IARIA

ADVCOMP 2025

The Nineteenth International Conference on Advanced Engineering Computing
and Applications in Sciences

ISBN: 978-1-68558-289-0

September 28th - October 2nd, 2025

Lisbon, Portugal

ADVCOMP 2025 Editors

Andreas Rausch, TU Clausthal, Clausthal-Zellerfeld, Germany



ADVCOMP 2025

Forward

The Nineteenth International Conference on Advanced Engineering Computing and Applications in
Sciences (ADVCOMP 2025), held between September 28™ 2025, and October 2™ 2025, in Lisbon,
Portugal, continued a series of international events meant to bring together researchers from the
academia and practitioners from the industry in order to address fundamentals of advanced scientific
computing and specific mechanisms and algorithms for particular sciences.

With the advent of high-performance computing environments, virtualization, distributed and
parallel computing, as well as the increasing memory, storage and computational power, processing
particularly complex scientific applications and voluminous data is more affordable. With the current
computing software, hardware and distributed platforms, effective use of advanced computing
techniques is more achievable.

The conference provided a forum where researchers were able to present recent research results
and new research problems and directions related to them. The conference sought contributions
presenting novel research in all aspects of new scientific methods for computing and hybrid methods for
computing optimization, as well as advanced algorithms and computational procedures, software and
hardware solutions dealing with specific domains of science.

We take here the opportunity to warmly thank all the members of the ADVCOMP 2025 technical
program committee, as well as all the reviewers. The creation of such a high-quality conference program
would not have been possible without their involvement. We also kindly thank all the authors who
dedicated much of their time and effort to contribute to ADVCOMP 2025. We truly believe that, thanks
to all these efforts, the final conference program consisted of top-quality contributions. We also thank
the members of the ADVCOMP 2025 organizing committee for their help in handling the logistics of this
event.

We hope that ADVCOMP 2025 was a successful international forum for the exchange of ideas and
results between academia and industry for the promotion of progress related to advanced engineering
computing and applications in sciences.

ADVCOMP 2025 Chairs

ADVCOMP 2025 Steering Committee

Dean Vucinic, Vrije Universiteit Brussel (VUB), Belgium, FERIT, Croatia
Juha Roning, University of Oulu, Finland

Marcin Hojny, AGH University of Science and Technology, Poland
Andreas Rausch, TU Clausthal, Clausthal-Zellerfeld, Germany

Alice E. Koniges, University of Hawai‘i at Manoa, USA

ADVCOMP 2025 Publicity Chairs
Laura Garcia, Universidad Politécnica de Cartagena, Spain
Lorena Parra Boronat, Universidad Politécnica de Madrid, Spain



ADVCOMP 2025
Committee

ADVCOMP 2025 Steering Committee

Dean Vucinic, Vrije Universiteit Brussel (VUB), Belgium, FERIT, Croatia
Juha Roning, University of Oulu, Finland

Marcin Hojny, AGH University of Science and Technology, Poland
Andreas Rausch, TU Clausthal, Clausthal-Zellerfeld, Germany

Alice E. Koniges, University of Hawai‘i at Manoa, USA

ADVCOMP 2025 Publicity Chairs

Laura Garcia, Universidad Politécnica de Cartagena, Spain
Lorena Parra Boronat, Universidad Politécnica de Madrid, Spain

ADVCOMP 2025 Technical Program Committee

Waleed H. Abdulla, University of Auckland, New Zealand

José Abellan, Catholic University of Murcia, Spain

Mohamed Riduan Abid, Alakhawayn University, Morocco

Rashmi Agrawal, Manav Rachna International Institute of Research and Studies, India
Francisco Airton Silva, Federal University of Piaui, Brazil

M. Azeem Akbar, Nanjing University of Aeronautics and Astronautics, China

Haifa Alharthi, Saudi Electronic University, Saudi Arabia

Sénia Maria Almeida da Luz, Polytechnic Institute of Leiria - School of Technology and Management,
Portugal

Madyan Alsenwi, Kyung Hee University, Global Campus, South Korea

Mohamed E. Aly, California State Polytechnic University, Pomona, USA

Daniel Andresen, Kansas State University, USA

Anindya Das Antar, University of Michigan, USA

Abhinav Arora, Meta Platforms, USA

Ehsan Atoofian, Lakehead University, Canada

Vadim Azhmyakov, Universidad Central, Bogota, Republic of Colombia

Carlos Becker Westphall, University of Santa Catarina, Brazil

Raoudha Ben Djemaa, ISITCOM | University of Sousse, Tunisia

Peter Bentley, University College London, UK

Alessandro Borri, CNR-IASI Biomathematics Laboratory, Rome, Italy

David Bouck-Standen, Kingsbridge Research Center, UK

Sofiane Bououden, University Abbes Laghrour Khenchela, Algeria

Dominique Fabio Briechle, ISSE - Institute for Software and Systems Engineering of the Clausthal
University of Technology, Germany

Xiao-Chuan Cai, University of Colorado Boulder, USA

Patricia Camacho Magrifian, Universidad de Cadiz, Spain

Jadson Castro Gertrudes, Federal University of Ouro Preto, Brazil

Graziana Cavone, Polytechnic of Bari, Italy



Sébastien Cayrols, University of Tennessee Knoxville, USA

Mete Celik, Erciyes University, Turkey

Jieyang Chen, Oak Ridge National Laboratory, USA

Jinyuan Chen, Louisiana Tech University, USA

Luca Davoli, University of Parma, Italy

Vassilios V. Dimakopoulos, University of loannina, Greece

Inés Domingues, IPO Porto Research Centre (CI-IPOP), Portugal

Maha Elarbi, University of Tunis, Tunisia

Javier Fabra, Universidad de Zaragoza, Spain

Akemi Galvez, University of Cantabria, Spain / Toho University, Japan
Tong Geng, Boston University, USA

Jing Gong, KTH Royal Institute of Technology, Sweden

Teofilo Gonzalez, UC Santa Barbara, USA

Maki Habib, American University in Cairo, Egypt

Yang He, University of Technology Sydney, Australia

Mohd Helmy Abd Wahab, Universiti Tun Hussein Onn Malaysia, Malaysia
Marcin Hojny, AGH University of Science and Technology, Poland
WIladyslaw Homenda, Warsaw University of Technology, Poland
Tzung-Pei Hong, National University of Kaohsiung, Taiwan

Mehdi Hosseinzadeh, Washington University in St. Louis, USA

Paul Humphreys, Ulster University | Ulster University Business School, UK
Andres Iglesias, University of Cantabria, Spain / Toho University, Japan
Joanna Isabelle Olszewska, University of West Scotland, UK

Hiroshi Ishikawa, Tokyo Metropolitan University, Japan

Félix J. Garcia Clemente, University of Murcia, Spain

Rishabh Joshi, Google Research - Brain Team, USA

Zaheer Khan, University of the West of England, UK

Alice E. Koniges, University of Hawai‘i at Manoa, USA

Sonia Lajmi, University of Sfax, Tunisia / Al Baha University, Saudi Arabia
Yahia Lebbah, University of Oran, Algeria

Seyong Lee, Oak Ridge National Laboratory, USA

Maurizio Leotta, University of Genova, Italy

Clement Leung, Chinese University of Hong Kong, Shenzhen, China
Yiu-Wing Leung, Hong Kong Baptist University, Hong Kong

Jianwen Li, East China Normal University, Shanghai, China

Yiheng Liang, Bridgewater State University, USA

Stephane Maag, Telecom Sud Paris, France

Elbert E. N. Macau, Federal University of Sao Paulo - UNIFESP at Sao Jose dos Campos, Brazil
Rafael Magdalena Benedicto, University of Valencia, Spain

Marcin Markowski, Wroclaw University of Science and Technology, Poland
Mirko Marras, University of Cagliari, Italy

René Meier, Hochschule Luzern, Switzerland

Yuan Meng, University of Southern California, USA

Mohamed Wiem Mkaouer, Rochester Institute of Technology, USA
Zewei Mo, University of Pittsburgh, USA

Sébastien Monnet, Savoie Mont Blanc University (USMB), France

Shana Moothedath, University of Washington, Seattle, USA

Kiran Nalla, Microsoft, USA



Laurent Nana, University of Brest, France

Ehsan Nekouei, City University of Hong Kong, Hong Kong

Kaiming Ouyang, Nvidia, USA

Marcin Paprzycki, Systems Research Institute | Polish Academy of Sciences, Poland
Prantosh Kumar Paul, Raiganj University, India

Biagio Peccerillo, University of Siena, Italy

Damien Pellier, Université Grenoble Alpes, France

Sonia Pérez-Diaz, University of Alcala, Spain

Antonio Petitti, Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing
(STIIMA) - National Research Council of Italy (CNR) , Italy

Tamas Pflanzner, University of Szeged, Hungary

Agostino Poggi, Universita degli Studi di Parma, Italy

Evgeny Pyshkin, University of Aizu, Japan

Andreas Rausch, Technische Universitat Clausthal, Germany

Michele Roccotelli, Politecnico di Bari, Italy

Ivan Rodero, Rutgers University, USA

Juha Roning, University of Oulu, Finland

Diego P. Ruiz, University of Granada, Spain

Bibhudatta Sahoo, National Institute of Technology, Rourkela, India

Julio Sahuquillo, Universitat Politecnica de Valéncia, Spain

Subhash Saini, NASA, USA

Shailaja Sampat, Arizona State University, USA

Hamed Sarvari, George Mason University, USA

Alireza Shahrabi, Glasgow Caledonian University, Scotland, UK

Justin Shi, Temple University, USA

Piotr Sowinski, Systems Research Institute, Polish Academy of Sciences, Poland
Sudarshan Srinivasan, Oak Ridge National Laboratory, USA

Mohammed Tanash, Kansas State University, USA

Costas Vassilakis, University of the Peloponnese, Greece

Bhavan Vasu, Oregon State University, USA

Flavien Vernier, LISTIC — Savoie University, France

Juan Vicente Capella Hernandez, Universitat Politécnica de Valéncia, Spain
Dean Vucinic, Vrije Universiteit Brussel (VUB), Belgium / FERIT, Croatia
Guangjing Wang, Michigan State University, USA

Hanrui Wang, Massachusetts Institute of Technology, USA

Lei Wang, University of Connecticut, USA

Adriano V. Werhli, Universidade Federal do Rio Grande - FURG, Brazil
Gabriel Wittum, Goethe University Frankfurt, Germany

Zongshen Wu, University of Wisconsin, Madison, USA

Mudasser F. Wyne, National University, USA

Chenhao Xie, Beihang University, Beijing, China

Cong-Cong Xing, Nicholls State University, USA

Feng Yan, University of Nevada, Reno, USA

Limin Yang, University of lllinois at Urbana-Champaign, USA

Jinsongdi Yu, Fuzhou University, China

Carolina Yukari Veludo Watanabe, Federal Unversity of Ronddnia, Brazil
Michael Zapf, Technische Hochschule Niirnberg Georg Simon Ohm (University of Applied Sciences
Nuremberg), Germany



Vesna Zeljkovic, Lincoln University, USA

Ruochen Zeng, NXP Semiconductors, USA

Penghui Zhang, Arizona State University, USA
Pengmiao Zhang, University of Southern California, USA
Qian Zhang, Liverpool John Moores University, UK



Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the
dissemination of the published material. This allows IARIA to give articles increased visibility via
distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that | represent the authors of this article in
the copyright release matters. If this work has been done as work-for-hire, | have obtained all necessary
clearances to execute a copyright release. | hereby irrevocably transfer exclusive copyright for this
material to IARIA. | give IARIA permission or reproduce the work in any media format such as, but not
limited to, print, digital, or electronic. | give IARIA permission to distribute the materials without
restriction to any institutions or individuals. | give IARIA permission to submit the work for inclusion in
article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or
otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and
any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above
provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any
individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of
manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without
limitation, negligence), pre-contract or other representations (other than fraudulent
misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that
case, copyright to the material remains with the said government. The rightful owners (authors and
government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and
IARIA's partners to further distribute the work.



