 × 104 nodes in the
network construction under the current computing environment
with 64GB CPU main memory. By contrast, for related works
which did not employ the block-wise thresholding strategy, the
CPU main memory is required to be large enough to at least
hold the entire connectivity matrix, i.e.,

N2 ≤MainMemory/B, (10)

in which case the maximum value of N is far less than that in
(9). Under the same condition (64GB main memory), at most
16×104 nodes are supportable for those works, no matter how
sparse the network is. Comparatively, our framework has the
better scalability for the increasing number of network nodes.

IV. CONCLUSION AND FUTURE EXPECTATIONS
In summary, this paper provides a scalable GPU-

accelerated framework for the fast mapping of dense functional
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TABLE I. THE SCALABILITY DEMONSTRATION OF THE PROPOSED
FRAMEWORK.

L=128 Sparsity N=20 · 104 40 · 104 60 · 104 80 · 104 100 · 104
Pearson’s
Measure
time:(s)

0.1% 31.90 126.57 278.07 505.76 777.21
1% 34.47 135.82 307.56 546.13 914.09
2% 37.36 146.61 324.51 587.20 -

Spearman’s
Measure
time:(s)

0.1% 31.66 124.90 280.03 497.58 782.02
1% 32.03 133.76 308.60 541.77 917.25
2% 36.41 145.01 322.00 591.03 -

L=128 Sparsity N=10 · 104 15 · 104 20 · 104 25 · 104 30 · 104
Kendall’s
Measure
time:(s)

0.1% 91.01 210.43 386.50 602.77 861.64
1% 94.31 217.03 395.61 634.54 914.17
2% 95.79 223.40 404.97 640.80 951.33

connectomes based on three commonly used FC measures. The
proposed framework significantly accelerated the voxel-wise
network construction (speedup>50, Kendall’s measure) and
could scale up to higher voxel-resolution data (<2mm) against
related works. We hope that the present study will serve as a
building block to facilitate dense connectome studies. In the
future, we expect to implement more FC measures under the
current framework, especially those measures that enable the
detection of the nonlinear, multivariate and frequency-domain
connectivity among brain network nodes [30].
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Abstract—Brain stimulation has been used in practice to treat
neurological diseases, such as Parkinson’s Disease and Epilepsy.
However, the stimulation signals are generated based on trail
and error; and the underpinning theory of this treatment is
still unclear. Artificial neural network (ANN) resembles biological
neural network in the brain and has been used for many arti-
ficial intelligence applications such as classification and pattern
recognition. In order to generate accurate stimulation signals in
brain stimulation treatment, it is beneficial to establish an ANN
model to simulate the brain dynamics and study the effects of
various stimulation signals. Previous research shows that brain
activities captured by Electroencephalogram (EEG) demonstrate
chaotic patterns. Chaotic systems, such as Hénon map can be
represented by a set of mathematical equations, and therefore
are predictable and controllable. The aim of this research is to
implement an optimal ANN architecture model to generate the
output pattern of a chaotic system, which can be used to simulate
the brain dynamics under stimulation. This paper presented the
preliminary work of an ANN architecture design and optimization
for generating the outputs of Hénon map chaotic system, and the
simulation results for controlling the chaotic system with periodic
stimulation signals. The ANN design method and chaotic control
method can be extended for other chaotic systems in general.

Keywords–Brain stimulation; Chaotic systems; Artificial Neural
networks; Dynamic control; Hénon map.

I. INTRODUCTION

The growing interest in brain stimulation as a form of
neuromodulation has led to increased empirical data from
clinical practice for further theoretical research. Targeted brain
stimulation has been employed to treat neurological diseases,
with reported success in controlling shaking in Parkinson’s
Disease and Epilepsy seizures. However, theoretical and an-
alytical research is urgently in need to discover the impact,
especially the potential long-term side effects of these focal
perturbations. Therefore, it is critically important to develop
theoretical models in order to design high performance dy-
namical control systems for brain stimulation.

Brain stimulation has been employed clinically to diagnose,
monitor and treat neurological disorders, such as epilepsy
seizures [1] [2] and Parkinson’s disease [3]–[6]. Commonly
used non-invasive stimulation methods include transcranial
magnetic stimulation (TMS), transcranial direct current stimu-
lation (tDCS) [7] [8] and transcranial focused ultrasound [9].
Various data recording methods and devices, such as positron
emission computed tomography (PET) [6], electroencephalo-
graph (EEG) [10], functional magnetic resonance imaging
(fMRI) [11] [12], and recently some single devices [13]–[16]

have been used to monitor the brain stimulation effects on brain
activities. This provides valuable research data for further study
to optimize stimulation protocols, which include identifying
accurate target stimulation area and applying effective stimuli,
in order to improve the performance of the treatment and
meanwhile minimize or eliminate the potential side-effects.

