AMBIENT 2016
The Sixth International Conference on Ambient Computing, Applications, Services and Technologies
ISBN: 978-1-61208-508-1

October 9 - 13, 2016
Venice, Italy

AMBIENT 2016 Editors
Wolfgang Leister, Norsk Regnesentral, Norway
Gregory O’Hare, University College Dublin, Ireland
AMBIENT 2016

Forward

The Sixth International Conference on Ambient Computing, Applications, Services and Technologies (AMBIENT 2016), held between October 9 and 13, 2016 in Venice, Italy, was devoted to a global view on ambient computing, services, applications, technologies and their integration.

On the way for a full digital society, ambient, sentient and ubiquitous paradigms lead the torch. There is a need for behavioral changes for users to understand, accept, handle, and feel helped within the surrounding digital environments. Ambient comes as a digital storm bringing new facets of computing, services and applications. Smart phones and sentient offices, wearable devices, domotics, and ambient interfaces are only a few of such personalized aspects. The advent of social and mobile networks along with context-driven tracking and localization paved the way for ambient assisted living, intelligent homes, social games, and telemedicine.

We take here the opportunity to warmly thank the members of the AMBIENT 2016 technical program committee, as well as all the reviewers. The creation of such a high quality conference program would not have been possible without their involvement. We also kindly thank all the authors that dedicated much of their time and effort to contribute to AMBIENT 2016.

Also, this event could not have been a reality without the support of many individuals, organizations and sponsors. We also gratefully thank the members of the AMBIENT 2016 organizing committee for their help in handling the logistics and for their work that made this professional meeting a success.

We hope AMBIENT 2016 was a successful international forum for the exchange of ideas and results between academia and industry and to promote further progress in the field of ambient computing, applications, services and technologies

We also hope that Venice, Italy, provided a pleasant environment during the conference and everyone saved some time to enjoy the unique charm of the city.

AMBIENT Advisory Committee

Maarten Weyn, University of Antwerp, Belgium
Yuh-Jong Hu, National Chengchi University-Taipei, Taiwan (ROC)
Naoki Fukuta, Shizuoka University, Japan
Andrzej Skowron, Warsaw University, Poland
Stephan Hengstler, MeshEye Consulting, USA
Jean Vareille, Université de Bretagne Occidentale, France
Peter Roelofsma, VU - Amsterdam, The Netherlands
Tomasz Rutkowski, University of Tsukuba, Japan
Keith V. Nesbitt, University of Newcastle, Australia
Gunver Majgaard, University of Southern Denmark, Denmark
Sven Hartmann, Clausthal University of Technology, Germany
Daniel Berckmans, Katholieke Universiteit Leuven, Belgium
Eugenio Aguirre Molina, Universidad de Granada, Spain
Jean-Paul Sansonnet, LIMSI, University of Paris-Sud 11, France
José Bravo, Castilla-La Mancha University, Spain
Shusaku Nomura, Nagaoka University of Technology, Japan

AMBIENT 2016 Industry/Research Liaison Chairs

Rémi Emonet, Idiap Research Institute, Switzerland
Mieczyslaw A. Klopotek, Polish Academy of Sciences - Warszawa, Poland
Gerhard Nussbaum, Competence Network Information Technology to Support the Integration of People with Disabilities, Austria
Alexander Paar, TWT GmbH Science and Innovation, Germany
Patrick Sayd, CEA SACLAY - NANO INNOV - Gif Sur Yvette, France
Ingo Zinnikus, DFKI GmbH - Saarbrücken, Germany
Jennifer Stein, University of Southern California, USA
Florian Scharf, Institute for Multimedia and Interactive Systems, Germany

AMBIENT Special Area Chairs

Agents
Adina Magda Florea, University "Politehnica" of Bucharest, Romania

Context-awareness
Sylvain Giroux, Université de Sherbrooke, Canada

Resiliency and Ambient Environments
Vincenzo De Florio, MOSAIC/Universiteit Antwerpen & MOSAIC/iMinds, Belgium

AMBIENT Publicity Chairs

Tomas Zizka, technical University of Liberec, Czech Republic
AMBIENT 2016

Committee

AMBIENT Advisory Committee

Maarten Weyn, University of Antwerp, Belgium
Yuh-Jong Hu, National Chengchi University-Taipai, Taiwan (ROC)
Naoki Fukuta, Shizuoka University, Japan
Andrzej Skowron, Warsaw University, Poland
Stephan Hengstler, MeshEye Consulting, USA
Jean Vareille, Université de Bretagne Occidentale, France
Peter Roelofsma, VU-Amsterdam, The Netherlands
Tomasz Rutkowski, University of Tsukuba, Japan
Keith V. Nesbitt, University of Newcastle, Australia
Gunver Majgaard, University of Southern Denmark, Denmark
Sven Hartmann, Clausthal University of Technology, Germany
Daniel Berckmans, Katholieke Universiteit Leuven, Belgium
Eugenio Aguirre Molina, Universidad de Granada, Spain
Jean-Paul Sansonnet, LIMSI, University of Paris-Sud 11, France
José Bravo, Castilla-La Mancha University, Spain
Shusaku Nomura, Nagaoka University of Technology, Japan

