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Forward

The First International Conference on AI-enabled Unmanned Autonomous Vehicles and Internet
of Things for Critical Services (AIVTS 2025), held on October 26-30, 2025 in Barcelona, Spain,
inaugurated a series of events focusing on advanced topics on integrating IoT, UAV and AI/ML and target
solutions for dynamic and critical systems.

The rapid advances and widespread adoption of the Internet of Things (IoT) have promoted a
revolution in communication and processing technology and offered a very large range of applications
and services. Multi emerging directions in systems design and implementation are developed. IoT
systems have advanced greatly in the past few years, becoming intelligent, especially with the support
of Artificial Intelligence (AI) and Machine Learning (ML).

In parallel, Unmanned Autonomous Vehicles (UAVs) technology (aerial drones, terrestrial,
underearth, and underwater), enabled new applications in various areas such as energy, agriculture,
transportation, avionic, health, military, surveillance and monitoring, delivery, critical missions and
others. Multi-UAVs solutions allowed systems to collaborate and complete missions more efficiently and
economically. One particular UAV domain concerns both autonomy and automation, because of
challenges of secure and reliable connectivity and privacy preservation. Integration of AI/ML in UAVs can
lead to high growth in the field, by improving safety and efficiency. ML algorithms can enable UAVs to
make real-time decisions in complex environments and reach the optimal solution, aiming to meet the
mission requirements.

IoT-based UAV networks is a novel emerging field, that combines the UAV network dynamic
capabilities with the IoT power. Such solutions can be powerful and highly effective for mission critical
services. Cooperation with edge computing can bring additional power of UAV/IoT systems. However,
using advanced technologies on sensing, edge computing, computing, and data processing and
interpretation, while AI/ML-based, requires further research work of appropriate models, protocols,
validation, and also considerations of human-centric global issues (climate, energy, pollution, battlefield,
wellness). The advent of AI/ML-based approaches for guiding and orchestrating the interpretation of
visual patterns, optimizing path, real-time multi-prong decisions and complex and dynamic systems, led
to a powerful triad: AI-IoT-UAV.

This conference was very competitive in its selection process and very well perceived by the
international community. As such, it attracted excellent contributions and active participation from all
over the world. We were very pleased to receive a large amount of top quality contributions.

We take here the opportunity to warmly thank all the members of the AIVTS 2025 technical
program committee as well as the numerous reviewers. The creation of such a broad and high quality
conference program would not have been possible without their involvement. We also kindly thank all
the authors that dedicated much of their time and efforts to contribute to the AIVTS 2025. We truly
believe that thanks to all these efforts, the final conference program consists of top quality
contributions.

This event could also not have been a reality without the support of many individuals,
organizations and sponsors. We also gratefully thank the members of the AIVTS 2025 organizing
committee for their help in handling the logistics and for their work that is making this professional
meeting a success.

We hope the AIVTS 2025 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in UAV and IoT research. We
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also hope that Barcelona provided a pleasant environment during the conference and everyone saved
some time for exploring this beautiful city

AIVTS 2025 Steering Committee

Yasushi Kambayashi, Sanyo-Onoda City University, Japan
Lasse Berntzen, University of South-Eastern Norway, Norway
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Design Feasibility and Link Budget Assessment of Aerial 5G IoT and eMBB
Connectivity

Jyrki T. J. Penttinen
Alphacore Inc.

Tempe, Arizona, USA
e-mail: jyrki.penttinen@alphacoreinc.com

Abstract—Uncrewed Aerial Vehicles (UAVs) equipped with
radios can establish rapid, ad-hoc connectivity in areas where
terrestrial infrastructure is unavailable or compromised. Lever-
aging the virtualized architecture of Fifth Generation (5G)
mobile networks, both base station and required minimal core
functions can be hosted aloft, enabling agile IoT or eMBB
centric private networks for emergency response, expeditionary,
military operations, and consumer events. This study evaluates
the technical feasibility of UAV-mounted 5G Non-Public Network
assembled from commercial off-the-shelf components, comparing
the physical radio layer performance of IoT and evolved mobile
broadband use cases. Candidate 3GPP architectural options are
reviewed, and radio link budget calculations quantify physical
layer performance in open and rural environments for a single-
UAV. The obtained results highlight the trade-off between fre-
quency band, UAV-altitude, and the resulting radio coverage
and data rate, providing design guidance for lightweight, energy-
efficient aerial 5G systems.

Keywords-aerial 5G network; link-budget analysis; uncrewed
aerial vehicle (UAV); non-public network (NPN); drone-mounted
IoT and eMBB radio service; emergency communications; ad-hoc
radio access network (RAN).

I. INTRODUCTION

Apart from their commercial use, cellular systems can be
deployed also as complementing ad-hoc networks, e.g., in
emergency solutions after a natural disaster that has dam-
aged telecommunications infrastructure, or in scenarios where
non-permanent augmented capacity and radio coverage are
desired. A Fifth Generation (5G) private mobile network
model through temporally deployed base stations can provide
a suitable platform for data transfer and signaling in such
situations, enabling enhanced communications and situation
awareness also for, e.g., defense groups.

However, in temporal ad-hoc use cases, 5G users may be
highly mobile, so deploying terrestrial trailer-mounted radio
base stations may not suffice, as the varying link conditions
alter quality and can result in uncertainties, resulting in radio
network outages when users are on the move. An aerial ad-hoc
5G network that follows the underlying users can provide an
important opportunity to overcome these challenges.

3GPP is developing the Internet of Things (IoT) concept
further in 5G as a logical continuum from the 4G era, in terms
of massive Machine Type Communications (mMTC). 5G IoT
in 3GPP is realized through legacy Long-Term Evolution
(LTE) -based Narrow-Band IoT (NB-IoT) and LTE for Ma-
chines (LTE-M) seamlessly attached to the 5G Core Network
(CN) and, from Release 17 onward, through 5G New Radio

(NR) RedCap, which is a native, reduced-bandwidth flavor
of NR, and evolves further as of Release 18 [1]. Combining
Non-Public Network (NPN) and IoT through aerial platform
enables novel means to develop and provide low-power, low-
data rate services in very large areas.

This paper presents a feasibility study of a UAV-based 5G
radio network that can be used in various Line of Sight (LOS)
scenarios through 5G NPN. Section II discusses the state-of-
the art of UAV-assisted wireless communication and current
gaps. Section III presents IoT and eMBB, and Section IV dis-
cusses 3GPP-defined 5G NPN. Section V describes a 5G-UAV
concept and discusses UAV-mounted equipment, presenting
an example of a feasible set. Section VI describes physical
radio aspects, and Section VII presents the results obtained
for validation of radio network performance applying adequate
radio propagation modeling for aerial network, comparing
5G eMBB and IoT use cases that represent two “extremes”
in terms of achievable 3D-network coverage areas. Finally,
Section VIII summarizes the findings, and Section IX presents
the plan for further research.

The novelty of this research lies in the following: 1) it
presents a concept based on 3GPP-defined NPN-architecture
and available Commercial Off-the-Shelf (COTS) components
to provide aerial IoT and data services to a variety of use cases
and 2) it evaluates performance of such a solution comparing
UAV-mounted 5G gNB performance of eMBB and mMTC.

This study considers single UAV for local communication
to a set of User Equipment (UE) underneath, paving the way
for the forthcoming work that will consider the formation of
a multi-UAV-based 5G RAN service and automized location
functions through advanced sensing and artificial intelligence.

II. UAV-ASSISTED NETWORKING

The global 5G deployments are expanding. The GSM Asso-
ciation (GSMA) estimates that the adaption for 5G will surpass
that of 4G in 2028, whereas the earlier networks, 2G and 3G,
keep losing their customers; in fact, many of these networks
have already been decommissioned [2]. The current 5G system
architecture models enable various deployment options and
variations for tailored solutions. Examples of these facilita-
tors include new NPN architectures, non-terrestrial networks
(NTN), Open RAN, and mMTC, that are evolving and being
deployed in commercial networks.