Previous research reported that brain waves demonstrate
chaotic behaviors [17] [18]. A chaotic system is a bound
system which obtains the existence of an attractor. Chaotic
time series are dynamic systems that are extremely sensitive
to initial conditions and can exhibit complex external behavior.
A chaotic system can be stable, periodic or chaotic depending
on the system parameters as well as its initial conditions. A
known chaotic system can be analyzed and controlled based
on its system equations using conventional dynamic control
methods. However, when the equations of a chaotic system
are unknown, such as the EEG time series signals, the pattern
recognition of such a system and the discovery of its system
parameters become a challenging task, which is important for
the dynamic control of the system.

Artificial Neural Network (ANN) is a leading machine
learning method inspired by biological neural network struc-
ture. In recent years, ANN has been widely used for pattern
recognition and classification based on a number of pre-defined
features. An ANN model with a feedback loop can be designed
to generate chaotic outputs by training the ANN using the
output values of a chaotic system with selected parameters and
initial conditions [19]. Since a chaotic system with specified
initial values and system parameters can be represented by
an ANN model, the system can be controlled by varying the
weight and bias values of the ANN. The training process is
carried out on a computer and the weights are generated for
all neurons in an ANN architecture. These weights are then
used in constructing an ANN model to generate the expected
outputs for the target chaotic system. The implementation cost
and speed of an ANN architecture is determined by its com-
plexity, therefore it is beneficial to use less number of hidden
neurons to achieve the target training performance. A simple
ANN design generally has a 3-layer architecture, including
one input, one hidden and one output layer. The MATLAB
Neural Network Toolbox is used to train the ANN with three
MATLAB training algorithms: Levenberg-Marquardt, Scaled
Conjugate Gradient algorithm and Bayesian Regulation. The
optimization of the ANN architecture is important for improv-
ing the performance of hardware implementation on a Field
Programmable Gates Array (FPGA) device.
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Network control theory has been used to study the effects
of stimulation on brain networks [20]. Network control refers
to the possibility of manipulating local interaction of dynamic
components to steer the global system along a chosen tra-
jectory. The neural network based chaotic model can aid the
understanding of the underlying structural connectivity that
modulates the system dynamics. A novel approach is presented
to combine the ANN design and the dynamical control theory
for the control of brain dynamics. In this approach, an ANN
model is designed with optimized architecture based on Hénon
map chaotic system. Hénon map [21] has its significance in
studying chaotic systems with a simple 2-dimensional structure
and is used initially as the study subject of the research project.

In previous related work, a model-based hardware imple-
mentation of the Hénon map is presented in [22] and the
dynamic analysis of the system stability at critical points with
varying system parameters is provided by [23]. The chaotic
system can be controlled to change from chaotic mode to
stable or periodic mode by adding a period stimulation pulse
signals. The design approach and control method can be easily
extended for other chaotic systems in general, such as 3-
dimensional Lorenz attractor [24].

Section II describes the ANN design and training proce-
dure; section III explains the chaos control of the Hénon map;
section IV discusses the conclusion and future work.

II. ANN DESIGN AND TRAINING

The ANN is a network of interconnected neurons arranged
in multiple layers, including one input layer, one output layer
and one or multiple hidden layers. A general mathematic rep-
resentation of an individual neuron within an ANN architecture
is shown by equation(1).

alj =

Nl−1∑
i=1

wlj,ixi + blj,0 j = 1, 2, ...Nl

ylj =fl(a
l
j)

(1)

where Nl is the number of neurons at l-layer. Each hidden
neuron j receives the output of each input neuron i from the
input layer multiplied with a weight of wlj,i. The sum of all
weighted inputs is used by an activation function fl to produce
the output of the hidden layer neuron and feed it forward
to the output layer. A similar weighted sum is generated for
each output neuron. blj,0 is the bias of the jth neuron at the
lth layer, which are added as noise to randomize the initial
condition in order to get better chance to converge. The weight
matrix connecting between the (l− 1)th layer to the lth layer
is represented by equation (2).