Table of Contents

Orientation Prediction in Robotics: A Study of Trigonometric Decomposition Methods Across Synthetic and Real-
World Datasets

Antonio Gambale, Sonya Coleman, Dermot Kerr, Philip Vance, Emmett Kerr, Cornelia Fermuller, and Yiannis
Aloimonos

Investigating the Adaptability of ALE-AMR Hydrocode for Darcy Flow and Geothermal Simulations
Alice Koniges, David Eder, Jonghyun Lee, Jiawei Shen, Aaron Fisher, and Tzanio Kolev

Modeling the Interaction of Laser-Produced Proton Beams with Matter
Jack McKee, David Eder, Aaron Fisher, Alice Koniges, Claudia Parisua, Maxence Gauthier, Elizabeth McBride,
Frank Seiboth, Chandra Breanne Curry, Mungo Frost, Eric Galtier, and Segfried Glenzer

Artificial Intelligence-Based Local Weather Forecasting for Agricultural Digital Twins
Miguel Zaragoza-Esquerdo, Alberto Ivars-Palomares, Irene Eiros-Fonseca, Sandra Sendra, and Jaime Lloret

15

20



ADVCOMP 2025 : The Nineteenth International Conference on Advanced Engineering Computing and Applications in Sciences

Orientation Prediction in Robotics: A Study of Trigonometric Decomposition Methods
Across Synthetic and Real-World Datasets

Antonio Gambale ®, Sonya Coleman @, Dermot Kerr @, Philip Vance
School of Computing, Engineering & Intelligent Systems,
Ulster University, Londonderry, Northern Ireland

e-mail: {gambale-a | sa.coleman |
Emmett Kerr
Dept. of Electronic & Mechanical Engineering,
Atlantic Technological University, Letterkenny, Ireland
e-mail: emmett.kerr@atu.ie

Abstract—Orientation prediction is a critical task for robotics
as it enables robots to understand and interact with their envi-
ronment more effectively. By accurately determining an object’s
position and orientation, robots can perform a range of complex
tasks. This in turn will advance smart manufacturing facilities to
achieve higher levels of automation, increase efficiency, and enable
more flexible production systems. Hence, we present a comparative
study of shallow regression models, integration strategies, and
trigonometric encoding schemes for planar orientation prediction
in robotics, using synthetic and real-world datasets. Results
demonstrate that XGBoost 1.7, combined with vector integration
and quadrant encoding, achieves the best balance of accuracy,
robustness to angular boundary discontinuities, and computational
efficiency, significantly outperforming alternative approaches in
real-world scenarios.

Keywords-Computer Vision; Robotics; Manipulation; Machine
Learning; Smart Manufacturing.

I. INTRODUCTION

Autonomous grasping serves as the foundation for numerous
robotic operations, yet current approaches frequently generate
arbitrary grasp poses without considering the object’s pose
for subsequent manipulation requirements [1] [2]. Contem-
porary robotic grasping research typically focuses on two-
finger parallel grippers [1] [2], using complex seven or
five dimensional grasp representations [3] [4], often referred
to as grasping rectangles [5]. Some works have explored
approaches to simplify grasp parameters whilst maintaining
effectiveness. Notably, the work in [6] demonstrated success
in representing object orientation using a single planer angle,
predicted through ImageNet Convolutional Neural Network
(CNN) feature extraction with a Support Vector Regressor
(SVR) for angle prediction. However, the work demonstrated
in [6] relies on RGB-Depth (RGB-D) data and complex
hierarchical regression techniques to handle angle discontinuity
at the 0°/360° boundary. This is accomplished using a two-
step process: first, the angle is classified into one of four
90° intervals; then, a separate SVR model is trained for each
interval. While effective, this method introduces additional
complexity compared with single stage direct angle regression
approaches that utilise RGB data. Additionally, alternative

d.kerr | p.vance}@ulster.ac.uk

Cornelia Fermiiller ®, Yiannis Aloimonos
Institute for Advanced Computer Studies,
University of Maryland, USA
e-mail: {fermulcm | yiannis}@umd.edu

existing strategies present other notable drawbacks: meth-
ods that rely on high-dimensional grasp representations or
hierarchical angle classification typically involve significant
computational overhead, increased susceptibility to annotation
errors, and limited generalisation when object pose varies
beyond training data distributions. In contrast, approaches that
require depth sensing or RGB-D inputs restrict applicability on
platforms equipped only with RGB cameras. These constraints
hinder practical deployment in dynamic or resource-constrained
environments.

This research, therefore, aims to enhance post-grasp task
execution through the use of a novel methodology which
represents object orientation as a single angle in a 360°
coordinate system. This approach provides orientation infor-
mation that not only facilitates the intended use of the object
but also enables derivation of the appropriate grasp angle.
Additionally, this representation enables learning architectures
to focus specifically on orientation prediction of one value (),
circumventing the complexity of multiple parameter estimations
and facilitating grasping with manipulators of all types.

To address the scarcity of annotated grasping datasets suitable
for single angle object pose estimation, this work draws direct
inspiration from [7], which utilised traditional computer vision
with object geometric data to generate object poses. Here,
a modified version of the methodology outlined in [7] is
employed to augment the MetaGraspNet dataset: rather than
relying on edge maps, ground-truth object segmentation masks
are used to extract geometric features such as centroid, handle-
tip displacement, and axis of symmetry, enabling the calculation
of precise orientation annotations for each object instance.
This automated annotation process was validated through
manual inspection to ensure geometric fidelity and orientation
accuracy, resulting in a high-quality synthetic dataset well-
suited for model training. Recognising that synthetic datasets
alone cannot capture the full complexity of real-world scenarios,
a complementary real-world dataset was created and rigorously
annotated. This secondary dataset was curated to reflect a range
of object configurations, occlusions, and lighting conditions
encountered in practical applications. The combination of
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these two datasets (a large, systematically annotated synthetic
set and a smaller, carefully validated real-world set) enables
robust evaluation of model generalisation and domain transfer,
providing a more comprehensive assessment of each method’s
practical viability. This research systematically evaluates the
influence of regression architectures, integration strategies,
and encoding schemes on orientation prediction performance.
Both branched and vector-based integration approaches are
assessed alongside various trigonometric encoding schemes,
using synthetic and real-world data. Cross-validation, com-
putational benchmarking, and error analysis are integrated to
determine practical suitability, advancing the current state of
planar orientation prediction for robotic manipulation. The
study clarifies the interplay between encoding, integration, and
model architecture, while also providing actionable insights for
deploying robust, efficient orientation predictors in real-world
robotic pipelines.

The remainder of this paper is organised as follows. Sec-
tion II details the datasets used for training and evaluation.
Section IIT describes the methodology, outlining the regression
models, target encoding strategies, and integration approaches
assessed in this work. Section IV presents the experimental
results, including performance metrics and computational
benchmarking. Section V provides a comprehensive discussion
and evaluation of the findings, with a focus on model robust-
ness, error distributions, and practical implications. Finally,
Section VI concludes the paper and outlines future work.

II. DATASETS

Training Dataset MetaGraspNet: The following work
employs two distinct datasets: the first is used for training
and validating the proposed methods, while the second serves
to evaluate performance under conditions more closely aligned
with real-world applications. The initial training of the proposed
methods utilised a carefully curated subset of the MetaGraspNet
dataset [8] reduced to focus exclusively on Phillips and flat-head
screwdrivers. The subset selected for this work corresponds
to the single-class, multiple-instance configuration within the
MetaGraspNet framework. The choice of screwdrivers as
the focal object class is deliberate as these objects possess
geometric properties, which satisfy the requirements outlined
in [7]: screwdrivers possess an axis of symmetry and a mass
distribution that is biased to one side perpendicular to this axis.
These characteristics permit the application of the approach
described in [7] to compute the centroid (derived from the
segmentation mask), the distances from the centroid to the
screwdriver’s handle and tip, and hence the identification of
the direction based on the displacement of the centre of mass
relative to the tip. This directional information is then recorded
as an angular annotation, ranging from 0° to 359° and provides
the angular information required to use this dataset to train
machine learning models such as those employed in this paper.

The resulting curated dataset provides 7,932 annotations
across 2,691 images of size 1200 x 1200 pixels [9]. Initial
evaluation of the dataset revealed that orientation calculations
for occluded objects with areas less than 10,000 pixels were

unreliable. Consequently, such instances were removed, reduc-
ing the dataset to 5,709 annotations. A 10% sample of these
annotations was manually verified, revealing 55 screwdrivers
with incorrectly detected angles (errors ranging from 1° to
9°), yielding a Mean Absolute Angular Error (MAAE) of
0.313° across the sample set. This inspection demonstrated
that the majority of angular errors were minor and would not
significantly compromise robotic grasping performance [10].
The final dataset thus comprises 4,567 training samples and
1,142 testing samples with associated images and annotations
(see examples in Figure 1).

Difficulty 1—2 Difficulty 1-2 Difficulty 1-2
Difficulty 4 Difficulty 5 Difficulty 4
Difficulty 5 Difficulty 5 Difficulty 5

eLa

Figure 1. Example images from the MetaGraspNet training dataset.

Secondary Evaluation Dataset: A secondary real-world
dataset, containing 81 annotations, was constructed to eval-
vate the trained models using real-world RGB images of
screwdrivers. This dataset mirrors the structure of the curated
MetaGraspNet subset employed for training, closely adhering
to the difficulty levels defined in [9] but uses real screwdrivers
rather than synthetic data. The MetaGraspNet difficulty levels
are designed to progressively increase in complexity: Levels 1
and 2 represent single objects with no occlusion, while higher
levels introduce multiple objects and increasing degrees of
occlusion and clutter. In line with this, the custom real-world
evaluation dataset contains 8 images at difficulty level 1 or
2 (single screwdrivers, no occlusion), 5 images at difficulty
level 4 (moderate clutter and occlusion), and 14 images at
difficulty level 5 (high clutter and occlusion). Example images
from the evaluation set are shown in Figure 2. No images from
difficulty level 3 were included, consistent with the original
subset selection. Table I summarises the dataset details.

The secondary evaluation dataset was acquired using a
camera equipped with a Samsung ISOCELL GN9 sensor,
capturing images of size 3072 x 4080 pixels, with a lens
aperture of f/1.9, an exposure time of 1/100 second, and an
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International Organisation for Standardisation (ISO) sensitivity
of 386, with images being collected from both overhead and
45° angled perspectives. The dataset features three screwdriver
variants, red/black Torx, blue/black flathead/starhead, and solid
black starhead, randomly arranged on a white backdrop under
uncontrolled ambient lighting conditions. To ensure natural
illumination variability, 27 images were taken across daylight
hours, resulting in 81 annotations.

Difficulty 5

Figure 2. Example images from the real-world evaluation dataset.

Ground truth segmentation masks and orientation angles
were annotated by three domain experts [11]. Inter-annotator
agreement on segmentation masks was assessed using mean
Intersection-over-Union (IoU), where IoU is calculated as
the area of overlap between two masks divided by the area
encompassed by either mask, providing a measure of agreement
for object segmentation; this analysis yielded a high consistency
of 0.95. Discrepancies were resolved via consensus review to
refine the segmentation boundaries. For orientation, annotators
measured shaft angles against the right horizontal axis, with

a mean absolute difference of +£1.8° between predictions.

Disagreements exceeding 5° were resolved by taking the
circular mean for the affected objects; otherwise, the final
orientation annotations were selected from a random sample

TABLE I. SUMMARY OF IMAGES AND ANNOTATIONS BY
DIFFICULTY LEVEL

Level No. of Images No. of Annotations
1-2 8 8
4 5 17
5 14 56

of the independent measurements, except where consensus
averaging was required as described.

For inference in the custom real-world dataset, segmentation
masks were generated using the Segment Anything Model
(SAM) [12]. The accuracy of these masks was validated against
the manual annotations, achieving a mean IoU of 0.95. This
strong agreement supported the use of SAM-generated masks
for subsequent stages in the pipeline.

III. METHODOLOGY

This work systematically evaluates planar orientation pre-
diction using three regression architectures, two integration
strategies, and four target encoding schemes. The methodology
extends trigonometric decomposition to address circular data
challenges and combines encoding scheme analysis with
shallow learning models. Each combination’s performance is
assessed on both a MetaGraspNet subset and a custom real-
world dataset.

A. Target Encoding Schemes

Four encoding configurations were designed, in which the
data are derived from ground truth angles to form the study:

o Base: Fundamental trigonometric components:
Ybase = [Sin(e)a COS(6>]
o Quadrant: Base + one-hot quadrant encoding (Q1-Q4):

Yquad = [sin(0),cos(0), 1g1, 192, 103, 104

o Polar: Base + radian displacement:
Ypolar = [sin(0), cos(6), Orad)

o Full: Comprehensive representation:

Yaun = [Sil’l(a), COS(G)’ ]-le ]-Q?, 1Q37 1Q47 erad]

These encodings represent target variables used to train
various shallow learning models, as outlined in Table II. The
selection of these models is motivated by specific technical
requirements of the orientation prediction task and practical
deployment constraints. Random Forest (RF) was chosen for
its native multi-output capability and robustness to noisy
features, particularly relevant given the variable quality of
geometric features extracted from segmentation masks. SVR
was selected for its strong generalisation via kernel methods,
enabling effective handling of non-linear relationships between
ResNet50 features and trigonometric targets; Multiple-Output
Support Vector Regression (M-SVR) extends this capability
to joint optimisation across all target variables. XGBoost
1.7 implementations were included due to their established
performance in regression tasks involving high-dimensional
feature spaces and their gradient boosting approach’s ability
to iteratively correct prediction errors, a property especially
valuable for circular data where small angular errors can
compound. The XGBoost 2.0 variant specifically addresses
multi-output limitations present in the earlier versions (1.7).
Deep learning approaches were deliberately excluded due to
the relatively modest dataset size (5,709 training samples),
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which favours shallow models that avoid overfitting, as well
as the need for rapid inference in robotic applications where
computational efficiency is paramount.