While 5G matures, there are already concrete efforts to
develop systems beyond 5G (B5G), paving the way for Sixth
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Generation (6G) [3]. During Release 20, 3GPP has carried
out use case and feasibility studies, and the actual forming
of technical 6G specifications begins along with the Release
21. The first commercial 6G networks can be expected to
be available as of 2030 [4]. The 6G is anticipated to be
particularly attractive for connected UAVs due to significant
improvements, including ubiquitous 3D connectivity on the
ground and in the air [5].

While 6G is still under development, the current 5G systems
outperform the previous generations, and can be tailored
to provide radio service also beyond traditional terrestrial
base stations through Service-Based Architecture (SBA) and
Service-Based Interfaces (SBI) that handle specific needs
of varying use cases and dynamically provide optimal sets
of required and available resources to different usage types
through Network Functions Virtualization (NFV).

The key benefit of 5G is its ability to run Network Functions
(NF) on COTS hardware. This evolution makes 5G a suitable
candidate also for UAV-type networking, e.g., through non-
public network models as they can form an architectural base
for isolation (with augmented security) or interconnection /
roaming (providing wider connectivity) network segment. A
Mobile Network Operator (MNO) or Network Slice (NS)
Provider (NSP) can set up NSs, that can be used for deploying
UAV-networks, too.

5G systems can be optimized further through Open RAN
(Radio Access Network). Examples of the efforts driving Open
RAN include Open RAN Alliance’s O-RAN [6] and Telecom
Infra Project’s TIP [7]. Via Open RAN, vendor-specific inter-
nal RAN interfaces are opened so that an extended number of
stakeholders can provide select RAN protocol layers indepen-
dently, increasing efficiency and reducing costs [8], and it can
be used also in UAV-based networking [9].

As for the State of the Art and challenges, the mobile
networks’ radio coverage extension mounting a base station
or repeater on aerial vehicle has been studied from several
points of view, such as how to maximize the radio coverage
by optimal UAV positioning [10] and how to enable group
handover for drone base stations [11] related to the mMTC, use
of data services, and commercial needs for respective coverage
and capacity extension to facilitate adequate data rates and
Quality of Service (QoS) for the subscribers.

On radio link budget, there are various studies such as
[12] (high-altitude platform for 5G access node) and [13]
(system model for forward link transmissions in an Integrated
Access and Backhaul IAB multi-tier drone cellular network).
An example of real-world UAV-based networking is AT&T’s
5G Cell on Wings (CoW), a drone-mounted cellular 4G or
5G base station that temporarily extends radio coverage, e.g.,
during disasters and large events [14].

Nevertheless, the available studies are not necessarily con-
clusive in terms of the tradeoffs of the UAV altitude and
wider set of deployed frequency bands [15]. Furthermore, the
adaptation of optimal architectural models of UAV-networking,
considering the feasibility and gaps of COTS components, can
benefit from additional research [16].

TABLE I. COMPARISON OF KEY ASPECTS OF 5G EMBB AND IOT

Item eMBB IoT
Channel bandwidth 20 – 400 MHz 180 kHz – 20 MHz
SNR (BLER<10%) 8 – 15 dB

(64 / 256 QAM)
-13 – -3 dB (BPSK /
QPSK, heavy coding)

Fade/penetr. marg. 3 – 5 dB 10 – 15 dB
Device TX power 23 dBm

(smartphone)
14 – 23 dBm (sensor)

Data rate target 10 Mb/s – 1 Gb/s 50 b/s – 1 Mb/s

TABLE II. PRIVATE NETWORK TYPES IN UAV-BASED DEPLOYMENTS

Variant Assessment
SNPN (fully standalone
architecture)

Best for autonomous, localized,
quick-to-deploy networks (no MNO
dependency)

PNI-NPN with radio
access network sharing

Enables UAVs to share ground RAN
where available, while maintaining
separate core

PNI-NPN with core
network sharing

UAV-based NPN reuses public 5G core
network, allowing leaner deployment

UE route selection via
mobile network selection

UEs served by UAVs can select between
private and public network profiles

III. IOT VS. EMBB

The 5G eMBB and IoT (mMTC) represent opposites in
terms of many aspects, like data rates, power consumption
and number of simultaneously communicating devices. These
elements dictate also the achievable radio coverage area size.
For example, IoT has been optimized for bandwidth given that
IoT payloads are small, and narrow band lowers the thermal
noise floor. IoT relies on robust modulation schemes and
Hybrid Automatic Repeat Request (HARQ) repeats balancing
respective throughput and coverage. It is important to note that
battery-driven IoT modules stay below 1 W to meet license
and life constraints (e.g., NB-IoT Class 3 and Class 5 use 23
dBm and 20 dBm, respectively). Table I summarizes some of
the key differences of IoT and eMBB.

IV. AERIAL PRIVATE NETWORK CONSIDERATIONS

3GPP has designed private network realizations through
Standalone Non-Public Network (SNPN) and Public Network
Integrated Non-Public Network (PNI-NPN) models [17] as
presented in Table II. Although 3GPP designed these models
for terrestrial networking, their principles can be extended to
serve also in aerial networks.

For the architectural modeling of 5G-based UAV network,
the following technical specifications form the base: 1) 3GPP
TS 23.501 (System Architecture for the 5G System) defines
high-level architecture for both SNPNs and PNI-NPNs [18];
2) 3GPP TS 23.548 (5G System Enhancements for NPN)
explores enhancements specific to NPNs (e.g., management,
registration, selection) [19]; and 3) 3GPP TS 22.261 (Service
Requirements for 5G System) covers typical service-level
requirements relevant to NPNs including verticals, e.g., public
safety [20] stating also that 5G is expected to support various
enhanced UAV scenarios for applications and scenarios for
low altitude UAVs in commercial and government sectors.

SNPN is self-contained and independently operated from
public networks. It is adequate for rapid deployment for on-
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Figure 1. UAV-based, isolated SNPN realization; this feasibility study
considers radio performance of a single 5G-UAV scenario

demand aerial networks with no dependency on commercial
MNO infrastructure and is thus a match for UAV-based tem-
poral networks serving field units. PNI-NPN, in turn, is an
NPN deployed with integration into a public mobile network,
and it may share infrastructure (e.g., RAN or core network).
The variants of PNI-NPN include RAN-sharing with network
slicing, core network sharing; and UEs with public and private
subscriptions (PLMN/NSI selection).

Table II summarizes the 3GPP-defined NPN types and
presents their key benefits related to their applicability for
forming UAV-based network services.

V. 5G-CAPABLE UAV REALIZATION

A. Architecture

The system considered in this study is based on minimal
viable 5G SNPN architecture and a single UAV equipped
with a 5G gNB (gNode B) enabling local connectivity to the
UEs underneath to provide temporarily deployable service if
complementing MNO infrastructure is not available. Figure
1 presents the UAV-based SNPN realization in this study.
UAV (or set of UAVs) can house radio functions, whereas the
essential core network functions of gNBs can be implemented
on the same UAVs, separate UAVs, or ground station.

This model can be extended to cover additional UAVs and
respective gNBs that are interconnected (e.g., through low-
latency PC5 link between vehicles) forming a 5G RAN drone
swarm, e.g., via 5G-based mesh between UAVs.