Wl =

 w1,1 w1,2 ... w1,Nl−1

w2,1 w2,2 ... w2,Nl−1

... ... ... ...
wNl,1 wNl,2 ... wNl,Nl−1


Nl×Nl−1

(2)

Let yl = (y1, y2, ..., yNl
) be the output vector from the lth

layer, the weighted sum vector to the l+1th layer is represented
by (3), the outputs are calculated using (4), where f is the
activation function.

al+1
k =

Nl∑
j=1

yj ∗ wj,k, (k = 1, 2, ..., Nl+1)

al+1 = ylWlyl+1
j = f(al+1

j ), j = 1, 2, ..., Nl+1

(3)

yl+1 = f(al+1) = y1 ∗ w1,1 y1 ∗ w1,2 ... y1 ∗ w1,Nl+1

y2 ∗ w2,1 y2 ∗ w2,2 ... y2 ∗ w2,Nl+1

... ... ... ...
yNl
∗ wNl,1 ... ... yNl

∗ wNl,Nl+1


Nl×Nl+1

(4)

A. ANN Architecture Design
The ANN model design process includes identifying the

correct topology of the network. An optimal ANN architecture
should contain minimal number of hidden layers and hidden
neurons, and yet sufficient enough for representing the variabil-
ity of the training data. A network with insufficient complexity
will fail to learn the underlying function, while a network with
more neurons and layers than required will cause overfitting
of the model and fail to generalize. An ANN model design
approach for chaotic systems based on model topology analysis
[19] is used. After the construction of the ANN, its predictive
ability needs to be measured. The accuracy is a quantification
of the proximity between the outputs of the ANN and the target
output values, measured by mean square error (MSE).

The implementation performance of the chaotic system
depends on the ANN topology. For the Hénon map ANN
design, both input and output layer has two neurons, one
hidden layer is employed. In order to optimize the ANN
architecture with a minimal number of the hidden neurons
to improve implementation performance, 16 different ANN
topologies with one to sixteen hidden neurons are trained using
three training algorithms respectively to find the optimal ANN
topology. Sigmoid function is used as the activation function
for the neurons in the hidden layer. Ramp activation function
is used for the output layer [25].

B. Training Data and Training Algorithms
The 6,000 training samples for Hénon map are generated

in MATLAB using the ode23 method. During the training
process, the first pair of samples (x1, y1) is provided as the 2
inputs of ANN, the second pair of samples (x2, y2) is provided
as the target outputs. Then the second pair is provided as the
inputs and the third pair as the target outputs, and so on. The
training samples are divided into three subsets: training(70%),
validation(15%) and testings(15%). The training set is used
for computing the gradient and updating the network weight
and bias values. The validation set is used to monitor the
error during training process in order to avoid overfitting.
The test set is used to test the training performance. The
ANN training is carried out using three network training
functions provided by the MATLAB Neuron Network Toolbox:
trainlm, trainbr and trainscg. trainlm function updates
weight and bias values based on Levenberg-Marquardt (LM)
optimization [26]. trainbr function also updates weights and
biases based on LM optimization. It uses Bayesian Regulation
(BR) process [27] to minimize and determine a combination
of squared errors and weights, in order to produce a network
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TABLE I. ANN TRAINING FUNCTION PARAMETERS

Training Fuctions LM BR SCG
Learning rate 0.01 0.01 0.01
Momentum Constant 0.9 0.9 0.9
Maximum Epochs 1000 1000 1000
Maximum Training Time inf inf inf
Performance Goal 0 0 0
Minimum Gradient 1.00E-07 1.00E-07 1.00E-06
Maximum Validation Checks 6 0 6
Mu 0.001 0.005 N/A
Mu Decrease Ratio 0.1 0.1 N/A
Mu Increase Ratio 10 10 N/A
Maximum mu 1.00E+10 1.00E+10 N/A
Sigma N/A N/A 5.00E-05
Lambda N/A N/A 5.00E-07

with good generalization. trainscg function updates weight
and bias values based on Scaled Conjugate Gradient (SCG)
method [28]. The training parameters of these three MATLAB
functions are listed in Table. I.

Each algorithm is used for 16 different ANN topologies,
with the number of hidden neurons increasing from 1 to 16
in the architecture. Three training iterations are carried out
per architecture per algorithm. Each training iteration runs
for 1000 epochs. An epoch is a measure of the number of
times all of the training vectors are used once to update the
weights. The learning rate is 0.01. It is a constant used by the
training algorithm to update the weight and bias values at each
step. The momentum is 0.9. This is another constant value for
adjusting the learning rate by adding a proportion of the weight
value in the previous step. As the training time is infinity
(inf ) and the training goal is 0, the training stops when the
performance gradient falls below the Minimum Gradient, or
the Maximum Epoch is reached, or the validation performance
has increased more than the Maximum Validation Checks since
the last time it decreases.