AMBIENT 2016 Industry/Research Liaison Chairs

Rémi Emonet, Idiap Research Institute, Switzerland
Mieczyslaw A. Klopotek, Polish Academy of Sciences - Warszawa, Poland
Gerhard Nussbaum, Competence Network Information Technology to Support the Integration of People with Disabilities, Austria
Alexander Paar, TWT GmbH Science and Innovation, Germany
Patrick Sayd, CEA SACLAY - NANO INNOV - Gif Sur Yvette, France
Ingo Zinnikus, DFKI GmbH - Saarbrücken, Germany
Jennifer Stein, University of Southern California, USA
Florian Scharf, Institute for Multimedia and Interactive Systems, Germany

AMBIENT Special Area Chairs

Agents
Adina Magda Florea, University "Politehnica" of Bucharest, Romania

Context-awareness
Sylvain Giroux, Université de Sherbrooke, Canada
Resiliency and Ambient Environments
Vincenzo De Florio, MOSAIC/Universiteit Antwerpen & MOSAIC/iMinds, Belgium

AMBIENT Publicity Chairs
Tomas Zizka, technical University of Liberec, Czech Republic

AMBIENT 2016 Technical Program Committee
Sachin Kumar Agrawal, Samsung - Noida (Delhi NCR), India
Eugenio Aguirre Molina, Universidad de Granada, Spain
Arnulfo Alanis, Instituto Tecnologico de Tijuana, Mexico
Cristina Alcaraz, University of Malaga, Spain
Jan Alexandersson, AAL Competence Center DFKI GmbH, Germany
Hani M. Alzaid, King Abdalaziz City for Science and Technology, Saudi Arabia
Constantinos T. Angelis, Technological Educational Institute of Epirus Kostakioi, Greece
Cecilio Angulo, Universitat Politècnica de Catalunya, Spain
Margherita Antona, Foundation for Research and Technology - Hellas (FORTH) | Institute of Computer Science (ICS), Heraklion, Greece
Eduard Babulak, Sungkyunkwan University, Korea
Costin Badica, University of Craiova, Romania
Youakim Badr, INSA - Lyon, France
Eddy Bajic, Université de Lorraine, France
Maxim Bakaev, Novosibirsk State Technical University, Russia
Mert Bal, Yıldız Teknik Üniversitesi, Turkey
Flavien Balbo, University of Paris Dauphine, France
Stephen Barrass, University of Canberra, Australia
Jean-Paul Barthès, Université de Technologie de Compiègne, France
Ben Bellekens, University of Antwerp, Belgium
Cécile Belleudy, University Of Nice - Sophia Antipolis LEAT laboratory, France
César Benavente, Universidad Politécnica de Madrid, Spain
Daniel Berckmans, Katholieke Universiteit Leuven, Belgium
Sourabh Bharti, Indian Institute of Information Technology and Management, Gwalior, India
Gerald Bieber, Fraunhofer IGD, Germany
Daniel Biella, University of Duisburg-Essen, Germany
Stephan Böhm, Hochschule RheinMain, Germany
Lars Braubach, University of Hamburg, Germany
José Bravo, MAml Research Lab, Spain
Philip J Breedon, Nottingham Trent University, UK
Ramon F. Brena Piner, Tecnológico de Monterrey, Mexico
Valerie Camps, Universite Paul Sabatier - Toulouse, France
Juan-Carlos Cano, Universitat Politècnica de Valencia, Spain
Carlos Carrascosa, Universidad Politécnica de Valencia, Spain
Ignacio Chang, Universidad Tecnológica de Panamá, Panamá
John-Jules Charles Meyer, Utrecht University, The Netherlands
Omar Cheikhrouhou, University of Sfax, Tunisia
Albert M. K. Cheng, University of Houston, USA
Stefano Chessa, Università di Pisa, Italy
Cezar Collazos, Universidad del Cauca, Columbia
Carlos Fernando Crispim-Junior, INRIA Sophia Antipolis, France
Manuel Cruz, Immersion Corp, Canada
Vincenzo De Florio, MOSAIC/Universiteit Antwerpen & MOSAIC/iMinds, Belgium
Giuseppe De Pietro, High Performance Computing and Networking Institute - National Research Council, Italy
Giorgio Delzanno, Università di Genova, Italy
Jianguo Ding, University of Skövde, Sweden
Jeroen Doggen, Artesis Plantijn University College Antwerp, Belgium
Wael Mohamed Elmedany, University of Bahrain, Bahrain
Abdelkarim Erradi, Qatar University, Qatar
Larbi Esmahi, Athabasca University, Canada
Pournaras Evangelos, ETH Zurich, Switzerland
Andras Farago, University of Texas at Dallas, USA