In multi-UAV 5G radio service provisioning, it can be
reasoned that maintaining optimal 3D placement is hard as
small altitude shifts swing path loss and backhaul Signal-to-
Noise Ratio (SNR), so sufficient overlapping must be ensured.
Some additional challenges include satellite positioning jitter
or denial that can degrade the Time Division Duplex (TDD)
timing and node loss fragments control. To overcome these
challenges, control can be made hierarchical (central planner
and local packet core), and use of multi-source timing can
help in this. The rapid geometry changes are another challenge
as they may trigger ping-pong handovers, especially in the
case of narrow NR beams that raise beam-failure risk in
UAV turns. Also, a dominating cell with a weak multi-hop
backhaul can impact negatively the Quality of Service (QoS).

TABLE III. FUNCTIONAL ARCHITECTURE OF AERIAL 5G SYSTEM

Layer Function Realization
Radio
Access
(RA)

gNB (5G standalone) with full
UE-to-UE routing support

Lightweight COTS
integrated into small
cell

Control
Plane (CP)

Lightweight distributed UAV
logic (also swarm consensus)

Simple microcontroller
and onboard logic

Backhaul
(BH)

None (fully isolated); direct
local P2P 5G

PC5 direct-mode or
local user plane
function (UPF)

Intelligence Initially manual; advanced
version has UE-following

Position, RSSI-based
positioning heuristics

UE
Signaling

Simple beaconing uplink from
UEs, e.g., by Synchronization
Signal Blocks (SSBs)

Existing 5G UE
support

Swarm
Comms

When more than one UAV,
5G-based mesh between UAVs

5G PC5 (Sidelink)

TABLE IV. EXAMPLES OF 5G RAN KEY EQUIPMENT PER UAV (*POWER
CONSUMPTION ESTIMATED IN TYPICAL AVERAGE / PEAK WATTS)

Component Description Example Weight Power*
Integrated
5G Small
Cell

Embedded
gNB; RU
(SA mode)

Amarisoft
Callbox Mini /
Baicells
Nova430

400 –
800g

25 /
40W

Light
Compute
Module

For basic
UAV / swarm
logic

Raspberry Pi
CM4 or Jetson
Nano

100 –
200g

8 /
12W

Simple
Mesh
Swarm
Radio

IEEE 802.11s
Wi-Fi 6 /
V2V PC5

Compex
WLE900VX /
5G module

50 –
100g

6 /
12W

Battery
Pack

Standard
UAV LiPo

6S 22000 mAh 1.5 –
2.0kg

0.6 /
1W

Positioning
Sensors

GPS, IMU COTS GPS +
Pixhawk FC

<100g 3 / 5W

To overcome this challenge, it is possible to apply larger
handover hysteresis (e.g., 3-5 dB) and time to trigger (e.g.,
160-320 ms), implement dual connectivity feature (make-
before-break), and use backhaul-weighted cell selection.

B. Equipment Considerations

To deploy a 5G SNPN UAV RAN, the UAV can host a basic
integrated gNB (e.g., Amarisoft / Parallel Wireless). The basic
location management is assumed to be manual and satellite
positioning system -assisted, but automated methods can also
be developed based on UE signals and using basic Radio
Frequency (RF) heuristics (e.g., weighting received signal
strength indicator) to position the UAV(s) according to user
density.

Basing the solution on COTS devices, Table III presents
a set of feasible candidate elements for simplified functional
architecture.

Table IV presents examples of UAV-mounted equipment.
For advanced alignment of the UAVs and UEs, downward-
facing cameras can be considered for UE clustering estimation
(COTS-based image processing) and barometers for altitude
stabilization. Based on the selected options minimizing the
weight of the components, the total UAV payload (essential
RAN components) is at minimum approximately 2.5–3.0 kg,
which is feasible for medium-class UAVs (e.g., DJI Matrice
300 RTK [21] or similar custom UAVs).
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One of the key challenges of UAV-based networking is
the limitations of power supply, which represents the major
weight of the payload. As an example, the above-mentioned
DJI Matrice 300 RTK supports up to 55 minutes operational
flight time [21]. For the communication components, Table
IV presents a rough estimate of the average and peak power
drain. As can be seen, the gNB consumes major part of the
total power. For the operational power of the UAVs and 5G
RAN components, this feasibility study assumes ideal power
management, but in practice, hybrid model can be used with
tethered UAVs (permanent anchor nodes with gNBs) and
rotating UAVs (fly, recharge, rotate). Complementary power
sources can be, e.g., solar panels (small flexible panels on
UAV structure extending flight by approximately 10-20%),
hydrogen fuel cells (about 2-3× endurance of lithium polymer,
LiPo), or tethered power supply forming wired UAVs with
unlimited power (for anchor UAVs [22]).

It should be noted that regulation limits the operational
boundaries in terms of UAV altitude and maximum radiated
power. As an example, there is no general airborne-gNB EIRP
allowance in the USA and the power is what the experimen-
tal or carrier’s license and service rules permit, often with
tight coordination to prevent wide-area interference. US-rules
dictate 400 ft for the maximum UAV altitude above ground
level (AGL) under Part 107, although higher values can be
permitted via waiver. In the EU, routine airborne gNBs are not
covered by the standard local/private-5G licenses, so specific
or certified flight approval is needed with EASA framework as
well as a trial or temporary spectrum license from the national
regulator, and the maximum altitude is 120 m AGL.

VI. PHYSICAL RADIO INTERFACE

This feasibility study considers theoretical coverage limits
of a single UAV applying relevant propagation loss mod-
els, with the aim to provide optimal 5G RAN quality and
performance as a function of UAV altitude (and later, inter-
UAV distance) in rural and open areas, and the following
parameters: 1) Frequency band f = low (1 GHz), mid (3.5
and 6 GHz) and high (24 and 28 GHz); 2) UAV altitude hgNB

= 50m, 100m,. . . , 400m; 3) UE type = pedestrian; 4) Power =
PUE +23 dBm, PgNB +23 dBm; 5) UAV antenna type = omni-
directional (0 dBi gain, uniform, ideal radiation pattern). The
key results include achievable cell size and respective data rate
estimate for both eMBB and IoT use cases.

The starting point of the study was to consider a single UAV
that houses 5G SNPN equipment needed to form basic radio
access for the UE-UAVgNB-UE communications.

In rural and open-space areas, for the line of sight (LOS)
scenarios, the free space path loss LFSPL (in dB) can be
estimated by applying the ITU-R P.525 model (within version
12 of ITU-R P.1411) that assumes minimal obstructions [23].
The LOS path loss equation is:

LFSPL = 20log10f + 20log10d+ 92.45 (1)

In this equation, f is the frequency in GHz and d is the
distance in kilometers between UAVgNB and UE.

Figure 2. Principle of (theoretic) radiation patterns and respective radio
coverage formation assumed in this study

In the feasibility study presented in this paper, Figure 2
depicts the principle of the UAV setup. For the baseline and
comparative reference, this study is based on a theoretical
omnidirectional UAV-mounted 0 dBi antenna. In practice,
isotropic antenna gain is conservative whereas directive an-
tenna enhances the link and optimizes the radio coverage
also for minimizing the interference; an example of this is
a cone-shaped vertical radiation pattern as depicted in Figure
2. In field deployments, an adaptive Multiple-In Multiple Out
(MIMO) antenna provides augmented performance, capacity,
and interference mitigation, but the drawback is the increased
complexity and power consumption. To keep the antenna
complexity and respective power consumption at minimum in
this study, passive omni-directional approach provides means
to materialize multi-UAV gNB connectivity without a need for
a specific steering logic. In practice, for the final selection of
the antenna type and respective gain, detailed radio network
planning is important for ensuring adequate inter-UAV con-
nectivity and radio cell dimensioning. The impact of the final
antenna gain can be considered adjusting the presented GTX
parameter values.