C. ANN Performance Evaluation
The ANN training result is measured by the error between

the calculated ANN output y and the target training output ŷ.
The training target is a threshold error value small enough for
the output to be considered as correct. The performance of
the ANN training process is evaluated by how fast and well
the error converge to the target threshold. The most common
method for measuring the output error is MSE, as illustrated
respectively by (5).

MSE =
1

N

N∑
i=1

(yi − ŷi)2 (5)

where N is the number of outputs, which is 2 in the case of
Hénon map: y1 and y2. For 16 architectures and three training
algorithms: LM, BR and SCG, the ANN training is carried out
three repeated iterations per architecture per algorithm. The
training performance (MSE) are listed in Table. II.

The training performance of the Levenberg-Marguardt al-
gorithm is shown in Figure 2(a). It can be observed that
the MSE values for all three iterations over the number of
hidden neurons have non-monotonicity. Nevertheless, the MSE
is decreasing in general. The MSE values for all three iterations
decrease below 1.7E-07 (= 1.7 × 10−7) with only 2 hidden

Figure 1. ANN Architecture for Hénon Map Chaotic System

neurons. The MSE of iteration I increases when the number of
hidden neurons increases from 2 to 3; and the MSE of iteration
III has big increase from 2.3E-8 to 8.6E-6 (by 2 logarithmic
scales) when the number of hidden neurons increase from
3 to 4. The best performance is achieved with 15 hidden
neuron in iteration II, when MSE=1.1397E-10. Although the
overall performance is improving with increasing number of
hidden neurons, it is hard to predict accurately whether the
performance can be improved by adding one more neuron for
an individual iteration. The result is random.

The training performance of the Bayesian Regulation algo-
rithm is shown in Figure 2(b). Similar to the LM algorithm, the
MSE values for all three iterations decrease below 1E-07 with
only 2 hidden neurons, but increase as the number increases
from 2 to 3 for iterations I and III. The overall trend is for
the MSE to gradually decrease while the number of hidden
neurons increases, but the effect for adding or removing one
neuron for each training iteration is unpredictable. The smallest
MSE (3.1178E-12) is achieved by iteration III with 15 hidden
neurons.

The training performance of the Scaled Conjugate Gradient
algorithm is shown in Figure 2(c). The smallest performance
(MSE=5.9783E-05) is achieved when n=4. The MSEs in-
creases generally while n increases after n=4. The LM and
BR algorithms have better training performance than the SCG
algorithm.

The average MSE values of all three iterations for each al-
gorithm is compared in Figure 2(d). The training performance
can be only improved slightly once the number of hidden
neurons is greater than 2. The increased number of hidden
neurons will increase hardware resource utilization for the
system implementation. The ANN model is generated using
double precision floating point data format during the training
process in MATLAB simulation environment. The fixed-point
data format for the FPGA implementation does not require
the target MSE to be smaller than the quantization error. For
instance, the 32-bit fixed-point data format with 18 fractional
bits can have 2−18(≈ 3.8147e−06) resolution, which is bigger
than the smallest MSE achieved by the ANN model with 2
hidden neurons using the LM and BR training algorithms.
Therefore, the ANN model is designed using 2 hidden neurons.
The ANN architecture is illustrated by Figure 1, including an
input layer with two inputs, a hidden layer with two hidden
neuron, and an output layer with two outputs. A Simulink
Model is created using the ANN with delayed feed-back loop
as shown in Figure 3; and the Simulink simulation output of
the ANN-based Hénon map chaotic system is shown in Figure
4. The training performances and training states for the three
training functions of the selected architecture with 2 hidden
neurons are plotted in Figure 5. For LM and BR, the training
stops at epoch 1000. For the SCG, the training stops at epoch
255 as the maximum number of validation fails reaches 6.
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TABLE II. TRAINING PERFORMANCE (MSE) OF 3 TRAINING ALGORITHMS WITH 16 ARCHITECTURES – EPOCH 1000

MSE Levenberg-Marguardt (LM) Bayesian Regulation (BR) Scaled Conjugate Gradient (SCG)
Neurons I II III I II III I II III