Manuel Filipe Santos, Algoritmi research centre / University of Minho, Portugal
Juan Manuel Fernández, Barcelona Digital Technology Centre, Spain
Scott S. Fisher, USC School of Cinematic Arts, USA
Adina Magda Florea, University "Politehnica" of Bucharest, Romania
Jesús Fontecha Diezma, Universidad de Castilla-La Mancha, Spain
Peter Forbrig, University of Rostock, Germany
Peter Froehlich, Telecommunications Research Center Vienna, Austria
Francesco Furfari, ISTI-CNR, Italy
Kaori Fujinami, Tokyo University of Agriculture and Technology, Japan
Naoki Fukuta, Shizuoka University, Japan
Stephane Galland, Université de Bourgogne Franche-Comté / Université de Technologie de Belfort-Montbéliard, France
Mathieu Gallissot, Université Joseph Fourier - Grenoble, France
Teresa Galvão Dias, School of Engineering of the University of Porto – FEUP, Portugal
Matjaz Gams, Jožef Stefan Institute - Ljubljana, Slovenia
Amjad Gawanmeh, Khalifa University of Science, U.A.E.
Michele Girolami, ISTI-CNR / University of Pisa, Italy
Sylvain Giroux, Université de Sherbrooke, Canada
Hans W. Guesgen, Massey University, New Zealand
Maki K. Habib, American University in Cairo, Egypt
Lynne Hall, University of Sunderland, UK
Jaap Ham, Eindhoven University of Technology, Netherlands
Sven Hartmann, Clausthal University of Technology, Germany
Fumio Hattori, Ritsumeikan University - Kusatsu, Japan
Tarek Helmy, King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia
Ramon Hervas, Castilla - La Mancha University, Spain
Richard Hoadley, Anglia Ruskin University - Cambridge, UK
Michael Hobbs, Deakin University - Geelong, Australia
Patrick Horain, Institut Mines-Telecom / Telecom SudParis, France
Marc-Philippe Huget, University of Savoie, France
Zhen Jiang, West Chester University of Pennsylvania, USA
Lamia Labed Jilani, High Level Management Institute | ISG Tunis | Tunis University, Tunisia
Achilles Kameas, Hellenic Open University, Greece
Martin Kampel, Vienna University of Technology, Austria
Ridha Khedri, McMaster University, Canada
Hakil Kim, Inha University, South Korea
Manuele Kirsch Pinheiro, Université Paris 1 - Panthéon Sorbonne, France
Mieczyslaw A. Klopotek. Polish Academy of Sciences - Warszawa, Poland
Stefan Knauth, Stuttgart University of Applied Sciences, Germany
Jesuk Ko, Gwangju University, Korea
Georgios Kouropetrou, University of Athens, Greece
Johannes Kropf, AIT Austrian Institute of Technology GmbH, Austria
Adam Krzyzak, Concordia University, Canada
Markus Kucera, Technical University of Applied Sciences Regensburg, Germany
Gurhan Kucuk, Yeditepe University, Turkey
Satoshi Kurihara, Osaka University, Japan
Frédéric Le Moué, University of Lyon, INSA Lyon, INRIA CITI Lab, France
Rory Lewis, University of Colorado - Denver, USA
Lenka Lhotska, Czech Technical University in Prague, Czech Republic
Thomas Lindh, KTH, Sweden
Adolfo Lozano-Tello, University of Extremadura - Cáceres, Spain
Jun Luo, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
Issam Mabrouki, University of Sousse, Tunisia
José Machado, Universidade do Minho, Portugal
Gunver Majgaard, University of Southern Denmark, Denmark
Wail Mardini, Jordan University of Science and Technology, Jordan
George Margetis, FORTH - Institute of Computer Science, Greece
J. Todd McDonald, University of South Alabama, USA
Zulfiqar Ali Memon, Sukkur Institute of Business Administration, Pakistan
John-Jules Charles Meyer, Utrecht University, The Netherlands
Abdallah Mhamed, Institut Mines-Telecom / Telecom SudParis, France
Vittorio Miori, Institute of Information Science and Technologies "A. Faedo" (ISTI) - CNR, Italy
Augusto Morales Dominguez, Technical University of Madrid, Spain
Angelica Munoz-Melendez, Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Mexico
Keith V. Nesbitt, University of Newcastle, Australia
Shusaku Nomura, Nagaoka University of Technology, Japan