VII. RESULTS

Using ITU-R P.1411, Figure 3 presents the path loss UE-
UAV at a distance d from UAV’s location for isotropic UAV
TX antenna at 100 m altitude (earth curvature limit 35 km)
for frequency bands 1 GHz – 28 GHz.

Considering the same frequency range 1 GHz – 28 GHz,
Figure 4 summarizes the estimated path loss values L (dB)
directly beneath (a=0º) and off the vertical location of the
UAV (a=30º) in open and rural areas, when the UAV altitude
varies between 50 m and 400 m. The presented LOS path-loss
estimates show that the altitude-distance trends for 1–28 GHz
match the 3GPP TR 38.901 LOS baseline [24]. Comparable
UAV-gNB studies at 28 GHz [25] [12] show the same free-
space path loss driven scaling, with practical shortfalls mainly
from blockage, beam-pointing, and backhaul constraints rather
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Figure 3. Path loss of UAV-UE as a function of the UE’s distance from
UAV’s vertical reference location (UAV altitude is 100m)

Figure 4. Path loss prediction, 1GHz–28GHz, for UAV altitudes of
50m–400m

than the LOS model itself. Consistent with geometry, off-nadir
(30°) incurs about 1.25 dB extra loss from the longer slant
range, and at 100 m altitude the footprint is curvature-limited.
Deployment planning can thus start with FSPL-based bounds
and subtract environment-specific losses for realistic coverage.

A. Scenario: eMBB

Table V presents the key eMBB radio budget items, and
Table VI presents an example of the radio link budget when
the UAV altitude is 400 m and the UE is located underneath.

In these scenarios, the channel bandwidth is 20 MHz (1
GHz), 100 MHz (3.5/6 GHz), or 400 MHz (24/28 GHz). In
these calculations, spectral efficiency model is η (bps/Hz) =
0.6×log2(1+SNR). The assumption for the 0.6 factor is due
to scheduler, modulator and coding inefficiencies that lower

TABLE V. APPLIED RADIO LINK BUDGET ITEMS, EMBB SCENARIO

Parameter Value Notes
gNB transmitter power
PTX

+23 dBm Typical small-cell
power limit, applicable
to a UAV-mounted
gNB

TX antenna gain GTX 0 dBi Isotropic (no
beamforming)

UE antenna gain GRX 0 dBi Smartphone baseline
Fade margin M 3 dB Covers body loss,

ageing, fading
UE noise figure NF 7 dB 5G NR handset typical
Thermal noise density –174 dBm/Hz No=kT=1.38×10-23 J/K

× 290K

TABLE VI. EXAMPLE OF THE RADIO LINK BUDGET (D=400M)

Link budget,
hUAV=400m, α=0º

1
GHz

3.5
GHz

6
GHz

24
GHz

28
GHz

Path loss PL, dB at
(2km)

84.5 95.4 100.1 112.1 113.4

Tx power (gNB), dBm 23.0 23.0 23.0 23.0 23.0
Tx antenna gain, dB 0.0 0.0 0.0 0.0 0.0
UE antenna gain, dBi 0.0 0.0 0.0 0.0 0.0
Implementation/fade
margin, dB

3.0 3.0 3.0 3.0 3.0

UE noise figure NF,
dB

7.0 7.0 7.0 7.0 7.0

Thermal noise density,
dBm/Hz

-174 -174 -174 -174 -174

Channel bandwidth,
MHz

20 100 100 400 400

Received power Prx,
dBm

-61.5 -72.4 -77.1 -89.1 -90.4

Noise floor N, dB -94.0 -87.0 -87.0 -81.0 -81.0
Operational SNR after
margin, dB

29.5 11.6 6.9 -11.1 -12.5

Spectral efficiency SE 5.88 2.38 1.54 0.06 0.05
Data rate, Mb/s 117.6 237.5 154.4 25.8 19.1

the theoretic capacity of Shannon limit. The received power
is PRX = PTX + GTX + GRX – L, and the noise floor is N =
-174 + 10 log10B + NF. The operational signal to noise ratio
(SNR) after margin is SNR = PRX – N – M. The spectral
efficiency SE = 0.6×log2(1+10SNR/10), and the data rate is R =
SE × B. Beyond the presented calculations, the effective SINR
enhances through beamforming gain GBF that is typically 3-
10 dB whilst the level of interference lowers it respectively.
MIMO, in turn, adds rank often 1-2 aloft scaling efficiency,
and resource allocation gives a per-UE share 0.3-0.8. [26]

Figure 5 and Figure 6 summarize the impact of hUAV (50 m
– 400 m) on the received single user data rate considering the
space below the UAV and surrounding region. The results are
based on analytical modeling of path loss prediction and a set
of radio link budget attribute values (select examples presented
in Table V and Table VI), varying the UAV altitude.

As can be seen, high-band (24 GHz and 28 GHz) provides
the highest rates when the distance between UAVgNB and UE
is relatively short, but the rate lowers drastically as the distance
between UAV and UE increases over a few hundred meters due
to the strong attenuation of this band. As can be expected, the
mid-band (3.5 GHz and 6 GHz) performs more constantly at
short distances and nearby regions.

Taking a closer look at the short distance (5–200 m) between
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Figure 5. Data rate for UAV-mounted 5G gNB at 50 m altitude

Figure 6. Data rate for UAV-mounted 5G gNB at 400 m altitude

the UAV and UE, Figure 7 shows more detailed behavior.
As can be seen, high-band outperforms the other bands up
to about 50 m distances providing 1–2 Gb/s data rates,
but afterwards, mid-band provides the highest rate (250–500
Mb/s). The heavy attenuation of the high-band makes also the
low-band data outperform it beyond 150–200 m distance.

Figure 7 shows that for a critical mission in open and rural
areas; if the key requirement is fast data connectivity and high
capacity, e.g., for high-definition video contents, high-band
provides the most performant service up to about 100 m.

If, instead, the main requirement is a large coverage area
(e.g., over 10 km), and the UAV operation is possible at high
altitude (e.g., 400 m), low-band is adequate selection as Figure
6 indicates. Should there be limitations for the UAV altitude,
such as nearby airports or other restricted areas, mid-band
(particularly 3.5 GHz) provides the most adequate balance for
hUAV and radio performance, as can be seen in Figure 5.

B. Scenario: IoT

Table VII presents key radio budget items for the IoT
scenario comparing NB-IoT class CE0 and CE2, LTE-M, and
RedCap.

Figure 7. Data rate behavior when the distance between the UAV and UE is
short (5-200m)

TABLE VII. APPLIED RADIO LINK BUDGET ITEMS, IOT

Link budget NB-
IoTCE0

NB-
IoTCE2

LTE-
M

Red
Cap

Channel bandwidth, MHz 0.18 0.18 1.40 5.00
Thermal noise floor, dBm -114.4 -114.4 -105.5 -100.0
Impl. / fade margin, dB 8.0 14.0 8.0 5.0
Required SNR / Eb/No -5.0 -13.0 -7.0 -3.0
RX sensitivity, dBm -119.4 -127.4 -112.5 -103.0
Peak data rate, b/s 25k 50-100 1M 150M
Path loss budget, dB 134.4 136.4 127.5 121.0
Distance (1GHz), km »35 »35 »35 2̃5
Distance (3.5GHz), km 3̃5 >35 1̃5 7̃

In all these cases, the gNB transmitter power is 23 dBm,
TX and RX antenna gains are 0 dBi, and RX noise figure is 7
dB (typical low-cost IoT modem). Again, the free-space path
loss model is used in these calculations. Receiver sensitivity
is driven by bandwidth, i.e., noise floor plus the required
SNR for the lowest modulation / coding of each profile. Path-
loss budget is the maximum loss the link can tolerate after
allocating the fade / implementation margin. Converting that
budget to free-space distance shows the theoretical cell radius;
real-world coverage will be smaller due to UAV altitude (earth
curvature), foliage, buildings and interference. The presented
SNR / (Eb/N0) values are for the lowest-order modulation
/ coding in each profile (reference sensitivity) as per the
UE RF specifications [27] [28], and the RX sensitivity is N
+ Required SNR (cross-checked with the specifications for
minimum guaranteed UE sensitivity).