TABLE II. SHALLOW LEARNING MODELS TESTED

Model Description

RF Random Forest

SVR Support Vector Regression

M-SVR Multiple-Output Support Vector Regression
XGBoost 1.7 Standard XGBoost implementation
XGBoost 2.0  Multi-output enabled XGBoost variant

Along with the multiple target encoding schemes and
different model architectures, two proposed model integration
strategies were introduced. This refers to how each of the
models handles the target variables required to perform the
analysis of encoding schemes. The two proposed integration
strategies are as follows:

B. Branched integration strategy

This integration strategy uses multi-output models split into
branches which are trained in parallel, one predicting the sine
component and the other predicting the cosine component. In
each of these branches, the additional target variables required
for the encoding scheme analysis remain, meaning the only
change is that the branch simply does not receive its alternative
sin/cosine pair, but it does receive all other target variables
required for the encoding scheme testing. During testing and
subsequent inference, the predicted sine and cosine values are
then combined using the inverse tangent function (tan™1!) to
provide the predicted angle.

C. Vector integration strategy

The second proposed integration strategy leverages a vector-
based approach, however, depending on the model’s archi-
tecture, the meaning of this differs slightly. For tree-based
approaches, such as decision trees and RF, multiple outputs are
natively supported, allowing a single model to predict all target
variables directly, allowing for a joint relationship between
targets sharing their influence on the scorers, loss function and
predictions [13].

However, for algorithms lacking native multi-output support
(e.g., SVR or XGBoost 1.7), a wrapper-based framework is
required [13]. This wrapper fits one independent regressor
per target variable, however it differentiates itself from the
branched approaches by using shared hyperparameters tuned
globally across all targets. This allows for a more balanced
performance optimisation across all target variables through
the use of a custom scorer that can be changed but does not
alter individual model training objectives [14].

As noted previously, wrapper-based approaches face lim-
itations when applied to models lacking native multi-output
regression capabilities. To address this constraint and enable
comprehensive comparative analysis, two additional implemen-
tations were evaluated: XGBoost 2.0 [15] and a M-SVR [16].
These vector-based approaches introduce critical architectural
enhancements over standard wrapper methods. XGBoost 2.0
implements multi-output trees, where leaf nodes contain vector

outputs spanning all targets simultaneously. This enables
feature splits during tree construction to directly consider cross-
target relationships, a capability absent when isolated models
produced by Multi-Output Regressor wrappers. Concurrently,
M-SVR extends traditional SVR by jointly optimising all targets
through a unified e-insensitive loss function, eliminating the
hyperparameter compromises inherent in wrapper approaches.
These additional models, when used with this integration strat-
egy, should better enable implicit enforcement of trigonometric
relationships (e.g., sin? § 4 cos? § = 1) more akin to the use
of RF models.

D. Feature extraction

The pipeline (Figure 3) processes object segmentation masks
(provided in MetaGraspNet annotations) to extract screwdriver
patches. Each patch is placed on a white background, resized
with aspect ratio preserved, and padded to 224 x 224 pixels.
A ResNet50 CNN pre-trained on ImageNet, with classification
head removed and global average pooling applied, extracts
2048 dimensional feature vectors [17]. These features serve
as inputs to regression models trained on synthetic data from
MetaGraspNet subset. For testing on real-world data, the same
pipeline is applied using the custom dataset, with segmentation
provided by SAM [12].

( \
I:I Data (Input/Output/Target) l:l Feature Extraction Block

Target:
[sin, cos,
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Vector Integration

Segmented
Object
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Pred. Predicted
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Target: [cos
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Figure 3. Object orientation prediction pipeline.
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IV. RESULTS

To assess the predictive performance of the tested models,
integration strategies, and encoding approaches, the MAAE was
employed as the primary metric. This measure was computed
independently for each encoding method and dataset, ensuring a
granular evaluation of angular accuracy. Robustness was further
enhanced through the application of 5-fold cross validation
across all models and encoding scheme, providing a reliable
estimate of performance.

A comprehensive computational benchmarking analysis was
also conducted to evaluate inference speed. For each model,
inference was performed on identical image features, with each
test comprising 1000 repetitions per run and five aggregate
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runs to account for variability. To ensure fairness, the sequence
of model evaluation was randomised for each aggregate run,
and system memory was cleared between measurements to
minimise interference. All experiments were executed on a
Linux 6.8.0 system equipped with Python 3.8.3, an Intel Xeon
w7-3445 CPU (20 cores, 40 threads), and 62.3 GB of RAM.
This rigorous protocol facilitates a thorough and equitable
comparison of both predictive accuracy and computational
efficiency across all models and integration strategies.

The following results begin with the MAAE measurements
across the MetaGraspNet subset. The results compare different
integration strategies (vector vs branched encoding) and encod-
ing configurations (full target set vs reduced sets). All values
represent degrees of angular error, with lower values indicating
better performance. The initial results on the MetaGraspNet
subset are displayed in Table III.

TABLE III. MAAE FOR METAGRASPNET DATASET (DEGREES)

Model Base Quadrant Polar Full
XGBoost 1.7 (Vector) 5.15 5.15 5.15 5.15
XGBoost 1.7 (Branched) 5.15 5.15 5.15 5.15
XGBoost 2 (Vector) 4.92 5.01 546  5.17
M-SVR (Vector) 8.04 8.04 8.04 8.04
SVR (Vector) 5.01 5.12 5.01 5.01
SVR (Branched) 5.01 5.12 5.01 5.01
RF (Vector) 5.48 5.08 5.87  5.67
RF (Branched) 7.43 5.44 593 588

TABLE IV. MAAE RESULTS FOR REAL-WORLD DATASET

(DEGREES)
Model Base Quadrant Polar Full
XGBoost 1.7 (Vector) 9.61 8.15 8.96 9.61
XGBoost 1.7 (Branched)  9.61 11.66 9.15 11.14
XGBoost 2 (Vector) 17.09 13.91 7.18 10.46
M-SVR (Vector) 28.86 28.86 28.82 28.82
SVR (Vector) 23.13 23.54 23.14  28.03
SVR (Branched) 23.15 23.54 23.14 2328
RF (Vector) 14.81 14.49 11.84 17.43
RF (Branched) 16.45 11.62 1290 17.50

TABLE V. INFERENCE TIME PER IMAGE PATCH

(MILLISECONDS)
Model Type Base  Quadrant Polar Full
XGBoost 1.7 (Vector) 0.76 1.86 0.91 1.73
XGBoost 1.7 (Branched) 0.50 0.83 1.20 3.61
XGBoost 2 (Vector) 0.76 1.86 0.91 0.29
M-SVR (Vector) 17.76 17.78 17.80  17.76
SVR (Vector) 13.48 41.94 20.78  51.25
SVR (Branched) 13.55 70.23 27.68  75.49
RF (Vector) 59.27 56.50 5790 45.42
RF (Branched) 119.15 117.08 117.83  91.04

Table IV summarises model performance on the real-
world dataset using the same MAAE metric to enable direct
comparison with the MetaGraspNet results. In addition to
angular accuracy, Table V reports the inference time per

image (in milliseconds) for each model and condition. This
enables an explicit comparison of computational efficiency
across integration strategies and model types, with lower values
reflecting faster processing.

V. DISCUSSION | EVALUATION

While the MAAE metrics presented in Section IV form
the core of this discussion, it is essential to first address the
primary challenge that this work seeks to overcome: the issue
of boundary discontinuity. To thoroughly assess each method’s
performance, we conduct a granular analysis of the inference
data on the custom dataset, as visualised in Figure 4. Figure 4
displays the prediction error as a function of the ground truth
angle for each model and encoding configuration. Specifically,
the x-axis represents the ground truth angle of the object, while
the y-axis shows the signed angular error, calculated as the
shortest difference between the predicted and actual angles,
wrapped to the interval [—180°,180°]. Each point corresponds
to a single prediction, positioned horizontally by its ground
truth angle and vertically by the deviation from the true value.

A detailed inspection of these plots reveals substantial
differences in error distributions between models, which are not
always reflected in the aggregate MAAE values. For instance,
the M-SVR model exhibits pronounced and frequent error
spikes at the 0° and 359° boundaries, indicating a persistent
struggle with boundary discontinuity and a lack of robustness
in these critical regions. These errors are not isolated; the
M-SVR model demonstrates erratic behaviour across much of
the angular range, with large, abrupt deviations that suggest
poor generalisation and reliability. In contrast, XGBoost 1.7
(both vector and branched variants) stands out for its consistent
and stable error profile. Across nearly the entire angular range,
prediction errors remain tightly clustered around zero, with
only occasional moderate spikes, mostly at angular boundaries.
This stability is indicative of a model that not only achieves a
low mean error, as seen in Table V, but also avoids catastrophic
failures, making it more suitable for real-world deployment
where reliability is paramount.

XGBoost 2, while achieving competitive MAAE values in
some configurations, displays a more volatile error pattern.
Notably, it exhibits significant errors not only at the 0° and
359° boundaries but also around 180°, suggesting that its
generalisation may be compromised at multiple critical angles.
This behaviour underscores the importance of evaluating models
beyond mean metrics, as a low MAAE can mask underlying
instability. The SVR models, both vector and branched, provide
mixed results. While their errors are generally moderate, both
models are prone to sporadic, large prediction failures at various
angles, particularly near the boundaries and occasionally in the
mid-range. These large spikes indicate that, although SVR may
perform adequately on average, it is susceptible to unpredictable
outliers that could undermine its practical utility. Random
Forest models show moderate stability, with the vector variant
generally outperforming the branched version in terms of error
consistency. While occasional spikes are present, these are less
frequent and less severe than those observed in M-SVR or
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SVR, positioning Random Forest as a reasonable compromise
between stability and accuracy, something reflected by its
relatively low MAAE when paired with quadrant encoding and
a branched integration strategy as seen in Table V.

It is important to note that all models were trained exclusively
on a synthetic dataset which is inherently simpler and more
controlled than the real-world test set. As a result, the MAAE
values achieved using the synthetic MetaGraspNet subset
(Table III) are substantially lower across all models, reflecting
the training-domain familiarity. For example, XGBoost 1.7
achieves a MAAE of 5.15° using the synthetic data, compared
with 8.15-9.61° using the real-world dataset, while M-SVR and
SVR also show marked increases in error when transitioning to
real-world evaluation. This domain gap highlights the challenge
of generalising from synthetic to real data, and underscores
the value of robust error analysis using the real-world test set.

In addition to predictive accuracy, computational efficiency
was also evaluated. Table V quantifies inference times per image
patch, demonstrating XGBoost 1.7’s superior performance:
configurations predominantly achieve sub-2ms inference times
(one outlier). In contrast, M-SVR/SVR models exhibit 10-100x
slower performance (13.48-75.49ms), while RF demonstrates
the poorest efficiency, consistently exceeding 45ms and fre-
quently surpassing 100ms. This efficiency advantage positions
XGBoost 1.7 as optimal for applications requiring both rapid
inference and angular reliability.

Taken together, these results demonstrate that XGBoost 1.7
provides the most robust and reliable predictions across the
full angular range using real-world data, effectively managing
boundary discontinuities and avoiding large, erratic errors,
while also offering leading computational efficiency. In contrast,
models such as M-SVR and SVR are hindered by frequent
and severe outliers, particularly at critical boundaries, and
Random Forest occupies a middle ground, providing reasonable
stability but not matching the overall reliability or speed of
XGBoost 1.7. This comprehensive evaluation highlights the
necessity of considering both aggregate metrics and detailed
error distributions, as well as computational efficiency, when
selecting models for applications where consistent and timely
performance across all angles is essential.

A key focus of this work is the interplay between encoding
strategies, model architectures, and integration approaches.
Therefore, these results also reveal that model responsiveness
to encoding varies considerably:

e« XGBoost 1.7 demonstrates strong robustness across all
encodings, but achieves its best real-world performance with
quadrant encoding in the vector integration configuration,
yielding the lowest MAAE (8.15°). Notably, the addition
of quadrant or polar information generally improves perfor-
mance over the base (sin, cos) encoding, suggesting that
XGBoost 1.7 is able to leverage richer target representations
to better manage boundary effects and reduce systematic
errors. The full encoding does not consistently outperform
quadrant or polar, indicating that the full encoding may
introduce redundancy or noise for this architecture.
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Figure 4. Model prediction error vs ground truth angle on real-world
test set (missing data in 355° and 359° range).

o XGBoost 2.0 is more sensitive to the encoding choice,
achieving its best real-world MAAE (7.18°) with the polar
encoding. However, its error distribution is less stable, with
notable spikes at both boundary and mid-range angles,
suggesting that, while certain encodings can lower mean
error, they may not guarantee robust predictions.

¢ SVR and M-SVR models show limited benefit from more
complex encodings. Both models exhibit high MAAE and
frequent large errors regardless of encoding, indicating that
their architectures are less capable of exploiting additional
target information to improve generalisation, especially in
the presence of boundary discontinuities.