Gerhard Nussbaum, Competence Network Information Technology to Support the Integration of People with Disabilities, Austria
Gregory O’Hare, School of Computer Science, University College Dublin (UCD), Ireland
Alexander Paar, TWT GmbH Science and Innovation, Germany
Philippe Palanque, IRIT, France
Pablo Pancardo, Juarez Autonomous University of Tabasco, Mexico
Avinash Parnandi, Texas A&M University, USA
George Perry, University of Texas at San Antonio, USA
Dennis Pfisterer, University of Luebeck, Germany
Sylvain Piechowiak, Université de Valenciennes et du Hainaut Cambrésis, France
Rainer Planinc, Vienna University of Technology, Austria
Asarnusch Rashid, FZI Forschungszentrum Informatik, Karlsruhe, Germany
Nitendra Rajput, IBM Research, India
Patrick Reignier, Grenoble INP / LIG, France
Andreas Riener, Johannes Kepler University Linz, Austria
Michele Risi, University of Salerno, Italy
Antonio Maria Rinaldi, Università di Napoli Federico II, Italy
Carsten Röcker, Fraunhofer IOSB-INA, Germany
Peter Roelofsma, VU - Amsterdam, The Netherlands
Alessandra Russo, Imperial College London
Tomasz Rutkowski, University of Tsukuba, Japan
Khair Eddin Sabri, University of Jordan, Jordan
Yacine Sam, Université François-Rabelais Tours, France
Nayat Sánchez Pi, Rio de Janeiro State University, Brazil
Jose Ivan San Jose Vieco, University of Castilla-La Mancha, Spain
André C. Santos, Microsoft Language Development Center, Portugal
Patrick Sayd, CEA SACLAY - NANO INNOV - Gif Sur Yvette, France
Boris Schauerte, Karlsruhe Institute of Technology, Germany
Peter Schneider-Kamp, University of Southern Denmark, Denmark
Hans Scholten, University of Twente, Netherlands
Shishir Shah, University of Houston, USA
Riaz Ahmed Shaikh, King Abdulaziz University, Saudi Arabia
Charles G. Sheridan, Intel, Ireland
Marcelo Simão de Vasconcellos, Oswaldo Cruz Foundation in Rio de Janeiro, Brazil
Andrzej Skowron, Warsaw University, Poland
Andreas Stainer-Hochgatterer, AIT Austrian Institute of Technology GmbH, Austria
Jennifer Stein, University of Southern California, U.S.A.
Weilian Su, Naval Postgraduate School, USA
José A. Taboada González, University of Santiago de Compostela, Spain
Dante I. Tapia, University of Salamanca, Spain
Teck Hou Teng, Nanyang Technological University, Singapore
Takao Terano, Tokyo Institute of Technology, Japan
Sergi Torrellas, Barcelona Digital Technology Centre, Spain
Markus Ullmann, Bundesamt für Sicherheit in der Informationstechnik (BSI) | University of Applied Sciences Bonn-Rhine-Sieg, Germany
Rainer Unland, University of Duisburg-Essen, Germany
Jean Vareille, Université de Bretagne Occidentale, France
George Vouros, University of the Aegean - Samos, Greece
Thomas Waas, Ostbayerische Technische Hochschule (OTH) Regensburg, Germany
Juan P. Wachs, Purdue University, USA
Hua-Liang Wei, University of Sheffield, UK
Benjamin Weyers, RWTH Aachen University, Germany
Markus Wiemker, RWTH Aachen University, Germany
Lawrence W.C. Wong, National University of Singapore, Singapore
Koichi Yamada, Nagaoka University of Technology, Japan
Kin Choong Yow, Gwangju Institute of Science and Technology, South Korea
Chang Wu Yu, Chung Hua University, Taiwan
Jian Yu, Auckland University of Technology, New Zealand
Zhiyong Yu, Fuzhou University, China
Ingo Zinnikus, DFKI GmbH - Saarbrücken, Germany
Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the dissemination of the published material. This allows IARIA to give articles increased visibility via distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without limitation, negligence), pre-contract or other representations (other than fraudulent misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that case, copyright to the material remains with the said government. The rightful owners (authors and government entity) grant unlimited and unrestricted permission to IARIA, IARIA’s contractors, and IARIA’s partners to further distribute the work.
Table of Contents