As can be seen, NB-IoT can reach the radio horizon even
with only 23 dBm EIRP; coverage is limited by geometry, not
RF. LTE-M at 1 GHz still covers tens of kilometers, whereas
at 3.5 GHz it shrinks to about 15 km LOS. NR RedCap offers
the highest data rates but requires roughly 10 dB more SNR
than NB-IoT, confining its cell to single-digit-kilometer radii
at 3.5 GHz. These tables can be used directly to size UAV
altitude, antenna gain, or additional power needed for a given
IoT service profile. Compared with the broadband case (for
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which MCL is 95–105 dB), IoT enjoys tens of dB link budget
head-room mainly from the narrow bandwidth and low SNR
requirement. Thus, all the presented IoT cases outperform the
radio coverage of the eMBB.

VIII. SUMMARY

This study demonstrates that a single-UAV 5G SNPN as-
sembled from COTS components can furnish rapid, standards-
based connectivity for both eMBB and IoT use cases in open
and rural terrain. Using the ITU-R P.1411 LOS formulation as
the baseline propagation model, we quantified how frequency
(1–28 GHz) and UAV altitude (50–400 m) shape the cover-
age–throughput trade-space. The altitude–distance trends and
off-nadir penalties are FSPL-driven, with the 100 m footprint
ultimately curvature-limited, while mmWave bands deliver the
highest short-range rates but degrade fastest with distance.
In contrast, mid-band (3.5–6 GHz) offers robust, meter-to-
kilometer performance, and low-band (1 GHz) maximizes area
at higher altitudes.

Link-budget templates for eMBB and IoT profiles show
IoT’s tens-of-dB margin advantage from narrow bandwidths
and low required SNR, often making coverage geometry-
limited instead of RF-limited. Practicality is supported by a
lightweight payload bill where the gNB dominates power,
informing endurance planning.

Noting regulatory envelopes and spectrum authorization
constraints, the results indicate that UAV-based 5G NPN
deployment should select band and altitude by required rate
vs. area, start with FSPL bounds and subtract environment-
specific excess loss, and budget power and weight for the ra-
dio. These results provide actionable sizing baselines for future
study of multi-UAV extensions and AI-assisted placement.

IX. FUTURE RESEARCH

The next step in this study will cover 5G-UAV RAN
performance evaluation in expanded terrain types, including
low- and high-rise urban topologies, applying up-to-date radio
propagation models. The future study also considers extended
UAV-based RAN network formation through a drone swarm
and will evaluate feasible methods for inter-connected gNBs,
including AI-assisted coordination. Future research also con-
siders ways to deploy automated positioning functions for
the 5G-UAV network with the underneath UEs for which AI
may provide feasible means also in presence of interferences,
through advanced sensing techniques.
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Abstract—Navigating indoor environments brings significant
challenges for individuals with mobility impairments, such as
wheelchair users, older adults, those with temporary injuries,
and others requiring accessible pathways. A key barrier is
the absence of reliable, real-time information about indoor
layouts, accessibility features, and temporary obstacles. Existing
navigation solutions often rely on static maps and outdated data,
limiting their ability to address the dynamic and specific needs of
users seeking accessible routes. To overcome these limitations, this
study introduces an Artificial Intelligence (AI)-assisted drone-
based navigation system that provides real-time guidance and
adaptive support for individuals with mobility restrictions. We
developed and integrated a custom object detection model into
the aerial platform to identify accessibility features and environ-
mental obstacles. In addition, a dynamic path-planning algorithm
enables the drone to autonomously guide users through accessible
routes, adjusting in real-time to environmental changes. The sys-
tem reroutes users when unexpected obstructions arise, ensuring
uninterrupted and reliable navigation to the targeted destination.
We evaluated the system’s performance through experiments in
a controlled environment, demonstrating its effectiveness and
potential for real-world applications.

Keywords-Unmanned Aerial Vehicles; Drone-as-a-Service; Arti-
ficial Intelligence; Accessibility; Mobility Impairment.

I. INTRODUCTION

Navigating indoor environments poses challenges for many
individuals; however, these difficulties are significantly in-
tensified for those with mobility impairments, including
wheelchair users, the elderly, and others requiring accessible
pathways. Unlike outdoor environments, which might benefit
from widely adopted GPS-based navigation systems, indoor
spaces, such as office buildings, shopping malls, hospitals, and
airports, are often complex, dynamic, and poorly documented.
People with mobility limitations face barriers such as stairs,
narrow corridors, inconveniently placed ramps, surface defects,
and obstacles that change frequently due to construction,
furniture rearrangements, or crowded conditions. They often
have to rely on pre-researched maps, verbal directions, or
external assistance. In emergencies, timely access to accessible
paths can be critical, yet existing systems rarely provide the
real-time guidance needed to navigate these spaces safely.

Although considerable progress has been made in
accessibility-aware tools and standards for outdoor navigation,
indoor environments remain largely unsupported in terms of
real-time navigational assistance. People with disabilities often

encounter inaccurate, outdated, or difficult-to-access informa-
tion about accessible paths, ramps, elevators, and temporary
obstructions. The cognitive load required to process such infor-
mation adds to the stress of independent navigation, creating
a substantial barrier to mobility, autonomy, and inclusion.

Tools like Google Maps’ Accessible Places feature provide
high-level accessibility data, but lack support for dynamic re-
routing or detection of temporary obstacles. These gaps inten-
sify the urgent need for solutions that can provide adaptive,
real-time indoor navigation responsive to users’ accessibility
requirements.

Recent advances in robotics and Artificial Intelligence (AI)
offer promising paths for addressing aforementioned chal-
lenges. Unmanned Aerial Vehicles (UAVs), commonly known
as drones, have demonstrated broad utility in domains, such
as agriculture, surveillance, emergency response, and deliv-
ery services. Integrating drones with computer vision and
deep learning can enable real-time detection of environmental
features and obstacles, while also supporting dynamic path
planning. This capability is particularly relevant for indoor
environments, where static maps are insufficient, and routes
may need continuous updating in response to environmental
changes.

Despite these advances, most existing drone-based or AI-
assisted navigation systems focus on outdoor applications or
visually impaired users, leaving a critical gap for mobility-
impaired populations in indoor spaces. There is a need for
systems that combine accessibility-aware planning, real-time
perception, and reliable guidance to ensure users can navigate
complex indoor environments independently or with minimum
of help.

In this study, we present a novel AI-assisted drone-based
navigation system designed specifically for real-time operation
in dynamic indoor environments. Our platform combines a
custom object detection model, capable of recognizing acces-
sibility features and obstacles, with a real-time path planning
algorithm that prioritizes accessible and safe routing. Unlike
previous approaches that rely on pre-recorded routes or static
maps, our system continuously adapts its path in response
to environmental changes, offering an adaptive navigation
experience. The contributions of this paper is as follows:

1. A practical architecture for drone-assisted indoor
navigation that supports real-time accessibility-aware
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guidance.
2. Integration of AI-based object detection with dynamic

path planning to identify and respond to temporary
obstacles, changing layouts, and accessibility features.

3. Experimental evaluation in controlled indoor environ-
ments demonstrating feasibility and potential to improve
independent mobility.

4. A roadmap for future enhancements, including dataset
and training improvements, integration of crowdsourced
annotations, and broader validation across varied indoor
environments.