1 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2810 0.2828
2 7.5920E-08 7.5411E-08 7.5841E-08 8.1986E-08 8.1497E-08 8.1474E-08 2.3649E-03 2.8101E-01 2.9964E-03
3 1.7042E-07 3.7541E-08 2.3484E-08 9.1948E-07 5.4859E-08 1.5598E-06 1.3356E-03 1.3299E-03 1.3042E-03
4 2.0187E-09 1.9369E-07 8.5939E-06 1.4455E-09 9.3581E-10 1.7478E-07 5.9783E-05 2.1042E-04 4.8217E-04
5 4.7927E-09 3.5006E-09 3.1200E-09 4.7033E-10 4.6482E-10 1.9332E-10 6.9701E-04 9.5137E-04 5.3533E-05
6 5.2199E-08 1.8775E-08 2.1202E-09 1.5030E-09 8.8459E-12 1.4452E-09 6.2341E-04 6.2949E-05 1.6708E-04
7 1.4853E-09 1.2016E-08 2.7629E-09 1.2308E-10 1.4387E-09 3.5900E-11 4.6338E-04 6.5173E-05 1.0628E-04
8 4.5645E-09 1.6143E-09 4.8532E-09 2.9488E-10 8.4649E-11 6.2597E-11 3.8860E-04 1.4984E-04 2.1843E-04
9 3.2232E-10 5.3065E-10 3.3891E-10 8.5851E-10 7.0971E-10 7.0933E-11 8.9483E-05 1.1520E-04 6.4021E-04

10 8.5592E-09 6.0050E-10 1.9888E-10 4.2823E-11 1.9704E-11 1.6047E-10 4.0709E-04 1.5928E-04 6.7822E-05
11 3.4364E-10 4.5139E-10 1.6145E-09 9.6083E-11 1.3954E-11 2.6842E-11 2.7726E-04 1.2903E-04 1.4429E-04
12 2.0994E-10 2.1447E-09 8.7262E-10 7.7306E-11 3.9343E-12 1.4594E-10 1.2205E-04 3.3368E-04 9.9476E-04
13 7.4649E-10 1.8049E-09 6.6516E-10 1.5392E-10 8.2397E-11 1.6851E-10 6.2968E-04 5.2315E-04 1.4134E-04
14 1.3254E-09 2.2304E-09 5.6996E-10 1.6843E-11 1.1866E-10 3.6662E-11 4.8872E-04 6.1157E-04 4.5022E-04
15 3.8671E-10 1.1397E-10 4.1528E-10 1.6680E-11 8.8259E-12 3.1178E-12 2.2542E-04 7.3086E-04 1.9543E-04
16 4.1175E-10 3.7105E-10 2.3944E-09 6.6127E-12 9.4176E-12 8.9851E-12 5.4813E-04 5.5410E-04 3.2486E-04

(a) Levenberg-Marquardt (b) Bayesian Regulation

(c) Scaled Conjugate Gradient (d) Average of 3 Iterations

Figure 2. ANN Training Performance for Hénon Map
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Figure 3. Simulink Model for ANN-based Hénon Map Chaotic System

Figure 4. Simulink Simulation Outputs of ANN Model (6000 samples)

III. CHAOS CONTROL OF THE HÉNON MAP

In order to control chaotic systems for brain stimulation,
periodic pulses can be generated as stimuli. The stability of
a chaotic system at its critical points can be analyzed by
calculating the eigenvalues of the Jacobian matrix of its system
equations. Based on the analysis, stimulation signals can be
generated to alter the state of the chaotic system.

A. Periodic Orbits and Critical Points
Given a 2-dimensional discrete system Xn+1 = F (Xn),

which can be represented by (6).

xn+1 = P (xn, yn), yn+1 = Q(xn, yn) (6)

where X is a vector in R2; F is a map of a domain
D of R2 onto itself; P and Q are scalar valued functions.
A critical point of a system is defined as a point at which
Xn+1 = F (Xn) = Xn for all n [29]. The term ‘critical point’
is often referred to as ‘fixed point’ of dynamic system. The
type of critical point is determined from the eigenvalues of
the Jacobian matrix of the function F (X) at the critical point.
A critical point of period N is a point at which Xn+N =
FN (Xn) = Xn, for all n. Given that a discrete nonlinear

system represented by (6) has a critical point at (xs, ys), the
Jacobian matrix at the critical point can be represented by (7).

J(xs, ys) =

(
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

)∣∣∣∣∣
(xs,ys)

(7)

Suppose that the Jacobian matrix has eigenvalues λ1 and
λ2. In the discrete case, the critical point is stable as long as
|λ1| < 1 and |λ2| < 1, otherwise the critical point is unstable.
The critical points of period one Xs satisfies Xs = F (Xs).