« Random Forest benefits moderately from quadrant encoding,
particularly in the branched configuration, but does not reach
the accuracy or stability of XGBoost models. Its performance
is more consistent than SVR/M-SVR but less robust to
encoding changes than XGBoost 1.7.

The choice between branched and vector integration strategies
also influences model performance:

o For XGBoost 1.7, the vector strategy paired with quadrant

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-289-0



ADVCOMP 2025 : The Nineteenth International Conference on Advanced Engineering Computing and Applications in Sciences

encoding is optimal, while the branched approach is less

effective, especially when combined with more complex

encodings.

« Random Forest shows a preference for the branched strategy
when used with quadrant encoding, achieving its lowest
MAAE (11.62°), but remains slower and less accurate than
XGBoost.

¢ SVR and M-SVR do not benefit significantly from either
integration strategy, with both approaches yielding high error
and erratic predictions.

In summary, these results demonstrate that XGBoost 1.7,
with vector integration and quadrant encoding, offers the best
trade-off between accuracy, robustness to boundary discon-
tinuities, and computational efficiency using real-world data.
While more complex encodings marginally improve mean error
for certain models, the quadrant encoding strikes an effective
balance between informativeness and generalisation. Models
such as M-SVR and SVR are hindered by frequent and severe
outliers and do not benefit meaningfully from richer encodings
or alternative integration strategies. Random Forest provides
moderate stability but cannot match the overall reliability or
speed of XGBoost 1.7. These findings underscore the need
to consider both aggregate metrics and error distributions,
alongside computational efficiency, when choosing models
for consistent, timely performance.

VI. CONCLUSION AND FUTURE WORK

This work systematically evaluates a range of shallow
regression models, integration strategies, and target encoding
schemes for the challenging task of planar orientation prediction
using both synthetic and real-world datasets. The results
demonstrate that among the tested configurations, XGBoost
1.7, when paired with the vector integration strategy and
quadrant encoding, consistently delivers the best trade-off
between predictive accuracy, robustness to angular boundary
discontinuities, and computational efficiency on real-world
data. While more complex encodings, such as the full or polar
representations, can marginally improve mean error for some
models, the quadrant encoding achieves a superior balance be-
tween informativeness and generalisation, avoiding the pitfalls
of overfitting or redundancy. Building on the insights gained
from this study, future work will prioritise scaling to larger and
more diverse datasets, extending evaluation to complex object
categories, and exploring deep learning and hybrid approaches
to benchmark gains over shallow architectures. Finally, efforts
will focus on full pipeline integration and real-world robotic
deployment, enabling end-to-end assessment in closed-loop
manipulation scenarios.
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Abstract—The PISALE ALE-AMR hydrocode suite is an
advanced computational tool that combines the Arbitrary
Lagrangian-Eulerian (ALE) method with Adaptive Mesh Re-
finement (AMR) to simulate complex multi-physics problems
involving substantial material deformation. The suite currently
includes physics modules for heat conduction and radiation
transport, which are handled by a finite element diffusion solver
operating on a structured, adaptive mesh infrastructure provided
by the SAMRALI library. This paper investigates the feasibility of
extending this framework to simulate fluid flow in porous media
as described by Darcy’s law, a critical component for subsurface
applications like geothermal energy extraction and hydrogeology.
We analyze the mathematical parallels between diffusion and
Darcy flow, assess the suitability of the existing solver, and
consider the integration of the more general MFEM finite element
library. The primary objective is to evaluate the potential of
the ALE-AMR methodology for Darcy flow simulations and to
outline the necessary modifications and implementation steps,
including addressing challenges related to integrating different
AMR and grid formulations.

Keywords-ALE-AMR; Darcy flow; geothermal simulation; porous me-
dia; finite element method; MFEM; hydrocode; computational fluid dy-
namics.

I. INTRODUCTION

The PISALE ALE-AMR hydrocode suite represents an
advanced computational tool that combines the Arbitrary
Lagrangian-Eulerian (ALE) method with Adaptive Mesh Re-
finement (AMR) [1]. This combination enables the simulation
of physical phenomena characterized by substantial material
deformation, via the Lagrangian approach, while simultane-
ously addressing challenges associated with mesh distortion
and optimizing computational efficiency through localized
mesh refinement, which are key features of AMR method-
ologies. Initially published as ALE-AMR, the code is more
recently referred to as PISALE (Pacific Island Structured-
AMR with ALE), with various specialized versions developed
to model a diverse range of applications [2].

Currently, the hydrocode suite incorporates physics mod-
ules dedicated to simulating heat conduction and radiation

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory
Livermore, CA, USA
email: fisher47 @llnl.gov

Livermore, CA, USA
email: kolevl @lInl.gov

transport, both of which are modeled using a finite element
diffusion solver [3]. This solver is specifically engineered to
operate on the dynamically adapting mesh structures generated
by the AMR technique. The foundational support for adaptive
mesh refinement within the hydrocode is provided by the
SAMRAI (Structured AMR Application Infrastructure) library.
Given its established infrastructure for managing complex
mesh geometries and integrating various physics modules, we
discuss here the potential for further expansion to simulate
additional physical phenomena, including Darcy flow in sub-
surface applications.

Darcy’s law governs the movement of fluid through a
given material, and for this application, we consider flow
through a porous medium [4]. This law states that the rate at
which a fluid flows through a permeable material is directly
proportional to the pressure gradient driving the flow and the
intrinsic permeability of the material, while being inversely
proportional to the viscosity of the fluid. In hydrogeology, it
serves as a basis for analyzing groundwater flow; in petroleum
engineering, it is used for multiphase flow modeling (e.g., the
behavior of oil and gas reservoirs); and in geothermal energy,
it is used for understanding the transport of both heat and
fluids within the Earth’s subsurface [5].

This paper presents an investigation into the feasibility of
using the existing ALE-AMR methodology, in conjunction
with its current finite element diffusion solver and/or the
MFEM solver, for simulating fluid flow in porous media
governed by Darcy’s law. A detailed analysis examines the
mathematical similarities and differences between diffusion
and Darcy flow, assess the suitability of the current solver
and/or replacing it with a more general finite element package,
MFEM, for modeling Darcy flow. The primary objective is to
evaluate the potential of ALE-AMR for Darcy flow simulations
and outline the requisite steps for implementation.

The MFEM solver is a general purpose high-performance,
open-source finite element library developed for solving partial
differential equations. It provides a flexible and scalable frame-
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work for discretizing and solving a wide range of problems.
MFEM'’s capabilities include support for various finite element
formulations, efficient linear and nonlinear solvers, and ad-
vanced mesh management techniques. By leveraging MFEM’s
strengths, this investigation aims to explore its potential as
a viable alternative or complement to the existing diffusion
solver for Darcy flow simulations within the ALE-AMR
framework. One problem with direct application of MFEM
is that it has its own AMR and grid formulation which needs
adaptation for PISALE. We discuss solutions to this obstacle
later in the paper.

II. THE ALE-AMR HYDROCODE AND ITS FINITE
ELEMENT DIFFUSION SOLVER

The ALE method, as implemented in ALE-AMR, provides
flexibility in handling various geometries and scenarios in-
volving large-scale deformations and multiple objects within
a domain. The mathematics follows a Lagrangian description,
where the mesh follows the material, and an optional and/or
modified remap to an Eulerian description, where the mesh
appears via the remap to remain fixed in space. The AMR
capabilities integrated within ALE-AMR serve to enhance the
efficiency of computations by selectively refining the mesh in
regions identified as requiring higher accuracy, such as areas
with sharp gradients or complex flow patterns. This localized
refinement ensures that computational resources are focused
where they are most needed, without incurring the overall cost
of a uniformly fine mesh. This ALE-AMR framework, which
was developed initially for pure gas dynamics simulations, has
matured into a comprehensive multiphysics framework capable
of addressing a broad spectrum of applications, including
phenomena in high-energy-density physics, material impacts,
and laser target modeling [2]. Some very preliminary results
on the application of PISALE to groundwater flow are given
elsewhere [6].

The physics modules responsible for simulating heat con-
duction and radiation transport within ALE-AMR are enabled
by a finite element diffusion solver specifically engineered to
function on the composite meshes generated by the AMR. This
solver employs a nodal-based approach, where the primary
variables of interest are defined at the nodes of the computa-
tional mesh. A critical feature of this solver is its utilization
of transition elements to effectively manage the interfaces
that arise between regions of the mesh with different levels
of refinement, a direct consequence of the AMR technique.
These specialized elements are designed to ensure the conti-
nuity of the solution across these coarse-fine boundaries by
appropriately handling the hanging nodes, edges, and faces
that are characteristic of such interfaces. For the necessary
3:1 refinement ratio (or multiples, thereof) employed by the
ALE-AMR framework for consistency, a variety of transition
element types are used, depending on which of the element’s
sides are subject to refinement.

The finite element method necessitates the use of numer-
ical integration techniques, which are implemented through

quadrature rules within the solver. For the transition ele-
ments, compound Gauss-Legendre quadrature[3] is employed
to maintain a level of integration accuracy comparable to that
achieved on standard elements. Additionally, mass lumping
quadrature rules, which strategically place integration points
at the element nodes, are utilized to produce diagonal mass
matrices, a property that can be advantageous for certain time-
stepping schemes. To overcome the challenge of undefined
derivatives at the transition faces, which complicates the com-
putation of the stiffness matrix, “blurred" quadrature rules are
implemented. These rules work by averaging the evaluations
of derivatives taken from different regions within the element,
thereby ensuring the accurate assembly of the stiffness matrix.

The discretization of the diffusion equation is achieved
using the standard Galerkin approach, a method where the
equation is multiplied by a test function, integrated over the
computational domain, and then subjected to integration by
parts to derive the weak form. Both the solution being sought
and the test functions used in the formulation are approximated
using a basis set composed of shape functions defined on both
standard and transition elements. This process culminates in
a system of linear algebraic equations, typically represented
in matrix form as Au = f, where A is the system/stiffness
matrix, u is the vector containing the unknown nodal values
of the solution, and f is the vector representing the source
terms. This linear system is then solved using the HYPRE
GMRES solver, an iterative algorithm particularly well-suited
for handling large, sparse systems of equations, often enhanced
by the use of a preconditioner to accelerate the convergence
of the solution. The current finite element framework within
PISALE/ALE-AMR is based on first-order H1 quadrilateral
elements in two dimensions and hexahedral elements are
required in three dimensions. These element types are recog-
nized as being well-suited for the diffusion equation solvers
that underpin the heat conduction and radiation diffusion
modules.

The PISALE diffusion solver serves as the foundation
for modeling heat conduction through the dynamic diffusion
equation, which accounts for the temporal evolution of tem-
perature and the flow of heat within the material. This equation
incorporates parameters such as specific heat, thermal conduc-
tivity, and the absorptivity of the medium. Similarly, radiation
transport can be modeled using the diffusion approximation, a
simplification of the more complex radiative transfer equations
that is applicable under certain conditions, such as in optically
thick media. This approach involves formulating equations for
both the energy density of radiation and the temperature of the
material, with coupling terms that describe the absorption and
emission of radiation. A significant hurdle in integrating these
physics modules with the ALE-AMR framework arises from
the inherent difference in how physical variables like temper-
ature and energy are represented within the code. Specifically,
the finite element method uses nodal representations, while
PISALE uses cell-centered values for certain variables. To
bridge this gap, we employ projection integrals as a means
of mapping variables between the nodes and the cell centers,
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a technique that ensures the conservation of energy during
the transfer process. This mapping involves calculating the
differences in cell temperatures after the hydrodynamic step,
using the specific heat capacity to determine the corresponding
energy and specific heat differences at the nodes, updating
the nodal temperatures based on these differences, and then
transferring these changes back to the cells to update their
internal energy.

III. DARCY’S LAW AND FLOW IN POROUS MEDIA

In its most fundamental form, Darcy’s law describes the
rate of fluid flow (Q) through a porous medium as being
directly proportional to the cross-sectional area (A) of the
flow path and the pressure difference (AP) over a given
length (L), and inversely proportional to the viscosity (u)
of the fluid. Mathematically, this relationship is expressed as
Q = —(kA/u)(AP/L), where k represents the permeability
of the porous medium. The negative sign in the equation
signifies that the direction of flow is from regions of higher
pressure to regions of lower pressure. Permeability (k) is an
intrinsic property of the porous medium that quantifies its
capacity to transmit fluids. This property is influenced by the
grain size, shape, and interconnectedness of the pores within
the material. Permeability can be uniform in all directions, in
which case it is termed isotropic, or it can vary with direction,
in which case it is termed anisotropic and is mathematically
represented as a tensor. The differential form of Darcy’s law
relates the Darcy velocity (v), which is the volumetric flow
rate per unit cross-sectional area, to the gradient of the pressure
(Vp) and is given by v = —(k /) Vp. The ratio k/u multiplied
by the specific weight (pg) is often referred to as the hydraulic
conductivity (K), particularly when considering the flow of a
specific fluid with a known viscosity. Hydraulic conductivity
can also incorporate the effect of gravity when the flow is
described in terms of hydraulic head (h = p/pg + 2), leading
to the form v = —KVh [4].