The Persuasive Potential of Lighting: Exploring User Lighting Setting Preferences for a Warm Room Atmosphere and Energy Consumption Feedback
Shengnan Lu, Jaap Ham, Marianne van den Akker, and Cees Midden

<table>
<thead>
<tr>
<th>Measuring Activities of Daily Living in Ambient Assisted Systems</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caroline A. Byrne, Rem Collier, Michael J. O'Grady, Gregory O'Hare, and Alena Brennan</td>
<td>3</td>
</tr>
</tbody>
</table>
The Persuasive Potential of Lighting: Exploring User Lighting Setting Preferences for a Warm Room Atmosphere and Energy Consumption Feedback

Shengnan Lu, Jaap Ham, Marianne van den Akker and Cees Midden
Human-Technology Interaction
Eindhoven University of Technology
Eindhoven, the Netherlands
E-mail: {s.lu, j.r.c.ham, c.j.h.midden}@tue.nl

Abstract—Ambient lighting can be used for influencing users’ experience of the environment and their subsequent (energy consumption) behavior. Our research explored which lighting settings users prefer for lighting that is designed to give a room a ‘warm’ atmosphere and for lighting that is used as energy consumption feedback. In the experiment, three lighting characteristics (brightness, color temperature, and color hue and saturation) could be adjusted through an interactive interface according to participants’ preferences. Results showed that for creating a ‘warm’ atmosphere, lighting with a low luminance, a low color temperature, and a highly saturated, warm color (i.e., orange/red) was preferred. For providing negative feedback about energy consumption, lighting with a high luminance, a cool color temperature, and a high-saturated, cool color was preferred. Thereby, current results suggested that ambient lighting’s persuasive potential might be most optimal when lighting settings are used that are appropriate to a situation.

Keywords—Ambient Lighting, Persuasive Technology, Energy Conservation, Lighting Characteristics.

I. INTRODUCTION

Earlier research showed that ambient lighting can be used for influencing (energy conservation) behavior [1]. Thereby, lighting is used as ambient persuasive technology (e.g., [2] - [6]). More specifically, earlier research effectively used colors of ambient lighting as feedback to indicate a user’s energy consumption level, e.g., more red for higher energy consumption and more green for lower energy consumption [7] - [9]. Research [8] showed that colors of ambient lighting feedback can carry meaning that has pre-existing associations with energy consumption and these associations help users to easily process the feedback messages, and thereby enhance the effectiveness of ambient persuasive technology.

In addition to using colors of ambient lighting to communicate feedback, other characteristics of lighting (e.g., brightness level, color temperature etc.) can also influence users’ experience of the ambient lighting, their environment, and importantly, their subsequent behavior [6]. For instance, people prefer ‘warm’ lighting (i.e., lighting with a low color temperature) in winter [10], and household energy consumption for heating systems could be reduced by 5% to 8% by using this ‘warm’ light in winter while maintaining the same thermal comfort level [11].

To expand our knowledge on how lighting settings are able to influence energy consumption behavior, the current research investigated which lighting settings users prefer for lighting designed to give a room a ‘warm’ atmosphere and for lighting that is used as energy consumption feedback. That is, participants were seated in a room of which they could set the lighting characteristics (brightness, color temperature, and color), and participants were asked to set lighting characteristics to their preferences for two types of scenarios. In the first series of scenarios, participants were to set the room lighting characteristics such that room lighting gave the room a warm (or fresh) atmosphere. In the second series of scenarios, participants were asked to indicate which room lighting characteristics they would prefer the room lighting to have when that lighting was to be used to give them (positive or negative) feedback about their energy consumption (e.g., caused by heating the room).

II. METHOD

Fifteen participants (11 males and 4 females) aged between 17 and 35 participated in the experiment, all without a known visual handicap (e.g., color-blindness). Participants received 5 Euros for their participation in the experiment that lasted approximately 30 minutes. The experiment was computer-based and conducted in the Lighting Lab in the IPO building at the Eindhoven University of Technology campus.

Participants were welcomed and seated in a room in which they could set the lighting characteristics. The settings interface allowed them to change three characteristics of the room lighting: Brightness, Color temperature, and Color (both hue and saturation). Participants could select one of these characteristics at a time, and change its settings using the ‘right’ and ‘left’ arrows on a computer keyboard.

After participants had gotten familiar with the interactive lighting system, they were asked to set the room lighting to their preferences for a series of room atmosphere scenarios. That is, participants were presented with a scenario (e.g., “you are feeling a bit chilly and you want to create a warm atmosphere with the light”), and then could set the lighting characteristics to their preferences for that scenario. In half of the scenarios, participants were asked to create a ‘warm’
atmosphere, and in the other half of the scenarios, participants were asked to create a ‘fresh’ atmosphere.