The discrete Hénon map equations by definition are lised
in (8).

xn+1 = 1 + yn − ax2n, yn+1 = bxn (8)

where xn and yn are system variables, α and β are
system parameters. A reformed equivalent set of equations are
obtained by taking a transformation x′n = 1

αxn, y
′
n = β

αyn,
as listed in (9). It is easier to use the reformed equations for
stability analysis and control [23].

xn+1 = α+ βyn − x2n, yn+1 = xn (9)

The critical points of period one and the Jacobian matrix
for the original Hénon Map are listed in (10).

xs =
(β − 1)±

√
(1− β)2 + 4α

2α

ys =β

(
(β − 1)±

√
(1− β)2 + 4α

2α

)

J =

(
−2ax 1
β 0

) (10)

The critical points, Jacobian matrix and its two eigenvalues
of the reformed Hénon map equations are listed in (11).

x1 =y1 =
β − 1−

√
(β − 1)2 + 4α

2

x2 =y2 =
β − 1 +

√
(β − 1)2 + 4α

2

J =

(
−2x β
1 0

)
λ1,2 =

(√
x2 + β − x 0

0 −
√
x2 + β − x

)
(11)
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(a) Levenberg-Marquardt Training Performance (b) Levenberg-Marquardt Training States

(c) Bayesian Regulation Training Performance (d) LBayesian Regulatio Training States

(e) Scaled Conjugate Gradient Training Performance (f) Scaled Conjugate Gradient Training States

Figure 5. ANN Training Performance for ANN with 2 Hidden Neurons

The Hénon map has two real critical points of period one
if and only if (1 − β)2 + 4α > 0. Therefore α > 0, |β| < 1.

The determinate of the Jacobian matrix is |β|, which is less
than 1.
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(a) Period One (b) Period Two

(c) Period Three (d) Period Four

Figure 6. MATLAB Simulation for Hénon Map Chaos Control. α = 1.2, β = 0.4, k = 0.2; Control period: 40 < n < 80; Initial values: x0 = 0.1, y0 = 0

B. Chaos Control Using Periodic Proportional Pulses Method
Control and synchronization of chaotic system using the

periodic proportional pulses method is evaluated in [29] [30]
and can be adapted for the control of brain stimulation.
Instantaneous pulses can be applied to the system variables Xn

every N iterations. Define the composite function C = KFN .
K is the diagonal matrix with diagonal elements k1 and k2,
which can be derived for a given period N and a given critical
point Xs. A critical point Xs = (xs, ys) of the function F
satisfies KFN (Xs) = (Xs). The Jacobian(J) of C has two
eigenvalues. The critical point is locally stable if both the
modulus of eigenvalues are less than one. The absolute of the
determinate of J : |det(J)| = |β| < 1 indicates that the Hénon
chaotic system is a attractor.

Practically, this method can be easily applied when dealing
with chaos control with periodic orbits of low periods. Figure 6
shows time series signals with period-one, period two, period
three and period-four stimulation respectively.

IV. CONCLUSION AND FUTURE WORKS

The paper presented an ANN-based Hénon map chaotic
system model design and the optimization of the ANN archi-
tecture with the consideration for FPGA hardware implemen-
tation. The ANN-based chaotic system model is designed for
simulating chaotic brain activities and the dynamic control of
the chaotic system by varying the weight and bias values of
the ANN. The ANN has a 3-layer architecture and is designed

using 16 different topologies with 1 to 16 hidden neurons
respectively. It is shown that the simple topology of 2 hidden
neurons can be implemented to generate the desired chaotic
outputs, which is highly beneficial to improve performance
and reduce resource utilization for hardware implementation.
The ANN model was trained by 3 MATLAB training func-
tions: trainlm, trainbr and trainscg, which can be used to
generate Simulink model for simulation, and for the further
FPGA hardware model development using the Xilinx System
Generator in the MATLAB software environment. The ANN
design approach with topology optimization can be extended
to other chaotic systems and will be used for the design and
development of a dynamic control system for non-invasive
brain stimulation in order to treat neurological disease. The
chaotic system analysis and control is also discussed based on
Hénon map, which can be extended to other chaotic systems.
The control simulation results are presented as preliminary
research work and will be applied to the ANN-based chaotic
system control for brain stimulation. Future work includes
the hardware implementation of the designed ANN on FPGA
device. The ANN design and optimization approach will be
used with other state-of-the-art training algorithms to compare
the training speed and training performance in order to develop
an optimal online training algorithm for hardware implemen-
tation.
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