By advancing the convergence of AI, robotics, and acces-
sibility, our system introduces a novel and adaptable solution
to a longstanding problem in inclusive navigation. It demon-
strates the potential of drones to serve as mobile, intelligent
guides, ensuring safe, accessible, and efficient indoor mobility
for individuals with physical disabilities.

This paper is structured as follows: Section II reviews
related work on accessibilty systems, path navigation, and
drone-assisted guidance. Section III introduces the overall
system architecture. Section IV, describes the object detection
process, including the algorithm, the steps used to identify
accessibility features and obstacles, and the corresponding
performance results. Section V presents our dynamic path
navigation algorithm, which guides users along accessible
routes by using real-time environmental data, followed by an
anlysis of its complexity and completeness. Finally, Section VI
summarizes the contributions and outlines directions for future
work.

II. RELATED WORK

A wide body of research emphasizes the limitations of
current systems in addressing the needs of people with dis-
abilities indoors. Studies have documented the challenges
faced by blind users, including poor signage and misaligned
digital-physical information [1], as well as the cognitive load
involved in navigating unfamiliar spaces [2]. Other work has
examined mobile applications and assistive technologies for
people with visual or cognitive impairments [3][4]. However,
relatively little attention has been given to real-time, assistive
indoor navigation for those with mobility-related impairments.
The work [5] on mobile indoor navigation assistance for
mobility impaired people proposes a smartphone-based system
using Wi-Fi localization and pre-mapped accessibility data to
guide users indoors, focusing on using accessible maps and
wireless sensor positioning to guide users through complex
indoor spaces. While effective for static environments, it lacks
dynamic perception and real-time path adaptation. Rafful et
al. [6] describes the role of simulation frameworks in assessing
indoor accessibility for people with disabilities. While such
tools are valuable for design-time evaluation, they do not
provide in-the-moment guidance for users moving through
an indoor environment. As a result, People With Mobility
Disabilities (PWMD) are often left without timely information
when routes become blocked or when layouts change.

Issues, such as misalignment between maps and real-world
landmarks, uneven terrain, inaccessible detours, and poorly
placed signage make independent travel difficult. These ob-
stacles are further worsened by the mental effort required
to process complex way-finding information, often turning
navigation into a stressful and unreliable task. In emergencies,
the situation becomes even more critical, as the absence of
real-time navigation support can lead to dangerous delays and
confusion. Studies like [7][8] demonstrate the limitations of
static maps or pre-fed navigation systems, which often fail
to provide the real-time updates needed to address dynamic
changes in the environment, such as construction work, tem-
porary obstacles, or crowded areas. Moreover, people with
disabilities may hesitate to disclose their conditions or seek
assistance, further emphasizing the need for inclusive and
adaptive technological solutions.

Some researchers have explored computer vision and deep
learning for assistive navigation. For example, Nasralla et
al. [9] recommend that researchers use deep learning and
machine vision for hazard detection, offering audio or tac-
tile feedback to assist visually impaired users. Khemmar et
al. [10] emphasize the potential of deep learning algorithms
for robust pedestrian detection and target tracking in dynamic
settings. While promising, these solutions focus primarily
on outdoor environments or visually impaired users, leaving
gaps in addressing indoor navigation for people with mobility
impairments.

One promising but underexplored path is the use of drones
for indoor navigation. Their proven effectiveness in infras-
tructure inspection, environmental monitoring, and emergency
response indicates their potential to support accessibility-
focused applications. The introduction of commercial services
like Amazon’s drone delivery [11] has fueled public interest
and innovation in the field. With the global drone market
projected to grow from $15.9 billion in 2023 to $53.4 bil-
lion by 2030 [12], the supporting technologies for real-time
indoor drone navigation, such as object detection and obstacle
avoidance, are increasingly accessible.

Recent studies have explored drones as guides or assistive
agents for people with disabilities. For instance, Avila et.
al. [13] explore the use of drones to assist visually impaired
individuals in navigating public spaces, relying on auditory
cues and airflow produced by the drones. The drones follow
pre-recorded paths mapped by a sighted individual. Iuga et
al. [14] combine wearable fall detectors with drone-based
response systems for emergency scenarios. Their system fea-
tures a fall detection device, worn on the upper arm, which
monitors heart rate and detects falls. Upon detecting a fall,
the system autonomously dispatches a UAV carrying a first
aid package to the patient’s location, with the UAV’s route
planned through a smartphone-based application at an emer-
gency call center. In [15], the authors propose a system that
integrates Virtual Reality (VR) with drones to deliver engaging
visual experiences for individuals with limited mobility. By
streaming live video from the drone’s onboard camera to the
VR headset, users can experience remote environments in real-
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time, effectively bringing the outside world to those unable to
physically explore it. While these applications are innovative,
they do not directly address real-time indoor navigation for
individuals with mobility impairments.

Our work introduces a novel drone-based navigation system
designed to assist people with mobility impairments in real-
time, dynamic indoor environments. Unlike approaches that
rely on pre-recorded routes or fixed maps, our system suggests
active detection of key features of the environment, including
ramps, stairs, elevators, and obstacles, and continuously up-
dates its planned route as conditions change. The platform
integrates an object detection model to identify accessibility
features and obstacles in real time, with a real-time path
planning algorithm that selects accessible and safe routes
for the user. This combination enables the drone to act
as a dynamic guide, leading users through the environment
while responding to layout changes, temporary obstructions,
or changing accessibility conditions.

Effective path planning is critical for any navigation system,
particularly for assistive technologies utilizing drones. Re-
search on safety-focused path planning and genetic algorithm-
based approaches provide insights into optimal route selection
and efficiency [16][17]. In [16], Castelli et al. concentrate
on the importance of incorporating safety metrics to enhance
reliability during UAV missions. Their method prioritizes
minimizing risk by accounting for potential hazards in the
operating area, particularly suited for outdoor environments,
such as urban areas or disaster zones, where UAVs face
dynamic, unpredictable conditions. The study discusses the
importance of incorporating safety metrics to enhance relia-
bility during UAV missions. Wang et al. introduced a path-
planning method based on genetic algorithms, focusing on
outdoor UAV applications [17]. The study is tailored for
scenarios requiring efficient and adaptive route selection, such
as search and rescue operations, environmental monitoring,
and agricultural surveying. This method uses evolutionary
computation to optimize UAV paths with multiple objectives,
including minimizing energy consumption, avoiding obstacles,
and reducing flight time. Genetic algorithms iteratively refine
candidate paths, balancing trade-offs between efficiency and
safety. Although these approaches demonstrate robust path
planning in general settings, they are not designed with
accessibility in mind. Our contribution lies in designing a path
planning algorithm while prioritizing accessible features and
user needs, enabling drones to serve as mobile assistive agents
within real-world indoor spaces.

In this article, we address a critical and underexplored
gap at the intersection of artificial intelligence, accessibility,
and robotics. By integrating real-time object detection and
accessibility-aware path planning into a Drone-as-a-Service
(DaaS) platform, we aim to support independent mobility
of people with physical disabilities in indoor environments
that are often inaccessible, unpredictable, or hazardous. Our
system offers an adaptable, intelligent, and practical solution
to a longstanding problem in inclusive navigation technology.
Although the primary focus of this work is not on drone safety

concerns, such as the risk of drones falling onto individuals,
we acknowledge this as an important practical consideration.
One straightforward mitigation strategy involves installing a
transparent, glass-like barrier or protective netting below the
ceiling, allowing drones to operate above it. This architectural
modification effectively eliminates the risk of falling objects
and can be readily implemented in public buildings. Further-
more, drone charging and docking stations can be integrated
above this barrier to support reliable and safe operations.