In the next task, participants were presented with a different series of scenarios, and asked to indicate which lighting settings they would prefer for receiving energy consumption feedback through changes in room lighting. For this, participants were first given a short introduction: “We are currently performing research on how lighting can be used as feedback to stimulate energy different behavior in home environments. For example, lighting can provide the feedback to inform you to turn down the temperature, use less water, shut down devices that are not in use, etc.” Next, participants were asked to set the lighting characteristics for a series of scenarios related to saving energy and resources (e.g., “You’ve set the bathroom temperature to 28 Celsius degrees, although it will not be used until tomorrow morning. How can lighting inform you that the temperature is set too high?” as an example of negative lighting feedback). For one scenario at a time, participants were asked to set lighting characteristics to their preferences, using the room lighting interface. In half of the scenarios, participants were asked to set the lighting such that it indicated negative feedback, and in the other half of the scenarios, participants were asked to set the lighting such that it indicated positive feedback. Finally, participants were thanked for participation, paid and debriefed.

III. RESULTS

Results showed that for giving a room a ‘warm’ atmosphere, participants preferred lighting with 1) a lower luminance, 2) a lower color temperature, 3) higher saturated, and 4) warmer colors (i.e., orange/red), compared to the lighting settings participants preferred for giving a room a ‘fresh’ atmosphere (all $p \leq .05$).

Furthermore, results showed that for receiving negative energy consumption feedback, participants preferred lighting with 1) a higher luminance, and 2) a higher saturated 3) color with a lower hue (i.e., red light), compared to lighting settings participants preferred for receiving positive energy consumption feedback (all $p \leq .05$).

IV. DISCUSSION

The current research explored which lighting settings users prefer for lighting designed to give a room a ‘warm’ atmosphere and for lighting that is used as energy consumption feedback. The results of this study describe the lighting settings users prefer for these two purposes, and thereby add to our knowledge of people’s associations of lighting characteristics with room atmosphere and heating (energy consumption) feedback, and thereby of the persuasive potential of lighting. The current results suggest that this persuasive potential might be most optimal when lighting settings are used that are appropriate to a situation. This research studied basic lighting characteristics (brightness; color temperature; and color, both hue and saturation), and future research might assess other characteristics of room lighting (e.g., patterns, movement, etc.). Based on the current results, future research can investigate the effectiveness of changing these characteristics of lighting for actually changing people’s perception of (‘warm’) room atmosphere, temperature perception, effectiveness of energy consumption feedback, and ultimately, the effectiveness of ambient lighting changes for influencing energy consumption behaviors.

ACKNOWLEDGMENT

We would like to thank Martin Boschman for technical assistance during the experiment.

REFERENCES

Review of Activity Measuring Techniques For Assisted Living Systems

Caroline Byrne, Department of Computing & Networking, Institute of Technology Carlow, Co. Carlow, Ireland, email: caroline.byrne@itcarlow.ie
Rem Collier, Michael O’Grady, School of Computer Science, University College Dublin (UCD) Belfield, Dublin 4, Ireland, email: rem.collier, michael.j.ogrady@ucd.ie
Gregory M. P. O’Hare, School of Computer Science & Earth Institute, University College Dublin (UCD) Belfield, Dublin 4, Ireland, email: gregory.ohare@ucd.ie
Alena Brennan, Department of Computing & Networking, Institute of Technology Carlow, Co. Carlow, Ireland, email: alena.brennan@itcarlow.ie

Abstract—An individual’s Activities of Daily Living (ADL) are difficult to accurately measure in Ambient Assisted Living (AAL) systems. Such ADLs are invariably, in part, verified using technologies requiring key user interactions. The User Interface (UI) applied to these living systems is critical in order that the elderly achieve their daily living milestones of health supervision, social engagement, physical movement or daily prompts. In order to bootstrap effective machine learning necessitates accurate daily user interaction. This paper reviews AAL system interface’s and seeks to establish if ADL measurement accuracy could improve if UI’s were prioritised within system development.

Keywords-Ambient Assisted Living: Measurement Techniques: Activities of Daily Living.