For a steady-state flow of an incompressible fluid through a
porous medium, the principle of mass conservation, expressed
by the continuity equation, dictates that the divergence of the
velocity field must be zero (V - v = 0). By combining this
with the differential form of Darcy’s law (v = —(k/u)Vp), we
arrive at the governing equation for the pressure distribution
within the medium: V - (—(k/u)Vp) = 0 when there is no
source/sink to the system. In scenarios where the permeability
(k) and the fluid viscosity (u) are spatially uniform, this
equation simplifies to Laplace’s equation: V2p = 0. However,
in heterogeneous media where these properties vary from one
point to another, the equation retains its more general elliptic
partial differential form [7]. This mathematical similarity in
form between the governing equation for pressure in Darcy
flow and the steady-state diffusion equation (V- (DVu) = 0),
where D corresponds to k/u and u to p, is a significant factor
in considering the potential for adapting the existing diffusion
solver.

Simulating Darcy flow typically involves the application
of specific boundary conditions that define the state of the

flow at the edges of the computational domain. These com-
monly include: (i) Prescribed Pressure (Dirichlet boundary
condition), where the pressure is set to a known value on
certain boundaries, such as at the interface with a large
fluid reservoir; (ii) Prescribed Flow Rate (Neumann boundary
condition), where the rate at which fluid enters or leaves
the porous medium across a boundary is specified such as
no-flux boundary representing impermeable conditions; (iii)
and Mixed Boundary Conditions, which involve applying
different types of conditions on different segments of the
domain’s boundary. These are often used to model injection or
production from wells. Well injection/extraction are typically
dealt as source/sink conditions (non-zero RHS in the mass
conservation equation). The ALE-AMR framework would
need to be capable of implementing these types of boundary
conditions, which might differ from those typically used in
simulations of heat conduction and radiation transport.

One important point to note about the ALE-AMR frame-
work however is the fact that because of the AMR refinement
levels, one can often make the computational domain so large
that the boundary conditions play little role in determining
the early time behavior of the system. This is particularly
beneficial for field-site applications since the modelers often
make the domain large enough to minimize the effect of
uncertain boundary conditions estimated in the field using
geophysics or sparse field data sets. One can wrap the problem
in a largely non-participatory airmesh for certain dynamical
situations and effectively remove the boundary effects for the
problem at hand.

Darcy’s law and the associated governing equations are used
extensively in modeling a wide variety of phenomena. These
include the flow of groundwater in aquifers, encompassing
scenarios such as flow towards extraction wells for freshwater
supply, the regional movement of groundwater for contaminant
remediation, and the interaction between groundwater and
surface water bodies for flooding and drought risk mitigation.
Notably, ALE methods have been successfully applied to sim-
ulate groundwater flow in situations involving free surfaces,
which are characterized by moving boundaries [8]. In the
field of petroleum engineering, Darcy’s law is fundamental
for simulating the flow of hydrocarbons (oil and gas) and
water within subsurface reservoirs, enabling the prediction of
production rates and the design of effective recovery strate-
gies. The extraction of geothermal energy from the Earth’s
internal heat relies on the flow of fluids through porous rock
formations, a process that can be modeled using Darcy’s law,
often in conjunction with equations governing heat transfer.
Beyond these primary applications, Darcy’s law is also utilized
in modeling flow through various types of filters, membranes,
and porous electrodes in devices like fuel cells.

While Darcy’s law is a powerful tool, it is predicated
on certain assumptions that limit its applicability to specific
flow regimes and porous media characteristics. A fundamental
assumption is that the flow is laminar, a condition typically met
at low flow velocities and within media having small pore
sizes, resulting in low Reynolds numbers (generally below

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-289-0

10



ADVCOMP 2025 : The Nineteenth International Conference on Advanced Engineering Computing and Applications in Sciences

1 to 10). At higher velocities, inertial forces become non-
negligible, and the flow transitions to turbulence, a regime
where Darcy’s law in its basic form is no longer accurate.
In such cases, modifications like the Forchheimer equation,
which incorporates a term proportional to the square of the
velocity, are employed to account for these inertial effects.
Furthermore, Darcy’s law typically assumes a homogeneous
and isotropic porous medium, meaning that the properties of
the medium (like permeability) are uniform throughout and
are the same in all directions. In reality, many geological for-
mations and engineered materials exhibit heterogeneity, where
properties vary spatially, and anisotropy, where permeability
differs depending on the direction of flow. While the tensorial
form of Darcy’s law can accommodate anisotropy, significant
heterogeneity might necessitate finer spatial discretization with
more advanced modeling techniques. In very low permeability
media under extremely small pressure gradients, deviations
from the linear relationship described by Darcy’s law have
been observed, a phenomenon known as pre-Darcy flow.
This behavior is thought to be due to factors such as the
presence of immobile fluid layers at the pore walls. Lastly,
the basic formulation of Darcy’s law is for single-phase flow,
where only one fluid is present in the porous medium. For
scenarios involving multiple immiscible fluids (like oil and
water in a reservoir), generalized forms of Darcy’s law are
used, which introduce the concept of relative permeabilities
for each fluid phase. The dependence of fluid/rock density and
permeability on the temperature, pressure, and displacement
further complicate the modeling effort. We first consider what
is involved in adapting the ALE-AMR code for Darcy flow
based on its current diffusion solver for simulating laminar,
single-phase flow in porous media. Modeling more complex
flow regimes or multiphase scenarios would require additional
developments.

IV. MATHEMATICAL PARALLELS AND DIVERGENCES:
DIFFUSION VS. DARCY FLOW

The general form of the diffusion equation is given by
du/0t = V - (DVu) + S, where u represents the quantity
undergoing diffusion (such as temperature or concentration),
D is the diffusion coefficient (e.g., thermal diffusivity or mass
diffusivity), and S denotes any sources or sinks of the quantity
u. In a steady-state scenario, where the conditions do not
change with time, the time derivative becomes zero, resulting
in the equation V - (DVu) + S = 0. If, in addition, there are
no sources or sinks within the domain, the equation further
simplifies to V - (DVu) = 0. In the special case where the
diffusion coefficient D is also constant throughout the domain,
the equation reduces to Laplace’s equation, VZu = 0. Within
the ALE-AMR hydrocode, for the simulation of heat conduc-
tion, u corresponds to the temperature (T), and D is related
to the thermal conductivity of the material. The source term
S in this context can represent the generation or absorption
of heat. For the modeling of radiation transport using the
diffusion approximation, the equations involve the radiation
energy density (E'r) and the material temperature (T), with the

“diffusion coefficient” being a function of radiation-specific
properties such as opacities and the speed of light. Thus, the
diffusion equation fundamentally describes the transport of a
scalar quantity driven by its own spatial gradient.

As previously discussed, the steady-state flow of an in-
compressible fluid in a heterogeneous porous medium under
Darcy’s law is governed by the equation V- (—(k/1)Vp) = 0,
where p is the pressure, k is the permeability tensor of the
medium, and p is the viscosity of the fluid.

Despite their different physical contexts, both the steady-
state diffusion equation and the governing equation for Darcy
flow with homogeneous medium share significant mathe-
matical similarities. First, they are both second-order partial
differential equations of the elliptic type. This classification
implies that the solution at any given point within the domain
is influenced by the conditions imposed at all the boundaries of
the domain. Second, both equations describe a flux—be it heat
flux or radiation flux in the case of diffusion, or Darcy velocity
in the case of Darcy flow—that is directly proportional to the
gradient of a scalar potential. For diffusion, this potential is
temperature or radiation energy density, while for Darcy flow,
it is pressure or hydraulic head. The constant of proportionality
is a transport property, which is the diffusion coefficient in the
diffusion equation and the permeability (divided by viscosity)
in Darcy’s law. Third, both types of equations are amenable to
solution using similar numerical techniques, most notably the
finite element method. This method involves discretizing the
continuous domain into a mesh of smaller elements and then
approximating the solution within each element using a set of
basis functions. This suggests that the numerical methodolo-
gies already in place within the ALE-AMR diffusion solver
could be adapted to address problems involving Darcy flow.

However, there are also key differences between these two
types of physical processes and their mathematical represen-
tations. A primary divergence lies in the nature of the primary
variable and the desired output. The diffusion solver in ALE-
AMR is designed to solve for a scalar quantity, such as
temperature or energy, which is also the main result of the
simulation. In contrast, while the governing equation for Darcy
flow is often solved for pressure, which is a scalar, the quantity
of principal interest is frequently the Darcy velocity, which is a
vector quantity representing the rate and direction of fluid flow
[9]. To obtain this velocity, Darcy’s law itself must be applied
to the computed pressure gradient, either as a post-processing
step or through a different formulation. Another significant
difference pertains to the physical properties involved. The
diffusion equation utilizes properties like thermal conductivity
or radiation opacities, which are typically scalar quantities,
although they can exhibit anisotropic behavior in some mate-
rials. Darcy flow, however, is characterized by permeability,
which in anisotropic porous media is inherently a tensor,
reflecting the fact that fluid flow can be more or less restricted
depending on the direction. Another more complicated issue
is spatial variability. One may need to discretize the domain
with finer resolution, for example, the number of the cells with
different permeability in the domain can be 100 x 100 x 100
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or 1000 x 1000 x 1000 for 3D. In many cases, modelers assign
only horizontal and vertical permeability in a cell instead
of full tensor values. The full tensor is typically needed for
coarse-scale discretization to simulate directional flow. With
finer discretization, it can handle directional flow with small-
scale horizontal/vertical permeability. The ALE-AMR solver
would need to be capable of handling such tensorial properties
for permeability. Additionally, the viscosity () of the fluid is a
critical parameter in Darcy’s law, whereas it does not explicitly
appear in the standard heat or radiation diffusion equations.
While both types of equations can include source terms, their
physical interpretations differ. Sources in diffusion problems
represent the generation or absorption of the diffusing quantity
(heat or energy), whereas in Darcy flow, sources typically
correspond to the injection or extraction of fluid from the
porous medium. Finally, the boundary conditions commonly
encountered in Darcy flow simulations, such as prescribed
flow rates or impermeable boundaries, might not have direct
analogs in heat conduction or radiation transport problems,
necessitating the implementation of new types of boundary
conditions within the ALE-AMR framework.

V. ADAPTABILITY OF THE FINITE ELEMENT DIFFUSION
SOLVER FOR DARCY FLOW

The current finite element diffusion solver within ALE-
AMR employs a standard Galerkin method using first-order
HI1 elements. This choice of numerical method and element
type is also prevalent in the solution of Darcy’s equation,
particularly when the primary variable being solved for is
pressure. The solver’s inherent capability to manage complex
meshes arising from AMR, including the use of transition ele-
ments and specialized quadrature rules, presents a considerable
advantage for potentially simulating fluid flow in porous media
that exhibit geometric complexity or heterogeneity requiring
localized mesh refinement. Furthermore, the utilization of an
implicit solver (GMRES with a preconditioner) within the
ALE-AMR framework suggests its suitability for handling
elliptic partial differential equations, such as the steady-state
form of the Darcy flow equation.

However, several potential challenges need to be addressed
to adapt the existing diffusion solver for Darcy flow simu-
lations. The solver would need to be modified to correctly
interpret the "diffusion coefficient" in the governing equation
as the permeability tensor of the porous medium divided by
the viscosity of the fluid (k/u). This adaptation would likely
involve changes to the process of assembling the element
stiffness matrix, particularly if the permeability is anisotropic,
requiring the solver to handle tensor properties. The current
diffusion solver is designed to output a scalar field (temper-
ature or energy). For Darcy flow, the Darcy velocity vector
is a key quantity that needs to be determined. This could be
achieved through a post-processing step, where the gradient
of the computed pressure field is calculated at the nodes or
element centers, and then Darcy’s law is applied to derive
the velocity [9]. Alternatively, more significant modifications
could involve exploring the implementation of mixed finite

element methods, which are formulated to solve for both pres-
sure and velocity simultaneously, potentially offering a more
direct and accurate way to obtain the velocity field [7]. The
ALE-AMR framework would also require the implementation
of boundary conditions that are specific to Darcy flow, such as
the ability to prescribe flow rates at boundaries, which would
necessitate adding new functionalities to both the solver and
the overall framework. Finally, the way in which the pressure
and velocity fields interact with the ALE mesh movement and
remapping processes would need to be carefully designed and
implemented, drawing upon the existing strategies used for
coupling temperature and energy with the hydrodynamics.