III. SYSTEM ARCHITECTURE

To support accessibility-focused indoor navigation, the pro-
posed system utilizes an AI-enabled drone that guides users
along safe and accessible paths while dynamically adapting to
changing environmental conditions. The overall architecture is
illustrated in Figure 1. At the core of the system is the educa-
tional RoboMaster Tello Talent drone, developed by DJI [18].
This compact, lightweight platform (∼90 g) is equipped with
a built-in camera and supports programmable control through
a Software Development Kit (SDK). The drone communicates
wirelessly with a Ground Control System (GCS) over a Wi-Fi
network using the User Datagram Protocol (UDP). Live video
streams captured by the drone are transmitted to the GCS,
where they are processed by the object detection algorithm.
Based on this analysis, the GCS issues navigation commands
to the drone, enabling it to guide users reliably toward their
intended destinations.

Figure 1. System architecture of the proposed drone-based navigation
system, illustrating the drone, wireless communication with the GCS,

real-time object detection, and navigation command feedback for guiding
users along accessible routes.

While the long-term objective is to achieve fully onboard
processing for autonomous navigation on capable drones, the
current implementation strategically uses edge computing to
support real-time decision-making in controlled environments.
This approach allows us to utilize educational drones while
still performing computationally intensive tasks, such as object
detection and path planning, with accuracy and efficiency.
By offloading these processes to a GCS, we demonstrate
the feasibility and effectiveness of our method, establishing
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Figure 2. Workflow of the YOLO object detection pipeline used in the
proposed drone-based navigation system. The GCS receives live video
streams from the drone and processes each frame using the pre-trained

YOLO model [20].

a strong foundation for future deployment on more advanced
platforms.

IV. ACCESSIBILITY-ORIENTED OBJECT DETECTION USING
DRONES

In this section, we focus on the object detection procedure.
A key component in developing a real-time Drone Accessibil-
ity Assistant for individuals with mobility impairments is the
implementation of an efficient object detection algorithm. For
this purpose, You Only Look Once (YOLO) [19] was selected
due to its high speed and accuracy. YOLO formulates object
detection as a single-stage regression problem, eliminating the
complexity and latency of traditional multi-stage pipelines.

Figure 2 illustrates the YOLO workflow, beginning with
live video capture from the drone and continuing through
frame preprocessing, dataset preparation, model training, and
export. The trained model is then deployed for YOLOv8-based
object detection, which generates bounding boxes, labels, and
confidence scores. The ground control station receives the live
video streams and processes each frame using the pre-trained
YOLO model [20]. To enable rapid prototyping and efficient
training, we used Google Colab as the development platform,
utilizing its cloud-based resources to accelerate model training
and improve inference performance.

A dataset consisting of over 4,500 images was collected
from various sources, including [21][22][23]. The distribution
of image categories is illustrated in Figure 3. The top-left bar
chart shows the number of instances for each class: acces-
sibility symbol, person, potholes, ramps, and stairs. The top-
right plot overlays all bounding boxes to visualize their spatial
coverage. The bottom heatmaps represent the distribution of
bounding box center coordinates (x, y) and their width–height
dimensions across the dataset. Each image was manually
annotated to identify regions of interest corresponding to target
objects relevant to accessibility, such as stairs, ramps, and
potholes.

The YOLOv8-medium model from the Ultralytics li-
brary [24] was trained for 60 epochs with an input size of 640
pixels in a Google Colab environment. Model performance

Figure 3. Dataset visualization for accessibility object detection. Top-left:
class distribution; top-right: bounding box overlay; bottom-left: bounding

box centers; bottom-right: bounding box dimensions.

was evaluated using precision, recall, and mean average pre-
cision (mAP) on a validation set. Final predictions on the test
set were generated with a confidence threshold of 0.5.

The object detection model demonstrated good perfor-
mance, achieving a mean average precision (mAP) of 80%
at an Intersection over Union (IoU) threshold of 0.5. As
illustrated in the confusion matrix (Figure 4), the model
indicates robust capability in acurately identifying instances
of accessibility symbols (93%) and stairs (90%), with mod-
erate performance on ramps (85%), potholes (73%), and
persons (70%). An important area requiring improvement is
the model’s handling of the background class. As illustrated
in the confusion matrix, multiple true instances from other
object classes, such as person and potholes, were misclassified
as background. These false negatives suggest that the model
occasionally fails to detect the presence of an object, instead
attributing it to the background class, thus inflating background
predictions. Conversely, there are cases where true background
pixels were incorrectly classified as object classes, resulting in
false positives. These misclassifications reflect a limitation in
the model’s ability to reliably differentiate between objects of
interest and true background. To address this, we prioritize im-
proving the quality of background annotations and increasing
the representation of frequently confused background regions
during training. These enhancements are crucial for boosting
the model’s overall precision and recall across all classes.

Figure 5 presents a series of plots illustrating the model’s
performance evolution over approximately 60 training epochs.
These graphs provide critical insights into the learning process,
convergence, and generalization capabilities of the model.

11Copyright (c) IARIA, 2025.     ISBN:  ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AIVTS 2025 : The First International Conference on AI-enabled Unmanned Autonomous Vehicles and Internet of Things for Critical Services

                            17 / 21



Figure 4. Confusion matrix illustrating the performance of the trained model
across all classes. The diagonal values represent correctly classified

instances, while the off-diagonal values indicate misclassifications between
classes.

The top row of plots displays the training loss metrics. All
three curves exhibit a consistent and continuous downward
trend throughout the training epochs. This steady decrease in
training loss indicates that the model is effectively learning
from the training data and improving its ability to accurately
localize objects (box loss), classify them correctly (classifica-
tion loss), and refine its distribution focal loss.The smoothness
of these curves suggests a stable training process, free from
significant oscillations or divergence, which is indicative of
appropriate hyperparameter selection and model architecture.

The bottom row of plots details the validation loss met-
rics and key performance indicators. Similar to the training
losses, the validation loss curves demonstrate a steady decline,
eventually stabilizing towards the latter epochs. This crucial
observation indicates that the model is generalizing well to
unseen data, effectively avoiding overfitting to the training
set. The continuous improvement in validation performance
reinforces the model’s robustness and its capacity for real-
world application.

Furthermore, the performance metrics showcase signifi-
cant progress over time. Both metrics/precision(B) and met-
rics/recall(B) exhibit a strong upward trajectory, stabilizing
at high values by the end of training. This suggests that the
model is becoming both more selective, making fewer false
positive predictions, and more comprehensive in identifying
true positives. The mean average precision metrics offer a
more comprehensive assessment of detection performance. In
particular, metrics/mAP50(B), evaluated at an IoU threshold of
0.50, shows rapid and sustained improvement, achieving a high
score confirming the model’s effectiveness in identifying ob-
jects with moderate overlap. More critically, metrics/mAP50-
95(B), which averages performance across IoU thresholds
from 0.50 to 0.95, also exhibits steady gain. Although this
metric naturally yields lower values due to stricter localization
requirements, its continuous upward trend signifies the model’s

Figure 5. Training and validation performance of the YOLOv8 model across
epochs, showing convergence through reduced loss and improved accuracy,

demonstrating effective generalization to unseen data.

increasing accuracy in both object detection and localization.
The continued rise of this metric suggests that additional
training epochs could further refine bounding box precision
and overall model performance.

In summary, the combined analysis of the confusion matrix
and the training/validation metrics demonstrates the strong
performance of the developed model. The confusion matrix
reveals high true positive rates across key target object classes,
while also identifying the background class as a primary
source of misclassifications. This presents an area for tar-
geted refinement, specifically, improving the model’s ability
to distinguish between actual objects and true background.
Concurrently, the training and validation curves demonstrate
the model’s effective learning and successful generalization,
with consistent improvement in all key performance indicators,
including precision, recall, and mean average precision.