I. INTRODUCTION

Population aging is an issue in the European Union with those aged 65 years or over increasing from 17.1% to 30.0% in 2060 (84.6 million in 2008 to 151.5 million people in 2060) [1]. As we age our health becomes more complicated and our ability to sense accurately, disseminate information at speed and conduct various tasks simultaneously decreases dramatically. Consequently elder’s living independent lives, find that over time their ADL performance diminishes they become burdened with daily chores and AAL UI’s unburden them from the ADL’s limiting their daily lives. Multiple UI’s assist the elderly such as, the MONAmI project encouraging social participation [2], the i2Home project UI [3] and the Universal Remote Console (URC). ADL interfaces for the kitchen have also been addressed in the SWEET-HOME project utilising voice command for automating a home, with a speech activated assistive kitchen and the Smart Kitchen [3] offering nutritional advice on food in real time. The research spotlight on AAL and ADL systems has concentrated on UI’s enabling elder’s to live independently. ADL monitoring is difficult to measure accurately and research conducted in purpose-built labs is not representative of the systems available for commercialisation or those being currently used in homes on a daily basis. UI design is critical within the area of AAL as its success dictates a system’s usability. Good User Interface (UI) design regularly quote Neilsen’s 10 usability heuristics [4] in conjunction with Shneiderman’s 8 golden rules [5], whilst other design principles [6] are utilised less frequently. Research studies within the area of UI’s for the elderly include a universal interface design [7] using touch-based and multimodal user interfaces. Viewing the elderly as a combined age group has been encouraged yet their user interaction could be observed for usability as two separate groups of (65-80yrs) and (80+ yrs) [8]. Several research studies acknowledge that UI usability between younger and elderly adults is very different [9] but not between the two elder age groups [10]. This paper reviews AAL system UI’s, their subsequent usability for users and seeks to raise the question, that if greater emphasis was placed upon UI design could ADL measurement subsequently improve.

Section II deals with Buxton’s framework and how humans interact with Ambient Assisted Systems, thereafter Section III reviews UI design guidelines and they’re subsequent inculcation in the various systems throughout Europe. The original framework of Buxton is extended in Section IV to incorporate subtle human-computer interactions. Section V in turn proffers UI usability recommendations while Section VI examines the conclusions drawn from this review of UI methodologies applied to AAL systems and the methods available for measuring human-computer interactions in order to facilitate ease of use and uptake.

II. HOW HUMANS INTERACT WITH COMPUTERS

A basic framework categorising the subject areas of computing [11] (see Fig.1), constituted a foreground and background, indicative of conscious and un-conscious tasks. This framework established how humans interacted with computers and that the success and failure of AAL systems relied upon the technological ability of the user. All interactions, whether implicit or explicit, were in the foreground when required [12], otherwise in the background. AAL interaction ought to be ubiquitous, operating in the background as the user interacts in the foreground.
The UI’s should incorporate features such as, ease of use for medical professionals, carer’s or elder’s and be productive in their ability to enable effective human-computer interaction. Systems utilising UI’s that support effective user interaction result in greater uptake [13]. Conversely varying UI’s on different devices affect user uptake and impede the older user’s ability to successfully navigate the technology [14]. Commonality in UI design for the elder user should be central to best practice guidelines and its prioritisation within AAL system development is paramount in order to improve usability and ADL measurement possibilities.

III. UI DESIGN REVIEW

A. UI Research Design Approaches

Usability is fundamental to good UI design [15] and the pivotal role it plays has received significant coverage in conjunction with the challenge of interweaving technological advancement into our modern lives. The UI needs to facilitate the user in executing their desired tasks and this occurs if the interaction is intuitive and seamless. Designing for interfaces must include those factors which influence how humans interact with, and process information, while executing other tasks [16]. Ambient Intelligence (AmI) [17] over time has permeated many computer science areas of together with engineering, biosciences and education. The involvement of Human-centered Computing (HCC) [18] approaches to interface design has resulted in more effective methodologies being implemented. Many typical AAL system users have no medical or technological training, yet are often required to input and assimilate data spanning both these fields. Systems acclaimed to be most effective have utilised icons to represent ADL’s.

B. A Review of ADL Measurement Techniques in Assisted Living Systems

Previous reviews of AAL systems [19] have expressed concerns regarding UI development costs and data protection issues which have produced inefficient designs leading to insufficient uptake. Design frameworks that support adaptable UI’s for user’s with complex medical and social needs is a goal for AAL researchers [20]. System effectiveness has been reviewed and several productive systems developed, UniversAAL [21] being Europe’s leading research platform. Projects such as, Soprano [22], Persona [23], Amigo [24], Oasis [25] and MPower all strive to work toward the goal of a baseline open source platform for researchers. Europe’s prominent AAL systems are reviewed to ascertain the emphasis ascribed to UI design and it’s role within the system’s architecture. AAL systems proclaiming self-organisation include Persona an AmI system with a UI framework, platform modules and it aims to offer independent living options for elder’s. Self-learning ambient systems such as Soprano rely on the user for inputting manual commands conveyed through sensors and actuators, UI’s for medicinal reminders [26] physical exercise programs and social interactivity. Soprano’s Ambient Middleware (SAM) is the technical core which receives user commands. Systems promoting independent rural living include Remote [27] for those with conditions, such as hypertension, asthma, Alzheimer’s and Parkinson’s disease. Tele-healthcare services [28] record daily biometric readings in conjunction with physical movements and at-risk scenarios UI’s enabling the complex health needs of the users and their technological abilities are offered on several devices and the project was considered a success in that sensor monitoring decreased cardiac mortality rates.