VI. POTENTIAL MODIFICATIONS AND ADDITIONS TO THE
ALE-AMR FRAMEWORK

To enable the simulation of Darcy flow within the ALE-
AMR hydrocode, several modifications and additions to the
existing framework would be necessary. A dedicated physics
module for Darcy flow should be developed to encapsulate
the governing equations and the specific parameters associated
with fluid flow in porous media [7]. This module would
be responsible for handling the input of spatially varying
permeability (which could be a scalar or a tensor field), the
viscosity of the fluid, and potentially porosity if more complex
scenarios such as transient or compressible flow are to be
considered. It would also manage the definition of source and
sink terms that represent the injection or extraction of fluid
from the porous medium.

The existing finite element solver would require several
adaptations. Firstly, it needs to be capable of accepting the
permeability tensor (divided by the fluid viscosity) as the trans-
port property in the governing equation, instead of the thermal
conductivity or radiation-related parameters it currently uses.
This would likely necessitate modifications to the process by
which the element stiffness matrix is assembled. Secondly, the
solver should be configured to solve for pressure (or hydraulic
head) as the primary unknown variable at the mesh nodes.
Thirdly, a post-processing function should be incorporated to
calculate the Darcy velocity vector at each node or within each
element, based on the computed pressure gradient and Darcy’s
law. For potential future extensions to model transient Darcy
flow, which would be relevant for applications such as ground-
water flow with time-varying boundary conditions or sources,
e.g., extraction in wells, the solver would need to include a
time-stepping scheme. Furthermore, consideration should be
given to exploring the implementation of mixed finite element
methods, which employ different basis functions for pressure
and velocity and solve for both simultaneously. This approach
can often yield more accurate velocity fields directly, which is
particularly important for problems where flow is coupled with
transport processes. Various finite element methods, including
continuous Galerkin (CG), discontinuous Galerkin (DG), weak
Galerkin (WG), and mixed finite element methods (MFEM),
are used for Darcy flow simulations, and the choice would
depend on the desired accuracy and computational cost.
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The ALE-AMR framework must also be extended to support
boundary conditions that are specific to fluid flow in porous
media. This involves implementing: the ability to prescribe
flow rates at selected boundaries; the option to define im-
permeable boundaries where no flow occurs; and ensuring
that these new boundary condition types can be applied and
handled correctly by the finite element solver, while also being
compatible with the ALE and AMR features of the code.

The mechanisms for mapping data between the nodal finite
element representation and the cell-centered representation
used in the ALE hydrodynamics need to be adapted to handle
pressure and velocity fields. This is crucial for scenarios where
Darcy flow might be coupled with other physical processes
already modeled in ALE-AMR, such as thermal effects in
geothermal reservoirs, or where the flow interacts with the
moving mesh in ALE simulations. For example, changes in
fluid pressure might induce deformation of the porous medium
that in turn affect the rock permeability, or the movement of
the computational mesh could affect the flow domain.

Finally, a rigorous program of verification and validation
is essential. This includes developing a comprehensive suite
of unit tests to ensure the correct implementation of the
Darcy flow physics module and the modifications made to the
finite element solver. Additionally, the adapted code should be
thoroughly validated against analytical solutions for standard
Darcy flow problems, such as flow in simple geometries or
radial flow towards a well, and against established benchmark
problems reported in the literature to confirm the accuracy and
reliability of the new simulation capabilities.

VII. SUITABILITY ASSESSMENT AND RECOMMENDATIONS

To simulate Darcy flow within the framework of the ALE-
AMR hydrocode, a series of key steps would be necessary.
The most critical of these would be the development of a
dedicated Darcy flow physics module. This module would be
responsible for managing the input of parameters specific to
porous media flow, such as permeability and fluid viscosity,
as well as defining the source and sink terms relevant to fluid
flow. The existing finite element solver would need to be
modified to correctly interpret these parameters, to solve for
pressure (or hydraulic head) as the primary variable, and to
provide the Darcy velocity as a key output, either directly
or through a post-processing calculation. Furthermore, the
solver would need to be enhanced to handle permeability
as a tensor to accurately model anisotropic porous media.
The implementation of boundary conditions specific to fluid
flow in porous media, such as prescribed flow rates and
impermeable boundaries, would also be a necessary addition
to the framework. Careful design and implementation of the
coupling mechanisms between the new Darcy flow module and
the existing ALE hydrodynamics would be crucial, drawing
upon the experience gained from coupling heat conduction and
radiation transport. Finally, a thorough and rigorous program
of verification and validation, using both (semi-)analytical
solutions and established benchmark problems from the liter-

ature, would be essential to ensure the accuracy and reliability
of the newly implemented Darcy flow simulation capabilities.

In summary, we believe that extending the PISALE ALE-
AMR framework to simulate Darcy flow is not only feasible
but also holds significant promise for advancing subsurface
models for geothermal applications. As high-performance
computing increasingly relies on GPU architectures for ac-
celeration, adapting a proven, fully parallel AMR-capable hy-
drocode like PISALE is a critical step toward next-generation
modeling. We give details here of a direct path to building sim-
ulation tools that can exploit modern HPC architectures and
software, and thus enable discovery of critical new important
details in geothermal reservoir modeling.
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TABLE 1. COMPARISON OF DIFFUSION AND DARCY FLOW
EQUATIONS

Feature Diffusion Equation Darcy Flow Equation

Governing Equation
Primary Unknown
Key Properties

Ou/Ot =V - (DVu)

Temperature (T), Energy (ERr)
Conductivity, Diffusivity, Opacities

+ S (General)

V- (—(k/u)Vp) = S (Steady-State)
Pressure (p), Hydraulic Head (h)
Permeability (k), Viscosity (u)

Applications in ALE-AMR Heat Conduction, Radiation Transport ~Groundwater, Petroleum, Geothermal

TABLE II. SUMMARY OF REQUIRED MODIFICATIONS FOR
DARCY FLOW IMPLEMENTATION

Category Specific Action Purpose Potential Challenges
Required

New Physics Module Develop a dedicated Organize parameters Seamless integration with
Darcy flow module. (permeability, viscosity) ALE-AMR architecture.

and equations.

Solver Adaptations Modify solver for per- Accurately represent Handling tensor properties;
meability (tensor) and Darcy’s law; provide ensuring velocity accuracy;
viscosity; solve for pres- velocity output; handle significant code changes for
sure; post-process for anisotropy and transient mixed FEM.
velocity. Consider mixed flow.

Boundary Conditions

Data Mapping

Verification

FEM.

Implement  prescribed
flow rate and
impermeable
boundaries.

Define pressure/velocity

interaction with ALE
hydrodynamics and
evolving media
properties.

Develop unit tests and
benchmark  problems.
Validate against
analytical solutions.

Model physical conditions
at domain edges; ensure

compatibility with
ALE/AMR.

Enable  coupling  with
other physics (thermal,
structural); ensure

consistent data transfer.

Ensure correctness and ac-
curacy of the new simula-
tion capabilities.

Correctly imposing condi-
tions on AMR meshes with
hanging nodes.

Designing robust and con-
servative mapping strate-
gies.

Identifying appropriate vali-
dation cases and benchmark
problems.
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Abstract—The paper reports on efforts to significantly increase
our understanding of isochoric heating of matter using laser-
produced proton beams, and the associated High Energy Density
(HED) and Warm Dense Matter (WDM) regimes generated. This
will benefit research fields such as planetary science, fusion en-
ergy, plasma physics, long-term battery storage, qubit synthesis,
and material science. We discuss our experiments that irradiated
Si targets with proton beams generated by the 20 TW-laser at the
SLAC MEC end-station, Linac Coherent Light Source (LCLS),
SLAC National Accelerator Laboratory. The HED/WDM states
are probed using the 50 fs hard X-rays using the fundamental
undulator harmonic of LCLS. We compare our results from
the phase contrast X-ray imaging, which shows the generation
of compression waves that produces rear surface spallation, to
modeling results from the 3D multi-physics multi-material code,
PISALE, that combines Arbitrary Lagrangian-Eulerian (ALE)
hydrodynamics with Adaptive Mesh Refinement (AMR). This
comparison required modifications to several physics models in
the PISALE (Pacific Island Structured-AMR with ALE) code.

Keywords-Adaptive Mesh Refinement; Computational Fluid Dynamics;
Arbitrary Lagrangian Eulerian Methods; High Performance Computing;
isochoric heating; Phase Contrast Microscopy; X-ray Diffraction; X-ray
Free Electron Lasers.

I. INTRODUCTION

Increasing our understanding of isochoric (constant volume)
heating of matter and the associated High Energy Density
(HED) and Warm Dense Matter (WDM) [1][2][3] generated
regimes using laser-produced proton beams [4][5][6] will
benefit research in many fields, such as planetary science

Stanford University
Menlo Park, CA USA
email: egaltier@slac.stanford.edu

Stanford University
Menlo Park, CA USA
email: glenzer@slac.stanford.edu

[7], fusion energy [8][9][10][11][12][13][14], plasma physics
[15][16][17][18], long-term battery storage, qubit synthesis
[19], and material science [20]. For example, it will enhance
our understanding of WDM properties of iron and silica under
conditions encountered in planetary interiors and diagnostic
components in fusion devices exposed to high fluxes of
energetic plasma ions. The work is also relevant to long-term
battery storage using Si. Short-pulse laser-produced ion beams
can create chains of closely coupled qubits based on "color
centers" in diamond and other material [19].

We present results of experiments that irradiated Si targets,
at near constant density to eV temperatures, with proton beams
generated by the 20 TW-laser at the Matter in Extreme Con-
ditions (MEC) end-station at the Linac Coherent Light Source
(LCLS) located at the SLAC National Accelerator Laboratory.
This short-lived high-temperature, high-density state is probed
using the 50 fs hard X-rays using the fundamental undulator
harmonic of LCLS. The results of the phase-contrast X-ray
imaging indicate ion energy deposition inside the 20 um thick
Si target, and the subsequent evolution reveals the generation
of compression waves that reflect off the rear surface resulting
in intense tensile stress and spallation.

In this paper, we also discuss the development and use
of the PISALE code to model our experiments. The 3D
multi-physics multi-material code, PISALE, combines Arbi-
trary Lagrangian-Eulerian (ALE) hydrodynamics with Adap-
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tive Mesh Refinement (AMR). The PISALE (Pacific Island
Structured-AMR with ALE) code has physics models that
include laser/ion deposition, radiation hydrodynamics, thermal
diffusion, anisotropic material strength with material time
history, advanced models for fragmentation, and surface ten-
sion models. The PISALE code has an ion beam deposition
package that has been used to model Li ions. In some earlier
papers (e.g., [21]), the PISALE code is called ALE-AMR as
it was one of the first codes to combine those two methods.

Modeling new experimental configurations generally re-
quires modifications to the code in addition to determining
new parameters for the various models that are used in the
simulations. One advantage of PISALE over some codes used
to model US Depsrtment of Energy (DOE) funded experi-
ments, is that graduate students and postdocs can modify the
source for a particular experiment [22].

In section II, we provide a brief background of the PISALE
code and the equations that are solved. In section III, we
discuss improvements to the code that are need to model ion
beam experiments with a range of ion energies. In section
IV, we provide details of our experiment using laser-produced
protons to heat a Si target. In section V, we discuss PISALE
simulations of our experiment. In section VI, we provide
conclusions and discuss future work.

II. PISALE CODE BACKGROUND

PISALE operates on top of the scalable Structured-
AMR Application Infrastructure (SAMRAI) library [23]. The
PISALE code contains a general purpose PDE solver that uses
a staggered-grid, Lagrangian formulation, written for coupled
plasma/fluids with position and velocity being nodal variables
and density, internal energy, temperature, pressure, strain, and
stress being zonal (cell centered) variables. These plasma/fluid
equations in a Lagrangian formulation (in vector and indicial
notation i, j, k = 1,2, 3) are:

Dp =

— = —pV-U=pU;; 1
O pV pUs, ey
DU 1 1

7Dt = ;V O = ;o—ij,j (2)
De - 1 . :

D - -Vs:eé—PV = ;V (si5€i5) — PV (3)

where % = % + U - V is the substantial derivative, p is the

density, U= (u,v,w) is the material velocity, ¢ is time, o is
the total stress tensor, P is the pressure, e is the internal energy,
V' is the relative volume (pV = py where py is the reference
density), s is the deviatoric stress defined as s;; = 0;; + Py,
where ¢ is the Kronecker delta and € is the strain rate tensor.
PISALE has a range of different strength and failure models.

Thermal conduction and radiation transport coupled to the
basic conservation law equations are solved by implementing
the diffusion approximation, which uses a nodal radiation en-
ergy and a zone-averaged nodal temperature [24]. The original
PISALE Finete Element Method (FEM) package includes only
first order H' quadrilateral and hexahedron elements in 2D
and 3D. This works well for the diffusion equation solvers

utilized in the heat conduction and radiation diffusion modules.
The original FEM package in PISALE only supports AMR in
2D. We are currently coupling PISALE to the Modular Finite
Element Methods (MFEM) library [25]. This will provide
a wide variety of powerful FEM-based PDE solvers, with
the added benefit of support for GPU acceleration, automatic
differentiation, high-order methods and more including the
support of AMR in 3D simulations.