While publicly available data sources provided a practical
basis for developing and evaluating our models, we acknowl-
edge potential domain inconsistencies and inherent dataset
biases. Future work will focus on improving dataset relevance
and reducing biases, for example by collecting additional
domain-specific images or incorporating crowdsourced anno-
tations. We also plan to address class imbalance through data
augmentation and sampling strategies. Beyond data consider-
ations, we aim to to enhance detection performance through
hyperparameter tuning and advanced training strategies, par-
ticularly for underperforming classes. Addressing background-
related confusion through methods, such as data augmentation,
improved annotation quality, hard negative mining, or context-
aware object detection offers a promising direction for improv-
ing the model’s accuracy and real-world robustness.

V. DYNAMIC PATH NAVIGATION ALGORITHM

In alignment with our system design objectives, we de-
veloped a Dynamic Path Navigation Algorithm to enhance
drone’s autonomous navigation capabilities through real-time
environmental perception and adaptive decision-making in
dynamic indoor environments. Central to the system is the
drone’s ability to autonomously scan its surroundings, detect
obstacles, and dynamically determine an alternative route,
thereby ensuring efficient and safe path navigation.

12Copyright (c) IARIA, 2025.     ISBN:  ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

AIVTS 2025 : The First International Conference on AI-enabled Unmanned Autonomous Vehicles and Internet of Things for Critical Services

                            18 / 21



Algorithm 1 Dynamic Path Navigation Algorithm for Au-
tonomous Drone Guidance

1: procedure GRAPHCONSTRUCTION
2: Construct accessibility-compliant graph G = (V,E)
3: return G
4: procedure HANDLEOBSTACLE(G, current_node, next_node,

destination)
5: RemoveEdge(G, current_node, next_node)
6: P ← Dijkstra(current_node, destination)
7: return P
8: procedure NAVIGATE(source, destination)
9: G ← GraphConstruction()

10: current_node ← source
11: P ← Dijkstra(current_node, destination)
12: while current_node 6= destination do
13: next_node ← NextNode(P )
14: if ObstacleDetected(current_node, next_node) then
15: P ← HandleObstacle(G, current_node, next_node,

destination)
16: else
17: current_node ← next_node
18: Display “Arrived at Destination”

We assume the availability of prior information about the
premises, such as an initial floor map of the building, to
construct a graph-based representation of the navigable envi-
ronment. Specifically, the environment is modeled as a directed
graph G = (V,E), where vertices V represent key decision
points from which the drone can move in various directions
(e.g., intersections, turns, or locations of interest), and edges
E denote traversable connections between them. Each edge
carries a weight reflecting the cost or distance of traversal.

This graph serves as the operational blueprint for path
planning. Given a source node and a destination node, the
algorithm computes an optimal route using Dijkstra’s algo-
rithm. As the drone follows the computed path, it continuously
monitors the environment to detec and respond to unexpected
obstacles in real time. If an obstruction is detected along the
next segment of the planned path, the algorithm dynamically
updates the graph by removing the blocked edge and recalcu-
lating an alternative shortest path from the current node to the
destination. The process iterates until the drone reaches the
destination node, at which point it signals successful arrival.

Algorithm 1 provides a detailed step-by-step description
of this adaptive path-planning framework, which integrates
classical graph-based planning with real-time environmental
perception to enable reliable, obstacle-aware navigation in
dynamic indoor settings.

In the following, we first analyze the algorithm’s worst-
case time complexity, providing insight into its computational
efficiency. We then present a discussion on its completeness,
demonstrating that the algorithm is guaranteed to find a path
if one exists in the graph.

Theorem 1. The worst-case runtime of our Dynamic Path
Navigation algorithm is O(E · (|V |+ |E|)log|V |) in the worst
case.

Proof. The overall time complexity of the Dynamic Path

Navigation algorithm is driven by two primary operations: the
computation of the shortest path using Dijkstra’s algorithm
and the real-time obstacle detection mechanism during path
execution.

Initially, the algorithm computes the shortest path from the
source to the destination node on a pre-constructed graph
G = (V,E), where V represents decision points and E
denotes traversable edges. In the event of encountering unex-
pected obstacles during navigation, the algorithm dynamically
removes the affected edge from the graph and recomputes the
shortest path from the current node to the destination. Let E
denote the total number of such path recalculations triggered
by obstacle detections.

Using a priority queue implementation (e.g., binary heap),
the time complexity of Dijkstra’s algorithm for a single
invocation is

O ((|V |+ |E|) log |V |) .

Therefore, across all E ≤ |E| recomputations, the total cost
of path planning becomes:

O (E · (|V |+ |E|) log |V |) .

In addition, the drone performs a constant-time obstacle
check while traversing each edge along the path. In the worst-
case scenario, every edge in the graph may be evaluated at
least once for obstacle presence, contributing an additional
linear cost of O(|E|) for real-time sensing and reaction.

Thus, the total worst-case time complexity of the navigation
algorithm is:

O (E · (|V |+ |E|) log |V |+ |E|) .

This complexity reflects the integration of classical graph-
based planning with adaptive, sensor-driven updates, enabling
robust and responsive indoor navigation in dynamic environ-
ments.

We now present the completeness guarantee of the proposed
path navigation algorithm in Theorem 2. We assume that the
drone initiates the algorithm at the source node s, with the
objective of reaching the destination node d.

Theorem 2. If there exists at least one unblocked path from
the source node s to the destination d at any time during
execution, then the Dynamic Path Navigation Algorithm will
reach d in finite time.

Proof. The algorithm begins by computing the shortest path
from the current node to the destination node using Dijkstra’s
algorithm. Dijkstra’s algorithm is complete and optimal for
graphs with non-negative edge weights, and thus will return a
valid path if one exists in the initial graph.

As the drone follows this path, it continuously monitors the
immediate next edge for obstacles. If an obstacle is detected
on edge (u, v), the edge is removed from the graph, and the
algorithm recomputes the shortest path from the current node
u to the destination d using Dijkstra’s algorithm on the updated
graph.
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At each iteration, the graph becomes a subgraph of the
original, with potentially fewer edges due to obstacle-induced
removals. If a valid path exists from the current node to the
destination in the updated graph, Dijkstra’s algorithm will find
it. The algorithm terminates either when the destination is
reached or when no path exists in the current subgraph.

Consequently, as long as at least one unblocked path exists
from the current node to the destination, the algorithm will
eventually find and traverse it. Upon reaching d, the algo-
rithm halts successfully, establishing completeness under this
assumption.

VI. CONCLUSIONS AND FUTURE WORK

This study introduces an innovative AI-assisted drone-based
navigation system aimed at supporting individuals with mo-
bility impairments as they navigate complex indoor environ-
ments. By integrating a customized object detection model
with dynamic path planning, the system enables real-time
identification of accessibility features and obstacles, allow-
ing autonomous aerial robots to guide users along safe and
accessible routes. Experimental evaluations conducted in a
controlled setting demonstrate the system’s feasibility and
potential to address critical gaps left by traditional, static
navigation tools. The findings showcase the critical role that
aerial robotics can play in improving independent mobility,
reducing navigational barriers, and advancing inclusion within
built environments. The ability of the system to adaptively
re-route users in response to environmental changes further
reflects its applicability to real-world settings where acces-
sibility needs are both pressing and variable. Future work
may focus on improving the accuracy and adaptability of the
object detection model to perform reliably across a variety of
architectural settings. Refinements to the overall system de-
sign, encompassing both software and hardware components,
combined with evaluations beyond controlled environments
to account for real-world factors, such as lighting variability,
human presence, ceiling obstructions, and operational safety,
will strengthen scalability and reliability. Pilot deployments
or simulation-based validations can further increase credibility
and readiness for broader adoption.
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