Open source platforms such as MonAMI assist elder’s with ADL’s, improving security and health monitoring living options [29] via user friendly UI’s for wearable devices. User-friendly interfaces are accessible through internet browsers encouraging social interaction with family/friends thus supporting independent living options. Emerge [30] assists elder users with monitoring and accident prevention through sensors providing ambient supervision and reasoning in emergency situations. ADL evaluation [31] is logged and deviations from expected routine behaviours enable swift detection of situations requiring intervention. The Human Capability Model (HCM) is the resultant medical file of the elder created in association with their medical experts. The I-Living Project developed an assisted living environment for embedded devices (sensors, actuators & displays) which could operate individually or cooperatively in the Assisted Living Hub (ALH) [32]. The Secure Active Aging: Participation and Health for the Old (SAAPHO) Project facilitates elder involvement as it prioritises usability features by utilising interface tools to increase user interaction and uptake. Another project, which focused on the importance of interface usability for ADL monitoring, was the Home Sweet Home project in Ireland which evaluated the impact of tele-monitoring on an elder’s life. The physiological and mental health, living environment factors and ADL reminders was evaluated for its effect, if any on the participants lives. A simple user-friendly interface
supervises each user’s health and well-being through the information collated from various sources including, environment sensors, video conferencing and other enabling services.

IV. UI DESIGN FRAMEWORKS

In 2008 the basic Human-Computer interaction framework was expanded to include an axis of relevant criteria, (see Fig. 2) [33] accommodating more subtle, implied interactions that occur as humans and machines exchange information. Traditional computing can manifest as implicit or explicit and interactive exchanges are along a continuum that either demand a user’s attention with a command or responds to a command initiated by the user. Reactive interactions are typically user initiated while proactive are system initiated. AAL systems demand implicit and explicit communications as a consequence of user demands for unobtrusive systems. Achieving a information exchange is the key to success and it cannot appear within the user’s attentional foreground. AAL systems need to be in the foreground if required by the user and fade into the background when the need for them has been responded to.

![Implicit interaction framework with a range of interactive system behaviours.](image)

The original framework and the extended version contends that human-computer interactions can be plotted along a continuum of activities counter-balanced against the degree of invasiveness for the user. Critical to the evaluation of UI design is the emphasis in AAL systems of the scales of balance for the user. The goal is system adaptivity whereby it assists when requested or when a scenario requires direct intervention. This evaluation theory encourages independence not isolation, inclusion not exclusion and facilitates communications from either direction. AAL systems that acknowledge UI design guidelines and prioritise these have the ability to be truly effective in assisting the user with their ADL’s. If standardisation within assisted living development became a goal then the possibility of improving and harmonising ADL measurement would ensue as a result.

V. RECOMMENDATIONS

This paper postulates that pre-existing UI design guidelines for the elderly should be adhered to when creating and implementing AAL systems in unison with Nielsens and Shneiderman’s usability guidelines. The four primary areas of focus in designing for the elder user include vision, hearing, mobility & cognition, with specific suggestions for each area of concern. AAL UI design should incorporate dynamic interfaces capable of autonomously adapting to the specific needs associated with the user’s age and medical condition progression. Representation from both distinct elder groups is required when testing systems to ensure increasingly complicated daily living needs are accommodated. AAL designers acknowledge the UI usability differences between these two elder groups yet continue to combine them into a single homogeneous group when designing and testing systems. A reasonably healthy 65yr old with IT skills has radically divergent AAL system requirements to an 85yr old with limited mobility, attention span and IT skills.

VI. CONCLUSION

Ambient systems provide users with daily living assistance. They generally present in a myriad of forms, providing condition specific forms of support, are more or less ambient and demand greater or lesser user interaction. UI’s affect uptake which impacts directly upon usability. Those achieving commercial success have tended to employ highly stylized and easily recognisable icons to represent ADL’s. Given ambient systems require subtle user interactions from an audience which will become progressively more infirm then perhaps the only solution is that of multi-modal UI’s [34] which are dynamic and fulfill the users needs at any given point in their health continuum. Adaptivity of the system interface tracking the longitudinal progression of age, circumstance and condition is paramount for system adoption and persistence. This benefits users as the interfaces remain familiar and gracefully and seamlessly evolve to reflect the capabilities of the senior citizen as their condition/age progresses. Research has shown [35] that an AAL system providing UI’s for elder’s that exhibits reasonable functionality, is both physically and cognitively usable and consequently has the ability to extend the independent lives of those using them and impact positively on those assisting the elder. This paper advances the view that AAL usability will be improved, firstly as a result of UI prioritisation within system development facilitating ADL measurement and secondly through the development of adaptive interfaces sensitive to the evolving needs of the individual.

REFERENCES