ITII. RECENT IMPROVEMENTS TO PISALE TO MODEL
ION-BEAM EXPERIMENTS

In order to model our experiments using laser-produced ion
beams, we evaluated and extended the ion-beam package in
PISALE. Previous work using the package was restricted to
a monoenergetic beam of Li ions. We have modified the ion-
beam package in PISALE to have multiple ion beams with
different ion properties, including ion energy, spot size, and
fluences as a function of time. The PISALE code exploits
complex numerical techniques for fully anisotropic stress
tensors, interface reconstruction for multiple materials, and a
flexible strength/failure infrastructure for analytic or tabulated
material models and equations of state. We have determined
the appropriate equation of state and material strength/failure
model for the Si material used in our experiments. In the
PISALE code, a void material with an associated volume
fraction is introduced when a material failure occurs. This can
result in spall planes that will be compared to measured spall
generation.

IV. EXPERIMENTS DETAILS USING LASER-PRODUCED
PROTON BEAMS

4

MEC short-pulse laser
-0.66J,40fs
- 2x10"® W/em?

4 pm thick
polypropylene

Single crystal Si

8 20x 100 um
e X-ray
lenses ‘
..... .
11 keV Thomson
Parabola X-ray Phase Contrast

Image (PCI)

Figure 1. Experimental configuration using proton beams generated by the
20 TW-laser at the SLAC MEC end-station to heat a Si target.

Laser-produced high-energy (MeV) proton beams can be
used for isochoric heating of solid targets [26][27][28]. In
our experiment, the 0.66 J, ~50 fs, 800 nm Ti:Sapphire
MEC pump laser (P-polarized) was focused onto a 4 pum-
thick propylene foil using an f/6 off-axis parabola, reaching
peak intensities of ~2x10'? W/cm?. Interaction with the solid-
density target generated a population of hot electrons, a frac-
tion of which escaped from the rear surface, forming a strong
electrostatic sheath field. This field accelerates surface ions via
the Target Normal Sheath Acceleration (TNSA) mechanism
[29], producing a well-collimated proton beam normal to
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Figure 2. Measured proton spectrum generated by the 20 TW-laser striking
polypropylene target.

Figure 3. Measured response in Si target from proton beam arriving from
the left.

the target. A secondary sample—20 pm-thick single-crystal
silicon—was placed 300-500 pm from the proton source,
where the ions deposited most of their energy at the end of
their range, resulting in isochoric heating. The experimental
set-up is shown in Figure 1. This short-lived warm dense
matter state sample is imaged using the 50 fs, 11 keV X-ray
LCLS beam. The proton spectrum and angular distribution
produced during the interaction were measured using an
absolutely calibrated Thomson parabola spectrometer and a
stack of RadioChromic Films (RCFs). The measured proton
spectrum is shown in Figure 2. The combination of the high
intensity short pulse laser system at MEC, able to create MeV
proton beams to isochorically heat matter, with the LCLS,
allows unprecedented access to the creation and interrogation
of this exotic state of matter.

The heated target was spatially and temporally diagnosed
using the MEC X-ray Imager (MXI), operated in a Phase-
Contrast Imaging (PCI) configuration [30]. The collimated 11
keV LCLS beam was prefocused upstream of the sample using

a stack of 40 beryllium Compound Refractive Lenses (CRLs),
generating a secondary x-ray source located 214 mm before
the sample. The transmitted x-rays were recorded on a YAG
phosphor screen positioned 4901 mm downstream. This screen
was re-imaged by a high-resolution optical system coupled
to an sSCMOS camera using a 1.8 x magnification objective,
yielding a total geometric magnification of 42 and an effective
pixel size of approximately 150 nm.

Typical experimental results are shown in Figure 3. The
MeV proton beam arrives at the target from the left. These
measurements visualize the density evolution as a function
of time starting with the firing of the short-pulse laser. The
generated protons travel to the Si target with the highest
energy ones arriving first. One nanosecond after the pump laser
irradiates the polypropylene target and starts producing the
proton beam, we observe the effects of proton-induced energy
deposition (left image). At 5 ns (center image) we see the
generation of a compression wave. At 17.5 ns (right image),
we see material failure and spallation. In another experiment,
we observed similar spallation in Ge foils using a 20 ns laser
pulse to generate the shock [30].
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Figure 4. Calculated internal energy per unit mass of 20 pm thick Si target
heated by proton beam arriving from the left at four times.

V. PISALE SIMULATION RESULTS

Simulations of our experiments can provide insight into
the properties of the Si target and the cause of the observed
spallation. We use the measurements of the proton spectrum,
shown in Figure 2, as input for our PISALE simulations. We
split energies into fixed-width ranges based on the individual
proton energies, and for each bin we calculated a beam
intensity that matchs the total deposited energy of that bin
determined by integrating an exponential fit of the curve in
Figure 2. The arrival time at the Si sample is a function of
their energy, with the highest energy ones arriving first. Given
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the relatively small distance between the foil where the protons
are produced and the Si targets, all the protons arrive before
any significant hydrodynamics motion occurs. This results in
isochoric heating by the protons. We divide the protons into
different energy groups with corresponding different arrival
times. In addition to arriving at different times, the ions with
different energies deposit their energy at different locations in
the Si sample. We explored using different numbers of energy
groups, and the results shown in this report are for 17 energy
groups going from 0.05 to 1.8 MeV with almost 60% of the
energy in the proton beam being in the 0.2 to 0.6 MeV energy
range. Less than 10% of the proton beam energy is below 0.2
MeV.

In general, the most important aspect of proton beams
having a wide range of energies is the location of the deposited
energy. In Figure 4, we show results from the PISALE
simulation for the internal energy per unit mass inside the 20
pm thick Si target heated by the 50 pum radius proton beam
coming from the left. The proton beam is centered on 0 in
the Y axis. We model just the top half the Si target given that
the target and proton beam are symmetric in Y. [These results
are for a distance of 4 mm between the polypropylene foil
and the Si sample, which is larger than the distance of 300
pm discussed in the previous experimental section.] The first
image is at 250 ps when only protons with energy greater than
1.3 MeV have started to arrive at the target. One can see a
small amount of heating in the center of the beam. Note the
log scale. The next image is at 310 ps, with heating seen in
the entire beam with the deposition relatively uniform through
the thickness of the Si target. This is expected for these high-
energy protons. At 431 ps, some of the lower-energy protons
with shorter stopping distances start to arrive, and we see a
higher internal energy on the front side of Si target. In the far
right image, we show results at 713 ps when protons in the
lowest-energy group have started to arrive, and most higher-
energy protons have deposited their energy or have passed
through the Si target.

The high internal energy near the front side of the target
causes a shock to form and move to the right before significant
hydrodynamic motion. The calculated response of the Si target
to proton-beam heating is shown in Figure 5, where we show
the density, with a linear scale, at four times. All the energy
deposition has essentially competed by 1 ns. In the far left
image at 1.4 ns, we see the shock moving to the right with
a narrow density enhancement location about 3 pm into the
Si target in the center of the beam path. In the next image at
2 ns, the density enhancement has broadened and is about 7
pm into the Si target. This corresponds to a velocity of 6.7
pm/ns. This is consistent with the observed velocity obtained
from images at 1 and 5 ns in Figure 3. The start of rear surface
motion in the simulation is seen in the 6 ns image in Figure
4. Rear-surface spall is seen in the image on the far right at 9
ns with some melting of the Si target. The rear-surface spall
is calculated to start earlier than is observed. These PISALE
simulations are in good agreement with the experimental data
for the location of deposition and the measured shock speed.

The simulation and the experiment both have rear-surface spall
with the simulation having onset of spall approximately 2X
sooner than the experiment.

As already stated, these simulation results are for a flight
distance of 4 mm for protons, as compared to 300 pum in the
experiment. For a closer distance of 300 pm, all of the proton
energy will be deposited in approximately 100 ps. Given that
there is little volume change in the first nanosecond, we expect
the Si response, including the spall, to be similar. Another
reason for expecting a similar Si response is that the location of
proton deposition within the Si target is primarily a function of
the proton energy, which is independent of the flight distance
of the protons.

VI. CONCLUSIONS AND FUTURE WORK

The project has expanded the capability of the PISALE
code to model complex ion beams with varying energies,
arrival times, and other beam properties. This is beneficial
for ongoing modeling efforts in modeling laser-produced ion
for the formation of color centers relevant to photon qubits
and studying new materials for long-term battery storage.
We plan to study the effect of smaller flight distance and
subsequent shorter energy deposition times. We also plan to
explore the effects of different equation-of-state tables/models
and strength models for Si on the simulation of spallation.
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Abstract—This work presents the development of a local
weather forecasting system integrated into an agricultural
digital twin, leveraging classical machine learning. Data were
collected from ESP32-based weather stations equipped with
temperature, relative humidity, and atmospheric pressure
sensors. The acquired measurements were processed through a
Node.js server and used to train predictive models, including
Random Forest, Gradient Boosting, Ridge Regression, Lasso
Regression and K-Nearest Neighbors. A sliding window
approach was applied to structure the input data for short-
term forecasting. Experimental results show that Gradient
Boosting achieved the best performance among classical
methods for atmospheric pressure but exhibited overfitting for
temperature and humidity. These findings highlight the
potential of Artificial Intelligence (AI)-powered digital twins to
enhance precision agriculture by providing accurate, localized,
and up-to-date weather forecasts.

Keywords-Digital twin; local weather forecasting; machine
learning; deep learning; agriculture; Gradient Boosting.

L INTRODUCTION

In recent decades, technological advancements have
driven the development of digital twins, virtual replicas of
real-world physical systems that enable real-time monitoring,
simulation, and control. In the agricultural sector, these
digital twins integrate data from sensors, weather stations,
and Internet of Things (IoT) devices to remotely model and
optimize complex processes, facilitating the management of
resources such as water, fertilizers, and pesticides [1].

The reliability of these models largely depends on the
underlying sensing infrastructure. Well-designed Wireless
Sensor Network (WSN) architectures, such as those
proposed by Lloret et al. [2], and Hussein et al. [3] have
proven essential for ensuring coverage, scalability, and
efficiency in data collection. Such infrastructures enable
parallel and organized communication between multiple
nodes, optimizing network topology and reducing latency in
transmitting critical data.

By replicating plants and cultivation environments,
digital twins offer farmers decision support systems that
reduce resource consumption and improve productivity [4].
These virtual representations facilitate scenario evaluation
and predictive analysis without extensive physical trials,
accelerating the digital transformation of the agricultural

sector [5]. Incorporating artificial intelligence and machine
learning expands the capabilities of these models, allowing,
for example, adaptive irrigation scheduling based on real-
time soil moisture data and weather forecasts, significantly
reducing water waste [6].

Artificial intelligence techniques have emerged as a key
component in high-precision weather forecasting, leveraging
convolutional and recurrent neural networks to model
complex atmospheric phenomena [7]. These approaches
have been shown to improve the estimation of precipitation
and extreme temperatures, enabling digital twins to
anticipate adverse conditions and proactively adapt their crop
management strategies [8].

Moreover, digital twins support sustainable agricultural
practices through continuous environmental monitoring and
adaptive management strategies [9]. The combination of
cloud computing technologies and edge devices increases
data processing capacity and allows faster, more precise
responses to changes in the field [10].

This work presents the design and implementation of a
local weather forecasting system integrated into an
agricultural digital twin. Unlike previous studies, our
proposal combines IoT-based sensing infrastructure with
classical machine learning models to generate short-term,
high-resolution forecasts directly tailored to the conditions of
a specific agricultural plot. The system demonstrates the
feasibility of deploying low-cost weather stations with real-
time data processing and highlights the comparative
advantages and limitations of different predictive
approaches. This contribution provides a practical
framework for enhancing decision-making in precision
agriculture through accurate, localized, and continuously
updated forecasts for digitals twins data input.

The remainder of this article is structured as follows:
Section II reviews related works on digital twins, artificial
intelligence, and weather forecasting in agricultural contexts.
Section III details the architecture and operation of the
proposed system, including data acquisition, preprocessing,
and model training. Section IV presents and discusses the
experimental results, covering machine learning approaches.
Finally, Section V summarizes the conclusions and outlines
potential future research directions.
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II.  RELATED WORK

Several studies have reviewed the adoption of digital
twins in agriculture, focusing on controlled environments
such as greenhouses. A systematic review highlights how
these models improve horticultural productivity and
sustainability, emphasizing their role in microclimate
control, crop growth monitoring, and resource use efficiency
[11].

Integrating sensors to measure humidity, temperature,
CO: levels, and light, along with IoT platforms, increases the
accuracy of growth simulations and optimizes climate
control in greenhouses [12]. As documented by Bri et al.
[13], real deployments of wireless sensor networks
demonstrate the feasibility and challenges associated with
large-scale agricultural monitoring, including node resilience
in adverse environments and energy management to ensure
continuity of real-time measurements.

Virtual and augmented reality technologies have
strengthened digital twin platforms by enabling immersive
interactions with virtual crop models. Examples like the
“Virtual Breeding Nursery” allow farmers to explore virtual
plots, manipulate environmental variables, and simulate
stress or pest infestation scenarios [14]. These intuitive data
visualization interfaces combine sensor information with 3D
models of plants and structures, supporting more informed
decision-making [15].

In open-field contexts, pilot projects demonstrate that
platforms equipped with IoT sensor networks—streaming
real-time soil moisture, nutrient content, and weather data—
can dynamically adapt management practices, optimizing
fertilizer wuse and pest control while minimizing
environmental impact [16]. Cooperative group-based
solutions, such as those presented by Garcia et al. [17],
reduce energy consumption and improve communication
efficiency in WSNs, increasing the viability of these
platforms in rural areas with limited infrastructure.

Advanced Deep Learning techniques have been
successfully applied to environmental monitoring, enabling
the early detection of anomalous patterns in air quality,
humidity, and temperature [18]. This automated analysis
facilitates the integration of predictive systems within digital
twins, enhancing responsiveness to emerging weather events
or pest outbreaks. Nevertheless, challenges remain, such as
data interoperability, real-time synchronization, and
affordability for smallholder farmers, which currently limit
widespread adoption [19].

III.  SYSTEM PROPOSAL

This section presents a proposed system for
implementing local weather forecasting based on artificial
intelligence within a digital twin environment.

A. System Description

The proposed system is based on weather stations
developed on the ESP32 platform, as illustrated in Figure 1.
These stations are equipped with sensors capable of
measuring key meteorological variables such as air
temperature, relative humidity, and atmospheric pressure.

The data captured by the sensors is transmitted and
managed through a server implemented with Node.js, which
allows for their storage, processing, and subsequent use for
modeling. The locally obtained meteorological variables
constitute the inputs to the prediction model based on a
machine learning models.

The management of weather forecast requests and the
visualization of real-time data and model results is carried
out through a user interface developed as part of an
application for monitoring agricultural fields. This

application serves a dual purpose: to facilitate interaction
with the system and as a key component in creating a digital
twin of the agricultural environment.

Figure 1. Photograph of the weather station.

B.  Operating Algorithm

The weather station's operating algorithm operates in a
loop with an execution frequency of once per hour. After this
interval, the node automatically connects to the wireless
network, establishes communication with the sensors using
the Inter-Integrated Circuit (I2C) or Universal Asynchronous
Receiver-Transmitter (UART) protocols, and measures the
meteorological variables.

Once the data is obtained, the system attempts to connect
with the server. If the connection is successful, the data is
sent, and the node again enters a standby state until the next
iteration of the cycle.

Regarding the operation of the digital twin, the
interaction begins when the user clicks the forecast button on
the interface associated with a specific weather station. This
action activates the weather prediction model, which
generates a forecast for the next 24 hours.

Additionally, the data collected daily by the weather
stations is used to update the model. In this way, a new
model version is trained daily, ensuring that predictions are
based on the most recent local weather records, thereby
increasing the system's accuracy and adaptability to
environmental conditions. This data is used for input for
digital twins.

C. Dataset Description

The dataset used in this work corresponds to a time series
of local meteorological observations recorded from February
1, 2025 to August 1, 2025. During this period, atmospheric
conditions were assessed intermittently over a specific
agricultural plot. The dataset is composed of the following
variables:
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Air temperature (°C)
Relative humidity (%)
Atmospheric pressure (hPa)
Date

Time

Each observation is associated with a timestamp (date
and time) indicating the exact moment the measurement was
taken. These variables constitute the basis for generating
weather forecasts in the proposed system, allowing for
modeling short-term local climate evolution within the
context of the digital twin.

D. Model Training and Testing

The weather forecast model was generated following the
steps illustrated in Figure 2.

First, the dataset is loaded into a DataFrame, where the
temperature, relative humidity, and atmospheric pressure
variables are converted to numeric format. The date and time
column is transformed into datetime objects and sorted in
natural chronological sequence.

Next, a data cleaning process is carried out. Invalid
samples are eliminated, including those generated during
testing (e.g., records with a frequency of one second) and
those with temporal discontinuities greater than one hour.

Once the dataset is cleaned, an exploratory analysis of
the variables of interest is performed. To do this, histograms
are used to visualize the distribution of the variables
extracted from the database.

Subsequently, the input structure for the model is built
based on a sliding data window. The input to the forecasting
models was defined using a sliding-window approach over
the time series. Each input sequence consisted of a window
of 24 consecutive hourly samples (corresponding to a 24-
hour period), with a stride of 3 hours between windows. This
resulted in partially overlapping input sequences, capturing
both short-term dynamics and daily patterns. The sampling
frequency within each window was fixed at one hour, and
the target variable was defined as the meteorological
condition in the subsequent 24 hours. Thus, each input had a
shape of (24, number of features), where the features
corresponded to air temperature, relative humidity, and
atmospheric pressure. With this structure, the input tensor is
generated, on which statistical analysis is performed to
obtain:

e  The tensor dimension.

The total number of elements.

The number and percentage of null values.
The percentage of valid data.

The ranges of values before normalization.
The identification of potential outliers.

Before training the models, the variables are normalized,
and the correlation matrix between them is analyzed to
identify relevant relationships between the different
meteorological variables.

Different machine learning and deep learning algorithms
are trained and comparatively evaluated in the final stage. In

the machine learning field, the following models were
considered:

Random Forest
Gradient Boosting
Ridge Regression
Lasso Regression
K-Nearest Neighbors

The primary evaluation metric employed in this study is
the Coefficient of Determination (R?), which provides a
measure of how well the predicted values approximate the
actual data. In addition to R?, the Mean Squared Error (MSE)
and Mean Absolute Error (MAE) are also analyzed to gain
deeper insights into the model’s predictive performance.
These complementary metrics allow us to assess aspects
such as robustness, generalization capability, and potential
overfitting. By considering multiple evaluation criteria, we
ensure a more comprehensive understanding of the model’s
behavior across different scenarios.
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Imputation and
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Figure 2. Flowchart of the artificial intelligence model selection, training,
and testing process.

E.  Computational Tools and Libraries

The data processing, analysis, and modeling pipeline was
implemented in Python 3.10. For data handling and
preprocessing, the libraries Pandas and NumPy were
employed to manage time series, perform data cleaning, and
generate sliding windows for model input. Exploratory data
analysis and visualization were conducted using Matplotlib
and Seaborn, which allowed the inspection of statistical
distributions, correlations, and temporal trends.

Traditional machine learning models, including Random
Forest, Gradient Boosting, Ridge, Lasso, and K-Nearest
Neighbors, were implemented with Scikit-learn, which was
also used to compute the performance metrics (R?, MSE, and
MAE).
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IV. RESULTS

This section will detail the results obtained from the
training and testing of the different models proposed for the
meteorological dataset.

A. Histogram of dataset variables

Figure 3 presents the frequency distributions of the
temporal and meteorological variables in the dataset. The
temporal variables (minutes, day, and month) display distinct
sampling patterns, with the distribution of minutes being
nearly uniform across the recorded range, the distribution of
days showing alternating frequencies, and the distribution of
months indicating data collection concentrated in two main
periods.

Regarding the meteorological variables, the air
temperature histogram shows a slightly left-skewed
distribution, with most observations ranging between 27 °C
and 30 °C, and fewer occurrences at extreme values. Relative
humidity exhibits a bimodal distribution, with peaks near
70-75 % and around 100 %, indicating frequent saturation
events. Atmospheric pressure values are clustered mainly
between 1012 hPa and 1016 hPa, following a near-normal
distribution with moderate variability.

These histograms provide insight into the statistical
characteristics of the dataset, highlighting the predominant
conditions recorded by the meteorological station and
potential patterns relevant for model training.
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Figure 3. Histrograms of the weather and time variables from the dataset.
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B. Correlation Matrix

Figure 4 illustrates the relationships between the
temporal and meteorological variables in the dataset. When
considering the absolute values of the correlation
coefficients, the highest associations are observed between
relative humidity and both the day and month variables (|r| =
0.60 and 0.51, respectively) negative in sign and between
atmospheric pressure and the same variables (Jr] = 0.53 and
0.51, respectively) positive in sign. Air temperature also
shows a relatively strong correlation (Jr] = 0.63) with the
minute of the day, indicating a marked diurnal pattern. These
high-magnitude correlations, regardless of their direction,
suggest that temporal factors exert a significant influence on
the measured meteorological variables, and these
relationships can be exploited to improve the performance of
the forecasting models.

These results indicate the presence of significant
relationships among certain variables, which can be
exploited to enhance the training process of the artificial
intelligence model for local weather forecasting.
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Figure 4. Correlation matrix of temporal and meteorological variables.

C. Machine learning analysis

Figure 5 compares the results of the different models for
temperature prediction. Gradient Boosting achieved the best
overall performance among the classical machine learning
methods, with the lowest MAE (0.37) and MSE (0.30), and
the highest R? (0.656). K-Nearest Neighbors also provided
competitive results (R? = 0.640), followed by Lasso and
Ridge regressions with similar performance levels (R* =
0.60). Random Forest yielded the lowest R? (0.590) and
slightly higher error values.

However, Figure 6 reveals that, despite the relatively
high R? value, the Gradient Boosting model exhibits
substantial dispersion in the test set predictions, not only at
extreme temperatures but also in central value ranges. This
discrepancy between training and testing performance
suggests overfitting, indicating that the model may be
capturing noise or dataset-specific patterns rather than
generalizable relationships. This limitation will later be
addressed in the deep learning experiments, where
regularization techniques are introduced to reduce overfitting
and improve generalization.

Regressors Performance: MSE, MAE, R*
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Figure 5. Performance comparison of classical machine learning models
for air temperature prediction, evaluated using MSE, MAE, R
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Figure 6. Predicted versus actual air temperature values for the Gradient
Boosting model, including both training and testing datasets, compared to
gt

the ideal prediction line.
| II II
- I I
& &
e &
Model

Figure 8. Performance comparison of classical machine learning models
for relative humidity prediction, evaluated using MSE, MAE, R2.
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Figure 7 presents the performance comparison for
relative humidity prediction. As in the case of temperature,
Gradient Boosting outperformed the other models, achieving
the highest R? (0.578) and the lowest error metrics (MAE =
0.54, MSE = 0.45). Random Forest showed slightly lower
performance (R*> = 0.546), while Ridge Regression
performed poorly (R* = 0.123), indicating difficulty in
modeling the underlying relationships. Lasso Regression and
K-Nearest Neighbors produced intermediate results.

Figure 8 depicts the predicted versus actual humidity
values for the Gradient Boosting model, showing a strong
alignment with the ideal prediction line for most
observations, though with higher dispersion in the test set,
particularly at mid-range humidity levels.

Figure 9 compares the performance of the evaluated
machine learning models for atmospheric pressure
prediction. Gradient Boosting achieved the highest
coefficient of determination (R? = 0.899) and the lowest error
metrics (MAE = 0.26, MSE = 0.10), demonstrating its
superior accuracy and generalization capacity. Random
Forest also performed well, with an R? of 0.845 and slightly
higher errors (MAE = 0.34, MSE = 0.16). In contrast, Ridge
Regression and Lasso Regression yielded moderate results
(R? = 0.618 and 0.593, respectively), while K-Nearest
Neighbors showed the weakest performance (R? = 0.457).
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Figure 7. Predicted versus actual relative humidity values for the Gradient
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Figure 9. Performance comparison of classical machine learning models
for atmospheric pressure prediction, evaluated using MSE, MAE, R2.
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Figure 10 illustrates the predicted versus actual
atmospheric pressure values using the Gradient Boosting
model. The predictions closely follow the ideal line for both
training and testing datasets, with minimal dispersion,
particularly in the test set. These results confirm that
Gradient Boosting provides the most reliable predictions for
atmospheric pressure in the given dataset, outperforming all
other tested models.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a system successfully
integrates artificial intelligence into a digital twin for local
weather forecasting in agricultural environments. The results
demonstrate that Gradient Boosting offers the most accurate
predictions among the classical machine learning models for
all three meteorological variables, with particularly strong
performance in atmospheric pressure forecasting.

These outcomes validate the feasibility of combining
IoT-based sensing infrastructure with advanced predictive
models to enhance decision-making in precision agriculture.
By providing localized and timely forecasts, the system can
support improved resource allocation, crop management, and
environmental sustainability.
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Prediction vs Real for Pressure
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Figure 10. Predicted versus actual atmospheric pressure values for the
Gradient Boosting model, including both training and testing datasets,
compared to the ideal prediction line.

Future work will focus on expanding the dataset to cover
multiple seasons and diverse climatic conditions, integrating
additional variables such as wind speed, solar radiation, and
soil  moisture. Model optimization will include
hyperparameter tuning, advanced regularization techniques,
and the exploration of hybrid architectures that combine
statistical and neural approaches. Furthermore, deploying the
forecasting system in real-time operational scenarios and
integrating it with automated control mechanisms in the
digital twin will be key steps towards its practical adoption in
smart farming applications.
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